Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * RocketPort device driver for Linux
   4 *
   5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
   6 * 
   7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10/*
  11 * Kernel Synchronization:
  12 *
  13 * This driver has 2 kernel control paths - exception handlers (calls into the driver
  14 * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
  15 * are not used.
  16 *
  17 * Critical data: 
  18 * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
  19 *    serial port state information and the xmit_buf circular buffer.  Protected by 
  20 *    a per port spinlock.
  21 * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
  22 *    is data to be transmitted.  Protected by atomic bit operations.
  23 * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
  24 * 
  25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
  26 * simultaneous access to the same port by more than one process.
  27 */
  28
  29/****** Defines ******/
  30#define ROCKET_PARANOIA_CHECK
  31#define ROCKET_DISABLE_SIMUSAGE
  32
  33#undef ROCKET_SOFT_FLOW
  34#undef ROCKET_DEBUG_OPEN
  35#undef ROCKET_DEBUG_INTR
  36#undef ROCKET_DEBUG_WRITE
  37#undef ROCKET_DEBUG_FLOW
  38#undef ROCKET_DEBUG_THROTTLE
  39#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
  40#undef ROCKET_DEBUG_RECEIVE
  41#undef ROCKET_DEBUG_HANGUP
  42#undef REV_PCI_ORDER
  43#undef ROCKET_DEBUG_IO
  44
  45#define POLL_PERIOD (HZ/100)	/*  Polling period .01 seconds (10ms) */
  46
  47/****** Kernel includes ******/
  48
  49#include <linux/module.h>
  50#include <linux/errno.h>
  51#include <linux/major.h>
  52#include <linux/kernel.h>
  53#include <linux/signal.h>
  54#include <linux/slab.h>
  55#include <linux/mm.h>
  56#include <linux/sched.h>
  57#include <linux/timer.h>
  58#include <linux/interrupt.h>
  59#include <linux/tty.h>
  60#include <linux/tty_driver.h>
  61#include <linux/tty_flip.h>
  62#include <linux/serial.h>
  63#include <linux/string.h>
  64#include <linux/fcntl.h>
  65#include <linux/ptrace.h>
  66#include <linux/mutex.h>
  67#include <linux/ioport.h>
  68#include <linux/delay.h>
  69#include <linux/completion.h>
  70#include <linux/wait.h>
  71#include <linux/pci.h>
  72#include <linux/uaccess.h>
  73#include <linux/atomic.h>
  74#include <asm/unaligned.h>
  75#include <linux/bitops.h>
  76#include <linux/spinlock.h>
  77#include <linux/init.h>
  78
  79/****** RocketPort includes ******/
  80
  81#include "rocket_int.h"
  82#include "rocket.h"
  83
  84#define ROCKET_VERSION "2.09"
  85#define ROCKET_DATE "12-June-2003"
  86
  87/****** RocketPort Local Variables ******/
  88
  89static void rp_do_poll(struct timer_list *unused);
  90
  91static struct tty_driver *rocket_driver;
  92
  93static struct rocket_version driver_version = {	
  94	ROCKET_VERSION, ROCKET_DATE
  95};
  96
  97static struct r_port *rp_table[MAX_RP_PORTS];	       /*  The main repository of serial port state information. */
  98static unsigned int xmit_flags[NUM_BOARDS];	       /*  Bit significant, indicates port had data to transmit. */
  99						       /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
 100static atomic_t rp_num_ports_open;	               /*  Number of serial ports open                           */
 101static DEFINE_TIMER(rocket_timer, rp_do_poll);
 102
 103static unsigned long board1;	                       /* ISA addresses, retrieved from rocketport.conf          */
 104static unsigned long board2;
 105static unsigned long board3;
 106static unsigned long board4;
 107static unsigned long controller;
 108static bool support_low_speed;
 109static unsigned long modem1;
 110static unsigned long modem2;
 111static unsigned long modem3;
 112static unsigned long modem4;
 113static unsigned long pc104_1[8];
 114static unsigned long pc104_2[8];
 115static unsigned long pc104_3[8];
 116static unsigned long pc104_4[8];
 117static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
 118
 119static int rp_baud_base[NUM_BOARDS];	               /*  Board config info (Someday make a per-board structure)  */
 120static unsigned long rcktpt_io_addr[NUM_BOARDS];
 121static int rcktpt_type[NUM_BOARDS];
 122static int is_PCI[NUM_BOARDS];
 123static rocketModel_t rocketModel[NUM_BOARDS];
 124static int max_board;
 125static const struct tty_port_operations rocket_port_ops;
 126
 127/*
 128 * The following arrays define the interrupt bits corresponding to each AIOP.
 129 * These bits are different between the ISA and regular PCI boards and the
 130 * Universal PCI boards.
 131 */
 132
 133static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
 134	AIOP_INTR_BIT_0,
 135	AIOP_INTR_BIT_1,
 136	AIOP_INTR_BIT_2,
 137	AIOP_INTR_BIT_3
 138};
 139
 140#ifdef CONFIG_PCI
 141static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
 142	UPCI_AIOP_INTR_BIT_0,
 143	UPCI_AIOP_INTR_BIT_1,
 144	UPCI_AIOP_INTR_BIT_2,
 145	UPCI_AIOP_INTR_BIT_3
 146};
 147#endif
 148
 149static Byte_t RData[RDATASIZE] = {
 150	0x00, 0x09, 0xf6, 0x82,
 151	0x02, 0x09, 0x86, 0xfb,
 152	0x04, 0x09, 0x00, 0x0a,
 153	0x06, 0x09, 0x01, 0x0a,
 154	0x08, 0x09, 0x8a, 0x13,
 155	0x0a, 0x09, 0xc5, 0x11,
 156	0x0c, 0x09, 0x86, 0x85,
 157	0x0e, 0x09, 0x20, 0x0a,
 158	0x10, 0x09, 0x21, 0x0a,
 159	0x12, 0x09, 0x41, 0xff,
 160	0x14, 0x09, 0x82, 0x00,
 161	0x16, 0x09, 0x82, 0x7b,
 162	0x18, 0x09, 0x8a, 0x7d,
 163	0x1a, 0x09, 0x88, 0x81,
 164	0x1c, 0x09, 0x86, 0x7a,
 165	0x1e, 0x09, 0x84, 0x81,
 166	0x20, 0x09, 0x82, 0x7c,
 167	0x22, 0x09, 0x0a, 0x0a
 168};
 169
 170static Byte_t RRegData[RREGDATASIZE] = {
 171	0x00, 0x09, 0xf6, 0x82,	/* 00: Stop Rx processor */
 172	0x08, 0x09, 0x8a, 0x13,	/* 04: Tx software flow control */
 173	0x0a, 0x09, 0xc5, 0x11,	/* 08: XON char */
 174	0x0c, 0x09, 0x86, 0x85,	/* 0c: XANY */
 175	0x12, 0x09, 0x41, 0xff,	/* 10: Rx mask char */
 176	0x14, 0x09, 0x82, 0x00,	/* 14: Compare/Ignore #0 */
 177	0x16, 0x09, 0x82, 0x7b,	/* 18: Compare #1 */
 178	0x18, 0x09, 0x8a, 0x7d,	/* 1c: Compare #2 */
 179	0x1a, 0x09, 0x88, 0x81,	/* 20: Interrupt #1 */
 180	0x1c, 0x09, 0x86, 0x7a,	/* 24: Ignore/Replace #1 */
 181	0x1e, 0x09, 0x84, 0x81,	/* 28: Interrupt #2 */
 182	0x20, 0x09, 0x82, 0x7c,	/* 2c: Ignore/Replace #2 */
 183	0x22, 0x09, 0x0a, 0x0a	/* 30: Rx FIFO Enable */
 184};
 185
 186static CONTROLLER_T sController[CTL_SIZE] = {
 187	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 188	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 189	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 190	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 191	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 192	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 193	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 194	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
 195};
 196
 197static Byte_t sBitMapClrTbl[8] = {
 198	0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
 199};
 200
 201static Byte_t sBitMapSetTbl[8] = {
 202	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
 203};
 204
 205static int sClockPrescale = 0x14;
 206
 207/*
 208 *  Line number is the ttySIx number (x), the Minor number.  We 
 209 *  assign them sequentially, starting at zero.  The following 
 210 *  array keeps track of the line number assigned to a given board/aiop/channel.
 211 */
 212static unsigned char lineNumbers[MAX_RP_PORTS];
 213static unsigned long nextLineNumber;
 214
 215/*****  RocketPort Static Prototypes   *********/
 216static int __init init_ISA(int i);
 217static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
 218static void rp_flush_buffer(struct tty_struct *tty);
 
 219static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
 220static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
 221static void rp_start(struct tty_struct *tty);
 222static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
 223		     int ChanNum);
 224static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
 225static void sFlushRxFIFO(CHANNEL_T * ChP);
 226static void sFlushTxFIFO(CHANNEL_T * ChP);
 227static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
 228static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
 229static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
 230static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
 231static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
 
 
 
 
 
 232static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
 233			   ByteIO_t * AiopIOList, int AiopIOListSize,
 234			   int IRQNum, Byte_t Frequency, int PeriodicOnly);
 235static int sReadAiopID(ByteIO_t io);
 236static int sReadAiopNumChan(WordIO_t io);
 237
 238MODULE_AUTHOR("Theodore Ts'o");
 239MODULE_DESCRIPTION("Comtrol RocketPort driver");
 240module_param_hw(board1, ulong, ioport, 0);
 241MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
 242module_param_hw(board2, ulong, ioport, 0);
 243MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
 244module_param_hw(board3, ulong, ioport, 0);
 245MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
 246module_param_hw(board4, ulong, ioport, 0);
 247MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
 248module_param_hw(controller, ulong, ioport, 0);
 249MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
 250module_param(support_low_speed, bool, 0);
 251MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
 252module_param(modem1, ulong, 0);
 253MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
 254module_param(modem2, ulong, 0);
 255MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
 256module_param(modem3, ulong, 0);
 257MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
 258module_param(modem4, ulong, 0);
 259MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
 260module_param_array(pc104_1, ulong, NULL, 0);
 261MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
 262module_param_array(pc104_2, ulong, NULL, 0);
 263MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
 264module_param_array(pc104_3, ulong, NULL, 0);
 265MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
 266module_param_array(pc104_4, ulong, NULL, 0);
 267MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
 268
 269static int __init rp_init(void);
 270static void rp_cleanup_module(void);
 271
 272module_init(rp_init);
 273module_exit(rp_cleanup_module);
 274
 275
 276MODULE_LICENSE("Dual BSD/GPL");
 277
 278/*************************************************************************/
 279/*                     Module code starts here                           */
 280
 281static inline int rocket_paranoia_check(struct r_port *info,
 282					const char *routine)
 283{
 284#ifdef ROCKET_PARANOIA_CHECK
 285	if (!info)
 286		return 1;
 287	if (info->magic != RPORT_MAGIC) {
 288		printk(KERN_WARNING "Warning: bad magic number for rocketport "
 289				"struct in %s\n", routine);
 290		return 1;
 291	}
 292#endif
 293	return 0;
 294}
 295
 296
 297/*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
 298 *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
 299 *  tty layer.  
 300 */
 301static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
 302		unsigned int ChanStatus)
 
 303{
 304	unsigned int CharNStat;
 305	int ToRecv, wRecv, space;
 306	unsigned char *cbuf;
 307
 308	ToRecv = sGetRxCnt(cp);
 309#ifdef ROCKET_DEBUG_INTR
 310	printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
 311#endif
 312	if (ToRecv == 0)
 313		return;
 314
 315	/*
 316	 * if status indicates there are errored characters in the
 317	 * FIFO, then enter status mode (a word in FIFO holds
 318	 * character and status).
 319	 */
 320	if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
 321		if (!(ChanStatus & STATMODE)) {
 322#ifdef ROCKET_DEBUG_RECEIVE
 323			printk(KERN_INFO "Entering STATMODE...\n");
 324#endif
 325			ChanStatus |= STATMODE;
 326			sEnRxStatusMode(cp);
 327		}
 328	}
 329
 330	/* 
 331	 * if we previously entered status mode, then read down the
 332	 * FIFO one word at a time, pulling apart the character and
 333	 * the status.  Update error counters depending on status
 334	 */
 335	if (ChanStatus & STATMODE) {
 336#ifdef ROCKET_DEBUG_RECEIVE
 337		printk(KERN_INFO "Ignore %x, read %x...\n",
 338			info->ignore_status_mask, info->read_status_mask);
 339#endif
 340		while (ToRecv) {
 341			char flag;
 342
 343			CharNStat = sInW(sGetTxRxDataIO(cp));
 344#ifdef ROCKET_DEBUG_RECEIVE
 345			printk(KERN_INFO "%x...\n", CharNStat);
 346#endif
 347			if (CharNStat & STMBREAKH)
 348				CharNStat &= ~(STMFRAMEH | STMPARITYH);
 349			if (CharNStat & info->ignore_status_mask) {
 350				ToRecv--;
 351				continue;
 352			}
 353			CharNStat &= info->read_status_mask;
 354			if (CharNStat & STMBREAKH)
 355				flag = TTY_BREAK;
 356			else if (CharNStat & STMPARITYH)
 357				flag = TTY_PARITY;
 358			else if (CharNStat & STMFRAMEH)
 359				flag = TTY_FRAME;
 360			else if (CharNStat & STMRCVROVRH)
 361				flag = TTY_OVERRUN;
 362			else
 363				flag = TTY_NORMAL;
 364			tty_insert_flip_char(&info->port, CharNStat & 0xff,
 365					flag);
 366			ToRecv--;
 367		}
 368
 369		/*
 370		 * after we've emptied the FIFO in status mode, turn
 371		 * status mode back off
 372		 */
 373		if (sGetRxCnt(cp) == 0) {
 374#ifdef ROCKET_DEBUG_RECEIVE
 375			printk(KERN_INFO "Status mode off.\n");
 376#endif
 377			sDisRxStatusMode(cp);
 378		}
 379	} else {
 380		/*
 381		 * we aren't in status mode, so read down the FIFO two
 382		 * characters at time by doing repeated word IO
 383		 * transfer.
 384		 */
 385		space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
 386		if (space < ToRecv) {
 387#ifdef ROCKET_DEBUG_RECEIVE
 388			printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
 389#endif
 390			if (space <= 0)
 391				return;
 392			ToRecv = space;
 393		}
 394		wRecv = ToRecv >> 1;
 395		if (wRecv)
 396			sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
 397		if (ToRecv & 1)
 398			cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
 399	}
 400	/*  Push the data up to the tty layer */
 401	tty_flip_buffer_push(&info->port);
 402}
 403
 404/*
 405 *  Serial port transmit data function.  Called from the timer polling loop as a 
 406 *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
 407 *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
 408 *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
 409 */
 410static void rp_do_transmit(struct r_port *info)
 411{
 412	int c;
 413	CHANNEL_t *cp = &info->channel;
 414	struct tty_struct *tty;
 415	unsigned long flags;
 416
 417#ifdef ROCKET_DEBUG_INTR
 418	printk(KERN_DEBUG "%s\n", __func__);
 419#endif
 420	if (!info)
 421		return;
 422	tty = tty_port_tty_get(&info->port);
 423
 424	if (tty == NULL) {
 425		printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
 426		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 427		return;
 428	}
 429
 430	spin_lock_irqsave(&info->slock, flags);
 431	info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
 432
 433	/*  Loop sending data to FIFO until done or FIFO full */
 434	while (1) {
 435		if (tty->stopped)
 436			break;
 437		c = min(info->xmit_fifo_room, info->xmit_cnt);
 438		c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
 439		if (c <= 0 || info->xmit_fifo_room <= 0)
 440			break;
 441		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
 442		if (c & 1)
 443			sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
 444		info->xmit_tail += c;
 445		info->xmit_tail &= XMIT_BUF_SIZE - 1;
 446		info->xmit_cnt -= c;
 447		info->xmit_fifo_room -= c;
 448#ifdef ROCKET_DEBUG_INTR
 449		printk(KERN_INFO "tx %d chars...\n", c);
 450#endif
 451	}
 452
 453	if (info->xmit_cnt == 0)
 454		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 455
 456	if (info->xmit_cnt < WAKEUP_CHARS) {
 457		tty_wakeup(tty);
 458#ifdef ROCKETPORT_HAVE_POLL_WAIT
 459		wake_up_interruptible(&tty->poll_wait);
 460#endif
 461	}
 462
 463	spin_unlock_irqrestore(&info->slock, flags);
 464	tty_kref_put(tty);
 465
 466#ifdef ROCKET_DEBUG_INTR
 467	printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
 468	       info->xmit_tail, info->xmit_fifo_room);
 469#endif
 470}
 471
 472/*
 473 *  Called when a serial port signals it has read data in it's RX FIFO.
 474 *  It checks what interrupts are pending and services them, including
 475 *  receiving serial data.  
 476 */
 477static void rp_handle_port(struct r_port *info)
 478{
 479	CHANNEL_t *cp;
 
 480	unsigned int IntMask, ChanStatus;
 481
 482	if (!info)
 483		return;
 484
 485	if (!tty_port_initialized(&info->port)) {
 486		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 487				"info->flags & NOT_INIT\n");
 488		return;
 489	}
 490
 
 
 
 
 
 491	cp = &info->channel;
 492
 493	IntMask = sGetChanIntID(cp) & info->intmask;
 494#ifdef ROCKET_DEBUG_INTR
 495	printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
 496#endif
 497	ChanStatus = sGetChanStatus(cp);
 498	if (IntMask & RXF_TRIG) {	/* Rx FIFO trigger level */
 499		rp_do_receive(info, cp, ChanStatus);
 500	}
 501	if (IntMask & DELTA_CD) {	/* CD change  */
 502#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
 503		printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
 504		       (ChanStatus & CD_ACT) ? "on" : "off");
 505#endif
 506		if (!(ChanStatus & CD_ACT) && info->cd_status) {
 507#ifdef ROCKET_DEBUG_HANGUP
 508			printk(KERN_INFO "CD drop, calling hangup.\n");
 509#endif
 510			tty_port_tty_hangup(&info->port, false);
 511		}
 512		info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
 513		wake_up_interruptible(&info->port.open_wait);
 514	}
 515#ifdef ROCKET_DEBUG_INTR
 516	if (IntMask & DELTA_CTS) {	/* CTS change */
 517		printk(KERN_INFO "CTS change...\n");
 518	}
 519	if (IntMask & DELTA_DSR) {	/* DSR change */
 520		printk(KERN_INFO "DSR change...\n");
 521	}
 522#endif
 
 523}
 524
 525/*
 526 *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
 527 */
 528static void rp_do_poll(struct timer_list *unused)
 529{
 530	CONTROLLER_t *ctlp;
 531	int ctrl, aiop, ch, line;
 532	unsigned int xmitmask, i;
 533	unsigned int CtlMask;
 534	unsigned char AiopMask;
 535	Word_t bit;
 536
 537	/*  Walk through all the boards (ctrl's) */
 538	for (ctrl = 0; ctrl < max_board; ctrl++) {
 539		if (rcktpt_io_addr[ctrl] <= 0)
 540			continue;
 541
 542		/*  Get a ptr to the board's control struct */
 543		ctlp = sCtlNumToCtlPtr(ctrl);
 544
 545		/*  Get the interrupt status from the board */
 546#ifdef CONFIG_PCI
 547		if (ctlp->BusType == isPCI)
 548			CtlMask = sPCIGetControllerIntStatus(ctlp);
 549		else
 550#endif
 551			CtlMask = sGetControllerIntStatus(ctlp);
 552
 553		/*  Check if any AIOP read bits are set */
 554		for (aiop = 0; CtlMask; aiop++) {
 555			bit = ctlp->AiopIntrBits[aiop];
 556			if (CtlMask & bit) {
 557				CtlMask &= ~bit;
 558				AiopMask = sGetAiopIntStatus(ctlp, aiop);
 559
 560				/*  Check if any port read bits are set */
 561				for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
 562					if (AiopMask & 1) {
 563
 564						/*  Get the line number (/dev/ttyRx number). */
 565						/*  Read the data from the port. */
 566						line = GetLineNumber(ctrl, aiop, ch);
 567						rp_handle_port(rp_table[line]);
 568					}
 569				}
 570			}
 571		}
 572
 573		xmitmask = xmit_flags[ctrl];
 574
 575		/*
 576		 *  xmit_flags contains bit-significant flags, indicating there is data
 577		 *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
 578		 *  1, ... (32 total possible).  The variable i has the aiop and ch 
 579		 *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
 580		 */
 581		if (xmitmask) {
 582			for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
 583				if (xmitmask & (1 << i)) {
 584					aiop = (i & 0x18) >> 3;
 585					ch = i & 0x07;
 586					line = GetLineNumber(ctrl, aiop, ch);
 587					rp_do_transmit(rp_table[line]);
 588				}
 589			}
 590		}
 591	}
 592
 593	/*
 594	 * Reset the timer so we get called at the next clock tick (10ms).
 595	 */
 596	if (atomic_read(&rp_num_ports_open))
 597		mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 598}
 599
 600/*
 601 *  Initializes the r_port structure for a port, as well as enabling the port on 
 602 *  the board.  
 603 *  Inputs:  board, aiop, chan numbers
 604 */
 605static void __init
 606init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
 607{
 608	unsigned rocketMode;
 609	struct r_port *info;
 610	int line;
 611	CONTROLLER_T *ctlp;
 612
 613	/*  Get the next available line number */
 614	line = SetLineNumber(board, aiop, chan);
 615
 616	ctlp = sCtlNumToCtlPtr(board);
 617
 618	/*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
 619	info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
 620	if (!info) {
 621		printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
 622				line);
 623		return;
 624	}
 625
 626	info->magic = RPORT_MAGIC;
 627	info->line = line;
 628	info->ctlp = ctlp;
 629	info->board = board;
 630	info->aiop = aiop;
 631	info->chan = chan;
 632	tty_port_init(&info->port);
 633	info->port.ops = &rocket_port_ops;
 
 634	info->flags &= ~ROCKET_MODE_MASK;
 635	if (board < ARRAY_SIZE(pc104) && line < ARRAY_SIZE(pc104_1))
 636		switch (pc104[board][line]) {
 637		case 422:
 638			info->flags |= ROCKET_MODE_RS422;
 639			break;
 640		case 485:
 641			info->flags |= ROCKET_MODE_RS485;
 642			break;
 643		case 232:
 644		default:
 645			info->flags |= ROCKET_MODE_RS232;
 646			break;
 647		}
 648	else
 649		info->flags |= ROCKET_MODE_RS232;
 
 
 650
 651	info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
 652	if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
 653		printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
 654				board, aiop, chan);
 655		tty_port_destroy(&info->port);
 656		kfree(info);
 657		return;
 658	}
 659
 660	rocketMode = info->flags & ROCKET_MODE_MASK;
 661
 662	if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
 663		sEnRTSToggle(&info->channel);
 664	else
 665		sDisRTSToggle(&info->channel);
 666
 667	if (ctlp->boardType == ROCKET_TYPE_PC104) {
 668		switch (rocketMode) {
 669		case ROCKET_MODE_RS485:
 670			sSetInterfaceMode(&info->channel, InterfaceModeRS485);
 671			break;
 672		case ROCKET_MODE_RS422:
 673			sSetInterfaceMode(&info->channel, InterfaceModeRS422);
 674			break;
 675		case ROCKET_MODE_RS232:
 676		default:
 677			if (info->flags & ROCKET_RTS_TOGGLE)
 678				sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
 679			else
 680				sSetInterfaceMode(&info->channel, InterfaceModeRS232);
 681			break;
 682		}
 683	}
 684	spin_lock_init(&info->slock);
 685	mutex_init(&info->write_mtx);
 686	rp_table[line] = info;
 687	tty_port_register_device(&info->port, rocket_driver, line,
 688			pci_dev ? &pci_dev->dev : NULL);
 689}
 690
 691/*
 692 *  Configures a rocketport port according to its termio settings.  Called from 
 693 *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
 694 */
 695static void configure_r_port(struct tty_struct *tty, struct r_port *info,
 696			     struct ktermios *old_termios)
 697{
 698	unsigned cflag;
 699	unsigned long flags;
 700	unsigned rocketMode;
 701	int bits, baud, divisor;
 702	CHANNEL_t *cp;
 703	struct ktermios *t = &tty->termios;
 704
 705	cp = &info->channel;
 706	cflag = t->c_cflag;
 707
 708	/* Byte size and parity */
 709	if ((cflag & CSIZE) == CS8) {
 710		sSetData8(cp);
 711		bits = 10;
 712	} else {
 713		sSetData7(cp);
 714		bits = 9;
 715	}
 716	if (cflag & CSTOPB) {
 717		sSetStop2(cp);
 718		bits++;
 719	} else {
 720		sSetStop1(cp);
 721	}
 722
 723	if (cflag & PARENB) {
 724		sEnParity(cp);
 725		bits++;
 726		if (cflag & PARODD) {
 727			sSetOddParity(cp);
 728		} else {
 729			sSetEvenParity(cp);
 730		}
 731	} else {
 732		sDisParity(cp);
 733	}
 734
 735	/* baud rate */
 736	baud = tty_get_baud_rate(tty);
 737	if (!baud)
 738		baud = 9600;
 739	divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
 740	if ((divisor >= 8192 || divisor < 0) && old_termios) {
 741		baud = tty_termios_baud_rate(old_termios);
 742		if (!baud)
 743			baud = 9600;
 744		divisor = (rp_baud_base[info->board] / baud) - 1;
 745	}
 746	if (divisor >= 8192 || divisor < 0) {
 747		baud = 9600;
 748		divisor = (rp_baud_base[info->board] / baud) - 1;
 749	}
 750	info->cps = baud / bits;
 751	sSetBaud(cp, divisor);
 752
 753	/* FIXME: Should really back compute a baud rate from the divisor */
 754	tty_encode_baud_rate(tty, baud, baud);
 755
 756	if (cflag & CRTSCTS) {
 757		info->intmask |= DELTA_CTS;
 758		sEnCTSFlowCtl(cp);
 759	} else {
 760		info->intmask &= ~DELTA_CTS;
 761		sDisCTSFlowCtl(cp);
 762	}
 763	if (cflag & CLOCAL) {
 764		info->intmask &= ~DELTA_CD;
 765	} else {
 766		spin_lock_irqsave(&info->slock, flags);
 767		if (sGetChanStatus(cp) & CD_ACT)
 768			info->cd_status = 1;
 769		else
 770			info->cd_status = 0;
 771		info->intmask |= DELTA_CD;
 772		spin_unlock_irqrestore(&info->slock, flags);
 773	}
 774
 775	/*
 776	 * Handle software flow control in the board
 777	 */
 778#ifdef ROCKET_SOFT_FLOW
 779	if (I_IXON(tty)) {
 780		sEnTxSoftFlowCtl(cp);
 781		if (I_IXANY(tty)) {
 782			sEnIXANY(cp);
 783		} else {
 784			sDisIXANY(cp);
 785		}
 786		sSetTxXONChar(cp, START_CHAR(tty));
 787		sSetTxXOFFChar(cp, STOP_CHAR(tty));
 788	} else {
 789		sDisTxSoftFlowCtl(cp);
 790		sDisIXANY(cp);
 791		sClrTxXOFF(cp);
 792	}
 793#endif
 794
 795	/*
 796	 * Set up ignore/read mask words
 797	 */
 798	info->read_status_mask = STMRCVROVRH | 0xFF;
 799	if (I_INPCK(tty))
 800		info->read_status_mask |= STMFRAMEH | STMPARITYH;
 801	if (I_BRKINT(tty) || I_PARMRK(tty))
 802		info->read_status_mask |= STMBREAKH;
 803
 804	/*
 805	 * Characters to ignore
 806	 */
 807	info->ignore_status_mask = 0;
 808	if (I_IGNPAR(tty))
 809		info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
 810	if (I_IGNBRK(tty)) {
 811		info->ignore_status_mask |= STMBREAKH;
 812		/*
 813		 * If we're ignoring parity and break indicators,
 814		 * ignore overruns too.  (For real raw support).
 815		 */
 816		if (I_IGNPAR(tty))
 817			info->ignore_status_mask |= STMRCVROVRH;
 818	}
 819
 820	rocketMode = info->flags & ROCKET_MODE_MASK;
 821
 822	if ((info->flags & ROCKET_RTS_TOGGLE)
 823	    || (rocketMode == ROCKET_MODE_RS485))
 824		sEnRTSToggle(cp);
 825	else
 826		sDisRTSToggle(cp);
 827
 828	sSetRTS(&info->channel);
 829
 830	if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
 831		switch (rocketMode) {
 832		case ROCKET_MODE_RS485:
 833			sSetInterfaceMode(cp, InterfaceModeRS485);
 834			break;
 835		case ROCKET_MODE_RS422:
 836			sSetInterfaceMode(cp, InterfaceModeRS422);
 837			break;
 838		case ROCKET_MODE_RS232:
 839		default:
 840			if (info->flags & ROCKET_RTS_TOGGLE)
 841				sSetInterfaceMode(cp, InterfaceModeRS232T);
 842			else
 843				sSetInterfaceMode(cp, InterfaceModeRS232);
 844			break;
 845		}
 846	}
 847}
 848
 849static int carrier_raised(struct tty_port *port)
 850{
 851	struct r_port *info = container_of(port, struct r_port, port);
 852	return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
 853}
 854
 855static void dtr_rts(struct tty_port *port, int on)
 856{
 857	struct r_port *info = container_of(port, struct r_port, port);
 858	if (on) {
 859		sSetDTR(&info->channel);
 860		sSetRTS(&info->channel);
 861	} else {
 862		sClrDTR(&info->channel);
 863		sClrRTS(&info->channel);
 864	}
 865}
 866
 867/*
 868 *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
 869 *  port's r_port struct.  Initializes the port hardware.  
 870 */
 871static int rp_open(struct tty_struct *tty, struct file *filp)
 872{
 873	struct r_port *info;
 874	struct tty_port *port;
 875	int retval;
 876	CHANNEL_t *cp;
 877	unsigned long page;
 878
 879	info = rp_table[tty->index];
 880	if (info == NULL)
 881		return -ENXIO;
 882	port = &info->port;
 883	
 884	page = __get_free_page(GFP_KERNEL);
 885	if (!page)
 886		return -ENOMEM;
 887
 
 
 
 
 
 
 
 
 888	/*
 889	 * We must not sleep from here until the port is marked fully in use.
 890	 */
 891	if (info->xmit_buf)
 892		free_page(page);
 893	else
 894		info->xmit_buf = (unsigned char *) page;
 895
 896	tty->driver_data = info;
 897	tty_port_tty_set(port, tty);
 898
 899	if (port->count++ == 0) {
 900		atomic_inc(&rp_num_ports_open);
 901
 902#ifdef ROCKET_DEBUG_OPEN
 903		printk(KERN_INFO "rocket mod++ = %d...\n",
 904				atomic_read(&rp_num_ports_open));
 905#endif
 906	}
 907#ifdef ROCKET_DEBUG_OPEN
 908	printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
 909#endif
 910
 911	/*
 912	 * Info->count is now 1; so it's safe to sleep now.
 913	 */
 914	if (!tty_port_initialized(port)) {
 915		cp = &info->channel;
 916		sSetRxTrigger(cp, TRIG_1);
 917		if (sGetChanStatus(cp) & CD_ACT)
 918			info->cd_status = 1;
 919		else
 920			info->cd_status = 0;
 921		sDisRxStatusMode(cp);
 922		sFlushRxFIFO(cp);
 923		sFlushTxFIFO(cp);
 924
 925		sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 926		sSetRxTrigger(cp, TRIG_1);
 927
 928		sGetChanStatus(cp);
 929		sDisRxStatusMode(cp);
 930		sClrTxXOFF(cp);
 931
 932		sDisCTSFlowCtl(cp);
 933		sDisTxSoftFlowCtl(cp);
 934
 935		sEnRxFIFO(cp);
 936		sEnTransmit(cp);
 937
 938		tty_port_set_initialized(&info->port, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940		configure_r_port(tty, info, NULL);
 941		if (C_BAUD(tty)) {
 942			sSetDTR(cp);
 943			sSetRTS(cp);
 944		}
 945	}
 946	/*  Starts (or resets) the maint polling loop */
 947	mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 948
 949	retval = tty_port_block_til_ready(port, tty, filp);
 950	if (retval) {
 951#ifdef ROCKET_DEBUG_OPEN
 952		printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
 953#endif
 954		return retval;
 955	}
 956	return 0;
 957}
 958
 959/*
 960 *  Exception handler that closes a serial port. info->port.count is considered critical.
 961 */
 962static void rp_close(struct tty_struct *tty, struct file *filp)
 963{
 964	struct r_port *info = tty->driver_data;
 965	struct tty_port *port = &info->port;
 966	int timeout;
 967	CHANNEL_t *cp;
 968	
 969	if (rocket_paranoia_check(info, "rp_close"))
 970		return;
 971
 972#ifdef ROCKET_DEBUG_OPEN
 973	printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
 974#endif
 975
 976	if (tty_port_close_start(port, tty, filp) == 0)
 977		return;
 978
 979	mutex_lock(&port->mutex);
 980	cp = &info->channel;
 981	/*
 982	 * Before we drop DTR, make sure the UART transmitter
 983	 * has completely drained; this is especially
 984	 * important if there is a transmit FIFO!
 985	 */
 986	timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
 987	if (timeout == 0)
 988		timeout = 1;
 989	rp_wait_until_sent(tty, timeout);
 990	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 991
 992	sDisTransmit(cp);
 993	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 994	sDisCTSFlowCtl(cp);
 995	sDisTxSoftFlowCtl(cp);
 996	sClrTxXOFF(cp);
 997	sFlushRxFIFO(cp);
 998	sFlushTxFIFO(cp);
 999	sClrRTS(cp);
1000	if (C_HUPCL(tty))
1001		sClrDTR(cp);
1002
1003	rp_flush_buffer(tty);
1004		
1005	tty_ldisc_flush(tty);
1006
1007	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1008
1009	/* We can't yet use tty_port_close_end as the buffer handling in this
1010	   driver is a bit different to the usual */
1011
1012	if (port->blocked_open) {
1013		if (port->close_delay) {
1014			msleep_interruptible(jiffies_to_msecs(port->close_delay));
1015		}
1016		wake_up_interruptible(&port->open_wait);
1017	} else {
1018		if (info->xmit_buf) {
1019			free_page((unsigned long) info->xmit_buf);
1020			info->xmit_buf = NULL;
1021		}
1022	}
1023	spin_lock_irq(&port->lock);
 
1024	tty->closing = 0;
1025	spin_unlock_irq(&port->lock);
1026	tty_port_set_initialized(port, 0);
1027	tty_port_set_active(port, 0);
1028	mutex_unlock(&port->mutex);
1029	tty_port_tty_set(port, NULL);
1030
 
 
1031	atomic_dec(&rp_num_ports_open);
1032
1033#ifdef ROCKET_DEBUG_OPEN
1034	printk(KERN_INFO "rocket mod-- = %d...\n",
1035			atomic_read(&rp_num_ports_open));
1036	printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1037#endif
1038
1039}
1040
1041static void rp_set_termios(struct tty_struct *tty,
1042			   struct ktermios *old_termios)
1043{
1044	struct r_port *info = tty->driver_data;
1045	CHANNEL_t *cp;
1046	unsigned cflag;
1047
1048	if (rocket_paranoia_check(info, "rp_set_termios"))
1049		return;
1050
1051	cflag = tty->termios.c_cflag;
1052
1053	/*
1054	 * This driver doesn't support CS5 or CS6
1055	 */
1056	if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1057		tty->termios.c_cflag =
1058		    ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1059	/* Or CMSPAR */
1060	tty->termios.c_cflag &= ~CMSPAR;
1061
1062	configure_r_port(tty, info, old_termios);
1063
1064	cp = &info->channel;
1065
1066	/* Handle transition to B0 status */
1067	if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1068		sClrDTR(cp);
1069		sClrRTS(cp);
1070	}
1071
1072	/* Handle transition away from B0 status */
1073	if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1074		sSetRTS(cp);
 
1075		sSetDTR(cp);
1076	}
1077
1078	if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
 
1079		rp_start(tty);
 
1080}
1081
1082static int rp_break(struct tty_struct *tty, int break_state)
1083{
1084	struct r_port *info = tty->driver_data;
1085	unsigned long flags;
1086
1087	if (rocket_paranoia_check(info, "rp_break"))
1088		return -EINVAL;
1089
1090	spin_lock_irqsave(&info->slock, flags);
1091	if (break_state == -1)
1092		sSendBreak(&info->channel);
1093	else
1094		sClrBreak(&info->channel);
1095	spin_unlock_irqrestore(&info->slock, flags);
1096	return 0;
1097}
1098
1099/*
1100 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1101 * the UPCI boards was added, it was decided to make this a function because
1102 * the macro was getting too complicated. All cases except the first one
1103 * (UPCIRingInd) are taken directly from the original macro.
1104 */
1105static int sGetChanRI(CHANNEL_T * ChP)
1106{
1107	CONTROLLER_t *CtlP = ChP->CtlP;
1108	int ChanNum = ChP->ChanNum;
1109	int RingInd = 0;
1110
1111	if (CtlP->UPCIRingInd)
1112		RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1113	else if (CtlP->AltChanRingIndicator)
1114		RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1115	else if (CtlP->boardType == ROCKET_TYPE_PC104)
1116		RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1117
1118	return RingInd;
1119}
1120
1121/********************************************************************************************/
1122/*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1123
1124/*
1125 *  Returns the state of the serial modem control lines.  These next 2 functions 
1126 *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1127 */
1128static int rp_tiocmget(struct tty_struct *tty)
1129{
1130	struct r_port *info = tty->driver_data;
1131	unsigned int control, result, ChanStatus;
1132
1133	ChanStatus = sGetChanStatusLo(&info->channel);
1134	control = info->channel.TxControl[3];
1135	result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1136		((control & SET_DTR) ?  TIOCM_DTR : 0) |
1137		((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1138		(sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1139		((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1140		((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1141
1142	return result;
1143}
1144
1145/* 
1146 *  Sets the modem control lines
1147 */
1148static int rp_tiocmset(struct tty_struct *tty,
1149				unsigned int set, unsigned int clear)
1150{
1151	struct r_port *info = tty->driver_data;
1152
1153	if (set & TIOCM_RTS)
1154		info->channel.TxControl[3] |= SET_RTS;
1155	if (set & TIOCM_DTR)
1156		info->channel.TxControl[3] |= SET_DTR;
1157	if (clear & TIOCM_RTS)
1158		info->channel.TxControl[3] &= ~SET_RTS;
1159	if (clear & TIOCM_DTR)
1160		info->channel.TxControl[3] &= ~SET_DTR;
1161
1162	out32(info->channel.IndexAddr, info->channel.TxControl);
1163	return 0;
1164}
1165
1166static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1167{
1168	struct rocket_config tmp;
1169
 
 
1170	memset(&tmp, 0, sizeof (tmp));
1171	mutex_lock(&info->port.mutex);
1172	tmp.line = info->line;
1173	tmp.flags = info->flags;
1174	tmp.close_delay = info->port.close_delay;
1175	tmp.closing_wait = info->port.closing_wait;
1176	tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1177	mutex_unlock(&info->port.mutex);
1178
1179	if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1180		return -EFAULT;
1181	return 0;
1182}
1183
1184static int set_config(struct tty_struct *tty, struct r_port *info,
1185					struct rocket_config __user *new_info)
1186{
1187	struct rocket_config new_serial;
1188
1189	if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1190		return -EFAULT;
1191
1192	mutex_lock(&info->port.mutex);
1193	if (!capable(CAP_SYS_ADMIN))
1194	{
1195		if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1196			mutex_unlock(&info->port.mutex);
1197			return -EPERM;
1198		}
1199		info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
 
1200		mutex_unlock(&info->port.mutex);
1201		return 0;
1202	}
1203
1204	if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1205		/* warn about deprecation, unless clearing */
1206		if (new_serial.flags & ROCKET_SPD_MASK)
1207			dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1208	}
1209
1210	info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1211	info->port.close_delay = new_serial.close_delay;
1212	info->port.closing_wait = new_serial.closing_wait;
1213
 
 
 
 
 
 
 
 
1214	mutex_unlock(&info->port.mutex);
1215
1216	configure_r_port(tty, info, NULL);
1217	return 0;
1218}
1219
1220/*
1221 *  This function fills in a rocket_ports struct with information
1222 *  about what boards/ports are in the system.  This info is passed
1223 *  to user space.  See setrocket.c where the info is used to create
1224 *  the /dev/ttyRx ports.
1225 */
1226static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1227{
1228	struct rocket_ports *tmp;
1229	int board, ret = 0;
1230
1231	tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
1232	if (!tmp)
1233		return -ENOMEM;
1234
1235	tmp->tty_major = rocket_driver->major;
1236
1237	for (board = 0; board < 4; board++) {
1238		tmp->rocketModel[board].model = rocketModel[board].model;
1239		strcpy(tmp->rocketModel[board].modelString,
1240		       rocketModel[board].modelString);
1241		tmp->rocketModel[board].numPorts = rocketModel[board].numPorts;
1242		tmp->rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1243		tmp->rocketModel[board].startingPortNumber =
1244			rocketModel[board].startingPortNumber;
1245	}
1246	if (copy_to_user(retports, tmp, sizeof(*retports)))
1247		ret = -EFAULT;
1248	kfree(tmp);
1249	return ret;
1250}
1251
1252static int reset_rm2(struct r_port *info, void __user *arg)
1253{
1254	int reset;
1255
1256	if (!capable(CAP_SYS_ADMIN))
1257		return -EPERM;
1258
1259	if (copy_from_user(&reset, arg, sizeof (int)))
1260		return -EFAULT;
1261	if (reset)
1262		reset = 1;
1263
1264	if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1265            rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1266		return -EINVAL;
1267
1268	if (info->ctlp->BusType == isISA)
1269		sModemReset(info->ctlp, info->chan, reset);
1270	else
1271		sPCIModemReset(info->ctlp, info->chan, reset);
1272
1273	return 0;
1274}
1275
1276static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1277{
1278	if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1279		return -EFAULT;
1280	return 0;
1281}
1282
1283/*  IOCTL call handler into the driver */
1284static int rp_ioctl(struct tty_struct *tty,
1285		    unsigned int cmd, unsigned long arg)
1286{
1287	struct r_port *info = tty->driver_data;
1288	void __user *argp = (void __user *)arg;
1289	int ret = 0;
1290
1291	if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1292		return -ENXIO;
1293
1294	switch (cmd) {
 
 
 
 
1295	case RCKP_GET_CONFIG:
1296		dev_warn_ratelimited(tty->dev,
1297					"RCKP_GET_CONFIG option is deprecated\n");
1298		ret = get_config(info, argp);
1299		break;
1300	case RCKP_SET_CONFIG:
1301		dev_warn_ratelimited(tty->dev,
1302					"RCKP_SET_CONFIG option is deprecated\n");
1303		ret = set_config(tty, info, argp);
1304		break;
1305	case RCKP_GET_PORTS:
1306		dev_warn_ratelimited(tty->dev,
1307					"RCKP_GET_PORTS option is deprecated\n");
1308		ret = get_ports(info, argp);
1309		break;
1310	case RCKP_RESET_RM2:
1311		dev_warn_ratelimited(tty->dev,
1312					"RCKP_RESET_RM2 option is deprecated\n");
1313		ret = reset_rm2(info, argp);
1314		break;
1315	case RCKP_GET_VERSION:
1316		dev_warn_ratelimited(tty->dev,
1317					"RCKP_GET_VERSION option is deprecated\n");
1318		ret = get_version(info, argp);
1319		break;
1320	default:
1321		ret = -ENOIOCTLCMD;
1322	}
1323	return ret;
1324}
1325
1326static void rp_send_xchar(struct tty_struct *tty, char ch)
1327{
1328	struct r_port *info = tty->driver_data;
1329	CHANNEL_t *cp;
1330
1331	if (rocket_paranoia_check(info, "rp_send_xchar"))
1332		return;
1333
1334	cp = &info->channel;
1335	if (sGetTxCnt(cp))
1336		sWriteTxPrioByte(cp, ch);
1337	else
1338		sWriteTxByte(sGetTxRxDataIO(cp), ch);
1339}
1340
1341static void rp_throttle(struct tty_struct *tty)
1342{
1343	struct r_port *info = tty->driver_data;
1344
1345#ifdef ROCKET_DEBUG_THROTTLE
1346	printk(KERN_INFO "throttle %s ....\n", tty->name);
 
1347#endif
1348
1349	if (rocket_paranoia_check(info, "rp_throttle"))
1350		return;
1351
1352	if (I_IXOFF(tty))
1353		rp_send_xchar(tty, STOP_CHAR(tty));
1354
1355	sClrRTS(&info->channel);
1356}
1357
1358static void rp_unthrottle(struct tty_struct *tty)
1359{
1360	struct r_port *info = tty->driver_data;
1361#ifdef ROCKET_DEBUG_THROTTLE
1362	printk(KERN_INFO "unthrottle %s ....\n", tty->name);
 
1363#endif
1364
1365	if (rocket_paranoia_check(info, "rp_unthrottle"))
1366		return;
1367
1368	if (I_IXOFF(tty))
1369		rp_send_xchar(tty, START_CHAR(tty));
1370
1371	sSetRTS(&info->channel);
1372}
1373
1374/*
1375 * ------------------------------------------------------------
1376 * rp_stop() and rp_start()
1377 *
1378 * This routines are called before setting or resetting tty->stopped.
1379 * They enable or disable transmitter interrupts, as necessary.
1380 * ------------------------------------------------------------
1381 */
1382static void rp_stop(struct tty_struct *tty)
1383{
1384	struct r_port *info = tty->driver_data;
1385
1386#ifdef ROCKET_DEBUG_FLOW
1387	printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1388	       info->xmit_cnt, info->xmit_fifo_room);
1389#endif
1390
1391	if (rocket_paranoia_check(info, "rp_stop"))
1392		return;
1393
1394	if (sGetTxCnt(&info->channel))
1395		sDisTransmit(&info->channel);
1396}
1397
1398static void rp_start(struct tty_struct *tty)
1399{
1400	struct r_port *info = tty->driver_data;
1401
1402#ifdef ROCKET_DEBUG_FLOW
1403	printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1404	       info->xmit_cnt, info->xmit_fifo_room);
1405#endif
1406
1407	if (rocket_paranoia_check(info, "rp_stop"))
1408		return;
1409
1410	sEnTransmit(&info->channel);
1411	set_bit((info->aiop * 8) + info->chan,
1412		(void *) &xmit_flags[info->board]);
1413}
1414
1415/*
1416 * rp_wait_until_sent() --- wait until the transmitter is empty
1417 */
1418static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1419{
1420	struct r_port *info = tty->driver_data;
1421	CHANNEL_t *cp;
1422	unsigned long orig_jiffies;
1423	int check_time, exit_time;
1424	int txcnt;
1425
1426	if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1427		return;
1428
1429	cp = &info->channel;
1430
1431	orig_jiffies = jiffies;
1432#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1433	printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1434	       jiffies);
1435	printk(KERN_INFO "cps=%d...\n", info->cps);
1436#endif
1437	while (1) {
1438		txcnt = sGetTxCnt(cp);
1439		if (!txcnt) {
1440			if (sGetChanStatusLo(cp) & TXSHRMT)
1441				break;
1442			check_time = (HZ / info->cps) / 5;
1443		} else {
1444			check_time = HZ * txcnt / info->cps;
1445		}
1446		if (timeout) {
1447			exit_time = orig_jiffies + timeout - jiffies;
1448			if (exit_time <= 0)
1449				break;
1450			if (exit_time < check_time)
1451				check_time = exit_time;
1452		}
1453		if (check_time == 0)
1454			check_time = 1;
1455#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1456		printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1457				jiffies, check_time);
1458#endif
1459		msleep_interruptible(jiffies_to_msecs(check_time));
1460		if (signal_pending(current))
1461			break;
1462	}
1463	__set_current_state(TASK_RUNNING);
1464#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1465	printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1466#endif
1467}
1468
1469/*
1470 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1471 */
1472static void rp_hangup(struct tty_struct *tty)
1473{
1474	CHANNEL_t *cp;
1475	struct r_port *info = tty->driver_data;
1476	unsigned long flags;
1477
1478	if (rocket_paranoia_check(info, "rp_hangup"))
1479		return;
1480
1481#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1482	printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1483#endif
1484	rp_flush_buffer(tty);
1485	spin_lock_irqsave(&info->port.lock, flags);
 
 
 
 
1486	if (info->port.count)
1487		atomic_dec(&rp_num_ports_open);
1488	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1489	spin_unlock_irqrestore(&info->port.lock, flags);
1490
1491	tty_port_hangup(&info->port);
1492
1493	cp = &info->channel;
1494	sDisRxFIFO(cp);
1495	sDisTransmit(cp);
1496	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1497	sDisCTSFlowCtl(cp);
1498	sDisTxSoftFlowCtl(cp);
1499	sClrTxXOFF(cp);
1500	tty_port_set_initialized(&info->port, 0);
1501
1502	wake_up_interruptible(&info->port.open_wait);
1503}
1504
1505/*
1506 *  Exception handler - write char routine.  The RocketPort driver uses a
1507 *  double-buffering strategy, with the twist that if the in-memory CPU
1508 *  buffer is empty, and there's space in the transmit FIFO, the
1509 *  writing routines will write directly to transmit FIFO.
1510 *  Write buffer and counters protected by spinlocks
1511 */
1512static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1513{
1514	struct r_port *info = tty->driver_data;
1515	CHANNEL_t *cp;
1516	unsigned long flags;
1517
1518	if (rocket_paranoia_check(info, "rp_put_char"))
1519		return 0;
1520
1521	/*
1522	 * Grab the port write mutex, locking out other processes that try to
1523	 * write to this port
1524	 */
1525	mutex_lock(&info->write_mtx);
1526
1527#ifdef ROCKET_DEBUG_WRITE
1528	printk(KERN_INFO "rp_put_char %c...\n", ch);
1529#endif
1530
1531	spin_lock_irqsave(&info->slock, flags);
1532	cp = &info->channel;
1533
1534	if (!tty->stopped && info->xmit_fifo_room == 0)
1535		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1536
1537	if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1538		info->xmit_buf[info->xmit_head++] = ch;
1539		info->xmit_head &= XMIT_BUF_SIZE - 1;
1540		info->xmit_cnt++;
1541		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1542	} else {
1543		sOutB(sGetTxRxDataIO(cp), ch);
1544		info->xmit_fifo_room--;
1545	}
1546	spin_unlock_irqrestore(&info->slock, flags);
1547	mutex_unlock(&info->write_mtx);
1548	return 1;
1549}
1550
1551/*
1552 *  Exception handler - write routine, called when user app writes to the device.
1553 *  A per port write mutex is used to protect from another process writing to
1554 *  this port at the same time.  This other process could be running on the other CPU
1555 *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1556 *  Spinlocks protect the info xmit members.
1557 */
1558static int rp_write(struct tty_struct *tty,
1559		    const unsigned char *buf, int count)
1560{
1561	struct r_port *info = tty->driver_data;
1562	CHANNEL_t *cp;
1563	const unsigned char *b;
1564	int c, retval = 0;
1565	unsigned long flags;
1566
1567	if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1568		return 0;
1569
1570	if (mutex_lock_interruptible(&info->write_mtx))
1571		return -ERESTARTSYS;
1572
1573#ifdef ROCKET_DEBUG_WRITE
1574	printk(KERN_INFO "rp_write %d chars...\n", count);
1575#endif
1576	cp = &info->channel;
1577
1578	if (!tty->stopped && info->xmit_fifo_room < count)
1579		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1580
1581        /*
1582	 *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1583	 *  into FIFO.  Use the write queue for temp storage.
1584         */
1585	if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1586		c = min(count, info->xmit_fifo_room);
1587		b = buf;
1588
1589		/*  Push data into FIFO, 2 bytes at a time */
1590		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1591
1592		/*  If there is a byte remaining, write it */
1593		if (c & 1)
1594			sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1595
1596		retval += c;
1597		buf += c;
1598		count -= c;
1599
1600		spin_lock_irqsave(&info->slock, flags);
1601		info->xmit_fifo_room -= c;
1602		spin_unlock_irqrestore(&info->slock, flags);
1603	}
1604
1605	/* If count is zero, we wrote it all and are done */
1606	if (!count)
1607		goto end;
1608
1609	/*  Write remaining data into the port's xmit_buf */
1610	while (1) {
1611		/* Hung up ? */
1612		if (!tty_port_active(&info->port))
1613			goto end;
1614		c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1615		c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1616		if (c <= 0)
1617			break;
1618
1619		b = buf;
1620		memcpy(info->xmit_buf + info->xmit_head, b, c);
1621
1622		spin_lock_irqsave(&info->slock, flags);
1623		info->xmit_head =
1624		    (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1625		info->xmit_cnt += c;
1626		spin_unlock_irqrestore(&info->slock, flags);
1627
1628		buf += c;
1629		count -= c;
1630		retval += c;
1631	}
1632
1633	if ((retval > 0) && !tty->stopped)
1634		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1635	
1636end:
1637 	if (info->xmit_cnt < WAKEUP_CHARS) {
1638 		tty_wakeup(tty);
1639#ifdef ROCKETPORT_HAVE_POLL_WAIT
1640		wake_up_interruptible(&tty->poll_wait);
1641#endif
1642	}
1643	mutex_unlock(&info->write_mtx);
1644	return retval;
1645}
1646
1647/*
1648 * Return the number of characters that can be sent.  We estimate
1649 * only using the in-memory transmit buffer only, and ignore the
1650 * potential space in the transmit FIFO.
1651 */
1652static int rp_write_room(struct tty_struct *tty)
1653{
1654	struct r_port *info = tty->driver_data;
1655	int ret;
1656
1657	if (rocket_paranoia_check(info, "rp_write_room"))
1658		return 0;
1659
1660	ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1661	if (ret < 0)
1662		ret = 0;
1663#ifdef ROCKET_DEBUG_WRITE
1664	printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1665#endif
1666	return ret;
1667}
1668
1669/*
1670 * Return the number of characters in the buffer.  Again, this only
1671 * counts those characters in the in-memory transmit buffer.
1672 */
1673static int rp_chars_in_buffer(struct tty_struct *tty)
1674{
1675	struct r_port *info = tty->driver_data;
1676
1677	if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1678		return 0;
1679
1680#ifdef ROCKET_DEBUG_WRITE
1681	printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1682#endif
1683	return info->xmit_cnt;
1684}
1685
1686/*
1687 *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1688 *  r_port struct for the port.  Note that spinlock are used to protect info members,
1689 *  do not call this function if the spinlock is already held.
1690 */
1691static void rp_flush_buffer(struct tty_struct *tty)
1692{
1693	struct r_port *info = tty->driver_data;
1694	CHANNEL_t *cp;
1695	unsigned long flags;
1696
1697	if (rocket_paranoia_check(info, "rp_flush_buffer"))
1698		return;
1699
1700	spin_lock_irqsave(&info->slock, flags);
1701	info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1702	spin_unlock_irqrestore(&info->slock, flags);
1703
1704#ifdef ROCKETPORT_HAVE_POLL_WAIT
1705	wake_up_interruptible(&tty->poll_wait);
1706#endif
1707	tty_wakeup(tty);
1708
1709	cp = &info->channel;
1710	sFlushTxFIFO(cp);
1711}
1712
1713#ifdef CONFIG_PCI
1714
1715static const struct pci_device_id rocket_pci_ids[] = {
1716	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1717	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1718	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1719	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1720	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1721	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1722	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1723	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1724	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1725	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1726	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1727	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1728	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1729	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1730	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1731	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1732	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1733	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1734	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1735	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1736	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1737	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1738	{ }
1739};
1740MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1741
1742/*  Resets the speaker controller on RocketModem II and III devices */
1743static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1744{
1745	ByteIO_t addr;
1746
1747	/* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1748	if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1749		addr = CtlP->AiopIO[0] + 0x4F;
1750		sOutB(addr, 0);
1751	}
1752
1753	/* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1754	if ((model == MODEL_UPCI_RM3_8PORT)
1755	    || (model == MODEL_UPCI_RM3_4PORT)) {
1756		addr = CtlP->AiopIO[0] + 0x88;
1757		sOutB(addr, 0);
1758	}
1759}
1760
1761/***************************************************************************
1762Function: sPCIInitController
1763Purpose:  Initialization of controller global registers and controller
1764          structure.
1765Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1766                          IRQNum,Frequency,PeriodicOnly)
1767          CONTROLLER_T *CtlP; Ptr to controller structure
1768          int CtlNum; Controller number
1769          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1770             This list must be in the order the AIOPs will be found on the
1771             controller.  Once an AIOP in the list is not found, it is
1772             assumed that there are no more AIOPs on the controller.
1773          int AiopIOListSize; Number of addresses in AiopIOList
1774          int IRQNum; Interrupt Request number.  Can be any of the following:
1775                         0: Disable global interrupts
1776                         3: IRQ 3
1777                         4: IRQ 4
1778                         5: IRQ 5
1779                         9: IRQ 9
1780                         10: IRQ 10
1781                         11: IRQ 11
1782                         12: IRQ 12
1783                         15: IRQ 15
1784          Byte_t Frequency: A flag identifying the frequency
1785                   of the periodic interrupt, can be any one of the following:
1786                      FREQ_DIS - periodic interrupt disabled
1787                      FREQ_137HZ - 137 Hertz
1788                      FREQ_69HZ - 69 Hertz
1789                      FREQ_34HZ - 34 Hertz
1790                      FREQ_17HZ - 17 Hertz
1791                      FREQ_9HZ - 9 Hertz
1792                      FREQ_4HZ - 4 Hertz
1793                   If IRQNum is set to 0 the Frequency parameter is
1794                   overidden, it is forced to a value of FREQ_DIS.
1795          int PeriodicOnly: 1 if all interrupts except the periodic
1796                               interrupt are to be blocked.
1797                            0 is both the periodic interrupt and
1798                               other channel interrupts are allowed.
1799                            If IRQNum is set to 0 the PeriodicOnly parameter is
1800                               overidden, it is forced to a value of 0.
1801Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
1802               initialization failed.
1803
1804Comments:
1805          If periodic interrupts are to be disabled but AIOP interrupts
1806          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1807
1808          If interrupts are to be completely disabled set IRQNum to 0.
1809
1810          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1811          invalid combination.
1812
1813          This function performs initialization of global interrupt modes,
1814          but it does not actually enable global interrupts.  To enable
1815          and disable global interrupts use functions sEnGlobalInt() and
1816          sDisGlobalInt().  Enabling of global interrupts is normally not
1817          done until all other initializations are complete.
1818
1819          Even if interrupts are globally enabled, they must also be
1820          individually enabled for each channel that is to generate
1821          interrupts.
1822
1823Warnings: No range checking on any of the parameters is done.
1824
1825          No context switches are allowed while executing this function.
1826
1827          After this function all AIOPs on the controller are disabled,
1828          they can be enabled with sEnAiop().
1829*/
1830static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1831			      ByteIO_t * AiopIOList, int AiopIOListSize,
1832			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1833			      int PeriodicOnly, int altChanRingIndicator,
1834			      int UPCIRingInd)
1835{
1836	int i;
1837	ByteIO_t io;
1838
1839	CtlP->AltChanRingIndicator = altChanRingIndicator;
1840	CtlP->UPCIRingInd = UPCIRingInd;
1841	CtlP->CtlNum = CtlNum;
1842	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
1843	CtlP->BusType = isPCI;	/* controller release 1 */
1844
1845	if (ConfigIO) {
1846		CtlP->isUPCI = 1;
1847		CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1848		CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1849		CtlP->AiopIntrBits = upci_aiop_intr_bits;
1850	} else {
1851		CtlP->isUPCI = 0;
1852		CtlP->PCIIO =
1853		    (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1854		CtlP->AiopIntrBits = aiop_intr_bits;
1855	}
1856
1857	sPCIControllerEOI(CtlP);	/* clear EOI if warm init */
1858	/* Init AIOPs */
1859	CtlP->NumAiop = 0;
1860	for (i = 0; i < AiopIOListSize; i++) {
1861		io = AiopIOList[i];
1862		CtlP->AiopIO[i] = (WordIO_t) io;
1863		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1864
1865		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
1866		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
1867			break;	/* done looking for AIOPs */
1868
1869		CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
1870		sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
1871		sOutB(io + _INDX_DATA, sClockPrescale);
1872		CtlP->NumAiop++;	/* bump count of AIOPs */
1873	}
1874
1875	if (CtlP->NumAiop == 0)
1876		return (-1);
1877	else
1878		return (CtlP->NumAiop);
1879}
1880
1881/*
1882 *  Called when a PCI card is found.  Retrieves and stores model information,
1883 *  init's aiopic and serial port hardware.
1884 *  Inputs:  i is the board number (0-n)
1885 */
1886static __init int register_PCI(int i, struct pci_dev *dev)
1887{
1888	int num_aiops, aiop, max_num_aiops, chan;
1889	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1890	CONTROLLER_t *ctlp;
1891
1892	int fast_clock = 0;
1893	int altChanRingIndicator = 0;
1894	int ports_per_aiop = 8;
1895	WordIO_t ConfigIO = 0;
1896	ByteIO_t UPCIRingInd = 0;
1897
1898	if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1899	    pci_enable_device(dev) || i >= NUM_BOARDS)
1900		return 0;
1901
1902	rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1903
1904	rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1905	rocketModel[i].loadrm2 = 0;
1906	rocketModel[i].startingPortNumber = nextLineNumber;
1907
1908	/*  Depending on the model, set up some config variables */
1909	switch (dev->device) {
1910	case PCI_DEVICE_ID_RP4QUAD:
1911		max_num_aiops = 1;
1912		ports_per_aiop = 4;
1913		rocketModel[i].model = MODEL_RP4QUAD;
1914		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1915		rocketModel[i].numPorts = 4;
1916		break;
1917	case PCI_DEVICE_ID_RP8OCTA:
1918		max_num_aiops = 1;
1919		rocketModel[i].model = MODEL_RP8OCTA;
1920		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1921		rocketModel[i].numPorts = 8;
1922		break;
1923	case PCI_DEVICE_ID_URP8OCTA:
1924		max_num_aiops = 1;
1925		rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1926		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1927		rocketModel[i].numPorts = 8;
1928		break;
1929	case PCI_DEVICE_ID_RP8INTF:
1930		max_num_aiops = 1;
1931		rocketModel[i].model = MODEL_RP8INTF;
1932		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1933		rocketModel[i].numPorts = 8;
1934		break;
1935	case PCI_DEVICE_ID_URP8INTF:
1936		max_num_aiops = 1;
1937		rocketModel[i].model = MODEL_UPCI_RP8INTF;
1938		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1939		rocketModel[i].numPorts = 8;
1940		break;
1941	case PCI_DEVICE_ID_RP8J:
1942		max_num_aiops = 1;
1943		rocketModel[i].model = MODEL_RP8J;
1944		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1945		rocketModel[i].numPorts = 8;
1946		break;
1947	case PCI_DEVICE_ID_RP4J:
1948		max_num_aiops = 1;
1949		ports_per_aiop = 4;
1950		rocketModel[i].model = MODEL_RP4J;
1951		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1952		rocketModel[i].numPorts = 4;
1953		break;
1954	case PCI_DEVICE_ID_RP8SNI:
1955		max_num_aiops = 1;
1956		rocketModel[i].model = MODEL_RP8SNI;
1957		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1958		rocketModel[i].numPorts = 8;
1959		break;
1960	case PCI_DEVICE_ID_RP16SNI:
1961		max_num_aiops = 2;
1962		rocketModel[i].model = MODEL_RP16SNI;
1963		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1964		rocketModel[i].numPorts = 16;
1965		break;
1966	case PCI_DEVICE_ID_RP16INTF:
1967		max_num_aiops = 2;
1968		rocketModel[i].model = MODEL_RP16INTF;
1969		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1970		rocketModel[i].numPorts = 16;
1971		break;
1972	case PCI_DEVICE_ID_URP16INTF:
1973		max_num_aiops = 2;
1974		rocketModel[i].model = MODEL_UPCI_RP16INTF;
1975		strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1976		rocketModel[i].numPorts = 16;
1977		break;
1978	case PCI_DEVICE_ID_CRP16INTF:
1979		max_num_aiops = 2;
1980		rocketModel[i].model = MODEL_CPCI_RP16INTF;
1981		strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1982		rocketModel[i].numPorts = 16;
1983		break;
1984	case PCI_DEVICE_ID_RP32INTF:
1985		max_num_aiops = 4;
1986		rocketModel[i].model = MODEL_RP32INTF;
1987		strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1988		rocketModel[i].numPorts = 32;
1989		break;
1990	case PCI_DEVICE_ID_URP32INTF:
1991		max_num_aiops = 4;
1992		rocketModel[i].model = MODEL_UPCI_RP32INTF;
1993		strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1994		rocketModel[i].numPorts = 32;
1995		break;
1996	case PCI_DEVICE_ID_RPP4:
1997		max_num_aiops = 1;
1998		ports_per_aiop = 4;
1999		altChanRingIndicator++;
2000		fast_clock++;
2001		rocketModel[i].model = MODEL_RPP4;
2002		strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2003		rocketModel[i].numPorts = 4;
2004		break;
2005	case PCI_DEVICE_ID_RPP8:
2006		max_num_aiops = 2;
2007		ports_per_aiop = 4;
2008		altChanRingIndicator++;
2009		fast_clock++;
2010		rocketModel[i].model = MODEL_RPP8;
2011		strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2012		rocketModel[i].numPorts = 8;
2013		break;
2014	case PCI_DEVICE_ID_RP2_232:
2015		max_num_aiops = 1;
2016		ports_per_aiop = 2;
2017		altChanRingIndicator++;
2018		fast_clock++;
2019		rocketModel[i].model = MODEL_RP2_232;
2020		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2021		rocketModel[i].numPorts = 2;
2022		break;
2023	case PCI_DEVICE_ID_RP2_422:
2024		max_num_aiops = 1;
2025		ports_per_aiop = 2;
2026		altChanRingIndicator++;
2027		fast_clock++;
2028		rocketModel[i].model = MODEL_RP2_422;
2029		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2030		rocketModel[i].numPorts = 2;
2031		break;
2032	case PCI_DEVICE_ID_RP6M:
2033
2034		max_num_aiops = 1;
2035		ports_per_aiop = 6;
2036
2037		/*  If revision is 1, the rocketmodem flash must be loaded.
2038		 *  If it is 2 it is a "socketed" version. */
2039		if (dev->revision == 1) {
2040			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2041			rocketModel[i].loadrm2 = 1;
2042		} else {
2043			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2044		}
2045
2046		rocketModel[i].model = MODEL_RP6M;
2047		strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2048		rocketModel[i].numPorts = 6;
2049		break;
2050	case PCI_DEVICE_ID_RP4M:
2051		max_num_aiops = 1;
2052		ports_per_aiop = 4;
2053		if (dev->revision == 1) {
2054			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2055			rocketModel[i].loadrm2 = 1;
2056		} else {
2057			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2058		}
2059
2060		rocketModel[i].model = MODEL_RP4M;
2061		strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2062		rocketModel[i].numPorts = 4;
2063		break;
2064	default:
2065		max_num_aiops = 0;
2066		break;
2067	}
2068
2069	/*
2070	 * Check for UPCI boards.
2071	 */
2072
2073	switch (dev->device) {
2074	case PCI_DEVICE_ID_URP32INTF:
2075	case PCI_DEVICE_ID_URP8INTF:
2076	case PCI_DEVICE_ID_URP16INTF:
2077	case PCI_DEVICE_ID_CRP16INTF:
2078	case PCI_DEVICE_ID_URP8OCTA:
2079		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2080		ConfigIO = pci_resource_start(dev, 1);
2081		if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2082			UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2083
2084			/*
2085			 * Check for octa or quad cable.
2086			 */
2087			if (!
2088			    (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2089			     PCI_GPIO_CTRL_8PORT)) {
2090				ports_per_aiop = 4;
2091				rocketModel[i].numPorts = 4;
2092			}
2093		}
2094		break;
2095	case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2096		max_num_aiops = 1;
2097		rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2098		strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2099		rocketModel[i].numPorts = 8;
2100		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2101		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2102		ConfigIO = pci_resource_start(dev, 1);
2103		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2104		break;
2105	case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2106		max_num_aiops = 1;
2107		rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2108		strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2109		rocketModel[i].numPorts = 4;
2110		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2111		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2112		ConfigIO = pci_resource_start(dev, 1);
2113		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2114		break;
2115	default:
2116		break;
2117	}
2118
2119	if (fast_clock) {
2120		sClockPrescale = 0x12;	/* mod 2 (divide by 3) */
2121		rp_baud_base[i] = 921600;
2122	} else {
2123		/*
2124		 * If support_low_speed is set, use the slow clock
2125		 * prescale, which supports 50 bps
2126		 */
2127		if (support_low_speed) {
2128			/* mod 9 (divide by 10) prescale */
2129			sClockPrescale = 0x19;
2130			rp_baud_base[i] = 230400;
2131		} else {
2132			/* mod 4 (divide by 5) prescale */
2133			sClockPrescale = 0x14;
2134			rp_baud_base[i] = 460800;
2135		}
2136	}
2137
2138	for (aiop = 0; aiop < max_num_aiops; aiop++)
2139		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2140	ctlp = sCtlNumToCtlPtr(i);
2141	num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2142	for (aiop = 0; aiop < max_num_aiops; aiop++)
2143		ctlp->AiopNumChan[aiop] = ports_per_aiop;
2144
2145	dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2146		"address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2147		i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2148		rocketModel[i].startingPortNumber,
2149		rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2150
2151	if (num_aiops <= 0) {
2152		rcktpt_io_addr[i] = 0;
2153		return (0);
2154	}
2155	is_PCI[i] = 1;
2156
2157	/*  Reset the AIOPIC, init the serial ports */
2158	for (aiop = 0; aiop < num_aiops; aiop++) {
2159		sResetAiopByNum(ctlp, aiop);
2160		for (chan = 0; chan < ports_per_aiop; chan++)
 
2161			init_r_port(i, aiop, chan, dev);
2162	}
2163
2164	/*  Rocket modems must be reset */
2165	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2166	    (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2167	    (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2168		for (chan = 0; chan < ports_per_aiop; chan++)
 
2169			sPCIModemReset(ctlp, chan, 1);
2170		msleep(500);
2171		for (chan = 0; chan < ports_per_aiop; chan++)
2172			sPCIModemReset(ctlp, chan, 0);
2173		msleep(500);
2174		rmSpeakerReset(ctlp, rocketModel[i].model);
2175	}
2176	return (1);
2177}
2178
2179/*
2180 *  Probes for PCI cards, inits them if found
2181 *  Input:   board_found = number of ISA boards already found, or the
2182 *           starting board number
2183 *  Returns: Number of PCI boards found
2184 */
2185static int __init init_PCI(int boards_found)
2186{
2187	struct pci_dev *dev = NULL;
2188	int count = 0;
2189
2190	/*  Work through the PCI device list, pulling out ours */
2191	while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2192		if (register_PCI(count + boards_found, dev))
2193			count++;
2194	}
2195	return (count);
2196}
2197
2198#endif				/* CONFIG_PCI */
2199
2200/*
2201 *  Probes for ISA cards
2202 *  Input:   i = the board number to look for
2203 *  Returns: 1 if board found, 0 else
2204 */
2205static int __init init_ISA(int i)
2206{
2207	int num_aiops, num_chan = 0, total_num_chan = 0;
2208	int aiop, chan;
2209	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2210	CONTROLLER_t *ctlp;
2211	char *type_string;
2212
2213	/*  If io_addr is zero, no board configured */
2214	if (rcktpt_io_addr[i] == 0)
2215		return (0);
2216
2217	/*  Reserve the IO region */
2218	if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2219		printk(KERN_ERR "Unable to reserve IO region for configured "
2220				"ISA RocketPort at address 0x%lx, board not "
2221				"installed...\n", rcktpt_io_addr[i]);
2222		rcktpt_io_addr[i] = 0;
2223		return (0);
2224	}
2225
2226	ctlp = sCtlNumToCtlPtr(i);
2227
2228	ctlp->boardType = rcktpt_type[i];
2229
2230	switch (rcktpt_type[i]) {
2231	case ROCKET_TYPE_PC104:
2232		type_string = "(PC104)";
2233		break;
2234	case ROCKET_TYPE_MODEM:
2235		type_string = "(RocketModem)";
2236		break;
2237	case ROCKET_TYPE_MODEMII:
2238		type_string = "(RocketModem II)";
2239		break;
2240	default:
2241		type_string = "";
2242		break;
2243	}
2244
2245	/*
2246	 * If support_low_speed is set, use the slow clock prescale,
2247	 * which supports 50 bps
2248	 */
2249	if (support_low_speed) {
2250		sClockPrescale = 0x19;	/* mod 9 (divide by 10) prescale */
2251		rp_baud_base[i] = 230400;
2252	} else {
2253		sClockPrescale = 0x14;	/* mod 4 (divide by 5) prescale */
2254		rp_baud_base[i] = 460800;
2255	}
2256
2257	for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2258		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2259
2260	num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2261
2262	if (ctlp->boardType == ROCKET_TYPE_PC104) {
2263		sEnAiop(ctlp, 2);	/* only one AIOPIC, but these */
2264		sEnAiop(ctlp, 3);	/* CSels used for other stuff */
2265	}
2266
2267	/*  If something went wrong initing the AIOP's release the ISA IO memory */
2268	if (num_aiops <= 0) {
2269		release_region(rcktpt_io_addr[i], 64);
2270		rcktpt_io_addr[i] = 0;
2271		return (0);
2272	}
2273  
2274	rocketModel[i].startingPortNumber = nextLineNumber;
2275
2276	for (aiop = 0; aiop < num_aiops; aiop++) {
2277		sResetAiopByNum(ctlp, aiop);
2278		sEnAiop(ctlp, aiop);
2279		num_chan = sGetAiopNumChan(ctlp, aiop);
2280		total_num_chan += num_chan;
2281		for (chan = 0; chan < num_chan; chan++)
2282			init_r_port(i, aiop, chan, NULL);
2283	}
2284	is_PCI[i] = 0;
2285	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2286		num_chan = sGetAiopNumChan(ctlp, 0);
2287		total_num_chan = num_chan;
2288		for (chan = 0; chan < num_chan; chan++)
2289			sModemReset(ctlp, chan, 1);
2290		msleep(500);
2291		for (chan = 0; chan < num_chan; chan++)
2292			sModemReset(ctlp, chan, 0);
2293		msleep(500);
2294		strcpy(rocketModel[i].modelString, "RocketModem ISA");
2295	} else {
2296		strcpy(rocketModel[i].modelString, "RocketPort ISA");
2297	}
2298	rocketModel[i].numPorts = total_num_chan;
2299	rocketModel[i].model = MODEL_ISA;
2300
2301	printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2302	       i, rcktpt_io_addr[i], num_aiops, type_string);
2303
2304	printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2305	       rocketModel[i].modelString,
2306	       rocketModel[i].startingPortNumber,
2307	       rocketModel[i].startingPortNumber +
2308	       rocketModel[i].numPorts - 1);
2309
2310	return (1);
2311}
2312
2313static const struct tty_operations rocket_ops = {
2314	.open = rp_open,
2315	.close = rp_close,
2316	.write = rp_write,
2317	.put_char = rp_put_char,
2318	.write_room = rp_write_room,
2319	.chars_in_buffer = rp_chars_in_buffer,
2320	.flush_buffer = rp_flush_buffer,
2321	.ioctl = rp_ioctl,
2322	.throttle = rp_throttle,
2323	.unthrottle = rp_unthrottle,
2324	.set_termios = rp_set_termios,
2325	.stop = rp_stop,
2326	.start = rp_start,
2327	.hangup = rp_hangup,
2328	.break_ctl = rp_break,
2329	.send_xchar = rp_send_xchar,
2330	.wait_until_sent = rp_wait_until_sent,
2331	.tiocmget = rp_tiocmget,
2332	.tiocmset = rp_tiocmset,
2333};
2334
2335static const struct tty_port_operations rocket_port_ops = {
2336	.carrier_raised = carrier_raised,
2337	.dtr_rts = dtr_rts,
2338};
2339
2340/*
2341 * The module "startup" routine; it's run when the module is loaded.
2342 */
2343static int __init rp_init(void)
2344{
2345	int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2346
2347	printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2348	       ROCKET_VERSION, ROCKET_DATE);
2349
2350	rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2351	if (!rocket_driver)
2352		goto err;
2353
2354	/*
2355	 *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2356	 *  zero, use the default controller IO address of board1 + 0x40.
2357	 */
2358	if (board1) {
2359		if (controller == 0)
2360			controller = board1 + 0x40;
2361	} else {
2362		controller = 0;  /*  Used as a flag, meaning no ISA boards */
2363	}
2364
2365	/*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2366	if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2367		printk(KERN_ERR "Unable to reserve IO region for first "
2368			"configured ISA RocketPort controller 0x%lx.  "
2369			"Driver exiting\n", controller);
2370		ret = -EBUSY;
2371		goto err_tty;
2372	}
2373
2374	/*  Store ISA variable retrieved from command line or .conf file. */
2375	rcktpt_io_addr[0] = board1;
2376	rcktpt_io_addr[1] = board2;
2377	rcktpt_io_addr[2] = board3;
2378	rcktpt_io_addr[3] = board4;
2379
2380	rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2381	rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2382	rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2383	rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2384	rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2385	rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2386	rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2387	rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2388
2389	/*
2390	 * Set up the tty driver structure and then register this
2391	 * driver with the tty layer.
2392	 */
2393
2394	rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2395	rocket_driver->name = "ttyR";
2396	rocket_driver->driver_name = "Comtrol RocketPort";
2397	rocket_driver->major = TTY_ROCKET_MAJOR;
2398	rocket_driver->minor_start = 0;
2399	rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2400	rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2401	rocket_driver->init_termios = tty_std_termios;
2402	rocket_driver->init_termios.c_cflag =
2403	    B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2404	rocket_driver->init_termios.c_ispeed = 9600;
2405	rocket_driver->init_termios.c_ospeed = 9600;
2406#ifdef ROCKET_SOFT_FLOW
2407	rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2408#endif
2409	tty_set_operations(rocket_driver, &rocket_ops);
2410
2411	ret = tty_register_driver(rocket_driver);
2412	if (ret < 0) {
2413		printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2414		goto err_controller;
2415	}
2416
2417#ifdef ROCKET_DEBUG_OPEN
2418	printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2419#endif
2420
2421	/*
2422	 *  OK, let's probe each of the controllers looking for boards.  Any boards found
2423         *  will be initialized here.
2424	 */
2425	isa_boards_found = 0;
2426	pci_boards_found = 0;
2427
2428	for (i = 0; i < NUM_BOARDS; i++) {
2429		if (init_ISA(i))
2430			isa_boards_found++;
2431	}
2432
2433#ifdef CONFIG_PCI
2434	if (isa_boards_found < NUM_BOARDS)
2435		pci_boards_found = init_PCI(isa_boards_found);
2436#endif
2437
2438	max_board = pci_boards_found + isa_boards_found;
2439
2440	if (max_board == 0) {
2441		printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2442		ret = -ENXIO;
2443		goto err_ttyu;
2444	}
2445
2446	return 0;
2447err_ttyu:
2448	tty_unregister_driver(rocket_driver);
2449err_controller:
2450	if (controller)
2451		release_region(controller, 4);
2452err_tty:
2453	put_tty_driver(rocket_driver);
2454err:
2455	return ret;
2456}
2457
2458
2459static void rp_cleanup_module(void)
2460{
2461	int retval;
2462	int i;
2463
2464	del_timer_sync(&rocket_timer);
2465
2466	retval = tty_unregister_driver(rocket_driver);
2467	if (retval)
2468		printk(KERN_ERR "Error %d while trying to unregister "
2469		       "rocketport driver\n", -retval);
2470
2471	for (i = 0; i < MAX_RP_PORTS; i++)
2472		if (rp_table[i]) {
2473			tty_unregister_device(rocket_driver, i);
2474			tty_port_destroy(&rp_table[i]->port);
2475			kfree(rp_table[i]);
2476		}
2477
2478	put_tty_driver(rocket_driver);
2479
2480	for (i = 0; i < NUM_BOARDS; i++) {
2481		if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2482			continue;
2483		release_region(rcktpt_io_addr[i], 64);
2484	}
2485	if (controller)
2486		release_region(controller, 4);
2487}
2488
2489/***************************************************************************
2490Function: sInitController
2491Purpose:  Initialization of controller global registers and controller
2492          structure.
2493Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2494                          IRQNum,Frequency,PeriodicOnly)
2495          CONTROLLER_T *CtlP; Ptr to controller structure
2496          int CtlNum; Controller number
2497          ByteIO_t MudbacIO; Mudbac base I/O address.
2498          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2499             This list must be in the order the AIOPs will be found on the
2500             controller.  Once an AIOP in the list is not found, it is
2501             assumed that there are no more AIOPs on the controller.
2502          int AiopIOListSize; Number of addresses in AiopIOList
2503          int IRQNum; Interrupt Request number.  Can be any of the following:
2504                         0: Disable global interrupts
2505                         3: IRQ 3
2506                         4: IRQ 4
2507                         5: IRQ 5
2508                         9: IRQ 9
2509                         10: IRQ 10
2510                         11: IRQ 11
2511                         12: IRQ 12
2512                         15: IRQ 15
2513          Byte_t Frequency: A flag identifying the frequency
2514                   of the periodic interrupt, can be any one of the following:
2515                      FREQ_DIS - periodic interrupt disabled
2516                      FREQ_137HZ - 137 Hertz
2517                      FREQ_69HZ - 69 Hertz
2518                      FREQ_34HZ - 34 Hertz
2519                      FREQ_17HZ - 17 Hertz
2520                      FREQ_9HZ - 9 Hertz
2521                      FREQ_4HZ - 4 Hertz
2522                   If IRQNum is set to 0 the Frequency parameter is
2523                   overidden, it is forced to a value of FREQ_DIS.
2524          int PeriodicOnly: 1 if all interrupts except the periodic
2525                               interrupt are to be blocked.
2526                            0 is both the periodic interrupt and
2527                               other channel interrupts are allowed.
2528                            If IRQNum is set to 0 the PeriodicOnly parameter is
2529                               overidden, it is forced to a value of 0.
2530Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2531               initialization failed.
2532
2533Comments:
2534          If periodic interrupts are to be disabled but AIOP interrupts
2535          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2536
2537          If interrupts are to be completely disabled set IRQNum to 0.
2538
2539          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2540          invalid combination.
2541
2542          This function performs initialization of global interrupt modes,
2543          but it does not actually enable global interrupts.  To enable
2544          and disable global interrupts use functions sEnGlobalInt() and
2545          sDisGlobalInt().  Enabling of global interrupts is normally not
2546          done until all other initializations are complete.
2547
2548          Even if interrupts are globally enabled, they must also be
2549          individually enabled for each channel that is to generate
2550          interrupts.
2551
2552Warnings: No range checking on any of the parameters is done.
2553
2554          No context switches are allowed while executing this function.
2555
2556          After this function all AIOPs on the controller are disabled,
2557          they can be enabled with sEnAiop().
2558*/
2559static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2560			   ByteIO_t * AiopIOList, int AiopIOListSize,
2561			   int IRQNum, Byte_t Frequency, int PeriodicOnly)
2562{
2563	int i;
2564	ByteIO_t io;
2565	int done;
2566
2567	CtlP->AiopIntrBits = aiop_intr_bits;
2568	CtlP->AltChanRingIndicator = 0;
2569	CtlP->CtlNum = CtlNum;
2570	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
2571	CtlP->BusType = isISA;
2572	CtlP->MBaseIO = MudbacIO;
2573	CtlP->MReg1IO = MudbacIO + 1;
2574	CtlP->MReg2IO = MudbacIO + 2;
2575	CtlP->MReg3IO = MudbacIO + 3;
2576#if 1
2577	CtlP->MReg2 = 0;	/* interrupt disable */
2578	CtlP->MReg3 = 0;	/* no periodic interrupts */
2579#else
2580	if (sIRQMap[IRQNum] == 0) {	/* interrupts globally disabled */
2581		CtlP->MReg2 = 0;	/* interrupt disable */
2582		CtlP->MReg3 = 0;	/* no periodic interrupts */
2583	} else {
2584		CtlP->MReg2 = sIRQMap[IRQNum];	/* set IRQ number */
2585		CtlP->MReg3 = Frequency;	/* set frequency */
2586		if (PeriodicOnly) {	/* periodic interrupt only */
2587			CtlP->MReg3 |= PERIODIC_ONLY;
2588		}
2589	}
2590#endif
2591	sOutB(CtlP->MReg2IO, CtlP->MReg2);
2592	sOutB(CtlP->MReg3IO, CtlP->MReg3);
2593	sControllerEOI(CtlP);	/* clear EOI if warm init */
2594	/* Init AIOPs */
2595	CtlP->NumAiop = 0;
2596	for (i = done = 0; i < AiopIOListSize; i++) {
2597		io = AiopIOList[i];
2598		CtlP->AiopIO[i] = (WordIO_t) io;
2599		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2600		sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03));	/* AIOP index */
2601		sOutB(MudbacIO, (Byte_t) (io >> 6));	/* set up AIOP I/O in MUDBAC */
2602		if (done)
2603			continue;
2604		sEnAiop(CtlP, i);	/* enable the AIOP */
2605		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
2606		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
2607			done = 1;	/* done looking for AIOPs */
2608		else {
2609			CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
2610			sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
2611			sOutB(io + _INDX_DATA, sClockPrescale);
2612			CtlP->NumAiop++;	/* bump count of AIOPs */
2613		}
2614		sDisAiop(CtlP, i);	/* disable AIOP */
2615	}
2616
2617	if (CtlP->NumAiop == 0)
2618		return (-1);
2619	else
2620		return (CtlP->NumAiop);
2621}
2622
2623/***************************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624Function: sReadAiopID
2625Purpose:  Read the AIOP idenfication number directly from an AIOP.
2626Call:     sReadAiopID(io)
2627          ByteIO_t io: AIOP base I/O address
2628Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2629                 is replace by an identifying number.
2630          Flag AIOPID_NULL if no valid AIOP is found
2631Warnings: No context switches are allowed while executing this function.
2632
2633*/
2634static int sReadAiopID(ByteIO_t io)
2635{
2636	Byte_t AiopID;		/* ID byte from AIOP */
2637
2638	sOutB(io + _CMD_REG, RESET_ALL);	/* reset AIOP */
2639	sOutB(io + _CMD_REG, 0x0);
2640	AiopID = sInW(io + _CHN_STAT0) & 0x07;
2641	if (AiopID == 0x06)
2642		return (1);
2643	else			/* AIOP does not exist */
2644		return (-1);
2645}
2646
2647/***************************************************************************
2648Function: sReadAiopNumChan
2649Purpose:  Read the number of channels available in an AIOP directly from
2650          an AIOP.
2651Call:     sReadAiopNumChan(io)
2652          WordIO_t io: AIOP base I/O address
2653Return:   int: The number of channels available
2654Comments: The number of channels is determined by write/reads from identical
2655          offsets within the SRAM address spaces for channels 0 and 4.
2656          If the channel 4 space is mirrored to channel 0 it is a 4 channel
2657          AIOP, otherwise it is an 8 channel.
2658Warnings: No context switches are allowed while executing this function.
2659*/
2660static int sReadAiopNumChan(WordIO_t io)
2661{
2662	Word_t x;
2663	static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2664
2665	/* write to chan 0 SRAM */
2666	out32((DWordIO_t) io + _INDX_ADDR, R);
2667	sOutW(io + _INDX_ADDR, 0);	/* read from SRAM, chan 0 */
2668	x = sInW(io + _INDX_DATA);
2669	sOutW(io + _INDX_ADDR, 0x4000);	/* read from SRAM, chan 4 */
2670	if (x != sInW(io + _INDX_DATA))	/* if different must be 8 chan */
2671		return (8);
2672	else
2673		return (4);
2674}
2675
2676/***************************************************************************
2677Function: sInitChan
2678Purpose:  Initialization of a channel and channel structure
2679Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2680          CONTROLLER_T *CtlP; Ptr to controller structure
2681          CHANNEL_T *ChP; Ptr to channel structure
2682          int AiopNum; AIOP number within controller
2683          int ChanNum; Channel number within AIOP
2684Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2685               number exceeds number of channels available in AIOP.
2686Comments: This function must be called before a channel can be used.
2687Warnings: No range checking on any of the parameters is done.
2688
2689          No context switches are allowed while executing this function.
2690*/
2691static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2692		     int ChanNum)
2693{
2694	int i;
2695	WordIO_t AiopIO;
2696	WordIO_t ChIOOff;
2697	Byte_t *ChR;
2698	Word_t ChOff;
2699	static Byte_t R[4];
2700	int brd9600;
2701
2702	if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2703		return 0;	/* exceeds num chans in AIOP */
2704
2705	/* Channel, AIOP, and controller identifiers */
2706	ChP->CtlP = CtlP;
2707	ChP->ChanID = CtlP->AiopID[AiopNum];
2708	ChP->AiopNum = AiopNum;
2709	ChP->ChanNum = ChanNum;
2710
2711	/* Global direct addresses */
2712	AiopIO = CtlP->AiopIO[AiopNum];
2713	ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2714	ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2715	ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2716	ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2717	ChP->IndexData = AiopIO + _INDX_DATA;
2718
2719	/* Channel direct addresses */
2720	ChIOOff = AiopIO + ChP->ChanNum * 2;
2721	ChP->TxRxData = ChIOOff + _TD0;
2722	ChP->ChanStat = ChIOOff + _CHN_STAT0;
2723	ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2724	ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2725
2726	/* Initialize the channel from the RData array */
2727	for (i = 0; i < RDATASIZE; i += 4) {
2728		R[0] = RData[i];
2729		R[1] = RData[i + 1] + 0x10 * ChanNum;
2730		R[2] = RData[i + 2];
2731		R[3] = RData[i + 3];
2732		out32(ChP->IndexAddr, R);
2733	}
2734
2735	ChR = ChP->R;
2736	for (i = 0; i < RREGDATASIZE; i += 4) {
2737		ChR[i] = RRegData[i];
2738		ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2739		ChR[i + 2] = RRegData[i + 2];
2740		ChR[i + 3] = RRegData[i + 3];
2741	}
2742
2743	/* Indexed registers */
2744	ChOff = (Word_t) ChanNum *0x1000;
2745
2746	if (sClockPrescale == 0x14)
2747		brd9600 = 47;
2748	else
2749		brd9600 = 23;
2750
2751	ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2752	ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2753	ChP->BaudDiv[2] = (Byte_t) brd9600;
2754	ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2755	out32(ChP->IndexAddr, ChP->BaudDiv);
2756
2757	ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2758	ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2759	ChP->TxControl[2] = 0;
2760	ChP->TxControl[3] = 0;
2761	out32(ChP->IndexAddr, ChP->TxControl);
2762
2763	ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2764	ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2765	ChP->RxControl[2] = 0;
2766	ChP->RxControl[3] = 0;
2767	out32(ChP->IndexAddr, ChP->RxControl);
2768
2769	ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2770	ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2771	ChP->TxEnables[2] = 0;
2772	ChP->TxEnables[3] = 0;
2773	out32(ChP->IndexAddr, ChP->TxEnables);
2774
2775	ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2776	ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2777	ChP->TxCompare[2] = 0;
2778	ChP->TxCompare[3] = 0;
2779	out32(ChP->IndexAddr, ChP->TxCompare);
2780
2781	ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2782	ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2783	ChP->TxReplace1[2] = 0;
2784	ChP->TxReplace1[3] = 0;
2785	out32(ChP->IndexAddr, ChP->TxReplace1);
2786
2787	ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2788	ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2789	ChP->TxReplace2[2] = 0;
2790	ChP->TxReplace2[3] = 0;
2791	out32(ChP->IndexAddr, ChP->TxReplace2);
2792
2793	ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2794	ChP->TxFIFO = ChOff + _TX_FIFO;
2795
2796	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);	/* apply reset Tx FIFO count */
2797	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Tx FIFO count */
2798	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2799	sOutW(ChP->IndexData, 0);
2800	ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2801	ChP->RxFIFO = ChOff + _RX_FIFO;
2802
2803	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);	/* apply reset Rx FIFO count */
2804	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Rx FIFO count */
2805	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2806	sOutW(ChP->IndexData, 0);
2807	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2808	sOutW(ChP->IndexData, 0);
2809	ChP->TxPrioCnt = ChOff + _TXP_CNT;
2810	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2811	sOutB(ChP->IndexData, 0);
2812	ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2813	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2814	sOutB(ChP->IndexData, 0);
2815	ChP->TxPrioBuf = ChOff + _TXP_BUF;
2816	sEnRxProcessor(ChP);	/* start the Rx processor */
2817
2818	return 1;
2819}
2820
2821/***************************************************************************
2822Function: sStopRxProcessor
2823Purpose:  Stop the receive processor from processing a channel.
2824Call:     sStopRxProcessor(ChP)
2825          CHANNEL_T *ChP; Ptr to channel structure
2826
2827Comments: The receive processor can be started again with sStartRxProcessor().
2828          This function causes the receive processor to skip over the
2829          stopped channel.  It does not stop it from processing other channels.
2830
2831Warnings: No context switches are allowed while executing this function.
2832
2833          Do not leave the receive processor stopped for more than one
2834          character time.
2835
2836          After calling this function a delay of 4 uS is required to ensure
2837          that the receive processor is no longer processing this channel.
2838*/
2839static void sStopRxProcessor(CHANNEL_T * ChP)
2840{
2841	Byte_t R[4];
2842
2843	R[0] = ChP->R[0];
2844	R[1] = ChP->R[1];
2845	R[2] = 0x0a;
2846	R[3] = ChP->R[3];
2847	out32(ChP->IndexAddr, R);
2848}
2849
2850/***************************************************************************
2851Function: sFlushRxFIFO
2852Purpose:  Flush the Rx FIFO
2853Call:     sFlushRxFIFO(ChP)
2854          CHANNEL_T *ChP; Ptr to channel structure
2855Return:   void
2856Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2857          while it is being flushed the receive processor is stopped
2858          and the transmitter is disabled.  After these operations a
2859          4 uS delay is done before clearing the pointers to allow
2860          the receive processor to stop.  These items are handled inside
2861          this function.
2862Warnings: No context switches are allowed while executing this function.
2863*/
2864static void sFlushRxFIFO(CHANNEL_T * ChP)
2865{
2866	int i;
2867	Byte_t Ch;		/* channel number within AIOP */
2868	int RxFIFOEnabled;	/* 1 if Rx FIFO enabled */
2869
2870	if (sGetRxCnt(ChP) == 0)	/* Rx FIFO empty */
2871		return;		/* don't need to flush */
2872
2873	RxFIFOEnabled = 0;
2874	if (ChP->R[0x32] == 0x08) {	/* Rx FIFO is enabled */
2875		RxFIFOEnabled = 1;
2876		sDisRxFIFO(ChP);	/* disable it */
2877		for (i = 0; i < 2000 / 200; i++)	/* delay 2 uS to allow proc to disable FIFO */
2878			sInB(ChP->IntChan);	/* depends on bus i/o timing */
2879	}
2880	sGetChanStatus(ChP);	/* clear any pending Rx errors in chan stat */
2881	Ch = (Byte_t) sGetChanNum(ChP);
2882	sOutB(ChP->Cmd, Ch | RESRXFCNT);	/* apply reset Rx FIFO count */
2883	sOutB(ChP->Cmd, Ch);	/* remove reset Rx FIFO count */
2884	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2885	sOutW(ChP->IndexData, 0);
2886	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2887	sOutW(ChP->IndexData, 0);
2888	if (RxFIFOEnabled)
2889		sEnRxFIFO(ChP);	/* enable Rx FIFO */
2890}
2891
2892/***************************************************************************
2893Function: sFlushTxFIFO
2894Purpose:  Flush the Tx FIFO
2895Call:     sFlushTxFIFO(ChP)
2896          CHANNEL_T *ChP; Ptr to channel structure
2897Return:   void
2898Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2899          while it is being flushed the receive processor is stopped
2900          and the transmitter is disabled.  After these operations a
2901          4 uS delay is done before clearing the pointers to allow
2902          the receive processor to stop.  These items are handled inside
2903          this function.
2904Warnings: No context switches are allowed while executing this function.
2905*/
2906static void sFlushTxFIFO(CHANNEL_T * ChP)
2907{
2908	int i;
2909	Byte_t Ch;		/* channel number within AIOP */
2910	int TxEnabled;		/* 1 if transmitter enabled */
2911
2912	if (sGetTxCnt(ChP) == 0)	/* Tx FIFO empty */
2913		return;		/* don't need to flush */
2914
2915	TxEnabled = 0;
2916	if (ChP->TxControl[3] & TX_ENABLE) {
2917		TxEnabled = 1;
2918		sDisTransmit(ChP);	/* disable transmitter */
2919	}
2920	sStopRxProcessor(ChP);	/* stop Rx processor */
2921	for (i = 0; i < 4000 / 200; i++)	/* delay 4 uS to allow proc to stop */
2922		sInB(ChP->IntChan);	/* depends on bus i/o timing */
2923	Ch = (Byte_t) sGetChanNum(ChP);
2924	sOutB(ChP->Cmd, Ch | RESTXFCNT);	/* apply reset Tx FIFO count */
2925	sOutB(ChP->Cmd, Ch);	/* remove reset Tx FIFO count */
2926	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2927	sOutW(ChP->IndexData, 0);
2928	if (TxEnabled)
2929		sEnTransmit(ChP);	/* enable transmitter */
2930	sStartRxProcessor(ChP);	/* restart Rx processor */
2931}
2932
2933/***************************************************************************
2934Function: sWriteTxPrioByte
2935Purpose:  Write a byte of priority transmit data to a channel
2936Call:     sWriteTxPrioByte(ChP,Data)
2937          CHANNEL_T *ChP; Ptr to channel structure
2938          Byte_t Data; The transmit data byte
2939
2940Return:   int: 1 if the bytes is successfully written, otherwise 0.
2941
2942Comments: The priority byte is transmitted before any data in the Tx FIFO.
2943
2944Warnings: No context switches are allowed while executing this function.
2945*/
2946static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2947{
2948	Byte_t DWBuf[4];	/* buffer for double word writes */
2949	Word_t *WordPtr;	/* must be far because Win SS != DS */
2950	register DWordIO_t IndexAddr;
2951
2952	if (sGetTxCnt(ChP) > 1) {	/* write it to Tx priority buffer */
2953		IndexAddr = ChP->IndexAddr;
2954		sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);	/* get priority buffer status */
2955		if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND)	/* priority buffer busy */
2956			return (0);	/* nothing sent */
2957
2958		WordPtr = (Word_t *) (&DWBuf[0]);
2959		*WordPtr = ChP->TxPrioBuf;	/* data byte address */
2960
2961		DWBuf[2] = Data;	/* data byte value */
2962		out32(IndexAddr, DWBuf);	/* write it out */
2963
2964		*WordPtr = ChP->TxPrioCnt;	/* Tx priority count address */
2965
2966		DWBuf[2] = PRI_PEND + 1;	/* indicate 1 byte pending */
2967		DWBuf[3] = 0;	/* priority buffer pointer */
2968		out32(IndexAddr, DWBuf);	/* write it out */
2969	} else {		/* write it to Tx FIFO */
2970
2971		sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2972	}
2973	return (1);		/* 1 byte sent */
2974}
2975
2976/***************************************************************************
2977Function: sEnInterrupts
2978Purpose:  Enable one or more interrupts for a channel
2979Call:     sEnInterrupts(ChP,Flags)
2980          CHANNEL_T *ChP; Ptr to channel structure
2981          Word_t Flags: Interrupt enable flags, can be any combination
2982             of the following flags:
2983                TXINT_EN:   Interrupt on Tx FIFO empty
2984                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
2985                            sSetRxTrigger())
2986                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
2987                MCINT_EN:   Interrupt on modem input change
2988                CHANINT_EN: Allow channel interrupt signal to the AIOP's
2989                            Interrupt Channel Register.
2990Return:   void
2991Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2992          enabled.  If an interrupt enable flag is not set in Flags, that
2993          interrupt will not be changed.  Interrupts can be disabled with
2994          function sDisInterrupts().
2995
2996          This function sets the appropriate bit for the channel in the AIOP's
2997          Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
2998          this channel's bit to be set in the AIOP's Interrupt Channel Register.
2999
3000          Interrupts must also be globally enabled before channel interrupts
3001          will be passed on to the host.  This is done with function
3002          sEnGlobalInt().
3003
3004          In some cases it may be desirable to disable interrupts globally but
3005          enable channel interrupts.  This would allow the global interrupt
3006          status register to be used to determine which AIOPs need service.
3007*/
3008static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3009{
3010	Byte_t Mask;		/* Interrupt Mask Register */
3011
3012	ChP->RxControl[2] |=
3013	    ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3014
3015	out32(ChP->IndexAddr, ChP->RxControl);
3016
3017	ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3018
3019	out32(ChP->IndexAddr, ChP->TxControl);
3020
3021	if (Flags & CHANINT_EN) {
3022		Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3023		sOutB(ChP->IntMask, Mask);
3024	}
3025}
3026
3027/***************************************************************************
3028Function: sDisInterrupts
3029Purpose:  Disable one or more interrupts for a channel
3030Call:     sDisInterrupts(ChP,Flags)
3031          CHANNEL_T *ChP; Ptr to channel structure
3032          Word_t Flags: Interrupt flags, can be any combination
3033             of the following flags:
3034                TXINT_EN:   Interrupt on Tx FIFO empty
3035                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3036                            sSetRxTrigger())
3037                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3038                MCINT_EN:   Interrupt on modem input change
3039                CHANINT_EN: Disable channel interrupt signal to the
3040                            AIOP's Interrupt Channel Register.
3041Return:   void
3042Comments: If an interrupt flag is set in Flags, that interrupt will be
3043          disabled.  If an interrupt flag is not set in Flags, that
3044          interrupt will not be changed.  Interrupts can be enabled with
3045          function sEnInterrupts().
3046
3047          This function clears the appropriate bit for the channel in the AIOP's
3048          Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3049          this channel's bit from being set in the AIOP's Interrupt Channel
3050          Register.
3051*/
3052static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3053{
3054	Byte_t Mask;		/* Interrupt Mask Register */
3055
3056	ChP->RxControl[2] &=
3057	    ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3058	out32(ChP->IndexAddr, ChP->RxControl);
3059	ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3060	out32(ChP->IndexAddr, ChP->TxControl);
3061
3062	if (Flags & CHANINT_EN) {
3063		Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3064		sOutB(ChP->IntMask, Mask);
3065	}
3066}
3067
3068static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3069{
3070	sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3071}
3072
3073/*
3074 *  Not an official SSCI function, but how to reset RocketModems.
3075 *  ISA bus version
3076 */
3077static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3078{
3079	ByteIO_t addr;
3080	Byte_t val;
3081
3082	addr = CtlP->AiopIO[0] + 0x400;
3083	val = sInB(CtlP->MReg3IO);
3084	/* if AIOP[1] is not enabled, enable it */
3085	if ((val & 2) == 0) {
3086		val = sInB(CtlP->MReg2IO);
3087		sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3088		sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3089	}
3090
3091	sEnAiop(CtlP, 1);
3092	if (!on)
3093		addr += 8;
3094	sOutB(addr + chan, 0);	/* apply or remove reset */
3095	sDisAiop(CtlP, 1);
3096}
3097
3098/*
3099 *  Not an official SSCI function, but how to reset RocketModems.
3100 *  PCI bus version
3101 */
3102static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3103{
3104	ByteIO_t addr;
3105
3106	addr = CtlP->AiopIO[0] + 0x40;	/* 2nd AIOP */
3107	if (!on)
3108		addr += 8;
3109	sOutB(addr + chan, 0);	/* apply or remove reset */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3110}
3111
3112/*  Returns the line number given the controller (board), aiop and channel number */
3113static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3114{
3115	return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3116}
3117
3118/*
3119 *  Stores the line number associated with a given controller (board), aiop
3120 *  and channel number.  
3121 *  Returns:  The line number assigned 
3122 */
3123static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3124{
3125	lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3126	return (nextLineNumber - 1);
3127}
v3.5.6
 
   1/*
   2 * RocketPort device driver for Linux
   3 *
   4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
   5 * 
   6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
   7 * 
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 of the
  11 * License, or (at your option) any later version.
  12 * 
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 * 
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23/*
  24 * Kernel Synchronization:
  25 *
  26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
  27 * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
  28 * are not used.
  29 *
  30 * Critical data: 
  31 * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
  32 *    serial port state information and the xmit_buf circular buffer.  Protected by 
  33 *    a per port spinlock.
  34 * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
  35 *    is data to be transmitted.  Protected by atomic bit operations.
  36 * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
  37 * 
  38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
  39 * simultaneous access to the same port by more than one process.
  40 */
  41
  42/****** Defines ******/
  43#define ROCKET_PARANOIA_CHECK
  44#define ROCKET_DISABLE_SIMUSAGE
  45
  46#undef ROCKET_SOFT_FLOW
  47#undef ROCKET_DEBUG_OPEN
  48#undef ROCKET_DEBUG_INTR
  49#undef ROCKET_DEBUG_WRITE
  50#undef ROCKET_DEBUG_FLOW
  51#undef ROCKET_DEBUG_THROTTLE
  52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
  53#undef ROCKET_DEBUG_RECEIVE
  54#undef ROCKET_DEBUG_HANGUP
  55#undef REV_PCI_ORDER
  56#undef ROCKET_DEBUG_IO
  57
  58#define POLL_PERIOD HZ/100	/*  Polling period .01 seconds (10ms) */
  59
  60/****** Kernel includes ******/
  61
  62#include <linux/module.h>
  63#include <linux/errno.h>
  64#include <linux/major.h>
  65#include <linux/kernel.h>
  66#include <linux/signal.h>
  67#include <linux/slab.h>
  68#include <linux/mm.h>
  69#include <linux/sched.h>
  70#include <linux/timer.h>
  71#include <linux/interrupt.h>
  72#include <linux/tty.h>
  73#include <linux/tty_driver.h>
  74#include <linux/tty_flip.h>
  75#include <linux/serial.h>
  76#include <linux/string.h>
  77#include <linux/fcntl.h>
  78#include <linux/ptrace.h>
  79#include <linux/mutex.h>
  80#include <linux/ioport.h>
  81#include <linux/delay.h>
  82#include <linux/completion.h>
  83#include <linux/wait.h>
  84#include <linux/pci.h>
  85#include <linux/uaccess.h>
  86#include <linux/atomic.h>
  87#include <asm/unaligned.h>
  88#include <linux/bitops.h>
  89#include <linux/spinlock.h>
  90#include <linux/init.h>
  91
  92/****** RocketPort includes ******/
  93
  94#include "rocket_int.h"
  95#include "rocket.h"
  96
  97#define ROCKET_VERSION "2.09"
  98#define ROCKET_DATE "12-June-2003"
  99
 100/****** RocketPort Local Variables ******/
 101
 102static void rp_do_poll(unsigned long dummy);
 103
 104static struct tty_driver *rocket_driver;
 105
 106static struct rocket_version driver_version = {	
 107	ROCKET_VERSION, ROCKET_DATE
 108};
 109
 110static struct r_port *rp_table[MAX_RP_PORTS];	       /*  The main repository of serial port state information. */
 111static unsigned int xmit_flags[NUM_BOARDS];	       /*  Bit significant, indicates port had data to transmit. */
 112						       /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
 113static atomic_t rp_num_ports_open;	               /*  Number of serial ports open                           */
 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
 115
 116static unsigned long board1;	                       /* ISA addresses, retrieved from rocketport.conf          */
 117static unsigned long board2;
 118static unsigned long board3;
 119static unsigned long board4;
 120static unsigned long controller;
 121static bool support_low_speed;
 122static unsigned long modem1;
 123static unsigned long modem2;
 124static unsigned long modem3;
 125static unsigned long modem4;
 126static unsigned long pc104_1[8];
 127static unsigned long pc104_2[8];
 128static unsigned long pc104_3[8];
 129static unsigned long pc104_4[8];
 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
 131
 132static int rp_baud_base[NUM_BOARDS];	               /*  Board config info (Someday make a per-board structure)  */
 133static unsigned long rcktpt_io_addr[NUM_BOARDS];
 134static int rcktpt_type[NUM_BOARDS];
 135static int is_PCI[NUM_BOARDS];
 136static rocketModel_t rocketModel[NUM_BOARDS];
 137static int max_board;
 138static const struct tty_port_operations rocket_port_ops;
 139
 140/*
 141 * The following arrays define the interrupt bits corresponding to each AIOP.
 142 * These bits are different between the ISA and regular PCI boards and the
 143 * Universal PCI boards.
 144 */
 145
 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
 147	AIOP_INTR_BIT_0,
 148	AIOP_INTR_BIT_1,
 149	AIOP_INTR_BIT_2,
 150	AIOP_INTR_BIT_3
 151};
 152
 
 153static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
 154	UPCI_AIOP_INTR_BIT_0,
 155	UPCI_AIOP_INTR_BIT_1,
 156	UPCI_AIOP_INTR_BIT_2,
 157	UPCI_AIOP_INTR_BIT_3
 158};
 
 159
 160static Byte_t RData[RDATASIZE] = {
 161	0x00, 0x09, 0xf6, 0x82,
 162	0x02, 0x09, 0x86, 0xfb,
 163	0x04, 0x09, 0x00, 0x0a,
 164	0x06, 0x09, 0x01, 0x0a,
 165	0x08, 0x09, 0x8a, 0x13,
 166	0x0a, 0x09, 0xc5, 0x11,
 167	0x0c, 0x09, 0x86, 0x85,
 168	0x0e, 0x09, 0x20, 0x0a,
 169	0x10, 0x09, 0x21, 0x0a,
 170	0x12, 0x09, 0x41, 0xff,
 171	0x14, 0x09, 0x82, 0x00,
 172	0x16, 0x09, 0x82, 0x7b,
 173	0x18, 0x09, 0x8a, 0x7d,
 174	0x1a, 0x09, 0x88, 0x81,
 175	0x1c, 0x09, 0x86, 0x7a,
 176	0x1e, 0x09, 0x84, 0x81,
 177	0x20, 0x09, 0x82, 0x7c,
 178	0x22, 0x09, 0x0a, 0x0a
 179};
 180
 181static Byte_t RRegData[RREGDATASIZE] = {
 182	0x00, 0x09, 0xf6, 0x82,	/* 00: Stop Rx processor */
 183	0x08, 0x09, 0x8a, 0x13,	/* 04: Tx software flow control */
 184	0x0a, 0x09, 0xc5, 0x11,	/* 08: XON char */
 185	0x0c, 0x09, 0x86, 0x85,	/* 0c: XANY */
 186	0x12, 0x09, 0x41, 0xff,	/* 10: Rx mask char */
 187	0x14, 0x09, 0x82, 0x00,	/* 14: Compare/Ignore #0 */
 188	0x16, 0x09, 0x82, 0x7b,	/* 18: Compare #1 */
 189	0x18, 0x09, 0x8a, 0x7d,	/* 1c: Compare #2 */
 190	0x1a, 0x09, 0x88, 0x81,	/* 20: Interrupt #1 */
 191	0x1c, 0x09, 0x86, 0x7a,	/* 24: Ignore/Replace #1 */
 192	0x1e, 0x09, 0x84, 0x81,	/* 28: Interrupt #2 */
 193	0x20, 0x09, 0x82, 0x7c,	/* 2c: Ignore/Replace #2 */
 194	0x22, 0x09, 0x0a, 0x0a	/* 30: Rx FIFO Enable */
 195};
 196
 197static CONTROLLER_T sController[CTL_SIZE] = {
 198	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 199	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 200	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 201	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 202	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 203	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 204	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 205	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
 206};
 207
 208static Byte_t sBitMapClrTbl[8] = {
 209	0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
 210};
 211
 212static Byte_t sBitMapSetTbl[8] = {
 213	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
 214};
 215
 216static int sClockPrescale = 0x14;
 217
 218/*
 219 *  Line number is the ttySIx number (x), the Minor number.  We 
 220 *  assign them sequentially, starting at zero.  The following 
 221 *  array keeps track of the line number assigned to a given board/aiop/channel.
 222 */
 223static unsigned char lineNumbers[MAX_RP_PORTS];
 224static unsigned long nextLineNumber;
 225
 226/*****  RocketPort Static Prototypes   *********/
 227static int __init init_ISA(int i);
 228static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
 229static void rp_flush_buffer(struct tty_struct *tty);
 230static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model);
 231static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
 232static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
 233static void rp_start(struct tty_struct *tty);
 234static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
 235		     int ChanNum);
 236static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
 237static void sFlushRxFIFO(CHANNEL_T * ChP);
 238static void sFlushTxFIFO(CHANNEL_T * ChP);
 239static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
 240static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
 241static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
 242static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
 243static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
 244static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
 245			      ByteIO_t * AiopIOList, int AiopIOListSize,
 246			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
 247			      int PeriodicOnly, int altChanRingIndicator,
 248			      int UPCIRingInd);
 249static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
 250			   ByteIO_t * AiopIOList, int AiopIOListSize,
 251			   int IRQNum, Byte_t Frequency, int PeriodicOnly);
 252static int sReadAiopID(ByteIO_t io);
 253static int sReadAiopNumChan(WordIO_t io);
 254
 255MODULE_AUTHOR("Theodore Ts'o");
 256MODULE_DESCRIPTION("Comtrol RocketPort driver");
 257module_param(board1, ulong, 0);
 258MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
 259module_param(board2, ulong, 0);
 260MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
 261module_param(board3, ulong, 0);
 262MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
 263module_param(board4, ulong, 0);
 264MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
 265module_param(controller, ulong, 0);
 266MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
 267module_param(support_low_speed, bool, 0);
 268MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
 269module_param(modem1, ulong, 0);
 270MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
 271module_param(modem2, ulong, 0);
 272MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
 273module_param(modem3, ulong, 0);
 274MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
 275module_param(modem4, ulong, 0);
 276MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
 277module_param_array(pc104_1, ulong, NULL, 0);
 278MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
 279module_param_array(pc104_2, ulong, NULL, 0);
 280MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
 281module_param_array(pc104_3, ulong, NULL, 0);
 282MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
 283module_param_array(pc104_4, ulong, NULL, 0);
 284MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
 285
 286static int rp_init(void);
 287static void rp_cleanup_module(void);
 288
 289module_init(rp_init);
 290module_exit(rp_cleanup_module);
 291
 292
 293MODULE_LICENSE("Dual BSD/GPL");
 294
 295/*************************************************************************/
 296/*                     Module code starts here                           */
 297
 298static inline int rocket_paranoia_check(struct r_port *info,
 299					const char *routine)
 300{
 301#ifdef ROCKET_PARANOIA_CHECK
 302	if (!info)
 303		return 1;
 304	if (info->magic != RPORT_MAGIC) {
 305		printk(KERN_WARNING "Warning: bad magic number for rocketport "
 306				"struct in %s\n", routine);
 307		return 1;
 308	}
 309#endif
 310	return 0;
 311}
 312
 313
 314/*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
 315 *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
 316 *  tty layer.  
 317 */
 318static void rp_do_receive(struct r_port *info,
 319			  struct tty_struct *tty,
 320			  CHANNEL_t * cp, unsigned int ChanStatus)
 321{
 322	unsigned int CharNStat;
 323	int ToRecv, wRecv, space;
 324	unsigned char *cbuf;
 325
 326	ToRecv = sGetRxCnt(cp);
 327#ifdef ROCKET_DEBUG_INTR
 328	printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
 329#endif
 330	if (ToRecv == 0)
 331		return;
 332
 333	/*
 334	 * if status indicates there are errored characters in the
 335	 * FIFO, then enter status mode (a word in FIFO holds
 336	 * character and status).
 337	 */
 338	if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
 339		if (!(ChanStatus & STATMODE)) {
 340#ifdef ROCKET_DEBUG_RECEIVE
 341			printk(KERN_INFO "Entering STATMODE...\n");
 342#endif
 343			ChanStatus |= STATMODE;
 344			sEnRxStatusMode(cp);
 345		}
 346	}
 347
 348	/* 
 349	 * if we previously entered status mode, then read down the
 350	 * FIFO one word at a time, pulling apart the character and
 351	 * the status.  Update error counters depending on status
 352	 */
 353	if (ChanStatus & STATMODE) {
 354#ifdef ROCKET_DEBUG_RECEIVE
 355		printk(KERN_INFO "Ignore %x, read %x...\n",
 356			info->ignore_status_mask, info->read_status_mask);
 357#endif
 358		while (ToRecv) {
 359			char flag;
 360
 361			CharNStat = sInW(sGetTxRxDataIO(cp));
 362#ifdef ROCKET_DEBUG_RECEIVE
 363			printk(KERN_INFO "%x...\n", CharNStat);
 364#endif
 365			if (CharNStat & STMBREAKH)
 366				CharNStat &= ~(STMFRAMEH | STMPARITYH);
 367			if (CharNStat & info->ignore_status_mask) {
 368				ToRecv--;
 369				continue;
 370			}
 371			CharNStat &= info->read_status_mask;
 372			if (CharNStat & STMBREAKH)
 373				flag = TTY_BREAK;
 374			else if (CharNStat & STMPARITYH)
 375				flag = TTY_PARITY;
 376			else if (CharNStat & STMFRAMEH)
 377				flag = TTY_FRAME;
 378			else if (CharNStat & STMRCVROVRH)
 379				flag = TTY_OVERRUN;
 380			else
 381				flag = TTY_NORMAL;
 382			tty_insert_flip_char(tty, CharNStat & 0xff, flag);
 
 383			ToRecv--;
 384		}
 385
 386		/*
 387		 * after we've emptied the FIFO in status mode, turn
 388		 * status mode back off
 389		 */
 390		if (sGetRxCnt(cp) == 0) {
 391#ifdef ROCKET_DEBUG_RECEIVE
 392			printk(KERN_INFO "Status mode off.\n");
 393#endif
 394			sDisRxStatusMode(cp);
 395		}
 396	} else {
 397		/*
 398		 * we aren't in status mode, so read down the FIFO two
 399		 * characters at time by doing repeated word IO
 400		 * transfer.
 401		 */
 402		space = tty_prepare_flip_string(tty, &cbuf, ToRecv);
 403		if (space < ToRecv) {
 404#ifdef ROCKET_DEBUG_RECEIVE
 405			printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
 406#endif
 407			if (space <= 0)
 408				return;
 409			ToRecv = space;
 410		}
 411		wRecv = ToRecv >> 1;
 412		if (wRecv)
 413			sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
 414		if (ToRecv & 1)
 415			cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
 416	}
 417	/*  Push the data up to the tty layer */
 418	tty_flip_buffer_push(tty);
 419}
 420
 421/*
 422 *  Serial port transmit data function.  Called from the timer polling loop as a 
 423 *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
 424 *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
 425 *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
 426 */
 427static void rp_do_transmit(struct r_port *info)
 428{
 429	int c;
 430	CHANNEL_t *cp = &info->channel;
 431	struct tty_struct *tty;
 432	unsigned long flags;
 433
 434#ifdef ROCKET_DEBUG_INTR
 435	printk(KERN_DEBUG "%s\n", __func__);
 436#endif
 437	if (!info)
 438		return;
 439	tty = tty_port_tty_get(&info->port);
 440
 441	if (tty == NULL) {
 442		printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
 443		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 444		return;
 445	}
 446
 447	spin_lock_irqsave(&info->slock, flags);
 448	info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
 449
 450	/*  Loop sending data to FIFO until done or FIFO full */
 451	while (1) {
 452		if (tty->stopped || tty->hw_stopped)
 453			break;
 454		c = min(info->xmit_fifo_room, info->xmit_cnt);
 455		c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
 456		if (c <= 0 || info->xmit_fifo_room <= 0)
 457			break;
 458		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
 459		if (c & 1)
 460			sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
 461		info->xmit_tail += c;
 462		info->xmit_tail &= XMIT_BUF_SIZE - 1;
 463		info->xmit_cnt -= c;
 464		info->xmit_fifo_room -= c;
 465#ifdef ROCKET_DEBUG_INTR
 466		printk(KERN_INFO "tx %d chars...\n", c);
 467#endif
 468	}
 469
 470	if (info->xmit_cnt == 0)
 471		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 472
 473	if (info->xmit_cnt < WAKEUP_CHARS) {
 474		tty_wakeup(tty);
 475#ifdef ROCKETPORT_HAVE_POLL_WAIT
 476		wake_up_interruptible(&tty->poll_wait);
 477#endif
 478	}
 479
 480	spin_unlock_irqrestore(&info->slock, flags);
 481	tty_kref_put(tty);
 482
 483#ifdef ROCKET_DEBUG_INTR
 484	printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
 485	       info->xmit_tail, info->xmit_fifo_room);
 486#endif
 487}
 488
 489/*
 490 *  Called when a serial port signals it has read data in it's RX FIFO.
 491 *  It checks what interrupts are pending and services them, including
 492 *  receiving serial data.  
 493 */
 494static void rp_handle_port(struct r_port *info)
 495{
 496	CHANNEL_t *cp;
 497	struct tty_struct *tty;
 498	unsigned int IntMask, ChanStatus;
 499
 500	if (!info)
 501		return;
 502
 503	if ((info->port.flags & ASYNC_INITIALIZED) == 0) {
 504		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 505				"info->flags & NOT_INIT\n");
 506		return;
 507	}
 508	tty = tty_port_tty_get(&info->port);
 509	if (!tty) {
 510		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 511				"tty==NULL\n");
 512		return;
 513	}
 514	cp = &info->channel;
 515
 516	IntMask = sGetChanIntID(cp) & info->intmask;
 517#ifdef ROCKET_DEBUG_INTR
 518	printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
 519#endif
 520	ChanStatus = sGetChanStatus(cp);
 521	if (IntMask & RXF_TRIG) {	/* Rx FIFO trigger level */
 522		rp_do_receive(info, tty, cp, ChanStatus);
 523	}
 524	if (IntMask & DELTA_CD) {	/* CD change  */
 525#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
 526		printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
 527		       (ChanStatus & CD_ACT) ? "on" : "off");
 528#endif
 529		if (!(ChanStatus & CD_ACT) && info->cd_status) {
 530#ifdef ROCKET_DEBUG_HANGUP
 531			printk(KERN_INFO "CD drop, calling hangup.\n");
 532#endif
 533			tty_hangup(tty);
 534		}
 535		info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
 536		wake_up_interruptible(&info->port.open_wait);
 537	}
 538#ifdef ROCKET_DEBUG_INTR
 539	if (IntMask & DELTA_CTS) {	/* CTS change */
 540		printk(KERN_INFO "CTS change...\n");
 541	}
 542	if (IntMask & DELTA_DSR) {	/* DSR change */
 543		printk(KERN_INFO "DSR change...\n");
 544	}
 545#endif
 546	tty_kref_put(tty);
 547}
 548
 549/*
 550 *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
 551 */
 552static void rp_do_poll(unsigned long dummy)
 553{
 554	CONTROLLER_t *ctlp;
 555	int ctrl, aiop, ch, line;
 556	unsigned int xmitmask, i;
 557	unsigned int CtlMask;
 558	unsigned char AiopMask;
 559	Word_t bit;
 560
 561	/*  Walk through all the boards (ctrl's) */
 562	for (ctrl = 0; ctrl < max_board; ctrl++) {
 563		if (rcktpt_io_addr[ctrl] <= 0)
 564			continue;
 565
 566		/*  Get a ptr to the board's control struct */
 567		ctlp = sCtlNumToCtlPtr(ctrl);
 568
 569		/*  Get the interrupt status from the board */
 570#ifdef CONFIG_PCI
 571		if (ctlp->BusType == isPCI)
 572			CtlMask = sPCIGetControllerIntStatus(ctlp);
 573		else
 574#endif
 575			CtlMask = sGetControllerIntStatus(ctlp);
 576
 577		/*  Check if any AIOP read bits are set */
 578		for (aiop = 0; CtlMask; aiop++) {
 579			bit = ctlp->AiopIntrBits[aiop];
 580			if (CtlMask & bit) {
 581				CtlMask &= ~bit;
 582				AiopMask = sGetAiopIntStatus(ctlp, aiop);
 583
 584				/*  Check if any port read bits are set */
 585				for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
 586					if (AiopMask & 1) {
 587
 588						/*  Get the line number (/dev/ttyRx number). */
 589						/*  Read the data from the port. */
 590						line = GetLineNumber(ctrl, aiop, ch);
 591						rp_handle_port(rp_table[line]);
 592					}
 593				}
 594			}
 595		}
 596
 597		xmitmask = xmit_flags[ctrl];
 598
 599		/*
 600		 *  xmit_flags contains bit-significant flags, indicating there is data
 601		 *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
 602		 *  1, ... (32 total possible).  The variable i has the aiop and ch 
 603		 *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
 604		 */
 605		if (xmitmask) {
 606			for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
 607				if (xmitmask & (1 << i)) {
 608					aiop = (i & 0x18) >> 3;
 609					ch = i & 0x07;
 610					line = GetLineNumber(ctrl, aiop, ch);
 611					rp_do_transmit(rp_table[line]);
 612				}
 613			}
 614		}
 615	}
 616
 617	/*
 618	 * Reset the timer so we get called at the next clock tick (10ms).
 619	 */
 620	if (atomic_read(&rp_num_ports_open))
 621		mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 622}
 623
 624/*
 625 *  Initializes the r_port structure for a port, as well as enabling the port on 
 626 *  the board.  
 627 *  Inputs:  board, aiop, chan numbers
 628 */
 629static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
 
 630{
 631	unsigned rocketMode;
 632	struct r_port *info;
 633	int line;
 634	CONTROLLER_T *ctlp;
 635
 636	/*  Get the next available line number */
 637	line = SetLineNumber(board, aiop, chan);
 638
 639	ctlp = sCtlNumToCtlPtr(board);
 640
 641	/*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
 642	info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
 643	if (!info) {
 644		printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
 645				line);
 646		return;
 647	}
 648
 649	info->magic = RPORT_MAGIC;
 650	info->line = line;
 651	info->ctlp = ctlp;
 652	info->board = board;
 653	info->aiop = aiop;
 654	info->chan = chan;
 655	tty_port_init(&info->port);
 656	info->port.ops = &rocket_port_ops;
 657	init_completion(&info->close_wait);
 658	info->flags &= ~ROCKET_MODE_MASK;
 659	switch (pc104[board][line]) {
 660	case 422:
 661		info->flags |= ROCKET_MODE_RS422;
 662		break;
 663	case 485:
 664		info->flags |= ROCKET_MODE_RS485;
 665		break;
 666	case 232:
 667	default:
 
 
 
 
 
 668		info->flags |= ROCKET_MODE_RS232;
 669		break;
 670	}
 671
 672	info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
 673	if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
 674		printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
 675				board, aiop, chan);
 
 676		kfree(info);
 677		return;
 678	}
 679
 680	rocketMode = info->flags & ROCKET_MODE_MASK;
 681
 682	if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
 683		sEnRTSToggle(&info->channel);
 684	else
 685		sDisRTSToggle(&info->channel);
 686
 687	if (ctlp->boardType == ROCKET_TYPE_PC104) {
 688		switch (rocketMode) {
 689		case ROCKET_MODE_RS485:
 690			sSetInterfaceMode(&info->channel, InterfaceModeRS485);
 691			break;
 692		case ROCKET_MODE_RS422:
 693			sSetInterfaceMode(&info->channel, InterfaceModeRS422);
 694			break;
 695		case ROCKET_MODE_RS232:
 696		default:
 697			if (info->flags & ROCKET_RTS_TOGGLE)
 698				sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
 699			else
 700				sSetInterfaceMode(&info->channel, InterfaceModeRS232);
 701			break;
 702		}
 703	}
 704	spin_lock_init(&info->slock);
 705	mutex_init(&info->write_mtx);
 706	rp_table[line] = info;
 707	tty_register_device(rocket_driver, line, pci_dev ? &pci_dev->dev :
 708			NULL);
 709}
 710
 711/*
 712 *  Configures a rocketport port according to its termio settings.  Called from 
 713 *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
 714 */
 715static void configure_r_port(struct tty_struct *tty, struct r_port *info,
 716			     struct ktermios *old_termios)
 717{
 718	unsigned cflag;
 719	unsigned long flags;
 720	unsigned rocketMode;
 721	int bits, baud, divisor;
 722	CHANNEL_t *cp;
 723	struct ktermios *t = tty->termios;
 724
 725	cp = &info->channel;
 726	cflag = t->c_cflag;
 727
 728	/* Byte size and parity */
 729	if ((cflag & CSIZE) == CS8) {
 730		sSetData8(cp);
 731		bits = 10;
 732	} else {
 733		sSetData7(cp);
 734		bits = 9;
 735	}
 736	if (cflag & CSTOPB) {
 737		sSetStop2(cp);
 738		bits++;
 739	} else {
 740		sSetStop1(cp);
 741	}
 742
 743	if (cflag & PARENB) {
 744		sEnParity(cp);
 745		bits++;
 746		if (cflag & PARODD) {
 747			sSetOddParity(cp);
 748		} else {
 749			sSetEvenParity(cp);
 750		}
 751	} else {
 752		sDisParity(cp);
 753	}
 754
 755	/* baud rate */
 756	baud = tty_get_baud_rate(tty);
 757	if (!baud)
 758		baud = 9600;
 759	divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
 760	if ((divisor >= 8192 || divisor < 0) && old_termios) {
 761		baud = tty_termios_baud_rate(old_termios);
 762		if (!baud)
 763			baud = 9600;
 764		divisor = (rp_baud_base[info->board] / baud) - 1;
 765	}
 766	if (divisor >= 8192 || divisor < 0) {
 767		baud = 9600;
 768		divisor = (rp_baud_base[info->board] / baud) - 1;
 769	}
 770	info->cps = baud / bits;
 771	sSetBaud(cp, divisor);
 772
 773	/* FIXME: Should really back compute a baud rate from the divisor */
 774	tty_encode_baud_rate(tty, baud, baud);
 775
 776	if (cflag & CRTSCTS) {
 777		info->intmask |= DELTA_CTS;
 778		sEnCTSFlowCtl(cp);
 779	} else {
 780		info->intmask &= ~DELTA_CTS;
 781		sDisCTSFlowCtl(cp);
 782	}
 783	if (cflag & CLOCAL) {
 784		info->intmask &= ~DELTA_CD;
 785	} else {
 786		spin_lock_irqsave(&info->slock, flags);
 787		if (sGetChanStatus(cp) & CD_ACT)
 788			info->cd_status = 1;
 789		else
 790			info->cd_status = 0;
 791		info->intmask |= DELTA_CD;
 792		spin_unlock_irqrestore(&info->slock, flags);
 793	}
 794
 795	/*
 796	 * Handle software flow control in the board
 797	 */
 798#ifdef ROCKET_SOFT_FLOW
 799	if (I_IXON(tty)) {
 800		sEnTxSoftFlowCtl(cp);
 801		if (I_IXANY(tty)) {
 802			sEnIXANY(cp);
 803		} else {
 804			sDisIXANY(cp);
 805		}
 806		sSetTxXONChar(cp, START_CHAR(tty));
 807		sSetTxXOFFChar(cp, STOP_CHAR(tty));
 808	} else {
 809		sDisTxSoftFlowCtl(cp);
 810		sDisIXANY(cp);
 811		sClrTxXOFF(cp);
 812	}
 813#endif
 814
 815	/*
 816	 * Set up ignore/read mask words
 817	 */
 818	info->read_status_mask = STMRCVROVRH | 0xFF;
 819	if (I_INPCK(tty))
 820		info->read_status_mask |= STMFRAMEH | STMPARITYH;
 821	if (I_BRKINT(tty) || I_PARMRK(tty))
 822		info->read_status_mask |= STMBREAKH;
 823
 824	/*
 825	 * Characters to ignore
 826	 */
 827	info->ignore_status_mask = 0;
 828	if (I_IGNPAR(tty))
 829		info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
 830	if (I_IGNBRK(tty)) {
 831		info->ignore_status_mask |= STMBREAKH;
 832		/*
 833		 * If we're ignoring parity and break indicators,
 834		 * ignore overruns too.  (For real raw support).
 835		 */
 836		if (I_IGNPAR(tty))
 837			info->ignore_status_mask |= STMRCVROVRH;
 838	}
 839
 840	rocketMode = info->flags & ROCKET_MODE_MASK;
 841
 842	if ((info->flags & ROCKET_RTS_TOGGLE)
 843	    || (rocketMode == ROCKET_MODE_RS485))
 844		sEnRTSToggle(cp);
 845	else
 846		sDisRTSToggle(cp);
 847
 848	sSetRTS(&info->channel);
 849
 850	if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
 851		switch (rocketMode) {
 852		case ROCKET_MODE_RS485:
 853			sSetInterfaceMode(cp, InterfaceModeRS485);
 854			break;
 855		case ROCKET_MODE_RS422:
 856			sSetInterfaceMode(cp, InterfaceModeRS422);
 857			break;
 858		case ROCKET_MODE_RS232:
 859		default:
 860			if (info->flags & ROCKET_RTS_TOGGLE)
 861				sSetInterfaceMode(cp, InterfaceModeRS232T);
 862			else
 863				sSetInterfaceMode(cp, InterfaceModeRS232);
 864			break;
 865		}
 866	}
 867}
 868
 869static int carrier_raised(struct tty_port *port)
 870{
 871	struct r_port *info = container_of(port, struct r_port, port);
 872	return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
 873}
 874
 875static void dtr_rts(struct tty_port *port, int on)
 876{
 877	struct r_port *info = container_of(port, struct r_port, port);
 878	if (on) {
 879		sSetDTR(&info->channel);
 880		sSetRTS(&info->channel);
 881	} else {
 882		sClrDTR(&info->channel);
 883		sClrRTS(&info->channel);
 884	}
 885}
 886
 887/*
 888 *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
 889 *  port's r_port struct.  Initializes the port hardware.  
 890 */
 891static int rp_open(struct tty_struct *tty, struct file *filp)
 892{
 893	struct r_port *info;
 894	struct tty_port *port;
 895	int retval;
 896	CHANNEL_t *cp;
 897	unsigned long page;
 898
 899	info = rp_table[tty->index];
 900	if (info == NULL)
 901		return -ENXIO;
 902	port = &info->port;
 903	
 904	page = __get_free_page(GFP_KERNEL);
 905	if (!page)
 906		return -ENOMEM;
 907
 908	if (port->flags & ASYNC_CLOSING) {
 909		retval = wait_for_completion_interruptible(&info->close_wait);
 910		free_page(page);
 911		if (retval)
 912			return retval;
 913		return ((port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
 914	}
 915
 916	/*
 917	 * We must not sleep from here until the port is marked fully in use.
 918	 */
 919	if (info->xmit_buf)
 920		free_page(page);
 921	else
 922		info->xmit_buf = (unsigned char *) page;
 923
 924	tty->driver_data = info;
 925	tty_port_tty_set(port, tty);
 926
 927	if (port->count++ == 0) {
 928		atomic_inc(&rp_num_ports_open);
 929
 930#ifdef ROCKET_DEBUG_OPEN
 931		printk(KERN_INFO "rocket mod++ = %d...\n",
 932				atomic_read(&rp_num_ports_open));
 933#endif
 934	}
 935#ifdef ROCKET_DEBUG_OPEN
 936	printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
 937#endif
 938
 939	/*
 940	 * Info->count is now 1; so it's safe to sleep now.
 941	 */
 942	if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) {
 943		cp = &info->channel;
 944		sSetRxTrigger(cp, TRIG_1);
 945		if (sGetChanStatus(cp) & CD_ACT)
 946			info->cd_status = 1;
 947		else
 948			info->cd_status = 0;
 949		sDisRxStatusMode(cp);
 950		sFlushRxFIFO(cp);
 951		sFlushTxFIFO(cp);
 952
 953		sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 954		sSetRxTrigger(cp, TRIG_1);
 955
 956		sGetChanStatus(cp);
 957		sDisRxStatusMode(cp);
 958		sClrTxXOFF(cp);
 959
 960		sDisCTSFlowCtl(cp);
 961		sDisTxSoftFlowCtl(cp);
 962
 963		sEnRxFIFO(cp);
 964		sEnTransmit(cp);
 965
 966		set_bit(ASYNCB_INITIALIZED, &info->port.flags);
 967
 968		/*
 969		 * Set up the tty->alt_speed kludge
 970		 */
 971		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
 972			tty->alt_speed = 57600;
 973		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
 974			tty->alt_speed = 115200;
 975		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
 976			tty->alt_speed = 230400;
 977		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
 978			tty->alt_speed = 460800;
 979
 980		configure_r_port(tty, info, NULL);
 981		if (tty->termios->c_cflag & CBAUD) {
 982			sSetDTR(cp);
 983			sSetRTS(cp);
 984		}
 985	}
 986	/*  Starts (or resets) the maint polling loop */
 987	mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 988
 989	retval = tty_port_block_til_ready(port, tty, filp);
 990	if (retval) {
 991#ifdef ROCKET_DEBUG_OPEN
 992		printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
 993#endif
 994		return retval;
 995	}
 996	return 0;
 997}
 998
 999/*
1000 *  Exception handler that closes a serial port. info->port.count is considered critical.
1001 */
1002static void rp_close(struct tty_struct *tty, struct file *filp)
1003{
1004	struct r_port *info = tty->driver_data;
1005	struct tty_port *port = &info->port;
1006	int timeout;
1007	CHANNEL_t *cp;
1008	
1009	if (rocket_paranoia_check(info, "rp_close"))
1010		return;
1011
1012#ifdef ROCKET_DEBUG_OPEN
1013	printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
1014#endif
1015
1016	if (tty_port_close_start(port, tty, filp) == 0)
1017		return;
1018
1019	mutex_lock(&port->mutex);
1020	cp = &info->channel;
1021	/*
1022	 * Before we drop DTR, make sure the UART transmitter
1023	 * has completely drained; this is especially
1024	 * important if there is a transmit FIFO!
1025	 */
1026	timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1027	if (timeout == 0)
1028		timeout = 1;
1029	rp_wait_until_sent(tty, timeout);
1030	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1031
1032	sDisTransmit(cp);
1033	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1034	sDisCTSFlowCtl(cp);
1035	sDisTxSoftFlowCtl(cp);
1036	sClrTxXOFF(cp);
1037	sFlushRxFIFO(cp);
1038	sFlushTxFIFO(cp);
1039	sClrRTS(cp);
1040	if (C_HUPCL(tty))
1041		sClrDTR(cp);
1042
1043	rp_flush_buffer(tty);
1044		
1045	tty_ldisc_flush(tty);
1046
1047	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1048
1049	/* We can't yet use tty_port_close_end as the buffer handling in this
1050	   driver is a bit different to the usual */
1051
1052	if (port->blocked_open) {
1053		if (port->close_delay) {
1054			msleep_interruptible(jiffies_to_msecs(port->close_delay));
1055		}
1056		wake_up_interruptible(&port->open_wait);
1057	} else {
1058		if (info->xmit_buf) {
1059			free_page((unsigned long) info->xmit_buf);
1060			info->xmit_buf = NULL;
1061		}
1062	}
1063	spin_lock_irq(&port->lock);
1064	info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_CLOSING | ASYNC_NORMAL_ACTIVE);
1065	tty->closing = 0;
1066	spin_unlock_irq(&port->lock);
 
 
1067	mutex_unlock(&port->mutex);
1068	tty_port_tty_set(port, NULL);
1069
1070	wake_up_interruptible(&port->close_wait);
1071	complete_all(&info->close_wait);
1072	atomic_dec(&rp_num_ports_open);
1073
1074#ifdef ROCKET_DEBUG_OPEN
1075	printk(KERN_INFO "rocket mod-- = %d...\n",
1076			atomic_read(&rp_num_ports_open));
1077	printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1078#endif
1079
1080}
1081
1082static void rp_set_termios(struct tty_struct *tty,
1083			   struct ktermios *old_termios)
1084{
1085	struct r_port *info = tty->driver_data;
1086	CHANNEL_t *cp;
1087	unsigned cflag;
1088
1089	if (rocket_paranoia_check(info, "rp_set_termios"))
1090		return;
1091
1092	cflag = tty->termios->c_cflag;
1093
1094	/*
1095	 * This driver doesn't support CS5 or CS6
1096	 */
1097	if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1098		tty->termios->c_cflag =
1099		    ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1100	/* Or CMSPAR */
1101	tty->termios->c_cflag &= ~CMSPAR;
1102
1103	configure_r_port(tty, info, old_termios);
1104
1105	cp = &info->channel;
1106
1107	/* Handle transition to B0 status */
1108	if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) {
1109		sClrDTR(cp);
1110		sClrRTS(cp);
1111	}
1112
1113	/* Handle transition away from B0 status */
1114	if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) {
1115		if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS))
1116			sSetRTS(cp);
1117		sSetDTR(cp);
1118	}
1119
1120	if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) {
1121		tty->hw_stopped = 0;
1122		rp_start(tty);
1123	}
1124}
1125
1126static int rp_break(struct tty_struct *tty, int break_state)
1127{
1128	struct r_port *info = tty->driver_data;
1129	unsigned long flags;
1130
1131	if (rocket_paranoia_check(info, "rp_break"))
1132		return -EINVAL;
1133
1134	spin_lock_irqsave(&info->slock, flags);
1135	if (break_state == -1)
1136		sSendBreak(&info->channel);
1137	else
1138		sClrBreak(&info->channel);
1139	spin_unlock_irqrestore(&info->slock, flags);
1140	return 0;
1141}
1142
1143/*
1144 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1145 * the UPCI boards was added, it was decided to make this a function because
1146 * the macro was getting too complicated. All cases except the first one
1147 * (UPCIRingInd) are taken directly from the original macro.
1148 */
1149static int sGetChanRI(CHANNEL_T * ChP)
1150{
1151	CONTROLLER_t *CtlP = ChP->CtlP;
1152	int ChanNum = ChP->ChanNum;
1153	int RingInd = 0;
1154
1155	if (CtlP->UPCIRingInd)
1156		RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1157	else if (CtlP->AltChanRingIndicator)
1158		RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1159	else if (CtlP->boardType == ROCKET_TYPE_PC104)
1160		RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1161
1162	return RingInd;
1163}
1164
1165/********************************************************************************************/
1166/*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1167
1168/*
1169 *  Returns the state of the serial modem control lines.  These next 2 functions 
1170 *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1171 */
1172static int rp_tiocmget(struct tty_struct *tty)
1173{
1174	struct r_port *info = tty->driver_data;
1175	unsigned int control, result, ChanStatus;
1176
1177	ChanStatus = sGetChanStatusLo(&info->channel);
1178	control = info->channel.TxControl[3];
1179	result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1180		((control & SET_DTR) ?  TIOCM_DTR : 0) |
1181		((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1182		(sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1183		((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1184		((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1185
1186	return result;
1187}
1188
1189/* 
1190 *  Sets the modem control lines
1191 */
1192static int rp_tiocmset(struct tty_struct *tty,
1193				unsigned int set, unsigned int clear)
1194{
1195	struct r_port *info = tty->driver_data;
1196
1197	if (set & TIOCM_RTS)
1198		info->channel.TxControl[3] |= SET_RTS;
1199	if (set & TIOCM_DTR)
1200		info->channel.TxControl[3] |= SET_DTR;
1201	if (clear & TIOCM_RTS)
1202		info->channel.TxControl[3] &= ~SET_RTS;
1203	if (clear & TIOCM_DTR)
1204		info->channel.TxControl[3] &= ~SET_DTR;
1205
1206	out32(info->channel.IndexAddr, info->channel.TxControl);
1207	return 0;
1208}
1209
1210static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1211{
1212	struct rocket_config tmp;
1213
1214	if (!retinfo)
1215		return -EFAULT;
1216	memset(&tmp, 0, sizeof (tmp));
1217	mutex_lock(&info->port.mutex);
1218	tmp.line = info->line;
1219	tmp.flags = info->flags;
1220	tmp.close_delay = info->port.close_delay;
1221	tmp.closing_wait = info->port.closing_wait;
1222	tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1223	mutex_unlock(&info->port.mutex);
1224
1225	if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1226		return -EFAULT;
1227	return 0;
1228}
1229
1230static int set_config(struct tty_struct *tty, struct r_port *info,
1231					struct rocket_config __user *new_info)
1232{
1233	struct rocket_config new_serial;
1234
1235	if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1236		return -EFAULT;
1237
1238	mutex_lock(&info->port.mutex);
1239	if (!capable(CAP_SYS_ADMIN))
1240	{
1241		if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1242			mutex_unlock(&info->port.mutex);
1243			return -EPERM;
1244		}
1245		info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1246		configure_r_port(tty, info, NULL);
1247		mutex_unlock(&info->port.mutex);
1248		return 0;
1249	}
1250
 
 
 
 
 
 
1251	info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1252	info->port.close_delay = new_serial.close_delay;
1253	info->port.closing_wait = new_serial.closing_wait;
1254
1255	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1256		tty->alt_speed = 57600;
1257	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1258		tty->alt_speed = 115200;
1259	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1260		tty->alt_speed = 230400;
1261	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1262		tty->alt_speed = 460800;
1263	mutex_unlock(&info->port.mutex);
1264
1265	configure_r_port(tty, info, NULL);
1266	return 0;
1267}
1268
1269/*
1270 *  This function fills in a rocket_ports struct with information
1271 *  about what boards/ports are in the system.  This info is passed
1272 *  to user space.  See setrocket.c where the info is used to create
1273 *  the /dev/ttyRx ports.
1274 */
1275static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1276{
1277	struct rocket_ports tmp;
1278	int board;
1279
1280	if (!retports)
1281		return -EFAULT;
1282	memset(&tmp, 0, sizeof (tmp));
1283	tmp.tty_major = rocket_driver->major;
 
1284
1285	for (board = 0; board < 4; board++) {
1286		tmp.rocketModel[board].model = rocketModel[board].model;
1287		strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1288		tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1289		tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1290		tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1291	}
1292	if (copy_to_user(retports, &tmp, sizeof (*retports)))
1293		return -EFAULT;
1294	return 0;
 
 
 
1295}
1296
1297static int reset_rm2(struct r_port *info, void __user *arg)
1298{
1299	int reset;
1300
1301	if (!capable(CAP_SYS_ADMIN))
1302		return -EPERM;
1303
1304	if (copy_from_user(&reset, arg, sizeof (int)))
1305		return -EFAULT;
1306	if (reset)
1307		reset = 1;
1308
1309	if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1310            rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1311		return -EINVAL;
1312
1313	if (info->ctlp->BusType == isISA)
1314		sModemReset(info->ctlp, info->chan, reset);
1315	else
1316		sPCIModemReset(info->ctlp, info->chan, reset);
1317
1318	return 0;
1319}
1320
1321static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1322{
1323	if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1324		return -EFAULT;
1325	return 0;
1326}
1327
1328/*  IOCTL call handler into the driver */
1329static int rp_ioctl(struct tty_struct *tty,
1330		    unsigned int cmd, unsigned long arg)
1331{
1332	struct r_port *info = tty->driver_data;
1333	void __user *argp = (void __user *)arg;
1334	int ret = 0;
1335
1336	if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1337		return -ENXIO;
1338
1339	switch (cmd) {
1340	case RCKP_GET_STRUCT:
1341		if (copy_to_user(argp, info, sizeof (struct r_port)))
1342			ret = -EFAULT;
1343		break;
1344	case RCKP_GET_CONFIG:
 
 
1345		ret = get_config(info, argp);
1346		break;
1347	case RCKP_SET_CONFIG:
 
 
1348		ret = set_config(tty, info, argp);
1349		break;
1350	case RCKP_GET_PORTS:
 
 
1351		ret = get_ports(info, argp);
1352		break;
1353	case RCKP_RESET_RM2:
 
 
1354		ret = reset_rm2(info, argp);
1355		break;
1356	case RCKP_GET_VERSION:
 
 
1357		ret = get_version(info, argp);
1358		break;
1359	default:
1360		ret = -ENOIOCTLCMD;
1361	}
1362	return ret;
1363}
1364
1365static void rp_send_xchar(struct tty_struct *tty, char ch)
1366{
1367	struct r_port *info = tty->driver_data;
1368	CHANNEL_t *cp;
1369
1370	if (rocket_paranoia_check(info, "rp_send_xchar"))
1371		return;
1372
1373	cp = &info->channel;
1374	if (sGetTxCnt(cp))
1375		sWriteTxPrioByte(cp, ch);
1376	else
1377		sWriteTxByte(sGetTxRxDataIO(cp), ch);
1378}
1379
1380static void rp_throttle(struct tty_struct *tty)
1381{
1382	struct r_port *info = tty->driver_data;
1383
1384#ifdef ROCKET_DEBUG_THROTTLE
1385	printk(KERN_INFO "throttle %s: %d....\n", tty->name,
1386	       tty->ldisc.chars_in_buffer(tty));
1387#endif
1388
1389	if (rocket_paranoia_check(info, "rp_throttle"))
1390		return;
1391
1392	if (I_IXOFF(tty))
1393		rp_send_xchar(tty, STOP_CHAR(tty));
1394
1395	sClrRTS(&info->channel);
1396}
1397
1398static void rp_unthrottle(struct tty_struct *tty)
1399{
1400	struct r_port *info = tty->driver_data;
1401#ifdef ROCKET_DEBUG_THROTTLE
1402	printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
1403	       tty->ldisc.chars_in_buffer(tty));
1404#endif
1405
1406	if (rocket_paranoia_check(info, "rp_throttle"))
1407		return;
1408
1409	if (I_IXOFF(tty))
1410		rp_send_xchar(tty, START_CHAR(tty));
1411
1412	sSetRTS(&info->channel);
1413}
1414
1415/*
1416 * ------------------------------------------------------------
1417 * rp_stop() and rp_start()
1418 *
1419 * This routines are called before setting or resetting tty->stopped.
1420 * They enable or disable transmitter interrupts, as necessary.
1421 * ------------------------------------------------------------
1422 */
1423static void rp_stop(struct tty_struct *tty)
1424{
1425	struct r_port *info = tty->driver_data;
1426
1427#ifdef ROCKET_DEBUG_FLOW
1428	printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1429	       info->xmit_cnt, info->xmit_fifo_room);
1430#endif
1431
1432	if (rocket_paranoia_check(info, "rp_stop"))
1433		return;
1434
1435	if (sGetTxCnt(&info->channel))
1436		sDisTransmit(&info->channel);
1437}
1438
1439static void rp_start(struct tty_struct *tty)
1440{
1441	struct r_port *info = tty->driver_data;
1442
1443#ifdef ROCKET_DEBUG_FLOW
1444	printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1445	       info->xmit_cnt, info->xmit_fifo_room);
1446#endif
1447
1448	if (rocket_paranoia_check(info, "rp_stop"))
1449		return;
1450
1451	sEnTransmit(&info->channel);
1452	set_bit((info->aiop * 8) + info->chan,
1453		(void *) &xmit_flags[info->board]);
1454}
1455
1456/*
1457 * rp_wait_until_sent() --- wait until the transmitter is empty
1458 */
1459static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1460{
1461	struct r_port *info = tty->driver_data;
1462	CHANNEL_t *cp;
1463	unsigned long orig_jiffies;
1464	int check_time, exit_time;
1465	int txcnt;
1466
1467	if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1468		return;
1469
1470	cp = &info->channel;
1471
1472	orig_jiffies = jiffies;
1473#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1474	printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout,
1475	       jiffies);
1476	printk(KERN_INFO "cps=%d...\n", info->cps);
1477#endif
1478	while (1) {
1479		txcnt = sGetTxCnt(cp);
1480		if (!txcnt) {
1481			if (sGetChanStatusLo(cp) & TXSHRMT)
1482				break;
1483			check_time = (HZ / info->cps) / 5;
1484		} else {
1485			check_time = HZ * txcnt / info->cps;
1486		}
1487		if (timeout) {
1488			exit_time = orig_jiffies + timeout - jiffies;
1489			if (exit_time <= 0)
1490				break;
1491			if (exit_time < check_time)
1492				check_time = exit_time;
1493		}
1494		if (check_time == 0)
1495			check_time = 1;
1496#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1497		printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1498				jiffies, check_time);
1499#endif
1500		msleep_interruptible(jiffies_to_msecs(check_time));
1501		if (signal_pending(current))
1502			break;
1503	}
1504	__set_current_state(TASK_RUNNING);
1505#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1506	printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1507#endif
1508}
1509
1510/*
1511 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1512 */
1513static void rp_hangup(struct tty_struct *tty)
1514{
1515	CHANNEL_t *cp;
1516	struct r_port *info = tty->driver_data;
1517	unsigned long flags;
1518
1519	if (rocket_paranoia_check(info, "rp_hangup"))
1520		return;
1521
1522#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1523	printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1524#endif
1525	rp_flush_buffer(tty);
1526	spin_lock_irqsave(&info->port.lock, flags);
1527	if (info->port.flags & ASYNC_CLOSING) {
1528		spin_unlock_irqrestore(&info->port.lock, flags);
1529		return;
1530	}
1531	if (info->port.count)
1532		atomic_dec(&rp_num_ports_open);
1533	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1534	spin_unlock_irqrestore(&info->port.lock, flags);
1535
1536	tty_port_hangup(&info->port);
1537
1538	cp = &info->channel;
1539	sDisRxFIFO(cp);
1540	sDisTransmit(cp);
1541	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1542	sDisCTSFlowCtl(cp);
1543	sDisTxSoftFlowCtl(cp);
1544	sClrTxXOFF(cp);
1545	clear_bit(ASYNCB_INITIALIZED, &info->port.flags);
1546
1547	wake_up_interruptible(&info->port.open_wait);
1548}
1549
1550/*
1551 *  Exception handler - write char routine.  The RocketPort driver uses a
1552 *  double-buffering strategy, with the twist that if the in-memory CPU
1553 *  buffer is empty, and there's space in the transmit FIFO, the
1554 *  writing routines will write directly to transmit FIFO.
1555 *  Write buffer and counters protected by spinlocks
1556 */
1557static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1558{
1559	struct r_port *info = tty->driver_data;
1560	CHANNEL_t *cp;
1561	unsigned long flags;
1562
1563	if (rocket_paranoia_check(info, "rp_put_char"))
1564		return 0;
1565
1566	/*
1567	 * Grab the port write mutex, locking out other processes that try to
1568	 * write to this port
1569	 */
1570	mutex_lock(&info->write_mtx);
1571
1572#ifdef ROCKET_DEBUG_WRITE
1573	printk(KERN_INFO "rp_put_char %c...\n", ch);
1574#endif
1575
1576	spin_lock_irqsave(&info->slock, flags);
1577	cp = &info->channel;
1578
1579	if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0)
1580		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1581
1582	if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1583		info->xmit_buf[info->xmit_head++] = ch;
1584		info->xmit_head &= XMIT_BUF_SIZE - 1;
1585		info->xmit_cnt++;
1586		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1587	} else {
1588		sOutB(sGetTxRxDataIO(cp), ch);
1589		info->xmit_fifo_room--;
1590	}
1591	spin_unlock_irqrestore(&info->slock, flags);
1592	mutex_unlock(&info->write_mtx);
1593	return 1;
1594}
1595
1596/*
1597 *  Exception handler - write routine, called when user app writes to the device.
1598 *  A per port write mutex is used to protect from another process writing to
1599 *  this port at the same time.  This other process could be running on the other CPU
1600 *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1601 *  Spinlocks protect the info xmit members.
1602 */
1603static int rp_write(struct tty_struct *tty,
1604		    const unsigned char *buf, int count)
1605{
1606	struct r_port *info = tty->driver_data;
1607	CHANNEL_t *cp;
1608	const unsigned char *b;
1609	int c, retval = 0;
1610	unsigned long flags;
1611
1612	if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1613		return 0;
1614
1615	if (mutex_lock_interruptible(&info->write_mtx))
1616		return -ERESTARTSYS;
1617
1618#ifdef ROCKET_DEBUG_WRITE
1619	printk(KERN_INFO "rp_write %d chars...\n", count);
1620#endif
1621	cp = &info->channel;
1622
1623	if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count)
1624		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1625
1626        /*
1627	 *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1628	 *  into FIFO.  Use the write queue for temp storage.
1629         */
1630	if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1631		c = min(count, info->xmit_fifo_room);
1632		b = buf;
1633
1634		/*  Push data into FIFO, 2 bytes at a time */
1635		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1636
1637		/*  If there is a byte remaining, write it */
1638		if (c & 1)
1639			sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1640
1641		retval += c;
1642		buf += c;
1643		count -= c;
1644
1645		spin_lock_irqsave(&info->slock, flags);
1646		info->xmit_fifo_room -= c;
1647		spin_unlock_irqrestore(&info->slock, flags);
1648	}
1649
1650	/* If count is zero, we wrote it all and are done */
1651	if (!count)
1652		goto end;
1653
1654	/*  Write remaining data into the port's xmit_buf */
1655	while (1) {
1656		/* Hung up ? */
1657		if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags))
1658			goto end;
1659		c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1660		c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1661		if (c <= 0)
1662			break;
1663
1664		b = buf;
1665		memcpy(info->xmit_buf + info->xmit_head, b, c);
1666
1667		spin_lock_irqsave(&info->slock, flags);
1668		info->xmit_head =
1669		    (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1670		info->xmit_cnt += c;
1671		spin_unlock_irqrestore(&info->slock, flags);
1672
1673		buf += c;
1674		count -= c;
1675		retval += c;
1676	}
1677
1678	if ((retval > 0) && !tty->stopped && !tty->hw_stopped)
1679		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1680	
1681end:
1682 	if (info->xmit_cnt < WAKEUP_CHARS) {
1683 		tty_wakeup(tty);
1684#ifdef ROCKETPORT_HAVE_POLL_WAIT
1685		wake_up_interruptible(&tty->poll_wait);
1686#endif
1687	}
1688	mutex_unlock(&info->write_mtx);
1689	return retval;
1690}
1691
1692/*
1693 * Return the number of characters that can be sent.  We estimate
1694 * only using the in-memory transmit buffer only, and ignore the
1695 * potential space in the transmit FIFO.
1696 */
1697static int rp_write_room(struct tty_struct *tty)
1698{
1699	struct r_port *info = tty->driver_data;
1700	int ret;
1701
1702	if (rocket_paranoia_check(info, "rp_write_room"))
1703		return 0;
1704
1705	ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1706	if (ret < 0)
1707		ret = 0;
1708#ifdef ROCKET_DEBUG_WRITE
1709	printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1710#endif
1711	return ret;
1712}
1713
1714/*
1715 * Return the number of characters in the buffer.  Again, this only
1716 * counts those characters in the in-memory transmit buffer.
1717 */
1718static int rp_chars_in_buffer(struct tty_struct *tty)
1719{
1720	struct r_port *info = tty->driver_data;
1721
1722	if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1723		return 0;
1724
1725#ifdef ROCKET_DEBUG_WRITE
1726	printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1727#endif
1728	return info->xmit_cnt;
1729}
1730
1731/*
1732 *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1733 *  r_port struct for the port.  Note that spinlock are used to protect info members,
1734 *  do not call this function if the spinlock is already held.
1735 */
1736static void rp_flush_buffer(struct tty_struct *tty)
1737{
1738	struct r_port *info = tty->driver_data;
1739	CHANNEL_t *cp;
1740	unsigned long flags;
1741
1742	if (rocket_paranoia_check(info, "rp_flush_buffer"))
1743		return;
1744
1745	spin_lock_irqsave(&info->slock, flags);
1746	info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1747	spin_unlock_irqrestore(&info->slock, flags);
1748
1749#ifdef ROCKETPORT_HAVE_POLL_WAIT
1750	wake_up_interruptible(&tty->poll_wait);
1751#endif
1752	tty_wakeup(tty);
1753
1754	cp = &info->channel;
1755	sFlushTxFIFO(cp);
1756}
1757
1758#ifdef CONFIG_PCI
1759
1760static struct pci_device_id __devinitdata __used rocket_pci_ids[] = {
1761	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_ANY_ID) },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1762	{ }
1763};
1764MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766/*
1767 *  Called when a PCI card is found.  Retrieves and stores model information,
1768 *  init's aiopic and serial port hardware.
1769 *  Inputs:  i is the board number (0-n)
1770 */
1771static __init int register_PCI(int i, struct pci_dev *dev)
1772{
1773	int num_aiops, aiop, max_num_aiops, num_chan, chan;
1774	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1775	CONTROLLER_t *ctlp;
1776
1777	int fast_clock = 0;
1778	int altChanRingIndicator = 0;
1779	int ports_per_aiop = 8;
1780	WordIO_t ConfigIO = 0;
1781	ByteIO_t UPCIRingInd = 0;
1782
1783	if (!dev || pci_enable_device(dev))
 
1784		return 0;
1785
1786	rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1787
1788	rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1789	rocketModel[i].loadrm2 = 0;
1790	rocketModel[i].startingPortNumber = nextLineNumber;
1791
1792	/*  Depending on the model, set up some config variables */
1793	switch (dev->device) {
1794	case PCI_DEVICE_ID_RP4QUAD:
1795		max_num_aiops = 1;
1796		ports_per_aiop = 4;
1797		rocketModel[i].model = MODEL_RP4QUAD;
1798		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1799		rocketModel[i].numPorts = 4;
1800		break;
1801	case PCI_DEVICE_ID_RP8OCTA:
1802		max_num_aiops = 1;
1803		rocketModel[i].model = MODEL_RP8OCTA;
1804		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1805		rocketModel[i].numPorts = 8;
1806		break;
1807	case PCI_DEVICE_ID_URP8OCTA:
1808		max_num_aiops = 1;
1809		rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1810		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1811		rocketModel[i].numPorts = 8;
1812		break;
1813	case PCI_DEVICE_ID_RP8INTF:
1814		max_num_aiops = 1;
1815		rocketModel[i].model = MODEL_RP8INTF;
1816		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1817		rocketModel[i].numPorts = 8;
1818		break;
1819	case PCI_DEVICE_ID_URP8INTF:
1820		max_num_aiops = 1;
1821		rocketModel[i].model = MODEL_UPCI_RP8INTF;
1822		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1823		rocketModel[i].numPorts = 8;
1824		break;
1825	case PCI_DEVICE_ID_RP8J:
1826		max_num_aiops = 1;
1827		rocketModel[i].model = MODEL_RP8J;
1828		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1829		rocketModel[i].numPorts = 8;
1830		break;
1831	case PCI_DEVICE_ID_RP4J:
1832		max_num_aiops = 1;
1833		ports_per_aiop = 4;
1834		rocketModel[i].model = MODEL_RP4J;
1835		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1836		rocketModel[i].numPorts = 4;
1837		break;
1838	case PCI_DEVICE_ID_RP8SNI:
1839		max_num_aiops = 1;
1840		rocketModel[i].model = MODEL_RP8SNI;
1841		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1842		rocketModel[i].numPorts = 8;
1843		break;
1844	case PCI_DEVICE_ID_RP16SNI:
1845		max_num_aiops = 2;
1846		rocketModel[i].model = MODEL_RP16SNI;
1847		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1848		rocketModel[i].numPorts = 16;
1849		break;
1850	case PCI_DEVICE_ID_RP16INTF:
1851		max_num_aiops = 2;
1852		rocketModel[i].model = MODEL_RP16INTF;
1853		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1854		rocketModel[i].numPorts = 16;
1855		break;
1856	case PCI_DEVICE_ID_URP16INTF:
1857		max_num_aiops = 2;
1858		rocketModel[i].model = MODEL_UPCI_RP16INTF;
1859		strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1860		rocketModel[i].numPorts = 16;
1861		break;
1862	case PCI_DEVICE_ID_CRP16INTF:
1863		max_num_aiops = 2;
1864		rocketModel[i].model = MODEL_CPCI_RP16INTF;
1865		strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1866		rocketModel[i].numPorts = 16;
1867		break;
1868	case PCI_DEVICE_ID_RP32INTF:
1869		max_num_aiops = 4;
1870		rocketModel[i].model = MODEL_RP32INTF;
1871		strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1872		rocketModel[i].numPorts = 32;
1873		break;
1874	case PCI_DEVICE_ID_URP32INTF:
1875		max_num_aiops = 4;
1876		rocketModel[i].model = MODEL_UPCI_RP32INTF;
1877		strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1878		rocketModel[i].numPorts = 32;
1879		break;
1880	case PCI_DEVICE_ID_RPP4:
1881		max_num_aiops = 1;
1882		ports_per_aiop = 4;
1883		altChanRingIndicator++;
1884		fast_clock++;
1885		rocketModel[i].model = MODEL_RPP4;
1886		strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
1887		rocketModel[i].numPorts = 4;
1888		break;
1889	case PCI_DEVICE_ID_RPP8:
1890		max_num_aiops = 2;
1891		ports_per_aiop = 4;
1892		altChanRingIndicator++;
1893		fast_clock++;
1894		rocketModel[i].model = MODEL_RPP8;
1895		strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
1896		rocketModel[i].numPorts = 8;
1897		break;
1898	case PCI_DEVICE_ID_RP2_232:
1899		max_num_aiops = 1;
1900		ports_per_aiop = 2;
1901		altChanRingIndicator++;
1902		fast_clock++;
1903		rocketModel[i].model = MODEL_RP2_232;
1904		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
1905		rocketModel[i].numPorts = 2;
1906		break;
1907	case PCI_DEVICE_ID_RP2_422:
1908		max_num_aiops = 1;
1909		ports_per_aiop = 2;
1910		altChanRingIndicator++;
1911		fast_clock++;
1912		rocketModel[i].model = MODEL_RP2_422;
1913		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
1914		rocketModel[i].numPorts = 2;
1915		break;
1916	case PCI_DEVICE_ID_RP6M:
1917
1918		max_num_aiops = 1;
1919		ports_per_aiop = 6;
1920
1921		/*  If revision is 1, the rocketmodem flash must be loaded.
1922		 *  If it is 2 it is a "socketed" version. */
1923		if (dev->revision == 1) {
1924			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1925			rocketModel[i].loadrm2 = 1;
1926		} else {
1927			rcktpt_type[i] = ROCKET_TYPE_MODEM;
1928		}
1929
1930		rocketModel[i].model = MODEL_RP6M;
1931		strcpy(rocketModel[i].modelString, "RocketModem 6 port");
1932		rocketModel[i].numPorts = 6;
1933		break;
1934	case PCI_DEVICE_ID_RP4M:
1935		max_num_aiops = 1;
1936		ports_per_aiop = 4;
1937		if (dev->revision == 1) {
1938			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1939			rocketModel[i].loadrm2 = 1;
1940		} else {
1941			rcktpt_type[i] = ROCKET_TYPE_MODEM;
1942		}
1943
1944		rocketModel[i].model = MODEL_RP4M;
1945		strcpy(rocketModel[i].modelString, "RocketModem 4 port");
1946		rocketModel[i].numPorts = 4;
1947		break;
1948	default:
1949		max_num_aiops = 0;
1950		break;
1951	}
1952
1953	/*
1954	 * Check for UPCI boards.
1955	 */
1956
1957	switch (dev->device) {
1958	case PCI_DEVICE_ID_URP32INTF:
1959	case PCI_DEVICE_ID_URP8INTF:
1960	case PCI_DEVICE_ID_URP16INTF:
1961	case PCI_DEVICE_ID_CRP16INTF:
1962	case PCI_DEVICE_ID_URP8OCTA:
1963		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1964		ConfigIO = pci_resource_start(dev, 1);
1965		if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
1966			UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1967
1968			/*
1969			 * Check for octa or quad cable.
1970			 */
1971			if (!
1972			    (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
1973			     PCI_GPIO_CTRL_8PORT)) {
1974				ports_per_aiop = 4;
1975				rocketModel[i].numPorts = 4;
1976			}
1977		}
1978		break;
1979	case PCI_DEVICE_ID_UPCI_RM3_8PORT:
1980		max_num_aiops = 1;
1981		rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
1982		strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
1983		rocketModel[i].numPorts = 8;
1984		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1985		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1986		ConfigIO = pci_resource_start(dev, 1);
1987		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
1988		break;
1989	case PCI_DEVICE_ID_UPCI_RM3_4PORT:
1990		max_num_aiops = 1;
1991		rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
1992		strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
1993		rocketModel[i].numPorts = 4;
1994		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1995		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1996		ConfigIO = pci_resource_start(dev, 1);
1997		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
1998		break;
1999	default:
2000		break;
2001	}
2002
2003	if (fast_clock) {
2004		sClockPrescale = 0x12;	/* mod 2 (divide by 3) */
2005		rp_baud_base[i] = 921600;
2006	} else {
2007		/*
2008		 * If support_low_speed is set, use the slow clock
2009		 * prescale, which supports 50 bps
2010		 */
2011		if (support_low_speed) {
2012			/* mod 9 (divide by 10) prescale */
2013			sClockPrescale = 0x19;
2014			rp_baud_base[i] = 230400;
2015		} else {
2016			/* mod 4 (divide by 5) prescale */
2017			sClockPrescale = 0x14;
2018			rp_baud_base[i] = 460800;
2019		}
2020	}
2021
2022	for (aiop = 0; aiop < max_num_aiops; aiop++)
2023		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2024	ctlp = sCtlNumToCtlPtr(i);
2025	num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2026	for (aiop = 0; aiop < max_num_aiops; aiop++)
2027		ctlp->AiopNumChan[aiop] = ports_per_aiop;
2028
2029	dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2030		"address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2031		i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2032		rocketModel[i].startingPortNumber,
2033		rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2034
2035	if (num_aiops <= 0) {
2036		rcktpt_io_addr[i] = 0;
2037		return (0);
2038	}
2039	is_PCI[i] = 1;
2040
2041	/*  Reset the AIOPIC, init the serial ports */
2042	for (aiop = 0; aiop < num_aiops; aiop++) {
2043		sResetAiopByNum(ctlp, aiop);
2044		num_chan = ports_per_aiop;
2045		for (chan = 0; chan < num_chan; chan++)
2046			init_r_port(i, aiop, chan, dev);
2047	}
2048
2049	/*  Rocket modems must be reset */
2050	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2051	    (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2052	    (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2053		num_chan = ports_per_aiop;
2054		for (chan = 0; chan < num_chan; chan++)
2055			sPCIModemReset(ctlp, chan, 1);
2056		msleep(500);
2057		for (chan = 0; chan < num_chan; chan++)
2058			sPCIModemReset(ctlp, chan, 0);
2059		msleep(500);
2060		rmSpeakerReset(ctlp, rocketModel[i].model);
2061	}
2062	return (1);
2063}
2064
2065/*
2066 *  Probes for PCI cards, inits them if found
2067 *  Input:   board_found = number of ISA boards already found, or the
2068 *           starting board number
2069 *  Returns: Number of PCI boards found
2070 */
2071static int __init init_PCI(int boards_found)
2072{
2073	struct pci_dev *dev = NULL;
2074	int count = 0;
2075
2076	/*  Work through the PCI device list, pulling out ours */
2077	while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2078		if (register_PCI(count + boards_found, dev))
2079			count++;
2080	}
2081	return (count);
2082}
2083
2084#endif				/* CONFIG_PCI */
2085
2086/*
2087 *  Probes for ISA cards
2088 *  Input:   i = the board number to look for
2089 *  Returns: 1 if board found, 0 else
2090 */
2091static int __init init_ISA(int i)
2092{
2093	int num_aiops, num_chan = 0, total_num_chan = 0;
2094	int aiop, chan;
2095	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2096	CONTROLLER_t *ctlp;
2097	char *type_string;
2098
2099	/*  If io_addr is zero, no board configured */
2100	if (rcktpt_io_addr[i] == 0)
2101		return (0);
2102
2103	/*  Reserve the IO region */
2104	if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2105		printk(KERN_ERR "Unable to reserve IO region for configured "
2106				"ISA RocketPort at address 0x%lx, board not "
2107				"installed...\n", rcktpt_io_addr[i]);
2108		rcktpt_io_addr[i] = 0;
2109		return (0);
2110	}
2111
2112	ctlp = sCtlNumToCtlPtr(i);
2113
2114	ctlp->boardType = rcktpt_type[i];
2115
2116	switch (rcktpt_type[i]) {
2117	case ROCKET_TYPE_PC104:
2118		type_string = "(PC104)";
2119		break;
2120	case ROCKET_TYPE_MODEM:
2121		type_string = "(RocketModem)";
2122		break;
2123	case ROCKET_TYPE_MODEMII:
2124		type_string = "(RocketModem II)";
2125		break;
2126	default:
2127		type_string = "";
2128		break;
2129	}
2130
2131	/*
2132	 * If support_low_speed is set, use the slow clock prescale,
2133	 * which supports 50 bps
2134	 */
2135	if (support_low_speed) {
2136		sClockPrescale = 0x19;	/* mod 9 (divide by 10) prescale */
2137		rp_baud_base[i] = 230400;
2138	} else {
2139		sClockPrescale = 0x14;	/* mod 4 (divide by 5) prescale */
2140		rp_baud_base[i] = 460800;
2141	}
2142
2143	for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2144		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2145
2146	num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2147
2148	if (ctlp->boardType == ROCKET_TYPE_PC104) {
2149		sEnAiop(ctlp, 2);	/* only one AIOPIC, but these */
2150		sEnAiop(ctlp, 3);	/* CSels used for other stuff */
2151	}
2152
2153	/*  If something went wrong initing the AIOP's release the ISA IO memory */
2154	if (num_aiops <= 0) {
2155		release_region(rcktpt_io_addr[i], 64);
2156		rcktpt_io_addr[i] = 0;
2157		return (0);
2158	}
2159  
2160	rocketModel[i].startingPortNumber = nextLineNumber;
2161
2162	for (aiop = 0; aiop < num_aiops; aiop++) {
2163		sResetAiopByNum(ctlp, aiop);
2164		sEnAiop(ctlp, aiop);
2165		num_chan = sGetAiopNumChan(ctlp, aiop);
2166		total_num_chan += num_chan;
2167		for (chan = 0; chan < num_chan; chan++)
2168			init_r_port(i, aiop, chan, NULL);
2169	}
2170	is_PCI[i] = 0;
2171	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2172		num_chan = sGetAiopNumChan(ctlp, 0);
2173		total_num_chan = num_chan;
2174		for (chan = 0; chan < num_chan; chan++)
2175			sModemReset(ctlp, chan, 1);
2176		msleep(500);
2177		for (chan = 0; chan < num_chan; chan++)
2178			sModemReset(ctlp, chan, 0);
2179		msleep(500);
2180		strcpy(rocketModel[i].modelString, "RocketModem ISA");
2181	} else {
2182		strcpy(rocketModel[i].modelString, "RocketPort ISA");
2183	}
2184	rocketModel[i].numPorts = total_num_chan;
2185	rocketModel[i].model = MODEL_ISA;
2186
2187	printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2188	       i, rcktpt_io_addr[i], num_aiops, type_string);
2189
2190	printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2191	       rocketModel[i].modelString,
2192	       rocketModel[i].startingPortNumber,
2193	       rocketModel[i].startingPortNumber +
2194	       rocketModel[i].numPorts - 1);
2195
2196	return (1);
2197}
2198
2199static const struct tty_operations rocket_ops = {
2200	.open = rp_open,
2201	.close = rp_close,
2202	.write = rp_write,
2203	.put_char = rp_put_char,
2204	.write_room = rp_write_room,
2205	.chars_in_buffer = rp_chars_in_buffer,
2206	.flush_buffer = rp_flush_buffer,
2207	.ioctl = rp_ioctl,
2208	.throttle = rp_throttle,
2209	.unthrottle = rp_unthrottle,
2210	.set_termios = rp_set_termios,
2211	.stop = rp_stop,
2212	.start = rp_start,
2213	.hangup = rp_hangup,
2214	.break_ctl = rp_break,
2215	.send_xchar = rp_send_xchar,
2216	.wait_until_sent = rp_wait_until_sent,
2217	.tiocmget = rp_tiocmget,
2218	.tiocmset = rp_tiocmset,
2219};
2220
2221static const struct tty_port_operations rocket_port_ops = {
2222	.carrier_raised = carrier_raised,
2223	.dtr_rts = dtr_rts,
2224};
2225
2226/*
2227 * The module "startup" routine; it's run when the module is loaded.
2228 */
2229static int __init rp_init(void)
2230{
2231	int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2232
2233	printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2234	       ROCKET_VERSION, ROCKET_DATE);
2235
2236	rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2237	if (!rocket_driver)
2238		goto err;
2239
2240	/*
2241	 *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2242	 *  zero, use the default controller IO address of board1 + 0x40.
2243	 */
2244	if (board1) {
2245		if (controller == 0)
2246			controller = board1 + 0x40;
2247	} else {
2248		controller = 0;  /*  Used as a flag, meaning no ISA boards */
2249	}
2250
2251	/*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2252	if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2253		printk(KERN_ERR "Unable to reserve IO region for first "
2254			"configured ISA RocketPort controller 0x%lx.  "
2255			"Driver exiting\n", controller);
2256		ret = -EBUSY;
2257		goto err_tty;
2258	}
2259
2260	/*  Store ISA variable retrieved from command line or .conf file. */
2261	rcktpt_io_addr[0] = board1;
2262	rcktpt_io_addr[1] = board2;
2263	rcktpt_io_addr[2] = board3;
2264	rcktpt_io_addr[3] = board4;
2265
2266	rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2267	rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2268	rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2269	rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2270	rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2271	rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2272	rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2273	rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2274
2275	/*
2276	 * Set up the tty driver structure and then register this
2277	 * driver with the tty layer.
2278	 */
2279
2280	rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2281	rocket_driver->name = "ttyR";
2282	rocket_driver->driver_name = "Comtrol RocketPort";
2283	rocket_driver->major = TTY_ROCKET_MAJOR;
2284	rocket_driver->minor_start = 0;
2285	rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2286	rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2287	rocket_driver->init_termios = tty_std_termios;
2288	rocket_driver->init_termios.c_cflag =
2289	    B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2290	rocket_driver->init_termios.c_ispeed = 9600;
2291	rocket_driver->init_termios.c_ospeed = 9600;
2292#ifdef ROCKET_SOFT_FLOW
2293	rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2294#endif
2295	tty_set_operations(rocket_driver, &rocket_ops);
2296
2297	ret = tty_register_driver(rocket_driver);
2298	if (ret < 0) {
2299		printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2300		goto err_controller;
2301	}
2302
2303#ifdef ROCKET_DEBUG_OPEN
2304	printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2305#endif
2306
2307	/*
2308	 *  OK, let's probe each of the controllers looking for boards.  Any boards found
2309         *  will be initialized here.
2310	 */
2311	isa_boards_found = 0;
2312	pci_boards_found = 0;
2313
2314	for (i = 0; i < NUM_BOARDS; i++) {
2315		if (init_ISA(i))
2316			isa_boards_found++;
2317	}
2318
2319#ifdef CONFIG_PCI
2320	if (isa_boards_found < NUM_BOARDS)
2321		pci_boards_found = init_PCI(isa_boards_found);
2322#endif
2323
2324	max_board = pci_boards_found + isa_boards_found;
2325
2326	if (max_board == 0) {
2327		printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2328		ret = -ENXIO;
2329		goto err_ttyu;
2330	}
2331
2332	return 0;
2333err_ttyu:
2334	tty_unregister_driver(rocket_driver);
2335err_controller:
2336	if (controller)
2337		release_region(controller, 4);
2338err_tty:
2339	put_tty_driver(rocket_driver);
2340err:
2341	return ret;
2342}
2343
2344
2345static void rp_cleanup_module(void)
2346{
2347	int retval;
2348	int i;
2349
2350	del_timer_sync(&rocket_timer);
2351
2352	retval = tty_unregister_driver(rocket_driver);
2353	if (retval)
2354		printk(KERN_ERR "Error %d while trying to unregister "
2355		       "rocketport driver\n", -retval);
2356
2357	for (i = 0; i < MAX_RP_PORTS; i++)
2358		if (rp_table[i]) {
2359			tty_unregister_device(rocket_driver, i);
 
2360			kfree(rp_table[i]);
2361		}
2362
2363	put_tty_driver(rocket_driver);
2364
2365	for (i = 0; i < NUM_BOARDS; i++) {
2366		if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2367			continue;
2368		release_region(rcktpt_io_addr[i], 64);
2369	}
2370	if (controller)
2371		release_region(controller, 4);
2372}
2373
2374/***************************************************************************
2375Function: sInitController
2376Purpose:  Initialization of controller global registers and controller
2377          structure.
2378Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2379                          IRQNum,Frequency,PeriodicOnly)
2380          CONTROLLER_T *CtlP; Ptr to controller structure
2381          int CtlNum; Controller number
2382          ByteIO_t MudbacIO; Mudbac base I/O address.
2383          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2384             This list must be in the order the AIOPs will be found on the
2385             controller.  Once an AIOP in the list is not found, it is
2386             assumed that there are no more AIOPs on the controller.
2387          int AiopIOListSize; Number of addresses in AiopIOList
2388          int IRQNum; Interrupt Request number.  Can be any of the following:
2389                         0: Disable global interrupts
2390                         3: IRQ 3
2391                         4: IRQ 4
2392                         5: IRQ 5
2393                         9: IRQ 9
2394                         10: IRQ 10
2395                         11: IRQ 11
2396                         12: IRQ 12
2397                         15: IRQ 15
2398          Byte_t Frequency: A flag identifying the frequency
2399                   of the periodic interrupt, can be any one of the following:
2400                      FREQ_DIS - periodic interrupt disabled
2401                      FREQ_137HZ - 137 Hertz
2402                      FREQ_69HZ - 69 Hertz
2403                      FREQ_34HZ - 34 Hertz
2404                      FREQ_17HZ - 17 Hertz
2405                      FREQ_9HZ - 9 Hertz
2406                      FREQ_4HZ - 4 Hertz
2407                   If IRQNum is set to 0 the Frequency parameter is
2408                   overidden, it is forced to a value of FREQ_DIS.
2409          int PeriodicOnly: 1 if all interrupts except the periodic
2410                               interrupt are to be blocked.
2411                            0 is both the periodic interrupt and
2412                               other channel interrupts are allowed.
2413                            If IRQNum is set to 0 the PeriodicOnly parameter is
2414                               overidden, it is forced to a value of 0.
2415Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2416               initialization failed.
2417
2418Comments:
2419          If periodic interrupts are to be disabled but AIOP interrupts
2420          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2421
2422          If interrupts are to be completely disabled set IRQNum to 0.
2423
2424          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2425          invalid combination.
2426
2427          This function performs initialization of global interrupt modes,
2428          but it does not actually enable global interrupts.  To enable
2429          and disable global interrupts use functions sEnGlobalInt() and
2430          sDisGlobalInt().  Enabling of global interrupts is normally not
2431          done until all other initializations are complete.
2432
2433          Even if interrupts are globally enabled, they must also be
2434          individually enabled for each channel that is to generate
2435          interrupts.
2436
2437Warnings: No range checking on any of the parameters is done.
2438
2439          No context switches are allowed while executing this function.
2440
2441          After this function all AIOPs on the controller are disabled,
2442          they can be enabled with sEnAiop().
2443*/
2444static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2445			   ByteIO_t * AiopIOList, int AiopIOListSize,
2446			   int IRQNum, Byte_t Frequency, int PeriodicOnly)
2447{
2448	int i;
2449	ByteIO_t io;
2450	int done;
2451
2452	CtlP->AiopIntrBits = aiop_intr_bits;
2453	CtlP->AltChanRingIndicator = 0;
2454	CtlP->CtlNum = CtlNum;
2455	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
2456	CtlP->BusType = isISA;
2457	CtlP->MBaseIO = MudbacIO;
2458	CtlP->MReg1IO = MudbacIO + 1;
2459	CtlP->MReg2IO = MudbacIO + 2;
2460	CtlP->MReg3IO = MudbacIO + 3;
2461#if 1
2462	CtlP->MReg2 = 0;	/* interrupt disable */
2463	CtlP->MReg3 = 0;	/* no periodic interrupts */
2464#else
2465	if (sIRQMap[IRQNum] == 0) {	/* interrupts globally disabled */
2466		CtlP->MReg2 = 0;	/* interrupt disable */
2467		CtlP->MReg3 = 0;	/* no periodic interrupts */
2468	} else {
2469		CtlP->MReg2 = sIRQMap[IRQNum];	/* set IRQ number */
2470		CtlP->MReg3 = Frequency;	/* set frequency */
2471		if (PeriodicOnly) {	/* periodic interrupt only */
2472			CtlP->MReg3 |= PERIODIC_ONLY;
2473		}
2474	}
2475#endif
2476	sOutB(CtlP->MReg2IO, CtlP->MReg2);
2477	sOutB(CtlP->MReg3IO, CtlP->MReg3);
2478	sControllerEOI(CtlP);	/* clear EOI if warm init */
2479	/* Init AIOPs */
2480	CtlP->NumAiop = 0;
2481	for (i = done = 0; i < AiopIOListSize; i++) {
2482		io = AiopIOList[i];
2483		CtlP->AiopIO[i] = (WordIO_t) io;
2484		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2485		sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03));	/* AIOP index */
2486		sOutB(MudbacIO, (Byte_t) (io >> 6));	/* set up AIOP I/O in MUDBAC */
2487		if (done)
2488			continue;
2489		sEnAiop(CtlP, i);	/* enable the AIOP */
2490		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
2491		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
2492			done = 1;	/* done looking for AIOPs */
2493		else {
2494			CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
2495			sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
2496			sOutB(io + _INDX_DATA, sClockPrescale);
2497			CtlP->NumAiop++;	/* bump count of AIOPs */
2498		}
2499		sDisAiop(CtlP, i);	/* disable AIOP */
2500	}
2501
2502	if (CtlP->NumAiop == 0)
2503		return (-1);
2504	else
2505		return (CtlP->NumAiop);
2506}
2507
2508/***************************************************************************
2509Function: sPCIInitController
2510Purpose:  Initialization of controller global registers and controller
2511          structure.
2512Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
2513                          IRQNum,Frequency,PeriodicOnly)
2514          CONTROLLER_T *CtlP; Ptr to controller structure
2515          int CtlNum; Controller number
2516          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2517             This list must be in the order the AIOPs will be found on the
2518             controller.  Once an AIOP in the list is not found, it is
2519             assumed that there are no more AIOPs on the controller.
2520          int AiopIOListSize; Number of addresses in AiopIOList
2521          int IRQNum; Interrupt Request number.  Can be any of the following:
2522                         0: Disable global interrupts
2523                         3: IRQ 3
2524                         4: IRQ 4
2525                         5: IRQ 5
2526                         9: IRQ 9
2527                         10: IRQ 10
2528                         11: IRQ 11
2529                         12: IRQ 12
2530                         15: IRQ 15
2531          Byte_t Frequency: A flag identifying the frequency
2532                   of the periodic interrupt, can be any one of the following:
2533                      FREQ_DIS - periodic interrupt disabled
2534                      FREQ_137HZ - 137 Hertz
2535                      FREQ_69HZ - 69 Hertz
2536                      FREQ_34HZ - 34 Hertz
2537                      FREQ_17HZ - 17 Hertz
2538                      FREQ_9HZ - 9 Hertz
2539                      FREQ_4HZ - 4 Hertz
2540                   If IRQNum is set to 0 the Frequency parameter is
2541                   overidden, it is forced to a value of FREQ_DIS.
2542          int PeriodicOnly: 1 if all interrupts except the periodic
2543                               interrupt are to be blocked.
2544                            0 is both the periodic interrupt and
2545                               other channel interrupts are allowed.
2546                            If IRQNum is set to 0 the PeriodicOnly parameter is
2547                               overidden, it is forced to a value of 0.
2548Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2549               initialization failed.
2550
2551Comments:
2552          If periodic interrupts are to be disabled but AIOP interrupts
2553          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2554
2555          If interrupts are to be completely disabled set IRQNum to 0.
2556
2557          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2558          invalid combination.
2559
2560          This function performs initialization of global interrupt modes,
2561          but it does not actually enable global interrupts.  To enable
2562          and disable global interrupts use functions sEnGlobalInt() and
2563          sDisGlobalInt().  Enabling of global interrupts is normally not
2564          done until all other initializations are complete.
2565
2566          Even if interrupts are globally enabled, they must also be
2567          individually enabled for each channel that is to generate
2568          interrupts.
2569
2570Warnings: No range checking on any of the parameters is done.
2571
2572          No context switches are allowed while executing this function.
2573
2574          After this function all AIOPs on the controller are disabled,
2575          they can be enabled with sEnAiop().
2576*/
2577static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
2578			      ByteIO_t * AiopIOList, int AiopIOListSize,
2579			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
2580			      int PeriodicOnly, int altChanRingIndicator,
2581			      int UPCIRingInd)
2582{
2583	int i;
2584	ByteIO_t io;
2585
2586	CtlP->AltChanRingIndicator = altChanRingIndicator;
2587	CtlP->UPCIRingInd = UPCIRingInd;
2588	CtlP->CtlNum = CtlNum;
2589	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
2590	CtlP->BusType = isPCI;	/* controller release 1 */
2591
2592	if (ConfigIO) {
2593		CtlP->isUPCI = 1;
2594		CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
2595		CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
2596		CtlP->AiopIntrBits = upci_aiop_intr_bits;
2597	} else {
2598		CtlP->isUPCI = 0;
2599		CtlP->PCIIO =
2600		    (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
2601		CtlP->AiopIntrBits = aiop_intr_bits;
2602	}
2603
2604	sPCIControllerEOI(CtlP);	/* clear EOI if warm init */
2605	/* Init AIOPs */
2606	CtlP->NumAiop = 0;
2607	for (i = 0; i < AiopIOListSize; i++) {
2608		io = AiopIOList[i];
2609		CtlP->AiopIO[i] = (WordIO_t) io;
2610		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2611
2612		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
2613		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
2614			break;	/* done looking for AIOPs */
2615
2616		CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
2617		sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
2618		sOutB(io + _INDX_DATA, sClockPrescale);
2619		CtlP->NumAiop++;	/* bump count of AIOPs */
2620	}
2621
2622	if (CtlP->NumAiop == 0)
2623		return (-1);
2624	else
2625		return (CtlP->NumAiop);
2626}
2627
2628/***************************************************************************
2629Function: sReadAiopID
2630Purpose:  Read the AIOP idenfication number directly from an AIOP.
2631Call:     sReadAiopID(io)
2632          ByteIO_t io: AIOP base I/O address
2633Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2634                 is replace by an identifying number.
2635          Flag AIOPID_NULL if no valid AIOP is found
2636Warnings: No context switches are allowed while executing this function.
2637
2638*/
2639static int sReadAiopID(ByteIO_t io)
2640{
2641	Byte_t AiopID;		/* ID byte from AIOP */
2642
2643	sOutB(io + _CMD_REG, RESET_ALL);	/* reset AIOP */
2644	sOutB(io + _CMD_REG, 0x0);
2645	AiopID = sInW(io + _CHN_STAT0) & 0x07;
2646	if (AiopID == 0x06)
2647		return (1);
2648	else			/* AIOP does not exist */
2649		return (-1);
2650}
2651
2652/***************************************************************************
2653Function: sReadAiopNumChan
2654Purpose:  Read the number of channels available in an AIOP directly from
2655          an AIOP.
2656Call:     sReadAiopNumChan(io)
2657          WordIO_t io: AIOP base I/O address
2658Return:   int: The number of channels available
2659Comments: The number of channels is determined by write/reads from identical
2660          offsets within the SRAM address spaces for channels 0 and 4.
2661          If the channel 4 space is mirrored to channel 0 it is a 4 channel
2662          AIOP, otherwise it is an 8 channel.
2663Warnings: No context switches are allowed while executing this function.
2664*/
2665static int sReadAiopNumChan(WordIO_t io)
2666{
2667	Word_t x;
2668	static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2669
2670	/* write to chan 0 SRAM */
2671	out32((DWordIO_t) io + _INDX_ADDR, R);
2672	sOutW(io + _INDX_ADDR, 0);	/* read from SRAM, chan 0 */
2673	x = sInW(io + _INDX_DATA);
2674	sOutW(io + _INDX_ADDR, 0x4000);	/* read from SRAM, chan 4 */
2675	if (x != sInW(io + _INDX_DATA))	/* if different must be 8 chan */
2676		return (8);
2677	else
2678		return (4);
2679}
2680
2681/***************************************************************************
2682Function: sInitChan
2683Purpose:  Initialization of a channel and channel structure
2684Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2685          CONTROLLER_T *CtlP; Ptr to controller structure
2686          CHANNEL_T *ChP; Ptr to channel structure
2687          int AiopNum; AIOP number within controller
2688          int ChanNum; Channel number within AIOP
2689Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2690               number exceeds number of channels available in AIOP.
2691Comments: This function must be called before a channel can be used.
2692Warnings: No range checking on any of the parameters is done.
2693
2694          No context switches are allowed while executing this function.
2695*/
2696static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2697		     int ChanNum)
2698{
2699	int i;
2700	WordIO_t AiopIO;
2701	WordIO_t ChIOOff;
2702	Byte_t *ChR;
2703	Word_t ChOff;
2704	static Byte_t R[4];
2705	int brd9600;
2706
2707	if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2708		return 0;	/* exceeds num chans in AIOP */
2709
2710	/* Channel, AIOP, and controller identifiers */
2711	ChP->CtlP = CtlP;
2712	ChP->ChanID = CtlP->AiopID[AiopNum];
2713	ChP->AiopNum = AiopNum;
2714	ChP->ChanNum = ChanNum;
2715
2716	/* Global direct addresses */
2717	AiopIO = CtlP->AiopIO[AiopNum];
2718	ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2719	ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2720	ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2721	ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2722	ChP->IndexData = AiopIO + _INDX_DATA;
2723
2724	/* Channel direct addresses */
2725	ChIOOff = AiopIO + ChP->ChanNum * 2;
2726	ChP->TxRxData = ChIOOff + _TD0;
2727	ChP->ChanStat = ChIOOff + _CHN_STAT0;
2728	ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2729	ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2730
2731	/* Initialize the channel from the RData array */
2732	for (i = 0; i < RDATASIZE; i += 4) {
2733		R[0] = RData[i];
2734		R[1] = RData[i + 1] + 0x10 * ChanNum;
2735		R[2] = RData[i + 2];
2736		R[3] = RData[i + 3];
2737		out32(ChP->IndexAddr, R);
2738	}
2739
2740	ChR = ChP->R;
2741	for (i = 0; i < RREGDATASIZE; i += 4) {
2742		ChR[i] = RRegData[i];
2743		ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2744		ChR[i + 2] = RRegData[i + 2];
2745		ChR[i + 3] = RRegData[i + 3];
2746	}
2747
2748	/* Indexed registers */
2749	ChOff = (Word_t) ChanNum *0x1000;
2750
2751	if (sClockPrescale == 0x14)
2752		brd9600 = 47;
2753	else
2754		brd9600 = 23;
2755
2756	ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2757	ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2758	ChP->BaudDiv[2] = (Byte_t) brd9600;
2759	ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2760	out32(ChP->IndexAddr, ChP->BaudDiv);
2761
2762	ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2763	ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2764	ChP->TxControl[2] = 0;
2765	ChP->TxControl[3] = 0;
2766	out32(ChP->IndexAddr, ChP->TxControl);
2767
2768	ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2769	ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2770	ChP->RxControl[2] = 0;
2771	ChP->RxControl[3] = 0;
2772	out32(ChP->IndexAddr, ChP->RxControl);
2773
2774	ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2775	ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2776	ChP->TxEnables[2] = 0;
2777	ChP->TxEnables[3] = 0;
2778	out32(ChP->IndexAddr, ChP->TxEnables);
2779
2780	ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2781	ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2782	ChP->TxCompare[2] = 0;
2783	ChP->TxCompare[3] = 0;
2784	out32(ChP->IndexAddr, ChP->TxCompare);
2785
2786	ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2787	ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2788	ChP->TxReplace1[2] = 0;
2789	ChP->TxReplace1[3] = 0;
2790	out32(ChP->IndexAddr, ChP->TxReplace1);
2791
2792	ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2793	ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2794	ChP->TxReplace2[2] = 0;
2795	ChP->TxReplace2[3] = 0;
2796	out32(ChP->IndexAddr, ChP->TxReplace2);
2797
2798	ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2799	ChP->TxFIFO = ChOff + _TX_FIFO;
2800
2801	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);	/* apply reset Tx FIFO count */
2802	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Tx FIFO count */
2803	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2804	sOutW(ChP->IndexData, 0);
2805	ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2806	ChP->RxFIFO = ChOff + _RX_FIFO;
2807
2808	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);	/* apply reset Rx FIFO count */
2809	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Rx FIFO count */
2810	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2811	sOutW(ChP->IndexData, 0);
2812	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2813	sOutW(ChP->IndexData, 0);
2814	ChP->TxPrioCnt = ChOff + _TXP_CNT;
2815	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2816	sOutB(ChP->IndexData, 0);
2817	ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2818	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2819	sOutB(ChP->IndexData, 0);
2820	ChP->TxPrioBuf = ChOff + _TXP_BUF;
2821	sEnRxProcessor(ChP);	/* start the Rx processor */
2822
2823	return 1;
2824}
2825
2826/***************************************************************************
2827Function: sStopRxProcessor
2828Purpose:  Stop the receive processor from processing a channel.
2829Call:     sStopRxProcessor(ChP)
2830          CHANNEL_T *ChP; Ptr to channel structure
2831
2832Comments: The receive processor can be started again with sStartRxProcessor().
2833          This function causes the receive processor to skip over the
2834          stopped channel.  It does not stop it from processing other channels.
2835
2836Warnings: No context switches are allowed while executing this function.
2837
2838          Do not leave the receive processor stopped for more than one
2839          character time.
2840
2841          After calling this function a delay of 4 uS is required to ensure
2842          that the receive processor is no longer processing this channel.
2843*/
2844static void sStopRxProcessor(CHANNEL_T * ChP)
2845{
2846	Byte_t R[4];
2847
2848	R[0] = ChP->R[0];
2849	R[1] = ChP->R[1];
2850	R[2] = 0x0a;
2851	R[3] = ChP->R[3];
2852	out32(ChP->IndexAddr, R);
2853}
2854
2855/***************************************************************************
2856Function: sFlushRxFIFO
2857Purpose:  Flush the Rx FIFO
2858Call:     sFlushRxFIFO(ChP)
2859          CHANNEL_T *ChP; Ptr to channel structure
2860Return:   void
2861Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2862          while it is being flushed the receive processor is stopped
2863          and the transmitter is disabled.  After these operations a
2864          4 uS delay is done before clearing the pointers to allow
2865          the receive processor to stop.  These items are handled inside
2866          this function.
2867Warnings: No context switches are allowed while executing this function.
2868*/
2869static void sFlushRxFIFO(CHANNEL_T * ChP)
2870{
2871	int i;
2872	Byte_t Ch;		/* channel number within AIOP */
2873	int RxFIFOEnabled;	/* 1 if Rx FIFO enabled */
2874
2875	if (sGetRxCnt(ChP) == 0)	/* Rx FIFO empty */
2876		return;		/* don't need to flush */
2877
2878	RxFIFOEnabled = 0;
2879	if (ChP->R[0x32] == 0x08) {	/* Rx FIFO is enabled */
2880		RxFIFOEnabled = 1;
2881		sDisRxFIFO(ChP);	/* disable it */
2882		for (i = 0; i < 2000 / 200; i++)	/* delay 2 uS to allow proc to disable FIFO */
2883			sInB(ChP->IntChan);	/* depends on bus i/o timing */
2884	}
2885	sGetChanStatus(ChP);	/* clear any pending Rx errors in chan stat */
2886	Ch = (Byte_t) sGetChanNum(ChP);
2887	sOutB(ChP->Cmd, Ch | RESRXFCNT);	/* apply reset Rx FIFO count */
2888	sOutB(ChP->Cmd, Ch);	/* remove reset Rx FIFO count */
2889	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2890	sOutW(ChP->IndexData, 0);
2891	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2892	sOutW(ChP->IndexData, 0);
2893	if (RxFIFOEnabled)
2894		sEnRxFIFO(ChP);	/* enable Rx FIFO */
2895}
2896
2897/***************************************************************************
2898Function: sFlushTxFIFO
2899Purpose:  Flush the Tx FIFO
2900Call:     sFlushTxFIFO(ChP)
2901          CHANNEL_T *ChP; Ptr to channel structure
2902Return:   void
2903Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2904          while it is being flushed the receive processor is stopped
2905          and the transmitter is disabled.  After these operations a
2906          4 uS delay is done before clearing the pointers to allow
2907          the receive processor to stop.  These items are handled inside
2908          this function.
2909Warnings: No context switches are allowed while executing this function.
2910*/
2911static void sFlushTxFIFO(CHANNEL_T * ChP)
2912{
2913	int i;
2914	Byte_t Ch;		/* channel number within AIOP */
2915	int TxEnabled;		/* 1 if transmitter enabled */
2916
2917	if (sGetTxCnt(ChP) == 0)	/* Tx FIFO empty */
2918		return;		/* don't need to flush */
2919
2920	TxEnabled = 0;
2921	if (ChP->TxControl[3] & TX_ENABLE) {
2922		TxEnabled = 1;
2923		sDisTransmit(ChP);	/* disable transmitter */
2924	}
2925	sStopRxProcessor(ChP);	/* stop Rx processor */
2926	for (i = 0; i < 4000 / 200; i++)	/* delay 4 uS to allow proc to stop */
2927		sInB(ChP->IntChan);	/* depends on bus i/o timing */
2928	Ch = (Byte_t) sGetChanNum(ChP);
2929	sOutB(ChP->Cmd, Ch | RESTXFCNT);	/* apply reset Tx FIFO count */
2930	sOutB(ChP->Cmd, Ch);	/* remove reset Tx FIFO count */
2931	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2932	sOutW(ChP->IndexData, 0);
2933	if (TxEnabled)
2934		sEnTransmit(ChP);	/* enable transmitter */
2935	sStartRxProcessor(ChP);	/* restart Rx processor */
2936}
2937
2938/***************************************************************************
2939Function: sWriteTxPrioByte
2940Purpose:  Write a byte of priority transmit data to a channel
2941Call:     sWriteTxPrioByte(ChP,Data)
2942          CHANNEL_T *ChP; Ptr to channel structure
2943          Byte_t Data; The transmit data byte
2944
2945Return:   int: 1 if the bytes is successfully written, otherwise 0.
2946
2947Comments: The priority byte is transmitted before any data in the Tx FIFO.
2948
2949Warnings: No context switches are allowed while executing this function.
2950*/
2951static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2952{
2953	Byte_t DWBuf[4];	/* buffer for double word writes */
2954	Word_t *WordPtr;	/* must be far because Win SS != DS */
2955	register DWordIO_t IndexAddr;
2956
2957	if (sGetTxCnt(ChP) > 1) {	/* write it to Tx priority buffer */
2958		IndexAddr = ChP->IndexAddr;
2959		sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);	/* get priority buffer status */
2960		if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND)	/* priority buffer busy */
2961			return (0);	/* nothing sent */
2962
2963		WordPtr = (Word_t *) (&DWBuf[0]);
2964		*WordPtr = ChP->TxPrioBuf;	/* data byte address */
2965
2966		DWBuf[2] = Data;	/* data byte value */
2967		out32(IndexAddr, DWBuf);	/* write it out */
2968
2969		*WordPtr = ChP->TxPrioCnt;	/* Tx priority count address */
2970
2971		DWBuf[2] = PRI_PEND + 1;	/* indicate 1 byte pending */
2972		DWBuf[3] = 0;	/* priority buffer pointer */
2973		out32(IndexAddr, DWBuf);	/* write it out */
2974	} else {		/* write it to Tx FIFO */
2975
2976		sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2977	}
2978	return (1);		/* 1 byte sent */
2979}
2980
2981/***************************************************************************
2982Function: sEnInterrupts
2983Purpose:  Enable one or more interrupts for a channel
2984Call:     sEnInterrupts(ChP,Flags)
2985          CHANNEL_T *ChP; Ptr to channel structure
2986          Word_t Flags: Interrupt enable flags, can be any combination
2987             of the following flags:
2988                TXINT_EN:   Interrupt on Tx FIFO empty
2989                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
2990                            sSetRxTrigger())
2991                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
2992                MCINT_EN:   Interrupt on modem input change
2993                CHANINT_EN: Allow channel interrupt signal to the AIOP's
2994                            Interrupt Channel Register.
2995Return:   void
2996Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2997          enabled.  If an interrupt enable flag is not set in Flags, that
2998          interrupt will not be changed.  Interrupts can be disabled with
2999          function sDisInterrupts().
3000
3001          This function sets the appropriate bit for the channel in the AIOP's
3002          Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
3003          this channel's bit to be set in the AIOP's Interrupt Channel Register.
3004
3005          Interrupts must also be globally enabled before channel interrupts
3006          will be passed on to the host.  This is done with function
3007          sEnGlobalInt().
3008
3009          In some cases it may be desirable to disable interrupts globally but
3010          enable channel interrupts.  This would allow the global interrupt
3011          status register to be used to determine which AIOPs need service.
3012*/
3013static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3014{
3015	Byte_t Mask;		/* Interrupt Mask Register */
3016
3017	ChP->RxControl[2] |=
3018	    ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3019
3020	out32(ChP->IndexAddr, ChP->RxControl);
3021
3022	ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3023
3024	out32(ChP->IndexAddr, ChP->TxControl);
3025
3026	if (Flags & CHANINT_EN) {
3027		Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3028		sOutB(ChP->IntMask, Mask);
3029	}
3030}
3031
3032/***************************************************************************
3033Function: sDisInterrupts
3034Purpose:  Disable one or more interrupts for a channel
3035Call:     sDisInterrupts(ChP,Flags)
3036          CHANNEL_T *ChP; Ptr to channel structure
3037          Word_t Flags: Interrupt flags, can be any combination
3038             of the following flags:
3039                TXINT_EN:   Interrupt on Tx FIFO empty
3040                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3041                            sSetRxTrigger())
3042                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3043                MCINT_EN:   Interrupt on modem input change
3044                CHANINT_EN: Disable channel interrupt signal to the
3045                            AIOP's Interrupt Channel Register.
3046Return:   void
3047Comments: If an interrupt flag is set in Flags, that interrupt will be
3048          disabled.  If an interrupt flag is not set in Flags, that
3049          interrupt will not be changed.  Interrupts can be enabled with
3050          function sEnInterrupts().
3051
3052          This function clears the appropriate bit for the channel in the AIOP's
3053          Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3054          this channel's bit from being set in the AIOP's Interrupt Channel
3055          Register.
3056*/
3057static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3058{
3059	Byte_t Mask;		/* Interrupt Mask Register */
3060
3061	ChP->RxControl[2] &=
3062	    ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3063	out32(ChP->IndexAddr, ChP->RxControl);
3064	ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3065	out32(ChP->IndexAddr, ChP->TxControl);
3066
3067	if (Flags & CHANINT_EN) {
3068		Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3069		sOutB(ChP->IntMask, Mask);
3070	}
3071}
3072
3073static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3074{
3075	sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3076}
3077
3078/*
3079 *  Not an official SSCI function, but how to reset RocketModems.
3080 *  ISA bus version
3081 */
3082static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3083{
3084	ByteIO_t addr;
3085	Byte_t val;
3086
3087	addr = CtlP->AiopIO[0] + 0x400;
3088	val = sInB(CtlP->MReg3IO);
3089	/* if AIOP[1] is not enabled, enable it */
3090	if ((val & 2) == 0) {
3091		val = sInB(CtlP->MReg2IO);
3092		sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3093		sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3094	}
3095
3096	sEnAiop(CtlP, 1);
3097	if (!on)
3098		addr += 8;
3099	sOutB(addr + chan, 0);	/* apply or remove reset */
3100	sDisAiop(CtlP, 1);
3101}
3102
3103/*
3104 *  Not an official SSCI function, but how to reset RocketModems.
3105 *  PCI bus version
3106 */
3107static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3108{
3109	ByteIO_t addr;
3110
3111	addr = CtlP->AiopIO[0] + 0x40;	/* 2nd AIOP */
3112	if (!on)
3113		addr += 8;
3114	sOutB(addr + chan, 0);	/* apply or remove reset */
3115}
3116
3117/*  Resets the speaker controller on RocketModem II and III devices */
3118static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
3119{
3120	ByteIO_t addr;
3121
3122	/* RocketModem II speaker control is at the 8th port location of offset 0x40 */
3123	if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
3124		addr = CtlP->AiopIO[0] + 0x4F;
3125		sOutB(addr, 0);
3126	}
3127
3128	/* RocketModem III speaker control is at the 1st port location of offset 0x80 */
3129	if ((model == MODEL_UPCI_RM3_8PORT)
3130	    || (model == MODEL_UPCI_RM3_4PORT)) {
3131		addr = CtlP->AiopIO[0] + 0x88;
3132		sOutB(addr, 0);
3133	}
3134}
3135
3136/*  Returns the line number given the controller (board), aiop and channel number */
3137static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3138{
3139	return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3140}
3141
3142/*
3143 *  Stores the line number associated with a given controller (board), aiop
3144 *  and channel number.  
3145 *  Returns:  The line number assigned 
3146 */
3147static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3148{
3149	lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3150	return (nextLineNumber - 1);
3151}