Loading...
1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * RocketPort device driver for Linux
4 *
5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
6 *
7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
8 */
9
10/*
11 * Kernel Synchronization:
12 *
13 * This driver has 2 kernel control paths - exception handlers (calls into the driver
14 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
15 * are not used.
16 *
17 * Critical data:
18 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
19 * serial port state information and the xmit_buf circular buffer. Protected by
20 * a per port spinlock.
21 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
22 * is data to be transmitted. Protected by atomic bit operations.
23 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
24 *
25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
26 * simultaneous access to the same port by more than one process.
27 */
28
29/****** Defines ******/
30#define ROCKET_PARANOIA_CHECK
31#define ROCKET_DISABLE_SIMUSAGE
32
33#undef ROCKET_SOFT_FLOW
34#undef ROCKET_DEBUG_OPEN
35#undef ROCKET_DEBUG_INTR
36#undef ROCKET_DEBUG_WRITE
37#undef ROCKET_DEBUG_FLOW
38#undef ROCKET_DEBUG_THROTTLE
39#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
40#undef ROCKET_DEBUG_RECEIVE
41#undef ROCKET_DEBUG_HANGUP
42#undef REV_PCI_ORDER
43#undef ROCKET_DEBUG_IO
44
45#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
46
47/****** Kernel includes ******/
48
49#include <linux/module.h>
50#include <linux/errno.h>
51#include <linux/major.h>
52#include <linux/kernel.h>
53#include <linux/signal.h>
54#include <linux/slab.h>
55#include <linux/mm.h>
56#include <linux/sched.h>
57#include <linux/timer.h>
58#include <linux/interrupt.h>
59#include <linux/tty.h>
60#include <linux/tty_driver.h>
61#include <linux/tty_flip.h>
62#include <linux/serial.h>
63#include <linux/string.h>
64#include <linux/fcntl.h>
65#include <linux/ptrace.h>
66#include <linux/mutex.h>
67#include <linux/ioport.h>
68#include <linux/delay.h>
69#include <linux/completion.h>
70#include <linux/wait.h>
71#include <linux/pci.h>
72#include <linux/uaccess.h>
73#include <linux/atomic.h>
74#include <asm/unaligned.h>
75#include <linux/bitops.h>
76#include <linux/spinlock.h>
77#include <linux/init.h>
78
79/****** RocketPort includes ******/
80
81#include "rocket_int.h"
82#include "rocket.h"
83
84#define ROCKET_VERSION "2.09"
85#define ROCKET_DATE "12-June-2003"
86
87/****** RocketPort Local Variables ******/
88
89static void rp_do_poll(struct timer_list *unused);
90
91static struct tty_driver *rocket_driver;
92
93static struct rocket_version driver_version = {
94 ROCKET_VERSION, ROCKET_DATE
95};
96
97static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
98static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
99 /* eg. Bit 0 indicates port 0 has xmit data, ... */
100static atomic_t rp_num_ports_open; /* Number of serial ports open */
101static DEFINE_TIMER(rocket_timer, rp_do_poll);
102
103static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
104static unsigned long board2;
105static unsigned long board3;
106static unsigned long board4;
107static unsigned long controller;
108static bool support_low_speed;
109static unsigned long modem1;
110static unsigned long modem2;
111static unsigned long modem3;
112static unsigned long modem4;
113static unsigned long pc104_1[8];
114static unsigned long pc104_2[8];
115static unsigned long pc104_3[8];
116static unsigned long pc104_4[8];
117static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
118
119static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
120static unsigned long rcktpt_io_addr[NUM_BOARDS];
121static int rcktpt_type[NUM_BOARDS];
122static int is_PCI[NUM_BOARDS];
123static rocketModel_t rocketModel[NUM_BOARDS];
124static int max_board;
125static const struct tty_port_operations rocket_port_ops;
126
127/*
128 * The following arrays define the interrupt bits corresponding to each AIOP.
129 * These bits are different between the ISA and regular PCI boards and the
130 * Universal PCI boards.
131 */
132
133static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
134 AIOP_INTR_BIT_0,
135 AIOP_INTR_BIT_1,
136 AIOP_INTR_BIT_2,
137 AIOP_INTR_BIT_3
138};
139
140#ifdef CONFIG_PCI
141static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
142 UPCI_AIOP_INTR_BIT_0,
143 UPCI_AIOP_INTR_BIT_1,
144 UPCI_AIOP_INTR_BIT_2,
145 UPCI_AIOP_INTR_BIT_3
146};
147#endif
148
149static Byte_t RData[RDATASIZE] = {
150 0x00, 0x09, 0xf6, 0x82,
151 0x02, 0x09, 0x86, 0xfb,
152 0x04, 0x09, 0x00, 0x0a,
153 0x06, 0x09, 0x01, 0x0a,
154 0x08, 0x09, 0x8a, 0x13,
155 0x0a, 0x09, 0xc5, 0x11,
156 0x0c, 0x09, 0x86, 0x85,
157 0x0e, 0x09, 0x20, 0x0a,
158 0x10, 0x09, 0x21, 0x0a,
159 0x12, 0x09, 0x41, 0xff,
160 0x14, 0x09, 0x82, 0x00,
161 0x16, 0x09, 0x82, 0x7b,
162 0x18, 0x09, 0x8a, 0x7d,
163 0x1a, 0x09, 0x88, 0x81,
164 0x1c, 0x09, 0x86, 0x7a,
165 0x1e, 0x09, 0x84, 0x81,
166 0x20, 0x09, 0x82, 0x7c,
167 0x22, 0x09, 0x0a, 0x0a
168};
169
170static Byte_t RRegData[RREGDATASIZE] = {
171 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
172 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
173 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
174 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
175 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
176 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
177 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
178 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
179 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
180 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
181 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
182 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
183 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
184};
185
186static CONTROLLER_T sController[CTL_SIZE] = {
187 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
188 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
189 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
190 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
191 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
192 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
193 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
194 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
195};
196
197static Byte_t sBitMapClrTbl[8] = {
198 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
199};
200
201static Byte_t sBitMapSetTbl[8] = {
202 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
203};
204
205static int sClockPrescale = 0x14;
206
207/*
208 * Line number is the ttySIx number (x), the Minor number. We
209 * assign them sequentially, starting at zero. The following
210 * array keeps track of the line number assigned to a given board/aiop/channel.
211 */
212static unsigned char lineNumbers[MAX_RP_PORTS];
213static unsigned long nextLineNumber;
214
215/***** RocketPort Static Prototypes *********/
216static int __init init_ISA(int i);
217static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
218static void rp_flush_buffer(struct tty_struct *tty);
219static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
220static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
221static void rp_start(struct tty_struct *tty);
222static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
223 int ChanNum);
224static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
225static void sFlushRxFIFO(CHANNEL_T * ChP);
226static void sFlushTxFIFO(CHANNEL_T * ChP);
227static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
228static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
229static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
230static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
231static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
232static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
233 ByteIO_t * AiopIOList, int AiopIOListSize,
234 int IRQNum, Byte_t Frequency, int PeriodicOnly);
235static int sReadAiopID(ByteIO_t io);
236static int sReadAiopNumChan(WordIO_t io);
237
238MODULE_AUTHOR("Theodore Ts'o");
239MODULE_DESCRIPTION("Comtrol RocketPort driver");
240module_param_hw(board1, ulong, ioport, 0);
241MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
242module_param_hw(board2, ulong, ioport, 0);
243MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
244module_param_hw(board3, ulong, ioport, 0);
245MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
246module_param_hw(board4, ulong, ioport, 0);
247MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
248module_param_hw(controller, ulong, ioport, 0);
249MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
250module_param(support_low_speed, bool, 0);
251MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
252module_param(modem1, ulong, 0);
253MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
254module_param(modem2, ulong, 0);
255MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
256module_param(modem3, ulong, 0);
257MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
258module_param(modem4, ulong, 0);
259MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
260module_param_array(pc104_1, ulong, NULL, 0);
261MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
262module_param_array(pc104_2, ulong, NULL, 0);
263MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
264module_param_array(pc104_3, ulong, NULL, 0);
265MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
266module_param_array(pc104_4, ulong, NULL, 0);
267MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
268
269static int __init rp_init(void);
270static void rp_cleanup_module(void);
271
272module_init(rp_init);
273module_exit(rp_cleanup_module);
274
275
276MODULE_LICENSE("Dual BSD/GPL");
277
278/*************************************************************************/
279/* Module code starts here */
280
281static inline int rocket_paranoia_check(struct r_port *info,
282 const char *routine)
283{
284#ifdef ROCKET_PARANOIA_CHECK
285 if (!info)
286 return 1;
287 if (info->magic != RPORT_MAGIC) {
288 printk(KERN_WARNING "Warning: bad magic number for rocketport "
289 "struct in %s\n", routine);
290 return 1;
291 }
292#endif
293 return 0;
294}
295
296
297/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
298 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
299 * tty layer.
300 */
301static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
302 unsigned int ChanStatus)
303{
304 unsigned int CharNStat;
305 int ToRecv, wRecv, space;
306 unsigned char *cbuf;
307
308 ToRecv = sGetRxCnt(cp);
309#ifdef ROCKET_DEBUG_INTR
310 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
311#endif
312 if (ToRecv == 0)
313 return;
314
315 /*
316 * if status indicates there are errored characters in the
317 * FIFO, then enter status mode (a word in FIFO holds
318 * character and status).
319 */
320 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
321 if (!(ChanStatus & STATMODE)) {
322#ifdef ROCKET_DEBUG_RECEIVE
323 printk(KERN_INFO "Entering STATMODE...\n");
324#endif
325 ChanStatus |= STATMODE;
326 sEnRxStatusMode(cp);
327 }
328 }
329
330 /*
331 * if we previously entered status mode, then read down the
332 * FIFO one word at a time, pulling apart the character and
333 * the status. Update error counters depending on status
334 */
335 if (ChanStatus & STATMODE) {
336#ifdef ROCKET_DEBUG_RECEIVE
337 printk(KERN_INFO "Ignore %x, read %x...\n",
338 info->ignore_status_mask, info->read_status_mask);
339#endif
340 while (ToRecv) {
341 char flag;
342
343 CharNStat = sInW(sGetTxRxDataIO(cp));
344#ifdef ROCKET_DEBUG_RECEIVE
345 printk(KERN_INFO "%x...\n", CharNStat);
346#endif
347 if (CharNStat & STMBREAKH)
348 CharNStat &= ~(STMFRAMEH | STMPARITYH);
349 if (CharNStat & info->ignore_status_mask) {
350 ToRecv--;
351 continue;
352 }
353 CharNStat &= info->read_status_mask;
354 if (CharNStat & STMBREAKH)
355 flag = TTY_BREAK;
356 else if (CharNStat & STMPARITYH)
357 flag = TTY_PARITY;
358 else if (CharNStat & STMFRAMEH)
359 flag = TTY_FRAME;
360 else if (CharNStat & STMRCVROVRH)
361 flag = TTY_OVERRUN;
362 else
363 flag = TTY_NORMAL;
364 tty_insert_flip_char(&info->port, CharNStat & 0xff,
365 flag);
366 ToRecv--;
367 }
368
369 /*
370 * after we've emptied the FIFO in status mode, turn
371 * status mode back off
372 */
373 if (sGetRxCnt(cp) == 0) {
374#ifdef ROCKET_DEBUG_RECEIVE
375 printk(KERN_INFO "Status mode off.\n");
376#endif
377 sDisRxStatusMode(cp);
378 }
379 } else {
380 /*
381 * we aren't in status mode, so read down the FIFO two
382 * characters at time by doing repeated word IO
383 * transfer.
384 */
385 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
386 if (space < ToRecv) {
387#ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
389#endif
390 if (space <= 0)
391 return;
392 ToRecv = space;
393 }
394 wRecv = ToRecv >> 1;
395 if (wRecv)
396 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
397 if (ToRecv & 1)
398 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
399 }
400 /* Push the data up to the tty layer */
401 tty_flip_buffer_push(&info->port);
402}
403
404/*
405 * Serial port transmit data function. Called from the timer polling loop as a
406 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
407 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
408 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
409 */
410static void rp_do_transmit(struct r_port *info)
411{
412 int c;
413 CHANNEL_t *cp = &info->channel;
414 struct tty_struct *tty;
415 unsigned long flags;
416
417#ifdef ROCKET_DEBUG_INTR
418 printk(KERN_DEBUG "%s\n", __func__);
419#endif
420 if (!info)
421 return;
422 tty = tty_port_tty_get(&info->port);
423
424 if (tty == NULL) {
425 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
426 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
427 return;
428 }
429
430 spin_lock_irqsave(&info->slock, flags);
431 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
432
433 /* Loop sending data to FIFO until done or FIFO full */
434 while (1) {
435 if (tty->stopped)
436 break;
437 c = min(info->xmit_fifo_room, info->xmit_cnt);
438 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
439 if (c <= 0 || info->xmit_fifo_room <= 0)
440 break;
441 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
442 if (c & 1)
443 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
444 info->xmit_tail += c;
445 info->xmit_tail &= XMIT_BUF_SIZE - 1;
446 info->xmit_cnt -= c;
447 info->xmit_fifo_room -= c;
448#ifdef ROCKET_DEBUG_INTR
449 printk(KERN_INFO "tx %d chars...\n", c);
450#endif
451 }
452
453 if (info->xmit_cnt == 0)
454 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
455
456 if (info->xmit_cnt < WAKEUP_CHARS) {
457 tty_wakeup(tty);
458#ifdef ROCKETPORT_HAVE_POLL_WAIT
459 wake_up_interruptible(&tty->poll_wait);
460#endif
461 }
462
463 spin_unlock_irqrestore(&info->slock, flags);
464 tty_kref_put(tty);
465
466#ifdef ROCKET_DEBUG_INTR
467 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
468 info->xmit_tail, info->xmit_fifo_room);
469#endif
470}
471
472/*
473 * Called when a serial port signals it has read data in it's RX FIFO.
474 * It checks what interrupts are pending and services them, including
475 * receiving serial data.
476 */
477static void rp_handle_port(struct r_port *info)
478{
479 CHANNEL_t *cp;
480 unsigned int IntMask, ChanStatus;
481
482 if (!info)
483 return;
484
485 if (!tty_port_initialized(&info->port)) {
486 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
487 "info->flags & NOT_INIT\n");
488 return;
489 }
490
491 cp = &info->channel;
492
493 IntMask = sGetChanIntID(cp) & info->intmask;
494#ifdef ROCKET_DEBUG_INTR
495 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
496#endif
497 ChanStatus = sGetChanStatus(cp);
498 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
499 rp_do_receive(info, cp, ChanStatus);
500 }
501 if (IntMask & DELTA_CD) { /* CD change */
502#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
503 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
504 (ChanStatus & CD_ACT) ? "on" : "off");
505#endif
506 if (!(ChanStatus & CD_ACT) && info->cd_status) {
507#ifdef ROCKET_DEBUG_HANGUP
508 printk(KERN_INFO "CD drop, calling hangup.\n");
509#endif
510 tty_port_tty_hangup(&info->port, false);
511 }
512 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
513 wake_up_interruptible(&info->port.open_wait);
514 }
515#ifdef ROCKET_DEBUG_INTR
516 if (IntMask & DELTA_CTS) { /* CTS change */
517 printk(KERN_INFO "CTS change...\n");
518 }
519 if (IntMask & DELTA_DSR) { /* DSR change */
520 printk(KERN_INFO "DSR change...\n");
521 }
522#endif
523}
524
525/*
526 * The top level polling routine. Repeats every 1/100 HZ (10ms).
527 */
528static void rp_do_poll(struct timer_list *unused)
529{
530 CONTROLLER_t *ctlp;
531 int ctrl, aiop, ch, line;
532 unsigned int xmitmask, i;
533 unsigned int CtlMask;
534 unsigned char AiopMask;
535 Word_t bit;
536
537 /* Walk through all the boards (ctrl's) */
538 for (ctrl = 0; ctrl < max_board; ctrl++) {
539 if (rcktpt_io_addr[ctrl] <= 0)
540 continue;
541
542 /* Get a ptr to the board's control struct */
543 ctlp = sCtlNumToCtlPtr(ctrl);
544
545 /* Get the interrupt status from the board */
546#ifdef CONFIG_PCI
547 if (ctlp->BusType == isPCI)
548 CtlMask = sPCIGetControllerIntStatus(ctlp);
549 else
550#endif
551 CtlMask = sGetControllerIntStatus(ctlp);
552
553 /* Check if any AIOP read bits are set */
554 for (aiop = 0; CtlMask; aiop++) {
555 bit = ctlp->AiopIntrBits[aiop];
556 if (CtlMask & bit) {
557 CtlMask &= ~bit;
558 AiopMask = sGetAiopIntStatus(ctlp, aiop);
559
560 /* Check if any port read bits are set */
561 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
562 if (AiopMask & 1) {
563
564 /* Get the line number (/dev/ttyRx number). */
565 /* Read the data from the port. */
566 line = GetLineNumber(ctrl, aiop, ch);
567 rp_handle_port(rp_table[line]);
568 }
569 }
570 }
571 }
572
573 xmitmask = xmit_flags[ctrl];
574
575 /*
576 * xmit_flags contains bit-significant flags, indicating there is data
577 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
578 * 1, ... (32 total possible). The variable i has the aiop and ch
579 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
580 */
581 if (xmitmask) {
582 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
583 if (xmitmask & (1 << i)) {
584 aiop = (i & 0x18) >> 3;
585 ch = i & 0x07;
586 line = GetLineNumber(ctrl, aiop, ch);
587 rp_do_transmit(rp_table[line]);
588 }
589 }
590 }
591 }
592
593 /*
594 * Reset the timer so we get called at the next clock tick (10ms).
595 */
596 if (atomic_read(&rp_num_ports_open))
597 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
598}
599
600/*
601 * Initializes the r_port structure for a port, as well as enabling the port on
602 * the board.
603 * Inputs: board, aiop, chan numbers
604 */
605static void __init
606init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
607{
608 unsigned rocketMode;
609 struct r_port *info;
610 int line;
611 CONTROLLER_T *ctlp;
612
613 /* Get the next available line number */
614 line = SetLineNumber(board, aiop, chan);
615
616 ctlp = sCtlNumToCtlPtr(board);
617
618 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
619 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
620 if (!info) {
621 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
622 line);
623 return;
624 }
625
626 info->magic = RPORT_MAGIC;
627 info->line = line;
628 info->ctlp = ctlp;
629 info->board = board;
630 info->aiop = aiop;
631 info->chan = chan;
632 tty_port_init(&info->port);
633 info->port.ops = &rocket_port_ops;
634 info->flags &= ~ROCKET_MODE_MASK;
635 if (board < ARRAY_SIZE(pc104) && line < ARRAY_SIZE(pc104_1))
636 switch (pc104[board][line]) {
637 case 422:
638 info->flags |= ROCKET_MODE_RS422;
639 break;
640 case 485:
641 info->flags |= ROCKET_MODE_RS485;
642 break;
643 case 232:
644 default:
645 info->flags |= ROCKET_MODE_RS232;
646 break;
647 }
648 else
649 info->flags |= ROCKET_MODE_RS232;
650
651 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
652 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
653 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
654 board, aiop, chan);
655 tty_port_destroy(&info->port);
656 kfree(info);
657 return;
658 }
659
660 rocketMode = info->flags & ROCKET_MODE_MASK;
661
662 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
663 sEnRTSToggle(&info->channel);
664 else
665 sDisRTSToggle(&info->channel);
666
667 if (ctlp->boardType == ROCKET_TYPE_PC104) {
668 switch (rocketMode) {
669 case ROCKET_MODE_RS485:
670 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
671 break;
672 case ROCKET_MODE_RS422:
673 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
674 break;
675 case ROCKET_MODE_RS232:
676 default:
677 if (info->flags & ROCKET_RTS_TOGGLE)
678 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
679 else
680 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
681 break;
682 }
683 }
684 spin_lock_init(&info->slock);
685 mutex_init(&info->write_mtx);
686 rp_table[line] = info;
687 tty_port_register_device(&info->port, rocket_driver, line,
688 pci_dev ? &pci_dev->dev : NULL);
689}
690
691/*
692 * Configures a rocketport port according to its termio settings. Called from
693 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
694 */
695static void configure_r_port(struct tty_struct *tty, struct r_port *info,
696 struct ktermios *old_termios)
697{
698 unsigned cflag;
699 unsigned long flags;
700 unsigned rocketMode;
701 int bits, baud, divisor;
702 CHANNEL_t *cp;
703 struct ktermios *t = &tty->termios;
704
705 cp = &info->channel;
706 cflag = t->c_cflag;
707
708 /* Byte size and parity */
709 if ((cflag & CSIZE) == CS8) {
710 sSetData8(cp);
711 bits = 10;
712 } else {
713 sSetData7(cp);
714 bits = 9;
715 }
716 if (cflag & CSTOPB) {
717 sSetStop2(cp);
718 bits++;
719 } else {
720 sSetStop1(cp);
721 }
722
723 if (cflag & PARENB) {
724 sEnParity(cp);
725 bits++;
726 if (cflag & PARODD) {
727 sSetOddParity(cp);
728 } else {
729 sSetEvenParity(cp);
730 }
731 } else {
732 sDisParity(cp);
733 }
734
735 /* baud rate */
736 baud = tty_get_baud_rate(tty);
737 if (!baud)
738 baud = 9600;
739 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
740 if ((divisor >= 8192 || divisor < 0) && old_termios) {
741 baud = tty_termios_baud_rate(old_termios);
742 if (!baud)
743 baud = 9600;
744 divisor = (rp_baud_base[info->board] / baud) - 1;
745 }
746 if (divisor >= 8192 || divisor < 0) {
747 baud = 9600;
748 divisor = (rp_baud_base[info->board] / baud) - 1;
749 }
750 info->cps = baud / bits;
751 sSetBaud(cp, divisor);
752
753 /* FIXME: Should really back compute a baud rate from the divisor */
754 tty_encode_baud_rate(tty, baud, baud);
755
756 if (cflag & CRTSCTS) {
757 info->intmask |= DELTA_CTS;
758 sEnCTSFlowCtl(cp);
759 } else {
760 info->intmask &= ~DELTA_CTS;
761 sDisCTSFlowCtl(cp);
762 }
763 if (cflag & CLOCAL) {
764 info->intmask &= ~DELTA_CD;
765 } else {
766 spin_lock_irqsave(&info->slock, flags);
767 if (sGetChanStatus(cp) & CD_ACT)
768 info->cd_status = 1;
769 else
770 info->cd_status = 0;
771 info->intmask |= DELTA_CD;
772 spin_unlock_irqrestore(&info->slock, flags);
773 }
774
775 /*
776 * Handle software flow control in the board
777 */
778#ifdef ROCKET_SOFT_FLOW
779 if (I_IXON(tty)) {
780 sEnTxSoftFlowCtl(cp);
781 if (I_IXANY(tty)) {
782 sEnIXANY(cp);
783 } else {
784 sDisIXANY(cp);
785 }
786 sSetTxXONChar(cp, START_CHAR(tty));
787 sSetTxXOFFChar(cp, STOP_CHAR(tty));
788 } else {
789 sDisTxSoftFlowCtl(cp);
790 sDisIXANY(cp);
791 sClrTxXOFF(cp);
792 }
793#endif
794
795 /*
796 * Set up ignore/read mask words
797 */
798 info->read_status_mask = STMRCVROVRH | 0xFF;
799 if (I_INPCK(tty))
800 info->read_status_mask |= STMFRAMEH | STMPARITYH;
801 if (I_BRKINT(tty) || I_PARMRK(tty))
802 info->read_status_mask |= STMBREAKH;
803
804 /*
805 * Characters to ignore
806 */
807 info->ignore_status_mask = 0;
808 if (I_IGNPAR(tty))
809 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
810 if (I_IGNBRK(tty)) {
811 info->ignore_status_mask |= STMBREAKH;
812 /*
813 * If we're ignoring parity and break indicators,
814 * ignore overruns too. (For real raw support).
815 */
816 if (I_IGNPAR(tty))
817 info->ignore_status_mask |= STMRCVROVRH;
818 }
819
820 rocketMode = info->flags & ROCKET_MODE_MASK;
821
822 if ((info->flags & ROCKET_RTS_TOGGLE)
823 || (rocketMode == ROCKET_MODE_RS485))
824 sEnRTSToggle(cp);
825 else
826 sDisRTSToggle(cp);
827
828 sSetRTS(&info->channel);
829
830 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
831 switch (rocketMode) {
832 case ROCKET_MODE_RS485:
833 sSetInterfaceMode(cp, InterfaceModeRS485);
834 break;
835 case ROCKET_MODE_RS422:
836 sSetInterfaceMode(cp, InterfaceModeRS422);
837 break;
838 case ROCKET_MODE_RS232:
839 default:
840 if (info->flags & ROCKET_RTS_TOGGLE)
841 sSetInterfaceMode(cp, InterfaceModeRS232T);
842 else
843 sSetInterfaceMode(cp, InterfaceModeRS232);
844 break;
845 }
846 }
847}
848
849static int carrier_raised(struct tty_port *port)
850{
851 struct r_port *info = container_of(port, struct r_port, port);
852 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
853}
854
855static void dtr_rts(struct tty_port *port, int on)
856{
857 struct r_port *info = container_of(port, struct r_port, port);
858 if (on) {
859 sSetDTR(&info->channel);
860 sSetRTS(&info->channel);
861 } else {
862 sClrDTR(&info->channel);
863 sClrRTS(&info->channel);
864 }
865}
866
867/*
868 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
869 * port's r_port struct. Initializes the port hardware.
870 */
871static int rp_open(struct tty_struct *tty, struct file *filp)
872{
873 struct r_port *info;
874 struct tty_port *port;
875 int retval;
876 CHANNEL_t *cp;
877 unsigned long page;
878
879 info = rp_table[tty->index];
880 if (info == NULL)
881 return -ENXIO;
882 port = &info->port;
883
884 page = __get_free_page(GFP_KERNEL);
885 if (!page)
886 return -ENOMEM;
887
888 /*
889 * We must not sleep from here until the port is marked fully in use.
890 */
891 if (info->xmit_buf)
892 free_page(page);
893 else
894 info->xmit_buf = (unsigned char *) page;
895
896 tty->driver_data = info;
897 tty_port_tty_set(port, tty);
898
899 if (port->count++ == 0) {
900 atomic_inc(&rp_num_ports_open);
901
902#ifdef ROCKET_DEBUG_OPEN
903 printk(KERN_INFO "rocket mod++ = %d...\n",
904 atomic_read(&rp_num_ports_open));
905#endif
906 }
907#ifdef ROCKET_DEBUG_OPEN
908 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
909#endif
910
911 /*
912 * Info->count is now 1; so it's safe to sleep now.
913 */
914 if (!tty_port_initialized(port)) {
915 cp = &info->channel;
916 sSetRxTrigger(cp, TRIG_1);
917 if (sGetChanStatus(cp) & CD_ACT)
918 info->cd_status = 1;
919 else
920 info->cd_status = 0;
921 sDisRxStatusMode(cp);
922 sFlushRxFIFO(cp);
923 sFlushTxFIFO(cp);
924
925 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
926 sSetRxTrigger(cp, TRIG_1);
927
928 sGetChanStatus(cp);
929 sDisRxStatusMode(cp);
930 sClrTxXOFF(cp);
931
932 sDisCTSFlowCtl(cp);
933 sDisTxSoftFlowCtl(cp);
934
935 sEnRxFIFO(cp);
936 sEnTransmit(cp);
937
938 tty_port_set_initialized(&info->port, 1);
939
940 configure_r_port(tty, info, NULL);
941 if (C_BAUD(tty)) {
942 sSetDTR(cp);
943 sSetRTS(cp);
944 }
945 }
946 /* Starts (or resets) the maint polling loop */
947 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
948
949 retval = tty_port_block_til_ready(port, tty, filp);
950 if (retval) {
951#ifdef ROCKET_DEBUG_OPEN
952 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
953#endif
954 return retval;
955 }
956 return 0;
957}
958
959/*
960 * Exception handler that closes a serial port. info->port.count is considered critical.
961 */
962static void rp_close(struct tty_struct *tty, struct file *filp)
963{
964 struct r_port *info = tty->driver_data;
965 struct tty_port *port = &info->port;
966 int timeout;
967 CHANNEL_t *cp;
968
969 if (rocket_paranoia_check(info, "rp_close"))
970 return;
971
972#ifdef ROCKET_DEBUG_OPEN
973 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
974#endif
975
976 if (tty_port_close_start(port, tty, filp) == 0)
977 return;
978
979 mutex_lock(&port->mutex);
980 cp = &info->channel;
981 /*
982 * Before we drop DTR, make sure the UART transmitter
983 * has completely drained; this is especially
984 * important if there is a transmit FIFO!
985 */
986 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
987 if (timeout == 0)
988 timeout = 1;
989 rp_wait_until_sent(tty, timeout);
990 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
991
992 sDisTransmit(cp);
993 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
994 sDisCTSFlowCtl(cp);
995 sDisTxSoftFlowCtl(cp);
996 sClrTxXOFF(cp);
997 sFlushRxFIFO(cp);
998 sFlushTxFIFO(cp);
999 sClrRTS(cp);
1000 if (C_HUPCL(tty))
1001 sClrDTR(cp);
1002
1003 rp_flush_buffer(tty);
1004
1005 tty_ldisc_flush(tty);
1006
1007 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1008
1009 /* We can't yet use tty_port_close_end as the buffer handling in this
1010 driver is a bit different to the usual */
1011
1012 if (port->blocked_open) {
1013 if (port->close_delay) {
1014 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1015 }
1016 wake_up_interruptible(&port->open_wait);
1017 } else {
1018 if (info->xmit_buf) {
1019 free_page((unsigned long) info->xmit_buf);
1020 info->xmit_buf = NULL;
1021 }
1022 }
1023 spin_lock_irq(&port->lock);
1024 tty->closing = 0;
1025 spin_unlock_irq(&port->lock);
1026 tty_port_set_initialized(port, 0);
1027 tty_port_set_active(port, 0);
1028 mutex_unlock(&port->mutex);
1029 tty_port_tty_set(port, NULL);
1030
1031 atomic_dec(&rp_num_ports_open);
1032
1033#ifdef ROCKET_DEBUG_OPEN
1034 printk(KERN_INFO "rocket mod-- = %d...\n",
1035 atomic_read(&rp_num_ports_open));
1036 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1037#endif
1038
1039}
1040
1041static void rp_set_termios(struct tty_struct *tty,
1042 struct ktermios *old_termios)
1043{
1044 struct r_port *info = tty->driver_data;
1045 CHANNEL_t *cp;
1046 unsigned cflag;
1047
1048 if (rocket_paranoia_check(info, "rp_set_termios"))
1049 return;
1050
1051 cflag = tty->termios.c_cflag;
1052
1053 /*
1054 * This driver doesn't support CS5 or CS6
1055 */
1056 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1057 tty->termios.c_cflag =
1058 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1059 /* Or CMSPAR */
1060 tty->termios.c_cflag &= ~CMSPAR;
1061
1062 configure_r_port(tty, info, old_termios);
1063
1064 cp = &info->channel;
1065
1066 /* Handle transition to B0 status */
1067 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1068 sClrDTR(cp);
1069 sClrRTS(cp);
1070 }
1071
1072 /* Handle transition away from B0 status */
1073 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1074 sSetRTS(cp);
1075 sSetDTR(cp);
1076 }
1077
1078 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1079 rp_start(tty);
1080}
1081
1082static int rp_break(struct tty_struct *tty, int break_state)
1083{
1084 struct r_port *info = tty->driver_data;
1085 unsigned long flags;
1086
1087 if (rocket_paranoia_check(info, "rp_break"))
1088 return -EINVAL;
1089
1090 spin_lock_irqsave(&info->slock, flags);
1091 if (break_state == -1)
1092 sSendBreak(&info->channel);
1093 else
1094 sClrBreak(&info->channel);
1095 spin_unlock_irqrestore(&info->slock, flags);
1096 return 0;
1097}
1098
1099/*
1100 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1101 * the UPCI boards was added, it was decided to make this a function because
1102 * the macro was getting too complicated. All cases except the first one
1103 * (UPCIRingInd) are taken directly from the original macro.
1104 */
1105static int sGetChanRI(CHANNEL_T * ChP)
1106{
1107 CONTROLLER_t *CtlP = ChP->CtlP;
1108 int ChanNum = ChP->ChanNum;
1109 int RingInd = 0;
1110
1111 if (CtlP->UPCIRingInd)
1112 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1113 else if (CtlP->AltChanRingIndicator)
1114 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1115 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1116 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1117
1118 return RingInd;
1119}
1120
1121/********************************************************************************************/
1122/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1123
1124/*
1125 * Returns the state of the serial modem control lines. These next 2 functions
1126 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1127 */
1128static int rp_tiocmget(struct tty_struct *tty)
1129{
1130 struct r_port *info = tty->driver_data;
1131 unsigned int control, result, ChanStatus;
1132
1133 ChanStatus = sGetChanStatusLo(&info->channel);
1134 control = info->channel.TxControl[3];
1135 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1136 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1137 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1138 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1139 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1140 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1141
1142 return result;
1143}
1144
1145/*
1146 * Sets the modem control lines
1147 */
1148static int rp_tiocmset(struct tty_struct *tty,
1149 unsigned int set, unsigned int clear)
1150{
1151 struct r_port *info = tty->driver_data;
1152
1153 if (set & TIOCM_RTS)
1154 info->channel.TxControl[3] |= SET_RTS;
1155 if (set & TIOCM_DTR)
1156 info->channel.TxControl[3] |= SET_DTR;
1157 if (clear & TIOCM_RTS)
1158 info->channel.TxControl[3] &= ~SET_RTS;
1159 if (clear & TIOCM_DTR)
1160 info->channel.TxControl[3] &= ~SET_DTR;
1161
1162 out32(info->channel.IndexAddr, info->channel.TxControl);
1163 return 0;
1164}
1165
1166static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1167{
1168 struct rocket_config tmp;
1169
1170 memset(&tmp, 0, sizeof (tmp));
1171 mutex_lock(&info->port.mutex);
1172 tmp.line = info->line;
1173 tmp.flags = info->flags;
1174 tmp.close_delay = info->port.close_delay;
1175 tmp.closing_wait = info->port.closing_wait;
1176 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1177 mutex_unlock(&info->port.mutex);
1178
1179 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1180 return -EFAULT;
1181 return 0;
1182}
1183
1184static int set_config(struct tty_struct *tty, struct r_port *info,
1185 struct rocket_config __user *new_info)
1186{
1187 struct rocket_config new_serial;
1188
1189 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1190 return -EFAULT;
1191
1192 mutex_lock(&info->port.mutex);
1193 if (!capable(CAP_SYS_ADMIN))
1194 {
1195 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1196 mutex_unlock(&info->port.mutex);
1197 return -EPERM;
1198 }
1199 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1200 mutex_unlock(&info->port.mutex);
1201 return 0;
1202 }
1203
1204 if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1205 /* warn about deprecation, unless clearing */
1206 if (new_serial.flags & ROCKET_SPD_MASK)
1207 dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1208 }
1209
1210 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1211 info->port.close_delay = new_serial.close_delay;
1212 info->port.closing_wait = new_serial.closing_wait;
1213
1214 mutex_unlock(&info->port.mutex);
1215
1216 configure_r_port(tty, info, NULL);
1217 return 0;
1218}
1219
1220/*
1221 * This function fills in a rocket_ports struct with information
1222 * about what boards/ports are in the system. This info is passed
1223 * to user space. See setrocket.c where the info is used to create
1224 * the /dev/ttyRx ports.
1225 */
1226static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1227{
1228 struct rocket_ports *tmp;
1229 int board, ret = 0;
1230
1231 tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
1232 if (!tmp)
1233 return -ENOMEM;
1234
1235 tmp->tty_major = rocket_driver->major;
1236
1237 for (board = 0; board < 4; board++) {
1238 tmp->rocketModel[board].model = rocketModel[board].model;
1239 strcpy(tmp->rocketModel[board].modelString,
1240 rocketModel[board].modelString);
1241 tmp->rocketModel[board].numPorts = rocketModel[board].numPorts;
1242 tmp->rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1243 tmp->rocketModel[board].startingPortNumber =
1244 rocketModel[board].startingPortNumber;
1245 }
1246 if (copy_to_user(retports, tmp, sizeof(*retports)))
1247 ret = -EFAULT;
1248 kfree(tmp);
1249 return ret;
1250}
1251
1252static int reset_rm2(struct r_port *info, void __user *arg)
1253{
1254 int reset;
1255
1256 if (!capable(CAP_SYS_ADMIN))
1257 return -EPERM;
1258
1259 if (copy_from_user(&reset, arg, sizeof (int)))
1260 return -EFAULT;
1261 if (reset)
1262 reset = 1;
1263
1264 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1265 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1266 return -EINVAL;
1267
1268 if (info->ctlp->BusType == isISA)
1269 sModemReset(info->ctlp, info->chan, reset);
1270 else
1271 sPCIModemReset(info->ctlp, info->chan, reset);
1272
1273 return 0;
1274}
1275
1276static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1277{
1278 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1279 return -EFAULT;
1280 return 0;
1281}
1282
1283/* IOCTL call handler into the driver */
1284static int rp_ioctl(struct tty_struct *tty,
1285 unsigned int cmd, unsigned long arg)
1286{
1287 struct r_port *info = tty->driver_data;
1288 void __user *argp = (void __user *)arg;
1289 int ret = 0;
1290
1291 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1292 return -ENXIO;
1293
1294 switch (cmd) {
1295 case RCKP_GET_CONFIG:
1296 dev_warn_ratelimited(tty->dev,
1297 "RCKP_GET_CONFIG option is deprecated\n");
1298 ret = get_config(info, argp);
1299 break;
1300 case RCKP_SET_CONFIG:
1301 dev_warn_ratelimited(tty->dev,
1302 "RCKP_SET_CONFIG option is deprecated\n");
1303 ret = set_config(tty, info, argp);
1304 break;
1305 case RCKP_GET_PORTS:
1306 dev_warn_ratelimited(tty->dev,
1307 "RCKP_GET_PORTS option is deprecated\n");
1308 ret = get_ports(info, argp);
1309 break;
1310 case RCKP_RESET_RM2:
1311 dev_warn_ratelimited(tty->dev,
1312 "RCKP_RESET_RM2 option is deprecated\n");
1313 ret = reset_rm2(info, argp);
1314 break;
1315 case RCKP_GET_VERSION:
1316 dev_warn_ratelimited(tty->dev,
1317 "RCKP_GET_VERSION option is deprecated\n");
1318 ret = get_version(info, argp);
1319 break;
1320 default:
1321 ret = -ENOIOCTLCMD;
1322 }
1323 return ret;
1324}
1325
1326static void rp_send_xchar(struct tty_struct *tty, char ch)
1327{
1328 struct r_port *info = tty->driver_data;
1329 CHANNEL_t *cp;
1330
1331 if (rocket_paranoia_check(info, "rp_send_xchar"))
1332 return;
1333
1334 cp = &info->channel;
1335 if (sGetTxCnt(cp))
1336 sWriteTxPrioByte(cp, ch);
1337 else
1338 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1339}
1340
1341static void rp_throttle(struct tty_struct *tty)
1342{
1343 struct r_port *info = tty->driver_data;
1344
1345#ifdef ROCKET_DEBUG_THROTTLE
1346 printk(KERN_INFO "throttle %s ....\n", tty->name);
1347#endif
1348
1349 if (rocket_paranoia_check(info, "rp_throttle"))
1350 return;
1351
1352 if (I_IXOFF(tty))
1353 rp_send_xchar(tty, STOP_CHAR(tty));
1354
1355 sClrRTS(&info->channel);
1356}
1357
1358static void rp_unthrottle(struct tty_struct *tty)
1359{
1360 struct r_port *info = tty->driver_data;
1361#ifdef ROCKET_DEBUG_THROTTLE
1362 printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1363#endif
1364
1365 if (rocket_paranoia_check(info, "rp_unthrottle"))
1366 return;
1367
1368 if (I_IXOFF(tty))
1369 rp_send_xchar(tty, START_CHAR(tty));
1370
1371 sSetRTS(&info->channel);
1372}
1373
1374/*
1375 * ------------------------------------------------------------
1376 * rp_stop() and rp_start()
1377 *
1378 * This routines are called before setting or resetting tty->stopped.
1379 * They enable or disable transmitter interrupts, as necessary.
1380 * ------------------------------------------------------------
1381 */
1382static void rp_stop(struct tty_struct *tty)
1383{
1384 struct r_port *info = tty->driver_data;
1385
1386#ifdef ROCKET_DEBUG_FLOW
1387 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1388 info->xmit_cnt, info->xmit_fifo_room);
1389#endif
1390
1391 if (rocket_paranoia_check(info, "rp_stop"))
1392 return;
1393
1394 if (sGetTxCnt(&info->channel))
1395 sDisTransmit(&info->channel);
1396}
1397
1398static void rp_start(struct tty_struct *tty)
1399{
1400 struct r_port *info = tty->driver_data;
1401
1402#ifdef ROCKET_DEBUG_FLOW
1403 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1404 info->xmit_cnt, info->xmit_fifo_room);
1405#endif
1406
1407 if (rocket_paranoia_check(info, "rp_stop"))
1408 return;
1409
1410 sEnTransmit(&info->channel);
1411 set_bit((info->aiop * 8) + info->chan,
1412 (void *) &xmit_flags[info->board]);
1413}
1414
1415/*
1416 * rp_wait_until_sent() --- wait until the transmitter is empty
1417 */
1418static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1419{
1420 struct r_port *info = tty->driver_data;
1421 CHANNEL_t *cp;
1422 unsigned long orig_jiffies;
1423 int check_time, exit_time;
1424 int txcnt;
1425
1426 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1427 return;
1428
1429 cp = &info->channel;
1430
1431 orig_jiffies = jiffies;
1432#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1433 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1434 jiffies);
1435 printk(KERN_INFO "cps=%d...\n", info->cps);
1436#endif
1437 while (1) {
1438 txcnt = sGetTxCnt(cp);
1439 if (!txcnt) {
1440 if (sGetChanStatusLo(cp) & TXSHRMT)
1441 break;
1442 check_time = (HZ / info->cps) / 5;
1443 } else {
1444 check_time = HZ * txcnt / info->cps;
1445 }
1446 if (timeout) {
1447 exit_time = orig_jiffies + timeout - jiffies;
1448 if (exit_time <= 0)
1449 break;
1450 if (exit_time < check_time)
1451 check_time = exit_time;
1452 }
1453 if (check_time == 0)
1454 check_time = 1;
1455#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1456 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1457 jiffies, check_time);
1458#endif
1459 msleep_interruptible(jiffies_to_msecs(check_time));
1460 if (signal_pending(current))
1461 break;
1462 }
1463 __set_current_state(TASK_RUNNING);
1464#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1465 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1466#endif
1467}
1468
1469/*
1470 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1471 */
1472static void rp_hangup(struct tty_struct *tty)
1473{
1474 CHANNEL_t *cp;
1475 struct r_port *info = tty->driver_data;
1476 unsigned long flags;
1477
1478 if (rocket_paranoia_check(info, "rp_hangup"))
1479 return;
1480
1481#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1482 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1483#endif
1484 rp_flush_buffer(tty);
1485 spin_lock_irqsave(&info->port.lock, flags);
1486 if (info->port.count)
1487 atomic_dec(&rp_num_ports_open);
1488 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1489 spin_unlock_irqrestore(&info->port.lock, flags);
1490
1491 tty_port_hangup(&info->port);
1492
1493 cp = &info->channel;
1494 sDisRxFIFO(cp);
1495 sDisTransmit(cp);
1496 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1497 sDisCTSFlowCtl(cp);
1498 sDisTxSoftFlowCtl(cp);
1499 sClrTxXOFF(cp);
1500 tty_port_set_initialized(&info->port, 0);
1501
1502 wake_up_interruptible(&info->port.open_wait);
1503}
1504
1505/*
1506 * Exception handler - write char routine. The RocketPort driver uses a
1507 * double-buffering strategy, with the twist that if the in-memory CPU
1508 * buffer is empty, and there's space in the transmit FIFO, the
1509 * writing routines will write directly to transmit FIFO.
1510 * Write buffer and counters protected by spinlocks
1511 */
1512static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1513{
1514 struct r_port *info = tty->driver_data;
1515 CHANNEL_t *cp;
1516 unsigned long flags;
1517
1518 if (rocket_paranoia_check(info, "rp_put_char"))
1519 return 0;
1520
1521 /*
1522 * Grab the port write mutex, locking out other processes that try to
1523 * write to this port
1524 */
1525 mutex_lock(&info->write_mtx);
1526
1527#ifdef ROCKET_DEBUG_WRITE
1528 printk(KERN_INFO "rp_put_char %c...\n", ch);
1529#endif
1530
1531 spin_lock_irqsave(&info->slock, flags);
1532 cp = &info->channel;
1533
1534 if (!tty->stopped && info->xmit_fifo_room == 0)
1535 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1536
1537 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1538 info->xmit_buf[info->xmit_head++] = ch;
1539 info->xmit_head &= XMIT_BUF_SIZE - 1;
1540 info->xmit_cnt++;
1541 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1542 } else {
1543 sOutB(sGetTxRxDataIO(cp), ch);
1544 info->xmit_fifo_room--;
1545 }
1546 spin_unlock_irqrestore(&info->slock, flags);
1547 mutex_unlock(&info->write_mtx);
1548 return 1;
1549}
1550
1551/*
1552 * Exception handler - write routine, called when user app writes to the device.
1553 * A per port write mutex is used to protect from another process writing to
1554 * this port at the same time. This other process could be running on the other CPU
1555 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1556 * Spinlocks protect the info xmit members.
1557 */
1558static int rp_write(struct tty_struct *tty,
1559 const unsigned char *buf, int count)
1560{
1561 struct r_port *info = tty->driver_data;
1562 CHANNEL_t *cp;
1563 const unsigned char *b;
1564 int c, retval = 0;
1565 unsigned long flags;
1566
1567 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1568 return 0;
1569
1570 if (mutex_lock_interruptible(&info->write_mtx))
1571 return -ERESTARTSYS;
1572
1573#ifdef ROCKET_DEBUG_WRITE
1574 printk(KERN_INFO "rp_write %d chars...\n", count);
1575#endif
1576 cp = &info->channel;
1577
1578 if (!tty->stopped && info->xmit_fifo_room < count)
1579 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1580
1581 /*
1582 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1583 * into FIFO. Use the write queue for temp storage.
1584 */
1585 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1586 c = min(count, info->xmit_fifo_room);
1587 b = buf;
1588
1589 /* Push data into FIFO, 2 bytes at a time */
1590 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1591
1592 /* If there is a byte remaining, write it */
1593 if (c & 1)
1594 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1595
1596 retval += c;
1597 buf += c;
1598 count -= c;
1599
1600 spin_lock_irqsave(&info->slock, flags);
1601 info->xmit_fifo_room -= c;
1602 spin_unlock_irqrestore(&info->slock, flags);
1603 }
1604
1605 /* If count is zero, we wrote it all and are done */
1606 if (!count)
1607 goto end;
1608
1609 /* Write remaining data into the port's xmit_buf */
1610 while (1) {
1611 /* Hung up ? */
1612 if (!tty_port_active(&info->port))
1613 goto end;
1614 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1615 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1616 if (c <= 0)
1617 break;
1618
1619 b = buf;
1620 memcpy(info->xmit_buf + info->xmit_head, b, c);
1621
1622 spin_lock_irqsave(&info->slock, flags);
1623 info->xmit_head =
1624 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1625 info->xmit_cnt += c;
1626 spin_unlock_irqrestore(&info->slock, flags);
1627
1628 buf += c;
1629 count -= c;
1630 retval += c;
1631 }
1632
1633 if ((retval > 0) && !tty->stopped)
1634 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1635
1636end:
1637 if (info->xmit_cnt < WAKEUP_CHARS) {
1638 tty_wakeup(tty);
1639#ifdef ROCKETPORT_HAVE_POLL_WAIT
1640 wake_up_interruptible(&tty->poll_wait);
1641#endif
1642 }
1643 mutex_unlock(&info->write_mtx);
1644 return retval;
1645}
1646
1647/*
1648 * Return the number of characters that can be sent. We estimate
1649 * only using the in-memory transmit buffer only, and ignore the
1650 * potential space in the transmit FIFO.
1651 */
1652static int rp_write_room(struct tty_struct *tty)
1653{
1654 struct r_port *info = tty->driver_data;
1655 int ret;
1656
1657 if (rocket_paranoia_check(info, "rp_write_room"))
1658 return 0;
1659
1660 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1661 if (ret < 0)
1662 ret = 0;
1663#ifdef ROCKET_DEBUG_WRITE
1664 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1665#endif
1666 return ret;
1667}
1668
1669/*
1670 * Return the number of characters in the buffer. Again, this only
1671 * counts those characters in the in-memory transmit buffer.
1672 */
1673static int rp_chars_in_buffer(struct tty_struct *tty)
1674{
1675 struct r_port *info = tty->driver_data;
1676
1677 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1678 return 0;
1679
1680#ifdef ROCKET_DEBUG_WRITE
1681 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1682#endif
1683 return info->xmit_cnt;
1684}
1685
1686/*
1687 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1688 * r_port struct for the port. Note that spinlock are used to protect info members,
1689 * do not call this function if the spinlock is already held.
1690 */
1691static void rp_flush_buffer(struct tty_struct *tty)
1692{
1693 struct r_port *info = tty->driver_data;
1694 CHANNEL_t *cp;
1695 unsigned long flags;
1696
1697 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1698 return;
1699
1700 spin_lock_irqsave(&info->slock, flags);
1701 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1702 spin_unlock_irqrestore(&info->slock, flags);
1703
1704#ifdef ROCKETPORT_HAVE_POLL_WAIT
1705 wake_up_interruptible(&tty->poll_wait);
1706#endif
1707 tty_wakeup(tty);
1708
1709 cp = &info->channel;
1710 sFlushTxFIFO(cp);
1711}
1712
1713#ifdef CONFIG_PCI
1714
1715static const struct pci_device_id rocket_pci_ids[] = {
1716 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1717 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1718 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1719 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1720 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1721 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1722 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1723 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1724 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1725 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1726 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1727 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1728 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1738 { }
1739};
1740MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1741
1742/* Resets the speaker controller on RocketModem II and III devices */
1743static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1744{
1745 ByteIO_t addr;
1746
1747 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1748 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1749 addr = CtlP->AiopIO[0] + 0x4F;
1750 sOutB(addr, 0);
1751 }
1752
1753 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1754 if ((model == MODEL_UPCI_RM3_8PORT)
1755 || (model == MODEL_UPCI_RM3_4PORT)) {
1756 addr = CtlP->AiopIO[0] + 0x88;
1757 sOutB(addr, 0);
1758 }
1759}
1760
1761/***************************************************************************
1762Function: sPCIInitController
1763Purpose: Initialization of controller global registers and controller
1764 structure.
1765Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1766 IRQNum,Frequency,PeriodicOnly)
1767 CONTROLLER_T *CtlP; Ptr to controller structure
1768 int CtlNum; Controller number
1769 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1770 This list must be in the order the AIOPs will be found on the
1771 controller. Once an AIOP in the list is not found, it is
1772 assumed that there are no more AIOPs on the controller.
1773 int AiopIOListSize; Number of addresses in AiopIOList
1774 int IRQNum; Interrupt Request number. Can be any of the following:
1775 0: Disable global interrupts
1776 3: IRQ 3
1777 4: IRQ 4
1778 5: IRQ 5
1779 9: IRQ 9
1780 10: IRQ 10
1781 11: IRQ 11
1782 12: IRQ 12
1783 15: IRQ 15
1784 Byte_t Frequency: A flag identifying the frequency
1785 of the periodic interrupt, can be any one of the following:
1786 FREQ_DIS - periodic interrupt disabled
1787 FREQ_137HZ - 137 Hertz
1788 FREQ_69HZ - 69 Hertz
1789 FREQ_34HZ - 34 Hertz
1790 FREQ_17HZ - 17 Hertz
1791 FREQ_9HZ - 9 Hertz
1792 FREQ_4HZ - 4 Hertz
1793 If IRQNum is set to 0 the Frequency parameter is
1794 overidden, it is forced to a value of FREQ_DIS.
1795 int PeriodicOnly: 1 if all interrupts except the periodic
1796 interrupt are to be blocked.
1797 0 is both the periodic interrupt and
1798 other channel interrupts are allowed.
1799 If IRQNum is set to 0 the PeriodicOnly parameter is
1800 overidden, it is forced to a value of 0.
1801Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1802 initialization failed.
1803
1804Comments:
1805 If periodic interrupts are to be disabled but AIOP interrupts
1806 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1807
1808 If interrupts are to be completely disabled set IRQNum to 0.
1809
1810 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1811 invalid combination.
1812
1813 This function performs initialization of global interrupt modes,
1814 but it does not actually enable global interrupts. To enable
1815 and disable global interrupts use functions sEnGlobalInt() and
1816 sDisGlobalInt(). Enabling of global interrupts is normally not
1817 done until all other initializations are complete.
1818
1819 Even if interrupts are globally enabled, they must also be
1820 individually enabled for each channel that is to generate
1821 interrupts.
1822
1823Warnings: No range checking on any of the parameters is done.
1824
1825 No context switches are allowed while executing this function.
1826
1827 After this function all AIOPs on the controller are disabled,
1828 they can be enabled with sEnAiop().
1829*/
1830static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1831 ByteIO_t * AiopIOList, int AiopIOListSize,
1832 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1833 int PeriodicOnly, int altChanRingIndicator,
1834 int UPCIRingInd)
1835{
1836 int i;
1837 ByteIO_t io;
1838
1839 CtlP->AltChanRingIndicator = altChanRingIndicator;
1840 CtlP->UPCIRingInd = UPCIRingInd;
1841 CtlP->CtlNum = CtlNum;
1842 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1843 CtlP->BusType = isPCI; /* controller release 1 */
1844
1845 if (ConfigIO) {
1846 CtlP->isUPCI = 1;
1847 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1848 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1849 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1850 } else {
1851 CtlP->isUPCI = 0;
1852 CtlP->PCIIO =
1853 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1854 CtlP->AiopIntrBits = aiop_intr_bits;
1855 }
1856
1857 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1858 /* Init AIOPs */
1859 CtlP->NumAiop = 0;
1860 for (i = 0; i < AiopIOListSize; i++) {
1861 io = AiopIOList[i];
1862 CtlP->AiopIO[i] = (WordIO_t) io;
1863 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1864
1865 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1866 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1867 break; /* done looking for AIOPs */
1868
1869 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1870 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1871 sOutB(io + _INDX_DATA, sClockPrescale);
1872 CtlP->NumAiop++; /* bump count of AIOPs */
1873 }
1874
1875 if (CtlP->NumAiop == 0)
1876 return (-1);
1877 else
1878 return (CtlP->NumAiop);
1879}
1880
1881/*
1882 * Called when a PCI card is found. Retrieves and stores model information,
1883 * init's aiopic and serial port hardware.
1884 * Inputs: i is the board number (0-n)
1885 */
1886static __init int register_PCI(int i, struct pci_dev *dev)
1887{
1888 int num_aiops, aiop, max_num_aiops, chan;
1889 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1890 CONTROLLER_t *ctlp;
1891
1892 int fast_clock = 0;
1893 int altChanRingIndicator = 0;
1894 int ports_per_aiop = 8;
1895 WordIO_t ConfigIO = 0;
1896 ByteIO_t UPCIRingInd = 0;
1897
1898 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1899 pci_enable_device(dev) || i >= NUM_BOARDS)
1900 return 0;
1901
1902 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1903
1904 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1905 rocketModel[i].loadrm2 = 0;
1906 rocketModel[i].startingPortNumber = nextLineNumber;
1907
1908 /* Depending on the model, set up some config variables */
1909 switch (dev->device) {
1910 case PCI_DEVICE_ID_RP4QUAD:
1911 max_num_aiops = 1;
1912 ports_per_aiop = 4;
1913 rocketModel[i].model = MODEL_RP4QUAD;
1914 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1915 rocketModel[i].numPorts = 4;
1916 break;
1917 case PCI_DEVICE_ID_RP8OCTA:
1918 max_num_aiops = 1;
1919 rocketModel[i].model = MODEL_RP8OCTA;
1920 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1921 rocketModel[i].numPorts = 8;
1922 break;
1923 case PCI_DEVICE_ID_URP8OCTA:
1924 max_num_aiops = 1;
1925 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1926 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1927 rocketModel[i].numPorts = 8;
1928 break;
1929 case PCI_DEVICE_ID_RP8INTF:
1930 max_num_aiops = 1;
1931 rocketModel[i].model = MODEL_RP8INTF;
1932 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1933 rocketModel[i].numPorts = 8;
1934 break;
1935 case PCI_DEVICE_ID_URP8INTF:
1936 max_num_aiops = 1;
1937 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1938 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1939 rocketModel[i].numPorts = 8;
1940 break;
1941 case PCI_DEVICE_ID_RP8J:
1942 max_num_aiops = 1;
1943 rocketModel[i].model = MODEL_RP8J;
1944 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1945 rocketModel[i].numPorts = 8;
1946 break;
1947 case PCI_DEVICE_ID_RP4J:
1948 max_num_aiops = 1;
1949 ports_per_aiop = 4;
1950 rocketModel[i].model = MODEL_RP4J;
1951 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1952 rocketModel[i].numPorts = 4;
1953 break;
1954 case PCI_DEVICE_ID_RP8SNI:
1955 max_num_aiops = 1;
1956 rocketModel[i].model = MODEL_RP8SNI;
1957 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1958 rocketModel[i].numPorts = 8;
1959 break;
1960 case PCI_DEVICE_ID_RP16SNI:
1961 max_num_aiops = 2;
1962 rocketModel[i].model = MODEL_RP16SNI;
1963 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1964 rocketModel[i].numPorts = 16;
1965 break;
1966 case PCI_DEVICE_ID_RP16INTF:
1967 max_num_aiops = 2;
1968 rocketModel[i].model = MODEL_RP16INTF;
1969 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1970 rocketModel[i].numPorts = 16;
1971 break;
1972 case PCI_DEVICE_ID_URP16INTF:
1973 max_num_aiops = 2;
1974 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1975 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1976 rocketModel[i].numPorts = 16;
1977 break;
1978 case PCI_DEVICE_ID_CRP16INTF:
1979 max_num_aiops = 2;
1980 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1981 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1982 rocketModel[i].numPorts = 16;
1983 break;
1984 case PCI_DEVICE_ID_RP32INTF:
1985 max_num_aiops = 4;
1986 rocketModel[i].model = MODEL_RP32INTF;
1987 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1988 rocketModel[i].numPorts = 32;
1989 break;
1990 case PCI_DEVICE_ID_URP32INTF:
1991 max_num_aiops = 4;
1992 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1993 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1994 rocketModel[i].numPorts = 32;
1995 break;
1996 case PCI_DEVICE_ID_RPP4:
1997 max_num_aiops = 1;
1998 ports_per_aiop = 4;
1999 altChanRingIndicator++;
2000 fast_clock++;
2001 rocketModel[i].model = MODEL_RPP4;
2002 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2003 rocketModel[i].numPorts = 4;
2004 break;
2005 case PCI_DEVICE_ID_RPP8:
2006 max_num_aiops = 2;
2007 ports_per_aiop = 4;
2008 altChanRingIndicator++;
2009 fast_clock++;
2010 rocketModel[i].model = MODEL_RPP8;
2011 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2012 rocketModel[i].numPorts = 8;
2013 break;
2014 case PCI_DEVICE_ID_RP2_232:
2015 max_num_aiops = 1;
2016 ports_per_aiop = 2;
2017 altChanRingIndicator++;
2018 fast_clock++;
2019 rocketModel[i].model = MODEL_RP2_232;
2020 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2021 rocketModel[i].numPorts = 2;
2022 break;
2023 case PCI_DEVICE_ID_RP2_422:
2024 max_num_aiops = 1;
2025 ports_per_aiop = 2;
2026 altChanRingIndicator++;
2027 fast_clock++;
2028 rocketModel[i].model = MODEL_RP2_422;
2029 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2030 rocketModel[i].numPorts = 2;
2031 break;
2032 case PCI_DEVICE_ID_RP6M:
2033
2034 max_num_aiops = 1;
2035 ports_per_aiop = 6;
2036
2037 /* If revision is 1, the rocketmodem flash must be loaded.
2038 * If it is 2 it is a "socketed" version. */
2039 if (dev->revision == 1) {
2040 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2041 rocketModel[i].loadrm2 = 1;
2042 } else {
2043 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2044 }
2045
2046 rocketModel[i].model = MODEL_RP6M;
2047 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2048 rocketModel[i].numPorts = 6;
2049 break;
2050 case PCI_DEVICE_ID_RP4M:
2051 max_num_aiops = 1;
2052 ports_per_aiop = 4;
2053 if (dev->revision == 1) {
2054 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2055 rocketModel[i].loadrm2 = 1;
2056 } else {
2057 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2058 }
2059
2060 rocketModel[i].model = MODEL_RP4M;
2061 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2062 rocketModel[i].numPorts = 4;
2063 break;
2064 default:
2065 max_num_aiops = 0;
2066 break;
2067 }
2068
2069 /*
2070 * Check for UPCI boards.
2071 */
2072
2073 switch (dev->device) {
2074 case PCI_DEVICE_ID_URP32INTF:
2075 case PCI_DEVICE_ID_URP8INTF:
2076 case PCI_DEVICE_ID_URP16INTF:
2077 case PCI_DEVICE_ID_CRP16INTF:
2078 case PCI_DEVICE_ID_URP8OCTA:
2079 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2080 ConfigIO = pci_resource_start(dev, 1);
2081 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2082 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2083
2084 /*
2085 * Check for octa or quad cable.
2086 */
2087 if (!
2088 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2089 PCI_GPIO_CTRL_8PORT)) {
2090 ports_per_aiop = 4;
2091 rocketModel[i].numPorts = 4;
2092 }
2093 }
2094 break;
2095 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2096 max_num_aiops = 1;
2097 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2098 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2099 rocketModel[i].numPorts = 8;
2100 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2101 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2102 ConfigIO = pci_resource_start(dev, 1);
2103 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2104 break;
2105 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2106 max_num_aiops = 1;
2107 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2108 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2109 rocketModel[i].numPorts = 4;
2110 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2111 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2112 ConfigIO = pci_resource_start(dev, 1);
2113 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2114 break;
2115 default:
2116 break;
2117 }
2118
2119 if (fast_clock) {
2120 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2121 rp_baud_base[i] = 921600;
2122 } else {
2123 /*
2124 * If support_low_speed is set, use the slow clock
2125 * prescale, which supports 50 bps
2126 */
2127 if (support_low_speed) {
2128 /* mod 9 (divide by 10) prescale */
2129 sClockPrescale = 0x19;
2130 rp_baud_base[i] = 230400;
2131 } else {
2132 /* mod 4 (divide by 5) prescale */
2133 sClockPrescale = 0x14;
2134 rp_baud_base[i] = 460800;
2135 }
2136 }
2137
2138 for (aiop = 0; aiop < max_num_aiops; aiop++)
2139 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2140 ctlp = sCtlNumToCtlPtr(i);
2141 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2142 for (aiop = 0; aiop < max_num_aiops; aiop++)
2143 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2144
2145 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2146 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2147 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2148 rocketModel[i].startingPortNumber,
2149 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2150
2151 if (num_aiops <= 0) {
2152 rcktpt_io_addr[i] = 0;
2153 return (0);
2154 }
2155 is_PCI[i] = 1;
2156
2157 /* Reset the AIOPIC, init the serial ports */
2158 for (aiop = 0; aiop < num_aiops; aiop++) {
2159 sResetAiopByNum(ctlp, aiop);
2160 for (chan = 0; chan < ports_per_aiop; chan++)
2161 init_r_port(i, aiop, chan, dev);
2162 }
2163
2164 /* Rocket modems must be reset */
2165 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2166 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2167 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2168 for (chan = 0; chan < ports_per_aiop; chan++)
2169 sPCIModemReset(ctlp, chan, 1);
2170 msleep(500);
2171 for (chan = 0; chan < ports_per_aiop; chan++)
2172 sPCIModemReset(ctlp, chan, 0);
2173 msleep(500);
2174 rmSpeakerReset(ctlp, rocketModel[i].model);
2175 }
2176 return (1);
2177}
2178
2179/*
2180 * Probes for PCI cards, inits them if found
2181 * Input: board_found = number of ISA boards already found, or the
2182 * starting board number
2183 * Returns: Number of PCI boards found
2184 */
2185static int __init init_PCI(int boards_found)
2186{
2187 struct pci_dev *dev = NULL;
2188 int count = 0;
2189
2190 /* Work through the PCI device list, pulling out ours */
2191 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2192 if (register_PCI(count + boards_found, dev))
2193 count++;
2194 }
2195 return (count);
2196}
2197
2198#endif /* CONFIG_PCI */
2199
2200/*
2201 * Probes for ISA cards
2202 * Input: i = the board number to look for
2203 * Returns: 1 if board found, 0 else
2204 */
2205static int __init init_ISA(int i)
2206{
2207 int num_aiops, num_chan = 0, total_num_chan = 0;
2208 int aiop, chan;
2209 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2210 CONTROLLER_t *ctlp;
2211 char *type_string;
2212
2213 /* If io_addr is zero, no board configured */
2214 if (rcktpt_io_addr[i] == 0)
2215 return (0);
2216
2217 /* Reserve the IO region */
2218 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2219 printk(KERN_ERR "Unable to reserve IO region for configured "
2220 "ISA RocketPort at address 0x%lx, board not "
2221 "installed...\n", rcktpt_io_addr[i]);
2222 rcktpt_io_addr[i] = 0;
2223 return (0);
2224 }
2225
2226 ctlp = sCtlNumToCtlPtr(i);
2227
2228 ctlp->boardType = rcktpt_type[i];
2229
2230 switch (rcktpt_type[i]) {
2231 case ROCKET_TYPE_PC104:
2232 type_string = "(PC104)";
2233 break;
2234 case ROCKET_TYPE_MODEM:
2235 type_string = "(RocketModem)";
2236 break;
2237 case ROCKET_TYPE_MODEMII:
2238 type_string = "(RocketModem II)";
2239 break;
2240 default:
2241 type_string = "";
2242 break;
2243 }
2244
2245 /*
2246 * If support_low_speed is set, use the slow clock prescale,
2247 * which supports 50 bps
2248 */
2249 if (support_low_speed) {
2250 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2251 rp_baud_base[i] = 230400;
2252 } else {
2253 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2254 rp_baud_base[i] = 460800;
2255 }
2256
2257 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2258 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2259
2260 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2261
2262 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2263 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2264 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2265 }
2266
2267 /* If something went wrong initing the AIOP's release the ISA IO memory */
2268 if (num_aiops <= 0) {
2269 release_region(rcktpt_io_addr[i], 64);
2270 rcktpt_io_addr[i] = 0;
2271 return (0);
2272 }
2273
2274 rocketModel[i].startingPortNumber = nextLineNumber;
2275
2276 for (aiop = 0; aiop < num_aiops; aiop++) {
2277 sResetAiopByNum(ctlp, aiop);
2278 sEnAiop(ctlp, aiop);
2279 num_chan = sGetAiopNumChan(ctlp, aiop);
2280 total_num_chan += num_chan;
2281 for (chan = 0; chan < num_chan; chan++)
2282 init_r_port(i, aiop, chan, NULL);
2283 }
2284 is_PCI[i] = 0;
2285 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2286 num_chan = sGetAiopNumChan(ctlp, 0);
2287 total_num_chan = num_chan;
2288 for (chan = 0; chan < num_chan; chan++)
2289 sModemReset(ctlp, chan, 1);
2290 msleep(500);
2291 for (chan = 0; chan < num_chan; chan++)
2292 sModemReset(ctlp, chan, 0);
2293 msleep(500);
2294 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2295 } else {
2296 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2297 }
2298 rocketModel[i].numPorts = total_num_chan;
2299 rocketModel[i].model = MODEL_ISA;
2300
2301 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2302 i, rcktpt_io_addr[i], num_aiops, type_string);
2303
2304 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2305 rocketModel[i].modelString,
2306 rocketModel[i].startingPortNumber,
2307 rocketModel[i].startingPortNumber +
2308 rocketModel[i].numPorts - 1);
2309
2310 return (1);
2311}
2312
2313static const struct tty_operations rocket_ops = {
2314 .open = rp_open,
2315 .close = rp_close,
2316 .write = rp_write,
2317 .put_char = rp_put_char,
2318 .write_room = rp_write_room,
2319 .chars_in_buffer = rp_chars_in_buffer,
2320 .flush_buffer = rp_flush_buffer,
2321 .ioctl = rp_ioctl,
2322 .throttle = rp_throttle,
2323 .unthrottle = rp_unthrottle,
2324 .set_termios = rp_set_termios,
2325 .stop = rp_stop,
2326 .start = rp_start,
2327 .hangup = rp_hangup,
2328 .break_ctl = rp_break,
2329 .send_xchar = rp_send_xchar,
2330 .wait_until_sent = rp_wait_until_sent,
2331 .tiocmget = rp_tiocmget,
2332 .tiocmset = rp_tiocmset,
2333};
2334
2335static const struct tty_port_operations rocket_port_ops = {
2336 .carrier_raised = carrier_raised,
2337 .dtr_rts = dtr_rts,
2338};
2339
2340/*
2341 * The module "startup" routine; it's run when the module is loaded.
2342 */
2343static int __init rp_init(void)
2344{
2345 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2346
2347 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2348 ROCKET_VERSION, ROCKET_DATE);
2349
2350 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2351 if (!rocket_driver)
2352 goto err;
2353
2354 /*
2355 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2356 * zero, use the default controller IO address of board1 + 0x40.
2357 */
2358 if (board1) {
2359 if (controller == 0)
2360 controller = board1 + 0x40;
2361 } else {
2362 controller = 0; /* Used as a flag, meaning no ISA boards */
2363 }
2364
2365 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2366 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2367 printk(KERN_ERR "Unable to reserve IO region for first "
2368 "configured ISA RocketPort controller 0x%lx. "
2369 "Driver exiting\n", controller);
2370 ret = -EBUSY;
2371 goto err_tty;
2372 }
2373
2374 /* Store ISA variable retrieved from command line or .conf file. */
2375 rcktpt_io_addr[0] = board1;
2376 rcktpt_io_addr[1] = board2;
2377 rcktpt_io_addr[2] = board3;
2378 rcktpt_io_addr[3] = board4;
2379
2380 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2381 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2382 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2383 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2384 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2385 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2386 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2387 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2388
2389 /*
2390 * Set up the tty driver structure and then register this
2391 * driver with the tty layer.
2392 */
2393
2394 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2395 rocket_driver->name = "ttyR";
2396 rocket_driver->driver_name = "Comtrol RocketPort";
2397 rocket_driver->major = TTY_ROCKET_MAJOR;
2398 rocket_driver->minor_start = 0;
2399 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2400 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2401 rocket_driver->init_termios = tty_std_termios;
2402 rocket_driver->init_termios.c_cflag =
2403 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2404 rocket_driver->init_termios.c_ispeed = 9600;
2405 rocket_driver->init_termios.c_ospeed = 9600;
2406#ifdef ROCKET_SOFT_FLOW
2407 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2408#endif
2409 tty_set_operations(rocket_driver, &rocket_ops);
2410
2411 ret = tty_register_driver(rocket_driver);
2412 if (ret < 0) {
2413 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2414 goto err_controller;
2415 }
2416
2417#ifdef ROCKET_DEBUG_OPEN
2418 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2419#endif
2420
2421 /*
2422 * OK, let's probe each of the controllers looking for boards. Any boards found
2423 * will be initialized here.
2424 */
2425 isa_boards_found = 0;
2426 pci_boards_found = 0;
2427
2428 for (i = 0; i < NUM_BOARDS; i++) {
2429 if (init_ISA(i))
2430 isa_boards_found++;
2431 }
2432
2433#ifdef CONFIG_PCI
2434 if (isa_boards_found < NUM_BOARDS)
2435 pci_boards_found = init_PCI(isa_boards_found);
2436#endif
2437
2438 max_board = pci_boards_found + isa_boards_found;
2439
2440 if (max_board == 0) {
2441 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2442 ret = -ENXIO;
2443 goto err_ttyu;
2444 }
2445
2446 return 0;
2447err_ttyu:
2448 tty_unregister_driver(rocket_driver);
2449err_controller:
2450 if (controller)
2451 release_region(controller, 4);
2452err_tty:
2453 put_tty_driver(rocket_driver);
2454err:
2455 return ret;
2456}
2457
2458
2459static void rp_cleanup_module(void)
2460{
2461 int retval;
2462 int i;
2463
2464 del_timer_sync(&rocket_timer);
2465
2466 retval = tty_unregister_driver(rocket_driver);
2467 if (retval)
2468 printk(KERN_ERR "Error %d while trying to unregister "
2469 "rocketport driver\n", -retval);
2470
2471 for (i = 0; i < MAX_RP_PORTS; i++)
2472 if (rp_table[i]) {
2473 tty_unregister_device(rocket_driver, i);
2474 tty_port_destroy(&rp_table[i]->port);
2475 kfree(rp_table[i]);
2476 }
2477
2478 put_tty_driver(rocket_driver);
2479
2480 for (i = 0; i < NUM_BOARDS; i++) {
2481 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2482 continue;
2483 release_region(rcktpt_io_addr[i], 64);
2484 }
2485 if (controller)
2486 release_region(controller, 4);
2487}
2488
2489/***************************************************************************
2490Function: sInitController
2491Purpose: Initialization of controller global registers and controller
2492 structure.
2493Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2494 IRQNum,Frequency,PeriodicOnly)
2495 CONTROLLER_T *CtlP; Ptr to controller structure
2496 int CtlNum; Controller number
2497 ByteIO_t MudbacIO; Mudbac base I/O address.
2498 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2499 This list must be in the order the AIOPs will be found on the
2500 controller. Once an AIOP in the list is not found, it is
2501 assumed that there are no more AIOPs on the controller.
2502 int AiopIOListSize; Number of addresses in AiopIOList
2503 int IRQNum; Interrupt Request number. Can be any of the following:
2504 0: Disable global interrupts
2505 3: IRQ 3
2506 4: IRQ 4
2507 5: IRQ 5
2508 9: IRQ 9
2509 10: IRQ 10
2510 11: IRQ 11
2511 12: IRQ 12
2512 15: IRQ 15
2513 Byte_t Frequency: A flag identifying the frequency
2514 of the periodic interrupt, can be any one of the following:
2515 FREQ_DIS - periodic interrupt disabled
2516 FREQ_137HZ - 137 Hertz
2517 FREQ_69HZ - 69 Hertz
2518 FREQ_34HZ - 34 Hertz
2519 FREQ_17HZ - 17 Hertz
2520 FREQ_9HZ - 9 Hertz
2521 FREQ_4HZ - 4 Hertz
2522 If IRQNum is set to 0 the Frequency parameter is
2523 overidden, it is forced to a value of FREQ_DIS.
2524 int PeriodicOnly: 1 if all interrupts except the periodic
2525 interrupt are to be blocked.
2526 0 is both the periodic interrupt and
2527 other channel interrupts are allowed.
2528 If IRQNum is set to 0 the PeriodicOnly parameter is
2529 overidden, it is forced to a value of 0.
2530Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2531 initialization failed.
2532
2533Comments:
2534 If periodic interrupts are to be disabled but AIOP interrupts
2535 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2536
2537 If interrupts are to be completely disabled set IRQNum to 0.
2538
2539 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2540 invalid combination.
2541
2542 This function performs initialization of global interrupt modes,
2543 but it does not actually enable global interrupts. To enable
2544 and disable global interrupts use functions sEnGlobalInt() and
2545 sDisGlobalInt(). Enabling of global interrupts is normally not
2546 done until all other initializations are complete.
2547
2548 Even if interrupts are globally enabled, they must also be
2549 individually enabled for each channel that is to generate
2550 interrupts.
2551
2552Warnings: No range checking on any of the parameters is done.
2553
2554 No context switches are allowed while executing this function.
2555
2556 After this function all AIOPs on the controller are disabled,
2557 they can be enabled with sEnAiop().
2558*/
2559static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2560 ByteIO_t * AiopIOList, int AiopIOListSize,
2561 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2562{
2563 int i;
2564 ByteIO_t io;
2565 int done;
2566
2567 CtlP->AiopIntrBits = aiop_intr_bits;
2568 CtlP->AltChanRingIndicator = 0;
2569 CtlP->CtlNum = CtlNum;
2570 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2571 CtlP->BusType = isISA;
2572 CtlP->MBaseIO = MudbacIO;
2573 CtlP->MReg1IO = MudbacIO + 1;
2574 CtlP->MReg2IO = MudbacIO + 2;
2575 CtlP->MReg3IO = MudbacIO + 3;
2576#if 1
2577 CtlP->MReg2 = 0; /* interrupt disable */
2578 CtlP->MReg3 = 0; /* no periodic interrupts */
2579#else
2580 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2581 CtlP->MReg2 = 0; /* interrupt disable */
2582 CtlP->MReg3 = 0; /* no periodic interrupts */
2583 } else {
2584 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2585 CtlP->MReg3 = Frequency; /* set frequency */
2586 if (PeriodicOnly) { /* periodic interrupt only */
2587 CtlP->MReg3 |= PERIODIC_ONLY;
2588 }
2589 }
2590#endif
2591 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2592 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2593 sControllerEOI(CtlP); /* clear EOI if warm init */
2594 /* Init AIOPs */
2595 CtlP->NumAiop = 0;
2596 for (i = done = 0; i < AiopIOListSize; i++) {
2597 io = AiopIOList[i];
2598 CtlP->AiopIO[i] = (WordIO_t) io;
2599 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2600 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2601 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2602 if (done)
2603 continue;
2604 sEnAiop(CtlP, i); /* enable the AIOP */
2605 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2606 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2607 done = 1; /* done looking for AIOPs */
2608 else {
2609 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2610 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2611 sOutB(io + _INDX_DATA, sClockPrescale);
2612 CtlP->NumAiop++; /* bump count of AIOPs */
2613 }
2614 sDisAiop(CtlP, i); /* disable AIOP */
2615 }
2616
2617 if (CtlP->NumAiop == 0)
2618 return (-1);
2619 else
2620 return (CtlP->NumAiop);
2621}
2622
2623/***************************************************************************
2624Function: sReadAiopID
2625Purpose: Read the AIOP idenfication number directly from an AIOP.
2626Call: sReadAiopID(io)
2627 ByteIO_t io: AIOP base I/O address
2628Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2629 is replace by an identifying number.
2630 Flag AIOPID_NULL if no valid AIOP is found
2631Warnings: No context switches are allowed while executing this function.
2632
2633*/
2634static int sReadAiopID(ByteIO_t io)
2635{
2636 Byte_t AiopID; /* ID byte from AIOP */
2637
2638 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2639 sOutB(io + _CMD_REG, 0x0);
2640 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2641 if (AiopID == 0x06)
2642 return (1);
2643 else /* AIOP does not exist */
2644 return (-1);
2645}
2646
2647/***************************************************************************
2648Function: sReadAiopNumChan
2649Purpose: Read the number of channels available in an AIOP directly from
2650 an AIOP.
2651Call: sReadAiopNumChan(io)
2652 WordIO_t io: AIOP base I/O address
2653Return: int: The number of channels available
2654Comments: The number of channels is determined by write/reads from identical
2655 offsets within the SRAM address spaces for channels 0 and 4.
2656 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2657 AIOP, otherwise it is an 8 channel.
2658Warnings: No context switches are allowed while executing this function.
2659*/
2660static int sReadAiopNumChan(WordIO_t io)
2661{
2662 Word_t x;
2663 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2664
2665 /* write to chan 0 SRAM */
2666 out32((DWordIO_t) io + _INDX_ADDR, R);
2667 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2668 x = sInW(io + _INDX_DATA);
2669 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2670 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2671 return (8);
2672 else
2673 return (4);
2674}
2675
2676/***************************************************************************
2677Function: sInitChan
2678Purpose: Initialization of a channel and channel structure
2679Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2680 CONTROLLER_T *CtlP; Ptr to controller structure
2681 CHANNEL_T *ChP; Ptr to channel structure
2682 int AiopNum; AIOP number within controller
2683 int ChanNum; Channel number within AIOP
2684Return: int: 1 if initialization succeeded, 0 if it fails because channel
2685 number exceeds number of channels available in AIOP.
2686Comments: This function must be called before a channel can be used.
2687Warnings: No range checking on any of the parameters is done.
2688
2689 No context switches are allowed while executing this function.
2690*/
2691static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2692 int ChanNum)
2693{
2694 int i;
2695 WordIO_t AiopIO;
2696 WordIO_t ChIOOff;
2697 Byte_t *ChR;
2698 Word_t ChOff;
2699 static Byte_t R[4];
2700 int brd9600;
2701
2702 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2703 return 0; /* exceeds num chans in AIOP */
2704
2705 /* Channel, AIOP, and controller identifiers */
2706 ChP->CtlP = CtlP;
2707 ChP->ChanID = CtlP->AiopID[AiopNum];
2708 ChP->AiopNum = AiopNum;
2709 ChP->ChanNum = ChanNum;
2710
2711 /* Global direct addresses */
2712 AiopIO = CtlP->AiopIO[AiopNum];
2713 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2714 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2715 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2716 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2717 ChP->IndexData = AiopIO + _INDX_DATA;
2718
2719 /* Channel direct addresses */
2720 ChIOOff = AiopIO + ChP->ChanNum * 2;
2721 ChP->TxRxData = ChIOOff + _TD0;
2722 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2723 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2724 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2725
2726 /* Initialize the channel from the RData array */
2727 for (i = 0; i < RDATASIZE; i += 4) {
2728 R[0] = RData[i];
2729 R[1] = RData[i + 1] + 0x10 * ChanNum;
2730 R[2] = RData[i + 2];
2731 R[3] = RData[i + 3];
2732 out32(ChP->IndexAddr, R);
2733 }
2734
2735 ChR = ChP->R;
2736 for (i = 0; i < RREGDATASIZE; i += 4) {
2737 ChR[i] = RRegData[i];
2738 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2739 ChR[i + 2] = RRegData[i + 2];
2740 ChR[i + 3] = RRegData[i + 3];
2741 }
2742
2743 /* Indexed registers */
2744 ChOff = (Word_t) ChanNum *0x1000;
2745
2746 if (sClockPrescale == 0x14)
2747 brd9600 = 47;
2748 else
2749 brd9600 = 23;
2750
2751 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2752 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2753 ChP->BaudDiv[2] = (Byte_t) brd9600;
2754 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2755 out32(ChP->IndexAddr, ChP->BaudDiv);
2756
2757 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2758 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2759 ChP->TxControl[2] = 0;
2760 ChP->TxControl[3] = 0;
2761 out32(ChP->IndexAddr, ChP->TxControl);
2762
2763 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2764 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2765 ChP->RxControl[2] = 0;
2766 ChP->RxControl[3] = 0;
2767 out32(ChP->IndexAddr, ChP->RxControl);
2768
2769 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2770 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2771 ChP->TxEnables[2] = 0;
2772 ChP->TxEnables[3] = 0;
2773 out32(ChP->IndexAddr, ChP->TxEnables);
2774
2775 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2776 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2777 ChP->TxCompare[2] = 0;
2778 ChP->TxCompare[3] = 0;
2779 out32(ChP->IndexAddr, ChP->TxCompare);
2780
2781 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2782 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2783 ChP->TxReplace1[2] = 0;
2784 ChP->TxReplace1[3] = 0;
2785 out32(ChP->IndexAddr, ChP->TxReplace1);
2786
2787 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2788 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2789 ChP->TxReplace2[2] = 0;
2790 ChP->TxReplace2[3] = 0;
2791 out32(ChP->IndexAddr, ChP->TxReplace2);
2792
2793 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2794 ChP->TxFIFO = ChOff + _TX_FIFO;
2795
2796 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2797 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2798 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2799 sOutW(ChP->IndexData, 0);
2800 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2801 ChP->RxFIFO = ChOff + _RX_FIFO;
2802
2803 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2804 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2805 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2806 sOutW(ChP->IndexData, 0);
2807 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2808 sOutW(ChP->IndexData, 0);
2809 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2810 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2811 sOutB(ChP->IndexData, 0);
2812 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2813 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2814 sOutB(ChP->IndexData, 0);
2815 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2816 sEnRxProcessor(ChP); /* start the Rx processor */
2817
2818 return 1;
2819}
2820
2821/***************************************************************************
2822Function: sStopRxProcessor
2823Purpose: Stop the receive processor from processing a channel.
2824Call: sStopRxProcessor(ChP)
2825 CHANNEL_T *ChP; Ptr to channel structure
2826
2827Comments: The receive processor can be started again with sStartRxProcessor().
2828 This function causes the receive processor to skip over the
2829 stopped channel. It does not stop it from processing other channels.
2830
2831Warnings: No context switches are allowed while executing this function.
2832
2833 Do not leave the receive processor stopped for more than one
2834 character time.
2835
2836 After calling this function a delay of 4 uS is required to ensure
2837 that the receive processor is no longer processing this channel.
2838*/
2839static void sStopRxProcessor(CHANNEL_T * ChP)
2840{
2841 Byte_t R[4];
2842
2843 R[0] = ChP->R[0];
2844 R[1] = ChP->R[1];
2845 R[2] = 0x0a;
2846 R[3] = ChP->R[3];
2847 out32(ChP->IndexAddr, R);
2848}
2849
2850/***************************************************************************
2851Function: sFlushRxFIFO
2852Purpose: Flush the Rx FIFO
2853Call: sFlushRxFIFO(ChP)
2854 CHANNEL_T *ChP; Ptr to channel structure
2855Return: void
2856Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2857 while it is being flushed the receive processor is stopped
2858 and the transmitter is disabled. After these operations a
2859 4 uS delay is done before clearing the pointers to allow
2860 the receive processor to stop. These items are handled inside
2861 this function.
2862Warnings: No context switches are allowed while executing this function.
2863*/
2864static void sFlushRxFIFO(CHANNEL_T * ChP)
2865{
2866 int i;
2867 Byte_t Ch; /* channel number within AIOP */
2868 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2869
2870 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2871 return; /* don't need to flush */
2872
2873 RxFIFOEnabled = 0;
2874 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2875 RxFIFOEnabled = 1;
2876 sDisRxFIFO(ChP); /* disable it */
2877 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2878 sInB(ChP->IntChan); /* depends on bus i/o timing */
2879 }
2880 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2881 Ch = (Byte_t) sGetChanNum(ChP);
2882 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2883 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2884 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2885 sOutW(ChP->IndexData, 0);
2886 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2887 sOutW(ChP->IndexData, 0);
2888 if (RxFIFOEnabled)
2889 sEnRxFIFO(ChP); /* enable Rx FIFO */
2890}
2891
2892/***************************************************************************
2893Function: sFlushTxFIFO
2894Purpose: Flush the Tx FIFO
2895Call: sFlushTxFIFO(ChP)
2896 CHANNEL_T *ChP; Ptr to channel structure
2897Return: void
2898Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2899 while it is being flushed the receive processor is stopped
2900 and the transmitter is disabled. After these operations a
2901 4 uS delay is done before clearing the pointers to allow
2902 the receive processor to stop. These items are handled inside
2903 this function.
2904Warnings: No context switches are allowed while executing this function.
2905*/
2906static void sFlushTxFIFO(CHANNEL_T * ChP)
2907{
2908 int i;
2909 Byte_t Ch; /* channel number within AIOP */
2910 int TxEnabled; /* 1 if transmitter enabled */
2911
2912 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2913 return; /* don't need to flush */
2914
2915 TxEnabled = 0;
2916 if (ChP->TxControl[3] & TX_ENABLE) {
2917 TxEnabled = 1;
2918 sDisTransmit(ChP); /* disable transmitter */
2919 }
2920 sStopRxProcessor(ChP); /* stop Rx processor */
2921 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2922 sInB(ChP->IntChan); /* depends on bus i/o timing */
2923 Ch = (Byte_t) sGetChanNum(ChP);
2924 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2925 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2926 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2927 sOutW(ChP->IndexData, 0);
2928 if (TxEnabled)
2929 sEnTransmit(ChP); /* enable transmitter */
2930 sStartRxProcessor(ChP); /* restart Rx processor */
2931}
2932
2933/***************************************************************************
2934Function: sWriteTxPrioByte
2935Purpose: Write a byte of priority transmit data to a channel
2936Call: sWriteTxPrioByte(ChP,Data)
2937 CHANNEL_T *ChP; Ptr to channel structure
2938 Byte_t Data; The transmit data byte
2939
2940Return: int: 1 if the bytes is successfully written, otherwise 0.
2941
2942Comments: The priority byte is transmitted before any data in the Tx FIFO.
2943
2944Warnings: No context switches are allowed while executing this function.
2945*/
2946static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2947{
2948 Byte_t DWBuf[4]; /* buffer for double word writes */
2949 Word_t *WordPtr; /* must be far because Win SS != DS */
2950 register DWordIO_t IndexAddr;
2951
2952 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2953 IndexAddr = ChP->IndexAddr;
2954 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2955 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2956 return (0); /* nothing sent */
2957
2958 WordPtr = (Word_t *) (&DWBuf[0]);
2959 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2960
2961 DWBuf[2] = Data; /* data byte value */
2962 out32(IndexAddr, DWBuf); /* write it out */
2963
2964 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2965
2966 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2967 DWBuf[3] = 0; /* priority buffer pointer */
2968 out32(IndexAddr, DWBuf); /* write it out */
2969 } else { /* write it to Tx FIFO */
2970
2971 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2972 }
2973 return (1); /* 1 byte sent */
2974}
2975
2976/***************************************************************************
2977Function: sEnInterrupts
2978Purpose: Enable one or more interrupts for a channel
2979Call: sEnInterrupts(ChP,Flags)
2980 CHANNEL_T *ChP; Ptr to channel structure
2981 Word_t Flags: Interrupt enable flags, can be any combination
2982 of the following flags:
2983 TXINT_EN: Interrupt on Tx FIFO empty
2984 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
2985 sSetRxTrigger())
2986 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
2987 MCINT_EN: Interrupt on modem input change
2988 CHANINT_EN: Allow channel interrupt signal to the AIOP's
2989 Interrupt Channel Register.
2990Return: void
2991Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2992 enabled. If an interrupt enable flag is not set in Flags, that
2993 interrupt will not be changed. Interrupts can be disabled with
2994 function sDisInterrupts().
2995
2996 This function sets the appropriate bit for the channel in the AIOP's
2997 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
2998 this channel's bit to be set in the AIOP's Interrupt Channel Register.
2999
3000 Interrupts must also be globally enabled before channel interrupts
3001 will be passed on to the host. This is done with function
3002 sEnGlobalInt().
3003
3004 In some cases it may be desirable to disable interrupts globally but
3005 enable channel interrupts. This would allow the global interrupt
3006 status register to be used to determine which AIOPs need service.
3007*/
3008static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3009{
3010 Byte_t Mask; /* Interrupt Mask Register */
3011
3012 ChP->RxControl[2] |=
3013 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3014
3015 out32(ChP->IndexAddr, ChP->RxControl);
3016
3017 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3018
3019 out32(ChP->IndexAddr, ChP->TxControl);
3020
3021 if (Flags & CHANINT_EN) {
3022 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3023 sOutB(ChP->IntMask, Mask);
3024 }
3025}
3026
3027/***************************************************************************
3028Function: sDisInterrupts
3029Purpose: Disable one or more interrupts for a channel
3030Call: sDisInterrupts(ChP,Flags)
3031 CHANNEL_T *ChP; Ptr to channel structure
3032 Word_t Flags: Interrupt flags, can be any combination
3033 of the following flags:
3034 TXINT_EN: Interrupt on Tx FIFO empty
3035 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3036 sSetRxTrigger())
3037 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3038 MCINT_EN: Interrupt on modem input change
3039 CHANINT_EN: Disable channel interrupt signal to the
3040 AIOP's Interrupt Channel Register.
3041Return: void
3042Comments: If an interrupt flag is set in Flags, that interrupt will be
3043 disabled. If an interrupt flag is not set in Flags, that
3044 interrupt will not be changed. Interrupts can be enabled with
3045 function sEnInterrupts().
3046
3047 This function clears the appropriate bit for the channel in the AIOP's
3048 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3049 this channel's bit from being set in the AIOP's Interrupt Channel
3050 Register.
3051*/
3052static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3053{
3054 Byte_t Mask; /* Interrupt Mask Register */
3055
3056 ChP->RxControl[2] &=
3057 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3058 out32(ChP->IndexAddr, ChP->RxControl);
3059 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3060 out32(ChP->IndexAddr, ChP->TxControl);
3061
3062 if (Flags & CHANINT_EN) {
3063 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3064 sOutB(ChP->IntMask, Mask);
3065 }
3066}
3067
3068static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3069{
3070 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3071}
3072
3073/*
3074 * Not an official SSCI function, but how to reset RocketModems.
3075 * ISA bus version
3076 */
3077static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3078{
3079 ByteIO_t addr;
3080 Byte_t val;
3081
3082 addr = CtlP->AiopIO[0] + 0x400;
3083 val = sInB(CtlP->MReg3IO);
3084 /* if AIOP[1] is not enabled, enable it */
3085 if ((val & 2) == 0) {
3086 val = sInB(CtlP->MReg2IO);
3087 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3088 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3089 }
3090
3091 sEnAiop(CtlP, 1);
3092 if (!on)
3093 addr += 8;
3094 sOutB(addr + chan, 0); /* apply or remove reset */
3095 sDisAiop(CtlP, 1);
3096}
3097
3098/*
3099 * Not an official SSCI function, but how to reset RocketModems.
3100 * PCI bus version
3101 */
3102static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3103{
3104 ByteIO_t addr;
3105
3106 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3107 if (!on)
3108 addr += 8;
3109 sOutB(addr + chan, 0); /* apply or remove reset */
3110}
3111
3112/* Returns the line number given the controller (board), aiop and channel number */
3113static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3114{
3115 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3116}
3117
3118/*
3119 * Stores the line number associated with a given controller (board), aiop
3120 * and channel number.
3121 * Returns: The line number assigned
3122 */
3123static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3124{
3125 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3126 return (nextLineNumber - 1);
3127}
1/*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23/*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42/****** Defines ******/
43#define ROCKET_PARANOIA_CHECK
44#define ROCKET_DISABLE_SIMUSAGE
45
46#undef ROCKET_SOFT_FLOW
47#undef ROCKET_DEBUG_OPEN
48#undef ROCKET_DEBUG_INTR
49#undef ROCKET_DEBUG_WRITE
50#undef ROCKET_DEBUG_FLOW
51#undef ROCKET_DEBUG_THROTTLE
52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53#undef ROCKET_DEBUG_RECEIVE
54#undef ROCKET_DEBUG_HANGUP
55#undef REV_PCI_ORDER
56#undef ROCKET_DEBUG_IO
57
58#define POLL_PERIOD HZ/100 /* Polling period .01 seconds (10ms) */
59
60/****** Kernel includes ******/
61
62#include <linux/module.h>
63#include <linux/errno.h>
64#include <linux/major.h>
65#include <linux/kernel.h>
66#include <linux/signal.h>
67#include <linux/slab.h>
68#include <linux/mm.h>
69#include <linux/sched.h>
70#include <linux/timer.h>
71#include <linux/interrupt.h>
72#include <linux/tty.h>
73#include <linux/tty_driver.h>
74#include <linux/tty_flip.h>
75#include <linux/serial.h>
76#include <linux/string.h>
77#include <linux/fcntl.h>
78#include <linux/ptrace.h>
79#include <linux/mutex.h>
80#include <linux/ioport.h>
81#include <linux/delay.h>
82#include <linux/completion.h>
83#include <linux/wait.h>
84#include <linux/pci.h>
85#include <linux/uaccess.h>
86#include <linux/atomic.h>
87#include <asm/unaligned.h>
88#include <linux/bitops.h>
89#include <linux/spinlock.h>
90#include <linux/init.h>
91
92/****** RocketPort includes ******/
93
94#include "rocket_int.h"
95#include "rocket.h"
96
97#define ROCKET_VERSION "2.09"
98#define ROCKET_DATE "12-June-2003"
99
100/****** RocketPort Local Variables ******/
101
102static void rp_do_poll(unsigned long dummy);
103
104static struct tty_driver *rocket_driver;
105
106static struct rocket_version driver_version = {
107 ROCKET_VERSION, ROCKET_DATE
108};
109
110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
112 /* eg. Bit 0 indicates port 0 has xmit data, ... */
113static atomic_t rp_num_ports_open; /* Number of serial ports open */
114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
117static unsigned long board2;
118static unsigned long board3;
119static unsigned long board4;
120static unsigned long controller;
121static int support_low_speed;
122static unsigned long modem1;
123static unsigned long modem2;
124static unsigned long modem3;
125static unsigned long modem4;
126static unsigned long pc104_1[8];
127static unsigned long pc104_2[8];
128static unsigned long pc104_3[8];
129static unsigned long pc104_4[8];
130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
133static unsigned long rcktpt_io_addr[NUM_BOARDS];
134static int rcktpt_type[NUM_BOARDS];
135static int is_PCI[NUM_BOARDS];
136static rocketModel_t rocketModel[NUM_BOARDS];
137static int max_board;
138static const struct tty_port_operations rocket_port_ops;
139
140/*
141 * The following arrays define the interrupt bits corresponding to each AIOP.
142 * These bits are different between the ISA and regular PCI boards and the
143 * Universal PCI boards.
144 */
145
146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147 AIOP_INTR_BIT_0,
148 AIOP_INTR_BIT_1,
149 AIOP_INTR_BIT_2,
150 AIOP_INTR_BIT_3
151};
152
153static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
154 UPCI_AIOP_INTR_BIT_0,
155 UPCI_AIOP_INTR_BIT_1,
156 UPCI_AIOP_INTR_BIT_2,
157 UPCI_AIOP_INTR_BIT_3
158};
159
160static Byte_t RData[RDATASIZE] = {
161 0x00, 0x09, 0xf6, 0x82,
162 0x02, 0x09, 0x86, 0xfb,
163 0x04, 0x09, 0x00, 0x0a,
164 0x06, 0x09, 0x01, 0x0a,
165 0x08, 0x09, 0x8a, 0x13,
166 0x0a, 0x09, 0xc5, 0x11,
167 0x0c, 0x09, 0x86, 0x85,
168 0x0e, 0x09, 0x20, 0x0a,
169 0x10, 0x09, 0x21, 0x0a,
170 0x12, 0x09, 0x41, 0xff,
171 0x14, 0x09, 0x82, 0x00,
172 0x16, 0x09, 0x82, 0x7b,
173 0x18, 0x09, 0x8a, 0x7d,
174 0x1a, 0x09, 0x88, 0x81,
175 0x1c, 0x09, 0x86, 0x7a,
176 0x1e, 0x09, 0x84, 0x81,
177 0x20, 0x09, 0x82, 0x7c,
178 0x22, 0x09, 0x0a, 0x0a
179};
180
181static Byte_t RRegData[RREGDATASIZE] = {
182 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
183 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
184 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
185 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
186 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
187 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
188 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
189 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
190 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
191 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
192 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
193 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
194 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
195};
196
197static CONTROLLER_T sController[CTL_SIZE] = {
198 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
199 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
206};
207
208static Byte_t sBitMapClrTbl[8] = {
209 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
210};
211
212static Byte_t sBitMapSetTbl[8] = {
213 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
214};
215
216static int sClockPrescale = 0x14;
217
218/*
219 * Line number is the ttySIx number (x), the Minor number. We
220 * assign them sequentially, starting at zero. The following
221 * array keeps track of the line number assigned to a given board/aiop/channel.
222 */
223static unsigned char lineNumbers[MAX_RP_PORTS];
224static unsigned long nextLineNumber;
225
226/***** RocketPort Static Prototypes *********/
227static int __init init_ISA(int i);
228static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
229static void rp_flush_buffer(struct tty_struct *tty);
230static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model);
231static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
232static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
233static void rp_start(struct tty_struct *tty);
234static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
235 int ChanNum);
236static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
237static void sFlushRxFIFO(CHANNEL_T * ChP);
238static void sFlushTxFIFO(CHANNEL_T * ChP);
239static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
240static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
241static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
242static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
243static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
244static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
245 ByteIO_t * AiopIOList, int AiopIOListSize,
246 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
247 int PeriodicOnly, int altChanRingIndicator,
248 int UPCIRingInd);
249static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
250 ByteIO_t * AiopIOList, int AiopIOListSize,
251 int IRQNum, Byte_t Frequency, int PeriodicOnly);
252static int sReadAiopID(ByteIO_t io);
253static int sReadAiopNumChan(WordIO_t io);
254
255MODULE_AUTHOR("Theodore Ts'o");
256MODULE_DESCRIPTION("Comtrol RocketPort driver");
257module_param(board1, ulong, 0);
258MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
259module_param(board2, ulong, 0);
260MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
261module_param(board3, ulong, 0);
262MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
263module_param(board4, ulong, 0);
264MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
265module_param(controller, ulong, 0);
266MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
267module_param(support_low_speed, bool, 0);
268MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
269module_param(modem1, ulong, 0);
270MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
271module_param(modem2, ulong, 0);
272MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
273module_param(modem3, ulong, 0);
274MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
275module_param(modem4, ulong, 0);
276MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
277module_param_array(pc104_1, ulong, NULL, 0);
278MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
279module_param_array(pc104_2, ulong, NULL, 0);
280MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
281module_param_array(pc104_3, ulong, NULL, 0);
282MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
283module_param_array(pc104_4, ulong, NULL, 0);
284MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
285
286static int rp_init(void);
287static void rp_cleanup_module(void);
288
289module_init(rp_init);
290module_exit(rp_cleanup_module);
291
292
293MODULE_LICENSE("Dual BSD/GPL");
294
295/*************************************************************************/
296/* Module code starts here */
297
298static inline int rocket_paranoia_check(struct r_port *info,
299 const char *routine)
300{
301#ifdef ROCKET_PARANOIA_CHECK
302 if (!info)
303 return 1;
304 if (info->magic != RPORT_MAGIC) {
305 printk(KERN_WARNING "Warning: bad magic number for rocketport "
306 "struct in %s\n", routine);
307 return 1;
308 }
309#endif
310 return 0;
311}
312
313
314/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
315 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
316 * tty layer.
317 */
318static void rp_do_receive(struct r_port *info,
319 struct tty_struct *tty,
320 CHANNEL_t * cp, unsigned int ChanStatus)
321{
322 unsigned int CharNStat;
323 int ToRecv, wRecv, space;
324 unsigned char *cbuf;
325
326 ToRecv = sGetRxCnt(cp);
327#ifdef ROCKET_DEBUG_INTR
328 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
329#endif
330 if (ToRecv == 0)
331 return;
332
333 /*
334 * if status indicates there are errored characters in the
335 * FIFO, then enter status mode (a word in FIFO holds
336 * character and status).
337 */
338 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
339 if (!(ChanStatus & STATMODE)) {
340#ifdef ROCKET_DEBUG_RECEIVE
341 printk(KERN_INFO "Entering STATMODE...\n");
342#endif
343 ChanStatus |= STATMODE;
344 sEnRxStatusMode(cp);
345 }
346 }
347
348 /*
349 * if we previously entered status mode, then read down the
350 * FIFO one word at a time, pulling apart the character and
351 * the status. Update error counters depending on status
352 */
353 if (ChanStatus & STATMODE) {
354#ifdef ROCKET_DEBUG_RECEIVE
355 printk(KERN_INFO "Ignore %x, read %x...\n",
356 info->ignore_status_mask, info->read_status_mask);
357#endif
358 while (ToRecv) {
359 char flag;
360
361 CharNStat = sInW(sGetTxRxDataIO(cp));
362#ifdef ROCKET_DEBUG_RECEIVE
363 printk(KERN_INFO "%x...\n", CharNStat);
364#endif
365 if (CharNStat & STMBREAKH)
366 CharNStat &= ~(STMFRAMEH | STMPARITYH);
367 if (CharNStat & info->ignore_status_mask) {
368 ToRecv--;
369 continue;
370 }
371 CharNStat &= info->read_status_mask;
372 if (CharNStat & STMBREAKH)
373 flag = TTY_BREAK;
374 else if (CharNStat & STMPARITYH)
375 flag = TTY_PARITY;
376 else if (CharNStat & STMFRAMEH)
377 flag = TTY_FRAME;
378 else if (CharNStat & STMRCVROVRH)
379 flag = TTY_OVERRUN;
380 else
381 flag = TTY_NORMAL;
382 tty_insert_flip_char(tty, CharNStat & 0xff, flag);
383 ToRecv--;
384 }
385
386 /*
387 * after we've emptied the FIFO in status mode, turn
388 * status mode back off
389 */
390 if (sGetRxCnt(cp) == 0) {
391#ifdef ROCKET_DEBUG_RECEIVE
392 printk(KERN_INFO "Status mode off.\n");
393#endif
394 sDisRxStatusMode(cp);
395 }
396 } else {
397 /*
398 * we aren't in status mode, so read down the FIFO two
399 * characters at time by doing repeated word IO
400 * transfer.
401 */
402 space = tty_prepare_flip_string(tty, &cbuf, ToRecv);
403 if (space < ToRecv) {
404#ifdef ROCKET_DEBUG_RECEIVE
405 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
406#endif
407 if (space <= 0)
408 return;
409 ToRecv = space;
410 }
411 wRecv = ToRecv >> 1;
412 if (wRecv)
413 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
414 if (ToRecv & 1)
415 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
416 }
417 /* Push the data up to the tty layer */
418 tty_flip_buffer_push(tty);
419}
420
421/*
422 * Serial port transmit data function. Called from the timer polling loop as a
423 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
424 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
425 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
426 */
427static void rp_do_transmit(struct r_port *info)
428{
429 int c;
430 CHANNEL_t *cp = &info->channel;
431 struct tty_struct *tty;
432 unsigned long flags;
433
434#ifdef ROCKET_DEBUG_INTR
435 printk(KERN_DEBUG "%s\n", __func__);
436#endif
437 if (!info)
438 return;
439 tty = tty_port_tty_get(&info->port);
440
441 if (tty == NULL) {
442 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
443 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
444 return;
445 }
446
447 spin_lock_irqsave(&info->slock, flags);
448 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
449
450 /* Loop sending data to FIFO until done or FIFO full */
451 while (1) {
452 if (tty->stopped || tty->hw_stopped)
453 break;
454 c = min(info->xmit_fifo_room, info->xmit_cnt);
455 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
456 if (c <= 0 || info->xmit_fifo_room <= 0)
457 break;
458 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
459 if (c & 1)
460 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
461 info->xmit_tail += c;
462 info->xmit_tail &= XMIT_BUF_SIZE - 1;
463 info->xmit_cnt -= c;
464 info->xmit_fifo_room -= c;
465#ifdef ROCKET_DEBUG_INTR
466 printk(KERN_INFO "tx %d chars...\n", c);
467#endif
468 }
469
470 if (info->xmit_cnt == 0)
471 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
472
473 if (info->xmit_cnt < WAKEUP_CHARS) {
474 tty_wakeup(tty);
475#ifdef ROCKETPORT_HAVE_POLL_WAIT
476 wake_up_interruptible(&tty->poll_wait);
477#endif
478 }
479
480 spin_unlock_irqrestore(&info->slock, flags);
481 tty_kref_put(tty);
482
483#ifdef ROCKET_DEBUG_INTR
484 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
485 info->xmit_tail, info->xmit_fifo_room);
486#endif
487}
488
489/*
490 * Called when a serial port signals it has read data in it's RX FIFO.
491 * It checks what interrupts are pending and services them, including
492 * receiving serial data.
493 */
494static void rp_handle_port(struct r_port *info)
495{
496 CHANNEL_t *cp;
497 struct tty_struct *tty;
498 unsigned int IntMask, ChanStatus;
499
500 if (!info)
501 return;
502
503 if ((info->port.flags & ASYNC_INITIALIZED) == 0) {
504 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
505 "info->flags & NOT_INIT\n");
506 return;
507 }
508 tty = tty_port_tty_get(&info->port);
509 if (!tty) {
510 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
511 "tty==NULL\n");
512 return;
513 }
514 cp = &info->channel;
515
516 IntMask = sGetChanIntID(cp) & info->intmask;
517#ifdef ROCKET_DEBUG_INTR
518 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
519#endif
520 ChanStatus = sGetChanStatus(cp);
521 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
522 rp_do_receive(info, tty, cp, ChanStatus);
523 }
524 if (IntMask & DELTA_CD) { /* CD change */
525#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
526 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
527 (ChanStatus & CD_ACT) ? "on" : "off");
528#endif
529 if (!(ChanStatus & CD_ACT) && info->cd_status) {
530#ifdef ROCKET_DEBUG_HANGUP
531 printk(KERN_INFO "CD drop, calling hangup.\n");
532#endif
533 tty_hangup(tty);
534 }
535 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
536 wake_up_interruptible(&info->port.open_wait);
537 }
538#ifdef ROCKET_DEBUG_INTR
539 if (IntMask & DELTA_CTS) { /* CTS change */
540 printk(KERN_INFO "CTS change...\n");
541 }
542 if (IntMask & DELTA_DSR) { /* DSR change */
543 printk(KERN_INFO "DSR change...\n");
544 }
545#endif
546 tty_kref_put(tty);
547}
548
549/*
550 * The top level polling routine. Repeats every 1/100 HZ (10ms).
551 */
552static void rp_do_poll(unsigned long dummy)
553{
554 CONTROLLER_t *ctlp;
555 int ctrl, aiop, ch, line;
556 unsigned int xmitmask, i;
557 unsigned int CtlMask;
558 unsigned char AiopMask;
559 Word_t bit;
560
561 /* Walk through all the boards (ctrl's) */
562 for (ctrl = 0; ctrl < max_board; ctrl++) {
563 if (rcktpt_io_addr[ctrl] <= 0)
564 continue;
565
566 /* Get a ptr to the board's control struct */
567 ctlp = sCtlNumToCtlPtr(ctrl);
568
569 /* Get the interrupt status from the board */
570#ifdef CONFIG_PCI
571 if (ctlp->BusType == isPCI)
572 CtlMask = sPCIGetControllerIntStatus(ctlp);
573 else
574#endif
575 CtlMask = sGetControllerIntStatus(ctlp);
576
577 /* Check if any AIOP read bits are set */
578 for (aiop = 0; CtlMask; aiop++) {
579 bit = ctlp->AiopIntrBits[aiop];
580 if (CtlMask & bit) {
581 CtlMask &= ~bit;
582 AiopMask = sGetAiopIntStatus(ctlp, aiop);
583
584 /* Check if any port read bits are set */
585 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
586 if (AiopMask & 1) {
587
588 /* Get the line number (/dev/ttyRx number). */
589 /* Read the data from the port. */
590 line = GetLineNumber(ctrl, aiop, ch);
591 rp_handle_port(rp_table[line]);
592 }
593 }
594 }
595 }
596
597 xmitmask = xmit_flags[ctrl];
598
599 /*
600 * xmit_flags contains bit-significant flags, indicating there is data
601 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
602 * 1, ... (32 total possible). The variable i has the aiop and ch
603 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
604 */
605 if (xmitmask) {
606 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
607 if (xmitmask & (1 << i)) {
608 aiop = (i & 0x18) >> 3;
609 ch = i & 0x07;
610 line = GetLineNumber(ctrl, aiop, ch);
611 rp_do_transmit(rp_table[line]);
612 }
613 }
614 }
615 }
616
617 /*
618 * Reset the timer so we get called at the next clock tick (10ms).
619 */
620 if (atomic_read(&rp_num_ports_open))
621 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
622}
623
624/*
625 * Initializes the r_port structure for a port, as well as enabling the port on
626 * the board.
627 * Inputs: board, aiop, chan numbers
628 */
629static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
630{
631 unsigned rocketMode;
632 struct r_port *info;
633 int line;
634 CONTROLLER_T *ctlp;
635
636 /* Get the next available line number */
637 line = SetLineNumber(board, aiop, chan);
638
639 ctlp = sCtlNumToCtlPtr(board);
640
641 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
642 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
643 if (!info) {
644 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
645 line);
646 return;
647 }
648
649 info->magic = RPORT_MAGIC;
650 info->line = line;
651 info->ctlp = ctlp;
652 info->board = board;
653 info->aiop = aiop;
654 info->chan = chan;
655 tty_port_init(&info->port);
656 info->port.ops = &rocket_port_ops;
657 init_completion(&info->close_wait);
658 info->flags &= ~ROCKET_MODE_MASK;
659 switch (pc104[board][line]) {
660 case 422:
661 info->flags |= ROCKET_MODE_RS422;
662 break;
663 case 485:
664 info->flags |= ROCKET_MODE_RS485;
665 break;
666 case 232:
667 default:
668 info->flags |= ROCKET_MODE_RS232;
669 break;
670 }
671
672 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
673 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
674 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
675 board, aiop, chan);
676 kfree(info);
677 return;
678 }
679
680 rocketMode = info->flags & ROCKET_MODE_MASK;
681
682 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
683 sEnRTSToggle(&info->channel);
684 else
685 sDisRTSToggle(&info->channel);
686
687 if (ctlp->boardType == ROCKET_TYPE_PC104) {
688 switch (rocketMode) {
689 case ROCKET_MODE_RS485:
690 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
691 break;
692 case ROCKET_MODE_RS422:
693 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
694 break;
695 case ROCKET_MODE_RS232:
696 default:
697 if (info->flags & ROCKET_RTS_TOGGLE)
698 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
699 else
700 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
701 break;
702 }
703 }
704 spin_lock_init(&info->slock);
705 mutex_init(&info->write_mtx);
706 rp_table[line] = info;
707 tty_register_device(rocket_driver, line, pci_dev ? &pci_dev->dev :
708 NULL);
709}
710
711/*
712 * Configures a rocketport port according to its termio settings. Called from
713 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
714 */
715static void configure_r_port(struct tty_struct *tty, struct r_port *info,
716 struct ktermios *old_termios)
717{
718 unsigned cflag;
719 unsigned long flags;
720 unsigned rocketMode;
721 int bits, baud, divisor;
722 CHANNEL_t *cp;
723 struct ktermios *t = tty->termios;
724
725 cp = &info->channel;
726 cflag = t->c_cflag;
727
728 /* Byte size and parity */
729 if ((cflag & CSIZE) == CS8) {
730 sSetData8(cp);
731 bits = 10;
732 } else {
733 sSetData7(cp);
734 bits = 9;
735 }
736 if (cflag & CSTOPB) {
737 sSetStop2(cp);
738 bits++;
739 } else {
740 sSetStop1(cp);
741 }
742
743 if (cflag & PARENB) {
744 sEnParity(cp);
745 bits++;
746 if (cflag & PARODD) {
747 sSetOddParity(cp);
748 } else {
749 sSetEvenParity(cp);
750 }
751 } else {
752 sDisParity(cp);
753 }
754
755 /* baud rate */
756 baud = tty_get_baud_rate(tty);
757 if (!baud)
758 baud = 9600;
759 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
760 if ((divisor >= 8192 || divisor < 0) && old_termios) {
761 baud = tty_termios_baud_rate(old_termios);
762 if (!baud)
763 baud = 9600;
764 divisor = (rp_baud_base[info->board] / baud) - 1;
765 }
766 if (divisor >= 8192 || divisor < 0) {
767 baud = 9600;
768 divisor = (rp_baud_base[info->board] / baud) - 1;
769 }
770 info->cps = baud / bits;
771 sSetBaud(cp, divisor);
772
773 /* FIXME: Should really back compute a baud rate from the divisor */
774 tty_encode_baud_rate(tty, baud, baud);
775
776 if (cflag & CRTSCTS) {
777 info->intmask |= DELTA_CTS;
778 sEnCTSFlowCtl(cp);
779 } else {
780 info->intmask &= ~DELTA_CTS;
781 sDisCTSFlowCtl(cp);
782 }
783 if (cflag & CLOCAL) {
784 info->intmask &= ~DELTA_CD;
785 } else {
786 spin_lock_irqsave(&info->slock, flags);
787 if (sGetChanStatus(cp) & CD_ACT)
788 info->cd_status = 1;
789 else
790 info->cd_status = 0;
791 info->intmask |= DELTA_CD;
792 spin_unlock_irqrestore(&info->slock, flags);
793 }
794
795 /*
796 * Handle software flow control in the board
797 */
798#ifdef ROCKET_SOFT_FLOW
799 if (I_IXON(tty)) {
800 sEnTxSoftFlowCtl(cp);
801 if (I_IXANY(tty)) {
802 sEnIXANY(cp);
803 } else {
804 sDisIXANY(cp);
805 }
806 sSetTxXONChar(cp, START_CHAR(tty));
807 sSetTxXOFFChar(cp, STOP_CHAR(tty));
808 } else {
809 sDisTxSoftFlowCtl(cp);
810 sDisIXANY(cp);
811 sClrTxXOFF(cp);
812 }
813#endif
814
815 /*
816 * Set up ignore/read mask words
817 */
818 info->read_status_mask = STMRCVROVRH | 0xFF;
819 if (I_INPCK(tty))
820 info->read_status_mask |= STMFRAMEH | STMPARITYH;
821 if (I_BRKINT(tty) || I_PARMRK(tty))
822 info->read_status_mask |= STMBREAKH;
823
824 /*
825 * Characters to ignore
826 */
827 info->ignore_status_mask = 0;
828 if (I_IGNPAR(tty))
829 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
830 if (I_IGNBRK(tty)) {
831 info->ignore_status_mask |= STMBREAKH;
832 /*
833 * If we're ignoring parity and break indicators,
834 * ignore overruns too. (For real raw support).
835 */
836 if (I_IGNPAR(tty))
837 info->ignore_status_mask |= STMRCVROVRH;
838 }
839
840 rocketMode = info->flags & ROCKET_MODE_MASK;
841
842 if ((info->flags & ROCKET_RTS_TOGGLE)
843 || (rocketMode == ROCKET_MODE_RS485))
844 sEnRTSToggle(cp);
845 else
846 sDisRTSToggle(cp);
847
848 sSetRTS(&info->channel);
849
850 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
851 switch (rocketMode) {
852 case ROCKET_MODE_RS485:
853 sSetInterfaceMode(cp, InterfaceModeRS485);
854 break;
855 case ROCKET_MODE_RS422:
856 sSetInterfaceMode(cp, InterfaceModeRS422);
857 break;
858 case ROCKET_MODE_RS232:
859 default:
860 if (info->flags & ROCKET_RTS_TOGGLE)
861 sSetInterfaceMode(cp, InterfaceModeRS232T);
862 else
863 sSetInterfaceMode(cp, InterfaceModeRS232);
864 break;
865 }
866 }
867}
868
869static int carrier_raised(struct tty_port *port)
870{
871 struct r_port *info = container_of(port, struct r_port, port);
872 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
873}
874
875static void dtr_rts(struct tty_port *port, int on)
876{
877 struct r_port *info = container_of(port, struct r_port, port);
878 if (on) {
879 sSetDTR(&info->channel);
880 sSetRTS(&info->channel);
881 } else {
882 sClrDTR(&info->channel);
883 sClrRTS(&info->channel);
884 }
885}
886
887/*
888 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
889 * port's r_port struct. Initializes the port hardware.
890 */
891static int rp_open(struct tty_struct *tty, struct file *filp)
892{
893 struct r_port *info;
894 struct tty_port *port;
895 int line = 0, retval;
896 CHANNEL_t *cp;
897 unsigned long page;
898
899 line = tty->index;
900 if (line < 0 || line >= MAX_RP_PORTS || ((info = rp_table[line]) == NULL))
901 return -ENXIO;
902 port = &info->port;
903
904 page = __get_free_page(GFP_KERNEL);
905 if (!page)
906 return -ENOMEM;
907
908 if (port->flags & ASYNC_CLOSING) {
909 retval = wait_for_completion_interruptible(&info->close_wait);
910 free_page(page);
911 if (retval)
912 return retval;
913 return ((port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
914 }
915
916 /*
917 * We must not sleep from here until the port is marked fully in use.
918 */
919 if (info->xmit_buf)
920 free_page(page);
921 else
922 info->xmit_buf = (unsigned char *) page;
923
924 tty->driver_data = info;
925 tty_port_tty_set(port, tty);
926
927 if (port->count++ == 0) {
928 atomic_inc(&rp_num_ports_open);
929
930#ifdef ROCKET_DEBUG_OPEN
931 printk(KERN_INFO "rocket mod++ = %d...\n",
932 atomic_read(&rp_num_ports_open));
933#endif
934 }
935#ifdef ROCKET_DEBUG_OPEN
936 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
937#endif
938
939 /*
940 * Info->count is now 1; so it's safe to sleep now.
941 */
942 if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) {
943 cp = &info->channel;
944 sSetRxTrigger(cp, TRIG_1);
945 if (sGetChanStatus(cp) & CD_ACT)
946 info->cd_status = 1;
947 else
948 info->cd_status = 0;
949 sDisRxStatusMode(cp);
950 sFlushRxFIFO(cp);
951 sFlushTxFIFO(cp);
952
953 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
954 sSetRxTrigger(cp, TRIG_1);
955
956 sGetChanStatus(cp);
957 sDisRxStatusMode(cp);
958 sClrTxXOFF(cp);
959
960 sDisCTSFlowCtl(cp);
961 sDisTxSoftFlowCtl(cp);
962
963 sEnRxFIFO(cp);
964 sEnTransmit(cp);
965
966 set_bit(ASYNCB_INITIALIZED, &info->port.flags);
967
968 /*
969 * Set up the tty->alt_speed kludge
970 */
971 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
972 tty->alt_speed = 57600;
973 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
974 tty->alt_speed = 115200;
975 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
976 tty->alt_speed = 230400;
977 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
978 tty->alt_speed = 460800;
979
980 configure_r_port(tty, info, NULL);
981 if (tty->termios->c_cflag & CBAUD) {
982 sSetDTR(cp);
983 sSetRTS(cp);
984 }
985 }
986 /* Starts (or resets) the maint polling loop */
987 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
988
989 retval = tty_port_block_til_ready(port, tty, filp);
990 if (retval) {
991#ifdef ROCKET_DEBUG_OPEN
992 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
993#endif
994 return retval;
995 }
996 return 0;
997}
998
999/*
1000 * Exception handler that closes a serial port. info->port.count is considered critical.
1001 */
1002static void rp_close(struct tty_struct *tty, struct file *filp)
1003{
1004 struct r_port *info = tty->driver_data;
1005 struct tty_port *port = &info->port;
1006 int timeout;
1007 CHANNEL_t *cp;
1008
1009 if (rocket_paranoia_check(info, "rp_close"))
1010 return;
1011
1012#ifdef ROCKET_DEBUG_OPEN
1013 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
1014#endif
1015
1016 if (tty_port_close_start(port, tty, filp) == 0)
1017 return;
1018
1019 mutex_lock(&port->mutex);
1020 cp = &info->channel;
1021 /*
1022 * Before we drop DTR, make sure the UART transmitter
1023 * has completely drained; this is especially
1024 * important if there is a transmit FIFO!
1025 */
1026 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1027 if (timeout == 0)
1028 timeout = 1;
1029 rp_wait_until_sent(tty, timeout);
1030 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1031
1032 sDisTransmit(cp);
1033 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1034 sDisCTSFlowCtl(cp);
1035 sDisTxSoftFlowCtl(cp);
1036 sClrTxXOFF(cp);
1037 sFlushRxFIFO(cp);
1038 sFlushTxFIFO(cp);
1039 sClrRTS(cp);
1040 if (C_HUPCL(tty))
1041 sClrDTR(cp);
1042
1043 rp_flush_buffer(tty);
1044
1045 tty_ldisc_flush(tty);
1046
1047 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1048
1049 /* We can't yet use tty_port_close_end as the buffer handling in this
1050 driver is a bit different to the usual */
1051
1052 if (port->blocked_open) {
1053 if (port->close_delay) {
1054 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1055 }
1056 wake_up_interruptible(&port->open_wait);
1057 } else {
1058 if (info->xmit_buf) {
1059 free_page((unsigned long) info->xmit_buf);
1060 info->xmit_buf = NULL;
1061 }
1062 }
1063 spin_lock_irq(&port->lock);
1064 info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_CLOSING | ASYNC_NORMAL_ACTIVE);
1065 tty->closing = 0;
1066 spin_unlock_irq(&port->lock);
1067 mutex_unlock(&port->mutex);
1068 tty_port_tty_set(port, NULL);
1069
1070 wake_up_interruptible(&port->close_wait);
1071 complete_all(&info->close_wait);
1072 atomic_dec(&rp_num_ports_open);
1073
1074#ifdef ROCKET_DEBUG_OPEN
1075 printk(KERN_INFO "rocket mod-- = %d...\n",
1076 atomic_read(&rp_num_ports_open));
1077 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1078#endif
1079
1080}
1081
1082static void rp_set_termios(struct tty_struct *tty,
1083 struct ktermios *old_termios)
1084{
1085 struct r_port *info = tty->driver_data;
1086 CHANNEL_t *cp;
1087 unsigned cflag;
1088
1089 if (rocket_paranoia_check(info, "rp_set_termios"))
1090 return;
1091
1092 cflag = tty->termios->c_cflag;
1093
1094 /*
1095 * This driver doesn't support CS5 or CS6
1096 */
1097 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1098 tty->termios->c_cflag =
1099 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1100 /* Or CMSPAR */
1101 tty->termios->c_cflag &= ~CMSPAR;
1102
1103 configure_r_port(tty, info, old_termios);
1104
1105 cp = &info->channel;
1106
1107 /* Handle transition to B0 status */
1108 if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) {
1109 sClrDTR(cp);
1110 sClrRTS(cp);
1111 }
1112
1113 /* Handle transition away from B0 status */
1114 if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) {
1115 if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS))
1116 sSetRTS(cp);
1117 sSetDTR(cp);
1118 }
1119
1120 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) {
1121 tty->hw_stopped = 0;
1122 rp_start(tty);
1123 }
1124}
1125
1126static int rp_break(struct tty_struct *tty, int break_state)
1127{
1128 struct r_port *info = tty->driver_data;
1129 unsigned long flags;
1130
1131 if (rocket_paranoia_check(info, "rp_break"))
1132 return -EINVAL;
1133
1134 spin_lock_irqsave(&info->slock, flags);
1135 if (break_state == -1)
1136 sSendBreak(&info->channel);
1137 else
1138 sClrBreak(&info->channel);
1139 spin_unlock_irqrestore(&info->slock, flags);
1140 return 0;
1141}
1142
1143/*
1144 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1145 * the UPCI boards was added, it was decided to make this a function because
1146 * the macro was getting too complicated. All cases except the first one
1147 * (UPCIRingInd) are taken directly from the original macro.
1148 */
1149static int sGetChanRI(CHANNEL_T * ChP)
1150{
1151 CONTROLLER_t *CtlP = ChP->CtlP;
1152 int ChanNum = ChP->ChanNum;
1153 int RingInd = 0;
1154
1155 if (CtlP->UPCIRingInd)
1156 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1157 else if (CtlP->AltChanRingIndicator)
1158 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1159 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1160 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1161
1162 return RingInd;
1163}
1164
1165/********************************************************************************************/
1166/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1167
1168/*
1169 * Returns the state of the serial modem control lines. These next 2 functions
1170 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1171 */
1172static int rp_tiocmget(struct tty_struct *tty)
1173{
1174 struct r_port *info = tty->driver_data;
1175 unsigned int control, result, ChanStatus;
1176
1177 ChanStatus = sGetChanStatusLo(&info->channel);
1178 control = info->channel.TxControl[3];
1179 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1180 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1181 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1182 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1183 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1184 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1185
1186 return result;
1187}
1188
1189/*
1190 * Sets the modem control lines
1191 */
1192static int rp_tiocmset(struct tty_struct *tty,
1193 unsigned int set, unsigned int clear)
1194{
1195 struct r_port *info = tty->driver_data;
1196
1197 if (set & TIOCM_RTS)
1198 info->channel.TxControl[3] |= SET_RTS;
1199 if (set & TIOCM_DTR)
1200 info->channel.TxControl[3] |= SET_DTR;
1201 if (clear & TIOCM_RTS)
1202 info->channel.TxControl[3] &= ~SET_RTS;
1203 if (clear & TIOCM_DTR)
1204 info->channel.TxControl[3] &= ~SET_DTR;
1205
1206 out32(info->channel.IndexAddr, info->channel.TxControl);
1207 return 0;
1208}
1209
1210static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1211{
1212 struct rocket_config tmp;
1213
1214 if (!retinfo)
1215 return -EFAULT;
1216 memset(&tmp, 0, sizeof (tmp));
1217 mutex_lock(&info->port.mutex);
1218 tmp.line = info->line;
1219 tmp.flags = info->flags;
1220 tmp.close_delay = info->port.close_delay;
1221 tmp.closing_wait = info->port.closing_wait;
1222 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1223 mutex_unlock(&info->port.mutex);
1224
1225 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1226 return -EFAULT;
1227 return 0;
1228}
1229
1230static int set_config(struct tty_struct *tty, struct r_port *info,
1231 struct rocket_config __user *new_info)
1232{
1233 struct rocket_config new_serial;
1234
1235 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1236 return -EFAULT;
1237
1238 mutex_lock(&info->port.mutex);
1239 if (!capable(CAP_SYS_ADMIN))
1240 {
1241 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1242 mutex_unlock(&info->port.mutex);
1243 return -EPERM;
1244 }
1245 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1246 configure_r_port(tty, info, NULL);
1247 mutex_unlock(&info->port.mutex);
1248 return 0;
1249 }
1250
1251 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1252 info->port.close_delay = new_serial.close_delay;
1253 info->port.closing_wait = new_serial.closing_wait;
1254
1255 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1256 tty->alt_speed = 57600;
1257 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1258 tty->alt_speed = 115200;
1259 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1260 tty->alt_speed = 230400;
1261 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1262 tty->alt_speed = 460800;
1263 mutex_unlock(&info->port.mutex);
1264
1265 configure_r_port(tty, info, NULL);
1266 return 0;
1267}
1268
1269/*
1270 * This function fills in a rocket_ports struct with information
1271 * about what boards/ports are in the system. This info is passed
1272 * to user space. See setrocket.c where the info is used to create
1273 * the /dev/ttyRx ports.
1274 */
1275static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1276{
1277 struct rocket_ports tmp;
1278 int board;
1279
1280 if (!retports)
1281 return -EFAULT;
1282 memset(&tmp, 0, sizeof (tmp));
1283 tmp.tty_major = rocket_driver->major;
1284
1285 for (board = 0; board < 4; board++) {
1286 tmp.rocketModel[board].model = rocketModel[board].model;
1287 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1288 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1289 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1290 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1291 }
1292 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1293 return -EFAULT;
1294 return 0;
1295}
1296
1297static int reset_rm2(struct r_port *info, void __user *arg)
1298{
1299 int reset;
1300
1301 if (!capable(CAP_SYS_ADMIN))
1302 return -EPERM;
1303
1304 if (copy_from_user(&reset, arg, sizeof (int)))
1305 return -EFAULT;
1306 if (reset)
1307 reset = 1;
1308
1309 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1310 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1311 return -EINVAL;
1312
1313 if (info->ctlp->BusType == isISA)
1314 sModemReset(info->ctlp, info->chan, reset);
1315 else
1316 sPCIModemReset(info->ctlp, info->chan, reset);
1317
1318 return 0;
1319}
1320
1321static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1322{
1323 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1324 return -EFAULT;
1325 return 0;
1326}
1327
1328/* IOCTL call handler into the driver */
1329static int rp_ioctl(struct tty_struct *tty,
1330 unsigned int cmd, unsigned long arg)
1331{
1332 struct r_port *info = tty->driver_data;
1333 void __user *argp = (void __user *)arg;
1334 int ret = 0;
1335
1336 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1337 return -ENXIO;
1338
1339 switch (cmd) {
1340 case RCKP_GET_STRUCT:
1341 if (copy_to_user(argp, info, sizeof (struct r_port)))
1342 ret = -EFAULT;
1343 break;
1344 case RCKP_GET_CONFIG:
1345 ret = get_config(info, argp);
1346 break;
1347 case RCKP_SET_CONFIG:
1348 ret = set_config(tty, info, argp);
1349 break;
1350 case RCKP_GET_PORTS:
1351 ret = get_ports(info, argp);
1352 break;
1353 case RCKP_RESET_RM2:
1354 ret = reset_rm2(info, argp);
1355 break;
1356 case RCKP_GET_VERSION:
1357 ret = get_version(info, argp);
1358 break;
1359 default:
1360 ret = -ENOIOCTLCMD;
1361 }
1362 return ret;
1363}
1364
1365static void rp_send_xchar(struct tty_struct *tty, char ch)
1366{
1367 struct r_port *info = tty->driver_data;
1368 CHANNEL_t *cp;
1369
1370 if (rocket_paranoia_check(info, "rp_send_xchar"))
1371 return;
1372
1373 cp = &info->channel;
1374 if (sGetTxCnt(cp))
1375 sWriteTxPrioByte(cp, ch);
1376 else
1377 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1378}
1379
1380static void rp_throttle(struct tty_struct *tty)
1381{
1382 struct r_port *info = tty->driver_data;
1383
1384#ifdef ROCKET_DEBUG_THROTTLE
1385 printk(KERN_INFO "throttle %s: %d....\n", tty->name,
1386 tty->ldisc.chars_in_buffer(tty));
1387#endif
1388
1389 if (rocket_paranoia_check(info, "rp_throttle"))
1390 return;
1391
1392 if (I_IXOFF(tty))
1393 rp_send_xchar(tty, STOP_CHAR(tty));
1394
1395 sClrRTS(&info->channel);
1396}
1397
1398static void rp_unthrottle(struct tty_struct *tty)
1399{
1400 struct r_port *info = tty->driver_data;
1401#ifdef ROCKET_DEBUG_THROTTLE
1402 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
1403 tty->ldisc.chars_in_buffer(tty));
1404#endif
1405
1406 if (rocket_paranoia_check(info, "rp_throttle"))
1407 return;
1408
1409 if (I_IXOFF(tty))
1410 rp_send_xchar(tty, START_CHAR(tty));
1411
1412 sSetRTS(&info->channel);
1413}
1414
1415/*
1416 * ------------------------------------------------------------
1417 * rp_stop() and rp_start()
1418 *
1419 * This routines are called before setting or resetting tty->stopped.
1420 * They enable or disable transmitter interrupts, as necessary.
1421 * ------------------------------------------------------------
1422 */
1423static void rp_stop(struct tty_struct *tty)
1424{
1425 struct r_port *info = tty->driver_data;
1426
1427#ifdef ROCKET_DEBUG_FLOW
1428 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1429 info->xmit_cnt, info->xmit_fifo_room);
1430#endif
1431
1432 if (rocket_paranoia_check(info, "rp_stop"))
1433 return;
1434
1435 if (sGetTxCnt(&info->channel))
1436 sDisTransmit(&info->channel);
1437}
1438
1439static void rp_start(struct tty_struct *tty)
1440{
1441 struct r_port *info = tty->driver_data;
1442
1443#ifdef ROCKET_DEBUG_FLOW
1444 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1445 info->xmit_cnt, info->xmit_fifo_room);
1446#endif
1447
1448 if (rocket_paranoia_check(info, "rp_stop"))
1449 return;
1450
1451 sEnTransmit(&info->channel);
1452 set_bit((info->aiop * 8) + info->chan,
1453 (void *) &xmit_flags[info->board]);
1454}
1455
1456/*
1457 * rp_wait_until_sent() --- wait until the transmitter is empty
1458 */
1459static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1460{
1461 struct r_port *info = tty->driver_data;
1462 CHANNEL_t *cp;
1463 unsigned long orig_jiffies;
1464 int check_time, exit_time;
1465 int txcnt;
1466
1467 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1468 return;
1469
1470 cp = &info->channel;
1471
1472 orig_jiffies = jiffies;
1473#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1474 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout,
1475 jiffies);
1476 printk(KERN_INFO "cps=%d...\n", info->cps);
1477#endif
1478 while (1) {
1479 txcnt = sGetTxCnt(cp);
1480 if (!txcnt) {
1481 if (sGetChanStatusLo(cp) & TXSHRMT)
1482 break;
1483 check_time = (HZ / info->cps) / 5;
1484 } else {
1485 check_time = HZ * txcnt / info->cps;
1486 }
1487 if (timeout) {
1488 exit_time = orig_jiffies + timeout - jiffies;
1489 if (exit_time <= 0)
1490 break;
1491 if (exit_time < check_time)
1492 check_time = exit_time;
1493 }
1494 if (check_time == 0)
1495 check_time = 1;
1496#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1497 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1498 jiffies, check_time);
1499#endif
1500 msleep_interruptible(jiffies_to_msecs(check_time));
1501 if (signal_pending(current))
1502 break;
1503 }
1504 __set_current_state(TASK_RUNNING);
1505#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1506 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1507#endif
1508}
1509
1510/*
1511 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1512 */
1513static void rp_hangup(struct tty_struct *tty)
1514{
1515 CHANNEL_t *cp;
1516 struct r_port *info = tty->driver_data;
1517 unsigned long flags;
1518
1519 if (rocket_paranoia_check(info, "rp_hangup"))
1520 return;
1521
1522#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1523 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1524#endif
1525 rp_flush_buffer(tty);
1526 spin_lock_irqsave(&info->port.lock, flags);
1527 if (info->port.flags & ASYNC_CLOSING) {
1528 spin_unlock_irqrestore(&info->port.lock, flags);
1529 return;
1530 }
1531 if (info->port.count)
1532 atomic_dec(&rp_num_ports_open);
1533 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1534 spin_unlock_irqrestore(&info->port.lock, flags);
1535
1536 tty_port_hangup(&info->port);
1537
1538 cp = &info->channel;
1539 sDisRxFIFO(cp);
1540 sDisTransmit(cp);
1541 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1542 sDisCTSFlowCtl(cp);
1543 sDisTxSoftFlowCtl(cp);
1544 sClrTxXOFF(cp);
1545 clear_bit(ASYNCB_INITIALIZED, &info->port.flags);
1546
1547 wake_up_interruptible(&info->port.open_wait);
1548}
1549
1550/*
1551 * Exception handler - write char routine. The RocketPort driver uses a
1552 * double-buffering strategy, with the twist that if the in-memory CPU
1553 * buffer is empty, and there's space in the transmit FIFO, the
1554 * writing routines will write directly to transmit FIFO.
1555 * Write buffer and counters protected by spinlocks
1556 */
1557static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1558{
1559 struct r_port *info = tty->driver_data;
1560 CHANNEL_t *cp;
1561 unsigned long flags;
1562
1563 if (rocket_paranoia_check(info, "rp_put_char"))
1564 return 0;
1565
1566 /*
1567 * Grab the port write mutex, locking out other processes that try to
1568 * write to this port
1569 */
1570 mutex_lock(&info->write_mtx);
1571
1572#ifdef ROCKET_DEBUG_WRITE
1573 printk(KERN_INFO "rp_put_char %c...\n", ch);
1574#endif
1575
1576 spin_lock_irqsave(&info->slock, flags);
1577 cp = &info->channel;
1578
1579 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0)
1580 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1581
1582 if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1583 info->xmit_buf[info->xmit_head++] = ch;
1584 info->xmit_head &= XMIT_BUF_SIZE - 1;
1585 info->xmit_cnt++;
1586 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1587 } else {
1588 sOutB(sGetTxRxDataIO(cp), ch);
1589 info->xmit_fifo_room--;
1590 }
1591 spin_unlock_irqrestore(&info->slock, flags);
1592 mutex_unlock(&info->write_mtx);
1593 return 1;
1594}
1595
1596/*
1597 * Exception handler - write routine, called when user app writes to the device.
1598 * A per port write mutex is used to protect from another process writing to
1599 * this port at the same time. This other process could be running on the other CPU
1600 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1601 * Spinlocks protect the info xmit members.
1602 */
1603static int rp_write(struct tty_struct *tty,
1604 const unsigned char *buf, int count)
1605{
1606 struct r_port *info = tty->driver_data;
1607 CHANNEL_t *cp;
1608 const unsigned char *b;
1609 int c, retval = 0;
1610 unsigned long flags;
1611
1612 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1613 return 0;
1614
1615 if (mutex_lock_interruptible(&info->write_mtx))
1616 return -ERESTARTSYS;
1617
1618#ifdef ROCKET_DEBUG_WRITE
1619 printk(KERN_INFO "rp_write %d chars...\n", count);
1620#endif
1621 cp = &info->channel;
1622
1623 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count)
1624 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1625
1626 /*
1627 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1628 * into FIFO. Use the write queue for temp storage.
1629 */
1630 if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1631 c = min(count, info->xmit_fifo_room);
1632 b = buf;
1633
1634 /* Push data into FIFO, 2 bytes at a time */
1635 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1636
1637 /* If there is a byte remaining, write it */
1638 if (c & 1)
1639 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1640
1641 retval += c;
1642 buf += c;
1643 count -= c;
1644
1645 spin_lock_irqsave(&info->slock, flags);
1646 info->xmit_fifo_room -= c;
1647 spin_unlock_irqrestore(&info->slock, flags);
1648 }
1649
1650 /* If count is zero, we wrote it all and are done */
1651 if (!count)
1652 goto end;
1653
1654 /* Write remaining data into the port's xmit_buf */
1655 while (1) {
1656 /* Hung up ? */
1657 if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags))
1658 goto end;
1659 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1660 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1661 if (c <= 0)
1662 break;
1663
1664 b = buf;
1665 memcpy(info->xmit_buf + info->xmit_head, b, c);
1666
1667 spin_lock_irqsave(&info->slock, flags);
1668 info->xmit_head =
1669 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1670 info->xmit_cnt += c;
1671 spin_unlock_irqrestore(&info->slock, flags);
1672
1673 buf += c;
1674 count -= c;
1675 retval += c;
1676 }
1677
1678 if ((retval > 0) && !tty->stopped && !tty->hw_stopped)
1679 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1680
1681end:
1682 if (info->xmit_cnt < WAKEUP_CHARS) {
1683 tty_wakeup(tty);
1684#ifdef ROCKETPORT_HAVE_POLL_WAIT
1685 wake_up_interruptible(&tty->poll_wait);
1686#endif
1687 }
1688 mutex_unlock(&info->write_mtx);
1689 return retval;
1690}
1691
1692/*
1693 * Return the number of characters that can be sent. We estimate
1694 * only using the in-memory transmit buffer only, and ignore the
1695 * potential space in the transmit FIFO.
1696 */
1697static int rp_write_room(struct tty_struct *tty)
1698{
1699 struct r_port *info = tty->driver_data;
1700 int ret;
1701
1702 if (rocket_paranoia_check(info, "rp_write_room"))
1703 return 0;
1704
1705 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1706 if (ret < 0)
1707 ret = 0;
1708#ifdef ROCKET_DEBUG_WRITE
1709 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1710#endif
1711 return ret;
1712}
1713
1714/*
1715 * Return the number of characters in the buffer. Again, this only
1716 * counts those characters in the in-memory transmit buffer.
1717 */
1718static int rp_chars_in_buffer(struct tty_struct *tty)
1719{
1720 struct r_port *info = tty->driver_data;
1721
1722 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1723 return 0;
1724
1725#ifdef ROCKET_DEBUG_WRITE
1726 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1727#endif
1728 return info->xmit_cnt;
1729}
1730
1731/*
1732 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1733 * r_port struct for the port. Note that spinlock are used to protect info members,
1734 * do not call this function if the spinlock is already held.
1735 */
1736static void rp_flush_buffer(struct tty_struct *tty)
1737{
1738 struct r_port *info = tty->driver_data;
1739 CHANNEL_t *cp;
1740 unsigned long flags;
1741
1742 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1743 return;
1744
1745 spin_lock_irqsave(&info->slock, flags);
1746 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1747 spin_unlock_irqrestore(&info->slock, flags);
1748
1749#ifdef ROCKETPORT_HAVE_POLL_WAIT
1750 wake_up_interruptible(&tty->poll_wait);
1751#endif
1752 tty_wakeup(tty);
1753
1754 cp = &info->channel;
1755 sFlushTxFIFO(cp);
1756}
1757
1758#ifdef CONFIG_PCI
1759
1760static struct pci_device_id __devinitdata __used rocket_pci_ids[] = {
1761 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_ANY_ID) },
1762 { }
1763};
1764MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1765
1766/*
1767 * Called when a PCI card is found. Retrieves and stores model information,
1768 * init's aiopic and serial port hardware.
1769 * Inputs: i is the board number (0-n)
1770 */
1771static __init int register_PCI(int i, struct pci_dev *dev)
1772{
1773 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1774 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1775 CONTROLLER_t *ctlp;
1776
1777 int fast_clock = 0;
1778 int altChanRingIndicator = 0;
1779 int ports_per_aiop = 8;
1780 WordIO_t ConfigIO = 0;
1781 ByteIO_t UPCIRingInd = 0;
1782
1783 if (!dev || pci_enable_device(dev))
1784 return 0;
1785
1786 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1787
1788 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1789 rocketModel[i].loadrm2 = 0;
1790 rocketModel[i].startingPortNumber = nextLineNumber;
1791
1792 /* Depending on the model, set up some config variables */
1793 switch (dev->device) {
1794 case PCI_DEVICE_ID_RP4QUAD:
1795 max_num_aiops = 1;
1796 ports_per_aiop = 4;
1797 rocketModel[i].model = MODEL_RP4QUAD;
1798 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1799 rocketModel[i].numPorts = 4;
1800 break;
1801 case PCI_DEVICE_ID_RP8OCTA:
1802 max_num_aiops = 1;
1803 rocketModel[i].model = MODEL_RP8OCTA;
1804 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1805 rocketModel[i].numPorts = 8;
1806 break;
1807 case PCI_DEVICE_ID_URP8OCTA:
1808 max_num_aiops = 1;
1809 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1810 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1811 rocketModel[i].numPorts = 8;
1812 break;
1813 case PCI_DEVICE_ID_RP8INTF:
1814 max_num_aiops = 1;
1815 rocketModel[i].model = MODEL_RP8INTF;
1816 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1817 rocketModel[i].numPorts = 8;
1818 break;
1819 case PCI_DEVICE_ID_URP8INTF:
1820 max_num_aiops = 1;
1821 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1822 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1823 rocketModel[i].numPorts = 8;
1824 break;
1825 case PCI_DEVICE_ID_RP8J:
1826 max_num_aiops = 1;
1827 rocketModel[i].model = MODEL_RP8J;
1828 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1829 rocketModel[i].numPorts = 8;
1830 break;
1831 case PCI_DEVICE_ID_RP4J:
1832 max_num_aiops = 1;
1833 ports_per_aiop = 4;
1834 rocketModel[i].model = MODEL_RP4J;
1835 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1836 rocketModel[i].numPorts = 4;
1837 break;
1838 case PCI_DEVICE_ID_RP8SNI:
1839 max_num_aiops = 1;
1840 rocketModel[i].model = MODEL_RP8SNI;
1841 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1842 rocketModel[i].numPorts = 8;
1843 break;
1844 case PCI_DEVICE_ID_RP16SNI:
1845 max_num_aiops = 2;
1846 rocketModel[i].model = MODEL_RP16SNI;
1847 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1848 rocketModel[i].numPorts = 16;
1849 break;
1850 case PCI_DEVICE_ID_RP16INTF:
1851 max_num_aiops = 2;
1852 rocketModel[i].model = MODEL_RP16INTF;
1853 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1854 rocketModel[i].numPorts = 16;
1855 break;
1856 case PCI_DEVICE_ID_URP16INTF:
1857 max_num_aiops = 2;
1858 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1859 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1860 rocketModel[i].numPorts = 16;
1861 break;
1862 case PCI_DEVICE_ID_CRP16INTF:
1863 max_num_aiops = 2;
1864 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1865 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1866 rocketModel[i].numPorts = 16;
1867 break;
1868 case PCI_DEVICE_ID_RP32INTF:
1869 max_num_aiops = 4;
1870 rocketModel[i].model = MODEL_RP32INTF;
1871 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1872 rocketModel[i].numPorts = 32;
1873 break;
1874 case PCI_DEVICE_ID_URP32INTF:
1875 max_num_aiops = 4;
1876 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1877 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1878 rocketModel[i].numPorts = 32;
1879 break;
1880 case PCI_DEVICE_ID_RPP4:
1881 max_num_aiops = 1;
1882 ports_per_aiop = 4;
1883 altChanRingIndicator++;
1884 fast_clock++;
1885 rocketModel[i].model = MODEL_RPP4;
1886 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
1887 rocketModel[i].numPorts = 4;
1888 break;
1889 case PCI_DEVICE_ID_RPP8:
1890 max_num_aiops = 2;
1891 ports_per_aiop = 4;
1892 altChanRingIndicator++;
1893 fast_clock++;
1894 rocketModel[i].model = MODEL_RPP8;
1895 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
1896 rocketModel[i].numPorts = 8;
1897 break;
1898 case PCI_DEVICE_ID_RP2_232:
1899 max_num_aiops = 1;
1900 ports_per_aiop = 2;
1901 altChanRingIndicator++;
1902 fast_clock++;
1903 rocketModel[i].model = MODEL_RP2_232;
1904 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
1905 rocketModel[i].numPorts = 2;
1906 break;
1907 case PCI_DEVICE_ID_RP2_422:
1908 max_num_aiops = 1;
1909 ports_per_aiop = 2;
1910 altChanRingIndicator++;
1911 fast_clock++;
1912 rocketModel[i].model = MODEL_RP2_422;
1913 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
1914 rocketModel[i].numPorts = 2;
1915 break;
1916 case PCI_DEVICE_ID_RP6M:
1917
1918 max_num_aiops = 1;
1919 ports_per_aiop = 6;
1920
1921 /* If revision is 1, the rocketmodem flash must be loaded.
1922 * If it is 2 it is a "socketed" version. */
1923 if (dev->revision == 1) {
1924 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1925 rocketModel[i].loadrm2 = 1;
1926 } else {
1927 rcktpt_type[i] = ROCKET_TYPE_MODEM;
1928 }
1929
1930 rocketModel[i].model = MODEL_RP6M;
1931 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
1932 rocketModel[i].numPorts = 6;
1933 break;
1934 case PCI_DEVICE_ID_RP4M:
1935 max_num_aiops = 1;
1936 ports_per_aiop = 4;
1937 if (dev->revision == 1) {
1938 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1939 rocketModel[i].loadrm2 = 1;
1940 } else {
1941 rcktpt_type[i] = ROCKET_TYPE_MODEM;
1942 }
1943
1944 rocketModel[i].model = MODEL_RP4M;
1945 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
1946 rocketModel[i].numPorts = 4;
1947 break;
1948 default:
1949 max_num_aiops = 0;
1950 break;
1951 }
1952
1953 /*
1954 * Check for UPCI boards.
1955 */
1956
1957 switch (dev->device) {
1958 case PCI_DEVICE_ID_URP32INTF:
1959 case PCI_DEVICE_ID_URP8INTF:
1960 case PCI_DEVICE_ID_URP16INTF:
1961 case PCI_DEVICE_ID_CRP16INTF:
1962 case PCI_DEVICE_ID_URP8OCTA:
1963 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1964 ConfigIO = pci_resource_start(dev, 1);
1965 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
1966 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1967
1968 /*
1969 * Check for octa or quad cable.
1970 */
1971 if (!
1972 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
1973 PCI_GPIO_CTRL_8PORT)) {
1974 ports_per_aiop = 4;
1975 rocketModel[i].numPorts = 4;
1976 }
1977 }
1978 break;
1979 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
1980 max_num_aiops = 1;
1981 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
1982 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
1983 rocketModel[i].numPorts = 8;
1984 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1985 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1986 ConfigIO = pci_resource_start(dev, 1);
1987 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
1988 break;
1989 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
1990 max_num_aiops = 1;
1991 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
1992 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
1993 rocketModel[i].numPorts = 4;
1994 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1995 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1996 ConfigIO = pci_resource_start(dev, 1);
1997 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
1998 break;
1999 default:
2000 break;
2001 }
2002
2003 if (fast_clock) {
2004 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2005 rp_baud_base[i] = 921600;
2006 } else {
2007 /*
2008 * If support_low_speed is set, use the slow clock
2009 * prescale, which supports 50 bps
2010 */
2011 if (support_low_speed) {
2012 /* mod 9 (divide by 10) prescale */
2013 sClockPrescale = 0x19;
2014 rp_baud_base[i] = 230400;
2015 } else {
2016 /* mod 4 (divide by 5) prescale */
2017 sClockPrescale = 0x14;
2018 rp_baud_base[i] = 460800;
2019 }
2020 }
2021
2022 for (aiop = 0; aiop < max_num_aiops; aiop++)
2023 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2024 ctlp = sCtlNumToCtlPtr(i);
2025 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2026 for (aiop = 0; aiop < max_num_aiops; aiop++)
2027 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2028
2029 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2030 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2031 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2032 rocketModel[i].startingPortNumber,
2033 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2034
2035 if (num_aiops <= 0) {
2036 rcktpt_io_addr[i] = 0;
2037 return (0);
2038 }
2039 is_PCI[i] = 1;
2040
2041 /* Reset the AIOPIC, init the serial ports */
2042 for (aiop = 0; aiop < num_aiops; aiop++) {
2043 sResetAiopByNum(ctlp, aiop);
2044 num_chan = ports_per_aiop;
2045 for (chan = 0; chan < num_chan; chan++)
2046 init_r_port(i, aiop, chan, dev);
2047 }
2048
2049 /* Rocket modems must be reset */
2050 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2051 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2052 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2053 num_chan = ports_per_aiop;
2054 for (chan = 0; chan < num_chan; chan++)
2055 sPCIModemReset(ctlp, chan, 1);
2056 msleep(500);
2057 for (chan = 0; chan < num_chan; chan++)
2058 sPCIModemReset(ctlp, chan, 0);
2059 msleep(500);
2060 rmSpeakerReset(ctlp, rocketModel[i].model);
2061 }
2062 return (1);
2063}
2064
2065/*
2066 * Probes for PCI cards, inits them if found
2067 * Input: board_found = number of ISA boards already found, or the
2068 * starting board number
2069 * Returns: Number of PCI boards found
2070 */
2071static int __init init_PCI(int boards_found)
2072{
2073 struct pci_dev *dev = NULL;
2074 int count = 0;
2075
2076 /* Work through the PCI device list, pulling out ours */
2077 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2078 if (register_PCI(count + boards_found, dev))
2079 count++;
2080 }
2081 return (count);
2082}
2083
2084#endif /* CONFIG_PCI */
2085
2086/*
2087 * Probes for ISA cards
2088 * Input: i = the board number to look for
2089 * Returns: 1 if board found, 0 else
2090 */
2091static int __init init_ISA(int i)
2092{
2093 int num_aiops, num_chan = 0, total_num_chan = 0;
2094 int aiop, chan;
2095 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2096 CONTROLLER_t *ctlp;
2097 char *type_string;
2098
2099 /* If io_addr is zero, no board configured */
2100 if (rcktpt_io_addr[i] == 0)
2101 return (0);
2102
2103 /* Reserve the IO region */
2104 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2105 printk(KERN_ERR "Unable to reserve IO region for configured "
2106 "ISA RocketPort at address 0x%lx, board not "
2107 "installed...\n", rcktpt_io_addr[i]);
2108 rcktpt_io_addr[i] = 0;
2109 return (0);
2110 }
2111
2112 ctlp = sCtlNumToCtlPtr(i);
2113
2114 ctlp->boardType = rcktpt_type[i];
2115
2116 switch (rcktpt_type[i]) {
2117 case ROCKET_TYPE_PC104:
2118 type_string = "(PC104)";
2119 break;
2120 case ROCKET_TYPE_MODEM:
2121 type_string = "(RocketModem)";
2122 break;
2123 case ROCKET_TYPE_MODEMII:
2124 type_string = "(RocketModem II)";
2125 break;
2126 default:
2127 type_string = "";
2128 break;
2129 }
2130
2131 /*
2132 * If support_low_speed is set, use the slow clock prescale,
2133 * which supports 50 bps
2134 */
2135 if (support_low_speed) {
2136 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2137 rp_baud_base[i] = 230400;
2138 } else {
2139 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2140 rp_baud_base[i] = 460800;
2141 }
2142
2143 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2144 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2145
2146 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2147
2148 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2149 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2150 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2151 }
2152
2153 /* If something went wrong initing the AIOP's release the ISA IO memory */
2154 if (num_aiops <= 0) {
2155 release_region(rcktpt_io_addr[i], 64);
2156 rcktpt_io_addr[i] = 0;
2157 return (0);
2158 }
2159
2160 rocketModel[i].startingPortNumber = nextLineNumber;
2161
2162 for (aiop = 0; aiop < num_aiops; aiop++) {
2163 sResetAiopByNum(ctlp, aiop);
2164 sEnAiop(ctlp, aiop);
2165 num_chan = sGetAiopNumChan(ctlp, aiop);
2166 total_num_chan += num_chan;
2167 for (chan = 0; chan < num_chan; chan++)
2168 init_r_port(i, aiop, chan, NULL);
2169 }
2170 is_PCI[i] = 0;
2171 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2172 num_chan = sGetAiopNumChan(ctlp, 0);
2173 total_num_chan = num_chan;
2174 for (chan = 0; chan < num_chan; chan++)
2175 sModemReset(ctlp, chan, 1);
2176 msleep(500);
2177 for (chan = 0; chan < num_chan; chan++)
2178 sModemReset(ctlp, chan, 0);
2179 msleep(500);
2180 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2181 } else {
2182 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2183 }
2184 rocketModel[i].numPorts = total_num_chan;
2185 rocketModel[i].model = MODEL_ISA;
2186
2187 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2188 i, rcktpt_io_addr[i], num_aiops, type_string);
2189
2190 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2191 rocketModel[i].modelString,
2192 rocketModel[i].startingPortNumber,
2193 rocketModel[i].startingPortNumber +
2194 rocketModel[i].numPorts - 1);
2195
2196 return (1);
2197}
2198
2199static const struct tty_operations rocket_ops = {
2200 .open = rp_open,
2201 .close = rp_close,
2202 .write = rp_write,
2203 .put_char = rp_put_char,
2204 .write_room = rp_write_room,
2205 .chars_in_buffer = rp_chars_in_buffer,
2206 .flush_buffer = rp_flush_buffer,
2207 .ioctl = rp_ioctl,
2208 .throttle = rp_throttle,
2209 .unthrottle = rp_unthrottle,
2210 .set_termios = rp_set_termios,
2211 .stop = rp_stop,
2212 .start = rp_start,
2213 .hangup = rp_hangup,
2214 .break_ctl = rp_break,
2215 .send_xchar = rp_send_xchar,
2216 .wait_until_sent = rp_wait_until_sent,
2217 .tiocmget = rp_tiocmget,
2218 .tiocmset = rp_tiocmset,
2219};
2220
2221static const struct tty_port_operations rocket_port_ops = {
2222 .carrier_raised = carrier_raised,
2223 .dtr_rts = dtr_rts,
2224};
2225
2226/*
2227 * The module "startup" routine; it's run when the module is loaded.
2228 */
2229static int __init rp_init(void)
2230{
2231 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2232
2233 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2234 ROCKET_VERSION, ROCKET_DATE);
2235
2236 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2237 if (!rocket_driver)
2238 goto err;
2239
2240 /*
2241 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2242 * zero, use the default controller IO address of board1 + 0x40.
2243 */
2244 if (board1) {
2245 if (controller == 0)
2246 controller = board1 + 0x40;
2247 } else {
2248 controller = 0; /* Used as a flag, meaning no ISA boards */
2249 }
2250
2251 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2252 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2253 printk(KERN_ERR "Unable to reserve IO region for first "
2254 "configured ISA RocketPort controller 0x%lx. "
2255 "Driver exiting\n", controller);
2256 ret = -EBUSY;
2257 goto err_tty;
2258 }
2259
2260 /* Store ISA variable retrieved from command line or .conf file. */
2261 rcktpt_io_addr[0] = board1;
2262 rcktpt_io_addr[1] = board2;
2263 rcktpt_io_addr[2] = board3;
2264 rcktpt_io_addr[3] = board4;
2265
2266 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2267 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2268 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2269 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2270 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2271 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2272 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2273 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2274
2275 /*
2276 * Set up the tty driver structure and then register this
2277 * driver with the tty layer.
2278 */
2279
2280 rocket_driver->owner = THIS_MODULE;
2281 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2282 rocket_driver->name = "ttyR";
2283 rocket_driver->driver_name = "Comtrol RocketPort";
2284 rocket_driver->major = TTY_ROCKET_MAJOR;
2285 rocket_driver->minor_start = 0;
2286 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2287 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2288 rocket_driver->init_termios = tty_std_termios;
2289 rocket_driver->init_termios.c_cflag =
2290 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2291 rocket_driver->init_termios.c_ispeed = 9600;
2292 rocket_driver->init_termios.c_ospeed = 9600;
2293#ifdef ROCKET_SOFT_FLOW
2294 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2295#endif
2296 tty_set_operations(rocket_driver, &rocket_ops);
2297
2298 ret = tty_register_driver(rocket_driver);
2299 if (ret < 0) {
2300 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2301 goto err_controller;
2302 }
2303
2304#ifdef ROCKET_DEBUG_OPEN
2305 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2306#endif
2307
2308 /*
2309 * OK, let's probe each of the controllers looking for boards. Any boards found
2310 * will be initialized here.
2311 */
2312 isa_boards_found = 0;
2313 pci_boards_found = 0;
2314
2315 for (i = 0; i < NUM_BOARDS; i++) {
2316 if (init_ISA(i))
2317 isa_boards_found++;
2318 }
2319
2320#ifdef CONFIG_PCI
2321 if (isa_boards_found < NUM_BOARDS)
2322 pci_boards_found = init_PCI(isa_boards_found);
2323#endif
2324
2325 max_board = pci_boards_found + isa_boards_found;
2326
2327 if (max_board == 0) {
2328 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2329 ret = -ENXIO;
2330 goto err_ttyu;
2331 }
2332
2333 return 0;
2334err_ttyu:
2335 tty_unregister_driver(rocket_driver);
2336err_controller:
2337 if (controller)
2338 release_region(controller, 4);
2339err_tty:
2340 put_tty_driver(rocket_driver);
2341err:
2342 return ret;
2343}
2344
2345
2346static void rp_cleanup_module(void)
2347{
2348 int retval;
2349 int i;
2350
2351 del_timer_sync(&rocket_timer);
2352
2353 retval = tty_unregister_driver(rocket_driver);
2354 if (retval)
2355 printk(KERN_ERR "Error %d while trying to unregister "
2356 "rocketport driver\n", -retval);
2357
2358 for (i = 0; i < MAX_RP_PORTS; i++)
2359 if (rp_table[i]) {
2360 tty_unregister_device(rocket_driver, i);
2361 kfree(rp_table[i]);
2362 }
2363
2364 put_tty_driver(rocket_driver);
2365
2366 for (i = 0; i < NUM_BOARDS; i++) {
2367 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2368 continue;
2369 release_region(rcktpt_io_addr[i], 64);
2370 }
2371 if (controller)
2372 release_region(controller, 4);
2373}
2374
2375/***************************************************************************
2376Function: sInitController
2377Purpose: Initialization of controller global registers and controller
2378 structure.
2379Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2380 IRQNum,Frequency,PeriodicOnly)
2381 CONTROLLER_T *CtlP; Ptr to controller structure
2382 int CtlNum; Controller number
2383 ByteIO_t MudbacIO; Mudbac base I/O address.
2384 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2385 This list must be in the order the AIOPs will be found on the
2386 controller. Once an AIOP in the list is not found, it is
2387 assumed that there are no more AIOPs on the controller.
2388 int AiopIOListSize; Number of addresses in AiopIOList
2389 int IRQNum; Interrupt Request number. Can be any of the following:
2390 0: Disable global interrupts
2391 3: IRQ 3
2392 4: IRQ 4
2393 5: IRQ 5
2394 9: IRQ 9
2395 10: IRQ 10
2396 11: IRQ 11
2397 12: IRQ 12
2398 15: IRQ 15
2399 Byte_t Frequency: A flag identifying the frequency
2400 of the periodic interrupt, can be any one of the following:
2401 FREQ_DIS - periodic interrupt disabled
2402 FREQ_137HZ - 137 Hertz
2403 FREQ_69HZ - 69 Hertz
2404 FREQ_34HZ - 34 Hertz
2405 FREQ_17HZ - 17 Hertz
2406 FREQ_9HZ - 9 Hertz
2407 FREQ_4HZ - 4 Hertz
2408 If IRQNum is set to 0 the Frequency parameter is
2409 overidden, it is forced to a value of FREQ_DIS.
2410 int PeriodicOnly: 1 if all interrupts except the periodic
2411 interrupt are to be blocked.
2412 0 is both the periodic interrupt and
2413 other channel interrupts are allowed.
2414 If IRQNum is set to 0 the PeriodicOnly parameter is
2415 overidden, it is forced to a value of 0.
2416Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2417 initialization failed.
2418
2419Comments:
2420 If periodic interrupts are to be disabled but AIOP interrupts
2421 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2422
2423 If interrupts are to be completely disabled set IRQNum to 0.
2424
2425 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2426 invalid combination.
2427
2428 This function performs initialization of global interrupt modes,
2429 but it does not actually enable global interrupts. To enable
2430 and disable global interrupts use functions sEnGlobalInt() and
2431 sDisGlobalInt(). Enabling of global interrupts is normally not
2432 done until all other initializations are complete.
2433
2434 Even if interrupts are globally enabled, they must also be
2435 individually enabled for each channel that is to generate
2436 interrupts.
2437
2438Warnings: No range checking on any of the parameters is done.
2439
2440 No context switches are allowed while executing this function.
2441
2442 After this function all AIOPs on the controller are disabled,
2443 they can be enabled with sEnAiop().
2444*/
2445static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2446 ByteIO_t * AiopIOList, int AiopIOListSize,
2447 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2448{
2449 int i;
2450 ByteIO_t io;
2451 int done;
2452
2453 CtlP->AiopIntrBits = aiop_intr_bits;
2454 CtlP->AltChanRingIndicator = 0;
2455 CtlP->CtlNum = CtlNum;
2456 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2457 CtlP->BusType = isISA;
2458 CtlP->MBaseIO = MudbacIO;
2459 CtlP->MReg1IO = MudbacIO + 1;
2460 CtlP->MReg2IO = MudbacIO + 2;
2461 CtlP->MReg3IO = MudbacIO + 3;
2462#if 1
2463 CtlP->MReg2 = 0; /* interrupt disable */
2464 CtlP->MReg3 = 0; /* no periodic interrupts */
2465#else
2466 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2467 CtlP->MReg2 = 0; /* interrupt disable */
2468 CtlP->MReg3 = 0; /* no periodic interrupts */
2469 } else {
2470 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2471 CtlP->MReg3 = Frequency; /* set frequency */
2472 if (PeriodicOnly) { /* periodic interrupt only */
2473 CtlP->MReg3 |= PERIODIC_ONLY;
2474 }
2475 }
2476#endif
2477 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2478 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2479 sControllerEOI(CtlP); /* clear EOI if warm init */
2480 /* Init AIOPs */
2481 CtlP->NumAiop = 0;
2482 for (i = done = 0; i < AiopIOListSize; i++) {
2483 io = AiopIOList[i];
2484 CtlP->AiopIO[i] = (WordIO_t) io;
2485 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2486 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2487 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2488 if (done)
2489 continue;
2490 sEnAiop(CtlP, i); /* enable the AIOP */
2491 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2492 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2493 done = 1; /* done looking for AIOPs */
2494 else {
2495 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2496 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2497 sOutB(io + _INDX_DATA, sClockPrescale);
2498 CtlP->NumAiop++; /* bump count of AIOPs */
2499 }
2500 sDisAiop(CtlP, i); /* disable AIOP */
2501 }
2502
2503 if (CtlP->NumAiop == 0)
2504 return (-1);
2505 else
2506 return (CtlP->NumAiop);
2507}
2508
2509/***************************************************************************
2510Function: sPCIInitController
2511Purpose: Initialization of controller global registers and controller
2512 structure.
2513Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
2514 IRQNum,Frequency,PeriodicOnly)
2515 CONTROLLER_T *CtlP; Ptr to controller structure
2516 int CtlNum; Controller number
2517 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2518 This list must be in the order the AIOPs will be found on the
2519 controller. Once an AIOP in the list is not found, it is
2520 assumed that there are no more AIOPs on the controller.
2521 int AiopIOListSize; Number of addresses in AiopIOList
2522 int IRQNum; Interrupt Request number. Can be any of the following:
2523 0: Disable global interrupts
2524 3: IRQ 3
2525 4: IRQ 4
2526 5: IRQ 5
2527 9: IRQ 9
2528 10: IRQ 10
2529 11: IRQ 11
2530 12: IRQ 12
2531 15: IRQ 15
2532 Byte_t Frequency: A flag identifying the frequency
2533 of the periodic interrupt, can be any one of the following:
2534 FREQ_DIS - periodic interrupt disabled
2535 FREQ_137HZ - 137 Hertz
2536 FREQ_69HZ - 69 Hertz
2537 FREQ_34HZ - 34 Hertz
2538 FREQ_17HZ - 17 Hertz
2539 FREQ_9HZ - 9 Hertz
2540 FREQ_4HZ - 4 Hertz
2541 If IRQNum is set to 0 the Frequency parameter is
2542 overidden, it is forced to a value of FREQ_DIS.
2543 int PeriodicOnly: 1 if all interrupts except the periodic
2544 interrupt are to be blocked.
2545 0 is both the periodic interrupt and
2546 other channel interrupts are allowed.
2547 If IRQNum is set to 0 the PeriodicOnly parameter is
2548 overidden, it is forced to a value of 0.
2549Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2550 initialization failed.
2551
2552Comments:
2553 If periodic interrupts are to be disabled but AIOP interrupts
2554 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2555
2556 If interrupts are to be completely disabled set IRQNum to 0.
2557
2558 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2559 invalid combination.
2560
2561 This function performs initialization of global interrupt modes,
2562 but it does not actually enable global interrupts. To enable
2563 and disable global interrupts use functions sEnGlobalInt() and
2564 sDisGlobalInt(). Enabling of global interrupts is normally not
2565 done until all other initializations are complete.
2566
2567 Even if interrupts are globally enabled, they must also be
2568 individually enabled for each channel that is to generate
2569 interrupts.
2570
2571Warnings: No range checking on any of the parameters is done.
2572
2573 No context switches are allowed while executing this function.
2574
2575 After this function all AIOPs on the controller are disabled,
2576 they can be enabled with sEnAiop().
2577*/
2578static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
2579 ByteIO_t * AiopIOList, int AiopIOListSize,
2580 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
2581 int PeriodicOnly, int altChanRingIndicator,
2582 int UPCIRingInd)
2583{
2584 int i;
2585 ByteIO_t io;
2586
2587 CtlP->AltChanRingIndicator = altChanRingIndicator;
2588 CtlP->UPCIRingInd = UPCIRingInd;
2589 CtlP->CtlNum = CtlNum;
2590 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2591 CtlP->BusType = isPCI; /* controller release 1 */
2592
2593 if (ConfigIO) {
2594 CtlP->isUPCI = 1;
2595 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
2596 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
2597 CtlP->AiopIntrBits = upci_aiop_intr_bits;
2598 } else {
2599 CtlP->isUPCI = 0;
2600 CtlP->PCIIO =
2601 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
2602 CtlP->AiopIntrBits = aiop_intr_bits;
2603 }
2604
2605 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
2606 /* Init AIOPs */
2607 CtlP->NumAiop = 0;
2608 for (i = 0; i < AiopIOListSize; i++) {
2609 io = AiopIOList[i];
2610 CtlP->AiopIO[i] = (WordIO_t) io;
2611 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2612
2613 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2614 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2615 break; /* done looking for AIOPs */
2616
2617 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2618 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2619 sOutB(io + _INDX_DATA, sClockPrescale);
2620 CtlP->NumAiop++; /* bump count of AIOPs */
2621 }
2622
2623 if (CtlP->NumAiop == 0)
2624 return (-1);
2625 else
2626 return (CtlP->NumAiop);
2627}
2628
2629/***************************************************************************
2630Function: sReadAiopID
2631Purpose: Read the AIOP idenfication number directly from an AIOP.
2632Call: sReadAiopID(io)
2633 ByteIO_t io: AIOP base I/O address
2634Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2635 is replace by an identifying number.
2636 Flag AIOPID_NULL if no valid AIOP is found
2637Warnings: No context switches are allowed while executing this function.
2638
2639*/
2640static int sReadAiopID(ByteIO_t io)
2641{
2642 Byte_t AiopID; /* ID byte from AIOP */
2643
2644 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2645 sOutB(io + _CMD_REG, 0x0);
2646 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2647 if (AiopID == 0x06)
2648 return (1);
2649 else /* AIOP does not exist */
2650 return (-1);
2651}
2652
2653/***************************************************************************
2654Function: sReadAiopNumChan
2655Purpose: Read the number of channels available in an AIOP directly from
2656 an AIOP.
2657Call: sReadAiopNumChan(io)
2658 WordIO_t io: AIOP base I/O address
2659Return: int: The number of channels available
2660Comments: The number of channels is determined by write/reads from identical
2661 offsets within the SRAM address spaces for channels 0 and 4.
2662 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2663 AIOP, otherwise it is an 8 channel.
2664Warnings: No context switches are allowed while executing this function.
2665*/
2666static int sReadAiopNumChan(WordIO_t io)
2667{
2668 Word_t x;
2669 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2670
2671 /* write to chan 0 SRAM */
2672 out32((DWordIO_t) io + _INDX_ADDR, R);
2673 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2674 x = sInW(io + _INDX_DATA);
2675 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2676 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2677 return (8);
2678 else
2679 return (4);
2680}
2681
2682/***************************************************************************
2683Function: sInitChan
2684Purpose: Initialization of a channel and channel structure
2685Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2686 CONTROLLER_T *CtlP; Ptr to controller structure
2687 CHANNEL_T *ChP; Ptr to channel structure
2688 int AiopNum; AIOP number within controller
2689 int ChanNum; Channel number within AIOP
2690Return: int: 1 if initialization succeeded, 0 if it fails because channel
2691 number exceeds number of channels available in AIOP.
2692Comments: This function must be called before a channel can be used.
2693Warnings: No range checking on any of the parameters is done.
2694
2695 No context switches are allowed while executing this function.
2696*/
2697static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2698 int ChanNum)
2699{
2700 int i;
2701 WordIO_t AiopIO;
2702 WordIO_t ChIOOff;
2703 Byte_t *ChR;
2704 Word_t ChOff;
2705 static Byte_t R[4];
2706 int brd9600;
2707
2708 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2709 return 0; /* exceeds num chans in AIOP */
2710
2711 /* Channel, AIOP, and controller identifiers */
2712 ChP->CtlP = CtlP;
2713 ChP->ChanID = CtlP->AiopID[AiopNum];
2714 ChP->AiopNum = AiopNum;
2715 ChP->ChanNum = ChanNum;
2716
2717 /* Global direct addresses */
2718 AiopIO = CtlP->AiopIO[AiopNum];
2719 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2720 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2721 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2722 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2723 ChP->IndexData = AiopIO + _INDX_DATA;
2724
2725 /* Channel direct addresses */
2726 ChIOOff = AiopIO + ChP->ChanNum * 2;
2727 ChP->TxRxData = ChIOOff + _TD0;
2728 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2729 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2730 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2731
2732 /* Initialize the channel from the RData array */
2733 for (i = 0; i < RDATASIZE; i += 4) {
2734 R[0] = RData[i];
2735 R[1] = RData[i + 1] + 0x10 * ChanNum;
2736 R[2] = RData[i + 2];
2737 R[3] = RData[i + 3];
2738 out32(ChP->IndexAddr, R);
2739 }
2740
2741 ChR = ChP->R;
2742 for (i = 0; i < RREGDATASIZE; i += 4) {
2743 ChR[i] = RRegData[i];
2744 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2745 ChR[i + 2] = RRegData[i + 2];
2746 ChR[i + 3] = RRegData[i + 3];
2747 }
2748
2749 /* Indexed registers */
2750 ChOff = (Word_t) ChanNum *0x1000;
2751
2752 if (sClockPrescale == 0x14)
2753 brd9600 = 47;
2754 else
2755 brd9600 = 23;
2756
2757 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2758 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2759 ChP->BaudDiv[2] = (Byte_t) brd9600;
2760 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2761 out32(ChP->IndexAddr, ChP->BaudDiv);
2762
2763 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2764 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2765 ChP->TxControl[2] = 0;
2766 ChP->TxControl[3] = 0;
2767 out32(ChP->IndexAddr, ChP->TxControl);
2768
2769 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2770 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2771 ChP->RxControl[2] = 0;
2772 ChP->RxControl[3] = 0;
2773 out32(ChP->IndexAddr, ChP->RxControl);
2774
2775 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2776 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2777 ChP->TxEnables[2] = 0;
2778 ChP->TxEnables[3] = 0;
2779 out32(ChP->IndexAddr, ChP->TxEnables);
2780
2781 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2782 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2783 ChP->TxCompare[2] = 0;
2784 ChP->TxCompare[3] = 0;
2785 out32(ChP->IndexAddr, ChP->TxCompare);
2786
2787 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2788 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2789 ChP->TxReplace1[2] = 0;
2790 ChP->TxReplace1[3] = 0;
2791 out32(ChP->IndexAddr, ChP->TxReplace1);
2792
2793 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2794 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2795 ChP->TxReplace2[2] = 0;
2796 ChP->TxReplace2[3] = 0;
2797 out32(ChP->IndexAddr, ChP->TxReplace2);
2798
2799 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2800 ChP->TxFIFO = ChOff + _TX_FIFO;
2801
2802 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2803 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2804 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2805 sOutW(ChP->IndexData, 0);
2806 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2807 ChP->RxFIFO = ChOff + _RX_FIFO;
2808
2809 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2810 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2811 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2812 sOutW(ChP->IndexData, 0);
2813 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2814 sOutW(ChP->IndexData, 0);
2815 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2816 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2817 sOutB(ChP->IndexData, 0);
2818 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2819 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2820 sOutB(ChP->IndexData, 0);
2821 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2822 sEnRxProcessor(ChP); /* start the Rx processor */
2823
2824 return 1;
2825}
2826
2827/***************************************************************************
2828Function: sStopRxProcessor
2829Purpose: Stop the receive processor from processing a channel.
2830Call: sStopRxProcessor(ChP)
2831 CHANNEL_T *ChP; Ptr to channel structure
2832
2833Comments: The receive processor can be started again with sStartRxProcessor().
2834 This function causes the receive processor to skip over the
2835 stopped channel. It does not stop it from processing other channels.
2836
2837Warnings: No context switches are allowed while executing this function.
2838
2839 Do not leave the receive processor stopped for more than one
2840 character time.
2841
2842 After calling this function a delay of 4 uS is required to ensure
2843 that the receive processor is no longer processing this channel.
2844*/
2845static void sStopRxProcessor(CHANNEL_T * ChP)
2846{
2847 Byte_t R[4];
2848
2849 R[0] = ChP->R[0];
2850 R[1] = ChP->R[1];
2851 R[2] = 0x0a;
2852 R[3] = ChP->R[3];
2853 out32(ChP->IndexAddr, R);
2854}
2855
2856/***************************************************************************
2857Function: sFlushRxFIFO
2858Purpose: Flush the Rx FIFO
2859Call: sFlushRxFIFO(ChP)
2860 CHANNEL_T *ChP; Ptr to channel structure
2861Return: void
2862Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2863 while it is being flushed the receive processor is stopped
2864 and the transmitter is disabled. After these operations a
2865 4 uS delay is done before clearing the pointers to allow
2866 the receive processor to stop. These items are handled inside
2867 this function.
2868Warnings: No context switches are allowed while executing this function.
2869*/
2870static void sFlushRxFIFO(CHANNEL_T * ChP)
2871{
2872 int i;
2873 Byte_t Ch; /* channel number within AIOP */
2874 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2875
2876 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2877 return; /* don't need to flush */
2878
2879 RxFIFOEnabled = 0;
2880 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2881 RxFIFOEnabled = 1;
2882 sDisRxFIFO(ChP); /* disable it */
2883 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2884 sInB(ChP->IntChan); /* depends on bus i/o timing */
2885 }
2886 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2887 Ch = (Byte_t) sGetChanNum(ChP);
2888 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2889 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2890 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2891 sOutW(ChP->IndexData, 0);
2892 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2893 sOutW(ChP->IndexData, 0);
2894 if (RxFIFOEnabled)
2895 sEnRxFIFO(ChP); /* enable Rx FIFO */
2896}
2897
2898/***************************************************************************
2899Function: sFlushTxFIFO
2900Purpose: Flush the Tx FIFO
2901Call: sFlushTxFIFO(ChP)
2902 CHANNEL_T *ChP; Ptr to channel structure
2903Return: void
2904Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2905 while it is being flushed the receive processor is stopped
2906 and the transmitter is disabled. After these operations a
2907 4 uS delay is done before clearing the pointers to allow
2908 the receive processor to stop. These items are handled inside
2909 this function.
2910Warnings: No context switches are allowed while executing this function.
2911*/
2912static void sFlushTxFIFO(CHANNEL_T * ChP)
2913{
2914 int i;
2915 Byte_t Ch; /* channel number within AIOP */
2916 int TxEnabled; /* 1 if transmitter enabled */
2917
2918 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2919 return; /* don't need to flush */
2920
2921 TxEnabled = 0;
2922 if (ChP->TxControl[3] & TX_ENABLE) {
2923 TxEnabled = 1;
2924 sDisTransmit(ChP); /* disable transmitter */
2925 }
2926 sStopRxProcessor(ChP); /* stop Rx processor */
2927 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2928 sInB(ChP->IntChan); /* depends on bus i/o timing */
2929 Ch = (Byte_t) sGetChanNum(ChP);
2930 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2931 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2932 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2933 sOutW(ChP->IndexData, 0);
2934 if (TxEnabled)
2935 sEnTransmit(ChP); /* enable transmitter */
2936 sStartRxProcessor(ChP); /* restart Rx processor */
2937}
2938
2939/***************************************************************************
2940Function: sWriteTxPrioByte
2941Purpose: Write a byte of priority transmit data to a channel
2942Call: sWriteTxPrioByte(ChP,Data)
2943 CHANNEL_T *ChP; Ptr to channel structure
2944 Byte_t Data; The transmit data byte
2945
2946Return: int: 1 if the bytes is successfully written, otherwise 0.
2947
2948Comments: The priority byte is transmitted before any data in the Tx FIFO.
2949
2950Warnings: No context switches are allowed while executing this function.
2951*/
2952static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2953{
2954 Byte_t DWBuf[4]; /* buffer for double word writes */
2955 Word_t *WordPtr; /* must be far because Win SS != DS */
2956 register DWordIO_t IndexAddr;
2957
2958 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2959 IndexAddr = ChP->IndexAddr;
2960 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2961 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2962 return (0); /* nothing sent */
2963
2964 WordPtr = (Word_t *) (&DWBuf[0]);
2965 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2966
2967 DWBuf[2] = Data; /* data byte value */
2968 out32(IndexAddr, DWBuf); /* write it out */
2969
2970 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2971
2972 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2973 DWBuf[3] = 0; /* priority buffer pointer */
2974 out32(IndexAddr, DWBuf); /* write it out */
2975 } else { /* write it to Tx FIFO */
2976
2977 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2978 }
2979 return (1); /* 1 byte sent */
2980}
2981
2982/***************************************************************************
2983Function: sEnInterrupts
2984Purpose: Enable one or more interrupts for a channel
2985Call: sEnInterrupts(ChP,Flags)
2986 CHANNEL_T *ChP; Ptr to channel structure
2987 Word_t Flags: Interrupt enable flags, can be any combination
2988 of the following flags:
2989 TXINT_EN: Interrupt on Tx FIFO empty
2990 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
2991 sSetRxTrigger())
2992 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
2993 MCINT_EN: Interrupt on modem input change
2994 CHANINT_EN: Allow channel interrupt signal to the AIOP's
2995 Interrupt Channel Register.
2996Return: void
2997Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2998 enabled. If an interrupt enable flag is not set in Flags, that
2999 interrupt will not be changed. Interrupts can be disabled with
3000 function sDisInterrupts().
3001
3002 This function sets the appropriate bit for the channel in the AIOP's
3003 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3004 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3005
3006 Interrupts must also be globally enabled before channel interrupts
3007 will be passed on to the host. This is done with function
3008 sEnGlobalInt().
3009
3010 In some cases it may be desirable to disable interrupts globally but
3011 enable channel interrupts. This would allow the global interrupt
3012 status register to be used to determine which AIOPs need service.
3013*/
3014static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3015{
3016 Byte_t Mask; /* Interrupt Mask Register */
3017
3018 ChP->RxControl[2] |=
3019 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3020
3021 out32(ChP->IndexAddr, ChP->RxControl);
3022
3023 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3024
3025 out32(ChP->IndexAddr, ChP->TxControl);
3026
3027 if (Flags & CHANINT_EN) {
3028 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3029 sOutB(ChP->IntMask, Mask);
3030 }
3031}
3032
3033/***************************************************************************
3034Function: sDisInterrupts
3035Purpose: Disable one or more interrupts for a channel
3036Call: sDisInterrupts(ChP,Flags)
3037 CHANNEL_T *ChP; Ptr to channel structure
3038 Word_t Flags: Interrupt flags, can be any combination
3039 of the following flags:
3040 TXINT_EN: Interrupt on Tx FIFO empty
3041 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3042 sSetRxTrigger())
3043 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3044 MCINT_EN: Interrupt on modem input change
3045 CHANINT_EN: Disable channel interrupt signal to the
3046 AIOP's Interrupt Channel Register.
3047Return: void
3048Comments: If an interrupt flag is set in Flags, that interrupt will be
3049 disabled. If an interrupt flag is not set in Flags, that
3050 interrupt will not be changed. Interrupts can be enabled with
3051 function sEnInterrupts().
3052
3053 This function clears the appropriate bit for the channel in the AIOP's
3054 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3055 this channel's bit from being set in the AIOP's Interrupt Channel
3056 Register.
3057*/
3058static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3059{
3060 Byte_t Mask; /* Interrupt Mask Register */
3061
3062 ChP->RxControl[2] &=
3063 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3064 out32(ChP->IndexAddr, ChP->RxControl);
3065 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3066 out32(ChP->IndexAddr, ChP->TxControl);
3067
3068 if (Flags & CHANINT_EN) {
3069 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3070 sOutB(ChP->IntMask, Mask);
3071 }
3072}
3073
3074static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3075{
3076 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3077}
3078
3079/*
3080 * Not an official SSCI function, but how to reset RocketModems.
3081 * ISA bus version
3082 */
3083static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3084{
3085 ByteIO_t addr;
3086 Byte_t val;
3087
3088 addr = CtlP->AiopIO[0] + 0x400;
3089 val = sInB(CtlP->MReg3IO);
3090 /* if AIOP[1] is not enabled, enable it */
3091 if ((val & 2) == 0) {
3092 val = sInB(CtlP->MReg2IO);
3093 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3094 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3095 }
3096
3097 sEnAiop(CtlP, 1);
3098 if (!on)
3099 addr += 8;
3100 sOutB(addr + chan, 0); /* apply or remove reset */
3101 sDisAiop(CtlP, 1);
3102}
3103
3104/*
3105 * Not an official SSCI function, but how to reset RocketModems.
3106 * PCI bus version
3107 */
3108static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3109{
3110 ByteIO_t addr;
3111
3112 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3113 if (!on)
3114 addr += 8;
3115 sOutB(addr + chan, 0); /* apply or remove reset */
3116}
3117
3118/* Resets the speaker controller on RocketModem II and III devices */
3119static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
3120{
3121 ByteIO_t addr;
3122
3123 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
3124 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
3125 addr = CtlP->AiopIO[0] + 0x4F;
3126 sOutB(addr, 0);
3127 }
3128
3129 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
3130 if ((model == MODEL_UPCI_RM3_8PORT)
3131 || (model == MODEL_UPCI_RM3_4PORT)) {
3132 addr = CtlP->AiopIO[0] + 0x88;
3133 sOutB(addr, 0);
3134 }
3135}
3136
3137/* Returns the line number given the controller (board), aiop and channel number */
3138static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3139{
3140 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3141}
3142
3143/*
3144 * Stores the line number associated with a given controller (board), aiop
3145 * and channel number.
3146 * Returns: The line number assigned
3147 */
3148static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3149{
3150 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3151 return (nextLineNumber - 1);
3152}