Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "extent_io.h"
17#include "extent_map.h"
18#include "ctree.h"
19#include "btrfs_inode.h"
20#include "volumes.h"
21#include "check-integrity.h"
22#include "locking.h"
23#include "rcu-string.h"
24#include "backref.h"
25#include "disk-io.h"
26
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
29static struct bio_set btrfs_bioset;
30
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
36#ifdef CONFIG_BTRFS_DEBUG
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
39
40static DEFINE_SPINLOCK(leak_lock);
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
86
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91{
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
104}
105#else
106#define btrfs_leak_debug_add(new, head) do {} while (0)
107#define btrfs_leak_debug_del(entry) do {} while (0)
108#define btrfs_leak_debug_check() do {} while (0)
109#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
110#endif
111
112struct tree_entry {
113 u64 start;
114 u64 end;
115 struct rb_node rb_node;
116};
117
118struct extent_page_data {
119 struct bio *bio;
120 struct extent_io_tree *tree;
121 /* tells writepage not to lock the state bits for this range
122 * it still does the unlocking
123 */
124 unsigned int extent_locked:1;
125
126 /* tells the submit_bio code to use REQ_SYNC */
127 unsigned int sync_io:1;
128};
129
130static int add_extent_changeset(struct extent_state *state, unsigned bits,
131 struct extent_changeset *changeset,
132 int set)
133{
134 int ret;
135
136 if (!changeset)
137 return 0;
138 if (set && (state->state & bits) == bits)
139 return 0;
140 if (!set && (state->state & bits) == 0)
141 return 0;
142 changeset->bytes_changed += state->end - state->start + 1;
143 ret = ulist_add(&changeset->range_changed, state->start, state->end,
144 GFP_ATOMIC);
145 return ret;
146}
147
148static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 unsigned long bio_flags)
150{
151 blk_status_t ret = 0;
152 struct extent_io_tree *tree = bio->bi_private;
153
154 bio->bi_private = NULL;
155
156 if (tree->ops)
157 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
158 mirror_num, bio_flags);
159 else
160 btrfsic_submit_bio(bio);
161
162 return blk_status_to_errno(ret);
163}
164
165/* Cleanup unsubmitted bios */
166static void end_write_bio(struct extent_page_data *epd, int ret)
167{
168 if (epd->bio) {
169 epd->bio->bi_status = errno_to_blk_status(ret);
170 bio_endio(epd->bio);
171 epd->bio = NULL;
172 }
173}
174
175/*
176 * Submit bio from extent page data via submit_one_bio
177 *
178 * Return 0 if everything is OK.
179 * Return <0 for error.
180 */
181static int __must_check flush_write_bio(struct extent_page_data *epd)
182{
183 int ret = 0;
184
185 if (epd->bio) {
186 ret = submit_one_bio(epd->bio, 0, 0);
187 /*
188 * Clean up of epd->bio is handled by its endio function.
189 * And endio is either triggered by successful bio execution
190 * or the error handler of submit bio hook.
191 * So at this point, no matter what happened, we don't need
192 * to clean up epd->bio.
193 */
194 epd->bio = NULL;
195 }
196 return ret;
197}
198
199int __init extent_io_init(void)
200{
201 extent_state_cache = kmem_cache_create("btrfs_extent_state",
202 sizeof(struct extent_state), 0,
203 SLAB_MEM_SPREAD, NULL);
204 if (!extent_state_cache)
205 return -ENOMEM;
206
207 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
208 sizeof(struct extent_buffer), 0,
209 SLAB_MEM_SPREAD, NULL);
210 if (!extent_buffer_cache)
211 goto free_state_cache;
212
213 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
214 offsetof(struct btrfs_io_bio, bio),
215 BIOSET_NEED_BVECS))
216 goto free_buffer_cache;
217
218 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
219 goto free_bioset;
220
221 return 0;
222
223free_bioset:
224 bioset_exit(&btrfs_bioset);
225
226free_buffer_cache:
227 kmem_cache_destroy(extent_buffer_cache);
228 extent_buffer_cache = NULL;
229
230free_state_cache:
231 kmem_cache_destroy(extent_state_cache);
232 extent_state_cache = NULL;
233 return -ENOMEM;
234}
235
236void __cold extent_io_exit(void)
237{
238 btrfs_leak_debug_check();
239
240 /*
241 * Make sure all delayed rcu free are flushed before we
242 * destroy caches.
243 */
244 rcu_barrier();
245 kmem_cache_destroy(extent_state_cache);
246 kmem_cache_destroy(extent_buffer_cache);
247 bioset_exit(&btrfs_bioset);
248}
249
250void extent_io_tree_init(struct btrfs_fs_info *fs_info,
251 struct extent_io_tree *tree, unsigned int owner,
252 void *private_data)
253{
254 tree->fs_info = fs_info;
255 tree->state = RB_ROOT;
256 tree->ops = NULL;
257 tree->dirty_bytes = 0;
258 spin_lock_init(&tree->lock);
259 tree->private_data = private_data;
260 tree->owner = owner;
261}
262
263void extent_io_tree_release(struct extent_io_tree *tree)
264{
265 spin_lock(&tree->lock);
266 /*
267 * Do a single barrier for the waitqueue_active check here, the state
268 * of the waitqueue should not change once extent_io_tree_release is
269 * called.
270 */
271 smp_mb();
272 while (!RB_EMPTY_ROOT(&tree->state)) {
273 struct rb_node *node;
274 struct extent_state *state;
275
276 node = rb_first(&tree->state);
277 state = rb_entry(node, struct extent_state, rb_node);
278 rb_erase(&state->rb_node, &tree->state);
279 RB_CLEAR_NODE(&state->rb_node);
280 /*
281 * btree io trees aren't supposed to have tasks waiting for
282 * changes in the flags of extent states ever.
283 */
284 ASSERT(!waitqueue_active(&state->wq));
285 free_extent_state(state);
286
287 cond_resched_lock(&tree->lock);
288 }
289 spin_unlock(&tree->lock);
290}
291
292static struct extent_state *alloc_extent_state(gfp_t mask)
293{
294 struct extent_state *state;
295
296 /*
297 * The given mask might be not appropriate for the slab allocator,
298 * drop the unsupported bits
299 */
300 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
301 state = kmem_cache_alloc(extent_state_cache, mask);
302 if (!state)
303 return state;
304 state->state = 0;
305 state->failrec = NULL;
306 RB_CLEAR_NODE(&state->rb_node);
307 btrfs_leak_debug_add(&state->leak_list, &states);
308 refcount_set(&state->refs, 1);
309 init_waitqueue_head(&state->wq);
310 trace_alloc_extent_state(state, mask, _RET_IP_);
311 return state;
312}
313
314void free_extent_state(struct extent_state *state)
315{
316 if (!state)
317 return;
318 if (refcount_dec_and_test(&state->refs)) {
319 WARN_ON(extent_state_in_tree(state));
320 btrfs_leak_debug_del(&state->leak_list);
321 trace_free_extent_state(state, _RET_IP_);
322 kmem_cache_free(extent_state_cache, state);
323 }
324}
325
326static struct rb_node *tree_insert(struct rb_root *root,
327 struct rb_node *search_start,
328 u64 offset,
329 struct rb_node *node,
330 struct rb_node ***p_in,
331 struct rb_node **parent_in)
332{
333 struct rb_node **p;
334 struct rb_node *parent = NULL;
335 struct tree_entry *entry;
336
337 if (p_in && parent_in) {
338 p = *p_in;
339 parent = *parent_in;
340 goto do_insert;
341 }
342
343 p = search_start ? &search_start : &root->rb_node;
344 while (*p) {
345 parent = *p;
346 entry = rb_entry(parent, struct tree_entry, rb_node);
347
348 if (offset < entry->start)
349 p = &(*p)->rb_left;
350 else if (offset > entry->end)
351 p = &(*p)->rb_right;
352 else
353 return parent;
354 }
355
356do_insert:
357 rb_link_node(node, parent, p);
358 rb_insert_color(node, root);
359 return NULL;
360}
361
362/**
363 * __etree_search - searche @tree for an entry that contains @offset. Such
364 * entry would have entry->start <= offset && entry->end >= offset.
365 *
366 * @tree - the tree to search
367 * @offset - offset that should fall within an entry in @tree
368 * @next_ret - pointer to the first entry whose range ends after @offset
369 * @prev - pointer to the first entry whose range begins before @offset
370 * @p_ret - pointer where new node should be anchored (used when inserting an
371 * entry in the tree)
372 * @parent_ret - points to entry which would have been the parent of the entry,
373 * containing @offset
374 *
375 * This function returns a pointer to the entry that contains @offset byte
376 * address. If no such entry exists, then NULL is returned and the other
377 * pointer arguments to the function are filled, otherwise the found entry is
378 * returned and other pointers are left untouched.
379 */
380static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
381 struct rb_node **next_ret,
382 struct rb_node **prev_ret,
383 struct rb_node ***p_ret,
384 struct rb_node **parent_ret)
385{
386 struct rb_root *root = &tree->state;
387 struct rb_node **n = &root->rb_node;
388 struct rb_node *prev = NULL;
389 struct rb_node *orig_prev = NULL;
390 struct tree_entry *entry;
391 struct tree_entry *prev_entry = NULL;
392
393 while (*n) {
394 prev = *n;
395 entry = rb_entry(prev, struct tree_entry, rb_node);
396 prev_entry = entry;
397
398 if (offset < entry->start)
399 n = &(*n)->rb_left;
400 else if (offset > entry->end)
401 n = &(*n)->rb_right;
402 else
403 return *n;
404 }
405
406 if (p_ret)
407 *p_ret = n;
408 if (parent_ret)
409 *parent_ret = prev;
410
411 if (next_ret) {
412 orig_prev = prev;
413 while (prev && offset > prev_entry->end) {
414 prev = rb_next(prev);
415 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
416 }
417 *next_ret = prev;
418 prev = orig_prev;
419 }
420
421 if (prev_ret) {
422 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
423 while (prev && offset < prev_entry->start) {
424 prev = rb_prev(prev);
425 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 }
427 *prev_ret = prev;
428 }
429 return NULL;
430}
431
432static inline struct rb_node *
433tree_search_for_insert(struct extent_io_tree *tree,
434 u64 offset,
435 struct rb_node ***p_ret,
436 struct rb_node **parent_ret)
437{
438 struct rb_node *next= NULL;
439 struct rb_node *ret;
440
441 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
442 if (!ret)
443 return next;
444 return ret;
445}
446
447static inline struct rb_node *tree_search(struct extent_io_tree *tree,
448 u64 offset)
449{
450 return tree_search_for_insert(tree, offset, NULL, NULL);
451}
452
453/*
454 * utility function to look for merge candidates inside a given range.
455 * Any extents with matching state are merged together into a single
456 * extent in the tree. Extents with EXTENT_IO in their state field
457 * are not merged because the end_io handlers need to be able to do
458 * operations on them without sleeping (or doing allocations/splits).
459 *
460 * This should be called with the tree lock held.
461 */
462static void merge_state(struct extent_io_tree *tree,
463 struct extent_state *state)
464{
465 struct extent_state *other;
466 struct rb_node *other_node;
467
468 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
469 return;
470
471 other_node = rb_prev(&state->rb_node);
472 if (other_node) {
473 other = rb_entry(other_node, struct extent_state, rb_node);
474 if (other->end == state->start - 1 &&
475 other->state == state->state) {
476 if (tree->private_data &&
477 is_data_inode(tree->private_data))
478 btrfs_merge_delalloc_extent(tree->private_data,
479 state, other);
480 state->start = other->start;
481 rb_erase(&other->rb_node, &tree->state);
482 RB_CLEAR_NODE(&other->rb_node);
483 free_extent_state(other);
484 }
485 }
486 other_node = rb_next(&state->rb_node);
487 if (other_node) {
488 other = rb_entry(other_node, struct extent_state, rb_node);
489 if (other->start == state->end + 1 &&
490 other->state == state->state) {
491 if (tree->private_data &&
492 is_data_inode(tree->private_data))
493 btrfs_merge_delalloc_extent(tree->private_data,
494 state, other);
495 state->end = other->end;
496 rb_erase(&other->rb_node, &tree->state);
497 RB_CLEAR_NODE(&other->rb_node);
498 free_extent_state(other);
499 }
500 }
501}
502
503static void set_state_bits(struct extent_io_tree *tree,
504 struct extent_state *state, unsigned *bits,
505 struct extent_changeset *changeset);
506
507/*
508 * insert an extent_state struct into the tree. 'bits' are set on the
509 * struct before it is inserted.
510 *
511 * This may return -EEXIST if the extent is already there, in which case the
512 * state struct is freed.
513 *
514 * The tree lock is not taken internally. This is a utility function and
515 * probably isn't what you want to call (see set/clear_extent_bit).
516 */
517static int insert_state(struct extent_io_tree *tree,
518 struct extent_state *state, u64 start, u64 end,
519 struct rb_node ***p,
520 struct rb_node **parent,
521 unsigned *bits, struct extent_changeset *changeset)
522{
523 struct rb_node *node;
524
525 if (end < start) {
526 btrfs_err(tree->fs_info,
527 "insert state: end < start %llu %llu", end, start);
528 WARN_ON(1);
529 }
530 state->start = start;
531 state->end = end;
532
533 set_state_bits(tree, state, bits, changeset);
534
535 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
536 if (node) {
537 struct extent_state *found;
538 found = rb_entry(node, struct extent_state, rb_node);
539 btrfs_err(tree->fs_info,
540 "found node %llu %llu on insert of %llu %llu",
541 found->start, found->end, start, end);
542 return -EEXIST;
543 }
544 merge_state(tree, state);
545 return 0;
546}
547
548/*
549 * split a given extent state struct in two, inserting the preallocated
550 * struct 'prealloc' as the newly created second half. 'split' indicates an
551 * offset inside 'orig' where it should be split.
552 *
553 * Before calling,
554 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
555 * are two extent state structs in the tree:
556 * prealloc: [orig->start, split - 1]
557 * orig: [ split, orig->end ]
558 *
559 * The tree locks are not taken by this function. They need to be held
560 * by the caller.
561 */
562static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
563 struct extent_state *prealloc, u64 split)
564{
565 struct rb_node *node;
566
567 if (tree->private_data && is_data_inode(tree->private_data))
568 btrfs_split_delalloc_extent(tree->private_data, orig, split);
569
570 prealloc->start = orig->start;
571 prealloc->end = split - 1;
572 prealloc->state = orig->state;
573 orig->start = split;
574
575 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
576 &prealloc->rb_node, NULL, NULL);
577 if (node) {
578 free_extent_state(prealloc);
579 return -EEXIST;
580 }
581 return 0;
582}
583
584static struct extent_state *next_state(struct extent_state *state)
585{
586 struct rb_node *next = rb_next(&state->rb_node);
587 if (next)
588 return rb_entry(next, struct extent_state, rb_node);
589 else
590 return NULL;
591}
592
593/*
594 * utility function to clear some bits in an extent state struct.
595 * it will optionally wake up anyone waiting on this state (wake == 1).
596 *
597 * If no bits are set on the state struct after clearing things, the
598 * struct is freed and removed from the tree
599 */
600static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
601 struct extent_state *state,
602 unsigned *bits, int wake,
603 struct extent_changeset *changeset)
604{
605 struct extent_state *next;
606 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
607 int ret;
608
609 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
610 u64 range = state->end - state->start + 1;
611 WARN_ON(range > tree->dirty_bytes);
612 tree->dirty_bytes -= range;
613 }
614
615 if (tree->private_data && is_data_inode(tree->private_data))
616 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
617
618 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
619 BUG_ON(ret < 0);
620 state->state &= ~bits_to_clear;
621 if (wake)
622 wake_up(&state->wq);
623 if (state->state == 0) {
624 next = next_state(state);
625 if (extent_state_in_tree(state)) {
626 rb_erase(&state->rb_node, &tree->state);
627 RB_CLEAR_NODE(&state->rb_node);
628 free_extent_state(state);
629 } else {
630 WARN_ON(1);
631 }
632 } else {
633 merge_state(tree, state);
634 next = next_state(state);
635 }
636 return next;
637}
638
639static struct extent_state *
640alloc_extent_state_atomic(struct extent_state *prealloc)
641{
642 if (!prealloc)
643 prealloc = alloc_extent_state(GFP_ATOMIC);
644
645 return prealloc;
646}
647
648static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
649{
650 struct inode *inode = tree->private_data;
651
652 btrfs_panic(btrfs_sb(inode->i_sb), err,
653 "locking error: extent tree was modified by another thread while locked");
654}
655
656/*
657 * clear some bits on a range in the tree. This may require splitting
658 * or inserting elements in the tree, so the gfp mask is used to
659 * indicate which allocations or sleeping are allowed.
660 *
661 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
662 * the given range from the tree regardless of state (ie for truncate).
663 *
664 * the range [start, end] is inclusive.
665 *
666 * This takes the tree lock, and returns 0 on success and < 0 on error.
667 */
668int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
669 unsigned bits, int wake, int delete,
670 struct extent_state **cached_state,
671 gfp_t mask, struct extent_changeset *changeset)
672{
673 struct extent_state *state;
674 struct extent_state *cached;
675 struct extent_state *prealloc = NULL;
676 struct rb_node *node;
677 u64 last_end;
678 int err;
679 int clear = 0;
680
681 btrfs_debug_check_extent_io_range(tree, start, end);
682 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
683
684 if (bits & EXTENT_DELALLOC)
685 bits |= EXTENT_NORESERVE;
686
687 if (delete)
688 bits |= ~EXTENT_CTLBITS;
689
690 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
691 clear = 1;
692again:
693 if (!prealloc && gfpflags_allow_blocking(mask)) {
694 /*
695 * Don't care for allocation failure here because we might end
696 * up not needing the pre-allocated extent state at all, which
697 * is the case if we only have in the tree extent states that
698 * cover our input range and don't cover too any other range.
699 * If we end up needing a new extent state we allocate it later.
700 */
701 prealloc = alloc_extent_state(mask);
702 }
703
704 spin_lock(&tree->lock);
705 if (cached_state) {
706 cached = *cached_state;
707
708 if (clear) {
709 *cached_state = NULL;
710 cached_state = NULL;
711 }
712
713 if (cached && extent_state_in_tree(cached) &&
714 cached->start <= start && cached->end > start) {
715 if (clear)
716 refcount_dec(&cached->refs);
717 state = cached;
718 goto hit_next;
719 }
720 if (clear)
721 free_extent_state(cached);
722 }
723 /*
724 * this search will find the extents that end after
725 * our range starts
726 */
727 node = tree_search(tree, start);
728 if (!node)
729 goto out;
730 state = rb_entry(node, struct extent_state, rb_node);
731hit_next:
732 if (state->start > end)
733 goto out;
734 WARN_ON(state->end < start);
735 last_end = state->end;
736
737 /* the state doesn't have the wanted bits, go ahead */
738 if (!(state->state & bits)) {
739 state = next_state(state);
740 goto next;
741 }
742
743 /*
744 * | ---- desired range ---- |
745 * | state | or
746 * | ------------- state -------------- |
747 *
748 * We need to split the extent we found, and may flip
749 * bits on second half.
750 *
751 * If the extent we found extends past our range, we
752 * just split and search again. It'll get split again
753 * the next time though.
754 *
755 * If the extent we found is inside our range, we clear
756 * the desired bit on it.
757 */
758
759 if (state->start < start) {
760 prealloc = alloc_extent_state_atomic(prealloc);
761 BUG_ON(!prealloc);
762 err = split_state(tree, state, prealloc, start);
763 if (err)
764 extent_io_tree_panic(tree, err);
765
766 prealloc = NULL;
767 if (err)
768 goto out;
769 if (state->end <= end) {
770 state = clear_state_bit(tree, state, &bits, wake,
771 changeset);
772 goto next;
773 }
774 goto search_again;
775 }
776 /*
777 * | ---- desired range ---- |
778 * | state |
779 * We need to split the extent, and clear the bit
780 * on the first half
781 */
782 if (state->start <= end && state->end > end) {
783 prealloc = alloc_extent_state_atomic(prealloc);
784 BUG_ON(!prealloc);
785 err = split_state(tree, state, prealloc, end + 1);
786 if (err)
787 extent_io_tree_panic(tree, err);
788
789 if (wake)
790 wake_up(&state->wq);
791
792 clear_state_bit(tree, prealloc, &bits, wake, changeset);
793
794 prealloc = NULL;
795 goto out;
796 }
797
798 state = clear_state_bit(tree, state, &bits, wake, changeset);
799next:
800 if (last_end == (u64)-1)
801 goto out;
802 start = last_end + 1;
803 if (start <= end && state && !need_resched())
804 goto hit_next;
805
806search_again:
807 if (start > end)
808 goto out;
809 spin_unlock(&tree->lock);
810 if (gfpflags_allow_blocking(mask))
811 cond_resched();
812 goto again;
813
814out:
815 spin_unlock(&tree->lock);
816 if (prealloc)
817 free_extent_state(prealloc);
818
819 return 0;
820
821}
822
823static void wait_on_state(struct extent_io_tree *tree,
824 struct extent_state *state)
825 __releases(tree->lock)
826 __acquires(tree->lock)
827{
828 DEFINE_WAIT(wait);
829 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
830 spin_unlock(&tree->lock);
831 schedule();
832 spin_lock(&tree->lock);
833 finish_wait(&state->wq, &wait);
834}
835
836/*
837 * waits for one or more bits to clear on a range in the state tree.
838 * The range [start, end] is inclusive.
839 * The tree lock is taken by this function
840 */
841static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
842 unsigned long bits)
843{
844 struct extent_state *state;
845 struct rb_node *node;
846
847 btrfs_debug_check_extent_io_range(tree, start, end);
848
849 spin_lock(&tree->lock);
850again:
851 while (1) {
852 /*
853 * this search will find all the extents that end after
854 * our range starts
855 */
856 node = tree_search(tree, start);
857process_node:
858 if (!node)
859 break;
860
861 state = rb_entry(node, struct extent_state, rb_node);
862
863 if (state->start > end)
864 goto out;
865
866 if (state->state & bits) {
867 start = state->start;
868 refcount_inc(&state->refs);
869 wait_on_state(tree, state);
870 free_extent_state(state);
871 goto again;
872 }
873 start = state->end + 1;
874
875 if (start > end)
876 break;
877
878 if (!cond_resched_lock(&tree->lock)) {
879 node = rb_next(node);
880 goto process_node;
881 }
882 }
883out:
884 spin_unlock(&tree->lock);
885}
886
887static void set_state_bits(struct extent_io_tree *tree,
888 struct extent_state *state,
889 unsigned *bits, struct extent_changeset *changeset)
890{
891 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
892 int ret;
893
894 if (tree->private_data && is_data_inode(tree->private_data))
895 btrfs_set_delalloc_extent(tree->private_data, state, bits);
896
897 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
898 u64 range = state->end - state->start + 1;
899 tree->dirty_bytes += range;
900 }
901 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
902 BUG_ON(ret < 0);
903 state->state |= bits_to_set;
904}
905
906static void cache_state_if_flags(struct extent_state *state,
907 struct extent_state **cached_ptr,
908 unsigned flags)
909{
910 if (cached_ptr && !(*cached_ptr)) {
911 if (!flags || (state->state & flags)) {
912 *cached_ptr = state;
913 refcount_inc(&state->refs);
914 }
915 }
916}
917
918static void cache_state(struct extent_state *state,
919 struct extent_state **cached_ptr)
920{
921 return cache_state_if_flags(state, cached_ptr,
922 EXTENT_LOCKED | EXTENT_BOUNDARY);
923}
924
925/*
926 * set some bits on a range in the tree. This may require allocations or
927 * sleeping, so the gfp mask is used to indicate what is allowed.
928 *
929 * If any of the exclusive bits are set, this will fail with -EEXIST if some
930 * part of the range already has the desired bits set. The start of the
931 * existing range is returned in failed_start in this case.
932 *
933 * [start, end] is inclusive This takes the tree lock.
934 */
935
936static int __must_check
937__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
938 unsigned bits, unsigned exclusive_bits,
939 u64 *failed_start, struct extent_state **cached_state,
940 gfp_t mask, struct extent_changeset *changeset)
941{
942 struct extent_state *state;
943 struct extent_state *prealloc = NULL;
944 struct rb_node *node;
945 struct rb_node **p;
946 struct rb_node *parent;
947 int err = 0;
948 u64 last_start;
949 u64 last_end;
950
951 btrfs_debug_check_extent_io_range(tree, start, end);
952 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
953
954again:
955 if (!prealloc && gfpflags_allow_blocking(mask)) {
956 /*
957 * Don't care for allocation failure here because we might end
958 * up not needing the pre-allocated extent state at all, which
959 * is the case if we only have in the tree extent states that
960 * cover our input range and don't cover too any other range.
961 * If we end up needing a new extent state we allocate it later.
962 */
963 prealloc = alloc_extent_state(mask);
964 }
965
966 spin_lock(&tree->lock);
967 if (cached_state && *cached_state) {
968 state = *cached_state;
969 if (state->start <= start && state->end > start &&
970 extent_state_in_tree(state)) {
971 node = &state->rb_node;
972 goto hit_next;
973 }
974 }
975 /*
976 * this search will find all the extents that end after
977 * our range starts.
978 */
979 node = tree_search_for_insert(tree, start, &p, &parent);
980 if (!node) {
981 prealloc = alloc_extent_state_atomic(prealloc);
982 BUG_ON(!prealloc);
983 err = insert_state(tree, prealloc, start, end,
984 &p, &parent, &bits, changeset);
985 if (err)
986 extent_io_tree_panic(tree, err);
987
988 cache_state(prealloc, cached_state);
989 prealloc = NULL;
990 goto out;
991 }
992 state = rb_entry(node, struct extent_state, rb_node);
993hit_next:
994 last_start = state->start;
995 last_end = state->end;
996
997 /*
998 * | ---- desired range ---- |
999 * | state |
1000 *
1001 * Just lock what we found and keep going
1002 */
1003 if (state->start == start && state->end <= end) {
1004 if (state->state & exclusive_bits) {
1005 *failed_start = state->start;
1006 err = -EEXIST;
1007 goto out;
1008 }
1009
1010 set_state_bits(tree, state, &bits, changeset);
1011 cache_state(state, cached_state);
1012 merge_state(tree, state);
1013 if (last_end == (u64)-1)
1014 goto out;
1015 start = last_end + 1;
1016 state = next_state(state);
1017 if (start < end && state && state->start == start &&
1018 !need_resched())
1019 goto hit_next;
1020 goto search_again;
1021 }
1022
1023 /*
1024 * | ---- desired range ---- |
1025 * | state |
1026 * or
1027 * | ------------- state -------------- |
1028 *
1029 * We need to split the extent we found, and may flip bits on
1030 * second half.
1031 *
1032 * If the extent we found extends past our
1033 * range, we just split and search again. It'll get split
1034 * again the next time though.
1035 *
1036 * If the extent we found is inside our range, we set the
1037 * desired bit on it.
1038 */
1039 if (state->start < start) {
1040 if (state->state & exclusive_bits) {
1041 *failed_start = start;
1042 err = -EEXIST;
1043 goto out;
1044 }
1045
1046 prealloc = alloc_extent_state_atomic(prealloc);
1047 BUG_ON(!prealloc);
1048 err = split_state(tree, state, prealloc, start);
1049 if (err)
1050 extent_io_tree_panic(tree, err);
1051
1052 prealloc = NULL;
1053 if (err)
1054 goto out;
1055 if (state->end <= end) {
1056 set_state_bits(tree, state, &bits, changeset);
1057 cache_state(state, cached_state);
1058 merge_state(tree, state);
1059 if (last_end == (u64)-1)
1060 goto out;
1061 start = last_end + 1;
1062 state = next_state(state);
1063 if (start < end && state && state->start == start &&
1064 !need_resched())
1065 goto hit_next;
1066 }
1067 goto search_again;
1068 }
1069 /*
1070 * | ---- desired range ---- |
1071 * | state | or | state |
1072 *
1073 * There's a hole, we need to insert something in it and
1074 * ignore the extent we found.
1075 */
1076 if (state->start > start) {
1077 u64 this_end;
1078 if (end < last_start)
1079 this_end = end;
1080 else
1081 this_end = last_start - 1;
1082
1083 prealloc = alloc_extent_state_atomic(prealloc);
1084 BUG_ON(!prealloc);
1085
1086 /*
1087 * Avoid to free 'prealloc' if it can be merged with
1088 * the later extent.
1089 */
1090 err = insert_state(tree, prealloc, start, this_end,
1091 NULL, NULL, &bits, changeset);
1092 if (err)
1093 extent_io_tree_panic(tree, err);
1094
1095 cache_state(prealloc, cached_state);
1096 prealloc = NULL;
1097 start = this_end + 1;
1098 goto search_again;
1099 }
1100 /*
1101 * | ---- desired range ---- |
1102 * | state |
1103 * We need to split the extent, and set the bit
1104 * on the first half
1105 */
1106 if (state->start <= end && state->end > end) {
1107 if (state->state & exclusive_bits) {
1108 *failed_start = start;
1109 err = -EEXIST;
1110 goto out;
1111 }
1112
1113 prealloc = alloc_extent_state_atomic(prealloc);
1114 BUG_ON(!prealloc);
1115 err = split_state(tree, state, prealloc, end + 1);
1116 if (err)
1117 extent_io_tree_panic(tree, err);
1118
1119 set_state_bits(tree, prealloc, &bits, changeset);
1120 cache_state(prealloc, cached_state);
1121 merge_state(tree, prealloc);
1122 prealloc = NULL;
1123 goto out;
1124 }
1125
1126search_again:
1127 if (start > end)
1128 goto out;
1129 spin_unlock(&tree->lock);
1130 if (gfpflags_allow_blocking(mask))
1131 cond_resched();
1132 goto again;
1133
1134out:
1135 spin_unlock(&tree->lock);
1136 if (prealloc)
1137 free_extent_state(prealloc);
1138
1139 return err;
1140
1141}
1142
1143int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1144 unsigned bits, u64 * failed_start,
1145 struct extent_state **cached_state, gfp_t mask)
1146{
1147 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1148 cached_state, mask, NULL);
1149}
1150
1151
1152/**
1153 * convert_extent_bit - convert all bits in a given range from one bit to
1154 * another
1155 * @tree: the io tree to search
1156 * @start: the start offset in bytes
1157 * @end: the end offset in bytes (inclusive)
1158 * @bits: the bits to set in this range
1159 * @clear_bits: the bits to clear in this range
1160 * @cached_state: state that we're going to cache
1161 *
1162 * This will go through and set bits for the given range. If any states exist
1163 * already in this range they are set with the given bit and cleared of the
1164 * clear_bits. This is only meant to be used by things that are mergeable, ie
1165 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1166 * boundary bits like LOCK.
1167 *
1168 * All allocations are done with GFP_NOFS.
1169 */
1170int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1171 unsigned bits, unsigned clear_bits,
1172 struct extent_state **cached_state)
1173{
1174 struct extent_state *state;
1175 struct extent_state *prealloc = NULL;
1176 struct rb_node *node;
1177 struct rb_node **p;
1178 struct rb_node *parent;
1179 int err = 0;
1180 u64 last_start;
1181 u64 last_end;
1182 bool first_iteration = true;
1183
1184 btrfs_debug_check_extent_io_range(tree, start, end);
1185 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1186 clear_bits);
1187
1188again:
1189 if (!prealloc) {
1190 /*
1191 * Best effort, don't worry if extent state allocation fails
1192 * here for the first iteration. We might have a cached state
1193 * that matches exactly the target range, in which case no
1194 * extent state allocations are needed. We'll only know this
1195 * after locking the tree.
1196 */
1197 prealloc = alloc_extent_state(GFP_NOFS);
1198 if (!prealloc && !first_iteration)
1199 return -ENOMEM;
1200 }
1201
1202 spin_lock(&tree->lock);
1203 if (cached_state && *cached_state) {
1204 state = *cached_state;
1205 if (state->start <= start && state->end > start &&
1206 extent_state_in_tree(state)) {
1207 node = &state->rb_node;
1208 goto hit_next;
1209 }
1210 }
1211
1212 /*
1213 * this search will find all the extents that end after
1214 * our range starts.
1215 */
1216 node = tree_search_for_insert(tree, start, &p, &parent);
1217 if (!node) {
1218 prealloc = alloc_extent_state_atomic(prealloc);
1219 if (!prealloc) {
1220 err = -ENOMEM;
1221 goto out;
1222 }
1223 err = insert_state(tree, prealloc, start, end,
1224 &p, &parent, &bits, NULL);
1225 if (err)
1226 extent_io_tree_panic(tree, err);
1227 cache_state(prealloc, cached_state);
1228 prealloc = NULL;
1229 goto out;
1230 }
1231 state = rb_entry(node, struct extent_state, rb_node);
1232hit_next:
1233 last_start = state->start;
1234 last_end = state->end;
1235
1236 /*
1237 * | ---- desired range ---- |
1238 * | state |
1239 *
1240 * Just lock what we found and keep going
1241 */
1242 if (state->start == start && state->end <= end) {
1243 set_state_bits(tree, state, &bits, NULL);
1244 cache_state(state, cached_state);
1245 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1246 if (last_end == (u64)-1)
1247 goto out;
1248 start = last_end + 1;
1249 if (start < end && state && state->start == start &&
1250 !need_resched())
1251 goto hit_next;
1252 goto search_again;
1253 }
1254
1255 /*
1256 * | ---- desired range ---- |
1257 * | state |
1258 * or
1259 * | ------------- state -------------- |
1260 *
1261 * We need to split the extent we found, and may flip bits on
1262 * second half.
1263 *
1264 * If the extent we found extends past our
1265 * range, we just split and search again. It'll get split
1266 * again the next time though.
1267 *
1268 * If the extent we found is inside our range, we set the
1269 * desired bit on it.
1270 */
1271 if (state->start < start) {
1272 prealloc = alloc_extent_state_atomic(prealloc);
1273 if (!prealloc) {
1274 err = -ENOMEM;
1275 goto out;
1276 }
1277 err = split_state(tree, state, prealloc, start);
1278 if (err)
1279 extent_io_tree_panic(tree, err);
1280 prealloc = NULL;
1281 if (err)
1282 goto out;
1283 if (state->end <= end) {
1284 set_state_bits(tree, state, &bits, NULL);
1285 cache_state(state, cached_state);
1286 state = clear_state_bit(tree, state, &clear_bits, 0,
1287 NULL);
1288 if (last_end == (u64)-1)
1289 goto out;
1290 start = last_end + 1;
1291 if (start < end && state && state->start == start &&
1292 !need_resched())
1293 goto hit_next;
1294 }
1295 goto search_again;
1296 }
1297 /*
1298 * | ---- desired range ---- |
1299 * | state | or | state |
1300 *
1301 * There's a hole, we need to insert something in it and
1302 * ignore the extent we found.
1303 */
1304 if (state->start > start) {
1305 u64 this_end;
1306 if (end < last_start)
1307 this_end = end;
1308 else
1309 this_end = last_start - 1;
1310
1311 prealloc = alloc_extent_state_atomic(prealloc);
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
1316
1317 /*
1318 * Avoid to free 'prealloc' if it can be merged with
1319 * the later extent.
1320 */
1321 err = insert_state(tree, prealloc, start, this_end,
1322 NULL, NULL, &bits, NULL);
1323 if (err)
1324 extent_io_tree_panic(tree, err);
1325 cache_state(prealloc, cached_state);
1326 prealloc = NULL;
1327 start = this_end + 1;
1328 goto search_again;
1329 }
1330 /*
1331 * | ---- desired range ---- |
1332 * | state |
1333 * We need to split the extent, and set the bit
1334 * on the first half
1335 */
1336 if (state->start <= end && state->end > end) {
1337 prealloc = alloc_extent_state_atomic(prealloc);
1338 if (!prealloc) {
1339 err = -ENOMEM;
1340 goto out;
1341 }
1342
1343 err = split_state(tree, state, prealloc, end + 1);
1344 if (err)
1345 extent_io_tree_panic(tree, err);
1346
1347 set_state_bits(tree, prealloc, &bits, NULL);
1348 cache_state(prealloc, cached_state);
1349 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1350 prealloc = NULL;
1351 goto out;
1352 }
1353
1354search_again:
1355 if (start > end)
1356 goto out;
1357 spin_unlock(&tree->lock);
1358 cond_resched();
1359 first_iteration = false;
1360 goto again;
1361
1362out:
1363 spin_unlock(&tree->lock);
1364 if (prealloc)
1365 free_extent_state(prealloc);
1366
1367 return err;
1368}
1369
1370/* wrappers around set/clear extent bit */
1371int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1372 unsigned bits, struct extent_changeset *changeset)
1373{
1374 /*
1375 * We don't support EXTENT_LOCKED yet, as current changeset will
1376 * record any bits changed, so for EXTENT_LOCKED case, it will
1377 * either fail with -EEXIST or changeset will record the whole
1378 * range.
1379 */
1380 BUG_ON(bits & EXTENT_LOCKED);
1381
1382 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1383 changeset);
1384}
1385
1386int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1387 unsigned bits)
1388{
1389 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1390 GFP_NOWAIT, NULL);
1391}
1392
1393int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1394 unsigned bits, int wake, int delete,
1395 struct extent_state **cached)
1396{
1397 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1398 cached, GFP_NOFS, NULL);
1399}
1400
1401int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1402 unsigned bits, struct extent_changeset *changeset)
1403{
1404 /*
1405 * Don't support EXTENT_LOCKED case, same reason as
1406 * set_record_extent_bits().
1407 */
1408 BUG_ON(bits & EXTENT_LOCKED);
1409
1410 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1411 changeset);
1412}
1413
1414/*
1415 * either insert or lock state struct between start and end use mask to tell
1416 * us if waiting is desired.
1417 */
1418int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419 struct extent_state **cached_state)
1420{
1421 int err;
1422 u64 failed_start;
1423
1424 while (1) {
1425 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1426 EXTENT_LOCKED, &failed_start,
1427 cached_state, GFP_NOFS, NULL);
1428 if (err == -EEXIST) {
1429 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1430 start = failed_start;
1431 } else
1432 break;
1433 WARN_ON(start > end);
1434 }
1435 return err;
1436}
1437
1438int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1439{
1440 int err;
1441 u64 failed_start;
1442
1443 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1444 &failed_start, NULL, GFP_NOFS, NULL);
1445 if (err == -EEXIST) {
1446 if (failed_start > start)
1447 clear_extent_bit(tree, start, failed_start - 1,
1448 EXTENT_LOCKED, 1, 0, NULL);
1449 return 0;
1450 }
1451 return 1;
1452}
1453
1454void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455{
1456 unsigned long index = start >> PAGE_SHIFT;
1457 unsigned long end_index = end >> PAGE_SHIFT;
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 put_page(page);
1465 index++;
1466 }
1467}
1468
1469void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470{
1471 unsigned long index = start >> PAGE_SHIFT;
1472 unsigned long end_index = end >> PAGE_SHIFT;
1473 struct page *page;
1474
1475 while (index <= end_index) {
1476 page = find_get_page(inode->i_mapping, index);
1477 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478 __set_page_dirty_nobuffers(page);
1479 account_page_redirty(page);
1480 put_page(page);
1481 index++;
1482 }
1483}
1484
1485/* find the first state struct with 'bits' set after 'start', and
1486 * return it. tree->lock must be held. NULL will returned if
1487 * nothing was found after 'start'
1488 */
1489static struct extent_state *
1490find_first_extent_bit_state(struct extent_io_tree *tree,
1491 u64 start, unsigned bits)
1492{
1493 struct rb_node *node;
1494 struct extent_state *state;
1495
1496 /*
1497 * this search will find all the extents that end after
1498 * our range starts.
1499 */
1500 node = tree_search(tree, start);
1501 if (!node)
1502 goto out;
1503
1504 while (1) {
1505 state = rb_entry(node, struct extent_state, rb_node);
1506 if (state->end >= start && (state->state & bits))
1507 return state;
1508
1509 node = rb_next(node);
1510 if (!node)
1511 break;
1512 }
1513out:
1514 return NULL;
1515}
1516
1517/*
1518 * find the first offset in the io tree with 'bits' set. zero is
1519 * returned if we find something, and *start_ret and *end_ret are
1520 * set to reflect the state struct that was found.
1521 *
1522 * If nothing was found, 1 is returned. If found something, return 0.
1523 */
1524int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1525 u64 *start_ret, u64 *end_ret, unsigned bits,
1526 struct extent_state **cached_state)
1527{
1528 struct extent_state *state;
1529 int ret = 1;
1530
1531 spin_lock(&tree->lock);
1532 if (cached_state && *cached_state) {
1533 state = *cached_state;
1534 if (state->end == start - 1 && extent_state_in_tree(state)) {
1535 while ((state = next_state(state)) != NULL) {
1536 if (state->state & bits)
1537 goto got_it;
1538 }
1539 free_extent_state(*cached_state);
1540 *cached_state = NULL;
1541 goto out;
1542 }
1543 free_extent_state(*cached_state);
1544 *cached_state = NULL;
1545 }
1546
1547 state = find_first_extent_bit_state(tree, start, bits);
1548got_it:
1549 if (state) {
1550 cache_state_if_flags(state, cached_state, 0);
1551 *start_ret = state->start;
1552 *end_ret = state->end;
1553 ret = 0;
1554 }
1555out:
1556 spin_unlock(&tree->lock);
1557 return ret;
1558}
1559
1560/**
1561 * find_first_clear_extent_bit - find the first range that has @bits not set.
1562 * This range could start before @start.
1563 *
1564 * @tree - the tree to search
1565 * @start - the offset at/after which the found extent should start
1566 * @start_ret - records the beginning of the range
1567 * @end_ret - records the end of the range (inclusive)
1568 * @bits - the set of bits which must be unset
1569 *
1570 * Since unallocated range is also considered one which doesn't have the bits
1571 * set it's possible that @end_ret contains -1, this happens in case the range
1572 * spans (last_range_end, end of device]. In this case it's up to the caller to
1573 * trim @end_ret to the appropriate size.
1574 */
1575void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1576 u64 *start_ret, u64 *end_ret, unsigned bits)
1577{
1578 struct extent_state *state;
1579 struct rb_node *node, *prev = NULL, *next;
1580
1581 spin_lock(&tree->lock);
1582
1583 /* Find first extent with bits cleared */
1584 while (1) {
1585 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1586 if (!node) {
1587 node = next;
1588 if (!node) {
1589 /*
1590 * We are past the last allocated chunk,
1591 * set start at the end of the last extent. The
1592 * device alloc tree should never be empty so
1593 * prev is always set.
1594 */
1595 ASSERT(prev);
1596 state = rb_entry(prev, struct extent_state, rb_node);
1597 *start_ret = state->end + 1;
1598 *end_ret = -1;
1599 goto out;
1600 }
1601 }
1602 /*
1603 * At this point 'node' either contains 'start' or start is
1604 * before 'node'
1605 */
1606 state = rb_entry(node, struct extent_state, rb_node);
1607
1608 if (in_range(start, state->start, state->end - state->start + 1)) {
1609 if (state->state & bits) {
1610 /*
1611 * |--range with bits sets--|
1612 * |
1613 * start
1614 */
1615 start = state->end + 1;
1616 } else {
1617 /*
1618 * 'start' falls within a range that doesn't
1619 * have the bits set, so take its start as
1620 * the beginning of the desired range
1621 *
1622 * |--range with bits cleared----|
1623 * |
1624 * start
1625 */
1626 *start_ret = state->start;
1627 break;
1628 }
1629 } else {
1630 /*
1631 * |---prev range---|---hole/unset---|---node range---|
1632 * |
1633 * start
1634 *
1635 * or
1636 *
1637 * |---hole/unset--||--first node--|
1638 * 0 |
1639 * start
1640 */
1641 if (prev) {
1642 state = rb_entry(prev, struct extent_state,
1643 rb_node);
1644 *start_ret = state->end + 1;
1645 } else {
1646 *start_ret = 0;
1647 }
1648 break;
1649 }
1650 }
1651
1652 /*
1653 * Find the longest stretch from start until an entry which has the
1654 * bits set
1655 */
1656 while (1) {
1657 state = rb_entry(node, struct extent_state, rb_node);
1658 if (state->end >= start && !(state->state & bits)) {
1659 *end_ret = state->end;
1660 } else {
1661 *end_ret = state->start - 1;
1662 break;
1663 }
1664
1665 node = rb_next(node);
1666 if (!node)
1667 break;
1668 }
1669out:
1670 spin_unlock(&tree->lock);
1671}
1672
1673/*
1674 * find a contiguous range of bytes in the file marked as delalloc, not
1675 * more than 'max_bytes'. start and end are used to return the range,
1676 *
1677 * true is returned if we find something, false if nothing was in the tree
1678 */
1679static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1680 u64 *start, u64 *end, u64 max_bytes,
1681 struct extent_state **cached_state)
1682{
1683 struct rb_node *node;
1684 struct extent_state *state;
1685 u64 cur_start = *start;
1686 bool found = false;
1687 u64 total_bytes = 0;
1688
1689 spin_lock(&tree->lock);
1690
1691 /*
1692 * this search will find all the extents that end after
1693 * our range starts.
1694 */
1695 node = tree_search(tree, cur_start);
1696 if (!node) {
1697 *end = (u64)-1;
1698 goto out;
1699 }
1700
1701 while (1) {
1702 state = rb_entry(node, struct extent_state, rb_node);
1703 if (found && (state->start != cur_start ||
1704 (state->state & EXTENT_BOUNDARY))) {
1705 goto out;
1706 }
1707 if (!(state->state & EXTENT_DELALLOC)) {
1708 if (!found)
1709 *end = state->end;
1710 goto out;
1711 }
1712 if (!found) {
1713 *start = state->start;
1714 *cached_state = state;
1715 refcount_inc(&state->refs);
1716 }
1717 found = true;
1718 *end = state->end;
1719 cur_start = state->end + 1;
1720 node = rb_next(node);
1721 total_bytes += state->end - state->start + 1;
1722 if (total_bytes >= max_bytes)
1723 break;
1724 if (!node)
1725 break;
1726 }
1727out:
1728 spin_unlock(&tree->lock);
1729 return found;
1730}
1731
1732static int __process_pages_contig(struct address_space *mapping,
1733 struct page *locked_page,
1734 pgoff_t start_index, pgoff_t end_index,
1735 unsigned long page_ops, pgoff_t *index_ret);
1736
1737static noinline void __unlock_for_delalloc(struct inode *inode,
1738 struct page *locked_page,
1739 u64 start, u64 end)
1740{
1741 unsigned long index = start >> PAGE_SHIFT;
1742 unsigned long end_index = end >> PAGE_SHIFT;
1743
1744 ASSERT(locked_page);
1745 if (index == locked_page->index && end_index == index)
1746 return;
1747
1748 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1749 PAGE_UNLOCK, NULL);
1750}
1751
1752static noinline int lock_delalloc_pages(struct inode *inode,
1753 struct page *locked_page,
1754 u64 delalloc_start,
1755 u64 delalloc_end)
1756{
1757 unsigned long index = delalloc_start >> PAGE_SHIFT;
1758 unsigned long index_ret = index;
1759 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1760 int ret;
1761
1762 ASSERT(locked_page);
1763 if (index == locked_page->index && index == end_index)
1764 return 0;
1765
1766 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1767 end_index, PAGE_LOCK, &index_ret);
1768 if (ret == -EAGAIN)
1769 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1770 (u64)index_ret << PAGE_SHIFT);
1771 return ret;
1772}
1773
1774/*
1775 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1776 * more than @max_bytes. @Start and @end are used to return the range,
1777 *
1778 * Return: true if we find something
1779 * false if nothing was in the tree
1780 */
1781EXPORT_FOR_TESTS
1782noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1783 struct page *locked_page, u64 *start,
1784 u64 *end)
1785{
1786 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1787 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1788 u64 delalloc_start;
1789 u64 delalloc_end;
1790 bool found;
1791 struct extent_state *cached_state = NULL;
1792 int ret;
1793 int loops = 0;
1794
1795again:
1796 /* step one, find a bunch of delalloc bytes starting at start */
1797 delalloc_start = *start;
1798 delalloc_end = 0;
1799 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1800 max_bytes, &cached_state);
1801 if (!found || delalloc_end <= *start) {
1802 *start = delalloc_start;
1803 *end = delalloc_end;
1804 free_extent_state(cached_state);
1805 return false;
1806 }
1807
1808 /*
1809 * start comes from the offset of locked_page. We have to lock
1810 * pages in order, so we can't process delalloc bytes before
1811 * locked_page
1812 */
1813 if (delalloc_start < *start)
1814 delalloc_start = *start;
1815
1816 /*
1817 * make sure to limit the number of pages we try to lock down
1818 */
1819 if (delalloc_end + 1 - delalloc_start > max_bytes)
1820 delalloc_end = delalloc_start + max_bytes - 1;
1821
1822 /* step two, lock all the pages after the page that has start */
1823 ret = lock_delalloc_pages(inode, locked_page,
1824 delalloc_start, delalloc_end);
1825 ASSERT(!ret || ret == -EAGAIN);
1826 if (ret == -EAGAIN) {
1827 /* some of the pages are gone, lets avoid looping by
1828 * shortening the size of the delalloc range we're searching
1829 */
1830 free_extent_state(cached_state);
1831 cached_state = NULL;
1832 if (!loops) {
1833 max_bytes = PAGE_SIZE;
1834 loops = 1;
1835 goto again;
1836 } else {
1837 found = false;
1838 goto out_failed;
1839 }
1840 }
1841
1842 /* step three, lock the state bits for the whole range */
1843 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1844
1845 /* then test to make sure it is all still delalloc */
1846 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1847 EXTENT_DELALLOC, 1, cached_state);
1848 if (!ret) {
1849 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1850 &cached_state);
1851 __unlock_for_delalloc(inode, locked_page,
1852 delalloc_start, delalloc_end);
1853 cond_resched();
1854 goto again;
1855 }
1856 free_extent_state(cached_state);
1857 *start = delalloc_start;
1858 *end = delalloc_end;
1859out_failed:
1860 return found;
1861}
1862
1863static int __process_pages_contig(struct address_space *mapping,
1864 struct page *locked_page,
1865 pgoff_t start_index, pgoff_t end_index,
1866 unsigned long page_ops, pgoff_t *index_ret)
1867{
1868 unsigned long nr_pages = end_index - start_index + 1;
1869 unsigned long pages_locked = 0;
1870 pgoff_t index = start_index;
1871 struct page *pages[16];
1872 unsigned ret;
1873 int err = 0;
1874 int i;
1875
1876 if (page_ops & PAGE_LOCK) {
1877 ASSERT(page_ops == PAGE_LOCK);
1878 ASSERT(index_ret && *index_ret == start_index);
1879 }
1880
1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882 mapping_set_error(mapping, -EIO);
1883
1884 while (nr_pages > 0) {
1885 ret = find_get_pages_contig(mapping, index,
1886 min_t(unsigned long,
1887 nr_pages, ARRAY_SIZE(pages)), pages);
1888 if (ret == 0) {
1889 /*
1890 * Only if we're going to lock these pages,
1891 * can we find nothing at @index.
1892 */
1893 ASSERT(page_ops & PAGE_LOCK);
1894 err = -EAGAIN;
1895 goto out;
1896 }
1897
1898 for (i = 0; i < ret; i++) {
1899 if (page_ops & PAGE_SET_PRIVATE2)
1900 SetPagePrivate2(pages[i]);
1901
1902 if (pages[i] == locked_page) {
1903 put_page(pages[i]);
1904 pages_locked++;
1905 continue;
1906 }
1907 if (page_ops & PAGE_CLEAR_DIRTY)
1908 clear_page_dirty_for_io(pages[i]);
1909 if (page_ops & PAGE_SET_WRITEBACK)
1910 set_page_writeback(pages[i]);
1911 if (page_ops & PAGE_SET_ERROR)
1912 SetPageError(pages[i]);
1913 if (page_ops & PAGE_END_WRITEBACK)
1914 end_page_writeback(pages[i]);
1915 if (page_ops & PAGE_UNLOCK)
1916 unlock_page(pages[i]);
1917 if (page_ops & PAGE_LOCK) {
1918 lock_page(pages[i]);
1919 if (!PageDirty(pages[i]) ||
1920 pages[i]->mapping != mapping) {
1921 unlock_page(pages[i]);
1922 put_page(pages[i]);
1923 err = -EAGAIN;
1924 goto out;
1925 }
1926 }
1927 put_page(pages[i]);
1928 pages_locked++;
1929 }
1930 nr_pages -= ret;
1931 index += ret;
1932 cond_resched();
1933 }
1934out:
1935 if (err && index_ret)
1936 *index_ret = start_index + pages_locked - 1;
1937 return err;
1938}
1939
1940void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1941 struct page *locked_page,
1942 unsigned clear_bits,
1943 unsigned long page_ops)
1944{
1945 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1946 NULL);
1947
1948 __process_pages_contig(inode->i_mapping, locked_page,
1949 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1950 page_ops, NULL);
1951}
1952
1953/*
1954 * count the number of bytes in the tree that have a given bit(s)
1955 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1956 * cached. The total number found is returned.
1957 */
1958u64 count_range_bits(struct extent_io_tree *tree,
1959 u64 *start, u64 search_end, u64 max_bytes,
1960 unsigned bits, int contig)
1961{
1962 struct rb_node *node;
1963 struct extent_state *state;
1964 u64 cur_start = *start;
1965 u64 total_bytes = 0;
1966 u64 last = 0;
1967 int found = 0;
1968
1969 if (WARN_ON(search_end <= cur_start))
1970 return 0;
1971
1972 spin_lock(&tree->lock);
1973 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1974 total_bytes = tree->dirty_bytes;
1975 goto out;
1976 }
1977 /*
1978 * this search will find all the extents that end after
1979 * our range starts.
1980 */
1981 node = tree_search(tree, cur_start);
1982 if (!node)
1983 goto out;
1984
1985 while (1) {
1986 state = rb_entry(node, struct extent_state, rb_node);
1987 if (state->start > search_end)
1988 break;
1989 if (contig && found && state->start > last + 1)
1990 break;
1991 if (state->end >= cur_start && (state->state & bits) == bits) {
1992 total_bytes += min(search_end, state->end) + 1 -
1993 max(cur_start, state->start);
1994 if (total_bytes >= max_bytes)
1995 break;
1996 if (!found) {
1997 *start = max(cur_start, state->start);
1998 found = 1;
1999 }
2000 last = state->end;
2001 } else if (contig && found) {
2002 break;
2003 }
2004 node = rb_next(node);
2005 if (!node)
2006 break;
2007 }
2008out:
2009 spin_unlock(&tree->lock);
2010 return total_bytes;
2011}
2012
2013/*
2014 * set the private field for a given byte offset in the tree. If there isn't
2015 * an extent_state there already, this does nothing.
2016 */
2017static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
2018 struct io_failure_record *failrec)
2019{
2020 struct rb_node *node;
2021 struct extent_state *state;
2022 int ret = 0;
2023
2024 spin_lock(&tree->lock);
2025 /*
2026 * this search will find all the extents that end after
2027 * our range starts.
2028 */
2029 node = tree_search(tree, start);
2030 if (!node) {
2031 ret = -ENOENT;
2032 goto out;
2033 }
2034 state = rb_entry(node, struct extent_state, rb_node);
2035 if (state->start != start) {
2036 ret = -ENOENT;
2037 goto out;
2038 }
2039 state->failrec = failrec;
2040out:
2041 spin_unlock(&tree->lock);
2042 return ret;
2043}
2044
2045static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
2046 struct io_failure_record **failrec)
2047{
2048 struct rb_node *node;
2049 struct extent_state *state;
2050 int ret = 0;
2051
2052 spin_lock(&tree->lock);
2053 /*
2054 * this search will find all the extents that end after
2055 * our range starts.
2056 */
2057 node = tree_search(tree, start);
2058 if (!node) {
2059 ret = -ENOENT;
2060 goto out;
2061 }
2062 state = rb_entry(node, struct extent_state, rb_node);
2063 if (state->start != start) {
2064 ret = -ENOENT;
2065 goto out;
2066 }
2067 *failrec = state->failrec;
2068out:
2069 spin_unlock(&tree->lock);
2070 return ret;
2071}
2072
2073/*
2074 * searches a range in the state tree for a given mask.
2075 * If 'filled' == 1, this returns 1 only if every extent in the tree
2076 * has the bits set. Otherwise, 1 is returned if any bit in the
2077 * range is found set.
2078 */
2079int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2080 unsigned bits, int filled, struct extent_state *cached)
2081{
2082 struct extent_state *state = NULL;
2083 struct rb_node *node;
2084 int bitset = 0;
2085
2086 spin_lock(&tree->lock);
2087 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2088 cached->end > start)
2089 node = &cached->rb_node;
2090 else
2091 node = tree_search(tree, start);
2092 while (node && start <= end) {
2093 state = rb_entry(node, struct extent_state, rb_node);
2094
2095 if (filled && state->start > start) {
2096 bitset = 0;
2097 break;
2098 }
2099
2100 if (state->start > end)
2101 break;
2102
2103 if (state->state & bits) {
2104 bitset = 1;
2105 if (!filled)
2106 break;
2107 } else if (filled) {
2108 bitset = 0;
2109 break;
2110 }
2111
2112 if (state->end == (u64)-1)
2113 break;
2114
2115 start = state->end + 1;
2116 if (start > end)
2117 break;
2118 node = rb_next(node);
2119 if (!node) {
2120 if (filled)
2121 bitset = 0;
2122 break;
2123 }
2124 }
2125 spin_unlock(&tree->lock);
2126 return bitset;
2127}
2128
2129/*
2130 * helper function to set a given page up to date if all the
2131 * extents in the tree for that page are up to date
2132 */
2133static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2134{
2135 u64 start = page_offset(page);
2136 u64 end = start + PAGE_SIZE - 1;
2137 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2138 SetPageUptodate(page);
2139}
2140
2141int free_io_failure(struct extent_io_tree *failure_tree,
2142 struct extent_io_tree *io_tree,
2143 struct io_failure_record *rec)
2144{
2145 int ret;
2146 int err = 0;
2147
2148 set_state_failrec(failure_tree, rec->start, NULL);
2149 ret = clear_extent_bits(failure_tree, rec->start,
2150 rec->start + rec->len - 1,
2151 EXTENT_LOCKED | EXTENT_DIRTY);
2152 if (ret)
2153 err = ret;
2154
2155 ret = clear_extent_bits(io_tree, rec->start,
2156 rec->start + rec->len - 1,
2157 EXTENT_DAMAGED);
2158 if (ret && !err)
2159 err = ret;
2160
2161 kfree(rec);
2162 return err;
2163}
2164
2165/*
2166 * this bypasses the standard btrfs submit functions deliberately, as
2167 * the standard behavior is to write all copies in a raid setup. here we only
2168 * want to write the one bad copy. so we do the mapping for ourselves and issue
2169 * submit_bio directly.
2170 * to avoid any synchronization issues, wait for the data after writing, which
2171 * actually prevents the read that triggered the error from finishing.
2172 * currently, there can be no more than two copies of every data bit. thus,
2173 * exactly one rewrite is required.
2174 */
2175int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2176 u64 length, u64 logical, struct page *page,
2177 unsigned int pg_offset, int mirror_num)
2178{
2179 struct bio *bio;
2180 struct btrfs_device *dev;
2181 u64 map_length = 0;
2182 u64 sector;
2183 struct btrfs_bio *bbio = NULL;
2184 int ret;
2185
2186 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2187 BUG_ON(!mirror_num);
2188
2189 bio = btrfs_io_bio_alloc(1);
2190 bio->bi_iter.bi_size = 0;
2191 map_length = length;
2192
2193 /*
2194 * Avoid races with device replace and make sure our bbio has devices
2195 * associated to its stripes that don't go away while we are doing the
2196 * read repair operation.
2197 */
2198 btrfs_bio_counter_inc_blocked(fs_info);
2199 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2200 /*
2201 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2202 * to update all raid stripes, but here we just want to correct
2203 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2204 * stripe's dev and sector.
2205 */
2206 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2207 &map_length, &bbio, 0);
2208 if (ret) {
2209 btrfs_bio_counter_dec(fs_info);
2210 bio_put(bio);
2211 return -EIO;
2212 }
2213 ASSERT(bbio->mirror_num == 1);
2214 } else {
2215 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2216 &map_length, &bbio, mirror_num);
2217 if (ret) {
2218 btrfs_bio_counter_dec(fs_info);
2219 bio_put(bio);
2220 return -EIO;
2221 }
2222 BUG_ON(mirror_num != bbio->mirror_num);
2223 }
2224
2225 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2226 bio->bi_iter.bi_sector = sector;
2227 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2228 btrfs_put_bbio(bbio);
2229 if (!dev || !dev->bdev ||
2230 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2231 btrfs_bio_counter_dec(fs_info);
2232 bio_put(bio);
2233 return -EIO;
2234 }
2235 bio_set_dev(bio, dev->bdev);
2236 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2237 bio_add_page(bio, page, length, pg_offset);
2238
2239 if (btrfsic_submit_bio_wait(bio)) {
2240 /* try to remap that extent elsewhere? */
2241 btrfs_bio_counter_dec(fs_info);
2242 bio_put(bio);
2243 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2244 return -EIO;
2245 }
2246
2247 btrfs_info_rl_in_rcu(fs_info,
2248 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2249 ino, start,
2250 rcu_str_deref(dev->name), sector);
2251 btrfs_bio_counter_dec(fs_info);
2252 bio_put(bio);
2253 return 0;
2254}
2255
2256int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2257{
2258 struct btrfs_fs_info *fs_info = eb->fs_info;
2259 u64 start = eb->start;
2260 int i, num_pages = num_extent_pages(eb);
2261 int ret = 0;
2262
2263 if (sb_rdonly(fs_info->sb))
2264 return -EROFS;
2265
2266 for (i = 0; i < num_pages; i++) {
2267 struct page *p = eb->pages[i];
2268
2269 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2270 start - page_offset(p), mirror_num);
2271 if (ret)
2272 break;
2273 start += PAGE_SIZE;
2274 }
2275
2276 return ret;
2277}
2278
2279/*
2280 * each time an IO finishes, we do a fast check in the IO failure tree
2281 * to see if we need to process or clean up an io_failure_record
2282 */
2283int clean_io_failure(struct btrfs_fs_info *fs_info,
2284 struct extent_io_tree *failure_tree,
2285 struct extent_io_tree *io_tree, u64 start,
2286 struct page *page, u64 ino, unsigned int pg_offset)
2287{
2288 u64 private;
2289 struct io_failure_record *failrec;
2290 struct extent_state *state;
2291 int num_copies;
2292 int ret;
2293
2294 private = 0;
2295 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2296 EXTENT_DIRTY, 0);
2297 if (!ret)
2298 return 0;
2299
2300 ret = get_state_failrec(failure_tree, start, &failrec);
2301 if (ret)
2302 return 0;
2303
2304 BUG_ON(!failrec->this_mirror);
2305
2306 if (failrec->in_validation) {
2307 /* there was no real error, just free the record */
2308 btrfs_debug(fs_info,
2309 "clean_io_failure: freeing dummy error at %llu",
2310 failrec->start);
2311 goto out;
2312 }
2313 if (sb_rdonly(fs_info->sb))
2314 goto out;
2315
2316 spin_lock(&io_tree->lock);
2317 state = find_first_extent_bit_state(io_tree,
2318 failrec->start,
2319 EXTENT_LOCKED);
2320 spin_unlock(&io_tree->lock);
2321
2322 if (state && state->start <= failrec->start &&
2323 state->end >= failrec->start + failrec->len - 1) {
2324 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2325 failrec->len);
2326 if (num_copies > 1) {
2327 repair_io_failure(fs_info, ino, start, failrec->len,
2328 failrec->logical, page, pg_offset,
2329 failrec->failed_mirror);
2330 }
2331 }
2332
2333out:
2334 free_io_failure(failure_tree, io_tree, failrec);
2335
2336 return 0;
2337}
2338
2339/*
2340 * Can be called when
2341 * - hold extent lock
2342 * - under ordered extent
2343 * - the inode is freeing
2344 */
2345void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2346{
2347 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2348 struct io_failure_record *failrec;
2349 struct extent_state *state, *next;
2350
2351 if (RB_EMPTY_ROOT(&failure_tree->state))
2352 return;
2353
2354 spin_lock(&failure_tree->lock);
2355 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2356 while (state) {
2357 if (state->start > end)
2358 break;
2359
2360 ASSERT(state->end <= end);
2361
2362 next = next_state(state);
2363
2364 failrec = state->failrec;
2365 free_extent_state(state);
2366 kfree(failrec);
2367
2368 state = next;
2369 }
2370 spin_unlock(&failure_tree->lock);
2371}
2372
2373int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2374 struct io_failure_record **failrec_ret)
2375{
2376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377 struct io_failure_record *failrec;
2378 struct extent_map *em;
2379 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2381 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2382 int ret;
2383 u64 logical;
2384
2385 ret = get_state_failrec(failure_tree, start, &failrec);
2386 if (ret) {
2387 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2388 if (!failrec)
2389 return -ENOMEM;
2390
2391 failrec->start = start;
2392 failrec->len = end - start + 1;
2393 failrec->this_mirror = 0;
2394 failrec->bio_flags = 0;
2395 failrec->in_validation = 0;
2396
2397 read_lock(&em_tree->lock);
2398 em = lookup_extent_mapping(em_tree, start, failrec->len);
2399 if (!em) {
2400 read_unlock(&em_tree->lock);
2401 kfree(failrec);
2402 return -EIO;
2403 }
2404
2405 if (em->start > start || em->start + em->len <= start) {
2406 free_extent_map(em);
2407 em = NULL;
2408 }
2409 read_unlock(&em_tree->lock);
2410 if (!em) {
2411 kfree(failrec);
2412 return -EIO;
2413 }
2414
2415 logical = start - em->start;
2416 logical = em->block_start + logical;
2417 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2418 logical = em->block_start;
2419 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2420 extent_set_compress_type(&failrec->bio_flags,
2421 em->compress_type);
2422 }
2423
2424 btrfs_debug(fs_info,
2425 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2426 logical, start, failrec->len);
2427
2428 failrec->logical = logical;
2429 free_extent_map(em);
2430
2431 /* set the bits in the private failure tree */
2432 ret = set_extent_bits(failure_tree, start, end,
2433 EXTENT_LOCKED | EXTENT_DIRTY);
2434 if (ret >= 0)
2435 ret = set_state_failrec(failure_tree, start, failrec);
2436 /* set the bits in the inode's tree */
2437 if (ret >= 0)
2438 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2439 if (ret < 0) {
2440 kfree(failrec);
2441 return ret;
2442 }
2443 } else {
2444 btrfs_debug(fs_info,
2445 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2446 failrec->logical, failrec->start, failrec->len,
2447 failrec->in_validation);
2448 /*
2449 * when data can be on disk more than twice, add to failrec here
2450 * (e.g. with a list for failed_mirror) to make
2451 * clean_io_failure() clean all those errors at once.
2452 */
2453 }
2454
2455 *failrec_ret = failrec;
2456
2457 return 0;
2458}
2459
2460bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2461 struct io_failure_record *failrec, int failed_mirror)
2462{
2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2464 int num_copies;
2465
2466 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2467 if (num_copies == 1) {
2468 /*
2469 * we only have a single copy of the data, so don't bother with
2470 * all the retry and error correction code that follows. no
2471 * matter what the error is, it is very likely to persist.
2472 */
2473 btrfs_debug(fs_info,
2474 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2475 num_copies, failrec->this_mirror, failed_mirror);
2476 return false;
2477 }
2478
2479 /*
2480 * there are two premises:
2481 * a) deliver good data to the caller
2482 * b) correct the bad sectors on disk
2483 */
2484 if (failed_bio_pages > 1) {
2485 /*
2486 * to fulfill b), we need to know the exact failing sectors, as
2487 * we don't want to rewrite any more than the failed ones. thus,
2488 * we need separate read requests for the failed bio
2489 *
2490 * if the following BUG_ON triggers, our validation request got
2491 * merged. we need separate requests for our algorithm to work.
2492 */
2493 BUG_ON(failrec->in_validation);
2494 failrec->in_validation = 1;
2495 failrec->this_mirror = failed_mirror;
2496 } else {
2497 /*
2498 * we're ready to fulfill a) and b) alongside. get a good copy
2499 * of the failed sector and if we succeed, we have setup
2500 * everything for repair_io_failure to do the rest for us.
2501 */
2502 if (failrec->in_validation) {
2503 BUG_ON(failrec->this_mirror != failed_mirror);
2504 failrec->in_validation = 0;
2505 failrec->this_mirror = 0;
2506 }
2507 failrec->failed_mirror = failed_mirror;
2508 failrec->this_mirror++;
2509 if (failrec->this_mirror == failed_mirror)
2510 failrec->this_mirror++;
2511 }
2512
2513 if (failrec->this_mirror > num_copies) {
2514 btrfs_debug(fs_info,
2515 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2516 num_copies, failrec->this_mirror, failed_mirror);
2517 return false;
2518 }
2519
2520 return true;
2521}
2522
2523
2524struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2525 struct io_failure_record *failrec,
2526 struct page *page, int pg_offset, int icsum,
2527 bio_end_io_t *endio_func, void *data)
2528{
2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530 struct bio *bio;
2531 struct btrfs_io_bio *btrfs_failed_bio;
2532 struct btrfs_io_bio *btrfs_bio;
2533
2534 bio = btrfs_io_bio_alloc(1);
2535 bio->bi_end_io = endio_func;
2536 bio->bi_iter.bi_sector = failrec->logical >> 9;
2537 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2538 bio->bi_iter.bi_size = 0;
2539 bio->bi_private = data;
2540
2541 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2542 if (btrfs_failed_bio->csum) {
2543 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2544
2545 btrfs_bio = btrfs_io_bio(bio);
2546 btrfs_bio->csum = btrfs_bio->csum_inline;
2547 icsum *= csum_size;
2548 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2549 csum_size);
2550 }
2551
2552 bio_add_page(bio, page, failrec->len, pg_offset);
2553
2554 return bio;
2555}
2556
2557/*
2558 * This is a generic handler for readpage errors. If other copies exist, read
2559 * those and write back good data to the failed position. Does not investigate
2560 * in remapping the failed extent elsewhere, hoping the device will be smart
2561 * enough to do this as needed
2562 */
2563static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2564 struct page *page, u64 start, u64 end,
2565 int failed_mirror)
2566{
2567 struct io_failure_record *failrec;
2568 struct inode *inode = page->mapping->host;
2569 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2570 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2571 struct bio *bio;
2572 int read_mode = 0;
2573 blk_status_t status;
2574 int ret;
2575 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2576
2577 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2578
2579 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2580 if (ret)
2581 return ret;
2582
2583 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2584 failed_mirror)) {
2585 free_io_failure(failure_tree, tree, failrec);
2586 return -EIO;
2587 }
2588
2589 if (failed_bio_pages > 1)
2590 read_mode |= REQ_FAILFAST_DEV;
2591
2592 phy_offset >>= inode->i_sb->s_blocksize_bits;
2593 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2594 start - page_offset(page),
2595 (int)phy_offset, failed_bio->bi_end_io,
2596 NULL);
2597 bio->bi_opf = REQ_OP_READ | read_mode;
2598
2599 btrfs_debug(btrfs_sb(inode->i_sb),
2600 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2601 read_mode, failrec->this_mirror, failrec->in_validation);
2602
2603 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2604 failrec->bio_flags);
2605 if (status) {
2606 free_io_failure(failure_tree, tree, failrec);
2607 bio_put(bio);
2608 ret = blk_status_to_errno(status);
2609 }
2610
2611 return ret;
2612}
2613
2614/* lots and lots of room for performance fixes in the end_bio funcs */
2615
2616void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2617{
2618 int uptodate = (err == 0);
2619 int ret = 0;
2620
2621 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2622
2623 if (!uptodate) {
2624 ClearPageUptodate(page);
2625 SetPageError(page);
2626 ret = err < 0 ? err : -EIO;
2627 mapping_set_error(page->mapping, ret);
2628 }
2629}
2630
2631/*
2632 * after a writepage IO is done, we need to:
2633 * clear the uptodate bits on error
2634 * clear the writeback bits in the extent tree for this IO
2635 * end_page_writeback if the page has no more pending IO
2636 *
2637 * Scheduling is not allowed, so the extent state tree is expected
2638 * to have one and only one object corresponding to this IO.
2639 */
2640static void end_bio_extent_writepage(struct bio *bio)
2641{
2642 int error = blk_status_to_errno(bio->bi_status);
2643 struct bio_vec *bvec;
2644 u64 start;
2645 u64 end;
2646 struct bvec_iter_all iter_all;
2647
2648 ASSERT(!bio_flagged(bio, BIO_CLONED));
2649 bio_for_each_segment_all(bvec, bio, iter_all) {
2650 struct page *page = bvec->bv_page;
2651 struct inode *inode = page->mapping->host;
2652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653
2654 /* We always issue full-page reads, but if some block
2655 * in a page fails to read, blk_update_request() will
2656 * advance bv_offset and adjust bv_len to compensate.
2657 * Print a warning for nonzero offsets, and an error
2658 * if they don't add up to a full page. */
2659 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2660 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2661 btrfs_err(fs_info,
2662 "partial page write in btrfs with offset %u and length %u",
2663 bvec->bv_offset, bvec->bv_len);
2664 else
2665 btrfs_info(fs_info,
2666 "incomplete page write in btrfs with offset %u and length %u",
2667 bvec->bv_offset, bvec->bv_len);
2668 }
2669
2670 start = page_offset(page);
2671 end = start + bvec->bv_offset + bvec->bv_len - 1;
2672
2673 end_extent_writepage(page, error, start, end);
2674 end_page_writeback(page);
2675 }
2676
2677 bio_put(bio);
2678}
2679
2680static void
2681endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2682 int uptodate)
2683{
2684 struct extent_state *cached = NULL;
2685 u64 end = start + len - 1;
2686
2687 if (uptodate && tree->track_uptodate)
2688 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2689 unlock_extent_cached_atomic(tree, start, end, &cached);
2690}
2691
2692/*
2693 * after a readpage IO is done, we need to:
2694 * clear the uptodate bits on error
2695 * set the uptodate bits if things worked
2696 * set the page up to date if all extents in the tree are uptodate
2697 * clear the lock bit in the extent tree
2698 * unlock the page if there are no other extents locked for it
2699 *
2700 * Scheduling is not allowed, so the extent state tree is expected
2701 * to have one and only one object corresponding to this IO.
2702 */
2703static void end_bio_extent_readpage(struct bio *bio)
2704{
2705 struct bio_vec *bvec;
2706 int uptodate = !bio->bi_status;
2707 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2708 struct extent_io_tree *tree, *failure_tree;
2709 u64 offset = 0;
2710 u64 start;
2711 u64 end;
2712 u64 len;
2713 u64 extent_start = 0;
2714 u64 extent_len = 0;
2715 int mirror;
2716 int ret;
2717 struct bvec_iter_all iter_all;
2718
2719 ASSERT(!bio_flagged(bio, BIO_CLONED));
2720 bio_for_each_segment_all(bvec, bio, iter_all) {
2721 struct page *page = bvec->bv_page;
2722 struct inode *inode = page->mapping->host;
2723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2724 bool data_inode = btrfs_ino(BTRFS_I(inode))
2725 != BTRFS_BTREE_INODE_OBJECTID;
2726
2727 btrfs_debug(fs_info,
2728 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2729 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2730 io_bio->mirror_num);
2731 tree = &BTRFS_I(inode)->io_tree;
2732 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2733
2734 /* We always issue full-page reads, but if some block
2735 * in a page fails to read, blk_update_request() will
2736 * advance bv_offset and adjust bv_len to compensate.
2737 * Print a warning for nonzero offsets, and an error
2738 * if they don't add up to a full page. */
2739 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2740 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2741 btrfs_err(fs_info,
2742 "partial page read in btrfs with offset %u and length %u",
2743 bvec->bv_offset, bvec->bv_len);
2744 else
2745 btrfs_info(fs_info,
2746 "incomplete page read in btrfs with offset %u and length %u",
2747 bvec->bv_offset, bvec->bv_len);
2748 }
2749
2750 start = page_offset(page);
2751 end = start + bvec->bv_offset + bvec->bv_len - 1;
2752 len = bvec->bv_len;
2753
2754 mirror = io_bio->mirror_num;
2755 if (likely(uptodate)) {
2756 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2757 page, start, end,
2758 mirror);
2759 if (ret)
2760 uptodate = 0;
2761 else
2762 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2763 failure_tree, tree, start,
2764 page,
2765 btrfs_ino(BTRFS_I(inode)), 0);
2766 }
2767
2768 if (likely(uptodate))
2769 goto readpage_ok;
2770
2771 if (data_inode) {
2772
2773 /*
2774 * The generic bio_readpage_error handles errors the
2775 * following way: If possible, new read requests are
2776 * created and submitted and will end up in
2777 * end_bio_extent_readpage as well (if we're lucky,
2778 * not in the !uptodate case). In that case it returns
2779 * 0 and we just go on with the next page in our bio.
2780 * If it can't handle the error it will return -EIO and
2781 * we remain responsible for that page.
2782 */
2783 ret = bio_readpage_error(bio, offset, page, start, end,
2784 mirror);
2785 if (ret == 0) {
2786 uptodate = !bio->bi_status;
2787 offset += len;
2788 continue;
2789 }
2790 } else {
2791 struct extent_buffer *eb;
2792
2793 eb = (struct extent_buffer *)page->private;
2794 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2795 eb->read_mirror = mirror;
2796 atomic_dec(&eb->io_pages);
2797 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2798 &eb->bflags))
2799 btree_readahead_hook(eb, -EIO);
2800 }
2801readpage_ok:
2802 if (likely(uptodate)) {
2803 loff_t i_size = i_size_read(inode);
2804 pgoff_t end_index = i_size >> PAGE_SHIFT;
2805 unsigned off;
2806
2807 /* Zero out the end if this page straddles i_size */
2808 off = offset_in_page(i_size);
2809 if (page->index == end_index && off)
2810 zero_user_segment(page, off, PAGE_SIZE);
2811 SetPageUptodate(page);
2812 } else {
2813 ClearPageUptodate(page);
2814 SetPageError(page);
2815 }
2816 unlock_page(page);
2817 offset += len;
2818
2819 if (unlikely(!uptodate)) {
2820 if (extent_len) {
2821 endio_readpage_release_extent(tree,
2822 extent_start,
2823 extent_len, 1);
2824 extent_start = 0;
2825 extent_len = 0;
2826 }
2827 endio_readpage_release_extent(tree, start,
2828 end - start + 1, 0);
2829 } else if (!extent_len) {
2830 extent_start = start;
2831 extent_len = end + 1 - start;
2832 } else if (extent_start + extent_len == start) {
2833 extent_len += end + 1 - start;
2834 } else {
2835 endio_readpage_release_extent(tree, extent_start,
2836 extent_len, uptodate);
2837 extent_start = start;
2838 extent_len = end + 1 - start;
2839 }
2840 }
2841
2842 if (extent_len)
2843 endio_readpage_release_extent(tree, extent_start, extent_len,
2844 uptodate);
2845 btrfs_io_bio_free_csum(io_bio);
2846 bio_put(bio);
2847}
2848
2849/*
2850 * Initialize the members up to but not including 'bio'. Use after allocating a
2851 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2852 * 'bio' because use of __GFP_ZERO is not supported.
2853 */
2854static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2855{
2856 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2857}
2858
2859/*
2860 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2861 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2862 * for the appropriate container_of magic
2863 */
2864struct bio *btrfs_bio_alloc(u64 first_byte)
2865{
2866 struct bio *bio;
2867
2868 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2869 bio->bi_iter.bi_sector = first_byte >> 9;
2870 btrfs_io_bio_init(btrfs_io_bio(bio));
2871 return bio;
2872}
2873
2874struct bio *btrfs_bio_clone(struct bio *bio)
2875{
2876 struct btrfs_io_bio *btrfs_bio;
2877 struct bio *new;
2878
2879 /* Bio allocation backed by a bioset does not fail */
2880 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2881 btrfs_bio = btrfs_io_bio(new);
2882 btrfs_io_bio_init(btrfs_bio);
2883 btrfs_bio->iter = bio->bi_iter;
2884 return new;
2885}
2886
2887struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2888{
2889 struct bio *bio;
2890
2891 /* Bio allocation backed by a bioset does not fail */
2892 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2893 btrfs_io_bio_init(btrfs_io_bio(bio));
2894 return bio;
2895}
2896
2897struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2898{
2899 struct bio *bio;
2900 struct btrfs_io_bio *btrfs_bio;
2901
2902 /* this will never fail when it's backed by a bioset */
2903 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2904 ASSERT(bio);
2905
2906 btrfs_bio = btrfs_io_bio(bio);
2907 btrfs_io_bio_init(btrfs_bio);
2908
2909 bio_trim(bio, offset >> 9, size >> 9);
2910 btrfs_bio->iter = bio->bi_iter;
2911 return bio;
2912}
2913
2914/*
2915 * @opf: bio REQ_OP_* and REQ_* flags as one value
2916 * @tree: tree so we can call our merge_bio hook
2917 * @wbc: optional writeback control for io accounting
2918 * @page: page to add to the bio
2919 * @pg_offset: offset of the new bio or to check whether we are adding
2920 * a contiguous page to the previous one
2921 * @size: portion of page that we want to write
2922 * @offset: starting offset in the page
2923 * @bdev: attach newly created bios to this bdev
2924 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2925 * @end_io_func: end_io callback for new bio
2926 * @mirror_num: desired mirror to read/write
2927 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2928 * @bio_flags: flags of the current bio to see if we can merge them
2929 */
2930static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2931 struct writeback_control *wbc,
2932 struct page *page, u64 offset,
2933 size_t size, unsigned long pg_offset,
2934 struct block_device *bdev,
2935 struct bio **bio_ret,
2936 bio_end_io_t end_io_func,
2937 int mirror_num,
2938 unsigned long prev_bio_flags,
2939 unsigned long bio_flags,
2940 bool force_bio_submit)
2941{
2942 int ret = 0;
2943 struct bio *bio;
2944 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2945 sector_t sector = offset >> 9;
2946
2947 ASSERT(bio_ret);
2948
2949 if (*bio_ret) {
2950 bool contig;
2951 bool can_merge = true;
2952
2953 bio = *bio_ret;
2954 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2955 contig = bio->bi_iter.bi_sector == sector;
2956 else
2957 contig = bio_end_sector(bio) == sector;
2958
2959 ASSERT(tree->ops);
2960 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2961 can_merge = false;
2962
2963 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2964 force_bio_submit ||
2965 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2966 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2967 if (ret < 0) {
2968 *bio_ret = NULL;
2969 return ret;
2970 }
2971 bio = NULL;
2972 } else {
2973 if (wbc)
2974 wbc_account_cgroup_owner(wbc, page, page_size);
2975 return 0;
2976 }
2977 }
2978
2979 bio = btrfs_bio_alloc(offset);
2980 bio_set_dev(bio, bdev);
2981 bio_add_page(bio, page, page_size, pg_offset);
2982 bio->bi_end_io = end_io_func;
2983 bio->bi_private = tree;
2984 bio->bi_write_hint = page->mapping->host->i_write_hint;
2985 bio->bi_opf = opf;
2986 if (wbc) {
2987 wbc_init_bio(wbc, bio);
2988 wbc_account_cgroup_owner(wbc, page, page_size);
2989 }
2990
2991 *bio_ret = bio;
2992
2993 return ret;
2994}
2995
2996static void attach_extent_buffer_page(struct extent_buffer *eb,
2997 struct page *page)
2998{
2999 if (!PagePrivate(page)) {
3000 SetPagePrivate(page);
3001 get_page(page);
3002 set_page_private(page, (unsigned long)eb);
3003 } else {
3004 WARN_ON(page->private != (unsigned long)eb);
3005 }
3006}
3007
3008void set_page_extent_mapped(struct page *page)
3009{
3010 if (!PagePrivate(page)) {
3011 SetPagePrivate(page);
3012 get_page(page);
3013 set_page_private(page, EXTENT_PAGE_PRIVATE);
3014 }
3015}
3016
3017static struct extent_map *
3018__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3019 u64 start, u64 len, get_extent_t *get_extent,
3020 struct extent_map **em_cached)
3021{
3022 struct extent_map *em;
3023
3024 if (em_cached && *em_cached) {
3025 em = *em_cached;
3026 if (extent_map_in_tree(em) && start >= em->start &&
3027 start < extent_map_end(em)) {
3028 refcount_inc(&em->refs);
3029 return em;
3030 }
3031
3032 free_extent_map(em);
3033 *em_cached = NULL;
3034 }
3035
3036 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3037 if (em_cached && !IS_ERR_OR_NULL(em)) {
3038 BUG_ON(*em_cached);
3039 refcount_inc(&em->refs);
3040 *em_cached = em;
3041 }
3042 return em;
3043}
3044/*
3045 * basic readpage implementation. Locked extent state structs are inserted
3046 * into the tree that are removed when the IO is done (by the end_io
3047 * handlers)
3048 * XXX JDM: This needs looking at to ensure proper page locking
3049 * return 0 on success, otherwise return error
3050 */
3051static int __do_readpage(struct extent_io_tree *tree,
3052 struct page *page,
3053 get_extent_t *get_extent,
3054 struct extent_map **em_cached,
3055 struct bio **bio, int mirror_num,
3056 unsigned long *bio_flags, unsigned int read_flags,
3057 u64 *prev_em_start)
3058{
3059 struct inode *inode = page->mapping->host;
3060 u64 start = page_offset(page);
3061 const u64 end = start + PAGE_SIZE - 1;
3062 u64 cur = start;
3063 u64 extent_offset;
3064 u64 last_byte = i_size_read(inode);
3065 u64 block_start;
3066 u64 cur_end;
3067 struct extent_map *em;
3068 struct block_device *bdev;
3069 int ret = 0;
3070 int nr = 0;
3071 size_t pg_offset = 0;
3072 size_t iosize;
3073 size_t disk_io_size;
3074 size_t blocksize = inode->i_sb->s_blocksize;
3075 unsigned long this_bio_flag = 0;
3076
3077 set_page_extent_mapped(page);
3078
3079 if (!PageUptodate(page)) {
3080 if (cleancache_get_page(page) == 0) {
3081 BUG_ON(blocksize != PAGE_SIZE);
3082 unlock_extent(tree, start, end);
3083 goto out;
3084 }
3085 }
3086
3087 if (page->index == last_byte >> PAGE_SHIFT) {
3088 char *userpage;
3089 size_t zero_offset = offset_in_page(last_byte);
3090
3091 if (zero_offset) {
3092 iosize = PAGE_SIZE - zero_offset;
3093 userpage = kmap_atomic(page);
3094 memset(userpage + zero_offset, 0, iosize);
3095 flush_dcache_page(page);
3096 kunmap_atomic(userpage);
3097 }
3098 }
3099 while (cur <= end) {
3100 bool force_bio_submit = false;
3101 u64 offset;
3102
3103 if (cur >= last_byte) {
3104 char *userpage;
3105 struct extent_state *cached = NULL;
3106
3107 iosize = PAGE_SIZE - pg_offset;
3108 userpage = kmap_atomic(page);
3109 memset(userpage + pg_offset, 0, iosize);
3110 flush_dcache_page(page);
3111 kunmap_atomic(userpage);
3112 set_extent_uptodate(tree, cur, cur + iosize - 1,
3113 &cached, GFP_NOFS);
3114 unlock_extent_cached(tree, cur,
3115 cur + iosize - 1, &cached);
3116 break;
3117 }
3118 em = __get_extent_map(inode, page, pg_offset, cur,
3119 end - cur + 1, get_extent, em_cached);
3120 if (IS_ERR_OR_NULL(em)) {
3121 SetPageError(page);
3122 unlock_extent(tree, cur, end);
3123 break;
3124 }
3125 extent_offset = cur - em->start;
3126 BUG_ON(extent_map_end(em) <= cur);
3127 BUG_ON(end < cur);
3128
3129 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3130 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3131 extent_set_compress_type(&this_bio_flag,
3132 em->compress_type);
3133 }
3134
3135 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3136 cur_end = min(extent_map_end(em) - 1, end);
3137 iosize = ALIGN(iosize, blocksize);
3138 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3139 disk_io_size = em->block_len;
3140 offset = em->block_start;
3141 } else {
3142 offset = em->block_start + extent_offset;
3143 disk_io_size = iosize;
3144 }
3145 bdev = em->bdev;
3146 block_start = em->block_start;
3147 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3148 block_start = EXTENT_MAP_HOLE;
3149
3150 /*
3151 * If we have a file range that points to a compressed extent
3152 * and it's followed by a consecutive file range that points to
3153 * to the same compressed extent (possibly with a different
3154 * offset and/or length, so it either points to the whole extent
3155 * or only part of it), we must make sure we do not submit a
3156 * single bio to populate the pages for the 2 ranges because
3157 * this makes the compressed extent read zero out the pages
3158 * belonging to the 2nd range. Imagine the following scenario:
3159 *
3160 * File layout
3161 * [0 - 8K] [8K - 24K]
3162 * | |
3163 * | |
3164 * points to extent X, points to extent X,
3165 * offset 4K, length of 8K offset 0, length 16K
3166 *
3167 * [extent X, compressed length = 4K uncompressed length = 16K]
3168 *
3169 * If the bio to read the compressed extent covers both ranges,
3170 * it will decompress extent X into the pages belonging to the
3171 * first range and then it will stop, zeroing out the remaining
3172 * pages that belong to the other range that points to extent X.
3173 * So here we make sure we submit 2 bios, one for the first
3174 * range and another one for the third range. Both will target
3175 * the same physical extent from disk, but we can't currently
3176 * make the compressed bio endio callback populate the pages
3177 * for both ranges because each compressed bio is tightly
3178 * coupled with a single extent map, and each range can have
3179 * an extent map with a different offset value relative to the
3180 * uncompressed data of our extent and different lengths. This
3181 * is a corner case so we prioritize correctness over
3182 * non-optimal behavior (submitting 2 bios for the same extent).
3183 */
3184 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3185 prev_em_start && *prev_em_start != (u64)-1 &&
3186 *prev_em_start != em->start)
3187 force_bio_submit = true;
3188
3189 if (prev_em_start)
3190 *prev_em_start = em->start;
3191
3192 free_extent_map(em);
3193 em = NULL;
3194
3195 /* we've found a hole, just zero and go on */
3196 if (block_start == EXTENT_MAP_HOLE) {
3197 char *userpage;
3198 struct extent_state *cached = NULL;
3199
3200 userpage = kmap_atomic(page);
3201 memset(userpage + pg_offset, 0, iosize);
3202 flush_dcache_page(page);
3203 kunmap_atomic(userpage);
3204
3205 set_extent_uptodate(tree, cur, cur + iosize - 1,
3206 &cached, GFP_NOFS);
3207 unlock_extent_cached(tree, cur,
3208 cur + iosize - 1, &cached);
3209 cur = cur + iosize;
3210 pg_offset += iosize;
3211 continue;
3212 }
3213 /* the get_extent function already copied into the page */
3214 if (test_range_bit(tree, cur, cur_end,
3215 EXTENT_UPTODATE, 1, NULL)) {
3216 check_page_uptodate(tree, page);
3217 unlock_extent(tree, cur, cur + iosize - 1);
3218 cur = cur + iosize;
3219 pg_offset += iosize;
3220 continue;
3221 }
3222 /* we have an inline extent but it didn't get marked up
3223 * to date. Error out
3224 */
3225 if (block_start == EXTENT_MAP_INLINE) {
3226 SetPageError(page);
3227 unlock_extent(tree, cur, cur + iosize - 1);
3228 cur = cur + iosize;
3229 pg_offset += iosize;
3230 continue;
3231 }
3232
3233 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3234 page, offset, disk_io_size,
3235 pg_offset, bdev, bio,
3236 end_bio_extent_readpage, mirror_num,
3237 *bio_flags,
3238 this_bio_flag,
3239 force_bio_submit);
3240 if (!ret) {
3241 nr++;
3242 *bio_flags = this_bio_flag;
3243 } else {
3244 SetPageError(page);
3245 unlock_extent(tree, cur, cur + iosize - 1);
3246 goto out;
3247 }
3248 cur = cur + iosize;
3249 pg_offset += iosize;
3250 }
3251out:
3252 if (!nr) {
3253 if (!PageError(page))
3254 SetPageUptodate(page);
3255 unlock_page(page);
3256 }
3257 return ret;
3258}
3259
3260static inline void contiguous_readpages(struct extent_io_tree *tree,
3261 struct page *pages[], int nr_pages,
3262 u64 start, u64 end,
3263 struct extent_map **em_cached,
3264 struct bio **bio,
3265 unsigned long *bio_flags,
3266 u64 *prev_em_start)
3267{
3268 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3269 int index;
3270
3271 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3272
3273 for (index = 0; index < nr_pages; index++) {
3274 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3275 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3276 put_page(pages[index]);
3277 }
3278}
3279
3280static int __extent_read_full_page(struct extent_io_tree *tree,
3281 struct page *page,
3282 get_extent_t *get_extent,
3283 struct bio **bio, int mirror_num,
3284 unsigned long *bio_flags,
3285 unsigned int read_flags)
3286{
3287 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3288 u64 start = page_offset(page);
3289 u64 end = start + PAGE_SIZE - 1;
3290 int ret;
3291
3292 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3293
3294 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3295 bio_flags, read_flags, NULL);
3296 return ret;
3297}
3298
3299int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3300 get_extent_t *get_extent, int mirror_num)
3301{
3302 struct bio *bio = NULL;
3303 unsigned long bio_flags = 0;
3304 int ret;
3305
3306 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3307 &bio_flags, 0);
3308 if (bio)
3309 ret = submit_one_bio(bio, mirror_num, bio_flags);
3310 return ret;
3311}
3312
3313static void update_nr_written(struct writeback_control *wbc,
3314 unsigned long nr_written)
3315{
3316 wbc->nr_to_write -= nr_written;
3317}
3318
3319/*
3320 * helper for __extent_writepage, doing all of the delayed allocation setup.
3321 *
3322 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3323 * to write the page (copy into inline extent). In this case the IO has
3324 * been started and the page is already unlocked.
3325 *
3326 * This returns 0 if all went well (page still locked)
3327 * This returns < 0 if there were errors (page still locked)
3328 */
3329static noinline_for_stack int writepage_delalloc(struct inode *inode,
3330 struct page *page, struct writeback_control *wbc,
3331 u64 delalloc_start, unsigned long *nr_written)
3332{
3333 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3334 bool found;
3335 u64 delalloc_to_write = 0;
3336 u64 delalloc_end = 0;
3337 int ret;
3338 int page_started = 0;
3339
3340
3341 while (delalloc_end < page_end) {
3342 found = find_lock_delalloc_range(inode, page,
3343 &delalloc_start,
3344 &delalloc_end);
3345 if (!found) {
3346 delalloc_start = delalloc_end + 1;
3347 continue;
3348 }
3349 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3350 delalloc_end, &page_started, nr_written, wbc);
3351 if (ret) {
3352 SetPageError(page);
3353 /*
3354 * btrfs_run_delalloc_range should return < 0 for error
3355 * but just in case, we use > 0 here meaning the IO is
3356 * started, so we don't want to return > 0 unless
3357 * things are going well.
3358 */
3359 ret = ret < 0 ? ret : -EIO;
3360 goto done;
3361 }
3362 /*
3363 * delalloc_end is already one less than the total length, so
3364 * we don't subtract one from PAGE_SIZE
3365 */
3366 delalloc_to_write += (delalloc_end - delalloc_start +
3367 PAGE_SIZE) >> PAGE_SHIFT;
3368 delalloc_start = delalloc_end + 1;
3369 }
3370 if (wbc->nr_to_write < delalloc_to_write) {
3371 int thresh = 8192;
3372
3373 if (delalloc_to_write < thresh * 2)
3374 thresh = delalloc_to_write;
3375 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3376 thresh);
3377 }
3378
3379 /* did the fill delalloc function already unlock and start
3380 * the IO?
3381 */
3382 if (page_started) {
3383 /*
3384 * we've unlocked the page, so we can't update
3385 * the mapping's writeback index, just update
3386 * nr_to_write.
3387 */
3388 wbc->nr_to_write -= *nr_written;
3389 return 1;
3390 }
3391
3392 ret = 0;
3393
3394done:
3395 return ret;
3396}
3397
3398/*
3399 * helper for __extent_writepage. This calls the writepage start hooks,
3400 * and does the loop to map the page into extents and bios.
3401 *
3402 * We return 1 if the IO is started and the page is unlocked,
3403 * 0 if all went well (page still locked)
3404 * < 0 if there were errors (page still locked)
3405 */
3406static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3407 struct page *page,
3408 struct writeback_control *wbc,
3409 struct extent_page_data *epd,
3410 loff_t i_size,
3411 unsigned long nr_written,
3412 unsigned int write_flags, int *nr_ret)
3413{
3414 struct extent_io_tree *tree = epd->tree;
3415 u64 start = page_offset(page);
3416 u64 page_end = start + PAGE_SIZE - 1;
3417 u64 end;
3418 u64 cur = start;
3419 u64 extent_offset;
3420 u64 block_start;
3421 u64 iosize;
3422 struct extent_map *em;
3423 struct block_device *bdev;
3424 size_t pg_offset = 0;
3425 size_t blocksize;
3426 int ret = 0;
3427 int nr = 0;
3428 bool compressed;
3429
3430 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3431 if (ret) {
3432 /* Fixup worker will requeue */
3433 if (ret == -EBUSY)
3434 wbc->pages_skipped++;
3435 else
3436 redirty_page_for_writepage(wbc, page);
3437
3438 update_nr_written(wbc, nr_written);
3439 unlock_page(page);
3440 return 1;
3441 }
3442
3443 /*
3444 * we don't want to touch the inode after unlocking the page,
3445 * so we update the mapping writeback index now
3446 */
3447 update_nr_written(wbc, nr_written + 1);
3448
3449 end = page_end;
3450 if (i_size <= start) {
3451 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3452 goto done;
3453 }
3454
3455 blocksize = inode->i_sb->s_blocksize;
3456
3457 while (cur <= end) {
3458 u64 em_end;
3459 u64 offset;
3460
3461 if (cur >= i_size) {
3462 btrfs_writepage_endio_finish_ordered(page, cur,
3463 page_end, 1);
3464 break;
3465 }
3466 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3467 end - cur + 1, 1);
3468 if (IS_ERR_OR_NULL(em)) {
3469 SetPageError(page);
3470 ret = PTR_ERR_OR_ZERO(em);
3471 break;
3472 }
3473
3474 extent_offset = cur - em->start;
3475 em_end = extent_map_end(em);
3476 BUG_ON(em_end <= cur);
3477 BUG_ON(end < cur);
3478 iosize = min(em_end - cur, end - cur + 1);
3479 iosize = ALIGN(iosize, blocksize);
3480 offset = em->block_start + extent_offset;
3481 bdev = em->bdev;
3482 block_start = em->block_start;
3483 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3484 free_extent_map(em);
3485 em = NULL;
3486
3487 /*
3488 * compressed and inline extents are written through other
3489 * paths in the FS
3490 */
3491 if (compressed || block_start == EXTENT_MAP_HOLE ||
3492 block_start == EXTENT_MAP_INLINE) {
3493 /*
3494 * end_io notification does not happen here for
3495 * compressed extents
3496 */
3497 if (!compressed)
3498 btrfs_writepage_endio_finish_ordered(page, cur,
3499 cur + iosize - 1,
3500 1);
3501 else if (compressed) {
3502 /* we don't want to end_page_writeback on
3503 * a compressed extent. this happens
3504 * elsewhere
3505 */
3506 nr++;
3507 }
3508
3509 cur += iosize;
3510 pg_offset += iosize;
3511 continue;
3512 }
3513
3514 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3515 if (!PageWriteback(page)) {
3516 btrfs_err(BTRFS_I(inode)->root->fs_info,
3517 "page %lu not writeback, cur %llu end %llu",
3518 page->index, cur, end);
3519 }
3520
3521 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3522 page, offset, iosize, pg_offset,
3523 bdev, &epd->bio,
3524 end_bio_extent_writepage,
3525 0, 0, 0, false);
3526 if (ret) {
3527 SetPageError(page);
3528 if (PageWriteback(page))
3529 end_page_writeback(page);
3530 }
3531
3532 cur = cur + iosize;
3533 pg_offset += iosize;
3534 nr++;
3535 }
3536done:
3537 *nr_ret = nr;
3538 return ret;
3539}
3540
3541/*
3542 * the writepage semantics are similar to regular writepage. extent
3543 * records are inserted to lock ranges in the tree, and as dirty areas
3544 * are found, they are marked writeback. Then the lock bits are removed
3545 * and the end_io handler clears the writeback ranges
3546 *
3547 * Return 0 if everything goes well.
3548 * Return <0 for error.
3549 */
3550static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3551 struct extent_page_data *epd)
3552{
3553 struct inode *inode = page->mapping->host;
3554 u64 start = page_offset(page);
3555 u64 page_end = start + PAGE_SIZE - 1;
3556 int ret;
3557 int nr = 0;
3558 size_t pg_offset = 0;
3559 loff_t i_size = i_size_read(inode);
3560 unsigned long end_index = i_size >> PAGE_SHIFT;
3561 unsigned int write_flags = 0;
3562 unsigned long nr_written = 0;
3563
3564 write_flags = wbc_to_write_flags(wbc);
3565
3566 trace___extent_writepage(page, inode, wbc);
3567
3568 WARN_ON(!PageLocked(page));
3569
3570 ClearPageError(page);
3571
3572 pg_offset = offset_in_page(i_size);
3573 if (page->index > end_index ||
3574 (page->index == end_index && !pg_offset)) {
3575 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3576 unlock_page(page);
3577 return 0;
3578 }
3579
3580 if (page->index == end_index) {
3581 char *userpage;
3582
3583 userpage = kmap_atomic(page);
3584 memset(userpage + pg_offset, 0,
3585 PAGE_SIZE - pg_offset);
3586 kunmap_atomic(userpage);
3587 flush_dcache_page(page);
3588 }
3589
3590 pg_offset = 0;
3591
3592 set_page_extent_mapped(page);
3593
3594 if (!epd->extent_locked) {
3595 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3596 if (ret == 1)
3597 goto done_unlocked;
3598 if (ret)
3599 goto done;
3600 }
3601
3602 ret = __extent_writepage_io(inode, page, wbc, epd,
3603 i_size, nr_written, write_flags, &nr);
3604 if (ret == 1)
3605 goto done_unlocked;
3606
3607done:
3608 if (nr == 0) {
3609 /* make sure the mapping tag for page dirty gets cleared */
3610 set_page_writeback(page);
3611 end_page_writeback(page);
3612 }
3613 if (PageError(page)) {
3614 ret = ret < 0 ? ret : -EIO;
3615 end_extent_writepage(page, ret, start, page_end);
3616 }
3617 unlock_page(page);
3618 ASSERT(ret <= 0);
3619 return ret;
3620
3621done_unlocked:
3622 return 0;
3623}
3624
3625void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3626{
3627 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3628 TASK_UNINTERRUPTIBLE);
3629}
3630
3631static void end_extent_buffer_writeback(struct extent_buffer *eb)
3632{
3633 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3634 smp_mb__after_atomic();
3635 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3636}
3637
3638/*
3639 * Lock eb pages and flush the bio if we can't the locks
3640 *
3641 * Return 0 if nothing went wrong
3642 * Return >0 is same as 0, except bio is not submitted
3643 * Return <0 if something went wrong, no page is locked
3644 */
3645static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3646 struct extent_page_data *epd)
3647{
3648 struct btrfs_fs_info *fs_info = eb->fs_info;
3649 int i, num_pages, failed_page_nr;
3650 int flush = 0;
3651 int ret = 0;
3652
3653 if (!btrfs_try_tree_write_lock(eb)) {
3654 ret = flush_write_bio(epd);
3655 if (ret < 0)
3656 return ret;
3657 flush = 1;
3658 btrfs_tree_lock(eb);
3659 }
3660
3661 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3662 btrfs_tree_unlock(eb);
3663 if (!epd->sync_io)
3664 return 0;
3665 if (!flush) {
3666 ret = flush_write_bio(epd);
3667 if (ret < 0)
3668 return ret;
3669 flush = 1;
3670 }
3671 while (1) {
3672 wait_on_extent_buffer_writeback(eb);
3673 btrfs_tree_lock(eb);
3674 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3675 break;
3676 btrfs_tree_unlock(eb);
3677 }
3678 }
3679
3680 /*
3681 * We need to do this to prevent races in people who check if the eb is
3682 * under IO since we can end up having no IO bits set for a short period
3683 * of time.
3684 */
3685 spin_lock(&eb->refs_lock);
3686 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3687 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3688 spin_unlock(&eb->refs_lock);
3689 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3690 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3691 -eb->len,
3692 fs_info->dirty_metadata_batch);
3693 ret = 1;
3694 } else {
3695 spin_unlock(&eb->refs_lock);
3696 }
3697
3698 btrfs_tree_unlock(eb);
3699
3700 if (!ret)
3701 return ret;
3702
3703 num_pages = num_extent_pages(eb);
3704 for (i = 0; i < num_pages; i++) {
3705 struct page *p = eb->pages[i];
3706
3707 if (!trylock_page(p)) {
3708 if (!flush) {
3709 int err;
3710
3711 err = flush_write_bio(epd);
3712 if (err < 0) {
3713 ret = err;
3714 failed_page_nr = i;
3715 goto err_unlock;
3716 }
3717 flush = 1;
3718 }
3719 lock_page(p);
3720 }
3721 }
3722
3723 return ret;
3724err_unlock:
3725 /* Unlock already locked pages */
3726 for (i = 0; i < failed_page_nr; i++)
3727 unlock_page(eb->pages[i]);
3728 /*
3729 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3730 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3731 * be made and undo everything done before.
3732 */
3733 btrfs_tree_lock(eb);
3734 spin_lock(&eb->refs_lock);
3735 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3736 end_extent_buffer_writeback(eb);
3737 spin_unlock(&eb->refs_lock);
3738 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3739 fs_info->dirty_metadata_batch);
3740 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3741 btrfs_tree_unlock(eb);
3742 return ret;
3743}
3744
3745static void set_btree_ioerr(struct page *page)
3746{
3747 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3748 struct btrfs_fs_info *fs_info;
3749
3750 SetPageError(page);
3751 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3752 return;
3753
3754 /*
3755 * If we error out, we should add back the dirty_metadata_bytes
3756 * to make it consistent.
3757 */
3758 fs_info = eb->fs_info;
3759 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3760 eb->len, fs_info->dirty_metadata_batch);
3761
3762 /*
3763 * If writeback for a btree extent that doesn't belong to a log tree
3764 * failed, increment the counter transaction->eb_write_errors.
3765 * We do this because while the transaction is running and before it's
3766 * committing (when we call filemap_fdata[write|wait]_range against
3767 * the btree inode), we might have
3768 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3769 * returns an error or an error happens during writeback, when we're
3770 * committing the transaction we wouldn't know about it, since the pages
3771 * can be no longer dirty nor marked anymore for writeback (if a
3772 * subsequent modification to the extent buffer didn't happen before the
3773 * transaction commit), which makes filemap_fdata[write|wait]_range not
3774 * able to find the pages tagged with SetPageError at transaction
3775 * commit time. So if this happens we must abort the transaction,
3776 * otherwise we commit a super block with btree roots that point to
3777 * btree nodes/leafs whose content on disk is invalid - either garbage
3778 * or the content of some node/leaf from a past generation that got
3779 * cowed or deleted and is no longer valid.
3780 *
3781 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3782 * not be enough - we need to distinguish between log tree extents vs
3783 * non-log tree extents, and the next filemap_fdatawait_range() call
3784 * will catch and clear such errors in the mapping - and that call might
3785 * be from a log sync and not from a transaction commit. Also, checking
3786 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3787 * not done and would not be reliable - the eb might have been released
3788 * from memory and reading it back again means that flag would not be
3789 * set (since it's a runtime flag, not persisted on disk).
3790 *
3791 * Using the flags below in the btree inode also makes us achieve the
3792 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3793 * writeback for all dirty pages and before filemap_fdatawait_range()
3794 * is called, the writeback for all dirty pages had already finished
3795 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3796 * filemap_fdatawait_range() would return success, as it could not know
3797 * that writeback errors happened (the pages were no longer tagged for
3798 * writeback).
3799 */
3800 switch (eb->log_index) {
3801 case -1:
3802 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3803 break;
3804 case 0:
3805 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3806 break;
3807 case 1:
3808 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3809 break;
3810 default:
3811 BUG(); /* unexpected, logic error */
3812 }
3813}
3814
3815static void end_bio_extent_buffer_writepage(struct bio *bio)
3816{
3817 struct bio_vec *bvec;
3818 struct extent_buffer *eb;
3819 int done;
3820 struct bvec_iter_all iter_all;
3821
3822 ASSERT(!bio_flagged(bio, BIO_CLONED));
3823 bio_for_each_segment_all(bvec, bio, iter_all) {
3824 struct page *page = bvec->bv_page;
3825
3826 eb = (struct extent_buffer *)page->private;
3827 BUG_ON(!eb);
3828 done = atomic_dec_and_test(&eb->io_pages);
3829
3830 if (bio->bi_status ||
3831 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3832 ClearPageUptodate(page);
3833 set_btree_ioerr(page);
3834 }
3835
3836 end_page_writeback(page);
3837
3838 if (!done)
3839 continue;
3840
3841 end_extent_buffer_writeback(eb);
3842 }
3843
3844 bio_put(bio);
3845}
3846
3847static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3848 struct writeback_control *wbc,
3849 struct extent_page_data *epd)
3850{
3851 struct btrfs_fs_info *fs_info = eb->fs_info;
3852 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3853 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3854 u64 offset = eb->start;
3855 u32 nritems;
3856 int i, num_pages;
3857 unsigned long start, end;
3858 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3859 int ret = 0;
3860
3861 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3862 num_pages = num_extent_pages(eb);
3863 atomic_set(&eb->io_pages, num_pages);
3864
3865 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3866 nritems = btrfs_header_nritems(eb);
3867 if (btrfs_header_level(eb) > 0) {
3868 end = btrfs_node_key_ptr_offset(nritems);
3869
3870 memzero_extent_buffer(eb, end, eb->len - end);
3871 } else {
3872 /*
3873 * leaf:
3874 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3875 */
3876 start = btrfs_item_nr_offset(nritems);
3877 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3878 memzero_extent_buffer(eb, start, end - start);
3879 }
3880
3881 for (i = 0; i < num_pages; i++) {
3882 struct page *p = eb->pages[i];
3883
3884 clear_page_dirty_for_io(p);
3885 set_page_writeback(p);
3886 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3887 p, offset, PAGE_SIZE, 0, bdev,
3888 &epd->bio,
3889 end_bio_extent_buffer_writepage,
3890 0, 0, 0, false);
3891 if (ret) {
3892 set_btree_ioerr(p);
3893 if (PageWriteback(p))
3894 end_page_writeback(p);
3895 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3896 end_extent_buffer_writeback(eb);
3897 ret = -EIO;
3898 break;
3899 }
3900 offset += PAGE_SIZE;
3901 update_nr_written(wbc, 1);
3902 unlock_page(p);
3903 }
3904
3905 if (unlikely(ret)) {
3906 for (; i < num_pages; i++) {
3907 struct page *p = eb->pages[i];
3908 clear_page_dirty_for_io(p);
3909 unlock_page(p);
3910 }
3911 }
3912
3913 return ret;
3914}
3915
3916int btree_write_cache_pages(struct address_space *mapping,
3917 struct writeback_control *wbc)
3918{
3919 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3920 struct extent_buffer *eb, *prev_eb = NULL;
3921 struct extent_page_data epd = {
3922 .bio = NULL,
3923 .tree = tree,
3924 .extent_locked = 0,
3925 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3926 };
3927 int ret = 0;
3928 int done = 0;
3929 int nr_to_write_done = 0;
3930 struct pagevec pvec;
3931 int nr_pages;
3932 pgoff_t index;
3933 pgoff_t end; /* Inclusive */
3934 int scanned = 0;
3935 xa_mark_t tag;
3936
3937 pagevec_init(&pvec);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
3942 index = wbc->range_start >> PAGE_SHIFT;
3943 end = wbc->range_end >> PAGE_SHIFT;
3944 scanned = 1;
3945 }
3946 if (wbc->sync_mode == WB_SYNC_ALL)
3947 tag = PAGECACHE_TAG_TOWRITE;
3948 else
3949 tag = PAGECACHE_TAG_DIRTY;
3950retry:
3951 if (wbc->sync_mode == WB_SYNC_ALL)
3952 tag_pages_for_writeback(mapping, index, end);
3953 while (!done && !nr_to_write_done && (index <= end) &&
3954 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3955 tag))) {
3956 unsigned i;
3957
3958 scanned = 1;
3959 for (i = 0; i < nr_pages; i++) {
3960 struct page *page = pvec.pages[i];
3961
3962 if (!PagePrivate(page))
3963 continue;
3964
3965 spin_lock(&mapping->private_lock);
3966 if (!PagePrivate(page)) {
3967 spin_unlock(&mapping->private_lock);
3968 continue;
3969 }
3970
3971 eb = (struct extent_buffer *)page->private;
3972
3973 /*
3974 * Shouldn't happen and normally this would be a BUG_ON
3975 * but no sense in crashing the users box for something
3976 * we can survive anyway.
3977 */
3978 if (WARN_ON(!eb)) {
3979 spin_unlock(&mapping->private_lock);
3980 continue;
3981 }
3982
3983 if (eb == prev_eb) {
3984 spin_unlock(&mapping->private_lock);
3985 continue;
3986 }
3987
3988 ret = atomic_inc_not_zero(&eb->refs);
3989 spin_unlock(&mapping->private_lock);
3990 if (!ret)
3991 continue;
3992
3993 prev_eb = eb;
3994 ret = lock_extent_buffer_for_io(eb, &epd);
3995 if (!ret) {
3996 free_extent_buffer(eb);
3997 continue;
3998 } else if (ret < 0) {
3999 done = 1;
4000 free_extent_buffer(eb);
4001 break;
4002 }
4003
4004 ret = write_one_eb(eb, wbc, &epd);
4005 if (ret) {
4006 done = 1;
4007 free_extent_buffer(eb);
4008 break;
4009 }
4010 free_extent_buffer(eb);
4011
4012 /*
4013 * the filesystem may choose to bump up nr_to_write.
4014 * We have to make sure to honor the new nr_to_write
4015 * at any time
4016 */
4017 nr_to_write_done = wbc->nr_to_write <= 0;
4018 }
4019 pagevec_release(&pvec);
4020 cond_resched();
4021 }
4022 if (!scanned && !done) {
4023 /*
4024 * We hit the last page and there is more work to be done: wrap
4025 * back to the start of the file
4026 */
4027 scanned = 1;
4028 index = 0;
4029 goto retry;
4030 }
4031 ASSERT(ret <= 0);
4032 if (ret < 0) {
4033 end_write_bio(&epd, ret);
4034 return ret;
4035 }
4036 ret = flush_write_bio(&epd);
4037 return ret;
4038}
4039
4040/**
4041 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4042 * @mapping: address space structure to write
4043 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4044 * @data: data passed to __extent_writepage function
4045 *
4046 * If a page is already under I/O, write_cache_pages() skips it, even
4047 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4048 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4049 * and msync() need to guarantee that all the data which was dirty at the time
4050 * the call was made get new I/O started against them. If wbc->sync_mode is
4051 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4052 * existing IO to complete.
4053 */
4054static int extent_write_cache_pages(struct address_space *mapping,
4055 struct writeback_control *wbc,
4056 struct extent_page_data *epd)
4057{
4058 struct inode *inode = mapping->host;
4059 int ret = 0;
4060 int done = 0;
4061 int nr_to_write_done = 0;
4062 struct pagevec pvec;
4063 int nr_pages;
4064 pgoff_t index;
4065 pgoff_t end; /* Inclusive */
4066 pgoff_t done_index;
4067 int range_whole = 0;
4068 int scanned = 0;
4069 xa_mark_t tag;
4070
4071 /*
4072 * We have to hold onto the inode so that ordered extents can do their
4073 * work when the IO finishes. The alternative to this is failing to add
4074 * an ordered extent if the igrab() fails there and that is a huge pain
4075 * to deal with, so instead just hold onto the inode throughout the
4076 * writepages operation. If it fails here we are freeing up the inode
4077 * anyway and we'd rather not waste our time writing out stuff that is
4078 * going to be truncated anyway.
4079 */
4080 if (!igrab(inode))
4081 return 0;
4082
4083 pagevec_init(&pvec);
4084 if (wbc->range_cyclic) {
4085 index = mapping->writeback_index; /* Start from prev offset */
4086 end = -1;
4087 } else {
4088 index = wbc->range_start >> PAGE_SHIFT;
4089 end = wbc->range_end >> PAGE_SHIFT;
4090 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4091 range_whole = 1;
4092 scanned = 1;
4093 }
4094
4095 /*
4096 * We do the tagged writepage as long as the snapshot flush bit is set
4097 * and we are the first one who do the filemap_flush() on this inode.
4098 *
4099 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4100 * not race in and drop the bit.
4101 */
4102 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4103 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4104 &BTRFS_I(inode)->runtime_flags))
4105 wbc->tagged_writepages = 1;
4106
4107 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4108 tag = PAGECACHE_TAG_TOWRITE;
4109 else
4110 tag = PAGECACHE_TAG_DIRTY;
4111retry:
4112 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4113 tag_pages_for_writeback(mapping, index, end);
4114 done_index = index;
4115 while (!done && !nr_to_write_done && (index <= end) &&
4116 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4117 &index, end, tag))) {
4118 unsigned i;
4119
4120 scanned = 1;
4121 for (i = 0; i < nr_pages; i++) {
4122 struct page *page = pvec.pages[i];
4123
4124 done_index = page->index;
4125 /*
4126 * At this point we hold neither the i_pages lock nor
4127 * the page lock: the page may be truncated or
4128 * invalidated (changing page->mapping to NULL),
4129 * or even swizzled back from swapper_space to
4130 * tmpfs file mapping
4131 */
4132 if (!trylock_page(page)) {
4133 ret = flush_write_bio(epd);
4134 BUG_ON(ret < 0);
4135 lock_page(page);
4136 }
4137
4138 if (unlikely(page->mapping != mapping)) {
4139 unlock_page(page);
4140 continue;
4141 }
4142
4143 if (wbc->sync_mode != WB_SYNC_NONE) {
4144 if (PageWriteback(page)) {
4145 ret = flush_write_bio(epd);
4146 BUG_ON(ret < 0);
4147 }
4148 wait_on_page_writeback(page);
4149 }
4150
4151 if (PageWriteback(page) ||
4152 !clear_page_dirty_for_io(page)) {
4153 unlock_page(page);
4154 continue;
4155 }
4156
4157 ret = __extent_writepage(page, wbc, epd);
4158 if (ret < 0) {
4159 /*
4160 * done_index is set past this page,
4161 * so media errors will not choke
4162 * background writeout for the entire
4163 * file. This has consequences for
4164 * range_cyclic semantics (ie. it may
4165 * not be suitable for data integrity
4166 * writeout).
4167 */
4168 done_index = page->index + 1;
4169 done = 1;
4170 break;
4171 }
4172
4173 /*
4174 * the filesystem may choose to bump up nr_to_write.
4175 * We have to make sure to honor the new nr_to_write
4176 * at any time
4177 */
4178 nr_to_write_done = wbc->nr_to_write <= 0;
4179 }
4180 pagevec_release(&pvec);
4181 cond_resched();
4182 }
4183 if (!scanned && !done) {
4184 /*
4185 * We hit the last page and there is more work to be done: wrap
4186 * back to the start of the file
4187 */
4188 scanned = 1;
4189 index = 0;
4190 goto retry;
4191 }
4192
4193 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4194 mapping->writeback_index = done_index;
4195
4196 btrfs_add_delayed_iput(inode);
4197 return ret;
4198}
4199
4200int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4201{
4202 int ret;
4203 struct extent_page_data epd = {
4204 .bio = NULL,
4205 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4206 .extent_locked = 0,
4207 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4208 };
4209
4210 ret = __extent_writepage(page, wbc, &epd);
4211 ASSERT(ret <= 0);
4212 if (ret < 0) {
4213 end_write_bio(&epd, ret);
4214 return ret;
4215 }
4216
4217 ret = flush_write_bio(&epd);
4218 ASSERT(ret <= 0);
4219 return ret;
4220}
4221
4222int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4223 int mode)
4224{
4225 int ret = 0;
4226 struct address_space *mapping = inode->i_mapping;
4227 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4228 struct page *page;
4229 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4230 PAGE_SHIFT;
4231
4232 struct extent_page_data epd = {
4233 .bio = NULL,
4234 .tree = tree,
4235 .extent_locked = 1,
4236 .sync_io = mode == WB_SYNC_ALL,
4237 };
4238 struct writeback_control wbc_writepages = {
4239 .sync_mode = mode,
4240 .nr_to_write = nr_pages * 2,
4241 .range_start = start,
4242 .range_end = end + 1,
4243 };
4244
4245 while (start <= end) {
4246 page = find_get_page(mapping, start >> PAGE_SHIFT);
4247 if (clear_page_dirty_for_io(page))
4248 ret = __extent_writepage(page, &wbc_writepages, &epd);
4249 else {
4250 btrfs_writepage_endio_finish_ordered(page, start,
4251 start + PAGE_SIZE - 1, 1);
4252 unlock_page(page);
4253 }
4254 put_page(page);
4255 start += PAGE_SIZE;
4256 }
4257
4258 ASSERT(ret <= 0);
4259 if (ret < 0) {
4260 end_write_bio(&epd, ret);
4261 return ret;
4262 }
4263 ret = flush_write_bio(&epd);
4264 return ret;
4265}
4266
4267int extent_writepages(struct address_space *mapping,
4268 struct writeback_control *wbc)
4269{
4270 int ret = 0;
4271 struct extent_page_data epd = {
4272 .bio = NULL,
4273 .tree = &BTRFS_I(mapping->host)->io_tree,
4274 .extent_locked = 0,
4275 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4276 };
4277
4278 ret = extent_write_cache_pages(mapping, wbc, &epd);
4279 ASSERT(ret <= 0);
4280 if (ret < 0) {
4281 end_write_bio(&epd, ret);
4282 return ret;
4283 }
4284 ret = flush_write_bio(&epd);
4285 return ret;
4286}
4287
4288int extent_readpages(struct address_space *mapping, struct list_head *pages,
4289 unsigned nr_pages)
4290{
4291 struct bio *bio = NULL;
4292 unsigned long bio_flags = 0;
4293 struct page *pagepool[16];
4294 struct extent_map *em_cached = NULL;
4295 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4296 int nr = 0;
4297 u64 prev_em_start = (u64)-1;
4298
4299 while (!list_empty(pages)) {
4300 u64 contig_end = 0;
4301
4302 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4303 struct page *page = lru_to_page(pages);
4304
4305 prefetchw(&page->flags);
4306 list_del(&page->lru);
4307 if (add_to_page_cache_lru(page, mapping, page->index,
4308 readahead_gfp_mask(mapping))) {
4309 put_page(page);
4310 break;
4311 }
4312
4313 pagepool[nr++] = page;
4314 contig_end = page_offset(page) + PAGE_SIZE - 1;
4315 }
4316
4317 if (nr) {
4318 u64 contig_start = page_offset(pagepool[0]);
4319
4320 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4321
4322 contiguous_readpages(tree, pagepool, nr, contig_start,
4323 contig_end, &em_cached, &bio, &bio_flags,
4324 &prev_em_start);
4325 }
4326 }
4327
4328 if (em_cached)
4329 free_extent_map(em_cached);
4330
4331 if (bio)
4332 return submit_one_bio(bio, 0, bio_flags);
4333 return 0;
4334}
4335
4336/*
4337 * basic invalidatepage code, this waits on any locked or writeback
4338 * ranges corresponding to the page, and then deletes any extent state
4339 * records from the tree
4340 */
4341int extent_invalidatepage(struct extent_io_tree *tree,
4342 struct page *page, unsigned long offset)
4343{
4344 struct extent_state *cached_state = NULL;
4345 u64 start = page_offset(page);
4346 u64 end = start + PAGE_SIZE - 1;
4347 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4348
4349 start += ALIGN(offset, blocksize);
4350 if (start > end)
4351 return 0;
4352
4353 lock_extent_bits(tree, start, end, &cached_state);
4354 wait_on_page_writeback(page);
4355 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4356 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4357 return 0;
4358}
4359
4360/*
4361 * a helper for releasepage, this tests for areas of the page that
4362 * are locked or under IO and drops the related state bits if it is safe
4363 * to drop the page.
4364 */
4365static int try_release_extent_state(struct extent_io_tree *tree,
4366 struct page *page, gfp_t mask)
4367{
4368 u64 start = page_offset(page);
4369 u64 end = start + PAGE_SIZE - 1;
4370 int ret = 1;
4371
4372 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4373 ret = 0;
4374 } else {
4375 /*
4376 * at this point we can safely clear everything except the
4377 * locked bit and the nodatasum bit
4378 */
4379 ret = __clear_extent_bit(tree, start, end,
4380 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4381 0, 0, NULL, mask, NULL);
4382
4383 /* if clear_extent_bit failed for enomem reasons,
4384 * we can't allow the release to continue.
4385 */
4386 if (ret < 0)
4387 ret = 0;
4388 else
4389 ret = 1;
4390 }
4391 return ret;
4392}
4393
4394/*
4395 * a helper for releasepage. As long as there are no locked extents
4396 * in the range corresponding to the page, both state records and extent
4397 * map records are removed
4398 */
4399int try_release_extent_mapping(struct page *page, gfp_t mask)
4400{
4401 struct extent_map *em;
4402 u64 start = page_offset(page);
4403 u64 end = start + PAGE_SIZE - 1;
4404 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4405 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4406 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4407
4408 if (gfpflags_allow_blocking(mask) &&
4409 page->mapping->host->i_size > SZ_16M) {
4410 u64 len;
4411 while (start <= end) {
4412 len = end - start + 1;
4413 write_lock(&map->lock);
4414 em = lookup_extent_mapping(map, start, len);
4415 if (!em) {
4416 write_unlock(&map->lock);
4417 break;
4418 }
4419 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4420 em->start != start) {
4421 write_unlock(&map->lock);
4422 free_extent_map(em);
4423 break;
4424 }
4425 if (!test_range_bit(tree, em->start,
4426 extent_map_end(em) - 1,
4427 EXTENT_LOCKED, 0, NULL)) {
4428 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4429 &btrfs_inode->runtime_flags);
4430 remove_extent_mapping(map, em);
4431 /* once for the rb tree */
4432 free_extent_map(em);
4433 }
4434 start = extent_map_end(em);
4435 write_unlock(&map->lock);
4436
4437 /* once for us */
4438 free_extent_map(em);
4439 }
4440 }
4441 return try_release_extent_state(tree, page, mask);
4442}
4443
4444/*
4445 * helper function for fiemap, which doesn't want to see any holes.
4446 * This maps until we find something past 'last'
4447 */
4448static struct extent_map *get_extent_skip_holes(struct inode *inode,
4449 u64 offset, u64 last)
4450{
4451 u64 sectorsize = btrfs_inode_sectorsize(inode);
4452 struct extent_map *em;
4453 u64 len;
4454
4455 if (offset >= last)
4456 return NULL;
4457
4458 while (1) {
4459 len = last - offset;
4460 if (len == 0)
4461 break;
4462 len = ALIGN(len, sectorsize);
4463 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4464 if (IS_ERR_OR_NULL(em))
4465 return em;
4466
4467 /* if this isn't a hole return it */
4468 if (em->block_start != EXTENT_MAP_HOLE)
4469 return em;
4470
4471 /* this is a hole, advance to the next extent */
4472 offset = extent_map_end(em);
4473 free_extent_map(em);
4474 if (offset >= last)
4475 break;
4476 }
4477 return NULL;
4478}
4479
4480/*
4481 * To cache previous fiemap extent
4482 *
4483 * Will be used for merging fiemap extent
4484 */
4485struct fiemap_cache {
4486 u64 offset;
4487 u64 phys;
4488 u64 len;
4489 u32 flags;
4490 bool cached;
4491};
4492
4493/*
4494 * Helper to submit fiemap extent.
4495 *
4496 * Will try to merge current fiemap extent specified by @offset, @phys,
4497 * @len and @flags with cached one.
4498 * And only when we fails to merge, cached one will be submitted as
4499 * fiemap extent.
4500 *
4501 * Return value is the same as fiemap_fill_next_extent().
4502 */
4503static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4504 struct fiemap_cache *cache,
4505 u64 offset, u64 phys, u64 len, u32 flags)
4506{
4507 int ret = 0;
4508
4509 if (!cache->cached)
4510 goto assign;
4511
4512 /*
4513 * Sanity check, extent_fiemap() should have ensured that new
4514 * fiemap extent won't overlap with cached one.
4515 * Not recoverable.
4516 *
4517 * NOTE: Physical address can overlap, due to compression
4518 */
4519 if (cache->offset + cache->len > offset) {
4520 WARN_ON(1);
4521 return -EINVAL;
4522 }
4523
4524 /*
4525 * Only merges fiemap extents if
4526 * 1) Their logical addresses are continuous
4527 *
4528 * 2) Their physical addresses are continuous
4529 * So truly compressed (physical size smaller than logical size)
4530 * extents won't get merged with each other
4531 *
4532 * 3) Share same flags except FIEMAP_EXTENT_LAST
4533 * So regular extent won't get merged with prealloc extent
4534 */
4535 if (cache->offset + cache->len == offset &&
4536 cache->phys + cache->len == phys &&
4537 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4538 (flags & ~FIEMAP_EXTENT_LAST)) {
4539 cache->len += len;
4540 cache->flags |= flags;
4541 goto try_submit_last;
4542 }
4543
4544 /* Not mergeable, need to submit cached one */
4545 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4546 cache->len, cache->flags);
4547 cache->cached = false;
4548 if (ret)
4549 return ret;
4550assign:
4551 cache->cached = true;
4552 cache->offset = offset;
4553 cache->phys = phys;
4554 cache->len = len;
4555 cache->flags = flags;
4556try_submit_last:
4557 if (cache->flags & FIEMAP_EXTENT_LAST) {
4558 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4559 cache->phys, cache->len, cache->flags);
4560 cache->cached = false;
4561 }
4562 return ret;
4563}
4564
4565/*
4566 * Emit last fiemap cache
4567 *
4568 * The last fiemap cache may still be cached in the following case:
4569 * 0 4k 8k
4570 * |<- Fiemap range ->|
4571 * |<------------ First extent ----------->|
4572 *
4573 * In this case, the first extent range will be cached but not emitted.
4574 * So we must emit it before ending extent_fiemap().
4575 */
4576static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4577 struct fiemap_cache *cache)
4578{
4579 int ret;
4580
4581 if (!cache->cached)
4582 return 0;
4583
4584 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4585 cache->len, cache->flags);
4586 cache->cached = false;
4587 if (ret > 0)
4588 ret = 0;
4589 return ret;
4590}
4591
4592int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4593 __u64 start, __u64 len)
4594{
4595 int ret = 0;
4596 u64 off = start;
4597 u64 max = start + len;
4598 u32 flags = 0;
4599 u32 found_type;
4600 u64 last;
4601 u64 last_for_get_extent = 0;
4602 u64 disko = 0;
4603 u64 isize = i_size_read(inode);
4604 struct btrfs_key found_key;
4605 struct extent_map *em = NULL;
4606 struct extent_state *cached_state = NULL;
4607 struct btrfs_path *path;
4608 struct btrfs_root *root = BTRFS_I(inode)->root;
4609 struct fiemap_cache cache = { 0 };
4610 struct ulist *roots;
4611 struct ulist *tmp_ulist;
4612 int end = 0;
4613 u64 em_start = 0;
4614 u64 em_len = 0;
4615 u64 em_end = 0;
4616
4617 if (len == 0)
4618 return -EINVAL;
4619
4620 path = btrfs_alloc_path();
4621 if (!path)
4622 return -ENOMEM;
4623 path->leave_spinning = 1;
4624
4625 roots = ulist_alloc(GFP_KERNEL);
4626 tmp_ulist = ulist_alloc(GFP_KERNEL);
4627 if (!roots || !tmp_ulist) {
4628 ret = -ENOMEM;
4629 goto out_free_ulist;
4630 }
4631
4632 start = round_down(start, btrfs_inode_sectorsize(inode));
4633 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4634
4635 /*
4636 * lookup the last file extent. We're not using i_size here
4637 * because there might be preallocation past i_size
4638 */
4639 ret = btrfs_lookup_file_extent(NULL, root, path,
4640 btrfs_ino(BTRFS_I(inode)), -1, 0);
4641 if (ret < 0) {
4642 goto out_free_ulist;
4643 } else {
4644 WARN_ON(!ret);
4645 if (ret == 1)
4646 ret = 0;
4647 }
4648
4649 path->slots[0]--;
4650 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4651 found_type = found_key.type;
4652
4653 /* No extents, but there might be delalloc bits */
4654 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4655 found_type != BTRFS_EXTENT_DATA_KEY) {
4656 /* have to trust i_size as the end */
4657 last = (u64)-1;
4658 last_for_get_extent = isize;
4659 } else {
4660 /*
4661 * remember the start of the last extent. There are a
4662 * bunch of different factors that go into the length of the
4663 * extent, so its much less complex to remember where it started
4664 */
4665 last = found_key.offset;
4666 last_for_get_extent = last + 1;
4667 }
4668 btrfs_release_path(path);
4669
4670 /*
4671 * we might have some extents allocated but more delalloc past those
4672 * extents. so, we trust isize unless the start of the last extent is
4673 * beyond isize
4674 */
4675 if (last < isize) {
4676 last = (u64)-1;
4677 last_for_get_extent = isize;
4678 }
4679
4680 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4681 &cached_state);
4682
4683 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4684 if (!em)
4685 goto out;
4686 if (IS_ERR(em)) {
4687 ret = PTR_ERR(em);
4688 goto out;
4689 }
4690
4691 while (!end) {
4692 u64 offset_in_extent = 0;
4693
4694 /* break if the extent we found is outside the range */
4695 if (em->start >= max || extent_map_end(em) < off)
4696 break;
4697
4698 /*
4699 * get_extent may return an extent that starts before our
4700 * requested range. We have to make sure the ranges
4701 * we return to fiemap always move forward and don't
4702 * overlap, so adjust the offsets here
4703 */
4704 em_start = max(em->start, off);
4705
4706 /*
4707 * record the offset from the start of the extent
4708 * for adjusting the disk offset below. Only do this if the
4709 * extent isn't compressed since our in ram offset may be past
4710 * what we have actually allocated on disk.
4711 */
4712 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4713 offset_in_extent = em_start - em->start;
4714 em_end = extent_map_end(em);
4715 em_len = em_end - em_start;
4716 flags = 0;
4717 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4718 disko = em->block_start + offset_in_extent;
4719 else
4720 disko = 0;
4721
4722 /*
4723 * bump off for our next call to get_extent
4724 */
4725 off = extent_map_end(em);
4726 if (off >= max)
4727 end = 1;
4728
4729 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4730 end = 1;
4731 flags |= FIEMAP_EXTENT_LAST;
4732 } else if (em->block_start == EXTENT_MAP_INLINE) {
4733 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4734 FIEMAP_EXTENT_NOT_ALIGNED);
4735 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4736 flags |= (FIEMAP_EXTENT_DELALLOC |
4737 FIEMAP_EXTENT_UNKNOWN);
4738 } else if (fieinfo->fi_extents_max) {
4739 u64 bytenr = em->block_start -
4740 (em->start - em->orig_start);
4741
4742 /*
4743 * As btrfs supports shared space, this information
4744 * can be exported to userspace tools via
4745 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4746 * then we're just getting a count and we can skip the
4747 * lookup stuff.
4748 */
4749 ret = btrfs_check_shared(root,
4750 btrfs_ino(BTRFS_I(inode)),
4751 bytenr, roots, tmp_ulist);
4752 if (ret < 0)
4753 goto out_free;
4754 if (ret)
4755 flags |= FIEMAP_EXTENT_SHARED;
4756 ret = 0;
4757 }
4758 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4759 flags |= FIEMAP_EXTENT_ENCODED;
4760 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4761 flags |= FIEMAP_EXTENT_UNWRITTEN;
4762
4763 free_extent_map(em);
4764 em = NULL;
4765 if ((em_start >= last) || em_len == (u64)-1 ||
4766 (last == (u64)-1 && isize <= em_end)) {
4767 flags |= FIEMAP_EXTENT_LAST;
4768 end = 1;
4769 }
4770
4771 /* now scan forward to see if this is really the last extent. */
4772 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4773 if (IS_ERR(em)) {
4774 ret = PTR_ERR(em);
4775 goto out;
4776 }
4777 if (!em) {
4778 flags |= FIEMAP_EXTENT_LAST;
4779 end = 1;
4780 }
4781 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4782 em_len, flags);
4783 if (ret) {
4784 if (ret == 1)
4785 ret = 0;
4786 goto out_free;
4787 }
4788 }
4789out_free:
4790 if (!ret)
4791 ret = emit_last_fiemap_cache(fieinfo, &cache);
4792 free_extent_map(em);
4793out:
4794 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4795 &cached_state);
4796
4797out_free_ulist:
4798 btrfs_free_path(path);
4799 ulist_free(roots);
4800 ulist_free(tmp_ulist);
4801 return ret;
4802}
4803
4804static void __free_extent_buffer(struct extent_buffer *eb)
4805{
4806 btrfs_leak_debug_del(&eb->leak_list);
4807 kmem_cache_free(extent_buffer_cache, eb);
4808}
4809
4810int extent_buffer_under_io(struct extent_buffer *eb)
4811{
4812 return (atomic_read(&eb->io_pages) ||
4813 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4814 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4815}
4816
4817/*
4818 * Release all pages attached to the extent buffer.
4819 */
4820static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4821{
4822 int i;
4823 int num_pages;
4824 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4825
4826 BUG_ON(extent_buffer_under_io(eb));
4827
4828 num_pages = num_extent_pages(eb);
4829 for (i = 0; i < num_pages; i++) {
4830 struct page *page = eb->pages[i];
4831
4832 if (!page)
4833 continue;
4834 if (mapped)
4835 spin_lock(&page->mapping->private_lock);
4836 /*
4837 * We do this since we'll remove the pages after we've
4838 * removed the eb from the radix tree, so we could race
4839 * and have this page now attached to the new eb. So
4840 * only clear page_private if it's still connected to
4841 * this eb.
4842 */
4843 if (PagePrivate(page) &&
4844 page->private == (unsigned long)eb) {
4845 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4846 BUG_ON(PageDirty(page));
4847 BUG_ON(PageWriteback(page));
4848 /*
4849 * We need to make sure we haven't be attached
4850 * to a new eb.
4851 */
4852 ClearPagePrivate(page);
4853 set_page_private(page, 0);
4854 /* One for the page private */
4855 put_page(page);
4856 }
4857
4858 if (mapped)
4859 spin_unlock(&page->mapping->private_lock);
4860
4861 /* One for when we allocated the page */
4862 put_page(page);
4863 }
4864}
4865
4866/*
4867 * Helper for releasing the extent buffer.
4868 */
4869static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4870{
4871 btrfs_release_extent_buffer_pages(eb);
4872 __free_extent_buffer(eb);
4873}
4874
4875static struct extent_buffer *
4876__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4877 unsigned long len)
4878{
4879 struct extent_buffer *eb = NULL;
4880
4881 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4882 eb->start = start;
4883 eb->len = len;
4884 eb->fs_info = fs_info;
4885 eb->bflags = 0;
4886 rwlock_init(&eb->lock);
4887 atomic_set(&eb->blocking_readers, 0);
4888 eb->blocking_writers = 0;
4889 eb->lock_nested = false;
4890 init_waitqueue_head(&eb->write_lock_wq);
4891 init_waitqueue_head(&eb->read_lock_wq);
4892
4893 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4894
4895 spin_lock_init(&eb->refs_lock);
4896 atomic_set(&eb->refs, 1);
4897 atomic_set(&eb->io_pages, 0);
4898
4899 /*
4900 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4901 */
4902 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4903 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4904 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4905
4906#ifdef CONFIG_BTRFS_DEBUG
4907 eb->spinning_writers = 0;
4908 atomic_set(&eb->spinning_readers, 0);
4909 atomic_set(&eb->read_locks, 0);
4910 eb->write_locks = 0;
4911#endif
4912
4913 return eb;
4914}
4915
4916struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4917{
4918 int i;
4919 struct page *p;
4920 struct extent_buffer *new;
4921 int num_pages = num_extent_pages(src);
4922
4923 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4924 if (new == NULL)
4925 return NULL;
4926
4927 for (i = 0; i < num_pages; i++) {
4928 p = alloc_page(GFP_NOFS);
4929 if (!p) {
4930 btrfs_release_extent_buffer(new);
4931 return NULL;
4932 }
4933 attach_extent_buffer_page(new, p);
4934 WARN_ON(PageDirty(p));
4935 SetPageUptodate(p);
4936 new->pages[i] = p;
4937 copy_page(page_address(p), page_address(src->pages[i]));
4938 }
4939
4940 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4941 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4942
4943 return new;
4944}
4945
4946struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4947 u64 start, unsigned long len)
4948{
4949 struct extent_buffer *eb;
4950 int num_pages;
4951 int i;
4952
4953 eb = __alloc_extent_buffer(fs_info, start, len);
4954 if (!eb)
4955 return NULL;
4956
4957 num_pages = num_extent_pages(eb);
4958 for (i = 0; i < num_pages; i++) {
4959 eb->pages[i] = alloc_page(GFP_NOFS);
4960 if (!eb->pages[i])
4961 goto err;
4962 }
4963 set_extent_buffer_uptodate(eb);
4964 btrfs_set_header_nritems(eb, 0);
4965 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4966
4967 return eb;
4968err:
4969 for (; i > 0; i--)
4970 __free_page(eb->pages[i - 1]);
4971 __free_extent_buffer(eb);
4972 return NULL;
4973}
4974
4975struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4976 u64 start)
4977{
4978 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4979}
4980
4981static void check_buffer_tree_ref(struct extent_buffer *eb)
4982{
4983 int refs;
4984 /* the ref bit is tricky. We have to make sure it is set
4985 * if we have the buffer dirty. Otherwise the
4986 * code to free a buffer can end up dropping a dirty
4987 * page
4988 *
4989 * Once the ref bit is set, it won't go away while the
4990 * buffer is dirty or in writeback, and it also won't
4991 * go away while we have the reference count on the
4992 * eb bumped.
4993 *
4994 * We can't just set the ref bit without bumping the
4995 * ref on the eb because free_extent_buffer might
4996 * see the ref bit and try to clear it. If this happens
4997 * free_extent_buffer might end up dropping our original
4998 * ref by mistake and freeing the page before we are able
4999 * to add one more ref.
5000 *
5001 * So bump the ref count first, then set the bit. If someone
5002 * beat us to it, drop the ref we added.
5003 */
5004 refs = atomic_read(&eb->refs);
5005 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5006 return;
5007
5008 spin_lock(&eb->refs_lock);
5009 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5010 atomic_inc(&eb->refs);
5011 spin_unlock(&eb->refs_lock);
5012}
5013
5014static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5015 struct page *accessed)
5016{
5017 int num_pages, i;
5018
5019 check_buffer_tree_ref(eb);
5020
5021 num_pages = num_extent_pages(eb);
5022 for (i = 0; i < num_pages; i++) {
5023 struct page *p = eb->pages[i];
5024
5025 if (p != accessed)
5026 mark_page_accessed(p);
5027 }
5028}
5029
5030struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5031 u64 start)
5032{
5033 struct extent_buffer *eb;
5034
5035 rcu_read_lock();
5036 eb = radix_tree_lookup(&fs_info->buffer_radix,
5037 start >> PAGE_SHIFT);
5038 if (eb && atomic_inc_not_zero(&eb->refs)) {
5039 rcu_read_unlock();
5040 /*
5041 * Lock our eb's refs_lock to avoid races with
5042 * free_extent_buffer. When we get our eb it might be flagged
5043 * with EXTENT_BUFFER_STALE and another task running
5044 * free_extent_buffer might have seen that flag set,
5045 * eb->refs == 2, that the buffer isn't under IO (dirty and
5046 * writeback flags not set) and it's still in the tree (flag
5047 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5048 * of decrementing the extent buffer's reference count twice.
5049 * So here we could race and increment the eb's reference count,
5050 * clear its stale flag, mark it as dirty and drop our reference
5051 * before the other task finishes executing free_extent_buffer,
5052 * which would later result in an attempt to free an extent
5053 * buffer that is dirty.
5054 */
5055 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5056 spin_lock(&eb->refs_lock);
5057 spin_unlock(&eb->refs_lock);
5058 }
5059 mark_extent_buffer_accessed(eb, NULL);
5060 return eb;
5061 }
5062 rcu_read_unlock();
5063
5064 return NULL;
5065}
5066
5067#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5068struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5069 u64 start)
5070{
5071 struct extent_buffer *eb, *exists = NULL;
5072 int ret;
5073
5074 eb = find_extent_buffer(fs_info, start);
5075 if (eb)
5076 return eb;
5077 eb = alloc_dummy_extent_buffer(fs_info, start);
5078 if (!eb)
5079 return NULL;
5080 eb->fs_info = fs_info;
5081again:
5082 ret = radix_tree_preload(GFP_NOFS);
5083 if (ret)
5084 goto free_eb;
5085 spin_lock(&fs_info->buffer_lock);
5086 ret = radix_tree_insert(&fs_info->buffer_radix,
5087 start >> PAGE_SHIFT, eb);
5088 spin_unlock(&fs_info->buffer_lock);
5089 radix_tree_preload_end();
5090 if (ret == -EEXIST) {
5091 exists = find_extent_buffer(fs_info, start);
5092 if (exists)
5093 goto free_eb;
5094 else
5095 goto again;
5096 }
5097 check_buffer_tree_ref(eb);
5098 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5099
5100 return eb;
5101free_eb:
5102 btrfs_release_extent_buffer(eb);
5103 return exists;
5104}
5105#endif
5106
5107struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5108 u64 start)
5109{
5110 unsigned long len = fs_info->nodesize;
5111 int num_pages;
5112 int i;
5113 unsigned long index = start >> PAGE_SHIFT;
5114 struct extent_buffer *eb;
5115 struct extent_buffer *exists = NULL;
5116 struct page *p;
5117 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5118 int uptodate = 1;
5119 int ret;
5120
5121 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5122 btrfs_err(fs_info, "bad tree block start %llu", start);
5123 return ERR_PTR(-EINVAL);
5124 }
5125
5126 eb = find_extent_buffer(fs_info, start);
5127 if (eb)
5128 return eb;
5129
5130 eb = __alloc_extent_buffer(fs_info, start, len);
5131 if (!eb)
5132 return ERR_PTR(-ENOMEM);
5133
5134 num_pages = num_extent_pages(eb);
5135 for (i = 0; i < num_pages; i++, index++) {
5136 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5137 if (!p) {
5138 exists = ERR_PTR(-ENOMEM);
5139 goto free_eb;
5140 }
5141
5142 spin_lock(&mapping->private_lock);
5143 if (PagePrivate(p)) {
5144 /*
5145 * We could have already allocated an eb for this page
5146 * and attached one so lets see if we can get a ref on
5147 * the existing eb, and if we can we know it's good and
5148 * we can just return that one, else we know we can just
5149 * overwrite page->private.
5150 */
5151 exists = (struct extent_buffer *)p->private;
5152 if (atomic_inc_not_zero(&exists->refs)) {
5153 spin_unlock(&mapping->private_lock);
5154 unlock_page(p);
5155 put_page(p);
5156 mark_extent_buffer_accessed(exists, p);
5157 goto free_eb;
5158 }
5159 exists = NULL;
5160
5161 /*
5162 * Do this so attach doesn't complain and we need to
5163 * drop the ref the old guy had.
5164 */
5165 ClearPagePrivate(p);
5166 WARN_ON(PageDirty(p));
5167 put_page(p);
5168 }
5169 attach_extent_buffer_page(eb, p);
5170 spin_unlock(&mapping->private_lock);
5171 WARN_ON(PageDirty(p));
5172 eb->pages[i] = p;
5173 if (!PageUptodate(p))
5174 uptodate = 0;
5175
5176 /*
5177 * We can't unlock the pages just yet since the extent buffer
5178 * hasn't been properly inserted in the radix tree, this
5179 * opens a race with btree_releasepage which can free a page
5180 * while we are still filling in all pages for the buffer and
5181 * we could crash.
5182 */
5183 }
5184 if (uptodate)
5185 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5186again:
5187 ret = radix_tree_preload(GFP_NOFS);
5188 if (ret) {
5189 exists = ERR_PTR(ret);
5190 goto free_eb;
5191 }
5192
5193 spin_lock(&fs_info->buffer_lock);
5194 ret = radix_tree_insert(&fs_info->buffer_radix,
5195 start >> PAGE_SHIFT, eb);
5196 spin_unlock(&fs_info->buffer_lock);
5197 radix_tree_preload_end();
5198 if (ret == -EEXIST) {
5199 exists = find_extent_buffer(fs_info, start);
5200 if (exists)
5201 goto free_eb;
5202 else
5203 goto again;
5204 }
5205 /* add one reference for the tree */
5206 check_buffer_tree_ref(eb);
5207 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5208
5209 /*
5210 * Now it's safe to unlock the pages because any calls to
5211 * btree_releasepage will correctly detect that a page belongs to a
5212 * live buffer and won't free them prematurely.
5213 */
5214 for (i = 0; i < num_pages; i++)
5215 unlock_page(eb->pages[i]);
5216 return eb;
5217
5218free_eb:
5219 WARN_ON(!atomic_dec_and_test(&eb->refs));
5220 for (i = 0; i < num_pages; i++) {
5221 if (eb->pages[i])
5222 unlock_page(eb->pages[i]);
5223 }
5224
5225 btrfs_release_extent_buffer(eb);
5226 return exists;
5227}
5228
5229static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5230{
5231 struct extent_buffer *eb =
5232 container_of(head, struct extent_buffer, rcu_head);
5233
5234 __free_extent_buffer(eb);
5235}
5236
5237static int release_extent_buffer(struct extent_buffer *eb)
5238{
5239 lockdep_assert_held(&eb->refs_lock);
5240
5241 WARN_ON(atomic_read(&eb->refs) == 0);
5242 if (atomic_dec_and_test(&eb->refs)) {
5243 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5244 struct btrfs_fs_info *fs_info = eb->fs_info;
5245
5246 spin_unlock(&eb->refs_lock);
5247
5248 spin_lock(&fs_info->buffer_lock);
5249 radix_tree_delete(&fs_info->buffer_radix,
5250 eb->start >> PAGE_SHIFT);
5251 spin_unlock(&fs_info->buffer_lock);
5252 } else {
5253 spin_unlock(&eb->refs_lock);
5254 }
5255
5256 /* Should be safe to release our pages at this point */
5257 btrfs_release_extent_buffer_pages(eb);
5258#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5259 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5260 __free_extent_buffer(eb);
5261 return 1;
5262 }
5263#endif
5264 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5265 return 1;
5266 }
5267 spin_unlock(&eb->refs_lock);
5268
5269 return 0;
5270}
5271
5272void free_extent_buffer(struct extent_buffer *eb)
5273{
5274 int refs;
5275 int old;
5276 if (!eb)
5277 return;
5278
5279 while (1) {
5280 refs = atomic_read(&eb->refs);
5281 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5282 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5283 refs == 1))
5284 break;
5285 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5286 if (old == refs)
5287 return;
5288 }
5289
5290 spin_lock(&eb->refs_lock);
5291 if (atomic_read(&eb->refs) == 2 &&
5292 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5293 !extent_buffer_under_io(eb) &&
5294 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5295 atomic_dec(&eb->refs);
5296
5297 /*
5298 * I know this is terrible, but it's temporary until we stop tracking
5299 * the uptodate bits and such for the extent buffers.
5300 */
5301 release_extent_buffer(eb);
5302}
5303
5304void free_extent_buffer_stale(struct extent_buffer *eb)
5305{
5306 if (!eb)
5307 return;
5308
5309 spin_lock(&eb->refs_lock);
5310 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5311
5312 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5313 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5314 atomic_dec(&eb->refs);
5315 release_extent_buffer(eb);
5316}
5317
5318void clear_extent_buffer_dirty(struct extent_buffer *eb)
5319{
5320 int i;
5321 int num_pages;
5322 struct page *page;
5323
5324 num_pages = num_extent_pages(eb);
5325
5326 for (i = 0; i < num_pages; i++) {
5327 page = eb->pages[i];
5328 if (!PageDirty(page))
5329 continue;
5330
5331 lock_page(page);
5332 WARN_ON(!PagePrivate(page));
5333
5334 clear_page_dirty_for_io(page);
5335 xa_lock_irq(&page->mapping->i_pages);
5336 if (!PageDirty(page))
5337 __xa_clear_mark(&page->mapping->i_pages,
5338 page_index(page), PAGECACHE_TAG_DIRTY);
5339 xa_unlock_irq(&page->mapping->i_pages);
5340 ClearPageError(page);
5341 unlock_page(page);
5342 }
5343 WARN_ON(atomic_read(&eb->refs) == 0);
5344}
5345
5346bool set_extent_buffer_dirty(struct extent_buffer *eb)
5347{
5348 int i;
5349 int num_pages;
5350 bool was_dirty;
5351
5352 check_buffer_tree_ref(eb);
5353
5354 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5355
5356 num_pages = num_extent_pages(eb);
5357 WARN_ON(atomic_read(&eb->refs) == 0);
5358 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5359
5360 if (!was_dirty)
5361 for (i = 0; i < num_pages; i++)
5362 set_page_dirty(eb->pages[i]);
5363
5364#ifdef CONFIG_BTRFS_DEBUG
5365 for (i = 0; i < num_pages; i++)
5366 ASSERT(PageDirty(eb->pages[i]));
5367#endif
5368
5369 return was_dirty;
5370}
5371
5372void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5373{
5374 int i;
5375 struct page *page;
5376 int num_pages;
5377
5378 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5379 num_pages = num_extent_pages(eb);
5380 for (i = 0; i < num_pages; i++) {
5381 page = eb->pages[i];
5382 if (page)
5383 ClearPageUptodate(page);
5384 }
5385}
5386
5387void set_extent_buffer_uptodate(struct extent_buffer *eb)
5388{
5389 int i;
5390 struct page *page;
5391 int num_pages;
5392
5393 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5394 num_pages = num_extent_pages(eb);
5395 for (i = 0; i < num_pages; i++) {
5396 page = eb->pages[i];
5397 SetPageUptodate(page);
5398 }
5399}
5400
5401int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5402{
5403 int i;
5404 struct page *page;
5405 int err;
5406 int ret = 0;
5407 int locked_pages = 0;
5408 int all_uptodate = 1;
5409 int num_pages;
5410 unsigned long num_reads = 0;
5411 struct bio *bio = NULL;
5412 unsigned long bio_flags = 0;
5413 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5414
5415 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5416 return 0;
5417
5418 num_pages = num_extent_pages(eb);
5419 for (i = 0; i < num_pages; i++) {
5420 page = eb->pages[i];
5421 if (wait == WAIT_NONE) {
5422 if (!trylock_page(page))
5423 goto unlock_exit;
5424 } else {
5425 lock_page(page);
5426 }
5427 locked_pages++;
5428 }
5429 /*
5430 * We need to firstly lock all pages to make sure that
5431 * the uptodate bit of our pages won't be affected by
5432 * clear_extent_buffer_uptodate().
5433 */
5434 for (i = 0; i < num_pages; i++) {
5435 page = eb->pages[i];
5436 if (!PageUptodate(page)) {
5437 num_reads++;
5438 all_uptodate = 0;
5439 }
5440 }
5441
5442 if (all_uptodate) {
5443 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5444 goto unlock_exit;
5445 }
5446
5447 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5448 eb->read_mirror = 0;
5449 atomic_set(&eb->io_pages, num_reads);
5450 for (i = 0; i < num_pages; i++) {
5451 page = eb->pages[i];
5452
5453 if (!PageUptodate(page)) {
5454 if (ret) {
5455 atomic_dec(&eb->io_pages);
5456 unlock_page(page);
5457 continue;
5458 }
5459
5460 ClearPageError(page);
5461 err = __extent_read_full_page(tree, page,
5462 btree_get_extent, &bio,
5463 mirror_num, &bio_flags,
5464 REQ_META);
5465 if (err) {
5466 ret = err;
5467 /*
5468 * We use &bio in above __extent_read_full_page,
5469 * so we ensure that if it returns error, the
5470 * current page fails to add itself to bio and
5471 * it's been unlocked.
5472 *
5473 * We must dec io_pages by ourselves.
5474 */
5475 atomic_dec(&eb->io_pages);
5476 }
5477 } else {
5478 unlock_page(page);
5479 }
5480 }
5481
5482 if (bio) {
5483 err = submit_one_bio(bio, mirror_num, bio_flags);
5484 if (err)
5485 return err;
5486 }
5487
5488 if (ret || wait != WAIT_COMPLETE)
5489 return ret;
5490
5491 for (i = 0; i < num_pages; i++) {
5492 page = eb->pages[i];
5493 wait_on_page_locked(page);
5494 if (!PageUptodate(page))
5495 ret = -EIO;
5496 }
5497
5498 return ret;
5499
5500unlock_exit:
5501 while (locked_pages > 0) {
5502 locked_pages--;
5503 page = eb->pages[locked_pages];
5504 unlock_page(page);
5505 }
5506 return ret;
5507}
5508
5509void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5510 unsigned long start, unsigned long len)
5511{
5512 size_t cur;
5513 size_t offset;
5514 struct page *page;
5515 char *kaddr;
5516 char *dst = (char *)dstv;
5517 size_t start_offset = offset_in_page(eb->start);
5518 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5519
5520 if (start + len > eb->len) {
5521 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5522 eb->start, eb->len, start, len);
5523 memset(dst, 0, len);
5524 return;
5525 }
5526
5527 offset = offset_in_page(start_offset + start);
5528
5529 while (len > 0) {
5530 page = eb->pages[i];
5531
5532 cur = min(len, (PAGE_SIZE - offset));
5533 kaddr = page_address(page);
5534 memcpy(dst, kaddr + offset, cur);
5535
5536 dst += cur;
5537 len -= cur;
5538 offset = 0;
5539 i++;
5540 }
5541}
5542
5543int read_extent_buffer_to_user(const struct extent_buffer *eb,
5544 void __user *dstv,
5545 unsigned long start, unsigned long len)
5546{
5547 size_t cur;
5548 size_t offset;
5549 struct page *page;
5550 char *kaddr;
5551 char __user *dst = (char __user *)dstv;
5552 size_t start_offset = offset_in_page(eb->start);
5553 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5554 int ret = 0;
5555
5556 WARN_ON(start > eb->len);
5557 WARN_ON(start + len > eb->start + eb->len);
5558
5559 offset = offset_in_page(start_offset + start);
5560
5561 while (len > 0) {
5562 page = eb->pages[i];
5563
5564 cur = min(len, (PAGE_SIZE - offset));
5565 kaddr = page_address(page);
5566 if (copy_to_user(dst, kaddr + offset, cur)) {
5567 ret = -EFAULT;
5568 break;
5569 }
5570
5571 dst += cur;
5572 len -= cur;
5573 offset = 0;
5574 i++;
5575 }
5576
5577 return ret;
5578}
5579
5580/*
5581 * return 0 if the item is found within a page.
5582 * return 1 if the item spans two pages.
5583 * return -EINVAL otherwise.
5584 */
5585int map_private_extent_buffer(const struct extent_buffer *eb,
5586 unsigned long start, unsigned long min_len,
5587 char **map, unsigned long *map_start,
5588 unsigned long *map_len)
5589{
5590 size_t offset;
5591 char *kaddr;
5592 struct page *p;
5593 size_t start_offset = offset_in_page(eb->start);
5594 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5595 unsigned long end_i = (start_offset + start + min_len - 1) >>
5596 PAGE_SHIFT;
5597
5598 if (start + min_len > eb->len) {
5599 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5600 eb->start, eb->len, start, min_len);
5601 return -EINVAL;
5602 }
5603
5604 if (i != end_i)
5605 return 1;
5606
5607 if (i == 0) {
5608 offset = start_offset;
5609 *map_start = 0;
5610 } else {
5611 offset = 0;
5612 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5613 }
5614
5615 p = eb->pages[i];
5616 kaddr = page_address(p);
5617 *map = kaddr + offset;
5618 *map_len = PAGE_SIZE - offset;
5619 return 0;
5620}
5621
5622int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5623 unsigned long start, unsigned long len)
5624{
5625 size_t cur;
5626 size_t offset;
5627 struct page *page;
5628 char *kaddr;
5629 char *ptr = (char *)ptrv;
5630 size_t start_offset = offset_in_page(eb->start);
5631 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5632 int ret = 0;
5633
5634 WARN_ON(start > eb->len);
5635 WARN_ON(start + len > eb->start + eb->len);
5636
5637 offset = offset_in_page(start_offset + start);
5638
5639 while (len > 0) {
5640 page = eb->pages[i];
5641
5642 cur = min(len, (PAGE_SIZE - offset));
5643
5644 kaddr = page_address(page);
5645 ret = memcmp(ptr, kaddr + offset, cur);
5646 if (ret)
5647 break;
5648
5649 ptr += cur;
5650 len -= cur;
5651 offset = 0;
5652 i++;
5653 }
5654 return ret;
5655}
5656
5657void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5658 const void *srcv)
5659{
5660 char *kaddr;
5661
5662 WARN_ON(!PageUptodate(eb->pages[0]));
5663 kaddr = page_address(eb->pages[0]);
5664 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5665 BTRFS_FSID_SIZE);
5666}
5667
5668void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5669{
5670 char *kaddr;
5671
5672 WARN_ON(!PageUptodate(eb->pages[0]));
5673 kaddr = page_address(eb->pages[0]);
5674 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5675 BTRFS_FSID_SIZE);
5676}
5677
5678void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5679 unsigned long start, unsigned long len)
5680{
5681 size_t cur;
5682 size_t offset;
5683 struct page *page;
5684 char *kaddr;
5685 char *src = (char *)srcv;
5686 size_t start_offset = offset_in_page(eb->start);
5687 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5688
5689 WARN_ON(start > eb->len);
5690 WARN_ON(start + len > eb->start + eb->len);
5691
5692 offset = offset_in_page(start_offset + start);
5693
5694 while (len > 0) {
5695 page = eb->pages[i];
5696 WARN_ON(!PageUptodate(page));
5697
5698 cur = min(len, PAGE_SIZE - offset);
5699 kaddr = page_address(page);
5700 memcpy(kaddr + offset, src, cur);
5701
5702 src += cur;
5703 len -= cur;
5704 offset = 0;
5705 i++;
5706 }
5707}
5708
5709void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5710 unsigned long len)
5711{
5712 size_t cur;
5713 size_t offset;
5714 struct page *page;
5715 char *kaddr;
5716 size_t start_offset = offset_in_page(eb->start);
5717 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5718
5719 WARN_ON(start > eb->len);
5720 WARN_ON(start + len > eb->start + eb->len);
5721
5722 offset = offset_in_page(start_offset + start);
5723
5724 while (len > 0) {
5725 page = eb->pages[i];
5726 WARN_ON(!PageUptodate(page));
5727
5728 cur = min(len, PAGE_SIZE - offset);
5729 kaddr = page_address(page);
5730 memset(kaddr + offset, 0, cur);
5731
5732 len -= cur;
5733 offset = 0;
5734 i++;
5735 }
5736}
5737
5738void copy_extent_buffer_full(struct extent_buffer *dst,
5739 struct extent_buffer *src)
5740{
5741 int i;
5742 int num_pages;
5743
5744 ASSERT(dst->len == src->len);
5745
5746 num_pages = num_extent_pages(dst);
5747 for (i = 0; i < num_pages; i++)
5748 copy_page(page_address(dst->pages[i]),
5749 page_address(src->pages[i]));
5750}
5751
5752void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5753 unsigned long dst_offset, unsigned long src_offset,
5754 unsigned long len)
5755{
5756 u64 dst_len = dst->len;
5757 size_t cur;
5758 size_t offset;
5759 struct page *page;
5760 char *kaddr;
5761 size_t start_offset = offset_in_page(dst->start);
5762 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5763
5764 WARN_ON(src->len != dst_len);
5765
5766 offset = offset_in_page(start_offset + dst_offset);
5767
5768 while (len > 0) {
5769 page = dst->pages[i];
5770 WARN_ON(!PageUptodate(page));
5771
5772 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5773
5774 kaddr = page_address(page);
5775 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5776
5777 src_offset += cur;
5778 len -= cur;
5779 offset = 0;
5780 i++;
5781 }
5782}
5783
5784/*
5785 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5786 * given bit number
5787 * @eb: the extent buffer
5788 * @start: offset of the bitmap item in the extent buffer
5789 * @nr: bit number
5790 * @page_index: return index of the page in the extent buffer that contains the
5791 * given bit number
5792 * @page_offset: return offset into the page given by page_index
5793 *
5794 * This helper hides the ugliness of finding the byte in an extent buffer which
5795 * contains a given bit.
5796 */
5797static inline void eb_bitmap_offset(struct extent_buffer *eb,
5798 unsigned long start, unsigned long nr,
5799 unsigned long *page_index,
5800 size_t *page_offset)
5801{
5802 size_t start_offset = offset_in_page(eb->start);
5803 size_t byte_offset = BIT_BYTE(nr);
5804 size_t offset;
5805
5806 /*
5807 * The byte we want is the offset of the extent buffer + the offset of
5808 * the bitmap item in the extent buffer + the offset of the byte in the
5809 * bitmap item.
5810 */
5811 offset = start_offset + start + byte_offset;
5812
5813 *page_index = offset >> PAGE_SHIFT;
5814 *page_offset = offset_in_page(offset);
5815}
5816
5817/**
5818 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5819 * @eb: the extent buffer
5820 * @start: offset of the bitmap item in the extent buffer
5821 * @nr: bit number to test
5822 */
5823int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5824 unsigned long nr)
5825{
5826 u8 *kaddr;
5827 struct page *page;
5828 unsigned long i;
5829 size_t offset;
5830
5831 eb_bitmap_offset(eb, start, nr, &i, &offset);
5832 page = eb->pages[i];
5833 WARN_ON(!PageUptodate(page));
5834 kaddr = page_address(page);
5835 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5836}
5837
5838/**
5839 * extent_buffer_bitmap_set - set an area of a bitmap
5840 * @eb: the extent buffer
5841 * @start: offset of the bitmap item in the extent buffer
5842 * @pos: bit number of the first bit
5843 * @len: number of bits to set
5844 */
5845void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5846 unsigned long pos, unsigned long len)
5847{
5848 u8 *kaddr;
5849 struct page *page;
5850 unsigned long i;
5851 size_t offset;
5852 const unsigned int size = pos + len;
5853 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5854 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5855
5856 eb_bitmap_offset(eb, start, pos, &i, &offset);
5857 page = eb->pages[i];
5858 WARN_ON(!PageUptodate(page));
5859 kaddr = page_address(page);
5860
5861 while (len >= bits_to_set) {
5862 kaddr[offset] |= mask_to_set;
5863 len -= bits_to_set;
5864 bits_to_set = BITS_PER_BYTE;
5865 mask_to_set = ~0;
5866 if (++offset >= PAGE_SIZE && len > 0) {
5867 offset = 0;
5868 page = eb->pages[++i];
5869 WARN_ON(!PageUptodate(page));
5870 kaddr = page_address(page);
5871 }
5872 }
5873 if (len) {
5874 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5875 kaddr[offset] |= mask_to_set;
5876 }
5877}
5878
5879
5880/**
5881 * extent_buffer_bitmap_clear - clear an area of a bitmap
5882 * @eb: the extent buffer
5883 * @start: offset of the bitmap item in the extent buffer
5884 * @pos: bit number of the first bit
5885 * @len: number of bits to clear
5886 */
5887void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5888 unsigned long pos, unsigned long len)
5889{
5890 u8 *kaddr;
5891 struct page *page;
5892 unsigned long i;
5893 size_t offset;
5894 const unsigned int size = pos + len;
5895 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5896 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5897
5898 eb_bitmap_offset(eb, start, pos, &i, &offset);
5899 page = eb->pages[i];
5900 WARN_ON(!PageUptodate(page));
5901 kaddr = page_address(page);
5902
5903 while (len >= bits_to_clear) {
5904 kaddr[offset] &= ~mask_to_clear;
5905 len -= bits_to_clear;
5906 bits_to_clear = BITS_PER_BYTE;
5907 mask_to_clear = ~0;
5908 if (++offset >= PAGE_SIZE && len > 0) {
5909 offset = 0;
5910 page = eb->pages[++i];
5911 WARN_ON(!PageUptodate(page));
5912 kaddr = page_address(page);
5913 }
5914 }
5915 if (len) {
5916 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5917 kaddr[offset] &= ~mask_to_clear;
5918 }
5919}
5920
5921static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5922{
5923 unsigned long distance = (src > dst) ? src - dst : dst - src;
5924 return distance < len;
5925}
5926
5927static void copy_pages(struct page *dst_page, struct page *src_page,
5928 unsigned long dst_off, unsigned long src_off,
5929 unsigned long len)
5930{
5931 char *dst_kaddr = page_address(dst_page);
5932 char *src_kaddr;
5933 int must_memmove = 0;
5934
5935 if (dst_page != src_page) {
5936 src_kaddr = page_address(src_page);
5937 } else {
5938 src_kaddr = dst_kaddr;
5939 if (areas_overlap(src_off, dst_off, len))
5940 must_memmove = 1;
5941 }
5942
5943 if (must_memmove)
5944 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5945 else
5946 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5947}
5948
5949void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5950 unsigned long src_offset, unsigned long len)
5951{
5952 struct btrfs_fs_info *fs_info = dst->fs_info;
5953 size_t cur;
5954 size_t dst_off_in_page;
5955 size_t src_off_in_page;
5956 size_t start_offset = offset_in_page(dst->start);
5957 unsigned long dst_i;
5958 unsigned long src_i;
5959
5960 if (src_offset + len > dst->len) {
5961 btrfs_err(fs_info,
5962 "memmove bogus src_offset %lu move len %lu dst len %lu",
5963 src_offset, len, dst->len);
5964 BUG();
5965 }
5966 if (dst_offset + len > dst->len) {
5967 btrfs_err(fs_info,
5968 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5969 dst_offset, len, dst->len);
5970 BUG();
5971 }
5972
5973 while (len > 0) {
5974 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5975 src_off_in_page = offset_in_page(start_offset + src_offset);
5976
5977 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5978 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5979
5980 cur = min(len, (unsigned long)(PAGE_SIZE -
5981 src_off_in_page));
5982 cur = min_t(unsigned long, cur,
5983 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5984
5985 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5986 dst_off_in_page, src_off_in_page, cur);
5987
5988 src_offset += cur;
5989 dst_offset += cur;
5990 len -= cur;
5991 }
5992}
5993
5994void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5995 unsigned long src_offset, unsigned long len)
5996{
5997 struct btrfs_fs_info *fs_info = dst->fs_info;
5998 size_t cur;
5999 size_t dst_off_in_page;
6000 size_t src_off_in_page;
6001 unsigned long dst_end = dst_offset + len - 1;
6002 unsigned long src_end = src_offset + len - 1;
6003 size_t start_offset = offset_in_page(dst->start);
6004 unsigned long dst_i;
6005 unsigned long src_i;
6006
6007 if (src_offset + len > dst->len) {
6008 btrfs_err(fs_info,
6009 "memmove bogus src_offset %lu move len %lu len %lu",
6010 src_offset, len, dst->len);
6011 BUG();
6012 }
6013 if (dst_offset + len > dst->len) {
6014 btrfs_err(fs_info,
6015 "memmove bogus dst_offset %lu move len %lu len %lu",
6016 dst_offset, len, dst->len);
6017 BUG();
6018 }
6019 if (dst_offset < src_offset) {
6020 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6021 return;
6022 }
6023 while (len > 0) {
6024 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6025 src_i = (start_offset + src_end) >> PAGE_SHIFT;
6026
6027 dst_off_in_page = offset_in_page(start_offset + dst_end);
6028 src_off_in_page = offset_in_page(start_offset + src_end);
6029
6030 cur = min_t(unsigned long, len, src_off_in_page + 1);
6031 cur = min(cur, dst_off_in_page + 1);
6032 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6033 dst_off_in_page - cur + 1,
6034 src_off_in_page - cur + 1, cur);
6035
6036 dst_end -= cur;
6037 src_end -= cur;
6038 len -= cur;
6039 }
6040}
6041
6042int try_release_extent_buffer(struct page *page)
6043{
6044 struct extent_buffer *eb;
6045
6046 /*
6047 * We need to make sure nobody is attaching this page to an eb right
6048 * now.
6049 */
6050 spin_lock(&page->mapping->private_lock);
6051 if (!PagePrivate(page)) {
6052 spin_unlock(&page->mapping->private_lock);
6053 return 1;
6054 }
6055
6056 eb = (struct extent_buffer *)page->private;
6057 BUG_ON(!eb);
6058
6059 /*
6060 * This is a little awful but should be ok, we need to make sure that
6061 * the eb doesn't disappear out from under us while we're looking at
6062 * this page.
6063 */
6064 spin_lock(&eb->refs_lock);
6065 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6066 spin_unlock(&eb->refs_lock);
6067 spin_unlock(&page->mapping->private_lock);
6068 return 0;
6069 }
6070 spin_unlock(&page->mapping->private_lock);
6071
6072 /*
6073 * If tree ref isn't set then we know the ref on this eb is a real ref,
6074 * so just return, this page will likely be freed soon anyway.
6075 */
6076 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6077 spin_unlock(&eb->refs_lock);
6078 return 0;
6079 }
6080
6081 return release_extent_buffer(eb);
6082}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/sched/mm.h>
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/prefetch.h>
16#include <linux/fsverity.h>
17#include "extent_io.h"
18#include "extent-io-tree.h"
19#include "extent_map.h"
20#include "ctree.h"
21#include "btrfs_inode.h"
22#include "bio.h"
23#include "locking.h"
24#include "backref.h"
25#include "disk-io.h"
26#include "subpage.h"
27#include "zoned.h"
28#include "block-group.h"
29#include "compression.h"
30#include "fs.h"
31#include "accessors.h"
32#include "file-item.h"
33#include "file.h"
34#include "dev-replace.h"
35#include "super.h"
36#include "transaction.h"
37
38static struct kmem_cache *extent_buffer_cache;
39
40#ifdef CONFIG_BTRFS_DEBUG
41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42{
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49}
50
51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52{
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59}
60
61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62{
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87}
88#else
89#define btrfs_leak_debug_add_eb(eb) do {} while (0)
90#define btrfs_leak_debug_del_eb(eb) do {} while (0)
91#endif
92
93/*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 enum btrfs_compression_type compress_type;
100 u32 len_to_oe_boundary;
101 blk_opf_t opf;
102 btrfs_bio_end_io_t end_io_func;
103 struct writeback_control *wbc;
104};
105
106static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
107{
108 struct btrfs_bio *bbio = bio_ctrl->bbio;
109
110 if (!bbio)
111 return;
112
113 /* Caller should ensure the bio has at least some range added */
114 ASSERT(bbio->bio.bi_iter.bi_size);
115
116 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
117 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
118 btrfs_submit_compressed_read(bbio);
119 else
120 btrfs_submit_bio(bbio, 0);
121
122 /* The bbio is owned by the end_io handler now */
123 bio_ctrl->bbio = NULL;
124}
125
126/*
127 * Submit or fail the current bio in the bio_ctrl structure.
128 */
129static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
130{
131 struct btrfs_bio *bbio = bio_ctrl->bbio;
132
133 if (!bbio)
134 return;
135
136 if (ret) {
137 ASSERT(ret < 0);
138 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
139 /* The bio is owned by the end_io handler now */
140 bio_ctrl->bbio = NULL;
141 } else {
142 submit_one_bio(bio_ctrl);
143 }
144}
145
146int __init extent_buffer_init_cachep(void)
147{
148 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
149 sizeof(struct extent_buffer), 0, 0,
150 NULL);
151 if (!extent_buffer_cache)
152 return -ENOMEM;
153
154 return 0;
155}
156
157void __cold extent_buffer_free_cachep(void)
158{
159 /*
160 * Make sure all delayed rcu free are flushed before we
161 * destroy caches.
162 */
163 rcu_barrier();
164 kmem_cache_destroy(extent_buffer_cache);
165}
166
167void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
168{
169 unsigned long index = start >> PAGE_SHIFT;
170 unsigned long end_index = end >> PAGE_SHIFT;
171 struct page *page;
172
173 while (index <= end_index) {
174 page = find_get_page(inode->i_mapping, index);
175 BUG_ON(!page); /* Pages should be in the extent_io_tree */
176 clear_page_dirty_for_io(page);
177 put_page(page);
178 index++;
179 }
180}
181
182static void process_one_page(struct btrfs_fs_info *fs_info,
183 struct page *page, struct page *locked_page,
184 unsigned long page_ops, u64 start, u64 end)
185{
186 struct folio *folio = page_folio(page);
187 u32 len;
188
189 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
190 len = end + 1 - start;
191
192 if (page_ops & PAGE_SET_ORDERED)
193 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
194 if (page_ops & PAGE_START_WRITEBACK) {
195 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
196 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
197 }
198 if (page_ops & PAGE_END_WRITEBACK)
199 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
200
201 if (page != locked_page && (page_ops & PAGE_UNLOCK))
202 btrfs_folio_end_writer_lock(fs_info, folio, start, len);
203}
204
205static void __process_pages_contig(struct address_space *mapping,
206 struct page *locked_page, u64 start, u64 end,
207 unsigned long page_ops)
208{
209 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
210 pgoff_t start_index = start >> PAGE_SHIFT;
211 pgoff_t end_index = end >> PAGE_SHIFT;
212 pgoff_t index = start_index;
213 struct folio_batch fbatch;
214 int i;
215
216 folio_batch_init(&fbatch);
217 while (index <= end_index) {
218 int found_folios;
219
220 found_folios = filemap_get_folios_contig(mapping, &index,
221 end_index, &fbatch);
222 for (i = 0; i < found_folios; i++) {
223 struct folio *folio = fbatch.folios[i];
224
225 process_one_page(fs_info, &folio->page, locked_page,
226 page_ops, start, end);
227 }
228 folio_batch_release(&fbatch);
229 cond_resched();
230 }
231}
232
233static noinline void __unlock_for_delalloc(struct inode *inode,
234 struct page *locked_page,
235 u64 start, u64 end)
236{
237 unsigned long index = start >> PAGE_SHIFT;
238 unsigned long end_index = end >> PAGE_SHIFT;
239
240 ASSERT(locked_page);
241 if (index == locked_page->index && end_index == index)
242 return;
243
244 __process_pages_contig(inode->i_mapping, locked_page, start, end,
245 PAGE_UNLOCK);
246}
247
248static noinline int lock_delalloc_pages(struct inode *inode,
249 struct page *locked_page,
250 u64 start,
251 u64 end)
252{
253 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
254 struct address_space *mapping = inode->i_mapping;
255 pgoff_t start_index = start >> PAGE_SHIFT;
256 pgoff_t end_index = end >> PAGE_SHIFT;
257 pgoff_t index = start_index;
258 u64 processed_end = start;
259 struct folio_batch fbatch;
260
261 if (index == locked_page->index && index == end_index)
262 return 0;
263
264 folio_batch_init(&fbatch);
265 while (index <= end_index) {
266 unsigned int found_folios, i;
267
268 found_folios = filemap_get_folios_contig(mapping, &index,
269 end_index, &fbatch);
270 if (found_folios == 0)
271 goto out;
272
273 for (i = 0; i < found_folios; i++) {
274 struct folio *folio = fbatch.folios[i];
275 struct page *page = folio_page(folio, 0);
276 u32 len = end + 1 - start;
277
278 if (page == locked_page)
279 continue;
280
281 if (btrfs_folio_start_writer_lock(fs_info, folio, start,
282 len))
283 goto out;
284
285 if (!PageDirty(page) || page->mapping != mapping) {
286 btrfs_folio_end_writer_lock(fs_info, folio, start,
287 len);
288 goto out;
289 }
290
291 processed_end = page_offset(page) + PAGE_SIZE - 1;
292 }
293 folio_batch_release(&fbatch);
294 cond_resched();
295 }
296
297 return 0;
298out:
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 __unlock_for_delalloc(inode, locked_page, start, processed_end);
302 return -EAGAIN;
303}
304
305/*
306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307 * more than @max_bytes.
308 *
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
313 *
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
316 *
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
319 */
320EXPORT_FOR_TESTS
321noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 struct page *locked_page, u64 *start,
323 u64 *end)
324{
325 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 u64 delalloc_start;
332 u64 delalloc_end;
333 bool found;
334 struct extent_state *cached_state = NULL;
335 int ret;
336 int loops = 0;
337
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
340
341 /* The range should at least cover part of the page */
342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 orig_end <= page_offset(locked_page)));
344again:
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
347 delalloc_end = 0;
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 *start = delalloc_start;
352
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
355 free_extent_state(cached_state);
356 return false;
357 }
358
359 /*
360 * start comes from the offset of locked_page. We have to lock
361 * pages in order, so we can't process delalloc bytes before
362 * locked_page
363 */
364 if (delalloc_start < *start)
365 delalloc_start = *start;
366
367 /*
368 * make sure to limit the number of pages we try to lock down
369 */
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
372
373 /* step two, lock all the pages after the page that has start */
374 ret = lock_delalloc_pages(inode, locked_page,
375 delalloc_start, delalloc_end);
376 ASSERT(!ret || ret == -EAGAIN);
377 if (ret == -EAGAIN) {
378 /* some of the pages are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
380 */
381 free_extent_state(cached_state);
382 cached_state = NULL;
383 if (!loops) {
384 max_bytes = PAGE_SIZE;
385 loops = 1;
386 goto again;
387 } else {
388 found = false;
389 goto out_failed;
390 }
391 }
392
393 /* step three, lock the state bits for the whole range */
394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395
396 /* then test to make sure it is all still delalloc */
397 ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 EXTENT_DELALLOC, cached_state);
399 if (!ret) {
400 unlock_extent(tree, delalloc_start, delalloc_end,
401 &cached_state);
402 __unlock_for_delalloc(inode, locked_page,
403 delalloc_start, delalloc_end);
404 cond_resched();
405 goto again;
406 }
407 free_extent_state(cached_state);
408 *start = delalloc_start;
409 *end = delalloc_end;
410out_failed:
411 return found;
412}
413
414void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 struct page *locked_page,
416 u32 clear_bits, unsigned long page_ops)
417{
418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419
420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 start, end, page_ops);
422}
423
424static bool btrfs_verify_page(struct page *page, u64 start)
425{
426 if (!fsverity_active(page->mapping->host) ||
427 PageUptodate(page) ||
428 start >= i_size_read(page->mapping->host))
429 return true;
430 return fsverity_verify_page(page);
431}
432
433static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434{
435 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
436 struct folio *folio = page_folio(page);
437
438 ASSERT(page_offset(page) <= start &&
439 start + len <= page_offset(page) + PAGE_SIZE);
440
441 if (uptodate && btrfs_verify_page(page, start))
442 btrfs_folio_set_uptodate(fs_info, folio, start, len);
443 else
444 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
445
446 if (!btrfs_is_subpage(fs_info, page->mapping))
447 unlock_page(page);
448 else
449 btrfs_subpage_end_reader(fs_info, folio, start, len);
450}
451
452/*
453 * After a write IO is done, we need to:
454 *
455 * - clear the uptodate bits on error
456 * - clear the writeback bits in the extent tree for the range
457 * - filio_end_writeback() if there is no more pending io for the folio
458 *
459 * Scheduling is not allowed, so the extent state tree is expected
460 * to have one and only one object corresponding to this IO.
461 */
462static void end_bbio_data_write(struct btrfs_bio *bbio)
463{
464 struct btrfs_fs_info *fs_info = bbio->fs_info;
465 struct bio *bio = &bbio->bio;
466 int error = blk_status_to_errno(bio->bi_status);
467 struct folio_iter fi;
468 const u32 sectorsize = fs_info->sectorsize;
469
470 ASSERT(!bio_flagged(bio, BIO_CLONED));
471 bio_for_each_folio_all(fi, bio) {
472 struct folio *folio = fi.folio;
473 u64 start = folio_pos(folio) + fi.offset;
474 u32 len = fi.length;
475
476 /* Only order 0 (single page) folios are allowed for data. */
477 ASSERT(folio_order(folio) == 0);
478
479 /* Our read/write should always be sector aligned. */
480 if (!IS_ALIGNED(fi.offset, sectorsize))
481 btrfs_err(fs_info,
482 "partial page write in btrfs with offset %zu and length %zu",
483 fi.offset, fi.length);
484 else if (!IS_ALIGNED(fi.length, sectorsize))
485 btrfs_info(fs_info,
486 "incomplete page write with offset %zu and length %zu",
487 fi.offset, fi.length);
488
489 btrfs_finish_ordered_extent(bbio->ordered,
490 folio_page(folio, 0), start, len, !error);
491 if (error)
492 mapping_set_error(folio->mapping, error);
493 btrfs_folio_clear_writeback(fs_info, folio, start, len);
494 }
495
496 bio_put(bio);
497}
498
499/*
500 * Record previously processed extent range
501 *
502 * For endio_readpage_release_extent() to handle a full extent range, reducing
503 * the extent io operations.
504 */
505struct processed_extent {
506 struct btrfs_inode *inode;
507 /* Start of the range in @inode */
508 u64 start;
509 /* End of the range in @inode */
510 u64 end;
511 bool uptodate;
512};
513
514/*
515 * Try to release processed extent range
516 *
517 * May not release the extent range right now if the current range is
518 * contiguous to processed extent.
519 *
520 * Will release processed extent when any of @inode, @uptodate, the range is
521 * no longer contiguous to the processed range.
522 *
523 * Passing @inode == NULL will force processed extent to be released.
524 */
525static void endio_readpage_release_extent(struct processed_extent *processed,
526 struct btrfs_inode *inode, u64 start, u64 end,
527 bool uptodate)
528{
529 struct extent_state *cached = NULL;
530 struct extent_io_tree *tree;
531
532 /* The first extent, initialize @processed */
533 if (!processed->inode)
534 goto update;
535
536 /*
537 * Contiguous to processed extent, just uptodate the end.
538 *
539 * Several things to notice:
540 *
541 * - bio can be merged as long as on-disk bytenr is contiguous
542 * This means we can have page belonging to other inodes, thus need to
543 * check if the inode still matches.
544 * - bvec can contain range beyond current page for multi-page bvec
545 * Thus we need to do processed->end + 1 >= start check
546 */
547 if (processed->inode == inode && processed->uptodate == uptodate &&
548 processed->end + 1 >= start && end >= processed->end) {
549 processed->end = end;
550 return;
551 }
552
553 tree = &processed->inode->io_tree;
554 /*
555 * Now we don't have range contiguous to the processed range, release
556 * the processed range now.
557 */
558 unlock_extent(tree, processed->start, processed->end, &cached);
559
560update:
561 /* Update processed to current range */
562 processed->inode = inode;
563 processed->start = start;
564 processed->end = end;
565 processed->uptodate = uptodate;
566}
567
568static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
569{
570 struct folio *folio = page_folio(page);
571
572 ASSERT(folio_test_locked(folio));
573 if (!btrfs_is_subpage(fs_info, folio->mapping))
574 return;
575
576 ASSERT(folio_test_private(folio));
577 btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
578}
579
580/*
581 * After a data read IO is done, we need to:
582 *
583 * - clear the uptodate bits on error
584 * - set the uptodate bits if things worked
585 * - set the folio up to date if all extents in the tree are uptodate
586 * - clear the lock bit in the extent tree
587 * - unlock the folio if there are no other extents locked for it
588 *
589 * Scheduling is not allowed, so the extent state tree is expected
590 * to have one and only one object corresponding to this IO.
591 */
592static void end_bbio_data_read(struct btrfs_bio *bbio)
593{
594 struct btrfs_fs_info *fs_info = bbio->fs_info;
595 struct bio *bio = &bbio->bio;
596 struct processed_extent processed = { 0 };
597 struct folio_iter fi;
598 const u32 sectorsize = fs_info->sectorsize;
599
600 ASSERT(!bio_flagged(bio, BIO_CLONED));
601 bio_for_each_folio_all(fi, &bbio->bio) {
602 bool uptodate = !bio->bi_status;
603 struct folio *folio = fi.folio;
604 struct inode *inode = folio->mapping->host;
605 u64 start;
606 u64 end;
607 u32 len;
608
609 /* For now only order 0 folios are supported for data. */
610 ASSERT(folio_order(folio) == 0);
611 btrfs_debug(fs_info,
612 "%s: bi_sector=%llu, err=%d, mirror=%u",
613 __func__, bio->bi_iter.bi_sector, bio->bi_status,
614 bbio->mirror_num);
615
616 /*
617 * We always issue full-sector reads, but if some block in a
618 * folio fails to read, blk_update_request() will advance
619 * bv_offset and adjust bv_len to compensate. Print a warning
620 * for unaligned offsets, and an error if they don't add up to
621 * a full sector.
622 */
623 if (!IS_ALIGNED(fi.offset, sectorsize))
624 btrfs_err(fs_info,
625 "partial page read in btrfs with offset %zu and length %zu",
626 fi.offset, fi.length);
627 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
628 btrfs_info(fs_info,
629 "incomplete page read with offset %zu and length %zu",
630 fi.offset, fi.length);
631
632 start = folio_pos(folio) + fi.offset;
633 end = start + fi.length - 1;
634 len = fi.length;
635
636 if (likely(uptodate)) {
637 loff_t i_size = i_size_read(inode);
638 pgoff_t end_index = i_size >> folio_shift(folio);
639
640 /*
641 * Zero out the remaining part if this range straddles
642 * i_size.
643 *
644 * Here we should only zero the range inside the folio,
645 * not touch anything else.
646 *
647 * NOTE: i_size is exclusive while end is inclusive.
648 */
649 if (folio_index(folio) == end_index && i_size <= end) {
650 u32 zero_start = max(offset_in_folio(folio, i_size),
651 offset_in_folio(folio, start));
652 u32 zero_len = offset_in_folio(folio, end) + 1 -
653 zero_start;
654
655 folio_zero_range(folio, zero_start, zero_len);
656 }
657 }
658
659 /* Update page status and unlock. */
660 end_page_read(folio_page(folio, 0), uptodate, start, len);
661 endio_readpage_release_extent(&processed, BTRFS_I(inode),
662 start, end, uptodate);
663 }
664 /* Release the last extent */
665 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
666 bio_put(bio);
667}
668
669/*
670 * Populate every free slot in a provided array with pages.
671 *
672 * @nr_pages: number of pages to allocate
673 * @page_array: the array to fill with pages; any existing non-null entries in
674 * the array will be skipped
675 * @extra_gfp: the extra GFP flags for the allocation.
676 *
677 * Return: 0 if all pages were able to be allocated;
678 * -ENOMEM otherwise, the partially allocated pages would be freed and
679 * the array slots zeroed
680 */
681int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
682 gfp_t extra_gfp)
683{
684 const gfp_t gfp = GFP_NOFS | extra_gfp;
685 unsigned int allocated;
686
687 for (allocated = 0; allocated < nr_pages;) {
688 unsigned int last = allocated;
689
690 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
691 if (unlikely(allocated == last)) {
692 /* No progress, fail and do cleanup. */
693 for (int i = 0; i < allocated; i++) {
694 __free_page(page_array[i]);
695 page_array[i] = NULL;
696 }
697 return -ENOMEM;
698 }
699 }
700 return 0;
701}
702
703/*
704 * Populate needed folios for the extent buffer.
705 *
706 * For now, the folios populated are always in order 0 (aka, single page).
707 */
708static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
709{
710 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
711 int num_pages = num_extent_pages(eb);
712 int ret;
713
714 ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
715 if (ret < 0)
716 return ret;
717
718 for (int i = 0; i < num_pages; i++)
719 eb->folios[i] = page_folio(page_array[i]);
720 eb->folio_size = PAGE_SIZE;
721 eb->folio_shift = PAGE_SHIFT;
722 return 0;
723}
724
725static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
726 struct page *page, u64 disk_bytenr,
727 unsigned int pg_offset)
728{
729 struct bio *bio = &bio_ctrl->bbio->bio;
730 struct bio_vec *bvec = bio_last_bvec_all(bio);
731 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
732
733 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
734 /*
735 * For compression, all IO should have its logical bytenr set
736 * to the starting bytenr of the compressed extent.
737 */
738 return bio->bi_iter.bi_sector == sector;
739 }
740
741 /*
742 * The contig check requires the following conditions to be met:
743 *
744 * 1) The pages are belonging to the same inode
745 * This is implied by the call chain.
746 *
747 * 2) The range has adjacent logical bytenr
748 *
749 * 3) The range has adjacent file offset
750 * This is required for the usage of btrfs_bio->file_offset.
751 */
752 return bio_end_sector(bio) == sector &&
753 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
754 page_offset(page) + pg_offset;
755}
756
757static void alloc_new_bio(struct btrfs_inode *inode,
758 struct btrfs_bio_ctrl *bio_ctrl,
759 u64 disk_bytenr, u64 file_offset)
760{
761 struct btrfs_fs_info *fs_info = inode->root->fs_info;
762 struct btrfs_bio *bbio;
763
764 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
765 bio_ctrl->end_io_func, NULL);
766 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
767 bbio->inode = inode;
768 bbio->file_offset = file_offset;
769 bio_ctrl->bbio = bbio;
770 bio_ctrl->len_to_oe_boundary = U32_MAX;
771
772 /* Limit data write bios to the ordered boundary. */
773 if (bio_ctrl->wbc) {
774 struct btrfs_ordered_extent *ordered;
775
776 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
777 if (ordered) {
778 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
779 ordered->file_offset +
780 ordered->disk_num_bytes - file_offset);
781 bbio->ordered = ordered;
782 }
783
784 /*
785 * Pick the last added device to support cgroup writeback. For
786 * multi-device file systems this means blk-cgroup policies have
787 * to always be set on the last added/replaced device.
788 * This is a bit odd but has been like that for a long time.
789 */
790 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
791 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
792 }
793}
794
795/*
796 * @disk_bytenr: logical bytenr where the write will be
797 * @page: page to add to the bio
798 * @size: portion of page that we want to write to
799 * @pg_offset: offset of the new bio or to check whether we are adding
800 * a contiguous page to the previous one
801 *
802 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
803 * new one in @bio_ctrl->bbio.
804 * The mirror number for this IO should already be initizlied in
805 * @bio_ctrl->mirror_num.
806 */
807static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
808 u64 disk_bytenr, struct page *page,
809 size_t size, unsigned long pg_offset)
810{
811 struct btrfs_inode *inode = page_to_inode(page);
812
813 ASSERT(pg_offset + size <= PAGE_SIZE);
814 ASSERT(bio_ctrl->end_io_func);
815
816 if (bio_ctrl->bbio &&
817 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
818 submit_one_bio(bio_ctrl);
819
820 do {
821 u32 len = size;
822
823 /* Allocate new bio if needed */
824 if (!bio_ctrl->bbio) {
825 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
826 page_offset(page) + pg_offset);
827 }
828
829 /* Cap to the current ordered extent boundary if there is one. */
830 if (len > bio_ctrl->len_to_oe_boundary) {
831 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
832 ASSERT(is_data_inode(&inode->vfs_inode));
833 len = bio_ctrl->len_to_oe_boundary;
834 }
835
836 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
837 /* bio full: move on to a new one */
838 submit_one_bio(bio_ctrl);
839 continue;
840 }
841
842 if (bio_ctrl->wbc)
843 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
844
845 size -= len;
846 pg_offset += len;
847 disk_bytenr += len;
848
849 /*
850 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
851 * sector aligned. alloc_new_bio() then sets it to the end of
852 * our ordered extent for writes into zoned devices.
853 *
854 * When len_to_oe_boundary is tracking an ordered extent, we
855 * trust the ordered extent code to align things properly, and
856 * the check above to cap our write to the ordered extent
857 * boundary is correct.
858 *
859 * When len_to_oe_boundary is U32_MAX, the cap above would
860 * result in a 4095 byte IO for the last page right before
861 * we hit the bio limit of UINT_MAX. bio_add_page() has all
862 * the checks required to make sure we don't overflow the bio,
863 * and we should just ignore len_to_oe_boundary completely
864 * unless we're using it to track an ordered extent.
865 *
866 * It's pretty hard to make a bio sized U32_MAX, but it can
867 * happen when the page cache is able to feed us contiguous
868 * pages for large extents.
869 */
870 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
871 bio_ctrl->len_to_oe_boundary -= len;
872
873 /* Ordered extent boundary: move on to a new bio. */
874 if (bio_ctrl->len_to_oe_boundary == 0)
875 submit_one_bio(bio_ctrl);
876 } while (size);
877}
878
879static int attach_extent_buffer_folio(struct extent_buffer *eb,
880 struct folio *folio,
881 struct btrfs_subpage *prealloc)
882{
883 struct btrfs_fs_info *fs_info = eb->fs_info;
884 int ret = 0;
885
886 /*
887 * If the page is mapped to btree inode, we should hold the private
888 * lock to prevent race.
889 * For cloned or dummy extent buffers, their pages are not mapped and
890 * will not race with any other ebs.
891 */
892 if (folio->mapping)
893 lockdep_assert_held(&folio->mapping->i_private_lock);
894
895 if (fs_info->nodesize >= PAGE_SIZE) {
896 if (!folio_test_private(folio))
897 folio_attach_private(folio, eb);
898 else
899 WARN_ON(folio_get_private(folio) != eb);
900 return 0;
901 }
902
903 /* Already mapped, just free prealloc */
904 if (folio_test_private(folio)) {
905 btrfs_free_subpage(prealloc);
906 return 0;
907 }
908
909 if (prealloc)
910 /* Has preallocated memory for subpage */
911 folio_attach_private(folio, prealloc);
912 else
913 /* Do new allocation to attach subpage */
914 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
915 return ret;
916}
917
918int set_page_extent_mapped(struct page *page)
919{
920 return set_folio_extent_mapped(page_folio(page));
921}
922
923int set_folio_extent_mapped(struct folio *folio)
924{
925 struct btrfs_fs_info *fs_info;
926
927 ASSERT(folio->mapping);
928
929 if (folio_test_private(folio))
930 return 0;
931
932 fs_info = folio_to_fs_info(folio);
933
934 if (btrfs_is_subpage(fs_info, folio->mapping))
935 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
936
937 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
938 return 0;
939}
940
941void clear_page_extent_mapped(struct page *page)
942{
943 struct folio *folio = page_folio(page);
944 struct btrfs_fs_info *fs_info;
945
946 ASSERT(page->mapping);
947
948 if (!folio_test_private(folio))
949 return;
950
951 fs_info = page_to_fs_info(page);
952 if (btrfs_is_subpage(fs_info, page->mapping))
953 return btrfs_detach_subpage(fs_info, folio);
954
955 folio_detach_private(folio);
956}
957
958static struct extent_map *__get_extent_map(struct inode *inode, struct page *page,
959 u64 start, u64 len, struct extent_map **em_cached)
960{
961 struct extent_map *em;
962
963 ASSERT(em_cached);
964
965 if (*em_cached) {
966 em = *em_cached;
967 if (extent_map_in_tree(em) && start >= em->start &&
968 start < extent_map_end(em)) {
969 refcount_inc(&em->refs);
970 return em;
971 }
972
973 free_extent_map(em);
974 *em_cached = NULL;
975 }
976
977 em = btrfs_get_extent(BTRFS_I(inode), page, start, len);
978 if (!IS_ERR(em)) {
979 BUG_ON(*em_cached);
980 refcount_inc(&em->refs);
981 *em_cached = em;
982 }
983 return em;
984}
985/*
986 * basic readpage implementation. Locked extent state structs are inserted
987 * into the tree that are removed when the IO is done (by the end_io
988 * handlers)
989 * XXX JDM: This needs looking at to ensure proper page locking
990 * return 0 on success, otherwise return error
991 */
992static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
993 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
994{
995 struct inode *inode = page->mapping->host;
996 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
997 u64 start = page_offset(page);
998 const u64 end = start + PAGE_SIZE - 1;
999 u64 cur = start;
1000 u64 extent_offset;
1001 u64 last_byte = i_size_read(inode);
1002 u64 block_start;
1003 struct extent_map *em;
1004 int ret = 0;
1005 size_t pg_offset = 0;
1006 size_t iosize;
1007 size_t blocksize = fs_info->sectorsize;
1008 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1009
1010 ret = set_page_extent_mapped(page);
1011 if (ret < 0) {
1012 unlock_extent(tree, start, end, NULL);
1013 unlock_page(page);
1014 return ret;
1015 }
1016
1017 if (page->index == last_byte >> PAGE_SHIFT) {
1018 size_t zero_offset = offset_in_page(last_byte);
1019
1020 if (zero_offset) {
1021 iosize = PAGE_SIZE - zero_offset;
1022 memzero_page(page, zero_offset, iosize);
1023 }
1024 }
1025 bio_ctrl->end_io_func = end_bbio_data_read;
1026 begin_page_read(fs_info, page);
1027 while (cur <= end) {
1028 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1029 bool force_bio_submit = false;
1030 u64 disk_bytenr;
1031
1032 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1033 if (cur >= last_byte) {
1034 iosize = PAGE_SIZE - pg_offset;
1035 memzero_page(page, pg_offset, iosize);
1036 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1037 end_page_read(page, true, cur, iosize);
1038 break;
1039 }
1040 em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached);
1041 if (IS_ERR(em)) {
1042 unlock_extent(tree, cur, end, NULL);
1043 end_page_read(page, false, cur, end + 1 - cur);
1044 return PTR_ERR(em);
1045 }
1046 extent_offset = cur - em->start;
1047 BUG_ON(extent_map_end(em) <= cur);
1048 BUG_ON(end < cur);
1049
1050 compress_type = extent_map_compression(em);
1051
1052 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1053 iosize = ALIGN(iosize, blocksize);
1054 if (compress_type != BTRFS_COMPRESS_NONE)
1055 disk_bytenr = em->block_start;
1056 else
1057 disk_bytenr = em->block_start + extent_offset;
1058 block_start = em->block_start;
1059 if (em->flags & EXTENT_FLAG_PREALLOC)
1060 block_start = EXTENT_MAP_HOLE;
1061
1062 /*
1063 * If we have a file range that points to a compressed extent
1064 * and it's followed by a consecutive file range that points
1065 * to the same compressed extent (possibly with a different
1066 * offset and/or length, so it either points to the whole extent
1067 * or only part of it), we must make sure we do not submit a
1068 * single bio to populate the pages for the 2 ranges because
1069 * this makes the compressed extent read zero out the pages
1070 * belonging to the 2nd range. Imagine the following scenario:
1071 *
1072 * File layout
1073 * [0 - 8K] [8K - 24K]
1074 * | |
1075 * | |
1076 * points to extent X, points to extent X,
1077 * offset 4K, length of 8K offset 0, length 16K
1078 *
1079 * [extent X, compressed length = 4K uncompressed length = 16K]
1080 *
1081 * If the bio to read the compressed extent covers both ranges,
1082 * it will decompress extent X into the pages belonging to the
1083 * first range and then it will stop, zeroing out the remaining
1084 * pages that belong to the other range that points to extent X.
1085 * So here we make sure we submit 2 bios, one for the first
1086 * range and another one for the third range. Both will target
1087 * the same physical extent from disk, but we can't currently
1088 * make the compressed bio endio callback populate the pages
1089 * for both ranges because each compressed bio is tightly
1090 * coupled with a single extent map, and each range can have
1091 * an extent map with a different offset value relative to the
1092 * uncompressed data of our extent and different lengths. This
1093 * is a corner case so we prioritize correctness over
1094 * non-optimal behavior (submitting 2 bios for the same extent).
1095 */
1096 if (compress_type != BTRFS_COMPRESS_NONE &&
1097 prev_em_start && *prev_em_start != (u64)-1 &&
1098 *prev_em_start != em->start)
1099 force_bio_submit = true;
1100
1101 if (prev_em_start)
1102 *prev_em_start = em->start;
1103
1104 free_extent_map(em);
1105 em = NULL;
1106
1107 /* we've found a hole, just zero and go on */
1108 if (block_start == EXTENT_MAP_HOLE) {
1109 memzero_page(page, pg_offset, iosize);
1110
1111 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1112 end_page_read(page, true, cur, iosize);
1113 cur = cur + iosize;
1114 pg_offset += iosize;
1115 continue;
1116 }
1117 /* the get_extent function already copied into the page */
1118 if (block_start == EXTENT_MAP_INLINE) {
1119 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1120 end_page_read(page, true, cur, iosize);
1121 cur = cur + iosize;
1122 pg_offset += iosize;
1123 continue;
1124 }
1125
1126 if (bio_ctrl->compress_type != compress_type) {
1127 submit_one_bio(bio_ctrl);
1128 bio_ctrl->compress_type = compress_type;
1129 }
1130
1131 if (force_bio_submit)
1132 submit_one_bio(bio_ctrl);
1133 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1134 pg_offset);
1135 cur = cur + iosize;
1136 pg_offset += iosize;
1137 }
1138
1139 return 0;
1140}
1141
1142int btrfs_read_folio(struct file *file, struct folio *folio)
1143{
1144 struct page *page = &folio->page;
1145 struct btrfs_inode *inode = page_to_inode(page);
1146 u64 start = page_offset(page);
1147 u64 end = start + PAGE_SIZE - 1;
1148 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1149 struct extent_map *em_cached = NULL;
1150 int ret;
1151
1152 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1153
1154 ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL);
1155 free_extent_map(em_cached);
1156
1157 /*
1158 * If btrfs_do_readpage() failed we will want to submit the assembled
1159 * bio to do the cleanup.
1160 */
1161 submit_one_bio(&bio_ctrl);
1162 return ret;
1163}
1164
1165static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1166 u64 start, u64 end,
1167 struct extent_map **em_cached,
1168 struct btrfs_bio_ctrl *bio_ctrl,
1169 u64 *prev_em_start)
1170{
1171 struct btrfs_inode *inode = page_to_inode(pages[0]);
1172 int index;
1173
1174 ASSERT(em_cached);
1175
1176 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1177
1178 for (index = 0; index < nr_pages; index++) {
1179 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1180 prev_em_start);
1181 put_page(pages[index]);
1182 }
1183}
1184
1185/*
1186 * helper for __extent_writepage, doing all of the delayed allocation setup.
1187 *
1188 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1189 * to write the page (copy into inline extent). In this case the IO has
1190 * been started and the page is already unlocked.
1191 *
1192 * This returns 0 if all went well (page still locked)
1193 * This returns < 0 if there were errors (page still locked)
1194 */
1195static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1196 struct page *page, struct writeback_control *wbc)
1197{
1198 const u64 page_start = page_offset(page);
1199 const u64 page_end = page_start + PAGE_SIZE - 1;
1200 u64 delalloc_start = page_start;
1201 u64 delalloc_end = page_end;
1202 u64 delalloc_to_write = 0;
1203 int ret = 0;
1204
1205 while (delalloc_start < page_end) {
1206 delalloc_end = page_end;
1207 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1208 &delalloc_start, &delalloc_end)) {
1209 delalloc_start = delalloc_end + 1;
1210 continue;
1211 }
1212
1213 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1214 delalloc_end, wbc);
1215 if (ret < 0)
1216 return ret;
1217
1218 delalloc_start = delalloc_end + 1;
1219 }
1220
1221 /*
1222 * delalloc_end is already one less than the total length, so
1223 * we don't subtract one from PAGE_SIZE
1224 */
1225 delalloc_to_write +=
1226 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1227
1228 /*
1229 * If btrfs_run_dealloc_range() already started I/O and unlocked
1230 * the pages, we just need to account for them here.
1231 */
1232 if (ret == 1) {
1233 wbc->nr_to_write -= delalloc_to_write;
1234 return 1;
1235 }
1236
1237 if (wbc->nr_to_write < delalloc_to_write) {
1238 int thresh = 8192;
1239
1240 if (delalloc_to_write < thresh * 2)
1241 thresh = delalloc_to_write;
1242 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1243 thresh);
1244 }
1245
1246 return 0;
1247}
1248
1249/*
1250 * Find the first byte we need to write.
1251 *
1252 * For subpage, one page can contain several sectors, and
1253 * __extent_writepage_io() will just grab all extent maps in the page
1254 * range and try to submit all non-inline/non-compressed extents.
1255 *
1256 * This is a big problem for subpage, we shouldn't re-submit already written
1257 * data at all.
1258 * This function will lookup subpage dirty bit to find which range we really
1259 * need to submit.
1260 *
1261 * Return the next dirty range in [@start, @end).
1262 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1263 */
1264static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1265 struct page *page, u64 *start, u64 *end)
1266{
1267 struct folio *folio = page_folio(page);
1268 struct btrfs_subpage *subpage = folio_get_private(folio);
1269 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1270 u64 orig_start = *start;
1271 /* Declare as unsigned long so we can use bitmap ops */
1272 unsigned long flags;
1273 int range_start_bit;
1274 int range_end_bit;
1275
1276 /*
1277 * For regular sector size == page size case, since one page only
1278 * contains one sector, we return the page offset directly.
1279 */
1280 if (!btrfs_is_subpage(fs_info, page->mapping)) {
1281 *start = page_offset(page);
1282 *end = page_offset(page) + PAGE_SIZE;
1283 return;
1284 }
1285
1286 range_start_bit = spi->dirty_offset +
1287 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1288
1289 /* We should have the page locked, but just in case */
1290 spin_lock_irqsave(&subpage->lock, flags);
1291 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1292 spi->dirty_offset + spi->bitmap_nr_bits);
1293 spin_unlock_irqrestore(&subpage->lock, flags);
1294
1295 range_start_bit -= spi->dirty_offset;
1296 range_end_bit -= spi->dirty_offset;
1297
1298 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1299 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1300}
1301
1302/*
1303 * helper for __extent_writepage. This calls the writepage start hooks,
1304 * and does the loop to map the page into extents and bios.
1305 *
1306 * We return 1 if the IO is started and the page is unlocked,
1307 * 0 if all went well (page still locked)
1308 * < 0 if there were errors (page still locked)
1309 */
1310static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1311 struct page *page,
1312 struct btrfs_bio_ctrl *bio_ctrl,
1313 loff_t i_size,
1314 int *nr_ret)
1315{
1316 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1317 u64 cur = page_offset(page);
1318 u64 end = cur + PAGE_SIZE - 1;
1319 u64 extent_offset;
1320 u64 block_start;
1321 struct extent_map *em;
1322 int ret = 0;
1323 int nr = 0;
1324
1325 ret = btrfs_writepage_cow_fixup(page);
1326 if (ret) {
1327 /* Fixup worker will requeue */
1328 redirty_page_for_writepage(bio_ctrl->wbc, page);
1329 unlock_page(page);
1330 return 1;
1331 }
1332
1333 bio_ctrl->end_io_func = end_bbio_data_write;
1334 while (cur <= end) {
1335 u32 len = end - cur + 1;
1336 u64 disk_bytenr;
1337 u64 em_end;
1338 u64 dirty_range_start = cur;
1339 u64 dirty_range_end;
1340 u32 iosize;
1341
1342 if (cur >= i_size) {
1343 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1344 true);
1345 /*
1346 * This range is beyond i_size, thus we don't need to
1347 * bother writing back.
1348 * But we still need to clear the dirty subpage bit, or
1349 * the next time the page gets dirtied, we will try to
1350 * writeback the sectors with subpage dirty bits,
1351 * causing writeback without ordered extent.
1352 */
1353 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1354 break;
1355 }
1356
1357 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1358 &dirty_range_end);
1359 if (cur < dirty_range_start) {
1360 cur = dirty_range_start;
1361 continue;
1362 }
1363
1364 em = btrfs_get_extent(inode, NULL, cur, len);
1365 if (IS_ERR(em)) {
1366 ret = PTR_ERR_OR_ZERO(em);
1367 goto out_error;
1368 }
1369
1370 extent_offset = cur - em->start;
1371 em_end = extent_map_end(em);
1372 ASSERT(cur <= em_end);
1373 ASSERT(cur < end);
1374 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1375 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1376
1377 block_start = em->block_start;
1378 disk_bytenr = em->block_start + extent_offset;
1379
1380 ASSERT(!extent_map_is_compressed(em));
1381 ASSERT(block_start != EXTENT_MAP_HOLE);
1382 ASSERT(block_start != EXTENT_MAP_INLINE);
1383
1384 /*
1385 * Note that em_end from extent_map_end() and dirty_range_end from
1386 * find_next_dirty_byte() are all exclusive
1387 */
1388 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1389 free_extent_map(em);
1390 em = NULL;
1391
1392 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1393 if (!PageWriteback(page)) {
1394 btrfs_err(inode->root->fs_info,
1395 "page %lu not writeback, cur %llu end %llu",
1396 page->index, cur, end);
1397 }
1398
1399 /*
1400 * Although the PageDirty bit is cleared before entering this
1401 * function, subpage dirty bit is not cleared.
1402 * So clear subpage dirty bit here so next time we won't submit
1403 * page for range already written to disk.
1404 */
1405 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
1406
1407 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1408 cur - page_offset(page));
1409 cur += iosize;
1410 nr++;
1411 }
1412
1413 btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1414 *nr_ret = nr;
1415 return 0;
1416
1417out_error:
1418 /*
1419 * If we finish without problem, we should not only clear page dirty,
1420 * but also empty subpage dirty bits
1421 */
1422 *nr_ret = nr;
1423 return ret;
1424}
1425
1426/*
1427 * the writepage semantics are similar to regular writepage. extent
1428 * records are inserted to lock ranges in the tree, and as dirty areas
1429 * are found, they are marked writeback. Then the lock bits are removed
1430 * and the end_io handler clears the writeback ranges
1431 *
1432 * Return 0 if everything goes well.
1433 * Return <0 for error.
1434 */
1435static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1436{
1437 struct folio *folio = page_folio(page);
1438 struct inode *inode = page->mapping->host;
1439 const u64 page_start = page_offset(page);
1440 int ret;
1441 int nr = 0;
1442 size_t pg_offset;
1443 loff_t i_size = i_size_read(inode);
1444 unsigned long end_index = i_size >> PAGE_SHIFT;
1445
1446 trace___extent_writepage(page, inode, bio_ctrl->wbc);
1447
1448 WARN_ON(!PageLocked(page));
1449
1450 pg_offset = offset_in_page(i_size);
1451 if (page->index > end_index ||
1452 (page->index == end_index && !pg_offset)) {
1453 folio_invalidate(folio, 0, folio_size(folio));
1454 folio_unlock(folio);
1455 return 0;
1456 }
1457
1458 if (page->index == end_index)
1459 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1460
1461 ret = set_page_extent_mapped(page);
1462 if (ret < 0)
1463 goto done;
1464
1465 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1466 if (ret == 1)
1467 return 0;
1468 if (ret)
1469 goto done;
1470
1471 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1472 if (ret == 1)
1473 return 0;
1474
1475 bio_ctrl->wbc->nr_to_write--;
1476
1477done:
1478 if (nr == 0) {
1479 /* make sure the mapping tag for page dirty gets cleared */
1480 set_page_writeback(page);
1481 end_page_writeback(page);
1482 }
1483 if (ret) {
1484 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1485 PAGE_SIZE, !ret);
1486 mapping_set_error(page->mapping, ret);
1487 }
1488 unlock_page(page);
1489 ASSERT(ret <= 0);
1490 return ret;
1491}
1492
1493void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1494{
1495 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1496 TASK_UNINTERRUPTIBLE);
1497}
1498
1499/*
1500 * Lock extent buffer status and pages for writeback.
1501 *
1502 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1503 * extent buffer is not dirty)
1504 * Return %true is the extent buffer is submitted to bio.
1505 */
1506static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1507 struct writeback_control *wbc)
1508{
1509 struct btrfs_fs_info *fs_info = eb->fs_info;
1510 bool ret = false;
1511
1512 btrfs_tree_lock(eb);
1513 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1514 btrfs_tree_unlock(eb);
1515 if (wbc->sync_mode != WB_SYNC_ALL)
1516 return false;
1517 wait_on_extent_buffer_writeback(eb);
1518 btrfs_tree_lock(eb);
1519 }
1520
1521 /*
1522 * We need to do this to prevent races in people who check if the eb is
1523 * under IO since we can end up having no IO bits set for a short period
1524 * of time.
1525 */
1526 spin_lock(&eb->refs_lock);
1527 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1528 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1529 spin_unlock(&eb->refs_lock);
1530 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1531 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1532 -eb->len,
1533 fs_info->dirty_metadata_batch);
1534 ret = true;
1535 } else {
1536 spin_unlock(&eb->refs_lock);
1537 }
1538 btrfs_tree_unlock(eb);
1539 return ret;
1540}
1541
1542static void set_btree_ioerr(struct extent_buffer *eb)
1543{
1544 struct btrfs_fs_info *fs_info = eb->fs_info;
1545
1546 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1547
1548 /*
1549 * A read may stumble upon this buffer later, make sure that it gets an
1550 * error and knows there was an error.
1551 */
1552 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1553
1554 /*
1555 * We need to set the mapping with the io error as well because a write
1556 * error will flip the file system readonly, and then syncfs() will
1557 * return a 0 because we are readonly if we don't modify the err seq for
1558 * the superblock.
1559 */
1560 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1561
1562 /*
1563 * If writeback for a btree extent that doesn't belong to a log tree
1564 * failed, increment the counter transaction->eb_write_errors.
1565 * We do this because while the transaction is running and before it's
1566 * committing (when we call filemap_fdata[write|wait]_range against
1567 * the btree inode), we might have
1568 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1569 * returns an error or an error happens during writeback, when we're
1570 * committing the transaction we wouldn't know about it, since the pages
1571 * can be no longer dirty nor marked anymore for writeback (if a
1572 * subsequent modification to the extent buffer didn't happen before the
1573 * transaction commit), which makes filemap_fdata[write|wait]_range not
1574 * able to find the pages tagged with SetPageError at transaction
1575 * commit time. So if this happens we must abort the transaction,
1576 * otherwise we commit a super block with btree roots that point to
1577 * btree nodes/leafs whose content on disk is invalid - either garbage
1578 * or the content of some node/leaf from a past generation that got
1579 * cowed or deleted and is no longer valid.
1580 *
1581 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1582 * not be enough - we need to distinguish between log tree extents vs
1583 * non-log tree extents, and the next filemap_fdatawait_range() call
1584 * will catch and clear such errors in the mapping - and that call might
1585 * be from a log sync and not from a transaction commit. Also, checking
1586 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1587 * not done and would not be reliable - the eb might have been released
1588 * from memory and reading it back again means that flag would not be
1589 * set (since it's a runtime flag, not persisted on disk).
1590 *
1591 * Using the flags below in the btree inode also makes us achieve the
1592 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1593 * writeback for all dirty pages and before filemap_fdatawait_range()
1594 * is called, the writeback for all dirty pages had already finished
1595 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1596 * filemap_fdatawait_range() would return success, as it could not know
1597 * that writeback errors happened (the pages were no longer tagged for
1598 * writeback).
1599 */
1600 switch (eb->log_index) {
1601 case -1:
1602 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1603 break;
1604 case 0:
1605 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1606 break;
1607 case 1:
1608 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1609 break;
1610 default:
1611 BUG(); /* unexpected, logic error */
1612 }
1613}
1614
1615/*
1616 * The endio specific version which won't touch any unsafe spinlock in endio
1617 * context.
1618 */
1619static struct extent_buffer *find_extent_buffer_nolock(
1620 struct btrfs_fs_info *fs_info, u64 start)
1621{
1622 struct extent_buffer *eb;
1623
1624 rcu_read_lock();
1625 eb = radix_tree_lookup(&fs_info->buffer_radix,
1626 start >> fs_info->sectorsize_bits);
1627 if (eb && atomic_inc_not_zero(&eb->refs)) {
1628 rcu_read_unlock();
1629 return eb;
1630 }
1631 rcu_read_unlock();
1632 return NULL;
1633}
1634
1635static void end_bbio_meta_write(struct btrfs_bio *bbio)
1636{
1637 struct extent_buffer *eb = bbio->private;
1638 struct btrfs_fs_info *fs_info = eb->fs_info;
1639 bool uptodate = !bbio->bio.bi_status;
1640 struct folio_iter fi;
1641 u32 bio_offset = 0;
1642
1643 if (!uptodate)
1644 set_btree_ioerr(eb);
1645
1646 bio_for_each_folio_all(fi, &bbio->bio) {
1647 u64 start = eb->start + bio_offset;
1648 struct folio *folio = fi.folio;
1649 u32 len = fi.length;
1650
1651 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1652 bio_offset += len;
1653 }
1654
1655 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1656 smp_mb__after_atomic();
1657 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1658
1659 bio_put(&bbio->bio);
1660}
1661
1662static void prepare_eb_write(struct extent_buffer *eb)
1663{
1664 u32 nritems;
1665 unsigned long start;
1666 unsigned long end;
1667
1668 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1669
1670 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1671 nritems = btrfs_header_nritems(eb);
1672 if (btrfs_header_level(eb) > 0) {
1673 end = btrfs_node_key_ptr_offset(eb, nritems);
1674 memzero_extent_buffer(eb, end, eb->len - end);
1675 } else {
1676 /*
1677 * Leaf:
1678 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1679 */
1680 start = btrfs_item_nr_offset(eb, nritems);
1681 end = btrfs_item_nr_offset(eb, 0);
1682 if (nritems == 0)
1683 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1684 else
1685 end += btrfs_item_offset(eb, nritems - 1);
1686 memzero_extent_buffer(eb, start, end - start);
1687 }
1688}
1689
1690static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1691 struct writeback_control *wbc)
1692{
1693 struct btrfs_fs_info *fs_info = eb->fs_info;
1694 struct btrfs_bio *bbio;
1695
1696 prepare_eb_write(eb);
1697
1698 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1699 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1700 eb->fs_info, end_bbio_meta_write, eb);
1701 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1702 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1703 wbc_init_bio(wbc, &bbio->bio);
1704 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1705 bbio->file_offset = eb->start;
1706 if (fs_info->nodesize < PAGE_SIZE) {
1707 struct folio *folio = eb->folios[0];
1708 bool ret;
1709
1710 folio_lock(folio);
1711 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1712 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1713 eb->len)) {
1714 folio_clear_dirty_for_io(folio);
1715 wbc->nr_to_write--;
1716 }
1717 ret = bio_add_folio(&bbio->bio, folio, eb->len,
1718 eb->start - folio_pos(folio));
1719 ASSERT(ret);
1720 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1721 folio_unlock(folio);
1722 } else {
1723 int num_folios = num_extent_folios(eb);
1724
1725 for (int i = 0; i < num_folios; i++) {
1726 struct folio *folio = eb->folios[i];
1727 bool ret;
1728
1729 folio_lock(folio);
1730 folio_clear_dirty_for_io(folio);
1731 folio_start_writeback(folio);
1732 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1733 ASSERT(ret);
1734 wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1735 eb->folio_size);
1736 wbc->nr_to_write -= folio_nr_pages(folio);
1737 folio_unlock(folio);
1738 }
1739 }
1740 btrfs_submit_bio(bbio, 0);
1741}
1742
1743/*
1744 * Submit one subpage btree page.
1745 *
1746 * The main difference to submit_eb_page() is:
1747 * - Page locking
1748 * For subpage, we don't rely on page locking at all.
1749 *
1750 * - Flush write bio
1751 * We only flush bio if we may be unable to fit current extent buffers into
1752 * current bio.
1753 *
1754 * Return >=0 for the number of submitted extent buffers.
1755 * Return <0 for fatal error.
1756 */
1757static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1758{
1759 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
1760 struct folio *folio = page_folio(page);
1761 int submitted = 0;
1762 u64 page_start = page_offset(page);
1763 int bit_start = 0;
1764 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1765
1766 /* Lock and write each dirty extent buffers in the range */
1767 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1768 struct btrfs_subpage *subpage = folio_get_private(folio);
1769 struct extent_buffer *eb;
1770 unsigned long flags;
1771 u64 start;
1772
1773 /*
1774 * Take private lock to ensure the subpage won't be detached
1775 * in the meantime.
1776 */
1777 spin_lock(&page->mapping->i_private_lock);
1778 if (!folio_test_private(folio)) {
1779 spin_unlock(&page->mapping->i_private_lock);
1780 break;
1781 }
1782 spin_lock_irqsave(&subpage->lock, flags);
1783 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1784 subpage->bitmaps)) {
1785 spin_unlock_irqrestore(&subpage->lock, flags);
1786 spin_unlock(&page->mapping->i_private_lock);
1787 bit_start++;
1788 continue;
1789 }
1790
1791 start = page_start + bit_start * fs_info->sectorsize;
1792 bit_start += sectors_per_node;
1793
1794 /*
1795 * Here we just want to grab the eb without touching extra
1796 * spin locks, so call find_extent_buffer_nolock().
1797 */
1798 eb = find_extent_buffer_nolock(fs_info, start);
1799 spin_unlock_irqrestore(&subpage->lock, flags);
1800 spin_unlock(&page->mapping->i_private_lock);
1801
1802 /*
1803 * The eb has already reached 0 refs thus find_extent_buffer()
1804 * doesn't return it. We don't need to write back such eb
1805 * anyway.
1806 */
1807 if (!eb)
1808 continue;
1809
1810 if (lock_extent_buffer_for_io(eb, wbc)) {
1811 write_one_eb(eb, wbc);
1812 submitted++;
1813 }
1814 free_extent_buffer(eb);
1815 }
1816 return submitted;
1817}
1818
1819/*
1820 * Submit all page(s) of one extent buffer.
1821 *
1822 * @page: the page of one extent buffer
1823 * @eb_context: to determine if we need to submit this page, if current page
1824 * belongs to this eb, we don't need to submit
1825 *
1826 * The caller should pass each page in their bytenr order, and here we use
1827 * @eb_context to determine if we have submitted pages of one extent buffer.
1828 *
1829 * If we have, we just skip until we hit a new page that doesn't belong to
1830 * current @eb_context.
1831 *
1832 * If not, we submit all the page(s) of the extent buffer.
1833 *
1834 * Return >0 if we have submitted the extent buffer successfully.
1835 * Return 0 if we don't need to submit the page, as it's already submitted by
1836 * previous call.
1837 * Return <0 for fatal error.
1838 */
1839static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1840{
1841 struct writeback_control *wbc = ctx->wbc;
1842 struct address_space *mapping = page->mapping;
1843 struct folio *folio = page_folio(page);
1844 struct extent_buffer *eb;
1845 int ret;
1846
1847 if (!folio_test_private(folio))
1848 return 0;
1849
1850 if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
1851 return submit_eb_subpage(page, wbc);
1852
1853 spin_lock(&mapping->i_private_lock);
1854 if (!folio_test_private(folio)) {
1855 spin_unlock(&mapping->i_private_lock);
1856 return 0;
1857 }
1858
1859 eb = folio_get_private(folio);
1860
1861 /*
1862 * Shouldn't happen and normally this would be a BUG_ON but no point
1863 * crashing the machine for something we can survive anyway.
1864 */
1865 if (WARN_ON(!eb)) {
1866 spin_unlock(&mapping->i_private_lock);
1867 return 0;
1868 }
1869
1870 if (eb == ctx->eb) {
1871 spin_unlock(&mapping->i_private_lock);
1872 return 0;
1873 }
1874 ret = atomic_inc_not_zero(&eb->refs);
1875 spin_unlock(&mapping->i_private_lock);
1876 if (!ret)
1877 return 0;
1878
1879 ctx->eb = eb;
1880
1881 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1882 if (ret) {
1883 if (ret == -EBUSY)
1884 ret = 0;
1885 free_extent_buffer(eb);
1886 return ret;
1887 }
1888
1889 if (!lock_extent_buffer_for_io(eb, wbc)) {
1890 free_extent_buffer(eb);
1891 return 0;
1892 }
1893 /* Implies write in zoned mode. */
1894 if (ctx->zoned_bg) {
1895 /* Mark the last eb in the block group. */
1896 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1897 ctx->zoned_bg->meta_write_pointer += eb->len;
1898 }
1899 write_one_eb(eb, wbc);
1900 free_extent_buffer(eb);
1901 return 1;
1902}
1903
1904int btree_write_cache_pages(struct address_space *mapping,
1905 struct writeback_control *wbc)
1906{
1907 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1908 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1909 int ret = 0;
1910 int done = 0;
1911 int nr_to_write_done = 0;
1912 struct folio_batch fbatch;
1913 unsigned int nr_folios;
1914 pgoff_t index;
1915 pgoff_t end; /* Inclusive */
1916 int scanned = 0;
1917 xa_mark_t tag;
1918
1919 folio_batch_init(&fbatch);
1920 if (wbc->range_cyclic) {
1921 index = mapping->writeback_index; /* Start from prev offset */
1922 end = -1;
1923 /*
1924 * Start from the beginning does not need to cycle over the
1925 * range, mark it as scanned.
1926 */
1927 scanned = (index == 0);
1928 } else {
1929 index = wbc->range_start >> PAGE_SHIFT;
1930 end = wbc->range_end >> PAGE_SHIFT;
1931 scanned = 1;
1932 }
1933 if (wbc->sync_mode == WB_SYNC_ALL)
1934 tag = PAGECACHE_TAG_TOWRITE;
1935 else
1936 tag = PAGECACHE_TAG_DIRTY;
1937 btrfs_zoned_meta_io_lock(fs_info);
1938retry:
1939 if (wbc->sync_mode == WB_SYNC_ALL)
1940 tag_pages_for_writeback(mapping, index, end);
1941 while (!done && !nr_to_write_done && (index <= end) &&
1942 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1943 tag, &fbatch))) {
1944 unsigned i;
1945
1946 for (i = 0; i < nr_folios; i++) {
1947 struct folio *folio = fbatch.folios[i];
1948
1949 ret = submit_eb_page(&folio->page, &ctx);
1950 if (ret == 0)
1951 continue;
1952 if (ret < 0) {
1953 done = 1;
1954 break;
1955 }
1956
1957 /*
1958 * the filesystem may choose to bump up nr_to_write.
1959 * We have to make sure to honor the new nr_to_write
1960 * at any time
1961 */
1962 nr_to_write_done = wbc->nr_to_write <= 0;
1963 }
1964 folio_batch_release(&fbatch);
1965 cond_resched();
1966 }
1967 if (!scanned && !done) {
1968 /*
1969 * We hit the last page and there is more work to be done: wrap
1970 * back to the start of the file
1971 */
1972 scanned = 1;
1973 index = 0;
1974 goto retry;
1975 }
1976 /*
1977 * If something went wrong, don't allow any metadata write bio to be
1978 * submitted.
1979 *
1980 * This would prevent use-after-free if we had dirty pages not
1981 * cleaned up, which can still happen by fuzzed images.
1982 *
1983 * - Bad extent tree
1984 * Allowing existing tree block to be allocated for other trees.
1985 *
1986 * - Log tree operations
1987 * Exiting tree blocks get allocated to log tree, bumps its
1988 * generation, then get cleaned in tree re-balance.
1989 * Such tree block will not be written back, since it's clean,
1990 * thus no WRITTEN flag set.
1991 * And after log writes back, this tree block is not traced by
1992 * any dirty extent_io_tree.
1993 *
1994 * - Offending tree block gets re-dirtied from its original owner
1995 * Since it has bumped generation, no WRITTEN flag, it can be
1996 * reused without COWing. This tree block will not be traced
1997 * by btrfs_transaction::dirty_pages.
1998 *
1999 * Now such dirty tree block will not be cleaned by any dirty
2000 * extent io tree. Thus we don't want to submit such wild eb
2001 * if the fs already has error.
2002 *
2003 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2004 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2005 */
2006 if (ret > 0)
2007 ret = 0;
2008 if (!ret && BTRFS_FS_ERROR(fs_info))
2009 ret = -EROFS;
2010
2011 if (ctx.zoned_bg)
2012 btrfs_put_block_group(ctx.zoned_bg);
2013 btrfs_zoned_meta_io_unlock(fs_info);
2014 return ret;
2015}
2016
2017/*
2018 * Walk the list of dirty pages of the given address space and write all of them.
2019 *
2020 * @mapping: address space structure to write
2021 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2022 * @bio_ctrl: holds context for the write, namely the bio
2023 *
2024 * If a page is already under I/O, write_cache_pages() skips it, even
2025 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2026 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2027 * and msync() need to guarantee that all the data which was dirty at the time
2028 * the call was made get new I/O started against them. If wbc->sync_mode is
2029 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2030 * existing IO to complete.
2031 */
2032static int extent_write_cache_pages(struct address_space *mapping,
2033 struct btrfs_bio_ctrl *bio_ctrl)
2034{
2035 struct writeback_control *wbc = bio_ctrl->wbc;
2036 struct inode *inode = mapping->host;
2037 int ret = 0;
2038 int done = 0;
2039 int nr_to_write_done = 0;
2040 struct folio_batch fbatch;
2041 unsigned int nr_folios;
2042 pgoff_t index;
2043 pgoff_t end; /* Inclusive */
2044 pgoff_t done_index;
2045 int range_whole = 0;
2046 int scanned = 0;
2047 xa_mark_t tag;
2048
2049 /*
2050 * We have to hold onto the inode so that ordered extents can do their
2051 * work when the IO finishes. The alternative to this is failing to add
2052 * an ordered extent if the igrab() fails there and that is a huge pain
2053 * to deal with, so instead just hold onto the inode throughout the
2054 * writepages operation. If it fails here we are freeing up the inode
2055 * anyway and we'd rather not waste our time writing out stuff that is
2056 * going to be truncated anyway.
2057 */
2058 if (!igrab(inode))
2059 return 0;
2060
2061 folio_batch_init(&fbatch);
2062 if (wbc->range_cyclic) {
2063 index = mapping->writeback_index; /* Start from prev offset */
2064 end = -1;
2065 /*
2066 * Start from the beginning does not need to cycle over the
2067 * range, mark it as scanned.
2068 */
2069 scanned = (index == 0);
2070 } else {
2071 index = wbc->range_start >> PAGE_SHIFT;
2072 end = wbc->range_end >> PAGE_SHIFT;
2073 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074 range_whole = 1;
2075 scanned = 1;
2076 }
2077
2078 /*
2079 * We do the tagged writepage as long as the snapshot flush bit is set
2080 * and we are the first one who do the filemap_flush() on this inode.
2081 *
2082 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2083 * not race in and drop the bit.
2084 */
2085 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2086 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2087 &BTRFS_I(inode)->runtime_flags))
2088 wbc->tagged_writepages = 1;
2089
2090 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2091 tag = PAGECACHE_TAG_TOWRITE;
2092 else
2093 tag = PAGECACHE_TAG_DIRTY;
2094retry:
2095 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2096 tag_pages_for_writeback(mapping, index, end);
2097 done_index = index;
2098 while (!done && !nr_to_write_done && (index <= end) &&
2099 (nr_folios = filemap_get_folios_tag(mapping, &index,
2100 end, tag, &fbatch))) {
2101 unsigned i;
2102
2103 for (i = 0; i < nr_folios; i++) {
2104 struct folio *folio = fbatch.folios[i];
2105
2106 done_index = folio_next_index(folio);
2107 /*
2108 * At this point we hold neither the i_pages lock nor
2109 * the page lock: the page may be truncated or
2110 * invalidated (changing page->mapping to NULL),
2111 * or even swizzled back from swapper_space to
2112 * tmpfs file mapping
2113 */
2114 if (!folio_trylock(folio)) {
2115 submit_write_bio(bio_ctrl, 0);
2116 folio_lock(folio);
2117 }
2118
2119 if (unlikely(folio->mapping != mapping)) {
2120 folio_unlock(folio);
2121 continue;
2122 }
2123
2124 if (!folio_test_dirty(folio)) {
2125 /* Someone wrote it for us. */
2126 folio_unlock(folio);
2127 continue;
2128 }
2129
2130 if (wbc->sync_mode != WB_SYNC_NONE) {
2131 if (folio_test_writeback(folio))
2132 submit_write_bio(bio_ctrl, 0);
2133 folio_wait_writeback(folio);
2134 }
2135
2136 if (folio_test_writeback(folio) ||
2137 !folio_clear_dirty_for_io(folio)) {
2138 folio_unlock(folio);
2139 continue;
2140 }
2141
2142 ret = __extent_writepage(&folio->page, bio_ctrl);
2143 if (ret < 0) {
2144 done = 1;
2145 break;
2146 }
2147
2148 /*
2149 * The filesystem may choose to bump up nr_to_write.
2150 * We have to make sure to honor the new nr_to_write
2151 * at any time.
2152 */
2153 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2154 wbc->nr_to_write <= 0);
2155 }
2156 folio_batch_release(&fbatch);
2157 cond_resched();
2158 }
2159 if (!scanned && !done) {
2160 /*
2161 * We hit the last page and there is more work to be done: wrap
2162 * back to the start of the file
2163 */
2164 scanned = 1;
2165 index = 0;
2166
2167 /*
2168 * If we're looping we could run into a page that is locked by a
2169 * writer and that writer could be waiting on writeback for a
2170 * page in our current bio, and thus deadlock, so flush the
2171 * write bio here.
2172 */
2173 submit_write_bio(bio_ctrl, 0);
2174 goto retry;
2175 }
2176
2177 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2178 mapping->writeback_index = done_index;
2179
2180 btrfs_add_delayed_iput(BTRFS_I(inode));
2181 return ret;
2182}
2183
2184/*
2185 * Submit the pages in the range to bio for call sites which delalloc range has
2186 * already been ran (aka, ordered extent inserted) and all pages are still
2187 * locked.
2188 */
2189void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2190 u64 start, u64 end, struct writeback_control *wbc,
2191 bool pages_dirty)
2192{
2193 bool found_error = false;
2194 int ret = 0;
2195 struct address_space *mapping = inode->i_mapping;
2196 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2197 const u32 sectorsize = fs_info->sectorsize;
2198 loff_t i_size = i_size_read(inode);
2199 u64 cur = start;
2200 struct btrfs_bio_ctrl bio_ctrl = {
2201 .wbc = wbc,
2202 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2203 };
2204
2205 if (wbc->no_cgroup_owner)
2206 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2207
2208 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2209
2210 while (cur <= end) {
2211 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2212 u32 cur_len = cur_end + 1 - cur;
2213 struct page *page;
2214 int nr = 0;
2215
2216 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2217 ASSERT(PageLocked(page));
2218 if (pages_dirty && page != locked_page) {
2219 ASSERT(PageDirty(page));
2220 clear_page_dirty_for_io(page);
2221 }
2222
2223 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2224 i_size, &nr);
2225 if (ret == 1)
2226 goto next_page;
2227
2228 /* Make sure the mapping tag for page dirty gets cleared. */
2229 if (nr == 0) {
2230 set_page_writeback(page);
2231 end_page_writeback(page);
2232 }
2233 if (ret) {
2234 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2235 cur, cur_len, !ret);
2236 mapping_set_error(page->mapping, ret);
2237 }
2238 btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2239 if (ret < 0)
2240 found_error = true;
2241next_page:
2242 put_page(page);
2243 cur = cur_end + 1;
2244 }
2245
2246 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2247}
2248
2249int extent_writepages(struct address_space *mapping,
2250 struct writeback_control *wbc)
2251{
2252 struct inode *inode = mapping->host;
2253 int ret = 0;
2254 struct btrfs_bio_ctrl bio_ctrl = {
2255 .wbc = wbc,
2256 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2257 };
2258
2259 /*
2260 * Allow only a single thread to do the reloc work in zoned mode to
2261 * protect the write pointer updates.
2262 */
2263 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2264 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2265 submit_write_bio(&bio_ctrl, ret);
2266 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2267 return ret;
2268}
2269
2270void extent_readahead(struct readahead_control *rac)
2271{
2272 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2273 struct page *pagepool[16];
2274 struct extent_map *em_cached = NULL;
2275 u64 prev_em_start = (u64)-1;
2276 int nr;
2277
2278 while ((nr = readahead_page_batch(rac, pagepool))) {
2279 u64 contig_start = readahead_pos(rac);
2280 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2281
2282 contiguous_readpages(pagepool, nr, contig_start, contig_end,
2283 &em_cached, &bio_ctrl, &prev_em_start);
2284 }
2285
2286 if (em_cached)
2287 free_extent_map(em_cached);
2288 submit_one_bio(&bio_ctrl);
2289}
2290
2291/*
2292 * basic invalidate_folio code, this waits on any locked or writeback
2293 * ranges corresponding to the folio, and then deletes any extent state
2294 * records from the tree
2295 */
2296int extent_invalidate_folio(struct extent_io_tree *tree,
2297 struct folio *folio, size_t offset)
2298{
2299 struct extent_state *cached_state = NULL;
2300 u64 start = folio_pos(folio);
2301 u64 end = start + folio_size(folio) - 1;
2302 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2303
2304 /* This function is only called for the btree inode */
2305 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2306
2307 start += ALIGN(offset, blocksize);
2308 if (start > end)
2309 return 0;
2310
2311 lock_extent(tree, start, end, &cached_state);
2312 folio_wait_writeback(folio);
2313
2314 /*
2315 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2316 * so here we only need to unlock the extent range to free any
2317 * existing extent state.
2318 */
2319 unlock_extent(tree, start, end, &cached_state);
2320 return 0;
2321}
2322
2323/*
2324 * a helper for release_folio, this tests for areas of the page that
2325 * are locked or under IO and drops the related state bits if it is safe
2326 * to drop the page.
2327 */
2328static int try_release_extent_state(struct extent_io_tree *tree,
2329 struct page *page, gfp_t mask)
2330{
2331 u64 start = page_offset(page);
2332 u64 end = start + PAGE_SIZE - 1;
2333 int ret = 1;
2334
2335 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2336 ret = 0;
2337 } else {
2338 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2339 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2340 EXTENT_QGROUP_RESERVED);
2341
2342 /*
2343 * At this point we can safely clear everything except the
2344 * locked bit, the nodatasum bit and the delalloc new bit.
2345 * The delalloc new bit will be cleared by ordered extent
2346 * completion.
2347 */
2348 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2349
2350 /* if clear_extent_bit failed for enomem reasons,
2351 * we can't allow the release to continue.
2352 */
2353 if (ret < 0)
2354 ret = 0;
2355 else
2356 ret = 1;
2357 }
2358 return ret;
2359}
2360
2361/*
2362 * a helper for release_folio. As long as there are no locked extents
2363 * in the range corresponding to the page, both state records and extent
2364 * map records are removed
2365 */
2366int try_release_extent_mapping(struct page *page, gfp_t mask)
2367{
2368 struct extent_map *em;
2369 u64 start = page_offset(page);
2370 u64 end = start + PAGE_SIZE - 1;
2371 struct btrfs_inode *btrfs_inode = page_to_inode(page);
2372 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2373 struct extent_map_tree *map = &btrfs_inode->extent_tree;
2374
2375 if (gfpflags_allow_blocking(mask) &&
2376 page->mapping->host->i_size > SZ_16M) {
2377 u64 len;
2378 while (start <= end) {
2379 struct btrfs_fs_info *fs_info;
2380 u64 cur_gen;
2381
2382 len = end - start + 1;
2383 write_lock(&map->lock);
2384 em = lookup_extent_mapping(map, start, len);
2385 if (!em) {
2386 write_unlock(&map->lock);
2387 break;
2388 }
2389 if ((em->flags & EXTENT_FLAG_PINNED) ||
2390 em->start != start) {
2391 write_unlock(&map->lock);
2392 free_extent_map(em);
2393 break;
2394 }
2395 if (test_range_bit_exists(tree, em->start,
2396 extent_map_end(em) - 1,
2397 EXTENT_LOCKED))
2398 goto next;
2399 /*
2400 * If it's not in the list of modified extents, used
2401 * by a fast fsync, we can remove it. If it's being
2402 * logged we can safely remove it since fsync took an
2403 * extra reference on the em.
2404 */
2405 if (list_empty(&em->list) ||
2406 (em->flags & EXTENT_FLAG_LOGGING))
2407 goto remove_em;
2408 /*
2409 * If it's in the list of modified extents, remove it
2410 * only if its generation is older then the current one,
2411 * in which case we don't need it for a fast fsync.
2412 * Otherwise don't remove it, we could be racing with an
2413 * ongoing fast fsync that could miss the new extent.
2414 */
2415 fs_info = btrfs_inode->root->fs_info;
2416 spin_lock(&fs_info->trans_lock);
2417 cur_gen = fs_info->generation;
2418 spin_unlock(&fs_info->trans_lock);
2419 if (em->generation >= cur_gen)
2420 goto next;
2421remove_em:
2422 /*
2423 * We only remove extent maps that are not in the list of
2424 * modified extents or that are in the list but with a
2425 * generation lower then the current generation, so there
2426 * is no need to set the full fsync flag on the inode (it
2427 * hurts the fsync performance for workloads with a data
2428 * size that exceeds or is close to the system's memory).
2429 */
2430 remove_extent_mapping(map, em);
2431 /* once for the rb tree */
2432 free_extent_map(em);
2433next:
2434 start = extent_map_end(em);
2435 write_unlock(&map->lock);
2436
2437 /* once for us */
2438 free_extent_map(em);
2439
2440 cond_resched(); /* Allow large-extent preemption. */
2441 }
2442 }
2443 return try_release_extent_state(tree, page, mask);
2444}
2445
2446struct btrfs_fiemap_entry {
2447 u64 offset;
2448 u64 phys;
2449 u64 len;
2450 u32 flags;
2451};
2452
2453/*
2454 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file
2455 * range from the inode's io tree, unlock the subvolume tree search path, flush
2456 * the fiemap cache and relock the file range and research the subvolume tree.
2457 * The value here is something negative that can't be confused with a valid
2458 * errno value and different from 1 because that's also a return value from
2459 * fiemap_fill_next_extent() and also it's often used to mean some btree search
2460 * did not find a key, so make it some distinct negative value.
2461 */
2462#define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1))
2463
2464/*
2465 * Used to:
2466 *
2467 * - Cache the next entry to be emitted to the fiemap buffer, so that we can
2468 * merge extents that are contiguous and can be grouped as a single one;
2469 *
2470 * - Store extents ready to be written to the fiemap buffer in an intermediary
2471 * buffer. This intermediary buffer is to ensure that in case the fiemap
2472 * buffer is memory mapped to the fiemap target file, we don't deadlock
2473 * during btrfs_page_mkwrite(). This is because during fiemap we are locking
2474 * an extent range in order to prevent races with delalloc flushing and
2475 * ordered extent completion, which is needed in order to reliably detect
2476 * delalloc in holes and prealloc extents. And this can lead to a deadlock
2477 * if the fiemap buffer is memory mapped to the file we are running fiemap
2478 * against (a silly, useless in practice scenario, but possible) because
2479 * btrfs_page_mkwrite() will try to lock the same extent range.
2480 */
2481struct fiemap_cache {
2482 /* An array of ready fiemap entries. */
2483 struct btrfs_fiemap_entry *entries;
2484 /* Number of entries in the entries array. */
2485 int entries_size;
2486 /* Index of the next entry in the entries array to write to. */
2487 int entries_pos;
2488 /*
2489 * Once the entries array is full, this indicates what's the offset for
2490 * the next file extent item we must search for in the inode's subvolume
2491 * tree after unlocking the extent range in the inode's io tree and
2492 * releasing the search path.
2493 */
2494 u64 next_search_offset;
2495 /*
2496 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it
2497 * to count ourselves emitted extents and stop instead of relying on
2498 * fiemap_fill_next_extent() because we buffer ready fiemap entries at
2499 * the @entries array, and we want to stop as soon as we hit the max
2500 * amount of extents to map, not just to save time but also to make the
2501 * logic at extent_fiemap() simpler.
2502 */
2503 unsigned int extents_mapped;
2504 /* Fields for the cached extent (unsubmitted, not ready, extent). */
2505 u64 offset;
2506 u64 phys;
2507 u64 len;
2508 u32 flags;
2509 bool cached;
2510};
2511
2512static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo,
2513 struct fiemap_cache *cache)
2514{
2515 for (int i = 0; i < cache->entries_pos; i++) {
2516 struct btrfs_fiemap_entry *entry = &cache->entries[i];
2517 int ret;
2518
2519 ret = fiemap_fill_next_extent(fieinfo, entry->offset,
2520 entry->phys, entry->len,
2521 entry->flags);
2522 /*
2523 * Ignore 1 (reached max entries) because we keep track of that
2524 * ourselves in emit_fiemap_extent().
2525 */
2526 if (ret < 0)
2527 return ret;
2528 }
2529 cache->entries_pos = 0;
2530
2531 return 0;
2532}
2533
2534/*
2535 * Helper to submit fiemap extent.
2536 *
2537 * Will try to merge current fiemap extent specified by @offset, @phys,
2538 * @len and @flags with cached one.
2539 * And only when we fails to merge, cached one will be submitted as
2540 * fiemap extent.
2541 *
2542 * Return value is the same as fiemap_fill_next_extent().
2543 */
2544static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2545 struct fiemap_cache *cache,
2546 u64 offset, u64 phys, u64 len, u32 flags)
2547{
2548 struct btrfs_fiemap_entry *entry;
2549 u64 cache_end;
2550
2551 /* Set at the end of extent_fiemap(). */
2552 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2553
2554 if (!cache->cached)
2555 goto assign;
2556
2557 /*
2558 * When iterating the extents of the inode, at extent_fiemap(), we may
2559 * find an extent that starts at an offset behind the end offset of the
2560 * previous extent we processed. This happens if fiemap is called
2561 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2562 * after we had to unlock the file range, release the search path, emit
2563 * the fiemap extents stored in the buffer (cache->entries array) and
2564 * the lock the remainder of the range and re-search the btree.
2565 *
2566 * For example we are in leaf X processing its last item, which is the
2567 * file extent item for file range [512K, 1M[, and after
2568 * btrfs_next_leaf() releases the path, there's an ordered extent that
2569 * completes for the file range [768K, 2M[, and that results in trimming
2570 * the file extent item so that it now corresponds to the file range
2571 * [512K, 768K[ and a new file extent item is inserted for the file
2572 * range [768K, 2M[, which may end up as the last item of leaf X or as
2573 * the first item of the next leaf - in either case btrfs_next_leaf()
2574 * will leave us with a path pointing to the new extent item, for the
2575 * file range [768K, 2M[, since that's the first key that follows the
2576 * last one we processed. So in order not to report overlapping extents
2577 * to user space, we trim the length of the previously cached extent and
2578 * emit it.
2579 *
2580 * Upon calling btrfs_next_leaf() we may also find an extent with an
2581 * offset smaller than or equals to cache->offset, and this happens
2582 * when we had a hole or prealloc extent with several delalloc ranges in
2583 * it, but after btrfs_next_leaf() released the path, delalloc was
2584 * flushed and the resulting ordered extents were completed, so we can
2585 * now have found a file extent item for an offset that is smaller than
2586 * or equals to what we have in cache->offset. We deal with this as
2587 * described below.
2588 */
2589 cache_end = cache->offset + cache->len;
2590 if (cache_end > offset) {
2591 if (offset == cache->offset) {
2592 /*
2593 * We cached a dealloc range (found in the io tree) for
2594 * a hole or prealloc extent and we have now found a
2595 * file extent item for the same offset. What we have
2596 * now is more recent and up to date, so discard what
2597 * we had in the cache and use what we have just found.
2598 */
2599 goto assign;
2600 } else if (offset > cache->offset) {
2601 /*
2602 * The extent range we previously found ends after the
2603 * offset of the file extent item we found and that
2604 * offset falls somewhere in the middle of that previous
2605 * extent range. So adjust the range we previously found
2606 * to end at the offset of the file extent item we have
2607 * just found, since this extent is more up to date.
2608 * Emit that adjusted range and cache the file extent
2609 * item we have just found. This corresponds to the case
2610 * where a previously found file extent item was split
2611 * due to an ordered extent completing.
2612 */
2613 cache->len = offset - cache->offset;
2614 goto emit;
2615 } else {
2616 const u64 range_end = offset + len;
2617
2618 /*
2619 * The offset of the file extent item we have just found
2620 * is behind the cached offset. This means we were
2621 * processing a hole or prealloc extent for which we
2622 * have found delalloc ranges (in the io tree), so what
2623 * we have in the cache is the last delalloc range we
2624 * found while the file extent item we found can be
2625 * either for a whole delalloc range we previously
2626 * emmitted or only a part of that range.
2627 *
2628 * We have two cases here:
2629 *
2630 * 1) The file extent item's range ends at or behind the
2631 * cached extent's end. In this case just ignore the
2632 * current file extent item because we don't want to
2633 * overlap with previous ranges that may have been
2634 * emmitted already;
2635 *
2636 * 2) The file extent item starts behind the currently
2637 * cached extent but its end offset goes beyond the
2638 * end offset of the cached extent. We don't want to
2639 * overlap with a previous range that may have been
2640 * emmitted already, so we emit the currently cached
2641 * extent and then partially store the current file
2642 * extent item's range in the cache, for the subrange
2643 * going the cached extent's end to the end of the
2644 * file extent item.
2645 */
2646 if (range_end <= cache_end)
2647 return 0;
2648
2649 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2650 phys += cache_end - offset;
2651
2652 offset = cache_end;
2653 len = range_end - cache_end;
2654 goto emit;
2655 }
2656 }
2657
2658 /*
2659 * Only merges fiemap extents if
2660 * 1) Their logical addresses are continuous
2661 *
2662 * 2) Their physical addresses are continuous
2663 * So truly compressed (physical size smaller than logical size)
2664 * extents won't get merged with each other
2665 *
2666 * 3) Share same flags
2667 */
2668 if (cache->offset + cache->len == offset &&
2669 cache->phys + cache->len == phys &&
2670 cache->flags == flags) {
2671 cache->len += len;
2672 return 0;
2673 }
2674
2675emit:
2676 /* Not mergeable, need to submit cached one */
2677
2678 if (cache->entries_pos == cache->entries_size) {
2679 /*
2680 * We will need to research for the end offset of the last
2681 * stored extent and not from the current offset, because after
2682 * unlocking the range and releasing the path, if there's a hole
2683 * between that end offset and this current offset, a new extent
2684 * may have been inserted due to a new write, so we don't want
2685 * to miss it.
2686 */
2687 entry = &cache->entries[cache->entries_size - 1];
2688 cache->next_search_offset = entry->offset + entry->len;
2689 cache->cached = false;
2690
2691 return BTRFS_FIEMAP_FLUSH_CACHE;
2692 }
2693
2694 entry = &cache->entries[cache->entries_pos];
2695 entry->offset = cache->offset;
2696 entry->phys = cache->phys;
2697 entry->len = cache->len;
2698 entry->flags = cache->flags;
2699 cache->entries_pos++;
2700 cache->extents_mapped++;
2701
2702 if (cache->extents_mapped == fieinfo->fi_extents_max) {
2703 cache->cached = false;
2704 return 1;
2705 }
2706assign:
2707 cache->cached = true;
2708 cache->offset = offset;
2709 cache->phys = phys;
2710 cache->len = len;
2711 cache->flags = flags;
2712
2713 return 0;
2714}
2715
2716/*
2717 * Emit last fiemap cache
2718 *
2719 * The last fiemap cache may still be cached in the following case:
2720 * 0 4k 8k
2721 * |<- Fiemap range ->|
2722 * |<------------ First extent ----------->|
2723 *
2724 * In this case, the first extent range will be cached but not emitted.
2725 * So we must emit it before ending extent_fiemap().
2726 */
2727static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2728 struct fiemap_cache *cache)
2729{
2730 int ret;
2731
2732 if (!cache->cached)
2733 return 0;
2734
2735 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2736 cache->len, cache->flags);
2737 cache->cached = false;
2738 if (ret > 0)
2739 ret = 0;
2740 return ret;
2741}
2742
2743static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2744{
2745 struct extent_buffer *clone = path->nodes[0];
2746 struct btrfs_key key;
2747 int slot;
2748 int ret;
2749
2750 path->slots[0]++;
2751 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2752 return 0;
2753
2754 /*
2755 * Add a temporary extra ref to an already cloned extent buffer to
2756 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid
2757 * the cost of allocating a new one.
2758 */
2759 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags));
2760 atomic_inc(&clone->refs);
2761
2762 ret = btrfs_next_leaf(inode->root, path);
2763 if (ret != 0)
2764 goto out;
2765
2766 /*
2767 * Don't bother with cloning if there are no more file extent items for
2768 * our inode.
2769 */
2770 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2771 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) {
2772 ret = 1;
2773 goto out;
2774 }
2775
2776 /*
2777 * Important to preserve the start field, for the optimizations when
2778 * checking if extents are shared (see extent_fiemap()).
2779 *
2780 * We must set ->start before calling copy_extent_buffer_full(). If we
2781 * are on sub-pagesize blocksize, we use ->start to determine the offset
2782 * into the folio where our eb exists, and if we update ->start after
2783 * the fact then any subsequent reads of the eb may read from a
2784 * different offset in the folio than where we originally copied into.
2785 */
2786 clone->start = path->nodes[0]->start;
2787 /* See the comment at fiemap_search_slot() about why we clone. */
2788 copy_extent_buffer_full(clone, path->nodes[0]);
2789
2790 slot = path->slots[0];
2791 btrfs_release_path(path);
2792 path->nodes[0] = clone;
2793 path->slots[0] = slot;
2794out:
2795 if (ret)
2796 free_extent_buffer(clone);
2797
2798 return ret;
2799}
2800
2801/*
2802 * Search for the first file extent item that starts at a given file offset or
2803 * the one that starts immediately before that offset.
2804 * Returns: 0 on success, < 0 on error, 1 if not found.
2805 */
2806static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2807 u64 file_offset)
2808{
2809 const u64 ino = btrfs_ino(inode);
2810 struct btrfs_root *root = inode->root;
2811 struct extent_buffer *clone;
2812 struct btrfs_key key;
2813 int slot;
2814 int ret;
2815
2816 key.objectid = ino;
2817 key.type = BTRFS_EXTENT_DATA_KEY;
2818 key.offset = file_offset;
2819
2820 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2821 if (ret < 0)
2822 return ret;
2823
2824 if (ret > 0 && path->slots[0] > 0) {
2825 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2826 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2827 path->slots[0]--;
2828 }
2829
2830 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2831 ret = btrfs_next_leaf(root, path);
2832 if (ret != 0)
2833 return ret;
2834
2835 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2836 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2837 return 1;
2838 }
2839
2840 /*
2841 * We clone the leaf and use it during fiemap. This is because while
2842 * using the leaf we do expensive things like checking if an extent is
2843 * shared, which can take a long time. In order to prevent blocking
2844 * other tasks for too long, we use a clone of the leaf. We have locked
2845 * the file range in the inode's io tree, so we know none of our file
2846 * extent items can change. This way we avoid blocking other tasks that
2847 * want to insert items for other inodes in the same leaf or b+tree
2848 * rebalance operations (triggered for example when someone is trying
2849 * to push items into this leaf when trying to insert an item in a
2850 * neighbour leaf).
2851 * We also need the private clone because holding a read lock on an
2852 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2853 * when we check if extents are shared, as backref walking may need to
2854 * lock the same leaf we are processing.
2855 */
2856 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2857 if (!clone)
2858 return -ENOMEM;
2859
2860 slot = path->slots[0];
2861 btrfs_release_path(path);
2862 path->nodes[0] = clone;
2863 path->slots[0] = slot;
2864
2865 return 0;
2866}
2867
2868/*
2869 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2870 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2871 * extent. The end offset (@end) is inclusive.
2872 */
2873static int fiemap_process_hole(struct btrfs_inode *inode,
2874 struct fiemap_extent_info *fieinfo,
2875 struct fiemap_cache *cache,
2876 struct extent_state **delalloc_cached_state,
2877 struct btrfs_backref_share_check_ctx *backref_ctx,
2878 u64 disk_bytenr, u64 extent_offset,
2879 u64 extent_gen,
2880 u64 start, u64 end)
2881{
2882 const u64 i_size = i_size_read(&inode->vfs_inode);
2883 u64 cur_offset = start;
2884 u64 last_delalloc_end = 0;
2885 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2886 bool checked_extent_shared = false;
2887 int ret;
2888
2889 /*
2890 * There can be no delalloc past i_size, so don't waste time looking for
2891 * it beyond i_size.
2892 */
2893 while (cur_offset < end && cur_offset < i_size) {
2894 u64 delalloc_start;
2895 u64 delalloc_end;
2896 u64 prealloc_start;
2897 u64 prealloc_len = 0;
2898 bool delalloc;
2899
2900 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2901 delalloc_cached_state,
2902 &delalloc_start,
2903 &delalloc_end);
2904 if (!delalloc)
2905 break;
2906
2907 /*
2908 * If this is a prealloc extent we have to report every section
2909 * of it that has no delalloc.
2910 */
2911 if (disk_bytenr != 0) {
2912 if (last_delalloc_end == 0) {
2913 prealloc_start = start;
2914 prealloc_len = delalloc_start - start;
2915 } else {
2916 prealloc_start = last_delalloc_end + 1;
2917 prealloc_len = delalloc_start - prealloc_start;
2918 }
2919 }
2920
2921 if (prealloc_len > 0) {
2922 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2923 ret = btrfs_is_data_extent_shared(inode,
2924 disk_bytenr,
2925 extent_gen,
2926 backref_ctx);
2927 if (ret < 0)
2928 return ret;
2929 else if (ret > 0)
2930 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2931
2932 checked_extent_shared = true;
2933 }
2934 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2935 disk_bytenr + extent_offset,
2936 prealloc_len, prealloc_flags);
2937 if (ret)
2938 return ret;
2939 extent_offset += prealloc_len;
2940 }
2941
2942 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2943 delalloc_end + 1 - delalloc_start,
2944 FIEMAP_EXTENT_DELALLOC |
2945 FIEMAP_EXTENT_UNKNOWN);
2946 if (ret)
2947 return ret;
2948
2949 last_delalloc_end = delalloc_end;
2950 cur_offset = delalloc_end + 1;
2951 extent_offset += cur_offset - delalloc_start;
2952 cond_resched();
2953 }
2954
2955 /*
2956 * Either we found no delalloc for the whole prealloc extent or we have
2957 * a prealloc extent that spans i_size or starts at or after i_size.
2958 */
2959 if (disk_bytenr != 0 && last_delalloc_end < end) {
2960 u64 prealloc_start;
2961 u64 prealloc_len;
2962
2963 if (last_delalloc_end == 0) {
2964 prealloc_start = start;
2965 prealloc_len = end + 1 - start;
2966 } else {
2967 prealloc_start = last_delalloc_end + 1;
2968 prealloc_len = end + 1 - prealloc_start;
2969 }
2970
2971 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2972 ret = btrfs_is_data_extent_shared(inode,
2973 disk_bytenr,
2974 extent_gen,
2975 backref_ctx);
2976 if (ret < 0)
2977 return ret;
2978 else if (ret > 0)
2979 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2980 }
2981 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2982 disk_bytenr + extent_offset,
2983 prealloc_len, prealloc_flags);
2984 if (ret)
2985 return ret;
2986 }
2987
2988 return 0;
2989}
2990
2991static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2992 struct btrfs_path *path,
2993 u64 *last_extent_end_ret)
2994{
2995 const u64 ino = btrfs_ino(inode);
2996 struct btrfs_root *root = inode->root;
2997 struct extent_buffer *leaf;
2998 struct btrfs_file_extent_item *ei;
2999 struct btrfs_key key;
3000 u64 disk_bytenr;
3001 int ret;
3002
3003 /*
3004 * Lookup the last file extent. We're not using i_size here because
3005 * there might be preallocation past i_size.
3006 */
3007 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3008 /* There can't be a file extent item at offset (u64)-1 */
3009 ASSERT(ret != 0);
3010 if (ret < 0)
3011 return ret;
3012
3013 /*
3014 * For a non-existing key, btrfs_search_slot() always leaves us at a
3015 * slot > 0, except if the btree is empty, which is impossible because
3016 * at least it has the inode item for this inode and all the items for
3017 * the root inode 256.
3018 */
3019 ASSERT(path->slots[0] > 0);
3020 path->slots[0]--;
3021 leaf = path->nodes[0];
3022 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3023 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3024 /* No file extent items in the subvolume tree. */
3025 *last_extent_end_ret = 0;
3026 return 0;
3027 }
3028
3029 /*
3030 * For an inline extent, the disk_bytenr is where inline data starts at,
3031 * so first check if we have an inline extent item before checking if we
3032 * have an implicit hole (disk_bytenr == 0).
3033 */
3034 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3035 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3036 *last_extent_end_ret = btrfs_file_extent_end(path);
3037 return 0;
3038 }
3039
3040 /*
3041 * Find the last file extent item that is not a hole (when NO_HOLES is
3042 * not enabled). This should take at most 2 iterations in the worst
3043 * case: we have one hole file extent item at slot 0 of a leaf and
3044 * another hole file extent item as the last item in the previous leaf.
3045 * This is because we merge file extent items that represent holes.
3046 */
3047 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3048 while (disk_bytenr == 0) {
3049 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3050 if (ret < 0) {
3051 return ret;
3052 } else if (ret > 0) {
3053 /* No file extent items that are not holes. */
3054 *last_extent_end_ret = 0;
3055 return 0;
3056 }
3057 leaf = path->nodes[0];
3058 ei = btrfs_item_ptr(leaf, path->slots[0],
3059 struct btrfs_file_extent_item);
3060 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3061 }
3062
3063 *last_extent_end_ret = btrfs_file_extent_end(path);
3064 return 0;
3065}
3066
3067int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3068 u64 start, u64 len)
3069{
3070 const u64 ino = btrfs_ino(inode);
3071 struct extent_state *cached_state = NULL;
3072 struct extent_state *delalloc_cached_state = NULL;
3073 struct btrfs_path *path;
3074 struct fiemap_cache cache = { 0 };
3075 struct btrfs_backref_share_check_ctx *backref_ctx;
3076 u64 last_extent_end;
3077 u64 prev_extent_end;
3078 u64 range_start;
3079 u64 range_end;
3080 const u64 sectorsize = inode->root->fs_info->sectorsize;
3081 bool stopped = false;
3082 int ret;
3083
3084 cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry);
3085 cache.entries = kmalloc_array(cache.entries_size,
3086 sizeof(struct btrfs_fiemap_entry),
3087 GFP_KERNEL);
3088 backref_ctx = btrfs_alloc_backref_share_check_ctx();
3089 path = btrfs_alloc_path();
3090 if (!cache.entries || !backref_ctx || !path) {
3091 ret = -ENOMEM;
3092 goto out;
3093 }
3094
3095restart:
3096 range_start = round_down(start, sectorsize);
3097 range_end = round_up(start + len, sectorsize);
3098 prev_extent_end = range_start;
3099
3100 lock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3101
3102 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3103 if (ret < 0)
3104 goto out_unlock;
3105 btrfs_release_path(path);
3106
3107 path->reada = READA_FORWARD;
3108 ret = fiemap_search_slot(inode, path, range_start);
3109 if (ret < 0) {
3110 goto out_unlock;
3111 } else if (ret > 0) {
3112 /*
3113 * No file extent item found, but we may have delalloc between
3114 * the current offset and i_size. So check for that.
3115 */
3116 ret = 0;
3117 goto check_eof_delalloc;
3118 }
3119
3120 while (prev_extent_end < range_end) {
3121 struct extent_buffer *leaf = path->nodes[0];
3122 struct btrfs_file_extent_item *ei;
3123 struct btrfs_key key;
3124 u64 extent_end;
3125 u64 extent_len;
3126 u64 extent_offset = 0;
3127 u64 extent_gen;
3128 u64 disk_bytenr = 0;
3129 u64 flags = 0;
3130 int extent_type;
3131 u8 compression;
3132
3133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3134 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3135 break;
3136
3137 extent_end = btrfs_file_extent_end(path);
3138
3139 /*
3140 * The first iteration can leave us at an extent item that ends
3141 * before our range's start. Move to the next item.
3142 */
3143 if (extent_end <= range_start)
3144 goto next_item;
3145
3146 backref_ctx->curr_leaf_bytenr = leaf->start;
3147
3148 /* We have in implicit hole (NO_HOLES feature enabled). */
3149 if (prev_extent_end < key.offset) {
3150 const u64 hole_end = min(key.offset, range_end) - 1;
3151
3152 ret = fiemap_process_hole(inode, fieinfo, &cache,
3153 &delalloc_cached_state,
3154 backref_ctx, 0, 0, 0,
3155 prev_extent_end, hole_end);
3156 if (ret < 0) {
3157 goto out_unlock;
3158 } else if (ret > 0) {
3159 /* fiemap_fill_next_extent() told us to stop. */
3160 stopped = true;
3161 break;
3162 }
3163
3164 /* We've reached the end of the fiemap range, stop. */
3165 if (key.offset >= range_end) {
3166 stopped = true;
3167 break;
3168 }
3169 }
3170
3171 extent_len = extent_end - key.offset;
3172 ei = btrfs_item_ptr(leaf, path->slots[0],
3173 struct btrfs_file_extent_item);
3174 compression = btrfs_file_extent_compression(leaf, ei);
3175 extent_type = btrfs_file_extent_type(leaf, ei);
3176 extent_gen = btrfs_file_extent_generation(leaf, ei);
3177
3178 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3179 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3180 if (compression == BTRFS_COMPRESS_NONE)
3181 extent_offset = btrfs_file_extent_offset(leaf, ei);
3182 }
3183
3184 if (compression != BTRFS_COMPRESS_NONE)
3185 flags |= FIEMAP_EXTENT_ENCODED;
3186
3187 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3188 flags |= FIEMAP_EXTENT_DATA_INLINE;
3189 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3190 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3191 extent_len, flags);
3192 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3193 ret = fiemap_process_hole(inode, fieinfo, &cache,
3194 &delalloc_cached_state,
3195 backref_ctx,
3196 disk_bytenr, extent_offset,
3197 extent_gen, key.offset,
3198 extent_end - 1);
3199 } else if (disk_bytenr == 0) {
3200 /* We have an explicit hole. */
3201 ret = fiemap_process_hole(inode, fieinfo, &cache,
3202 &delalloc_cached_state,
3203 backref_ctx, 0, 0, 0,
3204 key.offset, extent_end - 1);
3205 } else {
3206 /* We have a regular extent. */
3207 if (fieinfo->fi_extents_max) {
3208 ret = btrfs_is_data_extent_shared(inode,
3209 disk_bytenr,
3210 extent_gen,
3211 backref_ctx);
3212 if (ret < 0)
3213 goto out_unlock;
3214 else if (ret > 0)
3215 flags |= FIEMAP_EXTENT_SHARED;
3216 }
3217
3218 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3219 disk_bytenr + extent_offset,
3220 extent_len, flags);
3221 }
3222
3223 if (ret < 0) {
3224 goto out_unlock;
3225 } else if (ret > 0) {
3226 /* emit_fiemap_extent() told us to stop. */
3227 stopped = true;
3228 break;
3229 }
3230
3231 prev_extent_end = extent_end;
3232next_item:
3233 if (fatal_signal_pending(current)) {
3234 ret = -EINTR;
3235 goto out_unlock;
3236 }
3237
3238 ret = fiemap_next_leaf_item(inode, path);
3239 if (ret < 0) {
3240 goto out_unlock;
3241 } else if (ret > 0) {
3242 /* No more file extent items for this inode. */
3243 break;
3244 }
3245 cond_resched();
3246 }
3247
3248check_eof_delalloc:
3249 if (!stopped && prev_extent_end < range_end) {
3250 ret = fiemap_process_hole(inode, fieinfo, &cache,
3251 &delalloc_cached_state, backref_ctx,
3252 0, 0, 0, prev_extent_end, range_end - 1);
3253 if (ret < 0)
3254 goto out_unlock;
3255 prev_extent_end = range_end;
3256 }
3257
3258 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3259 const u64 i_size = i_size_read(&inode->vfs_inode);
3260
3261 if (prev_extent_end < i_size) {
3262 u64 delalloc_start;
3263 u64 delalloc_end;
3264 bool delalloc;
3265
3266 delalloc = btrfs_find_delalloc_in_range(inode,
3267 prev_extent_end,
3268 i_size - 1,
3269 &delalloc_cached_state,
3270 &delalloc_start,
3271 &delalloc_end);
3272 if (!delalloc)
3273 cache.flags |= FIEMAP_EXTENT_LAST;
3274 } else {
3275 cache.flags |= FIEMAP_EXTENT_LAST;
3276 }
3277 }
3278
3279out_unlock:
3280 unlock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3281
3282 if (ret == BTRFS_FIEMAP_FLUSH_CACHE) {
3283 btrfs_release_path(path);
3284 ret = flush_fiemap_cache(fieinfo, &cache);
3285 if (ret)
3286 goto out;
3287 len -= cache.next_search_offset - start;
3288 start = cache.next_search_offset;
3289 goto restart;
3290 } else if (ret < 0) {
3291 goto out;
3292 }
3293
3294 /*
3295 * Must free the path before emitting to the fiemap buffer because we
3296 * may have a non-cloned leaf and if the fiemap buffer is memory mapped
3297 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger
3298 * waiting for an ordered extent that in order to complete needs to
3299 * modify that leaf, therefore leading to a deadlock.
3300 */
3301 btrfs_free_path(path);
3302 path = NULL;
3303
3304 ret = flush_fiemap_cache(fieinfo, &cache);
3305 if (ret)
3306 goto out;
3307
3308 ret = emit_last_fiemap_cache(fieinfo, &cache);
3309out:
3310 free_extent_state(delalloc_cached_state);
3311 kfree(cache.entries);
3312 btrfs_free_backref_share_ctx(backref_ctx);
3313 btrfs_free_path(path);
3314 return ret;
3315}
3316
3317static void __free_extent_buffer(struct extent_buffer *eb)
3318{
3319 kmem_cache_free(extent_buffer_cache, eb);
3320}
3321
3322static int extent_buffer_under_io(const struct extent_buffer *eb)
3323{
3324 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3325 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3326}
3327
3328static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3329{
3330 struct btrfs_subpage *subpage;
3331
3332 lockdep_assert_held(&folio->mapping->i_private_lock);
3333
3334 if (folio_test_private(folio)) {
3335 subpage = folio_get_private(folio);
3336 if (atomic_read(&subpage->eb_refs))
3337 return true;
3338 /*
3339 * Even there is no eb refs here, we may still have
3340 * end_page_read() call relying on page::private.
3341 */
3342 if (atomic_read(&subpage->readers))
3343 return true;
3344 }
3345 return false;
3346}
3347
3348static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3349{
3350 struct btrfs_fs_info *fs_info = eb->fs_info;
3351 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3352
3353 /*
3354 * For mapped eb, we're going to change the folio private, which should
3355 * be done under the i_private_lock.
3356 */
3357 if (mapped)
3358 spin_lock(&folio->mapping->i_private_lock);
3359
3360 if (!folio_test_private(folio)) {
3361 if (mapped)
3362 spin_unlock(&folio->mapping->i_private_lock);
3363 return;
3364 }
3365
3366 if (fs_info->nodesize >= PAGE_SIZE) {
3367 /*
3368 * We do this since we'll remove the pages after we've
3369 * removed the eb from the radix tree, so we could race
3370 * and have this page now attached to the new eb. So
3371 * only clear folio if it's still connected to
3372 * this eb.
3373 */
3374 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
3375 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3376 BUG_ON(folio_test_dirty(folio));
3377 BUG_ON(folio_test_writeback(folio));
3378 /* We need to make sure we haven't be attached to a new eb. */
3379 folio_detach_private(folio);
3380 }
3381 if (mapped)
3382 spin_unlock(&folio->mapping->i_private_lock);
3383 return;
3384 }
3385
3386 /*
3387 * For subpage, we can have dummy eb with folio private attached. In
3388 * this case, we can directly detach the private as such folio is only
3389 * attached to one dummy eb, no sharing.
3390 */
3391 if (!mapped) {
3392 btrfs_detach_subpage(fs_info, folio);
3393 return;
3394 }
3395
3396 btrfs_folio_dec_eb_refs(fs_info, folio);
3397
3398 /*
3399 * We can only detach the folio private if there are no other ebs in the
3400 * page range and no unfinished IO.
3401 */
3402 if (!folio_range_has_eb(fs_info, folio))
3403 btrfs_detach_subpage(fs_info, folio);
3404
3405 spin_unlock(&folio->mapping->i_private_lock);
3406}
3407
3408/* Release all pages attached to the extent buffer */
3409static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3410{
3411 ASSERT(!extent_buffer_under_io(eb));
3412
3413 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3414 struct folio *folio = eb->folios[i];
3415
3416 if (!folio)
3417 continue;
3418
3419 detach_extent_buffer_folio(eb, folio);
3420
3421 /* One for when we allocated the folio. */
3422 folio_put(folio);
3423 }
3424}
3425
3426/*
3427 * Helper for releasing the extent buffer.
3428 */
3429static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3430{
3431 btrfs_release_extent_buffer_pages(eb);
3432 btrfs_leak_debug_del_eb(eb);
3433 __free_extent_buffer(eb);
3434}
3435
3436static struct extent_buffer *
3437__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3438 unsigned long len)
3439{
3440 struct extent_buffer *eb = NULL;
3441
3442 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3443 eb->start = start;
3444 eb->len = len;
3445 eb->fs_info = fs_info;
3446 init_rwsem(&eb->lock);
3447
3448 btrfs_leak_debug_add_eb(eb);
3449
3450 spin_lock_init(&eb->refs_lock);
3451 atomic_set(&eb->refs, 1);
3452
3453 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3454
3455 return eb;
3456}
3457
3458struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3459{
3460 struct extent_buffer *new;
3461 int num_folios = num_extent_folios(src);
3462 int ret;
3463
3464 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3465 if (new == NULL)
3466 return NULL;
3467
3468 /*
3469 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3470 * btrfs_release_extent_buffer() have different behavior for
3471 * UNMAPPED subpage extent buffer.
3472 */
3473 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3474
3475 ret = alloc_eb_folio_array(new, 0);
3476 if (ret) {
3477 btrfs_release_extent_buffer(new);
3478 return NULL;
3479 }
3480
3481 for (int i = 0; i < num_folios; i++) {
3482 struct folio *folio = new->folios[i];
3483 int ret;
3484
3485 ret = attach_extent_buffer_folio(new, folio, NULL);
3486 if (ret < 0) {
3487 btrfs_release_extent_buffer(new);
3488 return NULL;
3489 }
3490 WARN_ON(folio_test_dirty(folio));
3491 }
3492 copy_extent_buffer_full(new, src);
3493 set_extent_buffer_uptodate(new);
3494
3495 return new;
3496}
3497
3498struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3499 u64 start, unsigned long len)
3500{
3501 struct extent_buffer *eb;
3502 int num_folios = 0;
3503 int ret;
3504
3505 eb = __alloc_extent_buffer(fs_info, start, len);
3506 if (!eb)
3507 return NULL;
3508
3509 ret = alloc_eb_folio_array(eb, 0);
3510 if (ret)
3511 goto err;
3512
3513 num_folios = num_extent_folios(eb);
3514 for (int i = 0; i < num_folios; i++) {
3515 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3516 if (ret < 0)
3517 goto err;
3518 }
3519
3520 set_extent_buffer_uptodate(eb);
3521 btrfs_set_header_nritems(eb, 0);
3522 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3523
3524 return eb;
3525err:
3526 for (int i = 0; i < num_folios; i++) {
3527 if (eb->folios[i]) {
3528 detach_extent_buffer_folio(eb, eb->folios[i]);
3529 __folio_put(eb->folios[i]);
3530 }
3531 }
3532 __free_extent_buffer(eb);
3533 return NULL;
3534}
3535
3536struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3537 u64 start)
3538{
3539 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3540}
3541
3542static void check_buffer_tree_ref(struct extent_buffer *eb)
3543{
3544 int refs;
3545 /*
3546 * The TREE_REF bit is first set when the extent_buffer is added
3547 * to the radix tree. It is also reset, if unset, when a new reference
3548 * is created by find_extent_buffer.
3549 *
3550 * It is only cleared in two cases: freeing the last non-tree
3551 * reference to the extent_buffer when its STALE bit is set or
3552 * calling release_folio when the tree reference is the only reference.
3553 *
3554 * In both cases, care is taken to ensure that the extent_buffer's
3555 * pages are not under io. However, release_folio can be concurrently
3556 * called with creating new references, which is prone to race
3557 * conditions between the calls to check_buffer_tree_ref in those
3558 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3559 *
3560 * The actual lifetime of the extent_buffer in the radix tree is
3561 * adequately protected by the refcount, but the TREE_REF bit and
3562 * its corresponding reference are not. To protect against this
3563 * class of races, we call check_buffer_tree_ref from the codepaths
3564 * which trigger io. Note that once io is initiated, TREE_REF can no
3565 * longer be cleared, so that is the moment at which any such race is
3566 * best fixed.
3567 */
3568 refs = atomic_read(&eb->refs);
3569 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3570 return;
3571
3572 spin_lock(&eb->refs_lock);
3573 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3574 atomic_inc(&eb->refs);
3575 spin_unlock(&eb->refs_lock);
3576}
3577
3578static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3579{
3580 int num_folios= num_extent_folios(eb);
3581
3582 check_buffer_tree_ref(eb);
3583
3584 for (int i = 0; i < num_folios; i++)
3585 folio_mark_accessed(eb->folios[i]);
3586}
3587
3588struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3589 u64 start)
3590{
3591 struct extent_buffer *eb;
3592
3593 eb = find_extent_buffer_nolock(fs_info, start);
3594 if (!eb)
3595 return NULL;
3596 /*
3597 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3598 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3599 * another task running free_extent_buffer() might have seen that flag
3600 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3601 * writeback flags not set) and it's still in the tree (flag
3602 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3603 * decrementing the extent buffer's reference count twice. So here we
3604 * could race and increment the eb's reference count, clear its stale
3605 * flag, mark it as dirty and drop our reference before the other task
3606 * finishes executing free_extent_buffer, which would later result in
3607 * an attempt to free an extent buffer that is dirty.
3608 */
3609 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3610 spin_lock(&eb->refs_lock);
3611 spin_unlock(&eb->refs_lock);
3612 }
3613 mark_extent_buffer_accessed(eb);
3614 return eb;
3615}
3616
3617#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3618struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3619 u64 start)
3620{
3621 struct extent_buffer *eb, *exists = NULL;
3622 int ret;
3623
3624 eb = find_extent_buffer(fs_info, start);
3625 if (eb)
3626 return eb;
3627 eb = alloc_dummy_extent_buffer(fs_info, start);
3628 if (!eb)
3629 return ERR_PTR(-ENOMEM);
3630 eb->fs_info = fs_info;
3631again:
3632 ret = radix_tree_preload(GFP_NOFS);
3633 if (ret) {
3634 exists = ERR_PTR(ret);
3635 goto free_eb;
3636 }
3637 spin_lock(&fs_info->buffer_lock);
3638 ret = radix_tree_insert(&fs_info->buffer_radix,
3639 start >> fs_info->sectorsize_bits, eb);
3640 spin_unlock(&fs_info->buffer_lock);
3641 radix_tree_preload_end();
3642 if (ret == -EEXIST) {
3643 exists = find_extent_buffer(fs_info, start);
3644 if (exists)
3645 goto free_eb;
3646 else
3647 goto again;
3648 }
3649 check_buffer_tree_ref(eb);
3650 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3651
3652 return eb;
3653free_eb:
3654 btrfs_release_extent_buffer(eb);
3655 return exists;
3656}
3657#endif
3658
3659static struct extent_buffer *grab_extent_buffer(
3660 struct btrfs_fs_info *fs_info, struct page *page)
3661{
3662 struct folio *folio = page_folio(page);
3663 struct extent_buffer *exists;
3664
3665 /*
3666 * For subpage case, we completely rely on radix tree to ensure we
3667 * don't try to insert two ebs for the same bytenr. So here we always
3668 * return NULL and just continue.
3669 */
3670 if (fs_info->nodesize < PAGE_SIZE)
3671 return NULL;
3672
3673 /* Page not yet attached to an extent buffer */
3674 if (!folio_test_private(folio))
3675 return NULL;
3676
3677 /*
3678 * We could have already allocated an eb for this page and attached one
3679 * so lets see if we can get a ref on the existing eb, and if we can we
3680 * know it's good and we can just return that one, else we know we can
3681 * just overwrite folio private.
3682 */
3683 exists = folio_get_private(folio);
3684 if (atomic_inc_not_zero(&exists->refs))
3685 return exists;
3686
3687 WARN_ON(PageDirty(page));
3688 folio_detach_private(folio);
3689 return NULL;
3690}
3691
3692static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3693{
3694 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3695 btrfs_err(fs_info, "bad tree block start %llu", start);
3696 return -EINVAL;
3697 }
3698
3699 if (fs_info->nodesize < PAGE_SIZE &&
3700 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3701 btrfs_err(fs_info,
3702 "tree block crosses page boundary, start %llu nodesize %u",
3703 start, fs_info->nodesize);
3704 return -EINVAL;
3705 }
3706 if (fs_info->nodesize >= PAGE_SIZE &&
3707 !PAGE_ALIGNED(start)) {
3708 btrfs_err(fs_info,
3709 "tree block is not page aligned, start %llu nodesize %u",
3710 start, fs_info->nodesize);
3711 return -EINVAL;
3712 }
3713 if (!IS_ALIGNED(start, fs_info->nodesize) &&
3714 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3715 btrfs_warn(fs_info,
3716"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3717 start, fs_info->nodesize);
3718 }
3719 return 0;
3720}
3721
3722
3723/*
3724 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3725 * Return >0 if there is already another extent buffer for the range,
3726 * and @found_eb_ret would be updated.
3727 * Return -EAGAIN if the filemap has an existing folio but with different size
3728 * than @eb.
3729 * The caller needs to free the existing folios and retry using the same order.
3730 */
3731static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3732 struct extent_buffer **found_eb_ret)
3733{
3734
3735 struct btrfs_fs_info *fs_info = eb->fs_info;
3736 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3737 const unsigned long index = eb->start >> PAGE_SHIFT;
3738 struct folio *existing_folio;
3739 int ret;
3740
3741 ASSERT(found_eb_ret);
3742
3743 /* Caller should ensure the folio exists. */
3744 ASSERT(eb->folios[i]);
3745
3746retry:
3747 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3748 GFP_NOFS | __GFP_NOFAIL);
3749 if (!ret)
3750 return 0;
3751
3752 existing_folio = filemap_lock_folio(mapping, index + i);
3753 /* The page cache only exists for a very short time, just retry. */
3754 if (IS_ERR(existing_folio))
3755 goto retry;
3756
3757 /* For now, we should only have single-page folios for btree inode. */
3758 ASSERT(folio_nr_pages(existing_folio) == 1);
3759
3760 if (folio_size(existing_folio) != eb->folio_size) {
3761 folio_unlock(existing_folio);
3762 folio_put(existing_folio);
3763 return -EAGAIN;
3764 }
3765
3766 if (fs_info->nodesize < PAGE_SIZE) {
3767 /*
3768 * We're going to reuse the existing page, can drop our page
3769 * and subpage structure now.
3770 */
3771 __free_page(folio_page(eb->folios[i], 0));
3772 eb->folios[i] = existing_folio;
3773 } else {
3774 struct extent_buffer *existing_eb;
3775
3776 existing_eb = grab_extent_buffer(fs_info,
3777 folio_page(existing_folio, 0));
3778 if (existing_eb) {
3779 /* The extent buffer still exists, we can use it directly. */
3780 *found_eb_ret = existing_eb;
3781 folio_unlock(existing_folio);
3782 folio_put(existing_folio);
3783 return 1;
3784 }
3785 /* The extent buffer no longer exists, we can reuse the folio. */
3786 __free_page(folio_page(eb->folios[i], 0));
3787 eb->folios[i] = existing_folio;
3788 }
3789 return 0;
3790}
3791
3792struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3793 u64 start, u64 owner_root, int level)
3794{
3795 unsigned long len = fs_info->nodesize;
3796 int num_folios;
3797 int attached = 0;
3798 struct extent_buffer *eb;
3799 struct extent_buffer *existing_eb = NULL;
3800 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3801 struct btrfs_subpage *prealloc = NULL;
3802 u64 lockdep_owner = owner_root;
3803 bool page_contig = true;
3804 int uptodate = 1;
3805 int ret;
3806
3807 if (check_eb_alignment(fs_info, start))
3808 return ERR_PTR(-EINVAL);
3809
3810#if BITS_PER_LONG == 32
3811 if (start >= MAX_LFS_FILESIZE) {
3812 btrfs_err_rl(fs_info,
3813 "extent buffer %llu is beyond 32bit page cache limit", start);
3814 btrfs_err_32bit_limit(fs_info);
3815 return ERR_PTR(-EOVERFLOW);
3816 }
3817 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3818 btrfs_warn_32bit_limit(fs_info);
3819#endif
3820
3821 eb = find_extent_buffer(fs_info, start);
3822 if (eb)
3823 return eb;
3824
3825 eb = __alloc_extent_buffer(fs_info, start, len);
3826 if (!eb)
3827 return ERR_PTR(-ENOMEM);
3828
3829 /*
3830 * The reloc trees are just snapshots, so we need them to appear to be
3831 * just like any other fs tree WRT lockdep.
3832 */
3833 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3834 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3835
3836 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3837
3838 /*
3839 * Preallocate folio private for subpage case, so that we won't
3840 * allocate memory with i_private_lock nor page lock hold.
3841 *
3842 * The memory will be freed by attach_extent_buffer_page() or freed
3843 * manually if we exit earlier.
3844 */
3845 if (fs_info->nodesize < PAGE_SIZE) {
3846 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3847 if (IS_ERR(prealloc)) {
3848 ret = PTR_ERR(prealloc);
3849 goto out;
3850 }
3851 }
3852
3853reallocate:
3854 /* Allocate all pages first. */
3855 ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3856 if (ret < 0) {
3857 btrfs_free_subpage(prealloc);
3858 goto out;
3859 }
3860
3861 num_folios = num_extent_folios(eb);
3862 /* Attach all pages to the filemap. */
3863 for (int i = 0; i < num_folios; i++) {
3864 struct folio *folio;
3865
3866 ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3867 if (ret > 0) {
3868 ASSERT(existing_eb);
3869 goto out;
3870 }
3871
3872 /*
3873 * TODO: Special handling for a corner case where the order of
3874 * folios mismatch between the new eb and filemap.
3875 *
3876 * This happens when:
3877 *
3878 * - the new eb is using higher order folio
3879 *
3880 * - the filemap is still using 0-order folios for the range
3881 * This can happen at the previous eb allocation, and we don't
3882 * have higher order folio for the call.
3883 *
3884 * - the existing eb has already been freed
3885 *
3886 * In this case, we have to free the existing folios first, and
3887 * re-allocate using the same order.
3888 * Thankfully this is not going to happen yet, as we're still
3889 * using 0-order folios.
3890 */
3891 if (unlikely(ret == -EAGAIN)) {
3892 ASSERT(0);
3893 goto reallocate;
3894 }
3895 attached++;
3896
3897 /*
3898 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3899 * reliable, as we may choose to reuse the existing page cache
3900 * and free the allocated page.
3901 */
3902 folio = eb->folios[i];
3903 eb->folio_size = folio_size(folio);
3904 eb->folio_shift = folio_shift(folio);
3905 spin_lock(&mapping->i_private_lock);
3906 /* Should not fail, as we have preallocated the memory */
3907 ret = attach_extent_buffer_folio(eb, folio, prealloc);
3908 ASSERT(!ret);
3909 /*
3910 * To inform we have extra eb under allocation, so that
3911 * detach_extent_buffer_page() won't release the folio private
3912 * when the eb hasn't yet been inserted into radix tree.
3913 *
3914 * The ref will be decreased when the eb released the page, in
3915 * detach_extent_buffer_page().
3916 * Thus needs no special handling in error path.
3917 */
3918 btrfs_folio_inc_eb_refs(fs_info, folio);
3919 spin_unlock(&mapping->i_private_lock);
3920
3921 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3922
3923 /*
3924 * Check if the current page is physically contiguous with previous eb
3925 * page.
3926 * At this stage, either we allocated a large folio, thus @i
3927 * would only be 0, or we fall back to per-page allocation.
3928 */
3929 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3930 page_contig = false;
3931
3932 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3933 uptodate = 0;
3934
3935 /*
3936 * We can't unlock the pages just yet since the extent buffer
3937 * hasn't been properly inserted in the radix tree, this
3938 * opens a race with btree_release_folio which can free a page
3939 * while we are still filling in all pages for the buffer and
3940 * we could crash.
3941 */
3942 }
3943 if (uptodate)
3944 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3945 /* All pages are physically contiguous, can skip cross page handling. */
3946 if (page_contig)
3947 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3948again:
3949 ret = radix_tree_preload(GFP_NOFS);
3950 if (ret)
3951 goto out;
3952
3953 spin_lock(&fs_info->buffer_lock);
3954 ret = radix_tree_insert(&fs_info->buffer_radix,
3955 start >> fs_info->sectorsize_bits, eb);
3956 spin_unlock(&fs_info->buffer_lock);
3957 radix_tree_preload_end();
3958 if (ret == -EEXIST) {
3959 ret = 0;
3960 existing_eb = find_extent_buffer(fs_info, start);
3961 if (existing_eb)
3962 goto out;
3963 else
3964 goto again;
3965 }
3966 /* add one reference for the tree */
3967 check_buffer_tree_ref(eb);
3968 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3969
3970 /*
3971 * Now it's safe to unlock the pages because any calls to
3972 * btree_release_folio will correctly detect that a page belongs to a
3973 * live buffer and won't free them prematurely.
3974 */
3975 for (int i = 0; i < num_folios; i++)
3976 unlock_page(folio_page(eb->folios[i], 0));
3977 return eb;
3978
3979out:
3980 WARN_ON(!atomic_dec_and_test(&eb->refs));
3981
3982 /*
3983 * Any attached folios need to be detached before we unlock them. This
3984 * is because when we're inserting our new folios into the mapping, and
3985 * then attaching our eb to that folio. If we fail to insert our folio
3986 * we'll lookup the folio for that index, and grab that EB. We do not
3987 * want that to grab this eb, as we're getting ready to free it. So we
3988 * have to detach it first and then unlock it.
3989 *
3990 * We have to drop our reference and NULL it out here because in the
3991 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3992 * Below when we call btrfs_release_extent_buffer() we will call
3993 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3994 * case. If we left eb->folios[i] populated in the subpage case we'd
3995 * double put our reference and be super sad.
3996 */
3997 for (int i = 0; i < attached; i++) {
3998 ASSERT(eb->folios[i]);
3999 detach_extent_buffer_folio(eb, eb->folios[i]);
4000 unlock_page(folio_page(eb->folios[i], 0));
4001 folio_put(eb->folios[i]);
4002 eb->folios[i] = NULL;
4003 }
4004 /*
4005 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
4006 * so it can be cleaned up without utlizing page->mapping.
4007 */
4008 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4009
4010 btrfs_release_extent_buffer(eb);
4011 if (ret < 0)
4012 return ERR_PTR(ret);
4013 ASSERT(existing_eb);
4014 return existing_eb;
4015}
4016
4017static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4018{
4019 struct extent_buffer *eb =
4020 container_of(head, struct extent_buffer, rcu_head);
4021
4022 __free_extent_buffer(eb);
4023}
4024
4025static int release_extent_buffer(struct extent_buffer *eb)
4026 __releases(&eb->refs_lock)
4027{
4028 lockdep_assert_held(&eb->refs_lock);
4029
4030 WARN_ON(atomic_read(&eb->refs) == 0);
4031 if (atomic_dec_and_test(&eb->refs)) {
4032 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4033 struct btrfs_fs_info *fs_info = eb->fs_info;
4034
4035 spin_unlock(&eb->refs_lock);
4036
4037 spin_lock(&fs_info->buffer_lock);
4038 radix_tree_delete(&fs_info->buffer_radix,
4039 eb->start >> fs_info->sectorsize_bits);
4040 spin_unlock(&fs_info->buffer_lock);
4041 } else {
4042 spin_unlock(&eb->refs_lock);
4043 }
4044
4045 btrfs_leak_debug_del_eb(eb);
4046 /* Should be safe to release our pages at this point */
4047 btrfs_release_extent_buffer_pages(eb);
4048#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4049 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4050 __free_extent_buffer(eb);
4051 return 1;
4052 }
4053#endif
4054 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4055 return 1;
4056 }
4057 spin_unlock(&eb->refs_lock);
4058
4059 return 0;
4060}
4061
4062void free_extent_buffer(struct extent_buffer *eb)
4063{
4064 int refs;
4065 if (!eb)
4066 return;
4067
4068 refs = atomic_read(&eb->refs);
4069 while (1) {
4070 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4071 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4072 refs == 1))
4073 break;
4074 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4075 return;
4076 }
4077
4078 spin_lock(&eb->refs_lock);
4079 if (atomic_read(&eb->refs) == 2 &&
4080 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4081 !extent_buffer_under_io(eb) &&
4082 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4083 atomic_dec(&eb->refs);
4084
4085 /*
4086 * I know this is terrible, but it's temporary until we stop tracking
4087 * the uptodate bits and such for the extent buffers.
4088 */
4089 release_extent_buffer(eb);
4090}
4091
4092void free_extent_buffer_stale(struct extent_buffer *eb)
4093{
4094 if (!eb)
4095 return;
4096
4097 spin_lock(&eb->refs_lock);
4098 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4099
4100 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4101 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4102 atomic_dec(&eb->refs);
4103 release_extent_buffer(eb);
4104}
4105
4106static void btree_clear_folio_dirty(struct folio *folio)
4107{
4108 ASSERT(folio_test_dirty(folio));
4109 ASSERT(folio_test_locked(folio));
4110 folio_clear_dirty_for_io(folio);
4111 xa_lock_irq(&folio->mapping->i_pages);
4112 if (!folio_test_dirty(folio))
4113 __xa_clear_mark(&folio->mapping->i_pages,
4114 folio_index(folio), PAGECACHE_TAG_DIRTY);
4115 xa_unlock_irq(&folio->mapping->i_pages);
4116}
4117
4118static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4119{
4120 struct btrfs_fs_info *fs_info = eb->fs_info;
4121 struct folio *folio = eb->folios[0];
4122 bool last;
4123
4124 /* btree_clear_folio_dirty() needs page locked. */
4125 folio_lock(folio);
4126 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
4127 if (last)
4128 btree_clear_folio_dirty(folio);
4129 folio_unlock(folio);
4130 WARN_ON(atomic_read(&eb->refs) == 0);
4131}
4132
4133void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4134 struct extent_buffer *eb)
4135{
4136 struct btrfs_fs_info *fs_info = eb->fs_info;
4137 int num_folios;
4138
4139 btrfs_assert_tree_write_locked(eb);
4140
4141 if (trans && btrfs_header_generation(eb) != trans->transid)
4142 return;
4143
4144 /*
4145 * Instead of clearing the dirty flag off of the buffer, mark it as
4146 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4147 * write-ordering in zoned mode, without the need to later re-dirty
4148 * the extent_buffer.
4149 *
4150 * The actual zeroout of the buffer will happen later in
4151 * btree_csum_one_bio.
4152 */
4153 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4154 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4155 return;
4156 }
4157
4158 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4159 return;
4160
4161 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4162 fs_info->dirty_metadata_batch);
4163
4164 if (eb->fs_info->nodesize < PAGE_SIZE)
4165 return clear_subpage_extent_buffer_dirty(eb);
4166
4167 num_folios = num_extent_folios(eb);
4168 for (int i = 0; i < num_folios; i++) {
4169 struct folio *folio = eb->folios[i];
4170
4171 if (!folio_test_dirty(folio))
4172 continue;
4173 folio_lock(folio);
4174 btree_clear_folio_dirty(folio);
4175 folio_unlock(folio);
4176 }
4177 WARN_ON(atomic_read(&eb->refs) == 0);
4178}
4179
4180void set_extent_buffer_dirty(struct extent_buffer *eb)
4181{
4182 int num_folios;
4183 bool was_dirty;
4184
4185 check_buffer_tree_ref(eb);
4186
4187 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4188
4189 num_folios = num_extent_folios(eb);
4190 WARN_ON(atomic_read(&eb->refs) == 0);
4191 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4192 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
4193
4194 if (!was_dirty) {
4195 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4196
4197 /*
4198 * For subpage case, we can have other extent buffers in the
4199 * same page, and in clear_subpage_extent_buffer_dirty() we
4200 * have to clear page dirty without subpage lock held.
4201 * This can cause race where our page gets dirty cleared after
4202 * we just set it.
4203 *
4204 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4205 * its page for other reasons, we can use page lock to prevent
4206 * the above race.
4207 */
4208 if (subpage)
4209 lock_page(folio_page(eb->folios[0], 0));
4210 for (int i = 0; i < num_folios; i++)
4211 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4212 eb->start, eb->len);
4213 if (subpage)
4214 unlock_page(folio_page(eb->folios[0], 0));
4215 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4216 eb->len,
4217 eb->fs_info->dirty_metadata_batch);
4218 }
4219#ifdef CONFIG_BTRFS_DEBUG
4220 for (int i = 0; i < num_folios; i++)
4221 ASSERT(folio_test_dirty(eb->folios[i]));
4222#endif
4223}
4224
4225void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4226{
4227 struct btrfs_fs_info *fs_info = eb->fs_info;
4228 int num_folios = num_extent_folios(eb);
4229
4230 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4231 for (int i = 0; i < num_folios; i++) {
4232 struct folio *folio = eb->folios[i];
4233
4234 if (!folio)
4235 continue;
4236
4237 /*
4238 * This is special handling for metadata subpage, as regular
4239 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4240 */
4241 if (fs_info->nodesize >= PAGE_SIZE)
4242 folio_clear_uptodate(folio);
4243 else
4244 btrfs_subpage_clear_uptodate(fs_info, folio,
4245 eb->start, eb->len);
4246 }
4247}
4248
4249void set_extent_buffer_uptodate(struct extent_buffer *eb)
4250{
4251 struct btrfs_fs_info *fs_info = eb->fs_info;
4252 int num_folios = num_extent_folios(eb);
4253
4254 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4255 for (int i = 0; i < num_folios; i++) {
4256 struct folio *folio = eb->folios[i];
4257
4258 /*
4259 * This is special handling for metadata subpage, as regular
4260 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4261 */
4262 if (fs_info->nodesize >= PAGE_SIZE)
4263 folio_mark_uptodate(folio);
4264 else
4265 btrfs_subpage_set_uptodate(fs_info, folio,
4266 eb->start, eb->len);
4267 }
4268}
4269
4270static void end_bbio_meta_read(struct btrfs_bio *bbio)
4271{
4272 struct extent_buffer *eb = bbio->private;
4273 struct btrfs_fs_info *fs_info = eb->fs_info;
4274 bool uptodate = !bbio->bio.bi_status;
4275 struct folio_iter fi;
4276 u32 bio_offset = 0;
4277
4278 eb->read_mirror = bbio->mirror_num;
4279
4280 if (uptodate &&
4281 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4282 uptodate = false;
4283
4284 if (uptodate) {
4285 set_extent_buffer_uptodate(eb);
4286 } else {
4287 clear_extent_buffer_uptodate(eb);
4288 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4289 }
4290
4291 bio_for_each_folio_all(fi, &bbio->bio) {
4292 struct folio *folio = fi.folio;
4293 u64 start = eb->start + bio_offset;
4294 u32 len = fi.length;
4295
4296 if (uptodate)
4297 btrfs_folio_set_uptodate(fs_info, folio, start, len);
4298 else
4299 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4300
4301 bio_offset += len;
4302 }
4303
4304 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4305 smp_mb__after_atomic();
4306 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4307 free_extent_buffer(eb);
4308
4309 bio_put(&bbio->bio);
4310}
4311
4312int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4313 struct btrfs_tree_parent_check *check)
4314{
4315 struct btrfs_bio *bbio;
4316 bool ret;
4317
4318 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4319 return 0;
4320
4321 /*
4322 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4323 * operation, which could potentially still be in flight. In this case
4324 * we simply want to return an error.
4325 */
4326 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4327 return -EIO;
4328
4329 /* Someone else is already reading the buffer, just wait for it. */
4330 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4331 goto done;
4332
4333 /*
4334 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
4335 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
4336 * started and finished reading the same eb. In this case, UPTODATE
4337 * will now be set, and we shouldn't read it in again.
4338 */
4339 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
4340 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4341 smp_mb__after_atomic();
4342 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4343 return 0;
4344 }
4345
4346 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4347 eb->read_mirror = 0;
4348 check_buffer_tree_ref(eb);
4349 atomic_inc(&eb->refs);
4350
4351 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4352 REQ_OP_READ | REQ_META, eb->fs_info,
4353 end_bbio_meta_read, eb);
4354 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4355 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4356 bbio->file_offset = eb->start;
4357 memcpy(&bbio->parent_check, check, sizeof(*check));
4358 if (eb->fs_info->nodesize < PAGE_SIZE) {
4359 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4360 eb->start - folio_pos(eb->folios[0]));
4361 ASSERT(ret);
4362 } else {
4363 int num_folios = num_extent_folios(eb);
4364
4365 for (int i = 0; i < num_folios; i++) {
4366 struct folio *folio = eb->folios[i];
4367
4368 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
4369 ASSERT(ret);
4370 }
4371 }
4372 btrfs_submit_bio(bbio, mirror_num);
4373
4374done:
4375 if (wait == WAIT_COMPLETE) {
4376 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4377 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4378 return -EIO;
4379 }
4380
4381 return 0;
4382}
4383
4384static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4385 unsigned long len)
4386{
4387 btrfs_warn(eb->fs_info,
4388 "access to eb bytenr %llu len %u out of range start %lu len %lu",
4389 eb->start, eb->len, start, len);
4390 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4391
4392 return true;
4393}
4394
4395/*
4396 * Check if the [start, start + len) range is valid before reading/writing
4397 * the eb.
4398 * NOTE: @start and @len are offset inside the eb, not logical address.
4399 *
4400 * Caller should not touch the dst/src memory if this function returns error.
4401 */
4402static inline int check_eb_range(const struct extent_buffer *eb,
4403 unsigned long start, unsigned long len)
4404{
4405 unsigned long offset;
4406
4407 /* start, start + len should not go beyond eb->len nor overflow */
4408 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4409 return report_eb_range(eb, start, len);
4410
4411 return false;
4412}
4413
4414void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4415 unsigned long start, unsigned long len)
4416{
4417 const int unit_size = eb->folio_size;
4418 size_t cur;
4419 size_t offset;
4420 char *dst = (char *)dstv;
4421 unsigned long i = get_eb_folio_index(eb, start);
4422
4423 if (check_eb_range(eb, start, len)) {
4424 /*
4425 * Invalid range hit, reset the memory, so callers won't get
4426 * some random garbage for their uninitialized memory.
4427 */
4428 memset(dstv, 0, len);
4429 return;
4430 }
4431
4432 if (eb->addr) {
4433 memcpy(dstv, eb->addr + start, len);
4434 return;
4435 }
4436
4437 offset = get_eb_offset_in_folio(eb, start);
4438
4439 while (len > 0) {
4440 char *kaddr;
4441
4442 cur = min(len, unit_size - offset);
4443 kaddr = folio_address(eb->folios[i]);
4444 memcpy(dst, kaddr + offset, cur);
4445
4446 dst += cur;
4447 len -= cur;
4448 offset = 0;
4449 i++;
4450 }
4451}
4452
4453int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4454 void __user *dstv,
4455 unsigned long start, unsigned long len)
4456{
4457 const int unit_size = eb->folio_size;
4458 size_t cur;
4459 size_t offset;
4460 char __user *dst = (char __user *)dstv;
4461 unsigned long i = get_eb_folio_index(eb, start);
4462 int ret = 0;
4463
4464 WARN_ON(start > eb->len);
4465 WARN_ON(start + len > eb->start + eb->len);
4466
4467 if (eb->addr) {
4468 if (copy_to_user_nofault(dstv, eb->addr + start, len))
4469 ret = -EFAULT;
4470 return ret;
4471 }
4472
4473 offset = get_eb_offset_in_folio(eb, start);
4474
4475 while (len > 0) {
4476 char *kaddr;
4477
4478 cur = min(len, unit_size - offset);
4479 kaddr = folio_address(eb->folios[i]);
4480 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4481 ret = -EFAULT;
4482 break;
4483 }
4484
4485 dst += cur;
4486 len -= cur;
4487 offset = 0;
4488 i++;
4489 }
4490
4491 return ret;
4492}
4493
4494int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4495 unsigned long start, unsigned long len)
4496{
4497 const int unit_size = eb->folio_size;
4498 size_t cur;
4499 size_t offset;
4500 char *kaddr;
4501 char *ptr = (char *)ptrv;
4502 unsigned long i = get_eb_folio_index(eb, start);
4503 int ret = 0;
4504
4505 if (check_eb_range(eb, start, len))
4506 return -EINVAL;
4507
4508 if (eb->addr)
4509 return memcmp(ptrv, eb->addr + start, len);
4510
4511 offset = get_eb_offset_in_folio(eb, start);
4512
4513 while (len > 0) {
4514 cur = min(len, unit_size - offset);
4515 kaddr = folio_address(eb->folios[i]);
4516 ret = memcmp(ptr, kaddr + offset, cur);
4517 if (ret)
4518 break;
4519
4520 ptr += cur;
4521 len -= cur;
4522 offset = 0;
4523 i++;
4524 }
4525 return ret;
4526}
4527
4528/*
4529 * Check that the extent buffer is uptodate.
4530 *
4531 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4532 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4533 */
4534static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4535{
4536 struct btrfs_fs_info *fs_info = eb->fs_info;
4537 struct folio *folio = eb->folios[i];
4538
4539 ASSERT(folio);
4540
4541 /*
4542 * If we are using the commit root we could potentially clear a page
4543 * Uptodate while we're using the extent buffer that we've previously
4544 * looked up. We don't want to complain in this case, as the page was
4545 * valid before, we just didn't write it out. Instead we want to catch
4546 * the case where we didn't actually read the block properly, which
4547 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4548 */
4549 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4550 return;
4551
4552 if (fs_info->nodesize < PAGE_SIZE) {
4553 struct folio *folio = eb->folios[0];
4554
4555 ASSERT(i == 0);
4556 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4557 eb->start, eb->len)))
4558 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4559 } else {
4560 WARN_ON(!folio_test_uptodate(folio));
4561 }
4562}
4563
4564static void __write_extent_buffer(const struct extent_buffer *eb,
4565 const void *srcv, unsigned long start,
4566 unsigned long len, bool use_memmove)
4567{
4568 const int unit_size = eb->folio_size;
4569 size_t cur;
4570 size_t offset;
4571 char *kaddr;
4572 char *src = (char *)srcv;
4573 unsigned long i = get_eb_folio_index(eb, start);
4574 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4575 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4576
4577 if (check_eb_range(eb, start, len))
4578 return;
4579
4580 if (eb->addr) {
4581 if (use_memmove)
4582 memmove(eb->addr + start, srcv, len);
4583 else
4584 memcpy(eb->addr + start, srcv, len);
4585 return;
4586 }
4587
4588 offset = get_eb_offset_in_folio(eb, start);
4589
4590 while (len > 0) {
4591 if (check_uptodate)
4592 assert_eb_folio_uptodate(eb, i);
4593
4594 cur = min(len, unit_size - offset);
4595 kaddr = folio_address(eb->folios[i]);
4596 if (use_memmove)
4597 memmove(kaddr + offset, src, cur);
4598 else
4599 memcpy(kaddr + offset, src, cur);
4600
4601 src += cur;
4602 len -= cur;
4603 offset = 0;
4604 i++;
4605 }
4606}
4607
4608void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4609 unsigned long start, unsigned long len)
4610{
4611 return __write_extent_buffer(eb, srcv, start, len, false);
4612}
4613
4614static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4615 unsigned long start, unsigned long len)
4616{
4617 const int unit_size = eb->folio_size;
4618 unsigned long cur = start;
4619
4620 if (eb->addr) {
4621 memset(eb->addr + start, c, len);
4622 return;
4623 }
4624
4625 while (cur < start + len) {
4626 unsigned long index = get_eb_folio_index(eb, cur);
4627 unsigned int offset = get_eb_offset_in_folio(eb, cur);
4628 unsigned int cur_len = min(start + len - cur, unit_size - offset);
4629
4630 assert_eb_folio_uptodate(eb, index);
4631 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4632
4633 cur += cur_len;
4634 }
4635}
4636
4637void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4638 unsigned long len)
4639{
4640 if (check_eb_range(eb, start, len))
4641 return;
4642 return memset_extent_buffer(eb, 0, start, len);
4643}
4644
4645void copy_extent_buffer_full(const struct extent_buffer *dst,
4646 const struct extent_buffer *src)
4647{
4648 const int unit_size = src->folio_size;
4649 unsigned long cur = 0;
4650
4651 ASSERT(dst->len == src->len);
4652
4653 while (cur < src->len) {
4654 unsigned long index = get_eb_folio_index(src, cur);
4655 unsigned long offset = get_eb_offset_in_folio(src, cur);
4656 unsigned long cur_len = min(src->len, unit_size - offset);
4657 void *addr = folio_address(src->folios[index]) + offset;
4658
4659 write_extent_buffer(dst, addr, cur, cur_len);
4660
4661 cur += cur_len;
4662 }
4663}
4664
4665void copy_extent_buffer(const struct extent_buffer *dst,
4666 const struct extent_buffer *src,
4667 unsigned long dst_offset, unsigned long src_offset,
4668 unsigned long len)
4669{
4670 const int unit_size = dst->folio_size;
4671 u64 dst_len = dst->len;
4672 size_t cur;
4673 size_t offset;
4674 char *kaddr;
4675 unsigned long i = get_eb_folio_index(dst, dst_offset);
4676
4677 if (check_eb_range(dst, dst_offset, len) ||
4678 check_eb_range(src, src_offset, len))
4679 return;
4680
4681 WARN_ON(src->len != dst_len);
4682
4683 offset = get_eb_offset_in_folio(dst, dst_offset);
4684
4685 while (len > 0) {
4686 assert_eb_folio_uptodate(dst, i);
4687
4688 cur = min(len, (unsigned long)(unit_size - offset));
4689
4690 kaddr = folio_address(dst->folios[i]);
4691 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4692
4693 src_offset += cur;
4694 len -= cur;
4695 offset = 0;
4696 i++;
4697 }
4698}
4699
4700/*
4701 * Calculate the folio and offset of the byte containing the given bit number.
4702 *
4703 * @eb: the extent buffer
4704 * @start: offset of the bitmap item in the extent buffer
4705 * @nr: bit number
4706 * @folio_index: return index of the folio in the extent buffer that contains
4707 * the given bit number
4708 * @folio_offset: return offset into the folio given by folio_index
4709 *
4710 * This helper hides the ugliness of finding the byte in an extent buffer which
4711 * contains a given bit.
4712 */
4713static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4714 unsigned long start, unsigned long nr,
4715 unsigned long *folio_index,
4716 size_t *folio_offset)
4717{
4718 size_t byte_offset = BIT_BYTE(nr);
4719 size_t offset;
4720
4721 /*
4722 * The byte we want is the offset of the extent buffer + the offset of
4723 * the bitmap item in the extent buffer + the offset of the byte in the
4724 * bitmap item.
4725 */
4726 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4727
4728 *folio_index = offset >> eb->folio_shift;
4729 *folio_offset = offset_in_eb_folio(eb, offset);
4730}
4731
4732/*
4733 * Determine whether a bit in a bitmap item is set.
4734 *
4735 * @eb: the extent buffer
4736 * @start: offset of the bitmap item in the extent buffer
4737 * @nr: bit number to test
4738 */
4739int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4740 unsigned long nr)
4741{
4742 unsigned long i;
4743 size_t offset;
4744 u8 *kaddr;
4745
4746 eb_bitmap_offset(eb, start, nr, &i, &offset);
4747 assert_eb_folio_uptodate(eb, i);
4748 kaddr = folio_address(eb->folios[i]);
4749 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4750}
4751
4752static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4753{
4754 unsigned long index = get_eb_folio_index(eb, bytenr);
4755
4756 if (check_eb_range(eb, bytenr, 1))
4757 return NULL;
4758 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4759}
4760
4761/*
4762 * Set an area of a bitmap to 1.
4763 *
4764 * @eb: the extent buffer
4765 * @start: offset of the bitmap item in the extent buffer
4766 * @pos: bit number of the first bit
4767 * @len: number of bits to set
4768 */
4769void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4770 unsigned long pos, unsigned long len)
4771{
4772 unsigned int first_byte = start + BIT_BYTE(pos);
4773 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4774 const bool same_byte = (first_byte == last_byte);
4775 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4776 u8 *kaddr;
4777
4778 if (same_byte)
4779 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4780
4781 /* Handle the first byte. */
4782 kaddr = extent_buffer_get_byte(eb, first_byte);
4783 *kaddr |= mask;
4784 if (same_byte)
4785 return;
4786
4787 /* Handle the byte aligned part. */
4788 ASSERT(first_byte + 1 <= last_byte);
4789 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4790
4791 /* Handle the last byte. */
4792 kaddr = extent_buffer_get_byte(eb, last_byte);
4793 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4794}
4795
4796
4797/*
4798 * Clear an area of a bitmap.
4799 *
4800 * @eb: the extent buffer
4801 * @start: offset of the bitmap item in the extent buffer
4802 * @pos: bit number of the first bit
4803 * @len: number of bits to clear
4804 */
4805void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4806 unsigned long start, unsigned long pos,
4807 unsigned long len)
4808{
4809 unsigned int first_byte = start + BIT_BYTE(pos);
4810 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4811 const bool same_byte = (first_byte == last_byte);
4812 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4813 u8 *kaddr;
4814
4815 if (same_byte)
4816 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4817
4818 /* Handle the first byte. */
4819 kaddr = extent_buffer_get_byte(eb, first_byte);
4820 *kaddr &= ~mask;
4821 if (same_byte)
4822 return;
4823
4824 /* Handle the byte aligned part. */
4825 ASSERT(first_byte + 1 <= last_byte);
4826 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4827
4828 /* Handle the last byte. */
4829 kaddr = extent_buffer_get_byte(eb, last_byte);
4830 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4831}
4832
4833static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4834{
4835 unsigned long distance = (src > dst) ? src - dst : dst - src;
4836 return distance < len;
4837}
4838
4839void memcpy_extent_buffer(const struct extent_buffer *dst,
4840 unsigned long dst_offset, unsigned long src_offset,
4841 unsigned long len)
4842{
4843 const int unit_size = dst->folio_size;
4844 unsigned long cur_off = 0;
4845
4846 if (check_eb_range(dst, dst_offset, len) ||
4847 check_eb_range(dst, src_offset, len))
4848 return;
4849
4850 if (dst->addr) {
4851 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4852
4853 if (use_memmove)
4854 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4855 else
4856 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4857 return;
4858 }
4859
4860 while (cur_off < len) {
4861 unsigned long cur_src = cur_off + src_offset;
4862 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4863 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4864 unsigned long cur_len = min(src_offset + len - cur_src,
4865 unit_size - folio_off);
4866 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4867 const bool use_memmove = areas_overlap(src_offset + cur_off,
4868 dst_offset + cur_off, cur_len);
4869
4870 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4871 use_memmove);
4872 cur_off += cur_len;
4873 }
4874}
4875
4876void memmove_extent_buffer(const struct extent_buffer *dst,
4877 unsigned long dst_offset, unsigned long src_offset,
4878 unsigned long len)
4879{
4880 unsigned long dst_end = dst_offset + len - 1;
4881 unsigned long src_end = src_offset + len - 1;
4882
4883 if (check_eb_range(dst, dst_offset, len) ||
4884 check_eb_range(dst, src_offset, len))
4885 return;
4886
4887 if (dst_offset < src_offset) {
4888 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4889 return;
4890 }
4891
4892 if (dst->addr) {
4893 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4894 return;
4895 }
4896
4897 while (len > 0) {
4898 unsigned long src_i;
4899 size_t cur;
4900 size_t dst_off_in_folio;
4901 size_t src_off_in_folio;
4902 void *src_addr;
4903 bool use_memmove;
4904
4905 src_i = get_eb_folio_index(dst, src_end);
4906
4907 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4908 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4909
4910 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4911 cur = min(cur, dst_off_in_folio + 1);
4912
4913 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4914 cur + 1;
4915 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4916 cur);
4917
4918 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4919 use_memmove);
4920
4921 dst_end -= cur;
4922 src_end -= cur;
4923 len -= cur;
4924 }
4925}
4926
4927#define GANG_LOOKUP_SIZE 16
4928static struct extent_buffer *get_next_extent_buffer(
4929 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4930{
4931 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4932 struct extent_buffer *found = NULL;
4933 u64 page_start = page_offset(page);
4934 u64 cur = page_start;
4935
4936 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4937 lockdep_assert_held(&fs_info->buffer_lock);
4938
4939 while (cur < page_start + PAGE_SIZE) {
4940 int ret;
4941 int i;
4942
4943 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4944 (void **)gang, cur >> fs_info->sectorsize_bits,
4945 min_t(unsigned int, GANG_LOOKUP_SIZE,
4946 PAGE_SIZE / fs_info->nodesize));
4947 if (ret == 0)
4948 goto out;
4949 for (i = 0; i < ret; i++) {
4950 /* Already beyond page end */
4951 if (gang[i]->start >= page_start + PAGE_SIZE)
4952 goto out;
4953 /* Found one */
4954 if (gang[i]->start >= bytenr) {
4955 found = gang[i];
4956 goto out;
4957 }
4958 }
4959 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4960 }
4961out:
4962 return found;
4963}
4964
4965static int try_release_subpage_extent_buffer(struct page *page)
4966{
4967 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
4968 u64 cur = page_offset(page);
4969 const u64 end = page_offset(page) + PAGE_SIZE;
4970 int ret;
4971
4972 while (cur < end) {
4973 struct extent_buffer *eb = NULL;
4974
4975 /*
4976 * Unlike try_release_extent_buffer() which uses folio private
4977 * to grab buffer, for subpage case we rely on radix tree, thus
4978 * we need to ensure radix tree consistency.
4979 *
4980 * We also want an atomic snapshot of the radix tree, thus go
4981 * with spinlock rather than RCU.
4982 */
4983 spin_lock(&fs_info->buffer_lock);
4984 eb = get_next_extent_buffer(fs_info, page, cur);
4985 if (!eb) {
4986 /* No more eb in the page range after or at cur */
4987 spin_unlock(&fs_info->buffer_lock);
4988 break;
4989 }
4990 cur = eb->start + eb->len;
4991
4992 /*
4993 * The same as try_release_extent_buffer(), to ensure the eb
4994 * won't disappear out from under us.
4995 */
4996 spin_lock(&eb->refs_lock);
4997 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4998 spin_unlock(&eb->refs_lock);
4999 spin_unlock(&fs_info->buffer_lock);
5000 break;
5001 }
5002 spin_unlock(&fs_info->buffer_lock);
5003
5004 /*
5005 * If tree ref isn't set then we know the ref on this eb is a
5006 * real ref, so just return, this eb will likely be freed soon
5007 * anyway.
5008 */
5009 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5010 spin_unlock(&eb->refs_lock);
5011 break;
5012 }
5013
5014 /*
5015 * Here we don't care about the return value, we will always
5016 * check the folio private at the end. And
5017 * release_extent_buffer() will release the refs_lock.
5018 */
5019 release_extent_buffer(eb);
5020 }
5021 /*
5022 * Finally to check if we have cleared folio private, as if we have
5023 * released all ebs in the page, the folio private should be cleared now.
5024 */
5025 spin_lock(&page->mapping->i_private_lock);
5026 if (!folio_test_private(page_folio(page)))
5027 ret = 1;
5028 else
5029 ret = 0;
5030 spin_unlock(&page->mapping->i_private_lock);
5031 return ret;
5032
5033}
5034
5035int try_release_extent_buffer(struct page *page)
5036{
5037 struct folio *folio = page_folio(page);
5038 struct extent_buffer *eb;
5039
5040 if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
5041 return try_release_subpage_extent_buffer(page);
5042
5043 /*
5044 * We need to make sure nobody is changing folio private, as we rely on
5045 * folio private as the pointer to extent buffer.
5046 */
5047 spin_lock(&page->mapping->i_private_lock);
5048 if (!folio_test_private(folio)) {
5049 spin_unlock(&page->mapping->i_private_lock);
5050 return 1;
5051 }
5052
5053 eb = folio_get_private(folio);
5054 BUG_ON(!eb);
5055
5056 /*
5057 * This is a little awful but should be ok, we need to make sure that
5058 * the eb doesn't disappear out from under us while we're looking at
5059 * this page.
5060 */
5061 spin_lock(&eb->refs_lock);
5062 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5063 spin_unlock(&eb->refs_lock);
5064 spin_unlock(&page->mapping->i_private_lock);
5065 return 0;
5066 }
5067 spin_unlock(&page->mapping->i_private_lock);
5068
5069 /*
5070 * If tree ref isn't set then we know the ref on this eb is a real ref,
5071 * so just return, this page will likely be freed soon anyway.
5072 */
5073 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5074 spin_unlock(&eb->refs_lock);
5075 return 0;
5076 }
5077
5078 return release_extent_buffer(eb);
5079}
5080
5081/*
5082 * Attempt to readahead a child block.
5083 *
5084 * @fs_info: the fs_info
5085 * @bytenr: bytenr to read
5086 * @owner_root: objectid of the root that owns this eb
5087 * @gen: generation for the uptodate check, can be 0
5088 * @level: level for the eb
5089 *
5090 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
5091 * normal uptodate check of the eb, without checking the generation. If we have
5092 * to read the block we will not block on anything.
5093 */
5094void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5095 u64 bytenr, u64 owner_root, u64 gen, int level)
5096{
5097 struct btrfs_tree_parent_check check = {
5098 .has_first_key = 0,
5099 .level = level,
5100 .transid = gen
5101 };
5102 struct extent_buffer *eb;
5103 int ret;
5104
5105 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5106 if (IS_ERR(eb))
5107 return;
5108
5109 if (btrfs_buffer_uptodate(eb, gen, 1)) {
5110 free_extent_buffer(eb);
5111 return;
5112 }
5113
5114 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5115 if (ret < 0)
5116 free_extent_buffer_stale(eb);
5117 else
5118 free_extent_buffer(eb);
5119}
5120
5121/*
5122 * Readahead a node's child block.
5123 *
5124 * @node: parent node we're reading from
5125 * @slot: slot in the parent node for the child we want to read
5126 *
5127 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5128 * the slot in the node provided.
5129 */
5130void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5131{
5132 btrfs_readahead_tree_block(node->fs_info,
5133 btrfs_node_blockptr(node, slot),
5134 btrfs_header_owner(node),
5135 btrfs_node_ptr_generation(node, slot),
5136 btrfs_header_level(node) - 1);
5137}