Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!inode->i_nlink && !is_bad_inode(inode)) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 truncate_inode_pages_final(&inode->i_data);
148 invalidate_inode_buffers(inode);
149 clear_inode(inode);
150 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
151 inode->i_size != iinfo->i_lenExtents) {
152 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
153 inode->i_ino, inode->i_mode,
154 (unsigned long long)inode->i_size,
155 (unsigned long long)iinfo->i_lenExtents);
156 }
157 kfree(iinfo->i_ext.i_data);
158 iinfo->i_ext.i_data = NULL;
159 udf_clear_extent_cache(inode);
160 if (want_delete) {
161 udf_free_inode(inode);
162 }
163}
164
165static void udf_write_failed(struct address_space *mapping, loff_t to)
166{
167 struct inode *inode = mapping->host;
168 struct udf_inode_info *iinfo = UDF_I(inode);
169 loff_t isize = inode->i_size;
170
171 if (to > isize) {
172 truncate_pagecache(inode, isize);
173 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
174 down_write(&iinfo->i_data_sem);
175 udf_clear_extent_cache(inode);
176 udf_truncate_extents(inode);
177 up_write(&iinfo->i_data_sem);
178 }
179 }
180}
181
182static int udf_writepage(struct page *page, struct writeback_control *wbc)
183{
184 return block_write_full_page(page, udf_get_block, wbc);
185}
186
187static int udf_writepages(struct address_space *mapping,
188 struct writeback_control *wbc)
189{
190 return mpage_writepages(mapping, wbc, udf_get_block);
191}
192
193static int udf_readpage(struct file *file, struct page *page)
194{
195 return mpage_readpage(page, udf_get_block);
196}
197
198static void udf_readahead(struct readahead_control *rac)
199{
200 mpage_readahead(rac, udf_get_block);
201}
202
203static int udf_write_begin(struct file *file, struct address_space *mapping,
204 loff_t pos, unsigned len, unsigned flags,
205 struct page **pagep, void **fsdata)
206{
207 int ret;
208
209 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
210 if (unlikely(ret))
211 udf_write_failed(mapping, pos + len);
212 return ret;
213}
214
215static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
216{
217 struct file *file = iocb->ki_filp;
218 struct address_space *mapping = file->f_mapping;
219 struct inode *inode = mapping->host;
220 size_t count = iov_iter_count(iter);
221 ssize_t ret;
222
223 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
224 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
225 udf_write_failed(mapping, iocb->ki_pos + count);
226 return ret;
227}
228
229static sector_t udf_bmap(struct address_space *mapping, sector_t block)
230{
231 return generic_block_bmap(mapping, block, udf_get_block);
232}
233
234const struct address_space_operations udf_aops = {
235 .readpage = udf_readpage,
236 .readahead = udf_readahead,
237 .writepage = udf_writepage,
238 .writepages = udf_writepages,
239 .write_begin = udf_write_begin,
240 .write_end = generic_write_end,
241 .direct_IO = udf_direct_IO,
242 .bmap = udf_bmap,
243};
244
245/*
246 * Expand file stored in ICB to a normal one-block-file
247 *
248 * This function requires i_data_sem for writing and releases it.
249 * This function requires i_mutex held
250 */
251int udf_expand_file_adinicb(struct inode *inode)
252{
253 struct page *page;
254 char *kaddr;
255 struct udf_inode_info *iinfo = UDF_I(inode);
256 int err;
257 struct writeback_control udf_wbc = {
258 .sync_mode = WB_SYNC_NONE,
259 .nr_to_write = 1,
260 };
261
262 WARN_ON_ONCE(!inode_is_locked(inode));
263 if (!iinfo->i_lenAlloc) {
264 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
265 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
266 else
267 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
268 /* from now on we have normal address_space methods */
269 inode->i_data.a_ops = &udf_aops;
270 up_write(&iinfo->i_data_sem);
271 mark_inode_dirty(inode);
272 return 0;
273 }
274 /*
275 * Release i_data_sem so that we can lock a page - page lock ranks
276 * above i_data_sem. i_mutex still protects us against file changes.
277 */
278 up_write(&iinfo->i_data_sem);
279
280 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
281 if (!page)
282 return -ENOMEM;
283
284 if (!PageUptodate(page)) {
285 kaddr = kmap_atomic(page);
286 memset(kaddr + iinfo->i_lenAlloc, 0x00,
287 PAGE_SIZE - iinfo->i_lenAlloc);
288 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
289 iinfo->i_lenAlloc);
290 flush_dcache_page(page);
291 SetPageUptodate(page);
292 kunmap_atomic(kaddr);
293 }
294 down_write(&iinfo->i_data_sem);
295 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
296 iinfo->i_lenAlloc);
297 iinfo->i_lenAlloc = 0;
298 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
300 else
301 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
302 /* from now on we have normal address_space methods */
303 inode->i_data.a_ops = &udf_aops;
304 up_write(&iinfo->i_data_sem);
305 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
306 if (err) {
307 /* Restore everything back so that we don't lose data... */
308 lock_page(page);
309 down_write(&iinfo->i_data_sem);
310 kaddr = kmap_atomic(page);
311 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
312 inode->i_size);
313 kunmap_atomic(kaddr);
314 unlock_page(page);
315 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
316 inode->i_data.a_ops = &udf_adinicb_aops;
317 up_write(&iinfo->i_data_sem);
318 }
319 put_page(page);
320 mark_inode_dirty(inode);
321
322 return err;
323}
324
325struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
326 udf_pblk_t *block, int *err)
327{
328 udf_pblk_t newblock;
329 struct buffer_head *dbh = NULL;
330 struct kernel_lb_addr eloc;
331 uint8_t alloctype;
332 struct extent_position epos;
333
334 struct udf_fileident_bh sfibh, dfibh;
335 loff_t f_pos = udf_ext0_offset(inode);
336 int size = udf_ext0_offset(inode) + inode->i_size;
337 struct fileIdentDesc cfi, *sfi, *dfi;
338 struct udf_inode_info *iinfo = UDF_I(inode);
339
340 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
341 alloctype = ICBTAG_FLAG_AD_SHORT;
342 else
343 alloctype = ICBTAG_FLAG_AD_LONG;
344
345 if (!inode->i_size) {
346 iinfo->i_alloc_type = alloctype;
347 mark_inode_dirty(inode);
348 return NULL;
349 }
350
351 /* alloc block, and copy data to it */
352 *block = udf_new_block(inode->i_sb, inode,
353 iinfo->i_location.partitionReferenceNum,
354 iinfo->i_location.logicalBlockNum, err);
355 if (!(*block))
356 return NULL;
357 newblock = udf_get_pblock(inode->i_sb, *block,
358 iinfo->i_location.partitionReferenceNum,
359 0);
360 if (!newblock)
361 return NULL;
362 dbh = udf_tgetblk(inode->i_sb, newblock);
363 if (!dbh)
364 return NULL;
365 lock_buffer(dbh);
366 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
367 set_buffer_uptodate(dbh);
368 unlock_buffer(dbh);
369 mark_buffer_dirty_inode(dbh, inode);
370
371 sfibh.soffset = sfibh.eoffset =
372 f_pos & (inode->i_sb->s_blocksize - 1);
373 sfibh.sbh = sfibh.ebh = NULL;
374 dfibh.soffset = dfibh.eoffset = 0;
375 dfibh.sbh = dfibh.ebh = dbh;
376 while (f_pos < size) {
377 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
378 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
379 NULL, NULL, NULL);
380 if (!sfi) {
381 brelse(dbh);
382 return NULL;
383 }
384 iinfo->i_alloc_type = alloctype;
385 sfi->descTag.tagLocation = cpu_to_le32(*block);
386 dfibh.soffset = dfibh.eoffset;
387 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
388 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
389 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
390 sfi->fileIdent +
391 le16_to_cpu(sfi->lengthOfImpUse))) {
392 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
393 brelse(dbh);
394 return NULL;
395 }
396 }
397 mark_buffer_dirty_inode(dbh, inode);
398
399 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
400 iinfo->i_lenAlloc);
401 iinfo->i_lenAlloc = 0;
402 eloc.logicalBlockNum = *block;
403 eloc.partitionReferenceNum =
404 iinfo->i_location.partitionReferenceNum;
405 iinfo->i_lenExtents = inode->i_size;
406 epos.bh = NULL;
407 epos.block = iinfo->i_location;
408 epos.offset = udf_file_entry_alloc_offset(inode);
409 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
410 /* UniqueID stuff */
411
412 brelse(epos.bh);
413 mark_inode_dirty(inode);
414 return dbh;
415}
416
417static int udf_get_block(struct inode *inode, sector_t block,
418 struct buffer_head *bh_result, int create)
419{
420 int err, new;
421 sector_t phys = 0;
422 struct udf_inode_info *iinfo;
423
424 if (!create) {
425 phys = udf_block_map(inode, block);
426 if (phys)
427 map_bh(bh_result, inode->i_sb, phys);
428 return 0;
429 }
430
431 err = -EIO;
432 new = 0;
433 iinfo = UDF_I(inode);
434
435 down_write(&iinfo->i_data_sem);
436 if (block == iinfo->i_next_alloc_block + 1) {
437 iinfo->i_next_alloc_block++;
438 iinfo->i_next_alloc_goal++;
439 }
440
441 udf_clear_extent_cache(inode);
442 phys = inode_getblk(inode, block, &err, &new);
443 if (!phys)
444 goto abort;
445
446 if (new)
447 set_buffer_new(bh_result);
448 map_bh(bh_result, inode->i_sb, phys);
449
450abort:
451 up_write(&iinfo->i_data_sem);
452 return err;
453}
454
455static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
456 int create, int *err)
457{
458 struct buffer_head *bh;
459 struct buffer_head dummy;
460
461 dummy.b_state = 0;
462 dummy.b_blocknr = -1000;
463 *err = udf_get_block(inode, block, &dummy, create);
464 if (!*err && buffer_mapped(&dummy)) {
465 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
466 if (buffer_new(&dummy)) {
467 lock_buffer(bh);
468 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
469 set_buffer_uptodate(bh);
470 unlock_buffer(bh);
471 mark_buffer_dirty_inode(bh, inode);
472 }
473 return bh;
474 }
475
476 return NULL;
477}
478
479/* Extend the file with new blocks totaling 'new_block_bytes',
480 * return the number of extents added
481 */
482static int udf_do_extend_file(struct inode *inode,
483 struct extent_position *last_pos,
484 struct kernel_long_ad *last_ext,
485 loff_t new_block_bytes)
486{
487 uint32_t add;
488 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
489 struct super_block *sb = inode->i_sb;
490 struct kernel_lb_addr prealloc_loc = {};
491 uint32_t prealloc_len = 0;
492 struct udf_inode_info *iinfo;
493 int err;
494
495 /* The previous extent is fake and we should not extend by anything
496 * - there's nothing to do... */
497 if (!new_block_bytes && fake)
498 return 0;
499
500 iinfo = UDF_I(inode);
501 /* Round the last extent up to a multiple of block size */
502 if (last_ext->extLength & (sb->s_blocksize - 1)) {
503 last_ext->extLength =
504 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
505 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
506 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
507 iinfo->i_lenExtents =
508 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
509 ~(sb->s_blocksize - 1);
510 }
511
512 /* Last extent are just preallocated blocks? */
513 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
514 EXT_NOT_RECORDED_ALLOCATED) {
515 /* Save the extent so that we can reattach it to the end */
516 prealloc_loc = last_ext->extLocation;
517 prealloc_len = last_ext->extLength;
518 /* Mark the extent as a hole */
519 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
520 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
521 last_ext->extLocation.logicalBlockNum = 0;
522 last_ext->extLocation.partitionReferenceNum = 0;
523 }
524
525 /* Can we merge with the previous extent? */
526 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
527 EXT_NOT_RECORDED_NOT_ALLOCATED) {
528 add = (1 << 30) - sb->s_blocksize -
529 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
530 if (add > new_block_bytes)
531 add = new_block_bytes;
532 new_block_bytes -= add;
533 last_ext->extLength += add;
534 }
535
536 if (fake) {
537 udf_add_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539 count++;
540 } else {
541 struct kernel_lb_addr tmploc;
542 uint32_t tmplen;
543
544 udf_write_aext(inode, last_pos, &last_ext->extLocation,
545 last_ext->extLength, 1);
546 /*
547 * We've rewritten the last extent but there may be empty
548 * indirect extent after it - enter it.
549 */
550 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
551 }
552
553 /* Managed to do everything necessary? */
554 if (!new_block_bytes)
555 goto out;
556
557 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
558 last_ext->extLocation.logicalBlockNum = 0;
559 last_ext->extLocation.partitionReferenceNum = 0;
560 add = (1 << 30) - sb->s_blocksize;
561 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
562
563 /* Create enough extents to cover the whole hole */
564 while (new_block_bytes > add) {
565 new_block_bytes -= add;
566 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
567 last_ext->extLength, 1);
568 if (err)
569 return err;
570 count++;
571 }
572 if (new_block_bytes) {
573 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
574 new_block_bytes;
575 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
576 last_ext->extLength, 1);
577 if (err)
578 return err;
579 count++;
580 }
581
582out:
583 /* Do we have some preallocated blocks saved? */
584 if (prealloc_len) {
585 err = udf_add_aext(inode, last_pos, &prealloc_loc,
586 prealloc_len, 1);
587 if (err)
588 return err;
589 last_ext->extLocation = prealloc_loc;
590 last_ext->extLength = prealloc_len;
591 count++;
592 }
593
594 /* last_pos should point to the last written extent... */
595 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
596 last_pos->offset -= sizeof(struct short_ad);
597 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
598 last_pos->offset -= sizeof(struct long_ad);
599 else
600 return -EIO;
601
602 return count;
603}
604
605/* Extend the final block of the file to final_block_len bytes */
606static void udf_do_extend_final_block(struct inode *inode,
607 struct extent_position *last_pos,
608 struct kernel_long_ad *last_ext,
609 uint32_t final_block_len)
610{
611 struct super_block *sb = inode->i_sb;
612 uint32_t added_bytes;
613
614 added_bytes = final_block_len -
615 (last_ext->extLength & (sb->s_blocksize - 1));
616 last_ext->extLength += added_bytes;
617 UDF_I(inode)->i_lenExtents += added_bytes;
618
619 udf_write_aext(inode, last_pos, &last_ext->extLocation,
620 last_ext->extLength, 1);
621}
622
623static int udf_extend_file(struct inode *inode, loff_t newsize)
624{
625
626 struct extent_position epos;
627 struct kernel_lb_addr eloc;
628 uint32_t elen;
629 int8_t etype;
630 struct super_block *sb = inode->i_sb;
631 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
632 unsigned long partial_final_block;
633 int adsize;
634 struct udf_inode_info *iinfo = UDF_I(inode);
635 struct kernel_long_ad extent;
636 int err = 0;
637 int within_final_block;
638
639 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
640 adsize = sizeof(struct short_ad);
641 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
642 adsize = sizeof(struct long_ad);
643 else
644 BUG();
645
646 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
647 within_final_block = (etype != -1);
648
649 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
650 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
651 /* File has no extents at all or has empty last
652 * indirect extent! Create a fake extent... */
653 extent.extLocation.logicalBlockNum = 0;
654 extent.extLocation.partitionReferenceNum = 0;
655 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
656 } else {
657 epos.offset -= adsize;
658 etype = udf_next_aext(inode, &epos, &extent.extLocation,
659 &extent.extLength, 0);
660 extent.extLength |= etype << 30;
661 }
662
663 partial_final_block = newsize & (sb->s_blocksize - 1);
664
665 /* File has extent covering the new size (could happen when extending
666 * inside a block)?
667 */
668 if (within_final_block) {
669 /* Extending file within the last file block */
670 udf_do_extend_final_block(inode, &epos, &extent,
671 partial_final_block);
672 } else {
673 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
674 partial_final_block;
675 err = udf_do_extend_file(inode, &epos, &extent, add);
676 }
677
678 if (err < 0)
679 goto out;
680 err = 0;
681 iinfo->i_lenExtents = newsize;
682out:
683 brelse(epos.bh);
684 return err;
685}
686
687static sector_t inode_getblk(struct inode *inode, sector_t block,
688 int *err, int *new)
689{
690 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
691 struct extent_position prev_epos, cur_epos, next_epos;
692 int count = 0, startnum = 0, endnum = 0;
693 uint32_t elen = 0, tmpelen;
694 struct kernel_lb_addr eloc, tmpeloc;
695 int c = 1;
696 loff_t lbcount = 0, b_off = 0;
697 udf_pblk_t newblocknum, newblock;
698 sector_t offset = 0;
699 int8_t etype;
700 struct udf_inode_info *iinfo = UDF_I(inode);
701 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
702 int lastblock = 0;
703 bool isBeyondEOF;
704
705 *err = 0;
706 *new = 0;
707 prev_epos.offset = udf_file_entry_alloc_offset(inode);
708 prev_epos.block = iinfo->i_location;
709 prev_epos.bh = NULL;
710 cur_epos = next_epos = prev_epos;
711 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
712
713 /* find the extent which contains the block we are looking for.
714 alternate between laarr[0] and laarr[1] for locations of the
715 current extent, and the previous extent */
716 do {
717 if (prev_epos.bh != cur_epos.bh) {
718 brelse(prev_epos.bh);
719 get_bh(cur_epos.bh);
720 prev_epos.bh = cur_epos.bh;
721 }
722 if (cur_epos.bh != next_epos.bh) {
723 brelse(cur_epos.bh);
724 get_bh(next_epos.bh);
725 cur_epos.bh = next_epos.bh;
726 }
727
728 lbcount += elen;
729
730 prev_epos.block = cur_epos.block;
731 cur_epos.block = next_epos.block;
732
733 prev_epos.offset = cur_epos.offset;
734 cur_epos.offset = next_epos.offset;
735
736 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
737 if (etype == -1)
738 break;
739
740 c = !c;
741
742 laarr[c].extLength = (etype << 30) | elen;
743 laarr[c].extLocation = eloc;
744
745 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
746 pgoal = eloc.logicalBlockNum +
747 ((elen + inode->i_sb->s_blocksize - 1) >>
748 inode->i_sb->s_blocksize_bits);
749
750 count++;
751 } while (lbcount + elen <= b_off);
752
753 b_off -= lbcount;
754 offset = b_off >> inode->i_sb->s_blocksize_bits;
755 /*
756 * Move prev_epos and cur_epos into indirect extent if we are at
757 * the pointer to it
758 */
759 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
760 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
761
762 /* if the extent is allocated and recorded, return the block
763 if the extent is not a multiple of the blocksize, round up */
764
765 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
766 if (elen & (inode->i_sb->s_blocksize - 1)) {
767 elen = EXT_RECORDED_ALLOCATED |
768 ((elen + inode->i_sb->s_blocksize - 1) &
769 ~(inode->i_sb->s_blocksize - 1));
770 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
771 }
772 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
773 goto out_free;
774 }
775
776 /* Are we beyond EOF? */
777 if (etype == -1) {
778 int ret;
779 loff_t hole_len;
780 isBeyondEOF = true;
781 if (count) {
782 if (c)
783 laarr[0] = laarr[1];
784 startnum = 1;
785 } else {
786 /* Create a fake extent when there's not one */
787 memset(&laarr[0].extLocation, 0x00,
788 sizeof(struct kernel_lb_addr));
789 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
790 /* Will udf_do_extend_file() create real extent from
791 a fake one? */
792 startnum = (offset > 0);
793 }
794 /* Create extents for the hole between EOF and offset */
795 hole_len = (loff_t)offset << inode->i_blkbits;
796 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
797 if (ret < 0) {
798 *err = ret;
799 newblock = 0;
800 goto out_free;
801 }
802 c = 0;
803 offset = 0;
804 count += ret;
805 /* We are not covered by a preallocated extent? */
806 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
807 EXT_NOT_RECORDED_ALLOCATED) {
808 /* Is there any real extent? - otherwise we overwrite
809 * the fake one... */
810 if (count)
811 c = !c;
812 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
813 inode->i_sb->s_blocksize;
814 memset(&laarr[c].extLocation, 0x00,
815 sizeof(struct kernel_lb_addr));
816 count++;
817 }
818 endnum = c + 1;
819 lastblock = 1;
820 } else {
821 isBeyondEOF = false;
822 endnum = startnum = ((count > 2) ? 2 : count);
823
824 /* if the current extent is in position 0,
825 swap it with the previous */
826 if (!c && count != 1) {
827 laarr[2] = laarr[0];
828 laarr[0] = laarr[1];
829 laarr[1] = laarr[2];
830 c = 1;
831 }
832
833 /* if the current block is located in an extent,
834 read the next extent */
835 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
836 if (etype != -1) {
837 laarr[c + 1].extLength = (etype << 30) | elen;
838 laarr[c + 1].extLocation = eloc;
839 count++;
840 startnum++;
841 endnum++;
842 } else
843 lastblock = 1;
844 }
845
846 /* if the current extent is not recorded but allocated, get the
847 * block in the extent corresponding to the requested block */
848 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
849 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
850 else { /* otherwise, allocate a new block */
851 if (iinfo->i_next_alloc_block == block)
852 goal = iinfo->i_next_alloc_goal;
853
854 if (!goal) {
855 if (!(goal = pgoal)) /* XXX: what was intended here? */
856 goal = iinfo->i_location.logicalBlockNum + 1;
857 }
858
859 newblocknum = udf_new_block(inode->i_sb, inode,
860 iinfo->i_location.partitionReferenceNum,
861 goal, err);
862 if (!newblocknum) {
863 *err = -ENOSPC;
864 newblock = 0;
865 goto out_free;
866 }
867 if (isBeyondEOF)
868 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
869 }
870
871 /* if the extent the requsted block is located in contains multiple
872 * blocks, split the extent into at most three extents. blocks prior
873 * to requested block, requested block, and blocks after requested
874 * block */
875 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
876
877 /* We preallocate blocks only for regular files. It also makes sense
878 * for directories but there's a problem when to drop the
879 * preallocation. We might use some delayed work for that but I feel
880 * it's overengineering for a filesystem like UDF. */
881 if (S_ISREG(inode->i_mode))
882 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
883
884 /* merge any continuous blocks in laarr */
885 udf_merge_extents(inode, laarr, &endnum);
886
887 /* write back the new extents, inserting new extents if the new number
888 * of extents is greater than the old number, and deleting extents if
889 * the new number of extents is less than the old number */
890 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
891
892 newblock = udf_get_pblock(inode->i_sb, newblocknum,
893 iinfo->i_location.partitionReferenceNum, 0);
894 if (!newblock) {
895 *err = -EIO;
896 goto out_free;
897 }
898 *new = 1;
899 iinfo->i_next_alloc_block = block;
900 iinfo->i_next_alloc_goal = newblocknum;
901 inode->i_ctime = current_time(inode);
902
903 if (IS_SYNC(inode))
904 udf_sync_inode(inode);
905 else
906 mark_inode_dirty(inode);
907out_free:
908 brelse(prev_epos.bh);
909 brelse(cur_epos.bh);
910 brelse(next_epos.bh);
911 return newblock;
912}
913
914static void udf_split_extents(struct inode *inode, int *c, int offset,
915 udf_pblk_t newblocknum,
916 struct kernel_long_ad *laarr, int *endnum)
917{
918 unsigned long blocksize = inode->i_sb->s_blocksize;
919 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
920
921 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
922 (laarr[*c].extLength >> 30) ==
923 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
924 int curr = *c;
925 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
926 blocksize - 1) >> blocksize_bits;
927 int8_t etype = (laarr[curr].extLength >> 30);
928
929 if (blen == 1)
930 ;
931 else if (!offset || blen == offset + 1) {
932 laarr[curr + 2] = laarr[curr + 1];
933 laarr[curr + 1] = laarr[curr];
934 } else {
935 laarr[curr + 3] = laarr[curr + 1];
936 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
937 }
938
939 if (offset) {
940 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
941 udf_free_blocks(inode->i_sb, inode,
942 &laarr[curr].extLocation,
943 0, offset);
944 laarr[curr].extLength =
945 EXT_NOT_RECORDED_NOT_ALLOCATED |
946 (offset << blocksize_bits);
947 laarr[curr].extLocation.logicalBlockNum = 0;
948 laarr[curr].extLocation.
949 partitionReferenceNum = 0;
950 } else
951 laarr[curr].extLength = (etype << 30) |
952 (offset << blocksize_bits);
953 curr++;
954 (*c)++;
955 (*endnum)++;
956 }
957
958 laarr[curr].extLocation.logicalBlockNum = newblocknum;
959 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
960 laarr[curr].extLocation.partitionReferenceNum =
961 UDF_I(inode)->i_location.partitionReferenceNum;
962 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
963 blocksize;
964 curr++;
965
966 if (blen != offset + 1) {
967 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
968 laarr[curr].extLocation.logicalBlockNum +=
969 offset + 1;
970 laarr[curr].extLength = (etype << 30) |
971 ((blen - (offset + 1)) << blocksize_bits);
972 curr++;
973 (*endnum)++;
974 }
975 }
976}
977
978static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
979 struct kernel_long_ad *laarr,
980 int *endnum)
981{
982 int start, length = 0, currlength = 0, i;
983
984 if (*endnum >= (c + 1)) {
985 if (!lastblock)
986 return;
987 else
988 start = c;
989 } else {
990 if ((laarr[c + 1].extLength >> 30) ==
991 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
992 start = c + 1;
993 length = currlength =
994 (((laarr[c + 1].extLength &
995 UDF_EXTENT_LENGTH_MASK) +
996 inode->i_sb->s_blocksize - 1) >>
997 inode->i_sb->s_blocksize_bits);
998 } else
999 start = c;
1000 }
1001
1002 for (i = start + 1; i <= *endnum; i++) {
1003 if (i == *endnum) {
1004 if (lastblock)
1005 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1006 } else if ((laarr[i].extLength >> 30) ==
1007 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1008 length += (((laarr[i].extLength &
1009 UDF_EXTENT_LENGTH_MASK) +
1010 inode->i_sb->s_blocksize - 1) >>
1011 inode->i_sb->s_blocksize_bits);
1012 } else
1013 break;
1014 }
1015
1016 if (length) {
1017 int next = laarr[start].extLocation.logicalBlockNum +
1018 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1019 inode->i_sb->s_blocksize - 1) >>
1020 inode->i_sb->s_blocksize_bits);
1021 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1022 laarr[start].extLocation.partitionReferenceNum,
1023 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1024 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1025 currlength);
1026 if (numalloc) {
1027 if (start == (c + 1))
1028 laarr[start].extLength +=
1029 (numalloc <<
1030 inode->i_sb->s_blocksize_bits);
1031 else {
1032 memmove(&laarr[c + 2], &laarr[c + 1],
1033 sizeof(struct long_ad) * (*endnum - (c + 1)));
1034 (*endnum)++;
1035 laarr[c + 1].extLocation.logicalBlockNum = next;
1036 laarr[c + 1].extLocation.partitionReferenceNum =
1037 laarr[c].extLocation.
1038 partitionReferenceNum;
1039 laarr[c + 1].extLength =
1040 EXT_NOT_RECORDED_ALLOCATED |
1041 (numalloc <<
1042 inode->i_sb->s_blocksize_bits);
1043 start = c + 1;
1044 }
1045
1046 for (i = start + 1; numalloc && i < *endnum; i++) {
1047 int elen = ((laarr[i].extLength &
1048 UDF_EXTENT_LENGTH_MASK) +
1049 inode->i_sb->s_blocksize - 1) >>
1050 inode->i_sb->s_blocksize_bits;
1051
1052 if (elen > numalloc) {
1053 laarr[i].extLength -=
1054 (numalloc <<
1055 inode->i_sb->s_blocksize_bits);
1056 numalloc = 0;
1057 } else {
1058 numalloc -= elen;
1059 if (*endnum > (i + 1))
1060 memmove(&laarr[i],
1061 &laarr[i + 1],
1062 sizeof(struct long_ad) *
1063 (*endnum - (i + 1)));
1064 i--;
1065 (*endnum)--;
1066 }
1067 }
1068 UDF_I(inode)->i_lenExtents +=
1069 numalloc << inode->i_sb->s_blocksize_bits;
1070 }
1071 }
1072}
1073
1074static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1075 int *endnum)
1076{
1077 int i;
1078 unsigned long blocksize = inode->i_sb->s_blocksize;
1079 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1080
1081 for (i = 0; i < (*endnum - 1); i++) {
1082 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1083 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1084
1085 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1086 (((li->extLength >> 30) ==
1087 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1088 ((lip1->extLocation.logicalBlockNum -
1089 li->extLocation.logicalBlockNum) ==
1090 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091 blocksize - 1) >> blocksize_bits)))) {
1092
1093 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1096 lip1->extLength = (lip1->extLength -
1097 (li->extLength &
1098 UDF_EXTENT_LENGTH_MASK) +
1099 UDF_EXTENT_LENGTH_MASK) &
1100 ~(blocksize - 1);
1101 li->extLength = (li->extLength &
1102 UDF_EXTENT_FLAG_MASK) +
1103 (UDF_EXTENT_LENGTH_MASK + 1) -
1104 blocksize;
1105 lip1->extLocation.logicalBlockNum =
1106 li->extLocation.logicalBlockNum +
1107 ((li->extLength &
1108 UDF_EXTENT_LENGTH_MASK) >>
1109 blocksize_bits);
1110 } else {
1111 li->extLength = lip1->extLength +
1112 (((li->extLength &
1113 UDF_EXTENT_LENGTH_MASK) +
1114 blocksize - 1) & ~(blocksize - 1));
1115 if (*endnum > (i + 2))
1116 memmove(&laarr[i + 1], &laarr[i + 2],
1117 sizeof(struct long_ad) *
1118 (*endnum - (i + 2)));
1119 i--;
1120 (*endnum)--;
1121 }
1122 } else if (((li->extLength >> 30) ==
1123 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1124 ((lip1->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1126 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1127 ((li->extLength &
1128 UDF_EXTENT_LENGTH_MASK) +
1129 blocksize - 1) >> blocksize_bits);
1130 li->extLocation.logicalBlockNum = 0;
1131 li->extLocation.partitionReferenceNum = 0;
1132
1133 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1134 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1135 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1136 lip1->extLength = (lip1->extLength -
1137 (li->extLength &
1138 UDF_EXTENT_LENGTH_MASK) +
1139 UDF_EXTENT_LENGTH_MASK) &
1140 ~(blocksize - 1);
1141 li->extLength = (li->extLength &
1142 UDF_EXTENT_FLAG_MASK) +
1143 (UDF_EXTENT_LENGTH_MASK + 1) -
1144 blocksize;
1145 } else {
1146 li->extLength = lip1->extLength +
1147 (((li->extLength &
1148 UDF_EXTENT_LENGTH_MASK) +
1149 blocksize - 1) & ~(blocksize - 1));
1150 if (*endnum > (i + 2))
1151 memmove(&laarr[i + 1], &laarr[i + 2],
1152 sizeof(struct long_ad) *
1153 (*endnum - (i + 2)));
1154 i--;
1155 (*endnum)--;
1156 }
1157 } else if ((li->extLength >> 30) ==
1158 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1159 udf_free_blocks(inode->i_sb, inode,
1160 &li->extLocation, 0,
1161 ((li->extLength &
1162 UDF_EXTENT_LENGTH_MASK) +
1163 blocksize - 1) >> blocksize_bits);
1164 li->extLocation.logicalBlockNum = 0;
1165 li->extLocation.partitionReferenceNum = 0;
1166 li->extLength = (li->extLength &
1167 UDF_EXTENT_LENGTH_MASK) |
1168 EXT_NOT_RECORDED_NOT_ALLOCATED;
1169 }
1170 }
1171}
1172
1173static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1174 int startnum, int endnum,
1175 struct extent_position *epos)
1176{
1177 int start = 0, i;
1178 struct kernel_lb_addr tmploc;
1179 uint32_t tmplen;
1180
1181 if (startnum > endnum) {
1182 for (i = 0; i < (startnum - endnum); i++)
1183 udf_delete_aext(inode, *epos);
1184 } else if (startnum < endnum) {
1185 for (i = 0; i < (endnum - startnum); i++) {
1186 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1187 laarr[i].extLength);
1188 udf_next_aext(inode, epos, &laarr[i].extLocation,
1189 &laarr[i].extLength, 1);
1190 start++;
1191 }
1192 }
1193
1194 for (i = start; i < endnum; i++) {
1195 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1196 udf_write_aext(inode, epos, &laarr[i].extLocation,
1197 laarr[i].extLength, 1);
1198 }
1199}
1200
1201struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1202 int create, int *err)
1203{
1204 struct buffer_head *bh = NULL;
1205
1206 bh = udf_getblk(inode, block, create, err);
1207 if (!bh)
1208 return NULL;
1209
1210 if (buffer_uptodate(bh))
1211 return bh;
1212
1213 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1214
1215 wait_on_buffer(bh);
1216 if (buffer_uptodate(bh))
1217 return bh;
1218
1219 brelse(bh);
1220 *err = -EIO;
1221 return NULL;
1222}
1223
1224int udf_setsize(struct inode *inode, loff_t newsize)
1225{
1226 int err;
1227 struct udf_inode_info *iinfo;
1228 unsigned int bsize = i_blocksize(inode);
1229
1230 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1231 S_ISLNK(inode->i_mode)))
1232 return -EINVAL;
1233 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1234 return -EPERM;
1235
1236 iinfo = UDF_I(inode);
1237 if (newsize > inode->i_size) {
1238 down_write(&iinfo->i_data_sem);
1239 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1240 if (bsize <
1241 (udf_file_entry_alloc_offset(inode) + newsize)) {
1242 err = udf_expand_file_adinicb(inode);
1243 if (err)
1244 return err;
1245 down_write(&iinfo->i_data_sem);
1246 } else {
1247 iinfo->i_lenAlloc = newsize;
1248 goto set_size;
1249 }
1250 }
1251 err = udf_extend_file(inode, newsize);
1252 if (err) {
1253 up_write(&iinfo->i_data_sem);
1254 return err;
1255 }
1256set_size:
1257 up_write(&iinfo->i_data_sem);
1258 truncate_setsize(inode, newsize);
1259 } else {
1260 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1261 down_write(&iinfo->i_data_sem);
1262 udf_clear_extent_cache(inode);
1263 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1264 0x00, bsize - newsize -
1265 udf_file_entry_alloc_offset(inode));
1266 iinfo->i_lenAlloc = newsize;
1267 truncate_setsize(inode, newsize);
1268 up_write(&iinfo->i_data_sem);
1269 goto update_time;
1270 }
1271 err = block_truncate_page(inode->i_mapping, newsize,
1272 udf_get_block);
1273 if (err)
1274 return err;
1275 truncate_setsize(inode, newsize);
1276 down_write(&iinfo->i_data_sem);
1277 udf_clear_extent_cache(inode);
1278 err = udf_truncate_extents(inode);
1279 up_write(&iinfo->i_data_sem);
1280 if (err)
1281 return err;
1282 }
1283update_time:
1284 inode->i_mtime = inode->i_ctime = current_time(inode);
1285 if (IS_SYNC(inode))
1286 udf_sync_inode(inode);
1287 else
1288 mark_inode_dirty(inode);
1289 return 0;
1290}
1291
1292/*
1293 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1294 * arbitrary - just that we hopefully don't limit any real use of rewritten
1295 * inode on write-once media but avoid looping for too long on corrupted media.
1296 */
1297#define UDF_MAX_ICB_NESTING 1024
1298
1299static int udf_read_inode(struct inode *inode, bool hidden_inode)
1300{
1301 struct buffer_head *bh = NULL;
1302 struct fileEntry *fe;
1303 struct extendedFileEntry *efe;
1304 uint16_t ident;
1305 struct udf_inode_info *iinfo = UDF_I(inode);
1306 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1307 struct kernel_lb_addr *iloc = &iinfo->i_location;
1308 unsigned int link_count;
1309 unsigned int indirections = 0;
1310 int bs = inode->i_sb->s_blocksize;
1311 int ret = -EIO;
1312 uint32_t uid, gid;
1313
1314reread:
1315 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1316 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1317 iloc->partitionReferenceNum, sbi->s_partitions);
1318 return -EIO;
1319 }
1320
1321 if (iloc->logicalBlockNum >=
1322 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1323 udf_debug("block=%u, partition=%u out of range\n",
1324 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1325 return -EIO;
1326 }
1327
1328 /*
1329 * Set defaults, but the inode is still incomplete!
1330 * Note: get_new_inode() sets the following on a new inode:
1331 * i_sb = sb
1332 * i_no = ino
1333 * i_flags = sb->s_flags
1334 * i_state = 0
1335 * clean_inode(): zero fills and sets
1336 * i_count = 1
1337 * i_nlink = 1
1338 * i_op = NULL;
1339 */
1340 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1341 if (!bh) {
1342 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1343 return -EIO;
1344 }
1345
1346 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1347 ident != TAG_IDENT_USE) {
1348 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1349 inode->i_ino, ident);
1350 goto out;
1351 }
1352
1353 fe = (struct fileEntry *)bh->b_data;
1354 efe = (struct extendedFileEntry *)bh->b_data;
1355
1356 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1357 struct buffer_head *ibh;
1358
1359 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1360 if (ident == TAG_IDENT_IE && ibh) {
1361 struct kernel_lb_addr loc;
1362 struct indirectEntry *ie;
1363
1364 ie = (struct indirectEntry *)ibh->b_data;
1365 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1366
1367 if (ie->indirectICB.extLength) {
1368 brelse(ibh);
1369 memcpy(&iinfo->i_location, &loc,
1370 sizeof(struct kernel_lb_addr));
1371 if (++indirections > UDF_MAX_ICB_NESTING) {
1372 udf_err(inode->i_sb,
1373 "too many ICBs in ICB hierarchy"
1374 " (max %d supported)\n",
1375 UDF_MAX_ICB_NESTING);
1376 goto out;
1377 }
1378 brelse(bh);
1379 goto reread;
1380 }
1381 }
1382 brelse(ibh);
1383 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1384 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1385 le16_to_cpu(fe->icbTag.strategyType));
1386 goto out;
1387 }
1388 if (fe->icbTag.strategyType == cpu_to_le16(4))
1389 iinfo->i_strat4096 = 0;
1390 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1391 iinfo->i_strat4096 = 1;
1392
1393 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1394 ICBTAG_FLAG_AD_MASK;
1395 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1396 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1397 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1398 ret = -EIO;
1399 goto out;
1400 }
1401 iinfo->i_unique = 0;
1402 iinfo->i_lenEAttr = 0;
1403 iinfo->i_lenExtents = 0;
1404 iinfo->i_lenAlloc = 0;
1405 iinfo->i_next_alloc_block = 0;
1406 iinfo->i_next_alloc_goal = 0;
1407 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1408 iinfo->i_efe = 1;
1409 iinfo->i_use = 0;
1410 ret = udf_alloc_i_data(inode, bs -
1411 sizeof(struct extendedFileEntry));
1412 if (ret)
1413 goto out;
1414 memcpy(iinfo->i_ext.i_data,
1415 bh->b_data + sizeof(struct extendedFileEntry),
1416 bs - sizeof(struct extendedFileEntry));
1417 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1418 iinfo->i_efe = 0;
1419 iinfo->i_use = 0;
1420 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1421 if (ret)
1422 goto out;
1423 memcpy(iinfo->i_ext.i_data,
1424 bh->b_data + sizeof(struct fileEntry),
1425 bs - sizeof(struct fileEntry));
1426 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1427 iinfo->i_efe = 0;
1428 iinfo->i_use = 1;
1429 iinfo->i_lenAlloc = le32_to_cpu(
1430 ((struct unallocSpaceEntry *)bh->b_data)->
1431 lengthAllocDescs);
1432 ret = udf_alloc_i_data(inode, bs -
1433 sizeof(struct unallocSpaceEntry));
1434 if (ret)
1435 goto out;
1436 memcpy(iinfo->i_ext.i_data,
1437 bh->b_data + sizeof(struct unallocSpaceEntry),
1438 bs - sizeof(struct unallocSpaceEntry));
1439 return 0;
1440 }
1441
1442 ret = -EIO;
1443 read_lock(&sbi->s_cred_lock);
1444 uid = le32_to_cpu(fe->uid);
1445 if (uid == UDF_INVALID_ID ||
1446 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1447 inode->i_uid = sbi->s_uid;
1448 else
1449 i_uid_write(inode, uid);
1450
1451 gid = le32_to_cpu(fe->gid);
1452 if (gid == UDF_INVALID_ID ||
1453 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1454 inode->i_gid = sbi->s_gid;
1455 else
1456 i_gid_write(inode, gid);
1457
1458 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1459 sbi->s_fmode != UDF_INVALID_MODE)
1460 inode->i_mode = sbi->s_fmode;
1461 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1462 sbi->s_dmode != UDF_INVALID_MODE)
1463 inode->i_mode = sbi->s_dmode;
1464 else
1465 inode->i_mode = udf_convert_permissions(fe);
1466 inode->i_mode &= ~sbi->s_umask;
1467 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1468
1469 read_unlock(&sbi->s_cred_lock);
1470
1471 link_count = le16_to_cpu(fe->fileLinkCount);
1472 if (!link_count) {
1473 if (!hidden_inode) {
1474 ret = -ESTALE;
1475 goto out;
1476 }
1477 link_count = 1;
1478 }
1479 set_nlink(inode, link_count);
1480
1481 inode->i_size = le64_to_cpu(fe->informationLength);
1482 iinfo->i_lenExtents = inode->i_size;
1483
1484 if (iinfo->i_efe == 0) {
1485 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1486 (inode->i_sb->s_blocksize_bits - 9);
1487
1488 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1489 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1490 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1491
1492 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1493 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1494 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1495 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1496 iinfo->i_streamdir = 0;
1497 iinfo->i_lenStreams = 0;
1498 } else {
1499 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1500 (inode->i_sb->s_blocksize_bits - 9);
1501
1502 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1503 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1504 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1505 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1506
1507 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1508 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1509 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1510 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1511
1512 /* Named streams */
1513 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1514 iinfo->i_locStreamdir =
1515 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1516 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1517 if (iinfo->i_lenStreams >= inode->i_size)
1518 iinfo->i_lenStreams -= inode->i_size;
1519 else
1520 iinfo->i_lenStreams = 0;
1521 }
1522 inode->i_generation = iinfo->i_unique;
1523
1524 /*
1525 * Sanity check length of allocation descriptors and extended attrs to
1526 * avoid integer overflows
1527 */
1528 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1529 goto out;
1530 /* Now do exact checks */
1531 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1532 goto out;
1533 /* Sanity checks for files in ICB so that we don't get confused later */
1534 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1535 /*
1536 * For file in ICB data is stored in allocation descriptor
1537 * so sizes should match
1538 */
1539 if (iinfo->i_lenAlloc != inode->i_size)
1540 goto out;
1541 /* File in ICB has to fit in there... */
1542 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1543 goto out;
1544 }
1545
1546 switch (fe->icbTag.fileType) {
1547 case ICBTAG_FILE_TYPE_DIRECTORY:
1548 inode->i_op = &udf_dir_inode_operations;
1549 inode->i_fop = &udf_dir_operations;
1550 inode->i_mode |= S_IFDIR;
1551 inc_nlink(inode);
1552 break;
1553 case ICBTAG_FILE_TYPE_REALTIME:
1554 case ICBTAG_FILE_TYPE_REGULAR:
1555 case ICBTAG_FILE_TYPE_UNDEF:
1556 case ICBTAG_FILE_TYPE_VAT20:
1557 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1558 inode->i_data.a_ops = &udf_adinicb_aops;
1559 else
1560 inode->i_data.a_ops = &udf_aops;
1561 inode->i_op = &udf_file_inode_operations;
1562 inode->i_fop = &udf_file_operations;
1563 inode->i_mode |= S_IFREG;
1564 break;
1565 case ICBTAG_FILE_TYPE_BLOCK:
1566 inode->i_mode |= S_IFBLK;
1567 break;
1568 case ICBTAG_FILE_TYPE_CHAR:
1569 inode->i_mode |= S_IFCHR;
1570 break;
1571 case ICBTAG_FILE_TYPE_FIFO:
1572 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1573 break;
1574 case ICBTAG_FILE_TYPE_SOCKET:
1575 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1576 break;
1577 case ICBTAG_FILE_TYPE_SYMLINK:
1578 inode->i_data.a_ops = &udf_symlink_aops;
1579 inode->i_op = &udf_symlink_inode_operations;
1580 inode_nohighmem(inode);
1581 inode->i_mode = S_IFLNK | 0777;
1582 break;
1583 case ICBTAG_FILE_TYPE_MAIN:
1584 udf_debug("METADATA FILE-----\n");
1585 break;
1586 case ICBTAG_FILE_TYPE_MIRROR:
1587 udf_debug("METADATA MIRROR FILE-----\n");
1588 break;
1589 case ICBTAG_FILE_TYPE_BITMAP:
1590 udf_debug("METADATA BITMAP FILE-----\n");
1591 break;
1592 default:
1593 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1594 inode->i_ino, fe->icbTag.fileType);
1595 goto out;
1596 }
1597 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1598 struct deviceSpec *dsea =
1599 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1600 if (dsea) {
1601 init_special_inode(inode, inode->i_mode,
1602 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1603 le32_to_cpu(dsea->minorDeviceIdent)));
1604 /* Developer ID ??? */
1605 } else
1606 goto out;
1607 }
1608 ret = 0;
1609out:
1610 brelse(bh);
1611 return ret;
1612}
1613
1614static int udf_alloc_i_data(struct inode *inode, size_t size)
1615{
1616 struct udf_inode_info *iinfo = UDF_I(inode);
1617 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1618 if (!iinfo->i_ext.i_data)
1619 return -ENOMEM;
1620 return 0;
1621}
1622
1623static umode_t udf_convert_permissions(struct fileEntry *fe)
1624{
1625 umode_t mode;
1626 uint32_t permissions;
1627 uint32_t flags;
1628
1629 permissions = le32_to_cpu(fe->permissions);
1630 flags = le16_to_cpu(fe->icbTag.flags);
1631
1632 mode = ((permissions) & 0007) |
1633 ((permissions >> 2) & 0070) |
1634 ((permissions >> 4) & 0700) |
1635 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1636 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1637 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1638
1639 return mode;
1640}
1641
1642void udf_update_extra_perms(struct inode *inode, umode_t mode)
1643{
1644 struct udf_inode_info *iinfo = UDF_I(inode);
1645
1646 /*
1647 * UDF 2.01 sec. 3.3.3.3 Note 2:
1648 * In Unix, delete permission tracks write
1649 */
1650 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1651 if (mode & 0200)
1652 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1653 if (mode & 0020)
1654 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1655 if (mode & 0002)
1656 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1657}
1658
1659int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1660{
1661 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1662}
1663
1664static int udf_sync_inode(struct inode *inode)
1665{
1666 return udf_update_inode(inode, 1);
1667}
1668
1669static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1670{
1671 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1672 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1673 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1674 iinfo->i_crtime = time;
1675}
1676
1677static int udf_update_inode(struct inode *inode, int do_sync)
1678{
1679 struct buffer_head *bh = NULL;
1680 struct fileEntry *fe;
1681 struct extendedFileEntry *efe;
1682 uint64_t lb_recorded;
1683 uint32_t udfperms;
1684 uint16_t icbflags;
1685 uint16_t crclen;
1686 int err = 0;
1687 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1688 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1689 struct udf_inode_info *iinfo = UDF_I(inode);
1690
1691 bh = udf_tgetblk(inode->i_sb,
1692 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1693 if (!bh) {
1694 udf_debug("getblk failure\n");
1695 return -EIO;
1696 }
1697
1698 lock_buffer(bh);
1699 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1700 fe = (struct fileEntry *)bh->b_data;
1701 efe = (struct extendedFileEntry *)bh->b_data;
1702
1703 if (iinfo->i_use) {
1704 struct unallocSpaceEntry *use =
1705 (struct unallocSpaceEntry *)bh->b_data;
1706
1707 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1708 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1709 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1710 sizeof(struct unallocSpaceEntry));
1711 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1712 crclen = sizeof(struct unallocSpaceEntry);
1713
1714 goto finish;
1715 }
1716
1717 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1718 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1719 else
1720 fe->uid = cpu_to_le32(i_uid_read(inode));
1721
1722 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1723 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1724 else
1725 fe->gid = cpu_to_le32(i_gid_read(inode));
1726
1727 udfperms = ((inode->i_mode & 0007)) |
1728 ((inode->i_mode & 0070) << 2) |
1729 ((inode->i_mode & 0700) << 4);
1730
1731 udfperms |= iinfo->i_extraPerms;
1732 fe->permissions = cpu_to_le32(udfperms);
1733
1734 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1735 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1736 else
1737 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1738
1739 fe->informationLength = cpu_to_le64(inode->i_size);
1740
1741 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1742 struct regid *eid;
1743 struct deviceSpec *dsea =
1744 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1745 if (!dsea) {
1746 dsea = (struct deviceSpec *)
1747 udf_add_extendedattr(inode,
1748 sizeof(struct deviceSpec) +
1749 sizeof(struct regid), 12, 0x3);
1750 dsea->attrType = cpu_to_le32(12);
1751 dsea->attrSubtype = 1;
1752 dsea->attrLength = cpu_to_le32(
1753 sizeof(struct deviceSpec) +
1754 sizeof(struct regid));
1755 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1756 }
1757 eid = (struct regid *)dsea->impUse;
1758 memset(eid, 0, sizeof(*eid));
1759 strcpy(eid->ident, UDF_ID_DEVELOPER);
1760 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1761 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1762 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1763 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1764 }
1765
1766 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1767 lb_recorded = 0; /* No extents => no blocks! */
1768 else
1769 lb_recorded =
1770 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1771 (blocksize_bits - 9);
1772
1773 if (iinfo->i_efe == 0) {
1774 memcpy(bh->b_data + sizeof(struct fileEntry),
1775 iinfo->i_ext.i_data,
1776 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1777 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1778
1779 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1780 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1781 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1782 memset(&(fe->impIdent), 0, sizeof(struct regid));
1783 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1784 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1787 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1788 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1789 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1790 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1791 crclen = sizeof(struct fileEntry);
1792 } else {
1793 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1794 iinfo->i_ext.i_data,
1795 inode->i_sb->s_blocksize -
1796 sizeof(struct extendedFileEntry));
1797 efe->objectSize =
1798 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1799 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800
1801 if (iinfo->i_streamdir) {
1802 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1803
1804 icb_lad->extLocation =
1805 cpu_to_lelb(iinfo->i_locStreamdir);
1806 icb_lad->extLength =
1807 cpu_to_le32(inode->i_sb->s_blocksize);
1808 }
1809
1810 udf_adjust_time(iinfo, inode->i_atime);
1811 udf_adjust_time(iinfo, inode->i_mtime);
1812 udf_adjust_time(iinfo, inode->i_ctime);
1813
1814 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1815 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1816 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1817 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1818
1819 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1820 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1821 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1822 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1823 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1824 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1825 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1826 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1827 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1828 crclen = sizeof(struct extendedFileEntry);
1829 }
1830
1831finish:
1832 if (iinfo->i_strat4096) {
1833 fe->icbTag.strategyType = cpu_to_le16(4096);
1834 fe->icbTag.strategyParameter = cpu_to_le16(1);
1835 fe->icbTag.numEntries = cpu_to_le16(2);
1836 } else {
1837 fe->icbTag.strategyType = cpu_to_le16(4);
1838 fe->icbTag.numEntries = cpu_to_le16(1);
1839 }
1840
1841 if (iinfo->i_use)
1842 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1843 else if (S_ISDIR(inode->i_mode))
1844 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1845 else if (S_ISREG(inode->i_mode))
1846 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1847 else if (S_ISLNK(inode->i_mode))
1848 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1849 else if (S_ISBLK(inode->i_mode))
1850 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1851 else if (S_ISCHR(inode->i_mode))
1852 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1853 else if (S_ISFIFO(inode->i_mode))
1854 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1855 else if (S_ISSOCK(inode->i_mode))
1856 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1857
1858 icbflags = iinfo->i_alloc_type |
1859 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1860 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1861 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1862 (le16_to_cpu(fe->icbTag.flags) &
1863 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1864 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1865
1866 fe->icbTag.flags = cpu_to_le16(icbflags);
1867 if (sbi->s_udfrev >= 0x0200)
1868 fe->descTag.descVersion = cpu_to_le16(3);
1869 else
1870 fe->descTag.descVersion = cpu_to_le16(2);
1871 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1872 fe->descTag.tagLocation = cpu_to_le32(
1873 iinfo->i_location.logicalBlockNum);
1874 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1875 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1876 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1877 crclen));
1878 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1879
1880 set_buffer_uptodate(bh);
1881 unlock_buffer(bh);
1882
1883 /* write the data blocks */
1884 mark_buffer_dirty(bh);
1885 if (do_sync) {
1886 sync_dirty_buffer(bh);
1887 if (buffer_write_io_error(bh)) {
1888 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1889 inode->i_ino);
1890 err = -EIO;
1891 }
1892 }
1893 brelse(bh);
1894
1895 return err;
1896}
1897
1898struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1899 bool hidden_inode)
1900{
1901 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1902 struct inode *inode = iget_locked(sb, block);
1903 int err;
1904
1905 if (!inode)
1906 return ERR_PTR(-ENOMEM);
1907
1908 if (!(inode->i_state & I_NEW))
1909 return inode;
1910
1911 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1912 err = udf_read_inode(inode, hidden_inode);
1913 if (err < 0) {
1914 iget_failed(inode);
1915 return ERR_PTR(err);
1916 }
1917 unlock_new_inode(inode);
1918
1919 return inode;
1920}
1921
1922int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1923 struct extent_position *epos)
1924{
1925 struct super_block *sb = inode->i_sb;
1926 struct buffer_head *bh;
1927 struct allocExtDesc *aed;
1928 struct extent_position nepos;
1929 struct kernel_lb_addr neloc;
1930 int ver, adsize;
1931
1932 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1933 adsize = sizeof(struct short_ad);
1934 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1935 adsize = sizeof(struct long_ad);
1936 else
1937 return -EIO;
1938
1939 neloc.logicalBlockNum = block;
1940 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1941
1942 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1943 if (!bh)
1944 return -EIO;
1945 lock_buffer(bh);
1946 memset(bh->b_data, 0x00, sb->s_blocksize);
1947 set_buffer_uptodate(bh);
1948 unlock_buffer(bh);
1949 mark_buffer_dirty_inode(bh, inode);
1950
1951 aed = (struct allocExtDesc *)(bh->b_data);
1952 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1953 aed->previousAllocExtLocation =
1954 cpu_to_le32(epos->block.logicalBlockNum);
1955 }
1956 aed->lengthAllocDescs = cpu_to_le32(0);
1957 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1958 ver = 3;
1959 else
1960 ver = 2;
1961 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1962 sizeof(struct tag));
1963
1964 nepos.block = neloc;
1965 nepos.offset = sizeof(struct allocExtDesc);
1966 nepos.bh = bh;
1967
1968 /*
1969 * Do we have to copy current last extent to make space for indirect
1970 * one?
1971 */
1972 if (epos->offset + adsize > sb->s_blocksize) {
1973 struct kernel_lb_addr cp_loc;
1974 uint32_t cp_len;
1975 int cp_type;
1976
1977 epos->offset -= adsize;
1978 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1979 cp_len |= ((uint32_t)cp_type) << 30;
1980
1981 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1982 udf_write_aext(inode, epos, &nepos.block,
1983 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984 } else {
1985 __udf_add_aext(inode, epos, &nepos.block,
1986 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987 }
1988
1989 brelse(epos->bh);
1990 *epos = nepos;
1991
1992 return 0;
1993}
1994
1995/*
1996 * Append extent at the given position - should be the first free one in inode
1997 * / indirect extent. This function assumes there is enough space in the inode
1998 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1999 */
2000int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2001 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2002{
2003 struct udf_inode_info *iinfo = UDF_I(inode);
2004 struct allocExtDesc *aed;
2005 int adsize;
2006
2007 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2008 adsize = sizeof(struct short_ad);
2009 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2010 adsize = sizeof(struct long_ad);
2011 else
2012 return -EIO;
2013
2014 if (!epos->bh) {
2015 WARN_ON(iinfo->i_lenAlloc !=
2016 epos->offset - udf_file_entry_alloc_offset(inode));
2017 } else {
2018 aed = (struct allocExtDesc *)epos->bh->b_data;
2019 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2020 epos->offset - sizeof(struct allocExtDesc));
2021 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2022 }
2023
2024 udf_write_aext(inode, epos, eloc, elen, inc);
2025
2026 if (!epos->bh) {
2027 iinfo->i_lenAlloc += adsize;
2028 mark_inode_dirty(inode);
2029 } else {
2030 aed = (struct allocExtDesc *)epos->bh->b_data;
2031 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2032 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2033 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2034 udf_update_tag(epos->bh->b_data,
2035 epos->offset + (inc ? 0 : adsize));
2036 else
2037 udf_update_tag(epos->bh->b_data,
2038 sizeof(struct allocExtDesc));
2039 mark_buffer_dirty_inode(epos->bh, inode);
2040 }
2041
2042 return 0;
2043}
2044
2045/*
2046 * Append extent at given position - should be the first free one in inode
2047 * / indirect extent. Takes care of allocating and linking indirect blocks.
2048 */
2049int udf_add_aext(struct inode *inode, struct extent_position *epos,
2050 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2051{
2052 int adsize;
2053 struct super_block *sb = inode->i_sb;
2054
2055 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2056 adsize = sizeof(struct short_ad);
2057 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2058 adsize = sizeof(struct long_ad);
2059 else
2060 return -EIO;
2061
2062 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2063 int err;
2064 udf_pblk_t new_block;
2065
2066 new_block = udf_new_block(sb, NULL,
2067 epos->block.partitionReferenceNum,
2068 epos->block.logicalBlockNum, &err);
2069 if (!new_block)
2070 return -ENOSPC;
2071
2072 err = udf_setup_indirect_aext(inode, new_block, epos);
2073 if (err)
2074 return err;
2075 }
2076
2077 return __udf_add_aext(inode, epos, eloc, elen, inc);
2078}
2079
2080void udf_write_aext(struct inode *inode, struct extent_position *epos,
2081 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082{
2083 int adsize;
2084 uint8_t *ptr;
2085 struct short_ad *sad;
2086 struct long_ad *lad;
2087 struct udf_inode_info *iinfo = UDF_I(inode);
2088
2089 if (!epos->bh)
2090 ptr = iinfo->i_ext.i_data + epos->offset -
2091 udf_file_entry_alloc_offset(inode) +
2092 iinfo->i_lenEAttr;
2093 else
2094 ptr = epos->bh->b_data + epos->offset;
2095
2096 switch (iinfo->i_alloc_type) {
2097 case ICBTAG_FLAG_AD_SHORT:
2098 sad = (struct short_ad *)ptr;
2099 sad->extLength = cpu_to_le32(elen);
2100 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2101 adsize = sizeof(struct short_ad);
2102 break;
2103 case ICBTAG_FLAG_AD_LONG:
2104 lad = (struct long_ad *)ptr;
2105 lad->extLength = cpu_to_le32(elen);
2106 lad->extLocation = cpu_to_lelb(*eloc);
2107 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2108 adsize = sizeof(struct long_ad);
2109 break;
2110 default:
2111 return;
2112 }
2113
2114 if (epos->bh) {
2115 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2116 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2117 struct allocExtDesc *aed =
2118 (struct allocExtDesc *)epos->bh->b_data;
2119 udf_update_tag(epos->bh->b_data,
2120 le32_to_cpu(aed->lengthAllocDescs) +
2121 sizeof(struct allocExtDesc));
2122 }
2123 mark_buffer_dirty_inode(epos->bh, inode);
2124 } else {
2125 mark_inode_dirty(inode);
2126 }
2127
2128 if (inc)
2129 epos->offset += adsize;
2130}
2131
2132/*
2133 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2134 * someone does some weird stuff.
2135 */
2136#define UDF_MAX_INDIR_EXTS 16
2137
2138int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2139 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2140{
2141 int8_t etype;
2142 unsigned int indirections = 0;
2143
2144 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2145 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2146 udf_pblk_t block;
2147
2148 if (++indirections > UDF_MAX_INDIR_EXTS) {
2149 udf_err(inode->i_sb,
2150 "too many indirect extents in inode %lu\n",
2151 inode->i_ino);
2152 return -1;
2153 }
2154
2155 epos->block = *eloc;
2156 epos->offset = sizeof(struct allocExtDesc);
2157 brelse(epos->bh);
2158 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2159 epos->bh = udf_tread(inode->i_sb, block);
2160 if (!epos->bh) {
2161 udf_debug("reading block %u failed!\n", block);
2162 return -1;
2163 }
2164 }
2165
2166 return etype;
2167}
2168
2169int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2170 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2171{
2172 int alen;
2173 int8_t etype;
2174 uint8_t *ptr;
2175 struct short_ad *sad;
2176 struct long_ad *lad;
2177 struct udf_inode_info *iinfo = UDF_I(inode);
2178
2179 if (!epos->bh) {
2180 if (!epos->offset)
2181 epos->offset = udf_file_entry_alloc_offset(inode);
2182 ptr = iinfo->i_ext.i_data + epos->offset -
2183 udf_file_entry_alloc_offset(inode) +
2184 iinfo->i_lenEAttr;
2185 alen = udf_file_entry_alloc_offset(inode) +
2186 iinfo->i_lenAlloc;
2187 } else {
2188 if (!epos->offset)
2189 epos->offset = sizeof(struct allocExtDesc);
2190 ptr = epos->bh->b_data + epos->offset;
2191 alen = sizeof(struct allocExtDesc) +
2192 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2193 lengthAllocDescs);
2194 }
2195
2196 switch (iinfo->i_alloc_type) {
2197 case ICBTAG_FLAG_AD_SHORT:
2198 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2199 if (!sad)
2200 return -1;
2201 etype = le32_to_cpu(sad->extLength) >> 30;
2202 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2203 eloc->partitionReferenceNum =
2204 iinfo->i_location.partitionReferenceNum;
2205 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2206 break;
2207 case ICBTAG_FLAG_AD_LONG:
2208 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2209 if (!lad)
2210 return -1;
2211 etype = le32_to_cpu(lad->extLength) >> 30;
2212 *eloc = lelb_to_cpu(lad->extLocation);
2213 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2214 break;
2215 default:
2216 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2217 return -1;
2218 }
2219
2220 return etype;
2221}
2222
2223static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2224 struct kernel_lb_addr neloc, uint32_t nelen)
2225{
2226 struct kernel_lb_addr oeloc;
2227 uint32_t oelen;
2228 int8_t etype;
2229
2230 if (epos.bh)
2231 get_bh(epos.bh);
2232
2233 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2234 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2235 neloc = oeloc;
2236 nelen = (etype << 30) | oelen;
2237 }
2238 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2239 brelse(epos.bh);
2240
2241 return (nelen >> 30);
2242}
2243
2244int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2245{
2246 struct extent_position oepos;
2247 int adsize;
2248 int8_t etype;
2249 struct allocExtDesc *aed;
2250 struct udf_inode_info *iinfo;
2251 struct kernel_lb_addr eloc;
2252 uint32_t elen;
2253
2254 if (epos.bh) {
2255 get_bh(epos.bh);
2256 get_bh(epos.bh);
2257 }
2258
2259 iinfo = UDF_I(inode);
2260 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2261 adsize = sizeof(struct short_ad);
2262 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2263 adsize = sizeof(struct long_ad);
2264 else
2265 adsize = 0;
2266
2267 oepos = epos;
2268 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2269 return -1;
2270
2271 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2272 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2273 if (oepos.bh != epos.bh) {
2274 oepos.block = epos.block;
2275 brelse(oepos.bh);
2276 get_bh(epos.bh);
2277 oepos.bh = epos.bh;
2278 oepos.offset = epos.offset - adsize;
2279 }
2280 }
2281 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2282 elen = 0;
2283
2284 if (epos.bh != oepos.bh) {
2285 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2286 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2287 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 if (!oepos.bh) {
2289 iinfo->i_lenAlloc -= (adsize * 2);
2290 mark_inode_dirty(inode);
2291 } else {
2292 aed = (struct allocExtDesc *)oepos.bh->b_data;
2293 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2294 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296 udf_update_tag(oepos.bh->b_data,
2297 oepos.offset - (2 * adsize));
2298 else
2299 udf_update_tag(oepos.bh->b_data,
2300 sizeof(struct allocExtDesc));
2301 mark_buffer_dirty_inode(oepos.bh, inode);
2302 }
2303 } else {
2304 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2305 if (!oepos.bh) {
2306 iinfo->i_lenAlloc -= adsize;
2307 mark_inode_dirty(inode);
2308 } else {
2309 aed = (struct allocExtDesc *)oepos.bh->b_data;
2310 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2311 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2312 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2313 udf_update_tag(oepos.bh->b_data,
2314 epos.offset - adsize);
2315 else
2316 udf_update_tag(oepos.bh->b_data,
2317 sizeof(struct allocExtDesc));
2318 mark_buffer_dirty_inode(oepos.bh, inode);
2319 }
2320 }
2321
2322 brelse(epos.bh);
2323 brelse(oepos.bh);
2324
2325 return (elen >> 30);
2326}
2327
2328int8_t inode_bmap(struct inode *inode, sector_t block,
2329 struct extent_position *pos, struct kernel_lb_addr *eloc,
2330 uint32_t *elen, sector_t *offset)
2331{
2332 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2333 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2334 int8_t etype;
2335 struct udf_inode_info *iinfo;
2336
2337 iinfo = UDF_I(inode);
2338 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2339 pos->offset = 0;
2340 pos->block = iinfo->i_location;
2341 pos->bh = NULL;
2342 }
2343 *elen = 0;
2344 do {
2345 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2346 if (etype == -1) {
2347 *offset = (bcount - lbcount) >> blocksize_bits;
2348 iinfo->i_lenExtents = lbcount;
2349 return -1;
2350 }
2351 lbcount += *elen;
2352 } while (lbcount <= bcount);
2353 /* update extent cache */
2354 udf_update_extent_cache(inode, lbcount - *elen, pos);
2355 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2356
2357 return etype;
2358}
2359
2360udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2361{
2362 struct kernel_lb_addr eloc;
2363 uint32_t elen;
2364 sector_t offset;
2365 struct extent_position epos = {};
2366 udf_pblk_t ret;
2367
2368 down_read(&UDF_I(inode)->i_data_sem);
2369
2370 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2371 (EXT_RECORDED_ALLOCATED >> 30))
2372 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2373 else
2374 ret = 0;
2375
2376 up_read(&UDF_I(inode)->i_data_sem);
2377 brelse(epos.bh);
2378
2379 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2380 return udf_fixed_to_variable(ret);
2381 else
2382 return ret;
2383}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48static umode_t udf_convert_permissions(struct fileEntry *);
49static int udf_update_inode(struct inode *, int);
50static int udf_sync_inode(struct inode *inode);
51static int udf_alloc_i_data(struct inode *inode, size_t size);
52static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53static int8_t udf_insert_aext(struct inode *, struct extent_position,
54 struct kernel_lb_addr, uint32_t);
55static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
56 struct kernel_long_ad *, int *);
57static void udf_prealloc_extents(struct inode *, int, int,
58 struct kernel_long_ad *, int *);
59static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 int, struct extent_position *);
62static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
63
64static void __udf_clear_extent_cache(struct inode *inode)
65{
66 struct udf_inode_info *iinfo = UDF_I(inode);
67
68 if (iinfo->cached_extent.lstart != -1) {
69 brelse(iinfo->cached_extent.epos.bh);
70 iinfo->cached_extent.lstart = -1;
71 }
72}
73
74/* Invalidate extent cache */
75static void udf_clear_extent_cache(struct inode *inode)
76{
77 struct udf_inode_info *iinfo = UDF_I(inode);
78
79 spin_lock(&iinfo->i_extent_cache_lock);
80 __udf_clear_extent_cache(inode);
81 spin_unlock(&iinfo->i_extent_cache_lock);
82}
83
84/* Return contents of extent cache */
85static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 loff_t *lbcount, struct extent_position *pos)
87{
88 struct udf_inode_info *iinfo = UDF_I(inode);
89 int ret = 0;
90
91 spin_lock(&iinfo->i_extent_cache_lock);
92 if ((iinfo->cached_extent.lstart <= bcount) &&
93 (iinfo->cached_extent.lstart != -1)) {
94 /* Cache hit */
95 *lbcount = iinfo->cached_extent.lstart;
96 memcpy(pos, &iinfo->cached_extent.epos,
97 sizeof(struct extent_position));
98 if (pos->bh)
99 get_bh(pos->bh);
100 ret = 1;
101 }
102 spin_unlock(&iinfo->i_extent_cache_lock);
103 return ret;
104}
105
106/* Add extent to extent cache */
107static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 struct extent_position *pos)
109{
110 struct udf_inode_info *iinfo = UDF_I(inode);
111
112 spin_lock(&iinfo->i_extent_cache_lock);
113 /* Invalidate previously cached extent */
114 __udf_clear_extent_cache(inode);
115 if (pos->bh)
116 get_bh(pos->bh);
117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118 iinfo->cached_extent.lstart = estart;
119 switch (iinfo->i_alloc_type) {
120 case ICBTAG_FLAG_AD_SHORT:
121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122 break;
123 case ICBTAG_FLAG_AD_LONG:
124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125 break;
126 }
127 spin_unlock(&iinfo->i_extent_cache_lock);
128}
129
130void udf_evict_inode(struct inode *inode)
131{
132 struct udf_inode_info *iinfo = UDF_I(inode);
133 int want_delete = 0;
134
135 if (!inode->i_nlink && !is_bad_inode(inode)) {
136 want_delete = 1;
137 udf_setsize(inode, 0);
138 udf_update_inode(inode, IS_SYNC(inode));
139 }
140 truncate_inode_pages_final(&inode->i_data);
141 invalidate_inode_buffers(inode);
142 clear_inode(inode);
143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144 inode->i_size != iinfo->i_lenExtents) {
145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146 inode->i_ino, inode->i_mode,
147 (unsigned long long)inode->i_size,
148 (unsigned long long)iinfo->i_lenExtents);
149 }
150 kfree(iinfo->i_ext.i_data);
151 iinfo->i_ext.i_data = NULL;
152 udf_clear_extent_cache(inode);
153 if (want_delete) {
154 udf_free_inode(inode);
155 }
156}
157
158static void udf_write_failed(struct address_space *mapping, loff_t to)
159{
160 struct inode *inode = mapping->host;
161 struct udf_inode_info *iinfo = UDF_I(inode);
162 loff_t isize = inode->i_size;
163
164 if (to > isize) {
165 truncate_pagecache(inode, isize);
166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167 down_write(&iinfo->i_data_sem);
168 udf_clear_extent_cache(inode);
169 udf_truncate_extents(inode);
170 up_write(&iinfo->i_data_sem);
171 }
172 }
173}
174
175static int udf_writepage(struct page *page, struct writeback_control *wbc)
176{
177 return block_write_full_page(page, udf_get_block, wbc);
178}
179
180static int udf_writepages(struct address_space *mapping,
181 struct writeback_control *wbc)
182{
183 return mpage_writepages(mapping, wbc, udf_get_block);
184}
185
186static int udf_readpage(struct file *file, struct page *page)
187{
188 return mpage_readpage(page, udf_get_block);
189}
190
191static int udf_readpages(struct file *file, struct address_space *mapping,
192 struct list_head *pages, unsigned nr_pages)
193{
194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
195}
196
197static int udf_write_begin(struct file *file, struct address_space *mapping,
198 loff_t pos, unsigned len, unsigned flags,
199 struct page **pagep, void **fsdata)
200{
201 int ret;
202
203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
204 if (unlikely(ret))
205 udf_write_failed(mapping, pos + len);
206 return ret;
207}
208
209static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
210{
211 struct file *file = iocb->ki_filp;
212 struct address_space *mapping = file->f_mapping;
213 struct inode *inode = mapping->host;
214 size_t count = iov_iter_count(iter);
215 ssize_t ret;
216
217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219 udf_write_failed(mapping, iocb->ki_pos + count);
220 return ret;
221}
222
223static sector_t udf_bmap(struct address_space *mapping, sector_t block)
224{
225 return generic_block_bmap(mapping, block, udf_get_block);
226}
227
228const struct address_space_operations udf_aops = {
229 .readpage = udf_readpage,
230 .readpages = udf_readpages,
231 .writepage = udf_writepage,
232 .writepages = udf_writepages,
233 .write_begin = udf_write_begin,
234 .write_end = generic_write_end,
235 .direct_IO = udf_direct_IO,
236 .bmap = udf_bmap,
237};
238
239/*
240 * Expand file stored in ICB to a normal one-block-file
241 *
242 * This function requires i_data_sem for writing and releases it.
243 * This function requires i_mutex held
244 */
245int udf_expand_file_adinicb(struct inode *inode)
246{
247 struct page *page;
248 char *kaddr;
249 struct udf_inode_info *iinfo = UDF_I(inode);
250 int err;
251 struct writeback_control udf_wbc = {
252 .sync_mode = WB_SYNC_NONE,
253 .nr_to_write = 1,
254 };
255
256 WARN_ON_ONCE(!inode_is_locked(inode));
257 if (!iinfo->i_lenAlloc) {
258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
260 else
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262 /* from now on we have normal address_space methods */
263 inode->i_data.a_ops = &udf_aops;
264 up_write(&iinfo->i_data_sem);
265 mark_inode_dirty(inode);
266 return 0;
267 }
268 /*
269 * Release i_data_sem so that we can lock a page - page lock ranks
270 * above i_data_sem. i_mutex still protects us against file changes.
271 */
272 up_write(&iinfo->i_data_sem);
273
274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
275 if (!page)
276 return -ENOMEM;
277
278 if (!PageUptodate(page)) {
279 kaddr = kmap_atomic(page);
280 memset(kaddr + iinfo->i_lenAlloc, 0x00,
281 PAGE_SIZE - iinfo->i_lenAlloc);
282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
283 iinfo->i_lenAlloc);
284 flush_dcache_page(page);
285 SetPageUptodate(page);
286 kunmap_atomic(kaddr);
287 }
288 down_write(&iinfo->i_data_sem);
289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
290 iinfo->i_lenAlloc);
291 iinfo->i_lenAlloc = 0;
292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
294 else
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296 /* from now on we have normal address_space methods */
297 inode->i_data.a_ops = &udf_aops;
298 up_write(&iinfo->i_data_sem);
299 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
300 if (err) {
301 /* Restore everything back so that we don't lose data... */
302 lock_page(page);
303 down_write(&iinfo->i_data_sem);
304 kaddr = kmap_atomic(page);
305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
306 inode->i_size);
307 kunmap_atomic(kaddr);
308 unlock_page(page);
309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310 inode->i_data.a_ops = &udf_adinicb_aops;
311 up_write(&iinfo->i_data_sem);
312 }
313 put_page(page);
314 mark_inode_dirty(inode);
315
316 return err;
317}
318
319struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
320 udf_pblk_t *block, int *err)
321{
322 udf_pblk_t newblock;
323 struct buffer_head *dbh = NULL;
324 struct kernel_lb_addr eloc;
325 uint8_t alloctype;
326 struct extent_position epos;
327
328 struct udf_fileident_bh sfibh, dfibh;
329 loff_t f_pos = udf_ext0_offset(inode);
330 int size = udf_ext0_offset(inode) + inode->i_size;
331 struct fileIdentDesc cfi, *sfi, *dfi;
332 struct udf_inode_info *iinfo = UDF_I(inode);
333
334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335 alloctype = ICBTAG_FLAG_AD_SHORT;
336 else
337 alloctype = ICBTAG_FLAG_AD_LONG;
338
339 if (!inode->i_size) {
340 iinfo->i_alloc_type = alloctype;
341 mark_inode_dirty(inode);
342 return NULL;
343 }
344
345 /* alloc block, and copy data to it */
346 *block = udf_new_block(inode->i_sb, inode,
347 iinfo->i_location.partitionReferenceNum,
348 iinfo->i_location.logicalBlockNum, err);
349 if (!(*block))
350 return NULL;
351 newblock = udf_get_pblock(inode->i_sb, *block,
352 iinfo->i_location.partitionReferenceNum,
353 0);
354 if (!newblock)
355 return NULL;
356 dbh = udf_tgetblk(inode->i_sb, newblock);
357 if (!dbh)
358 return NULL;
359 lock_buffer(dbh);
360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361 set_buffer_uptodate(dbh);
362 unlock_buffer(dbh);
363 mark_buffer_dirty_inode(dbh, inode);
364
365 sfibh.soffset = sfibh.eoffset =
366 f_pos & (inode->i_sb->s_blocksize - 1);
367 sfibh.sbh = sfibh.ebh = NULL;
368 dfibh.soffset = dfibh.eoffset = 0;
369 dfibh.sbh = dfibh.ebh = dbh;
370 while (f_pos < size) {
371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
373 NULL, NULL, NULL);
374 if (!sfi) {
375 brelse(dbh);
376 return NULL;
377 }
378 iinfo->i_alloc_type = alloctype;
379 sfi->descTag.tagLocation = cpu_to_le32(*block);
380 dfibh.soffset = dfibh.eoffset;
381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
384 sfi->fileIdent +
385 le16_to_cpu(sfi->lengthOfImpUse))) {
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 brelse(dbh);
388 return NULL;
389 }
390 }
391 mark_buffer_dirty_inode(dbh, inode);
392
393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
394 iinfo->i_lenAlloc);
395 iinfo->i_lenAlloc = 0;
396 eloc.logicalBlockNum = *block;
397 eloc.partitionReferenceNum =
398 iinfo->i_location.partitionReferenceNum;
399 iinfo->i_lenExtents = inode->i_size;
400 epos.bh = NULL;
401 epos.block = iinfo->i_location;
402 epos.offset = udf_file_entry_alloc_offset(inode);
403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404 /* UniqueID stuff */
405
406 brelse(epos.bh);
407 mark_inode_dirty(inode);
408 return dbh;
409}
410
411static int udf_get_block(struct inode *inode, sector_t block,
412 struct buffer_head *bh_result, int create)
413{
414 int err, new;
415 sector_t phys = 0;
416 struct udf_inode_info *iinfo;
417
418 if (!create) {
419 phys = udf_block_map(inode, block);
420 if (phys)
421 map_bh(bh_result, inode->i_sb, phys);
422 return 0;
423 }
424
425 err = -EIO;
426 new = 0;
427 iinfo = UDF_I(inode);
428
429 down_write(&iinfo->i_data_sem);
430 if (block == iinfo->i_next_alloc_block + 1) {
431 iinfo->i_next_alloc_block++;
432 iinfo->i_next_alloc_goal++;
433 }
434
435 udf_clear_extent_cache(inode);
436 phys = inode_getblk(inode, block, &err, &new);
437 if (!phys)
438 goto abort;
439
440 if (new)
441 set_buffer_new(bh_result);
442 map_bh(bh_result, inode->i_sb, phys);
443
444abort:
445 up_write(&iinfo->i_data_sem);
446 return err;
447}
448
449static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
450 int create, int *err)
451{
452 struct buffer_head *bh;
453 struct buffer_head dummy;
454
455 dummy.b_state = 0;
456 dummy.b_blocknr = -1000;
457 *err = udf_get_block(inode, block, &dummy, create);
458 if (!*err && buffer_mapped(&dummy)) {
459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460 if (buffer_new(&dummy)) {
461 lock_buffer(bh);
462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463 set_buffer_uptodate(bh);
464 unlock_buffer(bh);
465 mark_buffer_dirty_inode(bh, inode);
466 }
467 return bh;
468 }
469
470 return NULL;
471}
472
473/* Extend the file by 'blocks' blocks, return the number of extents added */
474static int udf_do_extend_file(struct inode *inode,
475 struct extent_position *last_pos,
476 struct kernel_long_ad *last_ext,
477 sector_t blocks)
478{
479 sector_t add;
480 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
481 struct super_block *sb = inode->i_sb;
482 struct kernel_lb_addr prealloc_loc = {};
483 uint32_t prealloc_len = 0;
484 struct udf_inode_info *iinfo;
485 int err;
486
487 /* The previous extent is fake and we should not extend by anything
488 * - there's nothing to do... */
489 if (!blocks && fake)
490 return 0;
491
492 iinfo = UDF_I(inode);
493 /* Round the last extent up to a multiple of block size */
494 if (last_ext->extLength & (sb->s_blocksize - 1)) {
495 last_ext->extLength =
496 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
497 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
498 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
499 iinfo->i_lenExtents =
500 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
501 ~(sb->s_blocksize - 1);
502 }
503
504 /* Last extent are just preallocated blocks? */
505 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
506 EXT_NOT_RECORDED_ALLOCATED) {
507 /* Save the extent so that we can reattach it to the end */
508 prealloc_loc = last_ext->extLocation;
509 prealloc_len = last_ext->extLength;
510 /* Mark the extent as a hole */
511 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
512 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513 last_ext->extLocation.logicalBlockNum = 0;
514 last_ext->extLocation.partitionReferenceNum = 0;
515 }
516
517 /* Can we merge with the previous extent? */
518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519 EXT_NOT_RECORDED_NOT_ALLOCATED) {
520 add = ((1 << 30) - sb->s_blocksize -
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
522 sb->s_blocksize_bits;
523 if (add > blocks)
524 add = blocks;
525 blocks -= add;
526 last_ext->extLength += add << sb->s_blocksize_bits;
527 }
528
529 if (fake) {
530 udf_add_aext(inode, last_pos, &last_ext->extLocation,
531 last_ext->extLength, 1);
532 count++;
533 } else {
534 struct kernel_lb_addr tmploc;
535 uint32_t tmplen;
536
537 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539 /*
540 * We've rewritten the last extent but there may be empty
541 * indirect extent after it - enter it.
542 */
543 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
544 }
545
546 /* Managed to do everything necessary? */
547 if (!blocks)
548 goto out;
549
550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551 last_ext->extLocation.logicalBlockNum = 0;
552 last_ext->extLocation.partitionReferenceNum = 0;
553 add = (1 << (30-sb->s_blocksize_bits)) - 1;
554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555 (add << sb->s_blocksize_bits);
556
557 /* Create enough extents to cover the whole hole */
558 while (blocks > add) {
559 blocks -= add;
560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 last_ext->extLength, 1);
562 if (err)
563 return err;
564 count++;
565 }
566 if (blocks) {
567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 (blocks << sb->s_blocksize_bits);
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575
576out:
577 /* Do we have some preallocated blocks saved? */
578 if (prealloc_len) {
579 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580 prealloc_len, 1);
581 if (err)
582 return err;
583 last_ext->extLocation = prealloc_loc;
584 last_ext->extLength = prealloc_len;
585 count++;
586 }
587
588 /* last_pos should point to the last written extent... */
589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590 last_pos->offset -= sizeof(struct short_ad);
591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592 last_pos->offset -= sizeof(struct long_ad);
593 else
594 return -EIO;
595
596 return count;
597}
598
599static int udf_extend_file(struct inode *inode, loff_t newsize)
600{
601
602 struct extent_position epos;
603 struct kernel_lb_addr eloc;
604 uint32_t elen;
605 int8_t etype;
606 struct super_block *sb = inode->i_sb;
607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608 int adsize;
609 struct udf_inode_info *iinfo = UDF_I(inode);
610 struct kernel_long_ad extent;
611 int err;
612
613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614 adsize = sizeof(struct short_ad);
615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616 adsize = sizeof(struct long_ad);
617 else
618 BUG();
619
620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621
622 /* File has extent covering the new size (could happen when extending
623 * inside a block)? */
624 if (etype != -1)
625 return 0;
626 if (newsize & (sb->s_blocksize - 1))
627 offset++;
628 /* Extended file just to the boundary of the last file block? */
629 if (offset == 0)
630 return 0;
631
632 /* Truncate is extending the file by 'offset' blocks */
633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635 /* File has no extents at all or has empty last
636 * indirect extent! Create a fake extent... */
637 extent.extLocation.logicalBlockNum = 0;
638 extent.extLocation.partitionReferenceNum = 0;
639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640 } else {
641 epos.offset -= adsize;
642 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643 &extent.extLength, 0);
644 extent.extLength |= etype << 30;
645 }
646 err = udf_do_extend_file(inode, &epos, &extent, offset);
647 if (err < 0)
648 goto out;
649 err = 0;
650 iinfo->i_lenExtents = newsize;
651out:
652 brelse(epos.bh);
653 return err;
654}
655
656static sector_t inode_getblk(struct inode *inode, sector_t block,
657 int *err, int *new)
658{
659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660 struct extent_position prev_epos, cur_epos, next_epos;
661 int count = 0, startnum = 0, endnum = 0;
662 uint32_t elen = 0, tmpelen;
663 struct kernel_lb_addr eloc, tmpeloc;
664 int c = 1;
665 loff_t lbcount = 0, b_off = 0;
666 udf_pblk_t newblocknum, newblock;
667 sector_t offset = 0;
668 int8_t etype;
669 struct udf_inode_info *iinfo = UDF_I(inode);
670 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671 int lastblock = 0;
672 bool isBeyondEOF;
673
674 *err = 0;
675 *new = 0;
676 prev_epos.offset = udf_file_entry_alloc_offset(inode);
677 prev_epos.block = iinfo->i_location;
678 prev_epos.bh = NULL;
679 cur_epos = next_epos = prev_epos;
680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681
682 /* find the extent which contains the block we are looking for.
683 alternate between laarr[0] and laarr[1] for locations of the
684 current extent, and the previous extent */
685 do {
686 if (prev_epos.bh != cur_epos.bh) {
687 brelse(prev_epos.bh);
688 get_bh(cur_epos.bh);
689 prev_epos.bh = cur_epos.bh;
690 }
691 if (cur_epos.bh != next_epos.bh) {
692 brelse(cur_epos.bh);
693 get_bh(next_epos.bh);
694 cur_epos.bh = next_epos.bh;
695 }
696
697 lbcount += elen;
698
699 prev_epos.block = cur_epos.block;
700 cur_epos.block = next_epos.block;
701
702 prev_epos.offset = cur_epos.offset;
703 cur_epos.offset = next_epos.offset;
704
705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706 if (etype == -1)
707 break;
708
709 c = !c;
710
711 laarr[c].extLength = (etype << 30) | elen;
712 laarr[c].extLocation = eloc;
713
714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715 pgoal = eloc.logicalBlockNum +
716 ((elen + inode->i_sb->s_blocksize - 1) >>
717 inode->i_sb->s_blocksize_bits);
718
719 count++;
720 } while (lbcount + elen <= b_off);
721
722 b_off -= lbcount;
723 offset = b_off >> inode->i_sb->s_blocksize_bits;
724 /*
725 * Move prev_epos and cur_epos into indirect extent if we are at
726 * the pointer to it
727 */
728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730
731 /* if the extent is allocated and recorded, return the block
732 if the extent is not a multiple of the blocksize, round up */
733
734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735 if (elen & (inode->i_sb->s_blocksize - 1)) {
736 elen = EXT_RECORDED_ALLOCATED |
737 ((elen + inode->i_sb->s_blocksize - 1) &
738 ~(inode->i_sb->s_blocksize - 1));
739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740 }
741 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
742 goto out_free;
743 }
744
745 /* Are we beyond EOF? */
746 if (etype == -1) {
747 int ret;
748 isBeyondEOF = true;
749 if (count) {
750 if (c)
751 laarr[0] = laarr[1];
752 startnum = 1;
753 } else {
754 /* Create a fake extent when there's not one */
755 memset(&laarr[0].extLocation, 0x00,
756 sizeof(struct kernel_lb_addr));
757 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
758 /* Will udf_do_extend_file() create real extent from
759 a fake one? */
760 startnum = (offset > 0);
761 }
762 /* Create extents for the hole between EOF and offset */
763 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
764 if (ret < 0) {
765 *err = ret;
766 newblock = 0;
767 goto out_free;
768 }
769 c = 0;
770 offset = 0;
771 count += ret;
772 /* We are not covered by a preallocated extent? */
773 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
774 EXT_NOT_RECORDED_ALLOCATED) {
775 /* Is there any real extent? - otherwise we overwrite
776 * the fake one... */
777 if (count)
778 c = !c;
779 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
780 inode->i_sb->s_blocksize;
781 memset(&laarr[c].extLocation, 0x00,
782 sizeof(struct kernel_lb_addr));
783 count++;
784 }
785 endnum = c + 1;
786 lastblock = 1;
787 } else {
788 isBeyondEOF = false;
789 endnum = startnum = ((count > 2) ? 2 : count);
790
791 /* if the current extent is in position 0,
792 swap it with the previous */
793 if (!c && count != 1) {
794 laarr[2] = laarr[0];
795 laarr[0] = laarr[1];
796 laarr[1] = laarr[2];
797 c = 1;
798 }
799
800 /* if the current block is located in an extent,
801 read the next extent */
802 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
803 if (etype != -1) {
804 laarr[c + 1].extLength = (etype << 30) | elen;
805 laarr[c + 1].extLocation = eloc;
806 count++;
807 startnum++;
808 endnum++;
809 } else
810 lastblock = 1;
811 }
812
813 /* if the current extent is not recorded but allocated, get the
814 * block in the extent corresponding to the requested block */
815 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
816 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
817 else { /* otherwise, allocate a new block */
818 if (iinfo->i_next_alloc_block == block)
819 goal = iinfo->i_next_alloc_goal;
820
821 if (!goal) {
822 if (!(goal = pgoal)) /* XXX: what was intended here? */
823 goal = iinfo->i_location.logicalBlockNum + 1;
824 }
825
826 newblocknum = udf_new_block(inode->i_sb, inode,
827 iinfo->i_location.partitionReferenceNum,
828 goal, err);
829 if (!newblocknum) {
830 *err = -ENOSPC;
831 newblock = 0;
832 goto out_free;
833 }
834 if (isBeyondEOF)
835 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
836 }
837
838 /* if the extent the requsted block is located in contains multiple
839 * blocks, split the extent into at most three extents. blocks prior
840 * to requested block, requested block, and blocks after requested
841 * block */
842 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
843
844 /* We preallocate blocks only for regular files. It also makes sense
845 * for directories but there's a problem when to drop the
846 * preallocation. We might use some delayed work for that but I feel
847 * it's overengineering for a filesystem like UDF. */
848 if (S_ISREG(inode->i_mode))
849 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
850
851 /* merge any continuous blocks in laarr */
852 udf_merge_extents(inode, laarr, &endnum);
853
854 /* write back the new extents, inserting new extents if the new number
855 * of extents is greater than the old number, and deleting extents if
856 * the new number of extents is less than the old number */
857 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
858
859 newblock = udf_get_pblock(inode->i_sb, newblocknum,
860 iinfo->i_location.partitionReferenceNum, 0);
861 if (!newblock) {
862 *err = -EIO;
863 goto out_free;
864 }
865 *new = 1;
866 iinfo->i_next_alloc_block = block;
867 iinfo->i_next_alloc_goal = newblocknum;
868 inode->i_ctime = current_time(inode);
869
870 if (IS_SYNC(inode))
871 udf_sync_inode(inode);
872 else
873 mark_inode_dirty(inode);
874out_free:
875 brelse(prev_epos.bh);
876 brelse(cur_epos.bh);
877 brelse(next_epos.bh);
878 return newblock;
879}
880
881static void udf_split_extents(struct inode *inode, int *c, int offset,
882 udf_pblk_t newblocknum,
883 struct kernel_long_ad *laarr, int *endnum)
884{
885 unsigned long blocksize = inode->i_sb->s_blocksize;
886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
887
888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
889 (laarr[*c].extLength >> 30) ==
890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
891 int curr = *c;
892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
893 blocksize - 1) >> blocksize_bits;
894 int8_t etype = (laarr[curr].extLength >> 30);
895
896 if (blen == 1)
897 ;
898 else if (!offset || blen == offset + 1) {
899 laarr[curr + 2] = laarr[curr + 1];
900 laarr[curr + 1] = laarr[curr];
901 } else {
902 laarr[curr + 3] = laarr[curr + 1];
903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
904 }
905
906 if (offset) {
907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
908 udf_free_blocks(inode->i_sb, inode,
909 &laarr[curr].extLocation,
910 0, offset);
911 laarr[curr].extLength =
912 EXT_NOT_RECORDED_NOT_ALLOCATED |
913 (offset << blocksize_bits);
914 laarr[curr].extLocation.logicalBlockNum = 0;
915 laarr[curr].extLocation.
916 partitionReferenceNum = 0;
917 } else
918 laarr[curr].extLength = (etype << 30) |
919 (offset << blocksize_bits);
920 curr++;
921 (*c)++;
922 (*endnum)++;
923 }
924
925 laarr[curr].extLocation.logicalBlockNum = newblocknum;
926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
927 laarr[curr].extLocation.partitionReferenceNum =
928 UDF_I(inode)->i_location.partitionReferenceNum;
929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
930 blocksize;
931 curr++;
932
933 if (blen != offset + 1) {
934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
935 laarr[curr].extLocation.logicalBlockNum +=
936 offset + 1;
937 laarr[curr].extLength = (etype << 30) |
938 ((blen - (offset + 1)) << blocksize_bits);
939 curr++;
940 (*endnum)++;
941 }
942 }
943}
944
945static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
946 struct kernel_long_ad *laarr,
947 int *endnum)
948{
949 int start, length = 0, currlength = 0, i;
950
951 if (*endnum >= (c + 1)) {
952 if (!lastblock)
953 return;
954 else
955 start = c;
956 } else {
957 if ((laarr[c + 1].extLength >> 30) ==
958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
959 start = c + 1;
960 length = currlength =
961 (((laarr[c + 1].extLength &
962 UDF_EXTENT_LENGTH_MASK) +
963 inode->i_sb->s_blocksize - 1) >>
964 inode->i_sb->s_blocksize_bits);
965 } else
966 start = c;
967 }
968
969 for (i = start + 1; i <= *endnum; i++) {
970 if (i == *endnum) {
971 if (lastblock)
972 length += UDF_DEFAULT_PREALLOC_BLOCKS;
973 } else if ((laarr[i].extLength >> 30) ==
974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
975 length += (((laarr[i].extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 inode->i_sb->s_blocksize - 1) >>
978 inode->i_sb->s_blocksize_bits);
979 } else
980 break;
981 }
982
983 if (length) {
984 int next = laarr[start].extLocation.logicalBlockNum +
985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
986 inode->i_sb->s_blocksize - 1) >>
987 inode->i_sb->s_blocksize_bits);
988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
989 laarr[start].extLocation.partitionReferenceNum,
990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
991 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
992 currlength);
993 if (numalloc) {
994 if (start == (c + 1))
995 laarr[start].extLength +=
996 (numalloc <<
997 inode->i_sb->s_blocksize_bits);
998 else {
999 memmove(&laarr[c + 2], &laarr[c + 1],
1000 sizeof(struct long_ad) * (*endnum - (c + 1)));
1001 (*endnum)++;
1002 laarr[c + 1].extLocation.logicalBlockNum = next;
1003 laarr[c + 1].extLocation.partitionReferenceNum =
1004 laarr[c].extLocation.
1005 partitionReferenceNum;
1006 laarr[c + 1].extLength =
1007 EXT_NOT_RECORDED_ALLOCATED |
1008 (numalloc <<
1009 inode->i_sb->s_blocksize_bits);
1010 start = c + 1;
1011 }
1012
1013 for (i = start + 1; numalloc && i < *endnum; i++) {
1014 int elen = ((laarr[i].extLength &
1015 UDF_EXTENT_LENGTH_MASK) +
1016 inode->i_sb->s_blocksize - 1) >>
1017 inode->i_sb->s_blocksize_bits;
1018
1019 if (elen > numalloc) {
1020 laarr[i].extLength -=
1021 (numalloc <<
1022 inode->i_sb->s_blocksize_bits);
1023 numalloc = 0;
1024 } else {
1025 numalloc -= elen;
1026 if (*endnum > (i + 1))
1027 memmove(&laarr[i],
1028 &laarr[i + 1],
1029 sizeof(struct long_ad) *
1030 (*endnum - (i + 1)));
1031 i--;
1032 (*endnum)--;
1033 }
1034 }
1035 UDF_I(inode)->i_lenExtents +=
1036 numalloc << inode->i_sb->s_blocksize_bits;
1037 }
1038 }
1039}
1040
1041static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1042 int *endnum)
1043{
1044 int i;
1045 unsigned long blocksize = inode->i_sb->s_blocksize;
1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1047
1048 for (i = 0; i < (*endnum - 1); i++) {
1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1051
1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1053 (((li->extLength >> 30) ==
1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1055 ((lip1->extLocation.logicalBlockNum -
1056 li->extLocation.logicalBlockNum) ==
1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1058 blocksize - 1) >> blocksize_bits)))) {
1059
1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1062 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1063 lip1->extLength = (lip1->extLength -
1064 (li->extLength &
1065 UDF_EXTENT_LENGTH_MASK) +
1066 UDF_EXTENT_LENGTH_MASK) &
1067 ~(blocksize - 1);
1068 li->extLength = (li->extLength &
1069 UDF_EXTENT_FLAG_MASK) +
1070 (UDF_EXTENT_LENGTH_MASK + 1) -
1071 blocksize;
1072 lip1->extLocation.logicalBlockNum =
1073 li->extLocation.logicalBlockNum +
1074 ((li->extLength &
1075 UDF_EXTENT_LENGTH_MASK) >>
1076 blocksize_bits);
1077 } else {
1078 li->extLength = lip1->extLength +
1079 (((li->extLength &
1080 UDF_EXTENT_LENGTH_MASK) +
1081 blocksize - 1) & ~(blocksize - 1));
1082 if (*endnum > (i + 2))
1083 memmove(&laarr[i + 1], &laarr[i + 2],
1084 sizeof(struct long_ad) *
1085 (*endnum - (i + 2)));
1086 i--;
1087 (*endnum)--;
1088 }
1089 } else if (((li->extLength >> 30) ==
1090 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1091 ((lip1->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1093 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1094 ((li->extLength &
1095 UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits);
1097 li->extLocation.logicalBlockNum = 0;
1098 li->extLocation.partitionReferenceNum = 0;
1099
1100 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1103 lip1->extLength = (lip1->extLength -
1104 (li->extLength &
1105 UDF_EXTENT_LENGTH_MASK) +
1106 UDF_EXTENT_LENGTH_MASK) &
1107 ~(blocksize - 1);
1108 li->extLength = (li->extLength &
1109 UDF_EXTENT_FLAG_MASK) +
1110 (UDF_EXTENT_LENGTH_MASK + 1) -
1111 blocksize;
1112 } else {
1113 li->extLength = lip1->extLength +
1114 (((li->extLength &
1115 UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~(blocksize - 1));
1117 if (*endnum > (i + 2))
1118 memmove(&laarr[i + 1], &laarr[i + 2],
1119 sizeof(struct long_ad) *
1120 (*endnum - (i + 2)));
1121 i--;
1122 (*endnum)--;
1123 }
1124 } else if ((li->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1126 udf_free_blocks(inode->i_sb, inode,
1127 &li->extLocation, 0,
1128 ((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) >> blocksize_bits);
1131 li->extLocation.logicalBlockNum = 0;
1132 li->extLocation.partitionReferenceNum = 0;
1133 li->extLength = (li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) |
1135 EXT_NOT_RECORDED_NOT_ALLOCATED;
1136 }
1137 }
1138}
1139
1140static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1141 int startnum, int endnum,
1142 struct extent_position *epos)
1143{
1144 int start = 0, i;
1145 struct kernel_lb_addr tmploc;
1146 uint32_t tmplen;
1147
1148 if (startnum > endnum) {
1149 for (i = 0; i < (startnum - endnum); i++)
1150 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1151 laarr[i].extLength);
1152 } else if (startnum < endnum) {
1153 for (i = 0; i < (endnum - startnum); i++) {
1154 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1155 laarr[i].extLength);
1156 udf_next_aext(inode, epos, &laarr[i].extLocation,
1157 &laarr[i].extLength, 1);
1158 start++;
1159 }
1160 }
1161
1162 for (i = start; i < endnum; i++) {
1163 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1164 udf_write_aext(inode, epos, &laarr[i].extLocation,
1165 laarr[i].extLength, 1);
1166 }
1167}
1168
1169struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1170 int create, int *err)
1171{
1172 struct buffer_head *bh = NULL;
1173
1174 bh = udf_getblk(inode, block, create, err);
1175 if (!bh)
1176 return NULL;
1177
1178 if (buffer_uptodate(bh))
1179 return bh;
1180
1181 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1182
1183 wait_on_buffer(bh);
1184 if (buffer_uptodate(bh))
1185 return bh;
1186
1187 brelse(bh);
1188 *err = -EIO;
1189 return NULL;
1190}
1191
1192int udf_setsize(struct inode *inode, loff_t newsize)
1193{
1194 int err;
1195 struct udf_inode_info *iinfo;
1196 unsigned int bsize = i_blocksize(inode);
1197
1198 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1199 S_ISLNK(inode->i_mode)))
1200 return -EINVAL;
1201 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1202 return -EPERM;
1203
1204 iinfo = UDF_I(inode);
1205 if (newsize > inode->i_size) {
1206 down_write(&iinfo->i_data_sem);
1207 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1208 if (bsize <
1209 (udf_file_entry_alloc_offset(inode) + newsize)) {
1210 err = udf_expand_file_adinicb(inode);
1211 if (err)
1212 return err;
1213 down_write(&iinfo->i_data_sem);
1214 } else {
1215 iinfo->i_lenAlloc = newsize;
1216 goto set_size;
1217 }
1218 }
1219 err = udf_extend_file(inode, newsize);
1220 if (err) {
1221 up_write(&iinfo->i_data_sem);
1222 return err;
1223 }
1224set_size:
1225 up_write(&iinfo->i_data_sem);
1226 truncate_setsize(inode, newsize);
1227 } else {
1228 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1229 down_write(&iinfo->i_data_sem);
1230 udf_clear_extent_cache(inode);
1231 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1232 0x00, bsize - newsize -
1233 udf_file_entry_alloc_offset(inode));
1234 iinfo->i_lenAlloc = newsize;
1235 truncate_setsize(inode, newsize);
1236 up_write(&iinfo->i_data_sem);
1237 goto update_time;
1238 }
1239 err = block_truncate_page(inode->i_mapping, newsize,
1240 udf_get_block);
1241 if (err)
1242 return err;
1243 truncate_setsize(inode, newsize);
1244 down_write(&iinfo->i_data_sem);
1245 udf_clear_extent_cache(inode);
1246 udf_truncate_extents(inode);
1247 up_write(&iinfo->i_data_sem);
1248 }
1249update_time:
1250 inode->i_mtime = inode->i_ctime = current_time(inode);
1251 if (IS_SYNC(inode))
1252 udf_sync_inode(inode);
1253 else
1254 mark_inode_dirty(inode);
1255 return 0;
1256}
1257
1258/*
1259 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1260 * arbitrary - just that we hopefully don't limit any real use of rewritten
1261 * inode on write-once media but avoid looping for too long on corrupted media.
1262 */
1263#define UDF_MAX_ICB_NESTING 1024
1264
1265static int udf_read_inode(struct inode *inode, bool hidden_inode)
1266{
1267 struct buffer_head *bh = NULL;
1268 struct fileEntry *fe;
1269 struct extendedFileEntry *efe;
1270 uint16_t ident;
1271 struct udf_inode_info *iinfo = UDF_I(inode);
1272 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1273 struct kernel_lb_addr *iloc = &iinfo->i_location;
1274 unsigned int link_count;
1275 unsigned int indirections = 0;
1276 int bs = inode->i_sb->s_blocksize;
1277 int ret = -EIO;
1278 uint32_t uid, gid;
1279
1280reread:
1281 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1282 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1283 iloc->partitionReferenceNum, sbi->s_partitions);
1284 return -EIO;
1285 }
1286
1287 if (iloc->logicalBlockNum >=
1288 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1289 udf_debug("block=%u, partition=%u out of range\n",
1290 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1291 return -EIO;
1292 }
1293
1294 /*
1295 * Set defaults, but the inode is still incomplete!
1296 * Note: get_new_inode() sets the following on a new inode:
1297 * i_sb = sb
1298 * i_no = ino
1299 * i_flags = sb->s_flags
1300 * i_state = 0
1301 * clean_inode(): zero fills and sets
1302 * i_count = 1
1303 * i_nlink = 1
1304 * i_op = NULL;
1305 */
1306 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1307 if (!bh) {
1308 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1309 return -EIO;
1310 }
1311
1312 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1313 ident != TAG_IDENT_USE) {
1314 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1315 inode->i_ino, ident);
1316 goto out;
1317 }
1318
1319 fe = (struct fileEntry *)bh->b_data;
1320 efe = (struct extendedFileEntry *)bh->b_data;
1321
1322 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1323 struct buffer_head *ibh;
1324
1325 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1326 if (ident == TAG_IDENT_IE && ibh) {
1327 struct kernel_lb_addr loc;
1328 struct indirectEntry *ie;
1329
1330 ie = (struct indirectEntry *)ibh->b_data;
1331 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1332
1333 if (ie->indirectICB.extLength) {
1334 brelse(ibh);
1335 memcpy(&iinfo->i_location, &loc,
1336 sizeof(struct kernel_lb_addr));
1337 if (++indirections > UDF_MAX_ICB_NESTING) {
1338 udf_err(inode->i_sb,
1339 "too many ICBs in ICB hierarchy"
1340 " (max %d supported)\n",
1341 UDF_MAX_ICB_NESTING);
1342 goto out;
1343 }
1344 brelse(bh);
1345 goto reread;
1346 }
1347 }
1348 brelse(ibh);
1349 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1350 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1351 le16_to_cpu(fe->icbTag.strategyType));
1352 goto out;
1353 }
1354 if (fe->icbTag.strategyType == cpu_to_le16(4))
1355 iinfo->i_strat4096 = 0;
1356 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1357 iinfo->i_strat4096 = 1;
1358
1359 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1360 ICBTAG_FLAG_AD_MASK;
1361 iinfo->i_unique = 0;
1362 iinfo->i_lenEAttr = 0;
1363 iinfo->i_lenExtents = 0;
1364 iinfo->i_lenAlloc = 0;
1365 iinfo->i_next_alloc_block = 0;
1366 iinfo->i_next_alloc_goal = 0;
1367 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1368 iinfo->i_efe = 1;
1369 iinfo->i_use = 0;
1370 ret = udf_alloc_i_data(inode, bs -
1371 sizeof(struct extendedFileEntry));
1372 if (ret)
1373 goto out;
1374 memcpy(iinfo->i_ext.i_data,
1375 bh->b_data + sizeof(struct extendedFileEntry),
1376 bs - sizeof(struct extendedFileEntry));
1377 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1378 iinfo->i_efe = 0;
1379 iinfo->i_use = 0;
1380 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1381 if (ret)
1382 goto out;
1383 memcpy(iinfo->i_ext.i_data,
1384 bh->b_data + sizeof(struct fileEntry),
1385 bs - sizeof(struct fileEntry));
1386 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1387 iinfo->i_efe = 0;
1388 iinfo->i_use = 1;
1389 iinfo->i_lenAlloc = le32_to_cpu(
1390 ((struct unallocSpaceEntry *)bh->b_data)->
1391 lengthAllocDescs);
1392 ret = udf_alloc_i_data(inode, bs -
1393 sizeof(struct unallocSpaceEntry));
1394 if (ret)
1395 goto out;
1396 memcpy(iinfo->i_ext.i_data,
1397 bh->b_data + sizeof(struct unallocSpaceEntry),
1398 bs - sizeof(struct unallocSpaceEntry));
1399 return 0;
1400 }
1401
1402 ret = -EIO;
1403 read_lock(&sbi->s_cred_lock);
1404 uid = le32_to_cpu(fe->uid);
1405 if (uid == UDF_INVALID_ID ||
1406 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1407 inode->i_uid = sbi->s_uid;
1408 else
1409 i_uid_write(inode, uid);
1410
1411 gid = le32_to_cpu(fe->gid);
1412 if (gid == UDF_INVALID_ID ||
1413 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1414 inode->i_gid = sbi->s_gid;
1415 else
1416 i_gid_write(inode, gid);
1417
1418 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1419 sbi->s_fmode != UDF_INVALID_MODE)
1420 inode->i_mode = sbi->s_fmode;
1421 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1422 sbi->s_dmode != UDF_INVALID_MODE)
1423 inode->i_mode = sbi->s_dmode;
1424 else
1425 inode->i_mode = udf_convert_permissions(fe);
1426 inode->i_mode &= ~sbi->s_umask;
1427 read_unlock(&sbi->s_cred_lock);
1428
1429 link_count = le16_to_cpu(fe->fileLinkCount);
1430 if (!link_count) {
1431 if (!hidden_inode) {
1432 ret = -ESTALE;
1433 goto out;
1434 }
1435 link_count = 1;
1436 }
1437 set_nlink(inode, link_count);
1438
1439 inode->i_size = le64_to_cpu(fe->informationLength);
1440 iinfo->i_lenExtents = inode->i_size;
1441
1442 if (iinfo->i_efe == 0) {
1443 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1444 (inode->i_sb->s_blocksize_bits - 9);
1445
1446 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1447 inode->i_atime = sbi->s_record_time;
1448
1449 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1450 fe->modificationTime))
1451 inode->i_mtime = sbi->s_record_time;
1452
1453 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1454 inode->i_ctime = sbi->s_record_time;
1455
1456 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1457 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1458 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1459 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1460 } else {
1461 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1462 (inode->i_sb->s_blocksize_bits - 9);
1463
1464 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1465 inode->i_atime = sbi->s_record_time;
1466
1467 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1468 efe->modificationTime))
1469 inode->i_mtime = sbi->s_record_time;
1470
1471 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1472 iinfo->i_crtime = sbi->s_record_time;
1473
1474 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1475 inode->i_ctime = sbi->s_record_time;
1476
1477 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1478 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1479 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1480 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1481 }
1482 inode->i_generation = iinfo->i_unique;
1483
1484 /*
1485 * Sanity check length of allocation descriptors and extended attrs to
1486 * avoid integer overflows
1487 */
1488 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1489 goto out;
1490 /* Now do exact checks */
1491 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1492 goto out;
1493 /* Sanity checks for files in ICB so that we don't get confused later */
1494 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1495 /*
1496 * For file in ICB data is stored in allocation descriptor
1497 * so sizes should match
1498 */
1499 if (iinfo->i_lenAlloc != inode->i_size)
1500 goto out;
1501 /* File in ICB has to fit in there... */
1502 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1503 goto out;
1504 }
1505
1506 switch (fe->icbTag.fileType) {
1507 case ICBTAG_FILE_TYPE_DIRECTORY:
1508 inode->i_op = &udf_dir_inode_operations;
1509 inode->i_fop = &udf_dir_operations;
1510 inode->i_mode |= S_IFDIR;
1511 inc_nlink(inode);
1512 break;
1513 case ICBTAG_FILE_TYPE_REALTIME:
1514 case ICBTAG_FILE_TYPE_REGULAR:
1515 case ICBTAG_FILE_TYPE_UNDEF:
1516 case ICBTAG_FILE_TYPE_VAT20:
1517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1518 inode->i_data.a_ops = &udf_adinicb_aops;
1519 else
1520 inode->i_data.a_ops = &udf_aops;
1521 inode->i_op = &udf_file_inode_operations;
1522 inode->i_fop = &udf_file_operations;
1523 inode->i_mode |= S_IFREG;
1524 break;
1525 case ICBTAG_FILE_TYPE_BLOCK:
1526 inode->i_mode |= S_IFBLK;
1527 break;
1528 case ICBTAG_FILE_TYPE_CHAR:
1529 inode->i_mode |= S_IFCHR;
1530 break;
1531 case ICBTAG_FILE_TYPE_FIFO:
1532 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1533 break;
1534 case ICBTAG_FILE_TYPE_SOCKET:
1535 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1536 break;
1537 case ICBTAG_FILE_TYPE_SYMLINK:
1538 inode->i_data.a_ops = &udf_symlink_aops;
1539 inode->i_op = &udf_symlink_inode_operations;
1540 inode_nohighmem(inode);
1541 inode->i_mode = S_IFLNK | 0777;
1542 break;
1543 case ICBTAG_FILE_TYPE_MAIN:
1544 udf_debug("METADATA FILE-----\n");
1545 break;
1546 case ICBTAG_FILE_TYPE_MIRROR:
1547 udf_debug("METADATA MIRROR FILE-----\n");
1548 break;
1549 case ICBTAG_FILE_TYPE_BITMAP:
1550 udf_debug("METADATA BITMAP FILE-----\n");
1551 break;
1552 default:
1553 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1554 inode->i_ino, fe->icbTag.fileType);
1555 goto out;
1556 }
1557 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1558 struct deviceSpec *dsea =
1559 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1560 if (dsea) {
1561 init_special_inode(inode, inode->i_mode,
1562 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1563 le32_to_cpu(dsea->minorDeviceIdent)));
1564 /* Developer ID ??? */
1565 } else
1566 goto out;
1567 }
1568 ret = 0;
1569out:
1570 brelse(bh);
1571 return ret;
1572}
1573
1574static int udf_alloc_i_data(struct inode *inode, size_t size)
1575{
1576 struct udf_inode_info *iinfo = UDF_I(inode);
1577 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1578 if (!iinfo->i_ext.i_data)
1579 return -ENOMEM;
1580 return 0;
1581}
1582
1583static umode_t udf_convert_permissions(struct fileEntry *fe)
1584{
1585 umode_t mode;
1586 uint32_t permissions;
1587 uint32_t flags;
1588
1589 permissions = le32_to_cpu(fe->permissions);
1590 flags = le16_to_cpu(fe->icbTag.flags);
1591
1592 mode = ((permissions) & 0007) |
1593 ((permissions >> 2) & 0070) |
1594 ((permissions >> 4) & 0700) |
1595 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1596 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1597 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1598
1599 return mode;
1600}
1601
1602int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1603{
1604 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1605}
1606
1607static int udf_sync_inode(struct inode *inode)
1608{
1609 return udf_update_inode(inode, 1);
1610}
1611
1612static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time)
1613{
1614 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1615 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1616 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1617 iinfo->i_crtime = time;
1618}
1619
1620static int udf_update_inode(struct inode *inode, int do_sync)
1621{
1622 struct buffer_head *bh = NULL;
1623 struct fileEntry *fe;
1624 struct extendedFileEntry *efe;
1625 uint64_t lb_recorded;
1626 uint32_t udfperms;
1627 uint16_t icbflags;
1628 uint16_t crclen;
1629 int err = 0;
1630 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1631 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1632 struct udf_inode_info *iinfo = UDF_I(inode);
1633
1634 bh = udf_tgetblk(inode->i_sb,
1635 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1636 if (!bh) {
1637 udf_debug("getblk failure\n");
1638 return -EIO;
1639 }
1640
1641 lock_buffer(bh);
1642 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1643 fe = (struct fileEntry *)bh->b_data;
1644 efe = (struct extendedFileEntry *)bh->b_data;
1645
1646 if (iinfo->i_use) {
1647 struct unallocSpaceEntry *use =
1648 (struct unallocSpaceEntry *)bh->b_data;
1649
1650 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1651 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1652 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1653 sizeof(struct unallocSpaceEntry));
1654 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1655 crclen = sizeof(struct unallocSpaceEntry);
1656
1657 goto finish;
1658 }
1659
1660 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1661 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1662 else
1663 fe->uid = cpu_to_le32(i_uid_read(inode));
1664
1665 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1666 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1667 else
1668 fe->gid = cpu_to_le32(i_gid_read(inode));
1669
1670 udfperms = ((inode->i_mode & 0007)) |
1671 ((inode->i_mode & 0070) << 2) |
1672 ((inode->i_mode & 0700) << 4);
1673
1674 udfperms |= (le32_to_cpu(fe->permissions) &
1675 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1676 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1677 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1678 fe->permissions = cpu_to_le32(udfperms);
1679
1680 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1681 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1682 else
1683 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1684
1685 fe->informationLength = cpu_to_le64(inode->i_size);
1686
1687 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1688 struct regid *eid;
1689 struct deviceSpec *dsea =
1690 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1691 if (!dsea) {
1692 dsea = (struct deviceSpec *)
1693 udf_add_extendedattr(inode,
1694 sizeof(struct deviceSpec) +
1695 sizeof(struct regid), 12, 0x3);
1696 dsea->attrType = cpu_to_le32(12);
1697 dsea->attrSubtype = 1;
1698 dsea->attrLength = cpu_to_le32(
1699 sizeof(struct deviceSpec) +
1700 sizeof(struct regid));
1701 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1702 }
1703 eid = (struct regid *)dsea->impUse;
1704 memset(eid, 0, sizeof(*eid));
1705 strcpy(eid->ident, UDF_ID_DEVELOPER);
1706 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1707 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1708 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1709 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1710 }
1711
1712 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1713 lb_recorded = 0; /* No extents => no blocks! */
1714 else
1715 lb_recorded =
1716 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1717 (blocksize_bits - 9);
1718
1719 if (iinfo->i_efe == 0) {
1720 memcpy(bh->b_data + sizeof(struct fileEntry),
1721 iinfo->i_ext.i_data,
1722 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1723 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1724
1725 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1726 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1727 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1728 memset(&(fe->impIdent), 0, sizeof(struct regid));
1729 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1730 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1731 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1732 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1733 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1734 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1735 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1736 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1737 crclen = sizeof(struct fileEntry);
1738 } else {
1739 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1740 iinfo->i_ext.i_data,
1741 inode->i_sb->s_blocksize -
1742 sizeof(struct extendedFileEntry));
1743 efe->objectSize = cpu_to_le64(inode->i_size);
1744 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1745
1746 udf_adjust_time(iinfo, inode->i_atime);
1747 udf_adjust_time(iinfo, inode->i_mtime);
1748 udf_adjust_time(iinfo, inode->i_ctime);
1749
1750 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1751 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1752 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1753 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1754
1755 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1756 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1757 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1758 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1759 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1760 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1761 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1762 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1763 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1764 crclen = sizeof(struct extendedFileEntry);
1765 }
1766
1767finish:
1768 if (iinfo->i_strat4096) {
1769 fe->icbTag.strategyType = cpu_to_le16(4096);
1770 fe->icbTag.strategyParameter = cpu_to_le16(1);
1771 fe->icbTag.numEntries = cpu_to_le16(2);
1772 } else {
1773 fe->icbTag.strategyType = cpu_to_le16(4);
1774 fe->icbTag.numEntries = cpu_to_le16(1);
1775 }
1776
1777 if (iinfo->i_use)
1778 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1779 else if (S_ISDIR(inode->i_mode))
1780 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1781 else if (S_ISREG(inode->i_mode))
1782 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1783 else if (S_ISLNK(inode->i_mode))
1784 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1785 else if (S_ISBLK(inode->i_mode))
1786 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1787 else if (S_ISCHR(inode->i_mode))
1788 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1789 else if (S_ISFIFO(inode->i_mode))
1790 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1791 else if (S_ISSOCK(inode->i_mode))
1792 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1793
1794 icbflags = iinfo->i_alloc_type |
1795 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1796 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1797 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1798 (le16_to_cpu(fe->icbTag.flags) &
1799 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1800 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1801
1802 fe->icbTag.flags = cpu_to_le16(icbflags);
1803 if (sbi->s_udfrev >= 0x0200)
1804 fe->descTag.descVersion = cpu_to_le16(3);
1805 else
1806 fe->descTag.descVersion = cpu_to_le16(2);
1807 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1808 fe->descTag.tagLocation = cpu_to_le32(
1809 iinfo->i_location.logicalBlockNum);
1810 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1811 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1812 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1813 crclen));
1814 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1815
1816 set_buffer_uptodate(bh);
1817 unlock_buffer(bh);
1818
1819 /* write the data blocks */
1820 mark_buffer_dirty(bh);
1821 if (do_sync) {
1822 sync_dirty_buffer(bh);
1823 if (buffer_write_io_error(bh)) {
1824 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1825 inode->i_ino);
1826 err = -EIO;
1827 }
1828 }
1829 brelse(bh);
1830
1831 return err;
1832}
1833
1834struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1835 bool hidden_inode)
1836{
1837 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1838 struct inode *inode = iget_locked(sb, block);
1839 int err;
1840
1841 if (!inode)
1842 return ERR_PTR(-ENOMEM);
1843
1844 if (!(inode->i_state & I_NEW))
1845 return inode;
1846
1847 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1848 err = udf_read_inode(inode, hidden_inode);
1849 if (err < 0) {
1850 iget_failed(inode);
1851 return ERR_PTR(err);
1852 }
1853 unlock_new_inode(inode);
1854
1855 return inode;
1856}
1857
1858int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1859 struct extent_position *epos)
1860{
1861 struct super_block *sb = inode->i_sb;
1862 struct buffer_head *bh;
1863 struct allocExtDesc *aed;
1864 struct extent_position nepos;
1865 struct kernel_lb_addr neloc;
1866 int ver, adsize;
1867
1868 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1869 adsize = sizeof(struct short_ad);
1870 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1871 adsize = sizeof(struct long_ad);
1872 else
1873 return -EIO;
1874
1875 neloc.logicalBlockNum = block;
1876 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1877
1878 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1879 if (!bh)
1880 return -EIO;
1881 lock_buffer(bh);
1882 memset(bh->b_data, 0x00, sb->s_blocksize);
1883 set_buffer_uptodate(bh);
1884 unlock_buffer(bh);
1885 mark_buffer_dirty_inode(bh, inode);
1886
1887 aed = (struct allocExtDesc *)(bh->b_data);
1888 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1889 aed->previousAllocExtLocation =
1890 cpu_to_le32(epos->block.logicalBlockNum);
1891 }
1892 aed->lengthAllocDescs = cpu_to_le32(0);
1893 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1894 ver = 3;
1895 else
1896 ver = 2;
1897 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1898 sizeof(struct tag));
1899
1900 nepos.block = neloc;
1901 nepos.offset = sizeof(struct allocExtDesc);
1902 nepos.bh = bh;
1903
1904 /*
1905 * Do we have to copy current last extent to make space for indirect
1906 * one?
1907 */
1908 if (epos->offset + adsize > sb->s_blocksize) {
1909 struct kernel_lb_addr cp_loc;
1910 uint32_t cp_len;
1911 int cp_type;
1912
1913 epos->offset -= adsize;
1914 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1915 cp_len |= ((uint32_t)cp_type) << 30;
1916
1917 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1918 udf_write_aext(inode, epos, &nepos.block,
1919 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1920 } else {
1921 __udf_add_aext(inode, epos, &nepos.block,
1922 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1923 }
1924
1925 brelse(epos->bh);
1926 *epos = nepos;
1927
1928 return 0;
1929}
1930
1931/*
1932 * Append extent at the given position - should be the first free one in inode
1933 * / indirect extent. This function assumes there is enough space in the inode
1934 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1935 */
1936int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1937 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1938{
1939 struct udf_inode_info *iinfo = UDF_I(inode);
1940 struct allocExtDesc *aed;
1941 int adsize;
1942
1943 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1944 adsize = sizeof(struct short_ad);
1945 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1946 adsize = sizeof(struct long_ad);
1947 else
1948 return -EIO;
1949
1950 if (!epos->bh) {
1951 WARN_ON(iinfo->i_lenAlloc !=
1952 epos->offset - udf_file_entry_alloc_offset(inode));
1953 } else {
1954 aed = (struct allocExtDesc *)epos->bh->b_data;
1955 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1956 epos->offset - sizeof(struct allocExtDesc));
1957 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1958 }
1959
1960 udf_write_aext(inode, epos, eloc, elen, inc);
1961
1962 if (!epos->bh) {
1963 iinfo->i_lenAlloc += adsize;
1964 mark_inode_dirty(inode);
1965 } else {
1966 aed = (struct allocExtDesc *)epos->bh->b_data;
1967 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1968 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1969 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1970 udf_update_tag(epos->bh->b_data,
1971 epos->offset + (inc ? 0 : adsize));
1972 else
1973 udf_update_tag(epos->bh->b_data,
1974 sizeof(struct allocExtDesc));
1975 mark_buffer_dirty_inode(epos->bh, inode);
1976 }
1977
1978 return 0;
1979}
1980
1981/*
1982 * Append extent at given position - should be the first free one in inode
1983 * / indirect extent. Takes care of allocating and linking indirect blocks.
1984 */
1985int udf_add_aext(struct inode *inode, struct extent_position *epos,
1986 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1987{
1988 int adsize;
1989 struct super_block *sb = inode->i_sb;
1990
1991 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1992 adsize = sizeof(struct short_ad);
1993 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1994 adsize = sizeof(struct long_ad);
1995 else
1996 return -EIO;
1997
1998 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
1999 int err;
2000 udf_pblk_t new_block;
2001
2002 new_block = udf_new_block(sb, NULL,
2003 epos->block.partitionReferenceNum,
2004 epos->block.logicalBlockNum, &err);
2005 if (!new_block)
2006 return -ENOSPC;
2007
2008 err = udf_setup_indirect_aext(inode, new_block, epos);
2009 if (err)
2010 return err;
2011 }
2012
2013 return __udf_add_aext(inode, epos, eloc, elen, inc);
2014}
2015
2016void udf_write_aext(struct inode *inode, struct extent_position *epos,
2017 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2018{
2019 int adsize;
2020 uint8_t *ptr;
2021 struct short_ad *sad;
2022 struct long_ad *lad;
2023 struct udf_inode_info *iinfo = UDF_I(inode);
2024
2025 if (!epos->bh)
2026 ptr = iinfo->i_ext.i_data + epos->offset -
2027 udf_file_entry_alloc_offset(inode) +
2028 iinfo->i_lenEAttr;
2029 else
2030 ptr = epos->bh->b_data + epos->offset;
2031
2032 switch (iinfo->i_alloc_type) {
2033 case ICBTAG_FLAG_AD_SHORT:
2034 sad = (struct short_ad *)ptr;
2035 sad->extLength = cpu_to_le32(elen);
2036 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2037 adsize = sizeof(struct short_ad);
2038 break;
2039 case ICBTAG_FLAG_AD_LONG:
2040 lad = (struct long_ad *)ptr;
2041 lad->extLength = cpu_to_le32(elen);
2042 lad->extLocation = cpu_to_lelb(*eloc);
2043 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2044 adsize = sizeof(struct long_ad);
2045 break;
2046 default:
2047 return;
2048 }
2049
2050 if (epos->bh) {
2051 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2052 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2053 struct allocExtDesc *aed =
2054 (struct allocExtDesc *)epos->bh->b_data;
2055 udf_update_tag(epos->bh->b_data,
2056 le32_to_cpu(aed->lengthAllocDescs) +
2057 sizeof(struct allocExtDesc));
2058 }
2059 mark_buffer_dirty_inode(epos->bh, inode);
2060 } else {
2061 mark_inode_dirty(inode);
2062 }
2063
2064 if (inc)
2065 epos->offset += adsize;
2066}
2067
2068/*
2069 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2070 * someone does some weird stuff.
2071 */
2072#define UDF_MAX_INDIR_EXTS 16
2073
2074int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2075 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2076{
2077 int8_t etype;
2078 unsigned int indirections = 0;
2079
2080 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2081 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2082 udf_pblk_t block;
2083
2084 if (++indirections > UDF_MAX_INDIR_EXTS) {
2085 udf_err(inode->i_sb,
2086 "too many indirect extents in inode %lu\n",
2087 inode->i_ino);
2088 return -1;
2089 }
2090
2091 epos->block = *eloc;
2092 epos->offset = sizeof(struct allocExtDesc);
2093 brelse(epos->bh);
2094 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2095 epos->bh = udf_tread(inode->i_sb, block);
2096 if (!epos->bh) {
2097 udf_debug("reading block %u failed!\n", block);
2098 return -1;
2099 }
2100 }
2101
2102 return etype;
2103}
2104
2105int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2106 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2107{
2108 int alen;
2109 int8_t etype;
2110 uint8_t *ptr;
2111 struct short_ad *sad;
2112 struct long_ad *lad;
2113 struct udf_inode_info *iinfo = UDF_I(inode);
2114
2115 if (!epos->bh) {
2116 if (!epos->offset)
2117 epos->offset = udf_file_entry_alloc_offset(inode);
2118 ptr = iinfo->i_ext.i_data + epos->offset -
2119 udf_file_entry_alloc_offset(inode) +
2120 iinfo->i_lenEAttr;
2121 alen = udf_file_entry_alloc_offset(inode) +
2122 iinfo->i_lenAlloc;
2123 } else {
2124 if (!epos->offset)
2125 epos->offset = sizeof(struct allocExtDesc);
2126 ptr = epos->bh->b_data + epos->offset;
2127 alen = sizeof(struct allocExtDesc) +
2128 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2129 lengthAllocDescs);
2130 }
2131
2132 switch (iinfo->i_alloc_type) {
2133 case ICBTAG_FLAG_AD_SHORT:
2134 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2135 if (!sad)
2136 return -1;
2137 etype = le32_to_cpu(sad->extLength) >> 30;
2138 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2139 eloc->partitionReferenceNum =
2140 iinfo->i_location.partitionReferenceNum;
2141 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2142 break;
2143 case ICBTAG_FLAG_AD_LONG:
2144 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2145 if (!lad)
2146 return -1;
2147 etype = le32_to_cpu(lad->extLength) >> 30;
2148 *eloc = lelb_to_cpu(lad->extLocation);
2149 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2150 break;
2151 default:
2152 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2153 return -1;
2154 }
2155
2156 return etype;
2157}
2158
2159static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2160 struct kernel_lb_addr neloc, uint32_t nelen)
2161{
2162 struct kernel_lb_addr oeloc;
2163 uint32_t oelen;
2164 int8_t etype;
2165
2166 if (epos.bh)
2167 get_bh(epos.bh);
2168
2169 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2170 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2171 neloc = oeloc;
2172 nelen = (etype << 30) | oelen;
2173 }
2174 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2175 brelse(epos.bh);
2176
2177 return (nelen >> 30);
2178}
2179
2180int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2181 struct kernel_lb_addr eloc, uint32_t elen)
2182{
2183 struct extent_position oepos;
2184 int adsize;
2185 int8_t etype;
2186 struct allocExtDesc *aed;
2187 struct udf_inode_info *iinfo;
2188
2189 if (epos.bh) {
2190 get_bh(epos.bh);
2191 get_bh(epos.bh);
2192 }
2193
2194 iinfo = UDF_I(inode);
2195 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2196 adsize = sizeof(struct short_ad);
2197 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2198 adsize = sizeof(struct long_ad);
2199 else
2200 adsize = 0;
2201
2202 oepos = epos;
2203 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2204 return -1;
2205
2206 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2207 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2208 if (oepos.bh != epos.bh) {
2209 oepos.block = epos.block;
2210 brelse(oepos.bh);
2211 get_bh(epos.bh);
2212 oepos.bh = epos.bh;
2213 oepos.offset = epos.offset - adsize;
2214 }
2215 }
2216 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2217 elen = 0;
2218
2219 if (epos.bh != oepos.bh) {
2220 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2221 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2222 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2223 if (!oepos.bh) {
2224 iinfo->i_lenAlloc -= (adsize * 2);
2225 mark_inode_dirty(inode);
2226 } else {
2227 aed = (struct allocExtDesc *)oepos.bh->b_data;
2228 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2229 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2230 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2231 udf_update_tag(oepos.bh->b_data,
2232 oepos.offset - (2 * adsize));
2233 else
2234 udf_update_tag(oepos.bh->b_data,
2235 sizeof(struct allocExtDesc));
2236 mark_buffer_dirty_inode(oepos.bh, inode);
2237 }
2238 } else {
2239 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2240 if (!oepos.bh) {
2241 iinfo->i_lenAlloc -= adsize;
2242 mark_inode_dirty(inode);
2243 } else {
2244 aed = (struct allocExtDesc *)oepos.bh->b_data;
2245 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2246 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2247 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2248 udf_update_tag(oepos.bh->b_data,
2249 epos.offset - adsize);
2250 else
2251 udf_update_tag(oepos.bh->b_data,
2252 sizeof(struct allocExtDesc));
2253 mark_buffer_dirty_inode(oepos.bh, inode);
2254 }
2255 }
2256
2257 brelse(epos.bh);
2258 brelse(oepos.bh);
2259
2260 return (elen >> 30);
2261}
2262
2263int8_t inode_bmap(struct inode *inode, sector_t block,
2264 struct extent_position *pos, struct kernel_lb_addr *eloc,
2265 uint32_t *elen, sector_t *offset)
2266{
2267 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2268 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2269 int8_t etype;
2270 struct udf_inode_info *iinfo;
2271
2272 iinfo = UDF_I(inode);
2273 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2274 pos->offset = 0;
2275 pos->block = iinfo->i_location;
2276 pos->bh = NULL;
2277 }
2278 *elen = 0;
2279 do {
2280 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2281 if (etype == -1) {
2282 *offset = (bcount - lbcount) >> blocksize_bits;
2283 iinfo->i_lenExtents = lbcount;
2284 return -1;
2285 }
2286 lbcount += *elen;
2287 } while (lbcount <= bcount);
2288 /* update extent cache */
2289 udf_update_extent_cache(inode, lbcount - *elen, pos);
2290 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2291
2292 return etype;
2293}
2294
2295udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2296{
2297 struct kernel_lb_addr eloc;
2298 uint32_t elen;
2299 sector_t offset;
2300 struct extent_position epos = {};
2301 udf_pblk_t ret;
2302
2303 down_read(&UDF_I(inode)->i_data_sem);
2304
2305 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2306 (EXT_RECORDED_ALLOCATED >> 30))
2307 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2308 else
2309 ret = 0;
2310
2311 up_read(&UDF_I(inode)->i_data_sem);
2312 brelse(epos.bh);
2313
2314 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2315 return udf_fixed_to_variable(ret);
2316 else
2317 return ret;
2318}