Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_log_recover.h"
18#include "xfs_trans.h"
19#include "xfs_buf_item.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22
23static kmem_zone_t *xfs_buf_zone;
24
25#define xb_to_gfp(flags) \
26 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
27
28/*
29 * Locking orders
30 *
31 * xfs_buf_ioacct_inc:
32 * xfs_buf_ioacct_dec:
33 * b_sema (caller holds)
34 * b_lock
35 *
36 * xfs_buf_stale:
37 * b_sema (caller holds)
38 * b_lock
39 * lru_lock
40 *
41 * xfs_buf_rele:
42 * b_lock
43 * pag_buf_lock
44 * lru_lock
45 *
46 * xfs_buftarg_wait_rele
47 * lru_lock
48 * b_lock (trylock due to inversion)
49 *
50 * xfs_buftarg_isolate
51 * lru_lock
52 * b_lock (trylock due to inversion)
53 */
54
55static inline int
56xfs_buf_is_vmapped(
57 struct xfs_buf *bp)
58{
59 /*
60 * Return true if the buffer is vmapped.
61 *
62 * b_addr is null if the buffer is not mapped, but the code is clever
63 * enough to know it doesn't have to map a single page, so the check has
64 * to be both for b_addr and bp->b_page_count > 1.
65 */
66 return bp->b_addr && bp->b_page_count > 1;
67}
68
69static inline int
70xfs_buf_vmap_len(
71 struct xfs_buf *bp)
72{
73 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
74}
75
76/*
77 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
78 * this buffer. The count is incremented once per buffer (per hold cycle)
79 * because the corresponding decrement is deferred to buffer release. Buffers
80 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
81 * tracking adds unnecessary overhead. This is used for sychronization purposes
82 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
83 * in-flight buffers.
84 *
85 * Buffers that are never released (e.g., superblock, iclog buffers) must set
86 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
87 * never reaches zero and unmount hangs indefinitely.
88 */
89static inline void
90xfs_buf_ioacct_inc(
91 struct xfs_buf *bp)
92{
93 if (bp->b_flags & XBF_NO_IOACCT)
94 return;
95
96 ASSERT(bp->b_flags & XBF_ASYNC);
97 spin_lock(&bp->b_lock);
98 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
99 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
100 percpu_counter_inc(&bp->b_target->bt_io_count);
101 }
102 spin_unlock(&bp->b_lock);
103}
104
105/*
106 * Clear the in-flight state on a buffer about to be released to the LRU or
107 * freed and unaccount from the buftarg.
108 */
109static inline void
110__xfs_buf_ioacct_dec(
111 struct xfs_buf *bp)
112{
113 lockdep_assert_held(&bp->b_lock);
114
115 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
116 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
117 percpu_counter_dec(&bp->b_target->bt_io_count);
118 }
119}
120
121static inline void
122xfs_buf_ioacct_dec(
123 struct xfs_buf *bp)
124{
125 spin_lock(&bp->b_lock);
126 __xfs_buf_ioacct_dec(bp);
127 spin_unlock(&bp->b_lock);
128}
129
130/*
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
135 *
136 * This prevents build-up of stale buffers on the LRU.
137 */
138void
139xfs_buf_stale(
140 struct xfs_buf *bp)
141{
142 ASSERT(xfs_buf_islocked(bp));
143
144 bp->b_flags |= XBF_STALE;
145
146 /*
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
150 */
151 bp->b_flags &= ~_XBF_DELWRI_Q;
152
153 /*
154 * Once the buffer is marked stale and unlocked, a subsequent lookup
155 * could reset b_flags. There is no guarantee that the buffer is
156 * unaccounted (released to LRU) before that occurs. Drop in-flight
157 * status now to preserve accounting consistency.
158 */
159 spin_lock(&bp->b_lock);
160 __xfs_buf_ioacct_dec(bp);
161
162 atomic_set(&bp->b_lru_ref, 0);
163 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
164 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
165 atomic_dec(&bp->b_hold);
166
167 ASSERT(atomic_read(&bp->b_hold) >= 1);
168 spin_unlock(&bp->b_lock);
169}
170
171static int
172xfs_buf_get_maps(
173 struct xfs_buf *bp,
174 int map_count)
175{
176 ASSERT(bp->b_maps == NULL);
177 bp->b_map_count = map_count;
178
179 if (map_count == 1) {
180 bp->b_maps = &bp->__b_map;
181 return 0;
182 }
183
184 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
185 KM_NOFS);
186 if (!bp->b_maps)
187 return -ENOMEM;
188 return 0;
189}
190
191/*
192 * Frees b_pages if it was allocated.
193 */
194static void
195xfs_buf_free_maps(
196 struct xfs_buf *bp)
197{
198 if (bp->b_maps != &bp->__b_map) {
199 kmem_free(bp->b_maps);
200 bp->b_maps = NULL;
201 }
202}
203
204static int
205_xfs_buf_alloc(
206 struct xfs_buftarg *target,
207 struct xfs_buf_map *map,
208 int nmaps,
209 xfs_buf_flags_t flags,
210 struct xfs_buf **bpp)
211{
212 struct xfs_buf *bp;
213 int error;
214 int i;
215
216 *bpp = NULL;
217 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
218
219 /*
220 * We don't want certain flags to appear in b_flags unless they are
221 * specifically set by later operations on the buffer.
222 */
223 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
224
225 atomic_set(&bp->b_hold, 1);
226 atomic_set(&bp->b_lru_ref, 1);
227 init_completion(&bp->b_iowait);
228 INIT_LIST_HEAD(&bp->b_lru);
229 INIT_LIST_HEAD(&bp->b_list);
230 INIT_LIST_HEAD(&bp->b_li_list);
231 sema_init(&bp->b_sema, 0); /* held, no waiters */
232 spin_lock_init(&bp->b_lock);
233 bp->b_target = target;
234 bp->b_mount = target->bt_mount;
235 bp->b_flags = flags;
236
237 /*
238 * Set length and io_length to the same value initially.
239 * I/O routines should use io_length, which will be the same in
240 * most cases but may be reset (e.g. XFS recovery).
241 */
242 error = xfs_buf_get_maps(bp, nmaps);
243 if (error) {
244 kmem_cache_free(xfs_buf_zone, bp);
245 return error;
246 }
247
248 bp->b_bn = map[0].bm_bn;
249 bp->b_length = 0;
250 for (i = 0; i < nmaps; i++) {
251 bp->b_maps[i].bm_bn = map[i].bm_bn;
252 bp->b_maps[i].bm_len = map[i].bm_len;
253 bp->b_length += map[i].bm_len;
254 }
255
256 atomic_set(&bp->b_pin_count, 0);
257 init_waitqueue_head(&bp->b_waiters);
258
259 XFS_STATS_INC(bp->b_mount, xb_create);
260 trace_xfs_buf_init(bp, _RET_IP_);
261
262 *bpp = bp;
263 return 0;
264}
265
266/*
267 * Allocate a page array capable of holding a specified number
268 * of pages, and point the page buf at it.
269 */
270STATIC int
271_xfs_buf_get_pages(
272 xfs_buf_t *bp,
273 int page_count)
274{
275 /* Make sure that we have a page list */
276 if (bp->b_pages == NULL) {
277 bp->b_page_count = page_count;
278 if (page_count <= XB_PAGES) {
279 bp->b_pages = bp->b_page_array;
280 } else {
281 bp->b_pages = kmem_alloc(sizeof(struct page *) *
282 page_count, KM_NOFS);
283 if (bp->b_pages == NULL)
284 return -ENOMEM;
285 }
286 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
287 }
288 return 0;
289}
290
291/*
292 * Frees b_pages if it was allocated.
293 */
294STATIC void
295_xfs_buf_free_pages(
296 xfs_buf_t *bp)
297{
298 if (bp->b_pages != bp->b_page_array) {
299 kmem_free(bp->b_pages);
300 bp->b_pages = NULL;
301 }
302}
303
304/*
305 * Releases the specified buffer.
306 *
307 * The modification state of any associated pages is left unchanged.
308 * The buffer must not be on any hash - use xfs_buf_rele instead for
309 * hashed and refcounted buffers
310 */
311static void
312xfs_buf_free(
313 xfs_buf_t *bp)
314{
315 trace_xfs_buf_free(bp, _RET_IP_);
316
317 ASSERT(list_empty(&bp->b_lru));
318
319 if (bp->b_flags & _XBF_PAGES) {
320 uint i;
321
322 if (xfs_buf_is_vmapped(bp))
323 vm_unmap_ram(bp->b_addr - bp->b_offset,
324 bp->b_page_count);
325
326 for (i = 0; i < bp->b_page_count; i++) {
327 struct page *page = bp->b_pages[i];
328
329 __free_page(page);
330 }
331 if (current->reclaim_state)
332 current->reclaim_state->reclaimed_slab +=
333 bp->b_page_count;
334 } else if (bp->b_flags & _XBF_KMEM)
335 kmem_free(bp->b_addr);
336 _xfs_buf_free_pages(bp);
337 xfs_buf_free_maps(bp);
338 kmem_cache_free(xfs_buf_zone, bp);
339}
340
341/*
342 * Allocates all the pages for buffer in question and builds it's page list.
343 */
344STATIC int
345xfs_buf_allocate_memory(
346 xfs_buf_t *bp,
347 uint flags)
348{
349 size_t size;
350 size_t nbytes, offset;
351 gfp_t gfp_mask = xb_to_gfp(flags);
352 unsigned short page_count, i;
353 xfs_off_t start, end;
354 int error;
355 xfs_km_flags_t kmflag_mask = 0;
356
357 /*
358 * assure zeroed buffer for non-read cases.
359 */
360 if (!(flags & XBF_READ)) {
361 kmflag_mask |= KM_ZERO;
362 gfp_mask |= __GFP_ZERO;
363 }
364
365 /*
366 * for buffers that are contained within a single page, just allocate
367 * the memory from the heap - there's no need for the complexity of
368 * page arrays to keep allocation down to order 0.
369 */
370 size = BBTOB(bp->b_length);
371 if (size < PAGE_SIZE) {
372 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
373 bp->b_addr = kmem_alloc_io(size, align_mask,
374 KM_NOFS | kmflag_mask);
375 if (!bp->b_addr) {
376 /* low memory - use alloc_page loop instead */
377 goto use_alloc_page;
378 }
379
380 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
381 ((unsigned long)bp->b_addr & PAGE_MASK)) {
382 /* b_addr spans two pages - use alloc_page instead */
383 kmem_free(bp->b_addr);
384 bp->b_addr = NULL;
385 goto use_alloc_page;
386 }
387 bp->b_offset = offset_in_page(bp->b_addr);
388 bp->b_pages = bp->b_page_array;
389 bp->b_pages[0] = kmem_to_page(bp->b_addr);
390 bp->b_page_count = 1;
391 bp->b_flags |= _XBF_KMEM;
392 return 0;
393 }
394
395use_alloc_page:
396 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
397 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
398 >> PAGE_SHIFT;
399 page_count = end - start;
400 error = _xfs_buf_get_pages(bp, page_count);
401 if (unlikely(error))
402 return error;
403
404 offset = bp->b_offset;
405 bp->b_flags |= _XBF_PAGES;
406
407 for (i = 0; i < bp->b_page_count; i++) {
408 struct page *page;
409 uint retries = 0;
410retry:
411 page = alloc_page(gfp_mask);
412 if (unlikely(page == NULL)) {
413 if (flags & XBF_READ_AHEAD) {
414 bp->b_page_count = i;
415 error = -ENOMEM;
416 goto out_free_pages;
417 }
418
419 /*
420 * This could deadlock.
421 *
422 * But until all the XFS lowlevel code is revamped to
423 * handle buffer allocation failures we can't do much.
424 */
425 if (!(++retries % 100))
426 xfs_err(NULL,
427 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
428 current->comm, current->pid,
429 __func__, gfp_mask);
430
431 XFS_STATS_INC(bp->b_mount, xb_page_retries);
432 congestion_wait(BLK_RW_ASYNC, HZ/50);
433 goto retry;
434 }
435
436 XFS_STATS_INC(bp->b_mount, xb_page_found);
437
438 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
439 size -= nbytes;
440 bp->b_pages[i] = page;
441 offset = 0;
442 }
443 return 0;
444
445out_free_pages:
446 for (i = 0; i < bp->b_page_count; i++)
447 __free_page(bp->b_pages[i]);
448 bp->b_flags &= ~_XBF_PAGES;
449 return error;
450}
451
452/*
453 * Map buffer into kernel address-space if necessary.
454 */
455STATIC int
456_xfs_buf_map_pages(
457 xfs_buf_t *bp,
458 uint flags)
459{
460 ASSERT(bp->b_flags & _XBF_PAGES);
461 if (bp->b_page_count == 1) {
462 /* A single page buffer is always mappable */
463 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
464 } else if (flags & XBF_UNMAPPED) {
465 bp->b_addr = NULL;
466 } else {
467 int retried = 0;
468 unsigned nofs_flag;
469
470 /*
471 * vm_map_ram() will allocate auxiliary structures (e.g.
472 * pagetables) with GFP_KERNEL, yet we are likely to be under
473 * GFP_NOFS context here. Hence we need to tell memory reclaim
474 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
475 * memory reclaim re-entering the filesystem here and
476 * potentially deadlocking.
477 */
478 nofs_flag = memalloc_nofs_save();
479 do {
480 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
481 -1);
482 if (bp->b_addr)
483 break;
484 vm_unmap_aliases();
485 } while (retried++ <= 1);
486 memalloc_nofs_restore(nofs_flag);
487
488 if (!bp->b_addr)
489 return -ENOMEM;
490 bp->b_addr += bp->b_offset;
491 }
492
493 return 0;
494}
495
496/*
497 * Finding and Reading Buffers
498 */
499static int
500_xfs_buf_obj_cmp(
501 struct rhashtable_compare_arg *arg,
502 const void *obj)
503{
504 const struct xfs_buf_map *map = arg->key;
505 const struct xfs_buf *bp = obj;
506
507 /*
508 * The key hashing in the lookup path depends on the key being the
509 * first element of the compare_arg, make sure to assert this.
510 */
511 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
512
513 if (bp->b_bn != map->bm_bn)
514 return 1;
515
516 if (unlikely(bp->b_length != map->bm_len)) {
517 /*
518 * found a block number match. If the range doesn't
519 * match, the only way this is allowed is if the buffer
520 * in the cache is stale and the transaction that made
521 * it stale has not yet committed. i.e. we are
522 * reallocating a busy extent. Skip this buffer and
523 * continue searching for an exact match.
524 */
525 ASSERT(bp->b_flags & XBF_STALE);
526 return 1;
527 }
528 return 0;
529}
530
531static const struct rhashtable_params xfs_buf_hash_params = {
532 .min_size = 32, /* empty AGs have minimal footprint */
533 .nelem_hint = 16,
534 .key_len = sizeof(xfs_daddr_t),
535 .key_offset = offsetof(struct xfs_buf, b_bn),
536 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
537 .automatic_shrinking = true,
538 .obj_cmpfn = _xfs_buf_obj_cmp,
539};
540
541int
542xfs_buf_hash_init(
543 struct xfs_perag *pag)
544{
545 spin_lock_init(&pag->pag_buf_lock);
546 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
547}
548
549void
550xfs_buf_hash_destroy(
551 struct xfs_perag *pag)
552{
553 rhashtable_destroy(&pag->pag_buf_hash);
554}
555
556/*
557 * Look up a buffer in the buffer cache and return it referenced and locked
558 * in @found_bp.
559 *
560 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
561 * cache.
562 *
563 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
564 * -EAGAIN if we fail to lock it.
565 *
566 * Return values are:
567 * -EFSCORRUPTED if have been supplied with an invalid address
568 * -EAGAIN on trylock failure
569 * -ENOENT if we fail to find a match and @new_bp was NULL
570 * 0, with @found_bp:
571 * - @new_bp if we inserted it into the cache
572 * - the buffer we found and locked.
573 */
574static int
575xfs_buf_find(
576 struct xfs_buftarg *btp,
577 struct xfs_buf_map *map,
578 int nmaps,
579 xfs_buf_flags_t flags,
580 struct xfs_buf *new_bp,
581 struct xfs_buf **found_bp)
582{
583 struct xfs_perag *pag;
584 xfs_buf_t *bp;
585 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
586 xfs_daddr_t eofs;
587 int i;
588
589 *found_bp = NULL;
590
591 for (i = 0; i < nmaps; i++)
592 cmap.bm_len += map[i].bm_len;
593
594 /* Check for IOs smaller than the sector size / not sector aligned */
595 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
596 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
597
598 /*
599 * Corrupted block numbers can get through to here, unfortunately, so we
600 * have to check that the buffer falls within the filesystem bounds.
601 */
602 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
603 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
604 xfs_alert(btp->bt_mount,
605 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
606 __func__, cmap.bm_bn, eofs);
607 WARN_ON(1);
608 return -EFSCORRUPTED;
609 }
610
611 pag = xfs_perag_get(btp->bt_mount,
612 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
613
614 spin_lock(&pag->pag_buf_lock);
615 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
616 xfs_buf_hash_params);
617 if (bp) {
618 atomic_inc(&bp->b_hold);
619 goto found;
620 }
621
622 /* No match found */
623 if (!new_bp) {
624 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
625 spin_unlock(&pag->pag_buf_lock);
626 xfs_perag_put(pag);
627 return -ENOENT;
628 }
629
630 /* the buffer keeps the perag reference until it is freed */
631 new_bp->b_pag = pag;
632 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
633 xfs_buf_hash_params);
634 spin_unlock(&pag->pag_buf_lock);
635 *found_bp = new_bp;
636 return 0;
637
638found:
639 spin_unlock(&pag->pag_buf_lock);
640 xfs_perag_put(pag);
641
642 if (!xfs_buf_trylock(bp)) {
643 if (flags & XBF_TRYLOCK) {
644 xfs_buf_rele(bp);
645 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
646 return -EAGAIN;
647 }
648 xfs_buf_lock(bp);
649 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
650 }
651
652 /*
653 * if the buffer is stale, clear all the external state associated with
654 * it. We need to keep flags such as how we allocated the buffer memory
655 * intact here.
656 */
657 if (bp->b_flags & XBF_STALE) {
658 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
659 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
660 bp->b_ops = NULL;
661 }
662
663 trace_xfs_buf_find(bp, flags, _RET_IP_);
664 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
665 *found_bp = bp;
666 return 0;
667}
668
669struct xfs_buf *
670xfs_buf_incore(
671 struct xfs_buftarg *target,
672 xfs_daddr_t blkno,
673 size_t numblks,
674 xfs_buf_flags_t flags)
675{
676 struct xfs_buf *bp;
677 int error;
678 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
679
680 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
681 if (error)
682 return NULL;
683 return bp;
684}
685
686/*
687 * Assembles a buffer covering the specified range. The code is optimised for
688 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
689 * more hits than misses.
690 */
691int
692xfs_buf_get_map(
693 struct xfs_buftarg *target,
694 struct xfs_buf_map *map,
695 int nmaps,
696 xfs_buf_flags_t flags,
697 struct xfs_buf **bpp)
698{
699 struct xfs_buf *bp;
700 struct xfs_buf *new_bp;
701 int error = 0;
702
703 *bpp = NULL;
704 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
705 if (!error)
706 goto found;
707 if (error != -ENOENT)
708 return error;
709
710 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
711 if (error)
712 return error;
713
714 error = xfs_buf_allocate_memory(new_bp, flags);
715 if (error) {
716 xfs_buf_free(new_bp);
717 return error;
718 }
719
720 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
721 if (error) {
722 xfs_buf_free(new_bp);
723 return error;
724 }
725
726 if (bp != new_bp)
727 xfs_buf_free(new_bp);
728
729found:
730 if (!bp->b_addr) {
731 error = _xfs_buf_map_pages(bp, flags);
732 if (unlikely(error)) {
733 xfs_warn_ratelimited(target->bt_mount,
734 "%s: failed to map %u pages", __func__,
735 bp->b_page_count);
736 xfs_buf_relse(bp);
737 return error;
738 }
739 }
740
741 /*
742 * Clear b_error if this is a lookup from a caller that doesn't expect
743 * valid data to be found in the buffer.
744 */
745 if (!(flags & XBF_READ))
746 xfs_buf_ioerror(bp, 0);
747
748 XFS_STATS_INC(target->bt_mount, xb_get);
749 trace_xfs_buf_get(bp, flags, _RET_IP_);
750 *bpp = bp;
751 return 0;
752}
753
754STATIC int
755_xfs_buf_read(
756 xfs_buf_t *bp,
757 xfs_buf_flags_t flags)
758{
759 ASSERT(!(flags & XBF_WRITE));
760 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
761
762 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
763 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
764
765 return xfs_buf_submit(bp);
766}
767
768/*
769 * Reverify a buffer found in cache without an attached ->b_ops.
770 *
771 * If the caller passed an ops structure and the buffer doesn't have ops
772 * assigned, set the ops and use it to verify the contents. If verification
773 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
774 * already in XBF_DONE state on entry.
775 *
776 * Under normal operations, every in-core buffer is verified on read I/O
777 * completion. There are two scenarios that can lead to in-core buffers without
778 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
779 * filesystem, though these buffers are purged at the end of recovery. The
780 * other is online repair, which intentionally reads with a NULL buffer ops to
781 * run several verifiers across an in-core buffer in order to establish buffer
782 * type. If repair can't establish that, the buffer will be left in memory
783 * with NULL buffer ops.
784 */
785int
786xfs_buf_reverify(
787 struct xfs_buf *bp,
788 const struct xfs_buf_ops *ops)
789{
790 ASSERT(bp->b_flags & XBF_DONE);
791 ASSERT(bp->b_error == 0);
792
793 if (!ops || bp->b_ops)
794 return 0;
795
796 bp->b_ops = ops;
797 bp->b_ops->verify_read(bp);
798 if (bp->b_error)
799 bp->b_flags &= ~XBF_DONE;
800 return bp->b_error;
801}
802
803int
804xfs_buf_read_map(
805 struct xfs_buftarg *target,
806 struct xfs_buf_map *map,
807 int nmaps,
808 xfs_buf_flags_t flags,
809 struct xfs_buf **bpp,
810 const struct xfs_buf_ops *ops,
811 xfs_failaddr_t fa)
812{
813 struct xfs_buf *bp;
814 int error;
815
816 flags |= XBF_READ;
817 *bpp = NULL;
818
819 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
820 if (error)
821 return error;
822
823 trace_xfs_buf_read(bp, flags, _RET_IP_);
824
825 if (!(bp->b_flags & XBF_DONE)) {
826 /* Initiate the buffer read and wait. */
827 XFS_STATS_INC(target->bt_mount, xb_get_read);
828 bp->b_ops = ops;
829 error = _xfs_buf_read(bp, flags);
830
831 /* Readahead iodone already dropped the buffer, so exit. */
832 if (flags & XBF_ASYNC)
833 return 0;
834 } else {
835 /* Buffer already read; all we need to do is check it. */
836 error = xfs_buf_reverify(bp, ops);
837
838 /* Readahead already finished; drop the buffer and exit. */
839 if (flags & XBF_ASYNC) {
840 xfs_buf_relse(bp);
841 return 0;
842 }
843
844 /* We do not want read in the flags */
845 bp->b_flags &= ~XBF_READ;
846 ASSERT(bp->b_ops != NULL || ops == NULL);
847 }
848
849 /*
850 * If we've had a read error, then the contents of the buffer are
851 * invalid and should not be used. To ensure that a followup read tries
852 * to pull the buffer from disk again, we clear the XBF_DONE flag and
853 * mark the buffer stale. This ensures that anyone who has a current
854 * reference to the buffer will interpret it's contents correctly and
855 * future cache lookups will also treat it as an empty, uninitialised
856 * buffer.
857 */
858 if (error) {
859 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
860 xfs_buf_ioerror_alert(bp, fa);
861
862 bp->b_flags &= ~XBF_DONE;
863 xfs_buf_stale(bp);
864 xfs_buf_relse(bp);
865
866 /* bad CRC means corrupted metadata */
867 if (error == -EFSBADCRC)
868 error = -EFSCORRUPTED;
869 return error;
870 }
871
872 *bpp = bp;
873 return 0;
874}
875
876/*
877 * If we are not low on memory then do the readahead in a deadlock
878 * safe manner.
879 */
880void
881xfs_buf_readahead_map(
882 struct xfs_buftarg *target,
883 struct xfs_buf_map *map,
884 int nmaps,
885 const struct xfs_buf_ops *ops)
886{
887 struct xfs_buf *bp;
888
889 if (bdi_read_congested(target->bt_bdev->bd_bdi))
890 return;
891
892 xfs_buf_read_map(target, map, nmaps,
893 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
894 __this_address);
895}
896
897/*
898 * Read an uncached buffer from disk. Allocates and returns a locked
899 * buffer containing the disk contents or nothing.
900 */
901int
902xfs_buf_read_uncached(
903 struct xfs_buftarg *target,
904 xfs_daddr_t daddr,
905 size_t numblks,
906 int flags,
907 struct xfs_buf **bpp,
908 const struct xfs_buf_ops *ops)
909{
910 struct xfs_buf *bp;
911 int error;
912
913 *bpp = NULL;
914
915 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
916 if (error)
917 return error;
918
919 /* set up the buffer for a read IO */
920 ASSERT(bp->b_map_count == 1);
921 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
922 bp->b_maps[0].bm_bn = daddr;
923 bp->b_flags |= XBF_READ;
924 bp->b_ops = ops;
925
926 xfs_buf_submit(bp);
927 if (bp->b_error) {
928 error = bp->b_error;
929 xfs_buf_relse(bp);
930 return error;
931 }
932
933 *bpp = bp;
934 return 0;
935}
936
937int
938xfs_buf_get_uncached(
939 struct xfs_buftarg *target,
940 size_t numblks,
941 int flags,
942 struct xfs_buf **bpp)
943{
944 unsigned long page_count;
945 int error, i;
946 struct xfs_buf *bp;
947 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
948
949 *bpp = NULL;
950
951 /* flags might contain irrelevant bits, pass only what we care about */
952 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
953 if (error)
954 goto fail;
955
956 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
957 error = _xfs_buf_get_pages(bp, page_count);
958 if (error)
959 goto fail_free_buf;
960
961 for (i = 0; i < page_count; i++) {
962 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
963 if (!bp->b_pages[i]) {
964 error = -ENOMEM;
965 goto fail_free_mem;
966 }
967 }
968 bp->b_flags |= _XBF_PAGES;
969
970 error = _xfs_buf_map_pages(bp, 0);
971 if (unlikely(error)) {
972 xfs_warn(target->bt_mount,
973 "%s: failed to map pages", __func__);
974 goto fail_free_mem;
975 }
976
977 trace_xfs_buf_get_uncached(bp, _RET_IP_);
978 *bpp = bp;
979 return 0;
980
981 fail_free_mem:
982 while (--i >= 0)
983 __free_page(bp->b_pages[i]);
984 _xfs_buf_free_pages(bp);
985 fail_free_buf:
986 xfs_buf_free_maps(bp);
987 kmem_cache_free(xfs_buf_zone, bp);
988 fail:
989 return error;
990}
991
992/*
993 * Increment reference count on buffer, to hold the buffer concurrently
994 * with another thread which may release (free) the buffer asynchronously.
995 * Must hold the buffer already to call this function.
996 */
997void
998xfs_buf_hold(
999 xfs_buf_t *bp)
1000{
1001 trace_xfs_buf_hold(bp, _RET_IP_);
1002 atomic_inc(&bp->b_hold);
1003}
1004
1005/*
1006 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1007 * placed on LRU or freed (depending on b_lru_ref).
1008 */
1009void
1010xfs_buf_rele(
1011 xfs_buf_t *bp)
1012{
1013 struct xfs_perag *pag = bp->b_pag;
1014 bool release;
1015 bool freebuf = false;
1016
1017 trace_xfs_buf_rele(bp, _RET_IP_);
1018
1019 if (!pag) {
1020 ASSERT(list_empty(&bp->b_lru));
1021 if (atomic_dec_and_test(&bp->b_hold)) {
1022 xfs_buf_ioacct_dec(bp);
1023 xfs_buf_free(bp);
1024 }
1025 return;
1026 }
1027
1028 ASSERT(atomic_read(&bp->b_hold) > 0);
1029
1030 /*
1031 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1032 * calls. The pag_buf_lock being taken on the last reference only
1033 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1034 * to last reference we drop here is not serialised against the last
1035 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1036 * first, the last "release" reference can win the race to the lock and
1037 * free the buffer before the second-to-last reference is processed,
1038 * leading to a use-after-free scenario.
1039 */
1040 spin_lock(&bp->b_lock);
1041 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1042 if (!release) {
1043 /*
1044 * Drop the in-flight state if the buffer is already on the LRU
1045 * and it holds the only reference. This is racy because we
1046 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1047 * ensures the decrement occurs only once per-buf.
1048 */
1049 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1050 __xfs_buf_ioacct_dec(bp);
1051 goto out_unlock;
1052 }
1053
1054 /* the last reference has been dropped ... */
1055 __xfs_buf_ioacct_dec(bp);
1056 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1057 /*
1058 * If the buffer is added to the LRU take a new reference to the
1059 * buffer for the LRU and clear the (now stale) dispose list
1060 * state flag
1061 */
1062 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1063 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1064 atomic_inc(&bp->b_hold);
1065 }
1066 spin_unlock(&pag->pag_buf_lock);
1067 } else {
1068 /*
1069 * most of the time buffers will already be removed from the
1070 * LRU, so optimise that case by checking for the
1071 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1072 * was on was the disposal list
1073 */
1074 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1075 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1076 } else {
1077 ASSERT(list_empty(&bp->b_lru));
1078 }
1079
1080 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1081 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1082 xfs_buf_hash_params);
1083 spin_unlock(&pag->pag_buf_lock);
1084 xfs_perag_put(pag);
1085 freebuf = true;
1086 }
1087
1088out_unlock:
1089 spin_unlock(&bp->b_lock);
1090
1091 if (freebuf)
1092 xfs_buf_free(bp);
1093}
1094
1095
1096/*
1097 * Lock a buffer object, if it is not already locked.
1098 *
1099 * If we come across a stale, pinned, locked buffer, we know that we are
1100 * being asked to lock a buffer that has been reallocated. Because it is
1101 * pinned, we know that the log has not been pushed to disk and hence it
1102 * will still be locked. Rather than continuing to have trylock attempts
1103 * fail until someone else pushes the log, push it ourselves before
1104 * returning. This means that the xfsaild will not get stuck trying
1105 * to push on stale inode buffers.
1106 */
1107int
1108xfs_buf_trylock(
1109 struct xfs_buf *bp)
1110{
1111 int locked;
1112
1113 locked = down_trylock(&bp->b_sema) == 0;
1114 if (locked)
1115 trace_xfs_buf_trylock(bp, _RET_IP_);
1116 else
1117 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1118 return locked;
1119}
1120
1121/*
1122 * Lock a buffer object.
1123 *
1124 * If we come across a stale, pinned, locked buffer, we know that we
1125 * are being asked to lock a buffer that has been reallocated. Because
1126 * it is pinned, we know that the log has not been pushed to disk and
1127 * hence it will still be locked. Rather than sleeping until someone
1128 * else pushes the log, push it ourselves before trying to get the lock.
1129 */
1130void
1131xfs_buf_lock(
1132 struct xfs_buf *bp)
1133{
1134 trace_xfs_buf_lock(bp, _RET_IP_);
1135
1136 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1137 xfs_log_force(bp->b_mount, 0);
1138 down(&bp->b_sema);
1139
1140 trace_xfs_buf_lock_done(bp, _RET_IP_);
1141}
1142
1143void
1144xfs_buf_unlock(
1145 struct xfs_buf *bp)
1146{
1147 ASSERT(xfs_buf_islocked(bp));
1148
1149 up(&bp->b_sema);
1150 trace_xfs_buf_unlock(bp, _RET_IP_);
1151}
1152
1153STATIC void
1154xfs_buf_wait_unpin(
1155 xfs_buf_t *bp)
1156{
1157 DECLARE_WAITQUEUE (wait, current);
1158
1159 if (atomic_read(&bp->b_pin_count) == 0)
1160 return;
1161
1162 add_wait_queue(&bp->b_waiters, &wait);
1163 for (;;) {
1164 set_current_state(TASK_UNINTERRUPTIBLE);
1165 if (atomic_read(&bp->b_pin_count) == 0)
1166 break;
1167 io_schedule();
1168 }
1169 remove_wait_queue(&bp->b_waiters, &wait);
1170 set_current_state(TASK_RUNNING);
1171}
1172
1173/*
1174 * Buffer Utility Routines
1175 */
1176
1177void
1178xfs_buf_ioend(
1179 struct xfs_buf *bp)
1180{
1181 bool read = bp->b_flags & XBF_READ;
1182
1183 trace_xfs_buf_iodone(bp, _RET_IP_);
1184
1185 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1186
1187 /*
1188 * Pull in IO completion errors now. We are guaranteed to be running
1189 * single threaded, so we don't need the lock to read b_io_error.
1190 */
1191 if (!bp->b_error && bp->b_io_error)
1192 xfs_buf_ioerror(bp, bp->b_io_error);
1193
1194 if (read) {
1195 if (!bp->b_error && bp->b_ops)
1196 bp->b_ops->verify_read(bp);
1197 if (!bp->b_error)
1198 bp->b_flags |= XBF_DONE;
1199 xfs_buf_ioend_finish(bp);
1200 return;
1201 }
1202
1203 if (!bp->b_error) {
1204 bp->b_flags &= ~XBF_WRITE_FAIL;
1205 bp->b_flags |= XBF_DONE;
1206 }
1207
1208 /*
1209 * If this is a log recovery buffer, we aren't doing transactional IO
1210 * yet so we need to let it handle IO completions.
1211 */
1212 if (bp->b_flags & _XBF_LOGRECOVERY) {
1213 xlog_recover_iodone(bp);
1214 return;
1215 }
1216
1217 if (bp->b_flags & _XBF_INODES) {
1218 xfs_buf_inode_iodone(bp);
1219 return;
1220 }
1221
1222 if (bp->b_flags & _XBF_DQUOTS) {
1223 xfs_buf_dquot_iodone(bp);
1224 return;
1225 }
1226 xfs_buf_iodone(bp);
1227}
1228
1229static void
1230xfs_buf_ioend_work(
1231 struct work_struct *work)
1232{
1233 struct xfs_buf *bp =
1234 container_of(work, xfs_buf_t, b_ioend_work);
1235
1236 xfs_buf_ioend(bp);
1237}
1238
1239static void
1240xfs_buf_ioend_async(
1241 struct xfs_buf *bp)
1242{
1243 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1244 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1245}
1246
1247void
1248__xfs_buf_ioerror(
1249 xfs_buf_t *bp,
1250 int error,
1251 xfs_failaddr_t failaddr)
1252{
1253 ASSERT(error <= 0 && error >= -1000);
1254 bp->b_error = error;
1255 trace_xfs_buf_ioerror(bp, error, failaddr);
1256}
1257
1258void
1259xfs_buf_ioerror_alert(
1260 struct xfs_buf *bp,
1261 xfs_failaddr_t func)
1262{
1263 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1264 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1265 func, (uint64_t)XFS_BUF_ADDR(bp),
1266 bp->b_length, -bp->b_error);
1267}
1268
1269/*
1270 * To simulate an I/O failure, the buffer must be locked and held with at least
1271 * three references. The LRU reference is dropped by the stale call. The buf
1272 * item reference is dropped via ioend processing. The third reference is owned
1273 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1274 */
1275void
1276xfs_buf_ioend_fail(
1277 struct xfs_buf *bp)
1278{
1279 bp->b_flags &= ~XBF_DONE;
1280 xfs_buf_stale(bp);
1281 xfs_buf_ioerror(bp, -EIO);
1282 xfs_buf_ioend(bp);
1283}
1284
1285int
1286xfs_bwrite(
1287 struct xfs_buf *bp)
1288{
1289 int error;
1290
1291 ASSERT(xfs_buf_islocked(bp));
1292
1293 bp->b_flags |= XBF_WRITE;
1294 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1295 XBF_DONE);
1296
1297 error = xfs_buf_submit(bp);
1298 if (error)
1299 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1300 return error;
1301}
1302
1303static void
1304xfs_buf_bio_end_io(
1305 struct bio *bio)
1306{
1307 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1308
1309 if (!bio->bi_status &&
1310 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1311 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1312 bio->bi_status = BLK_STS_IOERR;
1313
1314 /*
1315 * don't overwrite existing errors - otherwise we can lose errors on
1316 * buffers that require multiple bios to complete.
1317 */
1318 if (bio->bi_status) {
1319 int error = blk_status_to_errno(bio->bi_status);
1320
1321 cmpxchg(&bp->b_io_error, 0, error);
1322 }
1323
1324 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1325 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1326
1327 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1328 xfs_buf_ioend_async(bp);
1329 bio_put(bio);
1330}
1331
1332static void
1333xfs_buf_ioapply_map(
1334 struct xfs_buf *bp,
1335 int map,
1336 int *buf_offset,
1337 int *count,
1338 int op)
1339{
1340 int page_index;
1341 int total_nr_pages = bp->b_page_count;
1342 int nr_pages;
1343 struct bio *bio;
1344 sector_t sector = bp->b_maps[map].bm_bn;
1345 int size;
1346 int offset;
1347
1348 /* skip the pages in the buffer before the start offset */
1349 page_index = 0;
1350 offset = *buf_offset;
1351 while (offset >= PAGE_SIZE) {
1352 page_index++;
1353 offset -= PAGE_SIZE;
1354 }
1355
1356 /*
1357 * Limit the IO size to the length of the current vector, and update the
1358 * remaining IO count for the next time around.
1359 */
1360 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1361 *count -= size;
1362 *buf_offset += size;
1363
1364next_chunk:
1365 atomic_inc(&bp->b_io_remaining);
1366 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1367
1368 bio = bio_alloc(GFP_NOIO, nr_pages);
1369 bio_set_dev(bio, bp->b_target->bt_bdev);
1370 bio->bi_iter.bi_sector = sector;
1371 bio->bi_end_io = xfs_buf_bio_end_io;
1372 bio->bi_private = bp;
1373 bio->bi_opf = op;
1374
1375 for (; size && nr_pages; nr_pages--, page_index++) {
1376 int rbytes, nbytes = PAGE_SIZE - offset;
1377
1378 if (nbytes > size)
1379 nbytes = size;
1380
1381 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1382 offset);
1383 if (rbytes < nbytes)
1384 break;
1385
1386 offset = 0;
1387 sector += BTOBB(nbytes);
1388 size -= nbytes;
1389 total_nr_pages--;
1390 }
1391
1392 if (likely(bio->bi_iter.bi_size)) {
1393 if (xfs_buf_is_vmapped(bp)) {
1394 flush_kernel_vmap_range(bp->b_addr,
1395 xfs_buf_vmap_len(bp));
1396 }
1397 submit_bio(bio);
1398 if (size)
1399 goto next_chunk;
1400 } else {
1401 /*
1402 * This is guaranteed not to be the last io reference count
1403 * because the caller (xfs_buf_submit) holds a count itself.
1404 */
1405 atomic_dec(&bp->b_io_remaining);
1406 xfs_buf_ioerror(bp, -EIO);
1407 bio_put(bio);
1408 }
1409
1410}
1411
1412STATIC void
1413_xfs_buf_ioapply(
1414 struct xfs_buf *bp)
1415{
1416 struct blk_plug plug;
1417 int op;
1418 int offset;
1419 int size;
1420 int i;
1421
1422 /*
1423 * Make sure we capture only current IO errors rather than stale errors
1424 * left over from previous use of the buffer (e.g. failed readahead).
1425 */
1426 bp->b_error = 0;
1427
1428 if (bp->b_flags & XBF_WRITE) {
1429 op = REQ_OP_WRITE;
1430
1431 /*
1432 * Run the write verifier callback function if it exists. If
1433 * this function fails it will mark the buffer with an error and
1434 * the IO should not be dispatched.
1435 */
1436 if (bp->b_ops) {
1437 bp->b_ops->verify_write(bp);
1438 if (bp->b_error) {
1439 xfs_force_shutdown(bp->b_mount,
1440 SHUTDOWN_CORRUPT_INCORE);
1441 return;
1442 }
1443 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1444 struct xfs_mount *mp = bp->b_mount;
1445
1446 /*
1447 * non-crc filesystems don't attach verifiers during
1448 * log recovery, so don't warn for such filesystems.
1449 */
1450 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1451 xfs_warn(mp,
1452 "%s: no buf ops on daddr 0x%llx len %d",
1453 __func__, bp->b_bn, bp->b_length);
1454 xfs_hex_dump(bp->b_addr,
1455 XFS_CORRUPTION_DUMP_LEN);
1456 dump_stack();
1457 }
1458 }
1459 } else {
1460 op = REQ_OP_READ;
1461 if (bp->b_flags & XBF_READ_AHEAD)
1462 op |= REQ_RAHEAD;
1463 }
1464
1465 /* we only use the buffer cache for meta-data */
1466 op |= REQ_META;
1467
1468 /*
1469 * Walk all the vectors issuing IO on them. Set up the initial offset
1470 * into the buffer and the desired IO size before we start -
1471 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1472 * subsequent call.
1473 */
1474 offset = bp->b_offset;
1475 size = BBTOB(bp->b_length);
1476 blk_start_plug(&plug);
1477 for (i = 0; i < bp->b_map_count; i++) {
1478 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1479 if (bp->b_error)
1480 break;
1481 if (size <= 0)
1482 break; /* all done */
1483 }
1484 blk_finish_plug(&plug);
1485}
1486
1487/*
1488 * Wait for I/O completion of a sync buffer and return the I/O error code.
1489 */
1490static int
1491xfs_buf_iowait(
1492 struct xfs_buf *bp)
1493{
1494 ASSERT(!(bp->b_flags & XBF_ASYNC));
1495
1496 trace_xfs_buf_iowait(bp, _RET_IP_);
1497 wait_for_completion(&bp->b_iowait);
1498 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1499
1500 return bp->b_error;
1501}
1502
1503/*
1504 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1505 * the buffer lock ownership and the current reference to the IO. It is not
1506 * safe to reference the buffer after a call to this function unless the caller
1507 * holds an additional reference itself.
1508 */
1509int
1510__xfs_buf_submit(
1511 struct xfs_buf *bp,
1512 bool wait)
1513{
1514 int error = 0;
1515
1516 trace_xfs_buf_submit(bp, _RET_IP_);
1517
1518 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1519
1520 /* on shutdown we stale and complete the buffer immediately */
1521 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1522 xfs_buf_ioend_fail(bp);
1523 return -EIO;
1524 }
1525
1526 /*
1527 * Grab a reference so the buffer does not go away underneath us. For
1528 * async buffers, I/O completion drops the callers reference, which
1529 * could occur before submission returns.
1530 */
1531 xfs_buf_hold(bp);
1532
1533 if (bp->b_flags & XBF_WRITE)
1534 xfs_buf_wait_unpin(bp);
1535
1536 /* clear the internal error state to avoid spurious errors */
1537 bp->b_io_error = 0;
1538
1539 /*
1540 * Set the count to 1 initially, this will stop an I/O completion
1541 * callout which happens before we have started all the I/O from calling
1542 * xfs_buf_ioend too early.
1543 */
1544 atomic_set(&bp->b_io_remaining, 1);
1545 if (bp->b_flags & XBF_ASYNC)
1546 xfs_buf_ioacct_inc(bp);
1547 _xfs_buf_ioapply(bp);
1548
1549 /*
1550 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1551 * reference we took above. If we drop it to zero, run completion so
1552 * that we don't return to the caller with completion still pending.
1553 */
1554 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1555 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1556 xfs_buf_ioend(bp);
1557 else
1558 xfs_buf_ioend_async(bp);
1559 }
1560
1561 if (wait)
1562 error = xfs_buf_iowait(bp);
1563
1564 /*
1565 * Release the hold that keeps the buffer referenced for the entire
1566 * I/O. Note that if the buffer is async, it is not safe to reference
1567 * after this release.
1568 */
1569 xfs_buf_rele(bp);
1570 return error;
1571}
1572
1573void *
1574xfs_buf_offset(
1575 struct xfs_buf *bp,
1576 size_t offset)
1577{
1578 struct page *page;
1579
1580 if (bp->b_addr)
1581 return bp->b_addr + offset;
1582
1583 offset += bp->b_offset;
1584 page = bp->b_pages[offset >> PAGE_SHIFT];
1585 return page_address(page) + (offset & (PAGE_SIZE-1));
1586}
1587
1588void
1589xfs_buf_zero(
1590 struct xfs_buf *bp,
1591 size_t boff,
1592 size_t bsize)
1593{
1594 size_t bend;
1595
1596 bend = boff + bsize;
1597 while (boff < bend) {
1598 struct page *page;
1599 int page_index, page_offset, csize;
1600
1601 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1602 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1603 page = bp->b_pages[page_index];
1604 csize = min_t(size_t, PAGE_SIZE - page_offset,
1605 BBTOB(bp->b_length) - boff);
1606
1607 ASSERT((csize + page_offset) <= PAGE_SIZE);
1608
1609 memset(page_address(page) + page_offset, 0, csize);
1610
1611 boff += csize;
1612 }
1613}
1614
1615/*
1616 * Log a message about and stale a buffer that a caller has decided is corrupt.
1617 *
1618 * This function should be called for the kinds of metadata corruption that
1619 * cannot be detect from a verifier, such as incorrect inter-block relationship
1620 * data. Do /not/ call this function from a verifier function.
1621 *
1622 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1623 * be marked stale, but b_error will not be set. The caller is responsible for
1624 * releasing the buffer or fixing it.
1625 */
1626void
1627__xfs_buf_mark_corrupt(
1628 struct xfs_buf *bp,
1629 xfs_failaddr_t fa)
1630{
1631 ASSERT(bp->b_flags & XBF_DONE);
1632
1633 xfs_buf_corruption_error(bp, fa);
1634 xfs_buf_stale(bp);
1635}
1636
1637/*
1638 * Handling of buffer targets (buftargs).
1639 */
1640
1641/*
1642 * Wait for any bufs with callbacks that have been submitted but have not yet
1643 * returned. These buffers will have an elevated hold count, so wait on those
1644 * while freeing all the buffers only held by the LRU.
1645 */
1646static enum lru_status
1647xfs_buftarg_wait_rele(
1648 struct list_head *item,
1649 struct list_lru_one *lru,
1650 spinlock_t *lru_lock,
1651 void *arg)
1652
1653{
1654 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1655 struct list_head *dispose = arg;
1656
1657 if (atomic_read(&bp->b_hold) > 1) {
1658 /* need to wait, so skip it this pass */
1659 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1660 return LRU_SKIP;
1661 }
1662 if (!spin_trylock(&bp->b_lock))
1663 return LRU_SKIP;
1664
1665 /*
1666 * clear the LRU reference count so the buffer doesn't get
1667 * ignored in xfs_buf_rele().
1668 */
1669 atomic_set(&bp->b_lru_ref, 0);
1670 bp->b_state |= XFS_BSTATE_DISPOSE;
1671 list_lru_isolate_move(lru, item, dispose);
1672 spin_unlock(&bp->b_lock);
1673 return LRU_REMOVED;
1674}
1675
1676void
1677xfs_wait_buftarg(
1678 struct xfs_buftarg *btp)
1679{
1680 LIST_HEAD(dispose);
1681 int loop = 0;
1682 bool write_fail = false;
1683
1684 /*
1685 * First wait on the buftarg I/O count for all in-flight buffers to be
1686 * released. This is critical as new buffers do not make the LRU until
1687 * they are released.
1688 *
1689 * Next, flush the buffer workqueue to ensure all completion processing
1690 * has finished. Just waiting on buffer locks is not sufficient for
1691 * async IO as the reference count held over IO is not released until
1692 * after the buffer lock is dropped. Hence we need to ensure here that
1693 * all reference counts have been dropped before we start walking the
1694 * LRU list.
1695 */
1696 while (percpu_counter_sum(&btp->bt_io_count))
1697 delay(100);
1698 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1699
1700 /* loop until there is nothing left on the lru list. */
1701 while (list_lru_count(&btp->bt_lru)) {
1702 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1703 &dispose, LONG_MAX);
1704
1705 while (!list_empty(&dispose)) {
1706 struct xfs_buf *bp;
1707 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1708 list_del_init(&bp->b_lru);
1709 if (bp->b_flags & XBF_WRITE_FAIL) {
1710 write_fail = true;
1711 xfs_buf_alert_ratelimited(bp,
1712 "XFS: Corruption Alert",
1713"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1714 (long long)bp->b_bn);
1715 }
1716 xfs_buf_rele(bp);
1717 }
1718 if (loop++ != 0)
1719 delay(100);
1720 }
1721
1722 /*
1723 * If one or more failed buffers were freed, that means dirty metadata
1724 * was thrown away. This should only ever happen after I/O completion
1725 * handling has elevated I/O error(s) to permanent failures and shuts
1726 * down the fs.
1727 */
1728 if (write_fail) {
1729 ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1730 xfs_alert(btp->bt_mount,
1731 "Please run xfs_repair to determine the extent of the problem.");
1732 }
1733}
1734
1735static enum lru_status
1736xfs_buftarg_isolate(
1737 struct list_head *item,
1738 struct list_lru_one *lru,
1739 spinlock_t *lru_lock,
1740 void *arg)
1741{
1742 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1743 struct list_head *dispose = arg;
1744
1745 /*
1746 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1747 * If we fail to get the lock, just skip it.
1748 */
1749 if (!spin_trylock(&bp->b_lock))
1750 return LRU_SKIP;
1751 /*
1752 * Decrement the b_lru_ref count unless the value is already
1753 * zero. If the value is already zero, we need to reclaim the
1754 * buffer, otherwise it gets another trip through the LRU.
1755 */
1756 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1757 spin_unlock(&bp->b_lock);
1758 return LRU_ROTATE;
1759 }
1760
1761 bp->b_state |= XFS_BSTATE_DISPOSE;
1762 list_lru_isolate_move(lru, item, dispose);
1763 spin_unlock(&bp->b_lock);
1764 return LRU_REMOVED;
1765}
1766
1767static unsigned long
1768xfs_buftarg_shrink_scan(
1769 struct shrinker *shrink,
1770 struct shrink_control *sc)
1771{
1772 struct xfs_buftarg *btp = container_of(shrink,
1773 struct xfs_buftarg, bt_shrinker);
1774 LIST_HEAD(dispose);
1775 unsigned long freed;
1776
1777 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1778 xfs_buftarg_isolate, &dispose);
1779
1780 while (!list_empty(&dispose)) {
1781 struct xfs_buf *bp;
1782 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1783 list_del_init(&bp->b_lru);
1784 xfs_buf_rele(bp);
1785 }
1786
1787 return freed;
1788}
1789
1790static unsigned long
1791xfs_buftarg_shrink_count(
1792 struct shrinker *shrink,
1793 struct shrink_control *sc)
1794{
1795 struct xfs_buftarg *btp = container_of(shrink,
1796 struct xfs_buftarg, bt_shrinker);
1797 return list_lru_shrink_count(&btp->bt_lru, sc);
1798}
1799
1800void
1801xfs_free_buftarg(
1802 struct xfs_buftarg *btp)
1803{
1804 unregister_shrinker(&btp->bt_shrinker);
1805 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1806 percpu_counter_destroy(&btp->bt_io_count);
1807 list_lru_destroy(&btp->bt_lru);
1808
1809 xfs_blkdev_issue_flush(btp);
1810
1811 kmem_free(btp);
1812}
1813
1814int
1815xfs_setsize_buftarg(
1816 xfs_buftarg_t *btp,
1817 unsigned int sectorsize)
1818{
1819 /* Set up metadata sector size info */
1820 btp->bt_meta_sectorsize = sectorsize;
1821 btp->bt_meta_sectormask = sectorsize - 1;
1822
1823 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1824 xfs_warn(btp->bt_mount,
1825 "Cannot set_blocksize to %u on device %pg",
1826 sectorsize, btp->bt_bdev);
1827 return -EINVAL;
1828 }
1829
1830 /* Set up device logical sector size mask */
1831 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1832 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1833
1834 return 0;
1835}
1836
1837/*
1838 * When allocating the initial buffer target we have not yet
1839 * read in the superblock, so don't know what sized sectors
1840 * are being used at this early stage. Play safe.
1841 */
1842STATIC int
1843xfs_setsize_buftarg_early(
1844 xfs_buftarg_t *btp,
1845 struct block_device *bdev)
1846{
1847 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1848}
1849
1850xfs_buftarg_t *
1851xfs_alloc_buftarg(
1852 struct xfs_mount *mp,
1853 struct block_device *bdev,
1854 struct dax_device *dax_dev)
1855{
1856 xfs_buftarg_t *btp;
1857
1858 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1859
1860 btp->bt_mount = mp;
1861 btp->bt_dev = bdev->bd_dev;
1862 btp->bt_bdev = bdev;
1863 btp->bt_daxdev = dax_dev;
1864
1865 /*
1866 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1867 * per 30 seconds so as to not spam logs too much on repeated errors.
1868 */
1869 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1870 DEFAULT_RATELIMIT_BURST);
1871
1872 if (xfs_setsize_buftarg_early(btp, bdev))
1873 goto error_free;
1874
1875 if (list_lru_init(&btp->bt_lru))
1876 goto error_free;
1877
1878 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1879 goto error_lru;
1880
1881 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1882 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1883 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1884 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1885 if (register_shrinker(&btp->bt_shrinker))
1886 goto error_pcpu;
1887 return btp;
1888
1889error_pcpu:
1890 percpu_counter_destroy(&btp->bt_io_count);
1891error_lru:
1892 list_lru_destroy(&btp->bt_lru);
1893error_free:
1894 kmem_free(btp);
1895 return NULL;
1896}
1897
1898/*
1899 * Cancel a delayed write list.
1900 *
1901 * Remove each buffer from the list, clear the delwri queue flag and drop the
1902 * associated buffer reference.
1903 */
1904void
1905xfs_buf_delwri_cancel(
1906 struct list_head *list)
1907{
1908 struct xfs_buf *bp;
1909
1910 while (!list_empty(list)) {
1911 bp = list_first_entry(list, struct xfs_buf, b_list);
1912
1913 xfs_buf_lock(bp);
1914 bp->b_flags &= ~_XBF_DELWRI_Q;
1915 list_del_init(&bp->b_list);
1916 xfs_buf_relse(bp);
1917 }
1918}
1919
1920/*
1921 * Add a buffer to the delayed write list.
1922 *
1923 * This queues a buffer for writeout if it hasn't already been. Note that
1924 * neither this routine nor the buffer list submission functions perform
1925 * any internal synchronization. It is expected that the lists are thread-local
1926 * to the callers.
1927 *
1928 * Returns true if we queued up the buffer, or false if it already had
1929 * been on the buffer list.
1930 */
1931bool
1932xfs_buf_delwri_queue(
1933 struct xfs_buf *bp,
1934 struct list_head *list)
1935{
1936 ASSERT(xfs_buf_islocked(bp));
1937 ASSERT(!(bp->b_flags & XBF_READ));
1938
1939 /*
1940 * If the buffer is already marked delwri it already is queued up
1941 * by someone else for imediate writeout. Just ignore it in that
1942 * case.
1943 */
1944 if (bp->b_flags & _XBF_DELWRI_Q) {
1945 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1946 return false;
1947 }
1948
1949 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1950
1951 /*
1952 * If a buffer gets written out synchronously or marked stale while it
1953 * is on a delwri list we lazily remove it. To do this, the other party
1954 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1955 * It remains referenced and on the list. In a rare corner case it
1956 * might get readded to a delwri list after the synchronous writeout, in
1957 * which case we need just need to re-add the flag here.
1958 */
1959 bp->b_flags |= _XBF_DELWRI_Q;
1960 if (list_empty(&bp->b_list)) {
1961 atomic_inc(&bp->b_hold);
1962 list_add_tail(&bp->b_list, list);
1963 }
1964
1965 return true;
1966}
1967
1968/*
1969 * Compare function is more complex than it needs to be because
1970 * the return value is only 32 bits and we are doing comparisons
1971 * on 64 bit values
1972 */
1973static int
1974xfs_buf_cmp(
1975 void *priv,
1976 struct list_head *a,
1977 struct list_head *b)
1978{
1979 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1980 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1981 xfs_daddr_t diff;
1982
1983 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1984 if (diff < 0)
1985 return -1;
1986 if (diff > 0)
1987 return 1;
1988 return 0;
1989}
1990
1991/*
1992 * Submit buffers for write. If wait_list is specified, the buffers are
1993 * submitted using sync I/O and placed on the wait list such that the caller can
1994 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1995 * at I/O completion time. In either case, buffers remain locked until I/O
1996 * completes and the buffer is released from the queue.
1997 */
1998static int
1999xfs_buf_delwri_submit_buffers(
2000 struct list_head *buffer_list,
2001 struct list_head *wait_list)
2002{
2003 struct xfs_buf *bp, *n;
2004 int pinned = 0;
2005 struct blk_plug plug;
2006
2007 list_sort(NULL, buffer_list, xfs_buf_cmp);
2008
2009 blk_start_plug(&plug);
2010 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2011 if (!wait_list) {
2012 if (xfs_buf_ispinned(bp)) {
2013 pinned++;
2014 continue;
2015 }
2016 if (!xfs_buf_trylock(bp))
2017 continue;
2018 } else {
2019 xfs_buf_lock(bp);
2020 }
2021
2022 /*
2023 * Someone else might have written the buffer synchronously or
2024 * marked it stale in the meantime. In that case only the
2025 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2026 * reference and remove it from the list here.
2027 */
2028 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2029 list_del_init(&bp->b_list);
2030 xfs_buf_relse(bp);
2031 continue;
2032 }
2033
2034 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2035
2036 /*
2037 * If we have a wait list, each buffer (and associated delwri
2038 * queue reference) transfers to it and is submitted
2039 * synchronously. Otherwise, drop the buffer from the delwri
2040 * queue and submit async.
2041 */
2042 bp->b_flags &= ~_XBF_DELWRI_Q;
2043 bp->b_flags |= XBF_WRITE;
2044 if (wait_list) {
2045 bp->b_flags &= ~XBF_ASYNC;
2046 list_move_tail(&bp->b_list, wait_list);
2047 } else {
2048 bp->b_flags |= XBF_ASYNC;
2049 list_del_init(&bp->b_list);
2050 }
2051 __xfs_buf_submit(bp, false);
2052 }
2053 blk_finish_plug(&plug);
2054
2055 return pinned;
2056}
2057
2058/*
2059 * Write out a buffer list asynchronously.
2060 *
2061 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2062 * out and not wait for I/O completion on any of the buffers. This interface
2063 * is only safely useable for callers that can track I/O completion by higher
2064 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2065 * function.
2066 *
2067 * Note: this function will skip buffers it would block on, and in doing so
2068 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2069 * it is up to the caller to ensure that the buffer list is fully submitted or
2070 * cancelled appropriately when they are finished with the list. Failure to
2071 * cancel or resubmit the list until it is empty will result in leaked buffers
2072 * at unmount time.
2073 */
2074int
2075xfs_buf_delwri_submit_nowait(
2076 struct list_head *buffer_list)
2077{
2078 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2079}
2080
2081/*
2082 * Write out a buffer list synchronously.
2083 *
2084 * This will take the @buffer_list, write all buffers out and wait for I/O
2085 * completion on all of the buffers. @buffer_list is consumed by the function,
2086 * so callers must have some other way of tracking buffers if they require such
2087 * functionality.
2088 */
2089int
2090xfs_buf_delwri_submit(
2091 struct list_head *buffer_list)
2092{
2093 LIST_HEAD (wait_list);
2094 int error = 0, error2;
2095 struct xfs_buf *bp;
2096
2097 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2098
2099 /* Wait for IO to complete. */
2100 while (!list_empty(&wait_list)) {
2101 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2102
2103 list_del_init(&bp->b_list);
2104
2105 /*
2106 * Wait on the locked buffer, check for errors and unlock and
2107 * release the delwri queue reference.
2108 */
2109 error2 = xfs_buf_iowait(bp);
2110 xfs_buf_relse(bp);
2111 if (!error)
2112 error = error2;
2113 }
2114
2115 return error;
2116}
2117
2118/*
2119 * Push a single buffer on a delwri queue.
2120 *
2121 * The purpose of this function is to submit a single buffer of a delwri queue
2122 * and return with the buffer still on the original queue. The waiting delwri
2123 * buffer submission infrastructure guarantees transfer of the delwri queue
2124 * buffer reference to a temporary wait list. We reuse this infrastructure to
2125 * transfer the buffer back to the original queue.
2126 *
2127 * Note the buffer transitions from the queued state, to the submitted and wait
2128 * listed state and back to the queued state during this call. The buffer
2129 * locking and queue management logic between _delwri_pushbuf() and
2130 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2131 * before returning.
2132 */
2133int
2134xfs_buf_delwri_pushbuf(
2135 struct xfs_buf *bp,
2136 struct list_head *buffer_list)
2137{
2138 LIST_HEAD (submit_list);
2139 int error;
2140
2141 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2142
2143 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2144
2145 /*
2146 * Isolate the buffer to a new local list so we can submit it for I/O
2147 * independently from the rest of the original list.
2148 */
2149 xfs_buf_lock(bp);
2150 list_move(&bp->b_list, &submit_list);
2151 xfs_buf_unlock(bp);
2152
2153 /*
2154 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2155 * the buffer on the wait list with the original reference. Rather than
2156 * bounce the buffer from a local wait list back to the original list
2157 * after I/O completion, reuse the original list as the wait list.
2158 */
2159 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2160
2161 /*
2162 * The buffer is now locked, under I/O and wait listed on the original
2163 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2164 * return with the buffer unlocked and on the original queue.
2165 */
2166 error = xfs_buf_iowait(bp);
2167 bp->b_flags |= _XBF_DELWRI_Q;
2168 xfs_buf_unlock(bp);
2169
2170 return error;
2171}
2172
2173int __init
2174xfs_buf_init(void)
2175{
2176 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2177 SLAB_HWCACHE_ALIGN |
2178 SLAB_RECLAIM_ACCOUNT |
2179 SLAB_MEM_SPREAD,
2180 NULL);
2181 if (!xfs_buf_zone)
2182 goto out;
2183
2184 return 0;
2185
2186 out:
2187 return -ENOMEM;
2188}
2189
2190void
2191xfs_buf_terminate(void)
2192{
2193 kmem_cache_destroy(xfs_buf_zone);
2194}
2195
2196void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2197{
2198 /*
2199 * Set the lru reference count to 0 based on the error injection tag.
2200 * This allows userspace to disrupt buffer caching for debug/testing
2201 * purposes.
2202 */
2203 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2204 lru_ref = 0;
2205
2206 atomic_set(&bp->b_lru_ref, lru_ref);
2207}
2208
2209/*
2210 * Verify an on-disk magic value against the magic value specified in the
2211 * verifier structure. The verifier magic is in disk byte order so the caller is
2212 * expected to pass the value directly from disk.
2213 */
2214bool
2215xfs_verify_magic(
2216 struct xfs_buf *bp,
2217 __be32 dmagic)
2218{
2219 struct xfs_mount *mp = bp->b_mount;
2220 int idx;
2221
2222 idx = xfs_sb_version_hascrc(&mp->m_sb);
2223 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2224 return false;
2225 return dmagic == bp->b_ops->magic[idx];
2226}
2227/*
2228 * Verify an on-disk magic value against the magic value specified in the
2229 * verifier structure. The verifier magic is in disk byte order so the caller is
2230 * expected to pass the value directly from disk.
2231 */
2232bool
2233xfs_verify_magic16(
2234 struct xfs_buf *bp,
2235 __be16 dmagic)
2236{
2237 struct xfs_mount *mp = bp->b_mount;
2238 int idx;
2239
2240 idx = xfs_sb_version_hascrc(&mp->m_sb);
2241 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2242 return false;
2243 return dmagic == bp->b_ops->magic16[idx];
2244}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_errortag.h"
18#include "xfs_error.h"
19
20static kmem_zone_t *xfs_buf_zone;
21
22#define xb_to_gfp(flags) \
23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
51
52static inline int
53xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
55{
56 /*
57 * Return true if the buffer is vmapped.
58 *
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
62 */
63 return bp->b_addr && bp->b_page_count > 1;
64}
65
66static inline int
67xfs_buf_vmap_len(
68 struct xfs_buf *bp)
69{
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71}
72
73/*
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
81 *
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
85 */
86static inline void
87xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
89{
90 if (bp->b_flags & XBF_NO_IOACCT)
91 return;
92
93 ASSERT(bp->b_flags & XBF_ASYNC);
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
98 }
99 spin_unlock(&bp->b_lock);
100}
101
102/*
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
105 */
106static inline void
107__xfs_buf_ioacct_dec(
108 struct xfs_buf *bp)
109{
110 lockdep_assert_held(&bp->b_lock);
111
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
115 }
116}
117
118static inline void
119xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
125}
126
127/*
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
132 *
133 * This prevents build-up of stale buffers on the LRU.
134 */
135void
136xfs_buf_stale(
137 struct xfs_buf *bp)
138{
139 ASSERT(xfs_buf_islocked(bp));
140
141 bp->b_flags |= XBF_STALE;
142
143 /*
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
147 */
148 bp->b_flags &= ~_XBF_DELWRI_Q;
149
150 /*
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
155 */
156 spin_lock(&bp->b_lock);
157 __xfs_buf_ioacct_dec(bp);
158
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
163
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165 spin_unlock(&bp->b_lock);
166}
167
168static int
169xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
172{
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
175
176 if (map_count == 1) {
177 bp->b_maps = &bp->__b_map;
178 return 0;
179 }
180
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
184 return -ENOMEM;
185 return 0;
186}
187
188/*
189 * Frees b_pages if it was allocated.
190 */
191static void
192xfs_buf_free_maps(
193 struct xfs_buf *bp)
194{
195 if (bp->b_maps != &bp->__b_map) {
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
198 }
199}
200
201static struct xfs_buf *
202_xfs_buf_alloc(
203 struct xfs_buftarg *target,
204 struct xfs_buf_map *map,
205 int nmaps,
206 xfs_buf_flags_t flags)
207{
208 struct xfs_buf *bp;
209 int error;
210 int i;
211
212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
213 if (unlikely(!bp))
214 return NULL;
215
216 /*
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
219 */
220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221
222 atomic_set(&bp->b_hold, 1);
223 atomic_set(&bp->b_lru_ref, 1);
224 init_completion(&bp->b_iowait);
225 INIT_LIST_HEAD(&bp->b_lru);
226 INIT_LIST_HEAD(&bp->b_list);
227 INIT_LIST_HEAD(&bp->b_li_list);
228 sema_init(&bp->b_sema, 0); /* held, no waiters */
229 spin_lock_init(&bp->b_lock);
230 bp->b_target = target;
231 bp->b_mount = target->bt_mount;
232 bp->b_flags = flags;
233
234 /*
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
237 * most cases but may be reset (e.g. XFS recovery).
238 */
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252
253 atomic_set(&bp->b_pin_count, 0);
254 init_waitqueue_head(&bp->b_waiters);
255
256 XFS_STATS_INC(bp->b_mount, xb_create);
257 trace_xfs_buf_init(bp, _RET_IP_);
258
259 return bp;
260}
261
262/*
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
265 */
266STATIC int
267_xfs_buf_get_pages(
268 xfs_buf_t *bp,
269 int page_count)
270{
271 /* Make sure that we have a page list */
272 if (bp->b_pages == NULL) {
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
276 } else {
277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 page_count, KM_NOFS);
279 if (bp->b_pages == NULL)
280 return -ENOMEM;
281 }
282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 }
284 return 0;
285}
286
287/*
288 * Frees b_pages if it was allocated.
289 */
290STATIC void
291_xfs_buf_free_pages(
292 xfs_buf_t *bp)
293{
294 if (bp->b_pages != bp->b_page_array) {
295 kmem_free(bp->b_pages);
296 bp->b_pages = NULL;
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
304 * The buffer must not be on any hash - use xfs_buf_rele instead for
305 * hashed and refcounted buffers
306 */
307void
308xfs_buf_free(
309 xfs_buf_t *bp)
310{
311 trace_xfs_buf_free(bp, _RET_IP_);
312
313 ASSERT(list_empty(&bp->b_lru));
314
315 if (bp->b_flags & _XBF_PAGES) {
316 uint i;
317
318 if (xfs_buf_is_vmapped(bp))
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
321
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
325 __free_page(page);
326 }
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
329 _xfs_buf_free_pages(bp);
330 xfs_buf_free_maps(bp);
331 kmem_zone_free(xfs_buf_zone, bp);
332}
333
334/*
335 * Allocates all the pages for buffer in question and builds it's page list.
336 */
337STATIC int
338xfs_buf_allocate_memory(
339 xfs_buf_t *bp,
340 uint flags)
341{
342 size_t size;
343 size_t nbytes, offset;
344 gfp_t gfp_mask = xb_to_gfp(flags);
345 unsigned short page_count, i;
346 xfs_off_t start, end;
347 int error;
348 xfs_km_flags_t kmflag_mask = 0;
349
350 /*
351 * assure zeroed buffer for non-read cases.
352 */
353 if (!(flags & XBF_READ)) {
354 kmflag_mask |= KM_ZERO;
355 gfp_mask |= __GFP_ZERO;
356 }
357
358 /*
359 * for buffers that are contained within a single page, just allocate
360 * the memory from the heap - there's no need for the complexity of
361 * page arrays to keep allocation down to order 0.
362 */
363 size = BBTOB(bp->b_length);
364 if (size < PAGE_SIZE) {
365 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
366 bp->b_addr = kmem_alloc_io(size, align_mask,
367 KM_NOFS | kmflag_mask);
368 if (!bp->b_addr) {
369 /* low memory - use alloc_page loop instead */
370 goto use_alloc_page;
371 }
372
373 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
374 ((unsigned long)bp->b_addr & PAGE_MASK)) {
375 /* b_addr spans two pages - use alloc_page instead */
376 kmem_free(bp->b_addr);
377 bp->b_addr = NULL;
378 goto use_alloc_page;
379 }
380 bp->b_offset = offset_in_page(bp->b_addr);
381 bp->b_pages = bp->b_page_array;
382 bp->b_pages[0] = kmem_to_page(bp->b_addr);
383 bp->b_page_count = 1;
384 bp->b_flags |= _XBF_KMEM;
385 return 0;
386 }
387
388use_alloc_page:
389 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
390 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
391 >> PAGE_SHIFT;
392 page_count = end - start;
393 error = _xfs_buf_get_pages(bp, page_count);
394 if (unlikely(error))
395 return error;
396
397 offset = bp->b_offset;
398 bp->b_flags |= _XBF_PAGES;
399
400 for (i = 0; i < bp->b_page_count; i++) {
401 struct page *page;
402 uint retries = 0;
403retry:
404 page = alloc_page(gfp_mask);
405 if (unlikely(page == NULL)) {
406 if (flags & XBF_READ_AHEAD) {
407 bp->b_page_count = i;
408 error = -ENOMEM;
409 goto out_free_pages;
410 }
411
412 /*
413 * This could deadlock.
414 *
415 * But until all the XFS lowlevel code is revamped to
416 * handle buffer allocation failures we can't do much.
417 */
418 if (!(++retries % 100))
419 xfs_err(NULL,
420 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
421 current->comm, current->pid,
422 __func__, gfp_mask);
423
424 XFS_STATS_INC(bp->b_mount, xb_page_retries);
425 congestion_wait(BLK_RW_ASYNC, HZ/50);
426 goto retry;
427 }
428
429 XFS_STATS_INC(bp->b_mount, xb_page_found);
430
431 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
432 size -= nbytes;
433 bp->b_pages[i] = page;
434 offset = 0;
435 }
436 return 0;
437
438out_free_pages:
439 for (i = 0; i < bp->b_page_count; i++)
440 __free_page(bp->b_pages[i]);
441 bp->b_flags &= ~_XBF_PAGES;
442 return error;
443}
444
445/*
446 * Map buffer into kernel address-space if necessary.
447 */
448STATIC int
449_xfs_buf_map_pages(
450 xfs_buf_t *bp,
451 uint flags)
452{
453 ASSERT(bp->b_flags & _XBF_PAGES);
454 if (bp->b_page_count == 1) {
455 /* A single page buffer is always mappable */
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 } else if (flags & XBF_UNMAPPED) {
458 bp->b_addr = NULL;
459 } else {
460 int retried = 0;
461 unsigned nofs_flag;
462
463 /*
464 * vm_map_ram() will allocate auxillary structures (e.g.
465 * pagetables) with GFP_KERNEL, yet we are likely to be under
466 * GFP_NOFS context here. Hence we need to tell memory reclaim
467 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
468 * memory reclaim re-entering the filesystem here and
469 * potentially deadlocking.
470 */
471 nofs_flag = memalloc_nofs_save();
472 do {
473 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
474 -1, PAGE_KERNEL);
475 if (bp->b_addr)
476 break;
477 vm_unmap_aliases();
478 } while (retried++ <= 1);
479 memalloc_nofs_restore(nofs_flag);
480
481 if (!bp->b_addr)
482 return -ENOMEM;
483 bp->b_addr += bp->b_offset;
484 }
485
486 return 0;
487}
488
489/*
490 * Finding and Reading Buffers
491 */
492static int
493_xfs_buf_obj_cmp(
494 struct rhashtable_compare_arg *arg,
495 const void *obj)
496{
497 const struct xfs_buf_map *map = arg->key;
498 const struct xfs_buf *bp = obj;
499
500 /*
501 * The key hashing in the lookup path depends on the key being the
502 * first element of the compare_arg, make sure to assert this.
503 */
504 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
505
506 if (bp->b_bn != map->bm_bn)
507 return 1;
508
509 if (unlikely(bp->b_length != map->bm_len)) {
510 /*
511 * found a block number match. If the range doesn't
512 * match, the only way this is allowed is if the buffer
513 * in the cache is stale and the transaction that made
514 * it stale has not yet committed. i.e. we are
515 * reallocating a busy extent. Skip this buffer and
516 * continue searching for an exact match.
517 */
518 ASSERT(bp->b_flags & XBF_STALE);
519 return 1;
520 }
521 return 0;
522}
523
524static const struct rhashtable_params xfs_buf_hash_params = {
525 .min_size = 32, /* empty AGs have minimal footprint */
526 .nelem_hint = 16,
527 .key_len = sizeof(xfs_daddr_t),
528 .key_offset = offsetof(struct xfs_buf, b_bn),
529 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
530 .automatic_shrinking = true,
531 .obj_cmpfn = _xfs_buf_obj_cmp,
532};
533
534int
535xfs_buf_hash_init(
536 struct xfs_perag *pag)
537{
538 spin_lock_init(&pag->pag_buf_lock);
539 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
540}
541
542void
543xfs_buf_hash_destroy(
544 struct xfs_perag *pag)
545{
546 rhashtable_destroy(&pag->pag_buf_hash);
547}
548
549/*
550 * Look up a buffer in the buffer cache and return it referenced and locked
551 * in @found_bp.
552 *
553 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
554 * cache.
555 *
556 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
557 * -EAGAIN if we fail to lock it.
558 *
559 * Return values are:
560 * -EFSCORRUPTED if have been supplied with an invalid address
561 * -EAGAIN on trylock failure
562 * -ENOENT if we fail to find a match and @new_bp was NULL
563 * 0, with @found_bp:
564 * - @new_bp if we inserted it into the cache
565 * - the buffer we found and locked.
566 */
567static int
568xfs_buf_find(
569 struct xfs_buftarg *btp,
570 struct xfs_buf_map *map,
571 int nmaps,
572 xfs_buf_flags_t flags,
573 struct xfs_buf *new_bp,
574 struct xfs_buf **found_bp)
575{
576 struct xfs_perag *pag;
577 xfs_buf_t *bp;
578 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
579 xfs_daddr_t eofs;
580 int i;
581
582 *found_bp = NULL;
583
584 for (i = 0; i < nmaps; i++)
585 cmap.bm_len += map[i].bm_len;
586
587 /* Check for IOs smaller than the sector size / not sector aligned */
588 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
589 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
590
591 /*
592 * Corrupted block numbers can get through to here, unfortunately, so we
593 * have to check that the buffer falls within the filesystem bounds.
594 */
595 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
596 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
597 xfs_alert(btp->bt_mount,
598 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
599 __func__, cmap.bm_bn, eofs);
600 WARN_ON(1);
601 return -EFSCORRUPTED;
602 }
603
604 pag = xfs_perag_get(btp->bt_mount,
605 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
606
607 spin_lock(&pag->pag_buf_lock);
608 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
609 xfs_buf_hash_params);
610 if (bp) {
611 atomic_inc(&bp->b_hold);
612 goto found;
613 }
614
615 /* No match found */
616 if (!new_bp) {
617 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
618 spin_unlock(&pag->pag_buf_lock);
619 xfs_perag_put(pag);
620 return -ENOENT;
621 }
622
623 /* the buffer keeps the perag reference until it is freed */
624 new_bp->b_pag = pag;
625 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
626 xfs_buf_hash_params);
627 spin_unlock(&pag->pag_buf_lock);
628 *found_bp = new_bp;
629 return 0;
630
631found:
632 spin_unlock(&pag->pag_buf_lock);
633 xfs_perag_put(pag);
634
635 if (!xfs_buf_trylock(bp)) {
636 if (flags & XBF_TRYLOCK) {
637 xfs_buf_rele(bp);
638 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
639 return -EAGAIN;
640 }
641 xfs_buf_lock(bp);
642 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
643 }
644
645 /*
646 * if the buffer is stale, clear all the external state associated with
647 * it. We need to keep flags such as how we allocated the buffer memory
648 * intact here.
649 */
650 if (bp->b_flags & XBF_STALE) {
651 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
652 ASSERT(bp->b_iodone == NULL);
653 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
654 bp->b_ops = NULL;
655 }
656
657 trace_xfs_buf_find(bp, flags, _RET_IP_);
658 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
659 *found_bp = bp;
660 return 0;
661}
662
663struct xfs_buf *
664xfs_buf_incore(
665 struct xfs_buftarg *target,
666 xfs_daddr_t blkno,
667 size_t numblks,
668 xfs_buf_flags_t flags)
669{
670 struct xfs_buf *bp;
671 int error;
672 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
673
674 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
675 if (error)
676 return NULL;
677 return bp;
678}
679
680/*
681 * Assembles a buffer covering the specified range. The code is optimised for
682 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
683 * more hits than misses.
684 */
685struct xfs_buf *
686xfs_buf_get_map(
687 struct xfs_buftarg *target,
688 struct xfs_buf_map *map,
689 int nmaps,
690 xfs_buf_flags_t flags)
691{
692 struct xfs_buf *bp;
693 struct xfs_buf *new_bp;
694 int error = 0;
695
696 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
697
698 switch (error) {
699 case 0:
700 /* cache hit */
701 goto found;
702 case -EAGAIN:
703 /* cache hit, trylock failure, caller handles failure */
704 ASSERT(flags & XBF_TRYLOCK);
705 return NULL;
706 case -ENOENT:
707 /* cache miss, go for insert */
708 break;
709 case -EFSCORRUPTED:
710 default:
711 /*
712 * None of the higher layers understand failure types
713 * yet, so return NULL to signal a fatal lookup error.
714 */
715 return NULL;
716 }
717
718 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
719 if (unlikely(!new_bp))
720 return NULL;
721
722 error = xfs_buf_allocate_memory(new_bp, flags);
723 if (error) {
724 xfs_buf_free(new_bp);
725 return NULL;
726 }
727
728 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
729 if (error) {
730 xfs_buf_free(new_bp);
731 return NULL;
732 }
733
734 if (bp != new_bp)
735 xfs_buf_free(new_bp);
736
737found:
738 if (!bp->b_addr) {
739 error = _xfs_buf_map_pages(bp, flags);
740 if (unlikely(error)) {
741 xfs_warn(target->bt_mount,
742 "%s: failed to map pagesn", __func__);
743 xfs_buf_relse(bp);
744 return NULL;
745 }
746 }
747
748 /*
749 * Clear b_error if this is a lookup from a caller that doesn't expect
750 * valid data to be found in the buffer.
751 */
752 if (!(flags & XBF_READ))
753 xfs_buf_ioerror(bp, 0);
754
755 XFS_STATS_INC(target->bt_mount, xb_get);
756 trace_xfs_buf_get(bp, flags, _RET_IP_);
757 return bp;
758}
759
760STATIC int
761_xfs_buf_read(
762 xfs_buf_t *bp,
763 xfs_buf_flags_t flags)
764{
765 ASSERT(!(flags & XBF_WRITE));
766 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
767
768 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
769 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
770
771 return xfs_buf_submit(bp);
772}
773
774/*
775 * Reverify a buffer found in cache without an attached ->b_ops.
776 *
777 * If the caller passed an ops structure and the buffer doesn't have ops
778 * assigned, set the ops and use it to verify the contents. If verification
779 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
780 * already in XBF_DONE state on entry.
781 *
782 * Under normal operations, every in-core buffer is verified on read I/O
783 * completion. There are two scenarios that can lead to in-core buffers without
784 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
785 * filesystem, though these buffers are purged at the end of recovery. The
786 * other is online repair, which intentionally reads with a NULL buffer ops to
787 * run several verifiers across an in-core buffer in order to establish buffer
788 * type. If repair can't establish that, the buffer will be left in memory
789 * with NULL buffer ops.
790 */
791int
792xfs_buf_reverify(
793 struct xfs_buf *bp,
794 const struct xfs_buf_ops *ops)
795{
796 ASSERT(bp->b_flags & XBF_DONE);
797 ASSERT(bp->b_error == 0);
798
799 if (!ops || bp->b_ops)
800 return 0;
801
802 bp->b_ops = ops;
803 bp->b_ops->verify_read(bp);
804 if (bp->b_error)
805 bp->b_flags &= ~XBF_DONE;
806 return bp->b_error;
807}
808
809xfs_buf_t *
810xfs_buf_read_map(
811 struct xfs_buftarg *target,
812 struct xfs_buf_map *map,
813 int nmaps,
814 xfs_buf_flags_t flags,
815 const struct xfs_buf_ops *ops)
816{
817 struct xfs_buf *bp;
818
819 flags |= XBF_READ;
820
821 bp = xfs_buf_get_map(target, map, nmaps, flags);
822 if (!bp)
823 return NULL;
824
825 trace_xfs_buf_read(bp, flags, _RET_IP_);
826
827 if (!(bp->b_flags & XBF_DONE)) {
828 XFS_STATS_INC(target->bt_mount, xb_get_read);
829 bp->b_ops = ops;
830 _xfs_buf_read(bp, flags);
831 return bp;
832 }
833
834 xfs_buf_reverify(bp, ops);
835
836 if (flags & XBF_ASYNC) {
837 /*
838 * Read ahead call which is already satisfied,
839 * drop the buffer
840 */
841 xfs_buf_relse(bp);
842 return NULL;
843 }
844
845 /* We do not want read in the flags */
846 bp->b_flags &= ~XBF_READ;
847 ASSERT(bp->b_ops != NULL || ops == NULL);
848 return bp;
849}
850
851/*
852 * If we are not low on memory then do the readahead in a deadlock
853 * safe manner.
854 */
855void
856xfs_buf_readahead_map(
857 struct xfs_buftarg *target,
858 struct xfs_buf_map *map,
859 int nmaps,
860 const struct xfs_buf_ops *ops)
861{
862 if (bdi_read_congested(target->bt_bdev->bd_bdi))
863 return;
864
865 xfs_buf_read_map(target, map, nmaps,
866 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
867}
868
869/*
870 * Read an uncached buffer from disk. Allocates and returns a locked
871 * buffer containing the disk contents or nothing.
872 */
873int
874xfs_buf_read_uncached(
875 struct xfs_buftarg *target,
876 xfs_daddr_t daddr,
877 size_t numblks,
878 int flags,
879 struct xfs_buf **bpp,
880 const struct xfs_buf_ops *ops)
881{
882 struct xfs_buf *bp;
883
884 *bpp = NULL;
885
886 bp = xfs_buf_get_uncached(target, numblks, flags);
887 if (!bp)
888 return -ENOMEM;
889
890 /* set up the buffer for a read IO */
891 ASSERT(bp->b_map_count == 1);
892 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
893 bp->b_maps[0].bm_bn = daddr;
894 bp->b_flags |= XBF_READ;
895 bp->b_ops = ops;
896
897 xfs_buf_submit(bp);
898 if (bp->b_error) {
899 int error = bp->b_error;
900 xfs_buf_relse(bp);
901 return error;
902 }
903
904 *bpp = bp;
905 return 0;
906}
907
908xfs_buf_t *
909xfs_buf_get_uncached(
910 struct xfs_buftarg *target,
911 size_t numblks,
912 int flags)
913{
914 unsigned long page_count;
915 int error, i;
916 struct xfs_buf *bp;
917 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
918
919 /* flags might contain irrelevant bits, pass only what we care about */
920 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
921 if (unlikely(bp == NULL))
922 goto fail;
923
924 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
925 error = _xfs_buf_get_pages(bp, page_count);
926 if (error)
927 goto fail_free_buf;
928
929 for (i = 0; i < page_count; i++) {
930 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
931 if (!bp->b_pages[i])
932 goto fail_free_mem;
933 }
934 bp->b_flags |= _XBF_PAGES;
935
936 error = _xfs_buf_map_pages(bp, 0);
937 if (unlikely(error)) {
938 xfs_warn(target->bt_mount,
939 "%s: failed to map pages", __func__);
940 goto fail_free_mem;
941 }
942
943 trace_xfs_buf_get_uncached(bp, _RET_IP_);
944 return bp;
945
946 fail_free_mem:
947 while (--i >= 0)
948 __free_page(bp->b_pages[i]);
949 _xfs_buf_free_pages(bp);
950 fail_free_buf:
951 xfs_buf_free_maps(bp);
952 kmem_zone_free(xfs_buf_zone, bp);
953 fail:
954 return NULL;
955}
956
957/*
958 * Increment reference count on buffer, to hold the buffer concurrently
959 * with another thread which may release (free) the buffer asynchronously.
960 * Must hold the buffer already to call this function.
961 */
962void
963xfs_buf_hold(
964 xfs_buf_t *bp)
965{
966 trace_xfs_buf_hold(bp, _RET_IP_);
967 atomic_inc(&bp->b_hold);
968}
969
970/*
971 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
972 * placed on LRU or freed (depending on b_lru_ref).
973 */
974void
975xfs_buf_rele(
976 xfs_buf_t *bp)
977{
978 struct xfs_perag *pag = bp->b_pag;
979 bool release;
980 bool freebuf = false;
981
982 trace_xfs_buf_rele(bp, _RET_IP_);
983
984 if (!pag) {
985 ASSERT(list_empty(&bp->b_lru));
986 if (atomic_dec_and_test(&bp->b_hold)) {
987 xfs_buf_ioacct_dec(bp);
988 xfs_buf_free(bp);
989 }
990 return;
991 }
992
993 ASSERT(atomic_read(&bp->b_hold) > 0);
994
995 /*
996 * We grab the b_lock here first to serialise racing xfs_buf_rele()
997 * calls. The pag_buf_lock being taken on the last reference only
998 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
999 * to last reference we drop here is not serialised against the last
1000 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001 * first, the last "release" reference can win the race to the lock and
1002 * free the buffer before the second-to-last reference is processed,
1003 * leading to a use-after-free scenario.
1004 */
1005 spin_lock(&bp->b_lock);
1006 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1007 if (!release) {
1008 /*
1009 * Drop the in-flight state if the buffer is already on the LRU
1010 * and it holds the only reference. This is racy because we
1011 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012 * ensures the decrement occurs only once per-buf.
1013 */
1014 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1015 __xfs_buf_ioacct_dec(bp);
1016 goto out_unlock;
1017 }
1018
1019 /* the last reference has been dropped ... */
1020 __xfs_buf_ioacct_dec(bp);
1021 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1022 /*
1023 * If the buffer is added to the LRU take a new reference to the
1024 * buffer for the LRU and clear the (now stale) dispose list
1025 * state flag
1026 */
1027 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1028 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1029 atomic_inc(&bp->b_hold);
1030 }
1031 spin_unlock(&pag->pag_buf_lock);
1032 } else {
1033 /*
1034 * most of the time buffers will already be removed from the
1035 * LRU, so optimise that case by checking for the
1036 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037 * was on was the disposal list
1038 */
1039 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1040 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1041 } else {
1042 ASSERT(list_empty(&bp->b_lru));
1043 }
1044
1045 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1046 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1047 xfs_buf_hash_params);
1048 spin_unlock(&pag->pag_buf_lock);
1049 xfs_perag_put(pag);
1050 freebuf = true;
1051 }
1052
1053out_unlock:
1054 spin_unlock(&bp->b_lock);
1055
1056 if (freebuf)
1057 xfs_buf_free(bp);
1058}
1059
1060
1061/*
1062 * Lock a buffer object, if it is not already locked.
1063 *
1064 * If we come across a stale, pinned, locked buffer, we know that we are
1065 * being asked to lock a buffer that has been reallocated. Because it is
1066 * pinned, we know that the log has not been pushed to disk and hence it
1067 * will still be locked. Rather than continuing to have trylock attempts
1068 * fail until someone else pushes the log, push it ourselves before
1069 * returning. This means that the xfsaild will not get stuck trying
1070 * to push on stale inode buffers.
1071 */
1072int
1073xfs_buf_trylock(
1074 struct xfs_buf *bp)
1075{
1076 int locked;
1077
1078 locked = down_trylock(&bp->b_sema) == 0;
1079 if (locked)
1080 trace_xfs_buf_trylock(bp, _RET_IP_);
1081 else
1082 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1083 return locked;
1084}
1085
1086/*
1087 * Lock a buffer object.
1088 *
1089 * If we come across a stale, pinned, locked buffer, we know that we
1090 * are being asked to lock a buffer that has been reallocated. Because
1091 * it is pinned, we know that the log has not been pushed to disk and
1092 * hence it will still be locked. Rather than sleeping until someone
1093 * else pushes the log, push it ourselves before trying to get the lock.
1094 */
1095void
1096xfs_buf_lock(
1097 struct xfs_buf *bp)
1098{
1099 trace_xfs_buf_lock(bp, _RET_IP_);
1100
1101 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1102 xfs_log_force(bp->b_mount, 0);
1103 down(&bp->b_sema);
1104
1105 trace_xfs_buf_lock_done(bp, _RET_IP_);
1106}
1107
1108void
1109xfs_buf_unlock(
1110 struct xfs_buf *bp)
1111{
1112 ASSERT(xfs_buf_islocked(bp));
1113
1114 up(&bp->b_sema);
1115 trace_xfs_buf_unlock(bp, _RET_IP_);
1116}
1117
1118STATIC void
1119xfs_buf_wait_unpin(
1120 xfs_buf_t *bp)
1121{
1122 DECLARE_WAITQUEUE (wait, current);
1123
1124 if (atomic_read(&bp->b_pin_count) == 0)
1125 return;
1126
1127 add_wait_queue(&bp->b_waiters, &wait);
1128 for (;;) {
1129 set_current_state(TASK_UNINTERRUPTIBLE);
1130 if (atomic_read(&bp->b_pin_count) == 0)
1131 break;
1132 io_schedule();
1133 }
1134 remove_wait_queue(&bp->b_waiters, &wait);
1135 set_current_state(TASK_RUNNING);
1136}
1137
1138/*
1139 * Buffer Utility Routines
1140 */
1141
1142void
1143xfs_buf_ioend(
1144 struct xfs_buf *bp)
1145{
1146 bool read = bp->b_flags & XBF_READ;
1147
1148 trace_xfs_buf_iodone(bp, _RET_IP_);
1149
1150 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1151
1152 /*
1153 * Pull in IO completion errors now. We are guaranteed to be running
1154 * single threaded, so we don't need the lock to read b_io_error.
1155 */
1156 if (!bp->b_error && bp->b_io_error)
1157 xfs_buf_ioerror(bp, bp->b_io_error);
1158
1159 /* Only validate buffers that were read without errors */
1160 if (read && !bp->b_error && bp->b_ops) {
1161 ASSERT(!bp->b_iodone);
1162 bp->b_ops->verify_read(bp);
1163 }
1164
1165 if (!bp->b_error)
1166 bp->b_flags |= XBF_DONE;
1167
1168 if (bp->b_iodone)
1169 (*(bp->b_iodone))(bp);
1170 else if (bp->b_flags & XBF_ASYNC)
1171 xfs_buf_relse(bp);
1172 else
1173 complete(&bp->b_iowait);
1174}
1175
1176static void
1177xfs_buf_ioend_work(
1178 struct work_struct *work)
1179{
1180 struct xfs_buf *bp =
1181 container_of(work, xfs_buf_t, b_ioend_work);
1182
1183 xfs_buf_ioend(bp);
1184}
1185
1186static void
1187xfs_buf_ioend_async(
1188 struct xfs_buf *bp)
1189{
1190 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1191 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1192}
1193
1194void
1195__xfs_buf_ioerror(
1196 xfs_buf_t *bp,
1197 int error,
1198 xfs_failaddr_t failaddr)
1199{
1200 ASSERT(error <= 0 && error >= -1000);
1201 bp->b_error = error;
1202 trace_xfs_buf_ioerror(bp, error, failaddr);
1203}
1204
1205void
1206xfs_buf_ioerror_alert(
1207 struct xfs_buf *bp,
1208 const char *func)
1209{
1210 xfs_alert(bp->b_mount,
1211"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1212 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1213 -bp->b_error);
1214}
1215
1216int
1217xfs_bwrite(
1218 struct xfs_buf *bp)
1219{
1220 int error;
1221
1222 ASSERT(xfs_buf_islocked(bp));
1223
1224 bp->b_flags |= XBF_WRITE;
1225 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1226 XBF_WRITE_FAIL | XBF_DONE);
1227
1228 error = xfs_buf_submit(bp);
1229 if (error)
1230 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1231 return error;
1232}
1233
1234static void
1235xfs_buf_bio_end_io(
1236 struct bio *bio)
1237{
1238 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1239
1240 /*
1241 * don't overwrite existing errors - otherwise we can lose errors on
1242 * buffers that require multiple bios to complete.
1243 */
1244 if (bio->bi_status) {
1245 int error = blk_status_to_errno(bio->bi_status);
1246
1247 cmpxchg(&bp->b_io_error, 0, error);
1248 }
1249
1250 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1251 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1252
1253 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1254 xfs_buf_ioend_async(bp);
1255 bio_put(bio);
1256}
1257
1258static void
1259xfs_buf_ioapply_map(
1260 struct xfs_buf *bp,
1261 int map,
1262 int *buf_offset,
1263 int *count,
1264 int op,
1265 int op_flags)
1266{
1267 int page_index;
1268 int total_nr_pages = bp->b_page_count;
1269 int nr_pages;
1270 struct bio *bio;
1271 sector_t sector = bp->b_maps[map].bm_bn;
1272 int size;
1273 int offset;
1274
1275 /* skip the pages in the buffer before the start offset */
1276 page_index = 0;
1277 offset = *buf_offset;
1278 while (offset >= PAGE_SIZE) {
1279 page_index++;
1280 offset -= PAGE_SIZE;
1281 }
1282
1283 /*
1284 * Limit the IO size to the length of the current vector, and update the
1285 * remaining IO count for the next time around.
1286 */
1287 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1288 *count -= size;
1289 *buf_offset += size;
1290
1291next_chunk:
1292 atomic_inc(&bp->b_io_remaining);
1293 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1294
1295 bio = bio_alloc(GFP_NOIO, nr_pages);
1296 bio_set_dev(bio, bp->b_target->bt_bdev);
1297 bio->bi_iter.bi_sector = sector;
1298 bio->bi_end_io = xfs_buf_bio_end_io;
1299 bio->bi_private = bp;
1300 bio_set_op_attrs(bio, op, op_flags);
1301
1302 for (; size && nr_pages; nr_pages--, page_index++) {
1303 int rbytes, nbytes = PAGE_SIZE - offset;
1304
1305 if (nbytes > size)
1306 nbytes = size;
1307
1308 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1309 offset);
1310 if (rbytes < nbytes)
1311 break;
1312
1313 offset = 0;
1314 sector += BTOBB(nbytes);
1315 size -= nbytes;
1316 total_nr_pages--;
1317 }
1318
1319 if (likely(bio->bi_iter.bi_size)) {
1320 if (xfs_buf_is_vmapped(bp)) {
1321 flush_kernel_vmap_range(bp->b_addr,
1322 xfs_buf_vmap_len(bp));
1323 }
1324 submit_bio(bio);
1325 if (size)
1326 goto next_chunk;
1327 } else {
1328 /*
1329 * This is guaranteed not to be the last io reference count
1330 * because the caller (xfs_buf_submit) holds a count itself.
1331 */
1332 atomic_dec(&bp->b_io_remaining);
1333 xfs_buf_ioerror(bp, -EIO);
1334 bio_put(bio);
1335 }
1336
1337}
1338
1339STATIC void
1340_xfs_buf_ioapply(
1341 struct xfs_buf *bp)
1342{
1343 struct blk_plug plug;
1344 int op;
1345 int op_flags = 0;
1346 int offset;
1347 int size;
1348 int i;
1349
1350 /*
1351 * Make sure we capture only current IO errors rather than stale errors
1352 * left over from previous use of the buffer (e.g. failed readahead).
1353 */
1354 bp->b_error = 0;
1355
1356 if (bp->b_flags & XBF_WRITE) {
1357 op = REQ_OP_WRITE;
1358
1359 /*
1360 * Run the write verifier callback function if it exists. If
1361 * this function fails it will mark the buffer with an error and
1362 * the IO should not be dispatched.
1363 */
1364 if (bp->b_ops) {
1365 bp->b_ops->verify_write(bp);
1366 if (bp->b_error) {
1367 xfs_force_shutdown(bp->b_mount,
1368 SHUTDOWN_CORRUPT_INCORE);
1369 return;
1370 }
1371 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1372 struct xfs_mount *mp = bp->b_mount;
1373
1374 /*
1375 * non-crc filesystems don't attach verifiers during
1376 * log recovery, so don't warn for such filesystems.
1377 */
1378 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1379 xfs_warn(mp,
1380 "%s: no buf ops on daddr 0x%llx len %d",
1381 __func__, bp->b_bn, bp->b_length);
1382 xfs_hex_dump(bp->b_addr,
1383 XFS_CORRUPTION_DUMP_LEN);
1384 dump_stack();
1385 }
1386 }
1387 } else if (bp->b_flags & XBF_READ_AHEAD) {
1388 op = REQ_OP_READ;
1389 op_flags = REQ_RAHEAD;
1390 } else {
1391 op = REQ_OP_READ;
1392 }
1393
1394 /* we only use the buffer cache for meta-data */
1395 op_flags |= REQ_META;
1396
1397 /*
1398 * Walk all the vectors issuing IO on them. Set up the initial offset
1399 * into the buffer and the desired IO size before we start -
1400 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401 * subsequent call.
1402 */
1403 offset = bp->b_offset;
1404 size = BBTOB(bp->b_length);
1405 blk_start_plug(&plug);
1406 for (i = 0; i < bp->b_map_count; i++) {
1407 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408 if (bp->b_error)
1409 break;
1410 if (size <= 0)
1411 break; /* all done */
1412 }
1413 blk_finish_plug(&plug);
1414}
1415
1416/*
1417 * Wait for I/O completion of a sync buffer and return the I/O error code.
1418 */
1419static int
1420xfs_buf_iowait(
1421 struct xfs_buf *bp)
1422{
1423 ASSERT(!(bp->b_flags & XBF_ASYNC));
1424
1425 trace_xfs_buf_iowait(bp, _RET_IP_);
1426 wait_for_completion(&bp->b_iowait);
1427 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1428
1429 return bp->b_error;
1430}
1431
1432/*
1433 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1434 * the buffer lock ownership and the current reference to the IO. It is not
1435 * safe to reference the buffer after a call to this function unless the caller
1436 * holds an additional reference itself.
1437 */
1438int
1439__xfs_buf_submit(
1440 struct xfs_buf *bp,
1441 bool wait)
1442{
1443 int error = 0;
1444
1445 trace_xfs_buf_submit(bp, _RET_IP_);
1446
1447 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1448
1449 /* on shutdown we stale and complete the buffer immediately */
1450 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1451 xfs_buf_ioerror(bp, -EIO);
1452 bp->b_flags &= ~XBF_DONE;
1453 xfs_buf_stale(bp);
1454 xfs_buf_ioend(bp);
1455 return -EIO;
1456 }
1457
1458 /*
1459 * Grab a reference so the buffer does not go away underneath us. For
1460 * async buffers, I/O completion drops the callers reference, which
1461 * could occur before submission returns.
1462 */
1463 xfs_buf_hold(bp);
1464
1465 if (bp->b_flags & XBF_WRITE)
1466 xfs_buf_wait_unpin(bp);
1467
1468 /* clear the internal error state to avoid spurious errors */
1469 bp->b_io_error = 0;
1470
1471 /*
1472 * Set the count to 1 initially, this will stop an I/O completion
1473 * callout which happens before we have started all the I/O from calling
1474 * xfs_buf_ioend too early.
1475 */
1476 atomic_set(&bp->b_io_remaining, 1);
1477 if (bp->b_flags & XBF_ASYNC)
1478 xfs_buf_ioacct_inc(bp);
1479 _xfs_buf_ioapply(bp);
1480
1481 /*
1482 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1483 * reference we took above. If we drop it to zero, run completion so
1484 * that we don't return to the caller with completion still pending.
1485 */
1486 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1487 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1488 xfs_buf_ioend(bp);
1489 else
1490 xfs_buf_ioend_async(bp);
1491 }
1492
1493 if (wait)
1494 error = xfs_buf_iowait(bp);
1495
1496 /*
1497 * Release the hold that keeps the buffer referenced for the entire
1498 * I/O. Note that if the buffer is async, it is not safe to reference
1499 * after this release.
1500 */
1501 xfs_buf_rele(bp);
1502 return error;
1503}
1504
1505void *
1506xfs_buf_offset(
1507 struct xfs_buf *bp,
1508 size_t offset)
1509{
1510 struct page *page;
1511
1512 if (bp->b_addr)
1513 return bp->b_addr + offset;
1514
1515 offset += bp->b_offset;
1516 page = bp->b_pages[offset >> PAGE_SHIFT];
1517 return page_address(page) + (offset & (PAGE_SIZE-1));
1518}
1519
1520void
1521xfs_buf_zero(
1522 struct xfs_buf *bp,
1523 size_t boff,
1524 size_t bsize)
1525{
1526 size_t bend;
1527
1528 bend = boff + bsize;
1529 while (boff < bend) {
1530 struct page *page;
1531 int page_index, page_offset, csize;
1532
1533 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1534 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1535 page = bp->b_pages[page_index];
1536 csize = min_t(size_t, PAGE_SIZE - page_offset,
1537 BBTOB(bp->b_length) - boff);
1538
1539 ASSERT((csize + page_offset) <= PAGE_SIZE);
1540
1541 memset(page_address(page) + page_offset, 0, csize);
1542
1543 boff += csize;
1544 }
1545}
1546
1547/*
1548 * Handling of buffer targets (buftargs).
1549 */
1550
1551/*
1552 * Wait for any bufs with callbacks that have been submitted but have not yet
1553 * returned. These buffers will have an elevated hold count, so wait on those
1554 * while freeing all the buffers only held by the LRU.
1555 */
1556static enum lru_status
1557xfs_buftarg_wait_rele(
1558 struct list_head *item,
1559 struct list_lru_one *lru,
1560 spinlock_t *lru_lock,
1561 void *arg)
1562
1563{
1564 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1565 struct list_head *dispose = arg;
1566
1567 if (atomic_read(&bp->b_hold) > 1) {
1568 /* need to wait, so skip it this pass */
1569 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1570 return LRU_SKIP;
1571 }
1572 if (!spin_trylock(&bp->b_lock))
1573 return LRU_SKIP;
1574
1575 /*
1576 * clear the LRU reference count so the buffer doesn't get
1577 * ignored in xfs_buf_rele().
1578 */
1579 atomic_set(&bp->b_lru_ref, 0);
1580 bp->b_state |= XFS_BSTATE_DISPOSE;
1581 list_lru_isolate_move(lru, item, dispose);
1582 spin_unlock(&bp->b_lock);
1583 return LRU_REMOVED;
1584}
1585
1586void
1587xfs_wait_buftarg(
1588 struct xfs_buftarg *btp)
1589{
1590 LIST_HEAD(dispose);
1591 int loop = 0;
1592
1593 /*
1594 * First wait on the buftarg I/O count for all in-flight buffers to be
1595 * released. This is critical as new buffers do not make the LRU until
1596 * they are released.
1597 *
1598 * Next, flush the buffer workqueue to ensure all completion processing
1599 * has finished. Just waiting on buffer locks is not sufficient for
1600 * async IO as the reference count held over IO is not released until
1601 * after the buffer lock is dropped. Hence we need to ensure here that
1602 * all reference counts have been dropped before we start walking the
1603 * LRU list.
1604 */
1605 while (percpu_counter_sum(&btp->bt_io_count))
1606 delay(100);
1607 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1608
1609 /* loop until there is nothing left on the lru list. */
1610 while (list_lru_count(&btp->bt_lru)) {
1611 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1612 &dispose, LONG_MAX);
1613
1614 while (!list_empty(&dispose)) {
1615 struct xfs_buf *bp;
1616 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1617 list_del_init(&bp->b_lru);
1618 if (bp->b_flags & XBF_WRITE_FAIL) {
1619 xfs_alert(btp->bt_mount,
1620"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1621 (long long)bp->b_bn);
1622 xfs_alert(btp->bt_mount,
1623"Please run xfs_repair to determine the extent of the problem.");
1624 }
1625 xfs_buf_rele(bp);
1626 }
1627 if (loop++ != 0)
1628 delay(100);
1629 }
1630}
1631
1632static enum lru_status
1633xfs_buftarg_isolate(
1634 struct list_head *item,
1635 struct list_lru_one *lru,
1636 spinlock_t *lru_lock,
1637 void *arg)
1638{
1639 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1640 struct list_head *dispose = arg;
1641
1642 /*
1643 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1644 * If we fail to get the lock, just skip it.
1645 */
1646 if (!spin_trylock(&bp->b_lock))
1647 return LRU_SKIP;
1648 /*
1649 * Decrement the b_lru_ref count unless the value is already
1650 * zero. If the value is already zero, we need to reclaim the
1651 * buffer, otherwise it gets another trip through the LRU.
1652 */
1653 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1654 spin_unlock(&bp->b_lock);
1655 return LRU_ROTATE;
1656 }
1657
1658 bp->b_state |= XFS_BSTATE_DISPOSE;
1659 list_lru_isolate_move(lru, item, dispose);
1660 spin_unlock(&bp->b_lock);
1661 return LRU_REMOVED;
1662}
1663
1664static unsigned long
1665xfs_buftarg_shrink_scan(
1666 struct shrinker *shrink,
1667 struct shrink_control *sc)
1668{
1669 struct xfs_buftarg *btp = container_of(shrink,
1670 struct xfs_buftarg, bt_shrinker);
1671 LIST_HEAD(dispose);
1672 unsigned long freed;
1673
1674 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1675 xfs_buftarg_isolate, &dispose);
1676
1677 while (!list_empty(&dispose)) {
1678 struct xfs_buf *bp;
1679 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1680 list_del_init(&bp->b_lru);
1681 xfs_buf_rele(bp);
1682 }
1683
1684 return freed;
1685}
1686
1687static unsigned long
1688xfs_buftarg_shrink_count(
1689 struct shrinker *shrink,
1690 struct shrink_control *sc)
1691{
1692 struct xfs_buftarg *btp = container_of(shrink,
1693 struct xfs_buftarg, bt_shrinker);
1694 return list_lru_shrink_count(&btp->bt_lru, sc);
1695}
1696
1697void
1698xfs_free_buftarg(
1699 struct xfs_buftarg *btp)
1700{
1701 unregister_shrinker(&btp->bt_shrinker);
1702 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1703 percpu_counter_destroy(&btp->bt_io_count);
1704 list_lru_destroy(&btp->bt_lru);
1705
1706 xfs_blkdev_issue_flush(btp);
1707
1708 kmem_free(btp);
1709}
1710
1711int
1712xfs_setsize_buftarg(
1713 xfs_buftarg_t *btp,
1714 unsigned int sectorsize)
1715{
1716 /* Set up metadata sector size info */
1717 btp->bt_meta_sectorsize = sectorsize;
1718 btp->bt_meta_sectormask = sectorsize - 1;
1719
1720 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1721 xfs_warn(btp->bt_mount,
1722 "Cannot set_blocksize to %u on device %pg",
1723 sectorsize, btp->bt_bdev);
1724 return -EINVAL;
1725 }
1726
1727 /* Set up device logical sector size mask */
1728 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1729 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1730
1731 return 0;
1732}
1733
1734/*
1735 * When allocating the initial buffer target we have not yet
1736 * read in the superblock, so don't know what sized sectors
1737 * are being used at this early stage. Play safe.
1738 */
1739STATIC int
1740xfs_setsize_buftarg_early(
1741 xfs_buftarg_t *btp,
1742 struct block_device *bdev)
1743{
1744 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1745}
1746
1747xfs_buftarg_t *
1748xfs_alloc_buftarg(
1749 struct xfs_mount *mp,
1750 struct block_device *bdev,
1751 struct dax_device *dax_dev)
1752{
1753 xfs_buftarg_t *btp;
1754
1755 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1756
1757 btp->bt_mount = mp;
1758 btp->bt_dev = bdev->bd_dev;
1759 btp->bt_bdev = bdev;
1760 btp->bt_daxdev = dax_dev;
1761
1762 if (xfs_setsize_buftarg_early(btp, bdev))
1763 goto error_free;
1764
1765 if (list_lru_init(&btp->bt_lru))
1766 goto error_free;
1767
1768 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1769 goto error_lru;
1770
1771 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1772 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1773 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1774 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1775 if (register_shrinker(&btp->bt_shrinker))
1776 goto error_pcpu;
1777 return btp;
1778
1779error_pcpu:
1780 percpu_counter_destroy(&btp->bt_io_count);
1781error_lru:
1782 list_lru_destroy(&btp->bt_lru);
1783error_free:
1784 kmem_free(btp);
1785 return NULL;
1786}
1787
1788/*
1789 * Cancel a delayed write list.
1790 *
1791 * Remove each buffer from the list, clear the delwri queue flag and drop the
1792 * associated buffer reference.
1793 */
1794void
1795xfs_buf_delwri_cancel(
1796 struct list_head *list)
1797{
1798 struct xfs_buf *bp;
1799
1800 while (!list_empty(list)) {
1801 bp = list_first_entry(list, struct xfs_buf, b_list);
1802
1803 xfs_buf_lock(bp);
1804 bp->b_flags &= ~_XBF_DELWRI_Q;
1805 list_del_init(&bp->b_list);
1806 xfs_buf_relse(bp);
1807 }
1808}
1809
1810/*
1811 * Add a buffer to the delayed write list.
1812 *
1813 * This queues a buffer for writeout if it hasn't already been. Note that
1814 * neither this routine nor the buffer list submission functions perform
1815 * any internal synchronization. It is expected that the lists are thread-local
1816 * to the callers.
1817 *
1818 * Returns true if we queued up the buffer, or false if it already had
1819 * been on the buffer list.
1820 */
1821bool
1822xfs_buf_delwri_queue(
1823 struct xfs_buf *bp,
1824 struct list_head *list)
1825{
1826 ASSERT(xfs_buf_islocked(bp));
1827 ASSERT(!(bp->b_flags & XBF_READ));
1828
1829 /*
1830 * If the buffer is already marked delwri it already is queued up
1831 * by someone else for imediate writeout. Just ignore it in that
1832 * case.
1833 */
1834 if (bp->b_flags & _XBF_DELWRI_Q) {
1835 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1836 return false;
1837 }
1838
1839 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1840
1841 /*
1842 * If a buffer gets written out synchronously or marked stale while it
1843 * is on a delwri list we lazily remove it. To do this, the other party
1844 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1845 * It remains referenced and on the list. In a rare corner case it
1846 * might get readded to a delwri list after the synchronous writeout, in
1847 * which case we need just need to re-add the flag here.
1848 */
1849 bp->b_flags |= _XBF_DELWRI_Q;
1850 if (list_empty(&bp->b_list)) {
1851 atomic_inc(&bp->b_hold);
1852 list_add_tail(&bp->b_list, list);
1853 }
1854
1855 return true;
1856}
1857
1858/*
1859 * Compare function is more complex than it needs to be because
1860 * the return value is only 32 bits and we are doing comparisons
1861 * on 64 bit values
1862 */
1863static int
1864xfs_buf_cmp(
1865 void *priv,
1866 struct list_head *a,
1867 struct list_head *b)
1868{
1869 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1870 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1871 xfs_daddr_t diff;
1872
1873 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1874 if (diff < 0)
1875 return -1;
1876 if (diff > 0)
1877 return 1;
1878 return 0;
1879}
1880
1881/*
1882 * Submit buffers for write. If wait_list is specified, the buffers are
1883 * submitted using sync I/O and placed on the wait list such that the caller can
1884 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1885 * at I/O completion time. In either case, buffers remain locked until I/O
1886 * completes and the buffer is released from the queue.
1887 */
1888static int
1889xfs_buf_delwri_submit_buffers(
1890 struct list_head *buffer_list,
1891 struct list_head *wait_list)
1892{
1893 struct xfs_buf *bp, *n;
1894 int pinned = 0;
1895 struct blk_plug plug;
1896
1897 list_sort(NULL, buffer_list, xfs_buf_cmp);
1898
1899 blk_start_plug(&plug);
1900 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1901 if (!wait_list) {
1902 if (xfs_buf_ispinned(bp)) {
1903 pinned++;
1904 continue;
1905 }
1906 if (!xfs_buf_trylock(bp))
1907 continue;
1908 } else {
1909 xfs_buf_lock(bp);
1910 }
1911
1912 /*
1913 * Someone else might have written the buffer synchronously or
1914 * marked it stale in the meantime. In that case only the
1915 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1916 * reference and remove it from the list here.
1917 */
1918 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1919 list_del_init(&bp->b_list);
1920 xfs_buf_relse(bp);
1921 continue;
1922 }
1923
1924 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1925
1926 /*
1927 * If we have a wait list, each buffer (and associated delwri
1928 * queue reference) transfers to it and is submitted
1929 * synchronously. Otherwise, drop the buffer from the delwri
1930 * queue and submit async.
1931 */
1932 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1933 bp->b_flags |= XBF_WRITE;
1934 if (wait_list) {
1935 bp->b_flags &= ~XBF_ASYNC;
1936 list_move_tail(&bp->b_list, wait_list);
1937 } else {
1938 bp->b_flags |= XBF_ASYNC;
1939 list_del_init(&bp->b_list);
1940 }
1941 __xfs_buf_submit(bp, false);
1942 }
1943 blk_finish_plug(&plug);
1944
1945 return pinned;
1946}
1947
1948/*
1949 * Write out a buffer list asynchronously.
1950 *
1951 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1952 * out and not wait for I/O completion on any of the buffers. This interface
1953 * is only safely useable for callers that can track I/O completion by higher
1954 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1955 * function.
1956 *
1957 * Note: this function will skip buffers it would block on, and in doing so
1958 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1959 * it is up to the caller to ensure that the buffer list is fully submitted or
1960 * cancelled appropriately when they are finished with the list. Failure to
1961 * cancel or resubmit the list until it is empty will result in leaked buffers
1962 * at unmount time.
1963 */
1964int
1965xfs_buf_delwri_submit_nowait(
1966 struct list_head *buffer_list)
1967{
1968 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1969}
1970
1971/*
1972 * Write out a buffer list synchronously.
1973 *
1974 * This will take the @buffer_list, write all buffers out and wait for I/O
1975 * completion on all of the buffers. @buffer_list is consumed by the function,
1976 * so callers must have some other way of tracking buffers if they require such
1977 * functionality.
1978 */
1979int
1980xfs_buf_delwri_submit(
1981 struct list_head *buffer_list)
1982{
1983 LIST_HEAD (wait_list);
1984 int error = 0, error2;
1985 struct xfs_buf *bp;
1986
1987 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1988
1989 /* Wait for IO to complete. */
1990 while (!list_empty(&wait_list)) {
1991 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1992
1993 list_del_init(&bp->b_list);
1994
1995 /*
1996 * Wait on the locked buffer, check for errors and unlock and
1997 * release the delwri queue reference.
1998 */
1999 error2 = xfs_buf_iowait(bp);
2000 xfs_buf_relse(bp);
2001 if (!error)
2002 error = error2;
2003 }
2004
2005 return error;
2006}
2007
2008/*
2009 * Push a single buffer on a delwri queue.
2010 *
2011 * The purpose of this function is to submit a single buffer of a delwri queue
2012 * and return with the buffer still on the original queue. The waiting delwri
2013 * buffer submission infrastructure guarantees transfer of the delwri queue
2014 * buffer reference to a temporary wait list. We reuse this infrastructure to
2015 * transfer the buffer back to the original queue.
2016 *
2017 * Note the buffer transitions from the queued state, to the submitted and wait
2018 * listed state and back to the queued state during this call. The buffer
2019 * locking and queue management logic between _delwri_pushbuf() and
2020 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2021 * before returning.
2022 */
2023int
2024xfs_buf_delwri_pushbuf(
2025 struct xfs_buf *bp,
2026 struct list_head *buffer_list)
2027{
2028 LIST_HEAD (submit_list);
2029 int error;
2030
2031 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2032
2033 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2034
2035 /*
2036 * Isolate the buffer to a new local list so we can submit it for I/O
2037 * independently from the rest of the original list.
2038 */
2039 xfs_buf_lock(bp);
2040 list_move(&bp->b_list, &submit_list);
2041 xfs_buf_unlock(bp);
2042
2043 /*
2044 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2045 * the buffer on the wait list with the original reference. Rather than
2046 * bounce the buffer from a local wait list back to the original list
2047 * after I/O completion, reuse the original list as the wait list.
2048 */
2049 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2050
2051 /*
2052 * The buffer is now locked, under I/O and wait listed on the original
2053 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2054 * return with the buffer unlocked and on the original queue.
2055 */
2056 error = xfs_buf_iowait(bp);
2057 bp->b_flags |= _XBF_DELWRI_Q;
2058 xfs_buf_unlock(bp);
2059
2060 return error;
2061}
2062
2063int __init
2064xfs_buf_init(void)
2065{
2066 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2067 KM_ZONE_HWALIGN, NULL);
2068 if (!xfs_buf_zone)
2069 goto out;
2070
2071 return 0;
2072
2073 out:
2074 return -ENOMEM;
2075}
2076
2077void
2078xfs_buf_terminate(void)
2079{
2080 kmem_zone_destroy(xfs_buf_zone);
2081}
2082
2083void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2084{
2085 /*
2086 * Set the lru reference count to 0 based on the error injection tag.
2087 * This allows userspace to disrupt buffer caching for debug/testing
2088 * purposes.
2089 */
2090 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2091 lru_ref = 0;
2092
2093 atomic_set(&bp->b_lru_ref, lru_ref);
2094}
2095
2096/*
2097 * Verify an on-disk magic value against the magic value specified in the
2098 * verifier structure. The verifier magic is in disk byte order so the caller is
2099 * expected to pass the value directly from disk.
2100 */
2101bool
2102xfs_verify_magic(
2103 struct xfs_buf *bp,
2104 __be32 dmagic)
2105{
2106 struct xfs_mount *mp = bp->b_mount;
2107 int idx;
2108
2109 idx = xfs_sb_version_hascrc(&mp->m_sb);
2110 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2111 return false;
2112 return dmagic == bp->b_ops->magic[idx];
2113}
2114/*
2115 * Verify an on-disk magic value against the magic value specified in the
2116 * verifier structure. The verifier magic is in disk byte order so the caller is
2117 * expected to pass the value directly from disk.
2118 */
2119bool
2120xfs_verify_magic16(
2121 struct xfs_buf *bp,
2122 __be16 dmagic)
2123{
2124 struct xfs_mount *mp = bp->b_mount;
2125 int idx;
2126
2127 idx = xfs_sb_version_hascrc(&mp->m_sb);
2128 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2129 return false;
2130 return dmagic == bp->b_ops->magic16[idx];
2131}