Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
  48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51
  52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53			 FE_PERM_O_DELETE)
  54
  55static umode_t udf_convert_permissions(struct fileEntry *);
  56static int udf_update_inode(struct inode *, int);
  57static int udf_sync_inode(struct inode *inode);
  58static int udf_alloc_i_data(struct inode *inode, size_t size);
  59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  60static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61			      struct kernel_lb_addr, uint32_t);
  62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63			      struct kernel_long_ad *, int *);
  64static void udf_prealloc_extents(struct inode *, int, int,
  65				 struct kernel_long_ad *, int *);
  66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68			       int, struct extent_position *);
 
 
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 
 125	iinfo->cached_extent.lstart = estart;
 126	switch (iinfo->i_alloc_type) {
 127	case ICBTAG_FLAG_AD_SHORT:
 128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129		break;
 130	case ICBTAG_FLAG_AD_LONG:
 131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132		break;
 133	}
 
 
 134	spin_unlock(&iinfo->i_extent_cache_lock);
 135}
 136
 137void udf_evict_inode(struct inode *inode)
 138{
 139	struct udf_inode_info *iinfo = UDF_I(inode);
 140	int want_delete = 0;
 141
 142	if (!inode->i_nlink && !is_bad_inode(inode)) {
 143		want_delete = 1;
 144		udf_setsize(inode, 0);
 145		udf_update_inode(inode, IS_SYNC(inode));
 146	}
 147	truncate_inode_pages_final(&inode->i_data);
 148	invalidate_inode_buffers(inode);
 149	clear_inode(inode);
 150	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 151	    inode->i_size != iinfo->i_lenExtents) {
 152		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 153			 inode->i_ino, inode->i_mode,
 154			 (unsigned long long)inode->i_size,
 155			 (unsigned long long)iinfo->i_lenExtents);
 156	}
 157	kfree(iinfo->i_ext.i_data);
 158	iinfo->i_ext.i_data = NULL;
 159	udf_clear_extent_cache(inode);
 160	if (want_delete) {
 161		udf_free_inode(inode);
 162	}
 163}
 164
 165static void udf_write_failed(struct address_space *mapping, loff_t to)
 166{
 167	struct inode *inode = mapping->host;
 168	struct udf_inode_info *iinfo = UDF_I(inode);
 169	loff_t isize = inode->i_size;
 170
 171	if (to > isize) {
 172		truncate_pagecache(inode, isize);
 173		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 174			down_write(&iinfo->i_data_sem);
 175			udf_clear_extent_cache(inode);
 176			udf_truncate_extents(inode);
 177			up_write(&iinfo->i_data_sem);
 178		}
 179	}
 180}
 181
 182static int udf_writepage(struct page *page, struct writeback_control *wbc)
 183{
 184	return block_write_full_page(page, udf_get_block, wbc);
 185}
 186
 187static int udf_writepages(struct address_space *mapping,
 188			struct writeback_control *wbc)
 189{
 190	return mpage_writepages(mapping, wbc, udf_get_block);
 191}
 192
 193static int udf_readpage(struct file *file, struct page *page)
 194{
 195	return mpage_readpage(page, udf_get_block);
 196}
 197
 198static void udf_readahead(struct readahead_control *rac)
 
 199{
 200	mpage_readahead(rac, udf_get_block);
 201}
 202
 203static int udf_write_begin(struct file *file, struct address_space *mapping,
 204			loff_t pos, unsigned len, unsigned flags,
 205			struct page **pagep, void **fsdata)
 206{
 207	int ret;
 208
 209	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 210	if (unlikely(ret))
 211		udf_write_failed(mapping, pos + len);
 212	return ret;
 213}
 214
 215static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 216{
 217	struct file *file = iocb->ki_filp;
 218	struct address_space *mapping = file->f_mapping;
 219	struct inode *inode = mapping->host;
 220	size_t count = iov_iter_count(iter);
 221	ssize_t ret;
 222
 223	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 224	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 225		udf_write_failed(mapping, iocb->ki_pos + count);
 226	return ret;
 227}
 228
 229static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 230{
 231	return generic_block_bmap(mapping, block, udf_get_block);
 232}
 233
 234const struct address_space_operations udf_aops = {
 235	.readpage	= udf_readpage,
 236	.readahead	= udf_readahead,
 237	.writepage	= udf_writepage,
 238	.writepages	= udf_writepages,
 239	.write_begin	= udf_write_begin,
 240	.write_end	= generic_write_end,
 241	.direct_IO	= udf_direct_IO,
 242	.bmap		= udf_bmap,
 243};
 244
 245/*
 246 * Expand file stored in ICB to a normal one-block-file
 247 *
 248 * This function requires i_data_sem for writing and releases it.
 249 * This function requires i_mutex held
 250 */
 251int udf_expand_file_adinicb(struct inode *inode)
 252{
 253	struct page *page;
 254	char *kaddr;
 255	struct udf_inode_info *iinfo = UDF_I(inode);
 256	int err;
 257	struct writeback_control udf_wbc = {
 258		.sync_mode = WB_SYNC_NONE,
 259		.nr_to_write = 1,
 260	};
 261
 262	WARN_ON_ONCE(!inode_is_locked(inode));
 263	if (!iinfo->i_lenAlloc) {
 264		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 265			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 266		else
 267			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 268		/* from now on we have normal address_space methods */
 269		inode->i_data.a_ops = &udf_aops;
 270		up_write(&iinfo->i_data_sem);
 271		mark_inode_dirty(inode);
 272		return 0;
 273	}
 274	/*
 275	 * Release i_data_sem so that we can lock a page - page lock ranks
 276	 * above i_data_sem. i_mutex still protects us against file changes.
 277	 */
 278	up_write(&iinfo->i_data_sem);
 279
 280	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 281	if (!page)
 282		return -ENOMEM;
 283
 284	if (!PageUptodate(page)) {
 285		kaddr = kmap_atomic(page);
 286		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 287		       PAGE_SIZE - iinfo->i_lenAlloc);
 288		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 289			iinfo->i_lenAlloc);
 290		flush_dcache_page(page);
 291		SetPageUptodate(page);
 292		kunmap_atomic(kaddr);
 293	}
 294	down_write(&iinfo->i_data_sem);
 295	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 296	       iinfo->i_lenAlloc);
 297	iinfo->i_lenAlloc = 0;
 298	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 299		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 300	else
 301		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 302	/* from now on we have normal address_space methods */
 303	inode->i_data.a_ops = &udf_aops;
 304	up_write(&iinfo->i_data_sem);
 305	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 306	if (err) {
 307		/* Restore everything back so that we don't lose data... */
 308		lock_page(page);
 
 309		down_write(&iinfo->i_data_sem);
 310		kaddr = kmap_atomic(page);
 311		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 312		       inode->i_size);
 313		kunmap_atomic(kaddr);
 314		unlock_page(page);
 315		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 316		inode->i_data.a_ops = &udf_adinicb_aops;
 317		up_write(&iinfo->i_data_sem);
 318	}
 319	put_page(page);
 320	mark_inode_dirty(inode);
 321
 322	return err;
 323}
 324
 325struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 326					    udf_pblk_t *block, int *err)
 327{
 328	udf_pblk_t newblock;
 329	struct buffer_head *dbh = NULL;
 330	struct kernel_lb_addr eloc;
 331	uint8_t alloctype;
 332	struct extent_position epos;
 333
 334	struct udf_fileident_bh sfibh, dfibh;
 335	loff_t f_pos = udf_ext0_offset(inode);
 336	int size = udf_ext0_offset(inode) + inode->i_size;
 337	struct fileIdentDesc cfi, *sfi, *dfi;
 338	struct udf_inode_info *iinfo = UDF_I(inode);
 339
 340	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 341		alloctype = ICBTAG_FLAG_AD_SHORT;
 342	else
 343		alloctype = ICBTAG_FLAG_AD_LONG;
 344
 345	if (!inode->i_size) {
 346		iinfo->i_alloc_type = alloctype;
 347		mark_inode_dirty(inode);
 348		return NULL;
 349	}
 350
 351	/* alloc block, and copy data to it */
 352	*block = udf_new_block(inode->i_sb, inode,
 353			       iinfo->i_location.partitionReferenceNum,
 354			       iinfo->i_location.logicalBlockNum, err);
 355	if (!(*block))
 356		return NULL;
 357	newblock = udf_get_pblock(inode->i_sb, *block,
 358				  iinfo->i_location.partitionReferenceNum,
 359				0);
 360	if (!newblock)
 361		return NULL;
 362	dbh = udf_tgetblk(inode->i_sb, newblock);
 363	if (!dbh)
 364		return NULL;
 365	lock_buffer(dbh);
 366	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 367	set_buffer_uptodate(dbh);
 368	unlock_buffer(dbh);
 369	mark_buffer_dirty_inode(dbh, inode);
 370
 371	sfibh.soffset = sfibh.eoffset =
 372			f_pos & (inode->i_sb->s_blocksize - 1);
 373	sfibh.sbh = sfibh.ebh = NULL;
 374	dfibh.soffset = dfibh.eoffset = 0;
 375	dfibh.sbh = dfibh.ebh = dbh;
 376	while (f_pos < size) {
 377		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 378		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 379					 NULL, NULL, NULL);
 380		if (!sfi) {
 381			brelse(dbh);
 382			return NULL;
 383		}
 384		iinfo->i_alloc_type = alloctype;
 385		sfi->descTag.tagLocation = cpu_to_le32(*block);
 386		dfibh.soffset = dfibh.eoffset;
 387		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 388		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 389		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 390				 sfi->fileIdent +
 391					le16_to_cpu(sfi->lengthOfImpUse))) {
 392			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 393			brelse(dbh);
 394			return NULL;
 395		}
 396	}
 397	mark_buffer_dirty_inode(dbh, inode);
 398
 399	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 400		iinfo->i_lenAlloc);
 401	iinfo->i_lenAlloc = 0;
 402	eloc.logicalBlockNum = *block;
 403	eloc.partitionReferenceNum =
 404				iinfo->i_location.partitionReferenceNum;
 405	iinfo->i_lenExtents = inode->i_size;
 406	epos.bh = NULL;
 407	epos.block = iinfo->i_location;
 408	epos.offset = udf_file_entry_alloc_offset(inode);
 409	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 410	/* UniqueID stuff */
 411
 412	brelse(epos.bh);
 413	mark_inode_dirty(inode);
 414	return dbh;
 415}
 416
 417static int udf_get_block(struct inode *inode, sector_t block,
 418			 struct buffer_head *bh_result, int create)
 419{
 420	int err, new;
 421	sector_t phys = 0;
 422	struct udf_inode_info *iinfo;
 423
 424	if (!create) {
 425		phys = udf_block_map(inode, block);
 426		if (phys)
 427			map_bh(bh_result, inode->i_sb, phys);
 428		return 0;
 429	}
 430
 431	err = -EIO;
 432	new = 0;
 433	iinfo = UDF_I(inode);
 434
 435	down_write(&iinfo->i_data_sem);
 436	if (block == iinfo->i_next_alloc_block + 1) {
 437		iinfo->i_next_alloc_block++;
 438		iinfo->i_next_alloc_goal++;
 439	}
 440
 441	udf_clear_extent_cache(inode);
 442	phys = inode_getblk(inode, block, &err, &new);
 443	if (!phys)
 444		goto abort;
 445
 446	if (new)
 447		set_buffer_new(bh_result);
 448	map_bh(bh_result, inode->i_sb, phys);
 449
 450abort:
 451	up_write(&iinfo->i_data_sem);
 452	return err;
 453}
 454
 455static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 456				      int create, int *err)
 457{
 458	struct buffer_head *bh;
 459	struct buffer_head dummy;
 460
 461	dummy.b_state = 0;
 462	dummy.b_blocknr = -1000;
 463	*err = udf_get_block(inode, block, &dummy, create);
 464	if (!*err && buffer_mapped(&dummy)) {
 465		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 466		if (buffer_new(&dummy)) {
 467			lock_buffer(bh);
 468			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 469			set_buffer_uptodate(bh);
 470			unlock_buffer(bh);
 471			mark_buffer_dirty_inode(bh, inode);
 472		}
 473		return bh;
 474	}
 475
 476	return NULL;
 477}
 478
 479/* Extend the file with new blocks totaling 'new_block_bytes',
 480 * return the number of extents added
 481 */
 482static int udf_do_extend_file(struct inode *inode,
 483			      struct extent_position *last_pos,
 484			      struct kernel_long_ad *last_ext,
 485			      loff_t new_block_bytes)
 486{
 487	uint32_t add;
 488	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 489	struct super_block *sb = inode->i_sb;
 490	struct kernel_lb_addr prealloc_loc = {};
 491	uint32_t prealloc_len = 0;
 492	struct udf_inode_info *iinfo;
 493	int err;
 494
 495	/* The previous extent is fake and we should not extend by anything
 496	 * - there's nothing to do... */
 497	if (!new_block_bytes && fake)
 498		return 0;
 499
 500	iinfo = UDF_I(inode);
 501	/* Round the last extent up to a multiple of block size */
 502	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 503		last_ext->extLength =
 504			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 505			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 506			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 507		iinfo->i_lenExtents =
 508			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 509			~(sb->s_blocksize - 1);
 510	}
 511
 512	/* Last extent are just preallocated blocks? */
 513	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 514						EXT_NOT_RECORDED_ALLOCATED) {
 515		/* Save the extent so that we can reattach it to the end */
 516		prealloc_loc = last_ext->extLocation;
 517		prealloc_len = last_ext->extLength;
 518		/* Mark the extent as a hole */
 519		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 520			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 521		last_ext->extLocation.logicalBlockNum = 0;
 522		last_ext->extLocation.partitionReferenceNum = 0;
 523	}
 524
 525	/* Can we merge with the previous extent? */
 526	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 527					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 528		add = (1 << 30) - sb->s_blocksize -
 529			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 530		if (add > new_block_bytes)
 531			add = new_block_bytes;
 532		new_block_bytes -= add;
 533		last_ext->extLength += add;
 
 534	}
 535
 536	if (fake) {
 537		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 538			     last_ext->extLength, 1);
 539		count++;
 540	} else {
 541		struct kernel_lb_addr tmploc;
 542		uint32_t tmplen;
 543
 544		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 545				last_ext->extLength, 1);
 546		/*
 547		 * We've rewritten the last extent but there may be empty
 548		 * indirect extent after it - enter it.
 549		 */
 550		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 551	}
 552
 553	/* Managed to do everything necessary? */
 554	if (!new_block_bytes)
 555		goto out;
 556
 557	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 558	last_ext->extLocation.logicalBlockNum = 0;
 559	last_ext->extLocation.partitionReferenceNum = 0;
 560	add = (1 << 30) - sb->s_blocksize;
 561	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 
 562
 563	/* Create enough extents to cover the whole hole */
 564	while (new_block_bytes > add) {
 565		new_block_bytes -= add;
 566		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 567				   last_ext->extLength, 1);
 568		if (err)
 569			return err;
 570		count++;
 571	}
 572	if (new_block_bytes) {
 573		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 574			new_block_bytes;
 575		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 576				   last_ext->extLength, 1);
 577		if (err)
 578			return err;
 579		count++;
 580	}
 581
 582out:
 583	/* Do we have some preallocated blocks saved? */
 584	if (prealloc_len) {
 585		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 586				   prealloc_len, 1);
 587		if (err)
 588			return err;
 589		last_ext->extLocation = prealloc_loc;
 590		last_ext->extLength = prealloc_len;
 591		count++;
 592	}
 593
 594	/* last_pos should point to the last written extent... */
 595	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 596		last_pos->offset -= sizeof(struct short_ad);
 597	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 598		last_pos->offset -= sizeof(struct long_ad);
 599	else
 600		return -EIO;
 601
 602	return count;
 603}
 604
 605/* Extend the final block of the file to final_block_len bytes */
 606static void udf_do_extend_final_block(struct inode *inode,
 607				      struct extent_position *last_pos,
 608				      struct kernel_long_ad *last_ext,
 609				      uint32_t final_block_len)
 610{
 611	struct super_block *sb = inode->i_sb;
 612	uint32_t added_bytes;
 613
 614	added_bytes = final_block_len -
 615		      (last_ext->extLength & (sb->s_blocksize - 1));
 616	last_ext->extLength += added_bytes;
 617	UDF_I(inode)->i_lenExtents += added_bytes;
 618
 619	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 620			last_ext->extLength, 1);
 621}
 622
 623static int udf_extend_file(struct inode *inode, loff_t newsize)
 624{
 625
 626	struct extent_position epos;
 627	struct kernel_lb_addr eloc;
 628	uint32_t elen;
 629	int8_t etype;
 630	struct super_block *sb = inode->i_sb;
 631	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 632	unsigned long partial_final_block;
 633	int adsize;
 634	struct udf_inode_info *iinfo = UDF_I(inode);
 635	struct kernel_long_ad extent;
 636	int err = 0;
 637	int within_final_block;
 638
 639	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 640		adsize = sizeof(struct short_ad);
 641	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 642		adsize = sizeof(struct long_ad);
 643	else
 644		BUG();
 645
 646	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 647	within_final_block = (etype != -1);
 648
 
 
 
 
 
 
 
 
 
 
 
 649	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 650	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 651		/* File has no extents at all or has empty last
 652		 * indirect extent! Create a fake extent... */
 653		extent.extLocation.logicalBlockNum = 0;
 654		extent.extLocation.partitionReferenceNum = 0;
 655		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 656	} else {
 657		epos.offset -= adsize;
 658		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 659				      &extent.extLength, 0);
 660		extent.extLength |= etype << 30;
 661	}
 662
 663	partial_final_block = newsize & (sb->s_blocksize - 1);
 664
 665	/* File has extent covering the new size (could happen when extending
 666	 * inside a block)?
 667	 */
 668	if (within_final_block) {
 669		/* Extending file within the last file block */
 670		udf_do_extend_final_block(inode, &epos, &extent,
 671					  partial_final_block);
 672	} else {
 673		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
 674			     partial_final_block;
 675		err = udf_do_extend_file(inode, &epos, &extent, add);
 676	}
 677
 678	if (err < 0)
 679		goto out;
 680	err = 0;
 681	iinfo->i_lenExtents = newsize;
 682out:
 683	brelse(epos.bh);
 684	return err;
 685}
 686
 687static sector_t inode_getblk(struct inode *inode, sector_t block,
 688			     int *err, int *new)
 689{
 690	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 691	struct extent_position prev_epos, cur_epos, next_epos;
 692	int count = 0, startnum = 0, endnum = 0;
 693	uint32_t elen = 0, tmpelen;
 694	struct kernel_lb_addr eloc, tmpeloc;
 695	int c = 1;
 696	loff_t lbcount = 0, b_off = 0;
 697	udf_pblk_t newblocknum, newblock;
 698	sector_t offset = 0;
 699	int8_t etype;
 700	struct udf_inode_info *iinfo = UDF_I(inode);
 701	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 702	int lastblock = 0;
 703	bool isBeyondEOF;
 704
 705	*err = 0;
 706	*new = 0;
 707	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 708	prev_epos.block = iinfo->i_location;
 709	prev_epos.bh = NULL;
 710	cur_epos = next_epos = prev_epos;
 711	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 712
 713	/* find the extent which contains the block we are looking for.
 714	   alternate between laarr[0] and laarr[1] for locations of the
 715	   current extent, and the previous extent */
 716	do {
 717		if (prev_epos.bh != cur_epos.bh) {
 718			brelse(prev_epos.bh);
 719			get_bh(cur_epos.bh);
 720			prev_epos.bh = cur_epos.bh;
 721		}
 722		if (cur_epos.bh != next_epos.bh) {
 723			brelse(cur_epos.bh);
 724			get_bh(next_epos.bh);
 725			cur_epos.bh = next_epos.bh;
 726		}
 727
 728		lbcount += elen;
 729
 730		prev_epos.block = cur_epos.block;
 731		cur_epos.block = next_epos.block;
 732
 733		prev_epos.offset = cur_epos.offset;
 734		cur_epos.offset = next_epos.offset;
 735
 736		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 737		if (etype == -1)
 738			break;
 739
 740		c = !c;
 741
 742		laarr[c].extLength = (etype << 30) | elen;
 743		laarr[c].extLocation = eloc;
 744
 745		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 746			pgoal = eloc.logicalBlockNum +
 747				((elen + inode->i_sb->s_blocksize - 1) >>
 748				 inode->i_sb->s_blocksize_bits);
 749
 750		count++;
 751	} while (lbcount + elen <= b_off);
 752
 753	b_off -= lbcount;
 754	offset = b_off >> inode->i_sb->s_blocksize_bits;
 755	/*
 756	 * Move prev_epos and cur_epos into indirect extent if we are at
 757	 * the pointer to it
 758	 */
 759	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 760	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 761
 762	/* if the extent is allocated and recorded, return the block
 763	   if the extent is not a multiple of the blocksize, round up */
 764
 765	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 766		if (elen & (inode->i_sb->s_blocksize - 1)) {
 767			elen = EXT_RECORDED_ALLOCATED |
 768				((elen + inode->i_sb->s_blocksize - 1) &
 769				 ~(inode->i_sb->s_blocksize - 1));
 770			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 771		}
 
 
 
 772		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 773		goto out_free;
 774	}
 775
 776	/* Are we beyond EOF? */
 777	if (etype == -1) {
 778		int ret;
 779		loff_t hole_len;
 780		isBeyondEOF = true;
 781		if (count) {
 782			if (c)
 783				laarr[0] = laarr[1];
 784			startnum = 1;
 785		} else {
 786			/* Create a fake extent when there's not one */
 787			memset(&laarr[0].extLocation, 0x00,
 788				sizeof(struct kernel_lb_addr));
 789			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 790			/* Will udf_do_extend_file() create real extent from
 791			   a fake one? */
 792			startnum = (offset > 0);
 793		}
 794		/* Create extents for the hole between EOF and offset */
 795		hole_len = (loff_t)offset << inode->i_blkbits;
 796		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 797		if (ret < 0) {
 
 
 
 798			*err = ret;
 799			newblock = 0;
 800			goto out_free;
 801		}
 802		c = 0;
 803		offset = 0;
 804		count += ret;
 805		/* We are not covered by a preallocated extent? */
 806		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 807						EXT_NOT_RECORDED_ALLOCATED) {
 808			/* Is there any real extent? - otherwise we overwrite
 809			 * the fake one... */
 810			if (count)
 811				c = !c;
 812			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 813				inode->i_sb->s_blocksize;
 814			memset(&laarr[c].extLocation, 0x00,
 815				sizeof(struct kernel_lb_addr));
 816			count++;
 817		}
 818		endnum = c + 1;
 819		lastblock = 1;
 820	} else {
 821		isBeyondEOF = false;
 822		endnum = startnum = ((count > 2) ? 2 : count);
 823
 824		/* if the current extent is in position 0,
 825		   swap it with the previous */
 826		if (!c && count != 1) {
 827			laarr[2] = laarr[0];
 828			laarr[0] = laarr[1];
 829			laarr[1] = laarr[2];
 830			c = 1;
 831		}
 832
 833		/* if the current block is located in an extent,
 834		   read the next extent */
 835		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 836		if (etype != -1) {
 837			laarr[c + 1].extLength = (etype << 30) | elen;
 838			laarr[c + 1].extLocation = eloc;
 839			count++;
 840			startnum++;
 841			endnum++;
 842		} else
 843			lastblock = 1;
 844	}
 845
 846	/* if the current extent is not recorded but allocated, get the
 847	 * block in the extent corresponding to the requested block */
 848	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 849		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 850	else { /* otherwise, allocate a new block */
 851		if (iinfo->i_next_alloc_block == block)
 852			goal = iinfo->i_next_alloc_goal;
 853
 854		if (!goal) {
 855			if (!(goal = pgoal)) /* XXX: what was intended here? */
 856				goal = iinfo->i_location.logicalBlockNum + 1;
 857		}
 858
 859		newblocknum = udf_new_block(inode->i_sb, inode,
 860				iinfo->i_location.partitionReferenceNum,
 861				goal, err);
 862		if (!newblocknum) {
 
 
 
 863			*err = -ENOSPC;
 864			newblock = 0;
 865			goto out_free;
 866		}
 867		if (isBeyondEOF)
 868			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 869	}
 870
 871	/* if the extent the requsted block is located in contains multiple
 872	 * blocks, split the extent into at most three extents. blocks prior
 873	 * to requested block, requested block, and blocks after requested
 874	 * block */
 875	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 876
 
 877	/* We preallocate blocks only for regular files. It also makes sense
 878	 * for directories but there's a problem when to drop the
 879	 * preallocation. We might use some delayed work for that but I feel
 880	 * it's overengineering for a filesystem like UDF. */
 881	if (S_ISREG(inode->i_mode))
 882		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 
 883
 884	/* merge any continuous blocks in laarr */
 885	udf_merge_extents(inode, laarr, &endnum);
 886
 887	/* write back the new extents, inserting new extents if the new number
 888	 * of extents is greater than the old number, and deleting extents if
 889	 * the new number of extents is less than the old number */
 890	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 891
 
 
 
 
 892	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 893				iinfo->i_location.partitionReferenceNum, 0);
 894	if (!newblock) {
 895		*err = -EIO;
 896		goto out_free;
 897	}
 898	*new = 1;
 899	iinfo->i_next_alloc_block = block;
 900	iinfo->i_next_alloc_goal = newblocknum;
 901	inode->i_ctime = current_time(inode);
 902
 903	if (IS_SYNC(inode))
 904		udf_sync_inode(inode);
 905	else
 906		mark_inode_dirty(inode);
 907out_free:
 908	brelse(prev_epos.bh);
 909	brelse(cur_epos.bh);
 910	brelse(next_epos.bh);
 911	return newblock;
 912}
 913
 914static void udf_split_extents(struct inode *inode, int *c, int offset,
 915			       udf_pblk_t newblocknum,
 916			       struct kernel_long_ad *laarr, int *endnum)
 
 917{
 918	unsigned long blocksize = inode->i_sb->s_blocksize;
 919	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 920
 921	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 922	    (laarr[*c].extLength >> 30) ==
 923				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 924		int curr = *c;
 925		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 926			    blocksize - 1) >> blocksize_bits;
 927		int8_t etype = (laarr[curr].extLength >> 30);
 928
 929		if (blen == 1)
 930			;
 931		else if (!offset || blen == offset + 1) {
 932			laarr[curr + 2] = laarr[curr + 1];
 933			laarr[curr + 1] = laarr[curr];
 934		} else {
 935			laarr[curr + 3] = laarr[curr + 1];
 936			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 937		}
 938
 939		if (offset) {
 940			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 941				udf_free_blocks(inode->i_sb, inode,
 942						&laarr[curr].extLocation,
 943						0, offset);
 944				laarr[curr].extLength =
 945					EXT_NOT_RECORDED_NOT_ALLOCATED |
 946					(offset << blocksize_bits);
 947				laarr[curr].extLocation.logicalBlockNum = 0;
 948				laarr[curr].extLocation.
 949						partitionReferenceNum = 0;
 950			} else
 951				laarr[curr].extLength = (etype << 30) |
 952					(offset << blocksize_bits);
 953			curr++;
 954			(*c)++;
 955			(*endnum)++;
 956		}
 957
 958		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 959		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 960			laarr[curr].extLocation.partitionReferenceNum =
 961				UDF_I(inode)->i_location.partitionReferenceNum;
 962		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 963			blocksize;
 964		curr++;
 965
 966		if (blen != offset + 1) {
 967			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 968				laarr[curr].extLocation.logicalBlockNum +=
 969								offset + 1;
 970			laarr[curr].extLength = (etype << 30) |
 971				((blen - (offset + 1)) << blocksize_bits);
 972			curr++;
 973			(*endnum)++;
 974		}
 975	}
 976}
 977
 978static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 979				 struct kernel_long_ad *laarr,
 980				 int *endnum)
 981{
 982	int start, length = 0, currlength = 0, i;
 983
 984	if (*endnum >= (c + 1)) {
 985		if (!lastblock)
 986			return;
 987		else
 988			start = c;
 989	} else {
 990		if ((laarr[c + 1].extLength >> 30) ==
 991					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 992			start = c + 1;
 993			length = currlength =
 994				(((laarr[c + 1].extLength &
 995					UDF_EXTENT_LENGTH_MASK) +
 996				inode->i_sb->s_blocksize - 1) >>
 997				inode->i_sb->s_blocksize_bits);
 998		} else
 999			start = c;
1000	}
1001
1002	for (i = start + 1; i <= *endnum; i++) {
1003		if (i == *endnum) {
1004			if (lastblock)
1005				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1006		} else if ((laarr[i].extLength >> 30) ==
1007				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1008			length += (((laarr[i].extLength &
1009						UDF_EXTENT_LENGTH_MASK) +
1010				    inode->i_sb->s_blocksize - 1) >>
1011				    inode->i_sb->s_blocksize_bits);
1012		} else
1013			break;
1014	}
1015
1016	if (length) {
1017		int next = laarr[start].extLocation.logicalBlockNum +
1018			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1019			  inode->i_sb->s_blocksize - 1) >>
1020			  inode->i_sb->s_blocksize_bits);
1021		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1022				laarr[start].extLocation.partitionReferenceNum,
1023				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1024				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1025				currlength);
1026		if (numalloc) 	{
1027			if (start == (c + 1))
1028				laarr[start].extLength +=
1029					(numalloc <<
1030					 inode->i_sb->s_blocksize_bits);
1031			else {
1032				memmove(&laarr[c + 2], &laarr[c + 1],
1033					sizeof(struct long_ad) * (*endnum - (c + 1)));
1034				(*endnum)++;
1035				laarr[c + 1].extLocation.logicalBlockNum = next;
1036				laarr[c + 1].extLocation.partitionReferenceNum =
1037					laarr[c].extLocation.
1038							partitionReferenceNum;
1039				laarr[c + 1].extLength =
1040					EXT_NOT_RECORDED_ALLOCATED |
1041					(numalloc <<
1042					 inode->i_sb->s_blocksize_bits);
1043				start = c + 1;
1044			}
1045
1046			for (i = start + 1; numalloc && i < *endnum; i++) {
1047				int elen = ((laarr[i].extLength &
1048						UDF_EXTENT_LENGTH_MASK) +
1049					    inode->i_sb->s_blocksize - 1) >>
1050					    inode->i_sb->s_blocksize_bits;
1051
1052				if (elen > numalloc) {
1053					laarr[i].extLength -=
1054						(numalloc <<
1055						 inode->i_sb->s_blocksize_bits);
1056					numalloc = 0;
1057				} else {
1058					numalloc -= elen;
1059					if (*endnum > (i + 1))
1060						memmove(&laarr[i],
1061							&laarr[i + 1],
1062							sizeof(struct long_ad) *
1063							(*endnum - (i + 1)));
1064					i--;
1065					(*endnum)--;
1066				}
1067			}
1068			UDF_I(inode)->i_lenExtents +=
1069				numalloc << inode->i_sb->s_blocksize_bits;
1070		}
1071	}
1072}
1073
1074static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
 
1075			      int *endnum)
1076{
1077	int i;
1078	unsigned long blocksize = inode->i_sb->s_blocksize;
1079	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1080
1081	for (i = 0; i < (*endnum - 1); i++) {
1082		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1083		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1084
1085		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1086			(((li->extLength >> 30) ==
1087				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1088			((lip1->extLocation.logicalBlockNum -
1089			  li->extLocation.logicalBlockNum) ==
1090			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091			blocksize - 1) >> blocksize_bits)))) {
1092
1093			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1095				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1096				lip1->extLength = (lip1->extLength -
1097						  (li->extLength &
1098						   UDF_EXTENT_LENGTH_MASK) +
1099						   UDF_EXTENT_LENGTH_MASK) &
1100							~(blocksize - 1);
1101				li->extLength = (li->extLength &
1102						 UDF_EXTENT_FLAG_MASK) +
1103						(UDF_EXTENT_LENGTH_MASK + 1) -
1104						blocksize;
1105				lip1->extLocation.logicalBlockNum =
1106					li->extLocation.logicalBlockNum +
1107					((li->extLength &
1108						UDF_EXTENT_LENGTH_MASK) >>
1109						blocksize_bits);
1110			} else {
1111				li->extLength = lip1->extLength +
1112					(((li->extLength &
1113						UDF_EXTENT_LENGTH_MASK) +
1114					 blocksize - 1) & ~(blocksize - 1));
1115				if (*endnum > (i + 2))
1116					memmove(&laarr[i + 1], &laarr[i + 2],
1117						sizeof(struct long_ad) *
1118						(*endnum - (i + 2)));
1119				i--;
1120				(*endnum)--;
1121			}
1122		} else if (((li->extLength >> 30) ==
1123				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1124			   ((lip1->extLength >> 30) ==
1125				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1126			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1127					((li->extLength &
1128					  UDF_EXTENT_LENGTH_MASK) +
1129					 blocksize - 1) >> blocksize_bits);
1130			li->extLocation.logicalBlockNum = 0;
1131			li->extLocation.partitionReferenceNum = 0;
1132
1133			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1134			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1135			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1136				lip1->extLength = (lip1->extLength -
1137						   (li->extLength &
1138						   UDF_EXTENT_LENGTH_MASK) +
1139						   UDF_EXTENT_LENGTH_MASK) &
1140						   ~(blocksize - 1);
1141				li->extLength = (li->extLength &
1142						 UDF_EXTENT_FLAG_MASK) +
1143						(UDF_EXTENT_LENGTH_MASK + 1) -
1144						blocksize;
1145			} else {
1146				li->extLength = lip1->extLength +
1147					(((li->extLength &
1148						UDF_EXTENT_LENGTH_MASK) +
1149					  blocksize - 1) & ~(blocksize - 1));
1150				if (*endnum > (i + 2))
1151					memmove(&laarr[i + 1], &laarr[i + 2],
1152						sizeof(struct long_ad) *
1153						(*endnum - (i + 2)));
1154				i--;
1155				(*endnum)--;
1156			}
1157		} else if ((li->extLength >> 30) ==
1158					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1159			udf_free_blocks(inode->i_sb, inode,
1160					&li->extLocation, 0,
1161					((li->extLength &
1162						UDF_EXTENT_LENGTH_MASK) +
1163					 blocksize - 1) >> blocksize_bits);
1164			li->extLocation.logicalBlockNum = 0;
1165			li->extLocation.partitionReferenceNum = 0;
1166			li->extLength = (li->extLength &
1167						UDF_EXTENT_LENGTH_MASK) |
1168						EXT_NOT_RECORDED_NOT_ALLOCATED;
1169		}
1170	}
1171}
1172
1173static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
 
1174			       int startnum, int endnum,
1175			       struct extent_position *epos)
1176{
1177	int start = 0, i;
1178	struct kernel_lb_addr tmploc;
1179	uint32_t tmplen;
1180
1181	if (startnum > endnum) {
1182		for (i = 0; i < (startnum - endnum); i++)
1183			udf_delete_aext(inode, *epos);
 
1184	} else if (startnum < endnum) {
1185		for (i = 0; i < (endnum - startnum); i++) {
1186			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1187					laarr[i].extLength);
1188			udf_next_aext(inode, epos, &laarr[i].extLocation,
1189				      &laarr[i].extLength, 1);
1190			start++;
1191		}
1192	}
1193
1194	for (i = start; i < endnum; i++) {
1195		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1196		udf_write_aext(inode, epos, &laarr[i].extLocation,
1197			       laarr[i].extLength, 1);
1198	}
1199}
1200
1201struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1202			      int create, int *err)
1203{
1204	struct buffer_head *bh = NULL;
1205
1206	bh = udf_getblk(inode, block, create, err);
1207	if (!bh)
1208		return NULL;
1209
1210	if (buffer_uptodate(bh))
1211		return bh;
1212
1213	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1214
1215	wait_on_buffer(bh);
1216	if (buffer_uptodate(bh))
1217		return bh;
1218
1219	brelse(bh);
1220	*err = -EIO;
1221	return NULL;
1222}
1223
1224int udf_setsize(struct inode *inode, loff_t newsize)
1225{
1226	int err;
1227	struct udf_inode_info *iinfo;
1228	unsigned int bsize = i_blocksize(inode);
1229
1230	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1231	      S_ISLNK(inode->i_mode)))
1232		return -EINVAL;
1233	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1234		return -EPERM;
1235
1236	iinfo = UDF_I(inode);
1237	if (newsize > inode->i_size) {
1238		down_write(&iinfo->i_data_sem);
1239		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1240			if (bsize <
1241			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1242				err = udf_expand_file_adinicb(inode);
1243				if (err)
1244					return err;
1245				down_write(&iinfo->i_data_sem);
1246			} else {
1247				iinfo->i_lenAlloc = newsize;
1248				goto set_size;
1249			}
1250		}
1251		err = udf_extend_file(inode, newsize);
1252		if (err) {
1253			up_write(&iinfo->i_data_sem);
1254			return err;
1255		}
1256set_size:
1257		up_write(&iinfo->i_data_sem);
1258		truncate_setsize(inode, newsize);
 
1259	} else {
1260		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1261			down_write(&iinfo->i_data_sem);
1262			udf_clear_extent_cache(inode);
1263			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1264			       0x00, bsize - newsize -
1265			       udf_file_entry_alloc_offset(inode));
1266			iinfo->i_lenAlloc = newsize;
1267			truncate_setsize(inode, newsize);
1268			up_write(&iinfo->i_data_sem);
1269			goto update_time;
1270		}
1271		err = block_truncate_page(inode->i_mapping, newsize,
1272					  udf_get_block);
1273		if (err)
1274			return err;
1275		truncate_setsize(inode, newsize);
1276		down_write(&iinfo->i_data_sem);
1277		udf_clear_extent_cache(inode);
1278		err = udf_truncate_extents(inode);
 
1279		up_write(&iinfo->i_data_sem);
1280		if (err)
1281			return err;
1282	}
1283update_time:
1284	inode->i_mtime = inode->i_ctime = current_time(inode);
1285	if (IS_SYNC(inode))
1286		udf_sync_inode(inode);
1287	else
1288		mark_inode_dirty(inode);
1289	return 0;
1290}
1291
1292/*
1293 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1294 * arbitrary - just that we hopefully don't limit any real use of rewritten
1295 * inode on write-once media but avoid looping for too long on corrupted media.
1296 */
1297#define UDF_MAX_ICB_NESTING 1024
1298
1299static int udf_read_inode(struct inode *inode, bool hidden_inode)
1300{
1301	struct buffer_head *bh = NULL;
1302	struct fileEntry *fe;
1303	struct extendedFileEntry *efe;
1304	uint16_t ident;
1305	struct udf_inode_info *iinfo = UDF_I(inode);
1306	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1307	struct kernel_lb_addr *iloc = &iinfo->i_location;
1308	unsigned int link_count;
1309	unsigned int indirections = 0;
1310	int bs = inode->i_sb->s_blocksize;
1311	int ret = -EIO;
1312	uint32_t uid, gid;
1313
1314reread:
1315	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1316		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1317			  iloc->partitionReferenceNum, sbi->s_partitions);
1318		return -EIO;
1319	}
1320
1321	if (iloc->logicalBlockNum >=
1322	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1323		udf_debug("block=%u, partition=%u out of range\n",
1324			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1325		return -EIO;
1326	}
1327
1328	/*
1329	 * Set defaults, but the inode is still incomplete!
1330	 * Note: get_new_inode() sets the following on a new inode:
1331	 *      i_sb = sb
1332	 *      i_no = ino
1333	 *      i_flags = sb->s_flags
1334	 *      i_state = 0
1335	 * clean_inode(): zero fills and sets
1336	 *      i_count = 1
1337	 *      i_nlink = 1
1338	 *      i_op = NULL;
1339	 */
1340	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1341	if (!bh) {
1342		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1343		return -EIO;
1344	}
1345
1346	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1347	    ident != TAG_IDENT_USE) {
1348		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1349			inode->i_ino, ident);
1350		goto out;
1351	}
1352
1353	fe = (struct fileEntry *)bh->b_data;
1354	efe = (struct extendedFileEntry *)bh->b_data;
1355
1356	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1357		struct buffer_head *ibh;
1358
1359		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1360		if (ident == TAG_IDENT_IE && ibh) {
1361			struct kernel_lb_addr loc;
1362			struct indirectEntry *ie;
1363
1364			ie = (struct indirectEntry *)ibh->b_data;
1365			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1366
1367			if (ie->indirectICB.extLength) {
1368				brelse(ibh);
1369				memcpy(&iinfo->i_location, &loc,
1370				       sizeof(struct kernel_lb_addr));
1371				if (++indirections > UDF_MAX_ICB_NESTING) {
1372					udf_err(inode->i_sb,
1373						"too many ICBs in ICB hierarchy"
1374						" (max %d supported)\n",
1375						UDF_MAX_ICB_NESTING);
1376					goto out;
1377				}
1378				brelse(bh);
1379				goto reread;
1380			}
1381		}
1382		brelse(ibh);
1383	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1384		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1385			le16_to_cpu(fe->icbTag.strategyType));
1386		goto out;
1387	}
1388	if (fe->icbTag.strategyType == cpu_to_le16(4))
1389		iinfo->i_strat4096 = 0;
1390	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1391		iinfo->i_strat4096 = 1;
1392
1393	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1394							ICBTAG_FLAG_AD_MASK;
1395	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1396	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1397	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1398		ret = -EIO;
1399		goto out;
1400	}
1401	iinfo->i_unique = 0;
1402	iinfo->i_lenEAttr = 0;
1403	iinfo->i_lenExtents = 0;
1404	iinfo->i_lenAlloc = 0;
1405	iinfo->i_next_alloc_block = 0;
1406	iinfo->i_next_alloc_goal = 0;
1407	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1408		iinfo->i_efe = 1;
1409		iinfo->i_use = 0;
1410		ret = udf_alloc_i_data(inode, bs -
1411					sizeof(struct extendedFileEntry));
1412		if (ret)
1413			goto out;
1414		memcpy(iinfo->i_ext.i_data,
1415		       bh->b_data + sizeof(struct extendedFileEntry),
1416		       bs - sizeof(struct extendedFileEntry));
1417	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1418		iinfo->i_efe = 0;
1419		iinfo->i_use = 0;
1420		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1421		if (ret)
1422			goto out;
1423		memcpy(iinfo->i_ext.i_data,
1424		       bh->b_data + sizeof(struct fileEntry),
1425		       bs - sizeof(struct fileEntry));
1426	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1427		iinfo->i_efe = 0;
1428		iinfo->i_use = 1;
1429		iinfo->i_lenAlloc = le32_to_cpu(
1430				((struct unallocSpaceEntry *)bh->b_data)->
1431				 lengthAllocDescs);
1432		ret = udf_alloc_i_data(inode, bs -
1433					sizeof(struct unallocSpaceEntry));
1434		if (ret)
1435			goto out;
1436		memcpy(iinfo->i_ext.i_data,
1437		       bh->b_data + sizeof(struct unallocSpaceEntry),
1438		       bs - sizeof(struct unallocSpaceEntry));
1439		return 0;
1440	}
1441
1442	ret = -EIO;
1443	read_lock(&sbi->s_cred_lock);
1444	uid = le32_to_cpu(fe->uid);
1445	if (uid == UDF_INVALID_ID ||
 
1446	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1447		inode->i_uid = sbi->s_uid;
1448	else
1449		i_uid_write(inode, uid);
1450
1451	gid = le32_to_cpu(fe->gid);
1452	if (gid == UDF_INVALID_ID ||
 
1453	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1454		inode->i_gid = sbi->s_gid;
1455	else
1456		i_gid_write(inode, gid);
1457
1458	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1459			sbi->s_fmode != UDF_INVALID_MODE)
1460		inode->i_mode = sbi->s_fmode;
1461	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1462			sbi->s_dmode != UDF_INVALID_MODE)
1463		inode->i_mode = sbi->s_dmode;
1464	else
1465		inode->i_mode = udf_convert_permissions(fe);
1466	inode->i_mode &= ~sbi->s_umask;
1467	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1468
1469	read_unlock(&sbi->s_cred_lock);
1470
1471	link_count = le16_to_cpu(fe->fileLinkCount);
1472	if (!link_count) {
1473		if (!hidden_inode) {
1474			ret = -ESTALE;
1475			goto out;
1476		}
1477		link_count = 1;
1478	}
1479	set_nlink(inode, link_count);
1480
1481	inode->i_size = le64_to_cpu(fe->informationLength);
1482	iinfo->i_lenExtents = inode->i_size;
1483
1484	if (iinfo->i_efe == 0) {
1485		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1486			(inode->i_sb->s_blocksize_bits - 9);
1487
1488		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1489		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1490		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
 
 
 
 
 
 
1491
1492		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1493		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1494		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1495		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1496		iinfo->i_streamdir = 0;
1497		iinfo->i_lenStreams = 0;
1498	} else {
1499		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1500		    (inode->i_sb->s_blocksize_bits - 9);
1501
1502		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1503		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1504		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1505		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
 
 
 
 
 
 
 
 
1506
1507		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1508		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1509		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1510		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1511
1512		/* Named streams */
1513		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1514		iinfo->i_locStreamdir =
1515			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1516		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1517		if (iinfo->i_lenStreams >= inode->i_size)
1518			iinfo->i_lenStreams -= inode->i_size;
1519		else
1520			iinfo->i_lenStreams = 0;
1521	}
1522	inode->i_generation = iinfo->i_unique;
1523
1524	/*
1525	 * Sanity check length of allocation descriptors and extended attrs to
1526	 * avoid integer overflows
1527	 */
1528	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1529		goto out;
1530	/* Now do exact checks */
1531	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1532		goto out;
1533	/* Sanity checks for files in ICB so that we don't get confused later */
1534	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1535		/*
1536		 * For file in ICB data is stored in allocation descriptor
1537		 * so sizes should match
1538		 */
1539		if (iinfo->i_lenAlloc != inode->i_size)
1540			goto out;
1541		/* File in ICB has to fit in there... */
1542		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1543			goto out;
1544	}
1545
1546	switch (fe->icbTag.fileType) {
1547	case ICBTAG_FILE_TYPE_DIRECTORY:
1548		inode->i_op = &udf_dir_inode_operations;
1549		inode->i_fop = &udf_dir_operations;
1550		inode->i_mode |= S_IFDIR;
1551		inc_nlink(inode);
1552		break;
1553	case ICBTAG_FILE_TYPE_REALTIME:
1554	case ICBTAG_FILE_TYPE_REGULAR:
1555	case ICBTAG_FILE_TYPE_UNDEF:
1556	case ICBTAG_FILE_TYPE_VAT20:
1557		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1558			inode->i_data.a_ops = &udf_adinicb_aops;
1559		else
1560			inode->i_data.a_ops = &udf_aops;
1561		inode->i_op = &udf_file_inode_operations;
1562		inode->i_fop = &udf_file_operations;
1563		inode->i_mode |= S_IFREG;
1564		break;
1565	case ICBTAG_FILE_TYPE_BLOCK:
1566		inode->i_mode |= S_IFBLK;
1567		break;
1568	case ICBTAG_FILE_TYPE_CHAR:
1569		inode->i_mode |= S_IFCHR;
1570		break;
1571	case ICBTAG_FILE_TYPE_FIFO:
1572		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1573		break;
1574	case ICBTAG_FILE_TYPE_SOCKET:
1575		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1576		break;
1577	case ICBTAG_FILE_TYPE_SYMLINK:
1578		inode->i_data.a_ops = &udf_symlink_aops;
1579		inode->i_op = &udf_symlink_inode_operations;
1580		inode_nohighmem(inode);
1581		inode->i_mode = S_IFLNK | 0777;
1582		break;
1583	case ICBTAG_FILE_TYPE_MAIN:
1584		udf_debug("METADATA FILE-----\n");
1585		break;
1586	case ICBTAG_FILE_TYPE_MIRROR:
1587		udf_debug("METADATA MIRROR FILE-----\n");
1588		break;
1589	case ICBTAG_FILE_TYPE_BITMAP:
1590		udf_debug("METADATA BITMAP FILE-----\n");
1591		break;
1592	default:
1593		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1594			inode->i_ino, fe->icbTag.fileType);
1595		goto out;
1596	}
1597	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1598		struct deviceSpec *dsea =
1599			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1600		if (dsea) {
1601			init_special_inode(inode, inode->i_mode,
1602				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1603				      le32_to_cpu(dsea->minorDeviceIdent)));
1604			/* Developer ID ??? */
1605		} else
1606			goto out;
1607	}
1608	ret = 0;
1609out:
1610	brelse(bh);
1611	return ret;
1612}
1613
1614static int udf_alloc_i_data(struct inode *inode, size_t size)
1615{
1616	struct udf_inode_info *iinfo = UDF_I(inode);
1617	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1618	if (!iinfo->i_ext.i_data)
 
 
 
1619		return -ENOMEM;
 
 
1620	return 0;
1621}
1622
1623static umode_t udf_convert_permissions(struct fileEntry *fe)
1624{
1625	umode_t mode;
1626	uint32_t permissions;
1627	uint32_t flags;
1628
1629	permissions = le32_to_cpu(fe->permissions);
1630	flags = le16_to_cpu(fe->icbTag.flags);
1631
1632	mode =	((permissions) & 0007) |
1633		((permissions >> 2) & 0070) |
1634		((permissions >> 4) & 0700) |
1635		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1636		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1637		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1638
1639	return mode;
1640}
1641
1642void udf_update_extra_perms(struct inode *inode, umode_t mode)
1643{
1644	struct udf_inode_info *iinfo = UDF_I(inode);
1645
1646	/*
1647	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1648	 * In Unix, delete permission tracks write
1649	 */
1650	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1651	if (mode & 0200)
1652		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1653	if (mode & 0020)
1654		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1655	if (mode & 0002)
1656		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1657}
1658
1659int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1660{
1661	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1662}
1663
1664static int udf_sync_inode(struct inode *inode)
1665{
1666	return udf_update_inode(inode, 1);
1667}
1668
1669static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1670{
1671	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1672	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1673	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1674		iinfo->i_crtime = time;
1675}
1676
1677static int udf_update_inode(struct inode *inode, int do_sync)
1678{
1679	struct buffer_head *bh = NULL;
1680	struct fileEntry *fe;
1681	struct extendedFileEntry *efe;
1682	uint64_t lb_recorded;
1683	uint32_t udfperms;
1684	uint16_t icbflags;
1685	uint16_t crclen;
1686	int err = 0;
1687	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1688	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1689	struct udf_inode_info *iinfo = UDF_I(inode);
1690
1691	bh = udf_tgetblk(inode->i_sb,
1692			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1693	if (!bh) {
1694		udf_debug("getblk failure\n");
1695		return -EIO;
1696	}
1697
1698	lock_buffer(bh);
1699	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1700	fe = (struct fileEntry *)bh->b_data;
1701	efe = (struct extendedFileEntry *)bh->b_data;
1702
1703	if (iinfo->i_use) {
1704		struct unallocSpaceEntry *use =
1705			(struct unallocSpaceEntry *)bh->b_data;
1706
1707		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1708		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1709		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1710					sizeof(struct unallocSpaceEntry));
1711		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1712		crclen = sizeof(struct unallocSpaceEntry);
1713
1714		goto finish;
1715	}
1716
1717	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1718		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1719	else
1720		fe->uid = cpu_to_le32(i_uid_read(inode));
1721
1722	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1723		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1724	else
1725		fe->gid = cpu_to_le32(i_gid_read(inode));
1726
1727	udfperms = ((inode->i_mode & 0007)) |
1728		   ((inode->i_mode & 0070) << 2) |
1729		   ((inode->i_mode & 0700) << 4);
1730
1731	udfperms |= iinfo->i_extraPerms;
 
 
 
1732	fe->permissions = cpu_to_le32(udfperms);
1733
1734	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1735		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1736	else
1737		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1738
1739	fe->informationLength = cpu_to_le64(inode->i_size);
1740
1741	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1742		struct regid *eid;
1743		struct deviceSpec *dsea =
1744			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1745		if (!dsea) {
1746			dsea = (struct deviceSpec *)
1747				udf_add_extendedattr(inode,
1748						     sizeof(struct deviceSpec) +
1749						     sizeof(struct regid), 12, 0x3);
1750			dsea->attrType = cpu_to_le32(12);
1751			dsea->attrSubtype = 1;
1752			dsea->attrLength = cpu_to_le32(
1753						sizeof(struct deviceSpec) +
1754						sizeof(struct regid));
1755			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1756		}
1757		eid = (struct regid *)dsea->impUse;
1758		memset(eid, 0, sizeof(*eid));
1759		strcpy(eid->ident, UDF_ID_DEVELOPER);
1760		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1761		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1762		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1763		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1764	}
1765
1766	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1767		lb_recorded = 0; /* No extents => no blocks! */
1768	else
1769		lb_recorded =
1770			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1771			(blocksize_bits - 9);
1772
1773	if (iinfo->i_efe == 0) {
1774		memcpy(bh->b_data + sizeof(struct fileEntry),
1775		       iinfo->i_ext.i_data,
1776		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1777		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1778
1779		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1780		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1781		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1782		memset(&(fe->impIdent), 0, sizeof(struct regid));
1783		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1784		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1787		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1788		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1789		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1790		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1791		crclen = sizeof(struct fileEntry);
1792	} else {
1793		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1794		       iinfo->i_ext.i_data,
1795		       inode->i_sb->s_blocksize -
1796					sizeof(struct extendedFileEntry));
1797		efe->objectSize =
1798			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1799		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800
1801		if (iinfo->i_streamdir) {
1802			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1803
1804			icb_lad->extLocation =
1805				cpu_to_lelb(iinfo->i_locStreamdir);
1806			icb_lad->extLength =
1807				cpu_to_le32(inode->i_sb->s_blocksize);
1808		}
1809
1810		udf_adjust_time(iinfo, inode->i_atime);
1811		udf_adjust_time(iinfo, inode->i_mtime);
1812		udf_adjust_time(iinfo, inode->i_ctime);
 
 
1813
1814		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1815		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1816		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1817		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1818
1819		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1820		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1821		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1822		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1823		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1824		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1825		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1826		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1827		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1828		crclen = sizeof(struct extendedFileEntry);
1829	}
1830
1831finish:
1832	if (iinfo->i_strat4096) {
1833		fe->icbTag.strategyType = cpu_to_le16(4096);
1834		fe->icbTag.strategyParameter = cpu_to_le16(1);
1835		fe->icbTag.numEntries = cpu_to_le16(2);
1836	} else {
1837		fe->icbTag.strategyType = cpu_to_le16(4);
1838		fe->icbTag.numEntries = cpu_to_le16(1);
1839	}
1840
1841	if (iinfo->i_use)
1842		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1843	else if (S_ISDIR(inode->i_mode))
1844		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1845	else if (S_ISREG(inode->i_mode))
1846		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1847	else if (S_ISLNK(inode->i_mode))
1848		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1849	else if (S_ISBLK(inode->i_mode))
1850		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1851	else if (S_ISCHR(inode->i_mode))
1852		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1853	else if (S_ISFIFO(inode->i_mode))
1854		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1855	else if (S_ISSOCK(inode->i_mode))
1856		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1857
1858	icbflags =	iinfo->i_alloc_type |
1859			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1860			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1861			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1862			(le16_to_cpu(fe->icbTag.flags) &
1863				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1864				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1865
1866	fe->icbTag.flags = cpu_to_le16(icbflags);
1867	if (sbi->s_udfrev >= 0x0200)
1868		fe->descTag.descVersion = cpu_to_le16(3);
1869	else
1870		fe->descTag.descVersion = cpu_to_le16(2);
1871	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1872	fe->descTag.tagLocation = cpu_to_le32(
1873					iinfo->i_location.logicalBlockNum);
1874	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1875	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1876	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1877						  crclen));
1878	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1879
1880	set_buffer_uptodate(bh);
1881	unlock_buffer(bh);
1882
1883	/* write the data blocks */
1884	mark_buffer_dirty(bh);
1885	if (do_sync) {
1886		sync_dirty_buffer(bh);
1887		if (buffer_write_io_error(bh)) {
1888			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1889				 inode->i_ino);
1890			err = -EIO;
1891		}
1892	}
1893	brelse(bh);
1894
1895	return err;
1896}
1897
1898struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1899			 bool hidden_inode)
1900{
1901	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1902	struct inode *inode = iget_locked(sb, block);
1903	int err;
1904
1905	if (!inode)
1906		return ERR_PTR(-ENOMEM);
1907
1908	if (!(inode->i_state & I_NEW))
1909		return inode;
1910
1911	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1912	err = udf_read_inode(inode, hidden_inode);
1913	if (err < 0) {
1914		iget_failed(inode);
1915		return ERR_PTR(err);
1916	}
1917	unlock_new_inode(inode);
1918
1919	return inode;
1920}
1921
1922int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1923			    struct extent_position *epos)
1924{
1925	struct super_block *sb = inode->i_sb;
1926	struct buffer_head *bh;
1927	struct allocExtDesc *aed;
1928	struct extent_position nepos;
1929	struct kernel_lb_addr neloc;
1930	int ver, adsize;
1931
1932	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1933		adsize = sizeof(struct short_ad);
1934	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1935		adsize = sizeof(struct long_ad);
1936	else
1937		return -EIO;
1938
1939	neloc.logicalBlockNum = block;
1940	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1941
1942	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1943	if (!bh)
1944		return -EIO;
1945	lock_buffer(bh);
1946	memset(bh->b_data, 0x00, sb->s_blocksize);
1947	set_buffer_uptodate(bh);
1948	unlock_buffer(bh);
1949	mark_buffer_dirty_inode(bh, inode);
1950
1951	aed = (struct allocExtDesc *)(bh->b_data);
1952	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1953		aed->previousAllocExtLocation =
1954				cpu_to_le32(epos->block.logicalBlockNum);
1955	}
1956	aed->lengthAllocDescs = cpu_to_le32(0);
1957	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1958		ver = 3;
1959	else
1960		ver = 2;
1961	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1962		    sizeof(struct tag));
1963
1964	nepos.block = neloc;
1965	nepos.offset = sizeof(struct allocExtDesc);
1966	nepos.bh = bh;
1967
1968	/*
1969	 * Do we have to copy current last extent to make space for indirect
1970	 * one?
1971	 */
1972	if (epos->offset + adsize > sb->s_blocksize) {
1973		struct kernel_lb_addr cp_loc;
1974		uint32_t cp_len;
1975		int cp_type;
1976
1977		epos->offset -= adsize;
1978		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1979		cp_len |= ((uint32_t)cp_type) << 30;
1980
1981		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1982		udf_write_aext(inode, epos, &nepos.block,
1983			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984	} else {
1985		__udf_add_aext(inode, epos, &nepos.block,
1986			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987	}
1988
1989	brelse(epos->bh);
1990	*epos = nepos;
1991
1992	return 0;
1993}
1994
1995/*
1996 * Append extent at the given position - should be the first free one in inode
1997 * / indirect extent. This function assumes there is enough space in the inode
1998 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1999 */
2000int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2001		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2002{
2003	struct udf_inode_info *iinfo = UDF_I(inode);
2004	struct allocExtDesc *aed;
2005	int adsize;
2006
2007	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2008		adsize = sizeof(struct short_ad);
2009	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2010		adsize = sizeof(struct long_ad);
2011	else
2012		return -EIO;
2013
2014	if (!epos->bh) {
2015		WARN_ON(iinfo->i_lenAlloc !=
2016			epos->offset - udf_file_entry_alloc_offset(inode));
2017	} else {
2018		aed = (struct allocExtDesc *)epos->bh->b_data;
2019		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2020			epos->offset - sizeof(struct allocExtDesc));
2021		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2022	}
2023
2024	udf_write_aext(inode, epos, eloc, elen, inc);
2025
2026	if (!epos->bh) {
2027		iinfo->i_lenAlloc += adsize;
2028		mark_inode_dirty(inode);
2029	} else {
2030		aed = (struct allocExtDesc *)epos->bh->b_data;
2031		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2032		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2033				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2034			udf_update_tag(epos->bh->b_data,
2035					epos->offset + (inc ? 0 : adsize));
2036		else
2037			udf_update_tag(epos->bh->b_data,
2038					sizeof(struct allocExtDesc));
2039		mark_buffer_dirty_inode(epos->bh, inode);
2040	}
2041
2042	return 0;
2043}
2044
2045/*
2046 * Append extent at given position - should be the first free one in inode
2047 * / indirect extent. Takes care of allocating and linking indirect blocks.
2048 */
2049int udf_add_aext(struct inode *inode, struct extent_position *epos,
2050		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2051{
2052	int adsize;
2053	struct super_block *sb = inode->i_sb;
2054
2055	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2056		adsize = sizeof(struct short_ad);
2057	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2058		adsize = sizeof(struct long_ad);
2059	else
2060		return -EIO;
2061
2062	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2063		int err;
2064		udf_pblk_t new_block;
2065
2066		new_block = udf_new_block(sb, NULL,
2067					  epos->block.partitionReferenceNum,
2068					  epos->block.logicalBlockNum, &err);
2069		if (!new_block)
2070			return -ENOSPC;
2071
2072		err = udf_setup_indirect_aext(inode, new_block, epos);
2073		if (err)
2074			return err;
2075	}
2076
2077	return __udf_add_aext(inode, epos, eloc, elen, inc);
2078}
2079
2080void udf_write_aext(struct inode *inode, struct extent_position *epos,
2081		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082{
2083	int adsize;
2084	uint8_t *ptr;
2085	struct short_ad *sad;
2086	struct long_ad *lad;
2087	struct udf_inode_info *iinfo = UDF_I(inode);
2088
2089	if (!epos->bh)
2090		ptr = iinfo->i_ext.i_data + epos->offset -
2091			udf_file_entry_alloc_offset(inode) +
2092			iinfo->i_lenEAttr;
2093	else
2094		ptr = epos->bh->b_data + epos->offset;
2095
2096	switch (iinfo->i_alloc_type) {
2097	case ICBTAG_FLAG_AD_SHORT:
2098		sad = (struct short_ad *)ptr;
2099		sad->extLength = cpu_to_le32(elen);
2100		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2101		adsize = sizeof(struct short_ad);
2102		break;
2103	case ICBTAG_FLAG_AD_LONG:
2104		lad = (struct long_ad *)ptr;
2105		lad->extLength = cpu_to_le32(elen);
2106		lad->extLocation = cpu_to_lelb(*eloc);
2107		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2108		adsize = sizeof(struct long_ad);
2109		break;
2110	default:
2111		return;
2112	}
2113
2114	if (epos->bh) {
2115		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2116		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2117			struct allocExtDesc *aed =
2118				(struct allocExtDesc *)epos->bh->b_data;
2119			udf_update_tag(epos->bh->b_data,
2120				       le32_to_cpu(aed->lengthAllocDescs) +
2121				       sizeof(struct allocExtDesc));
2122		}
2123		mark_buffer_dirty_inode(epos->bh, inode);
2124	} else {
2125		mark_inode_dirty(inode);
2126	}
2127
2128	if (inc)
2129		epos->offset += adsize;
2130}
2131
2132/*
2133 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2134 * someone does some weird stuff.
2135 */
2136#define UDF_MAX_INDIR_EXTS 16
2137
2138int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2139		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2140{
2141	int8_t etype;
2142	unsigned int indirections = 0;
2143
2144	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2145	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2146		udf_pblk_t block;
2147
2148		if (++indirections > UDF_MAX_INDIR_EXTS) {
2149			udf_err(inode->i_sb,
2150				"too many indirect extents in inode %lu\n",
2151				inode->i_ino);
2152			return -1;
2153		}
2154
2155		epos->block = *eloc;
2156		epos->offset = sizeof(struct allocExtDesc);
2157		brelse(epos->bh);
2158		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2159		epos->bh = udf_tread(inode->i_sb, block);
2160		if (!epos->bh) {
2161			udf_debug("reading block %u failed!\n", block);
2162			return -1;
2163		}
2164	}
2165
2166	return etype;
2167}
2168
2169int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2170			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2171{
2172	int alen;
2173	int8_t etype;
2174	uint8_t *ptr;
2175	struct short_ad *sad;
2176	struct long_ad *lad;
2177	struct udf_inode_info *iinfo = UDF_I(inode);
2178
2179	if (!epos->bh) {
2180		if (!epos->offset)
2181			epos->offset = udf_file_entry_alloc_offset(inode);
2182		ptr = iinfo->i_ext.i_data + epos->offset -
2183			udf_file_entry_alloc_offset(inode) +
2184			iinfo->i_lenEAttr;
2185		alen = udf_file_entry_alloc_offset(inode) +
2186							iinfo->i_lenAlloc;
2187	} else {
2188		if (!epos->offset)
2189			epos->offset = sizeof(struct allocExtDesc);
2190		ptr = epos->bh->b_data + epos->offset;
2191		alen = sizeof(struct allocExtDesc) +
2192			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2193							lengthAllocDescs);
2194	}
2195
2196	switch (iinfo->i_alloc_type) {
2197	case ICBTAG_FLAG_AD_SHORT:
2198		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2199		if (!sad)
2200			return -1;
2201		etype = le32_to_cpu(sad->extLength) >> 30;
2202		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2203		eloc->partitionReferenceNum =
2204				iinfo->i_location.partitionReferenceNum;
2205		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2206		break;
2207	case ICBTAG_FLAG_AD_LONG:
2208		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2209		if (!lad)
2210			return -1;
2211		etype = le32_to_cpu(lad->extLength) >> 30;
2212		*eloc = lelb_to_cpu(lad->extLocation);
2213		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2214		break;
2215	default:
2216		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2217		return -1;
2218	}
2219
2220	return etype;
2221}
2222
2223static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2224			      struct kernel_lb_addr neloc, uint32_t nelen)
2225{
2226	struct kernel_lb_addr oeloc;
2227	uint32_t oelen;
2228	int8_t etype;
2229
2230	if (epos.bh)
2231		get_bh(epos.bh);
2232
2233	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2234		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2235		neloc = oeloc;
2236		nelen = (etype << 30) | oelen;
2237	}
2238	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2239	brelse(epos.bh);
2240
2241	return (nelen >> 30);
2242}
2243
2244int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
 
2245{
2246	struct extent_position oepos;
2247	int adsize;
2248	int8_t etype;
2249	struct allocExtDesc *aed;
2250	struct udf_inode_info *iinfo;
2251	struct kernel_lb_addr eloc;
2252	uint32_t elen;
2253
2254	if (epos.bh) {
2255		get_bh(epos.bh);
2256		get_bh(epos.bh);
2257	}
2258
2259	iinfo = UDF_I(inode);
2260	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2261		adsize = sizeof(struct short_ad);
2262	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2263		adsize = sizeof(struct long_ad);
2264	else
2265		adsize = 0;
2266
2267	oepos = epos;
2268	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2269		return -1;
2270
2271	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2272		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2273		if (oepos.bh != epos.bh) {
2274			oepos.block = epos.block;
2275			brelse(oepos.bh);
2276			get_bh(epos.bh);
2277			oepos.bh = epos.bh;
2278			oepos.offset = epos.offset - adsize;
2279		}
2280	}
2281	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2282	elen = 0;
2283
2284	if (epos.bh != oepos.bh) {
2285		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2286		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2287		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288		if (!oepos.bh) {
2289			iinfo->i_lenAlloc -= (adsize * 2);
2290			mark_inode_dirty(inode);
2291		} else {
2292			aed = (struct allocExtDesc *)oepos.bh->b_data;
2293			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2294			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296				udf_update_tag(oepos.bh->b_data,
2297						oepos.offset - (2 * adsize));
2298			else
2299				udf_update_tag(oepos.bh->b_data,
2300						sizeof(struct allocExtDesc));
2301			mark_buffer_dirty_inode(oepos.bh, inode);
2302		}
2303	} else {
2304		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2305		if (!oepos.bh) {
2306			iinfo->i_lenAlloc -= adsize;
2307			mark_inode_dirty(inode);
2308		} else {
2309			aed = (struct allocExtDesc *)oepos.bh->b_data;
2310			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2311			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2312			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2313				udf_update_tag(oepos.bh->b_data,
2314						epos.offset - adsize);
2315			else
2316				udf_update_tag(oepos.bh->b_data,
2317						sizeof(struct allocExtDesc));
2318			mark_buffer_dirty_inode(oepos.bh, inode);
2319		}
2320	}
2321
2322	brelse(epos.bh);
2323	brelse(oepos.bh);
2324
2325	return (elen >> 30);
2326}
2327
2328int8_t inode_bmap(struct inode *inode, sector_t block,
2329		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2330		  uint32_t *elen, sector_t *offset)
2331{
2332	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2333	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
 
2334	int8_t etype;
2335	struct udf_inode_info *iinfo;
2336
2337	iinfo = UDF_I(inode);
2338	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2339		pos->offset = 0;
2340		pos->block = iinfo->i_location;
2341		pos->bh = NULL;
2342	}
2343	*elen = 0;
2344	do {
2345		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2346		if (etype == -1) {
2347			*offset = (bcount - lbcount) >> blocksize_bits;
2348			iinfo->i_lenExtents = lbcount;
2349			return -1;
2350		}
2351		lbcount += *elen;
2352	} while (lbcount <= bcount);
2353	/* update extent cache */
2354	udf_update_extent_cache(inode, lbcount - *elen, pos);
2355	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2356
2357	return etype;
2358}
2359
2360udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2361{
2362	struct kernel_lb_addr eloc;
2363	uint32_t elen;
2364	sector_t offset;
2365	struct extent_position epos = {};
2366	udf_pblk_t ret;
2367
2368	down_read(&UDF_I(inode)->i_data_sem);
2369
2370	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2371						(EXT_RECORDED_ALLOCATED >> 30))
2372		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2373	else
2374		ret = 0;
2375
2376	up_read(&UDF_I(inode)->i_data_sem);
2377	brelse(epos.bh);
2378
2379	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2380		return udf_fixed_to_variable(ret);
2381	else
2382		return ret;
2383}
v4.10.11
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46MODULE_AUTHOR("Ben Fennema");
  47MODULE_DESCRIPTION("Universal Disk Format Filesystem");
  48MODULE_LICENSE("GPL");
 
 
  49
  50#define EXTENT_MERGE_SIZE 5
 
  51
  52static umode_t udf_convert_permissions(struct fileEntry *);
  53static int udf_update_inode(struct inode *, int);
  54static int udf_sync_inode(struct inode *inode);
  55static int udf_alloc_i_data(struct inode *inode, size_t size);
  56static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  57static int8_t udf_insert_aext(struct inode *, struct extent_position,
  58			      struct kernel_lb_addr, uint32_t);
  59static void udf_split_extents(struct inode *, int *, int, int,
  60			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  61static void udf_prealloc_extents(struct inode *, int, int,
  62				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  63static void udf_merge_extents(struct inode *,
  64			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  65static void udf_update_extents(struct inode *,
  66			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
  67			       struct extent_position *);
  68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  69
  70static void __udf_clear_extent_cache(struct inode *inode)
  71{
  72	struct udf_inode_info *iinfo = UDF_I(inode);
  73
  74	if (iinfo->cached_extent.lstart != -1) {
  75		brelse(iinfo->cached_extent.epos.bh);
  76		iinfo->cached_extent.lstart = -1;
  77	}
  78}
  79
  80/* Invalidate extent cache */
  81static void udf_clear_extent_cache(struct inode *inode)
  82{
  83	struct udf_inode_info *iinfo = UDF_I(inode);
  84
  85	spin_lock(&iinfo->i_extent_cache_lock);
  86	__udf_clear_extent_cache(inode);
  87	spin_unlock(&iinfo->i_extent_cache_lock);
  88}
  89
  90/* Return contents of extent cache */
  91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  92				 loff_t *lbcount, struct extent_position *pos)
  93{
  94	struct udf_inode_info *iinfo = UDF_I(inode);
  95	int ret = 0;
  96
  97	spin_lock(&iinfo->i_extent_cache_lock);
  98	if ((iinfo->cached_extent.lstart <= bcount) &&
  99	    (iinfo->cached_extent.lstart != -1)) {
 100		/* Cache hit */
 101		*lbcount = iinfo->cached_extent.lstart;
 102		memcpy(pos, &iinfo->cached_extent.epos,
 103		       sizeof(struct extent_position));
 104		if (pos->bh)
 105			get_bh(pos->bh);
 106		ret = 1;
 107	}
 108	spin_unlock(&iinfo->i_extent_cache_lock);
 109	return ret;
 110}
 111
 112/* Add extent to extent cache */
 113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 114				    struct extent_position *pos, int next_epos)
 115{
 116	struct udf_inode_info *iinfo = UDF_I(inode);
 117
 118	spin_lock(&iinfo->i_extent_cache_lock);
 119	/* Invalidate previously cached extent */
 120	__udf_clear_extent_cache(inode);
 121	if (pos->bh)
 122		get_bh(pos->bh);
 123	memcpy(&iinfo->cached_extent.epos, pos,
 124	       sizeof(struct extent_position));
 125	iinfo->cached_extent.lstart = estart;
 126	if (next_epos)
 127		switch (iinfo->i_alloc_type) {
 128		case ICBTAG_FLAG_AD_SHORT:
 129			iinfo->cached_extent.epos.offset -=
 130			sizeof(struct short_ad);
 131			break;
 132		case ICBTAG_FLAG_AD_LONG:
 133			iinfo->cached_extent.epos.offset -=
 134			sizeof(struct long_ad);
 135		}
 136	spin_unlock(&iinfo->i_extent_cache_lock);
 137}
 138
 139void udf_evict_inode(struct inode *inode)
 140{
 141	struct udf_inode_info *iinfo = UDF_I(inode);
 142	int want_delete = 0;
 143
 144	if (!inode->i_nlink && !is_bad_inode(inode)) {
 145		want_delete = 1;
 146		udf_setsize(inode, 0);
 147		udf_update_inode(inode, IS_SYNC(inode));
 148	}
 149	truncate_inode_pages_final(&inode->i_data);
 150	invalidate_inode_buffers(inode);
 151	clear_inode(inode);
 152	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 153	    inode->i_size != iinfo->i_lenExtents) {
 154		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 155			 inode->i_ino, inode->i_mode,
 156			 (unsigned long long)inode->i_size,
 157			 (unsigned long long)iinfo->i_lenExtents);
 158	}
 159	kfree(iinfo->i_ext.i_data);
 160	iinfo->i_ext.i_data = NULL;
 161	udf_clear_extent_cache(inode);
 162	if (want_delete) {
 163		udf_free_inode(inode);
 164	}
 165}
 166
 167static void udf_write_failed(struct address_space *mapping, loff_t to)
 168{
 169	struct inode *inode = mapping->host;
 170	struct udf_inode_info *iinfo = UDF_I(inode);
 171	loff_t isize = inode->i_size;
 172
 173	if (to > isize) {
 174		truncate_pagecache(inode, isize);
 175		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 176			down_write(&iinfo->i_data_sem);
 177			udf_clear_extent_cache(inode);
 178			udf_truncate_extents(inode);
 179			up_write(&iinfo->i_data_sem);
 180		}
 181	}
 182}
 183
 184static int udf_writepage(struct page *page, struct writeback_control *wbc)
 185{
 186	return block_write_full_page(page, udf_get_block, wbc);
 187}
 188
 189static int udf_writepages(struct address_space *mapping,
 190			struct writeback_control *wbc)
 191{
 192	return mpage_writepages(mapping, wbc, udf_get_block);
 193}
 194
 195static int udf_readpage(struct file *file, struct page *page)
 196{
 197	return mpage_readpage(page, udf_get_block);
 198}
 199
 200static int udf_readpages(struct file *file, struct address_space *mapping,
 201			struct list_head *pages, unsigned nr_pages)
 202{
 203	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
 204}
 205
 206static int udf_write_begin(struct file *file, struct address_space *mapping,
 207			loff_t pos, unsigned len, unsigned flags,
 208			struct page **pagep, void **fsdata)
 209{
 210	int ret;
 211
 212	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 213	if (unlikely(ret))
 214		udf_write_failed(mapping, pos + len);
 215	return ret;
 216}
 217
 218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 219{
 220	struct file *file = iocb->ki_filp;
 221	struct address_space *mapping = file->f_mapping;
 222	struct inode *inode = mapping->host;
 223	size_t count = iov_iter_count(iter);
 224	ssize_t ret;
 225
 226	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 227	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 228		udf_write_failed(mapping, iocb->ki_pos + count);
 229	return ret;
 230}
 231
 232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 233{
 234	return generic_block_bmap(mapping, block, udf_get_block);
 235}
 236
 237const struct address_space_operations udf_aops = {
 238	.readpage	= udf_readpage,
 239	.readpages	= udf_readpages,
 240	.writepage	= udf_writepage,
 241	.writepages	= udf_writepages,
 242	.write_begin	= udf_write_begin,
 243	.write_end	= generic_write_end,
 244	.direct_IO	= udf_direct_IO,
 245	.bmap		= udf_bmap,
 246};
 247
 248/*
 249 * Expand file stored in ICB to a normal one-block-file
 250 *
 251 * This function requires i_data_sem for writing and releases it.
 252 * This function requires i_mutex held
 253 */
 254int udf_expand_file_adinicb(struct inode *inode)
 255{
 256	struct page *page;
 257	char *kaddr;
 258	struct udf_inode_info *iinfo = UDF_I(inode);
 259	int err;
 260	struct writeback_control udf_wbc = {
 261		.sync_mode = WB_SYNC_NONE,
 262		.nr_to_write = 1,
 263	};
 264
 265	WARN_ON_ONCE(!inode_is_locked(inode));
 266	if (!iinfo->i_lenAlloc) {
 267		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 268			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 269		else
 270			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 271		/* from now on we have normal address_space methods */
 272		inode->i_data.a_ops = &udf_aops;
 273		up_write(&iinfo->i_data_sem);
 274		mark_inode_dirty(inode);
 275		return 0;
 276	}
 277	/*
 278	 * Release i_data_sem so that we can lock a page - page lock ranks
 279	 * above i_data_sem. i_mutex still protects us against file changes.
 280	 */
 281	up_write(&iinfo->i_data_sem);
 282
 283	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 284	if (!page)
 285		return -ENOMEM;
 286
 287	if (!PageUptodate(page)) {
 288		kaddr = kmap(page);
 289		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 290		       PAGE_SIZE - iinfo->i_lenAlloc);
 291		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 292			iinfo->i_lenAlloc);
 293		flush_dcache_page(page);
 294		SetPageUptodate(page);
 295		kunmap(page);
 296	}
 297	down_write(&iinfo->i_data_sem);
 298	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 299	       iinfo->i_lenAlloc);
 300	iinfo->i_lenAlloc = 0;
 301	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 302		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 303	else
 304		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 305	/* from now on we have normal address_space methods */
 306	inode->i_data.a_ops = &udf_aops;
 307	up_write(&iinfo->i_data_sem);
 308	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 309	if (err) {
 310		/* Restore everything back so that we don't lose data... */
 311		lock_page(page);
 312		kaddr = kmap(page);
 313		down_write(&iinfo->i_data_sem);
 
 314		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 315		       inode->i_size);
 316		kunmap(page);
 317		unlock_page(page);
 318		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 319		inode->i_data.a_ops = &udf_adinicb_aops;
 320		up_write(&iinfo->i_data_sem);
 321	}
 322	put_page(page);
 323	mark_inode_dirty(inode);
 324
 325	return err;
 326}
 327
 328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
 329					   int *err)
 330{
 331	int newblock;
 332	struct buffer_head *dbh = NULL;
 333	struct kernel_lb_addr eloc;
 334	uint8_t alloctype;
 335	struct extent_position epos;
 336
 337	struct udf_fileident_bh sfibh, dfibh;
 338	loff_t f_pos = udf_ext0_offset(inode);
 339	int size = udf_ext0_offset(inode) + inode->i_size;
 340	struct fileIdentDesc cfi, *sfi, *dfi;
 341	struct udf_inode_info *iinfo = UDF_I(inode);
 342
 343	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 344		alloctype = ICBTAG_FLAG_AD_SHORT;
 345	else
 346		alloctype = ICBTAG_FLAG_AD_LONG;
 347
 348	if (!inode->i_size) {
 349		iinfo->i_alloc_type = alloctype;
 350		mark_inode_dirty(inode);
 351		return NULL;
 352	}
 353
 354	/* alloc block, and copy data to it */
 355	*block = udf_new_block(inode->i_sb, inode,
 356			       iinfo->i_location.partitionReferenceNum,
 357			       iinfo->i_location.logicalBlockNum, err);
 358	if (!(*block))
 359		return NULL;
 360	newblock = udf_get_pblock(inode->i_sb, *block,
 361				  iinfo->i_location.partitionReferenceNum,
 362				0);
 363	if (!newblock)
 364		return NULL;
 365	dbh = udf_tgetblk(inode->i_sb, newblock);
 366	if (!dbh)
 367		return NULL;
 368	lock_buffer(dbh);
 369	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 370	set_buffer_uptodate(dbh);
 371	unlock_buffer(dbh);
 372	mark_buffer_dirty_inode(dbh, inode);
 373
 374	sfibh.soffset = sfibh.eoffset =
 375			f_pos & (inode->i_sb->s_blocksize - 1);
 376	sfibh.sbh = sfibh.ebh = NULL;
 377	dfibh.soffset = dfibh.eoffset = 0;
 378	dfibh.sbh = dfibh.ebh = dbh;
 379	while (f_pos < size) {
 380		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 381		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 382					 NULL, NULL, NULL);
 383		if (!sfi) {
 384			brelse(dbh);
 385			return NULL;
 386		}
 387		iinfo->i_alloc_type = alloctype;
 388		sfi->descTag.tagLocation = cpu_to_le32(*block);
 389		dfibh.soffset = dfibh.eoffset;
 390		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 391		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 392		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 393				 sfi->fileIdent +
 394					le16_to_cpu(sfi->lengthOfImpUse))) {
 395			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 396			brelse(dbh);
 397			return NULL;
 398		}
 399	}
 400	mark_buffer_dirty_inode(dbh, inode);
 401
 402	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 403		iinfo->i_lenAlloc);
 404	iinfo->i_lenAlloc = 0;
 405	eloc.logicalBlockNum = *block;
 406	eloc.partitionReferenceNum =
 407				iinfo->i_location.partitionReferenceNum;
 408	iinfo->i_lenExtents = inode->i_size;
 409	epos.bh = NULL;
 410	epos.block = iinfo->i_location;
 411	epos.offset = udf_file_entry_alloc_offset(inode);
 412	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 413	/* UniqueID stuff */
 414
 415	brelse(epos.bh);
 416	mark_inode_dirty(inode);
 417	return dbh;
 418}
 419
 420static int udf_get_block(struct inode *inode, sector_t block,
 421			 struct buffer_head *bh_result, int create)
 422{
 423	int err, new;
 424	sector_t phys = 0;
 425	struct udf_inode_info *iinfo;
 426
 427	if (!create) {
 428		phys = udf_block_map(inode, block);
 429		if (phys)
 430			map_bh(bh_result, inode->i_sb, phys);
 431		return 0;
 432	}
 433
 434	err = -EIO;
 435	new = 0;
 436	iinfo = UDF_I(inode);
 437
 438	down_write(&iinfo->i_data_sem);
 439	if (block == iinfo->i_next_alloc_block + 1) {
 440		iinfo->i_next_alloc_block++;
 441		iinfo->i_next_alloc_goal++;
 442	}
 443
 444	udf_clear_extent_cache(inode);
 445	phys = inode_getblk(inode, block, &err, &new);
 446	if (!phys)
 447		goto abort;
 448
 449	if (new)
 450		set_buffer_new(bh_result);
 451	map_bh(bh_result, inode->i_sb, phys);
 452
 453abort:
 454	up_write(&iinfo->i_data_sem);
 455	return err;
 456}
 457
 458static struct buffer_head *udf_getblk(struct inode *inode, long block,
 459				      int create, int *err)
 460{
 461	struct buffer_head *bh;
 462	struct buffer_head dummy;
 463
 464	dummy.b_state = 0;
 465	dummy.b_blocknr = -1000;
 466	*err = udf_get_block(inode, block, &dummy, create);
 467	if (!*err && buffer_mapped(&dummy)) {
 468		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 469		if (buffer_new(&dummy)) {
 470			lock_buffer(bh);
 471			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 472			set_buffer_uptodate(bh);
 473			unlock_buffer(bh);
 474			mark_buffer_dirty_inode(bh, inode);
 475		}
 476		return bh;
 477	}
 478
 479	return NULL;
 480}
 481
 482/* Extend the file by 'blocks' blocks, return the number of extents added */
 
 
 483static int udf_do_extend_file(struct inode *inode,
 484			      struct extent_position *last_pos,
 485			      struct kernel_long_ad *last_ext,
 486			      sector_t blocks)
 487{
 488	sector_t add;
 489	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 490	struct super_block *sb = inode->i_sb;
 491	struct kernel_lb_addr prealloc_loc = {};
 492	int prealloc_len = 0;
 493	struct udf_inode_info *iinfo;
 494	int err;
 495
 496	/* The previous extent is fake and we should not extend by anything
 497	 * - there's nothing to do... */
 498	if (!blocks && fake)
 499		return 0;
 500
 501	iinfo = UDF_I(inode);
 502	/* Round the last extent up to a multiple of block size */
 503	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 504		last_ext->extLength =
 505			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 506			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 507			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 508		iinfo->i_lenExtents =
 509			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 510			~(sb->s_blocksize - 1);
 511	}
 512
 513	/* Last extent are just preallocated blocks? */
 514	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 515						EXT_NOT_RECORDED_ALLOCATED) {
 516		/* Save the extent so that we can reattach it to the end */
 517		prealloc_loc = last_ext->extLocation;
 518		prealloc_len = last_ext->extLength;
 519		/* Mark the extent as a hole */
 520		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 521			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 522		last_ext->extLocation.logicalBlockNum = 0;
 523		last_ext->extLocation.partitionReferenceNum = 0;
 524	}
 525
 526	/* Can we merge with the previous extent? */
 527	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 528					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 529		add = ((1 << 30) - sb->s_blocksize -
 530			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
 531			sb->s_blocksize_bits;
 532		if (add > blocks)
 533			add = blocks;
 534		blocks -= add;
 535		last_ext->extLength += add << sb->s_blocksize_bits;
 536	}
 537
 538	if (fake) {
 539		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 540			     last_ext->extLength, 1);
 541		count++;
 542	} else {
 543		struct kernel_lb_addr tmploc;
 544		uint32_t tmplen;
 545
 546		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 547				last_ext->extLength, 1);
 548		/*
 549		 * We've rewritten the last extent but there may be empty
 550		 * indirect extent after it - enter it.
 551		 */
 552		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 553	}
 554
 555	/* Managed to do everything necessary? */
 556	if (!blocks)
 557		goto out;
 558
 559	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 560	last_ext->extLocation.logicalBlockNum = 0;
 561	last_ext->extLocation.partitionReferenceNum = 0;
 562	add = (1 << (30-sb->s_blocksize_bits)) - 1;
 563	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 564				(add << sb->s_blocksize_bits);
 565
 566	/* Create enough extents to cover the whole hole */
 567	while (blocks > add) {
 568		blocks -= add;
 569		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 570				   last_ext->extLength, 1);
 571		if (err)
 572			return err;
 573		count++;
 574	}
 575	if (blocks) {
 576		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 577			(blocks << sb->s_blocksize_bits);
 578		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 579				   last_ext->extLength, 1);
 580		if (err)
 581			return err;
 582		count++;
 583	}
 584
 585out:
 586	/* Do we have some preallocated blocks saved? */
 587	if (prealloc_len) {
 588		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 589				   prealloc_len, 1);
 590		if (err)
 591			return err;
 592		last_ext->extLocation = prealloc_loc;
 593		last_ext->extLength = prealloc_len;
 594		count++;
 595	}
 596
 597	/* last_pos should point to the last written extent... */
 598	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 599		last_pos->offset -= sizeof(struct short_ad);
 600	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 601		last_pos->offset -= sizeof(struct long_ad);
 602	else
 603		return -EIO;
 604
 605	return count;
 606}
 607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608static int udf_extend_file(struct inode *inode, loff_t newsize)
 609{
 610
 611	struct extent_position epos;
 612	struct kernel_lb_addr eloc;
 613	uint32_t elen;
 614	int8_t etype;
 615	struct super_block *sb = inode->i_sb;
 616	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 
 617	int adsize;
 618	struct udf_inode_info *iinfo = UDF_I(inode);
 619	struct kernel_long_ad extent;
 620	int err;
 
 621
 622	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 623		adsize = sizeof(struct short_ad);
 624	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 625		adsize = sizeof(struct long_ad);
 626	else
 627		BUG();
 628
 629	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 
 630
 631	/* File has extent covering the new size (could happen when extending
 632	 * inside a block)? */
 633	if (etype != -1)
 634		return 0;
 635	if (newsize & (sb->s_blocksize - 1))
 636		offset++;
 637	/* Extended file just to the boundary of the last file block? */
 638	if (offset == 0)
 639		return 0;
 640
 641	/* Truncate is extending the file by 'offset' blocks */
 642	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 643	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 644		/* File has no extents at all or has empty last
 645		 * indirect extent! Create a fake extent... */
 646		extent.extLocation.logicalBlockNum = 0;
 647		extent.extLocation.partitionReferenceNum = 0;
 648		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 649	} else {
 650		epos.offset -= adsize;
 651		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 652				      &extent.extLength, 0);
 653		extent.extLength |= etype << 30;
 654	}
 655	err = udf_do_extend_file(inode, &epos, &extent, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	if (err < 0)
 657		goto out;
 658	err = 0;
 659	iinfo->i_lenExtents = newsize;
 660out:
 661	brelse(epos.bh);
 662	return err;
 663}
 664
 665static sector_t inode_getblk(struct inode *inode, sector_t block,
 666			     int *err, int *new)
 667{
 668	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 669	struct extent_position prev_epos, cur_epos, next_epos;
 670	int count = 0, startnum = 0, endnum = 0;
 671	uint32_t elen = 0, tmpelen;
 672	struct kernel_lb_addr eloc, tmpeloc;
 673	int c = 1;
 674	loff_t lbcount = 0, b_off = 0;
 675	uint32_t newblocknum, newblock;
 676	sector_t offset = 0;
 677	int8_t etype;
 678	struct udf_inode_info *iinfo = UDF_I(inode);
 679	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 680	int lastblock = 0;
 681	bool isBeyondEOF;
 682
 683	*err = 0;
 684	*new = 0;
 685	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 686	prev_epos.block = iinfo->i_location;
 687	prev_epos.bh = NULL;
 688	cur_epos = next_epos = prev_epos;
 689	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 690
 691	/* find the extent which contains the block we are looking for.
 692	   alternate between laarr[0] and laarr[1] for locations of the
 693	   current extent, and the previous extent */
 694	do {
 695		if (prev_epos.bh != cur_epos.bh) {
 696			brelse(prev_epos.bh);
 697			get_bh(cur_epos.bh);
 698			prev_epos.bh = cur_epos.bh;
 699		}
 700		if (cur_epos.bh != next_epos.bh) {
 701			brelse(cur_epos.bh);
 702			get_bh(next_epos.bh);
 703			cur_epos.bh = next_epos.bh;
 704		}
 705
 706		lbcount += elen;
 707
 708		prev_epos.block = cur_epos.block;
 709		cur_epos.block = next_epos.block;
 710
 711		prev_epos.offset = cur_epos.offset;
 712		cur_epos.offset = next_epos.offset;
 713
 714		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 715		if (etype == -1)
 716			break;
 717
 718		c = !c;
 719
 720		laarr[c].extLength = (etype << 30) | elen;
 721		laarr[c].extLocation = eloc;
 722
 723		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 724			pgoal = eloc.logicalBlockNum +
 725				((elen + inode->i_sb->s_blocksize - 1) >>
 726				 inode->i_sb->s_blocksize_bits);
 727
 728		count++;
 729	} while (lbcount + elen <= b_off);
 730
 731	b_off -= lbcount;
 732	offset = b_off >> inode->i_sb->s_blocksize_bits;
 733	/*
 734	 * Move prev_epos and cur_epos into indirect extent if we are at
 735	 * the pointer to it
 736	 */
 737	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 738	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 739
 740	/* if the extent is allocated and recorded, return the block
 741	   if the extent is not a multiple of the blocksize, round up */
 742
 743	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 744		if (elen & (inode->i_sb->s_blocksize - 1)) {
 745			elen = EXT_RECORDED_ALLOCATED |
 746				((elen + inode->i_sb->s_blocksize - 1) &
 747				 ~(inode->i_sb->s_blocksize - 1));
 748			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 749		}
 750		brelse(prev_epos.bh);
 751		brelse(cur_epos.bh);
 752		brelse(next_epos.bh);
 753		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 754		return newblock;
 755	}
 756
 757	/* Are we beyond EOF? */
 758	if (etype == -1) {
 759		int ret;
 
 760		isBeyondEOF = true;
 761		if (count) {
 762			if (c)
 763				laarr[0] = laarr[1];
 764			startnum = 1;
 765		} else {
 766			/* Create a fake extent when there's not one */
 767			memset(&laarr[0].extLocation, 0x00,
 768				sizeof(struct kernel_lb_addr));
 769			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 770			/* Will udf_do_extend_file() create real extent from
 771			   a fake one? */
 772			startnum = (offset > 0);
 773		}
 774		/* Create extents for the hole between EOF and offset */
 775		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
 
 776		if (ret < 0) {
 777			brelse(prev_epos.bh);
 778			brelse(cur_epos.bh);
 779			brelse(next_epos.bh);
 780			*err = ret;
 781			return 0;
 
 782		}
 783		c = 0;
 784		offset = 0;
 785		count += ret;
 786		/* We are not covered by a preallocated extent? */
 787		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 788						EXT_NOT_RECORDED_ALLOCATED) {
 789			/* Is there any real extent? - otherwise we overwrite
 790			 * the fake one... */
 791			if (count)
 792				c = !c;
 793			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 794				inode->i_sb->s_blocksize;
 795			memset(&laarr[c].extLocation, 0x00,
 796				sizeof(struct kernel_lb_addr));
 797			count++;
 798		}
 799		endnum = c + 1;
 800		lastblock = 1;
 801	} else {
 802		isBeyondEOF = false;
 803		endnum = startnum = ((count > 2) ? 2 : count);
 804
 805		/* if the current extent is in position 0,
 806		   swap it with the previous */
 807		if (!c && count != 1) {
 808			laarr[2] = laarr[0];
 809			laarr[0] = laarr[1];
 810			laarr[1] = laarr[2];
 811			c = 1;
 812		}
 813
 814		/* if the current block is located in an extent,
 815		   read the next extent */
 816		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 817		if (etype != -1) {
 818			laarr[c + 1].extLength = (etype << 30) | elen;
 819			laarr[c + 1].extLocation = eloc;
 820			count++;
 821			startnum++;
 822			endnum++;
 823		} else
 824			lastblock = 1;
 825	}
 826
 827	/* if the current extent is not recorded but allocated, get the
 828	 * block in the extent corresponding to the requested block */
 829	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 830		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 831	else { /* otherwise, allocate a new block */
 832		if (iinfo->i_next_alloc_block == block)
 833			goal = iinfo->i_next_alloc_goal;
 834
 835		if (!goal) {
 836			if (!(goal = pgoal)) /* XXX: what was intended here? */
 837				goal = iinfo->i_location.logicalBlockNum + 1;
 838		}
 839
 840		newblocknum = udf_new_block(inode->i_sb, inode,
 841				iinfo->i_location.partitionReferenceNum,
 842				goal, err);
 843		if (!newblocknum) {
 844			brelse(prev_epos.bh);
 845			brelse(cur_epos.bh);
 846			brelse(next_epos.bh);
 847			*err = -ENOSPC;
 848			return 0;
 
 849		}
 850		if (isBeyondEOF)
 851			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 852	}
 853
 854	/* if the extent the requsted block is located in contains multiple
 855	 * blocks, split the extent into at most three extents. blocks prior
 856	 * to requested block, requested block, and blocks after requested
 857	 * block */
 858	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 859
 860#ifdef UDF_PREALLOCATE
 861	/* We preallocate blocks only for regular files. It also makes sense
 862	 * for directories but there's a problem when to drop the
 863	 * preallocation. We might use some delayed work for that but I feel
 864	 * it's overengineering for a filesystem like UDF. */
 865	if (S_ISREG(inode->i_mode))
 866		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 867#endif
 868
 869	/* merge any continuous blocks in laarr */
 870	udf_merge_extents(inode, laarr, &endnum);
 871
 872	/* write back the new extents, inserting new extents if the new number
 873	 * of extents is greater than the old number, and deleting extents if
 874	 * the new number of extents is less than the old number */
 875	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 876
 877	brelse(prev_epos.bh);
 878	brelse(cur_epos.bh);
 879	brelse(next_epos.bh);
 880
 881	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 882				iinfo->i_location.partitionReferenceNum, 0);
 883	if (!newblock) {
 884		*err = -EIO;
 885		return 0;
 886	}
 887	*new = 1;
 888	iinfo->i_next_alloc_block = block;
 889	iinfo->i_next_alloc_goal = newblocknum;
 890	inode->i_ctime = current_time(inode);
 891
 892	if (IS_SYNC(inode))
 893		udf_sync_inode(inode);
 894	else
 895		mark_inode_dirty(inode);
 896
 
 
 
 897	return newblock;
 898}
 899
 900static void udf_split_extents(struct inode *inode, int *c, int offset,
 901			      int newblocknum,
 902			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 903			      int *endnum)
 904{
 905	unsigned long blocksize = inode->i_sb->s_blocksize;
 906	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 907
 908	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 909	    (laarr[*c].extLength >> 30) ==
 910				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 911		int curr = *c;
 912		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 913			    blocksize - 1) >> blocksize_bits;
 914		int8_t etype = (laarr[curr].extLength >> 30);
 915
 916		if (blen == 1)
 917			;
 918		else if (!offset || blen == offset + 1) {
 919			laarr[curr + 2] = laarr[curr + 1];
 920			laarr[curr + 1] = laarr[curr];
 921		} else {
 922			laarr[curr + 3] = laarr[curr + 1];
 923			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 924		}
 925
 926		if (offset) {
 927			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 928				udf_free_blocks(inode->i_sb, inode,
 929						&laarr[curr].extLocation,
 930						0, offset);
 931				laarr[curr].extLength =
 932					EXT_NOT_RECORDED_NOT_ALLOCATED |
 933					(offset << blocksize_bits);
 934				laarr[curr].extLocation.logicalBlockNum = 0;
 935				laarr[curr].extLocation.
 936						partitionReferenceNum = 0;
 937			} else
 938				laarr[curr].extLength = (etype << 30) |
 939					(offset << blocksize_bits);
 940			curr++;
 941			(*c)++;
 942			(*endnum)++;
 943		}
 944
 945		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 946		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 947			laarr[curr].extLocation.partitionReferenceNum =
 948				UDF_I(inode)->i_location.partitionReferenceNum;
 949		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 950			blocksize;
 951		curr++;
 952
 953		if (blen != offset + 1) {
 954			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 955				laarr[curr].extLocation.logicalBlockNum +=
 956								offset + 1;
 957			laarr[curr].extLength = (etype << 30) |
 958				((blen - (offset + 1)) << blocksize_bits);
 959			curr++;
 960			(*endnum)++;
 961		}
 962	}
 963}
 964
 965static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 966				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 967				 int *endnum)
 968{
 969	int start, length = 0, currlength = 0, i;
 970
 971	if (*endnum >= (c + 1)) {
 972		if (!lastblock)
 973			return;
 974		else
 975			start = c;
 976	} else {
 977		if ((laarr[c + 1].extLength >> 30) ==
 978					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 979			start = c + 1;
 980			length = currlength =
 981				(((laarr[c + 1].extLength &
 982					UDF_EXTENT_LENGTH_MASK) +
 983				inode->i_sb->s_blocksize - 1) >>
 984				inode->i_sb->s_blocksize_bits);
 985		} else
 986			start = c;
 987	}
 988
 989	for (i = start + 1; i <= *endnum; i++) {
 990		if (i == *endnum) {
 991			if (lastblock)
 992				length += UDF_DEFAULT_PREALLOC_BLOCKS;
 993		} else if ((laarr[i].extLength >> 30) ==
 994				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 995			length += (((laarr[i].extLength &
 996						UDF_EXTENT_LENGTH_MASK) +
 997				    inode->i_sb->s_blocksize - 1) >>
 998				    inode->i_sb->s_blocksize_bits);
 999		} else
1000			break;
1001	}
1002
1003	if (length) {
1004		int next = laarr[start].extLocation.logicalBlockNum +
1005			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1006			  inode->i_sb->s_blocksize - 1) >>
1007			  inode->i_sb->s_blocksize_bits);
1008		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1009				laarr[start].extLocation.partitionReferenceNum,
1010				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1011				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1012				currlength);
1013		if (numalloc) 	{
1014			if (start == (c + 1))
1015				laarr[start].extLength +=
1016					(numalloc <<
1017					 inode->i_sb->s_blocksize_bits);
1018			else {
1019				memmove(&laarr[c + 2], &laarr[c + 1],
1020					sizeof(struct long_ad) * (*endnum - (c + 1)));
1021				(*endnum)++;
1022				laarr[c + 1].extLocation.logicalBlockNum = next;
1023				laarr[c + 1].extLocation.partitionReferenceNum =
1024					laarr[c].extLocation.
1025							partitionReferenceNum;
1026				laarr[c + 1].extLength =
1027					EXT_NOT_RECORDED_ALLOCATED |
1028					(numalloc <<
1029					 inode->i_sb->s_blocksize_bits);
1030				start = c + 1;
1031			}
1032
1033			for (i = start + 1; numalloc && i < *endnum; i++) {
1034				int elen = ((laarr[i].extLength &
1035						UDF_EXTENT_LENGTH_MASK) +
1036					    inode->i_sb->s_blocksize - 1) >>
1037					    inode->i_sb->s_blocksize_bits;
1038
1039				if (elen > numalloc) {
1040					laarr[i].extLength -=
1041						(numalloc <<
1042						 inode->i_sb->s_blocksize_bits);
1043					numalloc = 0;
1044				} else {
1045					numalloc -= elen;
1046					if (*endnum > (i + 1))
1047						memmove(&laarr[i],
1048							&laarr[i + 1],
1049							sizeof(struct long_ad) *
1050							(*endnum - (i + 1)));
1051					i--;
1052					(*endnum)--;
1053				}
1054			}
1055			UDF_I(inode)->i_lenExtents +=
1056				numalloc << inode->i_sb->s_blocksize_bits;
1057		}
1058	}
1059}
1060
1061static void udf_merge_extents(struct inode *inode,
1062			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1063			      int *endnum)
1064{
1065	int i;
1066	unsigned long blocksize = inode->i_sb->s_blocksize;
1067	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1068
1069	for (i = 0; i < (*endnum - 1); i++) {
1070		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1071		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1072
1073		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1074			(((li->extLength >> 30) ==
1075				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1076			((lip1->extLocation.logicalBlockNum -
1077			  li->extLocation.logicalBlockNum) ==
1078			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1079			blocksize - 1) >> blocksize_bits)))) {
1080
1081			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1082				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1083				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1084				lip1->extLength = (lip1->extLength -
1085						  (li->extLength &
1086						   UDF_EXTENT_LENGTH_MASK) +
1087						   UDF_EXTENT_LENGTH_MASK) &
1088							~(blocksize - 1);
1089				li->extLength = (li->extLength &
1090						 UDF_EXTENT_FLAG_MASK) +
1091						(UDF_EXTENT_LENGTH_MASK + 1) -
1092						blocksize;
1093				lip1->extLocation.logicalBlockNum =
1094					li->extLocation.logicalBlockNum +
1095					((li->extLength &
1096						UDF_EXTENT_LENGTH_MASK) >>
1097						blocksize_bits);
1098			} else {
1099				li->extLength = lip1->extLength +
1100					(((li->extLength &
1101						UDF_EXTENT_LENGTH_MASK) +
1102					 blocksize - 1) & ~(blocksize - 1));
1103				if (*endnum > (i + 2))
1104					memmove(&laarr[i + 1], &laarr[i + 2],
1105						sizeof(struct long_ad) *
1106						(*endnum - (i + 2)));
1107				i--;
1108				(*endnum)--;
1109			}
1110		} else if (((li->extLength >> 30) ==
1111				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1112			   ((lip1->extLength >> 30) ==
1113				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1114			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1115					((li->extLength &
1116					  UDF_EXTENT_LENGTH_MASK) +
1117					 blocksize - 1) >> blocksize_bits);
1118			li->extLocation.logicalBlockNum = 0;
1119			li->extLocation.partitionReferenceNum = 0;
1120
1121			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1123			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1124				lip1->extLength = (lip1->extLength -
1125						   (li->extLength &
1126						   UDF_EXTENT_LENGTH_MASK) +
1127						   UDF_EXTENT_LENGTH_MASK) &
1128						   ~(blocksize - 1);
1129				li->extLength = (li->extLength &
1130						 UDF_EXTENT_FLAG_MASK) +
1131						(UDF_EXTENT_LENGTH_MASK + 1) -
1132						blocksize;
1133			} else {
1134				li->extLength = lip1->extLength +
1135					(((li->extLength &
1136						UDF_EXTENT_LENGTH_MASK) +
1137					  blocksize - 1) & ~(blocksize - 1));
1138				if (*endnum > (i + 2))
1139					memmove(&laarr[i + 1], &laarr[i + 2],
1140						sizeof(struct long_ad) *
1141						(*endnum - (i + 2)));
1142				i--;
1143				(*endnum)--;
1144			}
1145		} else if ((li->extLength >> 30) ==
1146					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1147			udf_free_blocks(inode->i_sb, inode,
1148					&li->extLocation, 0,
1149					((li->extLength &
1150						UDF_EXTENT_LENGTH_MASK) +
1151					 blocksize - 1) >> blocksize_bits);
1152			li->extLocation.logicalBlockNum = 0;
1153			li->extLocation.partitionReferenceNum = 0;
1154			li->extLength = (li->extLength &
1155						UDF_EXTENT_LENGTH_MASK) |
1156						EXT_NOT_RECORDED_NOT_ALLOCATED;
1157		}
1158	}
1159}
1160
1161static void udf_update_extents(struct inode *inode,
1162			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1163			       int startnum, int endnum,
1164			       struct extent_position *epos)
1165{
1166	int start = 0, i;
1167	struct kernel_lb_addr tmploc;
1168	uint32_t tmplen;
1169
1170	if (startnum > endnum) {
1171		for (i = 0; i < (startnum - endnum); i++)
1172			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1173					laarr[i].extLength);
1174	} else if (startnum < endnum) {
1175		for (i = 0; i < (endnum - startnum); i++) {
1176			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1177					laarr[i].extLength);
1178			udf_next_aext(inode, epos, &laarr[i].extLocation,
1179				      &laarr[i].extLength, 1);
1180			start++;
1181		}
1182	}
1183
1184	for (i = start; i < endnum; i++) {
1185		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1186		udf_write_aext(inode, epos, &laarr[i].extLocation,
1187			       laarr[i].extLength, 1);
1188	}
1189}
1190
1191struct buffer_head *udf_bread(struct inode *inode, int block,
1192			      int create, int *err)
1193{
1194	struct buffer_head *bh = NULL;
1195
1196	bh = udf_getblk(inode, block, create, err);
1197	if (!bh)
1198		return NULL;
1199
1200	if (buffer_uptodate(bh))
1201		return bh;
1202
1203	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1204
1205	wait_on_buffer(bh);
1206	if (buffer_uptodate(bh))
1207		return bh;
1208
1209	brelse(bh);
1210	*err = -EIO;
1211	return NULL;
1212}
1213
1214int udf_setsize(struct inode *inode, loff_t newsize)
1215{
1216	int err;
1217	struct udf_inode_info *iinfo;
1218	int bsize = 1 << inode->i_blkbits;
1219
1220	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1221	      S_ISLNK(inode->i_mode)))
1222		return -EINVAL;
1223	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1224		return -EPERM;
1225
1226	iinfo = UDF_I(inode);
1227	if (newsize > inode->i_size) {
1228		down_write(&iinfo->i_data_sem);
1229		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1230			if (bsize <
1231			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1232				err = udf_expand_file_adinicb(inode);
1233				if (err)
1234					return err;
1235				down_write(&iinfo->i_data_sem);
1236			} else {
1237				iinfo->i_lenAlloc = newsize;
1238				goto set_size;
1239			}
1240		}
1241		err = udf_extend_file(inode, newsize);
1242		if (err) {
1243			up_write(&iinfo->i_data_sem);
1244			return err;
1245		}
1246set_size:
 
1247		truncate_setsize(inode, newsize);
1248		up_write(&iinfo->i_data_sem);
1249	} else {
1250		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1251			down_write(&iinfo->i_data_sem);
1252			udf_clear_extent_cache(inode);
1253			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1254			       0x00, bsize - newsize -
1255			       udf_file_entry_alloc_offset(inode));
1256			iinfo->i_lenAlloc = newsize;
1257			truncate_setsize(inode, newsize);
1258			up_write(&iinfo->i_data_sem);
1259			goto update_time;
1260		}
1261		err = block_truncate_page(inode->i_mapping, newsize,
1262					  udf_get_block);
1263		if (err)
1264			return err;
 
1265		down_write(&iinfo->i_data_sem);
1266		udf_clear_extent_cache(inode);
1267		truncate_setsize(inode, newsize);
1268		udf_truncate_extents(inode);
1269		up_write(&iinfo->i_data_sem);
 
 
1270	}
1271update_time:
1272	inode->i_mtime = inode->i_ctime = current_time(inode);
1273	if (IS_SYNC(inode))
1274		udf_sync_inode(inode);
1275	else
1276		mark_inode_dirty(inode);
1277	return 0;
1278}
1279
1280/*
1281 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1282 * arbitrary - just that we hopefully don't limit any real use of rewritten
1283 * inode on write-once media but avoid looping for too long on corrupted media.
1284 */
1285#define UDF_MAX_ICB_NESTING 1024
1286
1287static int udf_read_inode(struct inode *inode, bool hidden_inode)
1288{
1289	struct buffer_head *bh = NULL;
1290	struct fileEntry *fe;
1291	struct extendedFileEntry *efe;
1292	uint16_t ident;
1293	struct udf_inode_info *iinfo = UDF_I(inode);
1294	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1295	struct kernel_lb_addr *iloc = &iinfo->i_location;
1296	unsigned int link_count;
1297	unsigned int indirections = 0;
1298	int bs = inode->i_sb->s_blocksize;
1299	int ret = -EIO;
 
1300
1301reread:
 
 
 
 
 
 
1302	if (iloc->logicalBlockNum >=
1303	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1304		udf_debug("block=%d, partition=%d out of range\n",
1305			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1306		return -EIO;
1307	}
1308
1309	/*
1310	 * Set defaults, but the inode is still incomplete!
1311	 * Note: get_new_inode() sets the following on a new inode:
1312	 *      i_sb = sb
1313	 *      i_no = ino
1314	 *      i_flags = sb->s_flags
1315	 *      i_state = 0
1316	 * clean_inode(): zero fills and sets
1317	 *      i_count = 1
1318	 *      i_nlink = 1
1319	 *      i_op = NULL;
1320	 */
1321	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1322	if (!bh) {
1323		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1324		return -EIO;
1325	}
1326
1327	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1328	    ident != TAG_IDENT_USE) {
1329		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1330			inode->i_ino, ident);
1331		goto out;
1332	}
1333
1334	fe = (struct fileEntry *)bh->b_data;
1335	efe = (struct extendedFileEntry *)bh->b_data;
1336
1337	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1338		struct buffer_head *ibh;
1339
1340		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1341		if (ident == TAG_IDENT_IE && ibh) {
1342			struct kernel_lb_addr loc;
1343			struct indirectEntry *ie;
1344
1345			ie = (struct indirectEntry *)ibh->b_data;
1346			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1347
1348			if (ie->indirectICB.extLength) {
1349				brelse(ibh);
1350				memcpy(&iinfo->i_location, &loc,
1351				       sizeof(struct kernel_lb_addr));
1352				if (++indirections > UDF_MAX_ICB_NESTING) {
1353					udf_err(inode->i_sb,
1354						"too many ICBs in ICB hierarchy"
1355						" (max %d supported)\n",
1356						UDF_MAX_ICB_NESTING);
1357					goto out;
1358				}
1359				brelse(bh);
1360				goto reread;
1361			}
1362		}
1363		brelse(ibh);
1364	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1365		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1366			le16_to_cpu(fe->icbTag.strategyType));
1367		goto out;
1368	}
1369	if (fe->icbTag.strategyType == cpu_to_le16(4))
1370		iinfo->i_strat4096 = 0;
1371	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1372		iinfo->i_strat4096 = 1;
1373
1374	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1375							ICBTAG_FLAG_AD_MASK;
 
 
 
 
 
 
1376	iinfo->i_unique = 0;
1377	iinfo->i_lenEAttr = 0;
1378	iinfo->i_lenExtents = 0;
1379	iinfo->i_lenAlloc = 0;
1380	iinfo->i_next_alloc_block = 0;
1381	iinfo->i_next_alloc_goal = 0;
1382	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1383		iinfo->i_efe = 1;
1384		iinfo->i_use = 0;
1385		ret = udf_alloc_i_data(inode, bs -
1386					sizeof(struct extendedFileEntry));
1387		if (ret)
1388			goto out;
1389		memcpy(iinfo->i_ext.i_data,
1390		       bh->b_data + sizeof(struct extendedFileEntry),
1391		       bs - sizeof(struct extendedFileEntry));
1392	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1393		iinfo->i_efe = 0;
1394		iinfo->i_use = 0;
1395		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1396		if (ret)
1397			goto out;
1398		memcpy(iinfo->i_ext.i_data,
1399		       bh->b_data + sizeof(struct fileEntry),
1400		       bs - sizeof(struct fileEntry));
1401	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1402		iinfo->i_efe = 0;
1403		iinfo->i_use = 1;
1404		iinfo->i_lenAlloc = le32_to_cpu(
1405				((struct unallocSpaceEntry *)bh->b_data)->
1406				 lengthAllocDescs);
1407		ret = udf_alloc_i_data(inode, bs -
1408					sizeof(struct unallocSpaceEntry));
1409		if (ret)
1410			goto out;
1411		memcpy(iinfo->i_ext.i_data,
1412		       bh->b_data + sizeof(struct unallocSpaceEntry),
1413		       bs - sizeof(struct unallocSpaceEntry));
1414		return 0;
1415	}
1416
1417	ret = -EIO;
1418	read_lock(&sbi->s_cred_lock);
1419	i_uid_write(inode, le32_to_cpu(fe->uid));
1420	if (!uid_valid(inode->i_uid) ||
1421	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1422	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1423		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
 
 
1424
1425	i_gid_write(inode, le32_to_cpu(fe->gid));
1426	if (!gid_valid(inode->i_gid) ||
1427	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1428	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1429		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
 
 
1430
1431	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1432			sbi->s_fmode != UDF_INVALID_MODE)
1433		inode->i_mode = sbi->s_fmode;
1434	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1435			sbi->s_dmode != UDF_INVALID_MODE)
1436		inode->i_mode = sbi->s_dmode;
1437	else
1438		inode->i_mode = udf_convert_permissions(fe);
1439	inode->i_mode &= ~sbi->s_umask;
 
 
1440	read_unlock(&sbi->s_cred_lock);
1441
1442	link_count = le16_to_cpu(fe->fileLinkCount);
1443	if (!link_count) {
1444		if (!hidden_inode) {
1445			ret = -ESTALE;
1446			goto out;
1447		}
1448		link_count = 1;
1449	}
1450	set_nlink(inode, link_count);
1451
1452	inode->i_size = le64_to_cpu(fe->informationLength);
1453	iinfo->i_lenExtents = inode->i_size;
1454
1455	if (iinfo->i_efe == 0) {
1456		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1457			(inode->i_sb->s_blocksize_bits - 9);
1458
1459		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1460			inode->i_atime = sbi->s_record_time;
1461
1462		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1463					    fe->modificationTime))
1464			inode->i_mtime = sbi->s_record_time;
1465
1466		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1467			inode->i_ctime = sbi->s_record_time;
1468
1469		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1470		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1471		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1472		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
 
 
1473	} else {
1474		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1475		    (inode->i_sb->s_blocksize_bits - 9);
1476
1477		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1478			inode->i_atime = sbi->s_record_time;
1479
1480		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1481					    efe->modificationTime))
1482			inode->i_mtime = sbi->s_record_time;
1483
1484		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1485			iinfo->i_crtime = sbi->s_record_time;
1486
1487		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1488			inode->i_ctime = sbi->s_record_time;
1489
1490		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
 
 
 
 
 
 
 
 
 
 
1494	}
1495	inode->i_generation = iinfo->i_unique;
1496
1497	/*
1498	 * Sanity check length of allocation descriptors and extended attrs to
1499	 * avoid integer overflows
1500	 */
1501	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1502		goto out;
1503	/* Now do exact checks */
1504	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1505		goto out;
1506	/* Sanity checks for files in ICB so that we don't get confused later */
1507	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1508		/*
1509		 * For file in ICB data is stored in allocation descriptor
1510		 * so sizes should match
1511		 */
1512		if (iinfo->i_lenAlloc != inode->i_size)
1513			goto out;
1514		/* File in ICB has to fit in there... */
1515		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1516			goto out;
1517	}
1518
1519	switch (fe->icbTag.fileType) {
1520	case ICBTAG_FILE_TYPE_DIRECTORY:
1521		inode->i_op = &udf_dir_inode_operations;
1522		inode->i_fop = &udf_dir_operations;
1523		inode->i_mode |= S_IFDIR;
1524		inc_nlink(inode);
1525		break;
1526	case ICBTAG_FILE_TYPE_REALTIME:
1527	case ICBTAG_FILE_TYPE_REGULAR:
1528	case ICBTAG_FILE_TYPE_UNDEF:
1529	case ICBTAG_FILE_TYPE_VAT20:
1530		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1531			inode->i_data.a_ops = &udf_adinicb_aops;
1532		else
1533			inode->i_data.a_ops = &udf_aops;
1534		inode->i_op = &udf_file_inode_operations;
1535		inode->i_fop = &udf_file_operations;
1536		inode->i_mode |= S_IFREG;
1537		break;
1538	case ICBTAG_FILE_TYPE_BLOCK:
1539		inode->i_mode |= S_IFBLK;
1540		break;
1541	case ICBTAG_FILE_TYPE_CHAR:
1542		inode->i_mode |= S_IFCHR;
1543		break;
1544	case ICBTAG_FILE_TYPE_FIFO:
1545		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1546		break;
1547	case ICBTAG_FILE_TYPE_SOCKET:
1548		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1549		break;
1550	case ICBTAG_FILE_TYPE_SYMLINK:
1551		inode->i_data.a_ops = &udf_symlink_aops;
1552		inode->i_op = &page_symlink_inode_operations;
1553		inode_nohighmem(inode);
1554		inode->i_mode = S_IFLNK | S_IRWXUGO;
1555		break;
1556	case ICBTAG_FILE_TYPE_MAIN:
1557		udf_debug("METADATA FILE-----\n");
1558		break;
1559	case ICBTAG_FILE_TYPE_MIRROR:
1560		udf_debug("METADATA MIRROR FILE-----\n");
1561		break;
1562	case ICBTAG_FILE_TYPE_BITMAP:
1563		udf_debug("METADATA BITMAP FILE-----\n");
1564		break;
1565	default:
1566		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1567			inode->i_ino, fe->icbTag.fileType);
1568		goto out;
1569	}
1570	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1571		struct deviceSpec *dsea =
1572			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1573		if (dsea) {
1574			init_special_inode(inode, inode->i_mode,
1575				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1576				      le32_to_cpu(dsea->minorDeviceIdent)));
1577			/* Developer ID ??? */
1578		} else
1579			goto out;
1580	}
1581	ret = 0;
1582out:
1583	brelse(bh);
1584	return ret;
1585}
1586
1587static int udf_alloc_i_data(struct inode *inode, size_t size)
1588{
1589	struct udf_inode_info *iinfo = UDF_I(inode);
1590	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1591
1592	if (!iinfo->i_ext.i_data) {
1593		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1594			inode->i_ino);
1595		return -ENOMEM;
1596	}
1597
1598	return 0;
1599}
1600
1601static umode_t udf_convert_permissions(struct fileEntry *fe)
1602{
1603	umode_t mode;
1604	uint32_t permissions;
1605	uint32_t flags;
1606
1607	permissions = le32_to_cpu(fe->permissions);
1608	flags = le16_to_cpu(fe->icbTag.flags);
1609
1610	mode =	((permissions) & S_IRWXO) |
1611		((permissions >> 2) & S_IRWXG) |
1612		((permissions >> 4) & S_IRWXU) |
1613		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1614		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1615		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1616
1617	return mode;
1618}
1619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1621{
1622	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1623}
1624
1625static int udf_sync_inode(struct inode *inode)
1626{
1627	return udf_update_inode(inode, 1);
1628}
1629
 
 
 
 
 
 
 
 
1630static int udf_update_inode(struct inode *inode, int do_sync)
1631{
1632	struct buffer_head *bh = NULL;
1633	struct fileEntry *fe;
1634	struct extendedFileEntry *efe;
1635	uint64_t lb_recorded;
1636	uint32_t udfperms;
1637	uint16_t icbflags;
1638	uint16_t crclen;
1639	int err = 0;
1640	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1641	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1642	struct udf_inode_info *iinfo = UDF_I(inode);
1643
1644	bh = udf_tgetblk(inode->i_sb,
1645			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1646	if (!bh) {
1647		udf_debug("getblk failure\n");
1648		return -EIO;
1649	}
1650
1651	lock_buffer(bh);
1652	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1653	fe = (struct fileEntry *)bh->b_data;
1654	efe = (struct extendedFileEntry *)bh->b_data;
1655
1656	if (iinfo->i_use) {
1657		struct unallocSpaceEntry *use =
1658			(struct unallocSpaceEntry *)bh->b_data;
1659
1660		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1661		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1662		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1663					sizeof(struct unallocSpaceEntry));
1664		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1665		crclen = sizeof(struct unallocSpaceEntry);
1666
1667		goto finish;
1668	}
1669
1670	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1671		fe->uid = cpu_to_le32(-1);
1672	else
1673		fe->uid = cpu_to_le32(i_uid_read(inode));
1674
1675	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1676		fe->gid = cpu_to_le32(-1);
1677	else
1678		fe->gid = cpu_to_le32(i_gid_read(inode));
1679
1680	udfperms = ((inode->i_mode & S_IRWXO)) |
1681		   ((inode->i_mode & S_IRWXG) << 2) |
1682		   ((inode->i_mode & S_IRWXU) << 4);
1683
1684	udfperms |= (le32_to_cpu(fe->permissions) &
1685		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1686		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1687		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1688	fe->permissions = cpu_to_le32(udfperms);
1689
1690	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1691		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1692	else
1693		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1694
1695	fe->informationLength = cpu_to_le64(inode->i_size);
1696
1697	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1698		struct regid *eid;
1699		struct deviceSpec *dsea =
1700			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1701		if (!dsea) {
1702			dsea = (struct deviceSpec *)
1703				udf_add_extendedattr(inode,
1704						     sizeof(struct deviceSpec) +
1705						     sizeof(struct regid), 12, 0x3);
1706			dsea->attrType = cpu_to_le32(12);
1707			dsea->attrSubtype = 1;
1708			dsea->attrLength = cpu_to_le32(
1709						sizeof(struct deviceSpec) +
1710						sizeof(struct regid));
1711			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1712		}
1713		eid = (struct regid *)dsea->impUse;
1714		memset(eid, 0, sizeof(struct regid));
1715		strcpy(eid->ident, UDF_ID_DEVELOPER);
1716		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1717		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1718		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1719		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1720	}
1721
1722	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1723		lb_recorded = 0; /* No extents => no blocks! */
1724	else
1725		lb_recorded =
1726			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1727			(blocksize_bits - 9);
1728
1729	if (iinfo->i_efe == 0) {
1730		memcpy(bh->b_data + sizeof(struct fileEntry),
1731		       iinfo->i_ext.i_data,
1732		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1733		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1734
1735		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1736		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1737		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1738		memset(&(fe->impIdent), 0, sizeof(struct regid));
1739		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1740		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1741		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1742		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1743		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1744		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1745		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1746		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1747		crclen = sizeof(struct fileEntry);
1748	} else {
1749		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1750		       iinfo->i_ext.i_data,
1751		       inode->i_sb->s_blocksize -
1752					sizeof(struct extendedFileEntry));
1753		efe->objectSize = cpu_to_le64(inode->i_size);
 
1754		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1755
1756		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1757		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1758		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1759			iinfo->i_crtime = inode->i_atime;
1760
1761		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1762		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1763		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1764			iinfo->i_crtime = inode->i_mtime;
1765
1766		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1767		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1768		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1769			iinfo->i_crtime = inode->i_ctime;
1770
1771		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1772		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1773		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1774		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1775
1776		memset(&(efe->impIdent), 0, sizeof(struct regid));
1777		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1778		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1779		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1780		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1781		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1782		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1783		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1784		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1785		crclen = sizeof(struct extendedFileEntry);
1786	}
1787
1788finish:
1789	if (iinfo->i_strat4096) {
1790		fe->icbTag.strategyType = cpu_to_le16(4096);
1791		fe->icbTag.strategyParameter = cpu_to_le16(1);
1792		fe->icbTag.numEntries = cpu_to_le16(2);
1793	} else {
1794		fe->icbTag.strategyType = cpu_to_le16(4);
1795		fe->icbTag.numEntries = cpu_to_le16(1);
1796	}
1797
1798	if (iinfo->i_use)
1799		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1800	else if (S_ISDIR(inode->i_mode))
1801		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1802	else if (S_ISREG(inode->i_mode))
1803		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1804	else if (S_ISLNK(inode->i_mode))
1805		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1806	else if (S_ISBLK(inode->i_mode))
1807		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1808	else if (S_ISCHR(inode->i_mode))
1809		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1810	else if (S_ISFIFO(inode->i_mode))
1811		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1812	else if (S_ISSOCK(inode->i_mode))
1813		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1814
1815	icbflags =	iinfo->i_alloc_type |
1816			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1817			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1818			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1819			(le16_to_cpu(fe->icbTag.flags) &
1820				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1821				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1822
1823	fe->icbTag.flags = cpu_to_le16(icbflags);
1824	if (sbi->s_udfrev >= 0x0200)
1825		fe->descTag.descVersion = cpu_to_le16(3);
1826	else
1827		fe->descTag.descVersion = cpu_to_le16(2);
1828	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1829	fe->descTag.tagLocation = cpu_to_le32(
1830					iinfo->i_location.logicalBlockNum);
1831	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1832	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1833	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1834						  crclen));
1835	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1836
1837	set_buffer_uptodate(bh);
1838	unlock_buffer(bh);
1839
1840	/* write the data blocks */
1841	mark_buffer_dirty(bh);
1842	if (do_sync) {
1843		sync_dirty_buffer(bh);
1844		if (buffer_write_io_error(bh)) {
1845			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1846				 inode->i_ino);
1847			err = -EIO;
1848		}
1849	}
1850	brelse(bh);
1851
1852	return err;
1853}
1854
1855struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1856			 bool hidden_inode)
1857{
1858	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1859	struct inode *inode = iget_locked(sb, block);
1860	int err;
1861
1862	if (!inode)
1863		return ERR_PTR(-ENOMEM);
1864
1865	if (!(inode->i_state & I_NEW))
1866		return inode;
1867
1868	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1869	err = udf_read_inode(inode, hidden_inode);
1870	if (err < 0) {
1871		iget_failed(inode);
1872		return ERR_PTR(err);
1873	}
1874	unlock_new_inode(inode);
1875
1876	return inode;
1877}
1878
1879int udf_setup_indirect_aext(struct inode *inode, int block,
1880			    struct extent_position *epos)
1881{
1882	struct super_block *sb = inode->i_sb;
1883	struct buffer_head *bh;
1884	struct allocExtDesc *aed;
1885	struct extent_position nepos;
1886	struct kernel_lb_addr neloc;
1887	int ver, adsize;
1888
1889	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1890		adsize = sizeof(struct short_ad);
1891	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1892		adsize = sizeof(struct long_ad);
1893	else
1894		return -EIO;
1895
1896	neloc.logicalBlockNum = block;
1897	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1898
1899	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1900	if (!bh)
1901		return -EIO;
1902	lock_buffer(bh);
1903	memset(bh->b_data, 0x00, sb->s_blocksize);
1904	set_buffer_uptodate(bh);
1905	unlock_buffer(bh);
1906	mark_buffer_dirty_inode(bh, inode);
1907
1908	aed = (struct allocExtDesc *)(bh->b_data);
1909	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1910		aed->previousAllocExtLocation =
1911				cpu_to_le32(epos->block.logicalBlockNum);
1912	}
1913	aed->lengthAllocDescs = cpu_to_le32(0);
1914	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1915		ver = 3;
1916	else
1917		ver = 2;
1918	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1919		    sizeof(struct tag));
1920
1921	nepos.block = neloc;
1922	nepos.offset = sizeof(struct allocExtDesc);
1923	nepos.bh = bh;
1924
1925	/*
1926	 * Do we have to copy current last extent to make space for indirect
1927	 * one?
1928	 */
1929	if (epos->offset + adsize > sb->s_blocksize) {
1930		struct kernel_lb_addr cp_loc;
1931		uint32_t cp_len;
1932		int cp_type;
1933
1934		epos->offset -= adsize;
1935		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1936		cp_len |= ((uint32_t)cp_type) << 30;
1937
1938		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1939		udf_write_aext(inode, epos, &nepos.block,
1940			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1941	} else {
1942		__udf_add_aext(inode, epos, &nepos.block,
1943			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1944	}
1945
1946	brelse(epos->bh);
1947	*epos = nepos;
1948
1949	return 0;
1950}
1951
1952/*
1953 * Append extent at the given position - should be the first free one in inode
1954 * / indirect extent. This function assumes there is enough space in the inode
1955 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1956 */
1957int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1958		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1959{
1960	struct udf_inode_info *iinfo = UDF_I(inode);
1961	struct allocExtDesc *aed;
1962	int adsize;
1963
1964	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1965		adsize = sizeof(struct short_ad);
1966	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1967		adsize = sizeof(struct long_ad);
1968	else
1969		return -EIO;
1970
1971	if (!epos->bh) {
1972		WARN_ON(iinfo->i_lenAlloc !=
1973			epos->offset - udf_file_entry_alloc_offset(inode));
1974	} else {
1975		aed = (struct allocExtDesc *)epos->bh->b_data;
1976		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1977			epos->offset - sizeof(struct allocExtDesc));
1978		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1979	}
1980
1981	udf_write_aext(inode, epos, eloc, elen, inc);
1982
1983	if (!epos->bh) {
1984		iinfo->i_lenAlloc += adsize;
1985		mark_inode_dirty(inode);
1986	} else {
1987		aed = (struct allocExtDesc *)epos->bh->b_data;
1988		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1989		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1990				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1991			udf_update_tag(epos->bh->b_data,
1992					epos->offset + (inc ? 0 : adsize));
1993		else
1994			udf_update_tag(epos->bh->b_data,
1995					sizeof(struct allocExtDesc));
1996		mark_buffer_dirty_inode(epos->bh, inode);
1997	}
1998
1999	return 0;
2000}
2001
2002/*
2003 * Append extent at given position - should be the first free one in inode
2004 * / indirect extent. Takes care of allocating and linking indirect blocks.
2005 */
2006int udf_add_aext(struct inode *inode, struct extent_position *epos,
2007		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2008{
2009	int adsize;
2010	struct super_block *sb = inode->i_sb;
2011
2012	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013		adsize = sizeof(struct short_ad);
2014	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015		adsize = sizeof(struct long_ad);
2016	else
2017		return -EIO;
2018
2019	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2020		int err;
2021		int new_block;
2022
2023		new_block = udf_new_block(sb, NULL,
2024					  epos->block.partitionReferenceNum,
2025					  epos->block.logicalBlockNum, &err);
2026		if (!new_block)
2027			return -ENOSPC;
2028
2029		err = udf_setup_indirect_aext(inode, new_block, epos);
2030		if (err)
2031			return err;
2032	}
2033
2034	return __udf_add_aext(inode, epos, eloc, elen, inc);
2035}
2036
2037void udf_write_aext(struct inode *inode, struct extent_position *epos,
2038		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2039{
2040	int adsize;
2041	uint8_t *ptr;
2042	struct short_ad *sad;
2043	struct long_ad *lad;
2044	struct udf_inode_info *iinfo = UDF_I(inode);
2045
2046	if (!epos->bh)
2047		ptr = iinfo->i_ext.i_data + epos->offset -
2048			udf_file_entry_alloc_offset(inode) +
2049			iinfo->i_lenEAttr;
2050	else
2051		ptr = epos->bh->b_data + epos->offset;
2052
2053	switch (iinfo->i_alloc_type) {
2054	case ICBTAG_FLAG_AD_SHORT:
2055		sad = (struct short_ad *)ptr;
2056		sad->extLength = cpu_to_le32(elen);
2057		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2058		adsize = sizeof(struct short_ad);
2059		break;
2060	case ICBTAG_FLAG_AD_LONG:
2061		lad = (struct long_ad *)ptr;
2062		lad->extLength = cpu_to_le32(elen);
2063		lad->extLocation = cpu_to_lelb(*eloc);
2064		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2065		adsize = sizeof(struct long_ad);
2066		break;
2067	default:
2068		return;
2069	}
2070
2071	if (epos->bh) {
2072		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2073		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2074			struct allocExtDesc *aed =
2075				(struct allocExtDesc *)epos->bh->b_data;
2076			udf_update_tag(epos->bh->b_data,
2077				       le32_to_cpu(aed->lengthAllocDescs) +
2078				       sizeof(struct allocExtDesc));
2079		}
2080		mark_buffer_dirty_inode(epos->bh, inode);
2081	} else {
2082		mark_inode_dirty(inode);
2083	}
2084
2085	if (inc)
2086		epos->offset += adsize;
2087}
2088
2089/*
2090 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2091 * someone does some weird stuff.
2092 */
2093#define UDF_MAX_INDIR_EXTS 16
2094
2095int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2096		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2097{
2098	int8_t etype;
2099	unsigned int indirections = 0;
2100
2101	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2102	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2103		int block;
2104
2105		if (++indirections > UDF_MAX_INDIR_EXTS) {
2106			udf_err(inode->i_sb,
2107				"too many indirect extents in inode %lu\n",
2108				inode->i_ino);
2109			return -1;
2110		}
2111
2112		epos->block = *eloc;
2113		epos->offset = sizeof(struct allocExtDesc);
2114		brelse(epos->bh);
2115		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2116		epos->bh = udf_tread(inode->i_sb, block);
2117		if (!epos->bh) {
2118			udf_debug("reading block %d failed!\n", block);
2119			return -1;
2120		}
2121	}
2122
2123	return etype;
2124}
2125
2126int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2127			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2128{
2129	int alen;
2130	int8_t etype;
2131	uint8_t *ptr;
2132	struct short_ad *sad;
2133	struct long_ad *lad;
2134	struct udf_inode_info *iinfo = UDF_I(inode);
2135
2136	if (!epos->bh) {
2137		if (!epos->offset)
2138			epos->offset = udf_file_entry_alloc_offset(inode);
2139		ptr = iinfo->i_ext.i_data + epos->offset -
2140			udf_file_entry_alloc_offset(inode) +
2141			iinfo->i_lenEAttr;
2142		alen = udf_file_entry_alloc_offset(inode) +
2143							iinfo->i_lenAlloc;
2144	} else {
2145		if (!epos->offset)
2146			epos->offset = sizeof(struct allocExtDesc);
2147		ptr = epos->bh->b_data + epos->offset;
2148		alen = sizeof(struct allocExtDesc) +
2149			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2150							lengthAllocDescs);
2151	}
2152
2153	switch (iinfo->i_alloc_type) {
2154	case ICBTAG_FLAG_AD_SHORT:
2155		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2156		if (!sad)
2157			return -1;
2158		etype = le32_to_cpu(sad->extLength) >> 30;
2159		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2160		eloc->partitionReferenceNum =
2161				iinfo->i_location.partitionReferenceNum;
2162		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2163		break;
2164	case ICBTAG_FLAG_AD_LONG:
2165		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2166		if (!lad)
2167			return -1;
2168		etype = le32_to_cpu(lad->extLength) >> 30;
2169		*eloc = lelb_to_cpu(lad->extLocation);
2170		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2171		break;
2172	default:
2173		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2174		return -1;
2175	}
2176
2177	return etype;
2178}
2179
2180static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2181			      struct kernel_lb_addr neloc, uint32_t nelen)
2182{
2183	struct kernel_lb_addr oeloc;
2184	uint32_t oelen;
2185	int8_t etype;
2186
2187	if (epos.bh)
2188		get_bh(epos.bh);
2189
2190	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2191		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2192		neloc = oeloc;
2193		nelen = (etype << 30) | oelen;
2194	}
2195	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2196	brelse(epos.bh);
2197
2198	return (nelen >> 30);
2199}
2200
2201int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2202		       struct kernel_lb_addr eloc, uint32_t elen)
2203{
2204	struct extent_position oepos;
2205	int adsize;
2206	int8_t etype;
2207	struct allocExtDesc *aed;
2208	struct udf_inode_info *iinfo;
 
 
2209
2210	if (epos.bh) {
2211		get_bh(epos.bh);
2212		get_bh(epos.bh);
2213	}
2214
2215	iinfo = UDF_I(inode);
2216	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2217		adsize = sizeof(struct short_ad);
2218	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2219		adsize = sizeof(struct long_ad);
2220	else
2221		adsize = 0;
2222
2223	oepos = epos;
2224	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2225		return -1;
2226
2227	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2228		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2229		if (oepos.bh != epos.bh) {
2230			oepos.block = epos.block;
2231			brelse(oepos.bh);
2232			get_bh(epos.bh);
2233			oepos.bh = epos.bh;
2234			oepos.offset = epos.offset - adsize;
2235		}
2236	}
2237	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2238	elen = 0;
2239
2240	if (epos.bh != oepos.bh) {
2241		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2242		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2243		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2244		if (!oepos.bh) {
2245			iinfo->i_lenAlloc -= (adsize * 2);
2246			mark_inode_dirty(inode);
2247		} else {
2248			aed = (struct allocExtDesc *)oepos.bh->b_data;
2249			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2250			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2251			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2252				udf_update_tag(oepos.bh->b_data,
2253						oepos.offset - (2 * adsize));
2254			else
2255				udf_update_tag(oepos.bh->b_data,
2256						sizeof(struct allocExtDesc));
2257			mark_buffer_dirty_inode(oepos.bh, inode);
2258		}
2259	} else {
2260		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2261		if (!oepos.bh) {
2262			iinfo->i_lenAlloc -= adsize;
2263			mark_inode_dirty(inode);
2264		} else {
2265			aed = (struct allocExtDesc *)oepos.bh->b_data;
2266			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2267			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2268			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2269				udf_update_tag(oepos.bh->b_data,
2270						epos.offset - adsize);
2271			else
2272				udf_update_tag(oepos.bh->b_data,
2273						sizeof(struct allocExtDesc));
2274			mark_buffer_dirty_inode(oepos.bh, inode);
2275		}
2276	}
2277
2278	brelse(epos.bh);
2279	brelse(oepos.bh);
2280
2281	return (elen >> 30);
2282}
2283
2284int8_t inode_bmap(struct inode *inode, sector_t block,
2285		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2286		  uint32_t *elen, sector_t *offset)
2287{
2288	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2289	loff_t lbcount = 0, bcount =
2290	    (loff_t) block << blocksize_bits;
2291	int8_t etype;
2292	struct udf_inode_info *iinfo;
2293
2294	iinfo = UDF_I(inode);
2295	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2296		pos->offset = 0;
2297		pos->block = iinfo->i_location;
2298		pos->bh = NULL;
2299	}
2300	*elen = 0;
2301	do {
2302		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2303		if (etype == -1) {
2304			*offset = (bcount - lbcount) >> blocksize_bits;
2305			iinfo->i_lenExtents = lbcount;
2306			return -1;
2307		}
2308		lbcount += *elen;
2309	} while (lbcount <= bcount);
2310	/* update extent cache */
2311	udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2312	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2313
2314	return etype;
2315}
2316
2317long udf_block_map(struct inode *inode, sector_t block)
2318{
2319	struct kernel_lb_addr eloc;
2320	uint32_t elen;
2321	sector_t offset;
2322	struct extent_position epos = {};
2323	int ret;
2324
2325	down_read(&UDF_I(inode)->i_data_sem);
2326
2327	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2328						(EXT_RECORDED_ALLOCATED >> 30))
2329		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2330	else
2331		ret = 0;
2332
2333	up_read(&UDF_I(inode)->i_data_sem);
2334	brelse(epos.bh);
2335
2336	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2337		return udf_fixed_to_variable(ret);
2338	else
2339		return ret;
2340}