Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
 
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include "extent_io.h"
 
  17#include "extent_map.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23#include "rcu-string.h"
  24#include "backref.h"
  25#include "disk-io.h"
 
 
 
 
 
 
 
 
 
 
 
  26
  27static struct kmem_cache *extent_state_cache;
  28static struct kmem_cache *extent_buffer_cache;
  29static struct bio_set btrfs_bioset;
  30
  31static inline bool extent_state_in_tree(const struct extent_state *state)
  32{
  33	return !RB_EMPTY_NODE(&state->rb_node);
  34}
  35
  36#ifdef CONFIG_BTRFS_DEBUG
  37static LIST_HEAD(buffers);
  38static LIST_HEAD(states);
  39
  40static DEFINE_SPINLOCK(leak_lock);
  41
  42static inline
  43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  44{
 
  45	unsigned long flags;
  46
  47	spin_lock_irqsave(&leak_lock, flags);
  48	list_add(new, head);
  49	spin_unlock_irqrestore(&leak_lock, flags);
  50}
  51
  52static inline
  53void btrfs_leak_debug_del(struct list_head *entry)
  54{
 
  55	unsigned long flags;
  56
  57	spin_lock_irqsave(&leak_lock, flags);
  58	list_del(entry);
  59	spin_unlock_irqrestore(&leak_lock, flags);
  60}
  61
  62static inline
  63void btrfs_leak_debug_check(void)
  64{
  65	struct extent_state *state;
  66	struct extent_buffer *eb;
 
  67
  68	while (!list_empty(&states)) {
  69		state = list_entry(states.next, struct extent_state, leak_list);
  70		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  71		       state->start, state->end, state->state,
  72		       extent_state_in_tree(state),
  73		       refcount_read(&state->refs));
  74		list_del(&state->leak_list);
  75		kmem_cache_free(extent_state_cache, state);
  76	}
  77
  78	while (!list_empty(&buffers)) {
  79		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  80		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
  81		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
 
 
 
 
 
  82		list_del(&eb->leak_list);
 
  83		kmem_cache_free(extent_buffer_cache, eb);
  84	}
  85}
  86
  87#define btrfs_debug_check_extent_io_range(tree, start, end)		\
  88	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  90		struct extent_io_tree *tree, u64 start, u64 end)
  91{
  92	struct inode *inode = tree->private_data;
  93	u64 isize;
  94
  95	if (!inode || !is_data_inode(inode))
  96		return;
  97
  98	isize = i_size_read(inode);
  99	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 100		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 101		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 102			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
 103	}
 104}
 105#else
 106#define btrfs_leak_debug_add(new, head)	do {} while (0)
 107#define btrfs_leak_debug_del(entry)	do {} while (0)
 108#define btrfs_leak_debug_check()	do {} while (0)
 109#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 110#endif
 111
 112struct tree_entry {
 113	u64 start;
 114	u64 end;
 115	struct rb_node rb_node;
 116};
 117
 118struct extent_page_data {
 119	struct bio *bio;
 120	struct extent_io_tree *tree;
 121	/* tells writepage not to lock the state bits for this range
 122	 * it still does the unlocking
 123	 */
 124	unsigned int extent_locked:1;
 125
 126	/* tells the submit_bio code to use REQ_SYNC */
 127	unsigned int sync_io:1;
 128};
 129
 130static int add_extent_changeset(struct extent_state *state, unsigned bits,
 131				 struct extent_changeset *changeset,
 132				 int set)
 133{
 134	int ret;
 135
 136	if (!changeset)
 137		return 0;
 138	if (set && (state->state & bits) == bits)
 139		return 0;
 140	if (!set && (state->state & bits) == 0)
 141		return 0;
 142	changeset->bytes_changed += state->end - state->start + 1;
 143	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 144			GFP_ATOMIC);
 145	return ret;
 146}
 147
 148static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
 149				       unsigned long bio_flags)
 150{
 151	blk_status_t ret = 0;
 152	struct extent_io_tree *tree = bio->bi_private;
 153
 154	bio->bi_private = NULL;
 
 155
 156	if (tree->ops)
 157		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
 158						 mirror_num, bio_flags);
 159	else
 160		btrfsic_submit_bio(bio);
 161
 162	return blk_status_to_errno(ret);
 163}
 164
 165/* Cleanup unsubmitted bios */
 166static void end_write_bio(struct extent_page_data *epd, int ret)
 167{
 168	if (epd->bio) {
 169		epd->bio->bi_status = errno_to_blk_status(ret);
 170		bio_endio(epd->bio);
 171		epd->bio = NULL;
 172	}
 173}
 174
 175/*
 176 * Submit bio from extent page data via submit_one_bio
 177 *
 178 * Return 0 if everything is OK.
 179 * Return <0 for error.
 180 */
 181static int __must_check flush_write_bio(struct extent_page_data *epd)
 182{
 183	int ret = 0;
 184
 185	if (epd->bio) {
 186		ret = submit_one_bio(epd->bio, 0, 0);
 187		/*
 188		 * Clean up of epd->bio is handled by its endio function.
 189		 * And endio is either triggered by successful bio execution
 190		 * or the error handler of submit bio hook.
 191		 * So at this point, no matter what happened, we don't need
 192		 * to clean up epd->bio.
 193		 */
 194		epd->bio = NULL;
 195	}
 196	return ret;
 197}
 198
 199int __init extent_io_init(void)
 200{
 201	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 202			sizeof(struct extent_state), 0,
 203			SLAB_MEM_SPREAD, NULL);
 204	if (!extent_state_cache)
 205		return -ENOMEM;
 206
 207	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 208			sizeof(struct extent_buffer), 0,
 209			SLAB_MEM_SPREAD, NULL);
 210	if (!extent_buffer_cache)
 211		goto free_state_cache;
 212
 213	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 214			offsetof(struct btrfs_io_bio, bio),
 215			BIOSET_NEED_BVECS))
 216		goto free_buffer_cache;
 217
 218	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 219		goto free_bioset;
 220
 221	return 0;
 222
 223free_bioset:
 224	bioset_exit(&btrfs_bioset);
 225
 226free_buffer_cache:
 227	kmem_cache_destroy(extent_buffer_cache);
 228	extent_buffer_cache = NULL;
 229
 230free_state_cache:
 231	kmem_cache_destroy(extent_state_cache);
 232	extent_state_cache = NULL;
 233	return -ENOMEM;
 234}
 235
 236void __cold extent_io_exit(void)
 237{
 238	btrfs_leak_debug_check();
 239
 240	/*
 241	 * Make sure all delayed rcu free are flushed before we
 242	 * destroy caches.
 243	 */
 244	rcu_barrier();
 245	kmem_cache_destroy(extent_state_cache);
 246	kmem_cache_destroy(extent_buffer_cache);
 247	bioset_exit(&btrfs_bioset);
 248}
 249
 250void extent_io_tree_init(struct btrfs_fs_info *fs_info,
 251			 struct extent_io_tree *tree, unsigned int owner,
 252			 void *private_data)
 253{
 254	tree->fs_info = fs_info;
 255	tree->state = RB_ROOT;
 256	tree->ops = NULL;
 257	tree->dirty_bytes = 0;
 258	spin_lock_init(&tree->lock);
 259	tree->private_data = private_data;
 260	tree->owner = owner;
 261}
 262
 263void extent_io_tree_release(struct extent_io_tree *tree)
 264{
 265	spin_lock(&tree->lock);
 266	/*
 267	 * Do a single barrier for the waitqueue_active check here, the state
 268	 * of the waitqueue should not change once extent_io_tree_release is
 269	 * called.
 270	 */
 271	smp_mb();
 272	while (!RB_EMPTY_ROOT(&tree->state)) {
 273		struct rb_node *node;
 274		struct extent_state *state;
 275
 276		node = rb_first(&tree->state);
 277		state = rb_entry(node, struct extent_state, rb_node);
 278		rb_erase(&state->rb_node, &tree->state);
 279		RB_CLEAR_NODE(&state->rb_node);
 280		/*
 281		 * btree io trees aren't supposed to have tasks waiting for
 282		 * changes in the flags of extent states ever.
 283		 */
 284		ASSERT(!waitqueue_active(&state->wq));
 285		free_extent_state(state);
 286
 287		cond_resched_lock(&tree->lock);
 288	}
 289	spin_unlock(&tree->lock);
 290}
 291
 292static struct extent_state *alloc_extent_state(gfp_t mask)
 293{
 294	struct extent_state *state;
 295
 296	/*
 297	 * The given mask might be not appropriate for the slab allocator,
 298	 * drop the unsupported bits
 299	 */
 300	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 301	state = kmem_cache_alloc(extent_state_cache, mask);
 302	if (!state)
 303		return state;
 304	state->state = 0;
 305	state->failrec = NULL;
 306	RB_CLEAR_NODE(&state->rb_node);
 307	btrfs_leak_debug_add(&state->leak_list, &states);
 308	refcount_set(&state->refs, 1);
 309	init_waitqueue_head(&state->wq);
 310	trace_alloc_extent_state(state, mask, _RET_IP_);
 311	return state;
 312}
 313
 314void free_extent_state(struct extent_state *state)
 315{
 316	if (!state)
 317		return;
 318	if (refcount_dec_and_test(&state->refs)) {
 319		WARN_ON(extent_state_in_tree(state));
 320		btrfs_leak_debug_del(&state->leak_list);
 321		trace_free_extent_state(state, _RET_IP_);
 322		kmem_cache_free(extent_state_cache, state);
 323	}
 324}
 325
 326static struct rb_node *tree_insert(struct rb_root *root,
 327				   struct rb_node *search_start,
 328				   u64 offset,
 329				   struct rb_node *node,
 330				   struct rb_node ***p_in,
 331				   struct rb_node **parent_in)
 332{
 333	struct rb_node **p;
 334	struct rb_node *parent = NULL;
 335	struct tree_entry *entry;
 336
 337	if (p_in && parent_in) {
 338		p = *p_in;
 339		parent = *parent_in;
 340		goto do_insert;
 341	}
 342
 343	p = search_start ? &search_start : &root->rb_node;
 344	while (*p) {
 345		parent = *p;
 346		entry = rb_entry(parent, struct tree_entry, rb_node);
 347
 348		if (offset < entry->start)
 349			p = &(*p)->rb_left;
 350		else if (offset > entry->end)
 351			p = &(*p)->rb_right;
 352		else
 353			return parent;
 354	}
 355
 356do_insert:
 357	rb_link_node(node, parent, p);
 358	rb_insert_color(node, root);
 359	return NULL;
 360}
 361
 362/**
 363 * __etree_search - searche @tree for an entry that contains @offset. Such
 364 * entry would have entry->start <= offset && entry->end >= offset.
 365 *
 366 * @tree - the tree to search
 367 * @offset - offset that should fall within an entry in @tree
 368 * @next_ret - pointer to the first entry whose range ends after @offset
 369 * @prev - pointer to the first entry whose range begins before @offset
 370 * @p_ret - pointer where new node should be anchored (used when inserting an
 371 *	    entry in the tree)
 372 * @parent_ret - points to entry which would have been the parent of the entry,
 373 *               containing @offset
 374 *
 375 * This function returns a pointer to the entry that contains @offset byte
 376 * address. If no such entry exists, then NULL is returned and the other
 377 * pointer arguments to the function are filled, otherwise the found entry is
 378 * returned and other pointers are left untouched.
 379 */
 380static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 381				      struct rb_node **next_ret,
 382				      struct rb_node **prev_ret,
 383				      struct rb_node ***p_ret,
 384				      struct rb_node **parent_ret)
 385{
 386	struct rb_root *root = &tree->state;
 387	struct rb_node **n = &root->rb_node;
 388	struct rb_node *prev = NULL;
 389	struct rb_node *orig_prev = NULL;
 390	struct tree_entry *entry;
 391	struct tree_entry *prev_entry = NULL;
 392
 393	while (*n) {
 394		prev = *n;
 395		entry = rb_entry(prev, struct tree_entry, rb_node);
 396		prev_entry = entry;
 397
 398		if (offset < entry->start)
 399			n = &(*n)->rb_left;
 400		else if (offset > entry->end)
 401			n = &(*n)->rb_right;
 402		else
 403			return *n;
 404	}
 405
 406	if (p_ret)
 407		*p_ret = n;
 408	if (parent_ret)
 409		*parent_ret = prev;
 410
 411	if (next_ret) {
 412		orig_prev = prev;
 413		while (prev && offset > prev_entry->end) {
 414			prev = rb_next(prev);
 415			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 416		}
 417		*next_ret = prev;
 418		prev = orig_prev;
 419	}
 420
 421	if (prev_ret) {
 422		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 423		while (prev && offset < prev_entry->start) {
 424			prev = rb_prev(prev);
 425			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 426		}
 427		*prev_ret = prev;
 428	}
 429	return NULL;
 430}
 431
 432static inline struct rb_node *
 433tree_search_for_insert(struct extent_io_tree *tree,
 434		       u64 offset,
 435		       struct rb_node ***p_ret,
 436		       struct rb_node **parent_ret)
 437{
 438	struct rb_node *next= NULL;
 439	struct rb_node *ret;
 440
 441	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
 442	if (!ret)
 443		return next;
 444	return ret;
 445}
 446
 447static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 448					  u64 offset)
 449{
 450	return tree_search_for_insert(tree, offset, NULL, NULL);
 451}
 452
 453/*
 454 * utility function to look for merge candidates inside a given range.
 455 * Any extents with matching state are merged together into a single
 456 * extent in the tree.  Extents with EXTENT_IO in their state field
 457 * are not merged because the end_io handlers need to be able to do
 458 * operations on them without sleeping (or doing allocations/splits).
 459 *
 460 * This should be called with the tree lock held.
 461 */
 462static void merge_state(struct extent_io_tree *tree,
 463		        struct extent_state *state)
 464{
 465	struct extent_state *other;
 466	struct rb_node *other_node;
 467
 468	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 469		return;
 470
 471	other_node = rb_prev(&state->rb_node);
 472	if (other_node) {
 473		other = rb_entry(other_node, struct extent_state, rb_node);
 474		if (other->end == state->start - 1 &&
 475		    other->state == state->state) {
 476			if (tree->private_data &&
 477			    is_data_inode(tree->private_data))
 478				btrfs_merge_delalloc_extent(tree->private_data,
 479							    state, other);
 480			state->start = other->start;
 481			rb_erase(&other->rb_node, &tree->state);
 482			RB_CLEAR_NODE(&other->rb_node);
 483			free_extent_state(other);
 484		}
 485	}
 486	other_node = rb_next(&state->rb_node);
 487	if (other_node) {
 488		other = rb_entry(other_node, struct extent_state, rb_node);
 489		if (other->start == state->end + 1 &&
 490		    other->state == state->state) {
 491			if (tree->private_data &&
 492			    is_data_inode(tree->private_data))
 493				btrfs_merge_delalloc_extent(tree->private_data,
 494							    state, other);
 495			state->end = other->end;
 496			rb_erase(&other->rb_node, &tree->state);
 497			RB_CLEAR_NODE(&other->rb_node);
 498			free_extent_state(other);
 499		}
 500	}
 501}
 502
 503static void set_state_bits(struct extent_io_tree *tree,
 504			   struct extent_state *state, unsigned *bits,
 505			   struct extent_changeset *changeset);
 506
 507/*
 508 * insert an extent_state struct into the tree.  'bits' are set on the
 509 * struct before it is inserted.
 510 *
 511 * This may return -EEXIST if the extent is already there, in which case the
 512 * state struct is freed.
 513 *
 514 * The tree lock is not taken internally.  This is a utility function and
 515 * probably isn't what you want to call (see set/clear_extent_bit).
 516 */
 517static int insert_state(struct extent_io_tree *tree,
 518			struct extent_state *state, u64 start, u64 end,
 519			struct rb_node ***p,
 520			struct rb_node **parent,
 521			unsigned *bits, struct extent_changeset *changeset)
 522{
 523	struct rb_node *node;
 524
 525	if (end < start) {
 526		btrfs_err(tree->fs_info,
 527			"insert state: end < start %llu %llu", end, start);
 528		WARN_ON(1);
 529	}
 530	state->start = start;
 531	state->end = end;
 532
 533	set_state_bits(tree, state, bits, changeset);
 534
 535	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 536	if (node) {
 537		struct extent_state *found;
 538		found = rb_entry(node, struct extent_state, rb_node);
 539		btrfs_err(tree->fs_info,
 540		       "found node %llu %llu on insert of %llu %llu",
 541		       found->start, found->end, start, end);
 542		return -EEXIST;
 543	}
 544	merge_state(tree, state);
 545	return 0;
 546}
 547
 548/*
 549 * split a given extent state struct in two, inserting the preallocated
 550 * struct 'prealloc' as the newly created second half.  'split' indicates an
 551 * offset inside 'orig' where it should be split.
 552 *
 553 * Before calling,
 554 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 555 * are two extent state structs in the tree:
 556 * prealloc: [orig->start, split - 1]
 557 * orig: [ split, orig->end ]
 558 *
 559 * The tree locks are not taken by this function. They need to be held
 560 * by the caller.
 561 */
 562static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 563		       struct extent_state *prealloc, u64 split)
 564{
 565	struct rb_node *node;
 566
 567	if (tree->private_data && is_data_inode(tree->private_data))
 568		btrfs_split_delalloc_extent(tree->private_data, orig, split);
 569
 570	prealloc->start = orig->start;
 571	prealloc->end = split - 1;
 572	prealloc->state = orig->state;
 573	orig->start = split;
 574
 575	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 576			   &prealloc->rb_node, NULL, NULL);
 577	if (node) {
 578		free_extent_state(prealloc);
 579		return -EEXIST;
 580	}
 581	return 0;
 582}
 583
 584static struct extent_state *next_state(struct extent_state *state)
 585{
 586	struct rb_node *next = rb_next(&state->rb_node);
 587	if (next)
 588		return rb_entry(next, struct extent_state, rb_node);
 589	else
 590		return NULL;
 591}
 592
 593/*
 594 * utility function to clear some bits in an extent state struct.
 595 * it will optionally wake up anyone waiting on this state (wake == 1).
 596 *
 597 * If no bits are set on the state struct after clearing things, the
 598 * struct is freed and removed from the tree
 599 */
 600static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 601					    struct extent_state *state,
 602					    unsigned *bits, int wake,
 603					    struct extent_changeset *changeset)
 604{
 605	struct extent_state *next;
 606	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 607	int ret;
 608
 609	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 610		u64 range = state->end - state->start + 1;
 611		WARN_ON(range > tree->dirty_bytes);
 612		tree->dirty_bytes -= range;
 613	}
 614
 615	if (tree->private_data && is_data_inode(tree->private_data))
 616		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
 617
 618	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 619	BUG_ON(ret < 0);
 620	state->state &= ~bits_to_clear;
 621	if (wake)
 622		wake_up(&state->wq);
 623	if (state->state == 0) {
 624		next = next_state(state);
 625		if (extent_state_in_tree(state)) {
 626			rb_erase(&state->rb_node, &tree->state);
 627			RB_CLEAR_NODE(&state->rb_node);
 628			free_extent_state(state);
 629		} else {
 630			WARN_ON(1);
 631		}
 632	} else {
 633		merge_state(tree, state);
 634		next = next_state(state);
 635	}
 636	return next;
 637}
 638
 639static struct extent_state *
 640alloc_extent_state_atomic(struct extent_state *prealloc)
 641{
 642	if (!prealloc)
 643		prealloc = alloc_extent_state(GFP_ATOMIC);
 644
 645	return prealloc;
 646}
 647
 648static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 649{
 650	struct inode *inode = tree->private_data;
 651
 652	btrfs_panic(btrfs_sb(inode->i_sb), err,
 653	"locking error: extent tree was modified by another thread while locked");
 654}
 655
 656/*
 657 * clear some bits on a range in the tree.  This may require splitting
 658 * or inserting elements in the tree, so the gfp mask is used to
 659 * indicate which allocations or sleeping are allowed.
 660 *
 661 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 662 * the given range from the tree regardless of state (ie for truncate).
 663 *
 664 * the range [start, end] is inclusive.
 665 *
 666 * This takes the tree lock, and returns 0 on success and < 0 on error.
 667 */
 668int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 669			      unsigned bits, int wake, int delete,
 670			      struct extent_state **cached_state,
 671			      gfp_t mask, struct extent_changeset *changeset)
 672{
 673	struct extent_state *state;
 674	struct extent_state *cached;
 675	struct extent_state *prealloc = NULL;
 676	struct rb_node *node;
 677	u64 last_end;
 678	int err;
 679	int clear = 0;
 680
 681	btrfs_debug_check_extent_io_range(tree, start, end);
 682	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
 683
 684	if (bits & EXTENT_DELALLOC)
 685		bits |= EXTENT_NORESERVE;
 686
 687	if (delete)
 688		bits |= ~EXTENT_CTLBITS;
 689
 690	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 691		clear = 1;
 692again:
 693	if (!prealloc && gfpflags_allow_blocking(mask)) {
 694		/*
 695		 * Don't care for allocation failure here because we might end
 696		 * up not needing the pre-allocated extent state at all, which
 697		 * is the case if we only have in the tree extent states that
 698		 * cover our input range and don't cover too any other range.
 699		 * If we end up needing a new extent state we allocate it later.
 700		 */
 701		prealloc = alloc_extent_state(mask);
 702	}
 703
 704	spin_lock(&tree->lock);
 705	if (cached_state) {
 706		cached = *cached_state;
 707
 708		if (clear) {
 709			*cached_state = NULL;
 710			cached_state = NULL;
 711		}
 712
 713		if (cached && extent_state_in_tree(cached) &&
 714		    cached->start <= start && cached->end > start) {
 715			if (clear)
 716				refcount_dec(&cached->refs);
 717			state = cached;
 718			goto hit_next;
 719		}
 720		if (clear)
 721			free_extent_state(cached);
 722	}
 723	/*
 724	 * this search will find the extents that end after
 725	 * our range starts
 726	 */
 727	node = tree_search(tree, start);
 728	if (!node)
 729		goto out;
 730	state = rb_entry(node, struct extent_state, rb_node);
 731hit_next:
 732	if (state->start > end)
 733		goto out;
 734	WARN_ON(state->end < start);
 735	last_end = state->end;
 736
 737	/* the state doesn't have the wanted bits, go ahead */
 738	if (!(state->state & bits)) {
 739		state = next_state(state);
 740		goto next;
 741	}
 742
 743	/*
 744	 *     | ---- desired range ---- |
 745	 *  | state | or
 746	 *  | ------------- state -------------- |
 747	 *
 748	 * We need to split the extent we found, and may flip
 749	 * bits on second half.
 750	 *
 751	 * If the extent we found extends past our range, we
 752	 * just split and search again.  It'll get split again
 753	 * the next time though.
 754	 *
 755	 * If the extent we found is inside our range, we clear
 756	 * the desired bit on it.
 757	 */
 758
 759	if (state->start < start) {
 760		prealloc = alloc_extent_state_atomic(prealloc);
 761		BUG_ON(!prealloc);
 762		err = split_state(tree, state, prealloc, start);
 763		if (err)
 764			extent_io_tree_panic(tree, err);
 765
 766		prealloc = NULL;
 767		if (err)
 768			goto out;
 769		if (state->end <= end) {
 770			state = clear_state_bit(tree, state, &bits, wake,
 771						changeset);
 772			goto next;
 773		}
 774		goto search_again;
 775	}
 776	/*
 777	 * | ---- desired range ---- |
 778	 *                        | state |
 779	 * We need to split the extent, and clear the bit
 780	 * on the first half
 781	 */
 782	if (state->start <= end && state->end > end) {
 783		prealloc = alloc_extent_state_atomic(prealloc);
 784		BUG_ON(!prealloc);
 785		err = split_state(tree, state, prealloc, end + 1);
 786		if (err)
 787			extent_io_tree_panic(tree, err);
 788
 789		if (wake)
 790			wake_up(&state->wq);
 791
 792		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 793
 794		prealloc = NULL;
 795		goto out;
 796	}
 797
 798	state = clear_state_bit(tree, state, &bits, wake, changeset);
 799next:
 800	if (last_end == (u64)-1)
 801		goto out;
 802	start = last_end + 1;
 803	if (start <= end && state && !need_resched())
 804		goto hit_next;
 805
 806search_again:
 807	if (start > end)
 808		goto out;
 809	spin_unlock(&tree->lock);
 810	if (gfpflags_allow_blocking(mask))
 811		cond_resched();
 812	goto again;
 813
 814out:
 815	spin_unlock(&tree->lock);
 816	if (prealloc)
 817		free_extent_state(prealloc);
 818
 819	return 0;
 820
 821}
 822
 823static void wait_on_state(struct extent_io_tree *tree,
 824			  struct extent_state *state)
 825		__releases(tree->lock)
 826		__acquires(tree->lock)
 827{
 828	DEFINE_WAIT(wait);
 829	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 830	spin_unlock(&tree->lock);
 831	schedule();
 832	spin_lock(&tree->lock);
 833	finish_wait(&state->wq, &wait);
 834}
 835
 836/*
 837 * waits for one or more bits to clear on a range in the state tree.
 838 * The range [start, end] is inclusive.
 839 * The tree lock is taken by this function
 840 */
 841static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 842			    unsigned long bits)
 843{
 844	struct extent_state *state;
 845	struct rb_node *node;
 846
 847	btrfs_debug_check_extent_io_range(tree, start, end);
 848
 849	spin_lock(&tree->lock);
 850again:
 851	while (1) {
 852		/*
 853		 * this search will find all the extents that end after
 854		 * our range starts
 855		 */
 856		node = tree_search(tree, start);
 857process_node:
 858		if (!node)
 859			break;
 860
 861		state = rb_entry(node, struct extent_state, rb_node);
 862
 863		if (state->start > end)
 864			goto out;
 865
 866		if (state->state & bits) {
 867			start = state->start;
 868			refcount_inc(&state->refs);
 869			wait_on_state(tree, state);
 870			free_extent_state(state);
 871			goto again;
 872		}
 873		start = state->end + 1;
 874
 875		if (start > end)
 876			break;
 877
 878		if (!cond_resched_lock(&tree->lock)) {
 879			node = rb_next(node);
 880			goto process_node;
 881		}
 882	}
 883out:
 884	spin_unlock(&tree->lock);
 885}
 886
 887static void set_state_bits(struct extent_io_tree *tree,
 888			   struct extent_state *state,
 889			   unsigned *bits, struct extent_changeset *changeset)
 890{
 891	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 892	int ret;
 893
 894	if (tree->private_data && is_data_inode(tree->private_data))
 895		btrfs_set_delalloc_extent(tree->private_data, state, bits);
 896
 897	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 898		u64 range = state->end - state->start + 1;
 899		tree->dirty_bytes += range;
 900	}
 901	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 902	BUG_ON(ret < 0);
 903	state->state |= bits_to_set;
 904}
 905
 906static void cache_state_if_flags(struct extent_state *state,
 907				 struct extent_state **cached_ptr,
 908				 unsigned flags)
 909{
 910	if (cached_ptr && !(*cached_ptr)) {
 911		if (!flags || (state->state & flags)) {
 912			*cached_ptr = state;
 913			refcount_inc(&state->refs);
 914		}
 915	}
 916}
 917
 918static void cache_state(struct extent_state *state,
 919			struct extent_state **cached_ptr)
 920{
 921	return cache_state_if_flags(state, cached_ptr,
 922				    EXTENT_LOCKED | EXTENT_BOUNDARY);
 923}
 924
 925/*
 926 * set some bits on a range in the tree.  This may require allocations or
 927 * sleeping, so the gfp mask is used to indicate what is allowed.
 928 *
 929 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 930 * part of the range already has the desired bits set.  The start of the
 931 * existing range is returned in failed_start in this case.
 932 *
 933 * [start, end] is inclusive This takes the tree lock.
 934 */
 935
 936static int __must_check
 937__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 938		 unsigned bits, unsigned exclusive_bits,
 939		 u64 *failed_start, struct extent_state **cached_state,
 940		 gfp_t mask, struct extent_changeset *changeset)
 941{
 942	struct extent_state *state;
 943	struct extent_state *prealloc = NULL;
 944	struct rb_node *node;
 945	struct rb_node **p;
 946	struct rb_node *parent;
 947	int err = 0;
 948	u64 last_start;
 949	u64 last_end;
 950
 951	btrfs_debug_check_extent_io_range(tree, start, end);
 952	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
 953
 954again:
 955	if (!prealloc && gfpflags_allow_blocking(mask)) {
 956		/*
 957		 * Don't care for allocation failure here because we might end
 958		 * up not needing the pre-allocated extent state at all, which
 959		 * is the case if we only have in the tree extent states that
 960		 * cover our input range and don't cover too any other range.
 961		 * If we end up needing a new extent state we allocate it later.
 962		 */
 963		prealloc = alloc_extent_state(mask);
 964	}
 965
 966	spin_lock(&tree->lock);
 967	if (cached_state && *cached_state) {
 968		state = *cached_state;
 969		if (state->start <= start && state->end > start &&
 970		    extent_state_in_tree(state)) {
 971			node = &state->rb_node;
 972			goto hit_next;
 973		}
 974	}
 975	/*
 976	 * this search will find all the extents that end after
 977	 * our range starts.
 978	 */
 979	node = tree_search_for_insert(tree, start, &p, &parent);
 980	if (!node) {
 981		prealloc = alloc_extent_state_atomic(prealloc);
 982		BUG_ON(!prealloc);
 983		err = insert_state(tree, prealloc, start, end,
 984				   &p, &parent, &bits, changeset);
 985		if (err)
 986			extent_io_tree_panic(tree, err);
 987
 988		cache_state(prealloc, cached_state);
 989		prealloc = NULL;
 990		goto out;
 991	}
 992	state = rb_entry(node, struct extent_state, rb_node);
 993hit_next:
 994	last_start = state->start;
 995	last_end = state->end;
 996
 997	/*
 998	 * | ---- desired range ---- |
 999	 * | state |
1000	 *
1001	 * Just lock what we found and keep going
1002	 */
1003	if (state->start == start && state->end <= end) {
1004		if (state->state & exclusive_bits) {
1005			*failed_start = state->start;
1006			err = -EEXIST;
1007			goto out;
1008		}
1009
1010		set_state_bits(tree, state, &bits, changeset);
1011		cache_state(state, cached_state);
1012		merge_state(tree, state);
1013		if (last_end == (u64)-1)
1014			goto out;
1015		start = last_end + 1;
1016		state = next_state(state);
1017		if (start < end && state && state->start == start &&
1018		    !need_resched())
1019			goto hit_next;
1020		goto search_again;
1021	}
1022
1023	/*
1024	 *     | ---- desired range ---- |
1025	 * | state |
1026	 *   or
1027	 * | ------------- state -------------- |
1028	 *
1029	 * We need to split the extent we found, and may flip bits on
1030	 * second half.
1031	 *
1032	 * If the extent we found extends past our
1033	 * range, we just split and search again.  It'll get split
1034	 * again the next time though.
1035	 *
1036	 * If the extent we found is inside our range, we set the
1037	 * desired bit on it.
1038	 */
1039	if (state->start < start) {
1040		if (state->state & exclusive_bits) {
1041			*failed_start = start;
1042			err = -EEXIST;
1043			goto out;
1044		}
1045
1046		prealloc = alloc_extent_state_atomic(prealloc);
1047		BUG_ON(!prealloc);
1048		err = split_state(tree, state, prealloc, start);
1049		if (err)
1050			extent_io_tree_panic(tree, err);
1051
1052		prealloc = NULL;
1053		if (err)
1054			goto out;
1055		if (state->end <= end) {
1056			set_state_bits(tree, state, &bits, changeset);
1057			cache_state(state, cached_state);
1058			merge_state(tree, state);
1059			if (last_end == (u64)-1)
1060				goto out;
1061			start = last_end + 1;
1062			state = next_state(state);
1063			if (start < end && state && state->start == start &&
1064			    !need_resched())
1065				goto hit_next;
1066		}
1067		goto search_again;
1068	}
1069	/*
1070	 * | ---- desired range ---- |
1071	 *     | state | or               | state |
1072	 *
1073	 * There's a hole, we need to insert something in it and
1074	 * ignore the extent we found.
1075	 */
1076	if (state->start > start) {
1077		u64 this_end;
1078		if (end < last_start)
1079			this_end = end;
1080		else
1081			this_end = last_start - 1;
1082
1083		prealloc = alloc_extent_state_atomic(prealloc);
1084		BUG_ON(!prealloc);
1085
1086		/*
1087		 * Avoid to free 'prealloc' if it can be merged with
1088		 * the later extent.
1089		 */
1090		err = insert_state(tree, prealloc, start, this_end,
1091				   NULL, NULL, &bits, changeset);
1092		if (err)
1093			extent_io_tree_panic(tree, err);
1094
1095		cache_state(prealloc, cached_state);
1096		prealloc = NULL;
1097		start = this_end + 1;
1098		goto search_again;
1099	}
1100	/*
1101	 * | ---- desired range ---- |
1102	 *                        | state |
1103	 * We need to split the extent, and set the bit
1104	 * on the first half
1105	 */
1106	if (state->start <= end && state->end > end) {
1107		if (state->state & exclusive_bits) {
1108			*failed_start = start;
1109			err = -EEXIST;
1110			goto out;
1111		}
1112
1113		prealloc = alloc_extent_state_atomic(prealloc);
1114		BUG_ON(!prealloc);
1115		err = split_state(tree, state, prealloc, end + 1);
1116		if (err)
1117			extent_io_tree_panic(tree, err);
1118
1119		set_state_bits(tree, prealloc, &bits, changeset);
1120		cache_state(prealloc, cached_state);
1121		merge_state(tree, prealloc);
1122		prealloc = NULL;
1123		goto out;
1124	}
1125
1126search_again:
1127	if (start > end)
1128		goto out;
1129	spin_unlock(&tree->lock);
1130	if (gfpflags_allow_blocking(mask))
1131		cond_resched();
1132	goto again;
1133
1134out:
1135	spin_unlock(&tree->lock);
1136	if (prealloc)
1137		free_extent_state(prealloc);
1138
1139	return err;
1140
1141}
1142
1143int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1144		   unsigned bits, u64 * failed_start,
1145		   struct extent_state **cached_state, gfp_t mask)
1146{
1147	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1148				cached_state, mask, NULL);
1149}
1150
1151
1152/**
1153 * convert_extent_bit - convert all bits in a given range from one bit to
1154 * 			another
1155 * @tree:	the io tree to search
1156 * @start:	the start offset in bytes
1157 * @end:	the end offset in bytes (inclusive)
1158 * @bits:	the bits to set in this range
1159 * @clear_bits:	the bits to clear in this range
1160 * @cached_state:	state that we're going to cache
1161 *
1162 * This will go through and set bits for the given range.  If any states exist
1163 * already in this range they are set with the given bit and cleared of the
1164 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1165 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1166 * boundary bits like LOCK.
1167 *
1168 * All allocations are done with GFP_NOFS.
1169 */
1170int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1171		       unsigned bits, unsigned clear_bits,
1172		       struct extent_state **cached_state)
1173{
1174	struct extent_state *state;
1175	struct extent_state *prealloc = NULL;
1176	struct rb_node *node;
1177	struct rb_node **p;
1178	struct rb_node *parent;
1179	int err = 0;
1180	u64 last_start;
1181	u64 last_end;
1182	bool first_iteration = true;
1183
1184	btrfs_debug_check_extent_io_range(tree, start, end);
1185	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1186				       clear_bits);
1187
1188again:
1189	if (!prealloc) {
1190		/*
1191		 * Best effort, don't worry if extent state allocation fails
1192		 * here for the first iteration. We might have a cached state
1193		 * that matches exactly the target range, in which case no
1194		 * extent state allocations are needed. We'll only know this
1195		 * after locking the tree.
1196		 */
1197		prealloc = alloc_extent_state(GFP_NOFS);
1198		if (!prealloc && !first_iteration)
1199			return -ENOMEM;
1200	}
1201
1202	spin_lock(&tree->lock);
1203	if (cached_state && *cached_state) {
1204		state = *cached_state;
1205		if (state->start <= start && state->end > start &&
1206		    extent_state_in_tree(state)) {
1207			node = &state->rb_node;
1208			goto hit_next;
1209		}
1210	}
1211
1212	/*
1213	 * this search will find all the extents that end after
1214	 * our range starts.
1215	 */
1216	node = tree_search_for_insert(tree, start, &p, &parent);
1217	if (!node) {
1218		prealloc = alloc_extent_state_atomic(prealloc);
1219		if (!prealloc) {
1220			err = -ENOMEM;
1221			goto out;
1222		}
1223		err = insert_state(tree, prealloc, start, end,
1224				   &p, &parent, &bits, NULL);
1225		if (err)
1226			extent_io_tree_panic(tree, err);
1227		cache_state(prealloc, cached_state);
1228		prealloc = NULL;
1229		goto out;
1230	}
1231	state = rb_entry(node, struct extent_state, rb_node);
1232hit_next:
1233	last_start = state->start;
1234	last_end = state->end;
1235
1236	/*
1237	 * | ---- desired range ---- |
1238	 * | state |
1239	 *
1240	 * Just lock what we found and keep going
1241	 */
1242	if (state->start == start && state->end <= end) {
1243		set_state_bits(tree, state, &bits, NULL);
1244		cache_state(state, cached_state);
1245		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1246		if (last_end == (u64)-1)
1247			goto out;
1248		start = last_end + 1;
1249		if (start < end && state && state->start == start &&
1250		    !need_resched())
1251			goto hit_next;
1252		goto search_again;
1253	}
1254
1255	/*
1256	 *     | ---- desired range ---- |
1257	 * | state |
1258	 *   or
1259	 * | ------------- state -------------- |
1260	 *
1261	 * We need to split the extent we found, and may flip bits on
1262	 * second half.
1263	 *
1264	 * If the extent we found extends past our
1265	 * range, we just split and search again.  It'll get split
1266	 * again the next time though.
1267	 *
1268	 * If the extent we found is inside our range, we set the
1269	 * desired bit on it.
1270	 */
1271	if (state->start < start) {
1272		prealloc = alloc_extent_state_atomic(prealloc);
1273		if (!prealloc) {
1274			err = -ENOMEM;
1275			goto out;
1276		}
1277		err = split_state(tree, state, prealloc, start);
1278		if (err)
1279			extent_io_tree_panic(tree, err);
1280		prealloc = NULL;
1281		if (err)
1282			goto out;
1283		if (state->end <= end) {
1284			set_state_bits(tree, state, &bits, NULL);
1285			cache_state(state, cached_state);
1286			state = clear_state_bit(tree, state, &clear_bits, 0,
1287						NULL);
1288			if (last_end == (u64)-1)
1289				goto out;
1290			start = last_end + 1;
1291			if (start < end && state && state->start == start &&
1292			    !need_resched())
1293				goto hit_next;
1294		}
1295		goto search_again;
1296	}
1297	/*
1298	 * | ---- desired range ---- |
1299	 *     | state | or               | state |
1300	 *
1301	 * There's a hole, we need to insert something in it and
1302	 * ignore the extent we found.
1303	 */
1304	if (state->start > start) {
1305		u64 this_end;
1306		if (end < last_start)
1307			this_end = end;
1308		else
1309			this_end = last_start - 1;
1310
1311		prealloc = alloc_extent_state_atomic(prealloc);
1312		if (!prealloc) {
1313			err = -ENOMEM;
1314			goto out;
1315		}
1316
1317		/*
1318		 * Avoid to free 'prealloc' if it can be merged with
1319		 * the later extent.
1320		 */
1321		err = insert_state(tree, prealloc, start, this_end,
1322				   NULL, NULL, &bits, NULL);
1323		if (err)
1324			extent_io_tree_panic(tree, err);
1325		cache_state(prealloc, cached_state);
1326		prealloc = NULL;
1327		start = this_end + 1;
1328		goto search_again;
1329	}
1330	/*
1331	 * | ---- desired range ---- |
1332	 *                        | state |
1333	 * We need to split the extent, and set the bit
1334	 * on the first half
1335	 */
1336	if (state->start <= end && state->end > end) {
1337		prealloc = alloc_extent_state_atomic(prealloc);
1338		if (!prealloc) {
1339			err = -ENOMEM;
1340			goto out;
1341		}
1342
1343		err = split_state(tree, state, prealloc, end + 1);
1344		if (err)
1345			extent_io_tree_panic(tree, err);
1346
1347		set_state_bits(tree, prealloc, &bits, NULL);
1348		cache_state(prealloc, cached_state);
1349		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1350		prealloc = NULL;
1351		goto out;
1352	}
1353
1354search_again:
1355	if (start > end)
1356		goto out;
1357	spin_unlock(&tree->lock);
1358	cond_resched();
1359	first_iteration = false;
1360	goto again;
1361
1362out:
1363	spin_unlock(&tree->lock);
1364	if (prealloc)
1365		free_extent_state(prealloc);
1366
1367	return err;
1368}
1369
1370/* wrappers around set/clear extent bit */
1371int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1372			   unsigned bits, struct extent_changeset *changeset)
1373{
1374	/*
1375	 * We don't support EXTENT_LOCKED yet, as current changeset will
1376	 * record any bits changed, so for EXTENT_LOCKED case, it will
1377	 * either fail with -EEXIST or changeset will record the whole
1378	 * range.
1379	 */
1380	BUG_ON(bits & EXTENT_LOCKED);
1381
1382	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1383				changeset);
1384}
1385
1386int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1387			   unsigned bits)
1388{
1389	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1390				GFP_NOWAIT, NULL);
1391}
1392
1393int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1394		     unsigned bits, int wake, int delete,
1395		     struct extent_state **cached)
1396{
1397	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1398				  cached, GFP_NOFS, NULL);
1399}
1400
1401int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1402		unsigned bits, struct extent_changeset *changeset)
1403{
1404	/*
1405	 * Don't support EXTENT_LOCKED case, same reason as
1406	 * set_record_extent_bits().
1407	 */
1408	BUG_ON(bits & EXTENT_LOCKED);
1409
1410	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1411				  changeset);
1412}
1413
1414/*
1415 * either insert or lock state struct between start and end use mask to tell
1416 * us if waiting is desired.
1417 */
1418int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419		     struct extent_state **cached_state)
1420{
1421	int err;
1422	u64 failed_start;
1423
1424	while (1) {
1425		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1426				       EXTENT_LOCKED, &failed_start,
1427				       cached_state, GFP_NOFS, NULL);
1428		if (err == -EEXIST) {
1429			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1430			start = failed_start;
1431		} else
1432			break;
1433		WARN_ON(start > end);
1434	}
1435	return err;
1436}
1437
1438int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1439{
1440	int err;
1441	u64 failed_start;
1442
1443	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1444			       &failed_start, NULL, GFP_NOFS, NULL);
1445	if (err == -EEXIST) {
1446		if (failed_start > start)
1447			clear_extent_bit(tree, start, failed_start - 1,
1448					 EXTENT_LOCKED, 1, 0, NULL);
1449		return 0;
1450	}
1451	return 1;
1452}
1453
1454void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455{
1456	unsigned long index = start >> PAGE_SHIFT;
1457	unsigned long end_index = end >> PAGE_SHIFT;
1458	struct page *page;
1459
1460	while (index <= end_index) {
1461		page = find_get_page(inode->i_mapping, index);
1462		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463		clear_page_dirty_for_io(page);
1464		put_page(page);
1465		index++;
1466	}
1467}
1468
1469void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470{
1471	unsigned long index = start >> PAGE_SHIFT;
1472	unsigned long end_index = end >> PAGE_SHIFT;
1473	struct page *page;
1474
1475	while (index <= end_index) {
1476		page = find_get_page(inode->i_mapping, index);
1477		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478		__set_page_dirty_nobuffers(page);
1479		account_page_redirty(page);
1480		put_page(page);
1481		index++;
1482	}
1483}
1484
1485/* find the first state struct with 'bits' set after 'start', and
1486 * return it.  tree->lock must be held.  NULL will returned if
1487 * nothing was found after 'start'
1488 */
1489static struct extent_state *
1490find_first_extent_bit_state(struct extent_io_tree *tree,
1491			    u64 start, unsigned bits)
1492{
1493	struct rb_node *node;
1494	struct extent_state *state;
1495
1496	/*
1497	 * this search will find all the extents that end after
1498	 * our range starts.
1499	 */
1500	node = tree_search(tree, start);
1501	if (!node)
1502		goto out;
1503
1504	while (1) {
1505		state = rb_entry(node, struct extent_state, rb_node);
1506		if (state->end >= start && (state->state & bits))
1507			return state;
1508
1509		node = rb_next(node);
1510		if (!node)
1511			break;
1512	}
1513out:
1514	return NULL;
1515}
1516
1517/*
1518 * find the first offset in the io tree with 'bits' set. zero is
1519 * returned if we find something, and *start_ret and *end_ret are
1520 * set to reflect the state struct that was found.
1521 *
1522 * If nothing was found, 1 is returned. If found something, return 0.
1523 */
1524int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1525			  u64 *start_ret, u64 *end_ret, unsigned bits,
1526			  struct extent_state **cached_state)
1527{
1528	struct extent_state *state;
1529	int ret = 1;
1530
1531	spin_lock(&tree->lock);
1532	if (cached_state && *cached_state) {
1533		state = *cached_state;
1534		if (state->end == start - 1 && extent_state_in_tree(state)) {
1535			while ((state = next_state(state)) != NULL) {
1536				if (state->state & bits)
1537					goto got_it;
1538			}
1539			free_extent_state(*cached_state);
1540			*cached_state = NULL;
1541			goto out;
1542		}
1543		free_extent_state(*cached_state);
1544		*cached_state = NULL;
1545	}
1546
1547	state = find_first_extent_bit_state(tree, start, bits);
1548got_it:
1549	if (state) {
1550		cache_state_if_flags(state, cached_state, 0);
1551		*start_ret = state->start;
1552		*end_ret = state->end;
1553		ret = 0;
1554	}
1555out:
1556	spin_unlock(&tree->lock);
1557	return ret;
1558}
1559
1560/**
1561 * find_first_clear_extent_bit - find the first range that has @bits not set.
1562 * This range could start before @start.
1563 *
1564 * @tree - the tree to search
1565 * @start - the offset at/after which the found extent should start
1566 * @start_ret - records the beginning of the range
1567 * @end_ret - records the end of the range (inclusive)
1568 * @bits - the set of bits which must be unset
1569 *
1570 * Since unallocated range is also considered one which doesn't have the bits
1571 * set it's possible that @end_ret contains -1, this happens in case the range
1572 * spans (last_range_end, end of device]. In this case it's up to the caller to
1573 * trim @end_ret to the appropriate size.
1574 */
1575void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1576				 u64 *start_ret, u64 *end_ret, unsigned bits)
1577{
1578	struct extent_state *state;
1579	struct rb_node *node, *prev = NULL, *next;
1580
1581	spin_lock(&tree->lock);
 
1582
1583	/* Find first extent with bits cleared */
1584	while (1) {
1585		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1586		if (!node) {
1587			node = next;
1588			if (!node) {
1589				/*
1590				 * We are past the last allocated chunk,
1591				 * set start at the end of the last extent. The
1592				 * device alloc tree should never be empty so
1593				 * prev is always set.
1594				 */
1595				ASSERT(prev);
1596				state = rb_entry(prev, struct extent_state, rb_node);
1597				*start_ret = state->end + 1;
1598				*end_ret = -1;
1599				goto out;
1600			}
1601		}
1602		/*
1603		 * At this point 'node' either contains 'start' or start is
1604		 * before 'node'
1605		 */
1606		state = rb_entry(node, struct extent_state, rb_node);
1607
1608		if (in_range(start, state->start, state->end - state->start + 1)) {
1609			if (state->state & bits) {
1610				/*
1611				 * |--range with bits sets--|
1612				 *    |
1613				 *    start
1614				 */
1615				start = state->end + 1;
1616			} else {
1617				/*
1618				 * 'start' falls within a range that doesn't
1619				 * have the bits set, so take its start as
1620				 * the beginning of the desired range
1621				 *
1622				 * |--range with bits cleared----|
1623				 *      |
1624				 *      start
1625				 */
1626				*start_ret = state->start;
1627				break;
1628			}
1629		} else {
1630			/*
1631			 * |---prev range---|---hole/unset---|---node range---|
1632			 *                          |
1633			 *                        start
1634			 *
1635			 *                        or
1636			 *
1637			 * |---hole/unset--||--first node--|
1638			 * 0   |
1639			 *    start
1640			 */
1641			if (prev) {
1642				state = rb_entry(prev, struct extent_state,
1643						 rb_node);
1644				*start_ret = state->end + 1;
1645			} else {
1646				*start_ret = 0;
1647			}
1648			break;
1649		}
1650	}
 
 
1651
1652	/*
1653	 * Find the longest stretch from start until an entry which has the
1654	 * bits set
1655	 */
1656	while (1) {
1657		state = rb_entry(node, struct extent_state, rb_node);
1658		if (state->end >= start && !(state->state & bits)) {
1659			*end_ret = state->end;
1660		} else {
1661			*end_ret = state->start - 1;
1662			break;
1663		}
1664
1665		node = rb_next(node);
1666		if (!node)
1667			break;
1668	}
1669out:
1670	spin_unlock(&tree->lock);
1671}
1672
1673/*
1674 * find a contiguous range of bytes in the file marked as delalloc, not
1675 * more than 'max_bytes'.  start and end are used to return the range,
1676 *
1677 * true is returned if we find something, false if nothing was in the tree
1678 */
1679static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1680					u64 *start, u64 *end, u64 max_bytes,
1681					struct extent_state **cached_state)
1682{
1683	struct rb_node *node;
1684	struct extent_state *state;
1685	u64 cur_start = *start;
1686	bool found = false;
1687	u64 total_bytes = 0;
 
1688
1689	spin_lock(&tree->lock);
 
 
1690
1691	/*
1692	 * this search will find all the extents that end after
1693	 * our range starts.
1694	 */
1695	node = tree_search(tree, cur_start);
1696	if (!node) {
1697		*end = (u64)-1;
1698		goto out;
1699	}
1700
1701	while (1) {
1702		state = rb_entry(node, struct extent_state, rb_node);
1703		if (found && (state->start != cur_start ||
1704			      (state->state & EXTENT_BOUNDARY))) {
1705			goto out;
1706		}
1707		if (!(state->state & EXTENT_DELALLOC)) {
1708			if (!found)
1709				*end = state->end;
1710			goto out;
1711		}
1712		if (!found) {
1713			*start = state->start;
1714			*cached_state = state;
1715			refcount_inc(&state->refs);
1716		}
1717		found = true;
1718		*end = state->end;
1719		cur_start = state->end + 1;
1720		node = rb_next(node);
1721		total_bytes += state->end - state->start + 1;
1722		if (total_bytes >= max_bytes)
1723			break;
1724		if (!node)
1725			break;
1726	}
1727out:
1728	spin_unlock(&tree->lock);
1729	return found;
1730}
1731
1732static int __process_pages_contig(struct address_space *mapping,
1733				  struct page *locked_page,
1734				  pgoff_t start_index, pgoff_t end_index,
1735				  unsigned long page_ops, pgoff_t *index_ret);
1736
1737static noinline void __unlock_for_delalloc(struct inode *inode,
1738					   struct page *locked_page,
1739					   u64 start, u64 end)
1740{
1741	unsigned long index = start >> PAGE_SHIFT;
1742	unsigned long end_index = end >> PAGE_SHIFT;
1743
1744	ASSERT(locked_page);
1745	if (index == locked_page->index && end_index == index)
1746		return;
1747
1748	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1749			       PAGE_UNLOCK, NULL);
1750}
1751
1752static noinline int lock_delalloc_pages(struct inode *inode,
1753					struct page *locked_page,
1754					u64 delalloc_start,
1755					u64 delalloc_end)
1756{
1757	unsigned long index = delalloc_start >> PAGE_SHIFT;
1758	unsigned long index_ret = index;
1759	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1760	int ret;
 
 
 
1761
1762	ASSERT(locked_page);
1763	if (index == locked_page->index && index == end_index)
1764		return 0;
1765
1766	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1767				     end_index, PAGE_LOCK, &index_ret);
1768	if (ret == -EAGAIN)
1769		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1770				      (u64)index_ret << PAGE_SHIFT);
1771	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772}
1773
1774/*
1775 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1776 * more than @max_bytes.  @Start and @end are used to return the range,
1777 *
1778 * Return: true if we find something
1779 *         false if nothing was in the tree
 
 
 
 
 
 
 
 
1780 */
1781EXPORT_FOR_TESTS
1782noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1783				    struct page *locked_page, u64 *start,
1784				    u64 *end)
1785{
 
1786	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1787	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
 
 
 
1788	u64 delalloc_start;
1789	u64 delalloc_end;
1790	bool found;
1791	struct extent_state *cached_state = NULL;
1792	int ret;
1793	int loops = 0;
1794
 
 
 
 
 
 
1795again:
1796	/* step one, find a bunch of delalloc bytes starting at start */
1797	delalloc_start = *start;
1798	delalloc_end = 0;
1799	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1800				    max_bytes, &cached_state);
1801	if (!found || delalloc_end <= *start) {
1802		*start = delalloc_start;
1803		*end = delalloc_end;
 
 
1804		free_extent_state(cached_state);
1805		return false;
1806	}
1807
1808	/*
1809	 * start comes from the offset of locked_page.  We have to lock
1810	 * pages in order, so we can't process delalloc bytes before
1811	 * locked_page
1812	 */
1813	if (delalloc_start < *start)
1814		delalloc_start = *start;
1815
1816	/*
1817	 * make sure to limit the number of pages we try to lock down
1818	 */
1819	if (delalloc_end + 1 - delalloc_start > max_bytes)
1820		delalloc_end = delalloc_start + max_bytes - 1;
1821
1822	/* step two, lock all the pages after the page that has start */
1823	ret = lock_delalloc_pages(inode, locked_page,
1824				  delalloc_start, delalloc_end);
1825	ASSERT(!ret || ret == -EAGAIN);
1826	if (ret == -EAGAIN) {
1827		/* some of the pages are gone, lets avoid looping by
1828		 * shortening the size of the delalloc range we're searching
1829		 */
1830		free_extent_state(cached_state);
1831		cached_state = NULL;
1832		if (!loops) {
1833			max_bytes = PAGE_SIZE;
1834			loops = 1;
1835			goto again;
1836		} else {
1837			found = false;
1838			goto out_failed;
1839		}
1840	}
1841
1842	/* step three, lock the state bits for the whole range */
1843	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1844
1845	/* then test to make sure it is all still delalloc */
1846	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1847			     EXTENT_DELALLOC, 1, cached_state);
1848	if (!ret) {
1849		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1850				     &cached_state);
1851		__unlock_for_delalloc(inode, locked_page,
1852			      delalloc_start, delalloc_end);
1853		cond_resched();
1854		goto again;
1855	}
1856	free_extent_state(cached_state);
1857	*start = delalloc_start;
1858	*end = delalloc_end;
1859out_failed:
1860	return found;
1861}
1862
1863static int __process_pages_contig(struct address_space *mapping,
1864				  struct page *locked_page,
1865				  pgoff_t start_index, pgoff_t end_index,
1866				  unsigned long page_ops, pgoff_t *index_ret)
1867{
1868	unsigned long nr_pages = end_index - start_index + 1;
1869	unsigned long pages_locked = 0;
1870	pgoff_t index = start_index;
1871	struct page *pages[16];
1872	unsigned ret;
1873	int err = 0;
1874	int i;
1875
1876	if (page_ops & PAGE_LOCK) {
1877		ASSERT(page_ops == PAGE_LOCK);
1878		ASSERT(index_ret && *index_ret == start_index);
1879	}
1880
1881	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882		mapping_set_error(mapping, -EIO);
1883
1884	while (nr_pages > 0) {
1885		ret = find_get_pages_contig(mapping, index,
1886				     min_t(unsigned long,
1887				     nr_pages, ARRAY_SIZE(pages)), pages);
1888		if (ret == 0) {
1889			/*
1890			 * Only if we're going to lock these pages,
1891			 * can we find nothing at @index.
1892			 */
1893			ASSERT(page_ops & PAGE_LOCK);
1894			err = -EAGAIN;
1895			goto out;
1896		}
1897
1898		for (i = 0; i < ret; i++) {
1899			if (page_ops & PAGE_SET_PRIVATE2)
1900				SetPagePrivate2(pages[i]);
1901
1902			if (pages[i] == locked_page) {
1903				put_page(pages[i]);
1904				pages_locked++;
1905				continue;
1906			}
1907			if (page_ops & PAGE_CLEAR_DIRTY)
1908				clear_page_dirty_for_io(pages[i]);
1909			if (page_ops & PAGE_SET_WRITEBACK)
1910				set_page_writeback(pages[i]);
1911			if (page_ops & PAGE_SET_ERROR)
1912				SetPageError(pages[i]);
1913			if (page_ops & PAGE_END_WRITEBACK)
1914				end_page_writeback(pages[i]);
1915			if (page_ops & PAGE_UNLOCK)
1916				unlock_page(pages[i]);
1917			if (page_ops & PAGE_LOCK) {
1918				lock_page(pages[i]);
1919				if (!PageDirty(pages[i]) ||
1920				    pages[i]->mapping != mapping) {
1921					unlock_page(pages[i]);
1922					put_page(pages[i]);
1923					err = -EAGAIN;
1924					goto out;
1925				}
1926			}
1927			put_page(pages[i]);
1928			pages_locked++;
1929		}
1930		nr_pages -= ret;
1931		index += ret;
1932		cond_resched();
1933	}
1934out:
1935	if (err && index_ret)
1936		*index_ret = start_index + pages_locked - 1;
1937	return err;
1938}
1939
1940void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1941				  struct page *locked_page,
1942				  unsigned clear_bits,
1943				  unsigned long page_ops)
1944{
1945	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1946			 NULL);
1947
1948	__process_pages_contig(inode->i_mapping, locked_page,
1949			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1950			       page_ops, NULL);
1951}
1952
1953/*
1954 * count the number of bytes in the tree that have a given bit(s)
1955 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1956 * cached.  The total number found is returned.
1957 */
1958u64 count_range_bits(struct extent_io_tree *tree,
1959		     u64 *start, u64 search_end, u64 max_bytes,
1960		     unsigned bits, int contig)
1961{
1962	struct rb_node *node;
1963	struct extent_state *state;
1964	u64 cur_start = *start;
1965	u64 total_bytes = 0;
1966	u64 last = 0;
1967	int found = 0;
1968
1969	if (WARN_ON(search_end <= cur_start))
1970		return 0;
1971
1972	spin_lock(&tree->lock);
1973	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1974		total_bytes = tree->dirty_bytes;
1975		goto out;
1976	}
1977	/*
1978	 * this search will find all the extents that end after
1979	 * our range starts.
1980	 */
1981	node = tree_search(tree, cur_start);
1982	if (!node)
1983		goto out;
1984
1985	while (1) {
1986		state = rb_entry(node, struct extent_state, rb_node);
1987		if (state->start > search_end)
1988			break;
1989		if (contig && found && state->start > last + 1)
1990			break;
1991		if (state->end >= cur_start && (state->state & bits) == bits) {
1992			total_bytes += min(search_end, state->end) + 1 -
1993				       max(cur_start, state->start);
1994			if (total_bytes >= max_bytes)
1995				break;
1996			if (!found) {
1997				*start = max(cur_start, state->start);
1998				found = 1;
1999			}
2000			last = state->end;
2001		} else if (contig && found) {
2002			break;
2003		}
2004		node = rb_next(node);
2005		if (!node)
2006			break;
2007	}
2008out:
2009	spin_unlock(&tree->lock);
2010	return total_bytes;
2011}
2012
2013/*
2014 * set the private field for a given byte offset in the tree.  If there isn't
2015 * an extent_state there already, this does nothing.
 
 
 
 
 
 
2016 */
2017static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
2018		struct io_failure_record *failrec)
2019{
2020	struct rb_node *node;
2021	struct extent_state *state;
2022	int ret = 0;
 
 
2023
2024	spin_lock(&tree->lock);
2025	/*
2026	 * this search will find all the extents that end after
2027	 * our range starts.
2028	 */
2029	node = tree_search(tree, start);
2030	if (!node) {
2031		ret = -ENOENT;
2032		goto out;
2033	}
2034	state = rb_entry(node, struct extent_state, rb_node);
2035	if (state->start != start) {
2036		ret = -ENOENT;
2037		goto out;
 
 
 
 
 
 
 
 
 
 
2038	}
2039	state->failrec = failrec;
2040out:
2041	spin_unlock(&tree->lock);
2042	return ret;
2043}
2044
2045static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
2046		struct io_failure_record **failrec)
2047{
2048	struct rb_node *node;
2049	struct extent_state *state;
2050	int ret = 0;
2051
2052	spin_lock(&tree->lock);
2053	/*
2054	 * this search will find all the extents that end after
2055	 * our range starts.
2056	 */
2057	node = tree_search(tree, start);
2058	if (!node) {
2059		ret = -ENOENT;
2060		goto out;
2061	}
2062	state = rb_entry(node, struct extent_state, rb_node);
2063	if (state->start != start) {
2064		ret = -ENOENT;
2065		goto out;
2066	}
2067	*failrec = state->failrec;
2068out:
2069	spin_unlock(&tree->lock);
2070	return ret;
2071}
2072
2073/*
2074 * searches a range in the state tree for a given mask.
2075 * If 'filled' == 1, this returns 1 only if every extent in the tree
2076 * has the bits set.  Otherwise, 1 is returned if any bit in the
2077 * range is found set.
2078 */
2079int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2080		   unsigned bits, int filled, struct extent_state *cached)
2081{
2082	struct extent_state *state = NULL;
2083	struct rb_node *node;
2084	int bitset = 0;
2085
2086	spin_lock(&tree->lock);
2087	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2088	    cached->end > start)
2089		node = &cached->rb_node;
2090	else
2091		node = tree_search(tree, start);
2092	while (node && start <= end) {
2093		state = rb_entry(node, struct extent_state, rb_node);
2094
2095		if (filled && state->start > start) {
2096			bitset = 0;
2097			break;
2098		}
2099
2100		if (state->start > end)
2101			break;
2102
2103		if (state->state & bits) {
2104			bitset = 1;
2105			if (!filled)
2106				break;
2107		} else if (filled) {
2108			bitset = 0;
2109			break;
2110		}
 
 
 
 
 
 
 
 
 
2111
2112		if (state->end == (u64)-1)
2113			break;
 
2114
2115		start = state->end + 1;
2116		if (start > end)
2117			break;
2118		node = rb_next(node);
2119		if (!node) {
2120			if (filled)
2121				bitset = 0;
2122			break;
2123		}
 
 
 
 
 
 
2124	}
2125	spin_unlock(&tree->lock);
2126	return bitset;
2127}
2128
2129/*
2130 * helper function to set a given page up to date if all the
2131 * extents in the tree for that page are up to date
2132 */
2133static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2134{
2135	u64 start = page_offset(page);
2136	u64 end = start + PAGE_SIZE - 1;
2137	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2138		SetPageUptodate(page);
 
 
 
2139}
2140
2141int free_io_failure(struct extent_io_tree *failure_tree,
2142		    struct extent_io_tree *io_tree,
2143		    struct io_failure_record *rec)
2144{
2145	int ret;
2146	int err = 0;
2147
2148	set_state_failrec(failure_tree, rec->start, NULL);
2149	ret = clear_extent_bits(failure_tree, rec->start,
2150				rec->start + rec->len - 1,
2151				EXTENT_LOCKED | EXTENT_DIRTY);
2152	if (ret)
2153		err = ret;
2154
2155	ret = clear_extent_bits(io_tree, rec->start,
2156				rec->start + rec->len - 1,
2157				EXTENT_DAMAGED);
2158	if (ret && !err)
2159		err = ret;
2160
2161	kfree(rec);
2162	return err;
2163}
2164
2165/*
2166 * this bypasses the standard btrfs submit functions deliberately, as
2167 * the standard behavior is to write all copies in a raid setup. here we only
2168 * want to write the one bad copy. so we do the mapping for ourselves and issue
2169 * submit_bio directly.
2170 * to avoid any synchronization issues, wait for the data after writing, which
2171 * actually prevents the read that triggered the error from finishing.
2172 * currently, there can be no more than two copies of every data bit. thus,
2173 * exactly one rewrite is required.
 
 
2174 */
2175int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2176		      u64 length, u64 logical, struct page *page,
2177		      unsigned int pg_offset, int mirror_num)
2178{
2179	struct bio *bio;
2180	struct btrfs_device *dev;
2181	u64 map_length = 0;
2182	u64 sector;
2183	struct btrfs_bio *bbio = NULL;
2184	int ret;
2185
2186	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2187	BUG_ON(!mirror_num);
 
 
 
 
 
 
2188
2189	bio = btrfs_io_bio_alloc(1);
2190	bio->bi_iter.bi_size = 0;
2191	map_length = length;
 
 
 
2192
2193	/*
2194	 * Avoid races with device replace and make sure our bbio has devices
2195	 * associated to its stripes that don't go away while we are doing the
2196	 * read repair operation.
2197	 */
2198	btrfs_bio_counter_inc_blocked(fs_info);
2199	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2200		/*
2201		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2202		 * to update all raid stripes, but here we just want to correct
2203		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2204		 * stripe's dev and sector.
 
2205		 */
2206		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2207				      &map_length, &bbio, 0);
2208		if (ret) {
2209			btrfs_bio_counter_dec(fs_info);
2210			bio_put(bio);
2211			return -EIO;
2212		}
2213		ASSERT(bbio->mirror_num == 1);
2214	} else {
2215		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2216				      &map_length, &bbio, mirror_num);
2217		if (ret) {
2218			btrfs_bio_counter_dec(fs_info);
2219			bio_put(bio);
2220			return -EIO;
2221		}
2222		BUG_ON(mirror_num != bbio->mirror_num);
2223	}
2224
2225	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2226	bio->bi_iter.bi_sector = sector;
2227	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2228	btrfs_put_bbio(bbio);
2229	if (!dev || !dev->bdev ||
2230	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2231		btrfs_bio_counter_dec(fs_info);
2232		bio_put(bio);
2233		return -EIO;
2234	}
2235	bio_set_dev(bio, dev->bdev);
2236	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2237	bio_add_page(bio, page, length, pg_offset);
2238
2239	if (btrfsic_submit_bio_wait(bio)) {
2240		/* try to remap that extent elsewhere? */
2241		btrfs_bio_counter_dec(fs_info);
2242		bio_put(bio);
2243		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2244		return -EIO;
2245	}
2246
2247	btrfs_info_rl_in_rcu(fs_info,
2248		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2249				  ino, start,
2250				  rcu_str_deref(dev->name), sector);
2251	btrfs_bio_counter_dec(fs_info);
2252	bio_put(bio);
2253	return 0;
2254}
2255
2256int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2257{
2258	struct btrfs_fs_info *fs_info = eb->fs_info;
2259	u64 start = eb->start;
2260	int i, num_pages = num_extent_pages(eb);
2261	int ret = 0;
2262
2263	if (sb_rdonly(fs_info->sb))
2264		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
2265
2266	for (i = 0; i < num_pages; i++) {
2267		struct page *p = eb->pages[i];
 
2268
2269		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2270					start - page_offset(p), mirror_num);
2271		if (ret)
2272			break;
2273		start += PAGE_SIZE;
2274	}
2275
2276	return ret;
 
2277}
2278
2279/*
2280 * each time an IO finishes, we do a fast check in the IO failure tree
2281 * to see if we need to process or clean up an io_failure_record
2282 */
2283int clean_io_failure(struct btrfs_fs_info *fs_info,
2284		     struct extent_io_tree *failure_tree,
2285		     struct extent_io_tree *io_tree, u64 start,
2286		     struct page *page, u64 ino, unsigned int pg_offset)
2287{
2288	u64 private;
2289	struct io_failure_record *failrec;
2290	struct extent_state *state;
2291	int num_copies;
2292	int ret;
2293
2294	private = 0;
2295	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2296			       EXTENT_DIRTY, 0);
2297	if (!ret)
2298		return 0;
2299
2300	ret = get_state_failrec(failure_tree, start, &failrec);
2301	if (ret)
2302		return 0;
2303
2304	BUG_ON(!failrec->this_mirror);
2305
2306	if (failrec->in_validation) {
2307		/* there was no real error, just free the record */
2308		btrfs_debug(fs_info,
2309			"clean_io_failure: freeing dummy error at %llu",
2310			failrec->start);
2311		goto out;
2312	}
2313	if (sb_rdonly(fs_info->sb))
2314		goto out;
2315
2316	spin_lock(&io_tree->lock);
2317	state = find_first_extent_bit_state(io_tree,
2318					    failrec->start,
2319					    EXTENT_LOCKED);
2320	spin_unlock(&io_tree->lock);
2321
2322	if (state && state->start <= failrec->start &&
2323	    state->end >= failrec->start + failrec->len - 1) {
2324		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2325					      failrec->len);
2326		if (num_copies > 1)  {
2327			repair_io_failure(fs_info, ino, start, failrec->len,
2328					  failrec->logical, page, pg_offset,
2329					  failrec->failed_mirror);
2330		}
2331	}
2332
2333out:
2334	free_io_failure(failure_tree, io_tree, failrec);
2335
2336	return 0;
2337}
2338
2339/*
2340 * Can be called when
2341 * - hold extent lock
2342 * - under ordered extent
2343 * - the inode is freeing
2344 */
2345void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2346{
2347	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2348	struct io_failure_record *failrec;
2349	struct extent_state *state, *next;
2350
2351	if (RB_EMPTY_ROOT(&failure_tree->state))
2352		return;
2353
2354	spin_lock(&failure_tree->lock);
2355	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2356	while (state) {
2357		if (state->start > end)
2358			break;
2359
2360		ASSERT(state->end <= end);
2361
2362		next = next_state(state);
2363
2364		failrec = state->failrec;
2365		free_extent_state(state);
2366		kfree(failrec);
2367
2368		state = next;
2369	}
2370	spin_unlock(&failure_tree->lock);
2371}
2372
2373int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2374		struct io_failure_record **failrec_ret)
2375{
2376	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377	struct io_failure_record *failrec;
2378	struct extent_map *em;
2379	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2381	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2382	int ret;
2383	u64 logical;
2384
2385	ret = get_state_failrec(failure_tree, start, &failrec);
2386	if (ret) {
2387		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2388		if (!failrec)
2389			return -ENOMEM;
2390
2391		failrec->start = start;
2392		failrec->len = end - start + 1;
2393		failrec->this_mirror = 0;
2394		failrec->bio_flags = 0;
2395		failrec->in_validation = 0;
2396
2397		read_lock(&em_tree->lock);
2398		em = lookup_extent_mapping(em_tree, start, failrec->len);
2399		if (!em) {
2400			read_unlock(&em_tree->lock);
2401			kfree(failrec);
2402			return -EIO;
2403		}
2404
2405		if (em->start > start || em->start + em->len <= start) {
2406			free_extent_map(em);
2407			em = NULL;
2408		}
2409		read_unlock(&em_tree->lock);
2410		if (!em) {
2411			kfree(failrec);
2412			return -EIO;
2413		}
2414
2415		logical = start - em->start;
2416		logical = em->block_start + logical;
2417		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2418			logical = em->block_start;
2419			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2420			extent_set_compress_type(&failrec->bio_flags,
2421						 em->compress_type);
2422		}
2423
2424		btrfs_debug(fs_info,
2425			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2426			logical, start, failrec->len);
2427
2428		failrec->logical = logical;
2429		free_extent_map(em);
2430
2431		/* set the bits in the private failure tree */
2432		ret = set_extent_bits(failure_tree, start, end,
2433					EXTENT_LOCKED | EXTENT_DIRTY);
2434		if (ret >= 0)
2435			ret = set_state_failrec(failure_tree, start, failrec);
2436		/* set the bits in the inode's tree */
2437		if (ret >= 0)
2438			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2439		if (ret < 0) {
2440			kfree(failrec);
2441			return ret;
2442		}
2443	} else {
2444		btrfs_debug(fs_info,
2445			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2446			failrec->logical, failrec->start, failrec->len,
2447			failrec->in_validation);
2448		/*
2449		 * when data can be on disk more than twice, add to failrec here
2450		 * (e.g. with a list for failed_mirror) to make
2451		 * clean_io_failure() clean all those errors at once.
2452		 */
2453	}
2454
2455	*failrec_ret = failrec;
 
 
2456
 
 
 
 
2457	return 0;
2458}
2459
2460bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2461			   struct io_failure_record *failrec, int failed_mirror)
2462{
2463	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2464	int num_copies;
 
 
2465
2466	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2467	if (num_copies == 1) {
2468		/*
2469		 * we only have a single copy of the data, so don't bother with
2470		 * all the retry and error correction code that follows. no
2471		 * matter what the error is, it is very likely to persist.
2472		 */
2473		btrfs_debug(fs_info,
2474			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2475			num_copies, failrec->this_mirror, failed_mirror);
2476		return false;
2477	}
2478
2479	/*
2480	 * there are two premises:
2481	 *	a) deliver good data to the caller
2482	 *	b) correct the bad sectors on disk
 
 
 
 
 
 
2483	 */
2484	if (failed_bio_pages > 1) {
2485		/*
2486		 * to fulfill b), we need to know the exact failing sectors, as
2487		 * we don't want to rewrite any more than the failed ones. thus,
2488		 * we need separate read requests for the failed bio
2489		 *
2490		 * if the following BUG_ON triggers, our validation request got
2491		 * merged. we need separate requests for our algorithm to work.
2492		 */
2493		BUG_ON(failrec->in_validation);
2494		failrec->in_validation = 1;
2495		failrec->this_mirror = failed_mirror;
2496	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497		/*
2498		 * we're ready to fulfill a) and b) alongside. get a good copy
2499		 * of the failed sector and if we succeed, we have setup
2500		 * everything for repair_io_failure to do the rest for us.
 
2501		 */
2502		if (failrec->in_validation) {
2503			BUG_ON(failrec->this_mirror != failed_mirror);
2504			failrec->in_validation = 0;
2505			failrec->this_mirror = 0;
2506		}
2507		failrec->failed_mirror = failed_mirror;
2508		failrec->this_mirror++;
2509		if (failrec->this_mirror == failed_mirror)
2510			failrec->this_mirror++;
2511	}
2512
2513	if (failrec->this_mirror > num_copies) {
2514		btrfs_debug(fs_info,
2515			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2516			num_copies, failrec->this_mirror, failed_mirror);
2517		return false;
2518	}
2519
2520	return true;
2521}
2522
2523
2524struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2525				    struct io_failure_record *failrec,
2526				    struct page *page, int pg_offset, int icsum,
2527				    bio_end_io_t *endio_func, void *data)
2528{
2529	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530	struct bio *bio;
2531	struct btrfs_io_bio *btrfs_failed_bio;
2532	struct btrfs_io_bio *btrfs_bio;
2533
2534	bio = btrfs_io_bio_alloc(1);
2535	bio->bi_end_io = endio_func;
2536	bio->bi_iter.bi_sector = failrec->logical >> 9;
2537	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2538	bio->bi_iter.bi_size = 0;
2539	bio->bi_private = data;
2540
2541	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2542	if (btrfs_failed_bio->csum) {
2543		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2544
2545		btrfs_bio = btrfs_io_bio(bio);
2546		btrfs_bio->csum = btrfs_bio->csum_inline;
2547		icsum *= csum_size;
2548		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2549		       csum_size);
2550	}
2551
2552	bio_add_page(bio, page, failrec->len, pg_offset);
2553
2554	return bio;
2555}
2556
2557/*
2558 * This is a generic handler for readpage errors. If other copies exist, read
2559 * those and write back good data to the failed position. Does not investigate
2560 * in remapping the failed extent elsewhere, hoping the device will be smart
2561 * enough to do this as needed
 
 
 
 
 
 
2562 */
2563static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2564			      struct page *page, u64 start, u64 end,
2565			      int failed_mirror)
2566{
2567	struct io_failure_record *failrec;
2568	struct inode *inode = page->mapping->host;
2569	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2570	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2571	struct bio *bio;
2572	int read_mode = 0;
2573	blk_status_t status;
2574	int ret;
2575	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2576
2577	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2578
2579	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2580	if (ret)
2581		return ret;
2582
2583	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2584				    failed_mirror)) {
2585		free_io_failure(failure_tree, tree, failrec);
2586		return -EIO;
2587	}
2588
2589	if (failed_bio_pages > 1)
2590		read_mode |= REQ_FAILFAST_DEV;
2591
2592	phy_offset >>= inode->i_sb->s_blocksize_bits;
2593	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2594				      start - page_offset(page),
2595				      (int)phy_offset, failed_bio->bi_end_io,
2596				      NULL);
2597	bio->bi_opf = REQ_OP_READ | read_mode;
2598
2599	btrfs_debug(btrfs_sb(inode->i_sb),
2600		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2601		read_mode, failrec->this_mirror, failrec->in_validation);
2602
2603	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2604					 failrec->bio_flags);
2605	if (status) {
2606		free_io_failure(failure_tree, tree, failrec);
2607		bio_put(bio);
2608		ret = blk_status_to_errno(status);
2609	}
2610
2611	return ret;
2612}
2613
2614/* lots and lots of room for performance fixes in the end_bio funcs */
2615
2616void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2617{
2618	int uptodate = (err == 0);
2619	int ret = 0;
2620
2621	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
 
 
2622
2623	if (!uptodate) {
2624		ClearPageUptodate(page);
2625		SetPageError(page);
2626		ret = err < 0 ? err : -EIO;
2627		mapping_set_error(page->mapping, ret);
2628	}
2629}
2630
2631/*
2632 * after a writepage IO is done, we need to:
2633 * clear the uptodate bits on error
2634 * clear the writeback bits in the extent tree for this IO
2635 * end_page_writeback if the page has no more pending IO
2636 *
2637 * Scheduling is not allowed, so the extent state tree is expected
2638 * to have one and only one object corresponding to this IO.
2639 */
2640static void end_bio_extent_writepage(struct bio *bio)
2641{
2642	int error = blk_status_to_errno(bio->bi_status);
2643	struct bio_vec *bvec;
2644	u64 start;
2645	u64 end;
2646	struct bvec_iter_all iter_all;
2647
2648	ASSERT(!bio_flagged(bio, BIO_CLONED));
2649	bio_for_each_segment_all(bvec, bio, iter_all) {
2650		struct page *page = bvec->bv_page;
2651		struct inode *inode = page->mapping->host;
2652		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653
2654		/* We always issue full-page reads, but if some block
2655		 * in a page fails to read, blk_update_request() will
2656		 * advance bv_offset and adjust bv_len to compensate.
2657		 * Print a warning for nonzero offsets, and an error
2658		 * if they don't add up to a full page.  */
2659		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2660			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2661				btrfs_err(fs_info,
2662				   "partial page write in btrfs with offset %u and length %u",
2663					bvec->bv_offset, bvec->bv_len);
2664			else
2665				btrfs_info(fs_info,
2666				   "incomplete page write in btrfs with offset %u and length %u",
2667					bvec->bv_offset, bvec->bv_len);
2668		}
2669
2670		start = page_offset(page);
2671		end = start + bvec->bv_offset + bvec->bv_len - 1;
 
 
 
2672
2673		end_extent_writepage(page, error, start, end);
2674		end_page_writeback(page);
2675	}
2676
2677	bio_put(bio);
2678}
 
2679
2680static void
2681endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2682			      int uptodate)
2683{
2684	struct extent_state *cached = NULL;
2685	u64 end = start + len - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686
2687	if (uptodate && tree->track_uptodate)
2688		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2689	unlock_extent_cached_atomic(tree, start, end, &cached);
 
2690}
2691
2692/*
2693 * after a readpage IO is done, we need to:
2694 * clear the uptodate bits on error
2695 * set the uptodate bits if things worked
2696 * set the page up to date if all extents in the tree are uptodate
2697 * clear the lock bit in the extent tree
2698 * unlock the page if there are no other extents locked for it
2699 *
2700 * Scheduling is not allowed, so the extent state tree is expected
2701 * to have one and only one object corresponding to this IO.
2702 */
2703static void end_bio_extent_readpage(struct bio *bio)
2704{
2705	struct bio_vec *bvec;
2706	int uptodate = !bio->bi_status;
2707	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2708	struct extent_io_tree *tree, *failure_tree;
2709	u64 offset = 0;
2710	u64 start;
2711	u64 end;
2712	u64 len;
2713	u64 extent_start = 0;
2714	u64 extent_len = 0;
2715	int mirror;
2716	int ret;
2717	struct bvec_iter_all iter_all;
2718
2719	ASSERT(!bio_flagged(bio, BIO_CLONED));
2720	bio_for_each_segment_all(bvec, bio, iter_all) {
2721		struct page *page = bvec->bv_page;
2722		struct inode *inode = page->mapping->host;
2723		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2724		bool data_inode = btrfs_ino(BTRFS_I(inode))
2725			!= BTRFS_BTREE_INODE_OBJECTID;
2726
2727		btrfs_debug(fs_info,
2728			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2729			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2730			io_bio->mirror_num);
2731		tree = &BTRFS_I(inode)->io_tree;
2732		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2733
2734		/* We always issue full-page reads, but if some block
2735		 * in a page fails to read, blk_update_request() will
2736		 * advance bv_offset and adjust bv_len to compensate.
2737		 * Print a warning for nonzero offsets, and an error
2738		 * if they don't add up to a full page.  */
2739		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2740			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2741				btrfs_err(fs_info,
2742					"partial page read in btrfs with offset %u and length %u",
2743					bvec->bv_offset, bvec->bv_len);
2744			else
2745				btrfs_info(fs_info,
2746					"incomplete page read in btrfs with offset %u and length %u",
2747					bvec->bv_offset, bvec->bv_len);
2748		}
2749
2750		start = page_offset(page);
2751		end = start + bvec->bv_offset + bvec->bv_len - 1;
2752		len = bvec->bv_len;
2753
2754		mirror = io_bio->mirror_num;
2755		if (likely(uptodate)) {
2756			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2757							      page, start, end,
2758							      mirror);
2759			if (ret)
2760				uptodate = 0;
2761			else
2762				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2763						 failure_tree, tree, start,
2764						 page,
2765						 btrfs_ino(BTRFS_I(inode)), 0);
2766		}
2767
2768		if (likely(uptodate))
2769			goto readpage_ok;
2770
2771		if (data_inode) {
2772
2773			/*
2774			 * The generic bio_readpage_error handles errors the
2775			 * following way: If possible, new read requests are
2776			 * created and submitted and will end up in
2777			 * end_bio_extent_readpage as well (if we're lucky,
2778			 * not in the !uptodate case). In that case it returns
2779			 * 0 and we just go on with the next page in our bio.
2780			 * If it can't handle the error it will return -EIO and
2781			 * we remain responsible for that page.
2782			 */
2783			ret = bio_readpage_error(bio, offset, page, start, end,
2784						 mirror);
2785			if (ret == 0) {
2786				uptodate = !bio->bi_status;
2787				offset += len;
2788				continue;
2789			}
2790		} else {
2791			struct extent_buffer *eb;
2792
2793			eb = (struct extent_buffer *)page->private;
2794			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2795			eb->read_mirror = mirror;
2796			atomic_dec(&eb->io_pages);
2797			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2798					       &eb->bflags))
2799				btree_readahead_hook(eb, -EIO);
2800		}
2801readpage_ok:
2802		if (likely(uptodate)) {
2803			loff_t i_size = i_size_read(inode);
2804			pgoff_t end_index = i_size >> PAGE_SHIFT;
2805			unsigned off;
2806
2807			/* Zero out the end if this page straddles i_size */
2808			off = offset_in_page(i_size);
2809			if (page->index == end_index && off)
2810				zero_user_segment(page, off, PAGE_SIZE);
2811			SetPageUptodate(page);
2812		} else {
2813			ClearPageUptodate(page);
2814			SetPageError(page);
2815		}
2816		unlock_page(page);
2817		offset += len;
2818
2819		if (unlikely(!uptodate)) {
2820			if (extent_len) {
2821				endio_readpage_release_extent(tree,
2822							      extent_start,
2823							      extent_len, 1);
2824				extent_start = 0;
2825				extent_len = 0;
2826			}
2827			endio_readpage_release_extent(tree, start,
2828						      end - start + 1, 0);
2829		} else if (!extent_len) {
2830			extent_start = start;
2831			extent_len = end + 1 - start;
2832		} else if (extent_start + extent_len == start) {
2833			extent_len += end + 1 - start;
2834		} else {
2835			endio_readpage_release_extent(tree, extent_start,
2836						      extent_len, uptodate);
2837			extent_start = start;
2838			extent_len = end + 1 - start;
2839		}
2840	}
2841
2842	if (extent_len)
2843		endio_readpage_release_extent(tree, extent_start, extent_len,
2844					      uptodate);
2845	btrfs_io_bio_free_csum(io_bio);
2846	bio_put(bio);
2847}
2848
2849/*
2850 * Initialize the members up to but not including 'bio'. Use after allocating a
2851 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2852 * 'bio' because use of __GFP_ZERO is not supported.
2853 */
2854static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2855{
2856	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2857}
2858
2859/*
2860 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2861 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2862 * for the appropriate container_of magic
2863 */
2864struct bio *btrfs_bio_alloc(u64 first_byte)
2865{
2866	struct bio *bio;
2867
2868	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2869	bio->bi_iter.bi_sector = first_byte >> 9;
2870	btrfs_io_bio_init(btrfs_io_bio(bio));
2871	return bio;
 
 
 
2872}
2873
2874struct bio *btrfs_bio_clone(struct bio *bio)
2875{
2876	struct btrfs_io_bio *btrfs_bio;
2877	struct bio *new;
2878
2879	/* Bio allocation backed by a bioset does not fail */
2880	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2881	btrfs_bio = btrfs_io_bio(new);
2882	btrfs_io_bio_init(btrfs_bio);
2883	btrfs_bio->iter = bio->bi_iter;
2884	return new;
2885}
2886
2887struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2888{
2889	struct bio *bio;
2890
2891	/* Bio allocation backed by a bioset does not fail */
2892	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2893	btrfs_io_bio_init(btrfs_io_bio(bio));
2894	return bio;
2895}
2896
2897struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2898{
2899	struct bio *bio;
2900	struct btrfs_io_bio *btrfs_bio;
2901
2902	/* this will never fail when it's backed by a bioset */
2903	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2904	ASSERT(bio);
2905
2906	btrfs_bio = btrfs_io_bio(bio);
2907	btrfs_io_bio_init(btrfs_bio);
2908
2909	bio_trim(bio, offset >> 9, size >> 9);
2910	btrfs_bio->iter = bio->bi_iter;
2911	return bio;
2912}
2913
2914/*
2915 * @opf:	bio REQ_OP_* and REQ_* flags as one value
2916 * @tree:	tree so we can call our merge_bio hook
2917 * @wbc:	optional writeback control for io accounting
2918 * @page:	page to add to the bio
2919 * @pg_offset:	offset of the new bio or to check whether we are adding
2920 *              a contiguous page to the previous one
2921 * @size:	portion of page that we want to write
2922 * @offset:	starting offset in the page
2923 * @bdev:	attach newly created bios to this bdev
2924 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2925 * @end_io_func:     end_io callback for new bio
2926 * @mirror_num:	     desired mirror to read/write
2927 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2928 * @bio_flags:	flags of the current bio to see if we can merge them
2929 */
2930static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2931			      struct writeback_control *wbc,
2932			      struct page *page, u64 offset,
2933			      size_t size, unsigned long pg_offset,
2934			      struct block_device *bdev,
2935			      struct bio **bio_ret,
2936			      bio_end_io_t end_io_func,
2937			      int mirror_num,
2938			      unsigned long prev_bio_flags,
2939			      unsigned long bio_flags,
2940			      bool force_bio_submit)
2941{
2942	int ret = 0;
2943	struct bio *bio;
2944	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2945	sector_t sector = offset >> 9;
2946
2947	ASSERT(bio_ret);
2948
2949	if (*bio_ret) {
2950		bool contig;
2951		bool can_merge = true;
2952
2953		bio = *bio_ret;
2954		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2955			contig = bio->bi_iter.bi_sector == sector;
2956		else
2957			contig = bio_end_sector(bio) == sector;
2958
2959		ASSERT(tree->ops);
2960		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2961			can_merge = false;
2962
2963		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2964		    force_bio_submit ||
2965		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2966			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2967			if (ret < 0) {
2968				*bio_ret = NULL;
2969				return ret;
2970			}
2971			bio = NULL;
2972		} else {
2973			if (wbc)
2974				wbc_account_cgroup_owner(wbc, page, page_size);
2975			return 0;
2976		}
2977	}
2978
2979	bio = btrfs_bio_alloc(offset);
2980	bio_set_dev(bio, bdev);
2981	bio_add_page(bio, page, page_size, pg_offset);
2982	bio->bi_end_io = end_io_func;
2983	bio->bi_private = tree;
2984	bio->bi_write_hint = page->mapping->host->i_write_hint;
2985	bio->bi_opf = opf;
2986	if (wbc) {
2987		wbc_init_bio(wbc, bio);
2988		wbc_account_cgroup_owner(wbc, page, page_size);
2989	}
2990
2991	*bio_ret = bio;
2992
2993	return ret;
2994}
2995
2996static void attach_extent_buffer_page(struct extent_buffer *eb,
2997				      struct page *page)
2998{
2999	if (!PagePrivate(page)) {
3000		SetPagePrivate(page);
3001		get_page(page);
3002		set_page_private(page, (unsigned long)eb);
3003	} else {
3004		WARN_ON(page->private != (unsigned long)eb);
3005	}
3006}
3007
3008void set_page_extent_mapped(struct page *page)
3009{
3010	if (!PagePrivate(page)) {
3011		SetPagePrivate(page);
3012		get_page(page);
3013		set_page_private(page, EXTENT_PAGE_PRIVATE);
3014	}
3015}
3016
3017static struct extent_map *
3018__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3019		 u64 start, u64 len, get_extent_t *get_extent,
3020		 struct extent_map **em_cached)
3021{
3022	struct extent_map *em;
3023
3024	if (em_cached && *em_cached) {
 
 
3025		em = *em_cached;
3026		if (extent_map_in_tree(em) && start >= em->start &&
3027		    start < extent_map_end(em)) {
3028			refcount_inc(&em->refs);
3029			return em;
3030		}
3031
3032		free_extent_map(em);
3033		*em_cached = NULL;
3034	}
3035
3036	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3037	if (em_cached && !IS_ERR_OR_NULL(em)) {
3038		BUG_ON(*em_cached);
3039		refcount_inc(&em->refs);
3040		*em_cached = em;
3041	}
3042	return em;
3043}
3044/*
3045 * basic readpage implementation.  Locked extent state structs are inserted
3046 * into the tree that are removed when the IO is done (by the end_io
3047 * handlers)
3048 * XXX JDM: This needs looking at to ensure proper page locking
3049 * return 0 on success, otherwise return error
3050 */
3051static int __do_readpage(struct extent_io_tree *tree,
3052			 struct page *page,
3053			 get_extent_t *get_extent,
3054			 struct extent_map **em_cached,
3055			 struct bio **bio, int mirror_num,
3056			 unsigned long *bio_flags, unsigned int read_flags,
3057			 u64 *prev_em_start)
3058{
3059	struct inode *inode = page->mapping->host;
 
3060	u64 start = page_offset(page);
3061	const u64 end = start + PAGE_SIZE - 1;
3062	u64 cur = start;
3063	u64 extent_offset;
3064	u64 last_byte = i_size_read(inode);
3065	u64 block_start;
3066	u64 cur_end;
3067	struct extent_map *em;
3068	struct block_device *bdev;
3069	int ret = 0;
3070	int nr = 0;
3071	size_t pg_offset = 0;
3072	size_t iosize;
3073	size_t disk_io_size;
3074	size_t blocksize = inode->i_sb->s_blocksize;
3075	unsigned long this_bio_flag = 0;
3076
3077	set_page_extent_mapped(page);
3078
3079	if (!PageUptodate(page)) {
3080		if (cleancache_get_page(page) == 0) {
3081			BUG_ON(blocksize != PAGE_SIZE);
3082			unlock_extent(tree, start, end);
3083			goto out;
3084		}
3085	}
3086
3087	if (page->index == last_byte >> PAGE_SHIFT) {
3088		char *userpage;
3089		size_t zero_offset = offset_in_page(last_byte);
3090
3091		if (zero_offset) {
3092			iosize = PAGE_SIZE - zero_offset;
3093			userpage = kmap_atomic(page);
3094			memset(userpage + zero_offset, 0, iosize);
3095			flush_dcache_page(page);
3096			kunmap_atomic(userpage);
3097		}
3098	}
 
 
3099	while (cur <= end) {
 
3100		bool force_bio_submit = false;
3101		u64 offset;
3102
 
3103		if (cur >= last_byte) {
3104			char *userpage;
3105			struct extent_state *cached = NULL;
3106
3107			iosize = PAGE_SIZE - pg_offset;
3108			userpage = kmap_atomic(page);
3109			memset(userpage + pg_offset, 0, iosize);
3110			flush_dcache_page(page);
3111			kunmap_atomic(userpage);
3112			set_extent_uptodate(tree, cur, cur + iosize - 1,
3113					    &cached, GFP_NOFS);
3114			unlock_extent_cached(tree, cur,
3115					     cur + iosize - 1, &cached);
3116			break;
3117		}
3118		em = __get_extent_map(inode, page, pg_offset, cur,
3119				      end - cur + 1, get_extent, em_cached);
3120		if (IS_ERR_OR_NULL(em)) {
3121			SetPageError(page);
3122			unlock_extent(tree, cur, end);
3123			break;
3124		}
3125		extent_offset = cur - em->start;
3126		BUG_ON(extent_map_end(em) <= cur);
3127		BUG_ON(end < cur);
3128
3129		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3130			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3131			extent_set_compress_type(&this_bio_flag,
3132						 em->compress_type);
3133		}
3134
3135		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3136		cur_end = min(extent_map_end(em) - 1, end);
3137		iosize = ALIGN(iosize, blocksize);
3138		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3139			disk_io_size = em->block_len;
3140			offset = em->block_start;
3141		} else {
3142			offset = em->block_start + extent_offset;
3143			disk_io_size = iosize;
3144		}
3145		bdev = em->bdev;
3146		block_start = em->block_start;
3147		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3148			block_start = EXTENT_MAP_HOLE;
3149
3150		/*
3151		 * If we have a file range that points to a compressed extent
3152		 * and it's followed by a consecutive file range that points to
3153		 * to the same compressed extent (possibly with a different
3154		 * offset and/or length, so it either points to the whole extent
3155		 * or only part of it), we must make sure we do not submit a
3156		 * single bio to populate the pages for the 2 ranges because
3157		 * this makes the compressed extent read zero out the pages
3158		 * belonging to the 2nd range. Imagine the following scenario:
3159		 *
3160		 *  File layout
3161		 *  [0 - 8K]                     [8K - 24K]
3162		 *    |                               |
3163		 *    |                               |
3164		 * points to extent X,         points to extent X,
3165		 * offset 4K, length of 8K     offset 0, length 16K
3166		 *
3167		 * [extent X, compressed length = 4K uncompressed length = 16K]
3168		 *
3169		 * If the bio to read the compressed extent covers both ranges,
3170		 * it will decompress extent X into the pages belonging to the
3171		 * first range and then it will stop, zeroing out the remaining
3172		 * pages that belong to the other range that points to extent X.
3173		 * So here we make sure we submit 2 bios, one for the first
3174		 * range and another one for the third range. Both will target
3175		 * the same physical extent from disk, but we can't currently
3176		 * make the compressed bio endio callback populate the pages
3177		 * for both ranges because each compressed bio is tightly
3178		 * coupled with a single extent map, and each range can have
3179		 * an extent map with a different offset value relative to the
3180		 * uncompressed data of our extent and different lengths. This
3181		 * is a corner case so we prioritize correctness over
3182		 * non-optimal behavior (submitting 2 bios for the same extent).
3183		 */
3184		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3185		    prev_em_start && *prev_em_start != (u64)-1 &&
3186		    *prev_em_start != em->start)
3187			force_bio_submit = true;
3188
3189		if (prev_em_start)
3190			*prev_em_start = em->start;
3191
3192		free_extent_map(em);
3193		em = NULL;
3194
3195		/* we've found a hole, just zero and go on */
3196		if (block_start == EXTENT_MAP_HOLE) {
3197			char *userpage;
3198			struct extent_state *cached = NULL;
3199
3200			userpage = kmap_atomic(page);
3201			memset(userpage + pg_offset, 0, iosize);
3202			flush_dcache_page(page);
3203			kunmap_atomic(userpage);
3204
3205			set_extent_uptodate(tree, cur, cur + iosize - 1,
3206					    &cached, GFP_NOFS);
3207			unlock_extent_cached(tree, cur,
3208					     cur + iosize - 1, &cached);
3209			cur = cur + iosize;
3210			pg_offset += iosize;
3211			continue;
3212		}
3213		/* the get_extent function already copied into the page */
3214		if (test_range_bit(tree, cur, cur_end,
3215				   EXTENT_UPTODATE, 1, NULL)) {
3216			check_page_uptodate(tree, page);
3217			unlock_extent(tree, cur, cur + iosize - 1);
3218			cur = cur + iosize;
3219			pg_offset += iosize;
3220			continue;
3221		}
3222		/* we have an inline extent but it didn't get marked up
3223		 * to date.  Error out
3224		 */
3225		if (block_start == EXTENT_MAP_INLINE) {
3226			SetPageError(page);
3227			unlock_extent(tree, cur, cur + iosize - 1);
3228			cur = cur + iosize;
3229			pg_offset += iosize;
3230			continue;
3231		}
3232
3233		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3234					 page, offset, disk_io_size,
3235					 pg_offset, bdev, bio,
3236					 end_bio_extent_readpage, mirror_num,
3237					 *bio_flags,
3238					 this_bio_flag,
3239					 force_bio_submit);
3240		if (!ret) {
3241			nr++;
3242			*bio_flags = this_bio_flag;
3243		} else {
3244			SetPageError(page);
3245			unlock_extent(tree, cur, cur + iosize - 1);
3246			goto out;
3247		}
 
 
 
 
 
3248		cur = cur + iosize;
3249		pg_offset += iosize;
3250	}
3251out:
3252	if (!nr) {
3253		if (!PageError(page))
3254			SetPageUptodate(page);
3255		unlock_page(page);
3256	}
3257	return ret;
3258}
3259
3260static inline void contiguous_readpages(struct extent_io_tree *tree,
3261					     struct page *pages[], int nr_pages,
3262					     u64 start, u64 end,
3263					     struct extent_map **em_cached,
3264					     struct bio **bio,
3265					     unsigned long *bio_flags,
3266					     u64 *prev_em_start)
3267{
3268	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3269	int index;
3270
3271	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3272
3273	for (index = 0; index < nr_pages; index++) {
3274		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3275				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3276		put_page(pages[index]);
3277	}
3278}
3279
3280static int __extent_read_full_page(struct extent_io_tree *tree,
3281				   struct page *page,
3282				   get_extent_t *get_extent,
3283				   struct bio **bio, int mirror_num,
3284				   unsigned long *bio_flags,
3285				   unsigned int read_flags)
3286{
3287	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
 
3288	u64 start = page_offset(page);
3289	u64 end = start + PAGE_SIZE - 1;
 
 
3290	int ret;
3291
3292	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
 
 
 
3293
3294	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3295			    bio_flags, read_flags, NULL);
 
 
 
3296	return ret;
3297}
3298
3299int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3300			    get_extent_t *get_extent, int mirror_num)
 
 
 
3301{
3302	struct bio *bio = NULL;
3303	unsigned long bio_flags = 0;
3304	int ret;
3305
3306	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3307				      &bio_flags, 0);
3308	if (bio)
3309		ret = submit_one_bio(bio, mirror_num, bio_flags);
3310	return ret;
3311}
3312
3313static void update_nr_written(struct writeback_control *wbc,
3314			      unsigned long nr_written)
3315{
3316	wbc->nr_to_write -= nr_written;
 
 
 
3317}
3318
3319/*
3320 * helper for __extent_writepage, doing all of the delayed allocation setup.
3321 *
3322 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3323 * to write the page (copy into inline extent).  In this case the IO has
3324 * been started and the page is already unlocked.
3325 *
3326 * This returns 0 if all went well (page still locked)
3327 * This returns < 0 if there were errors (page still locked)
3328 */
3329static noinline_for_stack int writepage_delalloc(struct inode *inode,
3330		struct page *page, struct writeback_control *wbc,
3331		u64 delalloc_start, unsigned long *nr_written)
3332{
3333	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3334	bool found;
 
 
3335	u64 delalloc_to_write = 0;
3336	u64 delalloc_end = 0;
3337	int ret;
3338	int page_started = 0;
3339
3340
3341	while (delalloc_end < page_end) {
3342		found = find_lock_delalloc_range(inode, page,
3343					       &delalloc_start,
3344					       &delalloc_end);
3345		if (!found) {
3346			delalloc_start = delalloc_end + 1;
3347			continue;
3348		}
 
3349		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3350				delalloc_end, &page_started, nr_written, wbc);
3351		if (ret) {
3352			SetPageError(page);
3353			/*
3354			 * btrfs_run_delalloc_range should return < 0 for error
3355			 * but just in case, we use > 0 here meaning the IO is
3356			 * started, so we don't want to return > 0 unless
3357			 * things are going well.
3358			 */
3359			ret = ret < 0 ? ret : -EIO;
3360			goto done;
3361		}
3362		/*
3363		 * delalloc_end is already one less than the total length, so
3364		 * we don't subtract one from PAGE_SIZE
3365		 */
3366		delalloc_to_write += (delalloc_end - delalloc_start +
3367				      PAGE_SIZE) >> PAGE_SHIFT;
3368		delalloc_start = delalloc_end + 1;
3369	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3370	if (wbc->nr_to_write < delalloc_to_write) {
3371		int thresh = 8192;
3372
3373		if (delalloc_to_write < thresh * 2)
3374			thresh = delalloc_to_write;
3375		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3376					 thresh);
3377	}
3378
3379	/* did the fill delalloc function already unlock and start
3380	 * the IO?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3381	 */
3382	if (page_started) {
3383		/*
3384		 * we've unlocked the page, so we can't update
3385		 * the mapping's writeback index, just update
3386		 * nr_to_write.
3387		 */
3388		wbc->nr_to_write -= *nr_written;
3389		return 1;
3390	}
3391
3392	ret = 0;
 
3393
3394done:
3395	return ret;
 
 
 
 
 
 
 
 
 
3396}
3397
3398/*
3399 * helper for __extent_writepage.  This calls the writepage start hooks,
3400 * and does the loop to map the page into extents and bios.
3401 *
3402 * We return 1 if the IO is started and the page is unlocked,
3403 * 0 if all went well (page still locked)
3404 * < 0 if there were errors (page still locked)
3405 */
3406static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3407				 struct page *page,
3408				 struct writeback_control *wbc,
3409				 struct extent_page_data *epd,
3410				 loff_t i_size,
3411				 unsigned long nr_written,
3412				 unsigned int write_flags, int *nr_ret)
3413{
3414	struct extent_io_tree *tree = epd->tree;
3415	u64 start = page_offset(page);
3416	u64 page_end = start + PAGE_SIZE - 1;
3417	u64 end;
3418	u64 cur = start;
3419	u64 extent_offset;
3420	u64 block_start;
3421	u64 iosize;
3422	struct extent_map *em;
3423	struct block_device *bdev;
3424	size_t pg_offset = 0;
3425	size_t blocksize;
3426	int ret = 0;
3427	int nr = 0;
3428	bool compressed;
3429
3430	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3431	if (ret) {
3432		/* Fixup worker will requeue */
3433		if (ret == -EBUSY)
3434			wbc->pages_skipped++;
3435		else
3436			redirty_page_for_writepage(wbc, page);
3437
3438		update_nr_written(wbc, nr_written);
3439		unlock_page(page);
3440		return 1;
3441	}
3442
3443	/*
3444	 * we don't want to touch the inode after unlocking the page,
3445	 * so we update the mapping writeback index now
3446	 */
3447	update_nr_written(wbc, nr_written + 1);
3448
3449	end = page_end;
3450	if (i_size <= start) {
3451		btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3452		goto done;
3453	}
3454
3455	blocksize = inode->i_sb->s_blocksize;
3456
3457	while (cur <= end) {
 
 
3458		u64 em_end;
3459		u64 offset;
 
 
3460
3461		if (cur >= i_size) {
3462			btrfs_writepage_endio_finish_ordered(page, cur,
3463							     page_end, 1);
 
 
 
 
 
 
 
 
 
3464			break;
3465		}
3466		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3467				     end - cur + 1, 1);
3468		if (IS_ERR_OR_NULL(em)) {
3469			SetPageError(page);
 
 
 
 
 
 
3470			ret = PTR_ERR_OR_ZERO(em);
3471			break;
3472		}
3473
3474		extent_offset = cur - em->start;
3475		em_end = extent_map_end(em);
3476		BUG_ON(em_end <= cur);
3477		BUG_ON(end < cur);
3478		iosize = min(em_end - cur, end - cur + 1);
3479		iosize = ALIGN(iosize, blocksize);
3480		offset = em->block_start + extent_offset;
3481		bdev = em->bdev;
3482		block_start = em->block_start;
3483		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3484		free_extent_map(em);
3485		em = NULL;
 
 
3486
3487		/*
3488		 * compressed and inline extents are written through other
3489		 * paths in the FS
3490		 */
3491		if (compressed || block_start == EXTENT_MAP_HOLE ||
3492		    block_start == EXTENT_MAP_INLINE) {
3493			/*
3494			 * end_io notification does not happen here for
3495			 * compressed extents
3496			 */
3497			if (!compressed)
3498				btrfs_writepage_endio_finish_ordered(page, cur,
3499							    cur + iosize - 1,
3500							    1);
3501			else if (compressed) {
3502				/* we don't want to end_page_writeback on
3503				 * a compressed extent.  this happens
3504				 * elsewhere
3505				 */
3506				nr++;
3507			}
3508
3509			cur += iosize;
3510			pg_offset += iosize;
3511			continue;
3512		}
3513
3514		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3515		if (!PageWriteback(page)) {
3516			btrfs_err(BTRFS_I(inode)->root->fs_info,
3517				   "page %lu not writeback, cur %llu end %llu",
3518			       page->index, cur, end);
3519		}
3520
3521		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3522					 page, offset, iosize, pg_offset,
3523					 bdev, &epd->bio,
3524					 end_bio_extent_writepage,
3525					 0, 0, 0, false);
3526		if (ret) {
3527			SetPageError(page);
3528			if (PageWriteback(page))
3529				end_page_writeback(page);
3530		}
3531
3532		cur = cur + iosize;
3533		pg_offset += iosize;
 
3534		nr++;
3535	}
3536done:
 
 
 
 
 
 
 
 
 
3537	*nr_ret = nr;
3538	return ret;
3539}
3540
3541/*
3542 * the writepage semantics are similar to regular writepage.  extent
3543 * records are inserted to lock ranges in the tree, and as dirty areas
3544 * are found, they are marked writeback.  Then the lock bits are removed
3545 * and the end_io handler clears the writeback ranges
3546 *
3547 * Return 0 if everything goes well.
3548 * Return <0 for error.
3549 */
3550static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3551			      struct extent_page_data *epd)
3552{
 
3553	struct inode *inode = page->mapping->host;
3554	u64 start = page_offset(page);
3555	u64 page_end = start + PAGE_SIZE - 1;
3556	int ret;
3557	int nr = 0;
3558	size_t pg_offset = 0;
3559	loff_t i_size = i_size_read(inode);
3560	unsigned long end_index = i_size >> PAGE_SHIFT;
3561	unsigned int write_flags = 0;
3562	unsigned long nr_written = 0;
3563
3564	write_flags = wbc_to_write_flags(wbc);
3565
3566	trace___extent_writepage(page, inode, wbc);
3567
3568	WARN_ON(!PageLocked(page));
3569
3570	ClearPageError(page);
3571
3572	pg_offset = offset_in_page(i_size);
3573	if (page->index > end_index ||
3574	   (page->index == end_index && !pg_offset)) {
3575		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3576		unlock_page(page);
3577		return 0;
3578	}
3579
3580	if (page->index == end_index) {
3581		char *userpage;
3582
3583		userpage = kmap_atomic(page);
3584		memset(userpage + pg_offset, 0,
3585		       PAGE_SIZE - pg_offset);
3586		kunmap_atomic(userpage);
3587		flush_dcache_page(page);
3588	}
3589
3590	pg_offset = 0;
3591
3592	set_page_extent_mapped(page);
 
 
3593
3594	if (!epd->extent_locked) {
3595		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3596		if (ret == 1)
3597			goto done_unlocked;
3598		if (ret)
3599			goto done;
3600	}
3601
3602	ret = __extent_writepage_io(inode, page, wbc, epd,
3603				    i_size, nr_written, write_flags, &nr);
3604	if (ret == 1)
3605		goto done_unlocked;
 
 
3606
3607done:
3608	if (nr == 0) {
3609		/* make sure the mapping tag for page dirty gets cleared */
3610		set_page_writeback(page);
3611		end_page_writeback(page);
3612	}
3613	if (PageError(page)) {
3614		ret = ret < 0 ? ret : -EIO;
3615		end_extent_writepage(page, ret, start, page_end);
 
3616	}
3617	unlock_page(page);
3618	ASSERT(ret <= 0);
3619	return ret;
3620
3621done_unlocked:
3622	return 0;
3623}
3624
3625void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3626{
3627	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3628		       TASK_UNINTERRUPTIBLE);
3629}
3630
3631static void end_extent_buffer_writeback(struct extent_buffer *eb)
3632{
3633	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3634	smp_mb__after_atomic();
3635	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3636}
3637
3638/*
3639 * Lock eb pages and flush the bio if we can't the locks
3640 *
3641 * Return  0 if nothing went wrong
3642 * Return >0 is same as 0, except bio is not submitted
3643 * Return <0 if something went wrong, no page is locked
3644 */
3645static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3646			  struct extent_page_data *epd)
3647{
3648	struct btrfs_fs_info *fs_info = eb->fs_info;
3649	int i, num_pages, failed_page_nr;
3650	int flush = 0;
3651	int ret = 0;
3652
3653	if (!btrfs_try_tree_write_lock(eb)) {
3654		ret = flush_write_bio(epd);
3655		if (ret < 0)
3656			return ret;
3657		flush = 1;
3658		btrfs_tree_lock(eb);
3659	}
3660
3661	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3662		btrfs_tree_unlock(eb);
3663		if (!epd->sync_io)
3664			return 0;
3665		if (!flush) {
3666			ret = flush_write_bio(epd);
3667			if (ret < 0)
3668				return ret;
3669			flush = 1;
3670		}
3671		while (1) {
3672			wait_on_extent_buffer_writeback(eb);
3673			btrfs_tree_lock(eb);
3674			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3675				break;
3676			btrfs_tree_unlock(eb);
3677		}
3678	}
3679
3680	/*
3681	 * We need to do this to prevent races in people who check if the eb is
3682	 * under IO since we can end up having no IO bits set for a short period
3683	 * of time.
3684	 */
3685	spin_lock(&eb->refs_lock);
3686	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3687		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3688		spin_unlock(&eb->refs_lock);
3689		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3690		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3691					 -eb->len,
3692					 fs_info->dirty_metadata_batch);
3693		ret = 1;
3694	} else {
3695		spin_unlock(&eb->refs_lock);
3696	}
3697
3698	btrfs_tree_unlock(eb);
3699
3700	if (!ret)
3701		return ret;
3702
3703	num_pages = num_extent_pages(eb);
3704	for (i = 0; i < num_pages; i++) {
3705		struct page *p = eb->pages[i];
3706
3707		if (!trylock_page(p)) {
3708			if (!flush) {
3709				int err;
3710
3711				err = flush_write_bio(epd);
3712				if (err < 0) {
3713					ret = err;
3714					failed_page_nr = i;
3715					goto err_unlock;
3716				}
3717				flush = 1;
3718			}
3719			lock_page(p);
3720		}
3721	}
3722
3723	return ret;
3724err_unlock:
3725	/* Unlock already locked pages */
3726	for (i = 0; i < failed_page_nr; i++)
3727		unlock_page(eb->pages[i]);
3728	/*
3729	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3730	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3731	 * be made and undo everything done before.
3732	 */
3733	btrfs_tree_lock(eb);
3734	spin_lock(&eb->refs_lock);
3735	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3736	end_extent_buffer_writeback(eb);
3737	spin_unlock(&eb->refs_lock);
3738	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3739				 fs_info->dirty_metadata_batch);
3740	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3741	btrfs_tree_unlock(eb);
3742	return ret;
3743}
3744
3745static void set_btree_ioerr(struct page *page)
3746{
3747	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3748	struct btrfs_fs_info *fs_info;
3749
3750	SetPageError(page);
3751	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3752		return;
3753
3754	/*
3755	 * If we error out, we should add back the dirty_metadata_bytes
3756	 * to make it consistent.
3757	 */
3758	fs_info = eb->fs_info;
3759	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3760				 eb->len, fs_info->dirty_metadata_batch);
 
 
 
 
 
 
3761
3762	/*
3763	 * If writeback for a btree extent that doesn't belong to a log tree
3764	 * failed, increment the counter transaction->eb_write_errors.
3765	 * We do this because while the transaction is running and before it's
3766	 * committing (when we call filemap_fdata[write|wait]_range against
3767	 * the btree inode), we might have
3768	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3769	 * returns an error or an error happens during writeback, when we're
3770	 * committing the transaction we wouldn't know about it, since the pages
3771	 * can be no longer dirty nor marked anymore for writeback (if a
3772	 * subsequent modification to the extent buffer didn't happen before the
3773	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3774	 * able to find the pages tagged with SetPageError at transaction
3775	 * commit time. So if this happens we must abort the transaction,
3776	 * otherwise we commit a super block with btree roots that point to
3777	 * btree nodes/leafs whose content on disk is invalid - either garbage
3778	 * or the content of some node/leaf from a past generation that got
3779	 * cowed or deleted and is no longer valid.
3780	 *
3781	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3782	 * not be enough - we need to distinguish between log tree extents vs
3783	 * non-log tree extents, and the next filemap_fdatawait_range() call
3784	 * will catch and clear such errors in the mapping - and that call might
3785	 * be from a log sync and not from a transaction commit. Also, checking
3786	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3787	 * not done and would not be reliable - the eb might have been released
3788	 * from memory and reading it back again means that flag would not be
3789	 * set (since it's a runtime flag, not persisted on disk).
3790	 *
3791	 * Using the flags below in the btree inode also makes us achieve the
3792	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3793	 * writeback for all dirty pages and before filemap_fdatawait_range()
3794	 * is called, the writeback for all dirty pages had already finished
3795	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3796	 * filemap_fdatawait_range() would return success, as it could not know
3797	 * that writeback errors happened (the pages were no longer tagged for
3798	 * writeback).
3799	 */
3800	switch (eb->log_index) {
3801	case -1:
3802		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3803		break;
3804	case 0:
3805		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3806		break;
3807	case 1:
3808		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3809		break;
3810	default:
3811		BUG(); /* unexpected, logic error */
3812	}
3813}
3814
3815static void end_bio_extent_buffer_writepage(struct bio *bio)
 
 
 
 
 
3816{
3817	struct bio_vec *bvec;
3818	struct extent_buffer *eb;
3819	int done;
3820	struct bvec_iter_all iter_all;
3821
3822	ASSERT(!bio_flagged(bio, BIO_CLONED));
3823	bio_for_each_segment_all(bvec, bio, iter_all) {
3824		struct page *page = bvec->bv_page;
3825
3826		eb = (struct extent_buffer *)page->private;
3827		BUG_ON(!eb);
3828		done = atomic_dec_and_test(&eb->io_pages);
3829
3830		if (bio->bi_status ||
3831		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3832			ClearPageUptodate(page);
3833			set_btree_ioerr(page);
3834		}
3835
3836		end_page_writeback(page);
3837
3838		if (!done)
3839			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
3840
3841		end_extent_buffer_writeback(eb);
 
3842	}
3843
3844	bio_put(bio);
 
 
 
 
3845}
3846
3847static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3848			struct writeback_control *wbc,
3849			struct extent_page_data *epd)
3850{
3851	struct btrfs_fs_info *fs_info = eb->fs_info;
3852	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3853	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3854	u64 offset = eb->start;
3855	u32 nritems;
3856	int i, num_pages;
3857	unsigned long start, end;
3858	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3859	int ret = 0;
3860
3861	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3862	num_pages = num_extent_pages(eb);
3863	atomic_set(&eb->io_pages, num_pages);
3864
3865	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3866	nritems = btrfs_header_nritems(eb);
3867	if (btrfs_header_level(eb) > 0) {
3868		end = btrfs_node_key_ptr_offset(nritems);
3869
3870		memzero_extent_buffer(eb, end, eb->len - end);
3871	} else {
3872		/*
3873		 * leaf:
3874		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3875		 */
3876		start = btrfs_item_nr_offset(nritems);
3877		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
 
 
 
 
3878		memzero_extent_buffer(eb, start, end - start);
3879	}
 
 
 
 
 
 
 
3880
3881	for (i = 0; i < num_pages; i++) {
3882		struct page *p = eb->pages[i];
3883
3884		clear_page_dirty_for_io(p);
3885		set_page_writeback(p);
3886		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3887					 p, offset, PAGE_SIZE, 0, bdev,
3888					 &epd->bio,
3889					 end_bio_extent_buffer_writepage,
3890					 0, 0, 0, false);
3891		if (ret) {
3892			set_btree_ioerr(p);
3893			if (PageWriteback(p))
3894				end_page_writeback(p);
3895			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3896				end_extent_buffer_writeback(eb);
3897			ret = -EIO;
3898			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3899		}
3900		offset += PAGE_SIZE;
3901		update_nr_written(wbc, 1);
3902		unlock_page(p);
3903	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3904
3905	if (unlikely(ret)) {
3906		for (; i < num_pages; i++) {
3907			struct page *p = eb->pages[i];
3908			clear_page_dirty_for_io(p);
3909			unlock_page(p);
 
 
 
 
 
 
3910		}
 
3911	}
 
 
3912
3913	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3914}
3915
3916int btree_write_cache_pages(struct address_space *mapping,
3917				   struct writeback_control *wbc)
3918{
3919	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3920	struct extent_buffer *eb, *prev_eb = NULL;
3921	struct extent_page_data epd = {
3922		.bio = NULL,
3923		.tree = tree,
3924		.extent_locked = 0,
3925		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3926	};
3927	int ret = 0;
3928	int done = 0;
3929	int nr_to_write_done = 0;
3930	struct pagevec pvec;
3931	int nr_pages;
3932	pgoff_t index;
3933	pgoff_t end;		/* Inclusive */
3934	int scanned = 0;
3935	xa_mark_t tag;
3936
3937	pagevec_init(&pvec);
3938	if (wbc->range_cyclic) {
3939		index = mapping->writeback_index; /* Start from prev offset */
3940		end = -1;
 
 
 
 
 
3941	} else {
3942		index = wbc->range_start >> PAGE_SHIFT;
3943		end = wbc->range_end >> PAGE_SHIFT;
3944		scanned = 1;
3945	}
3946	if (wbc->sync_mode == WB_SYNC_ALL)
3947		tag = PAGECACHE_TAG_TOWRITE;
3948	else
3949		tag = PAGECACHE_TAG_DIRTY;
 
3950retry:
3951	if (wbc->sync_mode == WB_SYNC_ALL)
3952		tag_pages_for_writeback(mapping, index, end);
3953	while (!done && !nr_to_write_done && (index <= end) &&
3954	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3955			tag))) {
3956		unsigned i;
3957
3958		scanned = 1;
3959		for (i = 0; i < nr_pages; i++) {
3960			struct page *page = pvec.pages[i];
3961
3962			if (!PagePrivate(page))
3963				continue;
3964
3965			spin_lock(&mapping->private_lock);
3966			if (!PagePrivate(page)) {
3967				spin_unlock(&mapping->private_lock);
3968				continue;
3969			}
3970
3971			eb = (struct extent_buffer *)page->private;
3972
3973			/*
3974			 * Shouldn't happen and normally this would be a BUG_ON
3975			 * but no sense in crashing the users box for something
3976			 * we can survive anyway.
3977			 */
3978			if (WARN_ON(!eb)) {
3979				spin_unlock(&mapping->private_lock);
3980				continue;
3981			}
3982
3983			if (eb == prev_eb) {
3984				spin_unlock(&mapping->private_lock);
3985				continue;
3986			}
3987
3988			ret = atomic_inc_not_zero(&eb->refs);
3989			spin_unlock(&mapping->private_lock);
3990			if (!ret)
3991				continue;
3992
3993			prev_eb = eb;
3994			ret = lock_extent_buffer_for_io(eb, &epd);
3995			if (!ret) {
3996				free_extent_buffer(eb);
3997				continue;
3998			} else if (ret < 0) {
3999				done = 1;
4000				free_extent_buffer(eb);
4001				break;
4002			}
4003
4004			ret = write_one_eb(eb, wbc, &epd);
4005			if (ret) {
4006				done = 1;
4007				free_extent_buffer(eb);
4008				break;
4009			}
4010			free_extent_buffer(eb);
4011
4012			/*
4013			 * the filesystem may choose to bump up nr_to_write.
4014			 * We have to make sure to honor the new nr_to_write
4015			 * at any time
4016			 */
4017			nr_to_write_done = wbc->nr_to_write <= 0;
4018		}
4019		pagevec_release(&pvec);
4020		cond_resched();
4021	}
4022	if (!scanned && !done) {
4023		/*
4024		 * We hit the last page and there is more work to be done: wrap
4025		 * back to the start of the file
4026		 */
4027		scanned = 1;
4028		index = 0;
4029		goto retry;
4030	}
4031	ASSERT(ret <= 0);
4032	if (ret < 0) {
4033		end_write_bio(&epd, ret);
4034		return ret;
4035	}
4036	ret = flush_write_bio(&epd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4037	return ret;
4038}
4039
4040/**
4041 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4042 * @mapping: address space structure to write
4043 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4044 * @data: data passed to __extent_writepage function
 
4045 *
4046 * If a page is already under I/O, write_cache_pages() skips it, even
4047 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4048 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4049 * and msync() need to guarantee that all the data which was dirty at the time
4050 * the call was made get new I/O started against them.  If wbc->sync_mode is
4051 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4052 * existing IO to complete.
4053 */
4054static int extent_write_cache_pages(struct address_space *mapping,
4055			     struct writeback_control *wbc,
4056			     struct extent_page_data *epd)
4057{
 
4058	struct inode *inode = mapping->host;
4059	int ret = 0;
4060	int done = 0;
4061	int nr_to_write_done = 0;
4062	struct pagevec pvec;
4063	int nr_pages;
4064	pgoff_t index;
4065	pgoff_t end;		/* Inclusive */
4066	pgoff_t done_index;
4067	int range_whole = 0;
4068	int scanned = 0;
4069	xa_mark_t tag;
4070
4071	/*
4072	 * We have to hold onto the inode so that ordered extents can do their
4073	 * work when the IO finishes.  The alternative to this is failing to add
4074	 * an ordered extent if the igrab() fails there and that is a huge pain
4075	 * to deal with, so instead just hold onto the inode throughout the
4076	 * writepages operation.  If it fails here we are freeing up the inode
4077	 * anyway and we'd rather not waste our time writing out stuff that is
4078	 * going to be truncated anyway.
4079	 */
4080	if (!igrab(inode))
4081		return 0;
4082
4083	pagevec_init(&pvec);
4084	if (wbc->range_cyclic) {
4085		index = mapping->writeback_index; /* Start from prev offset */
4086		end = -1;
 
 
 
 
 
4087	} else {
4088		index = wbc->range_start >> PAGE_SHIFT;
4089		end = wbc->range_end >> PAGE_SHIFT;
4090		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4091			range_whole = 1;
4092		scanned = 1;
4093	}
4094
4095	/*
4096	 * We do the tagged writepage as long as the snapshot flush bit is set
4097	 * and we are the first one who do the filemap_flush() on this inode.
4098	 *
4099	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4100	 * not race in and drop the bit.
4101	 */
4102	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4103	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4104			       &BTRFS_I(inode)->runtime_flags))
4105		wbc->tagged_writepages = 1;
4106
4107	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4108		tag = PAGECACHE_TAG_TOWRITE;
4109	else
4110		tag = PAGECACHE_TAG_DIRTY;
4111retry:
4112	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4113		tag_pages_for_writeback(mapping, index, end);
4114	done_index = index;
4115	while (!done && !nr_to_write_done && (index <= end) &&
4116			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4117						&index, end, tag))) {
4118		unsigned i;
4119
4120		scanned = 1;
4121		for (i = 0; i < nr_pages; i++) {
4122			struct page *page = pvec.pages[i];
4123
4124			done_index = page->index;
4125			/*
4126			 * At this point we hold neither the i_pages lock nor
4127			 * the page lock: the page may be truncated or
4128			 * invalidated (changing page->mapping to NULL),
4129			 * or even swizzled back from swapper_space to
4130			 * tmpfs file mapping
4131			 */
4132			if (!trylock_page(page)) {
4133				ret = flush_write_bio(epd);
4134				BUG_ON(ret < 0);
4135				lock_page(page);
 
 
 
 
4136			}
4137
4138			if (unlikely(page->mapping != mapping)) {
4139				unlock_page(page);
 
4140				continue;
4141			}
4142
4143			if (wbc->sync_mode != WB_SYNC_NONE) {
4144				if (PageWriteback(page)) {
4145					ret = flush_write_bio(epd);
4146					BUG_ON(ret < 0);
4147				}
4148				wait_on_page_writeback(page);
4149			}
4150
4151			if (PageWriteback(page) ||
4152			    !clear_page_dirty_for_io(page)) {
4153				unlock_page(page);
4154				continue;
4155			}
4156
4157			ret = __extent_writepage(page, wbc, epd);
4158			if (ret < 0) {
4159				/*
4160				 * done_index is set past this page,
4161				 * so media errors will not choke
4162				 * background writeout for the entire
4163				 * file. This has consequences for
4164				 * range_cyclic semantics (ie. it may
4165				 * not be suitable for data integrity
4166				 * writeout).
4167				 */
4168				done_index = page->index + 1;
4169				done = 1;
4170				break;
4171			}
4172
4173			/*
4174			 * the filesystem may choose to bump up nr_to_write.
4175			 * We have to make sure to honor the new nr_to_write
4176			 * at any time
4177			 */
4178			nr_to_write_done = wbc->nr_to_write <= 0;
 
4179		}
4180		pagevec_release(&pvec);
4181		cond_resched();
4182	}
4183	if (!scanned && !done) {
4184		/*
4185		 * We hit the last page and there is more work to be done: wrap
4186		 * back to the start of the file
4187		 */
4188		scanned = 1;
4189		index = 0;
 
 
 
 
 
 
 
 
4190		goto retry;
4191	}
4192
4193	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4194		mapping->writeback_index = done_index;
4195
4196	btrfs_add_delayed_iput(inode);
4197	return ret;
4198}
4199
4200int extent_write_full_page(struct page *page, struct writeback_control *wbc)
 
 
 
 
 
 
 
4201{
4202	int ret;
4203	struct extent_page_data epd = {
4204		.bio = NULL,
4205		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4206		.extent_locked = 0,
4207		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 
 
 
 
4208	};
4209
4210	ret = __extent_writepage(page, wbc, &epd);
4211	ASSERT(ret <= 0);
4212	if (ret < 0) {
4213		end_write_bio(&epd, ret);
4214		return ret;
4215	}
4216
4217	ret = flush_write_bio(&epd);
4218	ASSERT(ret <= 0);
4219	return ret;
4220}
4221
4222int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4223			      int mode)
4224{
4225	int ret = 0;
4226	struct address_space *mapping = inode->i_mapping;
4227	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4228	struct page *page;
4229	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4230		PAGE_SHIFT;
 
 
 
4231
4232	struct extent_page_data epd = {
4233		.bio = NULL,
4234		.tree = tree,
4235		.extent_locked = 1,
4236		.sync_io = mode == WB_SYNC_ALL,
4237	};
4238	struct writeback_control wbc_writepages = {
4239		.sync_mode	= mode,
4240		.nr_to_write	= nr_pages * 2,
4241		.range_start	= start,
4242		.range_end	= end + 1,
4243	};
4244
4245	while (start <= end) {
4246		page = find_get_page(mapping, start >> PAGE_SHIFT);
4247		if (clear_page_dirty_for_io(page))
4248			ret = __extent_writepage(page, &wbc_writepages, &epd);
4249		else {
4250			btrfs_writepage_endio_finish_ordered(page, start,
4251						    start + PAGE_SIZE - 1, 1);
4252			unlock_page(page);
 
4253		}
 
 
 
 
4254		put_page(page);
4255		start += PAGE_SIZE;
4256	}
4257
4258	ASSERT(ret <= 0);
4259	if (ret < 0) {
4260		end_write_bio(&epd, ret);
4261		return ret;
4262	}
4263	ret = flush_write_bio(&epd);
4264	return ret;
4265}
4266
4267int extent_writepages(struct address_space *mapping,
4268		      struct writeback_control *wbc)
4269{
 
4270	int ret = 0;
4271	struct extent_page_data epd = {
4272		.bio = NULL,
4273		.tree = &BTRFS_I(mapping->host)->io_tree,
4274		.extent_locked = 0,
4275		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4276	};
4277
4278	ret = extent_write_cache_pages(mapping, wbc, &epd);
4279	ASSERT(ret <= 0);
4280	if (ret < 0) {
4281		end_write_bio(&epd, ret);
4282		return ret;
4283	}
4284	ret = flush_write_bio(&epd);
 
4285	return ret;
4286}
4287
4288int extent_readpages(struct address_space *mapping, struct list_head *pages,
4289		     unsigned nr_pages)
4290{
4291	struct bio *bio = NULL;
4292	unsigned long bio_flags = 0;
4293	struct page *pagepool[16];
4294	struct extent_map *em_cached = NULL;
4295	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4296	int nr = 0;
4297	u64 prev_em_start = (u64)-1;
 
4298
4299	while (!list_empty(pages)) {
4300		u64 contig_end = 0;
4301
4302		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4303			struct page *page = lru_to_page(pages);
4304
4305			prefetchw(&page->flags);
4306			list_del(&page->lru);
4307			if (add_to_page_cache_lru(page, mapping, page->index,
4308						readahead_gfp_mask(mapping))) {
4309				put_page(page);
4310				break;
4311			}
4312
4313			pagepool[nr++] = page;
4314			contig_end = page_offset(page) + PAGE_SIZE - 1;
4315		}
4316
4317		if (nr) {
4318			u64 contig_start = page_offset(pagepool[0]);
4319
4320			ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4321
4322			contiguous_readpages(tree, pagepool, nr, contig_start,
4323				     contig_end, &em_cached, &bio, &bio_flags,
4324				     &prev_em_start);
4325		}
4326	}
4327
4328	if (em_cached)
4329		free_extent_map(em_cached);
4330
4331	if (bio)
4332		return submit_one_bio(bio, 0, bio_flags);
4333	return 0;
4334}
4335
4336/*
4337 * basic invalidatepage code, this waits on any locked or writeback
4338 * ranges corresponding to the page, and then deletes any extent state
4339 * records from the tree
4340 */
4341int extent_invalidatepage(struct extent_io_tree *tree,
4342			  struct page *page, unsigned long offset)
4343{
4344	struct extent_state *cached_state = NULL;
4345	u64 start = page_offset(page);
4346	u64 end = start + PAGE_SIZE - 1;
4347	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
 
 
 
4348
4349	start += ALIGN(offset, blocksize);
4350	if (start > end)
4351		return 0;
4352
4353	lock_extent_bits(tree, start, end, &cached_state);
4354	wait_on_page_writeback(page);
4355	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4356			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
 
 
 
 
 
4357	return 0;
4358}
4359
4360/*
4361 * a helper for releasepage, this tests for areas of the page that
4362 * are locked or under IO and drops the related state bits if it is safe
4363 * to drop the page.
4364 */
4365static int try_release_extent_state(struct extent_io_tree *tree,
4366				    struct page *page, gfp_t mask)
4367{
4368	u64 start = page_offset(page);
4369	u64 end = start + PAGE_SIZE - 1;
4370	int ret = 1;
4371
4372	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4373		ret = 0;
4374	} else {
 
 
 
 
4375		/*
4376		 * at this point we can safely clear everything except the
4377		 * locked bit and the nodatasum bit
 
 
4378		 */
4379		ret = __clear_extent_bit(tree, start, end,
4380				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4381				 0, 0, NULL, mask, NULL);
4382
4383		/* if clear_extent_bit failed for enomem reasons,
4384		 * we can't allow the release to continue.
4385		 */
4386		if (ret < 0)
4387			ret = 0;
4388		else
4389			ret = 1;
4390	}
4391	return ret;
4392}
4393
4394/*
4395 * a helper for releasepage.  As long as there are no locked extents
4396 * in the range corresponding to the page, both state records and extent
4397 * map records are removed
4398 */
4399int try_release_extent_mapping(struct page *page, gfp_t mask)
4400{
4401	struct extent_map *em;
4402	u64 start = page_offset(page);
4403	u64 end = start + PAGE_SIZE - 1;
4404	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4405	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4406	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4407
4408	if (gfpflags_allow_blocking(mask) &&
4409	    page->mapping->host->i_size > SZ_16M) {
4410		u64 len;
4411		while (start <= end) {
 
 
 
4412			len = end - start + 1;
4413			write_lock(&map->lock);
4414			em = lookup_extent_mapping(map, start, len);
4415			if (!em) {
4416				write_unlock(&map->lock);
4417				break;
4418			}
4419			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4420			    em->start != start) {
4421				write_unlock(&map->lock);
4422				free_extent_map(em);
4423				break;
4424			}
4425			if (!test_range_bit(tree, em->start,
4426					    extent_map_end(em) - 1,
4427					    EXTENT_LOCKED, 0, NULL)) {
4428				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4429					&btrfs_inode->runtime_flags);
4430				remove_extent_mapping(map, em);
4431				/* once for the rb tree */
4432				free_extent_map(em);
4433			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4434			start = extent_map_end(em);
4435			write_unlock(&map->lock);
4436
4437			/* once for us */
4438			free_extent_map(em);
 
 
4439		}
4440	}
4441	return try_release_extent_state(tree, page, mask);
4442}
4443
4444/*
4445 * helper function for fiemap, which doesn't want to see any holes.
4446 * This maps until we find something past 'last'
4447 */
4448static struct extent_map *get_extent_skip_holes(struct inode *inode,
4449						u64 offset, u64 last)
4450{
4451	u64 sectorsize = btrfs_inode_sectorsize(inode);
4452	struct extent_map *em;
4453	u64 len;
 
 
4454
4455	if (offset >= last)
4456		return NULL;
4457
4458	while (1) {
4459		len = last - offset;
4460		if (len == 0)
4461			break;
4462		len = ALIGN(len, sectorsize);
4463		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4464		if (IS_ERR_OR_NULL(em))
4465			return em;
4466
4467		/* if this isn't a hole return it */
4468		if (em->block_start != EXTENT_MAP_HOLE)
4469			return em;
4470
4471		/* this is a hole, advance to the next extent */
4472		offset = extent_map_end(em);
4473		free_extent_map(em);
4474		if (offset >= last)
4475			break;
4476	}
4477	return NULL;
4478}
4479
4480/*
4481 * To cache previous fiemap extent
 
 
 
4482 *
4483 * Will be used for merging fiemap extent
 
 
 
 
 
 
 
 
 
4484 */
4485struct fiemap_cache {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4486	u64 offset;
4487	u64 phys;
4488	u64 len;
4489	u32 flags;
4490	bool cached;
4491};
4492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4493/*
4494 * Helper to submit fiemap extent.
4495 *
4496 * Will try to merge current fiemap extent specified by @offset, @phys,
4497 * @len and @flags with cached one.
4498 * And only when we fails to merge, cached one will be submitted as
4499 * fiemap extent.
4500 *
4501 * Return value is the same as fiemap_fill_next_extent().
4502 */
4503static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4504				struct fiemap_cache *cache,
4505				u64 offset, u64 phys, u64 len, u32 flags)
4506{
4507	int ret = 0;
 
 
 
 
4508
4509	if (!cache->cached)
4510		goto assign;
4511
4512	/*
4513	 * Sanity check, extent_fiemap() should have ensured that new
4514	 * fiemap extent won't overlap with cached one.
4515	 * Not recoverable.
 
 
 
 
4516	 *
4517	 * NOTE: Physical address can overlap, due to compression
4518	 */
4519	if (cache->offset + cache->len > offset) {
4520		WARN_ON(1);
4521		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4522	}
4523
4524	/*
4525	 * Only merges fiemap extents if
4526	 * 1) Their logical addresses are continuous
4527	 *
4528	 * 2) Their physical addresses are continuous
4529	 *    So truly compressed (physical size smaller than logical size)
4530	 *    extents won't get merged with each other
4531	 *
4532	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4533	 *    So regular extent won't get merged with prealloc extent
4534	 */
4535	if (cache->offset + cache->len  == offset &&
4536	    cache->phys + cache->len == phys  &&
4537	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4538			(flags & ~FIEMAP_EXTENT_LAST)) {
4539		cache->len += len;
4540		cache->flags |= flags;
4541		goto try_submit_last;
4542	}
4543
 
4544	/* Not mergeable, need to submit cached one */
4545	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4546				      cache->len, cache->flags);
4547	cache->cached = false;
4548	if (ret)
4549		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4550assign:
4551	cache->cached = true;
4552	cache->offset = offset;
4553	cache->phys = phys;
4554	cache->len = len;
4555	cache->flags = flags;
4556try_submit_last:
4557	if (cache->flags & FIEMAP_EXTENT_LAST) {
4558		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4559				cache->phys, cache->len, cache->flags);
4560		cache->cached = false;
4561	}
4562	return ret;
4563}
4564
4565/*
4566 * Emit last fiemap cache
4567 *
4568 * The last fiemap cache may still be cached in the following case:
4569 * 0		      4k		    8k
4570 * |<- Fiemap range ->|
4571 * |<------------  First extent ----------->|
4572 *
4573 * In this case, the first extent range will be cached but not emitted.
4574 * So we must emit it before ending extent_fiemap().
4575 */
4576static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4577				  struct fiemap_cache *cache)
4578{
4579	int ret;
4580
4581	if (!cache->cached)
4582		return 0;
4583
4584	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4585				      cache->len, cache->flags);
4586	cache->cached = false;
4587	if (ret > 0)
4588		ret = 0;
4589	return ret;
4590}
4591
4592int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4593		__u64 start, __u64 len)
4594{
4595	int ret = 0;
4596	u64 off = start;
4597	u64 max = start + len;
4598	u32 flags = 0;
4599	u32 found_type;
4600	u64 last;
4601	u64 last_for_get_extent = 0;
4602	u64 disko = 0;
4603	u64 isize = i_size_read(inode);
4604	struct btrfs_key found_key;
4605	struct extent_map *em = NULL;
4606	struct extent_state *cached_state = NULL;
4607	struct btrfs_path *path;
4608	struct btrfs_root *root = BTRFS_I(inode)->root;
4609	struct fiemap_cache cache = { 0 };
4610	struct ulist *roots;
4611	struct ulist *tmp_ulist;
4612	int end = 0;
4613	u64 em_start = 0;
4614	u64 em_len = 0;
4615	u64 em_end = 0;
4616
4617	if (len == 0)
4618		return -EINVAL;
 
4619
4620	path = btrfs_alloc_path();
4621	if (!path)
4622		return -ENOMEM;
4623	path->leave_spinning = 1;
 
 
 
4624
4625	roots = ulist_alloc(GFP_KERNEL);
4626	tmp_ulist = ulist_alloc(GFP_KERNEL);
4627	if (!roots || !tmp_ulist) {
4628		ret = -ENOMEM;
4629		goto out_free_ulist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4630	}
4631
4632	start = round_down(start, btrfs_inode_sectorsize(inode));
4633	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
 
 
 
 
 
 
 
4634
4635	/*
4636	 * lookup the last file extent.  We're not using i_size here
4637	 * because there might be preallocation past i_size
 
 
 
 
 
 
 
 
 
 
 
 
4638	 */
4639	ret = btrfs_lookup_file_extent(NULL, root, path,
4640			btrfs_ino(BTRFS_I(inode)), -1, 0);
4641	if (ret < 0) {
4642		goto out_free_ulist;
4643	} else {
4644		WARN_ON(!ret);
4645		if (ret == 1)
4646			ret = 0;
4647	}
4648
4649	path->slots[0]--;
4650	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4651	found_type = found_key.type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4652
4653	/* No extents, but there might be delalloc bits */
4654	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4655	    found_type != BTRFS_EXTENT_DATA_KEY) {
4656		/* have to trust i_size as the end */
4657		last = (u64)-1;
4658		last_for_get_extent = isize;
4659	} else {
4660		/*
4661		 * remember the start of the last extent.  There are a
4662		 * bunch of different factors that go into the length of the
4663		 * extent, so its much less complex to remember where it started
4664		 */
4665		last = found_key.offset;
4666		last_for_get_extent = last + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4667	}
4668	btrfs_release_path(path);
4669
4670	/*
4671	 * we might have some extents allocated but more delalloc past those
4672	 * extents.  so, we trust isize unless the start of the last extent is
4673	 * beyond isize
4674	 */
4675	if (last < isize) {
4676		last = (u64)-1;
4677		last_for_get_extent = isize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4678	}
4679
4680	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4681			 &cached_state);
4682
4683	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4684	if (!em)
4685		goto out;
4686	if (IS_ERR(em)) {
4687		ret = PTR_ERR(em);
4688		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4689	}
4690
4691	while (!end) {
4692		u64 offset_in_extent = 0;
 
 
 
 
 
 
 
 
4693
4694		/* break if the extent we found is outside the range */
4695		if (em->start >= max || extent_map_end(em) < off)
4696			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4697
4698		/*
4699		 * get_extent may return an extent that starts before our
4700		 * requested range.  We have to make sure the ranges
4701		 * we return to fiemap always move forward and don't
4702		 * overlap, so adjust the offsets here
4703		 */
4704		em_start = max(em->start, off);
 
 
 
 
 
 
 
 
 
 
 
 
 
4705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4706		/*
4707		 * record the offset from the start of the extent
4708		 * for adjusting the disk offset below.  Only do this if the
4709		 * extent isn't compressed since our in ram offset may be past
4710		 * what we have actually allocated on disk.
4711		 */
4712		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4713			offset_in_extent = em_start - em->start;
4714		em_end = extent_map_end(em);
4715		em_len = em_end - em_start;
4716		flags = 0;
4717		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4718			disko = em->block_start + offset_in_extent;
4719		else
4720			disko = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
4721
4722		/*
4723		 * bump off for our next call to get_extent
 
4724		 */
4725		off = extent_map_end(em);
4726		if (off >= max)
4727			end = 1;
4728
4729		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4730			end = 1;
4731			flags |= FIEMAP_EXTENT_LAST;
4732		} else if (em->block_start == EXTENT_MAP_INLINE) {
4733			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4734				  FIEMAP_EXTENT_NOT_ALIGNED);
4735		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4736			flags |= (FIEMAP_EXTENT_DELALLOC |
4737				  FIEMAP_EXTENT_UNKNOWN);
4738		} else if (fieinfo->fi_extents_max) {
4739			u64 bytenr = em->block_start -
4740				(em->start - em->orig_start);
4741
4742			/*
4743			 * As btrfs supports shared space, this information
4744			 * can be exported to userspace tools via
4745			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4746			 * then we're just getting a count and we can skip the
4747			 * lookup stuff.
4748			 */
4749			ret = btrfs_check_shared(root,
4750						 btrfs_ino(BTRFS_I(inode)),
4751						 bytenr, roots, tmp_ulist);
4752			if (ret < 0)
4753				goto out_free;
4754			if (ret)
4755				flags |= FIEMAP_EXTENT_SHARED;
4756			ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4757		}
4758		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
 
4759			flags |= FIEMAP_EXTENT_ENCODED;
4760		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4761			flags |= FIEMAP_EXTENT_UNWRITTEN;
4762
4763		free_extent_map(em);
4764		em = NULL;
4765		if ((em_start >= last) || em_len == (u64)-1 ||
4766		   (last == (u64)-1 && isize <= em_end)) {
4767			flags |= FIEMAP_EXTENT_LAST;
4768			end = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4769		}
4770
4771		/* now scan forward to see if this is really the last extent. */
4772		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4773		if (IS_ERR(em)) {
4774			ret = PTR_ERR(em);
4775			goto out;
 
4776		}
4777		if (!em) {
4778			flags |= FIEMAP_EXTENT_LAST;
4779			end = 1;
 
 
 
4780		}
4781		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4782					   em_len, flags);
4783		if (ret) {
4784			if (ret == 1)
4785				ret = 0;
4786			goto out_free;
 
4787		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4788	}
4789out_free:
4790	if (!ret)
4791		ret = emit_last_fiemap_cache(fieinfo, &cache);
4792	free_extent_map(em);
4793out:
4794	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4795			     &cached_state);
4796
4797out_free_ulist:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4798	btrfs_free_path(path);
4799	ulist_free(roots);
4800	ulist_free(tmp_ulist);
4801	return ret;
4802}
4803
4804static void __free_extent_buffer(struct extent_buffer *eb)
4805{
4806	btrfs_leak_debug_del(&eb->leak_list);
4807	kmem_cache_free(extent_buffer_cache, eb);
4808}
4809
4810int extent_buffer_under_io(struct extent_buffer *eb)
4811{
4812	return (atomic_read(&eb->io_pages) ||
4813		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4814		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4815}
4816
4817/*
4818 * Release all pages attached to the extent buffer.
4819 */
4820static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4821{
4822	int i;
4823	int num_pages;
4824	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4825
4826	BUG_ON(extent_buffer_under_io(eb));
 
 
 
4827
4828	num_pages = num_extent_pages(eb);
4829	for (i = 0; i < num_pages; i++) {
4830		struct page *page = eb->pages[i];
 
 
 
4831
4832		if (!page)
4833			continue;
4834		if (mapped)
4835			spin_lock(&page->mapping->private_lock);
 
 
 
 
4836		/*
4837		 * We do this since we'll remove the pages after we've
4838		 * removed the eb from the radix tree, so we could race
4839		 * and have this page now attached to the new eb.  So
4840		 * only clear page_private if it's still connected to
4841		 * this eb.
4842		 */
4843		if (PagePrivate(page) &&
4844		    page->private == (unsigned long)eb) {
4845			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4846			BUG_ON(PageDirty(page));
4847			BUG_ON(PageWriteback(page));
4848			/*
4849			 * We need to make sure we haven't be attached
4850			 * to a new eb.
4851			 */
4852			ClearPagePrivate(page);
4853			set_page_private(page, 0);
4854			/* One for the page private */
4855			put_page(page);
4856		}
4857
4858		if (mapped)
4859			spin_unlock(&page->mapping->private_lock);
 
 
4860
4861		/* One for when we allocated the page */
4862		put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4863	}
4864}
4865
4866/*
4867 * Helper for releasing the extent buffer.
4868 */
4869static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4870{
4871	btrfs_release_extent_buffer_pages(eb);
 
4872	__free_extent_buffer(eb);
4873}
4874
4875static struct extent_buffer *
4876__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4877		      unsigned long len)
4878{
4879	struct extent_buffer *eb = NULL;
4880
4881	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4882	eb->start = start;
4883	eb->len = len;
4884	eb->fs_info = fs_info;
4885	eb->bflags = 0;
4886	rwlock_init(&eb->lock);
4887	atomic_set(&eb->blocking_readers, 0);
4888	eb->blocking_writers = 0;
4889	eb->lock_nested = false;
4890	init_waitqueue_head(&eb->write_lock_wq);
4891	init_waitqueue_head(&eb->read_lock_wq);
4892
4893	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4894
4895	spin_lock_init(&eb->refs_lock);
4896	atomic_set(&eb->refs, 1);
4897	atomic_set(&eb->io_pages, 0);
4898
4899	/*
4900	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4901	 */
4902	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4903		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4904	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4905
4906#ifdef CONFIG_BTRFS_DEBUG
4907	eb->spinning_writers = 0;
4908	atomic_set(&eb->spinning_readers, 0);
4909	atomic_set(&eb->read_locks, 0);
4910	eb->write_locks = 0;
4911#endif
4912
4913	return eb;
4914}
4915
4916struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4917{
4918	int i;
4919	struct page *p;
4920	struct extent_buffer *new;
4921	int num_pages = num_extent_pages(src);
 
4922
4923	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4924	if (new == NULL)
4925		return NULL;
4926
4927	for (i = 0; i < num_pages; i++) {
4928		p = alloc_page(GFP_NOFS);
4929		if (!p) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4930			btrfs_release_extent_buffer(new);
4931			return NULL;
4932		}
4933		attach_extent_buffer_page(new, p);
4934		WARN_ON(PageDirty(p));
4935		SetPageUptodate(p);
4936		new->pages[i] = p;
4937		copy_page(page_address(p), page_address(src->pages[i]));
4938	}
4939
4940	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4941	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4942
4943	return new;
4944}
4945
4946struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4947						  u64 start, unsigned long len)
4948{
4949	struct extent_buffer *eb;
4950	int num_pages;
4951	int i;
4952
4953	eb = __alloc_extent_buffer(fs_info, start, len);
4954	if (!eb)
4955		return NULL;
4956
4957	num_pages = num_extent_pages(eb);
4958	for (i = 0; i < num_pages; i++) {
4959		eb->pages[i] = alloc_page(GFP_NOFS);
4960		if (!eb->pages[i])
 
 
 
 
4961			goto err;
4962	}
 
4963	set_extent_buffer_uptodate(eb);
4964	btrfs_set_header_nritems(eb, 0);
4965	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4966
4967	return eb;
4968err:
4969	for (; i > 0; i--)
4970		__free_page(eb->pages[i - 1]);
 
 
 
 
4971	__free_extent_buffer(eb);
4972	return NULL;
4973}
4974
4975struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4976						u64 start)
4977{
4978	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4979}
4980
4981static void check_buffer_tree_ref(struct extent_buffer *eb)
4982{
4983	int refs;
4984	/* the ref bit is tricky.  We have to make sure it is set
4985	 * if we have the buffer dirty.   Otherwise the
4986	 * code to free a buffer can end up dropping a dirty
4987	 * page
4988	 *
4989	 * Once the ref bit is set, it won't go away while the
4990	 * buffer is dirty or in writeback, and it also won't
4991	 * go away while we have the reference count on the
4992	 * eb bumped.
4993	 *
4994	 * We can't just set the ref bit without bumping the
4995	 * ref on the eb because free_extent_buffer might
4996	 * see the ref bit and try to clear it.  If this happens
4997	 * free_extent_buffer might end up dropping our original
4998	 * ref by mistake and freeing the page before we are able
4999	 * to add one more ref.
5000	 *
5001	 * So bump the ref count first, then set the bit.  If someone
5002	 * beat us to it, drop the ref we added.
 
 
 
 
 
5003	 */
5004	refs = atomic_read(&eb->refs);
5005	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5006		return;
5007
5008	spin_lock(&eb->refs_lock);
5009	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5010		atomic_inc(&eb->refs);
5011	spin_unlock(&eb->refs_lock);
5012}
5013
5014static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5015		struct page *accessed)
5016{
5017	int num_pages, i;
5018
5019	check_buffer_tree_ref(eb);
5020
5021	num_pages = num_extent_pages(eb);
5022	for (i = 0; i < num_pages; i++) {
5023		struct page *p = eb->pages[i];
5024
5025		if (p != accessed)
5026			mark_page_accessed(p);
5027	}
5028}
5029
5030struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5031					 u64 start)
5032{
5033	struct extent_buffer *eb;
5034
5035	rcu_read_lock();
5036	eb = radix_tree_lookup(&fs_info->buffer_radix,
5037			       start >> PAGE_SHIFT);
5038	if (eb && atomic_inc_not_zero(&eb->refs)) {
5039		rcu_read_unlock();
5040		/*
5041		 * Lock our eb's refs_lock to avoid races with
5042		 * free_extent_buffer. When we get our eb it might be flagged
5043		 * with EXTENT_BUFFER_STALE and another task running
5044		 * free_extent_buffer might have seen that flag set,
5045		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5046		 * writeback flags not set) and it's still in the tree (flag
5047		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5048		 * of decrementing the extent buffer's reference count twice.
5049		 * So here we could race and increment the eb's reference count,
5050		 * clear its stale flag, mark it as dirty and drop our reference
5051		 * before the other task finishes executing free_extent_buffer,
5052		 * which would later result in an attempt to free an extent
5053		 * buffer that is dirty.
5054		 */
5055		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5056			spin_lock(&eb->refs_lock);
5057			spin_unlock(&eb->refs_lock);
5058		}
5059		mark_extent_buffer_accessed(eb, NULL);
5060		return eb;
5061	}
5062	rcu_read_unlock();
5063
5064	return NULL;
5065}
5066
5067#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5068struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5069					u64 start)
5070{
5071	struct extent_buffer *eb, *exists = NULL;
5072	int ret;
5073
5074	eb = find_extent_buffer(fs_info, start);
5075	if (eb)
5076		return eb;
5077	eb = alloc_dummy_extent_buffer(fs_info, start);
5078	if (!eb)
5079		return NULL;
5080	eb->fs_info = fs_info;
5081again:
5082	ret = radix_tree_preload(GFP_NOFS);
5083	if (ret)
 
5084		goto free_eb;
 
5085	spin_lock(&fs_info->buffer_lock);
5086	ret = radix_tree_insert(&fs_info->buffer_radix,
5087				start >> PAGE_SHIFT, eb);
5088	spin_unlock(&fs_info->buffer_lock);
5089	radix_tree_preload_end();
5090	if (ret == -EEXIST) {
5091		exists = find_extent_buffer(fs_info, start);
5092		if (exists)
5093			goto free_eb;
5094		else
5095			goto again;
5096	}
5097	check_buffer_tree_ref(eb);
5098	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5099
5100	return eb;
5101free_eb:
5102	btrfs_release_extent_buffer(eb);
5103	return exists;
5104}
5105#endif
5106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5107struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5108					  u64 start)
5109{
5110	unsigned long len = fs_info->nodesize;
5111	int num_pages;
5112	int i;
5113	unsigned long index = start >> PAGE_SHIFT;
5114	struct extent_buffer *eb;
5115	struct extent_buffer *exists = NULL;
5116	struct page *p;
5117	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 
 
 
5118	int uptodate = 1;
5119	int ret;
5120
5121	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5122		btrfs_err(fs_info, "bad tree block start %llu", start);
5123		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
5124	}
 
 
 
5125
5126	eb = find_extent_buffer(fs_info, start);
5127	if (eb)
5128		return eb;
5129
5130	eb = __alloc_extent_buffer(fs_info, start, len);
5131	if (!eb)
5132		return ERR_PTR(-ENOMEM);
5133
5134	num_pages = num_extent_pages(eb);
5135	for (i = 0; i < num_pages; i++, index++) {
5136		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5137		if (!p) {
5138			exists = ERR_PTR(-ENOMEM);
5139			goto free_eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5140		}
 
5141
5142		spin_lock(&mapping->private_lock);
5143		if (PagePrivate(p)) {
5144			/*
5145			 * We could have already allocated an eb for this page
5146			 * and attached one so lets see if we can get a ref on
5147			 * the existing eb, and if we can we know it's good and
5148			 * we can just return that one, else we know we can just
5149			 * overwrite page->private.
5150			 */
5151			exists = (struct extent_buffer *)p->private;
5152			if (atomic_inc_not_zero(&exists->refs)) {
5153				spin_unlock(&mapping->private_lock);
5154				unlock_page(p);
5155				put_page(p);
5156				mark_extent_buffer_accessed(exists, p);
5157				goto free_eb;
5158			}
5159			exists = NULL;
5160
5161			/*
5162			 * Do this so attach doesn't complain and we need to
5163			 * drop the ref the old guy had.
5164			 */
5165			ClearPagePrivate(p);
5166			WARN_ON(PageDirty(p));
5167			put_page(p);
5168		}
5169		attach_extent_buffer_page(eb, p);
5170		spin_unlock(&mapping->private_lock);
5171		WARN_ON(PageDirty(p));
5172		eb->pages[i] = p;
5173		if (!PageUptodate(p))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5174			uptodate = 0;
5175
5176		/*
5177		 * We can't unlock the pages just yet since the extent buffer
5178		 * hasn't been properly inserted in the radix tree, this
5179		 * opens a race with btree_releasepage which can free a page
5180		 * while we are still filling in all pages for the buffer and
5181		 * we could crash.
5182		 */
5183	}
5184	if (uptodate)
5185		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
 
5186again:
5187	ret = radix_tree_preload(GFP_NOFS);
5188	if (ret) {
5189		exists = ERR_PTR(ret);
5190		goto free_eb;
5191	}
5192
5193	spin_lock(&fs_info->buffer_lock);
5194	ret = radix_tree_insert(&fs_info->buffer_radix,
5195				start >> PAGE_SHIFT, eb);
5196	spin_unlock(&fs_info->buffer_lock);
5197	radix_tree_preload_end();
5198	if (ret == -EEXIST) {
5199		exists = find_extent_buffer(fs_info, start);
5200		if (exists)
5201			goto free_eb;
 
5202		else
5203			goto again;
5204	}
5205	/* add one reference for the tree */
5206	check_buffer_tree_ref(eb);
5207	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5208
5209	/*
5210	 * Now it's safe to unlock the pages because any calls to
5211	 * btree_releasepage will correctly detect that a page belongs to a
5212	 * live buffer and won't free them prematurely.
5213	 */
5214	for (i = 0; i < num_pages; i++)
5215		unlock_page(eb->pages[i]);
5216	return eb;
5217
5218free_eb:
5219	WARN_ON(!atomic_dec_and_test(&eb->refs));
5220	for (i = 0; i < num_pages; i++) {
5221		if (eb->pages[i])
5222			unlock_page(eb->pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5223	}
 
 
 
 
 
5224
5225	btrfs_release_extent_buffer(eb);
5226	return exists;
 
 
 
5227}
5228
5229static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5230{
5231	struct extent_buffer *eb =
5232			container_of(head, struct extent_buffer, rcu_head);
5233
5234	__free_extent_buffer(eb);
5235}
5236
5237static int release_extent_buffer(struct extent_buffer *eb)
 
5238{
5239	lockdep_assert_held(&eb->refs_lock);
5240
5241	WARN_ON(atomic_read(&eb->refs) == 0);
5242	if (atomic_dec_and_test(&eb->refs)) {
5243		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5244			struct btrfs_fs_info *fs_info = eb->fs_info;
5245
5246			spin_unlock(&eb->refs_lock);
5247
5248			spin_lock(&fs_info->buffer_lock);
5249			radix_tree_delete(&fs_info->buffer_radix,
5250					  eb->start >> PAGE_SHIFT);
5251			spin_unlock(&fs_info->buffer_lock);
5252		} else {
5253			spin_unlock(&eb->refs_lock);
5254		}
5255
 
5256		/* Should be safe to release our pages at this point */
5257		btrfs_release_extent_buffer_pages(eb);
5258#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5259		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5260			__free_extent_buffer(eb);
5261			return 1;
5262		}
5263#endif
5264		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5265		return 1;
5266	}
5267	spin_unlock(&eb->refs_lock);
5268
5269	return 0;
5270}
5271
5272void free_extent_buffer(struct extent_buffer *eb)
5273{
5274	int refs;
5275	int old;
5276	if (!eb)
5277		return;
5278
 
5279	while (1) {
5280		refs = atomic_read(&eb->refs);
5281		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5282		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5283			refs == 1))
5284			break;
5285		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5286		if (old == refs)
5287			return;
5288	}
5289
5290	spin_lock(&eb->refs_lock);
5291	if (atomic_read(&eb->refs) == 2 &&
5292	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5293	    !extent_buffer_under_io(eb) &&
5294	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5295		atomic_dec(&eb->refs);
5296
5297	/*
5298	 * I know this is terrible, but it's temporary until we stop tracking
5299	 * the uptodate bits and such for the extent buffers.
5300	 */
5301	release_extent_buffer(eb);
5302}
5303
5304void free_extent_buffer_stale(struct extent_buffer *eb)
5305{
5306	if (!eb)
5307		return;
5308
5309	spin_lock(&eb->refs_lock);
5310	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5311
5312	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5313	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5314		atomic_dec(&eb->refs);
5315	release_extent_buffer(eb);
5316}
5317
5318void clear_extent_buffer_dirty(struct extent_buffer *eb)
5319{
5320	int i;
5321	int num_pages;
5322	struct page *page;
 
 
 
 
 
 
5323
5324	num_pages = num_extent_pages(eb);
 
 
 
 
5325
5326	for (i = 0; i < num_pages; i++) {
5327		page = eb->pages[i];
5328		if (!PageDirty(page))
5329			continue;
 
 
 
 
5330
5331		lock_page(page);
5332		WARN_ON(!PagePrivate(page));
 
 
 
5333
5334		clear_page_dirty_for_io(page);
5335		xa_lock_irq(&page->mapping->i_pages);
5336		if (!PageDirty(page))
5337			__xa_clear_mark(&page->mapping->i_pages,
5338					page_index(page), PAGECACHE_TAG_DIRTY);
5339		xa_unlock_irq(&page->mapping->i_pages);
5340		ClearPageError(page);
5341		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5342	}
5343	WARN_ON(atomic_read(&eb->refs) == 0);
5344}
5345
5346bool set_extent_buffer_dirty(struct extent_buffer *eb)
5347{
5348	int i;
5349	int num_pages;
5350	bool was_dirty;
5351
5352	check_buffer_tree_ref(eb);
5353
5354	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5355
5356	num_pages = num_extent_pages(eb);
5357	WARN_ON(atomic_read(&eb->refs) == 0);
5358	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
 
5359
5360	if (!was_dirty)
5361		for (i = 0; i < num_pages; i++)
5362			set_page_dirty(eb->pages[i]);
5363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5364#ifdef CONFIG_BTRFS_DEBUG
5365	for (i = 0; i < num_pages; i++)
5366		ASSERT(PageDirty(eb->pages[i]));
5367#endif
5368
5369	return was_dirty;
5370}
5371
5372void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5373{
5374	int i;
5375	struct page *page;
5376	int num_pages;
5377
5378	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5379	num_pages = num_extent_pages(eb);
5380	for (i = 0; i < num_pages; i++) {
5381		page = eb->pages[i];
5382		if (page)
5383			ClearPageUptodate(page);
 
 
 
 
 
 
 
 
 
 
5384	}
5385}
5386
5387void set_extent_buffer_uptodate(struct extent_buffer *eb)
5388{
5389	int i;
5390	struct page *page;
5391	int num_pages;
5392
5393	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5394	num_pages = num_extent_pages(eb);
5395	for (i = 0; i < num_pages; i++) {
5396		page = eb->pages[i];
5397		SetPageUptodate(page);
 
 
 
 
 
 
 
 
5398	}
5399}
5400
5401int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5402{
5403	int i;
5404	struct page *page;
5405	int err;
5406	int ret = 0;
5407	int locked_pages = 0;
5408	int all_uptodate = 1;
5409	int num_pages;
5410	unsigned long num_reads = 0;
5411	struct bio *bio = NULL;
5412	unsigned long bio_flags = 0;
5413	struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5414
5415	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5416		return 0;
5417
5418	num_pages = num_extent_pages(eb);
5419	for (i = 0; i < num_pages; i++) {
5420		page = eb->pages[i];
5421		if (wait == WAIT_NONE) {
5422			if (!trylock_page(page))
5423				goto unlock_exit;
5424		} else {
5425			lock_page(page);
5426		}
5427		locked_pages++;
5428	}
5429	/*
5430	 * We need to firstly lock all pages to make sure that
5431	 * the uptodate bit of our pages won't be affected by
5432	 * clear_extent_buffer_uptodate().
5433	 */
5434	for (i = 0; i < num_pages; i++) {
5435		page = eb->pages[i];
5436		if (!PageUptodate(page)) {
5437			num_reads++;
5438			all_uptodate = 0;
5439		}
5440	}
5441
5442	if (all_uptodate) {
5443		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5444		goto unlock_exit;
 
 
 
 
 
 
 
 
 
 
 
 
5445	}
5446
5447	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5448	eb->read_mirror = 0;
5449	atomic_set(&eb->io_pages, num_reads);
5450	for (i = 0; i < num_pages; i++) {
5451		page = eb->pages[i];
5452
5453		if (!PageUptodate(page)) {
5454			if (ret) {
5455				atomic_dec(&eb->io_pages);
5456				unlock_page(page);
5457				continue;
5458			}
5459
5460			ClearPageError(page);
5461			err = __extent_read_full_page(tree, page,
5462						      btree_get_extent, &bio,
5463						      mirror_num, &bio_flags,
5464						      REQ_META);
5465			if (err) {
5466				ret = err;
5467				/*
5468				 * We use &bio in above __extent_read_full_page,
5469				 * so we ensure that if it returns error, the
5470				 * current page fails to add itself to bio and
5471				 * it's been unlocked.
5472				 *
5473				 * We must dec io_pages by ourselves.
5474				 */
5475				atomic_dec(&eb->io_pages);
5476			}
5477		} else {
5478			unlock_page(page);
5479		}
5480	}
 
5481
5482	if (bio) {
5483		err = submit_one_bio(bio, mirror_num, bio_flags);
5484		if (err)
5485			return err;
 
5486	}
5487
5488	if (ret || wait != WAIT_COMPLETE)
5489		return ret;
5490
5491	for (i = 0; i < num_pages; i++) {
5492		page = eb->pages[i];
5493		wait_on_page_locked(page);
5494		if (!PageUptodate(page))
5495			ret = -EIO;
5496	}
 
5497
5498	return ret;
 
5499
5500unlock_exit:
5501	while (locked_pages > 0) {
5502		locked_pages--;
5503		page = eb->pages[locked_pages];
5504		unlock_page(page);
5505	}
5506	return ret;
 
 
 
 
 
 
 
 
 
 
5507}
5508
5509void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5510			unsigned long start, unsigned long len)
5511{
 
5512	size_t cur;
5513	size_t offset;
5514	struct page *page;
5515	char *kaddr;
5516	char *dst = (char *)dstv;
5517	size_t start_offset = offset_in_page(eb->start);
5518	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
5519
5520	if (start + len > eb->len) {
5521		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5522		     eb->start, eb->len, start, len);
5523		memset(dst, 0, len);
5524		return;
5525	}
5526
5527	offset = offset_in_page(start_offset + start);
5528
5529	while (len > 0) {
5530		page = eb->pages[i];
5531
5532		cur = min(len, (PAGE_SIZE - offset));
5533		kaddr = page_address(page);
5534		memcpy(dst, kaddr + offset, cur);
5535
5536		dst += cur;
5537		len -= cur;
5538		offset = 0;
5539		i++;
5540	}
5541}
5542
5543int read_extent_buffer_to_user(const struct extent_buffer *eb,
5544			       void __user *dstv,
5545			       unsigned long start, unsigned long len)
5546{
 
5547	size_t cur;
5548	size_t offset;
5549	struct page *page;
5550	char *kaddr;
5551	char __user *dst = (char __user *)dstv;
5552	size_t start_offset = offset_in_page(eb->start);
5553	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5554	int ret = 0;
5555
5556	WARN_ON(start > eb->len);
5557	WARN_ON(start + len > eb->start + eb->len);
5558
5559	offset = offset_in_page(start_offset + start);
 
 
 
 
 
 
5560
5561	while (len > 0) {
5562		page = eb->pages[i];
5563
5564		cur = min(len, (PAGE_SIZE - offset));
5565		kaddr = page_address(page);
5566		if (copy_to_user(dst, kaddr + offset, cur)) {
5567			ret = -EFAULT;
5568			break;
5569		}
5570
5571		dst += cur;
5572		len -= cur;
5573		offset = 0;
5574		i++;
5575	}
5576
5577	return ret;
5578}
5579
5580/*
5581 * return 0 if the item is found within a page.
5582 * return 1 if the item spans two pages.
5583 * return -EINVAL otherwise.
5584 */
5585int map_private_extent_buffer(const struct extent_buffer *eb,
5586			      unsigned long start, unsigned long min_len,
5587			      char **map, unsigned long *map_start,
5588			      unsigned long *map_len)
5589{
5590	size_t offset;
5591	char *kaddr;
5592	struct page *p;
5593	size_t start_offset = offset_in_page(eb->start);
5594	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5595	unsigned long end_i = (start_offset + start + min_len - 1) >>
5596		PAGE_SHIFT;
5597
5598	if (start + min_len > eb->len) {
5599		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5600		       eb->start, eb->len, start, min_len);
5601		return -EINVAL;
5602	}
5603
5604	if (i != end_i)
5605		return 1;
5606
5607	if (i == 0) {
5608		offset = start_offset;
5609		*map_start = 0;
5610	} else {
5611		offset = 0;
5612		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5613	}
5614
5615	p = eb->pages[i];
5616	kaddr = page_address(p);
5617	*map = kaddr + offset;
5618	*map_len = PAGE_SIZE - offset;
5619	return 0;
5620}
5621
5622int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5623			 unsigned long start, unsigned long len)
5624{
 
5625	size_t cur;
5626	size_t offset;
5627	struct page *page;
5628	char *kaddr;
5629	char *ptr = (char *)ptrv;
5630	size_t start_offset = offset_in_page(eb->start);
5631	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5632	int ret = 0;
5633
5634	WARN_ON(start > eb->len);
5635	WARN_ON(start + len > eb->start + eb->len);
5636
5637	offset = offset_in_page(start_offset + start);
5638
5639	while (len > 0) {
5640		page = eb->pages[i];
5641
5642		cur = min(len, (PAGE_SIZE - offset));
5643
5644		kaddr = page_address(page);
 
 
5645		ret = memcmp(ptr, kaddr + offset, cur);
5646		if (ret)
5647			break;
5648
5649		ptr += cur;
5650		len -= cur;
5651		offset = 0;
5652		i++;
5653	}
5654	return ret;
5655}
5656
5657void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5658		const void *srcv)
 
 
 
 
 
5659{
5660	char *kaddr;
 
5661
5662	WARN_ON(!PageUptodate(eb->pages[0]));
5663	kaddr = page_address(eb->pages[0]);
5664	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5665			BTRFS_FSID_SIZE);
5666}
5667
5668void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5669{
5670	char *kaddr;
 
 
 
 
 
 
 
5671
5672	WARN_ON(!PageUptodate(eb->pages[0]));
5673	kaddr = page_address(eb->pages[0]);
5674	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5675			BTRFS_FSID_SIZE);
 
 
 
 
 
 
5676}
5677
5678void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5679			 unsigned long start, unsigned long len)
 
5680{
 
5681	size_t cur;
5682	size_t offset;
5683	struct page *page;
5684	char *kaddr;
5685	char *src = (char *)srcv;
5686	size_t start_offset = offset_in_page(eb->start);
5687	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
 
5688
5689	WARN_ON(start > eb->len);
5690	WARN_ON(start + len > eb->start + eb->len);
5691
5692	offset = offset_in_page(start_offset + start);
 
 
 
 
 
 
 
 
5693
5694	while (len > 0) {
5695		page = eb->pages[i];
5696		WARN_ON(!PageUptodate(page));
5697
5698		cur = min(len, PAGE_SIZE - offset);
5699		kaddr = page_address(page);
5700		memcpy(kaddr + offset, src, cur);
 
 
 
5701
5702		src += cur;
5703		len -= cur;
5704		offset = 0;
5705		i++;
5706	}
5707}
5708
5709void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5710		unsigned long len)
5711{
5712	size_t cur;
5713	size_t offset;
5714	struct page *page;
5715	char *kaddr;
5716	size_t start_offset = offset_in_page(eb->start);
5717	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5718
5719	WARN_ON(start > eb->len);
5720	WARN_ON(start + len > eb->start + eb->len);
 
 
 
5721
5722	offset = offset_in_page(start_offset + start);
 
 
 
5723
5724	while (len > 0) {
5725		page = eb->pages[i];
5726		WARN_ON(!PageUptodate(page));
 
5727
5728		cur = min(len, PAGE_SIZE - offset);
5729		kaddr = page_address(page);
5730		memset(kaddr + offset, 0, cur);
5731
5732		len -= cur;
5733		offset = 0;
5734		i++;
5735	}
5736}
5737
5738void copy_extent_buffer_full(struct extent_buffer *dst,
5739			     struct extent_buffer *src)
5740{
5741	int i;
5742	int num_pages;
 
 
 
 
 
 
 
 
5743
5744	ASSERT(dst->len == src->len);
5745
5746	num_pages = num_extent_pages(dst);
5747	for (i = 0; i < num_pages; i++)
5748		copy_page(page_address(dst->pages[i]),
5749				page_address(src->pages[i]));
 
 
 
 
 
 
5750}
5751
5752void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 
5753			unsigned long dst_offset, unsigned long src_offset,
5754			unsigned long len)
5755{
 
5756	u64 dst_len = dst->len;
5757	size_t cur;
5758	size_t offset;
5759	struct page *page;
5760	char *kaddr;
5761	size_t start_offset = offset_in_page(dst->start);
5762	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
 
 
 
5763
5764	WARN_ON(src->len != dst_len);
5765
5766	offset = offset_in_page(start_offset + dst_offset);
5767
5768	while (len > 0) {
5769		page = dst->pages[i];
5770		WARN_ON(!PageUptodate(page));
5771
5772		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5773
5774		kaddr = page_address(page);
5775		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5776
5777		src_offset += cur;
5778		len -= cur;
5779		offset = 0;
5780		i++;
5781	}
5782}
5783
5784/*
5785 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5786 * given bit number
5787 * @eb: the extent buffer
5788 * @start: offset of the bitmap item in the extent buffer
5789 * @nr: bit number
5790 * @page_index: return index of the page in the extent buffer that contains the
5791 * given bit number
5792 * @page_offset: return offset into the page given by page_index
5793 *
5794 * This helper hides the ugliness of finding the byte in an extent buffer which
5795 * contains a given bit.
5796 */
5797static inline void eb_bitmap_offset(struct extent_buffer *eb,
5798				    unsigned long start, unsigned long nr,
5799				    unsigned long *page_index,
5800				    size_t *page_offset)
5801{
5802	size_t start_offset = offset_in_page(eb->start);
5803	size_t byte_offset = BIT_BYTE(nr);
5804	size_t offset;
5805
5806	/*
5807	 * The byte we want is the offset of the extent buffer + the offset of
5808	 * the bitmap item in the extent buffer + the offset of the byte in the
5809	 * bitmap item.
5810	 */
5811	offset = start_offset + start + byte_offset;
5812
5813	*page_index = offset >> PAGE_SHIFT;
5814	*page_offset = offset_in_page(offset);
5815}
5816
5817/**
5818 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5819 * @eb: the extent buffer
5820 * @start: offset of the bitmap item in the extent buffer
5821 * @nr: bit number to test
 
5822 */
5823int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5824			   unsigned long nr)
5825{
5826	u8 *kaddr;
5827	struct page *page;
5828	unsigned long i;
5829	size_t offset;
 
5830
5831	eb_bitmap_offset(eb, start, nr, &i, &offset);
5832	page = eb->pages[i];
5833	WARN_ON(!PageUptodate(page));
5834	kaddr = page_address(page);
5835	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5836}
5837
5838/**
5839 * extent_buffer_bitmap_set - set an area of a bitmap
5840 * @eb: the extent buffer
5841 * @start: offset of the bitmap item in the extent buffer
5842 * @pos: bit number of the first bit
5843 * @len: number of bits to set
 
 
 
 
 
 
 
 
 
 
5844 */
5845void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5846			      unsigned long pos, unsigned long len)
5847{
 
 
 
 
5848	u8 *kaddr;
5849	struct page *page;
5850	unsigned long i;
5851	size_t offset;
5852	const unsigned int size = pos + len;
5853	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5854	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5855
5856	eb_bitmap_offset(eb, start, pos, &i, &offset);
5857	page = eb->pages[i];
5858	WARN_ON(!PageUptodate(page));
5859	kaddr = page_address(page);
5860
5861	while (len >= bits_to_set) {
5862		kaddr[offset] |= mask_to_set;
5863		len -= bits_to_set;
5864		bits_to_set = BITS_PER_BYTE;
5865		mask_to_set = ~0;
5866		if (++offset >= PAGE_SIZE && len > 0) {
5867			offset = 0;
5868			page = eb->pages[++i];
5869			WARN_ON(!PageUptodate(page));
5870			kaddr = page_address(page);
5871		}
5872	}
5873	if (len) {
5874		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5875		kaddr[offset] |= mask_to_set;
5876	}
5877}
5878
5879
5880/**
5881 * extent_buffer_bitmap_clear - clear an area of a bitmap
5882 * @eb: the extent buffer
5883 * @start: offset of the bitmap item in the extent buffer
5884 * @pos: bit number of the first bit
5885 * @len: number of bits to clear
5886 */
5887void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5888				unsigned long pos, unsigned long len)
5889{
 
 
 
 
 
 
5890	u8 *kaddr;
5891	struct page *page;
5892	unsigned long i;
5893	size_t offset;
5894	const unsigned int size = pos + len;
5895	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5896	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5897
5898	eb_bitmap_offset(eb, start, pos, &i, &offset);
5899	page = eb->pages[i];
5900	WARN_ON(!PageUptodate(page));
5901	kaddr = page_address(page);
5902
5903	while (len >= bits_to_clear) {
5904		kaddr[offset] &= ~mask_to_clear;
5905		len -= bits_to_clear;
5906		bits_to_clear = BITS_PER_BYTE;
5907		mask_to_clear = ~0;
5908		if (++offset >= PAGE_SIZE && len > 0) {
5909			offset = 0;
5910			page = eb->pages[++i];
5911			WARN_ON(!PageUptodate(page));
5912			kaddr = page_address(page);
5913		}
5914	}
5915	if (len) {
5916		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5917		kaddr[offset] &= ~mask_to_clear;
5918	}
5919}
5920
5921static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5922{
5923	unsigned long distance = (src > dst) ? src - dst : dst - src;
5924	return distance < len;
5925}
5926
5927static void copy_pages(struct page *dst_page, struct page *src_page,
5928		       unsigned long dst_off, unsigned long src_off,
5929		       unsigned long len)
5930{
5931	char *dst_kaddr = page_address(dst_page);
5932	char *src_kaddr;
5933	int must_memmove = 0;
5934
5935	if (dst_page != src_page) {
5936		src_kaddr = page_address(src_page);
5937	} else {
5938		src_kaddr = dst_kaddr;
5939		if (areas_overlap(src_off, dst_off, len))
5940			must_memmove = 1;
5941	}
5942
5943	if (must_memmove)
5944		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5945	else
5946		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5947}
5948
5949void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5950			   unsigned long src_offset, unsigned long len)
5951{
5952	struct btrfs_fs_info *fs_info = dst->fs_info;
5953	size_t cur;
5954	size_t dst_off_in_page;
5955	size_t src_off_in_page;
5956	size_t start_offset = offset_in_page(dst->start);
5957	unsigned long dst_i;
5958	unsigned long src_i;
5959
5960	if (src_offset + len > dst->len) {
5961		btrfs_err(fs_info,
5962			"memmove bogus src_offset %lu move len %lu dst len %lu",
5963			 src_offset, len, dst->len);
5964		BUG();
5965	}
5966	if (dst_offset + len > dst->len) {
5967		btrfs_err(fs_info,
5968			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5969			 dst_offset, len, dst->len);
5970		BUG();
5971	}
5972
5973	while (len > 0) {
5974		dst_off_in_page = offset_in_page(start_offset + dst_offset);
5975		src_off_in_page = offset_in_page(start_offset + src_offset);
5976
5977		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5978		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5979
5980		cur = min(len, (unsigned long)(PAGE_SIZE -
5981					       src_off_in_page));
5982		cur = min_t(unsigned long, cur,
5983			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5984
5985		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5986			   dst_off_in_page, src_off_in_page, cur);
 
 
 
 
5987
5988		src_offset += cur;
5989		dst_offset += cur;
5990		len -= cur;
 
 
 
 
 
 
 
 
 
 
5991	}
5992}
5993
5994void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5995			   unsigned long src_offset, unsigned long len)
 
5996{
5997	struct btrfs_fs_info *fs_info = dst->fs_info;
5998	size_t cur;
5999	size_t dst_off_in_page;
6000	size_t src_off_in_page;
6001	unsigned long dst_end = dst_offset + len - 1;
6002	unsigned long src_end = src_offset + len - 1;
6003	size_t start_offset = offset_in_page(dst->start);
6004	unsigned long dst_i;
6005	unsigned long src_i;
6006
6007	if (src_offset + len > dst->len) {
6008		btrfs_err(fs_info,
6009			  "memmove bogus src_offset %lu move len %lu len %lu",
6010			  src_offset, len, dst->len);
6011		BUG();
6012	}
6013	if (dst_offset + len > dst->len) {
6014		btrfs_err(fs_info,
6015			  "memmove bogus dst_offset %lu move len %lu len %lu",
6016			  dst_offset, len, dst->len);
6017		BUG();
6018	}
6019	if (dst_offset < src_offset) {
6020		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6021		return;
6022	}
6023	while (len > 0) {
6024		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6025		src_i = (start_offset + src_end) >> PAGE_SHIFT;
6026
6027		dst_off_in_page = offset_in_page(start_offset + dst_end);
6028		src_off_in_page = offset_in_page(start_offset + src_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6029
6030		cur = min_t(unsigned long, len, src_off_in_page + 1);
6031		cur = min(cur, dst_off_in_page + 1);
6032		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6033			   dst_off_in_page - cur + 1,
6034			   src_off_in_page - cur + 1, cur);
6035
6036		dst_end -= cur;
6037		src_end -= cur;
6038		len -= cur;
6039	}
6040}
6041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6042int try_release_extent_buffer(struct page *page)
6043{
 
6044	struct extent_buffer *eb;
6045
 
 
 
6046	/*
6047	 * We need to make sure nobody is attaching this page to an eb right
6048	 * now.
6049	 */
6050	spin_lock(&page->mapping->private_lock);
6051	if (!PagePrivate(page)) {
6052		spin_unlock(&page->mapping->private_lock);
6053		return 1;
6054	}
6055
6056	eb = (struct extent_buffer *)page->private;
6057	BUG_ON(!eb);
6058
6059	/*
6060	 * This is a little awful but should be ok, we need to make sure that
6061	 * the eb doesn't disappear out from under us while we're looking at
6062	 * this page.
6063	 */
6064	spin_lock(&eb->refs_lock);
6065	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6066		spin_unlock(&eb->refs_lock);
6067		spin_unlock(&page->mapping->private_lock);
6068		return 0;
6069	}
6070	spin_unlock(&page->mapping->private_lock);
6071
6072	/*
6073	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6074	 * so just return, this page will likely be freed soon anyway.
6075	 */
6076	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6077		spin_unlock(&eb->refs_lock);
6078		return 0;
6079	}
6080
6081	return release_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6082}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/sched/mm.h>
  10#include <linux/spinlock.h>
  11#include <linux/blkdev.h>
  12#include <linux/swap.h>
  13#include <linux/writeback.h>
  14#include <linux/pagevec.h>
  15#include <linux/prefetch.h>
  16#include <linux/fsverity.h>
  17#include "extent_io.h"
  18#include "extent-io-tree.h"
  19#include "extent_map.h"
  20#include "ctree.h"
  21#include "btrfs_inode.h"
  22#include "bio.h"
 
  23#include "locking.h"
 
  24#include "backref.h"
  25#include "disk-io.h"
  26#include "subpage.h"
  27#include "zoned.h"
  28#include "block-group.h"
  29#include "compression.h"
  30#include "fs.h"
  31#include "accessors.h"
  32#include "file-item.h"
  33#include "file.h"
  34#include "dev-replace.h"
  35#include "super.h"
  36#include "transaction.h"
  37
 
  38static struct kmem_cache *extent_buffer_cache;
 
 
 
 
 
 
  39
  40#ifdef CONFIG_BTRFS_DEBUG
  41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
 
 
 
 
 
 
  42{
  43	struct btrfs_fs_info *fs_info = eb->fs_info;
  44	unsigned long flags;
  45
  46	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  47	list_add(&eb->leak_list, &fs_info->allocated_ebs);
  48	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  49}
  50
  51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
 
  52{
  53	struct btrfs_fs_info *fs_info = eb->fs_info;
  54	unsigned long flags;
  55
  56	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  57	list_del(&eb->leak_list);
  58	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  59}
  60
  61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
 
  62{
 
  63	struct extent_buffer *eb;
  64	unsigned long flags;
  65
  66	/*
  67	 * If we didn't get into open_ctree our allocated_ebs will not be
  68	 * initialized, so just skip this.
  69	 */
  70	if (!fs_info->allocated_ebs.next)
  71		return;
 
 
 
  72
  73	WARN_ON(!list_empty(&fs_info->allocated_ebs));
  74	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  75	while (!list_empty(&fs_info->allocated_ebs)) {
  76		eb = list_first_entry(&fs_info->allocated_ebs,
  77				      struct extent_buffer, leak_list);
  78		pr_err(
  79	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
  80		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  81		       btrfs_header_owner(eb));
  82		list_del(&eb->leak_list);
  83		WARN_ON_ONCE(1);
  84		kmem_cache_free(extent_buffer_cache, eb);
  85	}
  86	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87}
  88#else
  89#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
  90#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
 
 
  91#endif
  92
  93/*
  94 * Structure to record info about the bio being assembled, and other info like
  95 * how many bytes are there before stripe/ordered extent boundary.
  96 */
  97struct btrfs_bio_ctrl {
  98	struct btrfs_bio *bbio;
  99	enum btrfs_compression_type compress_type;
 100	u32 len_to_oe_boundary;
 101	blk_opf_t opf;
 102	btrfs_bio_end_io_t end_io_func;
 103	struct writeback_control *wbc;
 
 
 
 
 
 104};
 105
 106static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 
 
 107{
 108	struct btrfs_bio *bbio = bio_ctrl->bbio;
 
 
 
 
 
 
 
 
 
 
 
 
 109
 110	if (!bbio)
 111		return;
 
 
 
 112
 113	/* Caller should ensure the bio has at least some range added */
 114	ASSERT(bbio->bio.bi_iter.bi_size);
 115
 116	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
 117	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
 118		btrfs_submit_compressed_read(bbio);
 119	else
 120		btrfs_submit_bio(bbio, 0);
 121
 122	/* The bbio is owned by the end_io handler now */
 123	bio_ctrl->bbio = NULL;
 
 
 
 
 
 
 
 
 
 124}
 125
 126/*
 127 * Submit or fail the current bio in the bio_ctrl structure.
 
 
 
 128 */
 129static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 130{
 131	struct btrfs_bio *bbio = bio_ctrl->bbio;
 132
 133	if (!bbio)
 134		return;
 135
 136	if (ret) {
 137		ASSERT(ret < 0);
 138		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 139		/* The bio is owned by the end_io handler now */
 140		bio_ctrl->bbio = NULL;
 141	} else {
 142		submit_one_bio(bio_ctrl);
 143	}
 
 144}
 145
 146int __init extent_buffer_init_cachep(void)
 147{
 
 
 
 
 
 
 148	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 149						sizeof(struct extent_buffer), 0, 0,
 150						NULL);
 151	if (!extent_buffer_cache)
 152		return -ENOMEM;
 
 
 
 
 
 
 
 
 153
 154	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 155}
 156
 157void __cold extent_buffer_free_cachep(void)
 158{
 
 
 159	/*
 160	 * Make sure all delayed rcu free are flushed before we
 161	 * destroy caches.
 162	 */
 163	rcu_barrier();
 
 164	kmem_cache_destroy(extent_buffer_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165}
 166
 167void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
 168{
 169	unsigned long index = start >> PAGE_SHIFT;
 170	unsigned long end_index = end >> PAGE_SHIFT;
 171	struct page *page;
 172
 173	while (index <= end_index) {
 174		page = find_get_page(inode->i_mapping, index);
 175		BUG_ON(!page); /* Pages should be in the extent_io_tree */
 176		clear_page_dirty_for_io(page);
 177		put_page(page);
 178		index++;
 179	}
 180}
 181
 182static void process_one_page(struct btrfs_fs_info *fs_info,
 183			     struct page *page, struct page *locked_page,
 184			     unsigned long page_ops, u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185{
 186	struct folio *folio = page_folio(page);
 187	u32 len;
 188
 189	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 190	len = end + 1 - start;
 191
 192	if (page_ops & PAGE_SET_ORDERED)
 193		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
 194	if (page_ops & PAGE_START_WRITEBACK) {
 195		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
 196		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197	}
 198	if (page_ops & PAGE_END_WRITEBACK)
 199		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
 200
 201	if (page != locked_page && (page_ops & PAGE_UNLOCK))
 202		btrfs_folio_end_writer_lock(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203}
 204
 205static void __process_pages_contig(struct address_space *mapping,
 206				   struct page *locked_page, u64 start, u64 end,
 207				   unsigned long page_ops)
 
 
 
 
 
 
 208{
 209	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 210	pgoff_t start_index = start >> PAGE_SHIFT;
 211	pgoff_t end_index = end >> PAGE_SHIFT;
 212	pgoff_t index = start_index;
 213	struct folio_batch fbatch;
 214	int i;
 215
 216	folio_batch_init(&fbatch);
 217	while (index <= end_index) {
 218		int found_folios;
 219
 220		found_folios = filemap_get_folios_contig(mapping, &index,
 221				end_index, &fbatch);
 222		for (i = 0; i < found_folios; i++) {
 223			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 224
 225			process_one_page(fs_info, &folio->page, locked_page,
 226					 page_ops, start, end);
 
 
 
 
 
 
 
 
 227		}
 228		folio_batch_release(&fbatch);
 229		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 230	}
 
 
 
 231}
 232
 
 
 
 
 
 233static noinline void __unlock_for_delalloc(struct inode *inode,
 234					   struct page *locked_page,
 235					   u64 start, u64 end)
 236{
 237	unsigned long index = start >> PAGE_SHIFT;
 238	unsigned long end_index = end >> PAGE_SHIFT;
 239
 240	ASSERT(locked_page);
 241	if (index == locked_page->index && end_index == index)
 242		return;
 243
 244	__process_pages_contig(inode->i_mapping, locked_page, start, end,
 245			       PAGE_UNLOCK);
 246}
 247
 248static noinline int lock_delalloc_pages(struct inode *inode,
 249					struct page *locked_page,
 250					u64 start,
 251					u64 end)
 252{
 253	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 254	struct address_space *mapping = inode->i_mapping;
 255	pgoff_t start_index = start >> PAGE_SHIFT;
 256	pgoff_t end_index = end >> PAGE_SHIFT;
 257	pgoff_t index = start_index;
 258	u64 processed_end = start;
 259	struct folio_batch fbatch;
 260
 
 261	if (index == locked_page->index && index == end_index)
 262		return 0;
 263
 264	folio_batch_init(&fbatch);
 265	while (index <= end_index) {
 266		unsigned int found_folios, i;
 267
 268		found_folios = filemap_get_folios_contig(mapping, &index,
 269				end_index, &fbatch);
 270		if (found_folios == 0)
 271			goto out;
 272
 273		for (i = 0; i < found_folios; i++) {
 274			struct folio *folio = fbatch.folios[i];
 275			struct page *page = folio_page(folio, 0);
 276			u32 len = end + 1 - start;
 277
 278			if (page == locked_page)
 279				continue;
 280
 281			if (btrfs_folio_start_writer_lock(fs_info, folio, start,
 282							  len))
 283				goto out;
 284
 285			if (!PageDirty(page) || page->mapping != mapping) {
 286				btrfs_folio_end_writer_lock(fs_info, folio, start,
 287							    len);
 288				goto out;
 289			}
 290
 291			processed_end = page_offset(page) + PAGE_SIZE - 1;
 292		}
 293		folio_batch_release(&fbatch);
 294		cond_resched();
 295	}
 296
 297	return 0;
 298out:
 299	folio_batch_release(&fbatch);
 300	if (processed_end > start)
 301		__unlock_for_delalloc(inode, locked_page, start, processed_end);
 302	return -EAGAIN;
 303}
 304
 305/*
 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 307 * more than @max_bytes.
 308 *
 309 * @start:	The original start bytenr to search.
 310 *		Will store the extent range start bytenr.
 311 * @end:	The original end bytenr of the search range
 312 *		Will store the extent range end bytenr.
 313 *
 314 * Return true if we find a delalloc range which starts inside the original
 315 * range, and @start/@end will store the delalloc range start/end.
 316 *
 317 * Return false if we can't find any delalloc range which starts inside the
 318 * original range, and @start/@end will be the non-delalloc range start/end.
 319 */
 320EXPORT_FOR_TESTS
 321noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 322				    struct page *locked_page, u64 *start,
 323				    u64 *end)
 324{
 325	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 326	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 327	const u64 orig_start = *start;
 328	const u64 orig_end = *end;
 329	/* The sanity tests may not set a valid fs_info. */
 330	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 331	u64 delalloc_start;
 332	u64 delalloc_end;
 333	bool found;
 334	struct extent_state *cached_state = NULL;
 335	int ret;
 336	int loops = 0;
 337
 338	/* Caller should pass a valid @end to indicate the search range end */
 339	ASSERT(orig_end > orig_start);
 340
 341	/* The range should at least cover part of the page */
 342	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
 343		 orig_end <= page_offset(locked_page)));
 344again:
 345	/* step one, find a bunch of delalloc bytes starting at start */
 346	delalloc_start = *start;
 347	delalloc_end = 0;
 348	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 349					  max_bytes, &cached_state);
 350	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 351		*start = delalloc_start;
 352
 353		/* @delalloc_end can be -1, never go beyond @orig_end */
 354		*end = min(delalloc_end, orig_end);
 355		free_extent_state(cached_state);
 356		return false;
 357	}
 358
 359	/*
 360	 * start comes from the offset of locked_page.  We have to lock
 361	 * pages in order, so we can't process delalloc bytes before
 362	 * locked_page
 363	 */
 364	if (delalloc_start < *start)
 365		delalloc_start = *start;
 366
 367	/*
 368	 * make sure to limit the number of pages we try to lock down
 369	 */
 370	if (delalloc_end + 1 - delalloc_start > max_bytes)
 371		delalloc_end = delalloc_start + max_bytes - 1;
 372
 373	/* step two, lock all the pages after the page that has start */
 374	ret = lock_delalloc_pages(inode, locked_page,
 375				  delalloc_start, delalloc_end);
 376	ASSERT(!ret || ret == -EAGAIN);
 377	if (ret == -EAGAIN) {
 378		/* some of the pages are gone, lets avoid looping by
 379		 * shortening the size of the delalloc range we're searching
 380		 */
 381		free_extent_state(cached_state);
 382		cached_state = NULL;
 383		if (!loops) {
 384			max_bytes = PAGE_SIZE;
 385			loops = 1;
 386			goto again;
 387		} else {
 388			found = false;
 389			goto out_failed;
 390		}
 391	}
 392
 393	/* step three, lock the state bits for the whole range */
 394	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 395
 396	/* then test to make sure it is all still delalloc */
 397	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 398			     EXTENT_DELALLOC, cached_state);
 399	if (!ret) {
 400		unlock_extent(tree, delalloc_start, delalloc_end,
 401			      &cached_state);
 402		__unlock_for_delalloc(inode, locked_page,
 403			      delalloc_start, delalloc_end);
 404		cond_resched();
 405		goto again;
 406	}
 407	free_extent_state(cached_state);
 408	*start = delalloc_start;
 409	*end = delalloc_end;
 410out_failed:
 411	return found;
 412}
 413
 414void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 415				  struct page *locked_page,
 416				  u32 clear_bits, unsigned long page_ops)
 
 417{
 418	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 419
 420	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
 421			       start, end, page_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422}
 423
 424static bool btrfs_verify_page(struct page *page, u64 start)
 
 
 
 425{
 426	if (!fsverity_active(page->mapping->host) ||
 427	    PageUptodate(page) ||
 428	    start >= i_size_read(page->mapping->host))
 429		return true;
 430	return fsverity_verify_page(page);
 
 431}
 432
 433static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
 434{
 435	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
 436	struct folio *folio = page_folio(page);
 
 
 
 
 
 
 
 
 
 
 
 437
 438	ASSERT(page_offset(page) <= start &&
 439	       start + len <= page_offset(page) + PAGE_SIZE);
 440
 441	if (uptodate && btrfs_verify_page(page, start))
 442		btrfs_folio_set_uptodate(fs_info, folio, start, len);
 443	else
 444		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 445
 446	if (!btrfs_is_subpage(fs_info, page->mapping))
 447		unlock_page(page);
 448	else
 449		btrfs_subpage_end_reader(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452/*
 453 * After a write IO is done, we need to:
 454 *
 455 * - clear the uptodate bits on error
 456 * - clear the writeback bits in the extent tree for the range
 457 * - filio_end_writeback()  if there is no more pending io for the folio
 458 *
 459 * Scheduling is not allowed, so the extent state tree is expected
 460 * to have one and only one object corresponding to this IO.
 461 */
 462static void end_bbio_data_write(struct btrfs_bio *bbio)
 
 463{
 464	struct btrfs_fs_info *fs_info = bbio->fs_info;
 465	struct bio *bio = &bbio->bio;
 466	int error = blk_status_to_errno(bio->bi_status);
 467	struct folio_iter fi;
 468	const u32 sectorsize = fs_info->sectorsize;
 469
 470	ASSERT(!bio_flagged(bio, BIO_CLONED));
 471	bio_for_each_folio_all(fi, bio) {
 472		struct folio *folio = fi.folio;
 473		u64 start = folio_pos(folio) + fi.offset;
 474		u32 len = fi.length;
 475
 476		/* Only order 0 (single page) folios are allowed for data. */
 477		ASSERT(folio_order(folio) == 0);
 478
 479		/* Our read/write should always be sector aligned. */
 480		if (!IS_ALIGNED(fi.offset, sectorsize))
 481			btrfs_err(fs_info,
 482		"partial page write in btrfs with offset %zu and length %zu",
 483				  fi.offset, fi.length);
 484		else if (!IS_ALIGNED(fi.length, sectorsize))
 485			btrfs_info(fs_info,
 486		"incomplete page write with offset %zu and length %zu",
 487				   fi.offset, fi.length);
 488
 489		btrfs_finish_ordered_extent(bbio->ordered,
 490				folio_page(folio, 0), start, len, !error);
 491		if (error)
 492			mapping_set_error(folio->mapping, error);
 493		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 494	}
 
 
 
 
 
 
 
 
 
 
 
 
 495
 496	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497}
 498
 499/*
 500 * Record previously processed extent range
 501 *
 502 * For endio_readpage_release_extent() to handle a full extent range, reducing
 503 * the extent io operations.
 504 */
 505struct processed_extent {
 506	struct btrfs_inode *inode;
 507	/* Start of the range in @inode */
 508	u64 start;
 509	/* End of the range in @inode */
 510	u64 end;
 511	bool uptodate;
 512};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513
 514/*
 515 * Try to release processed extent range
 516 *
 517 * May not release the extent range right now if the current range is
 518 * contiguous to processed extent.
 519 *
 520 * Will release processed extent when any of @inode, @uptodate, the range is
 521 * no longer contiguous to the processed range.
 522 *
 523 * Passing @inode == NULL will force processed extent to be released.
 524 */
 525static void endio_readpage_release_extent(struct processed_extent *processed,
 526			      struct btrfs_inode *inode, u64 start, u64 end,
 527			      bool uptodate)
 528{
 529	struct extent_state *cached = NULL;
 530	struct extent_io_tree *tree;
 531
 532	/* The first extent, initialize @processed */
 533	if (!processed->inode)
 534		goto update;
 535
 536	/*
 537	 * Contiguous to processed extent, just uptodate the end.
 538	 *
 539	 * Several things to notice:
 540	 *
 541	 * - bio can be merged as long as on-disk bytenr is contiguous
 542	 *   This means we can have page belonging to other inodes, thus need to
 543	 *   check if the inode still matches.
 544	 * - bvec can contain range beyond current page for multi-page bvec
 545	 *   Thus we need to do processed->end + 1 >= start check
 546	 */
 547	if (processed->inode == inode && processed->uptodate == uptodate &&
 548	    processed->end + 1 >= start && end >= processed->end) {
 549		processed->end = end;
 550		return;
 551	}
 
 
 
 552
 553	tree = &processed->inode->io_tree;
 554	/*
 555	 * Now we don't have range contiguous to the processed range, release
 556	 * the processed range now.
 557	 */
 558	unlock_extent(tree, processed->start, processed->end, &cached);
 559
 560update:
 561	/* Update processed to current range */
 562	processed->inode = inode;
 563	processed->start = start;
 564	processed->end = end;
 565	processed->uptodate = uptodate;
 566}
 567
 568static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
 
 
 569{
 570	struct folio *folio = page_folio(page);
 
 
 
 
 
 
 
 
 571
 572	ASSERT(folio_test_locked(folio));
 573	if (!btrfs_is_subpage(fs_info, folio->mapping))
 574		return;
 
 
 575
 576	ASSERT(folio_test_private(folio));
 577	btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
 578}
 579
 580/*
 581 * After a data read IO is done, we need to:
 582 *
 583 * - clear the uptodate bits on error
 584 * - set the uptodate bits if things worked
 585 * - set the folio up to date if all extents in the tree are uptodate
 586 * - clear the lock bit in the extent tree
 587 * - unlock the folio if there are no other extents locked for it
 588 *
 589 * Scheduling is not allowed, so the extent state tree is expected
 590 * to have one and only one object corresponding to this IO.
 591 */
 592static void end_bbio_data_read(struct btrfs_bio *bbio)
 593{
 594	struct btrfs_fs_info *fs_info = bbio->fs_info;
 595	struct bio *bio = &bbio->bio;
 596	struct processed_extent processed = { 0 };
 597	struct folio_iter fi;
 598	const u32 sectorsize = fs_info->sectorsize;
 
 
 
 599
 600	ASSERT(!bio_flagged(bio, BIO_CLONED));
 601	bio_for_each_folio_all(fi, &bbio->bio) {
 602		bool uptodate = !bio->bi_status;
 603		struct folio *folio = fi.folio;
 604		struct inode *inode = folio->mapping->host;
 605		u64 start;
 606		u64 end;
 607		u32 len;
 608
 609		/* For now only order 0 folios are supported for data. */
 610		ASSERT(folio_order(folio) == 0);
 611		btrfs_debug(fs_info,
 612			"%s: bi_sector=%llu, err=%d, mirror=%u",
 613			__func__, bio->bi_iter.bi_sector, bio->bi_status,
 614			bbio->mirror_num);
 615
 
 
 
 
 
 
 
 616		/*
 617		 * We always issue full-sector reads, but if some block in a
 618		 * folio fails to read, blk_update_request() will advance
 619		 * bv_offset and adjust bv_len to compensate.  Print a warning
 620		 * for unaligned offsets, and an error if they don't add up to
 621		 * a full sector.
 622		 */
 623		if (!IS_ALIGNED(fi.offset, sectorsize))
 624			btrfs_err(fs_info,
 625		"partial page read in btrfs with offset %zu and length %zu",
 626				  fi.offset, fi.length);
 627		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
 628			btrfs_info(fs_info,
 629		"incomplete page read with offset %zu and length %zu",
 630				   fi.offset, fi.length);
 631
 632		start = folio_pos(folio) + fi.offset;
 633		end = start + fi.length - 1;
 634		len = fi.length;
 
 
 
 
 
 
 635
 636		if (likely(uptodate)) {
 637			loff_t i_size = i_size_read(inode);
 638			pgoff_t end_index = i_size >> folio_shift(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640			/*
 641			 * Zero out the remaining part if this range straddles
 642			 * i_size.
 643			 *
 644			 * Here we should only zero the range inside the folio,
 645			 * not touch anything else.
 646			 *
 647			 * NOTE: i_size is exclusive while end is inclusive.
 648			 */
 649			if (folio_index(folio) == end_index && i_size <= end) {
 650				u32 zero_start = max(offset_in_folio(folio, i_size),
 651						     offset_in_folio(folio, start));
 652				u32 zero_len = offset_in_folio(folio, end) + 1 -
 653					       zero_start;
 654
 655				folio_zero_range(folio, zero_start, zero_len);
 656			}
 657		}
 658
 659		/* Update page status and unlock. */
 660		end_page_read(folio_page(folio, 0), uptodate, start, len);
 661		endio_readpage_release_extent(&processed, BTRFS_I(inode),
 662					      start, end, uptodate);
 
 663	}
 664	/* Release the last extent */
 665	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
 666	bio_put(bio);
 667}
 668
 669/*
 670 * Populate every free slot in a provided array with pages.
 671 *
 672 * @nr_pages:   number of pages to allocate
 673 * @page_array: the array to fill with pages; any existing non-null entries in
 674 * 		the array will be skipped
 675 * @extra_gfp:	the extra GFP flags for the allocation.
 676 *
 677 * Return: 0        if all pages were able to be allocated;
 678 *         -ENOMEM  otherwise, the partially allocated pages would be freed and
 679 *                  the array slots zeroed
 680 */
 681int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
 682			   gfp_t extra_gfp)
 683{
 684	const gfp_t gfp = GFP_NOFS | extra_gfp;
 685	unsigned int allocated;
 686
 687	for (allocated = 0; allocated < nr_pages;) {
 688		unsigned int last = allocated;
 689
 690		allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
 691		if (unlikely(allocated == last)) {
 692			/* No progress, fail and do cleanup. */
 693			for (int i = 0; i < allocated; i++) {
 694				__free_page(page_array[i]);
 695				page_array[i] = NULL;
 696			}
 697			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698		}
 699	}
 
 
 
 
 700	return 0;
 701}
 702
 703/*
 704 * Populate needed folios for the extent buffer.
 705 *
 706 * For now, the folios populated are always in order 0 (aka, single page).
 
 707 */
 708static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709{
 710	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
 711	int num_pages = num_extent_pages(eb);
 
 
 
 
 712	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713
 714	ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
 715	if (ret < 0)
 716		return ret;
 717
 718	for (int i = 0; i < num_pages; i++)
 719		eb->folios[i] = page_folio(page_array[i]);
 720	eb->folio_size = PAGE_SIZE;
 721	eb->folio_shift = PAGE_SHIFT;
 722	return 0;
 723}
 724
 725static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
 726				struct page *page, u64 disk_bytenr,
 727				unsigned int pg_offset)
 728{
 729	struct bio *bio = &bio_ctrl->bbio->bio;
 730	struct bio_vec *bvec = bio_last_bvec_all(bio);
 731	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
 732
 733	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
 
 734		/*
 735		 * For compression, all IO should have its logical bytenr set
 736		 * to the starting bytenr of the compressed extent.
 
 737		 */
 738		return bio->bi_iter.bi_sector == sector;
 
 
 
 739	}
 740
 741	/*
 742	 * The contig check requires the following conditions to be met:
 743	 *
 744	 * 1) The pages are belonging to the same inode
 745	 *    This is implied by the call chain.
 746	 *
 747	 * 2) The range has adjacent logical bytenr
 748	 *
 749	 * 3) The range has adjacent file offset
 750	 *    This is required for the usage of btrfs_bio->file_offset.
 751	 */
 752	return bio_end_sector(bio) == sector &&
 753		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
 754		page_offset(page) + pg_offset;
 755}
 756
 757static void alloc_new_bio(struct btrfs_inode *inode,
 758			  struct btrfs_bio_ctrl *bio_ctrl,
 759			  u64 disk_bytenr, u64 file_offset)
 760{
 761	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 762	struct btrfs_bio *bbio;
 763
 764	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
 765			       bio_ctrl->end_io_func, NULL);
 766	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 767	bbio->inode = inode;
 768	bbio->file_offset = file_offset;
 769	bio_ctrl->bbio = bbio;
 770	bio_ctrl->len_to_oe_boundary = U32_MAX;
 771
 772	/* Limit data write bios to the ordered boundary. */
 773	if (bio_ctrl->wbc) {
 774		struct btrfs_ordered_extent *ordered;
 775
 776		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 777		if (ordered) {
 778			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
 779					ordered->file_offset +
 780					ordered->disk_num_bytes - file_offset);
 781			bbio->ordered = ordered;
 782		}
 783
 784		/*
 785		 * Pick the last added device to support cgroup writeback.  For
 786		 * multi-device file systems this means blk-cgroup policies have
 787		 * to always be set on the last added/replaced device.
 788		 * This is a bit odd but has been like that for a long time.
 789		 */
 790		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 791		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793}
 794
 795/*
 796 * @disk_bytenr: logical bytenr where the write will be
 797 * @page:	page to add to the bio
 798 * @size:	portion of page that we want to write to
 799 * @pg_offset:	offset of the new bio or to check whether we are adding
 800 *              a contiguous page to the previous one
 801 *
 802 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
 803 * new one in @bio_ctrl->bbio.
 804 * The mirror number for this IO should already be initizlied in
 805 * @bio_ctrl->mirror_num.
 806 */
 807static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
 808			       u64 disk_bytenr, struct page *page,
 809			       size_t size, unsigned long pg_offset)
 810{
 811	struct btrfs_inode *inode = page_to_inode(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812
 813	ASSERT(pg_offset + size <= PAGE_SIZE);
 814	ASSERT(bio_ctrl->end_io_func);
 
 
 815
 816	if (bio_ctrl->bbio &&
 817	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
 818		submit_one_bio(bio_ctrl);
 819
 820	do {
 821		u32 len = size;
 
 
 
 
 
 822
 823		/* Allocate new bio if needed */
 824		if (!bio_ctrl->bbio) {
 825			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
 826				      page_offset(page) + pg_offset);
 827		}
 
 
 
 
 
 
 
 
 
 
 
 828
 829		/* Cap to the current ordered extent boundary if there is one. */
 830		if (len > bio_ctrl->len_to_oe_boundary) {
 831			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
 832			ASSERT(is_data_inode(&inode->vfs_inode));
 833			len = bio_ctrl->len_to_oe_boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834		}
 835
 836		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
 837			/* bio full: move on to a new one */
 838			submit_one_bio(bio_ctrl);
 839			continue;
 840		}
 841
 842		if (bio_ctrl->wbc)
 843			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
 
 844
 845		size -= len;
 846		pg_offset += len;
 847		disk_bytenr += len;
 848
 849		/*
 850		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
 851		 * sector aligned.  alloc_new_bio() then sets it to the end of
 852		 * our ordered extent for writes into zoned devices.
 853		 *
 854		 * When len_to_oe_boundary is tracking an ordered extent, we
 855		 * trust the ordered extent code to align things properly, and
 856		 * the check above to cap our write to the ordered extent
 857		 * boundary is correct.
 858		 *
 859		 * When len_to_oe_boundary is U32_MAX, the cap above would
 860		 * result in a 4095 byte IO for the last page right before
 861		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
 862		 * the checks required to make sure we don't overflow the bio,
 863		 * and we should just ignore len_to_oe_boundary completely
 864		 * unless we're using it to track an ordered extent.
 865		 *
 866		 * It's pretty hard to make a bio sized U32_MAX, but it can
 867		 * happen when the page cache is able to feed us contiguous
 868		 * pages for large extents.
 869		 */
 870		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
 871			bio_ctrl->len_to_oe_boundary -= len;
 872
 873		/* Ordered extent boundary: move on to a new bio. */
 874		if (bio_ctrl->len_to_oe_boundary == 0)
 875			submit_one_bio(bio_ctrl);
 876	} while (size);
 877}
 878
 879static int attach_extent_buffer_folio(struct extent_buffer *eb,
 880				      struct folio *folio,
 881				      struct btrfs_subpage *prealloc)
 
 
 
 
 
 
 
 
 
 882{
 883	struct btrfs_fs_info *fs_info = eb->fs_info;
 884	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885
 886	/*
 887	 * If the page is mapped to btree inode, we should hold the private
 888	 * lock to prevent race.
 889	 * For cloned or dummy extent buffers, their pages are not mapped and
 890	 * will not race with any other ebs.
 891	 */
 892	if (folio->mapping)
 893		lockdep_assert_held(&folio->mapping->i_private_lock);
 894
 895	if (fs_info->nodesize >= PAGE_SIZE) {
 896		if (!folio_test_private(folio))
 897			folio_attach_private(folio, eb);
 898		else
 899			WARN_ON(folio_get_private(folio) != eb);
 900		return 0;
 
 
 
 
 
 
 901	}
 902
 903	/* Already mapped, just free prealloc */
 904	if (folio_test_private(folio)) {
 905		btrfs_free_subpage(prealloc);
 906		return 0;
 907	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908
 909	if (prealloc)
 910		/* Has preallocated memory for subpage */
 911		folio_attach_private(folio, prealloc);
 912	else
 913		/* Do new allocation to attach subpage */
 914		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 915	return ret;
 916}
 917
 918int set_page_extent_mapped(struct page *page)
 919{
 920	return set_folio_extent_mapped(page_folio(page));
 
 
 
 
 
 
 
 
 921}
 922
 923int set_folio_extent_mapped(struct folio *folio)
 924{
 925	struct btrfs_fs_info *fs_info;
 926
 927	ASSERT(folio->mapping);
 
 
 
 
 928
 929	if (folio_test_private(folio))
 930		return 0;
 
 
 931
 932	fs_info = folio_to_fs_info(folio);
 
 
 933
 934	if (btrfs_is_subpage(fs_info, folio->mapping))
 935		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 936
 937	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
 938	return 0;
 
 939}
 940
 941void clear_page_extent_mapped(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942{
 943	struct folio *folio = page_folio(page);
 944	struct btrfs_fs_info *fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945
 946	ASSERT(page->mapping);
 947
 948	if (!folio_test_private(folio))
 949		return;
 950
 951	fs_info = page_to_fs_info(page);
 952	if (btrfs_is_subpage(fs_info, page->mapping))
 953		return btrfs_detach_subpage(fs_info, folio);
 
 
 
 
 
 
 
 
 954
 955	folio_detach_private(folio);
 
 
 
 
 
 
 956}
 957
 958static struct extent_map *__get_extent_map(struct inode *inode, struct page *page,
 959		 u64 start, u64 len, struct extent_map **em_cached)
 
 
 960{
 961	struct extent_map *em;
 962
 963	ASSERT(em_cached);
 964
 965	if (*em_cached) {
 966		em = *em_cached;
 967		if (extent_map_in_tree(em) && start >= em->start &&
 968		    start < extent_map_end(em)) {
 969			refcount_inc(&em->refs);
 970			return em;
 971		}
 972
 973		free_extent_map(em);
 974		*em_cached = NULL;
 975	}
 976
 977	em = btrfs_get_extent(BTRFS_I(inode), page, start, len);
 978	if (!IS_ERR(em)) {
 979		BUG_ON(*em_cached);
 980		refcount_inc(&em->refs);
 981		*em_cached = em;
 982	}
 983	return em;
 984}
 985/*
 986 * basic readpage implementation.  Locked extent state structs are inserted
 987 * into the tree that are removed when the IO is done (by the end_io
 988 * handlers)
 989 * XXX JDM: This needs looking at to ensure proper page locking
 990 * return 0 on success, otherwise return error
 991 */
 992static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
 993		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
 
 
 
 
 
 994{
 995	struct inode *inode = page->mapping->host;
 996	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 997	u64 start = page_offset(page);
 998	const u64 end = start + PAGE_SIZE - 1;
 999	u64 cur = start;
1000	u64 extent_offset;
1001	u64 last_byte = i_size_read(inode);
1002	u64 block_start;
 
1003	struct extent_map *em;
 
1004	int ret = 0;
 
1005	size_t pg_offset = 0;
1006	size_t iosize;
1007	size_t blocksize = fs_info->sectorsize;
1008	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1009
1010	ret = set_page_extent_mapped(page);
1011	if (ret < 0) {
1012		unlock_extent(tree, start, end, NULL);
1013		unlock_page(page);
1014		return ret;
 
 
 
 
1015	}
1016
1017	if (page->index == last_byte >> PAGE_SHIFT) {
 
1018		size_t zero_offset = offset_in_page(last_byte);
1019
1020		if (zero_offset) {
1021			iosize = PAGE_SIZE - zero_offset;
1022			memzero_page(page, zero_offset, iosize);
 
 
 
1023		}
1024	}
1025	bio_ctrl->end_io_func = end_bbio_data_read;
1026	begin_page_read(fs_info, page);
1027	while (cur <= end) {
1028		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1029		bool force_bio_submit = false;
1030		u64 disk_bytenr;
1031
1032		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1033		if (cur >= last_byte) {
 
 
 
1034			iosize = PAGE_SIZE - pg_offset;
1035			memzero_page(page, pg_offset, iosize);
1036			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1037			end_page_read(page, true, cur, iosize);
 
 
 
 
 
1038			break;
1039		}
1040		em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached);
1041		if (IS_ERR(em)) {
1042			unlock_extent(tree, cur, end, NULL);
1043			end_page_read(page, false, cur, end + 1 - cur);
1044			return PTR_ERR(em);
 
1045		}
1046		extent_offset = cur - em->start;
1047		BUG_ON(extent_map_end(em) <= cur);
1048		BUG_ON(end < cur);
1049
1050		compress_type = extent_map_compression(em);
 
 
 
 
1051
1052		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 
1053		iosize = ALIGN(iosize, blocksize);
1054		if (compress_type != BTRFS_COMPRESS_NONE)
1055			disk_bytenr = em->block_start;
1056		else
1057			disk_bytenr = em->block_start + extent_offset;
 
 
 
 
1058		block_start = em->block_start;
1059		if (em->flags & EXTENT_FLAG_PREALLOC)
1060			block_start = EXTENT_MAP_HOLE;
1061
1062		/*
1063		 * If we have a file range that points to a compressed extent
1064		 * and it's followed by a consecutive file range that points
1065		 * to the same compressed extent (possibly with a different
1066		 * offset and/or length, so it either points to the whole extent
1067		 * or only part of it), we must make sure we do not submit a
1068		 * single bio to populate the pages for the 2 ranges because
1069		 * this makes the compressed extent read zero out the pages
1070		 * belonging to the 2nd range. Imagine the following scenario:
1071		 *
1072		 *  File layout
1073		 *  [0 - 8K]                     [8K - 24K]
1074		 *    |                               |
1075		 *    |                               |
1076		 * points to extent X,         points to extent X,
1077		 * offset 4K, length of 8K     offset 0, length 16K
1078		 *
1079		 * [extent X, compressed length = 4K uncompressed length = 16K]
1080		 *
1081		 * If the bio to read the compressed extent covers both ranges,
1082		 * it will decompress extent X into the pages belonging to the
1083		 * first range and then it will stop, zeroing out the remaining
1084		 * pages that belong to the other range that points to extent X.
1085		 * So here we make sure we submit 2 bios, one for the first
1086		 * range and another one for the third range. Both will target
1087		 * the same physical extent from disk, but we can't currently
1088		 * make the compressed bio endio callback populate the pages
1089		 * for both ranges because each compressed bio is tightly
1090		 * coupled with a single extent map, and each range can have
1091		 * an extent map with a different offset value relative to the
1092		 * uncompressed data of our extent and different lengths. This
1093		 * is a corner case so we prioritize correctness over
1094		 * non-optimal behavior (submitting 2 bios for the same extent).
1095		 */
1096		if (compress_type != BTRFS_COMPRESS_NONE &&
1097		    prev_em_start && *prev_em_start != (u64)-1 &&
1098		    *prev_em_start != em->start)
1099			force_bio_submit = true;
1100
1101		if (prev_em_start)
1102			*prev_em_start = em->start;
1103
1104		free_extent_map(em);
1105		em = NULL;
1106
1107		/* we've found a hole, just zero and go on */
1108		if (block_start == EXTENT_MAP_HOLE) {
1109			memzero_page(page, pg_offset, iosize);
 
1110
1111			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1112			end_page_read(page, true, cur, iosize);
 
 
 
 
 
 
 
1113			cur = cur + iosize;
1114			pg_offset += iosize;
1115			continue;
1116		}
1117		/* the get_extent function already copied into the page */
 
 
 
 
 
 
 
 
 
 
 
1118		if (block_start == EXTENT_MAP_INLINE) {
1119			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1120			end_page_read(page, true, cur, iosize);
1121			cur = cur + iosize;
1122			pg_offset += iosize;
1123			continue;
1124		}
1125
1126		if (bio_ctrl->compress_type != compress_type) {
1127			submit_one_bio(bio_ctrl);
1128			bio_ctrl->compress_type = compress_type;
 
 
 
 
 
 
 
 
 
 
 
1129		}
1130
1131		if (force_bio_submit)
1132			submit_one_bio(bio_ctrl);
1133		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1134				   pg_offset);
1135		cur = cur + iosize;
1136		pg_offset += iosize;
1137	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138
1139	return 0;
 
 
 
 
 
 
1140}
1141
1142int btrfs_read_folio(struct file *file, struct folio *folio)
 
 
 
 
 
1143{
1144	struct page *page = &folio->page;
1145	struct btrfs_inode *inode = page_to_inode(page);
1146	u64 start = page_offset(page);
1147	u64 end = start + PAGE_SIZE - 1;
1148	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1149	struct extent_map *em_cached = NULL;
1150	int ret;
1151
1152	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1153
1154	ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL);
1155	free_extent_map(em_cached);
1156
1157	/*
1158	 * If btrfs_do_readpage() failed we will want to submit the assembled
1159	 * bio to do the cleanup.
1160	 */
1161	submit_one_bio(&bio_ctrl);
1162	return ret;
1163}
1164
1165static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1166					u64 start, u64 end,
1167					struct extent_map **em_cached,
1168					struct btrfs_bio_ctrl *bio_ctrl,
1169					u64 *prev_em_start)
1170{
1171	struct btrfs_inode *inode = page_to_inode(pages[0]);
1172	int index;
 
1173
1174	ASSERT(em_cached);
 
 
 
 
 
1175
1176	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1177
1178	for (index = 0; index < nr_pages; index++) {
1179		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1180				  prev_em_start);
1181		put_page(pages[index]);
1182	}
1183}
1184
1185/*
1186 * helper for __extent_writepage, doing all of the delayed allocation setup.
1187 *
1188 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1189 * to write the page (copy into inline extent).  In this case the IO has
1190 * been started and the page is already unlocked.
1191 *
1192 * This returns 0 if all went well (page still locked)
1193 * This returns < 0 if there were errors (page still locked)
1194 */
1195static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1196		struct page *page, struct writeback_control *wbc)
 
1197{
1198	const u64 page_start = page_offset(page);
1199	const u64 page_end = page_start + PAGE_SIZE - 1;
1200	u64 delalloc_start = page_start;
1201	u64 delalloc_end = page_end;
1202	u64 delalloc_to_write = 0;
1203	int ret = 0;
 
 
 
1204
1205	while (delalloc_start < page_end) {
1206		delalloc_end = page_end;
1207		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1208					      &delalloc_start, &delalloc_end)) {
 
1209			delalloc_start = delalloc_end + 1;
1210			continue;
1211		}
1212
1213		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1214					       delalloc_end, wbc);
1215		if (ret < 0)
1216			return ret;
1217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218		delalloc_start = delalloc_end + 1;
1219	}
1220
1221	/*
1222	 * delalloc_end is already one less than the total length, so
1223	 * we don't subtract one from PAGE_SIZE
1224	 */
1225	delalloc_to_write +=
1226		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1227
1228	/*
1229	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1230	 * the pages, we just need to account for them here.
1231	 */
1232	if (ret == 1) {
1233		wbc->nr_to_write -= delalloc_to_write;
1234		return 1;
1235	}
1236
1237	if (wbc->nr_to_write < delalloc_to_write) {
1238		int thresh = 8192;
1239
1240		if (delalloc_to_write < thresh * 2)
1241			thresh = delalloc_to_write;
1242		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1243					 thresh);
1244	}
1245
1246	return 0;
1247}
1248
1249/*
1250 * Find the first byte we need to write.
1251 *
1252 * For subpage, one page can contain several sectors, and
1253 * __extent_writepage_io() will just grab all extent maps in the page
1254 * range and try to submit all non-inline/non-compressed extents.
1255 *
1256 * This is a big problem for subpage, we shouldn't re-submit already written
1257 * data at all.
1258 * This function will lookup subpage dirty bit to find which range we really
1259 * need to submit.
1260 *
1261 * Return the next dirty range in [@start, @end).
1262 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1263 */
1264static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1265				 struct page *page, u64 *start, u64 *end)
1266{
1267	struct folio *folio = page_folio(page);
1268	struct btrfs_subpage *subpage = folio_get_private(folio);
1269	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1270	u64 orig_start = *start;
1271	/* Declare as unsigned long so we can use bitmap ops */
1272	unsigned long flags;
1273	int range_start_bit;
1274	int range_end_bit;
1275
1276	/*
1277	 * For regular sector size == page size case, since one page only
1278	 * contains one sector, we return the page offset directly.
1279	 */
1280	if (!btrfs_is_subpage(fs_info, page->mapping)) {
1281		*start = page_offset(page);
1282		*end = page_offset(page) + PAGE_SIZE;
1283		return;
 
 
 
 
1284	}
1285
1286	range_start_bit = spi->dirty_offset +
1287			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1288
1289	/* We should have the page locked, but just in case */
1290	spin_lock_irqsave(&subpage->lock, flags);
1291	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1292			       spi->dirty_offset + spi->bitmap_nr_bits);
1293	spin_unlock_irqrestore(&subpage->lock, flags);
1294
1295	range_start_bit -= spi->dirty_offset;
1296	range_end_bit -= spi->dirty_offset;
1297
1298	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1299	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1300}
1301
1302/*
1303 * helper for __extent_writepage.  This calls the writepage start hooks,
1304 * and does the loop to map the page into extents and bios.
1305 *
1306 * We return 1 if the IO is started and the page is unlocked,
1307 * 0 if all went well (page still locked)
1308 * < 0 if there were errors (page still locked)
1309 */
1310static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1311				 struct page *page,
1312				 struct btrfs_bio_ctrl *bio_ctrl,
 
1313				 loff_t i_size,
1314				 int *nr_ret)
 
1315{
1316	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1317	u64 cur = page_offset(page);
1318	u64 end = cur + PAGE_SIZE - 1;
 
 
1319	u64 extent_offset;
1320	u64 block_start;
 
1321	struct extent_map *em;
 
 
 
1322	int ret = 0;
1323	int nr = 0;
 
1324
1325	ret = btrfs_writepage_cow_fixup(page);
1326	if (ret) {
1327		/* Fixup worker will requeue */
1328		redirty_page_for_writepage(bio_ctrl->wbc, page);
 
 
 
 
 
1329		unlock_page(page);
1330		return 1;
1331	}
1332
1333	bio_ctrl->end_io_func = end_bbio_data_write;
 
 
 
 
 
 
 
 
 
 
 
 
 
1334	while (cur <= end) {
1335		u32 len = end - cur + 1;
1336		u64 disk_bytenr;
1337		u64 em_end;
1338		u64 dirty_range_start = cur;
1339		u64 dirty_range_end;
1340		u32 iosize;
1341
1342		if (cur >= i_size) {
1343			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1344						       true);
1345			/*
1346			 * This range is beyond i_size, thus we don't need to
1347			 * bother writing back.
1348			 * But we still need to clear the dirty subpage bit, or
1349			 * the next time the page gets dirtied, we will try to
1350			 * writeback the sectors with subpage dirty bits,
1351			 * causing writeback without ordered extent.
1352			 */
1353			btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1354			break;
1355		}
1356
1357		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1358				     &dirty_range_end);
1359		if (cur < dirty_range_start) {
1360			cur = dirty_range_start;
1361			continue;
1362		}
1363
1364		em = btrfs_get_extent(inode, NULL, cur, len);
1365		if (IS_ERR(em)) {
1366			ret = PTR_ERR_OR_ZERO(em);
1367			goto out_error;
1368		}
1369
1370		extent_offset = cur - em->start;
1371		em_end = extent_map_end(em);
1372		ASSERT(cur <= em_end);
1373		ASSERT(cur < end);
1374		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1375		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1376
 
1377		block_start = em->block_start;
1378		disk_bytenr = em->block_start + extent_offset;
1379
1380		ASSERT(!extent_map_is_compressed(em));
1381		ASSERT(block_start != EXTENT_MAP_HOLE);
1382		ASSERT(block_start != EXTENT_MAP_INLINE);
1383
1384		/*
1385		 * Note that em_end from extent_map_end() and dirty_range_end from
1386		 * find_next_dirty_byte() are all exclusive
1387		 */
1388		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1389		free_extent_map(em);
1390		em = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391
1392		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1393		if (!PageWriteback(page)) {
1394			btrfs_err(inode->root->fs_info,
1395				   "page %lu not writeback, cur %llu end %llu",
1396			       page->index, cur, end);
1397		}
1398
1399		/*
1400		 * Although the PageDirty bit is cleared before entering this
1401		 * function, subpage dirty bit is not cleared.
1402		 * So clear subpage dirty bit here so next time we won't submit
1403		 * page for range already written to disk.
1404		 */
1405		btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
 
 
 
1406
1407		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1408				   cur - page_offset(page));
1409		cur += iosize;
1410		nr++;
1411	}
1412
1413	btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1414	*nr_ret = nr;
1415	return 0;
1416
1417out_error:
1418	/*
1419	 * If we finish without problem, we should not only clear page dirty,
1420	 * but also empty subpage dirty bits
1421	 */
1422	*nr_ret = nr;
1423	return ret;
1424}
1425
1426/*
1427 * the writepage semantics are similar to regular writepage.  extent
1428 * records are inserted to lock ranges in the tree, and as dirty areas
1429 * are found, they are marked writeback.  Then the lock bits are removed
1430 * and the end_io handler clears the writeback ranges
1431 *
1432 * Return 0 if everything goes well.
1433 * Return <0 for error.
1434 */
1435static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
 
1436{
1437	struct folio *folio = page_folio(page);
1438	struct inode *inode = page->mapping->host;
1439	const u64 page_start = page_offset(page);
 
1440	int ret;
1441	int nr = 0;
1442	size_t pg_offset;
1443	loff_t i_size = i_size_read(inode);
1444	unsigned long end_index = i_size >> PAGE_SHIFT;
 
 
1445
1446	trace___extent_writepage(page, inode, bio_ctrl->wbc);
 
 
1447
1448	WARN_ON(!PageLocked(page));
1449
 
 
1450	pg_offset = offset_in_page(i_size);
1451	if (page->index > end_index ||
1452	   (page->index == end_index && !pg_offset)) {
1453		folio_invalidate(folio, 0, folio_size(folio));
1454		folio_unlock(folio);
1455		return 0;
1456	}
1457
1458	if (page->index == end_index)
1459		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
 
 
 
 
 
 
 
 
 
1460
1461	ret = set_page_extent_mapped(page);
1462	if (ret < 0)
1463		goto done;
1464
1465	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1466	if (ret == 1)
1467		return 0;
1468	if (ret)
1469		goto done;
 
 
1470
1471	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
 
1472	if (ret == 1)
1473		return 0;
1474
1475	bio_ctrl->wbc->nr_to_write--;
1476
1477done:
1478	if (nr == 0) {
1479		/* make sure the mapping tag for page dirty gets cleared */
1480		set_page_writeback(page);
1481		end_page_writeback(page);
1482	}
1483	if (ret) {
1484		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1485					       PAGE_SIZE, !ret);
1486		mapping_set_error(page->mapping, ret);
1487	}
1488	unlock_page(page);
1489	ASSERT(ret <= 0);
1490	return ret;
 
 
 
1491}
1492
1493void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1494{
1495	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1496		       TASK_UNINTERRUPTIBLE);
1497}
1498
 
 
 
 
 
 
 
1499/*
1500 * Lock extent buffer status and pages for writeback.
1501 *
1502 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1503 * extent buffer is not dirty)
1504 * Return %true is the extent buffer is submitted to bio.
1505 */
1506static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1507			  struct writeback_control *wbc)
1508{
1509	struct btrfs_fs_info *fs_info = eb->fs_info;
1510	bool ret = false;
 
 
1511
1512	btrfs_tree_lock(eb);
1513	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
 
 
 
 
 
 
 
1514		btrfs_tree_unlock(eb);
1515		if (wbc->sync_mode != WB_SYNC_ALL)
1516			return false;
1517		wait_on_extent_buffer_writeback(eb);
1518		btrfs_tree_lock(eb);
 
 
 
 
 
 
 
 
 
 
 
1519	}
1520
1521	/*
1522	 * We need to do this to prevent races in people who check if the eb is
1523	 * under IO since we can end up having no IO bits set for a short period
1524	 * of time.
1525	 */
1526	spin_lock(&eb->refs_lock);
1527	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1528		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1529		spin_unlock(&eb->refs_lock);
1530		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1531		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1532					 -eb->len,
1533					 fs_info->dirty_metadata_batch);
1534		ret = true;
1535	} else {
1536		spin_unlock(&eb->refs_lock);
1537	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538	btrfs_tree_unlock(eb);
1539	return ret;
1540}
1541
1542static void set_btree_ioerr(struct extent_buffer *eb)
1543{
1544	struct btrfs_fs_info *fs_info = eb->fs_info;
 
1545
1546	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 
 
1547
1548	/*
1549	 * A read may stumble upon this buffer later, make sure that it gets an
1550	 * error and knows there was an error.
1551	 */
1552	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1553
1554	/*
1555	 * We need to set the mapping with the io error as well because a write
1556	 * error will flip the file system readonly, and then syncfs() will
1557	 * return a 0 because we are readonly if we don't modify the err seq for
1558	 * the superblock.
1559	 */
1560	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1561
1562	/*
1563	 * If writeback for a btree extent that doesn't belong to a log tree
1564	 * failed, increment the counter transaction->eb_write_errors.
1565	 * We do this because while the transaction is running and before it's
1566	 * committing (when we call filemap_fdata[write|wait]_range against
1567	 * the btree inode), we might have
1568	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1569	 * returns an error or an error happens during writeback, when we're
1570	 * committing the transaction we wouldn't know about it, since the pages
1571	 * can be no longer dirty nor marked anymore for writeback (if a
1572	 * subsequent modification to the extent buffer didn't happen before the
1573	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1574	 * able to find the pages tagged with SetPageError at transaction
1575	 * commit time. So if this happens we must abort the transaction,
1576	 * otherwise we commit a super block with btree roots that point to
1577	 * btree nodes/leafs whose content on disk is invalid - either garbage
1578	 * or the content of some node/leaf from a past generation that got
1579	 * cowed or deleted and is no longer valid.
1580	 *
1581	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1582	 * not be enough - we need to distinguish between log tree extents vs
1583	 * non-log tree extents, and the next filemap_fdatawait_range() call
1584	 * will catch and clear such errors in the mapping - and that call might
1585	 * be from a log sync and not from a transaction commit. Also, checking
1586	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1587	 * not done and would not be reliable - the eb might have been released
1588	 * from memory and reading it back again means that flag would not be
1589	 * set (since it's a runtime flag, not persisted on disk).
1590	 *
1591	 * Using the flags below in the btree inode also makes us achieve the
1592	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1593	 * writeback for all dirty pages and before filemap_fdatawait_range()
1594	 * is called, the writeback for all dirty pages had already finished
1595	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1596	 * filemap_fdatawait_range() would return success, as it could not know
1597	 * that writeback errors happened (the pages were no longer tagged for
1598	 * writeback).
1599	 */
1600	switch (eb->log_index) {
1601	case -1:
1602		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1603		break;
1604	case 0:
1605		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1606		break;
1607	case 1:
1608		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1609		break;
1610	default:
1611		BUG(); /* unexpected, logic error */
1612	}
1613}
1614
1615/*
1616 * The endio specific version which won't touch any unsafe spinlock in endio
1617 * context.
1618 */
1619static struct extent_buffer *find_extent_buffer_nolock(
1620		struct btrfs_fs_info *fs_info, u64 start)
1621{
 
1622	struct extent_buffer *eb;
 
 
 
 
 
 
1623
1624	rcu_read_lock();
1625	eb = radix_tree_lookup(&fs_info->buffer_radix,
1626			       start >> fs_info->sectorsize_bits);
1627	if (eb && atomic_inc_not_zero(&eb->refs)) {
1628		rcu_read_unlock();
1629		return eb;
1630	}
1631	rcu_read_unlock();
1632	return NULL;
1633}
 
1634
1635static void end_bbio_meta_write(struct btrfs_bio *bbio)
1636{
1637	struct extent_buffer *eb = bbio->private;
1638	struct btrfs_fs_info *fs_info = eb->fs_info;
1639	bool uptodate = !bbio->bio.bi_status;
1640	struct folio_iter fi;
1641	u32 bio_offset = 0;
1642
1643	if (!uptodate)
1644		set_btree_ioerr(eb);
1645
1646	bio_for_each_folio_all(fi, &bbio->bio) {
1647		u64 start = eb->start + bio_offset;
1648		struct folio *folio = fi.folio;
1649		u32 len = fi.length;
1650
1651		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1652		bio_offset += len;
1653	}
1654
1655	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1656	smp_mb__after_atomic();
1657	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1658
1659	bio_put(&bbio->bio);
1660}
1661
1662static void prepare_eb_write(struct extent_buffer *eb)
 
 
1663{
 
 
 
 
1664	u32 nritems;
1665	unsigned long start;
1666	unsigned long end;
 
 
1667
1668	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 
 
1669
1670	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1671	nritems = btrfs_header_nritems(eb);
1672	if (btrfs_header_level(eb) > 0) {
1673		end = btrfs_node_key_ptr_offset(eb, nritems);
 
1674		memzero_extent_buffer(eb, end, eb->len - end);
1675	} else {
1676		/*
1677		 * Leaf:
1678		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1679		 */
1680		start = btrfs_item_nr_offset(eb, nritems);
1681		end = btrfs_item_nr_offset(eb, 0);
1682		if (nritems == 0)
1683			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1684		else
1685			end += btrfs_item_offset(eb, nritems - 1);
1686		memzero_extent_buffer(eb, start, end - start);
1687	}
1688}
1689
1690static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1691					    struct writeback_control *wbc)
1692{
1693	struct btrfs_fs_info *fs_info = eb->fs_info;
1694	struct btrfs_bio *bbio;
1695
1696	prepare_eb_write(eb);
 
1697
1698	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1699			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1700			       eb->fs_info, end_bbio_meta_write, eb);
1701	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1702	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1703	wbc_init_bio(wbc, &bbio->bio);
1704	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1705	bbio->file_offset = eb->start;
1706	if (fs_info->nodesize < PAGE_SIZE) {
1707		struct folio *folio = eb->folios[0];
1708		bool ret;
1709
1710		folio_lock(folio);
1711		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1712		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1713						       eb->len)) {
1714			folio_clear_dirty_for_io(folio);
1715			wbc->nr_to_write--;
1716		}
1717		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1718				    eb->start - folio_pos(folio));
1719		ASSERT(ret);
1720		wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1721		folio_unlock(folio);
1722	} else {
1723		int num_folios = num_extent_folios(eb);
1724
1725		for (int i = 0; i < num_folios; i++) {
1726			struct folio *folio = eb->folios[i];
1727			bool ret;
1728
1729			folio_lock(folio);
1730			folio_clear_dirty_for_io(folio);
1731			folio_start_writeback(folio);
1732			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1733			ASSERT(ret);
1734			wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1735						 eb->folio_size);
1736			wbc->nr_to_write -= folio_nr_pages(folio);
1737			folio_unlock(folio);
1738		}
 
 
 
1739	}
1740	btrfs_submit_bio(bbio, 0);
1741}
1742
1743/*
1744 * Submit one subpage btree page.
1745 *
1746 * The main difference to submit_eb_page() is:
1747 * - Page locking
1748 *   For subpage, we don't rely on page locking at all.
1749 *
1750 * - Flush write bio
1751 *   We only flush bio if we may be unable to fit current extent buffers into
1752 *   current bio.
1753 *
1754 * Return >=0 for the number of submitted extent buffers.
1755 * Return <0 for fatal error.
1756 */
1757static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1758{
1759	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
1760	struct folio *folio = page_folio(page);
1761	int submitted = 0;
1762	u64 page_start = page_offset(page);
1763	int bit_start = 0;
1764	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1765
1766	/* Lock and write each dirty extent buffers in the range */
1767	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1768		struct btrfs_subpage *subpage = folio_get_private(folio);
1769		struct extent_buffer *eb;
1770		unsigned long flags;
1771		u64 start;
1772
1773		/*
1774		 * Take private lock to ensure the subpage won't be detached
1775		 * in the meantime.
1776		 */
1777		spin_lock(&page->mapping->i_private_lock);
1778		if (!folio_test_private(folio)) {
1779			spin_unlock(&page->mapping->i_private_lock);
1780			break;
1781		}
1782		spin_lock_irqsave(&subpage->lock, flags);
1783		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1784			      subpage->bitmaps)) {
1785			spin_unlock_irqrestore(&subpage->lock, flags);
1786			spin_unlock(&page->mapping->i_private_lock);
1787			bit_start++;
1788			continue;
1789		}
1790
1791		start = page_start + bit_start * fs_info->sectorsize;
1792		bit_start += sectors_per_node;
1793
1794		/*
1795		 * Here we just want to grab the eb without touching extra
1796		 * spin locks, so call find_extent_buffer_nolock().
1797		 */
1798		eb = find_extent_buffer_nolock(fs_info, start);
1799		spin_unlock_irqrestore(&subpage->lock, flags);
1800		spin_unlock(&page->mapping->i_private_lock);
1801
1802		/*
1803		 * The eb has already reached 0 refs thus find_extent_buffer()
1804		 * doesn't return it. We don't need to write back such eb
1805		 * anyway.
1806		 */
1807		if (!eb)
1808			continue;
1809
1810		if (lock_extent_buffer_for_io(eb, wbc)) {
1811			write_one_eb(eb, wbc);
1812			submitted++;
1813		}
1814		free_extent_buffer(eb);
1815	}
1816	return submitted;
1817}
1818
1819/*
1820 * Submit all page(s) of one extent buffer.
1821 *
1822 * @page:	the page of one extent buffer
1823 * @eb_context:	to determine if we need to submit this page, if current page
1824 *		belongs to this eb, we don't need to submit
1825 *
1826 * The caller should pass each page in their bytenr order, and here we use
1827 * @eb_context to determine if we have submitted pages of one extent buffer.
1828 *
1829 * If we have, we just skip until we hit a new page that doesn't belong to
1830 * current @eb_context.
1831 *
1832 * If not, we submit all the page(s) of the extent buffer.
1833 *
1834 * Return >0 if we have submitted the extent buffer successfully.
1835 * Return 0 if we don't need to submit the page, as it's already submitted by
1836 * previous call.
1837 * Return <0 for fatal error.
1838 */
1839static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1840{
1841	struct writeback_control *wbc = ctx->wbc;
1842	struct address_space *mapping = page->mapping;
1843	struct folio *folio = page_folio(page);
1844	struct extent_buffer *eb;
1845	int ret;
1846
1847	if (!folio_test_private(folio))
1848		return 0;
1849
1850	if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
1851		return submit_eb_subpage(page, wbc);
1852
1853	spin_lock(&mapping->i_private_lock);
1854	if (!folio_test_private(folio)) {
1855		spin_unlock(&mapping->i_private_lock);
1856		return 0;
1857	}
1858
1859	eb = folio_get_private(folio);
1860
1861	/*
1862	 * Shouldn't happen and normally this would be a BUG_ON but no point
1863	 * crashing the machine for something we can survive anyway.
1864	 */
1865	if (WARN_ON(!eb)) {
1866		spin_unlock(&mapping->i_private_lock);
1867		return 0;
1868	}
1869
1870	if (eb == ctx->eb) {
1871		spin_unlock(&mapping->i_private_lock);
1872		return 0;
1873	}
1874	ret = atomic_inc_not_zero(&eb->refs);
1875	spin_unlock(&mapping->i_private_lock);
1876	if (!ret)
1877		return 0;
1878
1879	ctx->eb = eb;
1880
1881	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1882	if (ret) {
1883		if (ret == -EBUSY)
1884			ret = 0;
1885		free_extent_buffer(eb);
1886		return ret;
1887	}
1888
1889	if (!lock_extent_buffer_for_io(eb, wbc)) {
1890		free_extent_buffer(eb);
1891		return 0;
1892	}
1893	/* Implies write in zoned mode. */
1894	if (ctx->zoned_bg) {
1895		/* Mark the last eb in the block group. */
1896		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1897		ctx->zoned_bg->meta_write_pointer += eb->len;
1898	}
1899	write_one_eb(eb, wbc);
1900	free_extent_buffer(eb);
1901	return 1;
1902}
1903
1904int btree_write_cache_pages(struct address_space *mapping,
1905				   struct writeback_control *wbc)
1906{
1907	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1908	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 
 
 
 
 
 
1909	int ret = 0;
1910	int done = 0;
1911	int nr_to_write_done = 0;
1912	struct folio_batch fbatch;
1913	unsigned int nr_folios;
1914	pgoff_t index;
1915	pgoff_t end;		/* Inclusive */
1916	int scanned = 0;
1917	xa_mark_t tag;
1918
1919	folio_batch_init(&fbatch);
1920	if (wbc->range_cyclic) {
1921		index = mapping->writeback_index; /* Start from prev offset */
1922		end = -1;
1923		/*
1924		 * Start from the beginning does not need to cycle over the
1925		 * range, mark it as scanned.
1926		 */
1927		scanned = (index == 0);
1928	} else {
1929		index = wbc->range_start >> PAGE_SHIFT;
1930		end = wbc->range_end >> PAGE_SHIFT;
1931		scanned = 1;
1932	}
1933	if (wbc->sync_mode == WB_SYNC_ALL)
1934		tag = PAGECACHE_TAG_TOWRITE;
1935	else
1936		tag = PAGECACHE_TAG_DIRTY;
1937	btrfs_zoned_meta_io_lock(fs_info);
1938retry:
1939	if (wbc->sync_mode == WB_SYNC_ALL)
1940		tag_pages_for_writeback(mapping, index, end);
1941	while (!done && !nr_to_write_done && (index <= end) &&
1942	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1943					    tag, &fbatch))) {
1944		unsigned i;
1945
1946		for (i = 0; i < nr_folios; i++) {
1947			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948
1949			ret = submit_eb_page(&folio->page, &ctx);
1950			if (ret == 0)
 
1951				continue;
1952			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1953				done = 1;
 
1954				break;
1955			}
 
1956
1957			/*
1958			 * the filesystem may choose to bump up nr_to_write.
1959			 * We have to make sure to honor the new nr_to_write
1960			 * at any time
1961			 */
1962			nr_to_write_done = wbc->nr_to_write <= 0;
1963		}
1964		folio_batch_release(&fbatch);
1965		cond_resched();
1966	}
1967	if (!scanned && !done) {
1968		/*
1969		 * We hit the last page and there is more work to be done: wrap
1970		 * back to the start of the file
1971		 */
1972		scanned = 1;
1973		index = 0;
1974		goto retry;
1975	}
1976	/*
1977	 * If something went wrong, don't allow any metadata write bio to be
1978	 * submitted.
1979	 *
1980	 * This would prevent use-after-free if we had dirty pages not
1981	 * cleaned up, which can still happen by fuzzed images.
1982	 *
1983	 * - Bad extent tree
1984	 *   Allowing existing tree block to be allocated for other trees.
1985	 *
1986	 * - Log tree operations
1987	 *   Exiting tree blocks get allocated to log tree, bumps its
1988	 *   generation, then get cleaned in tree re-balance.
1989	 *   Such tree block will not be written back, since it's clean,
1990	 *   thus no WRITTEN flag set.
1991	 *   And after log writes back, this tree block is not traced by
1992	 *   any dirty extent_io_tree.
1993	 *
1994	 * - Offending tree block gets re-dirtied from its original owner
1995	 *   Since it has bumped generation, no WRITTEN flag, it can be
1996	 *   reused without COWing. This tree block will not be traced
1997	 *   by btrfs_transaction::dirty_pages.
1998	 *
1999	 *   Now such dirty tree block will not be cleaned by any dirty
2000	 *   extent io tree. Thus we don't want to submit such wild eb
2001	 *   if the fs already has error.
2002	 *
2003	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2004	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2005	 */
2006	if (ret > 0)
2007		ret = 0;
2008	if (!ret && BTRFS_FS_ERROR(fs_info))
2009		ret = -EROFS;
2010
2011	if (ctx.zoned_bg)
2012		btrfs_put_block_group(ctx.zoned_bg);
2013	btrfs_zoned_meta_io_unlock(fs_info);
2014	return ret;
2015}
2016
2017/*
2018 * Walk the list of dirty pages of the given address space and write all of them.
2019 *
2020 * @mapping:   address space structure to write
2021 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2022 * @bio_ctrl:  holds context for the write, namely the bio
2023 *
2024 * If a page is already under I/O, write_cache_pages() skips it, even
2025 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2026 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2027 * and msync() need to guarantee that all the data which was dirty at the time
2028 * the call was made get new I/O started against them.  If wbc->sync_mode is
2029 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2030 * existing IO to complete.
2031 */
2032static int extent_write_cache_pages(struct address_space *mapping,
2033			     struct btrfs_bio_ctrl *bio_ctrl)
 
2034{
2035	struct writeback_control *wbc = bio_ctrl->wbc;
2036	struct inode *inode = mapping->host;
2037	int ret = 0;
2038	int done = 0;
2039	int nr_to_write_done = 0;
2040	struct folio_batch fbatch;
2041	unsigned int nr_folios;
2042	pgoff_t index;
2043	pgoff_t end;		/* Inclusive */
2044	pgoff_t done_index;
2045	int range_whole = 0;
2046	int scanned = 0;
2047	xa_mark_t tag;
2048
2049	/*
2050	 * We have to hold onto the inode so that ordered extents can do their
2051	 * work when the IO finishes.  The alternative to this is failing to add
2052	 * an ordered extent if the igrab() fails there and that is a huge pain
2053	 * to deal with, so instead just hold onto the inode throughout the
2054	 * writepages operation.  If it fails here we are freeing up the inode
2055	 * anyway and we'd rather not waste our time writing out stuff that is
2056	 * going to be truncated anyway.
2057	 */
2058	if (!igrab(inode))
2059		return 0;
2060
2061	folio_batch_init(&fbatch);
2062	if (wbc->range_cyclic) {
2063		index = mapping->writeback_index; /* Start from prev offset */
2064		end = -1;
2065		/*
2066		 * Start from the beginning does not need to cycle over the
2067		 * range, mark it as scanned.
2068		 */
2069		scanned = (index == 0);
2070	} else {
2071		index = wbc->range_start >> PAGE_SHIFT;
2072		end = wbc->range_end >> PAGE_SHIFT;
2073		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074			range_whole = 1;
2075		scanned = 1;
2076	}
2077
2078	/*
2079	 * We do the tagged writepage as long as the snapshot flush bit is set
2080	 * and we are the first one who do the filemap_flush() on this inode.
2081	 *
2082	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2083	 * not race in and drop the bit.
2084	 */
2085	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2086	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2087			       &BTRFS_I(inode)->runtime_flags))
2088		wbc->tagged_writepages = 1;
2089
2090	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2091		tag = PAGECACHE_TAG_TOWRITE;
2092	else
2093		tag = PAGECACHE_TAG_DIRTY;
2094retry:
2095	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2096		tag_pages_for_writeback(mapping, index, end);
2097	done_index = index;
2098	while (!done && !nr_to_write_done && (index <= end) &&
2099			(nr_folios = filemap_get_folios_tag(mapping, &index,
2100							end, tag, &fbatch))) {
2101		unsigned i;
2102
2103		for (i = 0; i < nr_folios; i++) {
2104			struct folio *folio = fbatch.folios[i];
 
2105
2106			done_index = folio_next_index(folio);
2107			/*
2108			 * At this point we hold neither the i_pages lock nor
2109			 * the page lock: the page may be truncated or
2110			 * invalidated (changing page->mapping to NULL),
2111			 * or even swizzled back from swapper_space to
2112			 * tmpfs file mapping
2113			 */
2114			if (!folio_trylock(folio)) {
2115				submit_write_bio(bio_ctrl, 0);
2116				folio_lock(folio);
2117			}
2118
2119			if (unlikely(folio->mapping != mapping)) {
2120				folio_unlock(folio);
2121				continue;
2122			}
2123
2124			if (!folio_test_dirty(folio)) {
2125				/* Someone wrote it for us. */
2126				folio_unlock(folio);
2127				continue;
2128			}
2129
2130			if (wbc->sync_mode != WB_SYNC_NONE) {
2131				if (folio_test_writeback(folio))
2132					submit_write_bio(bio_ctrl, 0);
2133				folio_wait_writeback(folio);
 
 
2134			}
2135
2136			if (folio_test_writeback(folio) ||
2137			    !folio_clear_dirty_for_io(folio)) {
2138				folio_unlock(folio);
2139				continue;
2140			}
2141
2142			ret = __extent_writepage(&folio->page, bio_ctrl);
2143			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
2144				done = 1;
2145				break;
2146			}
2147
2148			/*
2149			 * The filesystem may choose to bump up nr_to_write.
2150			 * We have to make sure to honor the new nr_to_write
2151			 * at any time.
2152			 */
2153			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2154					    wbc->nr_to_write <= 0);
2155		}
2156		folio_batch_release(&fbatch);
2157		cond_resched();
2158	}
2159	if (!scanned && !done) {
2160		/*
2161		 * We hit the last page and there is more work to be done: wrap
2162		 * back to the start of the file
2163		 */
2164		scanned = 1;
2165		index = 0;
2166
2167		/*
2168		 * If we're looping we could run into a page that is locked by a
2169		 * writer and that writer could be waiting on writeback for a
2170		 * page in our current bio, and thus deadlock, so flush the
2171		 * write bio here.
2172		 */
2173		submit_write_bio(bio_ctrl, 0);
2174		goto retry;
2175	}
2176
2177	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2178		mapping->writeback_index = done_index;
2179
2180	btrfs_add_delayed_iput(BTRFS_I(inode));
2181	return ret;
2182}
2183
2184/*
2185 * Submit the pages in the range to bio for call sites which delalloc range has
2186 * already been ran (aka, ordered extent inserted) and all pages are still
2187 * locked.
2188 */
2189void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2190			       u64 start, u64 end, struct writeback_control *wbc,
2191			       bool pages_dirty)
2192{
2193	bool found_error = false;
2194	int ret = 0;
2195	struct address_space *mapping = inode->i_mapping;
2196	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2197	const u32 sectorsize = fs_info->sectorsize;
2198	loff_t i_size = i_size_read(inode);
2199	u64 cur = start;
2200	struct btrfs_bio_ctrl bio_ctrl = {
2201		.wbc = wbc,
2202		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2203	};
2204
2205	if (wbc->no_cgroup_owner)
2206		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
 
 
 
 
2207
2208	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
 
 
 
2209
2210	while (cur <= end) {
2211		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2212		u32 cur_len = cur_end + 1 - cur;
2213		struct page *page;
2214		int nr = 0;
2215
2216		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2217		ASSERT(PageLocked(page));
2218		if (pages_dirty && page != locked_page) {
2219			ASSERT(PageDirty(page));
2220			clear_page_dirty_for_io(page);
2221		}
2222
2223		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2224					    i_size, &nr);
2225		if (ret == 1)
2226			goto next_page;
 
 
 
 
 
 
 
 
2227
2228		/* Make sure the mapping tag for page dirty gets cleared. */
2229		if (nr == 0) {
2230			set_page_writeback(page);
2231			end_page_writeback(page);
2232		}
2233		if (ret) {
2234			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2235						       cur, cur_len, !ret);
2236			mapping_set_error(page->mapping, ret);
2237		}
2238		btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2239		if (ret < 0)
2240			found_error = true;
2241next_page:
2242		put_page(page);
2243		cur = cur_end + 1;
2244	}
2245
2246	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
 
 
 
 
 
 
2247}
2248
2249int extent_writepages(struct address_space *mapping,
2250		      struct writeback_control *wbc)
2251{
2252	struct inode *inode = mapping->host;
2253	int ret = 0;
2254	struct btrfs_bio_ctrl bio_ctrl = {
2255		.wbc = wbc,
2256		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 
 
2257	};
2258
2259	/*
2260	 * Allow only a single thread to do the reloc work in zoned mode to
2261	 * protect the write pointer updates.
2262	 */
2263	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2264	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2265	submit_write_bio(&bio_ctrl, ret);
2266	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2267	return ret;
2268}
2269
2270void extent_readahead(struct readahead_control *rac)
 
2271{
2272	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
 
2273	struct page *pagepool[16];
2274	struct extent_map *em_cached = NULL;
 
 
2275	u64 prev_em_start = (u64)-1;
2276	int nr;
2277
2278	while ((nr = readahead_page_batch(rac, pagepool))) {
2279		u64 contig_start = readahead_pos(rac);
2280		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2281
2282		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2283				&em_cached, &bio_ctrl, &prev_em_start);
 
 
2284	}
2285
2286	if (em_cached)
2287		free_extent_map(em_cached);
2288	submit_one_bio(&bio_ctrl);
 
 
 
2289}
2290
2291/*
2292 * basic invalidate_folio code, this waits on any locked or writeback
2293 * ranges corresponding to the folio, and then deletes any extent state
2294 * records from the tree
2295 */
2296int extent_invalidate_folio(struct extent_io_tree *tree,
2297			  struct folio *folio, size_t offset)
2298{
2299	struct extent_state *cached_state = NULL;
2300	u64 start = folio_pos(folio);
2301	u64 end = start + folio_size(folio) - 1;
2302	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2303
2304	/* This function is only called for the btree inode */
2305	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2306
2307	start += ALIGN(offset, blocksize);
2308	if (start > end)
2309		return 0;
2310
2311	lock_extent(tree, start, end, &cached_state);
2312	folio_wait_writeback(folio);
2313
2314	/*
2315	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2316	 * so here we only need to unlock the extent range to free any
2317	 * existing extent state.
2318	 */
2319	unlock_extent(tree, start, end, &cached_state);
2320	return 0;
2321}
2322
2323/*
2324 * a helper for release_folio, this tests for areas of the page that
2325 * are locked or under IO and drops the related state bits if it is safe
2326 * to drop the page.
2327 */
2328static int try_release_extent_state(struct extent_io_tree *tree,
2329				    struct page *page, gfp_t mask)
2330{
2331	u64 start = page_offset(page);
2332	u64 end = start + PAGE_SIZE - 1;
2333	int ret = 1;
2334
2335	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2336		ret = 0;
2337	} else {
2338		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2339				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2340				   EXTENT_QGROUP_RESERVED);
2341
2342		/*
2343		 * At this point we can safely clear everything except the
2344		 * locked bit, the nodatasum bit and the delalloc new bit.
2345		 * The delalloc new bit will be cleared by ordered extent
2346		 * completion.
2347		 */
2348		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
 
 
2349
2350		/* if clear_extent_bit failed for enomem reasons,
2351		 * we can't allow the release to continue.
2352		 */
2353		if (ret < 0)
2354			ret = 0;
2355		else
2356			ret = 1;
2357	}
2358	return ret;
2359}
2360
2361/*
2362 * a helper for release_folio.  As long as there are no locked extents
2363 * in the range corresponding to the page, both state records and extent
2364 * map records are removed
2365 */
2366int try_release_extent_mapping(struct page *page, gfp_t mask)
2367{
2368	struct extent_map *em;
2369	u64 start = page_offset(page);
2370	u64 end = start + PAGE_SIZE - 1;
2371	struct btrfs_inode *btrfs_inode = page_to_inode(page);
2372	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2373	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2374
2375	if (gfpflags_allow_blocking(mask) &&
2376	    page->mapping->host->i_size > SZ_16M) {
2377		u64 len;
2378		while (start <= end) {
2379			struct btrfs_fs_info *fs_info;
2380			u64 cur_gen;
2381
2382			len = end - start + 1;
2383			write_lock(&map->lock);
2384			em = lookup_extent_mapping(map, start, len);
2385			if (!em) {
2386				write_unlock(&map->lock);
2387				break;
2388			}
2389			if ((em->flags & EXTENT_FLAG_PINNED) ||
2390			    em->start != start) {
2391				write_unlock(&map->lock);
2392				free_extent_map(em);
2393				break;
2394			}
2395			if (test_range_bit_exists(tree, em->start,
2396						  extent_map_end(em) - 1,
2397						  EXTENT_LOCKED))
2398				goto next;
2399			/*
2400			 * If it's not in the list of modified extents, used
2401			 * by a fast fsync, we can remove it. If it's being
2402			 * logged we can safely remove it since fsync took an
2403			 * extra reference on the em.
2404			 */
2405			if (list_empty(&em->list) ||
2406			    (em->flags & EXTENT_FLAG_LOGGING))
2407				goto remove_em;
2408			/*
2409			 * If it's in the list of modified extents, remove it
2410			 * only if its generation is older then the current one,
2411			 * in which case we don't need it for a fast fsync.
2412			 * Otherwise don't remove it, we could be racing with an
2413			 * ongoing fast fsync that could miss the new extent.
2414			 */
2415			fs_info = btrfs_inode->root->fs_info;
2416			spin_lock(&fs_info->trans_lock);
2417			cur_gen = fs_info->generation;
2418			spin_unlock(&fs_info->trans_lock);
2419			if (em->generation >= cur_gen)
2420				goto next;
2421remove_em:
2422			/*
2423			 * We only remove extent maps that are not in the list of
2424			 * modified extents or that are in the list but with a
2425			 * generation lower then the current generation, so there
2426			 * is no need to set the full fsync flag on the inode (it
2427			 * hurts the fsync performance for workloads with a data
2428			 * size that exceeds or is close to the system's memory).
2429			 */
2430			remove_extent_mapping(map, em);
2431			/* once for the rb tree */
2432			free_extent_map(em);
2433next:
2434			start = extent_map_end(em);
2435			write_unlock(&map->lock);
2436
2437			/* once for us */
2438			free_extent_map(em);
2439
2440			cond_resched(); /* Allow large-extent preemption. */
2441		}
2442	}
2443	return try_release_extent_state(tree, page, mask);
2444}
2445
2446struct btrfs_fiemap_entry {
2447	u64 offset;
2448	u64 phys;
 
 
 
 
 
 
2449	u64 len;
2450	u32 flags;
2451};
2452
2453/*
2454 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file
2455 * range from the inode's io tree, unlock the subvolume tree search path, flush
2456 * the fiemap cache and relock the file range and research the subvolume tree.
2457 * The value here is something negative that can't be confused with a valid
2458 * errno value and different from 1 because that's also a return value from
2459 * fiemap_fill_next_extent() and also it's often used to mean some btree search
2460 * did not find a key, so make it some distinct negative value.
2461 */
2462#define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2463
2464/*
2465 * Used to:
2466 *
2467 * - Cache the next entry to be emitted to the fiemap buffer, so that we can
2468 *   merge extents that are contiguous and can be grouped as a single one;
2469 *
2470 * - Store extents ready to be written to the fiemap buffer in an intermediary
2471 *   buffer. This intermediary buffer is to ensure that in case the fiemap
2472 *   buffer is memory mapped to the fiemap target file, we don't deadlock
2473 *   during btrfs_page_mkwrite(). This is because during fiemap we are locking
2474 *   an extent range in order to prevent races with delalloc flushing and
2475 *   ordered extent completion, which is needed in order to reliably detect
2476 *   delalloc in holes and prealloc extents. And this can lead to a deadlock
2477 *   if the fiemap buffer is memory mapped to the file we are running fiemap
2478 *   against (a silly, useless in practice scenario, but possible) because
2479 *   btrfs_page_mkwrite() will try to lock the same extent range.
2480 */
2481struct fiemap_cache {
2482	/* An array of ready fiemap entries. */
2483	struct btrfs_fiemap_entry *entries;
2484	/* Number of entries in the entries array. */
2485	int entries_size;
2486	/* Index of the next entry in the entries array to write to. */
2487	int entries_pos;
2488	/*
2489	 * Once the entries array is full, this indicates what's the offset for
2490	 * the next file extent item we must search for in the inode's subvolume
2491	 * tree after unlocking the extent range in the inode's io tree and
2492	 * releasing the search path.
2493	 */
2494	u64 next_search_offset;
2495	/*
2496	 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it
2497	 * to count ourselves emitted extents and stop instead of relying on
2498	 * fiemap_fill_next_extent() because we buffer ready fiemap entries at
2499	 * the @entries array, and we want to stop as soon as we hit the max
2500	 * amount of extents to map, not just to save time but also to make the
2501	 * logic at extent_fiemap() simpler.
2502	 */
2503	unsigned int extents_mapped;
2504	/* Fields for the cached extent (unsubmitted, not ready, extent). */
2505	u64 offset;
2506	u64 phys;
2507	u64 len;
2508	u32 flags;
2509	bool cached;
2510};
2511
2512static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo,
2513			      struct fiemap_cache *cache)
2514{
2515	for (int i = 0; i < cache->entries_pos; i++) {
2516		struct btrfs_fiemap_entry *entry = &cache->entries[i];
2517		int ret;
2518
2519		ret = fiemap_fill_next_extent(fieinfo, entry->offset,
2520					      entry->phys, entry->len,
2521					      entry->flags);
2522		/*
2523		 * Ignore 1 (reached max entries) because we keep track of that
2524		 * ourselves in emit_fiemap_extent().
2525		 */
2526		if (ret < 0)
2527			return ret;
2528	}
2529	cache->entries_pos = 0;
2530
2531	return 0;
2532}
2533
2534/*
2535 * Helper to submit fiemap extent.
2536 *
2537 * Will try to merge current fiemap extent specified by @offset, @phys,
2538 * @len and @flags with cached one.
2539 * And only when we fails to merge, cached one will be submitted as
2540 * fiemap extent.
2541 *
2542 * Return value is the same as fiemap_fill_next_extent().
2543 */
2544static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2545				struct fiemap_cache *cache,
2546				u64 offset, u64 phys, u64 len, u32 flags)
2547{
2548	struct btrfs_fiemap_entry *entry;
2549	u64 cache_end;
2550
2551	/* Set at the end of extent_fiemap(). */
2552	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2553
2554	if (!cache->cached)
2555		goto assign;
2556
2557	/*
2558	 * When iterating the extents of the inode, at extent_fiemap(), we may
2559	 * find an extent that starts at an offset behind the end offset of the
2560	 * previous extent we processed. This happens if fiemap is called
2561	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2562	 * after we had to unlock the file range, release the search path, emit
2563	 * the fiemap extents stored in the buffer (cache->entries array) and
2564	 * the lock the remainder of the range and re-search the btree.
2565	 *
2566	 * For example we are in leaf X processing its last item, which is the
2567	 * file extent item for file range [512K, 1M[, and after
2568	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2569	 * completes for the file range [768K, 2M[, and that results in trimming
2570	 * the file extent item so that it now corresponds to the file range
2571	 * [512K, 768K[ and a new file extent item is inserted for the file
2572	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2573	 * the first item of the next leaf - in either case btrfs_next_leaf()
2574	 * will leave us with a path pointing to the new extent item, for the
2575	 * file range [768K, 2M[, since that's the first key that follows the
2576	 * last one we processed. So in order not to report overlapping extents
2577	 * to user space, we trim the length of the previously cached extent and
2578	 * emit it.
2579	 *
2580	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2581	 * offset smaller than or equals to cache->offset, and this happens
2582	 * when we had a hole or prealloc extent with several delalloc ranges in
2583	 * it, but after btrfs_next_leaf() released the path, delalloc was
2584	 * flushed and the resulting ordered extents were completed, so we can
2585	 * now have found a file extent item for an offset that is smaller than
2586	 * or equals to what we have in cache->offset. We deal with this as
2587	 * described below.
2588	 */
2589	cache_end = cache->offset + cache->len;
2590	if (cache_end > offset) {
2591		if (offset == cache->offset) {
2592			/*
2593			 * We cached a dealloc range (found in the io tree) for
2594			 * a hole or prealloc extent and we have now found a
2595			 * file extent item for the same offset. What we have
2596			 * now is more recent and up to date, so discard what
2597			 * we had in the cache and use what we have just found.
2598			 */
2599			goto assign;
2600		} else if (offset > cache->offset) {
2601			/*
2602			 * The extent range we previously found ends after the
2603			 * offset of the file extent item we found and that
2604			 * offset falls somewhere in the middle of that previous
2605			 * extent range. So adjust the range we previously found
2606			 * to end at the offset of the file extent item we have
2607			 * just found, since this extent is more up to date.
2608			 * Emit that adjusted range and cache the file extent
2609			 * item we have just found. This corresponds to the case
2610			 * where a previously found file extent item was split
2611			 * due to an ordered extent completing.
2612			 */
2613			cache->len = offset - cache->offset;
2614			goto emit;
2615		} else {
2616			const u64 range_end = offset + len;
2617
2618			/*
2619			 * The offset of the file extent item we have just found
2620			 * is behind the cached offset. This means we were
2621			 * processing a hole or prealloc extent for which we
2622			 * have found delalloc ranges (in the io tree), so what
2623			 * we have in the cache is the last delalloc range we
2624			 * found while the file extent item we found can be
2625			 * either for a whole delalloc range we previously
2626			 * emmitted or only a part of that range.
2627			 *
2628			 * We have two cases here:
2629			 *
2630			 * 1) The file extent item's range ends at or behind the
2631			 *    cached extent's end. In this case just ignore the
2632			 *    current file extent item because we don't want to
2633			 *    overlap with previous ranges that may have been
2634			 *    emmitted already;
2635			 *
2636			 * 2) The file extent item starts behind the currently
2637			 *    cached extent but its end offset goes beyond the
2638			 *    end offset of the cached extent. We don't want to
2639			 *    overlap with a previous range that may have been
2640			 *    emmitted already, so we emit the currently cached
2641			 *    extent and then partially store the current file
2642			 *    extent item's range in the cache, for the subrange
2643			 *    going the cached extent's end to the end of the
2644			 *    file extent item.
2645			 */
2646			if (range_end <= cache_end)
2647				return 0;
2648
2649			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2650				phys += cache_end - offset;
2651
2652			offset = cache_end;
2653			len = range_end - cache_end;
2654			goto emit;
2655		}
2656	}
2657
2658	/*
2659	 * Only merges fiemap extents if
2660	 * 1) Their logical addresses are continuous
2661	 *
2662	 * 2) Their physical addresses are continuous
2663	 *    So truly compressed (physical size smaller than logical size)
2664	 *    extents won't get merged with each other
2665	 *
2666	 * 3) Share same flags
 
2667	 */
2668	if (cache->offset + cache->len  == offset &&
2669	    cache->phys + cache->len == phys  &&
2670	    cache->flags == flags) {
 
2671		cache->len += len;
2672		return 0;
 
2673	}
2674
2675emit:
2676	/* Not mergeable, need to submit cached one */
2677
2678	if (cache->entries_pos == cache->entries_size) {
2679		/*
2680		 * We will need to research for the end offset of the last
2681		 * stored extent and not from the current offset, because after
2682		 * unlocking the range and releasing the path, if there's a hole
2683		 * between that end offset and this current offset, a new extent
2684		 * may have been inserted due to a new write, so we don't want
2685		 * to miss it.
2686		 */
2687		entry = &cache->entries[cache->entries_size - 1];
2688		cache->next_search_offset = entry->offset + entry->len;
2689		cache->cached = false;
2690
2691		return BTRFS_FIEMAP_FLUSH_CACHE;
2692	}
2693
2694	entry = &cache->entries[cache->entries_pos];
2695	entry->offset = cache->offset;
2696	entry->phys = cache->phys;
2697	entry->len = cache->len;
2698	entry->flags = cache->flags;
2699	cache->entries_pos++;
2700	cache->extents_mapped++;
2701
2702	if (cache->extents_mapped == fieinfo->fi_extents_max) {
2703		cache->cached = false;
2704		return 1;
2705	}
2706assign:
2707	cache->cached = true;
2708	cache->offset = offset;
2709	cache->phys = phys;
2710	cache->len = len;
2711	cache->flags = flags;
2712
2713	return 0;
 
 
 
 
 
2714}
2715
2716/*
2717 * Emit last fiemap cache
2718 *
2719 * The last fiemap cache may still be cached in the following case:
2720 * 0		      4k		    8k
2721 * |<- Fiemap range ->|
2722 * |<------------  First extent ----------->|
2723 *
2724 * In this case, the first extent range will be cached but not emitted.
2725 * So we must emit it before ending extent_fiemap().
2726 */
2727static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2728				  struct fiemap_cache *cache)
2729{
2730	int ret;
2731
2732	if (!cache->cached)
2733		return 0;
2734
2735	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2736				      cache->len, cache->flags);
2737	cache->cached = false;
2738	if (ret > 0)
2739		ret = 0;
2740	return ret;
2741}
2742
2743static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
 
2744{
2745	struct extent_buffer *clone = path->nodes[0];
2746	struct btrfs_key key;
2747	int slot;
2748	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749
2750	path->slots[0]++;
2751	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2752		return 0;
2753
2754	/*
2755	 * Add a temporary extra ref to an already cloned extent buffer to
2756	 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid
2757	 * the cost of allocating a new one.
2758	 */
2759	ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags));
2760	atomic_inc(&clone->refs);
2761
2762	ret = btrfs_next_leaf(inode->root, path);
2763	if (ret != 0)
2764		goto out;
2765
2766	/*
2767	 * Don't bother with cloning if there are no more file extent items for
2768	 * our inode.
2769	 */
2770	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2771	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) {
2772		ret = 1;
2773		goto out;
2774	}
2775
2776	/*
2777	 * Important to preserve the start field, for the optimizations when
2778	 * checking if extents are shared (see extent_fiemap()).
2779	 *
2780	 * We must set ->start before calling copy_extent_buffer_full().  If we
2781	 * are on sub-pagesize blocksize, we use ->start to determine the offset
2782	 * into the folio where our eb exists, and if we update ->start after
2783	 * the fact then any subsequent reads of the eb may read from a
2784	 * different offset in the folio than where we originally copied into.
2785	 */
2786	clone->start = path->nodes[0]->start;
2787	/* See the comment at fiemap_search_slot() about why we clone. */
2788	copy_extent_buffer_full(clone, path->nodes[0]);
2789
2790	slot = path->slots[0];
2791	btrfs_release_path(path);
2792	path->nodes[0] = clone;
2793	path->slots[0] = slot;
2794out:
2795	if (ret)
2796		free_extent_buffer(clone);
2797
2798	return ret;
2799}
2800
2801/*
2802 * Search for the first file extent item that starts at a given file offset or
2803 * the one that starts immediately before that offset.
2804 * Returns: 0 on success, < 0 on error, 1 if not found.
2805 */
2806static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2807			      u64 file_offset)
2808{
2809	const u64 ino = btrfs_ino(inode);
2810	struct btrfs_root *root = inode->root;
2811	struct extent_buffer *clone;
2812	struct btrfs_key key;
2813	int slot;
2814	int ret;
2815
2816	key.objectid = ino;
2817	key.type = BTRFS_EXTENT_DATA_KEY;
2818	key.offset = file_offset;
2819
2820	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2821	if (ret < 0)
2822		return ret;
2823
2824	if (ret > 0 && path->slots[0] > 0) {
2825		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2826		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2827			path->slots[0]--;
2828	}
2829
2830	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2831		ret = btrfs_next_leaf(root, path);
2832		if (ret != 0)
2833			return ret;
2834
2835		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2836		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2837			return 1;
2838	}
2839
2840	/*
2841	 * We clone the leaf and use it during fiemap. This is because while
2842	 * using the leaf we do expensive things like checking if an extent is
2843	 * shared, which can take a long time. In order to prevent blocking
2844	 * other tasks for too long, we use a clone of the leaf. We have locked
2845	 * the file range in the inode's io tree, so we know none of our file
2846	 * extent items can change. This way we avoid blocking other tasks that
2847	 * want to insert items for other inodes in the same leaf or b+tree
2848	 * rebalance operations (triggered for example when someone is trying
2849	 * to push items into this leaf when trying to insert an item in a
2850	 * neighbour leaf).
2851	 * We also need the private clone because holding a read lock on an
2852	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2853	 * when we check if extents are shared, as backref walking may need to
2854	 * lock the same leaf we are processing.
2855	 */
2856	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2857	if (!clone)
2858		return -ENOMEM;
 
 
 
 
 
 
2859
2860	slot = path->slots[0];
2861	btrfs_release_path(path);
2862	path->nodes[0] = clone;
2863	path->slots[0] = slot;
2864
2865	return 0;
2866}
2867
2868/*
2869 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2870 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2871 * extent. The end offset (@end) is inclusive.
2872 */
2873static int fiemap_process_hole(struct btrfs_inode *inode,
2874			       struct fiemap_extent_info *fieinfo,
2875			       struct fiemap_cache *cache,
2876			       struct extent_state **delalloc_cached_state,
2877			       struct btrfs_backref_share_check_ctx *backref_ctx,
2878			       u64 disk_bytenr, u64 extent_offset,
2879			       u64 extent_gen,
2880			       u64 start, u64 end)
2881{
2882	const u64 i_size = i_size_read(&inode->vfs_inode);
2883	u64 cur_offset = start;
2884	u64 last_delalloc_end = 0;
2885	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2886	bool checked_extent_shared = false;
2887	int ret;
2888
2889	/*
2890	 * There can be no delalloc past i_size, so don't waste time looking for
2891	 * it beyond i_size.
2892	 */
2893	while (cur_offset < end && cur_offset < i_size) {
2894		u64 delalloc_start;
2895		u64 delalloc_end;
2896		u64 prealloc_start;
2897		u64 prealloc_len = 0;
2898		bool delalloc;
2899
2900		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2901							delalloc_cached_state,
2902							&delalloc_start,
2903							&delalloc_end);
2904		if (!delalloc)
2905			break;
2906
 
 
 
 
 
 
 
2907		/*
2908		 * If this is a prealloc extent we have to report every section
2909		 * of it that has no delalloc.
 
2910		 */
2911		if (disk_bytenr != 0) {
2912			if (last_delalloc_end == 0) {
2913				prealloc_start = start;
2914				prealloc_len = delalloc_start - start;
2915			} else {
2916				prealloc_start = last_delalloc_end + 1;
2917				prealloc_len = delalloc_start - prealloc_start;
2918			}
2919		}
2920
2921		if (prealloc_len > 0) {
2922			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2923				ret = btrfs_is_data_extent_shared(inode,
2924								  disk_bytenr,
2925								  extent_gen,
2926								  backref_ctx);
2927				if (ret < 0)
2928					return ret;
2929				else if (ret > 0)
2930					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2931
2932				checked_extent_shared = true;
2933			}
2934			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2935						 disk_bytenr + extent_offset,
2936						 prealloc_len, prealloc_flags);
2937			if (ret)
2938				return ret;
2939			extent_offset += prealloc_len;
2940		}
2941
2942		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2943					 delalloc_end + 1 - delalloc_start,
2944					 FIEMAP_EXTENT_DELALLOC |
2945					 FIEMAP_EXTENT_UNKNOWN);
2946		if (ret)
2947			return ret;
2948
2949		last_delalloc_end = delalloc_end;
2950		cur_offset = delalloc_end + 1;
2951		extent_offset += cur_offset - delalloc_start;
2952		cond_resched();
2953	}
 
2954
2955	/*
2956	 * Either we found no delalloc for the whole prealloc extent or we have
2957	 * a prealloc extent that spans i_size or starts at or after i_size.
 
2958	 */
2959	if (disk_bytenr != 0 && last_delalloc_end < end) {
2960		u64 prealloc_start;
2961		u64 prealloc_len;
2962
2963		if (last_delalloc_end == 0) {
2964			prealloc_start = start;
2965			prealloc_len = end + 1 - start;
2966		} else {
2967			prealloc_start = last_delalloc_end + 1;
2968			prealloc_len = end + 1 - prealloc_start;
2969		}
2970
2971		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2972			ret = btrfs_is_data_extent_shared(inode,
2973							  disk_bytenr,
2974							  extent_gen,
2975							  backref_ctx);
2976			if (ret < 0)
2977				return ret;
2978			else if (ret > 0)
2979				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2980		}
2981		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2982					 disk_bytenr + extent_offset,
2983					 prealloc_len, prealloc_flags);
2984		if (ret)
2985			return ret;
2986	}
2987
2988	return 0;
2989}
2990
2991static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2992					  struct btrfs_path *path,
2993					  u64 *last_extent_end_ret)
2994{
2995	const u64 ino = btrfs_ino(inode);
2996	struct btrfs_root *root = inode->root;
2997	struct extent_buffer *leaf;
2998	struct btrfs_file_extent_item *ei;
2999	struct btrfs_key key;
3000	u64 disk_bytenr;
3001	int ret;
3002
3003	/*
3004	 * Lookup the last file extent. We're not using i_size here because
3005	 * there might be preallocation past i_size.
3006	 */
3007	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3008	/* There can't be a file extent item at offset (u64)-1 */
3009	ASSERT(ret != 0);
3010	if (ret < 0)
3011		return ret;
3012
3013	/*
3014	 * For a non-existing key, btrfs_search_slot() always leaves us at a
3015	 * slot > 0, except if the btree is empty, which is impossible because
3016	 * at least it has the inode item for this inode and all the items for
3017	 * the root inode 256.
3018	 */
3019	ASSERT(path->slots[0] > 0);
3020	path->slots[0]--;
3021	leaf = path->nodes[0];
3022	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3023	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3024		/* No file extent items in the subvolume tree. */
3025		*last_extent_end_ret = 0;
3026		return 0;
3027	}
3028
3029	/*
3030	 * For an inline extent, the disk_bytenr is where inline data starts at,
3031	 * so first check if we have an inline extent item before checking if we
3032	 * have an implicit hole (disk_bytenr == 0).
3033	 */
3034	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3035	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3036		*last_extent_end_ret = btrfs_file_extent_end(path);
3037		return 0;
3038	}
3039
3040	/*
3041	 * Find the last file extent item that is not a hole (when NO_HOLES is
3042	 * not enabled). This should take at most 2 iterations in the worst
3043	 * case: we have one hole file extent item at slot 0 of a leaf and
3044	 * another hole file extent item as the last item in the previous leaf.
3045	 * This is because we merge file extent items that represent holes.
3046	 */
3047	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3048	while (disk_bytenr == 0) {
3049		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3050		if (ret < 0) {
3051			return ret;
3052		} else if (ret > 0) {
3053			/* No file extent items that are not holes. */
3054			*last_extent_end_ret = 0;
3055			return 0;
3056		}
3057		leaf = path->nodes[0];
3058		ei = btrfs_item_ptr(leaf, path->slots[0],
3059				    struct btrfs_file_extent_item);
3060		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3061	}
3062
3063	*last_extent_end_ret = btrfs_file_extent_end(path);
3064	return 0;
3065}
3066
3067int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3068		  u64 start, u64 len)
3069{
3070	const u64 ino = btrfs_ino(inode);
3071	struct extent_state *cached_state = NULL;
3072	struct extent_state *delalloc_cached_state = NULL;
3073	struct btrfs_path *path;
3074	struct fiemap_cache cache = { 0 };
3075	struct btrfs_backref_share_check_ctx *backref_ctx;
3076	u64 last_extent_end;
3077	u64 prev_extent_end;
3078	u64 range_start;
3079	u64 range_end;
3080	const u64 sectorsize = inode->root->fs_info->sectorsize;
3081	bool stopped = false;
3082	int ret;
3083
3084	cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry);
3085	cache.entries = kmalloc_array(cache.entries_size,
3086				      sizeof(struct btrfs_fiemap_entry),
3087				      GFP_KERNEL);
3088	backref_ctx = btrfs_alloc_backref_share_check_ctx();
3089	path = btrfs_alloc_path();
3090	if (!cache.entries || !backref_ctx || !path) {
3091		ret = -ENOMEM;
3092		goto out;
3093	}
3094
3095restart:
3096	range_start = round_down(start, sectorsize);
3097	range_end = round_up(start + len, sectorsize);
3098	prev_extent_end = range_start;
3099
3100	lock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3101
3102	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3103	if (ret < 0)
3104		goto out_unlock;
3105	btrfs_release_path(path);
3106
3107	path->reada = READA_FORWARD;
3108	ret = fiemap_search_slot(inode, path, range_start);
3109	if (ret < 0) {
3110		goto out_unlock;
3111	} else if (ret > 0) {
3112		/*
3113		 * No file extent item found, but we may have delalloc between
3114		 * the current offset and i_size. So check for that.
 
 
3115		 */
3116		ret = 0;
3117		goto check_eof_delalloc;
3118	}
3119
3120	while (prev_extent_end < range_end) {
3121		struct extent_buffer *leaf = path->nodes[0];
3122		struct btrfs_file_extent_item *ei;
3123		struct btrfs_key key;
3124		u64 extent_end;
3125		u64 extent_len;
3126		u64 extent_offset = 0;
3127		u64 extent_gen;
3128		u64 disk_bytenr = 0;
3129		u64 flags = 0;
3130		int extent_type;
3131		u8 compression;
3132
3133		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3134		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3135			break;
3136
3137		extent_end = btrfs_file_extent_end(path);
3138
3139		/*
3140		 * The first iteration can leave us at an extent item that ends
3141		 * before our range's start. Move to the next item.
3142		 */
3143		if (extent_end <= range_start)
3144			goto next_item;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3145
3146		backref_ctx->curr_leaf_bytenr = leaf->start;
3147
3148		/* We have in implicit hole (NO_HOLES feature enabled). */
3149		if (prev_extent_end < key.offset) {
3150			const u64 hole_end = min(key.offset, range_end) - 1;
3151
3152			ret = fiemap_process_hole(inode, fieinfo, &cache,
3153						  &delalloc_cached_state,
3154						  backref_ctx, 0, 0, 0,
3155						  prev_extent_end, hole_end);
3156			if (ret < 0) {
3157				goto out_unlock;
3158			} else if (ret > 0) {
3159				/* fiemap_fill_next_extent() told us to stop. */
3160				stopped = true;
3161				break;
3162			}
3163
3164			/* We've reached the end of the fiemap range, stop. */
3165			if (key.offset >= range_end) {
3166				stopped = true;
3167				break;
3168			}
3169		}
3170
3171		extent_len = extent_end - key.offset;
3172		ei = btrfs_item_ptr(leaf, path->slots[0],
3173				    struct btrfs_file_extent_item);
3174		compression = btrfs_file_extent_compression(leaf, ei);
3175		extent_type = btrfs_file_extent_type(leaf, ei);
3176		extent_gen = btrfs_file_extent_generation(leaf, ei);
3177
3178		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3179			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3180			if (compression == BTRFS_COMPRESS_NONE)
3181				extent_offset = btrfs_file_extent_offset(leaf, ei);
3182		}
3183
3184		if (compression != BTRFS_COMPRESS_NONE)
3185			flags |= FIEMAP_EXTENT_ENCODED;
 
 
3186
3187		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3188			flags |= FIEMAP_EXTENT_DATA_INLINE;
3189			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3190			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3191						 extent_len, flags);
3192		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3193			ret = fiemap_process_hole(inode, fieinfo, &cache,
3194						  &delalloc_cached_state,
3195						  backref_ctx,
3196						  disk_bytenr, extent_offset,
3197						  extent_gen, key.offset,
3198						  extent_end - 1);
3199		} else if (disk_bytenr == 0) {
3200			/* We have an explicit hole. */
3201			ret = fiemap_process_hole(inode, fieinfo, &cache,
3202						  &delalloc_cached_state,
3203						  backref_ctx, 0, 0, 0,
3204						  key.offset, extent_end - 1);
3205		} else {
3206			/* We have a regular extent. */
3207			if (fieinfo->fi_extents_max) {
3208				ret = btrfs_is_data_extent_shared(inode,
3209								  disk_bytenr,
3210								  extent_gen,
3211								  backref_ctx);
3212				if (ret < 0)
3213					goto out_unlock;
3214				else if (ret > 0)
3215					flags |= FIEMAP_EXTENT_SHARED;
3216			}
3217
3218			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3219						 disk_bytenr + extent_offset,
3220						 extent_len, flags);
3221		}
3222
3223		if (ret < 0) {
3224			goto out_unlock;
3225		} else if (ret > 0) {
3226			/* emit_fiemap_extent() told us to stop. */
3227			stopped = true;
3228			break;
3229		}
3230
3231		prev_extent_end = extent_end;
3232next_item:
3233		if (fatal_signal_pending(current)) {
3234			ret = -EINTR;
3235			goto out_unlock;
3236		}
3237
3238		ret = fiemap_next_leaf_item(inode, path);
3239		if (ret < 0) {
3240			goto out_unlock;
3241		} else if (ret > 0) {
3242			/* No more file extent items for this inode. */
3243			break;
3244		}
3245		cond_resched();
3246	}
3247
3248check_eof_delalloc:
3249	if (!stopped && prev_extent_end < range_end) {
3250		ret = fiemap_process_hole(inode, fieinfo, &cache,
3251					  &delalloc_cached_state, backref_ctx,
3252					  0, 0, 0, prev_extent_end, range_end - 1);
3253		if (ret < 0)
3254			goto out_unlock;
3255		prev_extent_end = range_end;
3256	}
3257
3258	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3259		const u64 i_size = i_size_read(&inode->vfs_inode);
3260
3261		if (prev_extent_end < i_size) {
3262			u64 delalloc_start;
3263			u64 delalloc_end;
3264			bool delalloc;
3265
3266			delalloc = btrfs_find_delalloc_in_range(inode,
3267								prev_extent_end,
3268								i_size - 1,
3269								&delalloc_cached_state,
3270								&delalloc_start,
3271								&delalloc_end);
3272			if (!delalloc)
3273				cache.flags |= FIEMAP_EXTENT_LAST;
3274		} else {
3275			cache.flags |= FIEMAP_EXTENT_LAST;
3276		}
3277	}
3278
3279out_unlock:
3280	unlock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3281
3282	if (ret == BTRFS_FIEMAP_FLUSH_CACHE) {
3283		btrfs_release_path(path);
3284		ret = flush_fiemap_cache(fieinfo, &cache);
3285		if (ret)
3286			goto out;
3287		len -= cache.next_search_offset - start;
3288		start = cache.next_search_offset;
3289		goto restart;
3290	} else if (ret < 0) {
3291		goto out;
3292	}
 
 
 
 
 
 
 
3293
3294	/*
3295	 * Must free the path before emitting to the fiemap buffer because we
3296	 * may have a non-cloned leaf and if the fiemap buffer is memory mapped
3297	 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger
3298	 * waiting for an ordered extent that in order to complete needs to
3299	 * modify that leaf, therefore leading to a deadlock.
3300	 */
3301	btrfs_free_path(path);
3302	path = NULL;
3303
3304	ret = flush_fiemap_cache(fieinfo, &cache);
3305	if (ret)
3306		goto out;
3307
3308	ret = emit_last_fiemap_cache(fieinfo, &cache);
3309out:
3310	free_extent_state(delalloc_cached_state);
3311	kfree(cache.entries);
3312	btrfs_free_backref_share_ctx(backref_ctx);
3313	btrfs_free_path(path);
 
 
3314	return ret;
3315}
3316
3317static void __free_extent_buffer(struct extent_buffer *eb)
3318{
 
3319	kmem_cache_free(extent_buffer_cache, eb);
3320}
3321
3322static int extent_buffer_under_io(const struct extent_buffer *eb)
3323{
3324	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
 
3325		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3326}
3327
3328static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
 
 
 
3329{
3330	struct btrfs_subpage *subpage;
3331
3332	lockdep_assert_held(&folio->mapping->i_private_lock);
3333
3334	if (folio_test_private(folio)) {
3335		subpage = folio_get_private(folio);
3336		if (atomic_read(&subpage->eb_refs))
3337			return true;
3338		/*
3339		 * Even there is no eb refs here, we may still have
3340		 * end_page_read() call relying on page::private.
3341		 */
3342		if (atomic_read(&subpage->readers))
3343			return true;
3344	}
3345	return false;
3346}
3347
3348static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3349{
3350	struct btrfs_fs_info *fs_info = eb->fs_info;
3351	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3352
3353	/*
3354	 * For mapped eb, we're going to change the folio private, which should
3355	 * be done under the i_private_lock.
3356	 */
3357	if (mapped)
3358		spin_lock(&folio->mapping->i_private_lock);
3359
3360	if (!folio_test_private(folio)) {
 
3361		if (mapped)
3362			spin_unlock(&folio->mapping->i_private_lock);
3363		return;
3364	}
3365
3366	if (fs_info->nodesize >= PAGE_SIZE) {
3367		/*
3368		 * We do this since we'll remove the pages after we've
3369		 * removed the eb from the radix tree, so we could race
3370		 * and have this page now attached to the new eb.  So
3371		 * only clear folio if it's still connected to
3372		 * this eb.
3373		 */
3374		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
 
3375			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3376			BUG_ON(folio_test_dirty(folio));
3377			BUG_ON(folio_test_writeback(folio));
3378			/* We need to make sure we haven't be attached to a new eb. */
3379			folio_detach_private(folio);
 
 
 
 
 
 
3380		}
 
3381		if (mapped)
3382			spin_unlock(&folio->mapping->i_private_lock);
3383		return;
3384	}
3385
3386	/*
3387	 * For subpage, we can have dummy eb with folio private attached.  In
3388	 * this case, we can directly detach the private as such folio is only
3389	 * attached to one dummy eb, no sharing.
3390	 */
3391	if (!mapped) {
3392		btrfs_detach_subpage(fs_info, folio);
3393		return;
3394	}
3395
3396	btrfs_folio_dec_eb_refs(fs_info, folio);
3397
3398	/*
3399	 * We can only detach the folio private if there are no other ebs in the
3400	 * page range and no unfinished IO.
3401	 */
3402	if (!folio_range_has_eb(fs_info, folio))
3403		btrfs_detach_subpage(fs_info, folio);
3404
3405	spin_unlock(&folio->mapping->i_private_lock);
3406}
3407
3408/* Release all pages attached to the extent buffer */
3409static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3410{
3411	ASSERT(!extent_buffer_under_io(eb));
3412
3413	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3414		struct folio *folio = eb->folios[i];
3415
3416		if (!folio)
3417			continue;
3418
3419		detach_extent_buffer_folio(eb, folio);
3420
3421		/* One for when we allocated the folio. */
3422		folio_put(folio);
3423	}
3424}
3425
3426/*
3427 * Helper for releasing the extent buffer.
3428 */
3429static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3430{
3431	btrfs_release_extent_buffer_pages(eb);
3432	btrfs_leak_debug_del_eb(eb);
3433	__free_extent_buffer(eb);
3434}
3435
3436static struct extent_buffer *
3437__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3438		      unsigned long len)
3439{
3440	struct extent_buffer *eb = NULL;
3441
3442	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3443	eb->start = start;
3444	eb->len = len;
3445	eb->fs_info = fs_info;
3446	init_rwsem(&eb->lock);
 
 
 
 
 
 
3447
3448	btrfs_leak_debug_add_eb(eb);
3449
3450	spin_lock_init(&eb->refs_lock);
3451	atomic_set(&eb->refs, 1);
 
3452
3453	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
 
 
 
 
 
 
 
 
 
 
 
 
3454
3455	return eb;
3456}
3457
3458struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3459{
 
 
3460	struct extent_buffer *new;
3461	int num_folios = num_extent_folios(src);
3462	int ret;
3463
3464	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3465	if (new == NULL)
3466		return NULL;
3467
3468	/*
3469	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3470	 * btrfs_release_extent_buffer() have different behavior for
3471	 * UNMAPPED subpage extent buffer.
3472	 */
3473	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3474
3475	ret = alloc_eb_folio_array(new, 0);
3476	if (ret) {
3477		btrfs_release_extent_buffer(new);
3478		return NULL;
3479	}
3480
3481	for (int i = 0; i < num_folios; i++) {
3482		struct folio *folio = new->folios[i];
3483		int ret;
3484
3485		ret = attach_extent_buffer_folio(new, folio, NULL);
3486		if (ret < 0) {
3487			btrfs_release_extent_buffer(new);
3488			return NULL;
3489		}
3490		WARN_ON(folio_test_dirty(folio));
 
 
 
 
3491	}
3492	copy_extent_buffer_full(new, src);
3493	set_extent_buffer_uptodate(new);
 
3494
3495	return new;
3496}
3497
3498struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3499						  u64 start, unsigned long len)
3500{
3501	struct extent_buffer *eb;
3502	int num_folios = 0;
3503	int ret;
3504
3505	eb = __alloc_extent_buffer(fs_info, start, len);
3506	if (!eb)
3507		return NULL;
3508
3509	ret = alloc_eb_folio_array(eb, 0);
3510	if (ret)
3511		goto err;
3512
3513	num_folios = num_extent_folios(eb);
3514	for (int i = 0; i < num_folios; i++) {
3515		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3516		if (ret < 0)
3517			goto err;
3518	}
3519
3520	set_extent_buffer_uptodate(eb);
3521	btrfs_set_header_nritems(eb, 0);
3522	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3523
3524	return eb;
3525err:
3526	for (int i = 0; i < num_folios; i++) {
3527		if (eb->folios[i]) {
3528			detach_extent_buffer_folio(eb, eb->folios[i]);
3529			__folio_put(eb->folios[i]);
3530		}
3531	}
3532	__free_extent_buffer(eb);
3533	return NULL;
3534}
3535
3536struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3537						u64 start)
3538{
3539	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3540}
3541
3542static void check_buffer_tree_ref(struct extent_buffer *eb)
3543{
3544	int refs;
3545	/*
3546	 * The TREE_REF bit is first set when the extent_buffer is added
3547	 * to the radix tree. It is also reset, if unset, when a new reference
3548	 * is created by find_extent_buffer.
3549	 *
3550	 * It is only cleared in two cases: freeing the last non-tree
3551	 * reference to the extent_buffer when its STALE bit is set or
3552	 * calling release_folio when the tree reference is the only reference.
 
3553	 *
3554	 * In both cases, care is taken to ensure that the extent_buffer's
3555	 * pages are not under io. However, release_folio can be concurrently
3556	 * called with creating new references, which is prone to race
3557	 * conditions between the calls to check_buffer_tree_ref in those
3558	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
 
3559	 *
3560	 * The actual lifetime of the extent_buffer in the radix tree is
3561	 * adequately protected by the refcount, but the TREE_REF bit and
3562	 * its corresponding reference are not. To protect against this
3563	 * class of races, we call check_buffer_tree_ref from the codepaths
3564	 * which trigger io. Note that once io is initiated, TREE_REF can no
3565	 * longer be cleared, so that is the moment at which any such race is
3566	 * best fixed.
3567	 */
3568	refs = atomic_read(&eb->refs);
3569	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3570		return;
3571
3572	spin_lock(&eb->refs_lock);
3573	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3574		atomic_inc(&eb->refs);
3575	spin_unlock(&eb->refs_lock);
3576}
3577
3578static void mark_extent_buffer_accessed(struct extent_buffer *eb)
 
3579{
3580	int num_folios= num_extent_folios(eb);
3581
3582	check_buffer_tree_ref(eb);
3583
3584	for (int i = 0; i < num_folios; i++)
3585		folio_mark_accessed(eb->folios[i]);
 
 
 
 
 
3586}
3587
3588struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3589					 u64 start)
3590{
3591	struct extent_buffer *eb;
3592
3593	eb = find_extent_buffer_nolock(fs_info, start);
3594	if (!eb)
3595		return NULL;
3596	/*
3597	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3598	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3599	 * another task running free_extent_buffer() might have seen that flag
3600	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3601	 * writeback flags not set) and it's still in the tree (flag
3602	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3603	 * decrementing the extent buffer's reference count twice.  So here we
3604	 * could race and increment the eb's reference count, clear its stale
3605	 * flag, mark it as dirty and drop our reference before the other task
3606	 * finishes executing free_extent_buffer, which would later result in
3607	 * an attempt to free an extent buffer that is dirty.
3608	 */
3609	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3610		spin_lock(&eb->refs_lock);
3611		spin_unlock(&eb->refs_lock);
 
 
 
 
 
 
 
3612	}
3613	mark_extent_buffer_accessed(eb);
3614	return eb;
 
3615}
3616
3617#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3618struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3619					u64 start)
3620{
3621	struct extent_buffer *eb, *exists = NULL;
3622	int ret;
3623
3624	eb = find_extent_buffer(fs_info, start);
3625	if (eb)
3626		return eb;
3627	eb = alloc_dummy_extent_buffer(fs_info, start);
3628	if (!eb)
3629		return ERR_PTR(-ENOMEM);
3630	eb->fs_info = fs_info;
3631again:
3632	ret = radix_tree_preload(GFP_NOFS);
3633	if (ret) {
3634		exists = ERR_PTR(ret);
3635		goto free_eb;
3636	}
3637	spin_lock(&fs_info->buffer_lock);
3638	ret = radix_tree_insert(&fs_info->buffer_radix,
3639				start >> fs_info->sectorsize_bits, eb);
3640	spin_unlock(&fs_info->buffer_lock);
3641	radix_tree_preload_end();
3642	if (ret == -EEXIST) {
3643		exists = find_extent_buffer(fs_info, start);
3644		if (exists)
3645			goto free_eb;
3646		else
3647			goto again;
3648	}
3649	check_buffer_tree_ref(eb);
3650	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3651
3652	return eb;
3653free_eb:
3654	btrfs_release_extent_buffer(eb);
3655	return exists;
3656}
3657#endif
3658
3659static struct extent_buffer *grab_extent_buffer(
3660		struct btrfs_fs_info *fs_info, struct page *page)
3661{
3662	struct folio *folio = page_folio(page);
3663	struct extent_buffer *exists;
3664
3665	/*
3666	 * For subpage case, we completely rely on radix tree to ensure we
3667	 * don't try to insert two ebs for the same bytenr.  So here we always
3668	 * return NULL and just continue.
3669	 */
3670	if (fs_info->nodesize < PAGE_SIZE)
3671		return NULL;
3672
3673	/* Page not yet attached to an extent buffer */
3674	if (!folio_test_private(folio))
3675		return NULL;
3676
3677	/*
3678	 * We could have already allocated an eb for this page and attached one
3679	 * so lets see if we can get a ref on the existing eb, and if we can we
3680	 * know it's good and we can just return that one, else we know we can
3681	 * just overwrite folio private.
3682	 */
3683	exists = folio_get_private(folio);
3684	if (atomic_inc_not_zero(&exists->refs))
3685		return exists;
3686
3687	WARN_ON(PageDirty(page));
3688	folio_detach_private(folio);
3689	return NULL;
3690}
3691
3692static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3693{
3694	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3695		btrfs_err(fs_info, "bad tree block start %llu", start);
3696		return -EINVAL;
3697	}
3698
3699	if (fs_info->nodesize < PAGE_SIZE &&
3700	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3701		btrfs_err(fs_info,
3702		"tree block crosses page boundary, start %llu nodesize %u",
3703			  start, fs_info->nodesize);
3704		return -EINVAL;
3705	}
3706	if (fs_info->nodesize >= PAGE_SIZE &&
3707	    !PAGE_ALIGNED(start)) {
3708		btrfs_err(fs_info,
3709		"tree block is not page aligned, start %llu nodesize %u",
3710			  start, fs_info->nodesize);
3711		return -EINVAL;
3712	}
3713	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3714	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3715		btrfs_warn(fs_info,
3716"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3717			      start, fs_info->nodesize);
3718	}
3719	return 0;
3720}
3721
3722
3723/*
3724 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3725 * Return >0 if there is already another extent buffer for the range,
3726 * and @found_eb_ret would be updated.
3727 * Return -EAGAIN if the filemap has an existing folio but with different size
3728 * than @eb.
3729 * The caller needs to free the existing folios and retry using the same order.
3730 */
3731static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3732				      struct extent_buffer **found_eb_ret)
3733{
3734
3735	struct btrfs_fs_info *fs_info = eb->fs_info;
3736	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3737	const unsigned long index = eb->start >> PAGE_SHIFT;
3738	struct folio *existing_folio;
3739	int ret;
3740
3741	ASSERT(found_eb_ret);
3742
3743	/* Caller should ensure the folio exists. */
3744	ASSERT(eb->folios[i]);
3745
3746retry:
3747	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3748				GFP_NOFS | __GFP_NOFAIL);
3749	if (!ret)
3750		return 0;
3751
3752	existing_folio = filemap_lock_folio(mapping, index + i);
3753	/* The page cache only exists for a very short time, just retry. */
3754	if (IS_ERR(existing_folio))
3755		goto retry;
3756
3757	/* For now, we should only have single-page folios for btree inode. */
3758	ASSERT(folio_nr_pages(existing_folio) == 1);
3759
3760	if (folio_size(existing_folio) != eb->folio_size) {
3761		folio_unlock(existing_folio);
3762		folio_put(existing_folio);
3763		return -EAGAIN;
3764	}
3765
3766	if (fs_info->nodesize < PAGE_SIZE) {
3767		/*
3768		 * We're going to reuse the existing page, can drop our page
3769		 * and subpage structure now.
3770		 */
3771		__free_page(folio_page(eb->folios[i], 0));
3772		eb->folios[i] = existing_folio;
3773	} else {
3774		struct extent_buffer *existing_eb;
3775
3776		existing_eb = grab_extent_buffer(fs_info,
3777						 folio_page(existing_folio, 0));
3778		if (existing_eb) {
3779			/* The extent buffer still exists, we can use it directly. */
3780			*found_eb_ret = existing_eb;
3781			folio_unlock(existing_folio);
3782			folio_put(existing_folio);
3783			return 1;
3784		}
3785		/* The extent buffer no longer exists, we can reuse the folio. */
3786		__free_page(folio_page(eb->folios[i], 0));
3787		eb->folios[i] = existing_folio;
3788	}
3789	return 0;
3790}
3791
3792struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3793					  u64 start, u64 owner_root, int level)
3794{
3795	unsigned long len = fs_info->nodesize;
3796	int num_folios;
3797	int attached = 0;
 
3798	struct extent_buffer *eb;
3799	struct extent_buffer *existing_eb = NULL;
 
3800	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3801	struct btrfs_subpage *prealloc = NULL;
3802	u64 lockdep_owner = owner_root;
3803	bool page_contig = true;
3804	int uptodate = 1;
3805	int ret;
3806
3807	if (check_eb_alignment(fs_info, start))
 
3808		return ERR_PTR(-EINVAL);
3809
3810#if BITS_PER_LONG == 32
3811	if (start >= MAX_LFS_FILESIZE) {
3812		btrfs_err_rl(fs_info,
3813		"extent buffer %llu is beyond 32bit page cache limit", start);
3814		btrfs_err_32bit_limit(fs_info);
3815		return ERR_PTR(-EOVERFLOW);
3816	}
3817	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3818		btrfs_warn_32bit_limit(fs_info);
3819#endif
3820
3821	eb = find_extent_buffer(fs_info, start);
3822	if (eb)
3823		return eb;
3824
3825	eb = __alloc_extent_buffer(fs_info, start, len);
3826	if (!eb)
3827		return ERR_PTR(-ENOMEM);
3828
3829	/*
3830	 * The reloc trees are just snapshots, so we need them to appear to be
3831	 * just like any other fs tree WRT lockdep.
3832	 */
3833	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3834		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3835
3836	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3837
3838	/*
3839	 * Preallocate folio private for subpage case, so that we won't
3840	 * allocate memory with i_private_lock nor page lock hold.
3841	 *
3842	 * The memory will be freed by attach_extent_buffer_page() or freed
3843	 * manually if we exit earlier.
3844	 */
3845	if (fs_info->nodesize < PAGE_SIZE) {
3846		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3847		if (IS_ERR(prealloc)) {
3848			ret = PTR_ERR(prealloc);
3849			goto out;
3850		}
3851	}
3852
3853reallocate:
3854	/* Allocate all pages first. */
3855	ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3856	if (ret < 0) {
3857		btrfs_free_subpage(prealloc);
3858		goto out;
3859	}
 
 
 
 
 
 
 
 
 
 
 
3860
3861	num_folios = num_extent_folios(eb);
3862	/* Attach all pages to the filemap. */
3863	for (int i = 0; i < num_folios; i++) {
3864		struct folio *folio;
3865
3866		ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3867		if (ret > 0) {
3868			ASSERT(existing_eb);
3869			goto out;
3870		}
3871
3872		/*
3873		 * TODO: Special handling for a corner case where the order of
3874		 * folios mismatch between the new eb and filemap.
3875		 *
3876		 * This happens when:
3877		 *
3878		 * - the new eb is using higher order folio
3879		 *
3880		 * - the filemap is still using 0-order folios for the range
3881		 *   This can happen at the previous eb allocation, and we don't
3882		 *   have higher order folio for the call.
3883		 *
3884		 * - the existing eb has already been freed
3885		 *
3886		 * In this case, we have to free the existing folios first, and
3887		 * re-allocate using the same order.
3888		 * Thankfully this is not going to happen yet, as we're still
3889		 * using 0-order folios.
3890		 */
3891		if (unlikely(ret == -EAGAIN)) {
3892			ASSERT(0);
3893			goto reallocate;
3894		}
3895		attached++;
3896
3897		/*
3898		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3899		 * reliable, as we may choose to reuse the existing page cache
3900		 * and free the allocated page.
3901		 */
3902		folio = eb->folios[i];
3903		eb->folio_size = folio_size(folio);
3904		eb->folio_shift = folio_shift(folio);
3905		spin_lock(&mapping->i_private_lock);
3906		/* Should not fail, as we have preallocated the memory */
3907		ret = attach_extent_buffer_folio(eb, folio, prealloc);
3908		ASSERT(!ret);
3909		/*
3910		 * To inform we have extra eb under allocation, so that
3911		 * detach_extent_buffer_page() won't release the folio private
3912		 * when the eb hasn't yet been inserted into radix tree.
3913		 *
3914		 * The ref will be decreased when the eb released the page, in
3915		 * detach_extent_buffer_page().
3916		 * Thus needs no special handling in error path.
3917		 */
3918		btrfs_folio_inc_eb_refs(fs_info, folio);
3919		spin_unlock(&mapping->i_private_lock);
3920
3921		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3922
3923		/*
3924		 * Check if the current page is physically contiguous with previous eb
3925		 * page.
3926		 * At this stage, either we allocated a large folio, thus @i
3927		 * would only be 0, or we fall back to per-page allocation.
3928		 */
3929		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3930			page_contig = false;
3931
3932		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3933			uptodate = 0;
3934
3935		/*
3936		 * We can't unlock the pages just yet since the extent buffer
3937		 * hasn't been properly inserted in the radix tree, this
3938		 * opens a race with btree_release_folio which can free a page
3939		 * while we are still filling in all pages for the buffer and
3940		 * we could crash.
3941		 */
3942	}
3943	if (uptodate)
3944		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3945	/* All pages are physically contiguous, can skip cross page handling. */
3946	if (page_contig)
3947		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3948again:
3949	ret = radix_tree_preload(GFP_NOFS);
3950	if (ret)
3951		goto out;
 
 
3952
3953	spin_lock(&fs_info->buffer_lock);
3954	ret = radix_tree_insert(&fs_info->buffer_radix,
3955				start >> fs_info->sectorsize_bits, eb);
3956	spin_unlock(&fs_info->buffer_lock);
3957	radix_tree_preload_end();
3958	if (ret == -EEXIST) {
3959		ret = 0;
3960		existing_eb = find_extent_buffer(fs_info, start);
3961		if (existing_eb)
3962			goto out;
3963		else
3964			goto again;
3965	}
3966	/* add one reference for the tree */
3967	check_buffer_tree_ref(eb);
3968	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3969
3970	/*
3971	 * Now it's safe to unlock the pages because any calls to
3972	 * btree_release_folio will correctly detect that a page belongs to a
3973	 * live buffer and won't free them prematurely.
3974	 */
3975	for (int i = 0; i < num_folios; i++)
3976		unlock_page(folio_page(eb->folios[i], 0));
3977	return eb;
3978
3979out:
3980	WARN_ON(!atomic_dec_and_test(&eb->refs));
3981
3982	/*
3983	 * Any attached folios need to be detached before we unlock them.  This
3984	 * is because when we're inserting our new folios into the mapping, and
3985	 * then attaching our eb to that folio.  If we fail to insert our folio
3986	 * we'll lookup the folio for that index, and grab that EB.  We do not
3987	 * want that to grab this eb, as we're getting ready to free it.  So we
3988	 * have to detach it first and then unlock it.
3989	 *
3990	 * We have to drop our reference and NULL it out here because in the
3991	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3992	 * Below when we call btrfs_release_extent_buffer() we will call
3993	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3994	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3995	 * double put our reference and be super sad.
3996	 */
3997	for (int i = 0; i < attached; i++) {
3998		ASSERT(eb->folios[i]);
3999		detach_extent_buffer_folio(eb, eb->folios[i]);
4000		unlock_page(folio_page(eb->folios[i], 0));
4001		folio_put(eb->folios[i]);
4002		eb->folios[i] = NULL;
4003	}
4004	/*
4005	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
4006	 * so it can be cleaned up without utlizing page->mapping.
4007	 */
4008	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4009
4010	btrfs_release_extent_buffer(eb);
4011	if (ret < 0)
4012		return ERR_PTR(ret);
4013	ASSERT(existing_eb);
4014	return existing_eb;
4015}
4016
4017static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4018{
4019	struct extent_buffer *eb =
4020			container_of(head, struct extent_buffer, rcu_head);
4021
4022	__free_extent_buffer(eb);
4023}
4024
4025static int release_extent_buffer(struct extent_buffer *eb)
4026	__releases(&eb->refs_lock)
4027{
4028	lockdep_assert_held(&eb->refs_lock);
4029
4030	WARN_ON(atomic_read(&eb->refs) == 0);
4031	if (atomic_dec_and_test(&eb->refs)) {
4032		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4033			struct btrfs_fs_info *fs_info = eb->fs_info;
4034
4035			spin_unlock(&eb->refs_lock);
4036
4037			spin_lock(&fs_info->buffer_lock);
4038			radix_tree_delete(&fs_info->buffer_radix,
4039					  eb->start >> fs_info->sectorsize_bits);
4040			spin_unlock(&fs_info->buffer_lock);
4041		} else {
4042			spin_unlock(&eb->refs_lock);
4043		}
4044
4045		btrfs_leak_debug_del_eb(eb);
4046		/* Should be safe to release our pages at this point */
4047		btrfs_release_extent_buffer_pages(eb);
4048#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4049		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4050			__free_extent_buffer(eb);
4051			return 1;
4052		}
4053#endif
4054		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4055		return 1;
4056	}
4057	spin_unlock(&eb->refs_lock);
4058
4059	return 0;
4060}
4061
4062void free_extent_buffer(struct extent_buffer *eb)
4063{
4064	int refs;
 
4065	if (!eb)
4066		return;
4067
4068	refs = atomic_read(&eb->refs);
4069	while (1) {
 
4070		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4071		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4072			refs == 1))
4073			break;
4074		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
 
4075			return;
4076	}
4077
4078	spin_lock(&eb->refs_lock);
4079	if (atomic_read(&eb->refs) == 2 &&
4080	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4081	    !extent_buffer_under_io(eb) &&
4082	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4083		atomic_dec(&eb->refs);
4084
4085	/*
4086	 * I know this is terrible, but it's temporary until we stop tracking
4087	 * the uptodate bits and such for the extent buffers.
4088	 */
4089	release_extent_buffer(eb);
4090}
4091
4092void free_extent_buffer_stale(struct extent_buffer *eb)
4093{
4094	if (!eb)
4095		return;
4096
4097	spin_lock(&eb->refs_lock);
4098	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4099
4100	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4101	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4102		atomic_dec(&eb->refs);
4103	release_extent_buffer(eb);
4104}
4105
4106static void btree_clear_folio_dirty(struct folio *folio)
4107{
4108	ASSERT(folio_test_dirty(folio));
4109	ASSERT(folio_test_locked(folio));
4110	folio_clear_dirty_for_io(folio);
4111	xa_lock_irq(&folio->mapping->i_pages);
4112	if (!folio_test_dirty(folio))
4113		__xa_clear_mark(&folio->mapping->i_pages,
4114				folio_index(folio), PAGECACHE_TAG_DIRTY);
4115	xa_unlock_irq(&folio->mapping->i_pages);
4116}
4117
4118static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4119{
4120	struct btrfs_fs_info *fs_info = eb->fs_info;
4121	struct folio *folio = eb->folios[0];
4122	bool last;
4123
4124	/* btree_clear_folio_dirty() needs page locked. */
4125	folio_lock(folio);
4126	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
4127	if (last)
4128		btree_clear_folio_dirty(folio);
4129	folio_unlock(folio);
4130	WARN_ON(atomic_read(&eb->refs) == 0);
4131}
4132
4133void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4134			      struct extent_buffer *eb)
4135{
4136	struct btrfs_fs_info *fs_info = eb->fs_info;
4137	int num_folios;
4138
4139	btrfs_assert_tree_write_locked(eb);
4140
4141	if (trans && btrfs_header_generation(eb) != trans->transid)
4142		return;
4143
4144	/*
4145	 * Instead of clearing the dirty flag off of the buffer, mark it as
4146	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4147	 * write-ordering in zoned mode, without the need to later re-dirty
4148	 * the extent_buffer.
4149	 *
4150	 * The actual zeroout of the buffer will happen later in
4151	 * btree_csum_one_bio.
4152	 */
4153	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4154		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4155		return;
4156	}
4157
4158	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4159		return;
4160
4161	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4162				 fs_info->dirty_metadata_batch);
4163
4164	if (eb->fs_info->nodesize < PAGE_SIZE)
4165		return clear_subpage_extent_buffer_dirty(eb);
4166
4167	num_folios = num_extent_folios(eb);
4168	for (int i = 0; i < num_folios; i++) {
4169		struct folio *folio = eb->folios[i];
4170
4171		if (!folio_test_dirty(folio))
4172			continue;
4173		folio_lock(folio);
4174		btree_clear_folio_dirty(folio);
4175		folio_unlock(folio);
4176	}
4177	WARN_ON(atomic_read(&eb->refs) == 0);
4178}
4179
4180void set_extent_buffer_dirty(struct extent_buffer *eb)
4181{
4182	int num_folios;
 
4183	bool was_dirty;
4184
4185	check_buffer_tree_ref(eb);
4186
4187	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4188
4189	num_folios = num_extent_folios(eb);
4190	WARN_ON(atomic_read(&eb->refs) == 0);
4191	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4192	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
4193
4194	if (!was_dirty) {
4195		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
 
4196
4197		/*
4198		 * For subpage case, we can have other extent buffers in the
4199		 * same page, and in clear_subpage_extent_buffer_dirty() we
4200		 * have to clear page dirty without subpage lock held.
4201		 * This can cause race where our page gets dirty cleared after
4202		 * we just set it.
4203		 *
4204		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4205		 * its page for other reasons, we can use page lock to prevent
4206		 * the above race.
4207		 */
4208		if (subpage)
4209			lock_page(folio_page(eb->folios[0], 0));
4210		for (int i = 0; i < num_folios; i++)
4211			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4212					      eb->start, eb->len);
4213		if (subpage)
4214			unlock_page(folio_page(eb->folios[0], 0));
4215		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4216					 eb->len,
4217					 eb->fs_info->dirty_metadata_batch);
4218	}
4219#ifdef CONFIG_BTRFS_DEBUG
4220	for (int i = 0; i < num_folios; i++)
4221		ASSERT(folio_test_dirty(eb->folios[i]));
4222#endif
 
 
4223}
4224
4225void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4226{
4227	struct btrfs_fs_info *fs_info = eb->fs_info;
4228	int num_folios = num_extent_folios(eb);
 
4229
4230	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4231	for (int i = 0; i < num_folios; i++) {
4232		struct folio *folio = eb->folios[i];
4233
4234		if (!folio)
4235			continue;
4236
4237		/*
4238		 * This is special handling for metadata subpage, as regular
4239		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4240		 */
4241		if (fs_info->nodesize >= PAGE_SIZE)
4242			folio_clear_uptodate(folio);
4243		else
4244			btrfs_subpage_clear_uptodate(fs_info, folio,
4245						     eb->start, eb->len);
4246	}
4247}
4248
4249void set_extent_buffer_uptodate(struct extent_buffer *eb)
4250{
4251	struct btrfs_fs_info *fs_info = eb->fs_info;
4252	int num_folios = num_extent_folios(eb);
 
4253
4254	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4255	for (int i = 0; i < num_folios; i++) {
4256		struct folio *folio = eb->folios[i];
4257
4258		/*
4259		 * This is special handling for metadata subpage, as regular
4260		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4261		 */
4262		if (fs_info->nodesize >= PAGE_SIZE)
4263			folio_mark_uptodate(folio);
4264		else
4265			btrfs_subpage_set_uptodate(fs_info, folio,
4266						   eb->start, eb->len);
4267	}
4268}
4269
4270static void end_bbio_meta_read(struct btrfs_bio *bbio)
4271{
4272	struct extent_buffer *eb = bbio->private;
4273	struct btrfs_fs_info *fs_info = eb->fs_info;
4274	bool uptodate = !bbio->bio.bi_status;
4275	struct folio_iter fi;
4276	u32 bio_offset = 0;
4277
4278	eb->read_mirror = bbio->mirror_num;
4279
4280	if (uptodate &&
4281	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4282		uptodate = false;
4283
4284	if (uptodate) {
4285		set_extent_buffer_uptodate(eb);
4286	} else {
4287		clear_extent_buffer_uptodate(eb);
4288		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4289	}
4290
4291	bio_for_each_folio_all(fi, &bbio->bio) {
4292		struct folio *folio = fi.folio;
4293		u64 start = eb->start + bio_offset;
4294		u32 len = fi.length;
4295
4296		if (uptodate)
4297			btrfs_folio_set_uptodate(fs_info, folio, start, len);
4298		else
4299			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4300
4301		bio_offset += len;
4302	}
4303
4304	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4305	smp_mb__after_atomic();
4306	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4307	free_extent_buffer(eb);
4308
4309	bio_put(&bbio->bio);
4310}
4311
4312int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4313			     struct btrfs_tree_parent_check *check)
4314{
4315	struct btrfs_bio *bbio;
4316	bool ret;
4317
4318	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4319		return 0;
4320
 
 
 
 
 
 
 
 
 
 
 
4321	/*
4322	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4323	 * operation, which could potentially still be in flight.  In this case
4324	 * we simply want to return an error.
4325	 */
4326	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4327		return -EIO;
 
 
 
 
 
4328
4329	/* Someone else is already reading the buffer, just wait for it. */
4330	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4331		goto done;
4332
4333	/*
4334	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
4335	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
4336	 * started and finished reading the same eb.  In this case, UPTODATE
4337	 * will now be set, and we shouldn't read it in again.
4338	 */
4339	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
4340		clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4341		smp_mb__after_atomic();
4342		wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4343		return 0;
4344	}
4345
4346	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4347	eb->read_mirror = 0;
4348	check_buffer_tree_ref(eb);
4349	atomic_inc(&eb->refs);
 
 
 
 
 
 
 
 
4350
4351	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4352			       REQ_OP_READ | REQ_META, eb->fs_info,
4353			       end_bbio_meta_read, eb);
4354	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4355	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4356	bbio->file_offset = eb->start;
4357	memcpy(&bbio->parent_check, check, sizeof(*check));
4358	if (eb->fs_info->nodesize < PAGE_SIZE) {
4359		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4360				    eb->start - folio_pos(eb->folios[0]));
4361		ASSERT(ret);
4362	} else {
4363		int num_folios = num_extent_folios(eb);
4364
4365		for (int i = 0; i < num_folios; i++) {
4366			struct folio *folio = eb->folios[i];
4367
4368			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
4369			ASSERT(ret);
4370		}
4371	}
4372	btrfs_submit_bio(bbio, mirror_num);
4373
4374done:
4375	if (wait == WAIT_COMPLETE) {
4376		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4377		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4378			return -EIO;
4379	}
4380
4381	return 0;
4382}
4383
4384static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4385			    unsigned long len)
4386{
4387	btrfs_warn(eb->fs_info,
4388		"access to eb bytenr %llu len %u out of range start %lu len %lu",
4389		eb->start, eb->len, start, len);
4390	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4391
4392	return true;
4393}
4394
4395/*
4396 * Check if the [start, start + len) range is valid before reading/writing
4397 * the eb.
4398 * NOTE: @start and @len are offset inside the eb, not logical address.
4399 *
4400 * Caller should not touch the dst/src memory if this function returns error.
4401 */
4402static inline int check_eb_range(const struct extent_buffer *eb,
4403				 unsigned long start, unsigned long len)
4404{
4405	unsigned long offset;
4406
4407	/* start, start + len should not go beyond eb->len nor overflow */
4408	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4409		return report_eb_range(eb, start, len);
4410
4411	return false;
4412}
4413
4414void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4415			unsigned long start, unsigned long len)
4416{
4417	const int unit_size = eb->folio_size;
4418	size_t cur;
4419	size_t offset;
 
 
4420	char *dst = (char *)dstv;
4421	unsigned long i = get_eb_folio_index(eb, start);
4422
4423	if (check_eb_range(eb, start, len)) {
4424		/*
4425		 * Invalid range hit, reset the memory, so callers won't get
4426		 * some random garbage for their uninitialized memory.
4427		 */
4428		memset(dstv, 0, len);
4429		return;
4430	}
4431
4432	if (eb->addr) {
4433		memcpy(dstv, eb->addr + start, len);
 
 
4434		return;
4435	}
4436
4437	offset = get_eb_offset_in_folio(eb, start);
4438
4439	while (len > 0) {
4440		char *kaddr;
4441
4442		cur = min(len, unit_size - offset);
4443		kaddr = folio_address(eb->folios[i]);
4444		memcpy(dst, kaddr + offset, cur);
4445
4446		dst += cur;
4447		len -= cur;
4448		offset = 0;
4449		i++;
4450	}
4451}
4452
4453int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4454				       void __user *dstv,
4455				       unsigned long start, unsigned long len)
4456{
4457	const int unit_size = eb->folio_size;
4458	size_t cur;
4459	size_t offset;
 
 
4460	char __user *dst = (char __user *)dstv;
4461	unsigned long i = get_eb_folio_index(eb, start);
 
4462	int ret = 0;
4463
4464	WARN_ON(start > eb->len);
4465	WARN_ON(start + len > eb->start + eb->len);
4466
4467	if (eb->addr) {
4468		if (copy_to_user_nofault(dstv, eb->addr + start, len))
4469			ret = -EFAULT;
4470		return ret;
4471	}
4472
4473	offset = get_eb_offset_in_folio(eb, start);
4474
4475	while (len > 0) {
4476		char *kaddr;
4477
4478		cur = min(len, unit_size - offset);
4479		kaddr = folio_address(eb->folios[i]);
4480		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4481			ret = -EFAULT;
4482			break;
4483		}
4484
4485		dst += cur;
4486		len -= cur;
4487		offset = 0;
4488		i++;
4489	}
4490
4491	return ret;
4492}
4493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4494int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4495			 unsigned long start, unsigned long len)
4496{
4497	const int unit_size = eb->folio_size;
4498	size_t cur;
4499	size_t offset;
 
4500	char *kaddr;
4501	char *ptr = (char *)ptrv;
4502	unsigned long i = get_eb_folio_index(eb, start);
 
4503	int ret = 0;
4504
4505	if (check_eb_range(eb, start, len))
4506		return -EINVAL;
 
 
4507
4508	if (eb->addr)
4509		return memcmp(ptrv, eb->addr + start, len);
4510
4511	offset = get_eb_offset_in_folio(eb, start);
4512
4513	while (len > 0) {
4514		cur = min(len, unit_size - offset);
4515		kaddr = folio_address(eb->folios[i]);
4516		ret = memcmp(ptr, kaddr + offset, cur);
4517		if (ret)
4518			break;
4519
4520		ptr += cur;
4521		len -= cur;
4522		offset = 0;
4523		i++;
4524	}
4525	return ret;
4526}
4527
4528/*
4529 * Check that the extent buffer is uptodate.
4530 *
4531 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4532 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4533 */
4534static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4535{
4536	struct btrfs_fs_info *fs_info = eb->fs_info;
4537	struct folio *folio = eb->folios[i];
4538
4539	ASSERT(folio);
 
 
 
 
4540
4541	/*
4542	 * If we are using the commit root we could potentially clear a page
4543	 * Uptodate while we're using the extent buffer that we've previously
4544	 * looked up.  We don't want to complain in this case, as the page was
4545	 * valid before, we just didn't write it out.  Instead we want to catch
4546	 * the case where we didn't actually read the block properly, which
4547	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4548	 */
4549	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4550		return;
4551
4552	if (fs_info->nodesize < PAGE_SIZE) {
4553		struct folio *folio = eb->folios[0];
4554
4555		ASSERT(i == 0);
4556		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4557							 eb->start, eb->len)))
4558			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4559	} else {
4560		WARN_ON(!folio_test_uptodate(folio));
4561	}
4562}
4563
4564static void __write_extent_buffer(const struct extent_buffer *eb,
4565				  const void *srcv, unsigned long start,
4566				  unsigned long len, bool use_memmove)
4567{
4568	const int unit_size = eb->folio_size;
4569	size_t cur;
4570	size_t offset;
 
4571	char *kaddr;
4572	char *src = (char *)srcv;
4573	unsigned long i = get_eb_folio_index(eb, start);
4574	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4575	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4576
4577	if (check_eb_range(eb, start, len))
4578		return;
4579
4580	if (eb->addr) {
4581		if (use_memmove)
4582			memmove(eb->addr + start, srcv, len);
4583		else
4584			memcpy(eb->addr + start, srcv, len);
4585		return;
4586	}
4587
4588	offset = get_eb_offset_in_folio(eb, start);
4589
4590	while (len > 0) {
4591		if (check_uptodate)
4592			assert_eb_folio_uptodate(eb, i);
4593
4594		cur = min(len, unit_size - offset);
4595		kaddr = folio_address(eb->folios[i]);
4596		if (use_memmove)
4597			memmove(kaddr + offset, src, cur);
4598		else
4599			memcpy(kaddr + offset, src, cur);
4600
4601		src += cur;
4602		len -= cur;
4603		offset = 0;
4604		i++;
4605	}
4606}
4607
4608void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4609			 unsigned long start, unsigned long len)
4610{
4611	return __write_extent_buffer(eb, srcv, start, len, false);
4612}
 
 
 
 
4613
4614static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4615				 unsigned long start, unsigned long len)
4616{
4617	const int unit_size = eb->folio_size;
4618	unsigned long cur = start;
4619
4620	if (eb->addr) {
4621		memset(eb->addr + start, c, len);
4622		return;
4623	}
4624
4625	while (cur < start + len) {
4626		unsigned long index = get_eb_folio_index(eb, cur);
4627		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4628		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4629
4630		assert_eb_folio_uptodate(eb, index);
4631		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
 
4632
4633		cur += cur_len;
 
 
4634	}
4635}
4636
4637void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4638			   unsigned long len)
4639{
4640	if (check_eb_range(eb, start, len))
4641		return;
4642	return memset_extent_buffer(eb, 0, start, len);
4643}
4644
4645void copy_extent_buffer_full(const struct extent_buffer *dst,
4646			     const struct extent_buffer *src)
4647{
4648	const int unit_size = src->folio_size;
4649	unsigned long cur = 0;
4650
4651	ASSERT(dst->len == src->len);
4652
4653	while (cur < src->len) {
4654		unsigned long index = get_eb_folio_index(src, cur);
4655		unsigned long offset = get_eb_offset_in_folio(src, cur);
4656		unsigned long cur_len = min(src->len, unit_size - offset);
4657		void *addr = folio_address(src->folios[index]) + offset;
4658
4659		write_extent_buffer(dst, addr, cur, cur_len);
4660
4661		cur += cur_len;
4662	}
4663}
4664
4665void copy_extent_buffer(const struct extent_buffer *dst,
4666			const struct extent_buffer *src,
4667			unsigned long dst_offset, unsigned long src_offset,
4668			unsigned long len)
4669{
4670	const int unit_size = dst->folio_size;
4671	u64 dst_len = dst->len;
4672	size_t cur;
4673	size_t offset;
 
4674	char *kaddr;
4675	unsigned long i = get_eb_folio_index(dst, dst_offset);
4676
4677	if (check_eb_range(dst, dst_offset, len) ||
4678	    check_eb_range(src, src_offset, len))
4679		return;
4680
4681	WARN_ON(src->len != dst_len);
4682
4683	offset = get_eb_offset_in_folio(dst, dst_offset);
4684
4685	while (len > 0) {
4686		assert_eb_folio_uptodate(dst, i);
 
4687
4688		cur = min(len, (unsigned long)(unit_size - offset));
4689
4690		kaddr = folio_address(dst->folios[i]);
4691		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4692
4693		src_offset += cur;
4694		len -= cur;
4695		offset = 0;
4696		i++;
4697	}
4698}
4699
4700/*
4701 * Calculate the folio and offset of the byte containing the given bit number.
4702 *
4703 * @eb:           the extent buffer
4704 * @start:        offset of the bitmap item in the extent buffer
4705 * @nr:           bit number
4706 * @folio_index:  return index of the folio in the extent buffer that contains
4707 *                the given bit number
4708 * @folio_offset: return offset into the folio given by folio_index
4709 *
4710 * This helper hides the ugliness of finding the byte in an extent buffer which
4711 * contains a given bit.
4712 */
4713static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4714				    unsigned long start, unsigned long nr,
4715				    unsigned long *folio_index,
4716				    size_t *folio_offset)
4717{
 
4718	size_t byte_offset = BIT_BYTE(nr);
4719	size_t offset;
4720
4721	/*
4722	 * The byte we want is the offset of the extent buffer + the offset of
4723	 * the bitmap item in the extent buffer + the offset of the byte in the
4724	 * bitmap item.
4725	 */
4726	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4727
4728	*folio_index = offset >> eb->folio_shift;
4729	*folio_offset = offset_in_eb_folio(eb, offset);
4730}
4731
4732/*
4733 * Determine whether a bit in a bitmap item is set.
4734 *
4735 * @eb:     the extent buffer
4736 * @start:  offset of the bitmap item in the extent buffer
4737 * @nr:     bit number to test
4738 */
4739int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4740			   unsigned long nr)
4741{
 
 
4742	unsigned long i;
4743	size_t offset;
4744	u8 *kaddr;
4745
4746	eb_bitmap_offset(eb, start, nr, &i, &offset);
4747	assert_eb_folio_uptodate(eb, i);
4748	kaddr = folio_address(eb->folios[i]);
 
4749	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4750}
4751
4752static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4753{
4754	unsigned long index = get_eb_folio_index(eb, bytenr);
4755
4756	if (check_eb_range(eb, bytenr, 1))
4757		return NULL;
4758	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4759}
4760
4761/*
4762 * Set an area of a bitmap to 1.
4763 *
4764 * @eb:     the extent buffer
4765 * @start:  offset of the bitmap item in the extent buffer
4766 * @pos:    bit number of the first bit
4767 * @len:    number of bits to set
4768 */
4769void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4770			      unsigned long pos, unsigned long len)
4771{
4772	unsigned int first_byte = start + BIT_BYTE(pos);
4773	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4774	const bool same_byte = (first_byte == last_byte);
4775	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4776	u8 *kaddr;
4777
4778	if (same_byte)
4779		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4780
4781	/* Handle the first byte. */
4782	kaddr = extent_buffer_get_byte(eb, first_byte);
4783	*kaddr |= mask;
4784	if (same_byte)
4785		return;
4786
4787	/* Handle the byte aligned part. */
4788	ASSERT(first_byte + 1 <= last_byte);
4789	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4790
4791	/* Handle the last byte. */
4792	kaddr = extent_buffer_get_byte(eb, last_byte);
4793	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4794}
4795
4796
4797/*
4798 * Clear an area of a bitmap.
4799 *
4800 * @eb:     the extent buffer
4801 * @start:  offset of the bitmap item in the extent buffer
4802 * @pos:    bit number of the first bit
4803 * @len:    number of bits to clear
4804 */
4805void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4806				unsigned long start, unsigned long pos,
4807				unsigned long len)
4808{
4809	unsigned int first_byte = start + BIT_BYTE(pos);
4810	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4811	const bool same_byte = (first_byte == last_byte);
4812	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4813	u8 *kaddr;
4814
4815	if (same_byte)
4816		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4817
4818	/* Handle the first byte. */
4819	kaddr = extent_buffer_get_byte(eb, first_byte);
4820	*kaddr &= ~mask;
4821	if (same_byte)
4822		return;
4823
4824	/* Handle the byte aligned part. */
4825	ASSERT(first_byte + 1 <= last_byte);
4826	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4827
4828	/* Handle the last byte. */
4829	kaddr = extent_buffer_get_byte(eb, last_byte);
4830	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4831}
4832
4833static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4834{
4835	unsigned long distance = (src > dst) ? src - dst : dst - src;
4836	return distance < len;
4837}
4838
4839void memcpy_extent_buffer(const struct extent_buffer *dst,
4840			  unsigned long dst_offset, unsigned long src_offset,
4841			  unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4842{
4843	const int unit_size = dst->folio_size;
4844	unsigned long cur_off = 0;
 
 
 
 
 
4845
4846	if (check_eb_range(dst, dst_offset, len) ||
4847	    check_eb_range(dst, src_offset, len))
4848		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4849
4850	if (dst->addr) {
4851		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
 
 
4852
4853		if (use_memmove)
4854			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4855		else
4856			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4857		return;
4858	}
4859
4860	while (cur_off < len) {
4861		unsigned long cur_src = cur_off + src_offset;
4862		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4863		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4864		unsigned long cur_len = min(src_offset + len - cur_src,
4865					    unit_size - folio_off);
4866		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4867		const bool use_memmove = areas_overlap(src_offset + cur_off,
4868						       dst_offset + cur_off, cur_len);
4869
4870		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4871				      use_memmove);
4872		cur_off += cur_len;
4873	}
4874}
4875
4876void memmove_extent_buffer(const struct extent_buffer *dst,
4877			   unsigned long dst_offset, unsigned long src_offset,
4878			   unsigned long len)
4879{
 
 
 
 
4880	unsigned long dst_end = dst_offset + len - 1;
4881	unsigned long src_end = src_offset + len - 1;
 
 
 
4882
4883	if (check_eb_range(dst, dst_offset, len) ||
4884	    check_eb_range(dst, src_offset, len))
4885		return;
4886
 
 
 
 
 
 
 
 
4887	if (dst_offset < src_offset) {
4888		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4889		return;
4890	}
 
 
 
4891
4892	if (dst->addr) {
4893		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4894		return;
4895	}
4896
4897	while (len > 0) {
4898		unsigned long src_i;
4899		size_t cur;
4900		size_t dst_off_in_folio;
4901		size_t src_off_in_folio;
4902		void *src_addr;
4903		bool use_memmove;
4904
4905		src_i = get_eb_folio_index(dst, src_end);
4906
4907		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4908		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4909
4910		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4911		cur = min(cur, dst_off_in_folio + 1);
4912
4913		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4914					 cur + 1;
4915		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4916					    cur);
4917
4918		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4919				      use_memmove);
 
 
 
4920
4921		dst_end -= cur;
4922		src_end -= cur;
4923		len -= cur;
4924	}
4925}
4926
4927#define GANG_LOOKUP_SIZE	16
4928static struct extent_buffer *get_next_extent_buffer(
4929		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4930{
4931	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4932	struct extent_buffer *found = NULL;
4933	u64 page_start = page_offset(page);
4934	u64 cur = page_start;
4935
4936	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4937	lockdep_assert_held(&fs_info->buffer_lock);
4938
4939	while (cur < page_start + PAGE_SIZE) {
4940		int ret;
4941		int i;
4942
4943		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4944				(void **)gang, cur >> fs_info->sectorsize_bits,
4945				min_t(unsigned int, GANG_LOOKUP_SIZE,
4946				      PAGE_SIZE / fs_info->nodesize));
4947		if (ret == 0)
4948			goto out;
4949		for (i = 0; i < ret; i++) {
4950			/* Already beyond page end */
4951			if (gang[i]->start >= page_start + PAGE_SIZE)
4952				goto out;
4953			/* Found one */
4954			if (gang[i]->start >= bytenr) {
4955				found = gang[i];
4956				goto out;
4957			}
4958		}
4959		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4960	}
4961out:
4962	return found;
4963}
4964
4965static int try_release_subpage_extent_buffer(struct page *page)
4966{
4967	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
4968	u64 cur = page_offset(page);
4969	const u64 end = page_offset(page) + PAGE_SIZE;
4970	int ret;
4971
4972	while (cur < end) {
4973		struct extent_buffer *eb = NULL;
4974
4975		/*
4976		 * Unlike try_release_extent_buffer() which uses folio private
4977		 * to grab buffer, for subpage case we rely on radix tree, thus
4978		 * we need to ensure radix tree consistency.
4979		 *
4980		 * We also want an atomic snapshot of the radix tree, thus go
4981		 * with spinlock rather than RCU.
4982		 */
4983		spin_lock(&fs_info->buffer_lock);
4984		eb = get_next_extent_buffer(fs_info, page, cur);
4985		if (!eb) {
4986			/* No more eb in the page range after or at cur */
4987			spin_unlock(&fs_info->buffer_lock);
4988			break;
4989		}
4990		cur = eb->start + eb->len;
4991
4992		/*
4993		 * The same as try_release_extent_buffer(), to ensure the eb
4994		 * won't disappear out from under us.
4995		 */
4996		spin_lock(&eb->refs_lock);
4997		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4998			spin_unlock(&eb->refs_lock);
4999			spin_unlock(&fs_info->buffer_lock);
5000			break;
5001		}
5002		spin_unlock(&fs_info->buffer_lock);
5003
5004		/*
5005		 * If tree ref isn't set then we know the ref on this eb is a
5006		 * real ref, so just return, this eb will likely be freed soon
5007		 * anyway.
5008		 */
5009		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5010			spin_unlock(&eb->refs_lock);
5011			break;
5012		}
5013
5014		/*
5015		 * Here we don't care about the return value, we will always
5016		 * check the folio private at the end.  And
5017		 * release_extent_buffer() will release the refs_lock.
5018		 */
5019		release_extent_buffer(eb);
5020	}
5021	/*
5022	 * Finally to check if we have cleared folio private, as if we have
5023	 * released all ebs in the page, the folio private should be cleared now.
5024	 */
5025	spin_lock(&page->mapping->i_private_lock);
5026	if (!folio_test_private(page_folio(page)))
5027		ret = 1;
5028	else
5029		ret = 0;
5030	spin_unlock(&page->mapping->i_private_lock);
5031	return ret;
5032
5033}
5034
5035int try_release_extent_buffer(struct page *page)
5036{
5037	struct folio *folio = page_folio(page);
5038	struct extent_buffer *eb;
5039
5040	if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
5041		return try_release_subpage_extent_buffer(page);
5042
5043	/*
5044	 * We need to make sure nobody is changing folio private, as we rely on
5045	 * folio private as the pointer to extent buffer.
5046	 */
5047	spin_lock(&page->mapping->i_private_lock);
5048	if (!folio_test_private(folio)) {
5049		spin_unlock(&page->mapping->i_private_lock);
5050		return 1;
5051	}
5052
5053	eb = folio_get_private(folio);
5054	BUG_ON(!eb);
5055
5056	/*
5057	 * This is a little awful but should be ok, we need to make sure that
5058	 * the eb doesn't disappear out from under us while we're looking at
5059	 * this page.
5060	 */
5061	spin_lock(&eb->refs_lock);
5062	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5063		spin_unlock(&eb->refs_lock);
5064		spin_unlock(&page->mapping->i_private_lock);
5065		return 0;
5066	}
5067	spin_unlock(&page->mapping->i_private_lock);
5068
5069	/*
5070	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5071	 * so just return, this page will likely be freed soon anyway.
5072	 */
5073	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5074		spin_unlock(&eb->refs_lock);
5075		return 0;
5076	}
5077
5078	return release_extent_buffer(eb);
5079}
5080
5081/*
5082 * Attempt to readahead a child block.
5083 *
5084 * @fs_info:	the fs_info
5085 * @bytenr:	bytenr to read
5086 * @owner_root: objectid of the root that owns this eb
5087 * @gen:	generation for the uptodate check, can be 0
5088 * @level:	level for the eb
5089 *
5090 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
5091 * normal uptodate check of the eb, without checking the generation.  If we have
5092 * to read the block we will not block on anything.
5093 */
5094void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5095				u64 bytenr, u64 owner_root, u64 gen, int level)
5096{
5097	struct btrfs_tree_parent_check check = {
5098		.has_first_key = 0,
5099		.level = level,
5100		.transid = gen
5101	};
5102	struct extent_buffer *eb;
5103	int ret;
5104
5105	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5106	if (IS_ERR(eb))
5107		return;
5108
5109	if (btrfs_buffer_uptodate(eb, gen, 1)) {
5110		free_extent_buffer(eb);
5111		return;
5112	}
5113
5114	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5115	if (ret < 0)
5116		free_extent_buffer_stale(eb);
5117	else
5118		free_extent_buffer(eb);
5119}
5120
5121/*
5122 * Readahead a node's child block.
5123 *
5124 * @node:	parent node we're reading from
5125 * @slot:	slot in the parent node for the child we want to read
5126 *
5127 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5128 * the slot in the node provided.
5129 */
5130void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5131{
5132	btrfs_readahead_tree_block(node->fs_info,
5133				   btrfs_node_blockptr(node, slot),
5134				   btrfs_header_owner(node),
5135				   btrfs_node_ptr_generation(node, slot),
5136				   btrfs_header_level(node) - 1);
5137}