Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#include <linux/backing-dev.h>
 
   8
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_trace.h"
  16#include "xfs_log.h"
  17#include "xfs_log_recover.h"
  18#include "xfs_trans.h"
  19#include "xfs_buf_item.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22
  23static kmem_zone_t *xfs_buf_zone;
  24
 
 
 
 
 
 
 
 
 
 
  25#define xb_to_gfp(flags) \
  26	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  27
  28/*
  29 * Locking orders
  30 *
  31 * xfs_buf_ioacct_inc:
  32 * xfs_buf_ioacct_dec:
  33 *	b_sema (caller holds)
  34 *	  b_lock
  35 *
  36 * xfs_buf_stale:
  37 *	b_sema (caller holds)
  38 *	  b_lock
  39 *	    lru_lock
  40 *
  41 * xfs_buf_rele:
  42 *	b_lock
  43 *	  pag_buf_lock
  44 *	    lru_lock
  45 *
  46 * xfs_buftarg_wait_rele
  47 *	lru_lock
  48 *	  b_lock (trylock due to inversion)
  49 *
  50 * xfs_buftarg_isolate
  51 *	lru_lock
  52 *	  b_lock (trylock due to inversion)
  53 */
  54
  55static inline int
  56xfs_buf_is_vmapped(
  57	struct xfs_buf	*bp)
  58{
  59	/*
  60	 * Return true if the buffer is vmapped.
  61	 *
  62	 * b_addr is null if the buffer is not mapped, but the code is clever
  63	 * enough to know it doesn't have to map a single page, so the check has
  64	 * to be both for b_addr and bp->b_page_count > 1.
  65	 */
  66	return bp->b_addr && bp->b_page_count > 1;
  67}
  68
  69static inline int
  70xfs_buf_vmap_len(
  71	struct xfs_buf	*bp)
  72{
  73	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  74}
  75
  76/*
  77 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
  78 * this buffer. The count is incremented once per buffer (per hold cycle)
  79 * because the corresponding decrement is deferred to buffer release. Buffers
  80 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
  81 * tracking adds unnecessary overhead. This is used for sychronization purposes
  82 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
  83 * in-flight buffers.
  84 *
  85 * Buffers that are never released (e.g., superblock, iclog buffers) must set
  86 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
  87 * never reaches zero and unmount hangs indefinitely.
  88 */
  89static inline void
  90xfs_buf_ioacct_inc(
  91	struct xfs_buf	*bp)
  92{
  93	if (bp->b_flags & XBF_NO_IOACCT)
  94		return;
  95
  96	ASSERT(bp->b_flags & XBF_ASYNC);
  97	spin_lock(&bp->b_lock);
  98	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
  99		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
 100		percpu_counter_inc(&bp->b_target->bt_io_count);
 101	}
 102	spin_unlock(&bp->b_lock);
 103}
 104
 105/*
 106 * Clear the in-flight state on a buffer about to be released to the LRU or
 107 * freed and unaccount from the buftarg.
 108 */
 109static inline void
 110__xfs_buf_ioacct_dec(
 111	struct xfs_buf	*bp)
 112{
 113	lockdep_assert_held(&bp->b_lock);
 114
 115	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
 116		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
 117		percpu_counter_dec(&bp->b_target->bt_io_count);
 118	}
 119}
 120
 121static inline void
 122xfs_buf_ioacct_dec(
 123	struct xfs_buf	*bp)
 124{
 125	spin_lock(&bp->b_lock);
 126	__xfs_buf_ioacct_dec(bp);
 127	spin_unlock(&bp->b_lock);
 128}
 129
 130/*
 131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 132 * b_lru_ref count so that the buffer is freed immediately when the buffer
 133 * reference count falls to zero. If the buffer is already on the LRU, we need
 134 * to remove the reference that LRU holds on the buffer.
 135 *
 136 * This prevents build-up of stale buffers on the LRU.
 137 */
 138void
 139xfs_buf_stale(
 140	struct xfs_buf	*bp)
 141{
 142	ASSERT(xfs_buf_islocked(bp));
 143
 144	bp->b_flags |= XBF_STALE;
 145
 146	/*
 147	 * Clear the delwri status so that a delwri queue walker will not
 148	 * flush this buffer to disk now that it is stale. The delwri queue has
 149	 * a reference to the buffer, so this is safe to do.
 150	 */
 151	bp->b_flags &= ~_XBF_DELWRI_Q;
 152
 153	/*
 154	 * Once the buffer is marked stale and unlocked, a subsequent lookup
 155	 * could reset b_flags. There is no guarantee that the buffer is
 156	 * unaccounted (released to LRU) before that occurs. Drop in-flight
 157	 * status now to preserve accounting consistency.
 158	 */
 159	spin_lock(&bp->b_lock);
 160	__xfs_buf_ioacct_dec(bp);
 161
 162	atomic_set(&bp->b_lru_ref, 0);
 163	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 164	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 165		atomic_dec(&bp->b_hold);
 166
 167	ASSERT(atomic_read(&bp->b_hold) >= 1);
 168	spin_unlock(&bp->b_lock);
 169}
 170
 171static int
 172xfs_buf_get_maps(
 173	struct xfs_buf		*bp,
 174	int			map_count)
 175{
 176	ASSERT(bp->b_maps == NULL);
 177	bp->b_map_count = map_count;
 178
 179	if (map_count == 1) {
 180		bp->b_maps = &bp->__b_map;
 181		return 0;
 182	}
 183
 184	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 185				KM_NOFS);
 186	if (!bp->b_maps)
 187		return -ENOMEM;
 188	return 0;
 189}
 190
 191/*
 192 *	Frees b_pages if it was allocated.
 193 */
 194static void
 195xfs_buf_free_maps(
 196	struct xfs_buf	*bp)
 197{
 198	if (bp->b_maps != &bp->__b_map) {
 199		kmem_free(bp->b_maps);
 200		bp->b_maps = NULL;
 201	}
 202}
 203
 204static int
 205_xfs_buf_alloc(
 206	struct xfs_buftarg	*target,
 207	struct xfs_buf_map	*map,
 208	int			nmaps,
 209	xfs_buf_flags_t		flags,
 210	struct xfs_buf		**bpp)
 211{
 212	struct xfs_buf		*bp;
 213	int			error;
 214	int			i;
 215
 216	*bpp = NULL;
 217	bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
 
 218
 219	/*
 220	 * We don't want certain flags to appear in b_flags unless they are
 221	 * specifically set by later operations on the buffer.
 222	 */
 223	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 224
 225	atomic_set(&bp->b_hold, 1);
 226	atomic_set(&bp->b_lru_ref, 1);
 227	init_completion(&bp->b_iowait);
 228	INIT_LIST_HEAD(&bp->b_lru);
 229	INIT_LIST_HEAD(&bp->b_list);
 230	INIT_LIST_HEAD(&bp->b_li_list);
 231	sema_init(&bp->b_sema, 0); /* held, no waiters */
 232	spin_lock_init(&bp->b_lock);
 
 233	bp->b_target = target;
 234	bp->b_mount = target->bt_mount;
 235	bp->b_flags = flags;
 236
 237	/*
 238	 * Set length and io_length to the same value initially.
 239	 * I/O routines should use io_length, which will be the same in
 240	 * most cases but may be reset (e.g. XFS recovery).
 241	 */
 242	error = xfs_buf_get_maps(bp, nmaps);
 243	if (error)  {
 244		kmem_cache_free(xfs_buf_zone, bp);
 245		return error;
 246	}
 247
 248	bp->b_bn = map[0].bm_bn;
 249	bp->b_length = 0;
 250	for (i = 0; i < nmaps; i++) {
 251		bp->b_maps[i].bm_bn = map[i].bm_bn;
 252		bp->b_maps[i].bm_len = map[i].bm_len;
 253		bp->b_length += map[i].bm_len;
 254	}
 
 255
 256	atomic_set(&bp->b_pin_count, 0);
 257	init_waitqueue_head(&bp->b_waiters);
 258
 259	XFS_STATS_INC(bp->b_mount, xb_create);
 260	trace_xfs_buf_init(bp, _RET_IP_);
 261
 262	*bpp = bp;
 263	return 0;
 264}
 265
 266/*
 267 *	Allocate a page array capable of holding a specified number
 268 *	of pages, and point the page buf at it.
 269 */
 270STATIC int
 271_xfs_buf_get_pages(
 272	xfs_buf_t		*bp,
 273	int			page_count)
 274{
 275	/* Make sure that we have a page list */
 276	if (bp->b_pages == NULL) {
 277		bp->b_page_count = page_count;
 278		if (page_count <= XB_PAGES) {
 279			bp->b_pages = bp->b_page_array;
 280		} else {
 281			bp->b_pages = kmem_alloc(sizeof(struct page *) *
 282						 page_count, KM_NOFS);
 283			if (bp->b_pages == NULL)
 284				return -ENOMEM;
 285		}
 286		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 287	}
 288	return 0;
 289}
 290
 291/*
 292 *	Frees b_pages if it was allocated.
 293 */
 294STATIC void
 295_xfs_buf_free_pages(
 296	xfs_buf_t	*bp)
 297{
 298	if (bp->b_pages != bp->b_page_array) {
 299		kmem_free(bp->b_pages);
 300		bp->b_pages = NULL;
 301	}
 302}
 303
 304/*
 305 *	Releases the specified buffer.
 306 *
 307 * 	The modification state of any associated pages is left unchanged.
 308 * 	The buffer must not be on any hash - use xfs_buf_rele instead for
 309 * 	hashed and refcounted buffers
 310 */
 311static void
 312xfs_buf_free(
 313	xfs_buf_t		*bp)
 314{
 315	trace_xfs_buf_free(bp, _RET_IP_);
 316
 317	ASSERT(list_empty(&bp->b_lru));
 318
 319	if (bp->b_flags & _XBF_PAGES) {
 320		uint		i;
 321
 322		if (xfs_buf_is_vmapped(bp))
 323			vm_unmap_ram(bp->b_addr - bp->b_offset,
 324					bp->b_page_count);
 325
 326		for (i = 0; i < bp->b_page_count; i++) {
 327			struct page	*page = bp->b_pages[i];
 328
 329			__free_page(page);
 330		}
 331		if (current->reclaim_state)
 332			current->reclaim_state->reclaimed_slab +=
 333							bp->b_page_count;
 334	} else if (bp->b_flags & _XBF_KMEM)
 335		kmem_free(bp->b_addr);
 336	_xfs_buf_free_pages(bp);
 337	xfs_buf_free_maps(bp);
 338	kmem_cache_free(xfs_buf_zone, bp);
 339}
 340
 341/*
 342 * Allocates all the pages for buffer in question and builds it's page list.
 343 */
 344STATIC int
 345xfs_buf_allocate_memory(
 346	xfs_buf_t		*bp,
 347	uint			flags)
 348{
 349	size_t			size;
 350	size_t			nbytes, offset;
 351	gfp_t			gfp_mask = xb_to_gfp(flags);
 352	unsigned short		page_count, i;
 353	xfs_off_t		start, end;
 354	int			error;
 355	xfs_km_flags_t		kmflag_mask = 0;
 356
 357	/*
 358	 * assure zeroed buffer for non-read cases.
 359	 */
 360	if (!(flags & XBF_READ)) {
 361		kmflag_mask |= KM_ZERO;
 362		gfp_mask |= __GFP_ZERO;
 363	}
 364
 365	/*
 366	 * for buffers that are contained within a single page, just allocate
 367	 * the memory from the heap - there's no need for the complexity of
 368	 * page arrays to keep allocation down to order 0.
 369	 */
 370	size = BBTOB(bp->b_length);
 371	if (size < PAGE_SIZE) {
 372		int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
 373		bp->b_addr = kmem_alloc_io(size, align_mask,
 374					   KM_NOFS | kmflag_mask);
 375		if (!bp->b_addr) {
 376			/* low memory - use alloc_page loop instead */
 377			goto use_alloc_page;
 378		}
 379
 380		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 381		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 382			/* b_addr spans two pages - use alloc_page instead */
 383			kmem_free(bp->b_addr);
 384			bp->b_addr = NULL;
 385			goto use_alloc_page;
 386		}
 387		bp->b_offset = offset_in_page(bp->b_addr);
 388		bp->b_pages = bp->b_page_array;
 389		bp->b_pages[0] = kmem_to_page(bp->b_addr);
 390		bp->b_page_count = 1;
 391		bp->b_flags |= _XBF_KMEM;
 392		return 0;
 393	}
 394
 395use_alloc_page:
 396	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 397	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 398								>> PAGE_SHIFT;
 399	page_count = end - start;
 400	error = _xfs_buf_get_pages(bp, page_count);
 401	if (unlikely(error))
 402		return error;
 403
 404	offset = bp->b_offset;
 405	bp->b_flags |= _XBF_PAGES;
 406
 407	for (i = 0; i < bp->b_page_count; i++) {
 408		struct page	*page;
 409		uint		retries = 0;
 410retry:
 411		page = alloc_page(gfp_mask);
 412		if (unlikely(page == NULL)) {
 413			if (flags & XBF_READ_AHEAD) {
 414				bp->b_page_count = i;
 415				error = -ENOMEM;
 416				goto out_free_pages;
 417			}
 418
 419			/*
 420			 * This could deadlock.
 421			 *
 422			 * But until all the XFS lowlevel code is revamped to
 423			 * handle buffer allocation failures we can't do much.
 424			 */
 425			if (!(++retries % 100))
 426				xfs_err(NULL,
 427		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
 428					current->comm, current->pid,
 429					__func__, gfp_mask);
 430
 431			XFS_STATS_INC(bp->b_mount, xb_page_retries);
 432			congestion_wait(BLK_RW_ASYNC, HZ/50);
 433			goto retry;
 434		}
 435
 436		XFS_STATS_INC(bp->b_mount, xb_page_found);
 437
 438		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 439		size -= nbytes;
 440		bp->b_pages[i] = page;
 441		offset = 0;
 442	}
 443	return 0;
 444
 445out_free_pages:
 446	for (i = 0; i < bp->b_page_count; i++)
 447		__free_page(bp->b_pages[i]);
 448	bp->b_flags &= ~_XBF_PAGES;
 449	return error;
 450}
 451
 452/*
 453 *	Map buffer into kernel address-space if necessary.
 454 */
 455STATIC int
 456_xfs_buf_map_pages(
 457	xfs_buf_t		*bp,
 458	uint			flags)
 459{
 460	ASSERT(bp->b_flags & _XBF_PAGES);
 461	if (bp->b_page_count == 1) {
 462		/* A single page buffer is always mappable */
 463		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 464	} else if (flags & XBF_UNMAPPED) {
 465		bp->b_addr = NULL;
 466	} else {
 467		int retried = 0;
 468		unsigned nofs_flag;
 469
 470		/*
 471		 * vm_map_ram() will allocate auxiliary structures (e.g.
 472		 * pagetables) with GFP_KERNEL, yet we are likely to be under
 473		 * GFP_NOFS context here. Hence we need to tell memory reclaim
 474		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
 475		 * memory reclaim re-entering the filesystem here and
 476		 * potentially deadlocking.
 477		 */
 478		nofs_flag = memalloc_nofs_save();
 479		do {
 480			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 481						-1);
 482			if (bp->b_addr)
 483				break;
 484			vm_unmap_aliases();
 485		} while (retried++ <= 1);
 486		memalloc_nofs_restore(nofs_flag);
 487
 488		if (!bp->b_addr)
 489			return -ENOMEM;
 490		bp->b_addr += bp->b_offset;
 491	}
 492
 493	return 0;
 494}
 495
 496/*
 497 *	Finding and Reading Buffers
 498 */
 499static int
 500_xfs_buf_obj_cmp(
 501	struct rhashtable_compare_arg	*arg,
 502	const void			*obj)
 503{
 504	const struct xfs_buf_map	*map = arg->key;
 505	const struct xfs_buf		*bp = obj;
 506
 507	/*
 508	 * The key hashing in the lookup path depends on the key being the
 509	 * first element of the compare_arg, make sure to assert this.
 510	 */
 511	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
 512
 513	if (bp->b_bn != map->bm_bn)
 514		return 1;
 515
 516	if (unlikely(bp->b_length != map->bm_len)) {
 517		/*
 518		 * found a block number match. If the range doesn't
 519		 * match, the only way this is allowed is if the buffer
 520		 * in the cache is stale and the transaction that made
 521		 * it stale has not yet committed. i.e. we are
 522		 * reallocating a busy extent. Skip this buffer and
 523		 * continue searching for an exact match.
 524		 */
 525		ASSERT(bp->b_flags & XBF_STALE);
 526		return 1;
 527	}
 528	return 0;
 529}
 530
 531static const struct rhashtable_params xfs_buf_hash_params = {
 532	.min_size		= 32,	/* empty AGs have minimal footprint */
 533	.nelem_hint		= 16,
 534	.key_len		= sizeof(xfs_daddr_t),
 535	.key_offset		= offsetof(struct xfs_buf, b_bn),
 536	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
 537	.automatic_shrinking	= true,
 538	.obj_cmpfn		= _xfs_buf_obj_cmp,
 539};
 540
 541int
 542xfs_buf_hash_init(
 543	struct xfs_perag	*pag)
 544{
 545	spin_lock_init(&pag->pag_buf_lock);
 546	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
 547}
 548
 549void
 550xfs_buf_hash_destroy(
 551	struct xfs_perag	*pag)
 552{
 553	rhashtable_destroy(&pag->pag_buf_hash);
 554}
 555
 556/*
 557 * Look up a buffer in the buffer cache and return it referenced and locked
 558 * in @found_bp.
 559 *
 560 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
 561 * cache.
 562 *
 563 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
 564 * -EAGAIN if we fail to lock it.
 565 *
 566 * Return values are:
 567 *	-EFSCORRUPTED if have been supplied with an invalid address
 568 *	-EAGAIN on trylock failure
 569 *	-ENOENT if we fail to find a match and @new_bp was NULL
 570 *	0, with @found_bp:
 571 *		- @new_bp if we inserted it into the cache
 572 *		- the buffer we found and locked.
 573 */
 574static int
 575xfs_buf_find(
 576	struct xfs_buftarg	*btp,
 577	struct xfs_buf_map	*map,
 578	int			nmaps,
 579	xfs_buf_flags_t		flags,
 580	struct xfs_buf		*new_bp,
 581	struct xfs_buf		**found_bp)
 582{
 583	struct xfs_perag	*pag;
 
 
 584	xfs_buf_t		*bp;
 585	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
 586	xfs_daddr_t		eofs;
 
 587	int			i;
 588
 589	*found_bp = NULL;
 590
 591	for (i = 0; i < nmaps; i++)
 592		cmap.bm_len += map[i].bm_len;
 593
 594	/* Check for IOs smaller than the sector size / not sector aligned */
 595	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
 596	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
 597
 598	/*
 599	 * Corrupted block numbers can get through to here, unfortunately, so we
 600	 * have to check that the buffer falls within the filesystem bounds.
 601	 */
 602	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 603	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
 
 
 
 
 
 604		xfs_alert(btp->bt_mount,
 605			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
 606			  __func__, cmap.bm_bn, eofs);
 607		WARN_ON(1);
 608		return -EFSCORRUPTED;
 609	}
 610
 
 611	pag = xfs_perag_get(btp->bt_mount,
 612			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
 613
 
 614	spin_lock(&pag->pag_buf_lock);
 615	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
 616				    xfs_buf_hash_params);
 617	if (bp) {
 618		atomic_inc(&bp->b_hold);
 619		goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620	}
 621
 622	/* No match found */
 623	if (!new_bp) {
 
 
 
 
 
 
 624		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
 625		spin_unlock(&pag->pag_buf_lock);
 626		xfs_perag_put(pag);
 627		return -ENOENT;
 628	}
 629
 630	/* the buffer keeps the perag reference until it is freed */
 631	new_bp->b_pag = pag;
 632	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
 633			       xfs_buf_hash_params);
 634	spin_unlock(&pag->pag_buf_lock);
 635	*found_bp = new_bp;
 636	return 0;
 637
 638found:
 639	spin_unlock(&pag->pag_buf_lock);
 640	xfs_perag_put(pag);
 641
 642	if (!xfs_buf_trylock(bp)) {
 643		if (flags & XBF_TRYLOCK) {
 644			xfs_buf_rele(bp);
 645			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
 646			return -EAGAIN;
 647		}
 648		xfs_buf_lock(bp);
 649		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
 650	}
 651
 652	/*
 653	 * if the buffer is stale, clear all the external state associated with
 654	 * it. We need to keep flags such as how we allocated the buffer memory
 655	 * intact here.
 656	 */
 657	if (bp->b_flags & XBF_STALE) {
 658		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 
 659		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 660		bp->b_ops = NULL;
 661	}
 662
 663	trace_xfs_buf_find(bp, flags, _RET_IP_);
 664	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
 665	*found_bp = bp;
 666	return 0;
 667}
 668
 669struct xfs_buf *
 670xfs_buf_incore(
 671	struct xfs_buftarg	*target,
 672	xfs_daddr_t		blkno,
 673	size_t			numblks,
 674	xfs_buf_flags_t		flags)
 675{
 676	struct xfs_buf		*bp;
 677	int			error;
 678	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
 679
 680	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
 681	if (error)
 682		return NULL;
 683	return bp;
 684}
 685
 686/*
 687 * Assembles a buffer covering the specified range. The code is optimised for
 688 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 689 * more hits than misses.
 690 */
 691int
 692xfs_buf_get_map(
 693	struct xfs_buftarg	*target,
 694	struct xfs_buf_map	*map,
 695	int			nmaps,
 696	xfs_buf_flags_t		flags,
 697	struct xfs_buf		**bpp)
 698{
 699	struct xfs_buf		*bp;
 700	struct xfs_buf		*new_bp;
 701	int			error = 0;
 702
 703	*bpp = NULL;
 704	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
 705	if (!error)
 706		goto found;
 707	if (error != -ENOENT)
 708		return error;
 709
 710	error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
 711	if (error)
 712		return error;
 713
 714	error = xfs_buf_allocate_memory(new_bp, flags);
 715	if (error) {
 716		xfs_buf_free(new_bp);
 717		return error;
 718	}
 719
 720	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
 721	if (error) {
 722		xfs_buf_free(new_bp);
 723		return error;
 724	}
 725
 726	if (bp != new_bp)
 727		xfs_buf_free(new_bp);
 728
 729found:
 730	if (!bp->b_addr) {
 731		error = _xfs_buf_map_pages(bp, flags);
 732		if (unlikely(error)) {
 733			xfs_warn_ratelimited(target->bt_mount,
 734				"%s: failed to map %u pages", __func__,
 735				bp->b_page_count);
 736			xfs_buf_relse(bp);
 737			return error;
 738		}
 739	}
 740
 741	/*
 742	 * Clear b_error if this is a lookup from a caller that doesn't expect
 743	 * valid data to be found in the buffer.
 744	 */
 745	if (!(flags & XBF_READ))
 746		xfs_buf_ioerror(bp, 0);
 747
 748	XFS_STATS_INC(target->bt_mount, xb_get);
 749	trace_xfs_buf_get(bp, flags, _RET_IP_);
 750	*bpp = bp;
 751	return 0;
 752}
 753
 754STATIC int
 755_xfs_buf_read(
 756	xfs_buf_t		*bp,
 757	xfs_buf_flags_t		flags)
 758{
 759	ASSERT(!(flags & XBF_WRITE));
 760	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 761
 762	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 763	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 764
 765	return xfs_buf_submit(bp);
 766}
 767
 768/*
 769 * Reverify a buffer found in cache without an attached ->b_ops.
 770 *
 771 * If the caller passed an ops structure and the buffer doesn't have ops
 772 * assigned, set the ops and use it to verify the contents. If verification
 773 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
 774 * already in XBF_DONE state on entry.
 775 *
 776 * Under normal operations, every in-core buffer is verified on read I/O
 777 * completion. There are two scenarios that can lead to in-core buffers without
 778 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
 779 * filesystem, though these buffers are purged at the end of recovery. The
 780 * other is online repair, which intentionally reads with a NULL buffer ops to
 781 * run several verifiers across an in-core buffer in order to establish buffer
 782 * type.  If repair can't establish that, the buffer will be left in memory
 783 * with NULL buffer ops.
 784 */
 785int
 786xfs_buf_reverify(
 787	struct xfs_buf		*bp,
 788	const struct xfs_buf_ops *ops)
 789{
 790	ASSERT(bp->b_flags & XBF_DONE);
 791	ASSERT(bp->b_error == 0);
 792
 793	if (!ops || bp->b_ops)
 794		return 0;
 795
 796	bp->b_ops = ops;
 797	bp->b_ops->verify_read(bp);
 798	if (bp->b_error)
 799		bp->b_flags &= ~XBF_DONE;
 800	return bp->b_error;
 801}
 802
 803int
 804xfs_buf_read_map(
 805	struct xfs_buftarg	*target,
 806	struct xfs_buf_map	*map,
 807	int			nmaps,
 808	xfs_buf_flags_t		flags,
 809	struct xfs_buf		**bpp,
 810	const struct xfs_buf_ops *ops,
 811	xfs_failaddr_t		fa)
 812{
 813	struct xfs_buf		*bp;
 814	int			error;
 815
 816	flags |= XBF_READ;
 817	*bpp = NULL;
 818
 819	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
 820	if (error)
 821		return error;
 822
 823	trace_xfs_buf_read(bp, flags, _RET_IP_);
 824
 825	if (!(bp->b_flags & XBF_DONE)) {
 826		/* Initiate the buffer read and wait. */
 827		XFS_STATS_INC(target->bt_mount, xb_get_read);
 828		bp->b_ops = ops;
 829		error = _xfs_buf_read(bp, flags);
 830
 831		/* Readahead iodone already dropped the buffer, so exit. */
 832		if (flags & XBF_ASYNC)
 833			return 0;
 834	} else {
 835		/* Buffer already read; all we need to do is check it. */
 836		error = xfs_buf_reverify(bp, ops);
 837
 838		/* Readahead already finished; drop the buffer and exit. */
 839		if (flags & XBF_ASYNC) {
 
 
 
 
 
 
 
 840			xfs_buf_relse(bp);
 841			return 0;
 
 
 
 842		}
 843
 844		/* We do not want read in the flags */
 845		bp->b_flags &= ~XBF_READ;
 846		ASSERT(bp->b_ops != NULL || ops == NULL);
 847	}
 848
 849	/*
 850	 * If we've had a read error, then the contents of the buffer are
 851	 * invalid and should not be used. To ensure that a followup read tries
 852	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
 853	 * mark the buffer stale. This ensures that anyone who has a current
 854	 * reference to the buffer will interpret it's contents correctly and
 855	 * future cache lookups will also treat it as an empty, uninitialised
 856	 * buffer.
 857	 */
 858	if (error) {
 859		if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
 860			xfs_buf_ioerror_alert(bp, fa);
 861
 862		bp->b_flags &= ~XBF_DONE;
 863		xfs_buf_stale(bp);
 864		xfs_buf_relse(bp);
 865
 866		/* bad CRC means corrupted metadata */
 867		if (error == -EFSBADCRC)
 868			error = -EFSCORRUPTED;
 869		return error;
 870	}
 871
 872	*bpp = bp;
 873	return 0;
 874}
 875
 876/*
 877 *	If we are not low on memory then do the readahead in a deadlock
 878 *	safe manner.
 879 */
 880void
 881xfs_buf_readahead_map(
 882	struct xfs_buftarg	*target,
 883	struct xfs_buf_map	*map,
 884	int			nmaps,
 885	const struct xfs_buf_ops *ops)
 886{
 887	struct xfs_buf		*bp;
 888
 889	if (bdi_read_congested(target->bt_bdev->bd_bdi))
 890		return;
 891
 892	xfs_buf_read_map(target, map, nmaps,
 893		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
 894		     __this_address);
 895}
 896
 897/*
 898 * Read an uncached buffer from disk. Allocates and returns a locked
 899 * buffer containing the disk contents or nothing.
 900 */
 901int
 902xfs_buf_read_uncached(
 903	struct xfs_buftarg	*target,
 904	xfs_daddr_t		daddr,
 905	size_t			numblks,
 906	int			flags,
 907	struct xfs_buf		**bpp,
 908	const struct xfs_buf_ops *ops)
 909{
 910	struct xfs_buf		*bp;
 911	int			error;
 912
 913	*bpp = NULL;
 914
 915	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
 916	if (error)
 917		return error;
 918
 919	/* set up the buffer for a read IO */
 920	ASSERT(bp->b_map_count == 1);
 921	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
 922	bp->b_maps[0].bm_bn = daddr;
 923	bp->b_flags |= XBF_READ;
 924	bp->b_ops = ops;
 925
 926	xfs_buf_submit(bp);
 927	if (bp->b_error) {
 928		error = bp->b_error;
 929		xfs_buf_relse(bp);
 930		return error;
 931	}
 932
 933	*bpp = bp;
 934	return 0;
 935}
 936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938xfs_buf_get_uncached(
 939	struct xfs_buftarg	*target,
 940	size_t			numblks,
 941	int			flags,
 942	struct xfs_buf		**bpp)
 943{
 944	unsigned long		page_count;
 945	int			error, i;
 946	struct xfs_buf		*bp;
 947	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 948
 949	*bpp = NULL;
 950
 951	/* flags might contain irrelevant bits, pass only what we care about */
 952	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
 953	if (error)
 954		goto fail;
 955
 956	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 957	error = _xfs_buf_get_pages(bp, page_count);
 958	if (error)
 959		goto fail_free_buf;
 960
 961	for (i = 0; i < page_count; i++) {
 962		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 963		if (!bp->b_pages[i]) {
 964			error = -ENOMEM;
 965			goto fail_free_mem;
 966		}
 967	}
 968	bp->b_flags |= _XBF_PAGES;
 969
 970	error = _xfs_buf_map_pages(bp, 0);
 971	if (unlikely(error)) {
 972		xfs_warn(target->bt_mount,
 973			"%s: failed to map pages", __func__);
 974		goto fail_free_mem;
 975	}
 976
 977	trace_xfs_buf_get_uncached(bp, _RET_IP_);
 978	*bpp = bp;
 979	return 0;
 980
 981 fail_free_mem:
 982	while (--i >= 0)
 983		__free_page(bp->b_pages[i]);
 984	_xfs_buf_free_pages(bp);
 985 fail_free_buf:
 986	xfs_buf_free_maps(bp);
 987	kmem_cache_free(xfs_buf_zone, bp);
 988 fail:
 989	return error;
 990}
 991
 992/*
 993 *	Increment reference count on buffer, to hold the buffer concurrently
 994 *	with another thread which may release (free) the buffer asynchronously.
 995 *	Must hold the buffer already to call this function.
 996 */
 997void
 998xfs_buf_hold(
 999	xfs_buf_t		*bp)
1000{
1001	trace_xfs_buf_hold(bp, _RET_IP_);
1002	atomic_inc(&bp->b_hold);
1003}
1004
1005/*
1006 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1007 * placed on LRU or freed (depending on b_lru_ref).
1008 */
1009void
1010xfs_buf_rele(
1011	xfs_buf_t		*bp)
1012{
1013	struct xfs_perag	*pag = bp->b_pag;
1014	bool			release;
1015	bool			freebuf = false;
1016
1017	trace_xfs_buf_rele(bp, _RET_IP_);
1018
1019	if (!pag) {
1020		ASSERT(list_empty(&bp->b_lru));
1021		if (atomic_dec_and_test(&bp->b_hold)) {
1022			xfs_buf_ioacct_dec(bp);
1023			xfs_buf_free(bp);
1024		}
1025		return;
1026	}
1027
1028	ASSERT(atomic_read(&bp->b_hold) > 0);
1029
1030	/*
1031	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1032	 * calls. The pag_buf_lock being taken on the last reference only
1033	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1034	 * to last reference we drop here is not serialised against the last
1035	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1036	 * first, the last "release" reference can win the race to the lock and
1037	 * free the buffer before the second-to-last reference is processed,
1038	 * leading to a use-after-free scenario.
1039	 */
1040	spin_lock(&bp->b_lock);
1041	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1042	if (!release) {
1043		/*
1044		 * Drop the in-flight state if the buffer is already on the LRU
1045		 * and it holds the only reference. This is racy because we
1046		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1047		 * ensures the decrement occurs only once per-buf.
1048		 */
1049		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1050			__xfs_buf_ioacct_dec(bp);
1051		goto out_unlock;
1052	}
1053
1054	/* the last reference has been dropped ... */
1055	__xfs_buf_ioacct_dec(bp);
1056	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1057		/*
1058		 * If the buffer is added to the LRU take a new reference to the
1059		 * buffer for the LRU and clear the (now stale) dispose list
1060		 * state flag
1061		 */
1062		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1063			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1064			atomic_inc(&bp->b_hold);
1065		}
1066		spin_unlock(&pag->pag_buf_lock);
1067	} else {
1068		/*
1069		 * most of the time buffers will already be removed from the
1070		 * LRU, so optimise that case by checking for the
1071		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1072		 * was on was the disposal list
1073		 */
1074		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1075			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1076		} else {
1077			ASSERT(list_empty(&bp->b_lru));
1078		}
 
 
 
 
 
 
 
 
 
 
1079
1080		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1081		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1082				       xfs_buf_hash_params);
1083		spin_unlock(&pag->pag_buf_lock);
1084		xfs_perag_put(pag);
1085		freebuf = true;
1086	}
1087
1088out_unlock:
1089	spin_unlock(&bp->b_lock);
1090
1091	if (freebuf)
1092		xfs_buf_free(bp);
1093}
1094
1095
1096/*
1097 *	Lock a buffer object, if it is not already locked.
1098 *
1099 *	If we come across a stale, pinned, locked buffer, we know that we are
1100 *	being asked to lock a buffer that has been reallocated. Because it is
1101 *	pinned, we know that the log has not been pushed to disk and hence it
1102 *	will still be locked.  Rather than continuing to have trylock attempts
1103 *	fail until someone else pushes the log, push it ourselves before
1104 *	returning.  This means that the xfsaild will not get stuck trying
1105 *	to push on stale inode buffers.
1106 */
1107int
1108xfs_buf_trylock(
1109	struct xfs_buf		*bp)
1110{
1111	int			locked;
1112
1113	locked = down_trylock(&bp->b_sema) == 0;
1114	if (locked)
1115		trace_xfs_buf_trylock(bp, _RET_IP_);
1116	else
1117		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1118	return locked;
1119}
1120
1121/*
1122 *	Lock a buffer object.
1123 *
1124 *	If we come across a stale, pinned, locked buffer, we know that we
1125 *	are being asked to lock a buffer that has been reallocated. Because
1126 *	it is pinned, we know that the log has not been pushed to disk and
1127 *	hence it will still be locked. Rather than sleeping until someone
1128 *	else pushes the log, push it ourselves before trying to get the lock.
1129 */
1130void
1131xfs_buf_lock(
1132	struct xfs_buf		*bp)
1133{
1134	trace_xfs_buf_lock(bp, _RET_IP_);
1135
1136	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1137		xfs_log_force(bp->b_mount, 0);
1138	down(&bp->b_sema);
 
1139
1140	trace_xfs_buf_lock_done(bp, _RET_IP_);
1141}
1142
1143void
1144xfs_buf_unlock(
1145	struct xfs_buf		*bp)
1146{
1147	ASSERT(xfs_buf_islocked(bp));
1148
1149	up(&bp->b_sema);
 
1150	trace_xfs_buf_unlock(bp, _RET_IP_);
1151}
1152
1153STATIC void
1154xfs_buf_wait_unpin(
1155	xfs_buf_t		*bp)
1156{
1157	DECLARE_WAITQUEUE	(wait, current);
1158
1159	if (atomic_read(&bp->b_pin_count) == 0)
1160		return;
1161
1162	add_wait_queue(&bp->b_waiters, &wait);
1163	for (;;) {
1164		set_current_state(TASK_UNINTERRUPTIBLE);
1165		if (atomic_read(&bp->b_pin_count) == 0)
1166			break;
1167		io_schedule();
1168	}
1169	remove_wait_queue(&bp->b_waiters, &wait);
1170	set_current_state(TASK_RUNNING);
1171}
1172
1173/*
1174 *	Buffer Utility Routines
1175 */
1176
1177void
1178xfs_buf_ioend(
1179	struct xfs_buf	*bp)
1180{
1181	bool		read = bp->b_flags & XBF_READ;
1182
1183	trace_xfs_buf_iodone(bp, _RET_IP_);
1184
1185	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1186
1187	/*
1188	 * Pull in IO completion errors now. We are guaranteed to be running
1189	 * single threaded, so we don't need the lock to read b_io_error.
1190	 */
1191	if (!bp->b_error && bp->b_io_error)
1192		xfs_buf_ioerror(bp, bp->b_io_error);
1193
1194	if (read) {
1195		if (!bp->b_error && bp->b_ops)
1196			bp->b_ops->verify_read(bp);
1197		if (!bp->b_error)
1198			bp->b_flags |= XBF_DONE;
1199		xfs_buf_ioend_finish(bp);
1200		return;
1201	}
1202
1203	if (!bp->b_error) {
1204		bp->b_flags &= ~XBF_WRITE_FAIL;
1205		bp->b_flags |= XBF_DONE;
1206	}
1207
1208	/*
1209	 * If this is a log recovery buffer, we aren't doing transactional IO
1210	 * yet so we need to let it handle IO completions.
1211	 */
1212	if (bp->b_flags & _XBF_LOGRECOVERY) {
1213		xlog_recover_iodone(bp);
1214		return;
1215	}
1216
1217	if (bp->b_flags & _XBF_INODES) {
1218		xfs_buf_inode_iodone(bp);
1219		return;
1220	}
1221
1222	if (bp->b_flags & _XBF_DQUOTS) {
1223		xfs_buf_dquot_iodone(bp);
1224		return;
1225	}
1226	xfs_buf_iodone(bp);
1227}
1228
1229static void
1230xfs_buf_ioend_work(
1231	struct work_struct	*work)
1232{
1233	struct xfs_buf		*bp =
1234		container_of(work, xfs_buf_t, b_ioend_work);
1235
1236	xfs_buf_ioend(bp);
1237}
1238
1239static void
1240xfs_buf_ioend_async(
1241	struct xfs_buf	*bp)
1242{
1243	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1244	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1245}
1246
1247void
1248__xfs_buf_ioerror(
1249	xfs_buf_t		*bp,
1250	int			error,
1251	xfs_failaddr_t		failaddr)
1252{
1253	ASSERT(error <= 0 && error >= -1000);
1254	bp->b_error = error;
1255	trace_xfs_buf_ioerror(bp, error, failaddr);
1256}
1257
1258void
1259xfs_buf_ioerror_alert(
1260	struct xfs_buf		*bp,
1261	xfs_failaddr_t		func)
1262{
1263	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1264		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1265				  func, (uint64_t)XFS_BUF_ADDR(bp),
1266				  bp->b_length, -bp->b_error);
1267}
1268
1269/*
1270 * To simulate an I/O failure, the buffer must be locked and held with at least
1271 * three references. The LRU reference is dropped by the stale call. The buf
1272 * item reference is dropped via ioend processing. The third reference is owned
1273 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1274 */
1275void
1276xfs_buf_ioend_fail(
1277	struct xfs_buf	*bp)
1278{
1279	bp->b_flags &= ~XBF_DONE;
1280	xfs_buf_stale(bp);
1281	xfs_buf_ioerror(bp, -EIO);
1282	xfs_buf_ioend(bp);
1283}
1284
1285int
1286xfs_bwrite(
1287	struct xfs_buf		*bp)
1288{
1289	int			error;
1290
1291	ASSERT(xfs_buf_islocked(bp));
1292
1293	bp->b_flags |= XBF_WRITE;
1294	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1295			 XBF_DONE);
1296
1297	error = xfs_buf_submit(bp);
1298	if (error)
1299		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
 
 
1300	return error;
1301}
1302
1303static void
1304xfs_buf_bio_end_io(
1305	struct bio		*bio)
1306{
1307	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1308
1309	if (!bio->bi_status &&
1310	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1311	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1312		bio->bi_status = BLK_STS_IOERR;
1313
1314	/*
1315	 * don't overwrite existing errors - otherwise we can lose errors on
1316	 * buffers that require multiple bios to complete.
1317	 */
1318	if (bio->bi_status) {
1319		int error = blk_status_to_errno(bio->bi_status);
1320
1321		cmpxchg(&bp->b_io_error, 0, error);
 
1322	}
1323
1324	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1325		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1326
1327	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1328		xfs_buf_ioend_async(bp);
1329	bio_put(bio);
1330}
1331
1332static void
1333xfs_buf_ioapply_map(
1334	struct xfs_buf	*bp,
1335	int		map,
1336	int		*buf_offset,
1337	int		*count,
1338	int		op)
1339{
1340	int		page_index;
1341	int		total_nr_pages = bp->b_page_count;
1342	int		nr_pages;
1343	struct bio	*bio;
1344	sector_t	sector =  bp->b_maps[map].bm_bn;
1345	int		size;
1346	int		offset;
1347
 
 
1348	/* skip the pages in the buffer before the start offset */
1349	page_index = 0;
1350	offset = *buf_offset;
1351	while (offset >= PAGE_SIZE) {
1352		page_index++;
1353		offset -= PAGE_SIZE;
1354	}
1355
1356	/*
1357	 * Limit the IO size to the length of the current vector, and update the
1358	 * remaining IO count for the next time around.
1359	 */
1360	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1361	*count -= size;
1362	*buf_offset += size;
1363
1364next_chunk:
1365	atomic_inc(&bp->b_io_remaining);
1366	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
 
 
1367
1368	bio = bio_alloc(GFP_NOIO, nr_pages);
1369	bio_set_dev(bio, bp->b_target->bt_bdev);
1370	bio->bi_iter.bi_sector = sector;
1371	bio->bi_end_io = xfs_buf_bio_end_io;
1372	bio->bi_private = bp;
1373	bio->bi_opf = op;
1374
1375	for (; size && nr_pages; nr_pages--, page_index++) {
1376		int	rbytes, nbytes = PAGE_SIZE - offset;
1377
1378		if (nbytes > size)
1379			nbytes = size;
1380
1381		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1382				      offset);
1383		if (rbytes < nbytes)
1384			break;
1385
1386		offset = 0;
1387		sector += BTOBB(nbytes);
1388		size -= nbytes;
1389		total_nr_pages--;
1390	}
1391
1392	if (likely(bio->bi_iter.bi_size)) {
1393		if (xfs_buf_is_vmapped(bp)) {
1394			flush_kernel_vmap_range(bp->b_addr,
1395						xfs_buf_vmap_len(bp));
1396		}
1397		submit_bio(bio);
1398		if (size)
1399			goto next_chunk;
1400	} else {
1401		/*
1402		 * This is guaranteed not to be the last io reference count
1403		 * because the caller (xfs_buf_submit) holds a count itself.
1404		 */
1405		atomic_dec(&bp->b_io_remaining);
1406		xfs_buf_ioerror(bp, -EIO);
1407		bio_put(bio);
1408	}
1409
1410}
1411
1412STATIC void
1413_xfs_buf_ioapply(
1414	struct xfs_buf	*bp)
1415{
1416	struct blk_plug	plug;
1417	int		op;
1418	int		offset;
1419	int		size;
1420	int		i;
1421
1422	/*
1423	 * Make sure we capture only current IO errors rather than stale errors
1424	 * left over from previous use of the buffer (e.g. failed readahead).
1425	 */
1426	bp->b_error = 0;
1427
 
 
 
 
 
 
 
1428	if (bp->b_flags & XBF_WRITE) {
1429		op = REQ_OP_WRITE;
 
 
 
 
 
 
 
1430
1431		/*
1432		 * Run the write verifier callback function if it exists. If
1433		 * this function fails it will mark the buffer with an error and
1434		 * the IO should not be dispatched.
1435		 */
1436		if (bp->b_ops) {
1437			bp->b_ops->verify_write(bp);
1438			if (bp->b_error) {
1439				xfs_force_shutdown(bp->b_mount,
1440						   SHUTDOWN_CORRUPT_INCORE);
1441				return;
1442			}
1443		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1444			struct xfs_mount *mp = bp->b_mount;
1445
1446			/*
1447			 * non-crc filesystems don't attach verifiers during
1448			 * log recovery, so don't warn for such filesystems.
1449			 */
1450			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1451				xfs_warn(mp,
1452					"%s: no buf ops on daddr 0x%llx len %d",
1453					__func__, bp->b_bn, bp->b_length);
1454				xfs_hex_dump(bp->b_addr,
1455						XFS_CORRUPTION_DUMP_LEN);
1456				dump_stack();
1457			}
1458		}
 
 
1459	} else {
1460		op = REQ_OP_READ;
1461		if (bp->b_flags & XBF_READ_AHEAD)
1462			op |= REQ_RAHEAD;
1463	}
1464
1465	/* we only use the buffer cache for meta-data */
1466	op |= REQ_META;
1467
1468	/*
1469	 * Walk all the vectors issuing IO on them. Set up the initial offset
1470	 * into the buffer and the desired IO size before we start -
1471	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1472	 * subsequent call.
1473	 */
1474	offset = bp->b_offset;
1475	size = BBTOB(bp->b_length);
1476	blk_start_plug(&plug);
1477	for (i = 0; i < bp->b_map_count; i++) {
1478		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1479		if (bp->b_error)
1480			break;
1481		if (size <= 0)
1482			break;	/* all done */
1483	}
1484	blk_finish_plug(&plug);
1485}
1486
1487/*
1488 * Wait for I/O completion of a sync buffer and return the I/O error code.
 
 
 
1489 */
1490static int
1491xfs_buf_iowait(
1492	struct xfs_buf	*bp)
1493{
1494	ASSERT(!(bp->b_flags & XBF_ASYNC));
1495
1496	trace_xfs_buf_iowait(bp, _RET_IP_);
1497	wait_for_completion(&bp->b_iowait);
1498	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1499
1500	return bp->b_error;
1501}
1502
1503/*
1504 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1505 * the buffer lock ownership and the current reference to the IO. It is not
1506 * safe to reference the buffer after a call to this function unless the caller
1507 * holds an additional reference itself.
1508 */
1509int
1510__xfs_buf_submit(
1511	struct xfs_buf	*bp,
1512	bool		wait)
1513{
1514	int		error = 0;
1515
1516	trace_xfs_buf_submit(bp, _RET_IP_);
1517
1518	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 
1519
1520	/* on shutdown we stale and complete the buffer immediately */
1521	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1522		xfs_buf_ioend_fail(bp);
1523		return -EIO;
 
 
 
1524	}
1525
1526	/*
1527	 * Grab a reference so the buffer does not go away underneath us. For
1528	 * async buffers, I/O completion drops the callers reference, which
1529	 * could occur before submission returns.
1530	 */
1531	xfs_buf_hold(bp);
1532
1533	if (bp->b_flags & XBF_WRITE)
1534		xfs_buf_wait_unpin(bp);
1535
1536	/* clear the internal error state to avoid spurious errors */
1537	bp->b_io_error = 0;
1538
1539	/*
 
 
 
 
 
 
 
 
 
 
1540	 * Set the count to 1 initially, this will stop an I/O completion
1541	 * callout which happens before we have started all the I/O from calling
1542	 * xfs_buf_ioend too early.
1543	 */
1544	atomic_set(&bp->b_io_remaining, 1);
1545	if (bp->b_flags & XBF_ASYNC)
1546		xfs_buf_ioacct_inc(bp);
1547	_xfs_buf_ioapply(bp);
1548
1549	/*
1550	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1551	 * reference we took above. If we drop it to zero, run completion so
1552	 * that we don't return to the caller with completion still pending.
1553	 */
1554	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1555		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1556			xfs_buf_ioend(bp);
1557		else
1558			xfs_buf_ioend_async(bp);
1559	}
1560
1561	if (wait)
1562		error = xfs_buf_iowait(bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563
1564	/*
1565	 * Release the hold that keeps the buffer referenced for the entire
1566	 * I/O. Note that if the buffer is async, it is not safe to reference
1567	 * after this release.
 
 
 
 
 
 
 
 
 
 
 
 
1568	 */
1569	xfs_buf_rele(bp);
1570	return error;
1571}
1572
1573void *
1574xfs_buf_offset(
1575	struct xfs_buf		*bp,
1576	size_t			offset)
1577{
1578	struct page		*page;
1579
1580	if (bp->b_addr)
1581		return bp->b_addr + offset;
1582
1583	offset += bp->b_offset;
1584	page = bp->b_pages[offset >> PAGE_SHIFT];
1585	return page_address(page) + (offset & (PAGE_SIZE-1));
1586}
1587
 
 
 
1588void
1589xfs_buf_zero(
1590	struct xfs_buf		*bp,
1591	size_t			boff,
1592	size_t			bsize)
 
 
1593{
1594	size_t			bend;
1595
1596	bend = boff + bsize;
1597	while (boff < bend) {
1598		struct page	*page;
1599		int		page_index, page_offset, csize;
1600
1601		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1602		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1603		page = bp->b_pages[page_index];
1604		csize = min_t(size_t, PAGE_SIZE - page_offset,
1605				      BBTOB(bp->b_length) - boff);
1606
1607		ASSERT((csize + page_offset) <= PAGE_SIZE);
1608
1609		memset(page_address(page) + page_offset, 0, csize);
 
 
 
 
 
 
 
 
 
1610
1611		boff += csize;
 
1612	}
1613}
1614
1615/*
1616 * Log a message about and stale a buffer that a caller has decided is corrupt.
1617 *
1618 * This function should be called for the kinds of metadata corruption that
1619 * cannot be detect from a verifier, such as incorrect inter-block relationship
1620 * data.  Do /not/ call this function from a verifier function.
1621 *
1622 * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1623 * be marked stale, but b_error will not be set.  The caller is responsible for
1624 * releasing the buffer or fixing it.
1625 */
1626void
1627__xfs_buf_mark_corrupt(
1628	struct xfs_buf		*bp,
1629	xfs_failaddr_t		fa)
1630{
1631	ASSERT(bp->b_flags & XBF_DONE);
1632
1633	xfs_buf_corruption_error(bp, fa);
1634	xfs_buf_stale(bp);
1635}
1636
1637/*
1638 *	Handling of buffer targets (buftargs).
1639 */
1640
1641/*
1642 * Wait for any bufs with callbacks that have been submitted but have not yet
1643 * returned. These buffers will have an elevated hold count, so wait on those
1644 * while freeing all the buffers only held by the LRU.
1645 */
1646static enum lru_status
1647xfs_buftarg_wait_rele(
1648	struct list_head	*item,
1649	struct list_lru_one	*lru,
1650	spinlock_t		*lru_lock,
1651	void			*arg)
1652
1653{
1654	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1655	struct list_head	*dispose = arg;
1656
1657	if (atomic_read(&bp->b_hold) > 1) {
1658		/* need to wait, so skip it this pass */
1659		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1660		return LRU_SKIP;
1661	}
1662	if (!spin_trylock(&bp->b_lock))
1663		return LRU_SKIP;
1664
1665	/*
1666	 * clear the LRU reference count so the buffer doesn't get
1667	 * ignored in xfs_buf_rele().
1668	 */
1669	atomic_set(&bp->b_lru_ref, 0);
1670	bp->b_state |= XFS_BSTATE_DISPOSE;
1671	list_lru_isolate_move(lru, item, dispose);
1672	spin_unlock(&bp->b_lock);
1673	return LRU_REMOVED;
1674}
1675
1676void
1677xfs_wait_buftarg(
1678	struct xfs_buftarg	*btp)
1679{
1680	LIST_HEAD(dispose);
1681	int			loop = 0;
1682	bool			write_fail = false;
1683
1684	/*
1685	 * First wait on the buftarg I/O count for all in-flight buffers to be
1686	 * released. This is critical as new buffers do not make the LRU until
1687	 * they are released.
1688	 *
1689	 * Next, flush the buffer workqueue to ensure all completion processing
1690	 * has finished. Just waiting on buffer locks is not sufficient for
1691	 * async IO as the reference count held over IO is not released until
1692	 * after the buffer lock is dropped. Hence we need to ensure here that
1693	 * all reference counts have been dropped before we start walking the
1694	 * LRU list.
1695	 */
1696	while (percpu_counter_sum(&btp->bt_io_count))
1697		delay(100);
1698	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1699
1700	/* loop until there is nothing left on the lru list. */
1701	while (list_lru_count(&btp->bt_lru)) {
1702		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1703			      &dispose, LONG_MAX);
1704
1705		while (!list_empty(&dispose)) {
1706			struct xfs_buf *bp;
1707			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1708			list_del_init(&bp->b_lru);
1709			if (bp->b_flags & XBF_WRITE_FAIL) {
1710				write_fail = true;
1711				xfs_buf_alert_ratelimited(bp,
1712					"XFS: Corruption Alert",
1713"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1714					(long long)bp->b_bn);
 
 
1715			}
1716			xfs_buf_rele(bp);
1717		}
1718		if (loop++ != 0)
1719			delay(100);
1720	}
1721
1722	/*
1723	 * If one or more failed buffers were freed, that means dirty metadata
1724	 * was thrown away. This should only ever happen after I/O completion
1725	 * handling has elevated I/O error(s) to permanent failures and shuts
1726	 * down the fs.
1727	 */
1728	if (write_fail) {
1729		ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1730		xfs_alert(btp->bt_mount,
1731	      "Please run xfs_repair to determine the extent of the problem.");
1732	}
1733}
1734
1735static enum lru_status
1736xfs_buftarg_isolate(
1737	struct list_head	*item,
1738	struct list_lru_one	*lru,
1739	spinlock_t		*lru_lock,
1740	void			*arg)
1741{
1742	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1743	struct list_head	*dispose = arg;
1744
1745	/*
1746	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1747	 * If we fail to get the lock, just skip it.
1748	 */
1749	if (!spin_trylock(&bp->b_lock))
1750		return LRU_SKIP;
1751	/*
1752	 * Decrement the b_lru_ref count unless the value is already
1753	 * zero. If the value is already zero, we need to reclaim the
1754	 * buffer, otherwise it gets another trip through the LRU.
1755	 */
1756	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1757		spin_unlock(&bp->b_lock);
1758		return LRU_ROTATE;
1759	}
1760
1761	bp->b_state |= XFS_BSTATE_DISPOSE;
1762	list_lru_isolate_move(lru, item, dispose);
1763	spin_unlock(&bp->b_lock);
1764	return LRU_REMOVED;
1765}
1766
1767static unsigned long
1768xfs_buftarg_shrink_scan(
1769	struct shrinker		*shrink,
1770	struct shrink_control	*sc)
1771{
1772	struct xfs_buftarg	*btp = container_of(shrink,
1773					struct xfs_buftarg, bt_shrinker);
1774	LIST_HEAD(dispose);
1775	unsigned long		freed;
1776
1777	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1778				     xfs_buftarg_isolate, &dispose);
1779
1780	while (!list_empty(&dispose)) {
1781		struct xfs_buf *bp;
1782		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1783		list_del_init(&bp->b_lru);
1784		xfs_buf_rele(bp);
1785	}
1786
1787	return freed;
1788}
1789
1790static unsigned long
1791xfs_buftarg_shrink_count(
1792	struct shrinker		*shrink,
1793	struct shrink_control	*sc)
1794{
1795	struct xfs_buftarg	*btp = container_of(shrink,
1796					struct xfs_buftarg, bt_shrinker);
1797	return list_lru_shrink_count(&btp->bt_lru, sc);
1798}
1799
1800void
1801xfs_free_buftarg(
 
1802	struct xfs_buftarg	*btp)
1803{
1804	unregister_shrinker(&btp->bt_shrinker);
1805	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1806	percpu_counter_destroy(&btp->bt_io_count);
1807	list_lru_destroy(&btp->bt_lru);
1808
1809	xfs_blkdev_issue_flush(btp);
 
1810
1811	kmem_free(btp);
1812}
1813
1814int
1815xfs_setsize_buftarg(
1816	xfs_buftarg_t		*btp,
1817	unsigned int		sectorsize)
1818{
1819	/* Set up metadata sector size info */
1820	btp->bt_meta_sectorsize = sectorsize;
1821	btp->bt_meta_sectormask = sectorsize - 1;
1822
1823	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1824		xfs_warn(btp->bt_mount,
1825			"Cannot set_blocksize to %u on device %pg",
1826			sectorsize, btp->bt_bdev);
1827		return -EINVAL;
1828	}
1829
1830	/* Set up device logical sector size mask */
1831	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1832	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1833
1834	return 0;
1835}
1836
1837/*
1838 * When allocating the initial buffer target we have not yet
1839 * read in the superblock, so don't know what sized sectors
1840 * are being used at this early stage.  Play safe.
1841 */
1842STATIC int
1843xfs_setsize_buftarg_early(
1844	xfs_buftarg_t		*btp,
1845	struct block_device	*bdev)
1846{
1847	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1848}
1849
1850xfs_buftarg_t *
1851xfs_alloc_buftarg(
1852	struct xfs_mount	*mp,
1853	struct block_device	*bdev,
1854	struct dax_device	*dax_dev)
1855{
1856	xfs_buftarg_t		*btp;
1857
1858	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1859
1860	btp->bt_mount = mp;
1861	btp->bt_dev =  bdev->bd_dev;
1862	btp->bt_bdev = bdev;
1863	btp->bt_daxdev = dax_dev;
1864
1865	/*
1866	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1867	 * per 30 seconds so as to not spam logs too much on repeated errors.
1868	 */
1869	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1870			     DEFAULT_RATELIMIT_BURST);
1871
1872	if (xfs_setsize_buftarg_early(btp, bdev))
1873		goto error_free;
1874
1875	if (list_lru_init(&btp->bt_lru))
1876		goto error_free;
1877
1878	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1879		goto error_lru;
1880
1881	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1882	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1883	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1884	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1885	if (register_shrinker(&btp->bt_shrinker))
1886		goto error_pcpu;
1887	return btp;
1888
1889error_pcpu:
1890	percpu_counter_destroy(&btp->bt_io_count);
1891error_lru:
1892	list_lru_destroy(&btp->bt_lru);
1893error_free:
1894	kmem_free(btp);
1895	return NULL;
1896}
1897
1898/*
1899 * Cancel a delayed write list.
1900 *
1901 * Remove each buffer from the list, clear the delwri queue flag and drop the
1902 * associated buffer reference.
1903 */
1904void
1905xfs_buf_delwri_cancel(
1906	struct list_head	*list)
1907{
1908	struct xfs_buf		*bp;
1909
1910	while (!list_empty(list)) {
1911		bp = list_first_entry(list, struct xfs_buf, b_list);
1912
1913		xfs_buf_lock(bp);
1914		bp->b_flags &= ~_XBF_DELWRI_Q;
1915		list_del_init(&bp->b_list);
1916		xfs_buf_relse(bp);
1917	}
1918}
1919
1920/*
1921 * Add a buffer to the delayed write list.
1922 *
1923 * This queues a buffer for writeout if it hasn't already been.  Note that
1924 * neither this routine nor the buffer list submission functions perform
1925 * any internal synchronization.  It is expected that the lists are thread-local
1926 * to the callers.
1927 *
1928 * Returns true if we queued up the buffer, or false if it already had
1929 * been on the buffer list.
1930 */
1931bool
1932xfs_buf_delwri_queue(
1933	struct xfs_buf		*bp,
1934	struct list_head	*list)
1935{
1936	ASSERT(xfs_buf_islocked(bp));
1937	ASSERT(!(bp->b_flags & XBF_READ));
1938
1939	/*
1940	 * If the buffer is already marked delwri it already is queued up
1941	 * by someone else for imediate writeout.  Just ignore it in that
1942	 * case.
1943	 */
1944	if (bp->b_flags & _XBF_DELWRI_Q) {
1945		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1946		return false;
1947	}
1948
1949	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1950
1951	/*
1952	 * If a buffer gets written out synchronously or marked stale while it
1953	 * is on a delwri list we lazily remove it. To do this, the other party
1954	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1955	 * It remains referenced and on the list.  In a rare corner case it
1956	 * might get readded to a delwri list after the synchronous writeout, in
1957	 * which case we need just need to re-add the flag here.
1958	 */
1959	bp->b_flags |= _XBF_DELWRI_Q;
1960	if (list_empty(&bp->b_list)) {
1961		atomic_inc(&bp->b_hold);
1962		list_add_tail(&bp->b_list, list);
1963	}
1964
1965	return true;
1966}
1967
1968/*
1969 * Compare function is more complex than it needs to be because
1970 * the return value is only 32 bits and we are doing comparisons
1971 * on 64 bit values
1972 */
1973static int
1974xfs_buf_cmp(
1975	void		*priv,
1976	struct list_head *a,
1977	struct list_head *b)
1978{
1979	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1980	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1981	xfs_daddr_t		diff;
1982
1983	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1984	if (diff < 0)
1985		return -1;
1986	if (diff > 0)
1987		return 1;
1988	return 0;
1989}
1990
1991/*
1992 * Submit buffers for write. If wait_list is specified, the buffers are
1993 * submitted using sync I/O and placed on the wait list such that the caller can
1994 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1995 * at I/O completion time. In either case, buffers remain locked until I/O
1996 * completes and the buffer is released from the queue.
1997 */
1998static int
1999xfs_buf_delwri_submit_buffers(
2000	struct list_head	*buffer_list,
2001	struct list_head	*wait_list)
 
2002{
 
2003	struct xfs_buf		*bp, *n;
2004	int			pinned = 0;
2005	struct blk_plug		plug;
2006
2007	list_sort(NULL, buffer_list, xfs_buf_cmp);
2008
2009	blk_start_plug(&plug);
2010	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2011		if (!wait_list) {
2012			if (xfs_buf_ispinned(bp)) {
2013				pinned++;
2014				continue;
2015			}
2016			if (!xfs_buf_trylock(bp))
2017				continue;
2018		} else {
2019			xfs_buf_lock(bp);
2020		}
2021
2022		/*
2023		 * Someone else might have written the buffer synchronously or
2024		 * marked it stale in the meantime.  In that case only the
2025		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2026		 * reference and remove it from the list here.
2027		 */
2028		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2029			list_del_init(&bp->b_list);
2030			xfs_buf_relse(bp);
2031			continue;
2032		}
2033
 
2034		trace_xfs_buf_delwri_split(bp, _RET_IP_);
 
 
 
 
 
 
 
 
2035
2036		/*
2037		 * If we have a wait list, each buffer (and associated delwri
2038		 * queue reference) transfers to it and is submitted
2039		 * synchronously. Otherwise, drop the buffer from the delwri
2040		 * queue and submit async.
2041		 */
2042		bp->b_flags &= ~_XBF_DELWRI_Q;
2043		bp->b_flags |= XBF_WRITE;
2044		if (wait_list) {
2045			bp->b_flags &= ~XBF_ASYNC;
2046			list_move_tail(&bp->b_list, wait_list);
2047		} else {
2048			bp->b_flags |= XBF_ASYNC;
2049			list_del_init(&bp->b_list);
2050		}
2051		__xfs_buf_submit(bp, false);
2052	}
2053	blk_finish_plug(&plug);
2054
2055	return pinned;
2056}
2057
2058/*
2059 * Write out a buffer list asynchronously.
2060 *
2061 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2062 * out and not wait for I/O completion on any of the buffers.  This interface
2063 * is only safely useable for callers that can track I/O completion by higher
2064 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2065 * function.
2066 *
2067 * Note: this function will skip buffers it would block on, and in doing so
2068 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2069 * it is up to the caller to ensure that the buffer list is fully submitted or
2070 * cancelled appropriately when they are finished with the list. Failure to
2071 * cancel or resubmit the list until it is empty will result in leaked buffers
2072 * at unmount time.
2073 */
2074int
2075xfs_buf_delwri_submit_nowait(
2076	struct list_head	*buffer_list)
2077{
2078	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
 
2079}
2080
2081/*
2082 * Write out a buffer list synchronously.
2083 *
2084 * This will take the @buffer_list, write all buffers out and wait for I/O
2085 * completion on all of the buffers. @buffer_list is consumed by the function,
2086 * so callers must have some other way of tracking buffers if they require such
2087 * functionality.
2088 */
2089int
2090xfs_buf_delwri_submit(
2091	struct list_head	*buffer_list)
2092{
2093	LIST_HEAD		(wait_list);
2094	int			error = 0, error2;
2095	struct xfs_buf		*bp;
2096
2097	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2098
2099	/* Wait for IO to complete. */
2100	while (!list_empty(&wait_list)) {
2101		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2102
2103		list_del_init(&bp->b_list);
2104
2105		/*
2106		 * Wait on the locked buffer, check for errors and unlock and
2107		 * release the delwri queue reference.
2108		 */
2109		error2 = xfs_buf_iowait(bp);
2110		xfs_buf_relse(bp);
2111		if (!error)
2112			error = error2;
2113	}
2114
2115	return error;
2116}
2117
2118/*
2119 * Push a single buffer on a delwri queue.
2120 *
2121 * The purpose of this function is to submit a single buffer of a delwri queue
2122 * and return with the buffer still on the original queue. The waiting delwri
2123 * buffer submission infrastructure guarantees transfer of the delwri queue
2124 * buffer reference to a temporary wait list. We reuse this infrastructure to
2125 * transfer the buffer back to the original queue.
2126 *
2127 * Note the buffer transitions from the queued state, to the submitted and wait
2128 * listed state and back to the queued state during this call. The buffer
2129 * locking and queue management logic between _delwri_pushbuf() and
2130 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2131 * before returning.
2132 */
2133int
2134xfs_buf_delwri_pushbuf(
2135	struct xfs_buf		*bp,
2136	struct list_head	*buffer_list)
2137{
2138	LIST_HEAD		(submit_list);
2139	int			error;
2140
2141	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2142
2143	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2144
2145	/*
2146	 * Isolate the buffer to a new local list so we can submit it for I/O
2147	 * independently from the rest of the original list.
2148	 */
2149	xfs_buf_lock(bp);
2150	list_move(&bp->b_list, &submit_list);
2151	xfs_buf_unlock(bp);
2152
2153	/*
2154	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2155	 * the buffer on the wait list with the original reference. Rather than
2156	 * bounce the buffer from a local wait list back to the original list
2157	 * after I/O completion, reuse the original list as the wait list.
2158	 */
2159	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2160
2161	/*
2162	 * The buffer is now locked, under I/O and wait listed on the original
2163	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2164	 * return with the buffer unlocked and on the original queue.
2165	 */
2166	error = xfs_buf_iowait(bp);
2167	bp->b_flags |= _XBF_DELWRI_Q;
2168	xfs_buf_unlock(bp);
2169
2170	return error;
2171}
2172
2173int __init
2174xfs_buf_init(void)
2175{
2176	xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2177					 SLAB_HWCACHE_ALIGN |
2178					 SLAB_RECLAIM_ACCOUNT |
2179					 SLAB_MEM_SPREAD,
2180					 NULL);
2181	if (!xfs_buf_zone)
2182		goto out;
2183
2184	return 0;
2185
2186 out:
2187	return -ENOMEM;
2188}
2189
2190void
2191xfs_buf_terminate(void)
2192{
2193	kmem_cache_destroy(xfs_buf_zone);
2194}
2195
2196void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2197{
2198	/*
2199	 * Set the lru reference count to 0 based on the error injection tag.
2200	 * This allows userspace to disrupt buffer caching for debug/testing
2201	 * purposes.
2202	 */
2203	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2204		lru_ref = 0;
2205
2206	atomic_set(&bp->b_lru_ref, lru_ref);
2207}
2208
2209/*
2210 * Verify an on-disk magic value against the magic value specified in the
2211 * verifier structure. The verifier magic is in disk byte order so the caller is
2212 * expected to pass the value directly from disk.
2213 */
2214bool
2215xfs_verify_magic(
2216	struct xfs_buf		*bp,
2217	__be32			dmagic)
2218{
2219	struct xfs_mount	*mp = bp->b_mount;
2220	int			idx;
2221
2222	idx = xfs_sb_version_hascrc(&mp->m_sb);
2223	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2224		return false;
2225	return dmagic == bp->b_ops->magic[idx];
2226}
2227/*
2228 * Verify an on-disk magic value against the magic value specified in the
2229 * verifier structure. The verifier magic is in disk byte order so the caller is
2230 * expected to pass the value directly from disk.
2231 */
2232bool
2233xfs_verify_magic16(
2234	struct xfs_buf		*bp,
2235	__be16			dmagic)
2236{
2237	struct xfs_mount	*mp = bp->b_mount;
2238	int			idx;
2239
2240	idx = xfs_sb_version_hascrc(&mp->m_sb);
2241	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2242		return false;
2243	return dmagic == bp->b_ops->magic16[idx];
2244}
v4.6
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/gfp.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36
 
  37#include "xfs_format.h"
  38#include "xfs_log_format.h"
  39#include "xfs_trans_resv.h"
  40#include "xfs_sb.h"
  41#include "xfs_mount.h"
  42#include "xfs_trace.h"
  43#include "xfs_log.h"
 
 
 
 
 
  44
  45static kmem_zone_t *xfs_buf_zone;
  46
  47#ifdef XFS_BUF_LOCK_TRACKING
  48# define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
  49# define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
  50# define XB_GET_OWNER(bp)	((bp)->b_last_holder)
  51#else
  52# define XB_SET_OWNER(bp)	do { } while (0)
  53# define XB_CLEAR_OWNER(bp)	do { } while (0)
  54# define XB_GET_OWNER(bp)	do { } while (0)
  55#endif
  56
  57#define xb_to_gfp(flags) \
  58	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61static inline int
  62xfs_buf_is_vmapped(
  63	struct xfs_buf	*bp)
  64{
  65	/*
  66	 * Return true if the buffer is vmapped.
  67	 *
  68	 * b_addr is null if the buffer is not mapped, but the code is clever
  69	 * enough to know it doesn't have to map a single page, so the check has
  70	 * to be both for b_addr and bp->b_page_count > 1.
  71	 */
  72	return bp->b_addr && bp->b_page_count > 1;
  73}
  74
  75static inline int
  76xfs_buf_vmap_len(
  77	struct xfs_buf	*bp)
  78{
  79	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  80}
  81
  82/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
  84 * b_lru_ref count so that the buffer is freed immediately when the buffer
  85 * reference count falls to zero. If the buffer is already on the LRU, we need
  86 * to remove the reference that LRU holds on the buffer.
  87 *
  88 * This prevents build-up of stale buffers on the LRU.
  89 */
  90void
  91xfs_buf_stale(
  92	struct xfs_buf	*bp)
  93{
  94	ASSERT(xfs_buf_islocked(bp));
  95
  96	bp->b_flags |= XBF_STALE;
  97
  98	/*
  99	 * Clear the delwri status so that a delwri queue walker will not
 100	 * flush this buffer to disk now that it is stale. The delwri queue has
 101	 * a reference to the buffer, so this is safe to do.
 102	 */
 103	bp->b_flags &= ~_XBF_DELWRI_Q;
 104
 
 
 
 
 
 
 105	spin_lock(&bp->b_lock);
 
 
 106	atomic_set(&bp->b_lru_ref, 0);
 107	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 108	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 109		atomic_dec(&bp->b_hold);
 110
 111	ASSERT(atomic_read(&bp->b_hold) >= 1);
 112	spin_unlock(&bp->b_lock);
 113}
 114
 115static int
 116xfs_buf_get_maps(
 117	struct xfs_buf		*bp,
 118	int			map_count)
 119{
 120	ASSERT(bp->b_maps == NULL);
 121	bp->b_map_count = map_count;
 122
 123	if (map_count == 1) {
 124		bp->b_maps = &bp->__b_map;
 125		return 0;
 126	}
 127
 128	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 129				KM_NOFS);
 130	if (!bp->b_maps)
 131		return -ENOMEM;
 132	return 0;
 133}
 134
 135/*
 136 *	Frees b_pages if it was allocated.
 137 */
 138static void
 139xfs_buf_free_maps(
 140	struct xfs_buf	*bp)
 141{
 142	if (bp->b_maps != &bp->__b_map) {
 143		kmem_free(bp->b_maps);
 144		bp->b_maps = NULL;
 145	}
 146}
 147
 148struct xfs_buf *
 149_xfs_buf_alloc(
 150	struct xfs_buftarg	*target,
 151	struct xfs_buf_map	*map,
 152	int			nmaps,
 153	xfs_buf_flags_t		flags)
 
 154{
 155	struct xfs_buf		*bp;
 156	int			error;
 157	int			i;
 158
 159	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 160	if (unlikely(!bp))
 161		return NULL;
 162
 163	/*
 164	 * We don't want certain flags to appear in b_flags unless they are
 165	 * specifically set by later operations on the buffer.
 166	 */
 167	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 168
 169	atomic_set(&bp->b_hold, 1);
 170	atomic_set(&bp->b_lru_ref, 1);
 171	init_completion(&bp->b_iowait);
 172	INIT_LIST_HEAD(&bp->b_lru);
 173	INIT_LIST_HEAD(&bp->b_list);
 174	RB_CLEAR_NODE(&bp->b_rbnode);
 175	sema_init(&bp->b_sema, 0); /* held, no waiters */
 176	spin_lock_init(&bp->b_lock);
 177	XB_SET_OWNER(bp);
 178	bp->b_target = target;
 
 179	bp->b_flags = flags;
 180
 181	/*
 182	 * Set length and io_length to the same value initially.
 183	 * I/O routines should use io_length, which will be the same in
 184	 * most cases but may be reset (e.g. XFS recovery).
 185	 */
 186	error = xfs_buf_get_maps(bp, nmaps);
 187	if (error)  {
 188		kmem_zone_free(xfs_buf_zone, bp);
 189		return NULL;
 190	}
 191
 192	bp->b_bn = map[0].bm_bn;
 193	bp->b_length = 0;
 194	for (i = 0; i < nmaps; i++) {
 195		bp->b_maps[i].bm_bn = map[i].bm_bn;
 196		bp->b_maps[i].bm_len = map[i].bm_len;
 197		bp->b_length += map[i].bm_len;
 198	}
 199	bp->b_io_length = bp->b_length;
 200
 201	atomic_set(&bp->b_pin_count, 0);
 202	init_waitqueue_head(&bp->b_waiters);
 203
 204	XFS_STATS_INC(target->bt_mount, xb_create);
 205	trace_xfs_buf_init(bp, _RET_IP_);
 206
 207	return bp;
 
 208}
 209
 210/*
 211 *	Allocate a page array capable of holding a specified number
 212 *	of pages, and point the page buf at it.
 213 */
 214STATIC int
 215_xfs_buf_get_pages(
 216	xfs_buf_t		*bp,
 217	int			page_count)
 218{
 219	/* Make sure that we have a page list */
 220	if (bp->b_pages == NULL) {
 221		bp->b_page_count = page_count;
 222		if (page_count <= XB_PAGES) {
 223			bp->b_pages = bp->b_page_array;
 224		} else {
 225			bp->b_pages = kmem_alloc(sizeof(struct page *) *
 226						 page_count, KM_NOFS);
 227			if (bp->b_pages == NULL)
 228				return -ENOMEM;
 229		}
 230		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 231	}
 232	return 0;
 233}
 234
 235/*
 236 *	Frees b_pages if it was allocated.
 237 */
 238STATIC void
 239_xfs_buf_free_pages(
 240	xfs_buf_t	*bp)
 241{
 242	if (bp->b_pages != bp->b_page_array) {
 243		kmem_free(bp->b_pages);
 244		bp->b_pages = NULL;
 245	}
 246}
 247
 248/*
 249 *	Releases the specified buffer.
 250 *
 251 * 	The modification state of any associated pages is left unchanged.
 252 * 	The buffer must not be on any hash - use xfs_buf_rele instead for
 253 * 	hashed and refcounted buffers
 254 */
 255void
 256xfs_buf_free(
 257	xfs_buf_t		*bp)
 258{
 259	trace_xfs_buf_free(bp, _RET_IP_);
 260
 261	ASSERT(list_empty(&bp->b_lru));
 262
 263	if (bp->b_flags & _XBF_PAGES) {
 264		uint		i;
 265
 266		if (xfs_buf_is_vmapped(bp))
 267			vm_unmap_ram(bp->b_addr - bp->b_offset,
 268					bp->b_page_count);
 269
 270		for (i = 0; i < bp->b_page_count; i++) {
 271			struct page	*page = bp->b_pages[i];
 272
 273			__free_page(page);
 274		}
 
 
 
 275	} else if (bp->b_flags & _XBF_KMEM)
 276		kmem_free(bp->b_addr);
 277	_xfs_buf_free_pages(bp);
 278	xfs_buf_free_maps(bp);
 279	kmem_zone_free(xfs_buf_zone, bp);
 280}
 281
 282/*
 283 * Allocates all the pages for buffer in question and builds it's page list.
 284 */
 285STATIC int
 286xfs_buf_allocate_memory(
 287	xfs_buf_t		*bp,
 288	uint			flags)
 289{
 290	size_t			size;
 291	size_t			nbytes, offset;
 292	gfp_t			gfp_mask = xb_to_gfp(flags);
 293	unsigned short		page_count, i;
 294	xfs_off_t		start, end;
 295	int			error;
 
 
 
 
 
 
 
 
 
 296
 297	/*
 298	 * for buffers that are contained within a single page, just allocate
 299	 * the memory from the heap - there's no need for the complexity of
 300	 * page arrays to keep allocation down to order 0.
 301	 */
 302	size = BBTOB(bp->b_length);
 303	if (size < PAGE_SIZE) {
 304		bp->b_addr = kmem_alloc(size, KM_NOFS);
 
 
 305		if (!bp->b_addr) {
 306			/* low memory - use alloc_page loop instead */
 307			goto use_alloc_page;
 308		}
 309
 310		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 311		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 312			/* b_addr spans two pages - use alloc_page instead */
 313			kmem_free(bp->b_addr);
 314			bp->b_addr = NULL;
 315			goto use_alloc_page;
 316		}
 317		bp->b_offset = offset_in_page(bp->b_addr);
 318		bp->b_pages = bp->b_page_array;
 319		bp->b_pages[0] = virt_to_page(bp->b_addr);
 320		bp->b_page_count = 1;
 321		bp->b_flags |= _XBF_KMEM;
 322		return 0;
 323	}
 324
 325use_alloc_page:
 326	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 327	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 328								>> PAGE_SHIFT;
 329	page_count = end - start;
 330	error = _xfs_buf_get_pages(bp, page_count);
 331	if (unlikely(error))
 332		return error;
 333
 334	offset = bp->b_offset;
 335	bp->b_flags |= _XBF_PAGES;
 336
 337	for (i = 0; i < bp->b_page_count; i++) {
 338		struct page	*page;
 339		uint		retries = 0;
 340retry:
 341		page = alloc_page(gfp_mask);
 342		if (unlikely(page == NULL)) {
 343			if (flags & XBF_READ_AHEAD) {
 344				bp->b_page_count = i;
 345				error = -ENOMEM;
 346				goto out_free_pages;
 347			}
 348
 349			/*
 350			 * This could deadlock.
 351			 *
 352			 * But until all the XFS lowlevel code is revamped to
 353			 * handle buffer allocation failures we can't do much.
 354			 */
 355			if (!(++retries % 100))
 356				xfs_err(NULL,
 357		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
 358					current->comm, current->pid,
 359					__func__, gfp_mask);
 360
 361			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
 362			congestion_wait(BLK_RW_ASYNC, HZ/50);
 363			goto retry;
 364		}
 365
 366		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
 367
 368		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 369		size -= nbytes;
 370		bp->b_pages[i] = page;
 371		offset = 0;
 372	}
 373	return 0;
 374
 375out_free_pages:
 376	for (i = 0; i < bp->b_page_count; i++)
 377		__free_page(bp->b_pages[i]);
 
 378	return error;
 379}
 380
 381/*
 382 *	Map buffer into kernel address-space if necessary.
 383 */
 384STATIC int
 385_xfs_buf_map_pages(
 386	xfs_buf_t		*bp,
 387	uint			flags)
 388{
 389	ASSERT(bp->b_flags & _XBF_PAGES);
 390	if (bp->b_page_count == 1) {
 391		/* A single page buffer is always mappable */
 392		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 393	} else if (flags & XBF_UNMAPPED) {
 394		bp->b_addr = NULL;
 395	} else {
 396		int retried = 0;
 397		unsigned noio_flag;
 398
 399		/*
 400		 * vm_map_ram() will allocate auxillary structures (e.g.
 401		 * pagetables) with GFP_KERNEL, yet we are likely to be under
 402		 * GFP_NOFS context here. Hence we need to tell memory reclaim
 403		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
 404		 * memory reclaim re-entering the filesystem here and
 405		 * potentially deadlocking.
 406		 */
 407		noio_flag = memalloc_noio_save();
 408		do {
 409			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 410						-1, PAGE_KERNEL);
 411			if (bp->b_addr)
 412				break;
 413			vm_unmap_aliases();
 414		} while (retried++ <= 1);
 415		memalloc_noio_restore(noio_flag);
 416
 417		if (!bp->b_addr)
 418			return -ENOMEM;
 419		bp->b_addr += bp->b_offset;
 420	}
 421
 422	return 0;
 423}
 424
 425/*
 426 *	Finding and Reading Buffers
 427 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428
 429/*
 430 *	Look up, and creates if absent, a lockable buffer for
 431 *	a given range of an inode.  The buffer is returned
 432 *	locked.	No I/O is implied by this call.
 
 
 
 
 
 
 
 
 
 
 
 
 
 433 */
 434xfs_buf_t *
 435_xfs_buf_find(
 436	struct xfs_buftarg	*btp,
 437	struct xfs_buf_map	*map,
 438	int			nmaps,
 439	xfs_buf_flags_t		flags,
 440	xfs_buf_t		*new_bp)
 
 441{
 442	struct xfs_perag	*pag;
 443	struct rb_node		**rbp;
 444	struct rb_node		*parent;
 445	xfs_buf_t		*bp;
 446	xfs_daddr_t		blkno = map[0].bm_bn;
 447	xfs_daddr_t		eofs;
 448	int			numblks = 0;
 449	int			i;
 450
 
 
 451	for (i = 0; i < nmaps; i++)
 452		numblks += map[i].bm_len;
 453
 454	/* Check for IOs smaller than the sector size / not sector aligned */
 455	ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
 456	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
 457
 458	/*
 459	 * Corrupted block numbers can get through to here, unfortunately, so we
 460	 * have to check that the buffer falls within the filesystem bounds.
 461	 */
 462	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 463	if (blkno < 0 || blkno >= eofs) {
 464		/*
 465		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
 466		 * but none of the higher level infrastructure supports
 467		 * returning a specific error on buffer lookup failures.
 468		 */
 469		xfs_alert(btp->bt_mount,
 470			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
 471			  __func__, blkno, eofs);
 472		WARN_ON(1);
 473		return NULL;
 474	}
 475
 476	/* get tree root */
 477	pag = xfs_perag_get(btp->bt_mount,
 478				xfs_daddr_to_agno(btp->bt_mount, blkno));
 479
 480	/* walk tree */
 481	spin_lock(&pag->pag_buf_lock);
 482	rbp = &pag->pag_buf_tree.rb_node;
 483	parent = NULL;
 484	bp = NULL;
 485	while (*rbp) {
 486		parent = *rbp;
 487		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 488
 489		if (blkno < bp->b_bn)
 490			rbp = &(*rbp)->rb_left;
 491		else if (blkno > bp->b_bn)
 492			rbp = &(*rbp)->rb_right;
 493		else {
 494			/*
 495			 * found a block number match. If the range doesn't
 496			 * match, the only way this is allowed is if the buffer
 497			 * in the cache is stale and the transaction that made
 498			 * it stale has not yet committed. i.e. we are
 499			 * reallocating a busy extent. Skip this buffer and
 500			 * continue searching to the right for an exact match.
 501			 */
 502			if (bp->b_length != numblks) {
 503				ASSERT(bp->b_flags & XBF_STALE);
 504				rbp = &(*rbp)->rb_right;
 505				continue;
 506			}
 507			atomic_inc(&bp->b_hold);
 508			goto found;
 509		}
 510	}
 511
 512	/* No match found */
 513	if (new_bp) {
 514		rb_link_node(&new_bp->b_rbnode, parent, rbp);
 515		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 516		/* the buffer keeps the perag reference until it is freed */
 517		new_bp->b_pag = pag;
 518		spin_unlock(&pag->pag_buf_lock);
 519	} else {
 520		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
 521		spin_unlock(&pag->pag_buf_lock);
 522		xfs_perag_put(pag);
 
 523	}
 524	return new_bp;
 
 
 
 
 
 
 
 525
 526found:
 527	spin_unlock(&pag->pag_buf_lock);
 528	xfs_perag_put(pag);
 529
 530	if (!xfs_buf_trylock(bp)) {
 531		if (flags & XBF_TRYLOCK) {
 532			xfs_buf_rele(bp);
 533			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
 534			return NULL;
 535		}
 536		xfs_buf_lock(bp);
 537		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
 538	}
 539
 540	/*
 541	 * if the buffer is stale, clear all the external state associated with
 542	 * it. We need to keep flags such as how we allocated the buffer memory
 543	 * intact here.
 544	 */
 545	if (bp->b_flags & XBF_STALE) {
 546		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 547		ASSERT(bp->b_iodone == NULL);
 548		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 549		bp->b_ops = NULL;
 550	}
 551
 552	trace_xfs_buf_find(bp, flags, _RET_IP_);
 553	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554	return bp;
 555}
 556
 557/*
 558 * Assembles a buffer covering the specified range. The code is optimised for
 559 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 560 * more hits than misses.
 561 */
 562struct xfs_buf *
 563xfs_buf_get_map(
 564	struct xfs_buftarg	*target,
 565	struct xfs_buf_map	*map,
 566	int			nmaps,
 567	xfs_buf_flags_t		flags)
 
 568{
 569	struct xfs_buf		*bp;
 570	struct xfs_buf		*new_bp;
 571	int			error = 0;
 572
 573	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
 574	if (likely(bp))
 
 575		goto found;
 
 
 576
 577	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
 578	if (unlikely(!new_bp))
 579		return NULL;
 580
 581	error = xfs_buf_allocate_memory(new_bp, flags);
 582	if (error) {
 583		xfs_buf_free(new_bp);
 584		return NULL;
 585	}
 586
 587	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
 588	if (!bp) {
 589		xfs_buf_free(new_bp);
 590		return NULL;
 591	}
 592
 593	if (bp != new_bp)
 594		xfs_buf_free(new_bp);
 595
 596found:
 597	if (!bp->b_addr) {
 598		error = _xfs_buf_map_pages(bp, flags);
 599		if (unlikely(error)) {
 600			xfs_warn(target->bt_mount,
 601				"%s: failed to map pagesn", __func__);
 
 602			xfs_buf_relse(bp);
 603			return NULL;
 604		}
 605	}
 606
 607	/*
 608	 * Clear b_error if this is a lookup from a caller that doesn't expect
 609	 * valid data to be found in the buffer.
 610	 */
 611	if (!(flags & XBF_READ))
 612		xfs_buf_ioerror(bp, 0);
 613
 614	XFS_STATS_INC(target->bt_mount, xb_get);
 615	trace_xfs_buf_get(bp, flags, _RET_IP_);
 616	return bp;
 
 617}
 618
 619STATIC int
 620_xfs_buf_read(
 621	xfs_buf_t		*bp,
 622	xfs_buf_flags_t		flags)
 623{
 624	ASSERT(!(flags & XBF_WRITE));
 625	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 626
 627	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 628	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 629
 630	if (flags & XBF_ASYNC) {
 631		xfs_buf_submit(bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		return 0;
 633	}
 634	return xfs_buf_submit_wait(bp);
 
 
 
 
 635}
 636
 637xfs_buf_t *
 638xfs_buf_read_map(
 639	struct xfs_buftarg	*target,
 640	struct xfs_buf_map	*map,
 641	int			nmaps,
 642	xfs_buf_flags_t		flags,
 643	const struct xfs_buf_ops *ops)
 
 
 644{
 645	struct xfs_buf		*bp;
 
 646
 647	flags |= XBF_READ;
 
 
 
 
 
 
 
 648
 649	bp = xfs_buf_get_map(target, map, nmaps, flags);
 650	if (bp) {
 651		trace_xfs_buf_read(bp, flags, _RET_IP_);
 
 
 
 
 
 
 
 
 
 652
 653		if (!(bp->b_flags & XBF_DONE)) {
 654			XFS_STATS_INC(target->bt_mount, xb_get_read);
 655			bp->b_ops = ops;
 656			_xfs_buf_read(bp, flags);
 657		} else if (flags & XBF_ASYNC) {
 658			/*
 659			 * Read ahead call which is already satisfied,
 660			 * drop the buffer
 661			 */
 662			xfs_buf_relse(bp);
 663			return NULL;
 664		} else {
 665			/* We do not want read in the flags */
 666			bp->b_flags &= ~XBF_READ;
 667		}
 
 
 
 
 668	}
 669
 670	return bp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672
 673/*
 674 *	If we are not low on memory then do the readahead in a deadlock
 675 *	safe manner.
 676 */
 677void
 678xfs_buf_readahead_map(
 679	struct xfs_buftarg	*target,
 680	struct xfs_buf_map	*map,
 681	int			nmaps,
 682	const struct xfs_buf_ops *ops)
 683{
 684	if (bdi_read_congested(target->bt_bdi))
 
 
 685		return;
 686
 687	xfs_buf_read_map(target, map, nmaps,
 688		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
 
 689}
 690
 691/*
 692 * Read an uncached buffer from disk. Allocates and returns a locked
 693 * buffer containing the disk contents or nothing.
 694 */
 695int
 696xfs_buf_read_uncached(
 697	struct xfs_buftarg	*target,
 698	xfs_daddr_t		daddr,
 699	size_t			numblks,
 700	int			flags,
 701	struct xfs_buf		**bpp,
 702	const struct xfs_buf_ops *ops)
 703{
 704	struct xfs_buf		*bp;
 
 705
 706	*bpp = NULL;
 707
 708	bp = xfs_buf_get_uncached(target, numblks, flags);
 709	if (!bp)
 710		return -ENOMEM;
 711
 712	/* set up the buffer for a read IO */
 713	ASSERT(bp->b_map_count == 1);
 714	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
 715	bp->b_maps[0].bm_bn = daddr;
 716	bp->b_flags |= XBF_READ;
 717	bp->b_ops = ops;
 718
 719	xfs_buf_submit_wait(bp);
 720	if (bp->b_error) {
 721		int	error = bp->b_error;
 722		xfs_buf_relse(bp);
 723		return error;
 724	}
 725
 726	*bpp = bp;
 727	return 0;
 728}
 729
 730/*
 731 * Return a buffer allocated as an empty buffer and associated to external
 732 * memory via xfs_buf_associate_memory() back to it's empty state.
 733 */
 734void
 735xfs_buf_set_empty(
 736	struct xfs_buf		*bp,
 737	size_t			numblks)
 738{
 739	if (bp->b_pages)
 740		_xfs_buf_free_pages(bp);
 741
 742	bp->b_pages = NULL;
 743	bp->b_page_count = 0;
 744	bp->b_addr = NULL;
 745	bp->b_length = numblks;
 746	bp->b_io_length = numblks;
 747
 748	ASSERT(bp->b_map_count == 1);
 749	bp->b_bn = XFS_BUF_DADDR_NULL;
 750	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
 751	bp->b_maps[0].bm_len = bp->b_length;
 752}
 753
 754static inline struct page *
 755mem_to_page(
 756	void			*addr)
 757{
 758	if ((!is_vmalloc_addr(addr))) {
 759		return virt_to_page(addr);
 760	} else {
 761		return vmalloc_to_page(addr);
 762	}
 763}
 764
 765int
 766xfs_buf_associate_memory(
 767	xfs_buf_t		*bp,
 768	void			*mem,
 769	size_t			len)
 770{
 771	int			rval;
 772	int			i = 0;
 773	unsigned long		pageaddr;
 774	unsigned long		offset;
 775	size_t			buflen;
 776	int			page_count;
 777
 778	pageaddr = (unsigned long)mem & PAGE_MASK;
 779	offset = (unsigned long)mem - pageaddr;
 780	buflen = PAGE_ALIGN(len + offset);
 781	page_count = buflen >> PAGE_SHIFT;
 782
 783	/* Free any previous set of page pointers */
 784	if (bp->b_pages)
 785		_xfs_buf_free_pages(bp);
 786
 787	bp->b_pages = NULL;
 788	bp->b_addr = mem;
 789
 790	rval = _xfs_buf_get_pages(bp, page_count);
 791	if (rval)
 792		return rval;
 793
 794	bp->b_offset = offset;
 795
 796	for (i = 0; i < bp->b_page_count; i++) {
 797		bp->b_pages[i] = mem_to_page((void *)pageaddr);
 798		pageaddr += PAGE_SIZE;
 799	}
 800
 801	bp->b_io_length = BTOBB(len);
 802	bp->b_length = BTOBB(buflen);
 803
 804	return 0;
 805}
 806
 807xfs_buf_t *
 808xfs_buf_get_uncached(
 809	struct xfs_buftarg	*target,
 810	size_t			numblks,
 811	int			flags)
 
 812{
 813	unsigned long		page_count;
 814	int			error, i;
 815	struct xfs_buf		*bp;
 816	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 817
 818	bp = _xfs_buf_alloc(target, &map, 1, 0);
 819	if (unlikely(bp == NULL))
 
 
 
 820		goto fail;
 821
 822	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 823	error = _xfs_buf_get_pages(bp, page_count);
 824	if (error)
 825		goto fail_free_buf;
 826
 827	for (i = 0; i < page_count; i++) {
 828		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 829		if (!bp->b_pages[i])
 
 830			goto fail_free_mem;
 
 831	}
 832	bp->b_flags |= _XBF_PAGES;
 833
 834	error = _xfs_buf_map_pages(bp, 0);
 835	if (unlikely(error)) {
 836		xfs_warn(target->bt_mount,
 837			"%s: failed to map pages", __func__);
 838		goto fail_free_mem;
 839	}
 840
 841	trace_xfs_buf_get_uncached(bp, _RET_IP_);
 842	return bp;
 
 843
 844 fail_free_mem:
 845	while (--i >= 0)
 846		__free_page(bp->b_pages[i]);
 847	_xfs_buf_free_pages(bp);
 848 fail_free_buf:
 849	xfs_buf_free_maps(bp);
 850	kmem_zone_free(xfs_buf_zone, bp);
 851 fail:
 852	return NULL;
 853}
 854
 855/*
 856 *	Increment reference count on buffer, to hold the buffer concurrently
 857 *	with another thread which may release (free) the buffer asynchronously.
 858 *	Must hold the buffer already to call this function.
 859 */
 860void
 861xfs_buf_hold(
 862	xfs_buf_t		*bp)
 863{
 864	trace_xfs_buf_hold(bp, _RET_IP_);
 865	atomic_inc(&bp->b_hold);
 866}
 867
 868/*
 869 *	Releases a hold on the specified buffer.  If the
 870 *	the hold count is 1, calls xfs_buf_free.
 871 */
 872void
 873xfs_buf_rele(
 874	xfs_buf_t		*bp)
 875{
 876	struct xfs_perag	*pag = bp->b_pag;
 
 
 877
 878	trace_xfs_buf_rele(bp, _RET_IP_);
 879
 880	if (!pag) {
 881		ASSERT(list_empty(&bp->b_lru));
 882		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 883		if (atomic_dec_and_test(&bp->b_hold))
 884			xfs_buf_free(bp);
 
 885		return;
 886	}
 887
 888	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 889
 890	ASSERT(atomic_read(&bp->b_hold) > 0);
 891	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 892		spin_lock(&bp->b_lock);
 893		if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
 894			/*
 895			 * If the buffer is added to the LRU take a new
 896			 * reference to the buffer for the LRU and clear the
 897			 * (now stale) dispose list state flag
 898			 */
 899			if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
 900				bp->b_state &= ~XFS_BSTATE_DISPOSE;
 901				atomic_inc(&bp->b_hold);
 902			}
 903			spin_unlock(&bp->b_lock);
 904			spin_unlock(&pag->pag_buf_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905		} else {
 906			/*
 907			 * most of the time buffers will already be removed from
 908			 * the LRU, so optimise that case by checking for the
 909			 * XFS_BSTATE_DISPOSE flag indicating the last list the
 910			 * buffer was on was the disposal list
 911			 */
 912			if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
 913				list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
 914			} else {
 915				ASSERT(list_empty(&bp->b_lru));
 916			}
 917			spin_unlock(&bp->b_lock);
 918
 919			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 920			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 921			spin_unlock(&pag->pag_buf_lock);
 922			xfs_perag_put(pag);
 923			xfs_buf_free(bp);
 924		}
 925	}
 
 
 
 
 
 
 926}
 927
 928
 929/*
 930 *	Lock a buffer object, if it is not already locked.
 931 *
 932 *	If we come across a stale, pinned, locked buffer, we know that we are
 933 *	being asked to lock a buffer that has been reallocated. Because it is
 934 *	pinned, we know that the log has not been pushed to disk and hence it
 935 *	will still be locked.  Rather than continuing to have trylock attempts
 936 *	fail until someone else pushes the log, push it ourselves before
 937 *	returning.  This means that the xfsaild will not get stuck trying
 938 *	to push on stale inode buffers.
 939 */
 940int
 941xfs_buf_trylock(
 942	struct xfs_buf		*bp)
 943{
 944	int			locked;
 945
 946	locked = down_trylock(&bp->b_sema) == 0;
 947	if (locked)
 948		XB_SET_OWNER(bp);
 949
 950	trace_xfs_buf_trylock(bp, _RET_IP_);
 951	return locked;
 952}
 953
 954/*
 955 *	Lock a buffer object.
 956 *
 957 *	If we come across a stale, pinned, locked buffer, we know that we
 958 *	are being asked to lock a buffer that has been reallocated. Because
 959 *	it is pinned, we know that the log has not been pushed to disk and
 960 *	hence it will still be locked. Rather than sleeping until someone
 961 *	else pushes the log, push it ourselves before trying to get the lock.
 962 */
 963void
 964xfs_buf_lock(
 965	struct xfs_buf		*bp)
 966{
 967	trace_xfs_buf_lock(bp, _RET_IP_);
 968
 969	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 970		xfs_log_force(bp->b_target->bt_mount, 0);
 971	down(&bp->b_sema);
 972	XB_SET_OWNER(bp);
 973
 974	trace_xfs_buf_lock_done(bp, _RET_IP_);
 975}
 976
 977void
 978xfs_buf_unlock(
 979	struct xfs_buf		*bp)
 980{
 981	XB_CLEAR_OWNER(bp);
 
 982	up(&bp->b_sema);
 983
 984	trace_xfs_buf_unlock(bp, _RET_IP_);
 985}
 986
 987STATIC void
 988xfs_buf_wait_unpin(
 989	xfs_buf_t		*bp)
 990{
 991	DECLARE_WAITQUEUE	(wait, current);
 992
 993	if (atomic_read(&bp->b_pin_count) == 0)
 994		return;
 995
 996	add_wait_queue(&bp->b_waiters, &wait);
 997	for (;;) {
 998		set_current_state(TASK_UNINTERRUPTIBLE);
 999		if (atomic_read(&bp->b_pin_count) == 0)
1000			break;
1001		io_schedule();
1002	}
1003	remove_wait_queue(&bp->b_waiters, &wait);
1004	set_current_state(TASK_RUNNING);
1005}
1006
1007/*
1008 *	Buffer Utility Routines
1009 */
1010
1011void
1012xfs_buf_ioend(
1013	struct xfs_buf	*bp)
1014{
1015	bool		read = bp->b_flags & XBF_READ;
1016
1017	trace_xfs_buf_iodone(bp, _RET_IP_);
1018
1019	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1020
1021	/*
1022	 * Pull in IO completion errors now. We are guaranteed to be running
1023	 * single threaded, so we don't need the lock to read b_io_error.
1024	 */
1025	if (!bp->b_error && bp->b_io_error)
1026		xfs_buf_ioerror(bp, bp->b_io_error);
1027
1028	/* Only validate buffers that were read without errors */
1029	if (read && !bp->b_error && bp->b_ops) {
1030		ASSERT(!bp->b_iodone);
1031		bp->b_ops->verify_read(bp);
 
 
 
1032	}
1033
1034	if (!bp->b_error)
 
1035		bp->b_flags |= XBF_DONE;
 
1036
1037	if (bp->b_iodone)
1038		(*(bp->b_iodone))(bp);
1039	else if (bp->b_flags & XBF_ASYNC)
1040		xfs_buf_relse(bp);
1041	else
1042		complete(&bp->b_iowait);
 
 
 
 
 
 
 
 
 
 
 
 
 
1043}
1044
1045static void
1046xfs_buf_ioend_work(
1047	struct work_struct	*work)
1048{
1049	struct xfs_buf		*bp =
1050		container_of(work, xfs_buf_t, b_ioend_work);
1051
1052	xfs_buf_ioend(bp);
1053}
1054
1055static void
1056xfs_buf_ioend_async(
1057	struct xfs_buf	*bp)
1058{
1059	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1060	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1061}
1062
1063void
1064xfs_buf_ioerror(
1065	xfs_buf_t		*bp,
1066	int			error)
 
1067{
1068	ASSERT(error <= 0 && error >= -1000);
1069	bp->b_error = error;
1070	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1071}
1072
1073void
1074xfs_buf_ioerror_alert(
1075	struct xfs_buf		*bp,
1076	const char		*func)
1077{
1078	xfs_alert(bp->b_target->bt_mount,
1079"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1080		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081}
1082
1083int
1084xfs_bwrite(
1085	struct xfs_buf		*bp)
1086{
1087	int			error;
1088
1089	ASSERT(xfs_buf_islocked(bp));
1090
1091	bp->b_flags |= XBF_WRITE;
1092	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1093			 XBF_WRITE_FAIL | XBF_DONE);
1094
1095	error = xfs_buf_submit_wait(bp);
1096	if (error) {
1097		xfs_force_shutdown(bp->b_target->bt_mount,
1098				   SHUTDOWN_META_IO_ERROR);
1099	}
1100	return error;
1101}
1102
1103STATIC void
1104xfs_buf_bio_end_io(
1105	struct bio		*bio)
1106{
1107	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
 
 
 
 
 
1108
1109	/*
1110	 * don't overwrite existing errors - otherwise we can lose errors on
1111	 * buffers that require multiple bios to complete.
1112	 */
1113	if (bio->bi_error) {
1114		spin_lock(&bp->b_lock);
1115		if (!bp->b_io_error)
1116			bp->b_io_error = bio->bi_error;
1117		spin_unlock(&bp->b_lock);
1118	}
1119
1120	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1121		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1122
1123	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1124		xfs_buf_ioend_async(bp);
1125	bio_put(bio);
1126}
1127
1128static void
1129xfs_buf_ioapply_map(
1130	struct xfs_buf	*bp,
1131	int		map,
1132	int		*buf_offset,
1133	int		*count,
1134	int		rw)
1135{
1136	int		page_index;
1137	int		total_nr_pages = bp->b_page_count;
1138	int		nr_pages;
1139	struct bio	*bio;
1140	sector_t	sector =  bp->b_maps[map].bm_bn;
1141	int		size;
1142	int		offset;
1143
1144	total_nr_pages = bp->b_page_count;
1145
1146	/* skip the pages in the buffer before the start offset */
1147	page_index = 0;
1148	offset = *buf_offset;
1149	while (offset >= PAGE_SIZE) {
1150		page_index++;
1151		offset -= PAGE_SIZE;
1152	}
1153
1154	/*
1155	 * Limit the IO size to the length of the current vector, and update the
1156	 * remaining IO count for the next time around.
1157	 */
1158	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1159	*count -= size;
1160	*buf_offset += size;
1161
1162next_chunk:
1163	atomic_inc(&bp->b_io_remaining);
1164	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1165	if (nr_pages > total_nr_pages)
1166		nr_pages = total_nr_pages;
1167
1168	bio = bio_alloc(GFP_NOIO, nr_pages);
1169	bio->bi_bdev = bp->b_target->bt_bdev;
1170	bio->bi_iter.bi_sector = sector;
1171	bio->bi_end_io = xfs_buf_bio_end_io;
1172	bio->bi_private = bp;
1173
1174
1175	for (; size && nr_pages; nr_pages--, page_index++) {
1176		int	rbytes, nbytes = PAGE_SIZE - offset;
1177
1178		if (nbytes > size)
1179			nbytes = size;
1180
1181		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1182				      offset);
1183		if (rbytes < nbytes)
1184			break;
1185
1186		offset = 0;
1187		sector += BTOBB(nbytes);
1188		size -= nbytes;
1189		total_nr_pages--;
1190	}
1191
1192	if (likely(bio->bi_iter.bi_size)) {
1193		if (xfs_buf_is_vmapped(bp)) {
1194			flush_kernel_vmap_range(bp->b_addr,
1195						xfs_buf_vmap_len(bp));
1196		}
1197		submit_bio(rw, bio);
1198		if (size)
1199			goto next_chunk;
1200	} else {
1201		/*
1202		 * This is guaranteed not to be the last io reference count
1203		 * because the caller (xfs_buf_submit) holds a count itself.
1204		 */
1205		atomic_dec(&bp->b_io_remaining);
1206		xfs_buf_ioerror(bp, -EIO);
1207		bio_put(bio);
1208	}
1209
1210}
1211
1212STATIC void
1213_xfs_buf_ioapply(
1214	struct xfs_buf	*bp)
1215{
1216	struct blk_plug	plug;
1217	int		rw;
1218	int		offset;
1219	int		size;
1220	int		i;
1221
1222	/*
1223	 * Make sure we capture only current IO errors rather than stale errors
1224	 * left over from previous use of the buffer (e.g. failed readahead).
1225	 */
1226	bp->b_error = 0;
1227
1228	/*
1229	 * Initialize the I/O completion workqueue if we haven't yet or the
1230	 * submitter has not opted to specify a custom one.
1231	 */
1232	if (!bp->b_ioend_wq)
1233		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1234
1235	if (bp->b_flags & XBF_WRITE) {
1236		if (bp->b_flags & XBF_SYNCIO)
1237			rw = WRITE_SYNC;
1238		else
1239			rw = WRITE;
1240		if (bp->b_flags & XBF_FUA)
1241			rw |= REQ_FUA;
1242		if (bp->b_flags & XBF_FLUSH)
1243			rw |= REQ_FLUSH;
1244
1245		/*
1246		 * Run the write verifier callback function if it exists. If
1247		 * this function fails it will mark the buffer with an error and
1248		 * the IO should not be dispatched.
1249		 */
1250		if (bp->b_ops) {
1251			bp->b_ops->verify_write(bp);
1252			if (bp->b_error) {
1253				xfs_force_shutdown(bp->b_target->bt_mount,
1254						   SHUTDOWN_CORRUPT_INCORE);
1255				return;
1256			}
1257		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1258			struct xfs_mount *mp = bp->b_target->bt_mount;
1259
1260			/*
1261			 * non-crc filesystems don't attach verifiers during
1262			 * log recovery, so don't warn for such filesystems.
1263			 */
1264			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1265				xfs_warn(mp,
1266					"%s: no ops on block 0x%llx/0x%x",
1267					__func__, bp->b_bn, bp->b_length);
1268				xfs_hex_dump(bp->b_addr, 64);
 
1269				dump_stack();
1270			}
1271		}
1272	} else if (bp->b_flags & XBF_READ_AHEAD) {
1273		rw = READA;
1274	} else {
1275		rw = READ;
 
 
1276	}
1277
1278	/* we only use the buffer cache for meta-data */
1279	rw |= REQ_META;
1280
1281	/*
1282	 * Walk all the vectors issuing IO on them. Set up the initial offset
1283	 * into the buffer and the desired IO size before we start -
1284	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1285	 * subsequent call.
1286	 */
1287	offset = bp->b_offset;
1288	size = BBTOB(bp->b_io_length);
1289	blk_start_plug(&plug);
1290	for (i = 0; i < bp->b_map_count; i++) {
1291		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1292		if (bp->b_error)
1293			break;
1294		if (size <= 0)
1295			break;	/* all done */
1296	}
1297	blk_finish_plug(&plug);
1298}
1299
1300/*
1301 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1302 * the current reference to the IO. It is not safe to reference the buffer after
1303 * a call to this function unless the caller holds an additional reference
1304 * itself.
1305 */
1306void
1307xfs_buf_submit(
1308	struct xfs_buf	*bp)
1309{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310	trace_xfs_buf_submit(bp, _RET_IP_);
1311
1312	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1313	ASSERT(bp->b_flags & XBF_ASYNC);
1314
1315	/* on shutdown we stale and complete the buffer immediately */
1316	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1317		xfs_buf_ioerror(bp, -EIO);
1318		bp->b_flags &= ~XBF_DONE;
1319		xfs_buf_stale(bp);
1320		xfs_buf_ioend(bp);
1321		return;
1322	}
1323
 
 
 
 
 
 
 
1324	if (bp->b_flags & XBF_WRITE)
1325		xfs_buf_wait_unpin(bp);
1326
1327	/* clear the internal error state to avoid spurious errors */
1328	bp->b_io_error = 0;
1329
1330	/*
1331	 * The caller's reference is released during I/O completion.
1332	 * This occurs some time after the last b_io_remaining reference is
1333	 * released, so after we drop our Io reference we have to have some
1334	 * other reference to ensure the buffer doesn't go away from underneath
1335	 * us. Take a direct reference to ensure we have safe access to the
1336	 * buffer until we are finished with it.
1337	 */
1338	xfs_buf_hold(bp);
1339
1340	/*
1341	 * Set the count to 1 initially, this will stop an I/O completion
1342	 * callout which happens before we have started all the I/O from calling
1343	 * xfs_buf_ioend too early.
1344	 */
1345	atomic_set(&bp->b_io_remaining, 1);
 
 
1346	_xfs_buf_ioapply(bp);
1347
1348	/*
1349	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1350	 * reference we took above. If we drop it to zero, run completion so
1351	 * that we don't return to the caller with completion still pending.
1352	 */
1353	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1354		if (bp->b_error)
1355			xfs_buf_ioend(bp);
1356		else
1357			xfs_buf_ioend_async(bp);
1358	}
1359
1360	xfs_buf_rele(bp);
1361	/* Note: it is not safe to reference bp now we've dropped our ref */
1362}
1363
1364/*
1365 * Synchronous buffer IO submission path, read or write.
1366 */
1367int
1368xfs_buf_submit_wait(
1369	struct xfs_buf	*bp)
1370{
1371	int		error;
1372
1373	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1374
1375	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1376
1377	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1378		xfs_buf_ioerror(bp, -EIO);
1379		xfs_buf_stale(bp);
1380		bp->b_flags &= ~XBF_DONE;
1381		return -EIO;
1382	}
1383
1384	if (bp->b_flags & XBF_WRITE)
1385		xfs_buf_wait_unpin(bp);
1386
1387	/* clear the internal error state to avoid spurious errors */
1388	bp->b_io_error = 0;
1389
1390	/*
1391	 * For synchronous IO, the IO does not inherit the submitters reference
1392	 * count, nor the buffer lock. Hence we cannot release the reference we
1393	 * are about to take until we've waited for all IO completion to occur,
1394	 * including any xfs_buf_ioend_async() work that may be pending.
1395	 */
1396	xfs_buf_hold(bp);
1397
1398	/*
1399	 * Set the count to 1 initially, this will stop an I/O completion
1400	 * callout which happens before we have started all the I/O from calling
1401	 * xfs_buf_ioend too early.
1402	 */
1403	atomic_set(&bp->b_io_remaining, 1);
1404	_xfs_buf_ioapply(bp);
1405
1406	/*
1407	 * make sure we run completion synchronously if it raced with us and is
1408	 * already complete.
1409	 */
1410	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1411		xfs_buf_ioend(bp);
1412
1413	/* wait for completion before gathering the error from the buffer */
1414	trace_xfs_buf_iowait(bp, _RET_IP_);
1415	wait_for_completion(&bp->b_iowait);
1416	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1417	error = bp->b_error;
1418
1419	/*
1420	 * all done now, we can release the hold that keeps the buffer
1421	 * referenced for the entire IO.
1422	 */
1423	xfs_buf_rele(bp);
1424	return error;
1425}
1426
1427void *
1428xfs_buf_offset(
1429	struct xfs_buf		*bp,
1430	size_t			offset)
1431{
1432	struct page		*page;
1433
1434	if (bp->b_addr)
1435		return bp->b_addr + offset;
1436
1437	offset += bp->b_offset;
1438	page = bp->b_pages[offset >> PAGE_SHIFT];
1439	return page_address(page) + (offset & (PAGE_SIZE-1));
1440}
1441
1442/*
1443 *	Move data into or out of a buffer.
1444 */
1445void
1446xfs_buf_iomove(
1447	xfs_buf_t		*bp,	/* buffer to process		*/
1448	size_t			boff,	/* starting buffer offset	*/
1449	size_t			bsize,	/* length to copy		*/
1450	void			*data,	/* data address			*/
1451	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1452{
1453	size_t			bend;
1454
1455	bend = boff + bsize;
1456	while (boff < bend) {
1457		struct page	*page;
1458		int		page_index, page_offset, csize;
1459
1460		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1461		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1462		page = bp->b_pages[page_index];
1463		csize = min_t(size_t, PAGE_SIZE - page_offset,
1464				      BBTOB(bp->b_io_length) - boff);
1465
1466		ASSERT((csize + page_offset) <= PAGE_SIZE);
1467
1468		switch (mode) {
1469		case XBRW_ZERO:
1470			memset(page_address(page) + page_offset, 0, csize);
1471			break;
1472		case XBRW_READ:
1473			memcpy(data, page_address(page) + page_offset, csize);
1474			break;
1475		case XBRW_WRITE:
1476			memcpy(page_address(page) + page_offset, data, csize);
1477		}
1478
1479		boff += csize;
1480		data += csize;
1481	}
1482}
1483
1484/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485 *	Handling of buffer targets (buftargs).
1486 */
1487
1488/*
1489 * Wait for any bufs with callbacks that have been submitted but have not yet
1490 * returned. These buffers will have an elevated hold count, so wait on those
1491 * while freeing all the buffers only held by the LRU.
1492 */
1493static enum lru_status
1494xfs_buftarg_wait_rele(
1495	struct list_head	*item,
1496	struct list_lru_one	*lru,
1497	spinlock_t		*lru_lock,
1498	void			*arg)
1499
1500{
1501	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1502	struct list_head	*dispose = arg;
1503
1504	if (atomic_read(&bp->b_hold) > 1) {
1505		/* need to wait, so skip it this pass */
1506		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1507		return LRU_SKIP;
1508	}
1509	if (!spin_trylock(&bp->b_lock))
1510		return LRU_SKIP;
1511
1512	/*
1513	 * clear the LRU reference count so the buffer doesn't get
1514	 * ignored in xfs_buf_rele().
1515	 */
1516	atomic_set(&bp->b_lru_ref, 0);
1517	bp->b_state |= XFS_BSTATE_DISPOSE;
1518	list_lru_isolate_move(lru, item, dispose);
1519	spin_unlock(&bp->b_lock);
1520	return LRU_REMOVED;
1521}
1522
1523void
1524xfs_wait_buftarg(
1525	struct xfs_buftarg	*btp)
1526{
1527	LIST_HEAD(dispose);
1528	int loop = 0;
 
1529
1530	/*
1531	 * We need to flush the buffer workqueue to ensure that all IO
1532	 * completion processing is 100% done. Just waiting on buffer locks is
1533	 * not sufficient for async IO as the reference count held over IO is
1534	 * not released until after the buffer lock is dropped. Hence we need to
1535	 * ensure here that all reference counts have been dropped before we
1536	 * start walking the LRU list.
1537	 */
1538	drain_workqueue(btp->bt_mount->m_buf_workqueue);
 
 
 
 
 
 
1539
1540	/* loop until there is nothing left on the lru list. */
1541	while (list_lru_count(&btp->bt_lru)) {
1542		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1543			      &dispose, LONG_MAX);
1544
1545		while (!list_empty(&dispose)) {
1546			struct xfs_buf *bp;
1547			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1548			list_del_init(&bp->b_lru);
1549			if (bp->b_flags & XBF_WRITE_FAIL) {
1550				xfs_alert(btp->bt_mount,
1551"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
 
 
1552					(long long)bp->b_bn);
1553				xfs_alert(btp->bt_mount,
1554"Please run xfs_repair to determine the extent of the problem.");
1555			}
1556			xfs_buf_rele(bp);
1557		}
1558		if (loop++ != 0)
1559			delay(100);
1560	}
 
 
 
 
 
 
 
 
 
 
 
 
1561}
1562
1563static enum lru_status
1564xfs_buftarg_isolate(
1565	struct list_head	*item,
1566	struct list_lru_one	*lru,
1567	spinlock_t		*lru_lock,
1568	void			*arg)
1569{
1570	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1571	struct list_head	*dispose = arg;
1572
1573	/*
1574	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1575	 * If we fail to get the lock, just skip it.
1576	 */
1577	if (!spin_trylock(&bp->b_lock))
1578		return LRU_SKIP;
1579	/*
1580	 * Decrement the b_lru_ref count unless the value is already
1581	 * zero. If the value is already zero, we need to reclaim the
1582	 * buffer, otherwise it gets another trip through the LRU.
1583	 */
1584	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1585		spin_unlock(&bp->b_lock);
1586		return LRU_ROTATE;
1587	}
1588
1589	bp->b_state |= XFS_BSTATE_DISPOSE;
1590	list_lru_isolate_move(lru, item, dispose);
1591	spin_unlock(&bp->b_lock);
1592	return LRU_REMOVED;
1593}
1594
1595static unsigned long
1596xfs_buftarg_shrink_scan(
1597	struct shrinker		*shrink,
1598	struct shrink_control	*sc)
1599{
1600	struct xfs_buftarg	*btp = container_of(shrink,
1601					struct xfs_buftarg, bt_shrinker);
1602	LIST_HEAD(dispose);
1603	unsigned long		freed;
1604
1605	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1606				     xfs_buftarg_isolate, &dispose);
1607
1608	while (!list_empty(&dispose)) {
1609		struct xfs_buf *bp;
1610		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1611		list_del_init(&bp->b_lru);
1612		xfs_buf_rele(bp);
1613	}
1614
1615	return freed;
1616}
1617
1618static unsigned long
1619xfs_buftarg_shrink_count(
1620	struct shrinker		*shrink,
1621	struct shrink_control	*sc)
1622{
1623	struct xfs_buftarg	*btp = container_of(shrink,
1624					struct xfs_buftarg, bt_shrinker);
1625	return list_lru_shrink_count(&btp->bt_lru, sc);
1626}
1627
1628void
1629xfs_free_buftarg(
1630	struct xfs_mount	*mp,
1631	struct xfs_buftarg	*btp)
1632{
1633	unregister_shrinker(&btp->bt_shrinker);
 
 
1634	list_lru_destroy(&btp->bt_lru);
1635
1636	if (mp->m_flags & XFS_MOUNT_BARRIER)
1637		xfs_blkdev_issue_flush(btp);
1638
1639	kmem_free(btp);
1640}
1641
1642int
1643xfs_setsize_buftarg(
1644	xfs_buftarg_t		*btp,
1645	unsigned int		sectorsize)
1646{
1647	/* Set up metadata sector size info */
1648	btp->bt_meta_sectorsize = sectorsize;
1649	btp->bt_meta_sectormask = sectorsize - 1;
1650
1651	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1652		xfs_warn(btp->bt_mount,
1653			"Cannot set_blocksize to %u on device %pg",
1654			sectorsize, btp->bt_bdev);
1655		return -EINVAL;
1656	}
1657
1658	/* Set up device logical sector size mask */
1659	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1660	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1661
1662	return 0;
1663}
1664
1665/*
1666 * When allocating the initial buffer target we have not yet
1667 * read in the superblock, so don't know what sized sectors
1668 * are being used at this early stage.  Play safe.
1669 */
1670STATIC int
1671xfs_setsize_buftarg_early(
1672	xfs_buftarg_t		*btp,
1673	struct block_device	*bdev)
1674{
1675	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1676}
1677
1678xfs_buftarg_t *
1679xfs_alloc_buftarg(
1680	struct xfs_mount	*mp,
1681	struct block_device	*bdev)
 
1682{
1683	xfs_buftarg_t		*btp;
1684
1685	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1686
1687	btp->bt_mount = mp;
1688	btp->bt_dev =  bdev->bd_dev;
1689	btp->bt_bdev = bdev;
1690	btp->bt_bdi = blk_get_backing_dev_info(bdev);
 
 
 
 
 
 
 
1691
1692	if (xfs_setsize_buftarg_early(btp, bdev))
1693		goto error;
1694
1695	if (list_lru_init(&btp->bt_lru))
1696		goto error;
 
 
 
1697
1698	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1699	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1700	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1701	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1702	register_shrinker(&btp->bt_shrinker);
 
1703	return btp;
1704
1705error:
 
 
 
 
1706	kmem_free(btp);
1707	return NULL;
1708}
1709
1710/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711 * Add a buffer to the delayed write list.
1712 *
1713 * This queues a buffer for writeout if it hasn't already been.  Note that
1714 * neither this routine nor the buffer list submission functions perform
1715 * any internal synchronization.  It is expected that the lists are thread-local
1716 * to the callers.
1717 *
1718 * Returns true if we queued up the buffer, or false if it already had
1719 * been on the buffer list.
1720 */
1721bool
1722xfs_buf_delwri_queue(
1723	struct xfs_buf		*bp,
1724	struct list_head	*list)
1725{
1726	ASSERT(xfs_buf_islocked(bp));
1727	ASSERT(!(bp->b_flags & XBF_READ));
1728
1729	/*
1730	 * If the buffer is already marked delwri it already is queued up
1731	 * by someone else for imediate writeout.  Just ignore it in that
1732	 * case.
1733	 */
1734	if (bp->b_flags & _XBF_DELWRI_Q) {
1735		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1736		return false;
1737	}
1738
1739	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1740
1741	/*
1742	 * If a buffer gets written out synchronously or marked stale while it
1743	 * is on a delwri list we lazily remove it. To do this, the other party
1744	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1745	 * It remains referenced and on the list.  In a rare corner case it
1746	 * might get readded to a delwri list after the synchronous writeout, in
1747	 * which case we need just need to re-add the flag here.
1748	 */
1749	bp->b_flags |= _XBF_DELWRI_Q;
1750	if (list_empty(&bp->b_list)) {
1751		atomic_inc(&bp->b_hold);
1752		list_add_tail(&bp->b_list, list);
1753	}
1754
1755	return true;
1756}
1757
1758/*
1759 * Compare function is more complex than it needs to be because
1760 * the return value is only 32 bits and we are doing comparisons
1761 * on 64 bit values
1762 */
1763static int
1764xfs_buf_cmp(
1765	void		*priv,
1766	struct list_head *a,
1767	struct list_head *b)
1768{
1769	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1770	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1771	xfs_daddr_t		diff;
1772
1773	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1774	if (diff < 0)
1775		return -1;
1776	if (diff > 0)
1777		return 1;
1778	return 0;
1779}
1780
 
 
 
 
 
 
 
1781static int
1782__xfs_buf_delwri_submit(
1783	struct list_head	*buffer_list,
1784	struct list_head	*io_list,
1785	bool			wait)
1786{
1787	struct blk_plug		plug;
1788	struct xfs_buf		*bp, *n;
1789	int			pinned = 0;
 
1790
 
 
 
1791	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1792		if (!wait) {
1793			if (xfs_buf_ispinned(bp)) {
1794				pinned++;
1795				continue;
1796			}
1797			if (!xfs_buf_trylock(bp))
1798				continue;
1799		} else {
1800			xfs_buf_lock(bp);
1801		}
1802
1803		/*
1804		 * Someone else might have written the buffer synchronously or
1805		 * marked it stale in the meantime.  In that case only the
1806		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1807		 * reference and remove it from the list here.
1808		 */
1809		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1810			list_del_init(&bp->b_list);
1811			xfs_buf_relse(bp);
1812			continue;
1813		}
1814
1815		list_move_tail(&bp->b_list, io_list);
1816		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1817	}
1818
1819	list_sort(NULL, io_list, xfs_buf_cmp);
1820
1821	blk_start_plug(&plug);
1822	list_for_each_entry_safe(bp, n, io_list, b_list) {
1823		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1824		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1825
1826		/*
1827		 * we do all Io submission async. This means if we need to wait
1828		 * for IO completion we need to take an extra reference so the
1829		 * buffer is still valid on the other side.
 
1830		 */
1831		if (wait)
1832			xfs_buf_hold(bp);
1833		else
 
 
 
 
1834			list_del_init(&bp->b_list);
1835
1836		xfs_buf_submit(bp);
1837	}
1838	blk_finish_plug(&plug);
1839
1840	return pinned;
1841}
1842
1843/*
1844 * Write out a buffer list asynchronously.
1845 *
1846 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1847 * out and not wait for I/O completion on any of the buffers.  This interface
1848 * is only safely useable for callers that can track I/O completion by higher
1849 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1850 * function.
 
 
 
 
 
 
 
1851 */
1852int
1853xfs_buf_delwri_submit_nowait(
1854	struct list_head	*buffer_list)
1855{
1856	LIST_HEAD		(io_list);
1857	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1858}
1859
1860/*
1861 * Write out a buffer list synchronously.
1862 *
1863 * This will take the @buffer_list, write all buffers out and wait for I/O
1864 * completion on all of the buffers. @buffer_list is consumed by the function,
1865 * so callers must have some other way of tracking buffers if they require such
1866 * functionality.
1867 */
1868int
1869xfs_buf_delwri_submit(
1870	struct list_head	*buffer_list)
1871{
1872	LIST_HEAD		(io_list);
1873	int			error = 0, error2;
1874	struct xfs_buf		*bp;
1875
1876	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1877
1878	/* Wait for IO to complete. */
1879	while (!list_empty(&io_list)) {
1880		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1881
1882		list_del_init(&bp->b_list);
1883
1884		/* locking the buffer will wait for async IO completion. */
1885		xfs_buf_lock(bp);
1886		error2 = bp->b_error;
 
 
1887		xfs_buf_relse(bp);
1888		if (!error)
1889			error = error2;
1890	}
1891
1892	return error;
1893}
1894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895int __init
1896xfs_buf_init(void)
1897{
1898	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1899						KM_ZONE_HWALIGN, NULL);
 
 
 
1900	if (!xfs_buf_zone)
1901		goto out;
1902
1903	return 0;
1904
1905 out:
1906	return -ENOMEM;
1907}
1908
1909void
1910xfs_buf_terminate(void)
1911{
1912	kmem_zone_destroy(xfs_buf_zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913}