Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!inode->i_nlink && !is_bad_inode(inode)) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 truncate_inode_pages_final(&inode->i_data);
148 invalidate_inode_buffers(inode);
149 clear_inode(inode);
150 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
151 inode->i_size != iinfo->i_lenExtents) {
152 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
153 inode->i_ino, inode->i_mode,
154 (unsigned long long)inode->i_size,
155 (unsigned long long)iinfo->i_lenExtents);
156 }
157 kfree(iinfo->i_ext.i_data);
158 iinfo->i_ext.i_data = NULL;
159 udf_clear_extent_cache(inode);
160 if (want_delete) {
161 udf_free_inode(inode);
162 }
163}
164
165static void udf_write_failed(struct address_space *mapping, loff_t to)
166{
167 struct inode *inode = mapping->host;
168 struct udf_inode_info *iinfo = UDF_I(inode);
169 loff_t isize = inode->i_size;
170
171 if (to > isize) {
172 truncate_pagecache(inode, isize);
173 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
174 down_write(&iinfo->i_data_sem);
175 udf_clear_extent_cache(inode);
176 udf_truncate_extents(inode);
177 up_write(&iinfo->i_data_sem);
178 }
179 }
180}
181
182static int udf_writepage(struct page *page, struct writeback_control *wbc)
183{
184 return block_write_full_page(page, udf_get_block, wbc);
185}
186
187static int udf_writepages(struct address_space *mapping,
188 struct writeback_control *wbc)
189{
190 return mpage_writepages(mapping, wbc, udf_get_block);
191}
192
193static int udf_readpage(struct file *file, struct page *page)
194{
195 return mpage_readpage(page, udf_get_block);
196}
197
198static void udf_readahead(struct readahead_control *rac)
199{
200 mpage_readahead(rac, udf_get_block);
201}
202
203static int udf_write_begin(struct file *file, struct address_space *mapping,
204 loff_t pos, unsigned len, unsigned flags,
205 struct page **pagep, void **fsdata)
206{
207 int ret;
208
209 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
210 if (unlikely(ret))
211 udf_write_failed(mapping, pos + len);
212 return ret;
213}
214
215static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
216{
217 struct file *file = iocb->ki_filp;
218 struct address_space *mapping = file->f_mapping;
219 struct inode *inode = mapping->host;
220 size_t count = iov_iter_count(iter);
221 ssize_t ret;
222
223 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
224 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
225 udf_write_failed(mapping, iocb->ki_pos + count);
226 return ret;
227}
228
229static sector_t udf_bmap(struct address_space *mapping, sector_t block)
230{
231 return generic_block_bmap(mapping, block, udf_get_block);
232}
233
234const struct address_space_operations udf_aops = {
235 .readpage = udf_readpage,
236 .readahead = udf_readahead,
237 .writepage = udf_writepage,
238 .writepages = udf_writepages,
239 .write_begin = udf_write_begin,
240 .write_end = generic_write_end,
241 .direct_IO = udf_direct_IO,
242 .bmap = udf_bmap,
243};
244
245/*
246 * Expand file stored in ICB to a normal one-block-file
247 *
248 * This function requires i_data_sem for writing and releases it.
249 * This function requires i_mutex held
250 */
251int udf_expand_file_adinicb(struct inode *inode)
252{
253 struct page *page;
254 char *kaddr;
255 struct udf_inode_info *iinfo = UDF_I(inode);
256 int err;
257 struct writeback_control udf_wbc = {
258 .sync_mode = WB_SYNC_NONE,
259 .nr_to_write = 1,
260 };
261
262 WARN_ON_ONCE(!inode_is_locked(inode));
263 if (!iinfo->i_lenAlloc) {
264 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
265 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
266 else
267 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
268 /* from now on we have normal address_space methods */
269 inode->i_data.a_ops = &udf_aops;
270 up_write(&iinfo->i_data_sem);
271 mark_inode_dirty(inode);
272 return 0;
273 }
274 /*
275 * Release i_data_sem so that we can lock a page - page lock ranks
276 * above i_data_sem. i_mutex still protects us against file changes.
277 */
278 up_write(&iinfo->i_data_sem);
279
280 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
281 if (!page)
282 return -ENOMEM;
283
284 if (!PageUptodate(page)) {
285 kaddr = kmap_atomic(page);
286 memset(kaddr + iinfo->i_lenAlloc, 0x00,
287 PAGE_SIZE - iinfo->i_lenAlloc);
288 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
289 iinfo->i_lenAlloc);
290 flush_dcache_page(page);
291 SetPageUptodate(page);
292 kunmap_atomic(kaddr);
293 }
294 down_write(&iinfo->i_data_sem);
295 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
296 iinfo->i_lenAlloc);
297 iinfo->i_lenAlloc = 0;
298 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
300 else
301 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
302 /* from now on we have normal address_space methods */
303 inode->i_data.a_ops = &udf_aops;
304 up_write(&iinfo->i_data_sem);
305 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
306 if (err) {
307 /* Restore everything back so that we don't lose data... */
308 lock_page(page);
309 down_write(&iinfo->i_data_sem);
310 kaddr = kmap_atomic(page);
311 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
312 inode->i_size);
313 kunmap_atomic(kaddr);
314 unlock_page(page);
315 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
316 inode->i_data.a_ops = &udf_adinicb_aops;
317 up_write(&iinfo->i_data_sem);
318 }
319 put_page(page);
320 mark_inode_dirty(inode);
321
322 return err;
323}
324
325struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
326 udf_pblk_t *block, int *err)
327{
328 udf_pblk_t newblock;
329 struct buffer_head *dbh = NULL;
330 struct kernel_lb_addr eloc;
331 uint8_t alloctype;
332 struct extent_position epos;
333
334 struct udf_fileident_bh sfibh, dfibh;
335 loff_t f_pos = udf_ext0_offset(inode);
336 int size = udf_ext0_offset(inode) + inode->i_size;
337 struct fileIdentDesc cfi, *sfi, *dfi;
338 struct udf_inode_info *iinfo = UDF_I(inode);
339
340 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
341 alloctype = ICBTAG_FLAG_AD_SHORT;
342 else
343 alloctype = ICBTAG_FLAG_AD_LONG;
344
345 if (!inode->i_size) {
346 iinfo->i_alloc_type = alloctype;
347 mark_inode_dirty(inode);
348 return NULL;
349 }
350
351 /* alloc block, and copy data to it */
352 *block = udf_new_block(inode->i_sb, inode,
353 iinfo->i_location.partitionReferenceNum,
354 iinfo->i_location.logicalBlockNum, err);
355 if (!(*block))
356 return NULL;
357 newblock = udf_get_pblock(inode->i_sb, *block,
358 iinfo->i_location.partitionReferenceNum,
359 0);
360 if (!newblock)
361 return NULL;
362 dbh = udf_tgetblk(inode->i_sb, newblock);
363 if (!dbh)
364 return NULL;
365 lock_buffer(dbh);
366 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
367 set_buffer_uptodate(dbh);
368 unlock_buffer(dbh);
369 mark_buffer_dirty_inode(dbh, inode);
370
371 sfibh.soffset = sfibh.eoffset =
372 f_pos & (inode->i_sb->s_blocksize - 1);
373 sfibh.sbh = sfibh.ebh = NULL;
374 dfibh.soffset = dfibh.eoffset = 0;
375 dfibh.sbh = dfibh.ebh = dbh;
376 while (f_pos < size) {
377 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
378 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
379 NULL, NULL, NULL);
380 if (!sfi) {
381 brelse(dbh);
382 return NULL;
383 }
384 iinfo->i_alloc_type = alloctype;
385 sfi->descTag.tagLocation = cpu_to_le32(*block);
386 dfibh.soffset = dfibh.eoffset;
387 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
388 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
389 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
390 sfi->fileIdent +
391 le16_to_cpu(sfi->lengthOfImpUse))) {
392 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
393 brelse(dbh);
394 return NULL;
395 }
396 }
397 mark_buffer_dirty_inode(dbh, inode);
398
399 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
400 iinfo->i_lenAlloc);
401 iinfo->i_lenAlloc = 0;
402 eloc.logicalBlockNum = *block;
403 eloc.partitionReferenceNum =
404 iinfo->i_location.partitionReferenceNum;
405 iinfo->i_lenExtents = inode->i_size;
406 epos.bh = NULL;
407 epos.block = iinfo->i_location;
408 epos.offset = udf_file_entry_alloc_offset(inode);
409 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
410 /* UniqueID stuff */
411
412 brelse(epos.bh);
413 mark_inode_dirty(inode);
414 return dbh;
415}
416
417static int udf_get_block(struct inode *inode, sector_t block,
418 struct buffer_head *bh_result, int create)
419{
420 int err, new;
421 sector_t phys = 0;
422 struct udf_inode_info *iinfo;
423
424 if (!create) {
425 phys = udf_block_map(inode, block);
426 if (phys)
427 map_bh(bh_result, inode->i_sb, phys);
428 return 0;
429 }
430
431 err = -EIO;
432 new = 0;
433 iinfo = UDF_I(inode);
434
435 down_write(&iinfo->i_data_sem);
436 if (block == iinfo->i_next_alloc_block + 1) {
437 iinfo->i_next_alloc_block++;
438 iinfo->i_next_alloc_goal++;
439 }
440
441 udf_clear_extent_cache(inode);
442 phys = inode_getblk(inode, block, &err, &new);
443 if (!phys)
444 goto abort;
445
446 if (new)
447 set_buffer_new(bh_result);
448 map_bh(bh_result, inode->i_sb, phys);
449
450abort:
451 up_write(&iinfo->i_data_sem);
452 return err;
453}
454
455static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
456 int create, int *err)
457{
458 struct buffer_head *bh;
459 struct buffer_head dummy;
460
461 dummy.b_state = 0;
462 dummy.b_blocknr = -1000;
463 *err = udf_get_block(inode, block, &dummy, create);
464 if (!*err && buffer_mapped(&dummy)) {
465 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
466 if (buffer_new(&dummy)) {
467 lock_buffer(bh);
468 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
469 set_buffer_uptodate(bh);
470 unlock_buffer(bh);
471 mark_buffer_dirty_inode(bh, inode);
472 }
473 return bh;
474 }
475
476 return NULL;
477}
478
479/* Extend the file with new blocks totaling 'new_block_bytes',
480 * return the number of extents added
481 */
482static int udf_do_extend_file(struct inode *inode,
483 struct extent_position *last_pos,
484 struct kernel_long_ad *last_ext,
485 loff_t new_block_bytes)
486{
487 uint32_t add;
488 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
489 struct super_block *sb = inode->i_sb;
490 struct kernel_lb_addr prealloc_loc = {};
491 uint32_t prealloc_len = 0;
492 struct udf_inode_info *iinfo;
493 int err;
494
495 /* The previous extent is fake and we should not extend by anything
496 * - there's nothing to do... */
497 if (!new_block_bytes && fake)
498 return 0;
499
500 iinfo = UDF_I(inode);
501 /* Round the last extent up to a multiple of block size */
502 if (last_ext->extLength & (sb->s_blocksize - 1)) {
503 last_ext->extLength =
504 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
505 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
506 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
507 iinfo->i_lenExtents =
508 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
509 ~(sb->s_blocksize - 1);
510 }
511
512 /* Last extent are just preallocated blocks? */
513 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
514 EXT_NOT_RECORDED_ALLOCATED) {
515 /* Save the extent so that we can reattach it to the end */
516 prealloc_loc = last_ext->extLocation;
517 prealloc_len = last_ext->extLength;
518 /* Mark the extent as a hole */
519 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
520 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
521 last_ext->extLocation.logicalBlockNum = 0;
522 last_ext->extLocation.partitionReferenceNum = 0;
523 }
524
525 /* Can we merge with the previous extent? */
526 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
527 EXT_NOT_RECORDED_NOT_ALLOCATED) {
528 add = (1 << 30) - sb->s_blocksize -
529 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
530 if (add > new_block_bytes)
531 add = new_block_bytes;
532 new_block_bytes -= add;
533 last_ext->extLength += add;
534 }
535
536 if (fake) {
537 udf_add_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539 count++;
540 } else {
541 struct kernel_lb_addr tmploc;
542 uint32_t tmplen;
543
544 udf_write_aext(inode, last_pos, &last_ext->extLocation,
545 last_ext->extLength, 1);
546 /*
547 * We've rewritten the last extent but there may be empty
548 * indirect extent after it - enter it.
549 */
550 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
551 }
552
553 /* Managed to do everything necessary? */
554 if (!new_block_bytes)
555 goto out;
556
557 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
558 last_ext->extLocation.logicalBlockNum = 0;
559 last_ext->extLocation.partitionReferenceNum = 0;
560 add = (1 << 30) - sb->s_blocksize;
561 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
562
563 /* Create enough extents to cover the whole hole */
564 while (new_block_bytes > add) {
565 new_block_bytes -= add;
566 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
567 last_ext->extLength, 1);
568 if (err)
569 return err;
570 count++;
571 }
572 if (new_block_bytes) {
573 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
574 new_block_bytes;
575 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
576 last_ext->extLength, 1);
577 if (err)
578 return err;
579 count++;
580 }
581
582out:
583 /* Do we have some preallocated blocks saved? */
584 if (prealloc_len) {
585 err = udf_add_aext(inode, last_pos, &prealloc_loc,
586 prealloc_len, 1);
587 if (err)
588 return err;
589 last_ext->extLocation = prealloc_loc;
590 last_ext->extLength = prealloc_len;
591 count++;
592 }
593
594 /* last_pos should point to the last written extent... */
595 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
596 last_pos->offset -= sizeof(struct short_ad);
597 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
598 last_pos->offset -= sizeof(struct long_ad);
599 else
600 return -EIO;
601
602 return count;
603}
604
605/* Extend the final block of the file to final_block_len bytes */
606static void udf_do_extend_final_block(struct inode *inode,
607 struct extent_position *last_pos,
608 struct kernel_long_ad *last_ext,
609 uint32_t final_block_len)
610{
611 struct super_block *sb = inode->i_sb;
612 uint32_t added_bytes;
613
614 added_bytes = final_block_len -
615 (last_ext->extLength & (sb->s_blocksize - 1));
616 last_ext->extLength += added_bytes;
617 UDF_I(inode)->i_lenExtents += added_bytes;
618
619 udf_write_aext(inode, last_pos, &last_ext->extLocation,
620 last_ext->extLength, 1);
621}
622
623static int udf_extend_file(struct inode *inode, loff_t newsize)
624{
625
626 struct extent_position epos;
627 struct kernel_lb_addr eloc;
628 uint32_t elen;
629 int8_t etype;
630 struct super_block *sb = inode->i_sb;
631 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
632 unsigned long partial_final_block;
633 int adsize;
634 struct udf_inode_info *iinfo = UDF_I(inode);
635 struct kernel_long_ad extent;
636 int err = 0;
637 int within_final_block;
638
639 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
640 adsize = sizeof(struct short_ad);
641 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
642 adsize = sizeof(struct long_ad);
643 else
644 BUG();
645
646 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
647 within_final_block = (etype != -1);
648
649 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
650 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
651 /* File has no extents at all or has empty last
652 * indirect extent! Create a fake extent... */
653 extent.extLocation.logicalBlockNum = 0;
654 extent.extLocation.partitionReferenceNum = 0;
655 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
656 } else {
657 epos.offset -= adsize;
658 etype = udf_next_aext(inode, &epos, &extent.extLocation,
659 &extent.extLength, 0);
660 extent.extLength |= etype << 30;
661 }
662
663 partial_final_block = newsize & (sb->s_blocksize - 1);
664
665 /* File has extent covering the new size (could happen when extending
666 * inside a block)?
667 */
668 if (within_final_block) {
669 /* Extending file within the last file block */
670 udf_do_extend_final_block(inode, &epos, &extent,
671 partial_final_block);
672 } else {
673 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
674 partial_final_block;
675 err = udf_do_extend_file(inode, &epos, &extent, add);
676 }
677
678 if (err < 0)
679 goto out;
680 err = 0;
681 iinfo->i_lenExtents = newsize;
682out:
683 brelse(epos.bh);
684 return err;
685}
686
687static sector_t inode_getblk(struct inode *inode, sector_t block,
688 int *err, int *new)
689{
690 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
691 struct extent_position prev_epos, cur_epos, next_epos;
692 int count = 0, startnum = 0, endnum = 0;
693 uint32_t elen = 0, tmpelen;
694 struct kernel_lb_addr eloc, tmpeloc;
695 int c = 1;
696 loff_t lbcount = 0, b_off = 0;
697 udf_pblk_t newblocknum, newblock;
698 sector_t offset = 0;
699 int8_t etype;
700 struct udf_inode_info *iinfo = UDF_I(inode);
701 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
702 int lastblock = 0;
703 bool isBeyondEOF;
704
705 *err = 0;
706 *new = 0;
707 prev_epos.offset = udf_file_entry_alloc_offset(inode);
708 prev_epos.block = iinfo->i_location;
709 prev_epos.bh = NULL;
710 cur_epos = next_epos = prev_epos;
711 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
712
713 /* find the extent which contains the block we are looking for.
714 alternate between laarr[0] and laarr[1] for locations of the
715 current extent, and the previous extent */
716 do {
717 if (prev_epos.bh != cur_epos.bh) {
718 brelse(prev_epos.bh);
719 get_bh(cur_epos.bh);
720 prev_epos.bh = cur_epos.bh;
721 }
722 if (cur_epos.bh != next_epos.bh) {
723 brelse(cur_epos.bh);
724 get_bh(next_epos.bh);
725 cur_epos.bh = next_epos.bh;
726 }
727
728 lbcount += elen;
729
730 prev_epos.block = cur_epos.block;
731 cur_epos.block = next_epos.block;
732
733 prev_epos.offset = cur_epos.offset;
734 cur_epos.offset = next_epos.offset;
735
736 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
737 if (etype == -1)
738 break;
739
740 c = !c;
741
742 laarr[c].extLength = (etype << 30) | elen;
743 laarr[c].extLocation = eloc;
744
745 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
746 pgoal = eloc.logicalBlockNum +
747 ((elen + inode->i_sb->s_blocksize - 1) >>
748 inode->i_sb->s_blocksize_bits);
749
750 count++;
751 } while (lbcount + elen <= b_off);
752
753 b_off -= lbcount;
754 offset = b_off >> inode->i_sb->s_blocksize_bits;
755 /*
756 * Move prev_epos and cur_epos into indirect extent if we are at
757 * the pointer to it
758 */
759 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
760 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
761
762 /* if the extent is allocated and recorded, return the block
763 if the extent is not a multiple of the blocksize, round up */
764
765 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
766 if (elen & (inode->i_sb->s_blocksize - 1)) {
767 elen = EXT_RECORDED_ALLOCATED |
768 ((elen + inode->i_sb->s_blocksize - 1) &
769 ~(inode->i_sb->s_blocksize - 1));
770 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
771 }
772 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
773 goto out_free;
774 }
775
776 /* Are we beyond EOF? */
777 if (etype == -1) {
778 int ret;
779 loff_t hole_len;
780 isBeyondEOF = true;
781 if (count) {
782 if (c)
783 laarr[0] = laarr[1];
784 startnum = 1;
785 } else {
786 /* Create a fake extent when there's not one */
787 memset(&laarr[0].extLocation, 0x00,
788 sizeof(struct kernel_lb_addr));
789 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
790 /* Will udf_do_extend_file() create real extent from
791 a fake one? */
792 startnum = (offset > 0);
793 }
794 /* Create extents for the hole between EOF and offset */
795 hole_len = (loff_t)offset << inode->i_blkbits;
796 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
797 if (ret < 0) {
798 *err = ret;
799 newblock = 0;
800 goto out_free;
801 }
802 c = 0;
803 offset = 0;
804 count += ret;
805 /* We are not covered by a preallocated extent? */
806 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
807 EXT_NOT_RECORDED_ALLOCATED) {
808 /* Is there any real extent? - otherwise we overwrite
809 * the fake one... */
810 if (count)
811 c = !c;
812 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
813 inode->i_sb->s_blocksize;
814 memset(&laarr[c].extLocation, 0x00,
815 sizeof(struct kernel_lb_addr));
816 count++;
817 }
818 endnum = c + 1;
819 lastblock = 1;
820 } else {
821 isBeyondEOF = false;
822 endnum = startnum = ((count > 2) ? 2 : count);
823
824 /* if the current extent is in position 0,
825 swap it with the previous */
826 if (!c && count != 1) {
827 laarr[2] = laarr[0];
828 laarr[0] = laarr[1];
829 laarr[1] = laarr[2];
830 c = 1;
831 }
832
833 /* if the current block is located in an extent,
834 read the next extent */
835 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
836 if (etype != -1) {
837 laarr[c + 1].extLength = (etype << 30) | elen;
838 laarr[c + 1].extLocation = eloc;
839 count++;
840 startnum++;
841 endnum++;
842 } else
843 lastblock = 1;
844 }
845
846 /* if the current extent is not recorded but allocated, get the
847 * block in the extent corresponding to the requested block */
848 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
849 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
850 else { /* otherwise, allocate a new block */
851 if (iinfo->i_next_alloc_block == block)
852 goal = iinfo->i_next_alloc_goal;
853
854 if (!goal) {
855 if (!(goal = pgoal)) /* XXX: what was intended here? */
856 goal = iinfo->i_location.logicalBlockNum + 1;
857 }
858
859 newblocknum = udf_new_block(inode->i_sb, inode,
860 iinfo->i_location.partitionReferenceNum,
861 goal, err);
862 if (!newblocknum) {
863 *err = -ENOSPC;
864 newblock = 0;
865 goto out_free;
866 }
867 if (isBeyondEOF)
868 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
869 }
870
871 /* if the extent the requsted block is located in contains multiple
872 * blocks, split the extent into at most three extents. blocks prior
873 * to requested block, requested block, and blocks after requested
874 * block */
875 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
876
877 /* We preallocate blocks only for regular files. It also makes sense
878 * for directories but there's a problem when to drop the
879 * preallocation. We might use some delayed work for that but I feel
880 * it's overengineering for a filesystem like UDF. */
881 if (S_ISREG(inode->i_mode))
882 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
883
884 /* merge any continuous blocks in laarr */
885 udf_merge_extents(inode, laarr, &endnum);
886
887 /* write back the new extents, inserting new extents if the new number
888 * of extents is greater than the old number, and deleting extents if
889 * the new number of extents is less than the old number */
890 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
891
892 newblock = udf_get_pblock(inode->i_sb, newblocknum,
893 iinfo->i_location.partitionReferenceNum, 0);
894 if (!newblock) {
895 *err = -EIO;
896 goto out_free;
897 }
898 *new = 1;
899 iinfo->i_next_alloc_block = block;
900 iinfo->i_next_alloc_goal = newblocknum;
901 inode->i_ctime = current_time(inode);
902
903 if (IS_SYNC(inode))
904 udf_sync_inode(inode);
905 else
906 mark_inode_dirty(inode);
907out_free:
908 brelse(prev_epos.bh);
909 brelse(cur_epos.bh);
910 brelse(next_epos.bh);
911 return newblock;
912}
913
914static void udf_split_extents(struct inode *inode, int *c, int offset,
915 udf_pblk_t newblocknum,
916 struct kernel_long_ad *laarr, int *endnum)
917{
918 unsigned long blocksize = inode->i_sb->s_blocksize;
919 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
920
921 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
922 (laarr[*c].extLength >> 30) ==
923 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
924 int curr = *c;
925 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
926 blocksize - 1) >> blocksize_bits;
927 int8_t etype = (laarr[curr].extLength >> 30);
928
929 if (blen == 1)
930 ;
931 else if (!offset || blen == offset + 1) {
932 laarr[curr + 2] = laarr[curr + 1];
933 laarr[curr + 1] = laarr[curr];
934 } else {
935 laarr[curr + 3] = laarr[curr + 1];
936 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
937 }
938
939 if (offset) {
940 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
941 udf_free_blocks(inode->i_sb, inode,
942 &laarr[curr].extLocation,
943 0, offset);
944 laarr[curr].extLength =
945 EXT_NOT_RECORDED_NOT_ALLOCATED |
946 (offset << blocksize_bits);
947 laarr[curr].extLocation.logicalBlockNum = 0;
948 laarr[curr].extLocation.
949 partitionReferenceNum = 0;
950 } else
951 laarr[curr].extLength = (etype << 30) |
952 (offset << blocksize_bits);
953 curr++;
954 (*c)++;
955 (*endnum)++;
956 }
957
958 laarr[curr].extLocation.logicalBlockNum = newblocknum;
959 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
960 laarr[curr].extLocation.partitionReferenceNum =
961 UDF_I(inode)->i_location.partitionReferenceNum;
962 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
963 blocksize;
964 curr++;
965
966 if (blen != offset + 1) {
967 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
968 laarr[curr].extLocation.logicalBlockNum +=
969 offset + 1;
970 laarr[curr].extLength = (etype << 30) |
971 ((blen - (offset + 1)) << blocksize_bits);
972 curr++;
973 (*endnum)++;
974 }
975 }
976}
977
978static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
979 struct kernel_long_ad *laarr,
980 int *endnum)
981{
982 int start, length = 0, currlength = 0, i;
983
984 if (*endnum >= (c + 1)) {
985 if (!lastblock)
986 return;
987 else
988 start = c;
989 } else {
990 if ((laarr[c + 1].extLength >> 30) ==
991 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
992 start = c + 1;
993 length = currlength =
994 (((laarr[c + 1].extLength &
995 UDF_EXTENT_LENGTH_MASK) +
996 inode->i_sb->s_blocksize - 1) >>
997 inode->i_sb->s_blocksize_bits);
998 } else
999 start = c;
1000 }
1001
1002 for (i = start + 1; i <= *endnum; i++) {
1003 if (i == *endnum) {
1004 if (lastblock)
1005 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1006 } else if ((laarr[i].extLength >> 30) ==
1007 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1008 length += (((laarr[i].extLength &
1009 UDF_EXTENT_LENGTH_MASK) +
1010 inode->i_sb->s_blocksize - 1) >>
1011 inode->i_sb->s_blocksize_bits);
1012 } else
1013 break;
1014 }
1015
1016 if (length) {
1017 int next = laarr[start].extLocation.logicalBlockNum +
1018 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1019 inode->i_sb->s_blocksize - 1) >>
1020 inode->i_sb->s_blocksize_bits);
1021 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1022 laarr[start].extLocation.partitionReferenceNum,
1023 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1024 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1025 currlength);
1026 if (numalloc) {
1027 if (start == (c + 1))
1028 laarr[start].extLength +=
1029 (numalloc <<
1030 inode->i_sb->s_blocksize_bits);
1031 else {
1032 memmove(&laarr[c + 2], &laarr[c + 1],
1033 sizeof(struct long_ad) * (*endnum - (c + 1)));
1034 (*endnum)++;
1035 laarr[c + 1].extLocation.logicalBlockNum = next;
1036 laarr[c + 1].extLocation.partitionReferenceNum =
1037 laarr[c].extLocation.
1038 partitionReferenceNum;
1039 laarr[c + 1].extLength =
1040 EXT_NOT_RECORDED_ALLOCATED |
1041 (numalloc <<
1042 inode->i_sb->s_blocksize_bits);
1043 start = c + 1;
1044 }
1045
1046 for (i = start + 1; numalloc && i < *endnum; i++) {
1047 int elen = ((laarr[i].extLength &
1048 UDF_EXTENT_LENGTH_MASK) +
1049 inode->i_sb->s_blocksize - 1) >>
1050 inode->i_sb->s_blocksize_bits;
1051
1052 if (elen > numalloc) {
1053 laarr[i].extLength -=
1054 (numalloc <<
1055 inode->i_sb->s_blocksize_bits);
1056 numalloc = 0;
1057 } else {
1058 numalloc -= elen;
1059 if (*endnum > (i + 1))
1060 memmove(&laarr[i],
1061 &laarr[i + 1],
1062 sizeof(struct long_ad) *
1063 (*endnum - (i + 1)));
1064 i--;
1065 (*endnum)--;
1066 }
1067 }
1068 UDF_I(inode)->i_lenExtents +=
1069 numalloc << inode->i_sb->s_blocksize_bits;
1070 }
1071 }
1072}
1073
1074static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1075 int *endnum)
1076{
1077 int i;
1078 unsigned long blocksize = inode->i_sb->s_blocksize;
1079 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1080
1081 for (i = 0; i < (*endnum - 1); i++) {
1082 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1083 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1084
1085 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1086 (((li->extLength >> 30) ==
1087 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1088 ((lip1->extLocation.logicalBlockNum -
1089 li->extLocation.logicalBlockNum) ==
1090 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091 blocksize - 1) >> blocksize_bits)))) {
1092
1093 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1096 lip1->extLength = (lip1->extLength -
1097 (li->extLength &
1098 UDF_EXTENT_LENGTH_MASK) +
1099 UDF_EXTENT_LENGTH_MASK) &
1100 ~(blocksize - 1);
1101 li->extLength = (li->extLength &
1102 UDF_EXTENT_FLAG_MASK) +
1103 (UDF_EXTENT_LENGTH_MASK + 1) -
1104 blocksize;
1105 lip1->extLocation.logicalBlockNum =
1106 li->extLocation.logicalBlockNum +
1107 ((li->extLength &
1108 UDF_EXTENT_LENGTH_MASK) >>
1109 blocksize_bits);
1110 } else {
1111 li->extLength = lip1->extLength +
1112 (((li->extLength &
1113 UDF_EXTENT_LENGTH_MASK) +
1114 blocksize - 1) & ~(blocksize - 1));
1115 if (*endnum > (i + 2))
1116 memmove(&laarr[i + 1], &laarr[i + 2],
1117 sizeof(struct long_ad) *
1118 (*endnum - (i + 2)));
1119 i--;
1120 (*endnum)--;
1121 }
1122 } else if (((li->extLength >> 30) ==
1123 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1124 ((lip1->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1126 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1127 ((li->extLength &
1128 UDF_EXTENT_LENGTH_MASK) +
1129 blocksize - 1) >> blocksize_bits);
1130 li->extLocation.logicalBlockNum = 0;
1131 li->extLocation.partitionReferenceNum = 0;
1132
1133 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1134 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1135 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1136 lip1->extLength = (lip1->extLength -
1137 (li->extLength &
1138 UDF_EXTENT_LENGTH_MASK) +
1139 UDF_EXTENT_LENGTH_MASK) &
1140 ~(blocksize - 1);
1141 li->extLength = (li->extLength &
1142 UDF_EXTENT_FLAG_MASK) +
1143 (UDF_EXTENT_LENGTH_MASK + 1) -
1144 blocksize;
1145 } else {
1146 li->extLength = lip1->extLength +
1147 (((li->extLength &
1148 UDF_EXTENT_LENGTH_MASK) +
1149 blocksize - 1) & ~(blocksize - 1));
1150 if (*endnum > (i + 2))
1151 memmove(&laarr[i + 1], &laarr[i + 2],
1152 sizeof(struct long_ad) *
1153 (*endnum - (i + 2)));
1154 i--;
1155 (*endnum)--;
1156 }
1157 } else if ((li->extLength >> 30) ==
1158 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1159 udf_free_blocks(inode->i_sb, inode,
1160 &li->extLocation, 0,
1161 ((li->extLength &
1162 UDF_EXTENT_LENGTH_MASK) +
1163 blocksize - 1) >> blocksize_bits);
1164 li->extLocation.logicalBlockNum = 0;
1165 li->extLocation.partitionReferenceNum = 0;
1166 li->extLength = (li->extLength &
1167 UDF_EXTENT_LENGTH_MASK) |
1168 EXT_NOT_RECORDED_NOT_ALLOCATED;
1169 }
1170 }
1171}
1172
1173static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1174 int startnum, int endnum,
1175 struct extent_position *epos)
1176{
1177 int start = 0, i;
1178 struct kernel_lb_addr tmploc;
1179 uint32_t tmplen;
1180
1181 if (startnum > endnum) {
1182 for (i = 0; i < (startnum - endnum); i++)
1183 udf_delete_aext(inode, *epos);
1184 } else if (startnum < endnum) {
1185 for (i = 0; i < (endnum - startnum); i++) {
1186 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1187 laarr[i].extLength);
1188 udf_next_aext(inode, epos, &laarr[i].extLocation,
1189 &laarr[i].extLength, 1);
1190 start++;
1191 }
1192 }
1193
1194 for (i = start; i < endnum; i++) {
1195 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1196 udf_write_aext(inode, epos, &laarr[i].extLocation,
1197 laarr[i].extLength, 1);
1198 }
1199}
1200
1201struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1202 int create, int *err)
1203{
1204 struct buffer_head *bh = NULL;
1205
1206 bh = udf_getblk(inode, block, create, err);
1207 if (!bh)
1208 return NULL;
1209
1210 if (buffer_uptodate(bh))
1211 return bh;
1212
1213 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1214
1215 wait_on_buffer(bh);
1216 if (buffer_uptodate(bh))
1217 return bh;
1218
1219 brelse(bh);
1220 *err = -EIO;
1221 return NULL;
1222}
1223
1224int udf_setsize(struct inode *inode, loff_t newsize)
1225{
1226 int err;
1227 struct udf_inode_info *iinfo;
1228 unsigned int bsize = i_blocksize(inode);
1229
1230 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1231 S_ISLNK(inode->i_mode)))
1232 return -EINVAL;
1233 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1234 return -EPERM;
1235
1236 iinfo = UDF_I(inode);
1237 if (newsize > inode->i_size) {
1238 down_write(&iinfo->i_data_sem);
1239 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1240 if (bsize <
1241 (udf_file_entry_alloc_offset(inode) + newsize)) {
1242 err = udf_expand_file_adinicb(inode);
1243 if (err)
1244 return err;
1245 down_write(&iinfo->i_data_sem);
1246 } else {
1247 iinfo->i_lenAlloc = newsize;
1248 goto set_size;
1249 }
1250 }
1251 err = udf_extend_file(inode, newsize);
1252 if (err) {
1253 up_write(&iinfo->i_data_sem);
1254 return err;
1255 }
1256set_size:
1257 up_write(&iinfo->i_data_sem);
1258 truncate_setsize(inode, newsize);
1259 } else {
1260 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1261 down_write(&iinfo->i_data_sem);
1262 udf_clear_extent_cache(inode);
1263 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1264 0x00, bsize - newsize -
1265 udf_file_entry_alloc_offset(inode));
1266 iinfo->i_lenAlloc = newsize;
1267 truncate_setsize(inode, newsize);
1268 up_write(&iinfo->i_data_sem);
1269 goto update_time;
1270 }
1271 err = block_truncate_page(inode->i_mapping, newsize,
1272 udf_get_block);
1273 if (err)
1274 return err;
1275 truncate_setsize(inode, newsize);
1276 down_write(&iinfo->i_data_sem);
1277 udf_clear_extent_cache(inode);
1278 err = udf_truncate_extents(inode);
1279 up_write(&iinfo->i_data_sem);
1280 if (err)
1281 return err;
1282 }
1283update_time:
1284 inode->i_mtime = inode->i_ctime = current_time(inode);
1285 if (IS_SYNC(inode))
1286 udf_sync_inode(inode);
1287 else
1288 mark_inode_dirty(inode);
1289 return 0;
1290}
1291
1292/*
1293 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1294 * arbitrary - just that we hopefully don't limit any real use of rewritten
1295 * inode on write-once media but avoid looping for too long on corrupted media.
1296 */
1297#define UDF_MAX_ICB_NESTING 1024
1298
1299static int udf_read_inode(struct inode *inode, bool hidden_inode)
1300{
1301 struct buffer_head *bh = NULL;
1302 struct fileEntry *fe;
1303 struct extendedFileEntry *efe;
1304 uint16_t ident;
1305 struct udf_inode_info *iinfo = UDF_I(inode);
1306 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1307 struct kernel_lb_addr *iloc = &iinfo->i_location;
1308 unsigned int link_count;
1309 unsigned int indirections = 0;
1310 int bs = inode->i_sb->s_blocksize;
1311 int ret = -EIO;
1312 uint32_t uid, gid;
1313
1314reread:
1315 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1316 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1317 iloc->partitionReferenceNum, sbi->s_partitions);
1318 return -EIO;
1319 }
1320
1321 if (iloc->logicalBlockNum >=
1322 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1323 udf_debug("block=%u, partition=%u out of range\n",
1324 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1325 return -EIO;
1326 }
1327
1328 /*
1329 * Set defaults, but the inode is still incomplete!
1330 * Note: get_new_inode() sets the following on a new inode:
1331 * i_sb = sb
1332 * i_no = ino
1333 * i_flags = sb->s_flags
1334 * i_state = 0
1335 * clean_inode(): zero fills and sets
1336 * i_count = 1
1337 * i_nlink = 1
1338 * i_op = NULL;
1339 */
1340 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1341 if (!bh) {
1342 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1343 return -EIO;
1344 }
1345
1346 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1347 ident != TAG_IDENT_USE) {
1348 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1349 inode->i_ino, ident);
1350 goto out;
1351 }
1352
1353 fe = (struct fileEntry *)bh->b_data;
1354 efe = (struct extendedFileEntry *)bh->b_data;
1355
1356 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1357 struct buffer_head *ibh;
1358
1359 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1360 if (ident == TAG_IDENT_IE && ibh) {
1361 struct kernel_lb_addr loc;
1362 struct indirectEntry *ie;
1363
1364 ie = (struct indirectEntry *)ibh->b_data;
1365 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1366
1367 if (ie->indirectICB.extLength) {
1368 brelse(ibh);
1369 memcpy(&iinfo->i_location, &loc,
1370 sizeof(struct kernel_lb_addr));
1371 if (++indirections > UDF_MAX_ICB_NESTING) {
1372 udf_err(inode->i_sb,
1373 "too many ICBs in ICB hierarchy"
1374 " (max %d supported)\n",
1375 UDF_MAX_ICB_NESTING);
1376 goto out;
1377 }
1378 brelse(bh);
1379 goto reread;
1380 }
1381 }
1382 brelse(ibh);
1383 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1384 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1385 le16_to_cpu(fe->icbTag.strategyType));
1386 goto out;
1387 }
1388 if (fe->icbTag.strategyType == cpu_to_le16(4))
1389 iinfo->i_strat4096 = 0;
1390 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1391 iinfo->i_strat4096 = 1;
1392
1393 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1394 ICBTAG_FLAG_AD_MASK;
1395 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1396 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1397 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1398 ret = -EIO;
1399 goto out;
1400 }
1401 iinfo->i_unique = 0;
1402 iinfo->i_lenEAttr = 0;
1403 iinfo->i_lenExtents = 0;
1404 iinfo->i_lenAlloc = 0;
1405 iinfo->i_next_alloc_block = 0;
1406 iinfo->i_next_alloc_goal = 0;
1407 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1408 iinfo->i_efe = 1;
1409 iinfo->i_use = 0;
1410 ret = udf_alloc_i_data(inode, bs -
1411 sizeof(struct extendedFileEntry));
1412 if (ret)
1413 goto out;
1414 memcpy(iinfo->i_ext.i_data,
1415 bh->b_data + sizeof(struct extendedFileEntry),
1416 bs - sizeof(struct extendedFileEntry));
1417 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1418 iinfo->i_efe = 0;
1419 iinfo->i_use = 0;
1420 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1421 if (ret)
1422 goto out;
1423 memcpy(iinfo->i_ext.i_data,
1424 bh->b_data + sizeof(struct fileEntry),
1425 bs - sizeof(struct fileEntry));
1426 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1427 iinfo->i_efe = 0;
1428 iinfo->i_use = 1;
1429 iinfo->i_lenAlloc = le32_to_cpu(
1430 ((struct unallocSpaceEntry *)bh->b_data)->
1431 lengthAllocDescs);
1432 ret = udf_alloc_i_data(inode, bs -
1433 sizeof(struct unallocSpaceEntry));
1434 if (ret)
1435 goto out;
1436 memcpy(iinfo->i_ext.i_data,
1437 bh->b_data + sizeof(struct unallocSpaceEntry),
1438 bs - sizeof(struct unallocSpaceEntry));
1439 return 0;
1440 }
1441
1442 ret = -EIO;
1443 read_lock(&sbi->s_cred_lock);
1444 uid = le32_to_cpu(fe->uid);
1445 if (uid == UDF_INVALID_ID ||
1446 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1447 inode->i_uid = sbi->s_uid;
1448 else
1449 i_uid_write(inode, uid);
1450
1451 gid = le32_to_cpu(fe->gid);
1452 if (gid == UDF_INVALID_ID ||
1453 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1454 inode->i_gid = sbi->s_gid;
1455 else
1456 i_gid_write(inode, gid);
1457
1458 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1459 sbi->s_fmode != UDF_INVALID_MODE)
1460 inode->i_mode = sbi->s_fmode;
1461 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1462 sbi->s_dmode != UDF_INVALID_MODE)
1463 inode->i_mode = sbi->s_dmode;
1464 else
1465 inode->i_mode = udf_convert_permissions(fe);
1466 inode->i_mode &= ~sbi->s_umask;
1467 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1468
1469 read_unlock(&sbi->s_cred_lock);
1470
1471 link_count = le16_to_cpu(fe->fileLinkCount);
1472 if (!link_count) {
1473 if (!hidden_inode) {
1474 ret = -ESTALE;
1475 goto out;
1476 }
1477 link_count = 1;
1478 }
1479 set_nlink(inode, link_count);
1480
1481 inode->i_size = le64_to_cpu(fe->informationLength);
1482 iinfo->i_lenExtents = inode->i_size;
1483
1484 if (iinfo->i_efe == 0) {
1485 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1486 (inode->i_sb->s_blocksize_bits - 9);
1487
1488 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1489 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1490 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1491
1492 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1493 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1494 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1495 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1496 iinfo->i_streamdir = 0;
1497 iinfo->i_lenStreams = 0;
1498 } else {
1499 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1500 (inode->i_sb->s_blocksize_bits - 9);
1501
1502 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1503 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1504 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1505 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1506
1507 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1508 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1509 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1510 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1511
1512 /* Named streams */
1513 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1514 iinfo->i_locStreamdir =
1515 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1516 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1517 if (iinfo->i_lenStreams >= inode->i_size)
1518 iinfo->i_lenStreams -= inode->i_size;
1519 else
1520 iinfo->i_lenStreams = 0;
1521 }
1522 inode->i_generation = iinfo->i_unique;
1523
1524 /*
1525 * Sanity check length of allocation descriptors and extended attrs to
1526 * avoid integer overflows
1527 */
1528 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1529 goto out;
1530 /* Now do exact checks */
1531 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1532 goto out;
1533 /* Sanity checks for files in ICB so that we don't get confused later */
1534 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1535 /*
1536 * For file in ICB data is stored in allocation descriptor
1537 * so sizes should match
1538 */
1539 if (iinfo->i_lenAlloc != inode->i_size)
1540 goto out;
1541 /* File in ICB has to fit in there... */
1542 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1543 goto out;
1544 }
1545
1546 switch (fe->icbTag.fileType) {
1547 case ICBTAG_FILE_TYPE_DIRECTORY:
1548 inode->i_op = &udf_dir_inode_operations;
1549 inode->i_fop = &udf_dir_operations;
1550 inode->i_mode |= S_IFDIR;
1551 inc_nlink(inode);
1552 break;
1553 case ICBTAG_FILE_TYPE_REALTIME:
1554 case ICBTAG_FILE_TYPE_REGULAR:
1555 case ICBTAG_FILE_TYPE_UNDEF:
1556 case ICBTAG_FILE_TYPE_VAT20:
1557 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1558 inode->i_data.a_ops = &udf_adinicb_aops;
1559 else
1560 inode->i_data.a_ops = &udf_aops;
1561 inode->i_op = &udf_file_inode_operations;
1562 inode->i_fop = &udf_file_operations;
1563 inode->i_mode |= S_IFREG;
1564 break;
1565 case ICBTAG_FILE_TYPE_BLOCK:
1566 inode->i_mode |= S_IFBLK;
1567 break;
1568 case ICBTAG_FILE_TYPE_CHAR:
1569 inode->i_mode |= S_IFCHR;
1570 break;
1571 case ICBTAG_FILE_TYPE_FIFO:
1572 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1573 break;
1574 case ICBTAG_FILE_TYPE_SOCKET:
1575 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1576 break;
1577 case ICBTAG_FILE_TYPE_SYMLINK:
1578 inode->i_data.a_ops = &udf_symlink_aops;
1579 inode->i_op = &udf_symlink_inode_operations;
1580 inode_nohighmem(inode);
1581 inode->i_mode = S_IFLNK | 0777;
1582 break;
1583 case ICBTAG_FILE_TYPE_MAIN:
1584 udf_debug("METADATA FILE-----\n");
1585 break;
1586 case ICBTAG_FILE_TYPE_MIRROR:
1587 udf_debug("METADATA MIRROR FILE-----\n");
1588 break;
1589 case ICBTAG_FILE_TYPE_BITMAP:
1590 udf_debug("METADATA BITMAP FILE-----\n");
1591 break;
1592 default:
1593 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1594 inode->i_ino, fe->icbTag.fileType);
1595 goto out;
1596 }
1597 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1598 struct deviceSpec *dsea =
1599 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1600 if (dsea) {
1601 init_special_inode(inode, inode->i_mode,
1602 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1603 le32_to_cpu(dsea->minorDeviceIdent)));
1604 /* Developer ID ??? */
1605 } else
1606 goto out;
1607 }
1608 ret = 0;
1609out:
1610 brelse(bh);
1611 return ret;
1612}
1613
1614static int udf_alloc_i_data(struct inode *inode, size_t size)
1615{
1616 struct udf_inode_info *iinfo = UDF_I(inode);
1617 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1618 if (!iinfo->i_ext.i_data)
1619 return -ENOMEM;
1620 return 0;
1621}
1622
1623static umode_t udf_convert_permissions(struct fileEntry *fe)
1624{
1625 umode_t mode;
1626 uint32_t permissions;
1627 uint32_t flags;
1628
1629 permissions = le32_to_cpu(fe->permissions);
1630 flags = le16_to_cpu(fe->icbTag.flags);
1631
1632 mode = ((permissions) & 0007) |
1633 ((permissions >> 2) & 0070) |
1634 ((permissions >> 4) & 0700) |
1635 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1636 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1637 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1638
1639 return mode;
1640}
1641
1642void udf_update_extra_perms(struct inode *inode, umode_t mode)
1643{
1644 struct udf_inode_info *iinfo = UDF_I(inode);
1645
1646 /*
1647 * UDF 2.01 sec. 3.3.3.3 Note 2:
1648 * In Unix, delete permission tracks write
1649 */
1650 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1651 if (mode & 0200)
1652 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1653 if (mode & 0020)
1654 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1655 if (mode & 0002)
1656 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1657}
1658
1659int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1660{
1661 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1662}
1663
1664static int udf_sync_inode(struct inode *inode)
1665{
1666 return udf_update_inode(inode, 1);
1667}
1668
1669static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1670{
1671 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1672 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1673 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1674 iinfo->i_crtime = time;
1675}
1676
1677static int udf_update_inode(struct inode *inode, int do_sync)
1678{
1679 struct buffer_head *bh = NULL;
1680 struct fileEntry *fe;
1681 struct extendedFileEntry *efe;
1682 uint64_t lb_recorded;
1683 uint32_t udfperms;
1684 uint16_t icbflags;
1685 uint16_t crclen;
1686 int err = 0;
1687 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1688 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1689 struct udf_inode_info *iinfo = UDF_I(inode);
1690
1691 bh = udf_tgetblk(inode->i_sb,
1692 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1693 if (!bh) {
1694 udf_debug("getblk failure\n");
1695 return -EIO;
1696 }
1697
1698 lock_buffer(bh);
1699 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1700 fe = (struct fileEntry *)bh->b_data;
1701 efe = (struct extendedFileEntry *)bh->b_data;
1702
1703 if (iinfo->i_use) {
1704 struct unallocSpaceEntry *use =
1705 (struct unallocSpaceEntry *)bh->b_data;
1706
1707 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1708 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1709 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1710 sizeof(struct unallocSpaceEntry));
1711 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1712 crclen = sizeof(struct unallocSpaceEntry);
1713
1714 goto finish;
1715 }
1716
1717 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1718 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1719 else
1720 fe->uid = cpu_to_le32(i_uid_read(inode));
1721
1722 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1723 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1724 else
1725 fe->gid = cpu_to_le32(i_gid_read(inode));
1726
1727 udfperms = ((inode->i_mode & 0007)) |
1728 ((inode->i_mode & 0070) << 2) |
1729 ((inode->i_mode & 0700) << 4);
1730
1731 udfperms |= iinfo->i_extraPerms;
1732 fe->permissions = cpu_to_le32(udfperms);
1733
1734 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1735 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1736 else
1737 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1738
1739 fe->informationLength = cpu_to_le64(inode->i_size);
1740
1741 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1742 struct regid *eid;
1743 struct deviceSpec *dsea =
1744 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1745 if (!dsea) {
1746 dsea = (struct deviceSpec *)
1747 udf_add_extendedattr(inode,
1748 sizeof(struct deviceSpec) +
1749 sizeof(struct regid), 12, 0x3);
1750 dsea->attrType = cpu_to_le32(12);
1751 dsea->attrSubtype = 1;
1752 dsea->attrLength = cpu_to_le32(
1753 sizeof(struct deviceSpec) +
1754 sizeof(struct regid));
1755 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1756 }
1757 eid = (struct regid *)dsea->impUse;
1758 memset(eid, 0, sizeof(*eid));
1759 strcpy(eid->ident, UDF_ID_DEVELOPER);
1760 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1761 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1762 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1763 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1764 }
1765
1766 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1767 lb_recorded = 0; /* No extents => no blocks! */
1768 else
1769 lb_recorded =
1770 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1771 (blocksize_bits - 9);
1772
1773 if (iinfo->i_efe == 0) {
1774 memcpy(bh->b_data + sizeof(struct fileEntry),
1775 iinfo->i_ext.i_data,
1776 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1777 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1778
1779 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1780 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1781 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1782 memset(&(fe->impIdent), 0, sizeof(struct regid));
1783 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1784 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1787 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1788 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1789 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1790 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1791 crclen = sizeof(struct fileEntry);
1792 } else {
1793 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1794 iinfo->i_ext.i_data,
1795 inode->i_sb->s_blocksize -
1796 sizeof(struct extendedFileEntry));
1797 efe->objectSize =
1798 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1799 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800
1801 if (iinfo->i_streamdir) {
1802 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1803
1804 icb_lad->extLocation =
1805 cpu_to_lelb(iinfo->i_locStreamdir);
1806 icb_lad->extLength =
1807 cpu_to_le32(inode->i_sb->s_blocksize);
1808 }
1809
1810 udf_adjust_time(iinfo, inode->i_atime);
1811 udf_adjust_time(iinfo, inode->i_mtime);
1812 udf_adjust_time(iinfo, inode->i_ctime);
1813
1814 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1815 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1816 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1817 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1818
1819 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1820 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1821 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1822 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1823 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1824 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1825 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1826 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1827 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1828 crclen = sizeof(struct extendedFileEntry);
1829 }
1830
1831finish:
1832 if (iinfo->i_strat4096) {
1833 fe->icbTag.strategyType = cpu_to_le16(4096);
1834 fe->icbTag.strategyParameter = cpu_to_le16(1);
1835 fe->icbTag.numEntries = cpu_to_le16(2);
1836 } else {
1837 fe->icbTag.strategyType = cpu_to_le16(4);
1838 fe->icbTag.numEntries = cpu_to_le16(1);
1839 }
1840
1841 if (iinfo->i_use)
1842 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1843 else if (S_ISDIR(inode->i_mode))
1844 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1845 else if (S_ISREG(inode->i_mode))
1846 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1847 else if (S_ISLNK(inode->i_mode))
1848 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1849 else if (S_ISBLK(inode->i_mode))
1850 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1851 else if (S_ISCHR(inode->i_mode))
1852 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1853 else if (S_ISFIFO(inode->i_mode))
1854 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1855 else if (S_ISSOCK(inode->i_mode))
1856 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1857
1858 icbflags = iinfo->i_alloc_type |
1859 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1860 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1861 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1862 (le16_to_cpu(fe->icbTag.flags) &
1863 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1864 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1865
1866 fe->icbTag.flags = cpu_to_le16(icbflags);
1867 if (sbi->s_udfrev >= 0x0200)
1868 fe->descTag.descVersion = cpu_to_le16(3);
1869 else
1870 fe->descTag.descVersion = cpu_to_le16(2);
1871 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1872 fe->descTag.tagLocation = cpu_to_le32(
1873 iinfo->i_location.logicalBlockNum);
1874 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1875 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1876 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1877 crclen));
1878 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1879
1880 set_buffer_uptodate(bh);
1881 unlock_buffer(bh);
1882
1883 /* write the data blocks */
1884 mark_buffer_dirty(bh);
1885 if (do_sync) {
1886 sync_dirty_buffer(bh);
1887 if (buffer_write_io_error(bh)) {
1888 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1889 inode->i_ino);
1890 err = -EIO;
1891 }
1892 }
1893 brelse(bh);
1894
1895 return err;
1896}
1897
1898struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1899 bool hidden_inode)
1900{
1901 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1902 struct inode *inode = iget_locked(sb, block);
1903 int err;
1904
1905 if (!inode)
1906 return ERR_PTR(-ENOMEM);
1907
1908 if (!(inode->i_state & I_NEW))
1909 return inode;
1910
1911 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1912 err = udf_read_inode(inode, hidden_inode);
1913 if (err < 0) {
1914 iget_failed(inode);
1915 return ERR_PTR(err);
1916 }
1917 unlock_new_inode(inode);
1918
1919 return inode;
1920}
1921
1922int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1923 struct extent_position *epos)
1924{
1925 struct super_block *sb = inode->i_sb;
1926 struct buffer_head *bh;
1927 struct allocExtDesc *aed;
1928 struct extent_position nepos;
1929 struct kernel_lb_addr neloc;
1930 int ver, adsize;
1931
1932 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1933 adsize = sizeof(struct short_ad);
1934 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1935 adsize = sizeof(struct long_ad);
1936 else
1937 return -EIO;
1938
1939 neloc.logicalBlockNum = block;
1940 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1941
1942 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1943 if (!bh)
1944 return -EIO;
1945 lock_buffer(bh);
1946 memset(bh->b_data, 0x00, sb->s_blocksize);
1947 set_buffer_uptodate(bh);
1948 unlock_buffer(bh);
1949 mark_buffer_dirty_inode(bh, inode);
1950
1951 aed = (struct allocExtDesc *)(bh->b_data);
1952 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1953 aed->previousAllocExtLocation =
1954 cpu_to_le32(epos->block.logicalBlockNum);
1955 }
1956 aed->lengthAllocDescs = cpu_to_le32(0);
1957 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1958 ver = 3;
1959 else
1960 ver = 2;
1961 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1962 sizeof(struct tag));
1963
1964 nepos.block = neloc;
1965 nepos.offset = sizeof(struct allocExtDesc);
1966 nepos.bh = bh;
1967
1968 /*
1969 * Do we have to copy current last extent to make space for indirect
1970 * one?
1971 */
1972 if (epos->offset + adsize > sb->s_blocksize) {
1973 struct kernel_lb_addr cp_loc;
1974 uint32_t cp_len;
1975 int cp_type;
1976
1977 epos->offset -= adsize;
1978 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1979 cp_len |= ((uint32_t)cp_type) << 30;
1980
1981 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1982 udf_write_aext(inode, epos, &nepos.block,
1983 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984 } else {
1985 __udf_add_aext(inode, epos, &nepos.block,
1986 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987 }
1988
1989 brelse(epos->bh);
1990 *epos = nepos;
1991
1992 return 0;
1993}
1994
1995/*
1996 * Append extent at the given position - should be the first free one in inode
1997 * / indirect extent. This function assumes there is enough space in the inode
1998 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1999 */
2000int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2001 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2002{
2003 struct udf_inode_info *iinfo = UDF_I(inode);
2004 struct allocExtDesc *aed;
2005 int adsize;
2006
2007 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2008 adsize = sizeof(struct short_ad);
2009 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2010 adsize = sizeof(struct long_ad);
2011 else
2012 return -EIO;
2013
2014 if (!epos->bh) {
2015 WARN_ON(iinfo->i_lenAlloc !=
2016 epos->offset - udf_file_entry_alloc_offset(inode));
2017 } else {
2018 aed = (struct allocExtDesc *)epos->bh->b_data;
2019 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2020 epos->offset - sizeof(struct allocExtDesc));
2021 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2022 }
2023
2024 udf_write_aext(inode, epos, eloc, elen, inc);
2025
2026 if (!epos->bh) {
2027 iinfo->i_lenAlloc += adsize;
2028 mark_inode_dirty(inode);
2029 } else {
2030 aed = (struct allocExtDesc *)epos->bh->b_data;
2031 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2032 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2033 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2034 udf_update_tag(epos->bh->b_data,
2035 epos->offset + (inc ? 0 : adsize));
2036 else
2037 udf_update_tag(epos->bh->b_data,
2038 sizeof(struct allocExtDesc));
2039 mark_buffer_dirty_inode(epos->bh, inode);
2040 }
2041
2042 return 0;
2043}
2044
2045/*
2046 * Append extent at given position - should be the first free one in inode
2047 * / indirect extent. Takes care of allocating and linking indirect blocks.
2048 */
2049int udf_add_aext(struct inode *inode, struct extent_position *epos,
2050 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2051{
2052 int adsize;
2053 struct super_block *sb = inode->i_sb;
2054
2055 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2056 adsize = sizeof(struct short_ad);
2057 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2058 adsize = sizeof(struct long_ad);
2059 else
2060 return -EIO;
2061
2062 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2063 int err;
2064 udf_pblk_t new_block;
2065
2066 new_block = udf_new_block(sb, NULL,
2067 epos->block.partitionReferenceNum,
2068 epos->block.logicalBlockNum, &err);
2069 if (!new_block)
2070 return -ENOSPC;
2071
2072 err = udf_setup_indirect_aext(inode, new_block, epos);
2073 if (err)
2074 return err;
2075 }
2076
2077 return __udf_add_aext(inode, epos, eloc, elen, inc);
2078}
2079
2080void udf_write_aext(struct inode *inode, struct extent_position *epos,
2081 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082{
2083 int adsize;
2084 uint8_t *ptr;
2085 struct short_ad *sad;
2086 struct long_ad *lad;
2087 struct udf_inode_info *iinfo = UDF_I(inode);
2088
2089 if (!epos->bh)
2090 ptr = iinfo->i_ext.i_data + epos->offset -
2091 udf_file_entry_alloc_offset(inode) +
2092 iinfo->i_lenEAttr;
2093 else
2094 ptr = epos->bh->b_data + epos->offset;
2095
2096 switch (iinfo->i_alloc_type) {
2097 case ICBTAG_FLAG_AD_SHORT:
2098 sad = (struct short_ad *)ptr;
2099 sad->extLength = cpu_to_le32(elen);
2100 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2101 adsize = sizeof(struct short_ad);
2102 break;
2103 case ICBTAG_FLAG_AD_LONG:
2104 lad = (struct long_ad *)ptr;
2105 lad->extLength = cpu_to_le32(elen);
2106 lad->extLocation = cpu_to_lelb(*eloc);
2107 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2108 adsize = sizeof(struct long_ad);
2109 break;
2110 default:
2111 return;
2112 }
2113
2114 if (epos->bh) {
2115 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2116 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2117 struct allocExtDesc *aed =
2118 (struct allocExtDesc *)epos->bh->b_data;
2119 udf_update_tag(epos->bh->b_data,
2120 le32_to_cpu(aed->lengthAllocDescs) +
2121 sizeof(struct allocExtDesc));
2122 }
2123 mark_buffer_dirty_inode(epos->bh, inode);
2124 } else {
2125 mark_inode_dirty(inode);
2126 }
2127
2128 if (inc)
2129 epos->offset += adsize;
2130}
2131
2132/*
2133 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2134 * someone does some weird stuff.
2135 */
2136#define UDF_MAX_INDIR_EXTS 16
2137
2138int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2139 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2140{
2141 int8_t etype;
2142 unsigned int indirections = 0;
2143
2144 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2145 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2146 udf_pblk_t block;
2147
2148 if (++indirections > UDF_MAX_INDIR_EXTS) {
2149 udf_err(inode->i_sb,
2150 "too many indirect extents in inode %lu\n",
2151 inode->i_ino);
2152 return -1;
2153 }
2154
2155 epos->block = *eloc;
2156 epos->offset = sizeof(struct allocExtDesc);
2157 brelse(epos->bh);
2158 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2159 epos->bh = udf_tread(inode->i_sb, block);
2160 if (!epos->bh) {
2161 udf_debug("reading block %u failed!\n", block);
2162 return -1;
2163 }
2164 }
2165
2166 return etype;
2167}
2168
2169int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2170 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2171{
2172 int alen;
2173 int8_t etype;
2174 uint8_t *ptr;
2175 struct short_ad *sad;
2176 struct long_ad *lad;
2177 struct udf_inode_info *iinfo = UDF_I(inode);
2178
2179 if (!epos->bh) {
2180 if (!epos->offset)
2181 epos->offset = udf_file_entry_alloc_offset(inode);
2182 ptr = iinfo->i_ext.i_data + epos->offset -
2183 udf_file_entry_alloc_offset(inode) +
2184 iinfo->i_lenEAttr;
2185 alen = udf_file_entry_alloc_offset(inode) +
2186 iinfo->i_lenAlloc;
2187 } else {
2188 if (!epos->offset)
2189 epos->offset = sizeof(struct allocExtDesc);
2190 ptr = epos->bh->b_data + epos->offset;
2191 alen = sizeof(struct allocExtDesc) +
2192 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2193 lengthAllocDescs);
2194 }
2195
2196 switch (iinfo->i_alloc_type) {
2197 case ICBTAG_FLAG_AD_SHORT:
2198 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2199 if (!sad)
2200 return -1;
2201 etype = le32_to_cpu(sad->extLength) >> 30;
2202 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2203 eloc->partitionReferenceNum =
2204 iinfo->i_location.partitionReferenceNum;
2205 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2206 break;
2207 case ICBTAG_FLAG_AD_LONG:
2208 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2209 if (!lad)
2210 return -1;
2211 etype = le32_to_cpu(lad->extLength) >> 30;
2212 *eloc = lelb_to_cpu(lad->extLocation);
2213 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2214 break;
2215 default:
2216 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2217 return -1;
2218 }
2219
2220 return etype;
2221}
2222
2223static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2224 struct kernel_lb_addr neloc, uint32_t nelen)
2225{
2226 struct kernel_lb_addr oeloc;
2227 uint32_t oelen;
2228 int8_t etype;
2229
2230 if (epos.bh)
2231 get_bh(epos.bh);
2232
2233 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2234 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2235 neloc = oeloc;
2236 nelen = (etype << 30) | oelen;
2237 }
2238 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2239 brelse(epos.bh);
2240
2241 return (nelen >> 30);
2242}
2243
2244int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2245{
2246 struct extent_position oepos;
2247 int adsize;
2248 int8_t etype;
2249 struct allocExtDesc *aed;
2250 struct udf_inode_info *iinfo;
2251 struct kernel_lb_addr eloc;
2252 uint32_t elen;
2253
2254 if (epos.bh) {
2255 get_bh(epos.bh);
2256 get_bh(epos.bh);
2257 }
2258
2259 iinfo = UDF_I(inode);
2260 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2261 adsize = sizeof(struct short_ad);
2262 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2263 adsize = sizeof(struct long_ad);
2264 else
2265 adsize = 0;
2266
2267 oepos = epos;
2268 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2269 return -1;
2270
2271 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2272 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2273 if (oepos.bh != epos.bh) {
2274 oepos.block = epos.block;
2275 brelse(oepos.bh);
2276 get_bh(epos.bh);
2277 oepos.bh = epos.bh;
2278 oepos.offset = epos.offset - adsize;
2279 }
2280 }
2281 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2282 elen = 0;
2283
2284 if (epos.bh != oepos.bh) {
2285 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2286 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2287 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 if (!oepos.bh) {
2289 iinfo->i_lenAlloc -= (adsize * 2);
2290 mark_inode_dirty(inode);
2291 } else {
2292 aed = (struct allocExtDesc *)oepos.bh->b_data;
2293 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2294 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296 udf_update_tag(oepos.bh->b_data,
2297 oepos.offset - (2 * adsize));
2298 else
2299 udf_update_tag(oepos.bh->b_data,
2300 sizeof(struct allocExtDesc));
2301 mark_buffer_dirty_inode(oepos.bh, inode);
2302 }
2303 } else {
2304 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2305 if (!oepos.bh) {
2306 iinfo->i_lenAlloc -= adsize;
2307 mark_inode_dirty(inode);
2308 } else {
2309 aed = (struct allocExtDesc *)oepos.bh->b_data;
2310 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2311 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2312 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2313 udf_update_tag(oepos.bh->b_data,
2314 epos.offset - adsize);
2315 else
2316 udf_update_tag(oepos.bh->b_data,
2317 sizeof(struct allocExtDesc));
2318 mark_buffer_dirty_inode(oepos.bh, inode);
2319 }
2320 }
2321
2322 brelse(epos.bh);
2323 brelse(oepos.bh);
2324
2325 return (elen >> 30);
2326}
2327
2328int8_t inode_bmap(struct inode *inode, sector_t block,
2329 struct extent_position *pos, struct kernel_lb_addr *eloc,
2330 uint32_t *elen, sector_t *offset)
2331{
2332 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2333 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2334 int8_t etype;
2335 struct udf_inode_info *iinfo;
2336
2337 iinfo = UDF_I(inode);
2338 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2339 pos->offset = 0;
2340 pos->block = iinfo->i_location;
2341 pos->bh = NULL;
2342 }
2343 *elen = 0;
2344 do {
2345 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2346 if (etype == -1) {
2347 *offset = (bcount - lbcount) >> blocksize_bits;
2348 iinfo->i_lenExtents = lbcount;
2349 return -1;
2350 }
2351 lbcount += *elen;
2352 } while (lbcount <= bcount);
2353 /* update extent cache */
2354 udf_update_extent_cache(inode, lbcount - *elen, pos);
2355 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2356
2357 return etype;
2358}
2359
2360udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2361{
2362 struct kernel_lb_addr eloc;
2363 uint32_t elen;
2364 sector_t offset;
2365 struct extent_position epos = {};
2366 udf_pblk_t ret;
2367
2368 down_read(&UDF_I(inode)->i_data_sem);
2369
2370 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2371 (EXT_RECORDED_ALLOCATED >> 30))
2372 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2373 else
2374 ret = 0;
2375
2376 up_read(&UDF_I(inode)->i_data_sem);
2377 brelse(epos.bh);
2378
2379 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2380 return udf_fixed_to_variable(ret);
2381 else
2382 return ret;
2383}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166}
167
168static void udf_write_failed(struct address_space *mapping, loff_t to)
169{
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183}
184
185static int udf_writepages(struct address_space *mapping,
186 struct writeback_control *wbc)
187{
188 return mpage_writepages(mapping, wbc, udf_get_block);
189}
190
191static int udf_read_folio(struct file *file, struct folio *folio)
192{
193 return mpage_read_folio(folio, udf_get_block);
194}
195
196static void udf_readahead(struct readahead_control *rac)
197{
198 mpage_readahead(rac, udf_get_block);
199}
200
201static int udf_write_begin(struct file *file, struct address_space *mapping,
202 loff_t pos, unsigned len,
203 struct page **pagep, void **fsdata)
204{
205 int ret;
206
207 ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
208 if (unlikely(ret))
209 udf_write_failed(mapping, pos + len);
210 return ret;
211}
212
213static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
214{
215 struct file *file = iocb->ki_filp;
216 struct address_space *mapping = file->f_mapping;
217 struct inode *inode = mapping->host;
218 size_t count = iov_iter_count(iter);
219 ssize_t ret;
220
221 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
222 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
223 udf_write_failed(mapping, iocb->ki_pos + count);
224 return ret;
225}
226
227static sector_t udf_bmap(struct address_space *mapping, sector_t block)
228{
229 return generic_block_bmap(mapping, block, udf_get_block);
230}
231
232const struct address_space_operations udf_aops = {
233 .dirty_folio = block_dirty_folio,
234 .invalidate_folio = block_invalidate_folio,
235 .read_folio = udf_read_folio,
236 .readahead = udf_readahead,
237 .writepages = udf_writepages,
238 .write_begin = udf_write_begin,
239 .write_end = generic_write_end,
240 .direct_IO = udf_direct_IO,
241 .bmap = udf_bmap,
242 .migrate_folio = buffer_migrate_folio,
243};
244
245/*
246 * Expand file stored in ICB to a normal one-block-file
247 *
248 * This function requires i_data_sem for writing and releases it.
249 * This function requires i_mutex held
250 */
251int udf_expand_file_adinicb(struct inode *inode)
252{
253 struct page *page;
254 char *kaddr;
255 struct udf_inode_info *iinfo = UDF_I(inode);
256 int err;
257
258 WARN_ON_ONCE(!inode_is_locked(inode));
259 if (!iinfo->i_lenAlloc) {
260 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
262 else
263 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
264 /* from now on we have normal address_space methods */
265 inode->i_data.a_ops = &udf_aops;
266 up_write(&iinfo->i_data_sem);
267 mark_inode_dirty(inode);
268 return 0;
269 }
270 /*
271 * Release i_data_sem so that we can lock a page - page lock ranks
272 * above i_data_sem. i_mutex still protects us against file changes.
273 */
274 up_write(&iinfo->i_data_sem);
275
276 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
277 if (!page)
278 return -ENOMEM;
279
280 if (!PageUptodate(page)) {
281 kaddr = kmap_atomic(page);
282 memset(kaddr + iinfo->i_lenAlloc, 0x00,
283 PAGE_SIZE - iinfo->i_lenAlloc);
284 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
285 iinfo->i_lenAlloc);
286 flush_dcache_page(page);
287 SetPageUptodate(page);
288 kunmap_atomic(kaddr);
289 }
290 down_write(&iinfo->i_data_sem);
291 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
292 iinfo->i_lenAlloc);
293 iinfo->i_lenAlloc = 0;
294 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
296 else
297 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
298 /* from now on we have normal address_space methods */
299 inode->i_data.a_ops = &udf_aops;
300 set_page_dirty(page);
301 unlock_page(page);
302 up_write(&iinfo->i_data_sem);
303 err = filemap_fdatawrite(inode->i_mapping);
304 if (err) {
305 /* Restore everything back so that we don't lose data... */
306 lock_page(page);
307 down_write(&iinfo->i_data_sem);
308 kaddr = kmap_atomic(page);
309 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
310 kunmap_atomic(kaddr);
311 unlock_page(page);
312 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
313 inode->i_data.a_ops = &udf_adinicb_aops;
314 iinfo->i_lenAlloc = inode->i_size;
315 up_write(&iinfo->i_data_sem);
316 }
317 put_page(page);
318 mark_inode_dirty(inode);
319
320 return err;
321}
322
323struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
324 udf_pblk_t *block, int *err)
325{
326 udf_pblk_t newblock;
327 struct buffer_head *dbh = NULL;
328 struct kernel_lb_addr eloc;
329 uint8_t alloctype;
330 struct extent_position epos;
331
332 struct udf_fileident_bh sfibh, dfibh;
333 loff_t f_pos = udf_ext0_offset(inode);
334 int size = udf_ext0_offset(inode) + inode->i_size;
335 struct fileIdentDesc cfi, *sfi, *dfi;
336 struct udf_inode_info *iinfo = UDF_I(inode);
337
338 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
339 alloctype = ICBTAG_FLAG_AD_SHORT;
340 else
341 alloctype = ICBTAG_FLAG_AD_LONG;
342
343 if (!inode->i_size) {
344 iinfo->i_alloc_type = alloctype;
345 mark_inode_dirty(inode);
346 return NULL;
347 }
348
349 /* alloc block, and copy data to it */
350 *block = udf_new_block(inode->i_sb, inode,
351 iinfo->i_location.partitionReferenceNum,
352 iinfo->i_location.logicalBlockNum, err);
353 if (!(*block))
354 return NULL;
355 newblock = udf_get_pblock(inode->i_sb, *block,
356 iinfo->i_location.partitionReferenceNum,
357 0);
358 if (!newblock)
359 return NULL;
360 dbh = udf_tgetblk(inode->i_sb, newblock);
361 if (!dbh)
362 return NULL;
363 lock_buffer(dbh);
364 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
365 set_buffer_uptodate(dbh);
366 unlock_buffer(dbh);
367 mark_buffer_dirty_inode(dbh, inode);
368
369 sfibh.soffset = sfibh.eoffset =
370 f_pos & (inode->i_sb->s_blocksize - 1);
371 sfibh.sbh = sfibh.ebh = NULL;
372 dfibh.soffset = dfibh.eoffset = 0;
373 dfibh.sbh = dfibh.ebh = dbh;
374 while (f_pos < size) {
375 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
376 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
377 NULL, NULL, NULL);
378 if (!sfi) {
379 brelse(dbh);
380 return NULL;
381 }
382 iinfo->i_alloc_type = alloctype;
383 sfi->descTag.tagLocation = cpu_to_le32(*block);
384 dfibh.soffset = dfibh.eoffset;
385 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
386 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
387 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
388 udf_get_fi_ident(sfi))) {
389 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
390 brelse(dbh);
391 return NULL;
392 }
393 }
394 mark_buffer_dirty_inode(dbh, inode);
395
396 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
397 iinfo->i_lenAlloc = 0;
398 eloc.logicalBlockNum = *block;
399 eloc.partitionReferenceNum =
400 iinfo->i_location.partitionReferenceNum;
401 iinfo->i_lenExtents = inode->i_size;
402 epos.bh = NULL;
403 epos.block = iinfo->i_location;
404 epos.offset = udf_file_entry_alloc_offset(inode);
405 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
406 /* UniqueID stuff */
407
408 brelse(epos.bh);
409 mark_inode_dirty(inode);
410 return dbh;
411}
412
413static int udf_get_block(struct inode *inode, sector_t block,
414 struct buffer_head *bh_result, int create)
415{
416 int err, new;
417 sector_t phys = 0;
418 struct udf_inode_info *iinfo;
419
420 if (!create) {
421 phys = udf_block_map(inode, block);
422 if (phys)
423 map_bh(bh_result, inode->i_sb, phys);
424 return 0;
425 }
426
427 err = -EIO;
428 new = 0;
429 iinfo = UDF_I(inode);
430
431 down_write(&iinfo->i_data_sem);
432 if (block == iinfo->i_next_alloc_block + 1) {
433 iinfo->i_next_alloc_block++;
434 iinfo->i_next_alloc_goal++;
435 }
436
437 /*
438 * Block beyond EOF and prealloc extents? Just discard preallocation
439 * as it is not useful and complicates things.
440 */
441 if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents)
442 udf_discard_prealloc(inode);
443 udf_clear_extent_cache(inode);
444 phys = inode_getblk(inode, block, &err, &new);
445 if (!phys)
446 goto abort;
447
448 if (new)
449 set_buffer_new(bh_result);
450 map_bh(bh_result, inode->i_sb, phys);
451
452abort:
453 up_write(&iinfo->i_data_sem);
454 return err;
455}
456
457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 int create, int *err)
459{
460 struct buffer_head *bh;
461 struct buffer_head dummy;
462
463 dummy.b_state = 0;
464 dummy.b_blocknr = -1000;
465 *err = udf_get_block(inode, block, &dummy, create);
466 if (!*err && buffer_mapped(&dummy)) {
467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 if (buffer_new(&dummy)) {
469 lock_buffer(bh);
470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 set_buffer_uptodate(bh);
472 unlock_buffer(bh);
473 mark_buffer_dirty_inode(bh, inode);
474 }
475 return bh;
476 }
477
478 return NULL;
479}
480
481/* Extend the file with new blocks totaling 'new_block_bytes',
482 * return the number of extents added
483 */
484static int udf_do_extend_file(struct inode *inode,
485 struct extent_position *last_pos,
486 struct kernel_long_ad *last_ext,
487 loff_t new_block_bytes)
488{
489 uint32_t add;
490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 struct super_block *sb = inode->i_sb;
492 struct udf_inode_info *iinfo;
493 int err;
494
495 /* The previous extent is fake and we should not extend by anything
496 * - there's nothing to do... */
497 if (!new_block_bytes && fake)
498 return 0;
499
500 iinfo = UDF_I(inode);
501 /* Round the last extent up to a multiple of block size */
502 if (last_ext->extLength & (sb->s_blocksize - 1)) {
503 last_ext->extLength =
504 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
505 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
506 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
507 iinfo->i_lenExtents =
508 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
509 ~(sb->s_blocksize - 1);
510 }
511
512 /* Can we merge with the previous extent? */
513 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
514 EXT_NOT_RECORDED_NOT_ALLOCATED) {
515 add = (1 << 30) - sb->s_blocksize -
516 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
517 if (add > new_block_bytes)
518 add = new_block_bytes;
519 new_block_bytes -= add;
520 last_ext->extLength += add;
521 }
522
523 if (fake) {
524 udf_add_aext(inode, last_pos, &last_ext->extLocation,
525 last_ext->extLength, 1);
526 count++;
527 } else {
528 struct kernel_lb_addr tmploc;
529 uint32_t tmplen;
530
531 udf_write_aext(inode, last_pos, &last_ext->extLocation,
532 last_ext->extLength, 1);
533
534 /*
535 * We've rewritten the last extent. If we are going to add
536 * more extents, we may need to enter possible following
537 * empty indirect extent.
538 */
539 if (new_block_bytes)
540 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
541 }
542
543 /* Managed to do everything necessary? */
544 if (!new_block_bytes)
545 goto out;
546
547 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
548 last_ext->extLocation.logicalBlockNum = 0;
549 last_ext->extLocation.partitionReferenceNum = 0;
550 add = (1 << 30) - sb->s_blocksize;
551 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
552
553 /* Create enough extents to cover the whole hole */
554 while (new_block_bytes > add) {
555 new_block_bytes -= add;
556 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
557 last_ext->extLength, 1);
558 if (err)
559 return err;
560 count++;
561 }
562 if (new_block_bytes) {
563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 new_block_bytes;
565 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
566 last_ext->extLength, 1);
567 if (err)
568 return err;
569 count++;
570 }
571
572out:
573 /* last_pos should point to the last written extent... */
574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575 last_pos->offset -= sizeof(struct short_ad);
576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577 last_pos->offset -= sizeof(struct long_ad);
578 else
579 return -EIO;
580
581 return count;
582}
583
584/* Extend the final block of the file to final_block_len bytes */
585static void udf_do_extend_final_block(struct inode *inode,
586 struct extent_position *last_pos,
587 struct kernel_long_ad *last_ext,
588 uint32_t new_elen)
589{
590 uint32_t added_bytes;
591
592 /*
593 * Extent already large enough? It may be already rounded up to block
594 * size...
595 */
596 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
597 return;
598 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
599 last_ext->extLength += added_bytes;
600 UDF_I(inode)->i_lenExtents += added_bytes;
601
602 udf_write_aext(inode, last_pos, &last_ext->extLocation,
603 last_ext->extLength, 1);
604}
605
606static int udf_extend_file(struct inode *inode, loff_t newsize)
607{
608
609 struct extent_position epos;
610 struct kernel_lb_addr eloc;
611 uint32_t elen;
612 int8_t etype;
613 struct super_block *sb = inode->i_sb;
614 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
615 loff_t new_elen;
616 int adsize;
617 struct udf_inode_info *iinfo = UDF_I(inode);
618 struct kernel_long_ad extent;
619 int err = 0;
620 bool within_last_ext;
621
622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
623 adsize = sizeof(struct short_ad);
624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
625 adsize = sizeof(struct long_ad);
626 else
627 BUG();
628
629 /*
630 * When creating hole in file, just don't bother with preserving
631 * preallocation. It likely won't be very useful anyway.
632 */
633 udf_discard_prealloc(inode);
634
635 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
636 within_last_ext = (etype != -1);
637 /* We don't expect extents past EOF... */
638 WARN_ON_ONCE(within_last_ext &&
639 elen > ((loff_t)offset + 1) << inode->i_blkbits);
640
641 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
642 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
643 /* File has no extents at all or has empty last
644 * indirect extent! Create a fake extent... */
645 extent.extLocation.logicalBlockNum = 0;
646 extent.extLocation.partitionReferenceNum = 0;
647 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
648 } else {
649 epos.offset -= adsize;
650 etype = udf_next_aext(inode, &epos, &extent.extLocation,
651 &extent.extLength, 0);
652 extent.extLength |= etype << 30;
653 }
654
655 new_elen = ((loff_t)offset << inode->i_blkbits) |
656 (newsize & (sb->s_blocksize - 1));
657
658 /* File has extent covering the new size (could happen when extending
659 * inside a block)?
660 */
661 if (within_last_ext) {
662 /* Extending file within the last file block */
663 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
664 } else {
665 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
666 }
667
668 if (err < 0)
669 goto out;
670 err = 0;
671 iinfo->i_lenExtents = newsize;
672out:
673 brelse(epos.bh);
674 return err;
675}
676
677static sector_t inode_getblk(struct inode *inode, sector_t block,
678 int *err, int *new)
679{
680 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
681 struct extent_position prev_epos, cur_epos, next_epos;
682 int count = 0, startnum = 0, endnum = 0;
683 uint32_t elen = 0, tmpelen;
684 struct kernel_lb_addr eloc, tmpeloc;
685 int c = 1;
686 loff_t lbcount = 0, b_off = 0;
687 udf_pblk_t newblocknum, newblock = 0;
688 sector_t offset = 0;
689 int8_t etype;
690 struct udf_inode_info *iinfo = UDF_I(inode);
691 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
692 int lastblock = 0;
693 bool isBeyondEOF;
694
695 *err = 0;
696 *new = 0;
697 prev_epos.offset = udf_file_entry_alloc_offset(inode);
698 prev_epos.block = iinfo->i_location;
699 prev_epos.bh = NULL;
700 cur_epos = next_epos = prev_epos;
701 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
702
703 /* find the extent which contains the block we are looking for.
704 alternate between laarr[0] and laarr[1] for locations of the
705 current extent, and the previous extent */
706 do {
707 if (prev_epos.bh != cur_epos.bh) {
708 brelse(prev_epos.bh);
709 get_bh(cur_epos.bh);
710 prev_epos.bh = cur_epos.bh;
711 }
712 if (cur_epos.bh != next_epos.bh) {
713 brelse(cur_epos.bh);
714 get_bh(next_epos.bh);
715 cur_epos.bh = next_epos.bh;
716 }
717
718 lbcount += elen;
719
720 prev_epos.block = cur_epos.block;
721 cur_epos.block = next_epos.block;
722
723 prev_epos.offset = cur_epos.offset;
724 cur_epos.offset = next_epos.offset;
725
726 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
727 if (etype == -1)
728 break;
729
730 c = !c;
731
732 laarr[c].extLength = (etype << 30) | elen;
733 laarr[c].extLocation = eloc;
734
735 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
736 pgoal = eloc.logicalBlockNum +
737 ((elen + inode->i_sb->s_blocksize - 1) >>
738 inode->i_sb->s_blocksize_bits);
739
740 count++;
741 } while (lbcount + elen <= b_off);
742
743 b_off -= lbcount;
744 offset = b_off >> inode->i_sb->s_blocksize_bits;
745 /*
746 * Move prev_epos and cur_epos into indirect extent if we are at
747 * the pointer to it
748 */
749 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
750 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
751
752 /* if the extent is allocated and recorded, return the block
753 if the extent is not a multiple of the blocksize, round up */
754
755 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
756 if (elen & (inode->i_sb->s_blocksize - 1)) {
757 elen = EXT_RECORDED_ALLOCATED |
758 ((elen + inode->i_sb->s_blocksize - 1) &
759 ~(inode->i_sb->s_blocksize - 1));
760 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
761 }
762 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
763 goto out_free;
764 }
765
766 /* Are we beyond EOF and preallocated extent? */
767 if (etype == -1) {
768 int ret;
769 loff_t hole_len;
770
771 isBeyondEOF = true;
772 if (count) {
773 if (c)
774 laarr[0] = laarr[1];
775 startnum = 1;
776 } else {
777 /* Create a fake extent when there's not one */
778 memset(&laarr[0].extLocation, 0x00,
779 sizeof(struct kernel_lb_addr));
780 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
781 /* Will udf_do_extend_file() create real extent from
782 a fake one? */
783 startnum = (offset > 0);
784 }
785 /* Create extents for the hole between EOF and offset */
786 hole_len = (loff_t)offset << inode->i_blkbits;
787 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
788 if (ret < 0) {
789 *err = ret;
790 goto out_free;
791 }
792 c = 0;
793 offset = 0;
794 count += ret;
795 /* We are not covered by a preallocated extent? */
796 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
797 EXT_NOT_RECORDED_ALLOCATED) {
798 /* Is there any real extent? - otherwise we overwrite
799 * the fake one... */
800 if (count)
801 c = !c;
802 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
803 inode->i_sb->s_blocksize;
804 memset(&laarr[c].extLocation, 0x00,
805 sizeof(struct kernel_lb_addr));
806 count++;
807 }
808 endnum = c + 1;
809 lastblock = 1;
810 } else {
811 isBeyondEOF = false;
812 endnum = startnum = ((count > 2) ? 2 : count);
813
814 /* if the current extent is in position 0,
815 swap it with the previous */
816 if (!c && count != 1) {
817 laarr[2] = laarr[0];
818 laarr[0] = laarr[1];
819 laarr[1] = laarr[2];
820 c = 1;
821 }
822
823 /* if the current block is located in an extent,
824 read the next extent */
825 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
826 if (etype != -1) {
827 laarr[c + 1].extLength = (etype << 30) | elen;
828 laarr[c + 1].extLocation = eloc;
829 count++;
830 startnum++;
831 endnum++;
832 } else
833 lastblock = 1;
834 }
835
836 /* if the current extent is not recorded but allocated, get the
837 * block in the extent corresponding to the requested block */
838 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
839 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
840 else { /* otherwise, allocate a new block */
841 if (iinfo->i_next_alloc_block == block)
842 goal = iinfo->i_next_alloc_goal;
843
844 if (!goal) {
845 if (!(goal = pgoal)) /* XXX: what was intended here? */
846 goal = iinfo->i_location.logicalBlockNum + 1;
847 }
848
849 newblocknum = udf_new_block(inode->i_sb, inode,
850 iinfo->i_location.partitionReferenceNum,
851 goal, err);
852 if (!newblocknum) {
853 *err = -ENOSPC;
854 goto out_free;
855 }
856 if (isBeyondEOF)
857 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
858 }
859
860 /* if the extent the requsted block is located in contains multiple
861 * blocks, split the extent into at most three extents. blocks prior
862 * to requested block, requested block, and blocks after requested
863 * block */
864 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
865
866 /* We preallocate blocks only for regular files. It also makes sense
867 * for directories but there's a problem when to drop the
868 * preallocation. We might use some delayed work for that but I feel
869 * it's overengineering for a filesystem like UDF. */
870 if (S_ISREG(inode->i_mode))
871 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
872
873 /* merge any continuous blocks in laarr */
874 udf_merge_extents(inode, laarr, &endnum);
875
876 /* write back the new extents, inserting new extents if the new number
877 * of extents is greater than the old number, and deleting extents if
878 * the new number of extents is less than the old number */
879 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
880
881 newblock = udf_get_pblock(inode->i_sb, newblocknum,
882 iinfo->i_location.partitionReferenceNum, 0);
883 if (!newblock) {
884 *err = -EIO;
885 goto out_free;
886 }
887 *new = 1;
888 iinfo->i_next_alloc_block = block;
889 iinfo->i_next_alloc_goal = newblocknum;
890 inode->i_ctime = current_time(inode);
891
892 if (IS_SYNC(inode))
893 udf_sync_inode(inode);
894 else
895 mark_inode_dirty(inode);
896out_free:
897 brelse(prev_epos.bh);
898 brelse(cur_epos.bh);
899 brelse(next_epos.bh);
900 return newblock;
901}
902
903static void udf_split_extents(struct inode *inode, int *c, int offset,
904 udf_pblk_t newblocknum,
905 struct kernel_long_ad *laarr, int *endnum)
906{
907 unsigned long blocksize = inode->i_sb->s_blocksize;
908 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
909
910 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
911 (laarr[*c].extLength >> 30) ==
912 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
913 int curr = *c;
914 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
915 blocksize - 1) >> blocksize_bits;
916 int8_t etype = (laarr[curr].extLength >> 30);
917
918 if (blen == 1)
919 ;
920 else if (!offset || blen == offset + 1) {
921 laarr[curr + 2] = laarr[curr + 1];
922 laarr[curr + 1] = laarr[curr];
923 } else {
924 laarr[curr + 3] = laarr[curr + 1];
925 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
926 }
927
928 if (offset) {
929 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
930 udf_free_blocks(inode->i_sb, inode,
931 &laarr[curr].extLocation,
932 0, offset);
933 laarr[curr].extLength =
934 EXT_NOT_RECORDED_NOT_ALLOCATED |
935 (offset << blocksize_bits);
936 laarr[curr].extLocation.logicalBlockNum = 0;
937 laarr[curr].extLocation.
938 partitionReferenceNum = 0;
939 } else
940 laarr[curr].extLength = (etype << 30) |
941 (offset << blocksize_bits);
942 curr++;
943 (*c)++;
944 (*endnum)++;
945 }
946
947 laarr[curr].extLocation.logicalBlockNum = newblocknum;
948 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
949 laarr[curr].extLocation.partitionReferenceNum =
950 UDF_I(inode)->i_location.partitionReferenceNum;
951 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
952 blocksize;
953 curr++;
954
955 if (blen != offset + 1) {
956 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
957 laarr[curr].extLocation.logicalBlockNum +=
958 offset + 1;
959 laarr[curr].extLength = (etype << 30) |
960 ((blen - (offset + 1)) << blocksize_bits);
961 curr++;
962 (*endnum)++;
963 }
964 }
965}
966
967static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
968 struct kernel_long_ad *laarr,
969 int *endnum)
970{
971 int start, length = 0, currlength = 0, i;
972
973 if (*endnum >= (c + 1)) {
974 if (!lastblock)
975 return;
976 else
977 start = c;
978 } else {
979 if ((laarr[c + 1].extLength >> 30) ==
980 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
981 start = c + 1;
982 length = currlength =
983 (((laarr[c + 1].extLength &
984 UDF_EXTENT_LENGTH_MASK) +
985 inode->i_sb->s_blocksize - 1) >>
986 inode->i_sb->s_blocksize_bits);
987 } else
988 start = c;
989 }
990
991 for (i = start + 1; i <= *endnum; i++) {
992 if (i == *endnum) {
993 if (lastblock)
994 length += UDF_DEFAULT_PREALLOC_BLOCKS;
995 } else if ((laarr[i].extLength >> 30) ==
996 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
997 length += (((laarr[i].extLength &
998 UDF_EXTENT_LENGTH_MASK) +
999 inode->i_sb->s_blocksize - 1) >>
1000 inode->i_sb->s_blocksize_bits);
1001 } else
1002 break;
1003 }
1004
1005 if (length) {
1006 int next = laarr[start].extLocation.logicalBlockNum +
1007 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1008 inode->i_sb->s_blocksize - 1) >>
1009 inode->i_sb->s_blocksize_bits);
1010 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1011 laarr[start].extLocation.partitionReferenceNum,
1012 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1013 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1014 currlength);
1015 if (numalloc) {
1016 if (start == (c + 1))
1017 laarr[start].extLength +=
1018 (numalloc <<
1019 inode->i_sb->s_blocksize_bits);
1020 else {
1021 memmove(&laarr[c + 2], &laarr[c + 1],
1022 sizeof(struct long_ad) * (*endnum - (c + 1)));
1023 (*endnum)++;
1024 laarr[c + 1].extLocation.logicalBlockNum = next;
1025 laarr[c + 1].extLocation.partitionReferenceNum =
1026 laarr[c].extLocation.
1027 partitionReferenceNum;
1028 laarr[c + 1].extLength =
1029 EXT_NOT_RECORDED_ALLOCATED |
1030 (numalloc <<
1031 inode->i_sb->s_blocksize_bits);
1032 start = c + 1;
1033 }
1034
1035 for (i = start + 1; numalloc && i < *endnum; i++) {
1036 int elen = ((laarr[i].extLength &
1037 UDF_EXTENT_LENGTH_MASK) +
1038 inode->i_sb->s_blocksize - 1) >>
1039 inode->i_sb->s_blocksize_bits;
1040
1041 if (elen > numalloc) {
1042 laarr[i].extLength -=
1043 (numalloc <<
1044 inode->i_sb->s_blocksize_bits);
1045 numalloc = 0;
1046 } else {
1047 numalloc -= elen;
1048 if (*endnum > (i + 1))
1049 memmove(&laarr[i],
1050 &laarr[i + 1],
1051 sizeof(struct long_ad) *
1052 (*endnum - (i + 1)));
1053 i--;
1054 (*endnum)--;
1055 }
1056 }
1057 UDF_I(inode)->i_lenExtents +=
1058 numalloc << inode->i_sb->s_blocksize_bits;
1059 }
1060 }
1061}
1062
1063static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1064 int *endnum)
1065{
1066 int i;
1067 unsigned long blocksize = inode->i_sb->s_blocksize;
1068 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1069
1070 for (i = 0; i < (*endnum - 1); i++) {
1071 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1072 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1073
1074 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1075 (((li->extLength >> 30) ==
1076 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1077 ((lip1->extLocation.logicalBlockNum -
1078 li->extLocation.logicalBlockNum) ==
1079 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1080 blocksize - 1) >> blocksize_bits)))) {
1081
1082 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1083 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1084 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1085 lip1->extLength = (lip1->extLength -
1086 (li->extLength &
1087 UDF_EXTENT_LENGTH_MASK) +
1088 UDF_EXTENT_LENGTH_MASK) &
1089 ~(blocksize - 1);
1090 li->extLength = (li->extLength &
1091 UDF_EXTENT_FLAG_MASK) +
1092 (UDF_EXTENT_LENGTH_MASK + 1) -
1093 blocksize;
1094 lip1->extLocation.logicalBlockNum =
1095 li->extLocation.logicalBlockNum +
1096 ((li->extLength &
1097 UDF_EXTENT_LENGTH_MASK) >>
1098 blocksize_bits);
1099 } else {
1100 li->extLength = lip1->extLength +
1101 (((li->extLength &
1102 UDF_EXTENT_LENGTH_MASK) +
1103 blocksize - 1) & ~(blocksize - 1));
1104 if (*endnum > (i + 2))
1105 memmove(&laarr[i + 1], &laarr[i + 2],
1106 sizeof(struct long_ad) *
1107 (*endnum - (i + 2)));
1108 i--;
1109 (*endnum)--;
1110 }
1111 } else if (((li->extLength >> 30) ==
1112 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1113 ((lip1->extLength >> 30) ==
1114 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1115 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1116 ((li->extLength &
1117 UDF_EXTENT_LENGTH_MASK) +
1118 blocksize - 1) >> blocksize_bits);
1119 li->extLocation.logicalBlockNum = 0;
1120 li->extLocation.partitionReferenceNum = 0;
1121
1122 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1123 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1124 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1125 lip1->extLength = (lip1->extLength -
1126 (li->extLength &
1127 UDF_EXTENT_LENGTH_MASK) +
1128 UDF_EXTENT_LENGTH_MASK) &
1129 ~(blocksize - 1);
1130 li->extLength = (li->extLength &
1131 UDF_EXTENT_FLAG_MASK) +
1132 (UDF_EXTENT_LENGTH_MASK + 1) -
1133 blocksize;
1134 } else {
1135 li->extLength = lip1->extLength +
1136 (((li->extLength &
1137 UDF_EXTENT_LENGTH_MASK) +
1138 blocksize - 1) & ~(blocksize - 1));
1139 if (*endnum > (i + 2))
1140 memmove(&laarr[i + 1], &laarr[i + 2],
1141 sizeof(struct long_ad) *
1142 (*endnum - (i + 2)));
1143 i--;
1144 (*endnum)--;
1145 }
1146 } else if ((li->extLength >> 30) ==
1147 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1148 udf_free_blocks(inode->i_sb, inode,
1149 &li->extLocation, 0,
1150 ((li->extLength &
1151 UDF_EXTENT_LENGTH_MASK) +
1152 blocksize - 1) >> blocksize_bits);
1153 li->extLocation.logicalBlockNum = 0;
1154 li->extLocation.partitionReferenceNum = 0;
1155 li->extLength = (li->extLength &
1156 UDF_EXTENT_LENGTH_MASK) |
1157 EXT_NOT_RECORDED_NOT_ALLOCATED;
1158 }
1159 }
1160}
1161
1162static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1163 int startnum, int endnum,
1164 struct extent_position *epos)
1165{
1166 int start = 0, i;
1167 struct kernel_lb_addr tmploc;
1168 uint32_t tmplen;
1169
1170 if (startnum > endnum) {
1171 for (i = 0; i < (startnum - endnum); i++)
1172 udf_delete_aext(inode, *epos);
1173 } else if (startnum < endnum) {
1174 for (i = 0; i < (endnum - startnum); i++) {
1175 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1176 laarr[i].extLength);
1177 udf_next_aext(inode, epos, &laarr[i].extLocation,
1178 &laarr[i].extLength, 1);
1179 start++;
1180 }
1181 }
1182
1183 for (i = start; i < endnum; i++) {
1184 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1185 udf_write_aext(inode, epos, &laarr[i].extLocation,
1186 laarr[i].extLength, 1);
1187 }
1188}
1189
1190struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1191 int create, int *err)
1192{
1193 struct buffer_head *bh = NULL;
1194
1195 bh = udf_getblk(inode, block, create, err);
1196 if (!bh)
1197 return NULL;
1198
1199 if (bh_read(bh, 0) >= 0)
1200 return bh;
1201
1202 brelse(bh);
1203 *err = -EIO;
1204 return NULL;
1205}
1206
1207int udf_setsize(struct inode *inode, loff_t newsize)
1208{
1209 int err;
1210 struct udf_inode_info *iinfo;
1211 unsigned int bsize = i_blocksize(inode);
1212
1213 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1214 S_ISLNK(inode->i_mode)))
1215 return -EINVAL;
1216 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1217 return -EPERM;
1218
1219 iinfo = UDF_I(inode);
1220 if (newsize > inode->i_size) {
1221 down_write(&iinfo->i_data_sem);
1222 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1223 if (bsize <
1224 (udf_file_entry_alloc_offset(inode) + newsize)) {
1225 err = udf_expand_file_adinicb(inode);
1226 if (err)
1227 return err;
1228 down_write(&iinfo->i_data_sem);
1229 } else {
1230 iinfo->i_lenAlloc = newsize;
1231 goto set_size;
1232 }
1233 }
1234 err = udf_extend_file(inode, newsize);
1235 if (err) {
1236 up_write(&iinfo->i_data_sem);
1237 return err;
1238 }
1239set_size:
1240 up_write(&iinfo->i_data_sem);
1241 truncate_setsize(inode, newsize);
1242 } else {
1243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244 down_write(&iinfo->i_data_sem);
1245 udf_clear_extent_cache(inode);
1246 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1247 0x00, bsize - newsize -
1248 udf_file_entry_alloc_offset(inode));
1249 iinfo->i_lenAlloc = newsize;
1250 truncate_setsize(inode, newsize);
1251 up_write(&iinfo->i_data_sem);
1252 goto update_time;
1253 }
1254 err = block_truncate_page(inode->i_mapping, newsize,
1255 udf_get_block);
1256 if (err)
1257 return err;
1258 truncate_setsize(inode, newsize);
1259 down_write(&iinfo->i_data_sem);
1260 udf_clear_extent_cache(inode);
1261 err = udf_truncate_extents(inode);
1262 up_write(&iinfo->i_data_sem);
1263 if (err)
1264 return err;
1265 }
1266update_time:
1267 inode->i_mtime = inode->i_ctime = current_time(inode);
1268 if (IS_SYNC(inode))
1269 udf_sync_inode(inode);
1270 else
1271 mark_inode_dirty(inode);
1272 return 0;
1273}
1274
1275/*
1276 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1277 * arbitrary - just that we hopefully don't limit any real use of rewritten
1278 * inode on write-once media but avoid looping for too long on corrupted media.
1279 */
1280#define UDF_MAX_ICB_NESTING 1024
1281
1282static int udf_read_inode(struct inode *inode, bool hidden_inode)
1283{
1284 struct buffer_head *bh = NULL;
1285 struct fileEntry *fe;
1286 struct extendedFileEntry *efe;
1287 uint16_t ident;
1288 struct udf_inode_info *iinfo = UDF_I(inode);
1289 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1290 struct kernel_lb_addr *iloc = &iinfo->i_location;
1291 unsigned int link_count;
1292 unsigned int indirections = 0;
1293 int bs = inode->i_sb->s_blocksize;
1294 int ret = -EIO;
1295 uint32_t uid, gid;
1296
1297reread:
1298 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1299 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1300 iloc->partitionReferenceNum, sbi->s_partitions);
1301 return -EIO;
1302 }
1303
1304 if (iloc->logicalBlockNum >=
1305 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1306 udf_debug("block=%u, partition=%u out of range\n",
1307 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1308 return -EIO;
1309 }
1310
1311 /*
1312 * Set defaults, but the inode is still incomplete!
1313 * Note: get_new_inode() sets the following on a new inode:
1314 * i_sb = sb
1315 * i_no = ino
1316 * i_flags = sb->s_flags
1317 * i_state = 0
1318 * clean_inode(): zero fills and sets
1319 * i_count = 1
1320 * i_nlink = 1
1321 * i_op = NULL;
1322 */
1323 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1324 if (!bh) {
1325 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1326 return -EIO;
1327 }
1328
1329 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1330 ident != TAG_IDENT_USE) {
1331 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1332 inode->i_ino, ident);
1333 goto out;
1334 }
1335
1336 fe = (struct fileEntry *)bh->b_data;
1337 efe = (struct extendedFileEntry *)bh->b_data;
1338
1339 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1340 struct buffer_head *ibh;
1341
1342 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1343 if (ident == TAG_IDENT_IE && ibh) {
1344 struct kernel_lb_addr loc;
1345 struct indirectEntry *ie;
1346
1347 ie = (struct indirectEntry *)ibh->b_data;
1348 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1349
1350 if (ie->indirectICB.extLength) {
1351 brelse(ibh);
1352 memcpy(&iinfo->i_location, &loc,
1353 sizeof(struct kernel_lb_addr));
1354 if (++indirections > UDF_MAX_ICB_NESTING) {
1355 udf_err(inode->i_sb,
1356 "too many ICBs in ICB hierarchy"
1357 " (max %d supported)\n",
1358 UDF_MAX_ICB_NESTING);
1359 goto out;
1360 }
1361 brelse(bh);
1362 goto reread;
1363 }
1364 }
1365 brelse(ibh);
1366 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1367 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1368 le16_to_cpu(fe->icbTag.strategyType));
1369 goto out;
1370 }
1371 if (fe->icbTag.strategyType == cpu_to_le16(4))
1372 iinfo->i_strat4096 = 0;
1373 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1374 iinfo->i_strat4096 = 1;
1375
1376 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1377 ICBTAG_FLAG_AD_MASK;
1378 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1379 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1380 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1381 ret = -EIO;
1382 goto out;
1383 }
1384 iinfo->i_unique = 0;
1385 iinfo->i_lenEAttr = 0;
1386 iinfo->i_lenExtents = 0;
1387 iinfo->i_lenAlloc = 0;
1388 iinfo->i_next_alloc_block = 0;
1389 iinfo->i_next_alloc_goal = 0;
1390 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1391 iinfo->i_efe = 1;
1392 iinfo->i_use = 0;
1393 ret = udf_alloc_i_data(inode, bs -
1394 sizeof(struct extendedFileEntry));
1395 if (ret)
1396 goto out;
1397 memcpy(iinfo->i_data,
1398 bh->b_data + sizeof(struct extendedFileEntry),
1399 bs - sizeof(struct extendedFileEntry));
1400 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1401 iinfo->i_efe = 0;
1402 iinfo->i_use = 0;
1403 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1404 if (ret)
1405 goto out;
1406 memcpy(iinfo->i_data,
1407 bh->b_data + sizeof(struct fileEntry),
1408 bs - sizeof(struct fileEntry));
1409 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1410 iinfo->i_efe = 0;
1411 iinfo->i_use = 1;
1412 iinfo->i_lenAlloc = le32_to_cpu(
1413 ((struct unallocSpaceEntry *)bh->b_data)->
1414 lengthAllocDescs);
1415 ret = udf_alloc_i_data(inode, bs -
1416 sizeof(struct unallocSpaceEntry));
1417 if (ret)
1418 goto out;
1419 memcpy(iinfo->i_data,
1420 bh->b_data + sizeof(struct unallocSpaceEntry),
1421 bs - sizeof(struct unallocSpaceEntry));
1422 return 0;
1423 }
1424
1425 ret = -EIO;
1426 read_lock(&sbi->s_cred_lock);
1427 uid = le32_to_cpu(fe->uid);
1428 if (uid == UDF_INVALID_ID ||
1429 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1430 inode->i_uid = sbi->s_uid;
1431 else
1432 i_uid_write(inode, uid);
1433
1434 gid = le32_to_cpu(fe->gid);
1435 if (gid == UDF_INVALID_ID ||
1436 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1437 inode->i_gid = sbi->s_gid;
1438 else
1439 i_gid_write(inode, gid);
1440
1441 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1442 sbi->s_fmode != UDF_INVALID_MODE)
1443 inode->i_mode = sbi->s_fmode;
1444 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1445 sbi->s_dmode != UDF_INVALID_MODE)
1446 inode->i_mode = sbi->s_dmode;
1447 else
1448 inode->i_mode = udf_convert_permissions(fe);
1449 inode->i_mode &= ~sbi->s_umask;
1450 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1451
1452 read_unlock(&sbi->s_cred_lock);
1453
1454 link_count = le16_to_cpu(fe->fileLinkCount);
1455 if (!link_count) {
1456 if (!hidden_inode) {
1457 ret = -ESTALE;
1458 goto out;
1459 }
1460 link_count = 1;
1461 }
1462 set_nlink(inode, link_count);
1463
1464 inode->i_size = le64_to_cpu(fe->informationLength);
1465 iinfo->i_lenExtents = inode->i_size;
1466
1467 if (iinfo->i_efe == 0) {
1468 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1469 (inode->i_sb->s_blocksize_bits - 9);
1470
1471 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1472 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1473 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1474
1475 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1476 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1477 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1478 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1479 iinfo->i_streamdir = 0;
1480 iinfo->i_lenStreams = 0;
1481 } else {
1482 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1483 (inode->i_sb->s_blocksize_bits - 9);
1484
1485 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1486 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1487 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1488 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1489
1490 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1494
1495 /* Named streams */
1496 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1497 iinfo->i_locStreamdir =
1498 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1499 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1500 if (iinfo->i_lenStreams >= inode->i_size)
1501 iinfo->i_lenStreams -= inode->i_size;
1502 else
1503 iinfo->i_lenStreams = 0;
1504 }
1505 inode->i_generation = iinfo->i_unique;
1506
1507 /*
1508 * Sanity check length of allocation descriptors and extended attrs to
1509 * avoid integer overflows
1510 */
1511 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1512 goto out;
1513 /* Now do exact checks */
1514 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1515 goto out;
1516 /* Sanity checks for files in ICB so that we don't get confused later */
1517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1518 /*
1519 * For file in ICB data is stored in allocation descriptor
1520 * so sizes should match
1521 */
1522 if (iinfo->i_lenAlloc != inode->i_size)
1523 goto out;
1524 /* File in ICB has to fit in there... */
1525 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1526 goto out;
1527 }
1528
1529 switch (fe->icbTag.fileType) {
1530 case ICBTAG_FILE_TYPE_DIRECTORY:
1531 inode->i_op = &udf_dir_inode_operations;
1532 inode->i_fop = &udf_dir_operations;
1533 inode->i_mode |= S_IFDIR;
1534 inc_nlink(inode);
1535 break;
1536 case ICBTAG_FILE_TYPE_REALTIME:
1537 case ICBTAG_FILE_TYPE_REGULAR:
1538 case ICBTAG_FILE_TYPE_UNDEF:
1539 case ICBTAG_FILE_TYPE_VAT20:
1540 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1541 inode->i_data.a_ops = &udf_adinicb_aops;
1542 else
1543 inode->i_data.a_ops = &udf_aops;
1544 inode->i_op = &udf_file_inode_operations;
1545 inode->i_fop = &udf_file_operations;
1546 inode->i_mode |= S_IFREG;
1547 break;
1548 case ICBTAG_FILE_TYPE_BLOCK:
1549 inode->i_mode |= S_IFBLK;
1550 break;
1551 case ICBTAG_FILE_TYPE_CHAR:
1552 inode->i_mode |= S_IFCHR;
1553 break;
1554 case ICBTAG_FILE_TYPE_FIFO:
1555 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1556 break;
1557 case ICBTAG_FILE_TYPE_SOCKET:
1558 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1559 break;
1560 case ICBTAG_FILE_TYPE_SYMLINK:
1561 inode->i_data.a_ops = &udf_symlink_aops;
1562 inode->i_op = &udf_symlink_inode_operations;
1563 inode_nohighmem(inode);
1564 inode->i_mode = S_IFLNK | 0777;
1565 break;
1566 case ICBTAG_FILE_TYPE_MAIN:
1567 udf_debug("METADATA FILE-----\n");
1568 break;
1569 case ICBTAG_FILE_TYPE_MIRROR:
1570 udf_debug("METADATA MIRROR FILE-----\n");
1571 break;
1572 case ICBTAG_FILE_TYPE_BITMAP:
1573 udf_debug("METADATA BITMAP FILE-----\n");
1574 break;
1575 default:
1576 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1577 inode->i_ino, fe->icbTag.fileType);
1578 goto out;
1579 }
1580 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1581 struct deviceSpec *dsea =
1582 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1583 if (dsea) {
1584 init_special_inode(inode, inode->i_mode,
1585 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1586 le32_to_cpu(dsea->minorDeviceIdent)));
1587 /* Developer ID ??? */
1588 } else
1589 goto out;
1590 }
1591 ret = 0;
1592out:
1593 brelse(bh);
1594 return ret;
1595}
1596
1597static int udf_alloc_i_data(struct inode *inode, size_t size)
1598{
1599 struct udf_inode_info *iinfo = UDF_I(inode);
1600 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1601 if (!iinfo->i_data)
1602 return -ENOMEM;
1603 return 0;
1604}
1605
1606static umode_t udf_convert_permissions(struct fileEntry *fe)
1607{
1608 umode_t mode;
1609 uint32_t permissions;
1610 uint32_t flags;
1611
1612 permissions = le32_to_cpu(fe->permissions);
1613 flags = le16_to_cpu(fe->icbTag.flags);
1614
1615 mode = ((permissions) & 0007) |
1616 ((permissions >> 2) & 0070) |
1617 ((permissions >> 4) & 0700) |
1618 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1619 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1620 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1621
1622 return mode;
1623}
1624
1625void udf_update_extra_perms(struct inode *inode, umode_t mode)
1626{
1627 struct udf_inode_info *iinfo = UDF_I(inode);
1628
1629 /*
1630 * UDF 2.01 sec. 3.3.3.3 Note 2:
1631 * In Unix, delete permission tracks write
1632 */
1633 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1634 if (mode & 0200)
1635 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1636 if (mode & 0020)
1637 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1638 if (mode & 0002)
1639 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1640}
1641
1642int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1643{
1644 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1645}
1646
1647static int udf_sync_inode(struct inode *inode)
1648{
1649 return udf_update_inode(inode, 1);
1650}
1651
1652static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1653{
1654 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1655 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1656 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1657 iinfo->i_crtime = time;
1658}
1659
1660static int udf_update_inode(struct inode *inode, int do_sync)
1661{
1662 struct buffer_head *bh = NULL;
1663 struct fileEntry *fe;
1664 struct extendedFileEntry *efe;
1665 uint64_t lb_recorded;
1666 uint32_t udfperms;
1667 uint16_t icbflags;
1668 uint16_t crclen;
1669 int err = 0;
1670 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1671 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1672 struct udf_inode_info *iinfo = UDF_I(inode);
1673
1674 bh = udf_tgetblk(inode->i_sb,
1675 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1676 if (!bh) {
1677 udf_debug("getblk failure\n");
1678 return -EIO;
1679 }
1680
1681 lock_buffer(bh);
1682 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1683 fe = (struct fileEntry *)bh->b_data;
1684 efe = (struct extendedFileEntry *)bh->b_data;
1685
1686 if (iinfo->i_use) {
1687 struct unallocSpaceEntry *use =
1688 (struct unallocSpaceEntry *)bh->b_data;
1689
1690 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1691 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1692 iinfo->i_data, inode->i_sb->s_blocksize -
1693 sizeof(struct unallocSpaceEntry));
1694 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1695 crclen = sizeof(struct unallocSpaceEntry);
1696
1697 goto finish;
1698 }
1699
1700 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1701 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1702 else
1703 fe->uid = cpu_to_le32(i_uid_read(inode));
1704
1705 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1706 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1707 else
1708 fe->gid = cpu_to_le32(i_gid_read(inode));
1709
1710 udfperms = ((inode->i_mode & 0007)) |
1711 ((inode->i_mode & 0070) << 2) |
1712 ((inode->i_mode & 0700) << 4);
1713
1714 udfperms |= iinfo->i_extraPerms;
1715 fe->permissions = cpu_to_le32(udfperms);
1716
1717 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1718 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1719 else
1720 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1721
1722 fe->informationLength = cpu_to_le64(inode->i_size);
1723
1724 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1725 struct regid *eid;
1726 struct deviceSpec *dsea =
1727 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1728 if (!dsea) {
1729 dsea = (struct deviceSpec *)
1730 udf_add_extendedattr(inode,
1731 sizeof(struct deviceSpec) +
1732 sizeof(struct regid), 12, 0x3);
1733 dsea->attrType = cpu_to_le32(12);
1734 dsea->attrSubtype = 1;
1735 dsea->attrLength = cpu_to_le32(
1736 sizeof(struct deviceSpec) +
1737 sizeof(struct regid));
1738 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1739 }
1740 eid = (struct regid *)dsea->impUse;
1741 memset(eid, 0, sizeof(*eid));
1742 strcpy(eid->ident, UDF_ID_DEVELOPER);
1743 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1744 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1745 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1746 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1747 }
1748
1749 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1750 lb_recorded = 0; /* No extents => no blocks! */
1751 else
1752 lb_recorded =
1753 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1754 (blocksize_bits - 9);
1755
1756 if (iinfo->i_efe == 0) {
1757 memcpy(bh->b_data + sizeof(struct fileEntry),
1758 iinfo->i_data,
1759 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1760 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1761
1762 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1763 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1764 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1765 memset(&(fe->impIdent), 0, sizeof(struct regid));
1766 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1767 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1768 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1769 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1770 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1771 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1772 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1773 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1774 crclen = sizeof(struct fileEntry);
1775 } else {
1776 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1777 iinfo->i_data,
1778 inode->i_sb->s_blocksize -
1779 sizeof(struct extendedFileEntry));
1780 efe->objectSize =
1781 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1782 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784 if (iinfo->i_streamdir) {
1785 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1786
1787 icb_lad->extLocation =
1788 cpu_to_lelb(iinfo->i_locStreamdir);
1789 icb_lad->extLength =
1790 cpu_to_le32(inode->i_sb->s_blocksize);
1791 }
1792
1793 udf_adjust_time(iinfo, inode->i_atime);
1794 udf_adjust_time(iinfo, inode->i_mtime);
1795 udf_adjust_time(iinfo, inode->i_ctime);
1796
1797 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1798 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1799 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1800 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1801
1802 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1803 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1804 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1805 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1806 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1807 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1808 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1809 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1810 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1811 crclen = sizeof(struct extendedFileEntry);
1812 }
1813
1814finish:
1815 if (iinfo->i_strat4096) {
1816 fe->icbTag.strategyType = cpu_to_le16(4096);
1817 fe->icbTag.strategyParameter = cpu_to_le16(1);
1818 fe->icbTag.numEntries = cpu_to_le16(2);
1819 } else {
1820 fe->icbTag.strategyType = cpu_to_le16(4);
1821 fe->icbTag.numEntries = cpu_to_le16(1);
1822 }
1823
1824 if (iinfo->i_use)
1825 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1826 else if (S_ISDIR(inode->i_mode))
1827 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1828 else if (S_ISREG(inode->i_mode))
1829 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1830 else if (S_ISLNK(inode->i_mode))
1831 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1832 else if (S_ISBLK(inode->i_mode))
1833 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1834 else if (S_ISCHR(inode->i_mode))
1835 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1836 else if (S_ISFIFO(inode->i_mode))
1837 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1838 else if (S_ISSOCK(inode->i_mode))
1839 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1840
1841 icbflags = iinfo->i_alloc_type |
1842 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1843 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1844 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1845 (le16_to_cpu(fe->icbTag.flags) &
1846 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1847 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1848
1849 fe->icbTag.flags = cpu_to_le16(icbflags);
1850 if (sbi->s_udfrev >= 0x0200)
1851 fe->descTag.descVersion = cpu_to_le16(3);
1852 else
1853 fe->descTag.descVersion = cpu_to_le16(2);
1854 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1855 fe->descTag.tagLocation = cpu_to_le32(
1856 iinfo->i_location.logicalBlockNum);
1857 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1858 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1859 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1860 crclen));
1861 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1862
1863 set_buffer_uptodate(bh);
1864 unlock_buffer(bh);
1865
1866 /* write the data blocks */
1867 mark_buffer_dirty(bh);
1868 if (do_sync) {
1869 sync_dirty_buffer(bh);
1870 if (buffer_write_io_error(bh)) {
1871 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1872 inode->i_ino);
1873 err = -EIO;
1874 }
1875 }
1876 brelse(bh);
1877
1878 return err;
1879}
1880
1881struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1882 bool hidden_inode)
1883{
1884 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1885 struct inode *inode = iget_locked(sb, block);
1886 int err;
1887
1888 if (!inode)
1889 return ERR_PTR(-ENOMEM);
1890
1891 if (!(inode->i_state & I_NEW))
1892 return inode;
1893
1894 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1895 err = udf_read_inode(inode, hidden_inode);
1896 if (err < 0) {
1897 iget_failed(inode);
1898 return ERR_PTR(err);
1899 }
1900 unlock_new_inode(inode);
1901
1902 return inode;
1903}
1904
1905int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1906 struct extent_position *epos)
1907{
1908 struct super_block *sb = inode->i_sb;
1909 struct buffer_head *bh;
1910 struct allocExtDesc *aed;
1911 struct extent_position nepos;
1912 struct kernel_lb_addr neloc;
1913 int ver, adsize;
1914
1915 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1916 adsize = sizeof(struct short_ad);
1917 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1918 adsize = sizeof(struct long_ad);
1919 else
1920 return -EIO;
1921
1922 neloc.logicalBlockNum = block;
1923 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1924
1925 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1926 if (!bh)
1927 return -EIO;
1928 lock_buffer(bh);
1929 memset(bh->b_data, 0x00, sb->s_blocksize);
1930 set_buffer_uptodate(bh);
1931 unlock_buffer(bh);
1932 mark_buffer_dirty_inode(bh, inode);
1933
1934 aed = (struct allocExtDesc *)(bh->b_data);
1935 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1936 aed->previousAllocExtLocation =
1937 cpu_to_le32(epos->block.logicalBlockNum);
1938 }
1939 aed->lengthAllocDescs = cpu_to_le32(0);
1940 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1941 ver = 3;
1942 else
1943 ver = 2;
1944 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1945 sizeof(struct tag));
1946
1947 nepos.block = neloc;
1948 nepos.offset = sizeof(struct allocExtDesc);
1949 nepos.bh = bh;
1950
1951 /*
1952 * Do we have to copy current last extent to make space for indirect
1953 * one?
1954 */
1955 if (epos->offset + adsize > sb->s_blocksize) {
1956 struct kernel_lb_addr cp_loc;
1957 uint32_t cp_len;
1958 int cp_type;
1959
1960 epos->offset -= adsize;
1961 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1962 cp_len |= ((uint32_t)cp_type) << 30;
1963
1964 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1965 udf_write_aext(inode, epos, &nepos.block,
1966 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1967 } else {
1968 __udf_add_aext(inode, epos, &nepos.block,
1969 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1970 }
1971
1972 brelse(epos->bh);
1973 *epos = nepos;
1974
1975 return 0;
1976}
1977
1978/*
1979 * Append extent at the given position - should be the first free one in inode
1980 * / indirect extent. This function assumes there is enough space in the inode
1981 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1982 */
1983int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1984 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1985{
1986 struct udf_inode_info *iinfo = UDF_I(inode);
1987 struct allocExtDesc *aed;
1988 int adsize;
1989
1990 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1991 adsize = sizeof(struct short_ad);
1992 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1993 adsize = sizeof(struct long_ad);
1994 else
1995 return -EIO;
1996
1997 if (!epos->bh) {
1998 WARN_ON(iinfo->i_lenAlloc !=
1999 epos->offset - udf_file_entry_alloc_offset(inode));
2000 } else {
2001 aed = (struct allocExtDesc *)epos->bh->b_data;
2002 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2003 epos->offset - sizeof(struct allocExtDesc));
2004 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2005 }
2006
2007 udf_write_aext(inode, epos, eloc, elen, inc);
2008
2009 if (!epos->bh) {
2010 iinfo->i_lenAlloc += adsize;
2011 mark_inode_dirty(inode);
2012 } else {
2013 aed = (struct allocExtDesc *)epos->bh->b_data;
2014 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2015 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2016 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2017 udf_update_tag(epos->bh->b_data,
2018 epos->offset + (inc ? 0 : adsize));
2019 else
2020 udf_update_tag(epos->bh->b_data,
2021 sizeof(struct allocExtDesc));
2022 mark_buffer_dirty_inode(epos->bh, inode);
2023 }
2024
2025 return 0;
2026}
2027
2028/*
2029 * Append extent at given position - should be the first free one in inode
2030 * / indirect extent. Takes care of allocating and linking indirect blocks.
2031 */
2032int udf_add_aext(struct inode *inode, struct extent_position *epos,
2033 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2034{
2035 int adsize;
2036 struct super_block *sb = inode->i_sb;
2037
2038 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2039 adsize = sizeof(struct short_ad);
2040 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2041 adsize = sizeof(struct long_ad);
2042 else
2043 return -EIO;
2044
2045 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2046 int err;
2047 udf_pblk_t new_block;
2048
2049 new_block = udf_new_block(sb, NULL,
2050 epos->block.partitionReferenceNum,
2051 epos->block.logicalBlockNum, &err);
2052 if (!new_block)
2053 return -ENOSPC;
2054
2055 err = udf_setup_indirect_aext(inode, new_block, epos);
2056 if (err)
2057 return err;
2058 }
2059
2060 return __udf_add_aext(inode, epos, eloc, elen, inc);
2061}
2062
2063void udf_write_aext(struct inode *inode, struct extent_position *epos,
2064 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2065{
2066 int adsize;
2067 uint8_t *ptr;
2068 struct short_ad *sad;
2069 struct long_ad *lad;
2070 struct udf_inode_info *iinfo = UDF_I(inode);
2071
2072 if (!epos->bh)
2073 ptr = iinfo->i_data + epos->offset -
2074 udf_file_entry_alloc_offset(inode) +
2075 iinfo->i_lenEAttr;
2076 else
2077 ptr = epos->bh->b_data + epos->offset;
2078
2079 switch (iinfo->i_alloc_type) {
2080 case ICBTAG_FLAG_AD_SHORT:
2081 sad = (struct short_ad *)ptr;
2082 sad->extLength = cpu_to_le32(elen);
2083 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2084 adsize = sizeof(struct short_ad);
2085 break;
2086 case ICBTAG_FLAG_AD_LONG:
2087 lad = (struct long_ad *)ptr;
2088 lad->extLength = cpu_to_le32(elen);
2089 lad->extLocation = cpu_to_lelb(*eloc);
2090 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2091 adsize = sizeof(struct long_ad);
2092 break;
2093 default:
2094 return;
2095 }
2096
2097 if (epos->bh) {
2098 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2099 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2100 struct allocExtDesc *aed =
2101 (struct allocExtDesc *)epos->bh->b_data;
2102 udf_update_tag(epos->bh->b_data,
2103 le32_to_cpu(aed->lengthAllocDescs) +
2104 sizeof(struct allocExtDesc));
2105 }
2106 mark_buffer_dirty_inode(epos->bh, inode);
2107 } else {
2108 mark_inode_dirty(inode);
2109 }
2110
2111 if (inc)
2112 epos->offset += adsize;
2113}
2114
2115/*
2116 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2117 * someone does some weird stuff.
2118 */
2119#define UDF_MAX_INDIR_EXTS 16
2120
2121int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2122 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2123{
2124 int8_t etype;
2125 unsigned int indirections = 0;
2126
2127 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2128 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2129 udf_pblk_t block;
2130
2131 if (++indirections > UDF_MAX_INDIR_EXTS) {
2132 udf_err(inode->i_sb,
2133 "too many indirect extents in inode %lu\n",
2134 inode->i_ino);
2135 return -1;
2136 }
2137
2138 epos->block = *eloc;
2139 epos->offset = sizeof(struct allocExtDesc);
2140 brelse(epos->bh);
2141 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2142 epos->bh = udf_tread(inode->i_sb, block);
2143 if (!epos->bh) {
2144 udf_debug("reading block %u failed!\n", block);
2145 return -1;
2146 }
2147 }
2148
2149 return etype;
2150}
2151
2152int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2153 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2154{
2155 int alen;
2156 int8_t etype;
2157 uint8_t *ptr;
2158 struct short_ad *sad;
2159 struct long_ad *lad;
2160 struct udf_inode_info *iinfo = UDF_I(inode);
2161
2162 if (!epos->bh) {
2163 if (!epos->offset)
2164 epos->offset = udf_file_entry_alloc_offset(inode);
2165 ptr = iinfo->i_data + epos->offset -
2166 udf_file_entry_alloc_offset(inode) +
2167 iinfo->i_lenEAttr;
2168 alen = udf_file_entry_alloc_offset(inode) +
2169 iinfo->i_lenAlloc;
2170 } else {
2171 if (!epos->offset)
2172 epos->offset = sizeof(struct allocExtDesc);
2173 ptr = epos->bh->b_data + epos->offset;
2174 alen = sizeof(struct allocExtDesc) +
2175 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2176 lengthAllocDescs);
2177 }
2178
2179 switch (iinfo->i_alloc_type) {
2180 case ICBTAG_FLAG_AD_SHORT:
2181 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2182 if (!sad)
2183 return -1;
2184 etype = le32_to_cpu(sad->extLength) >> 30;
2185 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2186 eloc->partitionReferenceNum =
2187 iinfo->i_location.partitionReferenceNum;
2188 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2189 break;
2190 case ICBTAG_FLAG_AD_LONG:
2191 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2192 if (!lad)
2193 return -1;
2194 etype = le32_to_cpu(lad->extLength) >> 30;
2195 *eloc = lelb_to_cpu(lad->extLocation);
2196 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2197 break;
2198 default:
2199 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2200 return -1;
2201 }
2202
2203 return etype;
2204}
2205
2206static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2207 struct kernel_lb_addr neloc, uint32_t nelen)
2208{
2209 struct kernel_lb_addr oeloc;
2210 uint32_t oelen;
2211 int8_t etype;
2212
2213 if (epos.bh)
2214 get_bh(epos.bh);
2215
2216 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2217 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2218 neloc = oeloc;
2219 nelen = (etype << 30) | oelen;
2220 }
2221 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2222 brelse(epos.bh);
2223
2224 return (nelen >> 30);
2225}
2226
2227int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2228{
2229 struct extent_position oepos;
2230 int adsize;
2231 int8_t etype;
2232 struct allocExtDesc *aed;
2233 struct udf_inode_info *iinfo;
2234 struct kernel_lb_addr eloc;
2235 uint32_t elen;
2236
2237 if (epos.bh) {
2238 get_bh(epos.bh);
2239 get_bh(epos.bh);
2240 }
2241
2242 iinfo = UDF_I(inode);
2243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2244 adsize = sizeof(struct short_ad);
2245 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2246 adsize = sizeof(struct long_ad);
2247 else
2248 adsize = 0;
2249
2250 oepos = epos;
2251 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2252 return -1;
2253
2254 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2255 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2256 if (oepos.bh != epos.bh) {
2257 oepos.block = epos.block;
2258 brelse(oepos.bh);
2259 get_bh(epos.bh);
2260 oepos.bh = epos.bh;
2261 oepos.offset = epos.offset - adsize;
2262 }
2263 }
2264 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2265 elen = 0;
2266
2267 if (epos.bh != oepos.bh) {
2268 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2269 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2270 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2271 if (!oepos.bh) {
2272 iinfo->i_lenAlloc -= (adsize * 2);
2273 mark_inode_dirty(inode);
2274 } else {
2275 aed = (struct allocExtDesc *)oepos.bh->b_data;
2276 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2277 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2278 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2279 udf_update_tag(oepos.bh->b_data,
2280 oepos.offset - (2 * adsize));
2281 else
2282 udf_update_tag(oepos.bh->b_data,
2283 sizeof(struct allocExtDesc));
2284 mark_buffer_dirty_inode(oepos.bh, inode);
2285 }
2286 } else {
2287 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 if (!oepos.bh) {
2289 iinfo->i_lenAlloc -= adsize;
2290 mark_inode_dirty(inode);
2291 } else {
2292 aed = (struct allocExtDesc *)oepos.bh->b_data;
2293 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2294 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296 udf_update_tag(oepos.bh->b_data,
2297 epos.offset - adsize);
2298 else
2299 udf_update_tag(oepos.bh->b_data,
2300 sizeof(struct allocExtDesc));
2301 mark_buffer_dirty_inode(oepos.bh, inode);
2302 }
2303 }
2304
2305 brelse(epos.bh);
2306 brelse(oepos.bh);
2307
2308 return (elen >> 30);
2309}
2310
2311int8_t inode_bmap(struct inode *inode, sector_t block,
2312 struct extent_position *pos, struct kernel_lb_addr *eloc,
2313 uint32_t *elen, sector_t *offset)
2314{
2315 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2316 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2317 int8_t etype;
2318 struct udf_inode_info *iinfo;
2319
2320 iinfo = UDF_I(inode);
2321 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2322 pos->offset = 0;
2323 pos->block = iinfo->i_location;
2324 pos->bh = NULL;
2325 }
2326 *elen = 0;
2327 do {
2328 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2329 if (etype == -1) {
2330 *offset = (bcount - lbcount) >> blocksize_bits;
2331 iinfo->i_lenExtents = lbcount;
2332 return -1;
2333 }
2334 lbcount += *elen;
2335 } while (lbcount <= bcount);
2336 /* update extent cache */
2337 udf_update_extent_cache(inode, lbcount - *elen, pos);
2338 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2339
2340 return etype;
2341}
2342
2343udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2344{
2345 struct kernel_lb_addr eloc;
2346 uint32_t elen;
2347 sector_t offset;
2348 struct extent_position epos = {};
2349 udf_pblk_t ret;
2350
2351 down_read(&UDF_I(inode)->i_data_sem);
2352
2353 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2354 (EXT_RECORDED_ALLOCATED >> 30))
2355 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2356 else
2357 ret = 0;
2358
2359 up_read(&UDF_I(inode)->i_data_sem);
2360 brelse(epos.bh);
2361
2362 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2363 return udf_fixed_to_variable(ret);
2364 else
2365 return ret;
2366}