Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * RocketPort device driver for Linux
   4 *
   5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
   6 * 
   7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10/*
  11 * Kernel Synchronization:
  12 *
  13 * This driver has 2 kernel control paths - exception handlers (calls into the driver
  14 * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
  15 * are not used.
  16 *
  17 * Critical data: 
  18 * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
  19 *    serial port state information and the xmit_buf circular buffer.  Protected by 
  20 *    a per port spinlock.
  21 * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
  22 *    is data to be transmitted.  Protected by atomic bit operations.
  23 * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
  24 * 
  25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
  26 * simultaneous access to the same port by more than one process.
  27 */
  28
  29/****** Defines ******/
  30#define ROCKET_PARANOIA_CHECK
  31#define ROCKET_DISABLE_SIMUSAGE
  32
  33#undef ROCKET_SOFT_FLOW
  34#undef ROCKET_DEBUG_OPEN
  35#undef ROCKET_DEBUG_INTR
  36#undef ROCKET_DEBUG_WRITE
  37#undef ROCKET_DEBUG_FLOW
  38#undef ROCKET_DEBUG_THROTTLE
  39#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
  40#undef ROCKET_DEBUG_RECEIVE
  41#undef ROCKET_DEBUG_HANGUP
  42#undef REV_PCI_ORDER
  43#undef ROCKET_DEBUG_IO
  44
  45#define POLL_PERIOD (HZ/100)	/*  Polling period .01 seconds (10ms) */
  46
  47/****** Kernel includes ******/
  48
  49#include <linux/module.h>
  50#include <linux/errno.h>
  51#include <linux/major.h>
  52#include <linux/kernel.h>
  53#include <linux/signal.h>
  54#include <linux/slab.h>
  55#include <linux/mm.h>
  56#include <linux/sched.h>
  57#include <linux/timer.h>
  58#include <linux/interrupt.h>
  59#include <linux/tty.h>
  60#include <linux/tty_driver.h>
  61#include <linux/tty_flip.h>
  62#include <linux/serial.h>
  63#include <linux/string.h>
  64#include <linux/fcntl.h>
  65#include <linux/ptrace.h>
  66#include <linux/mutex.h>
  67#include <linux/ioport.h>
  68#include <linux/delay.h>
  69#include <linux/completion.h>
  70#include <linux/wait.h>
  71#include <linux/pci.h>
  72#include <linux/uaccess.h>
  73#include <linux/atomic.h>
  74#include <asm/unaligned.h>
  75#include <linux/bitops.h>
  76#include <linux/spinlock.h>
  77#include <linux/init.h>
  78
  79/****** RocketPort includes ******/
  80
  81#include "rocket_int.h"
  82#include "rocket.h"
  83
  84#define ROCKET_VERSION "2.09"
  85#define ROCKET_DATE "12-June-2003"
  86
  87/****** RocketPort Local Variables ******/
  88
  89static void rp_do_poll(struct timer_list *unused);
  90
  91static struct tty_driver *rocket_driver;
  92
  93static struct rocket_version driver_version = {	
  94	ROCKET_VERSION, ROCKET_DATE
  95};
  96
  97static struct r_port *rp_table[MAX_RP_PORTS];	       /*  The main repository of serial port state information. */
  98static unsigned int xmit_flags[NUM_BOARDS];	       /*  Bit significant, indicates port had data to transmit. */
  99						       /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
 100static atomic_t rp_num_ports_open;	               /*  Number of serial ports open                           */
 101static DEFINE_TIMER(rocket_timer, rp_do_poll);
 102
 103static unsigned long board1;	                       /* ISA addresses, retrieved from rocketport.conf          */
 104static unsigned long board2;
 105static unsigned long board3;
 106static unsigned long board4;
 107static unsigned long controller;
 108static bool support_low_speed;
 109static unsigned long modem1;
 110static unsigned long modem2;
 111static unsigned long modem3;
 112static unsigned long modem4;
 113static unsigned long pc104_1[8];
 114static unsigned long pc104_2[8];
 115static unsigned long pc104_3[8];
 116static unsigned long pc104_4[8];
 117static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
 118
 119static int rp_baud_base[NUM_BOARDS];	               /*  Board config info (Someday make a per-board structure)  */
 120static unsigned long rcktpt_io_addr[NUM_BOARDS];
 121static int rcktpt_type[NUM_BOARDS];
 122static int is_PCI[NUM_BOARDS];
 123static rocketModel_t rocketModel[NUM_BOARDS];
 124static int max_board;
 125static const struct tty_port_operations rocket_port_ops;
 126
 127/*
 128 * The following arrays define the interrupt bits corresponding to each AIOP.
 129 * These bits are different between the ISA and regular PCI boards and the
 130 * Universal PCI boards.
 131 */
 132
 133static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
 134	AIOP_INTR_BIT_0,
 135	AIOP_INTR_BIT_1,
 136	AIOP_INTR_BIT_2,
 137	AIOP_INTR_BIT_3
 138};
 139
 140#ifdef CONFIG_PCI
 141static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
 142	UPCI_AIOP_INTR_BIT_0,
 143	UPCI_AIOP_INTR_BIT_1,
 144	UPCI_AIOP_INTR_BIT_2,
 145	UPCI_AIOP_INTR_BIT_3
 146};
 147#endif
 148
 149static Byte_t RData[RDATASIZE] = {
 150	0x00, 0x09, 0xf6, 0x82,
 151	0x02, 0x09, 0x86, 0xfb,
 152	0x04, 0x09, 0x00, 0x0a,
 153	0x06, 0x09, 0x01, 0x0a,
 154	0x08, 0x09, 0x8a, 0x13,
 155	0x0a, 0x09, 0xc5, 0x11,
 156	0x0c, 0x09, 0x86, 0x85,
 157	0x0e, 0x09, 0x20, 0x0a,
 158	0x10, 0x09, 0x21, 0x0a,
 159	0x12, 0x09, 0x41, 0xff,
 160	0x14, 0x09, 0x82, 0x00,
 161	0x16, 0x09, 0x82, 0x7b,
 162	0x18, 0x09, 0x8a, 0x7d,
 163	0x1a, 0x09, 0x88, 0x81,
 164	0x1c, 0x09, 0x86, 0x7a,
 165	0x1e, 0x09, 0x84, 0x81,
 166	0x20, 0x09, 0x82, 0x7c,
 167	0x22, 0x09, 0x0a, 0x0a
 168};
 169
 170static Byte_t RRegData[RREGDATASIZE] = {
 171	0x00, 0x09, 0xf6, 0x82,	/* 00: Stop Rx processor */
 172	0x08, 0x09, 0x8a, 0x13,	/* 04: Tx software flow control */
 173	0x0a, 0x09, 0xc5, 0x11,	/* 08: XON char */
 174	0x0c, 0x09, 0x86, 0x85,	/* 0c: XANY */
 175	0x12, 0x09, 0x41, 0xff,	/* 10: Rx mask char */
 176	0x14, 0x09, 0x82, 0x00,	/* 14: Compare/Ignore #0 */
 177	0x16, 0x09, 0x82, 0x7b,	/* 18: Compare #1 */
 178	0x18, 0x09, 0x8a, 0x7d,	/* 1c: Compare #2 */
 179	0x1a, 0x09, 0x88, 0x81,	/* 20: Interrupt #1 */
 180	0x1c, 0x09, 0x86, 0x7a,	/* 24: Ignore/Replace #1 */
 181	0x1e, 0x09, 0x84, 0x81,	/* 28: Interrupt #2 */
 182	0x20, 0x09, 0x82, 0x7c,	/* 2c: Ignore/Replace #2 */
 183	0x22, 0x09, 0x0a, 0x0a	/* 30: Rx FIFO Enable */
 184};
 185
 186static CONTROLLER_T sController[CTL_SIZE] = {
 187	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 188	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 189	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 190	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 191	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 192	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 193	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 194	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
 195};
 196
 197static Byte_t sBitMapClrTbl[8] = {
 198	0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
 199};
 200
 201static Byte_t sBitMapSetTbl[8] = {
 202	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
 203};
 204
 205static int sClockPrescale = 0x14;
 206
 207/*
 208 *  Line number is the ttySIx number (x), the Minor number.  We 
 209 *  assign them sequentially, starting at zero.  The following 
 210 *  array keeps track of the line number assigned to a given board/aiop/channel.
 211 */
 212static unsigned char lineNumbers[MAX_RP_PORTS];
 213static unsigned long nextLineNumber;
 214
 215/*****  RocketPort Static Prototypes   *********/
 216static int __init init_ISA(int i);
 217static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
 218static void rp_flush_buffer(struct tty_struct *tty);
 219static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
 220static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
 221static void rp_start(struct tty_struct *tty);
 222static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
 223		     int ChanNum);
 224static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
 225static void sFlushRxFIFO(CHANNEL_T * ChP);
 226static void sFlushTxFIFO(CHANNEL_T * ChP);
 227static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
 228static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
 229static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
 230static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
 231static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
 232static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
 233			   ByteIO_t * AiopIOList, int AiopIOListSize,
 234			   int IRQNum, Byte_t Frequency, int PeriodicOnly);
 235static int sReadAiopID(ByteIO_t io);
 236static int sReadAiopNumChan(WordIO_t io);
 237
 238MODULE_AUTHOR("Theodore Ts'o");
 239MODULE_DESCRIPTION("Comtrol RocketPort driver");
 240module_param_hw(board1, ulong, ioport, 0);
 241MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
 242module_param_hw(board2, ulong, ioport, 0);
 243MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
 244module_param_hw(board3, ulong, ioport, 0);
 245MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
 246module_param_hw(board4, ulong, ioport, 0);
 247MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
 248module_param_hw(controller, ulong, ioport, 0);
 249MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
 250module_param(support_low_speed, bool, 0);
 251MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
 252module_param(modem1, ulong, 0);
 253MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
 254module_param(modem2, ulong, 0);
 255MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
 256module_param(modem3, ulong, 0);
 257MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
 258module_param(modem4, ulong, 0);
 259MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
 260module_param_array(pc104_1, ulong, NULL, 0);
 261MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
 262module_param_array(pc104_2, ulong, NULL, 0);
 263MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
 264module_param_array(pc104_3, ulong, NULL, 0);
 265MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
 266module_param_array(pc104_4, ulong, NULL, 0);
 267MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
 268
 269static int __init rp_init(void);
 270static void rp_cleanup_module(void);
 271
 272module_init(rp_init);
 273module_exit(rp_cleanup_module);
 274
 275
 276MODULE_LICENSE("Dual BSD/GPL");
 277
 278/*************************************************************************/
 279/*                     Module code starts here                           */
 280
 281static inline int rocket_paranoia_check(struct r_port *info,
 282					const char *routine)
 283{
 284#ifdef ROCKET_PARANOIA_CHECK
 285	if (!info)
 286		return 1;
 287	if (info->magic != RPORT_MAGIC) {
 288		printk(KERN_WARNING "Warning: bad magic number for rocketport "
 289				"struct in %s\n", routine);
 290		return 1;
 291	}
 292#endif
 293	return 0;
 294}
 295
 296
 297/*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
 298 *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
 299 *  tty layer.  
 300 */
 301static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
 302		unsigned int ChanStatus)
 303{
 304	unsigned int CharNStat;
 305	int ToRecv, wRecv, space;
 306	unsigned char *cbuf;
 307
 308	ToRecv = sGetRxCnt(cp);
 309#ifdef ROCKET_DEBUG_INTR
 310	printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
 311#endif
 312	if (ToRecv == 0)
 313		return;
 314
 315	/*
 316	 * if status indicates there are errored characters in the
 317	 * FIFO, then enter status mode (a word in FIFO holds
 318	 * character and status).
 319	 */
 320	if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
 321		if (!(ChanStatus & STATMODE)) {
 322#ifdef ROCKET_DEBUG_RECEIVE
 323			printk(KERN_INFO "Entering STATMODE...\n");
 324#endif
 325			ChanStatus |= STATMODE;
 326			sEnRxStatusMode(cp);
 327		}
 328	}
 329
 330	/* 
 331	 * if we previously entered status mode, then read down the
 332	 * FIFO one word at a time, pulling apart the character and
 333	 * the status.  Update error counters depending on status
 334	 */
 335	if (ChanStatus & STATMODE) {
 336#ifdef ROCKET_DEBUG_RECEIVE
 337		printk(KERN_INFO "Ignore %x, read %x...\n",
 338			info->ignore_status_mask, info->read_status_mask);
 339#endif
 340		while (ToRecv) {
 341			char flag;
 342
 343			CharNStat = sInW(sGetTxRxDataIO(cp));
 344#ifdef ROCKET_DEBUG_RECEIVE
 345			printk(KERN_INFO "%x...\n", CharNStat);
 346#endif
 347			if (CharNStat & STMBREAKH)
 348				CharNStat &= ~(STMFRAMEH | STMPARITYH);
 349			if (CharNStat & info->ignore_status_mask) {
 350				ToRecv--;
 351				continue;
 352			}
 353			CharNStat &= info->read_status_mask;
 354			if (CharNStat & STMBREAKH)
 355				flag = TTY_BREAK;
 356			else if (CharNStat & STMPARITYH)
 357				flag = TTY_PARITY;
 358			else if (CharNStat & STMFRAMEH)
 359				flag = TTY_FRAME;
 360			else if (CharNStat & STMRCVROVRH)
 361				flag = TTY_OVERRUN;
 362			else
 363				flag = TTY_NORMAL;
 364			tty_insert_flip_char(&info->port, CharNStat & 0xff,
 365					flag);
 366			ToRecv--;
 367		}
 368
 369		/*
 370		 * after we've emptied the FIFO in status mode, turn
 371		 * status mode back off
 372		 */
 373		if (sGetRxCnt(cp) == 0) {
 374#ifdef ROCKET_DEBUG_RECEIVE
 375			printk(KERN_INFO "Status mode off.\n");
 376#endif
 377			sDisRxStatusMode(cp);
 378		}
 379	} else {
 380		/*
 381		 * we aren't in status mode, so read down the FIFO two
 382		 * characters at time by doing repeated word IO
 383		 * transfer.
 384		 */
 385		space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
 386		if (space < ToRecv) {
 387#ifdef ROCKET_DEBUG_RECEIVE
 388			printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
 389#endif
 390			if (space <= 0)
 391				return;
 392			ToRecv = space;
 393		}
 394		wRecv = ToRecv >> 1;
 395		if (wRecv)
 396			sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
 397		if (ToRecv & 1)
 398			cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
 399	}
 400	/*  Push the data up to the tty layer */
 401	tty_flip_buffer_push(&info->port);
 402}
 403
 404/*
 405 *  Serial port transmit data function.  Called from the timer polling loop as a 
 406 *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
 407 *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
 408 *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
 409 */
 410static void rp_do_transmit(struct r_port *info)
 411{
 412	int c;
 413	CHANNEL_t *cp = &info->channel;
 414	struct tty_struct *tty;
 415	unsigned long flags;
 416
 417#ifdef ROCKET_DEBUG_INTR
 418	printk(KERN_DEBUG "%s\n", __func__);
 419#endif
 420	if (!info)
 421		return;
 422	tty = tty_port_tty_get(&info->port);
 423
 424	if (tty == NULL) {
 425		printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
 426		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 427		return;
 428	}
 429
 430	spin_lock_irqsave(&info->slock, flags);
 431	info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
 432
 433	/*  Loop sending data to FIFO until done or FIFO full */
 434	while (1) {
 435		if (tty->stopped)
 436			break;
 437		c = min(info->xmit_fifo_room, info->xmit_cnt);
 438		c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
 439		if (c <= 0 || info->xmit_fifo_room <= 0)
 440			break;
 441		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
 442		if (c & 1)
 443			sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
 444		info->xmit_tail += c;
 445		info->xmit_tail &= XMIT_BUF_SIZE - 1;
 446		info->xmit_cnt -= c;
 447		info->xmit_fifo_room -= c;
 448#ifdef ROCKET_DEBUG_INTR
 449		printk(KERN_INFO "tx %d chars...\n", c);
 450#endif
 451	}
 452
 453	if (info->xmit_cnt == 0)
 454		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 455
 456	if (info->xmit_cnt < WAKEUP_CHARS) {
 457		tty_wakeup(tty);
 458#ifdef ROCKETPORT_HAVE_POLL_WAIT
 459		wake_up_interruptible(&tty->poll_wait);
 460#endif
 461	}
 462
 463	spin_unlock_irqrestore(&info->slock, flags);
 464	tty_kref_put(tty);
 465
 466#ifdef ROCKET_DEBUG_INTR
 467	printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
 468	       info->xmit_tail, info->xmit_fifo_room);
 469#endif
 470}
 471
 472/*
 473 *  Called when a serial port signals it has read data in it's RX FIFO.
 474 *  It checks what interrupts are pending and services them, including
 475 *  receiving serial data.  
 476 */
 477static void rp_handle_port(struct r_port *info)
 478{
 479	CHANNEL_t *cp;
 480	unsigned int IntMask, ChanStatus;
 481
 482	if (!info)
 483		return;
 484
 485	if (!tty_port_initialized(&info->port)) {
 486		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 487				"info->flags & NOT_INIT\n");
 488		return;
 489	}
 490
 491	cp = &info->channel;
 492
 493	IntMask = sGetChanIntID(cp) & info->intmask;
 494#ifdef ROCKET_DEBUG_INTR
 495	printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
 496#endif
 497	ChanStatus = sGetChanStatus(cp);
 498	if (IntMask & RXF_TRIG) {	/* Rx FIFO trigger level */
 499		rp_do_receive(info, cp, ChanStatus);
 500	}
 501	if (IntMask & DELTA_CD) {	/* CD change  */
 502#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
 503		printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
 504		       (ChanStatus & CD_ACT) ? "on" : "off");
 505#endif
 506		if (!(ChanStatus & CD_ACT) && info->cd_status) {
 507#ifdef ROCKET_DEBUG_HANGUP
 508			printk(KERN_INFO "CD drop, calling hangup.\n");
 509#endif
 510			tty_port_tty_hangup(&info->port, false);
 511		}
 512		info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
 513		wake_up_interruptible(&info->port.open_wait);
 514	}
 515#ifdef ROCKET_DEBUG_INTR
 516	if (IntMask & DELTA_CTS) {	/* CTS change */
 517		printk(KERN_INFO "CTS change...\n");
 518	}
 519	if (IntMask & DELTA_DSR) {	/* DSR change */
 520		printk(KERN_INFO "DSR change...\n");
 521	}
 522#endif
 523}
 524
 525/*
 526 *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
 527 */
 528static void rp_do_poll(struct timer_list *unused)
 529{
 530	CONTROLLER_t *ctlp;
 531	int ctrl, aiop, ch, line;
 532	unsigned int xmitmask, i;
 533	unsigned int CtlMask;
 534	unsigned char AiopMask;
 535	Word_t bit;
 536
 537	/*  Walk through all the boards (ctrl's) */
 538	for (ctrl = 0; ctrl < max_board; ctrl++) {
 539		if (rcktpt_io_addr[ctrl] <= 0)
 540			continue;
 541
 542		/*  Get a ptr to the board's control struct */
 543		ctlp = sCtlNumToCtlPtr(ctrl);
 544
 545		/*  Get the interrupt status from the board */
 546#ifdef CONFIG_PCI
 547		if (ctlp->BusType == isPCI)
 548			CtlMask = sPCIGetControllerIntStatus(ctlp);
 549		else
 550#endif
 551			CtlMask = sGetControllerIntStatus(ctlp);
 552
 553		/*  Check if any AIOP read bits are set */
 554		for (aiop = 0; CtlMask; aiop++) {
 555			bit = ctlp->AiopIntrBits[aiop];
 556			if (CtlMask & bit) {
 557				CtlMask &= ~bit;
 558				AiopMask = sGetAiopIntStatus(ctlp, aiop);
 559
 560				/*  Check if any port read bits are set */
 561				for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
 562					if (AiopMask & 1) {
 563
 564						/*  Get the line number (/dev/ttyRx number). */
 565						/*  Read the data from the port. */
 566						line = GetLineNumber(ctrl, aiop, ch);
 567						rp_handle_port(rp_table[line]);
 568					}
 569				}
 570			}
 571		}
 572
 573		xmitmask = xmit_flags[ctrl];
 574
 575		/*
 576		 *  xmit_flags contains bit-significant flags, indicating there is data
 577		 *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
 578		 *  1, ... (32 total possible).  The variable i has the aiop and ch 
 579		 *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
 580		 */
 581		if (xmitmask) {
 582			for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
 583				if (xmitmask & (1 << i)) {
 584					aiop = (i & 0x18) >> 3;
 585					ch = i & 0x07;
 586					line = GetLineNumber(ctrl, aiop, ch);
 587					rp_do_transmit(rp_table[line]);
 588				}
 589			}
 590		}
 591	}
 592
 593	/*
 594	 * Reset the timer so we get called at the next clock tick (10ms).
 595	 */
 596	if (atomic_read(&rp_num_ports_open))
 597		mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 598}
 599
 600/*
 601 *  Initializes the r_port structure for a port, as well as enabling the port on 
 602 *  the board.  
 603 *  Inputs:  board, aiop, chan numbers
 604 */
 605static void __init
 606init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
 607{
 608	unsigned rocketMode;
 609	struct r_port *info;
 610	int line;
 611	CONTROLLER_T *ctlp;
 612
 613	/*  Get the next available line number */
 614	line = SetLineNumber(board, aiop, chan);
 615
 616	ctlp = sCtlNumToCtlPtr(board);
 617
 618	/*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
 619	info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
 620	if (!info) {
 621		printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
 622				line);
 623		return;
 624	}
 625
 626	info->magic = RPORT_MAGIC;
 627	info->line = line;
 628	info->ctlp = ctlp;
 629	info->board = board;
 630	info->aiop = aiop;
 631	info->chan = chan;
 632	tty_port_init(&info->port);
 633	info->port.ops = &rocket_port_ops;
 634	info->flags &= ~ROCKET_MODE_MASK;
 635	if (board < ARRAY_SIZE(pc104) && line < ARRAY_SIZE(pc104_1))
 636		switch (pc104[board][line]) {
 637		case 422:
 638			info->flags |= ROCKET_MODE_RS422;
 639			break;
 640		case 485:
 641			info->flags |= ROCKET_MODE_RS485;
 642			break;
 643		case 232:
 644		default:
 645			info->flags |= ROCKET_MODE_RS232;
 646			break;
 647		}
 648	else
 649		info->flags |= ROCKET_MODE_RS232;
 
 
 650
 651	info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
 652	if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
 653		printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
 654				board, aiop, chan);
 655		tty_port_destroy(&info->port);
 656		kfree(info);
 657		return;
 658	}
 659
 660	rocketMode = info->flags & ROCKET_MODE_MASK;
 661
 662	if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
 663		sEnRTSToggle(&info->channel);
 664	else
 665		sDisRTSToggle(&info->channel);
 666
 667	if (ctlp->boardType == ROCKET_TYPE_PC104) {
 668		switch (rocketMode) {
 669		case ROCKET_MODE_RS485:
 670			sSetInterfaceMode(&info->channel, InterfaceModeRS485);
 671			break;
 672		case ROCKET_MODE_RS422:
 673			sSetInterfaceMode(&info->channel, InterfaceModeRS422);
 674			break;
 675		case ROCKET_MODE_RS232:
 676		default:
 677			if (info->flags & ROCKET_RTS_TOGGLE)
 678				sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
 679			else
 680				sSetInterfaceMode(&info->channel, InterfaceModeRS232);
 681			break;
 682		}
 683	}
 684	spin_lock_init(&info->slock);
 685	mutex_init(&info->write_mtx);
 686	rp_table[line] = info;
 687	tty_port_register_device(&info->port, rocket_driver, line,
 688			pci_dev ? &pci_dev->dev : NULL);
 689}
 690
 691/*
 692 *  Configures a rocketport port according to its termio settings.  Called from 
 693 *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
 694 */
 695static void configure_r_port(struct tty_struct *tty, struct r_port *info,
 696			     struct ktermios *old_termios)
 697{
 698	unsigned cflag;
 699	unsigned long flags;
 700	unsigned rocketMode;
 701	int bits, baud, divisor;
 702	CHANNEL_t *cp;
 703	struct ktermios *t = &tty->termios;
 704
 705	cp = &info->channel;
 706	cflag = t->c_cflag;
 707
 708	/* Byte size and parity */
 709	if ((cflag & CSIZE) == CS8) {
 710		sSetData8(cp);
 711		bits = 10;
 712	} else {
 713		sSetData7(cp);
 714		bits = 9;
 715	}
 716	if (cflag & CSTOPB) {
 717		sSetStop2(cp);
 718		bits++;
 719	} else {
 720		sSetStop1(cp);
 721	}
 722
 723	if (cflag & PARENB) {
 724		sEnParity(cp);
 725		bits++;
 726		if (cflag & PARODD) {
 727			sSetOddParity(cp);
 728		} else {
 729			sSetEvenParity(cp);
 730		}
 731	} else {
 732		sDisParity(cp);
 733	}
 734
 735	/* baud rate */
 736	baud = tty_get_baud_rate(tty);
 737	if (!baud)
 738		baud = 9600;
 739	divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
 740	if ((divisor >= 8192 || divisor < 0) && old_termios) {
 741		baud = tty_termios_baud_rate(old_termios);
 742		if (!baud)
 743			baud = 9600;
 744		divisor = (rp_baud_base[info->board] / baud) - 1;
 745	}
 746	if (divisor >= 8192 || divisor < 0) {
 747		baud = 9600;
 748		divisor = (rp_baud_base[info->board] / baud) - 1;
 749	}
 750	info->cps = baud / bits;
 751	sSetBaud(cp, divisor);
 752
 753	/* FIXME: Should really back compute a baud rate from the divisor */
 754	tty_encode_baud_rate(tty, baud, baud);
 755
 756	if (cflag & CRTSCTS) {
 757		info->intmask |= DELTA_CTS;
 758		sEnCTSFlowCtl(cp);
 759	} else {
 760		info->intmask &= ~DELTA_CTS;
 761		sDisCTSFlowCtl(cp);
 762	}
 763	if (cflag & CLOCAL) {
 764		info->intmask &= ~DELTA_CD;
 765	} else {
 766		spin_lock_irqsave(&info->slock, flags);
 767		if (sGetChanStatus(cp) & CD_ACT)
 768			info->cd_status = 1;
 769		else
 770			info->cd_status = 0;
 771		info->intmask |= DELTA_CD;
 772		spin_unlock_irqrestore(&info->slock, flags);
 773	}
 774
 775	/*
 776	 * Handle software flow control in the board
 777	 */
 778#ifdef ROCKET_SOFT_FLOW
 779	if (I_IXON(tty)) {
 780		sEnTxSoftFlowCtl(cp);
 781		if (I_IXANY(tty)) {
 782			sEnIXANY(cp);
 783		} else {
 784			sDisIXANY(cp);
 785		}
 786		sSetTxXONChar(cp, START_CHAR(tty));
 787		sSetTxXOFFChar(cp, STOP_CHAR(tty));
 788	} else {
 789		sDisTxSoftFlowCtl(cp);
 790		sDisIXANY(cp);
 791		sClrTxXOFF(cp);
 792	}
 793#endif
 794
 795	/*
 796	 * Set up ignore/read mask words
 797	 */
 798	info->read_status_mask = STMRCVROVRH | 0xFF;
 799	if (I_INPCK(tty))
 800		info->read_status_mask |= STMFRAMEH | STMPARITYH;
 801	if (I_BRKINT(tty) || I_PARMRK(tty))
 802		info->read_status_mask |= STMBREAKH;
 803
 804	/*
 805	 * Characters to ignore
 806	 */
 807	info->ignore_status_mask = 0;
 808	if (I_IGNPAR(tty))
 809		info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
 810	if (I_IGNBRK(tty)) {
 811		info->ignore_status_mask |= STMBREAKH;
 812		/*
 813		 * If we're ignoring parity and break indicators,
 814		 * ignore overruns too.  (For real raw support).
 815		 */
 816		if (I_IGNPAR(tty))
 817			info->ignore_status_mask |= STMRCVROVRH;
 818	}
 819
 820	rocketMode = info->flags & ROCKET_MODE_MASK;
 821
 822	if ((info->flags & ROCKET_RTS_TOGGLE)
 823	    || (rocketMode == ROCKET_MODE_RS485))
 824		sEnRTSToggle(cp);
 825	else
 826		sDisRTSToggle(cp);
 827
 828	sSetRTS(&info->channel);
 829
 830	if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
 831		switch (rocketMode) {
 832		case ROCKET_MODE_RS485:
 833			sSetInterfaceMode(cp, InterfaceModeRS485);
 834			break;
 835		case ROCKET_MODE_RS422:
 836			sSetInterfaceMode(cp, InterfaceModeRS422);
 837			break;
 838		case ROCKET_MODE_RS232:
 839		default:
 840			if (info->flags & ROCKET_RTS_TOGGLE)
 841				sSetInterfaceMode(cp, InterfaceModeRS232T);
 842			else
 843				sSetInterfaceMode(cp, InterfaceModeRS232);
 844			break;
 845		}
 846	}
 847}
 848
 849static int carrier_raised(struct tty_port *port)
 850{
 851	struct r_port *info = container_of(port, struct r_port, port);
 852	return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
 853}
 854
 855static void dtr_rts(struct tty_port *port, int on)
 856{
 857	struct r_port *info = container_of(port, struct r_port, port);
 858	if (on) {
 859		sSetDTR(&info->channel);
 860		sSetRTS(&info->channel);
 861	} else {
 862		sClrDTR(&info->channel);
 863		sClrRTS(&info->channel);
 864	}
 865}
 866
 867/*
 868 *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
 869 *  port's r_port struct.  Initializes the port hardware.  
 870 */
 871static int rp_open(struct tty_struct *tty, struct file *filp)
 872{
 873	struct r_port *info;
 874	struct tty_port *port;
 875	int retval;
 876	CHANNEL_t *cp;
 877	unsigned long page;
 878
 879	info = rp_table[tty->index];
 880	if (info == NULL)
 881		return -ENXIO;
 882	port = &info->port;
 883	
 884	page = __get_free_page(GFP_KERNEL);
 885	if (!page)
 886		return -ENOMEM;
 887
 888	/*
 889	 * We must not sleep from here until the port is marked fully in use.
 890	 */
 891	if (info->xmit_buf)
 892		free_page(page);
 893	else
 894		info->xmit_buf = (unsigned char *) page;
 895
 896	tty->driver_data = info;
 897	tty_port_tty_set(port, tty);
 898
 899	if (port->count++ == 0) {
 900		atomic_inc(&rp_num_ports_open);
 901
 902#ifdef ROCKET_DEBUG_OPEN
 903		printk(KERN_INFO "rocket mod++ = %d...\n",
 904				atomic_read(&rp_num_ports_open));
 905#endif
 906	}
 907#ifdef ROCKET_DEBUG_OPEN
 908	printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
 909#endif
 910
 911	/*
 912	 * Info->count is now 1; so it's safe to sleep now.
 913	 */
 914	if (!tty_port_initialized(port)) {
 915		cp = &info->channel;
 916		sSetRxTrigger(cp, TRIG_1);
 917		if (sGetChanStatus(cp) & CD_ACT)
 918			info->cd_status = 1;
 919		else
 920			info->cd_status = 0;
 921		sDisRxStatusMode(cp);
 922		sFlushRxFIFO(cp);
 923		sFlushTxFIFO(cp);
 924
 925		sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 926		sSetRxTrigger(cp, TRIG_1);
 927
 928		sGetChanStatus(cp);
 929		sDisRxStatusMode(cp);
 930		sClrTxXOFF(cp);
 931
 932		sDisCTSFlowCtl(cp);
 933		sDisTxSoftFlowCtl(cp);
 934
 935		sEnRxFIFO(cp);
 936		sEnTransmit(cp);
 937
 938		tty_port_set_initialized(&info->port, 1);
 939
 
 
 
 
 
 
 
 
 
 
 
 
 940		configure_r_port(tty, info, NULL);
 941		if (C_BAUD(tty)) {
 942			sSetDTR(cp);
 943			sSetRTS(cp);
 944		}
 945	}
 946	/*  Starts (or resets) the maint polling loop */
 947	mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 948
 949	retval = tty_port_block_til_ready(port, tty, filp);
 950	if (retval) {
 951#ifdef ROCKET_DEBUG_OPEN
 952		printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
 953#endif
 954		return retval;
 955	}
 956	return 0;
 957}
 958
 959/*
 960 *  Exception handler that closes a serial port. info->port.count is considered critical.
 961 */
 962static void rp_close(struct tty_struct *tty, struct file *filp)
 963{
 964	struct r_port *info = tty->driver_data;
 965	struct tty_port *port = &info->port;
 966	int timeout;
 967	CHANNEL_t *cp;
 968	
 969	if (rocket_paranoia_check(info, "rp_close"))
 970		return;
 971
 972#ifdef ROCKET_DEBUG_OPEN
 973	printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
 974#endif
 975
 976	if (tty_port_close_start(port, tty, filp) == 0)
 977		return;
 978
 979	mutex_lock(&port->mutex);
 980	cp = &info->channel;
 981	/*
 982	 * Before we drop DTR, make sure the UART transmitter
 983	 * has completely drained; this is especially
 984	 * important if there is a transmit FIFO!
 985	 */
 986	timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
 987	if (timeout == 0)
 988		timeout = 1;
 989	rp_wait_until_sent(tty, timeout);
 990	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 991
 992	sDisTransmit(cp);
 993	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 994	sDisCTSFlowCtl(cp);
 995	sDisTxSoftFlowCtl(cp);
 996	sClrTxXOFF(cp);
 997	sFlushRxFIFO(cp);
 998	sFlushTxFIFO(cp);
 999	sClrRTS(cp);
1000	if (C_HUPCL(tty))
1001		sClrDTR(cp);
1002
1003	rp_flush_buffer(tty);
1004		
1005	tty_ldisc_flush(tty);
1006
1007	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1008
1009	/* We can't yet use tty_port_close_end as the buffer handling in this
1010	   driver is a bit different to the usual */
1011
1012	if (port->blocked_open) {
1013		if (port->close_delay) {
1014			msleep_interruptible(jiffies_to_msecs(port->close_delay));
1015		}
1016		wake_up_interruptible(&port->open_wait);
1017	} else {
1018		if (info->xmit_buf) {
1019			free_page((unsigned long) info->xmit_buf);
1020			info->xmit_buf = NULL;
1021		}
1022	}
1023	spin_lock_irq(&port->lock);
1024	tty->closing = 0;
1025	spin_unlock_irq(&port->lock);
1026	tty_port_set_initialized(port, 0);
1027	tty_port_set_active(port, 0);
1028	mutex_unlock(&port->mutex);
1029	tty_port_tty_set(port, NULL);
1030
1031	atomic_dec(&rp_num_ports_open);
1032
1033#ifdef ROCKET_DEBUG_OPEN
1034	printk(KERN_INFO "rocket mod-- = %d...\n",
1035			atomic_read(&rp_num_ports_open));
1036	printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1037#endif
1038
1039}
1040
1041static void rp_set_termios(struct tty_struct *tty,
1042			   struct ktermios *old_termios)
1043{
1044	struct r_port *info = tty->driver_data;
1045	CHANNEL_t *cp;
1046	unsigned cflag;
1047
1048	if (rocket_paranoia_check(info, "rp_set_termios"))
1049		return;
1050
1051	cflag = tty->termios.c_cflag;
1052
1053	/*
1054	 * This driver doesn't support CS5 or CS6
1055	 */
1056	if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1057		tty->termios.c_cflag =
1058		    ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1059	/* Or CMSPAR */
1060	tty->termios.c_cflag &= ~CMSPAR;
1061
1062	configure_r_port(tty, info, old_termios);
1063
1064	cp = &info->channel;
1065
1066	/* Handle transition to B0 status */
1067	if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1068		sClrDTR(cp);
1069		sClrRTS(cp);
1070	}
1071
1072	/* Handle transition away from B0 status */
1073	if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1074		sSetRTS(cp);
1075		sSetDTR(cp);
1076	}
1077
1078	if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1079		rp_start(tty);
1080}
1081
1082static int rp_break(struct tty_struct *tty, int break_state)
1083{
1084	struct r_port *info = tty->driver_data;
1085	unsigned long flags;
1086
1087	if (rocket_paranoia_check(info, "rp_break"))
1088		return -EINVAL;
1089
1090	spin_lock_irqsave(&info->slock, flags);
1091	if (break_state == -1)
1092		sSendBreak(&info->channel);
1093	else
1094		sClrBreak(&info->channel);
1095	spin_unlock_irqrestore(&info->slock, flags);
1096	return 0;
1097}
1098
1099/*
1100 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1101 * the UPCI boards was added, it was decided to make this a function because
1102 * the macro was getting too complicated. All cases except the first one
1103 * (UPCIRingInd) are taken directly from the original macro.
1104 */
1105static int sGetChanRI(CHANNEL_T * ChP)
1106{
1107	CONTROLLER_t *CtlP = ChP->CtlP;
1108	int ChanNum = ChP->ChanNum;
1109	int RingInd = 0;
1110
1111	if (CtlP->UPCIRingInd)
1112		RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1113	else if (CtlP->AltChanRingIndicator)
1114		RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1115	else if (CtlP->boardType == ROCKET_TYPE_PC104)
1116		RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1117
1118	return RingInd;
1119}
1120
1121/********************************************************************************************/
1122/*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1123
1124/*
1125 *  Returns the state of the serial modem control lines.  These next 2 functions 
1126 *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1127 */
1128static int rp_tiocmget(struct tty_struct *tty)
1129{
1130	struct r_port *info = tty->driver_data;
1131	unsigned int control, result, ChanStatus;
1132
1133	ChanStatus = sGetChanStatusLo(&info->channel);
1134	control = info->channel.TxControl[3];
1135	result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1136		((control & SET_DTR) ?  TIOCM_DTR : 0) |
1137		((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1138		(sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1139		((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1140		((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1141
1142	return result;
1143}
1144
1145/* 
1146 *  Sets the modem control lines
1147 */
1148static int rp_tiocmset(struct tty_struct *tty,
1149				unsigned int set, unsigned int clear)
1150{
1151	struct r_port *info = tty->driver_data;
1152
1153	if (set & TIOCM_RTS)
1154		info->channel.TxControl[3] |= SET_RTS;
1155	if (set & TIOCM_DTR)
1156		info->channel.TxControl[3] |= SET_DTR;
1157	if (clear & TIOCM_RTS)
1158		info->channel.TxControl[3] &= ~SET_RTS;
1159	if (clear & TIOCM_DTR)
1160		info->channel.TxControl[3] &= ~SET_DTR;
1161
1162	out32(info->channel.IndexAddr, info->channel.TxControl);
1163	return 0;
1164}
1165
1166static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1167{
1168	struct rocket_config tmp;
1169
1170	memset(&tmp, 0, sizeof (tmp));
1171	mutex_lock(&info->port.mutex);
1172	tmp.line = info->line;
1173	tmp.flags = info->flags;
1174	tmp.close_delay = info->port.close_delay;
1175	tmp.closing_wait = info->port.closing_wait;
1176	tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1177	mutex_unlock(&info->port.mutex);
1178
1179	if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1180		return -EFAULT;
1181	return 0;
1182}
1183
1184static int set_config(struct tty_struct *tty, struct r_port *info,
1185					struct rocket_config __user *new_info)
1186{
1187	struct rocket_config new_serial;
1188
1189	if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1190		return -EFAULT;
1191
1192	mutex_lock(&info->port.mutex);
1193	if (!capable(CAP_SYS_ADMIN))
1194	{
1195		if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1196			mutex_unlock(&info->port.mutex);
1197			return -EPERM;
1198		}
1199		info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
 
1200		mutex_unlock(&info->port.mutex);
1201		return 0;
1202	}
1203
1204	if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1205		/* warn about deprecation, unless clearing */
1206		if (new_serial.flags & ROCKET_SPD_MASK)
1207			dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1208	}
1209
1210	info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1211	info->port.close_delay = new_serial.close_delay;
1212	info->port.closing_wait = new_serial.closing_wait;
1213
 
 
 
 
 
 
 
 
1214	mutex_unlock(&info->port.mutex);
1215
1216	configure_r_port(tty, info, NULL);
1217	return 0;
1218}
1219
1220/*
1221 *  This function fills in a rocket_ports struct with information
1222 *  about what boards/ports are in the system.  This info is passed
1223 *  to user space.  See setrocket.c where the info is used to create
1224 *  the /dev/ttyRx ports.
1225 */
1226static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1227{
1228	struct rocket_ports *tmp;
1229	int board, ret = 0;
1230
1231	tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
1232	if (!tmp)
1233		return -ENOMEM;
1234
1235	tmp->tty_major = rocket_driver->major;
 
1236
1237	for (board = 0; board < 4; board++) {
1238		tmp->rocketModel[board].model = rocketModel[board].model;
1239		strcpy(tmp->rocketModel[board].modelString,
1240		       rocketModel[board].modelString);
1241		tmp->rocketModel[board].numPorts = rocketModel[board].numPorts;
1242		tmp->rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1243		tmp->rocketModel[board].startingPortNumber =
1244			rocketModel[board].startingPortNumber;
1245	}
1246	if (copy_to_user(retports, tmp, sizeof(*retports)))
1247		ret = -EFAULT;
1248	kfree(tmp);
1249	return ret;
1250}
1251
1252static int reset_rm2(struct r_port *info, void __user *arg)
1253{
1254	int reset;
1255
1256	if (!capable(CAP_SYS_ADMIN))
1257		return -EPERM;
1258
1259	if (copy_from_user(&reset, arg, sizeof (int)))
1260		return -EFAULT;
1261	if (reset)
1262		reset = 1;
1263
1264	if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1265            rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1266		return -EINVAL;
1267
1268	if (info->ctlp->BusType == isISA)
1269		sModemReset(info->ctlp, info->chan, reset);
1270	else
1271		sPCIModemReset(info->ctlp, info->chan, reset);
1272
1273	return 0;
1274}
1275
1276static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1277{
1278	if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1279		return -EFAULT;
1280	return 0;
1281}
1282
1283/*  IOCTL call handler into the driver */
1284static int rp_ioctl(struct tty_struct *tty,
1285		    unsigned int cmd, unsigned long arg)
1286{
1287	struct r_port *info = tty->driver_data;
1288	void __user *argp = (void __user *)arg;
1289	int ret = 0;
1290
1291	if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1292		return -ENXIO;
1293
1294	switch (cmd) {
 
 
 
 
1295	case RCKP_GET_CONFIG:
1296		dev_warn_ratelimited(tty->dev,
1297					"RCKP_GET_CONFIG option is deprecated\n");
1298		ret = get_config(info, argp);
1299		break;
1300	case RCKP_SET_CONFIG:
1301		dev_warn_ratelimited(tty->dev,
1302					"RCKP_SET_CONFIG option is deprecated\n");
1303		ret = set_config(tty, info, argp);
1304		break;
1305	case RCKP_GET_PORTS:
1306		dev_warn_ratelimited(tty->dev,
1307					"RCKP_GET_PORTS option is deprecated\n");
1308		ret = get_ports(info, argp);
1309		break;
1310	case RCKP_RESET_RM2:
1311		dev_warn_ratelimited(tty->dev,
1312					"RCKP_RESET_RM2 option is deprecated\n");
1313		ret = reset_rm2(info, argp);
1314		break;
1315	case RCKP_GET_VERSION:
1316		dev_warn_ratelimited(tty->dev,
1317					"RCKP_GET_VERSION option is deprecated\n");
1318		ret = get_version(info, argp);
1319		break;
1320	default:
1321		ret = -ENOIOCTLCMD;
1322	}
1323	return ret;
1324}
1325
1326static void rp_send_xchar(struct tty_struct *tty, char ch)
1327{
1328	struct r_port *info = tty->driver_data;
1329	CHANNEL_t *cp;
1330
1331	if (rocket_paranoia_check(info, "rp_send_xchar"))
1332		return;
1333
1334	cp = &info->channel;
1335	if (sGetTxCnt(cp))
1336		sWriteTxPrioByte(cp, ch);
1337	else
1338		sWriteTxByte(sGetTxRxDataIO(cp), ch);
1339}
1340
1341static void rp_throttle(struct tty_struct *tty)
1342{
1343	struct r_port *info = tty->driver_data;
1344
1345#ifdef ROCKET_DEBUG_THROTTLE
1346	printk(KERN_INFO "throttle %s ....\n", tty->name);
1347#endif
1348
1349	if (rocket_paranoia_check(info, "rp_throttle"))
1350		return;
1351
1352	if (I_IXOFF(tty))
1353		rp_send_xchar(tty, STOP_CHAR(tty));
1354
1355	sClrRTS(&info->channel);
1356}
1357
1358static void rp_unthrottle(struct tty_struct *tty)
1359{
1360	struct r_port *info = tty->driver_data;
1361#ifdef ROCKET_DEBUG_THROTTLE
1362	printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1363#endif
1364
1365	if (rocket_paranoia_check(info, "rp_unthrottle"))
1366		return;
1367
1368	if (I_IXOFF(tty))
1369		rp_send_xchar(tty, START_CHAR(tty));
1370
1371	sSetRTS(&info->channel);
1372}
1373
1374/*
1375 * ------------------------------------------------------------
1376 * rp_stop() and rp_start()
1377 *
1378 * This routines are called before setting or resetting tty->stopped.
1379 * They enable or disable transmitter interrupts, as necessary.
1380 * ------------------------------------------------------------
1381 */
1382static void rp_stop(struct tty_struct *tty)
1383{
1384	struct r_port *info = tty->driver_data;
1385
1386#ifdef ROCKET_DEBUG_FLOW
1387	printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1388	       info->xmit_cnt, info->xmit_fifo_room);
1389#endif
1390
1391	if (rocket_paranoia_check(info, "rp_stop"))
1392		return;
1393
1394	if (sGetTxCnt(&info->channel))
1395		sDisTransmit(&info->channel);
1396}
1397
1398static void rp_start(struct tty_struct *tty)
1399{
1400	struct r_port *info = tty->driver_data;
1401
1402#ifdef ROCKET_DEBUG_FLOW
1403	printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1404	       info->xmit_cnt, info->xmit_fifo_room);
1405#endif
1406
1407	if (rocket_paranoia_check(info, "rp_stop"))
1408		return;
1409
1410	sEnTransmit(&info->channel);
1411	set_bit((info->aiop * 8) + info->chan,
1412		(void *) &xmit_flags[info->board]);
1413}
1414
1415/*
1416 * rp_wait_until_sent() --- wait until the transmitter is empty
1417 */
1418static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1419{
1420	struct r_port *info = tty->driver_data;
1421	CHANNEL_t *cp;
1422	unsigned long orig_jiffies;
1423	int check_time, exit_time;
1424	int txcnt;
1425
1426	if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1427		return;
1428
1429	cp = &info->channel;
1430
1431	orig_jiffies = jiffies;
1432#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1433	printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1434	       jiffies);
1435	printk(KERN_INFO "cps=%d...\n", info->cps);
1436#endif
1437	while (1) {
1438		txcnt = sGetTxCnt(cp);
1439		if (!txcnt) {
1440			if (sGetChanStatusLo(cp) & TXSHRMT)
1441				break;
1442			check_time = (HZ / info->cps) / 5;
1443		} else {
1444			check_time = HZ * txcnt / info->cps;
1445		}
1446		if (timeout) {
1447			exit_time = orig_jiffies + timeout - jiffies;
1448			if (exit_time <= 0)
1449				break;
1450			if (exit_time < check_time)
1451				check_time = exit_time;
1452		}
1453		if (check_time == 0)
1454			check_time = 1;
1455#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1456		printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1457				jiffies, check_time);
1458#endif
1459		msleep_interruptible(jiffies_to_msecs(check_time));
1460		if (signal_pending(current))
1461			break;
1462	}
1463	__set_current_state(TASK_RUNNING);
1464#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1465	printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1466#endif
1467}
1468
1469/*
1470 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1471 */
1472static void rp_hangup(struct tty_struct *tty)
1473{
1474	CHANNEL_t *cp;
1475	struct r_port *info = tty->driver_data;
1476	unsigned long flags;
1477
1478	if (rocket_paranoia_check(info, "rp_hangup"))
1479		return;
1480
1481#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1482	printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1483#endif
1484	rp_flush_buffer(tty);
1485	spin_lock_irqsave(&info->port.lock, flags);
1486	if (info->port.count)
1487		atomic_dec(&rp_num_ports_open);
1488	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1489	spin_unlock_irqrestore(&info->port.lock, flags);
1490
1491	tty_port_hangup(&info->port);
1492
1493	cp = &info->channel;
1494	sDisRxFIFO(cp);
1495	sDisTransmit(cp);
1496	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1497	sDisCTSFlowCtl(cp);
1498	sDisTxSoftFlowCtl(cp);
1499	sClrTxXOFF(cp);
1500	tty_port_set_initialized(&info->port, 0);
1501
1502	wake_up_interruptible(&info->port.open_wait);
1503}
1504
1505/*
1506 *  Exception handler - write char routine.  The RocketPort driver uses a
1507 *  double-buffering strategy, with the twist that if the in-memory CPU
1508 *  buffer is empty, and there's space in the transmit FIFO, the
1509 *  writing routines will write directly to transmit FIFO.
1510 *  Write buffer and counters protected by spinlocks
1511 */
1512static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1513{
1514	struct r_port *info = tty->driver_data;
1515	CHANNEL_t *cp;
1516	unsigned long flags;
1517
1518	if (rocket_paranoia_check(info, "rp_put_char"))
1519		return 0;
1520
1521	/*
1522	 * Grab the port write mutex, locking out other processes that try to
1523	 * write to this port
1524	 */
1525	mutex_lock(&info->write_mtx);
1526
1527#ifdef ROCKET_DEBUG_WRITE
1528	printk(KERN_INFO "rp_put_char %c...\n", ch);
1529#endif
1530
1531	spin_lock_irqsave(&info->slock, flags);
1532	cp = &info->channel;
1533
1534	if (!tty->stopped && info->xmit_fifo_room == 0)
1535		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1536
1537	if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1538		info->xmit_buf[info->xmit_head++] = ch;
1539		info->xmit_head &= XMIT_BUF_SIZE - 1;
1540		info->xmit_cnt++;
1541		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1542	} else {
1543		sOutB(sGetTxRxDataIO(cp), ch);
1544		info->xmit_fifo_room--;
1545	}
1546	spin_unlock_irqrestore(&info->slock, flags);
1547	mutex_unlock(&info->write_mtx);
1548	return 1;
1549}
1550
1551/*
1552 *  Exception handler - write routine, called when user app writes to the device.
1553 *  A per port write mutex is used to protect from another process writing to
1554 *  this port at the same time.  This other process could be running on the other CPU
1555 *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1556 *  Spinlocks protect the info xmit members.
1557 */
1558static int rp_write(struct tty_struct *tty,
1559		    const unsigned char *buf, int count)
1560{
1561	struct r_port *info = tty->driver_data;
1562	CHANNEL_t *cp;
1563	const unsigned char *b;
1564	int c, retval = 0;
1565	unsigned long flags;
1566
1567	if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1568		return 0;
1569
1570	if (mutex_lock_interruptible(&info->write_mtx))
1571		return -ERESTARTSYS;
1572
1573#ifdef ROCKET_DEBUG_WRITE
1574	printk(KERN_INFO "rp_write %d chars...\n", count);
1575#endif
1576	cp = &info->channel;
1577
1578	if (!tty->stopped && info->xmit_fifo_room < count)
1579		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1580
1581        /*
1582	 *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1583	 *  into FIFO.  Use the write queue for temp storage.
1584         */
1585	if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1586		c = min(count, info->xmit_fifo_room);
1587		b = buf;
1588
1589		/*  Push data into FIFO, 2 bytes at a time */
1590		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1591
1592		/*  If there is a byte remaining, write it */
1593		if (c & 1)
1594			sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1595
1596		retval += c;
1597		buf += c;
1598		count -= c;
1599
1600		spin_lock_irqsave(&info->slock, flags);
1601		info->xmit_fifo_room -= c;
1602		spin_unlock_irqrestore(&info->slock, flags);
1603	}
1604
1605	/* If count is zero, we wrote it all and are done */
1606	if (!count)
1607		goto end;
1608
1609	/*  Write remaining data into the port's xmit_buf */
1610	while (1) {
1611		/* Hung up ? */
1612		if (!tty_port_active(&info->port))
1613			goto end;
1614		c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1615		c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1616		if (c <= 0)
1617			break;
1618
1619		b = buf;
1620		memcpy(info->xmit_buf + info->xmit_head, b, c);
1621
1622		spin_lock_irqsave(&info->slock, flags);
1623		info->xmit_head =
1624		    (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1625		info->xmit_cnt += c;
1626		spin_unlock_irqrestore(&info->slock, flags);
1627
1628		buf += c;
1629		count -= c;
1630		retval += c;
1631	}
1632
1633	if ((retval > 0) && !tty->stopped)
1634		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1635	
1636end:
1637 	if (info->xmit_cnt < WAKEUP_CHARS) {
1638 		tty_wakeup(tty);
1639#ifdef ROCKETPORT_HAVE_POLL_WAIT
1640		wake_up_interruptible(&tty->poll_wait);
1641#endif
1642	}
1643	mutex_unlock(&info->write_mtx);
1644	return retval;
1645}
1646
1647/*
1648 * Return the number of characters that can be sent.  We estimate
1649 * only using the in-memory transmit buffer only, and ignore the
1650 * potential space in the transmit FIFO.
1651 */
1652static int rp_write_room(struct tty_struct *tty)
1653{
1654	struct r_port *info = tty->driver_data;
1655	int ret;
1656
1657	if (rocket_paranoia_check(info, "rp_write_room"))
1658		return 0;
1659
1660	ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1661	if (ret < 0)
1662		ret = 0;
1663#ifdef ROCKET_DEBUG_WRITE
1664	printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1665#endif
1666	return ret;
1667}
1668
1669/*
1670 * Return the number of characters in the buffer.  Again, this only
1671 * counts those characters in the in-memory transmit buffer.
1672 */
1673static int rp_chars_in_buffer(struct tty_struct *tty)
1674{
1675	struct r_port *info = tty->driver_data;
1676
1677	if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1678		return 0;
1679
1680#ifdef ROCKET_DEBUG_WRITE
1681	printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1682#endif
1683	return info->xmit_cnt;
1684}
1685
1686/*
1687 *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1688 *  r_port struct for the port.  Note that spinlock are used to protect info members,
1689 *  do not call this function if the spinlock is already held.
1690 */
1691static void rp_flush_buffer(struct tty_struct *tty)
1692{
1693	struct r_port *info = tty->driver_data;
1694	CHANNEL_t *cp;
1695	unsigned long flags;
1696
1697	if (rocket_paranoia_check(info, "rp_flush_buffer"))
1698		return;
1699
1700	spin_lock_irqsave(&info->slock, flags);
1701	info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1702	spin_unlock_irqrestore(&info->slock, flags);
1703
1704#ifdef ROCKETPORT_HAVE_POLL_WAIT
1705	wake_up_interruptible(&tty->poll_wait);
1706#endif
1707	tty_wakeup(tty);
1708
1709	cp = &info->channel;
1710	sFlushTxFIFO(cp);
1711}
1712
1713#ifdef CONFIG_PCI
1714
1715static const struct pci_device_id rocket_pci_ids[] = {
1716	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1717	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1718	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1719	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1720	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1721	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1722	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1723	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1724	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1725	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1726	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1727	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1728	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1729	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1730	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1731	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1732	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1733	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1734	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1735	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1736	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1737	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1738	{ }
1739};
1740MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1741
1742/*  Resets the speaker controller on RocketModem II and III devices */
1743static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1744{
1745	ByteIO_t addr;
1746
1747	/* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1748	if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1749		addr = CtlP->AiopIO[0] + 0x4F;
1750		sOutB(addr, 0);
1751	}
1752
1753	/* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1754	if ((model == MODEL_UPCI_RM3_8PORT)
1755	    || (model == MODEL_UPCI_RM3_4PORT)) {
1756		addr = CtlP->AiopIO[0] + 0x88;
1757		sOutB(addr, 0);
1758	}
1759}
1760
1761/***************************************************************************
1762Function: sPCIInitController
1763Purpose:  Initialization of controller global registers and controller
1764          structure.
1765Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1766                          IRQNum,Frequency,PeriodicOnly)
1767          CONTROLLER_T *CtlP; Ptr to controller structure
1768          int CtlNum; Controller number
1769          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1770             This list must be in the order the AIOPs will be found on the
1771             controller.  Once an AIOP in the list is not found, it is
1772             assumed that there are no more AIOPs on the controller.
1773          int AiopIOListSize; Number of addresses in AiopIOList
1774          int IRQNum; Interrupt Request number.  Can be any of the following:
1775                         0: Disable global interrupts
1776                         3: IRQ 3
1777                         4: IRQ 4
1778                         5: IRQ 5
1779                         9: IRQ 9
1780                         10: IRQ 10
1781                         11: IRQ 11
1782                         12: IRQ 12
1783                         15: IRQ 15
1784          Byte_t Frequency: A flag identifying the frequency
1785                   of the periodic interrupt, can be any one of the following:
1786                      FREQ_DIS - periodic interrupt disabled
1787                      FREQ_137HZ - 137 Hertz
1788                      FREQ_69HZ - 69 Hertz
1789                      FREQ_34HZ - 34 Hertz
1790                      FREQ_17HZ - 17 Hertz
1791                      FREQ_9HZ - 9 Hertz
1792                      FREQ_4HZ - 4 Hertz
1793                   If IRQNum is set to 0 the Frequency parameter is
1794                   overidden, it is forced to a value of FREQ_DIS.
1795          int PeriodicOnly: 1 if all interrupts except the periodic
1796                               interrupt are to be blocked.
1797                            0 is both the periodic interrupt and
1798                               other channel interrupts are allowed.
1799                            If IRQNum is set to 0 the PeriodicOnly parameter is
1800                               overidden, it is forced to a value of 0.
1801Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
1802               initialization failed.
1803
1804Comments:
1805          If periodic interrupts are to be disabled but AIOP interrupts
1806          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1807
1808          If interrupts are to be completely disabled set IRQNum to 0.
1809
1810          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1811          invalid combination.
1812
1813          This function performs initialization of global interrupt modes,
1814          but it does not actually enable global interrupts.  To enable
1815          and disable global interrupts use functions sEnGlobalInt() and
1816          sDisGlobalInt().  Enabling of global interrupts is normally not
1817          done until all other initializations are complete.
1818
1819          Even if interrupts are globally enabled, they must also be
1820          individually enabled for each channel that is to generate
1821          interrupts.
1822
1823Warnings: No range checking on any of the parameters is done.
1824
1825          No context switches are allowed while executing this function.
1826
1827          After this function all AIOPs on the controller are disabled,
1828          they can be enabled with sEnAiop().
1829*/
1830static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1831			      ByteIO_t * AiopIOList, int AiopIOListSize,
1832			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1833			      int PeriodicOnly, int altChanRingIndicator,
1834			      int UPCIRingInd)
1835{
1836	int i;
1837	ByteIO_t io;
1838
1839	CtlP->AltChanRingIndicator = altChanRingIndicator;
1840	CtlP->UPCIRingInd = UPCIRingInd;
1841	CtlP->CtlNum = CtlNum;
1842	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
1843	CtlP->BusType = isPCI;	/* controller release 1 */
1844
1845	if (ConfigIO) {
1846		CtlP->isUPCI = 1;
1847		CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1848		CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1849		CtlP->AiopIntrBits = upci_aiop_intr_bits;
1850	} else {
1851		CtlP->isUPCI = 0;
1852		CtlP->PCIIO =
1853		    (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1854		CtlP->AiopIntrBits = aiop_intr_bits;
1855	}
1856
1857	sPCIControllerEOI(CtlP);	/* clear EOI if warm init */
1858	/* Init AIOPs */
1859	CtlP->NumAiop = 0;
1860	for (i = 0; i < AiopIOListSize; i++) {
1861		io = AiopIOList[i];
1862		CtlP->AiopIO[i] = (WordIO_t) io;
1863		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1864
1865		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
1866		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
1867			break;	/* done looking for AIOPs */
1868
1869		CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
1870		sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
1871		sOutB(io + _INDX_DATA, sClockPrescale);
1872		CtlP->NumAiop++;	/* bump count of AIOPs */
1873	}
1874
1875	if (CtlP->NumAiop == 0)
1876		return (-1);
1877	else
1878		return (CtlP->NumAiop);
1879}
1880
1881/*
1882 *  Called when a PCI card is found.  Retrieves and stores model information,
1883 *  init's aiopic and serial port hardware.
1884 *  Inputs:  i is the board number (0-n)
1885 */
1886static __init int register_PCI(int i, struct pci_dev *dev)
1887{
1888	int num_aiops, aiop, max_num_aiops, chan;
1889	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1890	CONTROLLER_t *ctlp;
1891
1892	int fast_clock = 0;
1893	int altChanRingIndicator = 0;
1894	int ports_per_aiop = 8;
1895	WordIO_t ConfigIO = 0;
1896	ByteIO_t UPCIRingInd = 0;
1897
1898	if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1899	    pci_enable_device(dev) || i >= NUM_BOARDS)
1900		return 0;
1901
1902	rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1903
1904	rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1905	rocketModel[i].loadrm2 = 0;
1906	rocketModel[i].startingPortNumber = nextLineNumber;
1907
1908	/*  Depending on the model, set up some config variables */
1909	switch (dev->device) {
1910	case PCI_DEVICE_ID_RP4QUAD:
1911		max_num_aiops = 1;
1912		ports_per_aiop = 4;
1913		rocketModel[i].model = MODEL_RP4QUAD;
1914		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1915		rocketModel[i].numPorts = 4;
1916		break;
1917	case PCI_DEVICE_ID_RP8OCTA:
1918		max_num_aiops = 1;
1919		rocketModel[i].model = MODEL_RP8OCTA;
1920		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1921		rocketModel[i].numPorts = 8;
1922		break;
1923	case PCI_DEVICE_ID_URP8OCTA:
1924		max_num_aiops = 1;
1925		rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1926		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1927		rocketModel[i].numPorts = 8;
1928		break;
1929	case PCI_DEVICE_ID_RP8INTF:
1930		max_num_aiops = 1;
1931		rocketModel[i].model = MODEL_RP8INTF;
1932		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1933		rocketModel[i].numPorts = 8;
1934		break;
1935	case PCI_DEVICE_ID_URP8INTF:
1936		max_num_aiops = 1;
1937		rocketModel[i].model = MODEL_UPCI_RP8INTF;
1938		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1939		rocketModel[i].numPorts = 8;
1940		break;
1941	case PCI_DEVICE_ID_RP8J:
1942		max_num_aiops = 1;
1943		rocketModel[i].model = MODEL_RP8J;
1944		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1945		rocketModel[i].numPorts = 8;
1946		break;
1947	case PCI_DEVICE_ID_RP4J:
1948		max_num_aiops = 1;
1949		ports_per_aiop = 4;
1950		rocketModel[i].model = MODEL_RP4J;
1951		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1952		rocketModel[i].numPorts = 4;
1953		break;
1954	case PCI_DEVICE_ID_RP8SNI:
1955		max_num_aiops = 1;
1956		rocketModel[i].model = MODEL_RP8SNI;
1957		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1958		rocketModel[i].numPorts = 8;
1959		break;
1960	case PCI_DEVICE_ID_RP16SNI:
1961		max_num_aiops = 2;
1962		rocketModel[i].model = MODEL_RP16SNI;
1963		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1964		rocketModel[i].numPorts = 16;
1965		break;
1966	case PCI_DEVICE_ID_RP16INTF:
1967		max_num_aiops = 2;
1968		rocketModel[i].model = MODEL_RP16INTF;
1969		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1970		rocketModel[i].numPorts = 16;
1971		break;
1972	case PCI_DEVICE_ID_URP16INTF:
1973		max_num_aiops = 2;
1974		rocketModel[i].model = MODEL_UPCI_RP16INTF;
1975		strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1976		rocketModel[i].numPorts = 16;
1977		break;
1978	case PCI_DEVICE_ID_CRP16INTF:
1979		max_num_aiops = 2;
1980		rocketModel[i].model = MODEL_CPCI_RP16INTF;
1981		strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1982		rocketModel[i].numPorts = 16;
1983		break;
1984	case PCI_DEVICE_ID_RP32INTF:
1985		max_num_aiops = 4;
1986		rocketModel[i].model = MODEL_RP32INTF;
1987		strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1988		rocketModel[i].numPorts = 32;
1989		break;
1990	case PCI_DEVICE_ID_URP32INTF:
1991		max_num_aiops = 4;
1992		rocketModel[i].model = MODEL_UPCI_RP32INTF;
1993		strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1994		rocketModel[i].numPorts = 32;
1995		break;
1996	case PCI_DEVICE_ID_RPP4:
1997		max_num_aiops = 1;
1998		ports_per_aiop = 4;
1999		altChanRingIndicator++;
2000		fast_clock++;
2001		rocketModel[i].model = MODEL_RPP4;
2002		strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2003		rocketModel[i].numPorts = 4;
2004		break;
2005	case PCI_DEVICE_ID_RPP8:
2006		max_num_aiops = 2;
2007		ports_per_aiop = 4;
2008		altChanRingIndicator++;
2009		fast_clock++;
2010		rocketModel[i].model = MODEL_RPP8;
2011		strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2012		rocketModel[i].numPorts = 8;
2013		break;
2014	case PCI_DEVICE_ID_RP2_232:
2015		max_num_aiops = 1;
2016		ports_per_aiop = 2;
2017		altChanRingIndicator++;
2018		fast_clock++;
2019		rocketModel[i].model = MODEL_RP2_232;
2020		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2021		rocketModel[i].numPorts = 2;
2022		break;
2023	case PCI_DEVICE_ID_RP2_422:
2024		max_num_aiops = 1;
2025		ports_per_aiop = 2;
2026		altChanRingIndicator++;
2027		fast_clock++;
2028		rocketModel[i].model = MODEL_RP2_422;
2029		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2030		rocketModel[i].numPorts = 2;
2031		break;
2032	case PCI_DEVICE_ID_RP6M:
2033
2034		max_num_aiops = 1;
2035		ports_per_aiop = 6;
2036
2037		/*  If revision is 1, the rocketmodem flash must be loaded.
2038		 *  If it is 2 it is a "socketed" version. */
2039		if (dev->revision == 1) {
2040			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2041			rocketModel[i].loadrm2 = 1;
2042		} else {
2043			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2044		}
2045
2046		rocketModel[i].model = MODEL_RP6M;
2047		strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2048		rocketModel[i].numPorts = 6;
2049		break;
2050	case PCI_DEVICE_ID_RP4M:
2051		max_num_aiops = 1;
2052		ports_per_aiop = 4;
2053		if (dev->revision == 1) {
2054			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2055			rocketModel[i].loadrm2 = 1;
2056		} else {
2057			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2058		}
2059
2060		rocketModel[i].model = MODEL_RP4M;
2061		strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2062		rocketModel[i].numPorts = 4;
2063		break;
2064	default:
2065		max_num_aiops = 0;
2066		break;
2067	}
2068
2069	/*
2070	 * Check for UPCI boards.
2071	 */
2072
2073	switch (dev->device) {
2074	case PCI_DEVICE_ID_URP32INTF:
2075	case PCI_DEVICE_ID_URP8INTF:
2076	case PCI_DEVICE_ID_URP16INTF:
2077	case PCI_DEVICE_ID_CRP16INTF:
2078	case PCI_DEVICE_ID_URP8OCTA:
2079		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2080		ConfigIO = pci_resource_start(dev, 1);
2081		if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2082			UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2083
2084			/*
2085			 * Check for octa or quad cable.
2086			 */
2087			if (!
2088			    (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2089			     PCI_GPIO_CTRL_8PORT)) {
2090				ports_per_aiop = 4;
2091				rocketModel[i].numPorts = 4;
2092			}
2093		}
2094		break;
2095	case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2096		max_num_aiops = 1;
2097		rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2098		strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2099		rocketModel[i].numPorts = 8;
2100		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2101		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2102		ConfigIO = pci_resource_start(dev, 1);
2103		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2104		break;
2105	case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2106		max_num_aiops = 1;
2107		rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2108		strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2109		rocketModel[i].numPorts = 4;
2110		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2111		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2112		ConfigIO = pci_resource_start(dev, 1);
2113		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2114		break;
2115	default:
2116		break;
2117	}
2118
2119	if (fast_clock) {
2120		sClockPrescale = 0x12;	/* mod 2 (divide by 3) */
2121		rp_baud_base[i] = 921600;
2122	} else {
2123		/*
2124		 * If support_low_speed is set, use the slow clock
2125		 * prescale, which supports 50 bps
2126		 */
2127		if (support_low_speed) {
2128			/* mod 9 (divide by 10) prescale */
2129			sClockPrescale = 0x19;
2130			rp_baud_base[i] = 230400;
2131		} else {
2132			/* mod 4 (divide by 5) prescale */
2133			sClockPrescale = 0x14;
2134			rp_baud_base[i] = 460800;
2135		}
2136	}
2137
2138	for (aiop = 0; aiop < max_num_aiops; aiop++)
2139		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2140	ctlp = sCtlNumToCtlPtr(i);
2141	num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2142	for (aiop = 0; aiop < max_num_aiops; aiop++)
2143		ctlp->AiopNumChan[aiop] = ports_per_aiop;
2144
2145	dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2146		"address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2147		i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2148		rocketModel[i].startingPortNumber,
2149		rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2150
2151	if (num_aiops <= 0) {
2152		rcktpt_io_addr[i] = 0;
2153		return (0);
2154	}
2155	is_PCI[i] = 1;
2156
2157	/*  Reset the AIOPIC, init the serial ports */
2158	for (aiop = 0; aiop < num_aiops; aiop++) {
2159		sResetAiopByNum(ctlp, aiop);
2160		for (chan = 0; chan < ports_per_aiop; chan++)
 
2161			init_r_port(i, aiop, chan, dev);
2162	}
2163
2164	/*  Rocket modems must be reset */
2165	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2166	    (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2167	    (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2168		for (chan = 0; chan < ports_per_aiop; chan++)
 
2169			sPCIModemReset(ctlp, chan, 1);
2170		msleep(500);
2171		for (chan = 0; chan < ports_per_aiop; chan++)
2172			sPCIModemReset(ctlp, chan, 0);
2173		msleep(500);
2174		rmSpeakerReset(ctlp, rocketModel[i].model);
2175	}
2176	return (1);
2177}
2178
2179/*
2180 *  Probes for PCI cards, inits them if found
2181 *  Input:   board_found = number of ISA boards already found, or the
2182 *           starting board number
2183 *  Returns: Number of PCI boards found
2184 */
2185static int __init init_PCI(int boards_found)
2186{
2187	struct pci_dev *dev = NULL;
2188	int count = 0;
2189
2190	/*  Work through the PCI device list, pulling out ours */
2191	while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2192		if (register_PCI(count + boards_found, dev))
2193			count++;
2194	}
2195	return (count);
2196}
2197
2198#endif				/* CONFIG_PCI */
2199
2200/*
2201 *  Probes for ISA cards
2202 *  Input:   i = the board number to look for
2203 *  Returns: 1 if board found, 0 else
2204 */
2205static int __init init_ISA(int i)
2206{
2207	int num_aiops, num_chan = 0, total_num_chan = 0;
2208	int aiop, chan;
2209	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2210	CONTROLLER_t *ctlp;
2211	char *type_string;
2212
2213	/*  If io_addr is zero, no board configured */
2214	if (rcktpt_io_addr[i] == 0)
2215		return (0);
2216
2217	/*  Reserve the IO region */
2218	if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2219		printk(KERN_ERR "Unable to reserve IO region for configured "
2220				"ISA RocketPort at address 0x%lx, board not "
2221				"installed...\n", rcktpt_io_addr[i]);
2222		rcktpt_io_addr[i] = 0;
2223		return (0);
2224	}
2225
2226	ctlp = sCtlNumToCtlPtr(i);
2227
2228	ctlp->boardType = rcktpt_type[i];
2229
2230	switch (rcktpt_type[i]) {
2231	case ROCKET_TYPE_PC104:
2232		type_string = "(PC104)";
2233		break;
2234	case ROCKET_TYPE_MODEM:
2235		type_string = "(RocketModem)";
2236		break;
2237	case ROCKET_TYPE_MODEMII:
2238		type_string = "(RocketModem II)";
2239		break;
2240	default:
2241		type_string = "";
2242		break;
2243	}
2244
2245	/*
2246	 * If support_low_speed is set, use the slow clock prescale,
2247	 * which supports 50 bps
2248	 */
2249	if (support_low_speed) {
2250		sClockPrescale = 0x19;	/* mod 9 (divide by 10) prescale */
2251		rp_baud_base[i] = 230400;
2252	} else {
2253		sClockPrescale = 0x14;	/* mod 4 (divide by 5) prescale */
2254		rp_baud_base[i] = 460800;
2255	}
2256
2257	for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2258		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2259
2260	num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2261
2262	if (ctlp->boardType == ROCKET_TYPE_PC104) {
2263		sEnAiop(ctlp, 2);	/* only one AIOPIC, but these */
2264		sEnAiop(ctlp, 3);	/* CSels used for other stuff */
2265	}
2266
2267	/*  If something went wrong initing the AIOP's release the ISA IO memory */
2268	if (num_aiops <= 0) {
2269		release_region(rcktpt_io_addr[i], 64);
2270		rcktpt_io_addr[i] = 0;
2271		return (0);
2272	}
2273  
2274	rocketModel[i].startingPortNumber = nextLineNumber;
2275
2276	for (aiop = 0; aiop < num_aiops; aiop++) {
2277		sResetAiopByNum(ctlp, aiop);
2278		sEnAiop(ctlp, aiop);
2279		num_chan = sGetAiopNumChan(ctlp, aiop);
2280		total_num_chan += num_chan;
2281		for (chan = 0; chan < num_chan; chan++)
2282			init_r_port(i, aiop, chan, NULL);
2283	}
2284	is_PCI[i] = 0;
2285	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2286		num_chan = sGetAiopNumChan(ctlp, 0);
2287		total_num_chan = num_chan;
2288		for (chan = 0; chan < num_chan; chan++)
2289			sModemReset(ctlp, chan, 1);
2290		msleep(500);
2291		for (chan = 0; chan < num_chan; chan++)
2292			sModemReset(ctlp, chan, 0);
2293		msleep(500);
2294		strcpy(rocketModel[i].modelString, "RocketModem ISA");
2295	} else {
2296		strcpy(rocketModel[i].modelString, "RocketPort ISA");
2297	}
2298	rocketModel[i].numPorts = total_num_chan;
2299	rocketModel[i].model = MODEL_ISA;
2300
2301	printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2302	       i, rcktpt_io_addr[i], num_aiops, type_string);
2303
2304	printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2305	       rocketModel[i].modelString,
2306	       rocketModel[i].startingPortNumber,
2307	       rocketModel[i].startingPortNumber +
2308	       rocketModel[i].numPorts - 1);
2309
2310	return (1);
2311}
2312
2313static const struct tty_operations rocket_ops = {
2314	.open = rp_open,
2315	.close = rp_close,
2316	.write = rp_write,
2317	.put_char = rp_put_char,
2318	.write_room = rp_write_room,
2319	.chars_in_buffer = rp_chars_in_buffer,
2320	.flush_buffer = rp_flush_buffer,
2321	.ioctl = rp_ioctl,
2322	.throttle = rp_throttle,
2323	.unthrottle = rp_unthrottle,
2324	.set_termios = rp_set_termios,
2325	.stop = rp_stop,
2326	.start = rp_start,
2327	.hangup = rp_hangup,
2328	.break_ctl = rp_break,
2329	.send_xchar = rp_send_xchar,
2330	.wait_until_sent = rp_wait_until_sent,
2331	.tiocmget = rp_tiocmget,
2332	.tiocmset = rp_tiocmset,
2333};
2334
2335static const struct tty_port_operations rocket_port_ops = {
2336	.carrier_raised = carrier_raised,
2337	.dtr_rts = dtr_rts,
2338};
2339
2340/*
2341 * The module "startup" routine; it's run when the module is loaded.
2342 */
2343static int __init rp_init(void)
2344{
2345	int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2346
2347	printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2348	       ROCKET_VERSION, ROCKET_DATE);
2349
2350	rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2351	if (!rocket_driver)
2352		goto err;
2353
2354	/*
2355	 *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2356	 *  zero, use the default controller IO address of board1 + 0x40.
2357	 */
2358	if (board1) {
2359		if (controller == 0)
2360			controller = board1 + 0x40;
2361	} else {
2362		controller = 0;  /*  Used as a flag, meaning no ISA boards */
2363	}
2364
2365	/*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2366	if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2367		printk(KERN_ERR "Unable to reserve IO region for first "
2368			"configured ISA RocketPort controller 0x%lx.  "
2369			"Driver exiting\n", controller);
2370		ret = -EBUSY;
2371		goto err_tty;
2372	}
2373
2374	/*  Store ISA variable retrieved from command line or .conf file. */
2375	rcktpt_io_addr[0] = board1;
2376	rcktpt_io_addr[1] = board2;
2377	rcktpt_io_addr[2] = board3;
2378	rcktpt_io_addr[3] = board4;
2379
2380	rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2381	rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2382	rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2383	rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2384	rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2385	rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2386	rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2387	rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2388
2389	/*
2390	 * Set up the tty driver structure and then register this
2391	 * driver with the tty layer.
2392	 */
2393
2394	rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2395	rocket_driver->name = "ttyR";
2396	rocket_driver->driver_name = "Comtrol RocketPort";
2397	rocket_driver->major = TTY_ROCKET_MAJOR;
2398	rocket_driver->minor_start = 0;
2399	rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2400	rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2401	rocket_driver->init_termios = tty_std_termios;
2402	rocket_driver->init_termios.c_cflag =
2403	    B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2404	rocket_driver->init_termios.c_ispeed = 9600;
2405	rocket_driver->init_termios.c_ospeed = 9600;
2406#ifdef ROCKET_SOFT_FLOW
2407	rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2408#endif
2409	tty_set_operations(rocket_driver, &rocket_ops);
2410
2411	ret = tty_register_driver(rocket_driver);
2412	if (ret < 0) {
2413		printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2414		goto err_controller;
2415	}
2416
2417#ifdef ROCKET_DEBUG_OPEN
2418	printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2419#endif
2420
2421	/*
2422	 *  OK, let's probe each of the controllers looking for boards.  Any boards found
2423         *  will be initialized here.
2424	 */
2425	isa_boards_found = 0;
2426	pci_boards_found = 0;
2427
2428	for (i = 0; i < NUM_BOARDS; i++) {
2429		if (init_ISA(i))
2430			isa_boards_found++;
2431	}
2432
2433#ifdef CONFIG_PCI
2434	if (isa_boards_found < NUM_BOARDS)
2435		pci_boards_found = init_PCI(isa_boards_found);
2436#endif
2437
2438	max_board = pci_boards_found + isa_boards_found;
2439
2440	if (max_board == 0) {
2441		printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2442		ret = -ENXIO;
2443		goto err_ttyu;
2444	}
2445
2446	return 0;
2447err_ttyu:
2448	tty_unregister_driver(rocket_driver);
2449err_controller:
2450	if (controller)
2451		release_region(controller, 4);
2452err_tty:
2453	put_tty_driver(rocket_driver);
2454err:
2455	return ret;
2456}
2457
2458
2459static void rp_cleanup_module(void)
2460{
2461	int retval;
2462	int i;
2463
2464	del_timer_sync(&rocket_timer);
2465
2466	retval = tty_unregister_driver(rocket_driver);
2467	if (retval)
2468		printk(KERN_ERR "Error %d while trying to unregister "
2469		       "rocketport driver\n", -retval);
2470
2471	for (i = 0; i < MAX_RP_PORTS; i++)
2472		if (rp_table[i]) {
2473			tty_unregister_device(rocket_driver, i);
2474			tty_port_destroy(&rp_table[i]->port);
2475			kfree(rp_table[i]);
2476		}
2477
2478	put_tty_driver(rocket_driver);
2479
2480	for (i = 0; i < NUM_BOARDS; i++) {
2481		if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2482			continue;
2483		release_region(rcktpt_io_addr[i], 64);
2484	}
2485	if (controller)
2486		release_region(controller, 4);
2487}
2488
2489/***************************************************************************
2490Function: sInitController
2491Purpose:  Initialization of controller global registers and controller
2492          structure.
2493Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2494                          IRQNum,Frequency,PeriodicOnly)
2495          CONTROLLER_T *CtlP; Ptr to controller structure
2496          int CtlNum; Controller number
2497          ByteIO_t MudbacIO; Mudbac base I/O address.
2498          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2499             This list must be in the order the AIOPs will be found on the
2500             controller.  Once an AIOP in the list is not found, it is
2501             assumed that there are no more AIOPs on the controller.
2502          int AiopIOListSize; Number of addresses in AiopIOList
2503          int IRQNum; Interrupt Request number.  Can be any of the following:
2504                         0: Disable global interrupts
2505                         3: IRQ 3
2506                         4: IRQ 4
2507                         5: IRQ 5
2508                         9: IRQ 9
2509                         10: IRQ 10
2510                         11: IRQ 11
2511                         12: IRQ 12
2512                         15: IRQ 15
2513          Byte_t Frequency: A flag identifying the frequency
2514                   of the periodic interrupt, can be any one of the following:
2515                      FREQ_DIS - periodic interrupt disabled
2516                      FREQ_137HZ - 137 Hertz
2517                      FREQ_69HZ - 69 Hertz
2518                      FREQ_34HZ - 34 Hertz
2519                      FREQ_17HZ - 17 Hertz
2520                      FREQ_9HZ - 9 Hertz
2521                      FREQ_4HZ - 4 Hertz
2522                   If IRQNum is set to 0 the Frequency parameter is
2523                   overidden, it is forced to a value of FREQ_DIS.
2524          int PeriodicOnly: 1 if all interrupts except the periodic
2525                               interrupt are to be blocked.
2526                            0 is both the periodic interrupt and
2527                               other channel interrupts are allowed.
2528                            If IRQNum is set to 0 the PeriodicOnly parameter is
2529                               overidden, it is forced to a value of 0.
2530Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2531               initialization failed.
2532
2533Comments:
2534          If periodic interrupts are to be disabled but AIOP interrupts
2535          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2536
2537          If interrupts are to be completely disabled set IRQNum to 0.
2538
2539          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2540          invalid combination.
2541
2542          This function performs initialization of global interrupt modes,
2543          but it does not actually enable global interrupts.  To enable
2544          and disable global interrupts use functions sEnGlobalInt() and
2545          sDisGlobalInt().  Enabling of global interrupts is normally not
2546          done until all other initializations are complete.
2547
2548          Even if interrupts are globally enabled, they must also be
2549          individually enabled for each channel that is to generate
2550          interrupts.
2551
2552Warnings: No range checking on any of the parameters is done.
2553
2554          No context switches are allowed while executing this function.
2555
2556          After this function all AIOPs on the controller are disabled,
2557          they can be enabled with sEnAiop().
2558*/
2559static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2560			   ByteIO_t * AiopIOList, int AiopIOListSize,
2561			   int IRQNum, Byte_t Frequency, int PeriodicOnly)
2562{
2563	int i;
2564	ByteIO_t io;
2565	int done;
2566
2567	CtlP->AiopIntrBits = aiop_intr_bits;
2568	CtlP->AltChanRingIndicator = 0;
2569	CtlP->CtlNum = CtlNum;
2570	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
2571	CtlP->BusType = isISA;
2572	CtlP->MBaseIO = MudbacIO;
2573	CtlP->MReg1IO = MudbacIO + 1;
2574	CtlP->MReg2IO = MudbacIO + 2;
2575	CtlP->MReg3IO = MudbacIO + 3;
2576#if 1
2577	CtlP->MReg2 = 0;	/* interrupt disable */
2578	CtlP->MReg3 = 0;	/* no periodic interrupts */
2579#else
2580	if (sIRQMap[IRQNum] == 0) {	/* interrupts globally disabled */
2581		CtlP->MReg2 = 0;	/* interrupt disable */
2582		CtlP->MReg3 = 0;	/* no periodic interrupts */
2583	} else {
2584		CtlP->MReg2 = sIRQMap[IRQNum];	/* set IRQ number */
2585		CtlP->MReg3 = Frequency;	/* set frequency */
2586		if (PeriodicOnly) {	/* periodic interrupt only */
2587			CtlP->MReg3 |= PERIODIC_ONLY;
2588		}
2589	}
2590#endif
2591	sOutB(CtlP->MReg2IO, CtlP->MReg2);
2592	sOutB(CtlP->MReg3IO, CtlP->MReg3);
2593	sControllerEOI(CtlP);	/* clear EOI if warm init */
2594	/* Init AIOPs */
2595	CtlP->NumAiop = 0;
2596	for (i = done = 0; i < AiopIOListSize; i++) {
2597		io = AiopIOList[i];
2598		CtlP->AiopIO[i] = (WordIO_t) io;
2599		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2600		sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03));	/* AIOP index */
2601		sOutB(MudbacIO, (Byte_t) (io >> 6));	/* set up AIOP I/O in MUDBAC */
2602		if (done)
2603			continue;
2604		sEnAiop(CtlP, i);	/* enable the AIOP */
2605		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
2606		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
2607			done = 1;	/* done looking for AIOPs */
2608		else {
2609			CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
2610			sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
2611			sOutB(io + _INDX_DATA, sClockPrescale);
2612			CtlP->NumAiop++;	/* bump count of AIOPs */
2613		}
2614		sDisAiop(CtlP, i);	/* disable AIOP */
2615	}
2616
2617	if (CtlP->NumAiop == 0)
2618		return (-1);
2619	else
2620		return (CtlP->NumAiop);
2621}
2622
2623/***************************************************************************
2624Function: sReadAiopID
2625Purpose:  Read the AIOP idenfication number directly from an AIOP.
2626Call:     sReadAiopID(io)
2627          ByteIO_t io: AIOP base I/O address
2628Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2629                 is replace by an identifying number.
2630          Flag AIOPID_NULL if no valid AIOP is found
2631Warnings: No context switches are allowed while executing this function.
2632
2633*/
2634static int sReadAiopID(ByteIO_t io)
2635{
2636	Byte_t AiopID;		/* ID byte from AIOP */
2637
2638	sOutB(io + _CMD_REG, RESET_ALL);	/* reset AIOP */
2639	sOutB(io + _CMD_REG, 0x0);
2640	AiopID = sInW(io + _CHN_STAT0) & 0x07;
2641	if (AiopID == 0x06)
2642		return (1);
2643	else			/* AIOP does not exist */
2644		return (-1);
2645}
2646
2647/***************************************************************************
2648Function: sReadAiopNumChan
2649Purpose:  Read the number of channels available in an AIOP directly from
2650          an AIOP.
2651Call:     sReadAiopNumChan(io)
2652          WordIO_t io: AIOP base I/O address
2653Return:   int: The number of channels available
2654Comments: The number of channels is determined by write/reads from identical
2655          offsets within the SRAM address spaces for channels 0 and 4.
2656          If the channel 4 space is mirrored to channel 0 it is a 4 channel
2657          AIOP, otherwise it is an 8 channel.
2658Warnings: No context switches are allowed while executing this function.
2659*/
2660static int sReadAiopNumChan(WordIO_t io)
2661{
2662	Word_t x;
2663	static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2664
2665	/* write to chan 0 SRAM */
2666	out32((DWordIO_t) io + _INDX_ADDR, R);
2667	sOutW(io + _INDX_ADDR, 0);	/* read from SRAM, chan 0 */
2668	x = sInW(io + _INDX_DATA);
2669	sOutW(io + _INDX_ADDR, 0x4000);	/* read from SRAM, chan 4 */
2670	if (x != sInW(io + _INDX_DATA))	/* if different must be 8 chan */
2671		return (8);
2672	else
2673		return (4);
2674}
2675
2676/***************************************************************************
2677Function: sInitChan
2678Purpose:  Initialization of a channel and channel structure
2679Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2680          CONTROLLER_T *CtlP; Ptr to controller structure
2681          CHANNEL_T *ChP; Ptr to channel structure
2682          int AiopNum; AIOP number within controller
2683          int ChanNum; Channel number within AIOP
2684Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2685               number exceeds number of channels available in AIOP.
2686Comments: This function must be called before a channel can be used.
2687Warnings: No range checking on any of the parameters is done.
2688
2689          No context switches are allowed while executing this function.
2690*/
2691static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2692		     int ChanNum)
2693{
2694	int i;
2695	WordIO_t AiopIO;
2696	WordIO_t ChIOOff;
2697	Byte_t *ChR;
2698	Word_t ChOff;
2699	static Byte_t R[4];
2700	int brd9600;
2701
2702	if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2703		return 0;	/* exceeds num chans in AIOP */
2704
2705	/* Channel, AIOP, and controller identifiers */
2706	ChP->CtlP = CtlP;
2707	ChP->ChanID = CtlP->AiopID[AiopNum];
2708	ChP->AiopNum = AiopNum;
2709	ChP->ChanNum = ChanNum;
2710
2711	/* Global direct addresses */
2712	AiopIO = CtlP->AiopIO[AiopNum];
2713	ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2714	ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2715	ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2716	ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2717	ChP->IndexData = AiopIO + _INDX_DATA;
2718
2719	/* Channel direct addresses */
2720	ChIOOff = AiopIO + ChP->ChanNum * 2;
2721	ChP->TxRxData = ChIOOff + _TD0;
2722	ChP->ChanStat = ChIOOff + _CHN_STAT0;
2723	ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2724	ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2725
2726	/* Initialize the channel from the RData array */
2727	for (i = 0; i < RDATASIZE; i += 4) {
2728		R[0] = RData[i];
2729		R[1] = RData[i + 1] + 0x10 * ChanNum;
2730		R[2] = RData[i + 2];
2731		R[3] = RData[i + 3];
2732		out32(ChP->IndexAddr, R);
2733	}
2734
2735	ChR = ChP->R;
2736	for (i = 0; i < RREGDATASIZE; i += 4) {
2737		ChR[i] = RRegData[i];
2738		ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2739		ChR[i + 2] = RRegData[i + 2];
2740		ChR[i + 3] = RRegData[i + 3];
2741	}
2742
2743	/* Indexed registers */
2744	ChOff = (Word_t) ChanNum *0x1000;
2745
2746	if (sClockPrescale == 0x14)
2747		brd9600 = 47;
2748	else
2749		brd9600 = 23;
2750
2751	ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2752	ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2753	ChP->BaudDiv[2] = (Byte_t) brd9600;
2754	ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2755	out32(ChP->IndexAddr, ChP->BaudDiv);
2756
2757	ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2758	ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2759	ChP->TxControl[2] = 0;
2760	ChP->TxControl[3] = 0;
2761	out32(ChP->IndexAddr, ChP->TxControl);
2762
2763	ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2764	ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2765	ChP->RxControl[2] = 0;
2766	ChP->RxControl[3] = 0;
2767	out32(ChP->IndexAddr, ChP->RxControl);
2768
2769	ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2770	ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2771	ChP->TxEnables[2] = 0;
2772	ChP->TxEnables[3] = 0;
2773	out32(ChP->IndexAddr, ChP->TxEnables);
2774
2775	ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2776	ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2777	ChP->TxCompare[2] = 0;
2778	ChP->TxCompare[3] = 0;
2779	out32(ChP->IndexAddr, ChP->TxCompare);
2780
2781	ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2782	ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2783	ChP->TxReplace1[2] = 0;
2784	ChP->TxReplace1[3] = 0;
2785	out32(ChP->IndexAddr, ChP->TxReplace1);
2786
2787	ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2788	ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2789	ChP->TxReplace2[2] = 0;
2790	ChP->TxReplace2[3] = 0;
2791	out32(ChP->IndexAddr, ChP->TxReplace2);
2792
2793	ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2794	ChP->TxFIFO = ChOff + _TX_FIFO;
2795
2796	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);	/* apply reset Tx FIFO count */
2797	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Tx FIFO count */
2798	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2799	sOutW(ChP->IndexData, 0);
2800	ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2801	ChP->RxFIFO = ChOff + _RX_FIFO;
2802
2803	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);	/* apply reset Rx FIFO count */
2804	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Rx FIFO count */
2805	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2806	sOutW(ChP->IndexData, 0);
2807	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2808	sOutW(ChP->IndexData, 0);
2809	ChP->TxPrioCnt = ChOff + _TXP_CNT;
2810	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2811	sOutB(ChP->IndexData, 0);
2812	ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2813	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2814	sOutB(ChP->IndexData, 0);
2815	ChP->TxPrioBuf = ChOff + _TXP_BUF;
2816	sEnRxProcessor(ChP);	/* start the Rx processor */
2817
2818	return 1;
2819}
2820
2821/***************************************************************************
2822Function: sStopRxProcessor
2823Purpose:  Stop the receive processor from processing a channel.
2824Call:     sStopRxProcessor(ChP)
2825          CHANNEL_T *ChP; Ptr to channel structure
2826
2827Comments: The receive processor can be started again with sStartRxProcessor().
2828          This function causes the receive processor to skip over the
2829          stopped channel.  It does not stop it from processing other channels.
2830
2831Warnings: No context switches are allowed while executing this function.
2832
2833          Do not leave the receive processor stopped for more than one
2834          character time.
2835
2836          After calling this function a delay of 4 uS is required to ensure
2837          that the receive processor is no longer processing this channel.
2838*/
2839static void sStopRxProcessor(CHANNEL_T * ChP)
2840{
2841	Byte_t R[4];
2842
2843	R[0] = ChP->R[0];
2844	R[1] = ChP->R[1];
2845	R[2] = 0x0a;
2846	R[3] = ChP->R[3];
2847	out32(ChP->IndexAddr, R);
2848}
2849
2850/***************************************************************************
2851Function: sFlushRxFIFO
2852Purpose:  Flush the Rx FIFO
2853Call:     sFlushRxFIFO(ChP)
2854          CHANNEL_T *ChP; Ptr to channel structure
2855Return:   void
2856Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2857          while it is being flushed the receive processor is stopped
2858          and the transmitter is disabled.  After these operations a
2859          4 uS delay is done before clearing the pointers to allow
2860          the receive processor to stop.  These items are handled inside
2861          this function.
2862Warnings: No context switches are allowed while executing this function.
2863*/
2864static void sFlushRxFIFO(CHANNEL_T * ChP)
2865{
2866	int i;
2867	Byte_t Ch;		/* channel number within AIOP */
2868	int RxFIFOEnabled;	/* 1 if Rx FIFO enabled */
2869
2870	if (sGetRxCnt(ChP) == 0)	/* Rx FIFO empty */
2871		return;		/* don't need to flush */
2872
2873	RxFIFOEnabled = 0;
2874	if (ChP->R[0x32] == 0x08) {	/* Rx FIFO is enabled */
2875		RxFIFOEnabled = 1;
2876		sDisRxFIFO(ChP);	/* disable it */
2877		for (i = 0; i < 2000 / 200; i++)	/* delay 2 uS to allow proc to disable FIFO */
2878			sInB(ChP->IntChan);	/* depends on bus i/o timing */
2879	}
2880	sGetChanStatus(ChP);	/* clear any pending Rx errors in chan stat */
2881	Ch = (Byte_t) sGetChanNum(ChP);
2882	sOutB(ChP->Cmd, Ch | RESRXFCNT);	/* apply reset Rx FIFO count */
2883	sOutB(ChP->Cmd, Ch);	/* remove reset Rx FIFO count */
2884	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2885	sOutW(ChP->IndexData, 0);
2886	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2887	sOutW(ChP->IndexData, 0);
2888	if (RxFIFOEnabled)
2889		sEnRxFIFO(ChP);	/* enable Rx FIFO */
2890}
2891
2892/***************************************************************************
2893Function: sFlushTxFIFO
2894Purpose:  Flush the Tx FIFO
2895Call:     sFlushTxFIFO(ChP)
2896          CHANNEL_T *ChP; Ptr to channel structure
2897Return:   void
2898Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2899          while it is being flushed the receive processor is stopped
2900          and the transmitter is disabled.  After these operations a
2901          4 uS delay is done before clearing the pointers to allow
2902          the receive processor to stop.  These items are handled inside
2903          this function.
2904Warnings: No context switches are allowed while executing this function.
2905*/
2906static void sFlushTxFIFO(CHANNEL_T * ChP)
2907{
2908	int i;
2909	Byte_t Ch;		/* channel number within AIOP */
2910	int TxEnabled;		/* 1 if transmitter enabled */
2911
2912	if (sGetTxCnt(ChP) == 0)	/* Tx FIFO empty */
2913		return;		/* don't need to flush */
2914
2915	TxEnabled = 0;
2916	if (ChP->TxControl[3] & TX_ENABLE) {
2917		TxEnabled = 1;
2918		sDisTransmit(ChP);	/* disable transmitter */
2919	}
2920	sStopRxProcessor(ChP);	/* stop Rx processor */
2921	for (i = 0; i < 4000 / 200; i++)	/* delay 4 uS to allow proc to stop */
2922		sInB(ChP->IntChan);	/* depends on bus i/o timing */
2923	Ch = (Byte_t) sGetChanNum(ChP);
2924	sOutB(ChP->Cmd, Ch | RESTXFCNT);	/* apply reset Tx FIFO count */
2925	sOutB(ChP->Cmd, Ch);	/* remove reset Tx FIFO count */
2926	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2927	sOutW(ChP->IndexData, 0);
2928	if (TxEnabled)
2929		sEnTransmit(ChP);	/* enable transmitter */
2930	sStartRxProcessor(ChP);	/* restart Rx processor */
2931}
2932
2933/***************************************************************************
2934Function: sWriteTxPrioByte
2935Purpose:  Write a byte of priority transmit data to a channel
2936Call:     sWriteTxPrioByte(ChP,Data)
2937          CHANNEL_T *ChP; Ptr to channel structure
2938          Byte_t Data; The transmit data byte
2939
2940Return:   int: 1 if the bytes is successfully written, otherwise 0.
2941
2942Comments: The priority byte is transmitted before any data in the Tx FIFO.
2943
2944Warnings: No context switches are allowed while executing this function.
2945*/
2946static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2947{
2948	Byte_t DWBuf[4];	/* buffer for double word writes */
2949	Word_t *WordPtr;	/* must be far because Win SS != DS */
2950	register DWordIO_t IndexAddr;
2951
2952	if (sGetTxCnt(ChP) > 1) {	/* write it to Tx priority buffer */
2953		IndexAddr = ChP->IndexAddr;
2954		sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);	/* get priority buffer status */
2955		if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND)	/* priority buffer busy */
2956			return (0);	/* nothing sent */
2957
2958		WordPtr = (Word_t *) (&DWBuf[0]);
2959		*WordPtr = ChP->TxPrioBuf;	/* data byte address */
2960
2961		DWBuf[2] = Data;	/* data byte value */
2962		out32(IndexAddr, DWBuf);	/* write it out */
2963
2964		*WordPtr = ChP->TxPrioCnt;	/* Tx priority count address */
2965
2966		DWBuf[2] = PRI_PEND + 1;	/* indicate 1 byte pending */
2967		DWBuf[3] = 0;	/* priority buffer pointer */
2968		out32(IndexAddr, DWBuf);	/* write it out */
2969	} else {		/* write it to Tx FIFO */
2970
2971		sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2972	}
2973	return (1);		/* 1 byte sent */
2974}
2975
2976/***************************************************************************
2977Function: sEnInterrupts
2978Purpose:  Enable one or more interrupts for a channel
2979Call:     sEnInterrupts(ChP,Flags)
2980          CHANNEL_T *ChP; Ptr to channel structure
2981          Word_t Flags: Interrupt enable flags, can be any combination
2982             of the following flags:
2983                TXINT_EN:   Interrupt on Tx FIFO empty
2984                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
2985                            sSetRxTrigger())
2986                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
2987                MCINT_EN:   Interrupt on modem input change
2988                CHANINT_EN: Allow channel interrupt signal to the AIOP's
2989                            Interrupt Channel Register.
2990Return:   void
2991Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2992          enabled.  If an interrupt enable flag is not set in Flags, that
2993          interrupt will not be changed.  Interrupts can be disabled with
2994          function sDisInterrupts().
2995
2996          This function sets the appropriate bit for the channel in the AIOP's
2997          Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
2998          this channel's bit to be set in the AIOP's Interrupt Channel Register.
2999
3000          Interrupts must also be globally enabled before channel interrupts
3001          will be passed on to the host.  This is done with function
3002          sEnGlobalInt().
3003
3004          In some cases it may be desirable to disable interrupts globally but
3005          enable channel interrupts.  This would allow the global interrupt
3006          status register to be used to determine which AIOPs need service.
3007*/
3008static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3009{
3010	Byte_t Mask;		/* Interrupt Mask Register */
3011
3012	ChP->RxControl[2] |=
3013	    ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3014
3015	out32(ChP->IndexAddr, ChP->RxControl);
3016
3017	ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3018
3019	out32(ChP->IndexAddr, ChP->TxControl);
3020
3021	if (Flags & CHANINT_EN) {
3022		Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3023		sOutB(ChP->IntMask, Mask);
3024	}
3025}
3026
3027/***************************************************************************
3028Function: sDisInterrupts
3029Purpose:  Disable one or more interrupts for a channel
3030Call:     sDisInterrupts(ChP,Flags)
3031          CHANNEL_T *ChP; Ptr to channel structure
3032          Word_t Flags: Interrupt flags, can be any combination
3033             of the following flags:
3034                TXINT_EN:   Interrupt on Tx FIFO empty
3035                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3036                            sSetRxTrigger())
3037                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3038                MCINT_EN:   Interrupt on modem input change
3039                CHANINT_EN: Disable channel interrupt signal to the
3040                            AIOP's Interrupt Channel Register.
3041Return:   void
3042Comments: If an interrupt flag is set in Flags, that interrupt will be
3043          disabled.  If an interrupt flag is not set in Flags, that
3044          interrupt will not be changed.  Interrupts can be enabled with
3045          function sEnInterrupts().
3046
3047          This function clears the appropriate bit for the channel in the AIOP's
3048          Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3049          this channel's bit from being set in the AIOP's Interrupt Channel
3050          Register.
3051*/
3052static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3053{
3054	Byte_t Mask;		/* Interrupt Mask Register */
3055
3056	ChP->RxControl[2] &=
3057	    ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3058	out32(ChP->IndexAddr, ChP->RxControl);
3059	ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3060	out32(ChP->IndexAddr, ChP->TxControl);
3061
3062	if (Flags & CHANINT_EN) {
3063		Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3064		sOutB(ChP->IntMask, Mask);
3065	}
3066}
3067
3068static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3069{
3070	sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3071}
3072
3073/*
3074 *  Not an official SSCI function, but how to reset RocketModems.
3075 *  ISA bus version
3076 */
3077static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3078{
3079	ByteIO_t addr;
3080	Byte_t val;
3081
3082	addr = CtlP->AiopIO[0] + 0x400;
3083	val = sInB(CtlP->MReg3IO);
3084	/* if AIOP[1] is not enabled, enable it */
3085	if ((val & 2) == 0) {
3086		val = sInB(CtlP->MReg2IO);
3087		sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3088		sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3089	}
3090
3091	sEnAiop(CtlP, 1);
3092	if (!on)
3093		addr += 8;
3094	sOutB(addr + chan, 0);	/* apply or remove reset */
3095	sDisAiop(CtlP, 1);
3096}
3097
3098/*
3099 *  Not an official SSCI function, but how to reset RocketModems.
3100 *  PCI bus version
3101 */
3102static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3103{
3104	ByteIO_t addr;
3105
3106	addr = CtlP->AiopIO[0] + 0x40;	/* 2nd AIOP */
3107	if (!on)
3108		addr += 8;
3109	sOutB(addr + chan, 0);	/* apply or remove reset */
3110}
3111
3112/*  Returns the line number given the controller (board), aiop and channel number */
3113static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3114{
3115	return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3116}
3117
3118/*
3119 *  Stores the line number associated with a given controller (board), aiop
3120 *  and channel number.  
3121 *  Returns:  The line number assigned 
3122 */
3123static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3124{
3125	lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3126	return (nextLineNumber - 1);
3127}
v4.10.11
 
   1/*
   2 * RocketPort device driver for Linux
   3 *
   4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
   5 * 
   6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
   7 * 
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 of the
  11 * License, or (at your option) any later version.
  12 * 
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 * 
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23/*
  24 * Kernel Synchronization:
  25 *
  26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
  27 * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
  28 * are not used.
  29 *
  30 * Critical data: 
  31 * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
  32 *    serial port state information and the xmit_buf circular buffer.  Protected by 
  33 *    a per port spinlock.
  34 * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
  35 *    is data to be transmitted.  Protected by atomic bit operations.
  36 * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
  37 * 
  38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
  39 * simultaneous access to the same port by more than one process.
  40 */
  41
  42/****** Defines ******/
  43#define ROCKET_PARANOIA_CHECK
  44#define ROCKET_DISABLE_SIMUSAGE
  45
  46#undef ROCKET_SOFT_FLOW
  47#undef ROCKET_DEBUG_OPEN
  48#undef ROCKET_DEBUG_INTR
  49#undef ROCKET_DEBUG_WRITE
  50#undef ROCKET_DEBUG_FLOW
  51#undef ROCKET_DEBUG_THROTTLE
  52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
  53#undef ROCKET_DEBUG_RECEIVE
  54#undef ROCKET_DEBUG_HANGUP
  55#undef REV_PCI_ORDER
  56#undef ROCKET_DEBUG_IO
  57
  58#define POLL_PERIOD (HZ/100)	/*  Polling period .01 seconds (10ms) */
  59
  60/****** Kernel includes ******/
  61
  62#include <linux/module.h>
  63#include <linux/errno.h>
  64#include <linux/major.h>
  65#include <linux/kernel.h>
  66#include <linux/signal.h>
  67#include <linux/slab.h>
  68#include <linux/mm.h>
  69#include <linux/sched.h>
  70#include <linux/timer.h>
  71#include <linux/interrupt.h>
  72#include <linux/tty.h>
  73#include <linux/tty_driver.h>
  74#include <linux/tty_flip.h>
  75#include <linux/serial.h>
  76#include <linux/string.h>
  77#include <linux/fcntl.h>
  78#include <linux/ptrace.h>
  79#include <linux/mutex.h>
  80#include <linux/ioport.h>
  81#include <linux/delay.h>
  82#include <linux/completion.h>
  83#include <linux/wait.h>
  84#include <linux/pci.h>
  85#include <linux/uaccess.h>
  86#include <linux/atomic.h>
  87#include <asm/unaligned.h>
  88#include <linux/bitops.h>
  89#include <linux/spinlock.h>
  90#include <linux/init.h>
  91
  92/****** RocketPort includes ******/
  93
  94#include "rocket_int.h"
  95#include "rocket.h"
  96
  97#define ROCKET_VERSION "2.09"
  98#define ROCKET_DATE "12-June-2003"
  99
 100/****** RocketPort Local Variables ******/
 101
 102static void rp_do_poll(unsigned long dummy);
 103
 104static struct tty_driver *rocket_driver;
 105
 106static struct rocket_version driver_version = {	
 107	ROCKET_VERSION, ROCKET_DATE
 108};
 109
 110static struct r_port *rp_table[MAX_RP_PORTS];	       /*  The main repository of serial port state information. */
 111static unsigned int xmit_flags[NUM_BOARDS];	       /*  Bit significant, indicates port had data to transmit. */
 112						       /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
 113static atomic_t rp_num_ports_open;	               /*  Number of serial ports open                           */
 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
 115
 116static unsigned long board1;	                       /* ISA addresses, retrieved from rocketport.conf          */
 117static unsigned long board2;
 118static unsigned long board3;
 119static unsigned long board4;
 120static unsigned long controller;
 121static bool support_low_speed;
 122static unsigned long modem1;
 123static unsigned long modem2;
 124static unsigned long modem3;
 125static unsigned long modem4;
 126static unsigned long pc104_1[8];
 127static unsigned long pc104_2[8];
 128static unsigned long pc104_3[8];
 129static unsigned long pc104_4[8];
 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
 131
 132static int rp_baud_base[NUM_BOARDS];	               /*  Board config info (Someday make a per-board structure)  */
 133static unsigned long rcktpt_io_addr[NUM_BOARDS];
 134static int rcktpt_type[NUM_BOARDS];
 135static int is_PCI[NUM_BOARDS];
 136static rocketModel_t rocketModel[NUM_BOARDS];
 137static int max_board;
 138static const struct tty_port_operations rocket_port_ops;
 139
 140/*
 141 * The following arrays define the interrupt bits corresponding to each AIOP.
 142 * These bits are different between the ISA and regular PCI boards and the
 143 * Universal PCI boards.
 144 */
 145
 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
 147	AIOP_INTR_BIT_0,
 148	AIOP_INTR_BIT_1,
 149	AIOP_INTR_BIT_2,
 150	AIOP_INTR_BIT_3
 151};
 152
 153#ifdef CONFIG_PCI
 154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
 155	UPCI_AIOP_INTR_BIT_0,
 156	UPCI_AIOP_INTR_BIT_1,
 157	UPCI_AIOP_INTR_BIT_2,
 158	UPCI_AIOP_INTR_BIT_3
 159};
 160#endif
 161
 162static Byte_t RData[RDATASIZE] = {
 163	0x00, 0x09, 0xf6, 0x82,
 164	0x02, 0x09, 0x86, 0xfb,
 165	0x04, 0x09, 0x00, 0x0a,
 166	0x06, 0x09, 0x01, 0x0a,
 167	0x08, 0x09, 0x8a, 0x13,
 168	0x0a, 0x09, 0xc5, 0x11,
 169	0x0c, 0x09, 0x86, 0x85,
 170	0x0e, 0x09, 0x20, 0x0a,
 171	0x10, 0x09, 0x21, 0x0a,
 172	0x12, 0x09, 0x41, 0xff,
 173	0x14, 0x09, 0x82, 0x00,
 174	0x16, 0x09, 0x82, 0x7b,
 175	0x18, 0x09, 0x8a, 0x7d,
 176	0x1a, 0x09, 0x88, 0x81,
 177	0x1c, 0x09, 0x86, 0x7a,
 178	0x1e, 0x09, 0x84, 0x81,
 179	0x20, 0x09, 0x82, 0x7c,
 180	0x22, 0x09, 0x0a, 0x0a
 181};
 182
 183static Byte_t RRegData[RREGDATASIZE] = {
 184	0x00, 0x09, 0xf6, 0x82,	/* 00: Stop Rx processor */
 185	0x08, 0x09, 0x8a, 0x13,	/* 04: Tx software flow control */
 186	0x0a, 0x09, 0xc5, 0x11,	/* 08: XON char */
 187	0x0c, 0x09, 0x86, 0x85,	/* 0c: XANY */
 188	0x12, 0x09, 0x41, 0xff,	/* 10: Rx mask char */
 189	0x14, 0x09, 0x82, 0x00,	/* 14: Compare/Ignore #0 */
 190	0x16, 0x09, 0x82, 0x7b,	/* 18: Compare #1 */
 191	0x18, 0x09, 0x8a, 0x7d,	/* 1c: Compare #2 */
 192	0x1a, 0x09, 0x88, 0x81,	/* 20: Interrupt #1 */
 193	0x1c, 0x09, 0x86, 0x7a,	/* 24: Ignore/Replace #1 */
 194	0x1e, 0x09, 0x84, 0x81,	/* 28: Interrupt #2 */
 195	0x20, 0x09, 0x82, 0x7c,	/* 2c: Ignore/Replace #2 */
 196	0x22, 0x09, 0x0a, 0x0a	/* 30: Rx FIFO Enable */
 197};
 198
 199static CONTROLLER_T sController[CTL_SIZE] = {
 200	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 201	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 202	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 203	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 204	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 205	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 206	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 207	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
 208};
 209
 210static Byte_t sBitMapClrTbl[8] = {
 211	0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
 212};
 213
 214static Byte_t sBitMapSetTbl[8] = {
 215	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
 216};
 217
 218static int sClockPrescale = 0x14;
 219
 220/*
 221 *  Line number is the ttySIx number (x), the Minor number.  We 
 222 *  assign them sequentially, starting at zero.  The following 
 223 *  array keeps track of the line number assigned to a given board/aiop/channel.
 224 */
 225static unsigned char lineNumbers[MAX_RP_PORTS];
 226static unsigned long nextLineNumber;
 227
 228/*****  RocketPort Static Prototypes   *********/
 229static int __init init_ISA(int i);
 230static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
 231static void rp_flush_buffer(struct tty_struct *tty);
 232static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
 233static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
 234static void rp_start(struct tty_struct *tty);
 235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
 236		     int ChanNum);
 237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
 238static void sFlushRxFIFO(CHANNEL_T * ChP);
 239static void sFlushTxFIFO(CHANNEL_T * ChP);
 240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
 241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
 242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
 243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
 244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
 245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
 246			   ByteIO_t * AiopIOList, int AiopIOListSize,
 247			   int IRQNum, Byte_t Frequency, int PeriodicOnly);
 248static int sReadAiopID(ByteIO_t io);
 249static int sReadAiopNumChan(WordIO_t io);
 250
 251MODULE_AUTHOR("Theodore Ts'o");
 252MODULE_DESCRIPTION("Comtrol RocketPort driver");
 253module_param(board1, ulong, 0);
 254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
 255module_param(board2, ulong, 0);
 256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
 257module_param(board3, ulong, 0);
 258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
 259module_param(board4, ulong, 0);
 260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
 261module_param(controller, ulong, 0);
 262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
 263module_param(support_low_speed, bool, 0);
 264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
 265module_param(modem1, ulong, 0);
 266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
 267module_param(modem2, ulong, 0);
 268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
 269module_param(modem3, ulong, 0);
 270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
 271module_param(modem4, ulong, 0);
 272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
 273module_param_array(pc104_1, ulong, NULL, 0);
 274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
 275module_param_array(pc104_2, ulong, NULL, 0);
 276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
 277module_param_array(pc104_3, ulong, NULL, 0);
 278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
 279module_param_array(pc104_4, ulong, NULL, 0);
 280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
 281
 282static int rp_init(void);
 283static void rp_cleanup_module(void);
 284
 285module_init(rp_init);
 286module_exit(rp_cleanup_module);
 287
 288
 289MODULE_LICENSE("Dual BSD/GPL");
 290
 291/*************************************************************************/
 292/*                     Module code starts here                           */
 293
 294static inline int rocket_paranoia_check(struct r_port *info,
 295					const char *routine)
 296{
 297#ifdef ROCKET_PARANOIA_CHECK
 298	if (!info)
 299		return 1;
 300	if (info->magic != RPORT_MAGIC) {
 301		printk(KERN_WARNING "Warning: bad magic number for rocketport "
 302				"struct in %s\n", routine);
 303		return 1;
 304	}
 305#endif
 306	return 0;
 307}
 308
 309
 310/*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
 311 *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
 312 *  tty layer.  
 313 */
 314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
 315		unsigned int ChanStatus)
 316{
 317	unsigned int CharNStat;
 318	int ToRecv, wRecv, space;
 319	unsigned char *cbuf;
 320
 321	ToRecv = sGetRxCnt(cp);
 322#ifdef ROCKET_DEBUG_INTR
 323	printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
 324#endif
 325	if (ToRecv == 0)
 326		return;
 327
 328	/*
 329	 * if status indicates there are errored characters in the
 330	 * FIFO, then enter status mode (a word in FIFO holds
 331	 * character and status).
 332	 */
 333	if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
 334		if (!(ChanStatus & STATMODE)) {
 335#ifdef ROCKET_DEBUG_RECEIVE
 336			printk(KERN_INFO "Entering STATMODE...\n");
 337#endif
 338			ChanStatus |= STATMODE;
 339			sEnRxStatusMode(cp);
 340		}
 341	}
 342
 343	/* 
 344	 * if we previously entered status mode, then read down the
 345	 * FIFO one word at a time, pulling apart the character and
 346	 * the status.  Update error counters depending on status
 347	 */
 348	if (ChanStatus & STATMODE) {
 349#ifdef ROCKET_DEBUG_RECEIVE
 350		printk(KERN_INFO "Ignore %x, read %x...\n",
 351			info->ignore_status_mask, info->read_status_mask);
 352#endif
 353		while (ToRecv) {
 354			char flag;
 355
 356			CharNStat = sInW(sGetTxRxDataIO(cp));
 357#ifdef ROCKET_DEBUG_RECEIVE
 358			printk(KERN_INFO "%x...\n", CharNStat);
 359#endif
 360			if (CharNStat & STMBREAKH)
 361				CharNStat &= ~(STMFRAMEH | STMPARITYH);
 362			if (CharNStat & info->ignore_status_mask) {
 363				ToRecv--;
 364				continue;
 365			}
 366			CharNStat &= info->read_status_mask;
 367			if (CharNStat & STMBREAKH)
 368				flag = TTY_BREAK;
 369			else if (CharNStat & STMPARITYH)
 370				flag = TTY_PARITY;
 371			else if (CharNStat & STMFRAMEH)
 372				flag = TTY_FRAME;
 373			else if (CharNStat & STMRCVROVRH)
 374				flag = TTY_OVERRUN;
 375			else
 376				flag = TTY_NORMAL;
 377			tty_insert_flip_char(&info->port, CharNStat & 0xff,
 378					flag);
 379			ToRecv--;
 380		}
 381
 382		/*
 383		 * after we've emptied the FIFO in status mode, turn
 384		 * status mode back off
 385		 */
 386		if (sGetRxCnt(cp) == 0) {
 387#ifdef ROCKET_DEBUG_RECEIVE
 388			printk(KERN_INFO "Status mode off.\n");
 389#endif
 390			sDisRxStatusMode(cp);
 391		}
 392	} else {
 393		/*
 394		 * we aren't in status mode, so read down the FIFO two
 395		 * characters at time by doing repeated word IO
 396		 * transfer.
 397		 */
 398		space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
 399		if (space < ToRecv) {
 400#ifdef ROCKET_DEBUG_RECEIVE
 401			printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
 402#endif
 403			if (space <= 0)
 404				return;
 405			ToRecv = space;
 406		}
 407		wRecv = ToRecv >> 1;
 408		if (wRecv)
 409			sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
 410		if (ToRecv & 1)
 411			cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
 412	}
 413	/*  Push the data up to the tty layer */
 414	tty_flip_buffer_push(&info->port);
 415}
 416
 417/*
 418 *  Serial port transmit data function.  Called from the timer polling loop as a 
 419 *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
 420 *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
 421 *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
 422 */
 423static void rp_do_transmit(struct r_port *info)
 424{
 425	int c;
 426	CHANNEL_t *cp = &info->channel;
 427	struct tty_struct *tty;
 428	unsigned long flags;
 429
 430#ifdef ROCKET_DEBUG_INTR
 431	printk(KERN_DEBUG "%s\n", __func__);
 432#endif
 433	if (!info)
 434		return;
 435	tty = tty_port_tty_get(&info->port);
 436
 437	if (tty == NULL) {
 438		printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
 439		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 440		return;
 441	}
 442
 443	spin_lock_irqsave(&info->slock, flags);
 444	info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
 445
 446	/*  Loop sending data to FIFO until done or FIFO full */
 447	while (1) {
 448		if (tty->stopped)
 449			break;
 450		c = min(info->xmit_fifo_room, info->xmit_cnt);
 451		c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
 452		if (c <= 0 || info->xmit_fifo_room <= 0)
 453			break;
 454		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
 455		if (c & 1)
 456			sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
 457		info->xmit_tail += c;
 458		info->xmit_tail &= XMIT_BUF_SIZE - 1;
 459		info->xmit_cnt -= c;
 460		info->xmit_fifo_room -= c;
 461#ifdef ROCKET_DEBUG_INTR
 462		printk(KERN_INFO "tx %d chars...\n", c);
 463#endif
 464	}
 465
 466	if (info->xmit_cnt == 0)
 467		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 468
 469	if (info->xmit_cnt < WAKEUP_CHARS) {
 470		tty_wakeup(tty);
 471#ifdef ROCKETPORT_HAVE_POLL_WAIT
 472		wake_up_interruptible(&tty->poll_wait);
 473#endif
 474	}
 475
 476	spin_unlock_irqrestore(&info->slock, flags);
 477	tty_kref_put(tty);
 478
 479#ifdef ROCKET_DEBUG_INTR
 480	printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
 481	       info->xmit_tail, info->xmit_fifo_room);
 482#endif
 483}
 484
 485/*
 486 *  Called when a serial port signals it has read data in it's RX FIFO.
 487 *  It checks what interrupts are pending and services them, including
 488 *  receiving serial data.  
 489 */
 490static void rp_handle_port(struct r_port *info)
 491{
 492	CHANNEL_t *cp;
 493	unsigned int IntMask, ChanStatus;
 494
 495	if (!info)
 496		return;
 497
 498	if (!tty_port_initialized(&info->port)) {
 499		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 500				"info->flags & NOT_INIT\n");
 501		return;
 502	}
 503
 504	cp = &info->channel;
 505
 506	IntMask = sGetChanIntID(cp) & info->intmask;
 507#ifdef ROCKET_DEBUG_INTR
 508	printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
 509#endif
 510	ChanStatus = sGetChanStatus(cp);
 511	if (IntMask & RXF_TRIG) {	/* Rx FIFO trigger level */
 512		rp_do_receive(info, cp, ChanStatus);
 513	}
 514	if (IntMask & DELTA_CD) {	/* CD change  */
 515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
 516		printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
 517		       (ChanStatus & CD_ACT) ? "on" : "off");
 518#endif
 519		if (!(ChanStatus & CD_ACT) && info->cd_status) {
 520#ifdef ROCKET_DEBUG_HANGUP
 521			printk(KERN_INFO "CD drop, calling hangup.\n");
 522#endif
 523			tty_port_tty_hangup(&info->port, false);
 524		}
 525		info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
 526		wake_up_interruptible(&info->port.open_wait);
 527	}
 528#ifdef ROCKET_DEBUG_INTR
 529	if (IntMask & DELTA_CTS) {	/* CTS change */
 530		printk(KERN_INFO "CTS change...\n");
 531	}
 532	if (IntMask & DELTA_DSR) {	/* DSR change */
 533		printk(KERN_INFO "DSR change...\n");
 534	}
 535#endif
 536}
 537
 538/*
 539 *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
 540 */
 541static void rp_do_poll(unsigned long dummy)
 542{
 543	CONTROLLER_t *ctlp;
 544	int ctrl, aiop, ch, line;
 545	unsigned int xmitmask, i;
 546	unsigned int CtlMask;
 547	unsigned char AiopMask;
 548	Word_t bit;
 549
 550	/*  Walk through all the boards (ctrl's) */
 551	for (ctrl = 0; ctrl < max_board; ctrl++) {
 552		if (rcktpt_io_addr[ctrl] <= 0)
 553			continue;
 554
 555		/*  Get a ptr to the board's control struct */
 556		ctlp = sCtlNumToCtlPtr(ctrl);
 557
 558		/*  Get the interrupt status from the board */
 559#ifdef CONFIG_PCI
 560		if (ctlp->BusType == isPCI)
 561			CtlMask = sPCIGetControllerIntStatus(ctlp);
 562		else
 563#endif
 564			CtlMask = sGetControllerIntStatus(ctlp);
 565
 566		/*  Check if any AIOP read bits are set */
 567		for (aiop = 0; CtlMask; aiop++) {
 568			bit = ctlp->AiopIntrBits[aiop];
 569			if (CtlMask & bit) {
 570				CtlMask &= ~bit;
 571				AiopMask = sGetAiopIntStatus(ctlp, aiop);
 572
 573				/*  Check if any port read bits are set */
 574				for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
 575					if (AiopMask & 1) {
 576
 577						/*  Get the line number (/dev/ttyRx number). */
 578						/*  Read the data from the port. */
 579						line = GetLineNumber(ctrl, aiop, ch);
 580						rp_handle_port(rp_table[line]);
 581					}
 582				}
 583			}
 584		}
 585
 586		xmitmask = xmit_flags[ctrl];
 587
 588		/*
 589		 *  xmit_flags contains bit-significant flags, indicating there is data
 590		 *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
 591		 *  1, ... (32 total possible).  The variable i has the aiop and ch 
 592		 *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
 593		 */
 594		if (xmitmask) {
 595			for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
 596				if (xmitmask & (1 << i)) {
 597					aiop = (i & 0x18) >> 3;
 598					ch = i & 0x07;
 599					line = GetLineNumber(ctrl, aiop, ch);
 600					rp_do_transmit(rp_table[line]);
 601				}
 602			}
 603		}
 604	}
 605
 606	/*
 607	 * Reset the timer so we get called at the next clock tick (10ms).
 608	 */
 609	if (atomic_read(&rp_num_ports_open))
 610		mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 611}
 612
 613/*
 614 *  Initializes the r_port structure for a port, as well as enabling the port on 
 615 *  the board.  
 616 *  Inputs:  board, aiop, chan numbers
 617 */
 618static void __init
 619init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
 620{
 621	unsigned rocketMode;
 622	struct r_port *info;
 623	int line;
 624	CONTROLLER_T *ctlp;
 625
 626	/*  Get the next available line number */
 627	line = SetLineNumber(board, aiop, chan);
 628
 629	ctlp = sCtlNumToCtlPtr(board);
 630
 631	/*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
 632	info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
 633	if (!info) {
 634		printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
 635				line);
 636		return;
 637	}
 638
 639	info->magic = RPORT_MAGIC;
 640	info->line = line;
 641	info->ctlp = ctlp;
 642	info->board = board;
 643	info->aiop = aiop;
 644	info->chan = chan;
 645	tty_port_init(&info->port);
 646	info->port.ops = &rocket_port_ops;
 647	info->flags &= ~ROCKET_MODE_MASK;
 648	switch (pc104[board][line]) {
 649	case 422:
 650		info->flags |= ROCKET_MODE_RS422;
 651		break;
 652	case 485:
 653		info->flags |= ROCKET_MODE_RS485;
 654		break;
 655	case 232:
 656	default:
 
 
 
 
 
 657		info->flags |= ROCKET_MODE_RS232;
 658		break;
 659	}
 660
 661	info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
 662	if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
 663		printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
 664				board, aiop, chan);
 665		tty_port_destroy(&info->port);
 666		kfree(info);
 667		return;
 668	}
 669
 670	rocketMode = info->flags & ROCKET_MODE_MASK;
 671
 672	if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
 673		sEnRTSToggle(&info->channel);
 674	else
 675		sDisRTSToggle(&info->channel);
 676
 677	if (ctlp->boardType == ROCKET_TYPE_PC104) {
 678		switch (rocketMode) {
 679		case ROCKET_MODE_RS485:
 680			sSetInterfaceMode(&info->channel, InterfaceModeRS485);
 681			break;
 682		case ROCKET_MODE_RS422:
 683			sSetInterfaceMode(&info->channel, InterfaceModeRS422);
 684			break;
 685		case ROCKET_MODE_RS232:
 686		default:
 687			if (info->flags & ROCKET_RTS_TOGGLE)
 688				sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
 689			else
 690				sSetInterfaceMode(&info->channel, InterfaceModeRS232);
 691			break;
 692		}
 693	}
 694	spin_lock_init(&info->slock);
 695	mutex_init(&info->write_mtx);
 696	rp_table[line] = info;
 697	tty_port_register_device(&info->port, rocket_driver, line,
 698			pci_dev ? &pci_dev->dev : NULL);
 699}
 700
 701/*
 702 *  Configures a rocketport port according to its termio settings.  Called from 
 703 *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
 704 */
 705static void configure_r_port(struct tty_struct *tty, struct r_port *info,
 706			     struct ktermios *old_termios)
 707{
 708	unsigned cflag;
 709	unsigned long flags;
 710	unsigned rocketMode;
 711	int bits, baud, divisor;
 712	CHANNEL_t *cp;
 713	struct ktermios *t = &tty->termios;
 714
 715	cp = &info->channel;
 716	cflag = t->c_cflag;
 717
 718	/* Byte size and parity */
 719	if ((cflag & CSIZE) == CS8) {
 720		sSetData8(cp);
 721		bits = 10;
 722	} else {
 723		sSetData7(cp);
 724		bits = 9;
 725	}
 726	if (cflag & CSTOPB) {
 727		sSetStop2(cp);
 728		bits++;
 729	} else {
 730		sSetStop1(cp);
 731	}
 732
 733	if (cflag & PARENB) {
 734		sEnParity(cp);
 735		bits++;
 736		if (cflag & PARODD) {
 737			sSetOddParity(cp);
 738		} else {
 739			sSetEvenParity(cp);
 740		}
 741	} else {
 742		sDisParity(cp);
 743	}
 744
 745	/* baud rate */
 746	baud = tty_get_baud_rate(tty);
 747	if (!baud)
 748		baud = 9600;
 749	divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
 750	if ((divisor >= 8192 || divisor < 0) && old_termios) {
 751		baud = tty_termios_baud_rate(old_termios);
 752		if (!baud)
 753			baud = 9600;
 754		divisor = (rp_baud_base[info->board] / baud) - 1;
 755	}
 756	if (divisor >= 8192 || divisor < 0) {
 757		baud = 9600;
 758		divisor = (rp_baud_base[info->board] / baud) - 1;
 759	}
 760	info->cps = baud / bits;
 761	sSetBaud(cp, divisor);
 762
 763	/* FIXME: Should really back compute a baud rate from the divisor */
 764	tty_encode_baud_rate(tty, baud, baud);
 765
 766	if (cflag & CRTSCTS) {
 767		info->intmask |= DELTA_CTS;
 768		sEnCTSFlowCtl(cp);
 769	} else {
 770		info->intmask &= ~DELTA_CTS;
 771		sDisCTSFlowCtl(cp);
 772	}
 773	if (cflag & CLOCAL) {
 774		info->intmask &= ~DELTA_CD;
 775	} else {
 776		spin_lock_irqsave(&info->slock, flags);
 777		if (sGetChanStatus(cp) & CD_ACT)
 778			info->cd_status = 1;
 779		else
 780			info->cd_status = 0;
 781		info->intmask |= DELTA_CD;
 782		spin_unlock_irqrestore(&info->slock, flags);
 783	}
 784
 785	/*
 786	 * Handle software flow control in the board
 787	 */
 788#ifdef ROCKET_SOFT_FLOW
 789	if (I_IXON(tty)) {
 790		sEnTxSoftFlowCtl(cp);
 791		if (I_IXANY(tty)) {
 792			sEnIXANY(cp);
 793		} else {
 794			sDisIXANY(cp);
 795		}
 796		sSetTxXONChar(cp, START_CHAR(tty));
 797		sSetTxXOFFChar(cp, STOP_CHAR(tty));
 798	} else {
 799		sDisTxSoftFlowCtl(cp);
 800		sDisIXANY(cp);
 801		sClrTxXOFF(cp);
 802	}
 803#endif
 804
 805	/*
 806	 * Set up ignore/read mask words
 807	 */
 808	info->read_status_mask = STMRCVROVRH | 0xFF;
 809	if (I_INPCK(tty))
 810		info->read_status_mask |= STMFRAMEH | STMPARITYH;
 811	if (I_BRKINT(tty) || I_PARMRK(tty))
 812		info->read_status_mask |= STMBREAKH;
 813
 814	/*
 815	 * Characters to ignore
 816	 */
 817	info->ignore_status_mask = 0;
 818	if (I_IGNPAR(tty))
 819		info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
 820	if (I_IGNBRK(tty)) {
 821		info->ignore_status_mask |= STMBREAKH;
 822		/*
 823		 * If we're ignoring parity and break indicators,
 824		 * ignore overruns too.  (For real raw support).
 825		 */
 826		if (I_IGNPAR(tty))
 827			info->ignore_status_mask |= STMRCVROVRH;
 828	}
 829
 830	rocketMode = info->flags & ROCKET_MODE_MASK;
 831
 832	if ((info->flags & ROCKET_RTS_TOGGLE)
 833	    || (rocketMode == ROCKET_MODE_RS485))
 834		sEnRTSToggle(cp);
 835	else
 836		sDisRTSToggle(cp);
 837
 838	sSetRTS(&info->channel);
 839
 840	if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
 841		switch (rocketMode) {
 842		case ROCKET_MODE_RS485:
 843			sSetInterfaceMode(cp, InterfaceModeRS485);
 844			break;
 845		case ROCKET_MODE_RS422:
 846			sSetInterfaceMode(cp, InterfaceModeRS422);
 847			break;
 848		case ROCKET_MODE_RS232:
 849		default:
 850			if (info->flags & ROCKET_RTS_TOGGLE)
 851				sSetInterfaceMode(cp, InterfaceModeRS232T);
 852			else
 853				sSetInterfaceMode(cp, InterfaceModeRS232);
 854			break;
 855		}
 856	}
 857}
 858
 859static int carrier_raised(struct tty_port *port)
 860{
 861	struct r_port *info = container_of(port, struct r_port, port);
 862	return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
 863}
 864
 865static void dtr_rts(struct tty_port *port, int on)
 866{
 867	struct r_port *info = container_of(port, struct r_port, port);
 868	if (on) {
 869		sSetDTR(&info->channel);
 870		sSetRTS(&info->channel);
 871	} else {
 872		sClrDTR(&info->channel);
 873		sClrRTS(&info->channel);
 874	}
 875}
 876
 877/*
 878 *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
 879 *  port's r_port struct.  Initializes the port hardware.  
 880 */
 881static int rp_open(struct tty_struct *tty, struct file *filp)
 882{
 883	struct r_port *info;
 884	struct tty_port *port;
 885	int retval;
 886	CHANNEL_t *cp;
 887	unsigned long page;
 888
 889	info = rp_table[tty->index];
 890	if (info == NULL)
 891		return -ENXIO;
 892	port = &info->port;
 893	
 894	page = __get_free_page(GFP_KERNEL);
 895	if (!page)
 896		return -ENOMEM;
 897
 898	/*
 899	 * We must not sleep from here until the port is marked fully in use.
 900	 */
 901	if (info->xmit_buf)
 902		free_page(page);
 903	else
 904		info->xmit_buf = (unsigned char *) page;
 905
 906	tty->driver_data = info;
 907	tty_port_tty_set(port, tty);
 908
 909	if (port->count++ == 0) {
 910		atomic_inc(&rp_num_ports_open);
 911
 912#ifdef ROCKET_DEBUG_OPEN
 913		printk(KERN_INFO "rocket mod++ = %d...\n",
 914				atomic_read(&rp_num_ports_open));
 915#endif
 916	}
 917#ifdef ROCKET_DEBUG_OPEN
 918	printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
 919#endif
 920
 921	/*
 922	 * Info->count is now 1; so it's safe to sleep now.
 923	 */
 924	if (!tty_port_initialized(port)) {
 925		cp = &info->channel;
 926		sSetRxTrigger(cp, TRIG_1);
 927		if (sGetChanStatus(cp) & CD_ACT)
 928			info->cd_status = 1;
 929		else
 930			info->cd_status = 0;
 931		sDisRxStatusMode(cp);
 932		sFlushRxFIFO(cp);
 933		sFlushTxFIFO(cp);
 934
 935		sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 936		sSetRxTrigger(cp, TRIG_1);
 937
 938		sGetChanStatus(cp);
 939		sDisRxStatusMode(cp);
 940		sClrTxXOFF(cp);
 941
 942		sDisCTSFlowCtl(cp);
 943		sDisTxSoftFlowCtl(cp);
 944
 945		sEnRxFIFO(cp);
 946		sEnTransmit(cp);
 947
 948		tty_port_set_initialized(&info->port, 1);
 949
 950		/*
 951		 * Set up the tty->alt_speed kludge
 952		 */
 953		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
 954			tty->alt_speed = 57600;
 955		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
 956			tty->alt_speed = 115200;
 957		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
 958			tty->alt_speed = 230400;
 959		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
 960			tty->alt_speed = 460800;
 961
 962		configure_r_port(tty, info, NULL);
 963		if (C_BAUD(tty)) {
 964			sSetDTR(cp);
 965			sSetRTS(cp);
 966		}
 967	}
 968	/*  Starts (or resets) the maint polling loop */
 969	mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 970
 971	retval = tty_port_block_til_ready(port, tty, filp);
 972	if (retval) {
 973#ifdef ROCKET_DEBUG_OPEN
 974		printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
 975#endif
 976		return retval;
 977	}
 978	return 0;
 979}
 980
 981/*
 982 *  Exception handler that closes a serial port. info->port.count is considered critical.
 983 */
 984static void rp_close(struct tty_struct *tty, struct file *filp)
 985{
 986	struct r_port *info = tty->driver_data;
 987	struct tty_port *port = &info->port;
 988	int timeout;
 989	CHANNEL_t *cp;
 990	
 991	if (rocket_paranoia_check(info, "rp_close"))
 992		return;
 993
 994#ifdef ROCKET_DEBUG_OPEN
 995	printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
 996#endif
 997
 998	if (tty_port_close_start(port, tty, filp) == 0)
 999		return;
1000
1001	mutex_lock(&port->mutex);
1002	cp = &info->channel;
1003	/*
1004	 * Before we drop DTR, make sure the UART transmitter
1005	 * has completely drained; this is especially
1006	 * important if there is a transmit FIFO!
1007	 */
1008	timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1009	if (timeout == 0)
1010		timeout = 1;
1011	rp_wait_until_sent(tty, timeout);
1012	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1013
1014	sDisTransmit(cp);
1015	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1016	sDisCTSFlowCtl(cp);
1017	sDisTxSoftFlowCtl(cp);
1018	sClrTxXOFF(cp);
1019	sFlushRxFIFO(cp);
1020	sFlushTxFIFO(cp);
1021	sClrRTS(cp);
1022	if (C_HUPCL(tty))
1023		sClrDTR(cp);
1024
1025	rp_flush_buffer(tty);
1026		
1027	tty_ldisc_flush(tty);
1028
1029	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1030
1031	/* We can't yet use tty_port_close_end as the buffer handling in this
1032	   driver is a bit different to the usual */
1033
1034	if (port->blocked_open) {
1035		if (port->close_delay) {
1036			msleep_interruptible(jiffies_to_msecs(port->close_delay));
1037		}
1038		wake_up_interruptible(&port->open_wait);
1039	} else {
1040		if (info->xmit_buf) {
1041			free_page((unsigned long) info->xmit_buf);
1042			info->xmit_buf = NULL;
1043		}
1044	}
1045	spin_lock_irq(&port->lock);
1046	tty->closing = 0;
1047	spin_unlock_irq(&port->lock);
1048	tty_port_set_initialized(port, 0);
1049	tty_port_set_active(port, 0);
1050	mutex_unlock(&port->mutex);
1051	tty_port_tty_set(port, NULL);
1052
1053	atomic_dec(&rp_num_ports_open);
1054
1055#ifdef ROCKET_DEBUG_OPEN
1056	printk(KERN_INFO "rocket mod-- = %d...\n",
1057			atomic_read(&rp_num_ports_open));
1058	printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1059#endif
1060
1061}
1062
1063static void rp_set_termios(struct tty_struct *tty,
1064			   struct ktermios *old_termios)
1065{
1066	struct r_port *info = tty->driver_data;
1067	CHANNEL_t *cp;
1068	unsigned cflag;
1069
1070	if (rocket_paranoia_check(info, "rp_set_termios"))
1071		return;
1072
1073	cflag = tty->termios.c_cflag;
1074
1075	/*
1076	 * This driver doesn't support CS5 or CS6
1077	 */
1078	if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1079		tty->termios.c_cflag =
1080		    ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1081	/* Or CMSPAR */
1082	tty->termios.c_cflag &= ~CMSPAR;
1083
1084	configure_r_port(tty, info, old_termios);
1085
1086	cp = &info->channel;
1087
1088	/* Handle transition to B0 status */
1089	if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1090		sClrDTR(cp);
1091		sClrRTS(cp);
1092	}
1093
1094	/* Handle transition away from B0 status */
1095	if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1096		sSetRTS(cp);
1097		sSetDTR(cp);
1098	}
1099
1100	if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1101		rp_start(tty);
1102}
1103
1104static int rp_break(struct tty_struct *tty, int break_state)
1105{
1106	struct r_port *info = tty->driver_data;
1107	unsigned long flags;
1108
1109	if (rocket_paranoia_check(info, "rp_break"))
1110		return -EINVAL;
1111
1112	spin_lock_irqsave(&info->slock, flags);
1113	if (break_state == -1)
1114		sSendBreak(&info->channel);
1115	else
1116		sClrBreak(&info->channel);
1117	spin_unlock_irqrestore(&info->slock, flags);
1118	return 0;
1119}
1120
1121/*
1122 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1123 * the UPCI boards was added, it was decided to make this a function because
1124 * the macro was getting too complicated. All cases except the first one
1125 * (UPCIRingInd) are taken directly from the original macro.
1126 */
1127static int sGetChanRI(CHANNEL_T * ChP)
1128{
1129	CONTROLLER_t *CtlP = ChP->CtlP;
1130	int ChanNum = ChP->ChanNum;
1131	int RingInd = 0;
1132
1133	if (CtlP->UPCIRingInd)
1134		RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1135	else if (CtlP->AltChanRingIndicator)
1136		RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1137	else if (CtlP->boardType == ROCKET_TYPE_PC104)
1138		RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1139
1140	return RingInd;
1141}
1142
1143/********************************************************************************************/
1144/*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1145
1146/*
1147 *  Returns the state of the serial modem control lines.  These next 2 functions 
1148 *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1149 */
1150static int rp_tiocmget(struct tty_struct *tty)
1151{
1152	struct r_port *info = tty->driver_data;
1153	unsigned int control, result, ChanStatus;
1154
1155	ChanStatus = sGetChanStatusLo(&info->channel);
1156	control = info->channel.TxControl[3];
1157	result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1158		((control & SET_DTR) ?  TIOCM_DTR : 0) |
1159		((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1160		(sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1161		((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1162		((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1163
1164	return result;
1165}
1166
1167/* 
1168 *  Sets the modem control lines
1169 */
1170static int rp_tiocmset(struct tty_struct *tty,
1171				unsigned int set, unsigned int clear)
1172{
1173	struct r_port *info = tty->driver_data;
1174
1175	if (set & TIOCM_RTS)
1176		info->channel.TxControl[3] |= SET_RTS;
1177	if (set & TIOCM_DTR)
1178		info->channel.TxControl[3] |= SET_DTR;
1179	if (clear & TIOCM_RTS)
1180		info->channel.TxControl[3] &= ~SET_RTS;
1181	if (clear & TIOCM_DTR)
1182		info->channel.TxControl[3] &= ~SET_DTR;
1183
1184	out32(info->channel.IndexAddr, info->channel.TxControl);
1185	return 0;
1186}
1187
1188static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1189{
1190	struct rocket_config tmp;
1191
1192	memset(&tmp, 0, sizeof (tmp));
1193	mutex_lock(&info->port.mutex);
1194	tmp.line = info->line;
1195	tmp.flags = info->flags;
1196	tmp.close_delay = info->port.close_delay;
1197	tmp.closing_wait = info->port.closing_wait;
1198	tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1199	mutex_unlock(&info->port.mutex);
1200
1201	if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1202		return -EFAULT;
1203	return 0;
1204}
1205
1206static int set_config(struct tty_struct *tty, struct r_port *info,
1207					struct rocket_config __user *new_info)
1208{
1209	struct rocket_config new_serial;
1210
1211	if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1212		return -EFAULT;
1213
1214	mutex_lock(&info->port.mutex);
1215	if (!capable(CAP_SYS_ADMIN))
1216	{
1217		if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1218			mutex_unlock(&info->port.mutex);
1219			return -EPERM;
1220		}
1221		info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1222		configure_r_port(tty, info, NULL);
1223		mutex_unlock(&info->port.mutex);
1224		return 0;
1225	}
1226
 
 
 
 
 
 
1227	info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1228	info->port.close_delay = new_serial.close_delay;
1229	info->port.closing_wait = new_serial.closing_wait;
1230
1231	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1232		tty->alt_speed = 57600;
1233	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1234		tty->alt_speed = 115200;
1235	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1236		tty->alt_speed = 230400;
1237	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1238		tty->alt_speed = 460800;
1239	mutex_unlock(&info->port.mutex);
1240
1241	configure_r_port(tty, info, NULL);
1242	return 0;
1243}
1244
1245/*
1246 *  This function fills in a rocket_ports struct with information
1247 *  about what boards/ports are in the system.  This info is passed
1248 *  to user space.  See setrocket.c where the info is used to create
1249 *  the /dev/ttyRx ports.
1250 */
1251static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1252{
1253	struct rocket_ports tmp;
1254	int board;
 
 
 
 
1255
1256	memset(&tmp, 0, sizeof (tmp));
1257	tmp.tty_major = rocket_driver->major;
1258
1259	for (board = 0; board < 4; board++) {
1260		tmp.rocketModel[board].model = rocketModel[board].model;
1261		strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1262		tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1263		tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1264		tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1265	}
1266	if (copy_to_user(retports, &tmp, sizeof (*retports)))
1267		return -EFAULT;
1268	return 0;
 
 
 
1269}
1270
1271static int reset_rm2(struct r_port *info, void __user *arg)
1272{
1273	int reset;
1274
1275	if (!capable(CAP_SYS_ADMIN))
1276		return -EPERM;
1277
1278	if (copy_from_user(&reset, arg, sizeof (int)))
1279		return -EFAULT;
1280	if (reset)
1281		reset = 1;
1282
1283	if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1284            rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1285		return -EINVAL;
1286
1287	if (info->ctlp->BusType == isISA)
1288		sModemReset(info->ctlp, info->chan, reset);
1289	else
1290		sPCIModemReset(info->ctlp, info->chan, reset);
1291
1292	return 0;
1293}
1294
1295static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1296{
1297	if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1298		return -EFAULT;
1299	return 0;
1300}
1301
1302/*  IOCTL call handler into the driver */
1303static int rp_ioctl(struct tty_struct *tty,
1304		    unsigned int cmd, unsigned long arg)
1305{
1306	struct r_port *info = tty->driver_data;
1307	void __user *argp = (void __user *)arg;
1308	int ret = 0;
1309
1310	if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1311		return -ENXIO;
1312
1313	switch (cmd) {
1314	case RCKP_GET_STRUCT:
1315		if (copy_to_user(argp, info, sizeof (struct r_port)))
1316			ret = -EFAULT;
1317		break;
1318	case RCKP_GET_CONFIG:
 
 
1319		ret = get_config(info, argp);
1320		break;
1321	case RCKP_SET_CONFIG:
 
 
1322		ret = set_config(tty, info, argp);
1323		break;
1324	case RCKP_GET_PORTS:
 
 
1325		ret = get_ports(info, argp);
1326		break;
1327	case RCKP_RESET_RM2:
 
 
1328		ret = reset_rm2(info, argp);
1329		break;
1330	case RCKP_GET_VERSION:
 
 
1331		ret = get_version(info, argp);
1332		break;
1333	default:
1334		ret = -ENOIOCTLCMD;
1335	}
1336	return ret;
1337}
1338
1339static void rp_send_xchar(struct tty_struct *tty, char ch)
1340{
1341	struct r_port *info = tty->driver_data;
1342	CHANNEL_t *cp;
1343
1344	if (rocket_paranoia_check(info, "rp_send_xchar"))
1345		return;
1346
1347	cp = &info->channel;
1348	if (sGetTxCnt(cp))
1349		sWriteTxPrioByte(cp, ch);
1350	else
1351		sWriteTxByte(sGetTxRxDataIO(cp), ch);
1352}
1353
1354static void rp_throttle(struct tty_struct *tty)
1355{
1356	struct r_port *info = tty->driver_data;
1357
1358#ifdef ROCKET_DEBUG_THROTTLE
1359	printk(KERN_INFO "throttle %s ....\n", tty->name);
1360#endif
1361
1362	if (rocket_paranoia_check(info, "rp_throttle"))
1363		return;
1364
1365	if (I_IXOFF(tty))
1366		rp_send_xchar(tty, STOP_CHAR(tty));
1367
1368	sClrRTS(&info->channel);
1369}
1370
1371static void rp_unthrottle(struct tty_struct *tty)
1372{
1373	struct r_port *info = tty->driver_data;
1374#ifdef ROCKET_DEBUG_THROTTLE
1375	printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1376#endif
1377
1378	if (rocket_paranoia_check(info, "rp_unthrottle"))
1379		return;
1380
1381	if (I_IXOFF(tty))
1382		rp_send_xchar(tty, START_CHAR(tty));
1383
1384	sSetRTS(&info->channel);
1385}
1386
1387/*
1388 * ------------------------------------------------------------
1389 * rp_stop() and rp_start()
1390 *
1391 * This routines are called before setting or resetting tty->stopped.
1392 * They enable or disable transmitter interrupts, as necessary.
1393 * ------------------------------------------------------------
1394 */
1395static void rp_stop(struct tty_struct *tty)
1396{
1397	struct r_port *info = tty->driver_data;
1398
1399#ifdef ROCKET_DEBUG_FLOW
1400	printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1401	       info->xmit_cnt, info->xmit_fifo_room);
1402#endif
1403
1404	if (rocket_paranoia_check(info, "rp_stop"))
1405		return;
1406
1407	if (sGetTxCnt(&info->channel))
1408		sDisTransmit(&info->channel);
1409}
1410
1411static void rp_start(struct tty_struct *tty)
1412{
1413	struct r_port *info = tty->driver_data;
1414
1415#ifdef ROCKET_DEBUG_FLOW
1416	printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1417	       info->xmit_cnt, info->xmit_fifo_room);
1418#endif
1419
1420	if (rocket_paranoia_check(info, "rp_stop"))
1421		return;
1422
1423	sEnTransmit(&info->channel);
1424	set_bit((info->aiop * 8) + info->chan,
1425		(void *) &xmit_flags[info->board]);
1426}
1427
1428/*
1429 * rp_wait_until_sent() --- wait until the transmitter is empty
1430 */
1431static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1432{
1433	struct r_port *info = tty->driver_data;
1434	CHANNEL_t *cp;
1435	unsigned long orig_jiffies;
1436	int check_time, exit_time;
1437	int txcnt;
1438
1439	if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1440		return;
1441
1442	cp = &info->channel;
1443
1444	orig_jiffies = jiffies;
1445#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1446	printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1447	       jiffies);
1448	printk(KERN_INFO "cps=%d...\n", info->cps);
1449#endif
1450	while (1) {
1451		txcnt = sGetTxCnt(cp);
1452		if (!txcnt) {
1453			if (sGetChanStatusLo(cp) & TXSHRMT)
1454				break;
1455			check_time = (HZ / info->cps) / 5;
1456		} else {
1457			check_time = HZ * txcnt / info->cps;
1458		}
1459		if (timeout) {
1460			exit_time = orig_jiffies + timeout - jiffies;
1461			if (exit_time <= 0)
1462				break;
1463			if (exit_time < check_time)
1464				check_time = exit_time;
1465		}
1466		if (check_time == 0)
1467			check_time = 1;
1468#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1469		printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1470				jiffies, check_time);
1471#endif
1472		msleep_interruptible(jiffies_to_msecs(check_time));
1473		if (signal_pending(current))
1474			break;
1475	}
1476	__set_current_state(TASK_RUNNING);
1477#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1478	printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1479#endif
1480}
1481
1482/*
1483 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1484 */
1485static void rp_hangup(struct tty_struct *tty)
1486{
1487	CHANNEL_t *cp;
1488	struct r_port *info = tty->driver_data;
1489	unsigned long flags;
1490
1491	if (rocket_paranoia_check(info, "rp_hangup"))
1492		return;
1493
1494#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1495	printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1496#endif
1497	rp_flush_buffer(tty);
1498	spin_lock_irqsave(&info->port.lock, flags);
1499	if (info->port.count)
1500		atomic_dec(&rp_num_ports_open);
1501	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1502	spin_unlock_irqrestore(&info->port.lock, flags);
1503
1504	tty_port_hangup(&info->port);
1505
1506	cp = &info->channel;
1507	sDisRxFIFO(cp);
1508	sDisTransmit(cp);
1509	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1510	sDisCTSFlowCtl(cp);
1511	sDisTxSoftFlowCtl(cp);
1512	sClrTxXOFF(cp);
1513	tty_port_set_initialized(&info->port, 0);
1514
1515	wake_up_interruptible(&info->port.open_wait);
1516}
1517
1518/*
1519 *  Exception handler - write char routine.  The RocketPort driver uses a
1520 *  double-buffering strategy, with the twist that if the in-memory CPU
1521 *  buffer is empty, and there's space in the transmit FIFO, the
1522 *  writing routines will write directly to transmit FIFO.
1523 *  Write buffer and counters protected by spinlocks
1524 */
1525static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1526{
1527	struct r_port *info = tty->driver_data;
1528	CHANNEL_t *cp;
1529	unsigned long flags;
1530
1531	if (rocket_paranoia_check(info, "rp_put_char"))
1532		return 0;
1533
1534	/*
1535	 * Grab the port write mutex, locking out other processes that try to
1536	 * write to this port
1537	 */
1538	mutex_lock(&info->write_mtx);
1539
1540#ifdef ROCKET_DEBUG_WRITE
1541	printk(KERN_INFO "rp_put_char %c...\n", ch);
1542#endif
1543
1544	spin_lock_irqsave(&info->slock, flags);
1545	cp = &info->channel;
1546
1547	if (!tty->stopped && info->xmit_fifo_room == 0)
1548		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1549
1550	if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1551		info->xmit_buf[info->xmit_head++] = ch;
1552		info->xmit_head &= XMIT_BUF_SIZE - 1;
1553		info->xmit_cnt++;
1554		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1555	} else {
1556		sOutB(sGetTxRxDataIO(cp), ch);
1557		info->xmit_fifo_room--;
1558	}
1559	spin_unlock_irqrestore(&info->slock, flags);
1560	mutex_unlock(&info->write_mtx);
1561	return 1;
1562}
1563
1564/*
1565 *  Exception handler - write routine, called when user app writes to the device.
1566 *  A per port write mutex is used to protect from another process writing to
1567 *  this port at the same time.  This other process could be running on the other CPU
1568 *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1569 *  Spinlocks protect the info xmit members.
1570 */
1571static int rp_write(struct tty_struct *tty,
1572		    const unsigned char *buf, int count)
1573{
1574	struct r_port *info = tty->driver_data;
1575	CHANNEL_t *cp;
1576	const unsigned char *b;
1577	int c, retval = 0;
1578	unsigned long flags;
1579
1580	if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1581		return 0;
1582
1583	if (mutex_lock_interruptible(&info->write_mtx))
1584		return -ERESTARTSYS;
1585
1586#ifdef ROCKET_DEBUG_WRITE
1587	printk(KERN_INFO "rp_write %d chars...\n", count);
1588#endif
1589	cp = &info->channel;
1590
1591	if (!tty->stopped && info->xmit_fifo_room < count)
1592		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1593
1594        /*
1595	 *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1596	 *  into FIFO.  Use the write queue for temp storage.
1597         */
1598	if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1599		c = min(count, info->xmit_fifo_room);
1600		b = buf;
1601
1602		/*  Push data into FIFO, 2 bytes at a time */
1603		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1604
1605		/*  If there is a byte remaining, write it */
1606		if (c & 1)
1607			sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1608
1609		retval += c;
1610		buf += c;
1611		count -= c;
1612
1613		spin_lock_irqsave(&info->slock, flags);
1614		info->xmit_fifo_room -= c;
1615		spin_unlock_irqrestore(&info->slock, flags);
1616	}
1617
1618	/* If count is zero, we wrote it all and are done */
1619	if (!count)
1620		goto end;
1621
1622	/*  Write remaining data into the port's xmit_buf */
1623	while (1) {
1624		/* Hung up ? */
1625		if (!tty_port_active(&info->port))
1626			goto end;
1627		c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1628		c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1629		if (c <= 0)
1630			break;
1631
1632		b = buf;
1633		memcpy(info->xmit_buf + info->xmit_head, b, c);
1634
1635		spin_lock_irqsave(&info->slock, flags);
1636		info->xmit_head =
1637		    (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1638		info->xmit_cnt += c;
1639		spin_unlock_irqrestore(&info->slock, flags);
1640
1641		buf += c;
1642		count -= c;
1643		retval += c;
1644	}
1645
1646	if ((retval > 0) && !tty->stopped)
1647		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1648	
1649end:
1650 	if (info->xmit_cnt < WAKEUP_CHARS) {
1651 		tty_wakeup(tty);
1652#ifdef ROCKETPORT_HAVE_POLL_WAIT
1653		wake_up_interruptible(&tty->poll_wait);
1654#endif
1655	}
1656	mutex_unlock(&info->write_mtx);
1657	return retval;
1658}
1659
1660/*
1661 * Return the number of characters that can be sent.  We estimate
1662 * only using the in-memory transmit buffer only, and ignore the
1663 * potential space in the transmit FIFO.
1664 */
1665static int rp_write_room(struct tty_struct *tty)
1666{
1667	struct r_port *info = tty->driver_data;
1668	int ret;
1669
1670	if (rocket_paranoia_check(info, "rp_write_room"))
1671		return 0;
1672
1673	ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1674	if (ret < 0)
1675		ret = 0;
1676#ifdef ROCKET_DEBUG_WRITE
1677	printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1678#endif
1679	return ret;
1680}
1681
1682/*
1683 * Return the number of characters in the buffer.  Again, this only
1684 * counts those characters in the in-memory transmit buffer.
1685 */
1686static int rp_chars_in_buffer(struct tty_struct *tty)
1687{
1688	struct r_port *info = tty->driver_data;
1689
1690	if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1691		return 0;
1692
1693#ifdef ROCKET_DEBUG_WRITE
1694	printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1695#endif
1696	return info->xmit_cnt;
1697}
1698
1699/*
1700 *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1701 *  r_port struct for the port.  Note that spinlock are used to protect info members,
1702 *  do not call this function if the spinlock is already held.
1703 */
1704static void rp_flush_buffer(struct tty_struct *tty)
1705{
1706	struct r_port *info = tty->driver_data;
1707	CHANNEL_t *cp;
1708	unsigned long flags;
1709
1710	if (rocket_paranoia_check(info, "rp_flush_buffer"))
1711		return;
1712
1713	spin_lock_irqsave(&info->slock, flags);
1714	info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1715	spin_unlock_irqrestore(&info->slock, flags);
1716
1717#ifdef ROCKETPORT_HAVE_POLL_WAIT
1718	wake_up_interruptible(&tty->poll_wait);
1719#endif
1720	tty_wakeup(tty);
1721
1722	cp = &info->channel;
1723	sFlushTxFIFO(cp);
1724}
1725
1726#ifdef CONFIG_PCI
1727
1728static const struct pci_device_id rocket_pci_ids[] = {
1729	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1730	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1731	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1732	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1733	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1734	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1735	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1736	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1737	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1738	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1739	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1740	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1741	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1742	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1743	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1744	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1745	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1746	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1747	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1748	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1749	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1750	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1751	{ }
1752};
1753MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1754
1755/*  Resets the speaker controller on RocketModem II and III devices */
1756static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1757{
1758	ByteIO_t addr;
1759
1760	/* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1761	if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1762		addr = CtlP->AiopIO[0] + 0x4F;
1763		sOutB(addr, 0);
1764	}
1765
1766	/* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1767	if ((model == MODEL_UPCI_RM3_8PORT)
1768	    || (model == MODEL_UPCI_RM3_4PORT)) {
1769		addr = CtlP->AiopIO[0] + 0x88;
1770		sOutB(addr, 0);
1771	}
1772}
1773
1774/***************************************************************************
1775Function: sPCIInitController
1776Purpose:  Initialization of controller global registers and controller
1777          structure.
1778Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1779                          IRQNum,Frequency,PeriodicOnly)
1780          CONTROLLER_T *CtlP; Ptr to controller structure
1781          int CtlNum; Controller number
1782          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1783             This list must be in the order the AIOPs will be found on the
1784             controller.  Once an AIOP in the list is not found, it is
1785             assumed that there are no more AIOPs on the controller.
1786          int AiopIOListSize; Number of addresses in AiopIOList
1787          int IRQNum; Interrupt Request number.  Can be any of the following:
1788                         0: Disable global interrupts
1789                         3: IRQ 3
1790                         4: IRQ 4
1791                         5: IRQ 5
1792                         9: IRQ 9
1793                         10: IRQ 10
1794                         11: IRQ 11
1795                         12: IRQ 12
1796                         15: IRQ 15
1797          Byte_t Frequency: A flag identifying the frequency
1798                   of the periodic interrupt, can be any one of the following:
1799                      FREQ_DIS - periodic interrupt disabled
1800                      FREQ_137HZ - 137 Hertz
1801                      FREQ_69HZ - 69 Hertz
1802                      FREQ_34HZ - 34 Hertz
1803                      FREQ_17HZ - 17 Hertz
1804                      FREQ_9HZ - 9 Hertz
1805                      FREQ_4HZ - 4 Hertz
1806                   If IRQNum is set to 0 the Frequency parameter is
1807                   overidden, it is forced to a value of FREQ_DIS.
1808          int PeriodicOnly: 1 if all interrupts except the periodic
1809                               interrupt are to be blocked.
1810                            0 is both the periodic interrupt and
1811                               other channel interrupts are allowed.
1812                            If IRQNum is set to 0 the PeriodicOnly parameter is
1813                               overidden, it is forced to a value of 0.
1814Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
1815               initialization failed.
1816
1817Comments:
1818          If periodic interrupts are to be disabled but AIOP interrupts
1819          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1820
1821          If interrupts are to be completely disabled set IRQNum to 0.
1822
1823          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1824          invalid combination.
1825
1826          This function performs initialization of global interrupt modes,
1827          but it does not actually enable global interrupts.  To enable
1828          and disable global interrupts use functions sEnGlobalInt() and
1829          sDisGlobalInt().  Enabling of global interrupts is normally not
1830          done until all other initializations are complete.
1831
1832          Even if interrupts are globally enabled, they must also be
1833          individually enabled for each channel that is to generate
1834          interrupts.
1835
1836Warnings: No range checking on any of the parameters is done.
1837
1838          No context switches are allowed while executing this function.
1839
1840          After this function all AIOPs on the controller are disabled,
1841          they can be enabled with sEnAiop().
1842*/
1843static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1844			      ByteIO_t * AiopIOList, int AiopIOListSize,
1845			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1846			      int PeriodicOnly, int altChanRingIndicator,
1847			      int UPCIRingInd)
1848{
1849	int i;
1850	ByteIO_t io;
1851
1852	CtlP->AltChanRingIndicator = altChanRingIndicator;
1853	CtlP->UPCIRingInd = UPCIRingInd;
1854	CtlP->CtlNum = CtlNum;
1855	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
1856	CtlP->BusType = isPCI;	/* controller release 1 */
1857
1858	if (ConfigIO) {
1859		CtlP->isUPCI = 1;
1860		CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1861		CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1862		CtlP->AiopIntrBits = upci_aiop_intr_bits;
1863	} else {
1864		CtlP->isUPCI = 0;
1865		CtlP->PCIIO =
1866		    (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1867		CtlP->AiopIntrBits = aiop_intr_bits;
1868	}
1869
1870	sPCIControllerEOI(CtlP);	/* clear EOI if warm init */
1871	/* Init AIOPs */
1872	CtlP->NumAiop = 0;
1873	for (i = 0; i < AiopIOListSize; i++) {
1874		io = AiopIOList[i];
1875		CtlP->AiopIO[i] = (WordIO_t) io;
1876		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1877
1878		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
1879		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
1880			break;	/* done looking for AIOPs */
1881
1882		CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
1883		sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
1884		sOutB(io + _INDX_DATA, sClockPrescale);
1885		CtlP->NumAiop++;	/* bump count of AIOPs */
1886	}
1887
1888	if (CtlP->NumAiop == 0)
1889		return (-1);
1890	else
1891		return (CtlP->NumAiop);
1892}
1893
1894/*
1895 *  Called when a PCI card is found.  Retrieves and stores model information,
1896 *  init's aiopic and serial port hardware.
1897 *  Inputs:  i is the board number (0-n)
1898 */
1899static __init int register_PCI(int i, struct pci_dev *dev)
1900{
1901	int num_aiops, aiop, max_num_aiops, num_chan, chan;
1902	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1903	CONTROLLER_t *ctlp;
1904
1905	int fast_clock = 0;
1906	int altChanRingIndicator = 0;
1907	int ports_per_aiop = 8;
1908	WordIO_t ConfigIO = 0;
1909	ByteIO_t UPCIRingInd = 0;
1910
1911	if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1912	    pci_enable_device(dev))
1913		return 0;
1914
1915	rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1916
1917	rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1918	rocketModel[i].loadrm2 = 0;
1919	rocketModel[i].startingPortNumber = nextLineNumber;
1920
1921	/*  Depending on the model, set up some config variables */
1922	switch (dev->device) {
1923	case PCI_DEVICE_ID_RP4QUAD:
1924		max_num_aiops = 1;
1925		ports_per_aiop = 4;
1926		rocketModel[i].model = MODEL_RP4QUAD;
1927		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1928		rocketModel[i].numPorts = 4;
1929		break;
1930	case PCI_DEVICE_ID_RP8OCTA:
1931		max_num_aiops = 1;
1932		rocketModel[i].model = MODEL_RP8OCTA;
1933		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1934		rocketModel[i].numPorts = 8;
1935		break;
1936	case PCI_DEVICE_ID_URP8OCTA:
1937		max_num_aiops = 1;
1938		rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1939		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1940		rocketModel[i].numPorts = 8;
1941		break;
1942	case PCI_DEVICE_ID_RP8INTF:
1943		max_num_aiops = 1;
1944		rocketModel[i].model = MODEL_RP8INTF;
1945		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1946		rocketModel[i].numPorts = 8;
1947		break;
1948	case PCI_DEVICE_ID_URP8INTF:
1949		max_num_aiops = 1;
1950		rocketModel[i].model = MODEL_UPCI_RP8INTF;
1951		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1952		rocketModel[i].numPorts = 8;
1953		break;
1954	case PCI_DEVICE_ID_RP8J:
1955		max_num_aiops = 1;
1956		rocketModel[i].model = MODEL_RP8J;
1957		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1958		rocketModel[i].numPorts = 8;
1959		break;
1960	case PCI_DEVICE_ID_RP4J:
1961		max_num_aiops = 1;
1962		ports_per_aiop = 4;
1963		rocketModel[i].model = MODEL_RP4J;
1964		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1965		rocketModel[i].numPorts = 4;
1966		break;
1967	case PCI_DEVICE_ID_RP8SNI:
1968		max_num_aiops = 1;
1969		rocketModel[i].model = MODEL_RP8SNI;
1970		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1971		rocketModel[i].numPorts = 8;
1972		break;
1973	case PCI_DEVICE_ID_RP16SNI:
1974		max_num_aiops = 2;
1975		rocketModel[i].model = MODEL_RP16SNI;
1976		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1977		rocketModel[i].numPorts = 16;
1978		break;
1979	case PCI_DEVICE_ID_RP16INTF:
1980		max_num_aiops = 2;
1981		rocketModel[i].model = MODEL_RP16INTF;
1982		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1983		rocketModel[i].numPorts = 16;
1984		break;
1985	case PCI_DEVICE_ID_URP16INTF:
1986		max_num_aiops = 2;
1987		rocketModel[i].model = MODEL_UPCI_RP16INTF;
1988		strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1989		rocketModel[i].numPorts = 16;
1990		break;
1991	case PCI_DEVICE_ID_CRP16INTF:
1992		max_num_aiops = 2;
1993		rocketModel[i].model = MODEL_CPCI_RP16INTF;
1994		strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1995		rocketModel[i].numPorts = 16;
1996		break;
1997	case PCI_DEVICE_ID_RP32INTF:
1998		max_num_aiops = 4;
1999		rocketModel[i].model = MODEL_RP32INTF;
2000		strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
2001		rocketModel[i].numPorts = 32;
2002		break;
2003	case PCI_DEVICE_ID_URP32INTF:
2004		max_num_aiops = 4;
2005		rocketModel[i].model = MODEL_UPCI_RP32INTF;
2006		strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
2007		rocketModel[i].numPorts = 32;
2008		break;
2009	case PCI_DEVICE_ID_RPP4:
2010		max_num_aiops = 1;
2011		ports_per_aiop = 4;
2012		altChanRingIndicator++;
2013		fast_clock++;
2014		rocketModel[i].model = MODEL_RPP4;
2015		strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2016		rocketModel[i].numPorts = 4;
2017		break;
2018	case PCI_DEVICE_ID_RPP8:
2019		max_num_aiops = 2;
2020		ports_per_aiop = 4;
2021		altChanRingIndicator++;
2022		fast_clock++;
2023		rocketModel[i].model = MODEL_RPP8;
2024		strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2025		rocketModel[i].numPorts = 8;
2026		break;
2027	case PCI_DEVICE_ID_RP2_232:
2028		max_num_aiops = 1;
2029		ports_per_aiop = 2;
2030		altChanRingIndicator++;
2031		fast_clock++;
2032		rocketModel[i].model = MODEL_RP2_232;
2033		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2034		rocketModel[i].numPorts = 2;
2035		break;
2036	case PCI_DEVICE_ID_RP2_422:
2037		max_num_aiops = 1;
2038		ports_per_aiop = 2;
2039		altChanRingIndicator++;
2040		fast_clock++;
2041		rocketModel[i].model = MODEL_RP2_422;
2042		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2043		rocketModel[i].numPorts = 2;
2044		break;
2045	case PCI_DEVICE_ID_RP6M:
2046
2047		max_num_aiops = 1;
2048		ports_per_aiop = 6;
2049
2050		/*  If revision is 1, the rocketmodem flash must be loaded.
2051		 *  If it is 2 it is a "socketed" version. */
2052		if (dev->revision == 1) {
2053			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2054			rocketModel[i].loadrm2 = 1;
2055		} else {
2056			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2057		}
2058
2059		rocketModel[i].model = MODEL_RP6M;
2060		strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2061		rocketModel[i].numPorts = 6;
2062		break;
2063	case PCI_DEVICE_ID_RP4M:
2064		max_num_aiops = 1;
2065		ports_per_aiop = 4;
2066		if (dev->revision == 1) {
2067			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2068			rocketModel[i].loadrm2 = 1;
2069		} else {
2070			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2071		}
2072
2073		rocketModel[i].model = MODEL_RP4M;
2074		strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2075		rocketModel[i].numPorts = 4;
2076		break;
2077	default:
2078		max_num_aiops = 0;
2079		break;
2080	}
2081
2082	/*
2083	 * Check for UPCI boards.
2084	 */
2085
2086	switch (dev->device) {
2087	case PCI_DEVICE_ID_URP32INTF:
2088	case PCI_DEVICE_ID_URP8INTF:
2089	case PCI_DEVICE_ID_URP16INTF:
2090	case PCI_DEVICE_ID_CRP16INTF:
2091	case PCI_DEVICE_ID_URP8OCTA:
2092		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2093		ConfigIO = pci_resource_start(dev, 1);
2094		if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2095			UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2096
2097			/*
2098			 * Check for octa or quad cable.
2099			 */
2100			if (!
2101			    (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2102			     PCI_GPIO_CTRL_8PORT)) {
2103				ports_per_aiop = 4;
2104				rocketModel[i].numPorts = 4;
2105			}
2106		}
2107		break;
2108	case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2109		max_num_aiops = 1;
2110		rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2111		strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2112		rocketModel[i].numPorts = 8;
2113		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2114		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2115		ConfigIO = pci_resource_start(dev, 1);
2116		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2117		break;
2118	case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2119		max_num_aiops = 1;
2120		rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2121		strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2122		rocketModel[i].numPorts = 4;
2123		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2124		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2125		ConfigIO = pci_resource_start(dev, 1);
2126		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2127		break;
2128	default:
2129		break;
2130	}
2131
2132	if (fast_clock) {
2133		sClockPrescale = 0x12;	/* mod 2 (divide by 3) */
2134		rp_baud_base[i] = 921600;
2135	} else {
2136		/*
2137		 * If support_low_speed is set, use the slow clock
2138		 * prescale, which supports 50 bps
2139		 */
2140		if (support_low_speed) {
2141			/* mod 9 (divide by 10) prescale */
2142			sClockPrescale = 0x19;
2143			rp_baud_base[i] = 230400;
2144		} else {
2145			/* mod 4 (divide by 5) prescale */
2146			sClockPrescale = 0x14;
2147			rp_baud_base[i] = 460800;
2148		}
2149	}
2150
2151	for (aiop = 0; aiop < max_num_aiops; aiop++)
2152		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2153	ctlp = sCtlNumToCtlPtr(i);
2154	num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2155	for (aiop = 0; aiop < max_num_aiops; aiop++)
2156		ctlp->AiopNumChan[aiop] = ports_per_aiop;
2157
2158	dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2159		"address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2160		i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2161		rocketModel[i].startingPortNumber,
2162		rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2163
2164	if (num_aiops <= 0) {
2165		rcktpt_io_addr[i] = 0;
2166		return (0);
2167	}
2168	is_PCI[i] = 1;
2169
2170	/*  Reset the AIOPIC, init the serial ports */
2171	for (aiop = 0; aiop < num_aiops; aiop++) {
2172		sResetAiopByNum(ctlp, aiop);
2173		num_chan = ports_per_aiop;
2174		for (chan = 0; chan < num_chan; chan++)
2175			init_r_port(i, aiop, chan, dev);
2176	}
2177
2178	/*  Rocket modems must be reset */
2179	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2180	    (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2181	    (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2182		num_chan = ports_per_aiop;
2183		for (chan = 0; chan < num_chan; chan++)
2184			sPCIModemReset(ctlp, chan, 1);
2185		msleep(500);
2186		for (chan = 0; chan < num_chan; chan++)
2187			sPCIModemReset(ctlp, chan, 0);
2188		msleep(500);
2189		rmSpeakerReset(ctlp, rocketModel[i].model);
2190	}
2191	return (1);
2192}
2193
2194/*
2195 *  Probes for PCI cards, inits them if found
2196 *  Input:   board_found = number of ISA boards already found, or the
2197 *           starting board number
2198 *  Returns: Number of PCI boards found
2199 */
2200static int __init init_PCI(int boards_found)
2201{
2202	struct pci_dev *dev = NULL;
2203	int count = 0;
2204
2205	/*  Work through the PCI device list, pulling out ours */
2206	while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2207		if (register_PCI(count + boards_found, dev))
2208			count++;
2209	}
2210	return (count);
2211}
2212
2213#endif				/* CONFIG_PCI */
2214
2215/*
2216 *  Probes for ISA cards
2217 *  Input:   i = the board number to look for
2218 *  Returns: 1 if board found, 0 else
2219 */
2220static int __init init_ISA(int i)
2221{
2222	int num_aiops, num_chan = 0, total_num_chan = 0;
2223	int aiop, chan;
2224	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2225	CONTROLLER_t *ctlp;
2226	char *type_string;
2227
2228	/*  If io_addr is zero, no board configured */
2229	if (rcktpt_io_addr[i] == 0)
2230		return (0);
2231
2232	/*  Reserve the IO region */
2233	if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2234		printk(KERN_ERR "Unable to reserve IO region for configured "
2235				"ISA RocketPort at address 0x%lx, board not "
2236				"installed...\n", rcktpt_io_addr[i]);
2237		rcktpt_io_addr[i] = 0;
2238		return (0);
2239	}
2240
2241	ctlp = sCtlNumToCtlPtr(i);
2242
2243	ctlp->boardType = rcktpt_type[i];
2244
2245	switch (rcktpt_type[i]) {
2246	case ROCKET_TYPE_PC104:
2247		type_string = "(PC104)";
2248		break;
2249	case ROCKET_TYPE_MODEM:
2250		type_string = "(RocketModem)";
2251		break;
2252	case ROCKET_TYPE_MODEMII:
2253		type_string = "(RocketModem II)";
2254		break;
2255	default:
2256		type_string = "";
2257		break;
2258	}
2259
2260	/*
2261	 * If support_low_speed is set, use the slow clock prescale,
2262	 * which supports 50 bps
2263	 */
2264	if (support_low_speed) {
2265		sClockPrescale = 0x19;	/* mod 9 (divide by 10) prescale */
2266		rp_baud_base[i] = 230400;
2267	} else {
2268		sClockPrescale = 0x14;	/* mod 4 (divide by 5) prescale */
2269		rp_baud_base[i] = 460800;
2270	}
2271
2272	for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2273		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2274
2275	num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2276
2277	if (ctlp->boardType == ROCKET_TYPE_PC104) {
2278		sEnAiop(ctlp, 2);	/* only one AIOPIC, but these */
2279		sEnAiop(ctlp, 3);	/* CSels used for other stuff */
2280	}
2281
2282	/*  If something went wrong initing the AIOP's release the ISA IO memory */
2283	if (num_aiops <= 0) {
2284		release_region(rcktpt_io_addr[i], 64);
2285		rcktpt_io_addr[i] = 0;
2286		return (0);
2287	}
2288  
2289	rocketModel[i].startingPortNumber = nextLineNumber;
2290
2291	for (aiop = 0; aiop < num_aiops; aiop++) {
2292		sResetAiopByNum(ctlp, aiop);
2293		sEnAiop(ctlp, aiop);
2294		num_chan = sGetAiopNumChan(ctlp, aiop);
2295		total_num_chan += num_chan;
2296		for (chan = 0; chan < num_chan; chan++)
2297			init_r_port(i, aiop, chan, NULL);
2298	}
2299	is_PCI[i] = 0;
2300	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2301		num_chan = sGetAiopNumChan(ctlp, 0);
2302		total_num_chan = num_chan;
2303		for (chan = 0; chan < num_chan; chan++)
2304			sModemReset(ctlp, chan, 1);
2305		msleep(500);
2306		for (chan = 0; chan < num_chan; chan++)
2307			sModemReset(ctlp, chan, 0);
2308		msleep(500);
2309		strcpy(rocketModel[i].modelString, "RocketModem ISA");
2310	} else {
2311		strcpy(rocketModel[i].modelString, "RocketPort ISA");
2312	}
2313	rocketModel[i].numPorts = total_num_chan;
2314	rocketModel[i].model = MODEL_ISA;
2315
2316	printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2317	       i, rcktpt_io_addr[i], num_aiops, type_string);
2318
2319	printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2320	       rocketModel[i].modelString,
2321	       rocketModel[i].startingPortNumber,
2322	       rocketModel[i].startingPortNumber +
2323	       rocketModel[i].numPorts - 1);
2324
2325	return (1);
2326}
2327
2328static const struct tty_operations rocket_ops = {
2329	.open = rp_open,
2330	.close = rp_close,
2331	.write = rp_write,
2332	.put_char = rp_put_char,
2333	.write_room = rp_write_room,
2334	.chars_in_buffer = rp_chars_in_buffer,
2335	.flush_buffer = rp_flush_buffer,
2336	.ioctl = rp_ioctl,
2337	.throttle = rp_throttle,
2338	.unthrottle = rp_unthrottle,
2339	.set_termios = rp_set_termios,
2340	.stop = rp_stop,
2341	.start = rp_start,
2342	.hangup = rp_hangup,
2343	.break_ctl = rp_break,
2344	.send_xchar = rp_send_xchar,
2345	.wait_until_sent = rp_wait_until_sent,
2346	.tiocmget = rp_tiocmget,
2347	.tiocmset = rp_tiocmset,
2348};
2349
2350static const struct tty_port_operations rocket_port_ops = {
2351	.carrier_raised = carrier_raised,
2352	.dtr_rts = dtr_rts,
2353};
2354
2355/*
2356 * The module "startup" routine; it's run when the module is loaded.
2357 */
2358static int __init rp_init(void)
2359{
2360	int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2361
2362	printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2363	       ROCKET_VERSION, ROCKET_DATE);
2364
2365	rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2366	if (!rocket_driver)
2367		goto err;
2368
2369	/*
2370	 *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2371	 *  zero, use the default controller IO address of board1 + 0x40.
2372	 */
2373	if (board1) {
2374		if (controller == 0)
2375			controller = board1 + 0x40;
2376	} else {
2377		controller = 0;  /*  Used as a flag, meaning no ISA boards */
2378	}
2379
2380	/*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2381	if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2382		printk(KERN_ERR "Unable to reserve IO region for first "
2383			"configured ISA RocketPort controller 0x%lx.  "
2384			"Driver exiting\n", controller);
2385		ret = -EBUSY;
2386		goto err_tty;
2387	}
2388
2389	/*  Store ISA variable retrieved from command line or .conf file. */
2390	rcktpt_io_addr[0] = board1;
2391	rcktpt_io_addr[1] = board2;
2392	rcktpt_io_addr[2] = board3;
2393	rcktpt_io_addr[3] = board4;
2394
2395	rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2396	rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2397	rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2398	rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2399	rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2400	rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2401	rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2402	rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2403
2404	/*
2405	 * Set up the tty driver structure and then register this
2406	 * driver with the tty layer.
2407	 */
2408
2409	rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2410	rocket_driver->name = "ttyR";
2411	rocket_driver->driver_name = "Comtrol RocketPort";
2412	rocket_driver->major = TTY_ROCKET_MAJOR;
2413	rocket_driver->minor_start = 0;
2414	rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2415	rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2416	rocket_driver->init_termios = tty_std_termios;
2417	rocket_driver->init_termios.c_cflag =
2418	    B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2419	rocket_driver->init_termios.c_ispeed = 9600;
2420	rocket_driver->init_termios.c_ospeed = 9600;
2421#ifdef ROCKET_SOFT_FLOW
2422	rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2423#endif
2424	tty_set_operations(rocket_driver, &rocket_ops);
2425
2426	ret = tty_register_driver(rocket_driver);
2427	if (ret < 0) {
2428		printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2429		goto err_controller;
2430	}
2431
2432#ifdef ROCKET_DEBUG_OPEN
2433	printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2434#endif
2435
2436	/*
2437	 *  OK, let's probe each of the controllers looking for boards.  Any boards found
2438         *  will be initialized here.
2439	 */
2440	isa_boards_found = 0;
2441	pci_boards_found = 0;
2442
2443	for (i = 0; i < NUM_BOARDS; i++) {
2444		if (init_ISA(i))
2445			isa_boards_found++;
2446	}
2447
2448#ifdef CONFIG_PCI
2449	if (isa_boards_found < NUM_BOARDS)
2450		pci_boards_found = init_PCI(isa_boards_found);
2451#endif
2452
2453	max_board = pci_boards_found + isa_boards_found;
2454
2455	if (max_board == 0) {
2456		printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2457		ret = -ENXIO;
2458		goto err_ttyu;
2459	}
2460
2461	return 0;
2462err_ttyu:
2463	tty_unregister_driver(rocket_driver);
2464err_controller:
2465	if (controller)
2466		release_region(controller, 4);
2467err_tty:
2468	put_tty_driver(rocket_driver);
2469err:
2470	return ret;
2471}
2472
2473
2474static void rp_cleanup_module(void)
2475{
2476	int retval;
2477	int i;
2478
2479	del_timer_sync(&rocket_timer);
2480
2481	retval = tty_unregister_driver(rocket_driver);
2482	if (retval)
2483		printk(KERN_ERR "Error %d while trying to unregister "
2484		       "rocketport driver\n", -retval);
2485
2486	for (i = 0; i < MAX_RP_PORTS; i++)
2487		if (rp_table[i]) {
2488			tty_unregister_device(rocket_driver, i);
2489			tty_port_destroy(&rp_table[i]->port);
2490			kfree(rp_table[i]);
2491		}
2492
2493	put_tty_driver(rocket_driver);
2494
2495	for (i = 0; i < NUM_BOARDS; i++) {
2496		if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2497			continue;
2498		release_region(rcktpt_io_addr[i], 64);
2499	}
2500	if (controller)
2501		release_region(controller, 4);
2502}
2503
2504/***************************************************************************
2505Function: sInitController
2506Purpose:  Initialization of controller global registers and controller
2507          structure.
2508Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2509                          IRQNum,Frequency,PeriodicOnly)
2510          CONTROLLER_T *CtlP; Ptr to controller structure
2511          int CtlNum; Controller number
2512          ByteIO_t MudbacIO; Mudbac base I/O address.
2513          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2514             This list must be in the order the AIOPs will be found on the
2515             controller.  Once an AIOP in the list is not found, it is
2516             assumed that there are no more AIOPs on the controller.
2517          int AiopIOListSize; Number of addresses in AiopIOList
2518          int IRQNum; Interrupt Request number.  Can be any of the following:
2519                         0: Disable global interrupts
2520                         3: IRQ 3
2521                         4: IRQ 4
2522                         5: IRQ 5
2523                         9: IRQ 9
2524                         10: IRQ 10
2525                         11: IRQ 11
2526                         12: IRQ 12
2527                         15: IRQ 15
2528          Byte_t Frequency: A flag identifying the frequency
2529                   of the periodic interrupt, can be any one of the following:
2530                      FREQ_DIS - periodic interrupt disabled
2531                      FREQ_137HZ - 137 Hertz
2532                      FREQ_69HZ - 69 Hertz
2533                      FREQ_34HZ - 34 Hertz
2534                      FREQ_17HZ - 17 Hertz
2535                      FREQ_9HZ - 9 Hertz
2536                      FREQ_4HZ - 4 Hertz
2537                   If IRQNum is set to 0 the Frequency parameter is
2538                   overidden, it is forced to a value of FREQ_DIS.
2539          int PeriodicOnly: 1 if all interrupts except the periodic
2540                               interrupt are to be blocked.
2541                            0 is both the periodic interrupt and
2542                               other channel interrupts are allowed.
2543                            If IRQNum is set to 0 the PeriodicOnly parameter is
2544                               overidden, it is forced to a value of 0.
2545Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2546               initialization failed.
2547
2548Comments:
2549          If periodic interrupts are to be disabled but AIOP interrupts
2550          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2551
2552          If interrupts are to be completely disabled set IRQNum to 0.
2553
2554          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2555          invalid combination.
2556
2557          This function performs initialization of global interrupt modes,
2558          but it does not actually enable global interrupts.  To enable
2559          and disable global interrupts use functions sEnGlobalInt() and
2560          sDisGlobalInt().  Enabling of global interrupts is normally not
2561          done until all other initializations are complete.
2562
2563          Even if interrupts are globally enabled, they must also be
2564          individually enabled for each channel that is to generate
2565          interrupts.
2566
2567Warnings: No range checking on any of the parameters is done.
2568
2569          No context switches are allowed while executing this function.
2570
2571          After this function all AIOPs on the controller are disabled,
2572          they can be enabled with sEnAiop().
2573*/
2574static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2575			   ByteIO_t * AiopIOList, int AiopIOListSize,
2576			   int IRQNum, Byte_t Frequency, int PeriodicOnly)
2577{
2578	int i;
2579	ByteIO_t io;
2580	int done;
2581
2582	CtlP->AiopIntrBits = aiop_intr_bits;
2583	CtlP->AltChanRingIndicator = 0;
2584	CtlP->CtlNum = CtlNum;
2585	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
2586	CtlP->BusType = isISA;
2587	CtlP->MBaseIO = MudbacIO;
2588	CtlP->MReg1IO = MudbacIO + 1;
2589	CtlP->MReg2IO = MudbacIO + 2;
2590	CtlP->MReg3IO = MudbacIO + 3;
2591#if 1
2592	CtlP->MReg2 = 0;	/* interrupt disable */
2593	CtlP->MReg3 = 0;	/* no periodic interrupts */
2594#else
2595	if (sIRQMap[IRQNum] == 0) {	/* interrupts globally disabled */
2596		CtlP->MReg2 = 0;	/* interrupt disable */
2597		CtlP->MReg3 = 0;	/* no periodic interrupts */
2598	} else {
2599		CtlP->MReg2 = sIRQMap[IRQNum];	/* set IRQ number */
2600		CtlP->MReg3 = Frequency;	/* set frequency */
2601		if (PeriodicOnly) {	/* periodic interrupt only */
2602			CtlP->MReg3 |= PERIODIC_ONLY;
2603		}
2604	}
2605#endif
2606	sOutB(CtlP->MReg2IO, CtlP->MReg2);
2607	sOutB(CtlP->MReg3IO, CtlP->MReg3);
2608	sControllerEOI(CtlP);	/* clear EOI if warm init */
2609	/* Init AIOPs */
2610	CtlP->NumAiop = 0;
2611	for (i = done = 0; i < AiopIOListSize; i++) {
2612		io = AiopIOList[i];
2613		CtlP->AiopIO[i] = (WordIO_t) io;
2614		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2615		sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03));	/* AIOP index */
2616		sOutB(MudbacIO, (Byte_t) (io >> 6));	/* set up AIOP I/O in MUDBAC */
2617		if (done)
2618			continue;
2619		sEnAiop(CtlP, i);	/* enable the AIOP */
2620		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
2621		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
2622			done = 1;	/* done looking for AIOPs */
2623		else {
2624			CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
2625			sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
2626			sOutB(io + _INDX_DATA, sClockPrescale);
2627			CtlP->NumAiop++;	/* bump count of AIOPs */
2628		}
2629		sDisAiop(CtlP, i);	/* disable AIOP */
2630	}
2631
2632	if (CtlP->NumAiop == 0)
2633		return (-1);
2634	else
2635		return (CtlP->NumAiop);
2636}
2637
2638/***************************************************************************
2639Function: sReadAiopID
2640Purpose:  Read the AIOP idenfication number directly from an AIOP.
2641Call:     sReadAiopID(io)
2642          ByteIO_t io: AIOP base I/O address
2643Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2644                 is replace by an identifying number.
2645          Flag AIOPID_NULL if no valid AIOP is found
2646Warnings: No context switches are allowed while executing this function.
2647
2648*/
2649static int sReadAiopID(ByteIO_t io)
2650{
2651	Byte_t AiopID;		/* ID byte from AIOP */
2652
2653	sOutB(io + _CMD_REG, RESET_ALL);	/* reset AIOP */
2654	sOutB(io + _CMD_REG, 0x0);
2655	AiopID = sInW(io + _CHN_STAT0) & 0x07;
2656	if (AiopID == 0x06)
2657		return (1);
2658	else			/* AIOP does not exist */
2659		return (-1);
2660}
2661
2662/***************************************************************************
2663Function: sReadAiopNumChan
2664Purpose:  Read the number of channels available in an AIOP directly from
2665          an AIOP.
2666Call:     sReadAiopNumChan(io)
2667          WordIO_t io: AIOP base I/O address
2668Return:   int: The number of channels available
2669Comments: The number of channels is determined by write/reads from identical
2670          offsets within the SRAM address spaces for channels 0 and 4.
2671          If the channel 4 space is mirrored to channel 0 it is a 4 channel
2672          AIOP, otherwise it is an 8 channel.
2673Warnings: No context switches are allowed while executing this function.
2674*/
2675static int sReadAiopNumChan(WordIO_t io)
2676{
2677	Word_t x;
2678	static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2679
2680	/* write to chan 0 SRAM */
2681	out32((DWordIO_t) io + _INDX_ADDR, R);
2682	sOutW(io + _INDX_ADDR, 0);	/* read from SRAM, chan 0 */
2683	x = sInW(io + _INDX_DATA);
2684	sOutW(io + _INDX_ADDR, 0x4000);	/* read from SRAM, chan 4 */
2685	if (x != sInW(io + _INDX_DATA))	/* if different must be 8 chan */
2686		return (8);
2687	else
2688		return (4);
2689}
2690
2691/***************************************************************************
2692Function: sInitChan
2693Purpose:  Initialization of a channel and channel structure
2694Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2695          CONTROLLER_T *CtlP; Ptr to controller structure
2696          CHANNEL_T *ChP; Ptr to channel structure
2697          int AiopNum; AIOP number within controller
2698          int ChanNum; Channel number within AIOP
2699Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2700               number exceeds number of channels available in AIOP.
2701Comments: This function must be called before a channel can be used.
2702Warnings: No range checking on any of the parameters is done.
2703
2704          No context switches are allowed while executing this function.
2705*/
2706static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2707		     int ChanNum)
2708{
2709	int i;
2710	WordIO_t AiopIO;
2711	WordIO_t ChIOOff;
2712	Byte_t *ChR;
2713	Word_t ChOff;
2714	static Byte_t R[4];
2715	int brd9600;
2716
2717	if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2718		return 0;	/* exceeds num chans in AIOP */
2719
2720	/* Channel, AIOP, and controller identifiers */
2721	ChP->CtlP = CtlP;
2722	ChP->ChanID = CtlP->AiopID[AiopNum];
2723	ChP->AiopNum = AiopNum;
2724	ChP->ChanNum = ChanNum;
2725
2726	/* Global direct addresses */
2727	AiopIO = CtlP->AiopIO[AiopNum];
2728	ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2729	ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2730	ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2731	ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2732	ChP->IndexData = AiopIO + _INDX_DATA;
2733
2734	/* Channel direct addresses */
2735	ChIOOff = AiopIO + ChP->ChanNum * 2;
2736	ChP->TxRxData = ChIOOff + _TD0;
2737	ChP->ChanStat = ChIOOff + _CHN_STAT0;
2738	ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2739	ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2740
2741	/* Initialize the channel from the RData array */
2742	for (i = 0; i < RDATASIZE; i += 4) {
2743		R[0] = RData[i];
2744		R[1] = RData[i + 1] + 0x10 * ChanNum;
2745		R[2] = RData[i + 2];
2746		R[3] = RData[i + 3];
2747		out32(ChP->IndexAddr, R);
2748	}
2749
2750	ChR = ChP->R;
2751	for (i = 0; i < RREGDATASIZE; i += 4) {
2752		ChR[i] = RRegData[i];
2753		ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2754		ChR[i + 2] = RRegData[i + 2];
2755		ChR[i + 3] = RRegData[i + 3];
2756	}
2757
2758	/* Indexed registers */
2759	ChOff = (Word_t) ChanNum *0x1000;
2760
2761	if (sClockPrescale == 0x14)
2762		brd9600 = 47;
2763	else
2764		brd9600 = 23;
2765
2766	ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2767	ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2768	ChP->BaudDiv[2] = (Byte_t) brd9600;
2769	ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2770	out32(ChP->IndexAddr, ChP->BaudDiv);
2771
2772	ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2773	ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2774	ChP->TxControl[2] = 0;
2775	ChP->TxControl[3] = 0;
2776	out32(ChP->IndexAddr, ChP->TxControl);
2777
2778	ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2779	ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2780	ChP->RxControl[2] = 0;
2781	ChP->RxControl[3] = 0;
2782	out32(ChP->IndexAddr, ChP->RxControl);
2783
2784	ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2785	ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2786	ChP->TxEnables[2] = 0;
2787	ChP->TxEnables[3] = 0;
2788	out32(ChP->IndexAddr, ChP->TxEnables);
2789
2790	ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2791	ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2792	ChP->TxCompare[2] = 0;
2793	ChP->TxCompare[3] = 0;
2794	out32(ChP->IndexAddr, ChP->TxCompare);
2795
2796	ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2797	ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2798	ChP->TxReplace1[2] = 0;
2799	ChP->TxReplace1[3] = 0;
2800	out32(ChP->IndexAddr, ChP->TxReplace1);
2801
2802	ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2803	ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2804	ChP->TxReplace2[2] = 0;
2805	ChP->TxReplace2[3] = 0;
2806	out32(ChP->IndexAddr, ChP->TxReplace2);
2807
2808	ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2809	ChP->TxFIFO = ChOff + _TX_FIFO;
2810
2811	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);	/* apply reset Tx FIFO count */
2812	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Tx FIFO count */
2813	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2814	sOutW(ChP->IndexData, 0);
2815	ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2816	ChP->RxFIFO = ChOff + _RX_FIFO;
2817
2818	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);	/* apply reset Rx FIFO count */
2819	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Rx FIFO count */
2820	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2821	sOutW(ChP->IndexData, 0);
2822	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2823	sOutW(ChP->IndexData, 0);
2824	ChP->TxPrioCnt = ChOff + _TXP_CNT;
2825	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2826	sOutB(ChP->IndexData, 0);
2827	ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2828	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2829	sOutB(ChP->IndexData, 0);
2830	ChP->TxPrioBuf = ChOff + _TXP_BUF;
2831	sEnRxProcessor(ChP);	/* start the Rx processor */
2832
2833	return 1;
2834}
2835
2836/***************************************************************************
2837Function: sStopRxProcessor
2838Purpose:  Stop the receive processor from processing a channel.
2839Call:     sStopRxProcessor(ChP)
2840          CHANNEL_T *ChP; Ptr to channel structure
2841
2842Comments: The receive processor can be started again with sStartRxProcessor().
2843          This function causes the receive processor to skip over the
2844          stopped channel.  It does not stop it from processing other channels.
2845
2846Warnings: No context switches are allowed while executing this function.
2847
2848          Do not leave the receive processor stopped for more than one
2849          character time.
2850
2851          After calling this function a delay of 4 uS is required to ensure
2852          that the receive processor is no longer processing this channel.
2853*/
2854static void sStopRxProcessor(CHANNEL_T * ChP)
2855{
2856	Byte_t R[4];
2857
2858	R[0] = ChP->R[0];
2859	R[1] = ChP->R[1];
2860	R[2] = 0x0a;
2861	R[3] = ChP->R[3];
2862	out32(ChP->IndexAddr, R);
2863}
2864
2865/***************************************************************************
2866Function: sFlushRxFIFO
2867Purpose:  Flush the Rx FIFO
2868Call:     sFlushRxFIFO(ChP)
2869          CHANNEL_T *ChP; Ptr to channel structure
2870Return:   void
2871Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2872          while it is being flushed the receive processor is stopped
2873          and the transmitter is disabled.  After these operations a
2874          4 uS delay is done before clearing the pointers to allow
2875          the receive processor to stop.  These items are handled inside
2876          this function.
2877Warnings: No context switches are allowed while executing this function.
2878*/
2879static void sFlushRxFIFO(CHANNEL_T * ChP)
2880{
2881	int i;
2882	Byte_t Ch;		/* channel number within AIOP */
2883	int RxFIFOEnabled;	/* 1 if Rx FIFO enabled */
2884
2885	if (sGetRxCnt(ChP) == 0)	/* Rx FIFO empty */
2886		return;		/* don't need to flush */
2887
2888	RxFIFOEnabled = 0;
2889	if (ChP->R[0x32] == 0x08) {	/* Rx FIFO is enabled */
2890		RxFIFOEnabled = 1;
2891		sDisRxFIFO(ChP);	/* disable it */
2892		for (i = 0; i < 2000 / 200; i++)	/* delay 2 uS to allow proc to disable FIFO */
2893			sInB(ChP->IntChan);	/* depends on bus i/o timing */
2894	}
2895	sGetChanStatus(ChP);	/* clear any pending Rx errors in chan stat */
2896	Ch = (Byte_t) sGetChanNum(ChP);
2897	sOutB(ChP->Cmd, Ch | RESRXFCNT);	/* apply reset Rx FIFO count */
2898	sOutB(ChP->Cmd, Ch);	/* remove reset Rx FIFO count */
2899	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2900	sOutW(ChP->IndexData, 0);
2901	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2902	sOutW(ChP->IndexData, 0);
2903	if (RxFIFOEnabled)
2904		sEnRxFIFO(ChP);	/* enable Rx FIFO */
2905}
2906
2907/***************************************************************************
2908Function: sFlushTxFIFO
2909Purpose:  Flush the Tx FIFO
2910Call:     sFlushTxFIFO(ChP)
2911          CHANNEL_T *ChP; Ptr to channel structure
2912Return:   void
2913Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2914          while it is being flushed the receive processor is stopped
2915          and the transmitter is disabled.  After these operations a
2916          4 uS delay is done before clearing the pointers to allow
2917          the receive processor to stop.  These items are handled inside
2918          this function.
2919Warnings: No context switches are allowed while executing this function.
2920*/
2921static void sFlushTxFIFO(CHANNEL_T * ChP)
2922{
2923	int i;
2924	Byte_t Ch;		/* channel number within AIOP */
2925	int TxEnabled;		/* 1 if transmitter enabled */
2926
2927	if (sGetTxCnt(ChP) == 0)	/* Tx FIFO empty */
2928		return;		/* don't need to flush */
2929
2930	TxEnabled = 0;
2931	if (ChP->TxControl[3] & TX_ENABLE) {
2932		TxEnabled = 1;
2933		sDisTransmit(ChP);	/* disable transmitter */
2934	}
2935	sStopRxProcessor(ChP);	/* stop Rx processor */
2936	for (i = 0; i < 4000 / 200; i++)	/* delay 4 uS to allow proc to stop */
2937		sInB(ChP->IntChan);	/* depends on bus i/o timing */
2938	Ch = (Byte_t) sGetChanNum(ChP);
2939	sOutB(ChP->Cmd, Ch | RESTXFCNT);	/* apply reset Tx FIFO count */
2940	sOutB(ChP->Cmd, Ch);	/* remove reset Tx FIFO count */
2941	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2942	sOutW(ChP->IndexData, 0);
2943	if (TxEnabled)
2944		sEnTransmit(ChP);	/* enable transmitter */
2945	sStartRxProcessor(ChP);	/* restart Rx processor */
2946}
2947
2948/***************************************************************************
2949Function: sWriteTxPrioByte
2950Purpose:  Write a byte of priority transmit data to a channel
2951Call:     sWriteTxPrioByte(ChP,Data)
2952          CHANNEL_T *ChP; Ptr to channel structure
2953          Byte_t Data; The transmit data byte
2954
2955Return:   int: 1 if the bytes is successfully written, otherwise 0.
2956
2957Comments: The priority byte is transmitted before any data in the Tx FIFO.
2958
2959Warnings: No context switches are allowed while executing this function.
2960*/
2961static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2962{
2963	Byte_t DWBuf[4];	/* buffer for double word writes */
2964	Word_t *WordPtr;	/* must be far because Win SS != DS */
2965	register DWordIO_t IndexAddr;
2966
2967	if (sGetTxCnt(ChP) > 1) {	/* write it to Tx priority buffer */
2968		IndexAddr = ChP->IndexAddr;
2969		sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);	/* get priority buffer status */
2970		if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND)	/* priority buffer busy */
2971			return (0);	/* nothing sent */
2972
2973		WordPtr = (Word_t *) (&DWBuf[0]);
2974		*WordPtr = ChP->TxPrioBuf;	/* data byte address */
2975
2976		DWBuf[2] = Data;	/* data byte value */
2977		out32(IndexAddr, DWBuf);	/* write it out */
2978
2979		*WordPtr = ChP->TxPrioCnt;	/* Tx priority count address */
2980
2981		DWBuf[2] = PRI_PEND + 1;	/* indicate 1 byte pending */
2982		DWBuf[3] = 0;	/* priority buffer pointer */
2983		out32(IndexAddr, DWBuf);	/* write it out */
2984	} else {		/* write it to Tx FIFO */
2985
2986		sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2987	}
2988	return (1);		/* 1 byte sent */
2989}
2990
2991/***************************************************************************
2992Function: sEnInterrupts
2993Purpose:  Enable one or more interrupts for a channel
2994Call:     sEnInterrupts(ChP,Flags)
2995          CHANNEL_T *ChP; Ptr to channel structure
2996          Word_t Flags: Interrupt enable flags, can be any combination
2997             of the following flags:
2998                TXINT_EN:   Interrupt on Tx FIFO empty
2999                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3000                            sSetRxTrigger())
3001                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3002                MCINT_EN:   Interrupt on modem input change
3003                CHANINT_EN: Allow channel interrupt signal to the AIOP's
3004                            Interrupt Channel Register.
3005Return:   void
3006Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3007          enabled.  If an interrupt enable flag is not set in Flags, that
3008          interrupt will not be changed.  Interrupts can be disabled with
3009          function sDisInterrupts().
3010
3011          This function sets the appropriate bit for the channel in the AIOP's
3012          Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
3013          this channel's bit to be set in the AIOP's Interrupt Channel Register.
3014
3015          Interrupts must also be globally enabled before channel interrupts
3016          will be passed on to the host.  This is done with function
3017          sEnGlobalInt().
3018
3019          In some cases it may be desirable to disable interrupts globally but
3020          enable channel interrupts.  This would allow the global interrupt
3021          status register to be used to determine which AIOPs need service.
3022*/
3023static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3024{
3025	Byte_t Mask;		/* Interrupt Mask Register */
3026
3027	ChP->RxControl[2] |=
3028	    ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3029
3030	out32(ChP->IndexAddr, ChP->RxControl);
3031
3032	ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3033
3034	out32(ChP->IndexAddr, ChP->TxControl);
3035
3036	if (Flags & CHANINT_EN) {
3037		Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3038		sOutB(ChP->IntMask, Mask);
3039	}
3040}
3041
3042/***************************************************************************
3043Function: sDisInterrupts
3044Purpose:  Disable one or more interrupts for a channel
3045Call:     sDisInterrupts(ChP,Flags)
3046          CHANNEL_T *ChP; Ptr to channel structure
3047          Word_t Flags: Interrupt flags, can be any combination
3048             of the following flags:
3049                TXINT_EN:   Interrupt on Tx FIFO empty
3050                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3051                            sSetRxTrigger())
3052                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3053                MCINT_EN:   Interrupt on modem input change
3054                CHANINT_EN: Disable channel interrupt signal to the
3055                            AIOP's Interrupt Channel Register.
3056Return:   void
3057Comments: If an interrupt flag is set in Flags, that interrupt will be
3058          disabled.  If an interrupt flag is not set in Flags, that
3059          interrupt will not be changed.  Interrupts can be enabled with
3060          function sEnInterrupts().
3061
3062          This function clears the appropriate bit for the channel in the AIOP's
3063          Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3064          this channel's bit from being set in the AIOP's Interrupt Channel
3065          Register.
3066*/
3067static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3068{
3069	Byte_t Mask;		/* Interrupt Mask Register */
3070
3071	ChP->RxControl[2] &=
3072	    ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3073	out32(ChP->IndexAddr, ChP->RxControl);
3074	ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3075	out32(ChP->IndexAddr, ChP->TxControl);
3076
3077	if (Flags & CHANINT_EN) {
3078		Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3079		sOutB(ChP->IntMask, Mask);
3080	}
3081}
3082
3083static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3084{
3085	sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3086}
3087
3088/*
3089 *  Not an official SSCI function, but how to reset RocketModems.
3090 *  ISA bus version
3091 */
3092static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3093{
3094	ByteIO_t addr;
3095	Byte_t val;
3096
3097	addr = CtlP->AiopIO[0] + 0x400;
3098	val = sInB(CtlP->MReg3IO);
3099	/* if AIOP[1] is not enabled, enable it */
3100	if ((val & 2) == 0) {
3101		val = sInB(CtlP->MReg2IO);
3102		sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3103		sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3104	}
3105
3106	sEnAiop(CtlP, 1);
3107	if (!on)
3108		addr += 8;
3109	sOutB(addr + chan, 0);	/* apply or remove reset */
3110	sDisAiop(CtlP, 1);
3111}
3112
3113/*
3114 *  Not an official SSCI function, but how to reset RocketModems.
3115 *  PCI bus version
3116 */
3117static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3118{
3119	ByteIO_t addr;
3120
3121	addr = CtlP->AiopIO[0] + 0x40;	/* 2nd AIOP */
3122	if (!on)
3123		addr += 8;
3124	sOutB(addr + chan, 0);	/* apply or remove reset */
3125}
3126
3127/*  Returns the line number given the controller (board), aiop and channel number */
3128static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3129{
3130	return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3131}
3132
3133/*
3134 *  Stores the line number associated with a given controller (board), aiop
3135 *  and channel number.  
3136 *  Returns:  The line number assigned 
3137 */
3138static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3139{
3140	lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3141	return (nextLineNumber - 1);
3142}