Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
 
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include "extent_io.h"
  17#include "extent_map.h"
 
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23#include "rcu-string.h"
  24#include "backref.h"
  25#include "disk-io.h"
  26
  27static struct kmem_cache *extent_state_cache;
  28static struct kmem_cache *extent_buffer_cache;
  29static struct bio_set btrfs_bioset;
  30
  31static inline bool extent_state_in_tree(const struct extent_state *state)
  32{
  33	return !RB_EMPTY_NODE(&state->rb_node);
  34}
  35
  36#ifdef CONFIG_BTRFS_DEBUG
  37static LIST_HEAD(buffers);
  38static LIST_HEAD(states);
  39
 
 
  40static DEFINE_SPINLOCK(leak_lock);
  41
  42static inline
  43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  44{
  45	unsigned long flags;
  46
  47	spin_lock_irqsave(&leak_lock, flags);
  48	list_add(new, head);
  49	spin_unlock_irqrestore(&leak_lock, flags);
  50}
  51
  52static inline
  53void btrfs_leak_debug_del(struct list_head *entry)
  54{
  55	unsigned long flags;
  56
  57	spin_lock_irqsave(&leak_lock, flags);
  58	list_del(entry);
  59	spin_unlock_irqrestore(&leak_lock, flags);
  60}
  61
  62static inline
  63void btrfs_leak_debug_check(void)
  64{
  65	struct extent_state *state;
  66	struct extent_buffer *eb;
  67
  68	while (!list_empty(&states)) {
  69		state = list_entry(states.next, struct extent_state, leak_list);
  70		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  71		       state->start, state->end, state->state,
  72		       extent_state_in_tree(state),
  73		       refcount_read(&state->refs));
  74		list_del(&state->leak_list);
  75		kmem_cache_free(extent_state_cache, state);
  76	}
  77
  78	while (!list_empty(&buffers)) {
  79		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  80		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
  81		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
  82		list_del(&eb->leak_list);
  83		kmem_cache_free(extent_buffer_cache, eb);
  84	}
  85}
  86
  87#define btrfs_debug_check_extent_io_range(tree, start, end)		\
  88	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  90		struct extent_io_tree *tree, u64 start, u64 end)
  91{
  92	struct inode *inode = tree->private_data;
  93	u64 isize;
  94
  95	if (!inode || !is_data_inode(inode))
  96		return;
  97
  98	isize = i_size_read(inode);
  99	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 100		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 101		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 102			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
 103	}
 104}
 105#else
 106#define btrfs_leak_debug_add(new, head)	do {} while (0)
 107#define btrfs_leak_debug_del(entry)	do {} while (0)
 108#define btrfs_leak_debug_check()	do {} while (0)
 109#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 110#endif
 111
 
 
 112struct tree_entry {
 113	u64 start;
 114	u64 end;
 115	struct rb_node rb_node;
 116};
 117
 118struct extent_page_data {
 119	struct bio *bio;
 120	struct extent_io_tree *tree;
 
 
 121	/* tells writepage not to lock the state bits for this range
 122	 * it still does the unlocking
 123	 */
 124	unsigned int extent_locked:1;
 125
 126	/* tells the submit_bio code to use REQ_SYNC */
 127	unsigned int sync_io:1;
 128};
 129
 130static int add_extent_changeset(struct extent_state *state, unsigned bits,
 131				 struct extent_changeset *changeset,
 132				 int set)
 133{
 134	int ret;
 135
 136	if (!changeset)
 137		return 0;
 138	if (set && (state->state & bits) == bits)
 139		return 0;
 140	if (!set && (state->state & bits) == 0)
 141		return 0;
 142	changeset->bytes_changed += state->end - state->start + 1;
 143	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 144			GFP_ATOMIC);
 145	return ret;
 146}
 147
 148static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
 149				       unsigned long bio_flags)
 150{
 151	blk_status_t ret = 0;
 152	struct extent_io_tree *tree = bio->bi_private;
 153
 154	bio->bi_private = NULL;
 155
 156	if (tree->ops)
 157		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
 158						 mirror_num, bio_flags);
 159	else
 160		btrfsic_submit_bio(bio);
 161
 162	return blk_status_to_errno(ret);
 163}
 164
 165/* Cleanup unsubmitted bios */
 166static void end_write_bio(struct extent_page_data *epd, int ret)
 167{
 168	if (epd->bio) {
 169		epd->bio->bi_status = errno_to_blk_status(ret);
 170		bio_endio(epd->bio);
 171		epd->bio = NULL;
 172	}
 173}
 174
 175/*
 176 * Submit bio from extent page data via submit_one_bio
 177 *
 178 * Return 0 if everything is OK.
 179 * Return <0 for error.
 180 */
 181static int __must_check flush_write_bio(struct extent_page_data *epd)
 182{
 183	int ret = 0;
 184
 185	if (epd->bio) {
 186		ret = submit_one_bio(epd->bio, 0, 0);
 187		/*
 188		 * Clean up of epd->bio is handled by its endio function.
 189		 * And endio is either triggered by successful bio execution
 190		 * or the error handler of submit bio hook.
 191		 * So at this point, no matter what happened, we don't need
 192		 * to clean up epd->bio.
 193		 */
 194		epd->bio = NULL;
 195	}
 196	return ret;
 197}
 198
 199int __init extent_io_init(void)
 200{
 201	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 202			sizeof(struct extent_state), 0,
 203			SLAB_MEM_SPREAD, NULL);
 204	if (!extent_state_cache)
 205		return -ENOMEM;
 206
 207	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 208			sizeof(struct extent_buffer), 0,
 209			SLAB_MEM_SPREAD, NULL);
 210	if (!extent_buffer_cache)
 211		goto free_state_cache;
 212
 213	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 214			offsetof(struct btrfs_io_bio, bio),
 215			BIOSET_NEED_BVECS))
 216		goto free_buffer_cache;
 217
 218	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 219		goto free_bioset;
 220
 221	return 0;
 222
 223free_bioset:
 224	bioset_exit(&btrfs_bioset);
 225
 226free_buffer_cache:
 227	kmem_cache_destroy(extent_buffer_cache);
 228	extent_buffer_cache = NULL;
 229
 230free_state_cache:
 231	kmem_cache_destroy(extent_state_cache);
 232	extent_state_cache = NULL;
 233	return -ENOMEM;
 234}
 235
 236void __cold extent_io_exit(void)
 237{
 238	btrfs_leak_debug_check();
 
 239
 240	/*
 241	 * Make sure all delayed rcu free are flushed before we
 242	 * destroy caches.
 243	 */
 244	rcu_barrier();
 245	kmem_cache_destroy(extent_state_cache);
 246	kmem_cache_destroy(extent_buffer_cache);
 247	bioset_exit(&btrfs_bioset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248}
 249
 250void extent_io_tree_init(struct btrfs_fs_info *fs_info,
 251			 struct extent_io_tree *tree, unsigned int owner,
 252			 void *private_data)
 253{
 254	tree->fs_info = fs_info;
 255	tree->state = RB_ROOT;
 
 256	tree->ops = NULL;
 257	tree->dirty_bytes = 0;
 258	spin_lock_init(&tree->lock);
 259	tree->private_data = private_data;
 260	tree->owner = owner;
 261}
 262
 263void extent_io_tree_release(struct extent_io_tree *tree)
 264{
 265	spin_lock(&tree->lock);
 266	/*
 267	 * Do a single barrier for the waitqueue_active check here, the state
 268	 * of the waitqueue should not change once extent_io_tree_release is
 269	 * called.
 270	 */
 271	smp_mb();
 272	while (!RB_EMPTY_ROOT(&tree->state)) {
 273		struct rb_node *node;
 274		struct extent_state *state;
 275
 276		node = rb_first(&tree->state);
 277		state = rb_entry(node, struct extent_state, rb_node);
 278		rb_erase(&state->rb_node, &tree->state);
 279		RB_CLEAR_NODE(&state->rb_node);
 280		/*
 281		 * btree io trees aren't supposed to have tasks waiting for
 282		 * changes in the flags of extent states ever.
 283		 */
 284		ASSERT(!waitqueue_active(&state->wq));
 285		free_extent_state(state);
 286
 287		cond_resched_lock(&tree->lock);
 288	}
 289	spin_unlock(&tree->lock);
 290}
 291
 292static struct extent_state *alloc_extent_state(gfp_t mask)
 293{
 294	struct extent_state *state;
 
 
 
 295
 296	/*
 297	 * The given mask might be not appropriate for the slab allocator,
 298	 * drop the unsupported bits
 299	 */
 300	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 301	state = kmem_cache_alloc(extent_state_cache, mask);
 302	if (!state)
 303		return state;
 304	state->state = 0;
 305	state->failrec = NULL;
 306	RB_CLEAR_NODE(&state->rb_node);
 307	btrfs_leak_debug_add(&state->leak_list, &states);
 308	refcount_set(&state->refs, 1);
 
 
 
 
 309	init_waitqueue_head(&state->wq);
 310	trace_alloc_extent_state(state, mask, _RET_IP_);
 311	return state;
 312}
 313
 314void free_extent_state(struct extent_state *state)
 315{
 316	if (!state)
 317		return;
 318	if (refcount_dec_and_test(&state->refs)) {
 319		WARN_ON(extent_state_in_tree(state));
 320		btrfs_leak_debug_del(&state->leak_list);
 
 
 
 
 
 
 
 321		trace_free_extent_state(state, _RET_IP_);
 322		kmem_cache_free(extent_state_cache, state);
 323	}
 324}
 325
 326static struct rb_node *tree_insert(struct rb_root *root,
 327				   struct rb_node *search_start,
 328				   u64 offset,
 329				   struct rb_node *node,
 330				   struct rb_node ***p_in,
 331				   struct rb_node **parent_in)
 332{
 333	struct rb_node **p;
 334	struct rb_node *parent = NULL;
 335	struct tree_entry *entry;
 336
 337	if (p_in && parent_in) {
 338		p = *p_in;
 339		parent = *parent_in;
 340		goto do_insert;
 341	}
 342
 343	p = search_start ? &search_start : &root->rb_node;
 344	while (*p) {
 345		parent = *p;
 346		entry = rb_entry(parent, struct tree_entry, rb_node);
 347
 348		if (offset < entry->start)
 349			p = &(*p)->rb_left;
 350		else if (offset > entry->end)
 351			p = &(*p)->rb_right;
 352		else
 353			return parent;
 354	}
 355
 356do_insert:
 357	rb_link_node(node, parent, p);
 358	rb_insert_color(node, root);
 359	return NULL;
 360}
 361
 362/**
 363 * __etree_search - searche @tree for an entry that contains @offset. Such
 364 * entry would have entry->start <= offset && entry->end >= offset.
 365 *
 366 * @tree - the tree to search
 367 * @offset - offset that should fall within an entry in @tree
 368 * @next_ret - pointer to the first entry whose range ends after @offset
 369 * @prev - pointer to the first entry whose range begins before @offset
 370 * @p_ret - pointer where new node should be anchored (used when inserting an
 371 *	    entry in the tree)
 372 * @parent_ret - points to entry which would have been the parent of the entry,
 373 *               containing @offset
 374 *
 375 * This function returns a pointer to the entry that contains @offset byte
 376 * address. If no such entry exists, then NULL is returned and the other
 377 * pointer arguments to the function are filled, otherwise the found entry is
 378 * returned and other pointers are left untouched.
 379 */
 380static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 381				      struct rb_node **next_ret,
 382				      struct rb_node **prev_ret,
 383				      struct rb_node ***p_ret,
 384				      struct rb_node **parent_ret)
 385{
 386	struct rb_root *root = &tree->state;
 387	struct rb_node **n = &root->rb_node;
 388	struct rb_node *prev = NULL;
 389	struct rb_node *orig_prev = NULL;
 390	struct tree_entry *entry;
 391	struct tree_entry *prev_entry = NULL;
 392
 393	while (*n) {
 394		prev = *n;
 395		entry = rb_entry(prev, struct tree_entry, rb_node);
 396		prev_entry = entry;
 397
 398		if (offset < entry->start)
 399			n = &(*n)->rb_left;
 400		else if (offset > entry->end)
 401			n = &(*n)->rb_right;
 402		else
 403			return *n;
 404	}
 405
 406	if (p_ret)
 407		*p_ret = n;
 408	if (parent_ret)
 409		*parent_ret = prev;
 410
 411	if (next_ret) {
 412		orig_prev = prev;
 413		while (prev && offset > prev_entry->end) {
 414			prev = rb_next(prev);
 415			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 416		}
 417		*next_ret = prev;
 418		prev = orig_prev;
 419	}
 420
 421	if (prev_ret) {
 422		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 423		while (prev && offset < prev_entry->start) {
 424			prev = rb_prev(prev);
 425			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 426		}
 427		*prev_ret = prev;
 428	}
 429	return NULL;
 430}
 431
 432static inline struct rb_node *
 433tree_search_for_insert(struct extent_io_tree *tree,
 434		       u64 offset,
 435		       struct rb_node ***p_ret,
 436		       struct rb_node **parent_ret)
 437{
 438	struct rb_node *next= NULL;
 439	struct rb_node *ret;
 440
 441	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
 442	if (!ret)
 443		return next;
 444	return ret;
 445}
 446
 447static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 448					  u64 offset)
 449{
 450	return tree_search_for_insert(tree, offset, NULL, NULL);
 
 
 451}
 452
 453/*
 454 * utility function to look for merge candidates inside a given range.
 455 * Any extents with matching state are merged together into a single
 456 * extent in the tree.  Extents with EXTENT_IO in their state field
 457 * are not merged because the end_io handlers need to be able to do
 458 * operations on them without sleeping (or doing allocations/splits).
 459 *
 460 * This should be called with the tree lock held.
 461 */
 462static void merge_state(struct extent_io_tree *tree,
 463		        struct extent_state *state)
 464{
 465	struct extent_state *other;
 466	struct rb_node *other_node;
 467
 468	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 469		return;
 470
 471	other_node = rb_prev(&state->rb_node);
 472	if (other_node) {
 473		other = rb_entry(other_node, struct extent_state, rb_node);
 474		if (other->end == state->start - 1 &&
 475		    other->state == state->state) {
 476			if (tree->private_data &&
 477			    is_data_inode(tree->private_data))
 478				btrfs_merge_delalloc_extent(tree->private_data,
 479							    state, other);
 480			state->start = other->start;
 
 481			rb_erase(&other->rb_node, &tree->state);
 482			RB_CLEAR_NODE(&other->rb_node);
 483			free_extent_state(other);
 484		}
 485	}
 486	other_node = rb_next(&state->rb_node);
 487	if (other_node) {
 488		other = rb_entry(other_node, struct extent_state, rb_node);
 489		if (other->start == state->end + 1 &&
 490		    other->state == state->state) {
 491			if (tree->private_data &&
 492			    is_data_inode(tree->private_data))
 493				btrfs_merge_delalloc_extent(tree->private_data,
 494							    state, other);
 495			state->end = other->end;
 
 496			rb_erase(&other->rb_node, &tree->state);
 497			RB_CLEAR_NODE(&other->rb_node);
 498			free_extent_state(other);
 499		}
 500	}
 501}
 502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503static void set_state_bits(struct extent_io_tree *tree,
 504			   struct extent_state *state, unsigned *bits,
 505			   struct extent_changeset *changeset);
 506
 507/*
 508 * insert an extent_state struct into the tree.  'bits' are set on the
 509 * struct before it is inserted.
 510 *
 511 * This may return -EEXIST if the extent is already there, in which case the
 512 * state struct is freed.
 513 *
 514 * The tree lock is not taken internally.  This is a utility function and
 515 * probably isn't what you want to call (see set/clear_extent_bit).
 516 */
 517static int insert_state(struct extent_io_tree *tree,
 518			struct extent_state *state, u64 start, u64 end,
 519			struct rb_node ***p,
 520			struct rb_node **parent,
 521			unsigned *bits, struct extent_changeset *changeset)
 522{
 523	struct rb_node *node;
 524
 525	if (end < start) {
 526		btrfs_err(tree->fs_info,
 527			"insert state: end < start %llu %llu", end, start);
 
 528		WARN_ON(1);
 529	}
 530	state->start = start;
 531	state->end = end;
 532
 533	set_state_bits(tree, state, bits, changeset);
 534
 535	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 536	if (node) {
 537		struct extent_state *found;
 538		found = rb_entry(node, struct extent_state, rb_node);
 539		btrfs_err(tree->fs_info,
 540		       "found node %llu %llu on insert of %llu %llu",
 541		       found->start, found->end, start, end);
 
 542		return -EEXIST;
 543	}
 
 544	merge_state(tree, state);
 545	return 0;
 546}
 547
 
 
 
 
 
 
 
 548/*
 549 * split a given extent state struct in two, inserting the preallocated
 550 * struct 'prealloc' as the newly created second half.  'split' indicates an
 551 * offset inside 'orig' where it should be split.
 552 *
 553 * Before calling,
 554 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 555 * are two extent state structs in the tree:
 556 * prealloc: [orig->start, split - 1]
 557 * orig: [ split, orig->end ]
 558 *
 559 * The tree locks are not taken by this function. They need to be held
 560 * by the caller.
 561 */
 562static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 563		       struct extent_state *prealloc, u64 split)
 564{
 565	struct rb_node *node;
 566
 567	if (tree->private_data && is_data_inode(tree->private_data))
 568		btrfs_split_delalloc_extent(tree->private_data, orig, split);
 569
 570	prealloc->start = orig->start;
 571	prealloc->end = split - 1;
 572	prealloc->state = orig->state;
 573	orig->start = split;
 574
 575	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 576			   &prealloc->rb_node, NULL, NULL);
 577	if (node) {
 578		free_extent_state(prealloc);
 579		return -EEXIST;
 580	}
 
 581	return 0;
 582}
 583
 584static struct extent_state *next_state(struct extent_state *state)
 585{
 586	struct rb_node *next = rb_next(&state->rb_node);
 587	if (next)
 588		return rb_entry(next, struct extent_state, rb_node);
 589	else
 590		return NULL;
 591}
 592
 593/*
 594 * utility function to clear some bits in an extent state struct.
 595 * it will optionally wake up anyone waiting on this state (wake == 1).
 596 *
 597 * If no bits are set on the state struct after clearing things, the
 598 * struct is freed and removed from the tree
 599 */
 600static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 601					    struct extent_state *state,
 602					    unsigned *bits, int wake,
 603					    struct extent_changeset *changeset)
 604{
 605	struct extent_state *next;
 606	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 607	int ret;
 608
 609	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 610		u64 range = state->end - state->start + 1;
 611		WARN_ON(range > tree->dirty_bytes);
 612		tree->dirty_bytes -= range;
 613	}
 614
 615	if (tree->private_data && is_data_inode(tree->private_data))
 616		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
 617
 618	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 619	BUG_ON(ret < 0);
 620	state->state &= ~bits_to_clear;
 621	if (wake)
 622		wake_up(&state->wq);
 623	if (state->state == 0) {
 624		next = next_state(state);
 625		if (extent_state_in_tree(state)) {
 626			rb_erase(&state->rb_node, &tree->state);
 627			RB_CLEAR_NODE(&state->rb_node);
 628			free_extent_state(state);
 629		} else {
 630			WARN_ON(1);
 631		}
 632	} else {
 633		merge_state(tree, state);
 634		next = next_state(state);
 635	}
 636	return next;
 637}
 638
 639static struct extent_state *
 640alloc_extent_state_atomic(struct extent_state *prealloc)
 641{
 642	if (!prealloc)
 643		prealloc = alloc_extent_state(GFP_ATOMIC);
 644
 645	return prealloc;
 646}
 647
 648static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 649{
 650	struct inode *inode = tree->private_data;
 651
 652	btrfs_panic(btrfs_sb(inode->i_sb), err,
 653	"locking error: extent tree was modified by another thread while locked");
 654}
 655
 656/*
 657 * clear some bits on a range in the tree.  This may require splitting
 658 * or inserting elements in the tree, so the gfp mask is used to
 659 * indicate which allocations or sleeping are allowed.
 660 *
 661 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 662 * the given range from the tree regardless of state (ie for truncate).
 663 *
 664 * the range [start, end] is inclusive.
 665 *
 666 * This takes the tree lock, and returns 0 on success and < 0 on error.
 667 */
 668int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 669			      unsigned bits, int wake, int delete,
 670			      struct extent_state **cached_state,
 671			      gfp_t mask, struct extent_changeset *changeset)
 672{
 673	struct extent_state *state;
 674	struct extent_state *cached;
 675	struct extent_state *prealloc = NULL;
 676	struct rb_node *node;
 677	u64 last_end;
 678	int err;
 679	int clear = 0;
 680
 681	btrfs_debug_check_extent_io_range(tree, start, end);
 682	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
 683
 684	if (bits & EXTENT_DELALLOC)
 685		bits |= EXTENT_NORESERVE;
 686
 687	if (delete)
 688		bits |= ~EXTENT_CTLBITS;
 
 689
 690	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 691		clear = 1;
 692again:
 693	if (!prealloc && gfpflags_allow_blocking(mask)) {
 694		/*
 695		 * Don't care for allocation failure here because we might end
 696		 * up not needing the pre-allocated extent state at all, which
 697		 * is the case if we only have in the tree extent states that
 698		 * cover our input range and don't cover too any other range.
 699		 * If we end up needing a new extent state we allocate it later.
 700		 */
 701		prealloc = alloc_extent_state(mask);
 
 
 702	}
 703
 704	spin_lock(&tree->lock);
 705	if (cached_state) {
 706		cached = *cached_state;
 707
 708		if (clear) {
 709			*cached_state = NULL;
 710			cached_state = NULL;
 711		}
 712
 713		if (cached && extent_state_in_tree(cached) &&
 714		    cached->start <= start && cached->end > start) {
 715			if (clear)
 716				refcount_dec(&cached->refs);
 717			state = cached;
 718			goto hit_next;
 719		}
 720		if (clear)
 721			free_extent_state(cached);
 722	}
 723	/*
 724	 * this search will find the extents that end after
 725	 * our range starts
 726	 */
 727	node = tree_search(tree, start);
 728	if (!node)
 729		goto out;
 730	state = rb_entry(node, struct extent_state, rb_node);
 731hit_next:
 732	if (state->start > end)
 733		goto out;
 734	WARN_ON(state->end < start);
 735	last_end = state->end;
 736
 737	/* the state doesn't have the wanted bits, go ahead */
 738	if (!(state->state & bits)) {
 739		state = next_state(state);
 740		goto next;
 741	}
 742
 743	/*
 744	 *     | ---- desired range ---- |
 745	 *  | state | or
 746	 *  | ------------- state -------------- |
 747	 *
 748	 * We need to split the extent we found, and may flip
 749	 * bits on second half.
 750	 *
 751	 * If the extent we found extends past our range, we
 752	 * just split and search again.  It'll get split again
 753	 * the next time though.
 754	 *
 755	 * If the extent we found is inside our range, we clear
 756	 * the desired bit on it.
 757	 */
 758
 759	if (state->start < start) {
 760		prealloc = alloc_extent_state_atomic(prealloc);
 761		BUG_ON(!prealloc);
 762		err = split_state(tree, state, prealloc, start);
 763		if (err)
 764			extent_io_tree_panic(tree, err);
 765
 766		prealloc = NULL;
 767		if (err)
 768			goto out;
 769		if (state->end <= end) {
 770			state = clear_state_bit(tree, state, &bits, wake,
 771						changeset);
 772			goto next;
 773		}
 774		goto search_again;
 775	}
 776	/*
 777	 * | ---- desired range ---- |
 778	 *                        | state |
 779	 * We need to split the extent, and clear the bit
 780	 * on the first half
 781	 */
 782	if (state->start <= end && state->end > end) {
 783		prealloc = alloc_extent_state_atomic(prealloc);
 784		BUG_ON(!prealloc);
 785		err = split_state(tree, state, prealloc, end + 1);
 786		if (err)
 787			extent_io_tree_panic(tree, err);
 788
 789		if (wake)
 790			wake_up(&state->wq);
 791
 792		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 793
 794		prealloc = NULL;
 795		goto out;
 796	}
 797
 798	state = clear_state_bit(tree, state, &bits, wake, changeset);
 799next:
 800	if (last_end == (u64)-1)
 801		goto out;
 802	start = last_end + 1;
 803	if (start <= end && state && !need_resched())
 804		goto hit_next;
 805
 806search_again:
 807	if (start > end)
 808		goto out;
 809	spin_unlock(&tree->lock);
 810	if (gfpflags_allow_blocking(mask))
 811		cond_resched();
 812	goto again;
 813
 814out:
 815	spin_unlock(&tree->lock);
 816	if (prealloc)
 817		free_extent_state(prealloc);
 818
 819	return 0;
 820
 
 
 
 
 
 
 
 821}
 822
 823static void wait_on_state(struct extent_io_tree *tree,
 824			  struct extent_state *state)
 825		__releases(tree->lock)
 826		__acquires(tree->lock)
 827{
 828	DEFINE_WAIT(wait);
 829	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 830	spin_unlock(&tree->lock);
 831	schedule();
 832	spin_lock(&tree->lock);
 833	finish_wait(&state->wq, &wait);
 834}
 835
 836/*
 837 * waits for one or more bits to clear on a range in the state tree.
 838 * The range [start, end] is inclusive.
 839 * The tree lock is taken by this function
 840 */
 841static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 842			    unsigned long bits)
 843{
 844	struct extent_state *state;
 845	struct rb_node *node;
 846
 847	btrfs_debug_check_extent_io_range(tree, start, end);
 848
 849	spin_lock(&tree->lock);
 850again:
 851	while (1) {
 852		/*
 853		 * this search will find all the extents that end after
 854		 * our range starts
 855		 */
 856		node = tree_search(tree, start);
 857process_node:
 858		if (!node)
 859			break;
 860
 861		state = rb_entry(node, struct extent_state, rb_node);
 862
 863		if (state->start > end)
 864			goto out;
 865
 866		if (state->state & bits) {
 867			start = state->start;
 868			refcount_inc(&state->refs);
 869			wait_on_state(tree, state);
 870			free_extent_state(state);
 871			goto again;
 872		}
 873		start = state->end + 1;
 874
 875		if (start > end)
 876			break;
 877
 878		if (!cond_resched_lock(&tree->lock)) {
 879			node = rb_next(node);
 880			goto process_node;
 881		}
 882	}
 883out:
 884	spin_unlock(&tree->lock);
 885}
 886
 887static void set_state_bits(struct extent_io_tree *tree,
 888			   struct extent_state *state,
 889			   unsigned *bits, struct extent_changeset *changeset)
 890{
 891	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 892	int ret;
 893
 894	if (tree->private_data && is_data_inode(tree->private_data))
 895		btrfs_set_delalloc_extent(tree->private_data, state, bits);
 896
 
 897	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 898		u64 range = state->end - state->start + 1;
 899		tree->dirty_bytes += range;
 900	}
 901	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 902	BUG_ON(ret < 0);
 903	state->state |= bits_to_set;
 904}
 905
 906static void cache_state_if_flags(struct extent_state *state,
 907				 struct extent_state **cached_ptr,
 908				 unsigned flags)
 909{
 910	if (cached_ptr && !(*cached_ptr)) {
 911		if (!flags || (state->state & flags)) {
 912			*cached_ptr = state;
 913			refcount_inc(&state->refs);
 914		}
 915	}
 916}
 917
 918static void cache_state(struct extent_state *state,
 919			struct extent_state **cached_ptr)
 920{
 921	return cache_state_if_flags(state, cached_ptr,
 922				    EXTENT_LOCKED | EXTENT_BOUNDARY);
 
 
 
 923}
 924
 925/*
 926 * set some bits on a range in the tree.  This may require allocations or
 927 * sleeping, so the gfp mask is used to indicate what is allowed.
 928 *
 929 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 930 * part of the range already has the desired bits set.  The start of the
 931 * existing range is returned in failed_start in this case.
 932 *
 933 * [start, end] is inclusive This takes the tree lock.
 934 */
 935
 936static int __must_check
 937__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 938		 unsigned bits, unsigned exclusive_bits,
 939		 u64 *failed_start, struct extent_state **cached_state,
 940		 gfp_t mask, struct extent_changeset *changeset)
 941{
 942	struct extent_state *state;
 943	struct extent_state *prealloc = NULL;
 944	struct rb_node *node;
 945	struct rb_node **p;
 946	struct rb_node *parent;
 947	int err = 0;
 948	u64 last_start;
 949	u64 last_end;
 950
 951	btrfs_debug_check_extent_io_range(tree, start, end);
 952	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
 953
 954again:
 955	if (!prealloc && gfpflags_allow_blocking(mask)) {
 956		/*
 957		 * Don't care for allocation failure here because we might end
 958		 * up not needing the pre-allocated extent state at all, which
 959		 * is the case if we only have in the tree extent states that
 960		 * cover our input range and don't cover too any other range.
 961		 * If we end up needing a new extent state we allocate it later.
 962		 */
 963		prealloc = alloc_extent_state(mask);
 
 964	}
 965
 966	spin_lock(&tree->lock);
 967	if (cached_state && *cached_state) {
 968		state = *cached_state;
 969		if (state->start <= start && state->end > start &&
 970		    extent_state_in_tree(state)) {
 971			node = &state->rb_node;
 972			goto hit_next;
 973		}
 974	}
 975	/*
 976	 * this search will find all the extents that end after
 977	 * our range starts.
 978	 */
 979	node = tree_search_for_insert(tree, start, &p, &parent);
 980	if (!node) {
 981		prealloc = alloc_extent_state_atomic(prealloc);
 982		BUG_ON(!prealloc);
 983		err = insert_state(tree, prealloc, start, end,
 984				   &p, &parent, &bits, changeset);
 985		if (err)
 986			extent_io_tree_panic(tree, err);
 987
 988		cache_state(prealloc, cached_state);
 989		prealloc = NULL;
 990		goto out;
 991	}
 992	state = rb_entry(node, struct extent_state, rb_node);
 993hit_next:
 994	last_start = state->start;
 995	last_end = state->end;
 996
 997	/*
 998	 * | ---- desired range ---- |
 999	 * | state |
1000	 *
1001	 * Just lock what we found and keep going
1002	 */
1003	if (state->start == start && state->end <= end) {
1004		if (state->state & exclusive_bits) {
1005			*failed_start = state->start;
1006			err = -EEXIST;
1007			goto out;
1008		}
1009
1010		set_state_bits(tree, state, &bits, changeset);
1011		cache_state(state, cached_state);
1012		merge_state(tree, state);
1013		if (last_end == (u64)-1)
1014			goto out;
1015		start = last_end + 1;
1016		state = next_state(state);
1017		if (start < end && state && state->start == start &&
1018		    !need_resched())
1019			goto hit_next;
1020		goto search_again;
1021	}
1022
1023	/*
1024	 *     | ---- desired range ---- |
1025	 * | state |
1026	 *   or
1027	 * | ------------- state -------------- |
1028	 *
1029	 * We need to split the extent we found, and may flip bits on
1030	 * second half.
1031	 *
1032	 * If the extent we found extends past our
1033	 * range, we just split and search again.  It'll get split
1034	 * again the next time though.
1035	 *
1036	 * If the extent we found is inside our range, we set the
1037	 * desired bit on it.
1038	 */
1039	if (state->start < start) {
1040		if (state->state & exclusive_bits) {
1041			*failed_start = start;
1042			err = -EEXIST;
1043			goto out;
1044		}
1045
1046		prealloc = alloc_extent_state_atomic(prealloc);
1047		BUG_ON(!prealloc);
1048		err = split_state(tree, state, prealloc, start);
1049		if (err)
1050			extent_io_tree_panic(tree, err);
1051
1052		prealloc = NULL;
1053		if (err)
1054			goto out;
1055		if (state->end <= end) {
1056			set_state_bits(tree, state, &bits, changeset);
1057			cache_state(state, cached_state);
1058			merge_state(tree, state);
1059			if (last_end == (u64)-1)
1060				goto out;
1061			start = last_end + 1;
1062			state = next_state(state);
1063			if (start < end && state && state->start == start &&
1064			    !need_resched())
1065				goto hit_next;
1066		}
1067		goto search_again;
1068	}
1069	/*
1070	 * | ---- desired range ---- |
1071	 *     | state | or               | state |
1072	 *
1073	 * There's a hole, we need to insert something in it and
1074	 * ignore the extent we found.
1075	 */
1076	if (state->start > start) {
1077		u64 this_end;
1078		if (end < last_start)
1079			this_end = end;
1080		else
1081			this_end = last_start - 1;
1082
1083		prealloc = alloc_extent_state_atomic(prealloc);
1084		BUG_ON(!prealloc);
1085
1086		/*
1087		 * Avoid to free 'prealloc' if it can be merged with
1088		 * the later extent.
1089		 */
1090		err = insert_state(tree, prealloc, start, this_end,
1091				   NULL, NULL, &bits, changeset);
1092		if (err)
1093			extent_io_tree_panic(tree, err);
1094
1095		cache_state(prealloc, cached_state);
1096		prealloc = NULL;
1097		start = this_end + 1;
1098		goto search_again;
1099	}
1100	/*
1101	 * | ---- desired range ---- |
1102	 *                        | state |
1103	 * We need to split the extent, and set the bit
1104	 * on the first half
1105	 */
1106	if (state->start <= end && state->end > end) {
1107		if (state->state & exclusive_bits) {
1108			*failed_start = start;
1109			err = -EEXIST;
1110			goto out;
1111		}
1112
1113		prealloc = alloc_extent_state_atomic(prealloc);
1114		BUG_ON(!prealloc);
1115		err = split_state(tree, state, prealloc, end + 1);
1116		if (err)
1117			extent_io_tree_panic(tree, err);
1118
1119		set_state_bits(tree, prealloc, &bits, changeset);
1120		cache_state(prealloc, cached_state);
1121		merge_state(tree, prealloc);
1122		prealloc = NULL;
1123		goto out;
1124	}
1125
1126search_again:
1127	if (start > end)
1128		goto out;
1129	spin_unlock(&tree->lock);
1130	if (gfpflags_allow_blocking(mask))
1131		cond_resched();
1132	goto again;
1133
1134out:
1135	spin_unlock(&tree->lock);
1136	if (prealloc)
1137		free_extent_state(prealloc);
1138
1139	return err;
1140
 
 
 
 
 
 
 
1141}
1142
1143int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1144		   unsigned bits, u64 * failed_start,
1145		   struct extent_state **cached_state, gfp_t mask)
1146{
1147	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1148				cached_state, mask, NULL);
1149}
1150
1151
1152/**
1153 * convert_extent_bit - convert all bits in a given range from one bit to
1154 * 			another
1155 * @tree:	the io tree to search
1156 * @start:	the start offset in bytes
1157 * @end:	the end offset in bytes (inclusive)
1158 * @bits:	the bits to set in this range
1159 * @clear_bits:	the bits to clear in this range
1160 * @cached_state:	state that we're going to cache
1161 *
1162 * This will go through and set bits for the given range.  If any states exist
1163 * already in this range they are set with the given bit and cleared of the
1164 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1165 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1166 * boundary bits like LOCK.
1167 *
1168 * All allocations are done with GFP_NOFS.
1169 */
1170int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1171		       unsigned bits, unsigned clear_bits,
1172		       struct extent_state **cached_state)
1173{
1174	struct extent_state *state;
1175	struct extent_state *prealloc = NULL;
1176	struct rb_node *node;
1177	struct rb_node **p;
1178	struct rb_node *parent;
1179	int err = 0;
1180	u64 last_start;
1181	u64 last_end;
1182	bool first_iteration = true;
1183
1184	btrfs_debug_check_extent_io_range(tree, start, end);
1185	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1186				       clear_bits);
1187
1188again:
1189	if (!prealloc) {
1190		/*
1191		 * Best effort, don't worry if extent state allocation fails
1192		 * here for the first iteration. We might have a cached state
1193		 * that matches exactly the target range, in which case no
1194		 * extent state allocations are needed. We'll only know this
1195		 * after locking the tree.
1196		 */
1197		prealloc = alloc_extent_state(GFP_NOFS);
1198		if (!prealloc && !first_iteration)
1199			return -ENOMEM;
1200	}
1201
1202	spin_lock(&tree->lock);
1203	if (cached_state && *cached_state) {
1204		state = *cached_state;
1205		if (state->start <= start && state->end > start &&
1206		    extent_state_in_tree(state)) {
1207			node = &state->rb_node;
1208			goto hit_next;
1209		}
1210	}
1211
1212	/*
1213	 * this search will find all the extents that end after
1214	 * our range starts.
1215	 */
1216	node = tree_search_for_insert(tree, start, &p, &parent);
1217	if (!node) {
1218		prealloc = alloc_extent_state_atomic(prealloc);
1219		if (!prealloc) {
1220			err = -ENOMEM;
1221			goto out;
1222		}
1223		err = insert_state(tree, prealloc, start, end,
1224				   &p, &parent, &bits, NULL);
1225		if (err)
1226			extent_io_tree_panic(tree, err);
1227		cache_state(prealloc, cached_state);
1228		prealloc = NULL;
1229		goto out;
1230	}
1231	state = rb_entry(node, struct extent_state, rb_node);
1232hit_next:
1233	last_start = state->start;
1234	last_end = state->end;
1235
1236	/*
1237	 * | ---- desired range ---- |
1238	 * | state |
1239	 *
1240	 * Just lock what we found and keep going
1241	 */
1242	if (state->start == start && state->end <= end) {
1243		set_state_bits(tree, state, &bits, NULL);
1244		cache_state(state, cached_state);
1245		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1246		if (last_end == (u64)-1)
1247			goto out;
1248		start = last_end + 1;
1249		if (start < end && state && state->start == start &&
1250		    !need_resched())
1251			goto hit_next;
1252		goto search_again;
1253	}
1254
1255	/*
1256	 *     | ---- desired range ---- |
1257	 * | state |
1258	 *   or
1259	 * | ------------- state -------------- |
1260	 *
1261	 * We need to split the extent we found, and may flip bits on
1262	 * second half.
1263	 *
1264	 * If the extent we found extends past our
1265	 * range, we just split and search again.  It'll get split
1266	 * again the next time though.
1267	 *
1268	 * If the extent we found is inside our range, we set the
1269	 * desired bit on it.
1270	 */
1271	if (state->start < start) {
1272		prealloc = alloc_extent_state_atomic(prealloc);
1273		if (!prealloc) {
1274			err = -ENOMEM;
1275			goto out;
1276		}
1277		err = split_state(tree, state, prealloc, start);
1278		if (err)
1279			extent_io_tree_panic(tree, err);
1280		prealloc = NULL;
1281		if (err)
1282			goto out;
1283		if (state->end <= end) {
1284			set_state_bits(tree, state, &bits, NULL);
1285			cache_state(state, cached_state);
1286			state = clear_state_bit(tree, state, &clear_bits, 0,
1287						NULL);
1288			if (last_end == (u64)-1)
1289				goto out;
1290			start = last_end + 1;
1291			if (start < end && state && state->start == start &&
1292			    !need_resched())
1293				goto hit_next;
1294		}
1295		goto search_again;
1296	}
1297	/*
1298	 * | ---- desired range ---- |
1299	 *     | state | or               | state |
1300	 *
1301	 * There's a hole, we need to insert something in it and
1302	 * ignore the extent we found.
1303	 */
1304	if (state->start > start) {
1305		u64 this_end;
1306		if (end < last_start)
1307			this_end = end;
1308		else
1309			this_end = last_start - 1;
1310
1311		prealloc = alloc_extent_state_atomic(prealloc);
1312		if (!prealloc) {
1313			err = -ENOMEM;
1314			goto out;
1315		}
1316
1317		/*
1318		 * Avoid to free 'prealloc' if it can be merged with
1319		 * the later extent.
1320		 */
1321		err = insert_state(tree, prealloc, start, this_end,
1322				   NULL, NULL, &bits, NULL);
1323		if (err)
1324			extent_io_tree_panic(tree, err);
1325		cache_state(prealloc, cached_state);
1326		prealloc = NULL;
1327		start = this_end + 1;
1328		goto search_again;
1329	}
1330	/*
1331	 * | ---- desired range ---- |
1332	 *                        | state |
1333	 * We need to split the extent, and set the bit
1334	 * on the first half
1335	 */
1336	if (state->start <= end && state->end > end) {
1337		prealloc = alloc_extent_state_atomic(prealloc);
1338		if (!prealloc) {
1339			err = -ENOMEM;
1340			goto out;
1341		}
1342
1343		err = split_state(tree, state, prealloc, end + 1);
1344		if (err)
1345			extent_io_tree_panic(tree, err);
1346
1347		set_state_bits(tree, prealloc, &bits, NULL);
1348		cache_state(prealloc, cached_state);
1349		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1350		prealloc = NULL;
1351		goto out;
1352	}
1353
1354search_again:
1355	if (start > end)
1356		goto out;
1357	spin_unlock(&tree->lock);
1358	cond_resched();
1359	first_iteration = false;
1360	goto again;
1361
1362out:
1363	spin_unlock(&tree->lock);
1364	if (prealloc)
1365		free_extent_state(prealloc);
1366
1367	return err;
 
 
 
 
 
 
 
 
1368}
1369
1370/* wrappers around set/clear extent bit */
1371int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1372			   unsigned bits, struct extent_changeset *changeset)
1373{
1374	/*
1375	 * We don't support EXTENT_LOCKED yet, as current changeset will
1376	 * record any bits changed, so for EXTENT_LOCKED case, it will
1377	 * either fail with -EEXIST or changeset will record the whole
1378	 * range.
1379	 */
1380	BUG_ON(bits & EXTENT_LOCKED);
1381
1382	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1383				changeset);
 
 
 
1384}
1385
1386int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1387			   unsigned bits)
1388{
1389	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1390				GFP_NOWAIT, NULL);
1391}
1392
1393int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1394		     unsigned bits, int wake, int delete,
1395		     struct extent_state **cached)
1396{
1397	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1398				  cached, GFP_NOFS, NULL);
 
1399}
1400
1401int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1402		unsigned bits, struct extent_changeset *changeset)
1403{
1404	/*
1405	 * Don't support EXTENT_LOCKED case, same reason as
1406	 * set_record_extent_bits().
1407	 */
1408	BUG_ON(bits & EXTENT_LOCKED);
1409
1410	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1411				  changeset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412}
1413
1414/*
1415 * either insert or lock state struct between start and end use mask to tell
1416 * us if waiting is desired.
1417 */
1418int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419		     struct extent_state **cached_state)
1420{
1421	int err;
1422	u64 failed_start;
1423
1424	while (1) {
1425		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1426				       EXTENT_LOCKED, &failed_start,
1427				       cached_state, GFP_NOFS, NULL);
1428		if (err == -EEXIST) {
1429			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1430			start = failed_start;
1431		} else
1432			break;
1433		WARN_ON(start > end);
1434	}
1435	return err;
1436}
1437
 
 
 
 
 
1438int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1439{
1440	int err;
1441	u64 failed_start;
1442
1443	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1444			       &failed_start, NULL, GFP_NOFS, NULL);
1445	if (err == -EEXIST) {
1446		if (failed_start > start)
1447			clear_extent_bit(tree, start, failed_start - 1,
1448					 EXTENT_LOCKED, 1, 0, NULL);
1449		return 0;
1450	}
1451	return 1;
1452}
1453
1454void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
 
1455{
1456	unsigned long index = start >> PAGE_SHIFT;
1457	unsigned long end_index = end >> PAGE_SHIFT;
1458	struct page *page;
1459
1460	while (index <= end_index) {
1461		page = find_get_page(inode->i_mapping, index);
1462		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463		clear_page_dirty_for_io(page);
1464		put_page(page);
1465		index++;
1466	}
1467}
1468
1469void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
 
 
 
1470{
1471	unsigned long index = start >> PAGE_SHIFT;
1472	unsigned long end_index = end >> PAGE_SHIFT;
1473	struct page *page;
1474
1475	while (index <= end_index) {
1476		page = find_get_page(inode->i_mapping, index);
1477		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478		__set_page_dirty_nobuffers(page);
1479		account_page_redirty(page);
1480		put_page(page);
1481		index++;
1482	}
 
1483}
1484
1485/* find the first state struct with 'bits' set after 'start', and
1486 * return it.  tree->lock must be held.  NULL will returned if
1487 * nothing was found after 'start'
1488 */
1489static struct extent_state *
1490find_first_extent_bit_state(struct extent_io_tree *tree,
1491			    u64 start, unsigned bits)
1492{
1493	struct rb_node *node;
1494	struct extent_state *state;
1495
1496	/*
1497	 * this search will find all the extents that end after
1498	 * our range starts.
1499	 */
1500	node = tree_search(tree, start);
1501	if (!node)
1502		goto out;
1503
1504	while (1) {
1505		state = rb_entry(node, struct extent_state, rb_node);
1506		if (state->end >= start && (state->state & bits))
1507			return state;
1508
1509		node = rb_next(node);
1510		if (!node)
1511			break;
1512	}
1513out:
1514	return NULL;
1515}
1516
1517/*
1518 * find the first offset in the io tree with 'bits' set. zero is
1519 * returned if we find something, and *start_ret and *end_ret are
1520 * set to reflect the state struct that was found.
1521 *
1522 * If nothing was found, 1 is returned. If found something, return 0.
1523 */
1524int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1525			  u64 *start_ret, u64 *end_ret, unsigned bits,
1526			  struct extent_state **cached_state)
1527{
1528	struct extent_state *state;
1529	int ret = 1;
1530
1531	spin_lock(&tree->lock);
1532	if (cached_state && *cached_state) {
1533		state = *cached_state;
1534		if (state->end == start - 1 && extent_state_in_tree(state)) {
1535			while ((state = next_state(state)) != NULL) {
1536				if (state->state & bits)
1537					goto got_it;
1538			}
1539			free_extent_state(*cached_state);
1540			*cached_state = NULL;
1541			goto out;
1542		}
1543		free_extent_state(*cached_state);
1544		*cached_state = NULL;
1545	}
1546
1547	state = find_first_extent_bit_state(tree, start, bits);
1548got_it:
1549	if (state) {
1550		cache_state_if_flags(state, cached_state, 0);
1551		*start_ret = state->start;
1552		*end_ret = state->end;
1553		ret = 0;
1554	}
1555out:
1556	spin_unlock(&tree->lock);
1557	return ret;
1558}
1559
1560/**
1561 * find_first_clear_extent_bit - find the first range that has @bits not set.
1562 * This range could start before @start.
1563 *
1564 * @tree - the tree to search
1565 * @start - the offset at/after which the found extent should start
1566 * @start_ret - records the beginning of the range
1567 * @end_ret - records the end of the range (inclusive)
1568 * @bits - the set of bits which must be unset
1569 *
1570 * Since unallocated range is also considered one which doesn't have the bits
1571 * set it's possible that @end_ret contains -1, this happens in case the range
1572 * spans (last_range_end, end of device]. In this case it's up to the caller to
1573 * trim @end_ret to the appropriate size.
1574 */
1575void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1576				 u64 *start_ret, u64 *end_ret, unsigned bits)
1577{
1578	struct extent_state *state;
1579	struct rb_node *node, *prev = NULL, *next;
1580
1581	spin_lock(&tree->lock);
1582
1583	/* Find first extent with bits cleared */
1584	while (1) {
1585		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1586		if (!node) {
1587			node = next;
1588			if (!node) {
1589				/*
1590				 * We are past the last allocated chunk,
1591				 * set start at the end of the last extent. The
1592				 * device alloc tree should never be empty so
1593				 * prev is always set.
1594				 */
1595				ASSERT(prev);
1596				state = rb_entry(prev, struct extent_state, rb_node);
1597				*start_ret = state->end + 1;
1598				*end_ret = -1;
1599				goto out;
1600			}
1601		}
1602		/*
1603		 * At this point 'node' either contains 'start' or start is
1604		 * before 'node'
1605		 */
1606		state = rb_entry(node, struct extent_state, rb_node);
1607
1608		if (in_range(start, state->start, state->end - state->start + 1)) {
1609			if (state->state & bits) {
1610				/*
1611				 * |--range with bits sets--|
1612				 *    |
1613				 *    start
1614				 */
1615				start = state->end + 1;
1616			} else {
1617				/*
1618				 * 'start' falls within a range that doesn't
1619				 * have the bits set, so take its start as
1620				 * the beginning of the desired range
1621				 *
1622				 * |--range with bits cleared----|
1623				 *      |
1624				 *      start
1625				 */
1626				*start_ret = state->start;
1627				break;
1628			}
1629		} else {
1630			/*
1631			 * |---prev range---|---hole/unset---|---node range---|
1632			 *                          |
1633			 *                        start
1634			 *
1635			 *                        or
1636			 *
1637			 * |---hole/unset--||--first node--|
1638			 * 0   |
1639			 *    start
1640			 */
1641			if (prev) {
1642				state = rb_entry(prev, struct extent_state,
1643						 rb_node);
1644				*start_ret = state->end + 1;
1645			} else {
1646				*start_ret = 0;
1647			}
1648			break;
1649		}
1650	}
1651
1652	/*
1653	 * Find the longest stretch from start until an entry which has the
1654	 * bits set
1655	 */
1656	while (1) {
1657		state = rb_entry(node, struct extent_state, rb_node);
1658		if (state->end >= start && !(state->state & bits)) {
1659			*end_ret = state->end;
1660		} else {
1661			*end_ret = state->start - 1;
1662			break;
1663		}
1664
1665		node = rb_next(node);
1666		if (!node)
1667			break;
1668	}
1669out:
1670	spin_unlock(&tree->lock);
1671}
1672
1673/*
1674 * find a contiguous range of bytes in the file marked as delalloc, not
1675 * more than 'max_bytes'.  start and end are used to return the range,
1676 *
1677 * true is returned if we find something, false if nothing was in the tree
1678 */
1679static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1680					u64 *start, u64 *end, u64 max_bytes,
1681					struct extent_state **cached_state)
1682{
1683	struct rb_node *node;
1684	struct extent_state *state;
1685	u64 cur_start = *start;
1686	bool found = false;
1687	u64 total_bytes = 0;
1688
1689	spin_lock(&tree->lock);
1690
1691	/*
1692	 * this search will find all the extents that end after
1693	 * our range starts.
1694	 */
1695	node = tree_search(tree, cur_start);
1696	if (!node) {
1697		*end = (u64)-1;
 
1698		goto out;
1699	}
1700
1701	while (1) {
1702		state = rb_entry(node, struct extent_state, rb_node);
1703		if (found && (state->start != cur_start ||
1704			      (state->state & EXTENT_BOUNDARY))) {
1705			goto out;
1706		}
1707		if (!(state->state & EXTENT_DELALLOC)) {
1708			if (!found)
1709				*end = state->end;
1710			goto out;
1711		}
1712		if (!found) {
1713			*start = state->start;
1714			*cached_state = state;
1715			refcount_inc(&state->refs);
1716		}
1717		found = true;
1718		*end = state->end;
1719		cur_start = state->end + 1;
1720		node = rb_next(node);
 
 
1721		total_bytes += state->end - state->start + 1;
1722		if (total_bytes >= max_bytes)
1723			break;
1724		if (!node)
1725			break;
1726	}
1727out:
1728	spin_unlock(&tree->lock);
1729	return found;
1730}
1731
1732static int __process_pages_contig(struct address_space *mapping,
1733				  struct page *locked_page,
1734				  pgoff_t start_index, pgoff_t end_index,
1735				  unsigned long page_ops, pgoff_t *index_ret);
1736
1737static noinline void __unlock_for_delalloc(struct inode *inode,
1738					   struct page *locked_page,
1739					   u64 start, u64 end)
1740{
1741	unsigned long index = start >> PAGE_SHIFT;
1742	unsigned long end_index = end >> PAGE_SHIFT;
 
 
 
 
1743
1744	ASSERT(locked_page);
1745	if (index == locked_page->index && end_index == index)
1746		return;
1747
1748	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1749			       PAGE_UNLOCK, NULL);
 
 
 
 
 
 
 
 
 
 
 
1750}
1751
1752static noinline int lock_delalloc_pages(struct inode *inode,
1753					struct page *locked_page,
1754					u64 delalloc_start,
1755					u64 delalloc_end)
1756{
1757	unsigned long index = delalloc_start >> PAGE_SHIFT;
1758	unsigned long index_ret = index;
1759	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
 
 
 
1760	int ret;
 
1761
1762	ASSERT(locked_page);
1763	if (index == locked_page->index && index == end_index)
1764		return 0;
1765
1766	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1767				     end_index, PAGE_LOCK, &index_ret);
1768	if (ret == -EAGAIN)
1769		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1770				      (u64)index_ret << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771	return ret;
1772}
1773
1774/*
1775 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1776 * more than @max_bytes.  @Start and @end are used to return the range,
1777 *
1778 * Return: true if we find something
1779 *         false if nothing was in the tree
1780 */
1781EXPORT_FOR_TESTS
1782noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1783				    struct page *locked_page, u64 *start,
1784				    u64 *end)
 
1785{
1786	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1787	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1788	u64 delalloc_start;
1789	u64 delalloc_end;
1790	bool found;
1791	struct extent_state *cached_state = NULL;
1792	int ret;
1793	int loops = 0;
1794
1795again:
1796	/* step one, find a bunch of delalloc bytes starting at start */
1797	delalloc_start = *start;
1798	delalloc_end = 0;
1799	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1800				    max_bytes, &cached_state);
1801	if (!found || delalloc_end <= *start) {
1802		*start = delalloc_start;
1803		*end = delalloc_end;
1804		free_extent_state(cached_state);
1805		return false;
1806	}
1807
1808	/*
1809	 * start comes from the offset of locked_page.  We have to lock
1810	 * pages in order, so we can't process delalloc bytes before
1811	 * locked_page
1812	 */
1813	if (delalloc_start < *start)
1814		delalloc_start = *start;
1815
1816	/*
1817	 * make sure to limit the number of pages we try to lock down
 
1818	 */
1819	if (delalloc_end + 1 - delalloc_start > max_bytes)
1820		delalloc_end = delalloc_start + max_bytes - 1;
1821
1822	/* step two, lock all the pages after the page that has start */
1823	ret = lock_delalloc_pages(inode, locked_page,
1824				  delalloc_start, delalloc_end);
1825	ASSERT(!ret || ret == -EAGAIN);
1826	if (ret == -EAGAIN) {
1827		/* some of the pages are gone, lets avoid looping by
1828		 * shortening the size of the delalloc range we're searching
1829		 */
1830		free_extent_state(cached_state);
1831		cached_state = NULL;
1832		if (!loops) {
1833			max_bytes = PAGE_SIZE;
 
1834			loops = 1;
1835			goto again;
1836		} else {
1837			found = false;
1838			goto out_failed;
1839		}
1840	}
 
1841
1842	/* step three, lock the state bits for the whole range */
1843	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1844
1845	/* then test to make sure it is all still delalloc */
1846	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1847			     EXTENT_DELALLOC, 1, cached_state);
1848	if (!ret) {
1849		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1850				     &cached_state);
1851		__unlock_for_delalloc(inode, locked_page,
1852			      delalloc_start, delalloc_end);
1853		cond_resched();
1854		goto again;
1855	}
1856	free_extent_state(cached_state);
1857	*start = delalloc_start;
1858	*end = delalloc_end;
1859out_failed:
1860	return found;
1861}
1862
1863static int __process_pages_contig(struct address_space *mapping,
1864				  struct page *locked_page,
1865				  pgoff_t start_index, pgoff_t end_index,
1866				  unsigned long page_ops, pgoff_t *index_ret)
1867{
1868	unsigned long nr_pages = end_index - start_index + 1;
1869	unsigned long pages_locked = 0;
1870	pgoff_t index = start_index;
1871	struct page *pages[16];
1872	unsigned ret;
1873	int err = 0;
 
1874	int i;
 
1875
1876	if (page_ops & PAGE_LOCK) {
1877		ASSERT(page_ops == PAGE_LOCK);
1878		ASSERT(index_ret && *index_ret == start_index);
1879	}
1880
1881	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882		mapping_set_error(mapping, -EIO);
 
 
 
 
 
 
1883
1884	while (nr_pages > 0) {
1885		ret = find_get_pages_contig(mapping, index,
1886				     min_t(unsigned long,
1887				     nr_pages, ARRAY_SIZE(pages)), pages);
1888		if (ret == 0) {
1889			/*
1890			 * Only if we're going to lock these pages,
1891			 * can we find nothing at @index.
1892			 */
1893			ASSERT(page_ops & PAGE_LOCK);
1894			err = -EAGAIN;
1895			goto out;
1896		}
1897
1898		for (i = 0; i < ret; i++) {
1899			if (page_ops & PAGE_SET_PRIVATE2)
 
1900				SetPagePrivate2(pages[i]);
1901
1902			if (pages[i] == locked_page) {
1903				put_page(pages[i]);
1904				pages_locked++;
1905				continue;
1906			}
1907			if (page_ops & PAGE_CLEAR_DIRTY)
1908				clear_page_dirty_for_io(pages[i]);
1909			if (page_ops & PAGE_SET_WRITEBACK)
1910				set_page_writeback(pages[i]);
1911			if (page_ops & PAGE_SET_ERROR)
1912				SetPageError(pages[i]);
1913			if (page_ops & PAGE_END_WRITEBACK)
1914				end_page_writeback(pages[i]);
1915			if (page_ops & PAGE_UNLOCK)
1916				unlock_page(pages[i]);
1917			if (page_ops & PAGE_LOCK) {
1918				lock_page(pages[i]);
1919				if (!PageDirty(pages[i]) ||
1920				    pages[i]->mapping != mapping) {
1921					unlock_page(pages[i]);
1922					put_page(pages[i]);
1923					err = -EAGAIN;
1924					goto out;
1925				}
1926			}
1927			put_page(pages[i]);
1928			pages_locked++;
1929		}
1930		nr_pages -= ret;
1931		index += ret;
1932		cond_resched();
1933	}
1934out:
1935	if (err && index_ret)
1936		*index_ret = start_index + pages_locked - 1;
1937	return err;
1938}
1939
1940void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1941				  struct page *locked_page,
1942				  unsigned clear_bits,
1943				  unsigned long page_ops)
1944{
1945	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1946			 NULL);
1947
1948	__process_pages_contig(inode->i_mapping, locked_page,
1949			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1950			       page_ops, NULL);
1951}
1952
1953/*
1954 * count the number of bytes in the tree that have a given bit(s)
1955 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1956 * cached.  The total number found is returned.
1957 */
1958u64 count_range_bits(struct extent_io_tree *tree,
1959		     u64 *start, u64 search_end, u64 max_bytes,
1960		     unsigned bits, int contig)
1961{
1962	struct rb_node *node;
1963	struct extent_state *state;
1964	u64 cur_start = *start;
1965	u64 total_bytes = 0;
1966	u64 last = 0;
1967	int found = 0;
1968
1969	if (WARN_ON(search_end <= cur_start))
 
1970		return 0;
 
1971
1972	spin_lock(&tree->lock);
1973	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1974		total_bytes = tree->dirty_bytes;
1975		goto out;
1976	}
1977	/*
1978	 * this search will find all the extents that end after
1979	 * our range starts.
1980	 */
1981	node = tree_search(tree, cur_start);
1982	if (!node)
1983		goto out;
1984
1985	while (1) {
1986		state = rb_entry(node, struct extent_state, rb_node);
1987		if (state->start > search_end)
1988			break;
1989		if (contig && found && state->start > last + 1)
1990			break;
1991		if (state->end >= cur_start && (state->state & bits) == bits) {
1992			total_bytes += min(search_end, state->end) + 1 -
1993				       max(cur_start, state->start);
1994			if (total_bytes >= max_bytes)
1995				break;
1996			if (!found) {
1997				*start = max(cur_start, state->start);
1998				found = 1;
1999			}
2000			last = state->end;
2001		} else if (contig && found) {
2002			break;
2003		}
2004		node = rb_next(node);
2005		if (!node)
2006			break;
2007	}
2008out:
2009	spin_unlock(&tree->lock);
2010	return total_bytes;
2011}
2012
2013/*
2014 * set the private field for a given byte offset in the tree.  If there isn't
2015 * an extent_state there already, this does nothing.
2016 */
2017static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
2018		struct io_failure_record *failrec)
2019{
2020	struct rb_node *node;
2021	struct extent_state *state;
2022	int ret = 0;
2023
2024	spin_lock(&tree->lock);
2025	/*
2026	 * this search will find all the extents that end after
2027	 * our range starts.
2028	 */
2029	node = tree_search(tree, start);
2030	if (!node) {
2031		ret = -ENOENT;
2032		goto out;
2033	}
2034	state = rb_entry(node, struct extent_state, rb_node);
2035	if (state->start != start) {
2036		ret = -ENOENT;
2037		goto out;
2038	}
2039	state->failrec = failrec;
2040out:
2041	spin_unlock(&tree->lock);
2042	return ret;
2043}
2044
2045static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
2046		struct io_failure_record **failrec)
2047{
2048	struct rb_node *node;
2049	struct extent_state *state;
2050	int ret = 0;
2051
2052	spin_lock(&tree->lock);
2053	/*
2054	 * this search will find all the extents that end after
2055	 * our range starts.
2056	 */
2057	node = tree_search(tree, start);
2058	if (!node) {
2059		ret = -ENOENT;
2060		goto out;
2061	}
2062	state = rb_entry(node, struct extent_state, rb_node);
2063	if (state->start != start) {
2064		ret = -ENOENT;
2065		goto out;
2066	}
2067	*failrec = state->failrec;
2068out:
2069	spin_unlock(&tree->lock);
2070	return ret;
2071}
2072
2073/*
2074 * searches a range in the state tree for a given mask.
2075 * If 'filled' == 1, this returns 1 only if every extent in the tree
2076 * has the bits set.  Otherwise, 1 is returned if any bit in the
2077 * range is found set.
2078 */
2079int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2080		   unsigned bits, int filled, struct extent_state *cached)
2081{
2082	struct extent_state *state = NULL;
2083	struct rb_node *node;
2084	int bitset = 0;
2085
2086	spin_lock(&tree->lock);
2087	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2088	    cached->end > start)
2089		node = &cached->rb_node;
2090	else
2091		node = tree_search(tree, start);
2092	while (node && start <= end) {
2093		state = rb_entry(node, struct extent_state, rb_node);
2094
2095		if (filled && state->start > start) {
2096			bitset = 0;
2097			break;
2098		}
2099
2100		if (state->start > end)
2101			break;
2102
2103		if (state->state & bits) {
2104			bitset = 1;
2105			if (!filled)
2106				break;
2107		} else if (filled) {
2108			bitset = 0;
2109			break;
2110		}
2111
2112		if (state->end == (u64)-1)
2113			break;
2114
2115		start = state->end + 1;
2116		if (start > end)
2117			break;
2118		node = rb_next(node);
2119		if (!node) {
2120			if (filled)
2121				bitset = 0;
2122			break;
2123		}
2124	}
2125	spin_unlock(&tree->lock);
2126	return bitset;
2127}
2128
2129/*
2130 * helper function to set a given page up to date if all the
2131 * extents in the tree for that page are up to date
2132 */
2133static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2134{
2135	u64 start = page_offset(page);
2136	u64 end = start + PAGE_SIZE - 1;
2137	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2138		SetPageUptodate(page);
2139}
2140
2141int free_io_failure(struct extent_io_tree *failure_tree,
2142		    struct extent_io_tree *io_tree,
2143		    struct io_failure_record *rec)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2144{
2145	int ret;
2146	int err = 0;
 
2147
2148	set_state_failrec(failure_tree, rec->start, NULL);
2149	ret = clear_extent_bits(failure_tree, rec->start,
2150				rec->start + rec->len - 1,
2151				EXTENT_LOCKED | EXTENT_DIRTY);
2152	if (ret)
2153		err = ret;
2154
2155	ret = clear_extent_bits(io_tree, rec->start,
2156				rec->start + rec->len - 1,
2157				EXTENT_DAMAGED);
2158	if (ret && !err)
2159		err = ret;
 
 
2160
2161	kfree(rec);
2162	return err;
2163}
2164
 
 
 
 
 
2165/*
2166 * this bypasses the standard btrfs submit functions deliberately, as
2167 * the standard behavior is to write all copies in a raid setup. here we only
2168 * want to write the one bad copy. so we do the mapping for ourselves and issue
2169 * submit_bio directly.
2170 * to avoid any synchronization issues, wait for the data after writing, which
2171 * actually prevents the read that triggered the error from finishing.
2172 * currently, there can be no more than two copies of every data bit. thus,
2173 * exactly one rewrite is required.
2174 */
2175int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2176		      u64 length, u64 logical, struct page *page,
2177		      unsigned int pg_offset, int mirror_num)
2178{
2179	struct bio *bio;
2180	struct btrfs_device *dev;
 
2181	u64 map_length = 0;
2182	u64 sector;
2183	struct btrfs_bio *bbio = NULL;
2184	int ret;
2185
2186	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2187	BUG_ON(!mirror_num);
2188
2189	bio = btrfs_io_bio_alloc(1);
2190	bio->bi_iter.bi_size = 0;
 
 
 
 
2191	map_length = length;
2192
2193	/*
2194	 * Avoid races with device replace and make sure our bbio has devices
2195	 * associated to its stripes that don't go away while we are doing the
2196	 * read repair operation.
2197	 */
2198	btrfs_bio_counter_inc_blocked(fs_info);
2199	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2200		/*
2201		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2202		 * to update all raid stripes, but here we just want to correct
2203		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2204		 * stripe's dev and sector.
2205		 */
2206		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2207				      &map_length, &bbio, 0);
2208		if (ret) {
2209			btrfs_bio_counter_dec(fs_info);
2210			bio_put(bio);
2211			return -EIO;
2212		}
2213		ASSERT(bbio->mirror_num == 1);
2214	} else {
2215		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2216				      &map_length, &bbio, mirror_num);
2217		if (ret) {
2218			btrfs_bio_counter_dec(fs_info);
2219			bio_put(bio);
2220			return -EIO;
2221		}
2222		BUG_ON(mirror_num != bbio->mirror_num);
2223	}
2224
2225	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2226	bio->bi_iter.bi_sector = sector;
2227	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2228	btrfs_put_bbio(bbio);
2229	if (!dev || !dev->bdev ||
2230	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2231		btrfs_bio_counter_dec(fs_info);
2232		bio_put(bio);
2233		return -EIO;
2234	}
2235	bio_set_dev(bio, dev->bdev);
2236	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2237	bio_add_page(bio, page, length, pg_offset);
 
2238
2239	if (btrfsic_submit_bio_wait(bio)) {
2240		/* try to remap that extent elsewhere? */
2241		btrfs_bio_counter_dec(fs_info);
2242		bio_put(bio);
2243		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2244		return -EIO;
2245	}
2246
2247	btrfs_info_rl_in_rcu(fs_info,
2248		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2249				  ino, start,
2250				  rcu_str_deref(dev->name), sector);
2251	btrfs_bio_counter_dec(fs_info);
2252	bio_put(bio);
2253	return 0;
2254}
2255
2256int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
 
2257{
2258	struct btrfs_fs_info *fs_info = eb->fs_info;
2259	u64 start = eb->start;
2260	int i, num_pages = num_extent_pages(eb);
2261	int ret = 0;
2262
2263	if (sb_rdonly(fs_info->sb))
2264		return -EROFS;
2265
2266	for (i = 0; i < num_pages; i++) {
2267		struct page *p = eb->pages[i];
2268
2269		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2270					start - page_offset(p), mirror_num);
2271		if (ret)
2272			break;
2273		start += PAGE_SIZE;
2274	}
2275
2276	return ret;
2277}
2278
2279/*
2280 * each time an IO finishes, we do a fast check in the IO failure tree
2281 * to see if we need to process or clean up an io_failure_record
2282 */
2283int clean_io_failure(struct btrfs_fs_info *fs_info,
2284		     struct extent_io_tree *failure_tree,
2285		     struct extent_io_tree *io_tree, u64 start,
2286		     struct page *page, u64 ino, unsigned int pg_offset)
2287{
2288	u64 private;
 
2289	struct io_failure_record *failrec;
 
2290	struct extent_state *state;
2291	int num_copies;
 
2292	int ret;
 
2293
2294	private = 0;
2295	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2296			       EXTENT_DIRTY, 0);
2297	if (!ret)
2298		return 0;
2299
2300	ret = get_state_failrec(failure_tree, start, &failrec);
 
2301	if (ret)
2302		return 0;
2303
 
2304	BUG_ON(!failrec->this_mirror);
2305
2306	if (failrec->in_validation) {
2307		/* there was no real error, just free the record */
2308		btrfs_debug(fs_info,
2309			"clean_io_failure: freeing dummy error at %llu",
2310			failrec->start);
2311		goto out;
2312	}
2313	if (sb_rdonly(fs_info->sb))
2314		goto out;
2315
2316	spin_lock(&io_tree->lock);
2317	state = find_first_extent_bit_state(io_tree,
2318					    failrec->start,
2319					    EXTENT_LOCKED);
2320	spin_unlock(&io_tree->lock);
2321
2322	if (state && state->start <= failrec->start &&
2323	    state->end >= failrec->start + failrec->len - 1) {
2324		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2325					      failrec->len);
2326		if (num_copies > 1)  {
2327			repair_io_failure(fs_info, ino, start, failrec->len,
2328					  failrec->logical, page, pg_offset,
2329					  failrec->failed_mirror);
 
2330		}
2331	}
2332
2333out:
2334	free_io_failure(failure_tree, io_tree, failrec);
 
2335
2336	return 0;
2337}
2338
2339/*
2340 * Can be called when
2341 * - hold extent lock
2342 * - under ordered extent
2343 * - the inode is freeing
 
2344 */
2345void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2346{
2347	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2348	struct io_failure_record *failrec;
2349	struct extent_state *state, *next;
2350
2351	if (RB_EMPTY_ROOT(&failure_tree->state))
2352		return;
2353
2354	spin_lock(&failure_tree->lock);
2355	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2356	while (state) {
2357		if (state->start > end)
2358			break;
2359
2360		ASSERT(state->end <= end);
2361
2362		next = next_state(state);
2363
2364		failrec = state->failrec;
2365		free_extent_state(state);
2366		kfree(failrec);
2367
2368		state = next;
2369	}
2370	spin_unlock(&failure_tree->lock);
2371}
2372
2373int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2374		struct io_failure_record **failrec_ret)
2375{
2376	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377	struct io_failure_record *failrec;
2378	struct extent_map *em;
 
2379	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2381	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 
 
2382	int ret;
 
2383	u64 logical;
2384
2385	ret = get_state_failrec(failure_tree, start, &failrec);
 
 
2386	if (ret) {
2387		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2388		if (!failrec)
2389			return -ENOMEM;
2390
2391		failrec->start = start;
2392		failrec->len = end - start + 1;
2393		failrec->this_mirror = 0;
2394		failrec->bio_flags = 0;
2395		failrec->in_validation = 0;
2396
2397		read_lock(&em_tree->lock);
2398		em = lookup_extent_mapping(em_tree, start, failrec->len);
2399		if (!em) {
2400			read_unlock(&em_tree->lock);
2401			kfree(failrec);
2402			return -EIO;
2403		}
2404
2405		if (em->start > start || em->start + em->len <= start) {
2406			free_extent_map(em);
2407			em = NULL;
2408		}
2409		read_unlock(&em_tree->lock);
2410		if (!em) {
 
2411			kfree(failrec);
2412			return -EIO;
2413		}
2414
2415		logical = start - em->start;
2416		logical = em->block_start + logical;
2417		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2418			logical = em->block_start;
2419			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2420			extent_set_compress_type(&failrec->bio_flags,
2421						 em->compress_type);
2422		}
2423
2424		btrfs_debug(fs_info,
2425			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2426			logical, start, failrec->len);
2427
2428		failrec->logical = logical;
2429		free_extent_map(em);
2430
2431		/* set the bits in the private failure tree */
2432		ret = set_extent_bits(failure_tree, start, end,
2433					EXTENT_LOCKED | EXTENT_DIRTY);
2434		if (ret >= 0)
2435			ret = set_state_failrec(failure_tree, start, failrec);
 
2436		/* set the bits in the inode's tree */
2437		if (ret >= 0)
2438			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
 
2439		if (ret < 0) {
2440			kfree(failrec);
2441			return ret;
2442		}
2443	} else {
2444		btrfs_debug(fs_info,
2445			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2446			failrec->logical, failrec->start, failrec->len,
2447			failrec->in_validation);
 
2448		/*
2449		 * when data can be on disk more than twice, add to failrec here
2450		 * (e.g. with a list for failed_mirror) to make
2451		 * clean_io_failure() clean all those errors at once.
2452		 */
2453	}
2454
2455	*failrec_ret = failrec;
2456
2457	return 0;
2458}
2459
2460bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2461			   struct io_failure_record *failrec, int failed_mirror)
2462{
2463	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2464	int num_copies;
2465
2466	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2467	if (num_copies == 1) {
2468		/*
2469		 * we only have a single copy of the data, so don't bother with
2470		 * all the retry and error correction code that follows. no
2471		 * matter what the error is, it is very likely to persist.
2472		 */
2473		btrfs_debug(fs_info,
2474			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2475			num_copies, failrec->this_mirror, failed_mirror);
2476		return false;
 
 
 
 
 
 
 
 
 
 
 
2477	}
2478
2479	/*
2480	 * there are two premises:
2481	 *	a) deliver good data to the caller
2482	 *	b) correct the bad sectors on disk
2483	 */
2484	if (failed_bio_pages > 1) {
2485		/*
2486		 * to fulfill b), we need to know the exact failing sectors, as
2487		 * we don't want to rewrite any more than the failed ones. thus,
2488		 * we need separate read requests for the failed bio
2489		 *
2490		 * if the following BUG_ON triggers, our validation request got
2491		 * merged. we need separate requests for our algorithm to work.
2492		 */
2493		BUG_ON(failrec->in_validation);
2494		failrec->in_validation = 1;
2495		failrec->this_mirror = failed_mirror;
 
2496	} else {
2497		/*
2498		 * we're ready to fulfill a) and b) alongside. get a good copy
2499		 * of the failed sector and if we succeed, we have setup
2500		 * everything for repair_io_failure to do the rest for us.
2501		 */
2502		if (failrec->in_validation) {
2503			BUG_ON(failrec->this_mirror != failed_mirror);
2504			failrec->in_validation = 0;
2505			failrec->this_mirror = 0;
2506		}
2507		failrec->failed_mirror = failed_mirror;
2508		failrec->this_mirror++;
2509		if (failrec->this_mirror == failed_mirror)
2510			failrec->this_mirror++;
 
2511	}
2512
2513	if (failrec->this_mirror > num_copies) {
2514		btrfs_debug(fs_info,
2515			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2516			num_copies, failrec->this_mirror, failed_mirror);
2517		return false;
2518	}
2519
2520	return true;
2521}
2522
2523
2524struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2525				    struct io_failure_record *failrec,
2526				    struct page *page, int pg_offset, int icsum,
2527				    bio_end_io_t *endio_func, void *data)
2528{
2529	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530	struct bio *bio;
2531	struct btrfs_io_bio *btrfs_failed_bio;
2532	struct btrfs_io_bio *btrfs_bio;
2533
2534	bio = btrfs_io_bio_alloc(1);
2535	bio->bi_end_io = endio_func;
2536	bio->bi_iter.bi_sector = failrec->logical >> 9;
2537	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2538	bio->bi_iter.bi_size = 0;
2539	bio->bi_private = data;
2540
2541	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2542	if (btrfs_failed_bio->csum) {
2543		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2544
2545		btrfs_bio = btrfs_io_bio(bio);
2546		btrfs_bio->csum = btrfs_bio->csum_inline;
2547		icsum *= csum_size;
2548		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2549		       csum_size);
2550	}
2551
2552	bio_add_page(bio, page, failrec->len, pg_offset);
2553
2554	return bio;
2555}
2556
2557/*
2558 * This is a generic handler for readpage errors. If other copies exist, read
2559 * those and write back good data to the failed position. Does not investigate
2560 * in remapping the failed extent elsewhere, hoping the device will be smart
2561 * enough to do this as needed
2562 */
2563static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2564			      struct page *page, u64 start, u64 end,
2565			      int failed_mirror)
2566{
2567	struct io_failure_record *failrec;
2568	struct inode *inode = page->mapping->host;
2569	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2570	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2571	struct bio *bio;
2572	int read_mode = 0;
2573	blk_status_t status;
2574	int ret;
2575	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2576
2577	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2578
2579	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2580	if (ret)
2581		return ret;
2582
2583	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2584				    failed_mirror)) {
2585		free_io_failure(failure_tree, tree, failrec);
2586		return -EIO;
2587	}
2588
2589	if (failed_bio_pages > 1)
2590		read_mode |= REQ_FAILFAST_DEV;
2591
2592	phy_offset >>= inode->i_sb->s_blocksize_bits;
2593	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2594				      start - page_offset(page),
2595				      (int)phy_offset, failed_bio->bi_end_io,
2596				      NULL);
2597	bio->bi_opf = REQ_OP_READ | read_mode;
2598
2599	btrfs_debug(btrfs_sb(inode->i_sb),
2600		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2601		read_mode, failrec->this_mirror, failrec->in_validation);
2602
2603	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2604					 failrec->bio_flags);
2605	if (status) {
2606		free_io_failure(failure_tree, tree, failrec);
2607		bio_put(bio);
2608		ret = blk_status_to_errno(status);
2609	}
2610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2611	return ret;
2612}
2613
2614/* lots and lots of room for performance fixes in the end_bio funcs */
2615
2616void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2617{
2618	int uptodate = (err == 0);
2619	int ret = 0;
 
 
 
2620
2621	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
 
 
 
 
 
2622
2623	if (!uptodate) {
2624		ClearPageUptodate(page);
2625		SetPageError(page);
2626		ret = err < 0 ? err : -EIO;
2627		mapping_set_error(page->mapping, ret);
2628	}
 
2629}
2630
2631/*
2632 * after a writepage IO is done, we need to:
2633 * clear the uptodate bits on error
2634 * clear the writeback bits in the extent tree for this IO
2635 * end_page_writeback if the page has no more pending IO
2636 *
2637 * Scheduling is not allowed, so the extent state tree is expected
2638 * to have one and only one object corresponding to this IO.
2639 */
2640static void end_bio_extent_writepage(struct bio *bio)
2641{
2642	int error = blk_status_to_errno(bio->bi_status);
2643	struct bio_vec *bvec;
2644	u64 start;
2645	u64 end;
2646	struct bvec_iter_all iter_all;
2647
2648	ASSERT(!bio_flagged(bio, BIO_CLONED));
2649	bio_for_each_segment_all(bvec, bio, iter_all) {
2650		struct page *page = bvec->bv_page;
2651		struct inode *inode = page->mapping->host;
2652		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653
2654		/* We always issue full-page reads, but if some block
2655		 * in a page fails to read, blk_update_request() will
2656		 * advance bv_offset and adjust bv_len to compensate.
2657		 * Print a warning for nonzero offsets, and an error
2658		 * if they don't add up to a full page.  */
2659		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2660			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2661				btrfs_err(fs_info,
2662				   "partial page write in btrfs with offset %u and length %u",
2663					bvec->bv_offset, bvec->bv_len);
2664			else
2665				btrfs_info(fs_info,
2666				   "incomplete page write in btrfs with offset %u and length %u",
2667					bvec->bv_offset, bvec->bv_len);
2668		}
2669
2670		start = page_offset(page);
2671		end = start + bvec->bv_offset + bvec->bv_len - 1;
2672
2673		end_extent_writepage(page, error, start, end);
2674		end_page_writeback(page);
2675	}
2676
2677	bio_put(bio);
2678}
 
 
 
2679
2680static void
2681endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2682			      int uptodate)
2683{
2684	struct extent_state *cached = NULL;
2685	u64 end = start + len - 1;
2686
2687	if (uptodate && tree->track_uptodate)
2688		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2689	unlock_extent_cached_atomic(tree, start, end, &cached);
2690}
2691
2692/*
2693 * after a readpage IO is done, we need to:
2694 * clear the uptodate bits on error
2695 * set the uptodate bits if things worked
2696 * set the page up to date if all extents in the tree are uptodate
2697 * clear the lock bit in the extent tree
2698 * unlock the page if there are no other extents locked for it
2699 *
2700 * Scheduling is not allowed, so the extent state tree is expected
2701 * to have one and only one object corresponding to this IO.
2702 */
2703static void end_bio_extent_readpage(struct bio *bio)
2704{
2705	struct bio_vec *bvec;
2706	int uptodate = !bio->bi_status;
2707	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2708	struct extent_io_tree *tree, *failure_tree;
2709	u64 offset = 0;
2710	u64 start;
2711	u64 end;
2712	u64 len;
2713	u64 extent_start = 0;
2714	u64 extent_len = 0;
2715	int mirror;
2716	int ret;
2717	struct bvec_iter_all iter_all;
2718
2719	ASSERT(!bio_flagged(bio, BIO_CLONED));
2720	bio_for_each_segment_all(bvec, bio, iter_all) {
 
 
2721		struct page *page = bvec->bv_page;
2722		struct inode *inode = page->mapping->host;
2723		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2724		bool data_inode = btrfs_ino(BTRFS_I(inode))
2725			!= BTRFS_BTREE_INODE_OBJECTID;
2726
2727		btrfs_debug(fs_info,
2728			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2729			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2730			io_bio->mirror_num);
2731		tree = &BTRFS_I(inode)->io_tree;
2732		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2733
2734		/* We always issue full-page reads, but if some block
2735		 * in a page fails to read, blk_update_request() will
2736		 * advance bv_offset and adjust bv_len to compensate.
2737		 * Print a warning for nonzero offsets, and an error
2738		 * if they don't add up to a full page.  */
2739		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2740			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2741				btrfs_err(fs_info,
2742					"partial page read in btrfs with offset %u and length %u",
2743					bvec->bv_offset, bvec->bv_len);
2744			else
2745				btrfs_info(fs_info,
2746					"incomplete page read in btrfs with offset %u and length %u",
2747					bvec->bv_offset, bvec->bv_len);
 
 
2748		}
 
2749
2750		start = page_offset(page);
2751		end = start + bvec->bv_offset + bvec->bv_len - 1;
2752		len = bvec->bv_len;
2753
2754		mirror = io_bio->mirror_num;
2755		if (likely(uptodate)) {
2756			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2757							      page, start, end,
2758							      mirror);
2759			if (ret)
2760				uptodate = 0;
2761			else
2762				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2763						 failure_tree, tree, start,
2764						 page,
2765						 btrfs_ino(BTRFS_I(inode)), 0);
2766		}
2767
2768		if (likely(uptodate))
2769			goto readpage_ok;
2770
2771		if (data_inode) {
2772
 
2773			/*
2774			 * The generic bio_readpage_error handles errors the
2775			 * following way: If possible, new read requests are
2776			 * created and submitted and will end up in
2777			 * end_bio_extent_readpage as well (if we're lucky,
2778			 * not in the !uptodate case). In that case it returns
2779			 * 0 and we just go on with the next page in our bio.
2780			 * If it can't handle the error it will return -EIO and
2781			 * we remain responsible for that page.
2782			 */
2783			ret = bio_readpage_error(bio, offset, page, start, end,
2784						 mirror);
2785			if (ret == 0) {
2786				uptodate = !bio->bi_status;
2787				offset += len;
 
 
 
2788				continue;
2789			}
2790		} else {
2791			struct extent_buffer *eb;
2792
2793			eb = (struct extent_buffer *)page->private;
2794			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2795			eb->read_mirror = mirror;
2796			atomic_dec(&eb->io_pages);
2797			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2798					       &eb->bflags))
2799				btree_readahead_hook(eb, -EIO);
2800		}
2801readpage_ok:
2802		if (likely(uptodate)) {
2803			loff_t i_size = i_size_read(inode);
2804			pgoff_t end_index = i_size >> PAGE_SHIFT;
2805			unsigned off;
2806
2807			/* Zero out the end if this page straddles i_size */
2808			off = offset_in_page(i_size);
2809			if (page->index == end_index && off)
2810				zero_user_segment(page, off, PAGE_SIZE);
2811			SetPageUptodate(page);
2812		} else {
2813			ClearPageUptodate(page);
2814			SetPageError(page);
2815		}
2816		unlock_page(page);
2817		offset += len;
2818
2819		if (unlikely(!uptodate)) {
2820			if (extent_len) {
2821				endio_readpage_release_extent(tree,
2822							      extent_start,
2823							      extent_len, 1);
2824				extent_start = 0;
2825				extent_len = 0;
 
 
 
 
 
2826			}
2827			endio_readpage_release_extent(tree, start,
2828						      end - start + 1, 0);
2829		} else if (!extent_len) {
2830			extent_start = start;
2831			extent_len = end + 1 - start;
2832		} else if (extent_start + extent_len == start) {
2833			extent_len += end + 1 - start;
2834		} else {
2835			endio_readpage_release_extent(tree, extent_start,
2836						      extent_len, uptodate);
2837			extent_start = start;
2838			extent_len = end + 1 - start;
 
 
 
2839		}
2840	}
2841
2842	if (extent_len)
2843		endio_readpage_release_extent(tree, extent_start, extent_len,
2844					      uptodate);
2845	btrfs_io_bio_free_csum(io_bio);
2846	bio_put(bio);
2847}
2848
2849/*
2850 * Initialize the members up to but not including 'bio'. Use after allocating a
2851 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2852 * 'bio' because use of __GFP_ZERO is not supported.
2853 */
2854static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2855{
2856	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2857}
2858
2859/*
2860 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2861 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2862 * for the appropriate container_of magic
2863 */
2864struct bio *btrfs_bio_alloc(u64 first_byte)
 
2865{
2866	struct bio *bio;
 
 
 
 
2867
2868	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2869	bio->bi_iter.bi_sector = first_byte >> 9;
2870	btrfs_io_bio_init(btrfs_io_bio(bio));
2871	return bio;
2872}
2873
2874struct bio *btrfs_bio_clone(struct bio *bio)
2875{
2876	struct btrfs_io_bio *btrfs_bio;
2877	struct bio *new;
2878
2879	/* Bio allocation backed by a bioset does not fail */
2880	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2881	btrfs_bio = btrfs_io_bio(new);
2882	btrfs_io_bio_init(btrfs_bio);
2883	btrfs_bio->iter = bio->bi_iter;
2884	return new;
2885}
2886
2887struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2888{
2889	struct bio *bio;
 
 
2890
2891	/* Bio allocation backed by a bioset does not fail */
2892	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2893	btrfs_io_bio_init(btrfs_io_bio(bio));
2894	return bio;
2895}
2896
2897struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
 
 
2898{
2899	struct bio *bio;
2900	struct btrfs_io_bio *btrfs_bio;
2901
2902	/* this will never fail when it's backed by a bioset */
2903	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2904	ASSERT(bio);
2905
2906	btrfs_bio = btrfs_io_bio(bio);
2907	btrfs_io_bio_init(btrfs_bio);
2908
2909	bio_trim(bio, offset >> 9, size >> 9);
2910	btrfs_bio->iter = bio->bi_iter;
2911	return bio;
2912}
2913
2914/*
2915 * @opf:	bio REQ_OP_* and REQ_* flags as one value
2916 * @tree:	tree so we can call our merge_bio hook
2917 * @wbc:	optional writeback control for io accounting
2918 * @page:	page to add to the bio
2919 * @pg_offset:	offset of the new bio or to check whether we are adding
2920 *              a contiguous page to the previous one
2921 * @size:	portion of page that we want to write
2922 * @offset:	starting offset in the page
2923 * @bdev:	attach newly created bios to this bdev
2924 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2925 * @end_io_func:     end_io callback for new bio
2926 * @mirror_num:	     desired mirror to read/write
2927 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2928 * @bio_flags:	flags of the current bio to see if we can merge them
2929 */
2930static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2931			      struct writeback_control *wbc,
2932			      struct page *page, u64 offset,
2933			      size_t size, unsigned long pg_offset,
2934			      struct block_device *bdev,
2935			      struct bio **bio_ret,
 
2936			      bio_end_io_t end_io_func,
2937			      int mirror_num,
2938			      unsigned long prev_bio_flags,
2939			      unsigned long bio_flags,
2940			      bool force_bio_submit)
2941{
2942	int ret = 0;
2943	struct bio *bio;
2944	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2945	sector_t sector = offset >> 9;
2946
2947	ASSERT(bio_ret);
2948
2949	if (*bio_ret) {
2950		bool contig;
2951		bool can_merge = true;
2952
 
2953		bio = *bio_ret;
2954		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2955			contig = bio->bi_iter.bi_sector == sector;
2956		else
2957			contig = bio_end_sector(bio) == sector;
 
2958
2959		ASSERT(tree->ops);
2960		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2961			can_merge = false;
2962
2963		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2964		    force_bio_submit ||
2965		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2966			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2967			if (ret < 0) {
2968				*bio_ret = NULL;
2969				return ret;
2970			}
2971			bio = NULL;
2972		} else {
2973			if (wbc)
2974				wbc_account_cgroup_owner(wbc, page, page_size);
2975			return 0;
2976		}
2977	}
 
 
 
 
 
 
 
 
2978
2979	bio = btrfs_bio_alloc(offset);
2980	bio_set_dev(bio, bdev);
2981	bio_add_page(bio, page, page_size, pg_offset);
2982	bio->bi_end_io = end_io_func;
2983	bio->bi_private = tree;
2984	bio->bi_write_hint = page->mapping->host->i_write_hint;
2985	bio->bi_opf = opf;
2986	if (wbc) {
2987		wbc_init_bio(wbc, bio);
2988		wbc_account_cgroup_owner(wbc, page, page_size);
2989	}
2990
2991	*bio_ret = bio;
 
 
 
2992
2993	return ret;
2994}
2995
2996static void attach_extent_buffer_page(struct extent_buffer *eb,
2997				      struct page *page)
2998{
2999	if (!PagePrivate(page)) {
3000		SetPagePrivate(page);
3001		get_page(page);
3002		set_page_private(page, (unsigned long)eb);
3003	} else {
3004		WARN_ON(page->private != (unsigned long)eb);
3005	}
3006}
3007
3008void set_page_extent_mapped(struct page *page)
3009{
3010	if (!PagePrivate(page)) {
3011		SetPagePrivate(page);
3012		get_page(page);
3013		set_page_private(page, EXTENT_PAGE_PRIVATE);
3014	}
3015}
3016
3017static struct extent_map *
3018__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3019		 u64 start, u64 len, get_extent_t *get_extent,
3020		 struct extent_map **em_cached)
3021{
3022	struct extent_map *em;
3023
3024	if (em_cached && *em_cached) {
3025		em = *em_cached;
3026		if (extent_map_in_tree(em) && start >= em->start &&
3027		    start < extent_map_end(em)) {
3028			refcount_inc(&em->refs);
3029			return em;
3030		}
3031
3032		free_extent_map(em);
3033		*em_cached = NULL;
3034	}
3035
3036	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3037	if (em_cached && !IS_ERR_OR_NULL(em)) {
3038		BUG_ON(*em_cached);
3039		refcount_inc(&em->refs);
3040		*em_cached = em;
3041	}
3042	return em;
3043}
3044/*
3045 * basic readpage implementation.  Locked extent state structs are inserted
3046 * into the tree that are removed when the IO is done (by the end_io
3047 * handlers)
3048 * XXX JDM: This needs looking at to ensure proper page locking
3049 * return 0 on success, otherwise return error
3050 */
3051static int __do_readpage(struct extent_io_tree *tree,
3052			 struct page *page,
3053			 get_extent_t *get_extent,
3054			 struct extent_map **em_cached,
3055			 struct bio **bio, int mirror_num,
3056			 unsigned long *bio_flags, unsigned int read_flags,
3057			 u64 *prev_em_start)
3058{
3059	struct inode *inode = page->mapping->host;
3060	u64 start = page_offset(page);
3061	const u64 end = start + PAGE_SIZE - 1;
 
3062	u64 cur = start;
3063	u64 extent_offset;
3064	u64 last_byte = i_size_read(inode);
3065	u64 block_start;
3066	u64 cur_end;
 
3067	struct extent_map *em;
3068	struct block_device *bdev;
3069	int ret = 0;
 
3070	int nr = 0;
3071	size_t pg_offset = 0;
3072	size_t iosize;
3073	size_t disk_io_size;
3074	size_t blocksize = inode->i_sb->s_blocksize;
3075	unsigned long this_bio_flag = 0;
3076
3077	set_page_extent_mapped(page);
3078
3079	if (!PageUptodate(page)) {
3080		if (cleancache_get_page(page) == 0) {
3081			BUG_ON(blocksize != PAGE_SIZE);
3082			unlock_extent(tree, start, end);
3083			goto out;
3084		}
3085	}
3086
3087	if (page->index == last_byte >> PAGE_SHIFT) {
 
 
 
 
 
 
 
 
 
 
 
3088		char *userpage;
3089		size_t zero_offset = offset_in_page(last_byte);
3090
3091		if (zero_offset) {
3092			iosize = PAGE_SIZE - zero_offset;
3093			userpage = kmap_atomic(page);
3094			memset(userpage + zero_offset, 0, iosize);
3095			flush_dcache_page(page);
3096			kunmap_atomic(userpage);
3097		}
3098	}
3099	while (cur <= end) {
3100		bool force_bio_submit = false;
3101		u64 offset;
3102
3103		if (cur >= last_byte) {
3104			char *userpage;
3105			struct extent_state *cached = NULL;
3106
3107			iosize = PAGE_SIZE - pg_offset;
3108			userpage = kmap_atomic(page);
3109			memset(userpage + pg_offset, 0, iosize);
3110			flush_dcache_page(page);
3111			kunmap_atomic(userpage);
3112			set_extent_uptodate(tree, cur, cur + iosize - 1,
3113					    &cached, GFP_NOFS);
3114			unlock_extent_cached(tree, cur,
3115					     cur + iosize - 1, &cached);
3116			break;
3117		}
3118		em = __get_extent_map(inode, page, pg_offset, cur,
3119				      end - cur + 1, get_extent, em_cached);
3120		if (IS_ERR_OR_NULL(em)) {
3121			SetPageError(page);
3122			unlock_extent(tree, cur, end);
3123			break;
3124		}
3125		extent_offset = cur - em->start;
3126		BUG_ON(extent_map_end(em) <= cur);
3127		BUG_ON(end < cur);
3128
3129		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3130			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3131			extent_set_compress_type(&this_bio_flag,
3132						 em->compress_type);
3133		}
3134
3135		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3136		cur_end = min(extent_map_end(em) - 1, end);
3137		iosize = ALIGN(iosize, blocksize);
3138		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3139			disk_io_size = em->block_len;
3140			offset = em->block_start;
3141		} else {
3142			offset = em->block_start + extent_offset;
3143			disk_io_size = iosize;
3144		}
3145		bdev = em->bdev;
3146		block_start = em->block_start;
3147		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3148			block_start = EXTENT_MAP_HOLE;
3149
3150		/*
3151		 * If we have a file range that points to a compressed extent
3152		 * and it's followed by a consecutive file range that points to
3153		 * to the same compressed extent (possibly with a different
3154		 * offset and/or length, so it either points to the whole extent
3155		 * or only part of it), we must make sure we do not submit a
3156		 * single bio to populate the pages for the 2 ranges because
3157		 * this makes the compressed extent read zero out the pages
3158		 * belonging to the 2nd range. Imagine the following scenario:
3159		 *
3160		 *  File layout
3161		 *  [0 - 8K]                     [8K - 24K]
3162		 *    |                               |
3163		 *    |                               |
3164		 * points to extent X,         points to extent X,
3165		 * offset 4K, length of 8K     offset 0, length 16K
3166		 *
3167		 * [extent X, compressed length = 4K uncompressed length = 16K]
3168		 *
3169		 * If the bio to read the compressed extent covers both ranges,
3170		 * it will decompress extent X into the pages belonging to the
3171		 * first range and then it will stop, zeroing out the remaining
3172		 * pages that belong to the other range that points to extent X.
3173		 * So here we make sure we submit 2 bios, one for the first
3174		 * range and another one for the third range. Both will target
3175		 * the same physical extent from disk, but we can't currently
3176		 * make the compressed bio endio callback populate the pages
3177		 * for both ranges because each compressed bio is tightly
3178		 * coupled with a single extent map, and each range can have
3179		 * an extent map with a different offset value relative to the
3180		 * uncompressed data of our extent and different lengths. This
3181		 * is a corner case so we prioritize correctness over
3182		 * non-optimal behavior (submitting 2 bios for the same extent).
3183		 */
3184		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3185		    prev_em_start && *prev_em_start != (u64)-1 &&
3186		    *prev_em_start != em->start)
3187			force_bio_submit = true;
3188
3189		if (prev_em_start)
3190			*prev_em_start = em->start;
3191
3192		free_extent_map(em);
3193		em = NULL;
3194
3195		/* we've found a hole, just zero and go on */
3196		if (block_start == EXTENT_MAP_HOLE) {
3197			char *userpage;
3198			struct extent_state *cached = NULL;
3199
3200			userpage = kmap_atomic(page);
3201			memset(userpage + pg_offset, 0, iosize);
3202			flush_dcache_page(page);
3203			kunmap_atomic(userpage);
3204
3205			set_extent_uptodate(tree, cur, cur + iosize - 1,
3206					    &cached, GFP_NOFS);
3207			unlock_extent_cached(tree, cur,
3208					     cur + iosize - 1, &cached);
3209			cur = cur + iosize;
3210			pg_offset += iosize;
3211			continue;
3212		}
3213		/* the get_extent function already copied into the page */
3214		if (test_range_bit(tree, cur, cur_end,
3215				   EXTENT_UPTODATE, 1, NULL)) {
3216			check_page_uptodate(tree, page);
3217			unlock_extent(tree, cur, cur + iosize - 1);
3218			cur = cur + iosize;
3219			pg_offset += iosize;
3220			continue;
3221		}
3222		/* we have an inline extent but it didn't get marked up
3223		 * to date.  Error out
3224		 */
3225		if (block_start == EXTENT_MAP_INLINE) {
3226			SetPageError(page);
3227			unlock_extent(tree, cur, cur + iosize - 1);
3228			cur = cur + iosize;
3229			pg_offset += iosize;
3230			continue;
3231		}
3232
3233		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3234					 page, offset, disk_io_size,
3235					 pg_offset, bdev, bio,
 
 
 
 
 
 
 
 
3236					 end_bio_extent_readpage, mirror_num,
3237					 *bio_flags,
3238					 this_bio_flag,
3239					 force_bio_submit);
3240		if (!ret) {
3241			nr++;
3242			*bio_flags = this_bio_flag;
3243		} else {
3244			SetPageError(page);
3245			unlock_extent(tree, cur, cur + iosize - 1);
3246			goto out;
3247		}
 
 
3248		cur = cur + iosize;
3249		pg_offset += iosize;
3250	}
3251out:
3252	if (!nr) {
3253		if (!PageError(page))
3254			SetPageUptodate(page);
3255		unlock_page(page);
3256	}
3257	return ret;
3258}
3259
3260static inline void contiguous_readpages(struct extent_io_tree *tree,
3261					     struct page *pages[], int nr_pages,
3262					     u64 start, u64 end,
3263					     struct extent_map **em_cached,
3264					     struct bio **bio,
3265					     unsigned long *bio_flags,
3266					     u64 *prev_em_start)
3267{
3268	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3269	int index;
3270
3271	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3272
3273	for (index = 0; index < nr_pages; index++) {
3274		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3275				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3276		put_page(pages[index]);
3277	}
3278}
3279
3280static int __extent_read_full_page(struct extent_io_tree *tree,
3281				   struct page *page,
3282				   get_extent_t *get_extent,
3283				   struct bio **bio, int mirror_num,
3284				   unsigned long *bio_flags,
3285				   unsigned int read_flags)
3286{
3287	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3288	u64 start = page_offset(page);
3289	u64 end = start + PAGE_SIZE - 1;
3290	int ret;
3291
3292	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3293
3294	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3295			    bio_flags, read_flags, NULL);
3296	return ret;
3297}
3298
3299int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3300			    get_extent_t *get_extent, int mirror_num)
3301{
3302	struct bio *bio = NULL;
3303	unsigned long bio_flags = 0;
3304	int ret;
3305
3306	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3307				      &bio_flags, 0);
3308	if (bio)
3309		ret = submit_one_bio(bio, mirror_num, bio_flags);
3310	return ret;
3311}
3312
3313static void update_nr_written(struct writeback_control *wbc,
3314			      unsigned long nr_written)
 
3315{
3316	wbc->nr_to_write -= nr_written;
 
 
 
3317}
3318
3319/*
3320 * helper for __extent_writepage, doing all of the delayed allocation setup.
3321 *
3322 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3323 * to write the page (copy into inline extent).  In this case the IO has
3324 * been started and the page is already unlocked.
3325 *
3326 * This returns 0 if all went well (page still locked)
3327 * This returns < 0 if there were errors (page still locked)
3328 */
3329static noinline_for_stack int writepage_delalloc(struct inode *inode,
3330		struct page *page, struct writeback_control *wbc,
3331		u64 delalloc_start, unsigned long *nr_written)
3332{
3333	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3334	bool found;
3335	u64 delalloc_to_write = 0;
3336	u64 delalloc_end = 0;
3337	int ret;
3338	int page_started = 0;
3339
3340
3341	while (delalloc_end < page_end) {
3342		found = find_lock_delalloc_range(inode, page,
3343					       &delalloc_start,
3344					       &delalloc_end);
3345		if (!found) {
3346			delalloc_start = delalloc_end + 1;
3347			continue;
3348		}
3349		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3350				delalloc_end, &page_started, nr_written, wbc);
3351		if (ret) {
3352			SetPageError(page);
3353			/*
3354			 * btrfs_run_delalloc_range should return < 0 for error
3355			 * but just in case, we use > 0 here meaning the IO is
3356			 * started, so we don't want to return > 0 unless
3357			 * things are going well.
3358			 */
3359			ret = ret < 0 ? ret : -EIO;
3360			goto done;
3361		}
3362		/*
3363		 * delalloc_end is already one less than the total length, so
3364		 * we don't subtract one from PAGE_SIZE
3365		 */
3366		delalloc_to_write += (delalloc_end - delalloc_start +
3367				      PAGE_SIZE) >> PAGE_SHIFT;
3368		delalloc_start = delalloc_end + 1;
3369	}
3370	if (wbc->nr_to_write < delalloc_to_write) {
3371		int thresh = 8192;
3372
3373		if (delalloc_to_write < thresh * 2)
3374			thresh = delalloc_to_write;
3375		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3376					 thresh);
3377	}
3378
3379	/* did the fill delalloc function already unlock and start
3380	 * the IO?
3381	 */
3382	if (page_started) {
3383		/*
3384		 * we've unlocked the page, so we can't update
3385		 * the mapping's writeback index, just update
3386		 * nr_to_write.
3387		 */
3388		wbc->nr_to_write -= *nr_written;
3389		return 1;
3390	}
3391
3392	ret = 0;
3393
3394done:
3395	return ret;
3396}
3397
3398/*
3399 * helper for __extent_writepage.  This calls the writepage start hooks,
3400 * and does the loop to map the page into extents and bios.
3401 *
3402 * We return 1 if the IO is started and the page is unlocked,
3403 * 0 if all went well (page still locked)
3404 * < 0 if there were errors (page still locked)
3405 */
3406static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3407				 struct page *page,
3408				 struct writeback_control *wbc,
3409				 struct extent_page_data *epd,
3410				 loff_t i_size,
3411				 unsigned long nr_written,
3412				 unsigned int write_flags, int *nr_ret)
3413{
 
 
3414	struct extent_io_tree *tree = epd->tree;
3415	u64 start = page_offset(page);
3416	u64 page_end = start + PAGE_SIZE - 1;
 
3417	u64 end;
3418	u64 cur = start;
3419	u64 extent_offset;
 
3420	u64 block_start;
3421	u64 iosize;
 
 
3422	struct extent_map *em;
3423	struct block_device *bdev;
 
 
3424	size_t pg_offset = 0;
3425	size_t blocksize;
3426	int ret = 0;
3427	int nr = 0;
3428	bool compressed;
 
 
 
 
 
 
3429
3430	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3431	if (ret) {
3432		/* Fixup worker will requeue */
3433		if (ret == -EBUSY)
3434			wbc->pages_skipped++;
3435		else
3436			redirty_page_for_writepage(wbc, page);
 
3437
3438		update_nr_written(wbc, nr_written);
 
 
 
 
 
3439		unlock_page(page);
3440		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3441	}
3442
3443	/*
3444	 * we don't want to touch the inode after unlocking the page,
3445	 * so we update the mapping writeback index now
3446	 */
3447	update_nr_written(wbc, nr_written + 1);
3448
3449	end = page_end;
3450	if (i_size <= start) {
3451		btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
 
 
3452		goto done;
3453	}
3454
3455	blocksize = inode->i_sb->s_blocksize;
3456
3457	while (cur <= end) {
3458		u64 em_end;
3459		u64 offset;
3460
3461		if (cur >= i_size) {
3462			btrfs_writepage_endio_finish_ordered(page, cur,
3463							     page_end, 1);
3464			break;
3465		}
3466		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3467				     end - cur + 1, 1);
3468		if (IS_ERR_OR_NULL(em)) {
3469			SetPageError(page);
3470			ret = PTR_ERR_OR_ZERO(em);
3471			break;
3472		}
3473
3474		extent_offset = cur - em->start;
3475		em_end = extent_map_end(em);
3476		BUG_ON(em_end <= cur);
3477		BUG_ON(end < cur);
3478		iosize = min(em_end - cur, end - cur + 1);
3479		iosize = ALIGN(iosize, blocksize);
3480		offset = em->block_start + extent_offset;
3481		bdev = em->bdev;
3482		block_start = em->block_start;
3483		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3484		free_extent_map(em);
3485		em = NULL;
3486
3487		/*
3488		 * compressed and inline extents are written through other
3489		 * paths in the FS
3490		 */
3491		if (compressed || block_start == EXTENT_MAP_HOLE ||
3492		    block_start == EXTENT_MAP_INLINE) {
3493			/*
3494			 * end_io notification does not happen here for
3495			 * compressed extents
3496			 */
3497			if (!compressed)
3498				btrfs_writepage_endio_finish_ordered(page, cur,
3499							    cur + iosize - 1,
3500							    1);
 
3501			else if (compressed) {
3502				/* we don't want to end_page_writeback on
3503				 * a compressed extent.  this happens
3504				 * elsewhere
3505				 */
3506				nr++;
3507			}
3508
3509			cur += iosize;
3510			pg_offset += iosize;
3511			continue;
3512		}
3513
3514		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3515		if (!PageWriteback(page)) {
3516			btrfs_err(BTRFS_I(inode)->root->fs_info,
3517				   "page %lu not writeback, cur %llu end %llu",
3518			       page->index, cur, end);
3519		}
3520
3521		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3522					 page, offset, iosize, pg_offset,
3523					 bdev, &epd->bio,
3524					 end_bio_extent_writepage,
3525					 0, 0, 0, false);
 
3526		if (ret) {
3527			SetPageError(page);
3528			if (PageWriteback(page))
3529				end_page_writeback(page);
3530		}
 
 
 
 
 
 
 
3531
 
 
 
 
 
 
 
 
3532		cur = cur + iosize;
3533		pg_offset += iosize;
3534		nr++;
3535	}
3536done:
3537	*nr_ret = nr;
3538	return ret;
3539}
3540
3541/*
3542 * the writepage semantics are similar to regular writepage.  extent
3543 * records are inserted to lock ranges in the tree, and as dirty areas
3544 * are found, they are marked writeback.  Then the lock bits are removed
3545 * and the end_io handler clears the writeback ranges
3546 *
3547 * Return 0 if everything goes well.
3548 * Return <0 for error.
3549 */
3550static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3551			      struct extent_page_data *epd)
3552{
3553	struct inode *inode = page->mapping->host;
3554	u64 start = page_offset(page);
3555	u64 page_end = start + PAGE_SIZE - 1;
3556	int ret;
3557	int nr = 0;
3558	size_t pg_offset = 0;
3559	loff_t i_size = i_size_read(inode);
3560	unsigned long end_index = i_size >> PAGE_SHIFT;
3561	unsigned int write_flags = 0;
3562	unsigned long nr_written = 0;
3563
3564	write_flags = wbc_to_write_flags(wbc);
3565
3566	trace___extent_writepage(page, inode, wbc);
3567
3568	WARN_ON(!PageLocked(page));
3569
3570	ClearPageError(page);
3571
3572	pg_offset = offset_in_page(i_size);
3573	if (page->index > end_index ||
3574	   (page->index == end_index && !pg_offset)) {
3575		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3576		unlock_page(page);
3577		return 0;
3578	}
3579
3580	if (page->index == end_index) {
3581		char *userpage;
3582
3583		userpage = kmap_atomic(page);
3584		memset(userpage + pg_offset, 0,
3585		       PAGE_SIZE - pg_offset);
3586		kunmap_atomic(userpage);
3587		flush_dcache_page(page);
3588	}
3589
3590	pg_offset = 0;
3591
3592	set_page_extent_mapped(page);
3593
3594	if (!epd->extent_locked) {
3595		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3596		if (ret == 1)
3597			goto done_unlocked;
3598		if (ret)
3599			goto done;
3600	}
3601
3602	ret = __extent_writepage_io(inode, page, wbc, epd,
3603				    i_size, nr_written, write_flags, &nr);
3604	if (ret == 1)
3605		goto done_unlocked;
3606
3607done:
3608	if (nr == 0) {
3609		/* make sure the mapping tag for page dirty gets cleared */
3610		set_page_writeback(page);
3611		end_page_writeback(page);
3612	}
3613	if (PageError(page)) {
3614		ret = ret < 0 ? ret : -EIO;
3615		end_extent_writepage(page, ret, start, page_end);
3616	}
3617	unlock_page(page);
3618	ASSERT(ret <= 0);
3619	return ret;
3620
3621done_unlocked:
 
 
 
3622	return 0;
3623}
3624
3625void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3626{
3627	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3628		       TASK_UNINTERRUPTIBLE);
3629}
3630
3631static void end_extent_buffer_writeback(struct extent_buffer *eb)
3632{
3633	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3634	smp_mb__after_atomic();
3635	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3636}
3637
3638/*
3639 * Lock eb pages and flush the bio if we can't the locks
3640 *
3641 * Return  0 if nothing went wrong
3642 * Return >0 is same as 0, except bio is not submitted
3643 * Return <0 if something went wrong, no page is locked
3644 */
3645static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3646			  struct extent_page_data *epd)
3647{
3648	struct btrfs_fs_info *fs_info = eb->fs_info;
3649	int i, num_pages, failed_page_nr;
3650	int flush = 0;
3651	int ret = 0;
3652
3653	if (!btrfs_try_tree_write_lock(eb)) {
3654		ret = flush_write_bio(epd);
3655		if (ret < 0)
3656			return ret;
3657		flush = 1;
 
3658		btrfs_tree_lock(eb);
3659	}
3660
3661	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3662		btrfs_tree_unlock(eb);
3663		if (!epd->sync_io)
3664			return 0;
3665		if (!flush) {
3666			ret = flush_write_bio(epd);
3667			if (ret < 0)
3668				return ret;
3669			flush = 1;
3670		}
3671		while (1) {
3672			wait_on_extent_buffer_writeback(eb);
3673			btrfs_tree_lock(eb);
3674			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3675				break;
3676			btrfs_tree_unlock(eb);
3677		}
3678	}
3679
3680	/*
3681	 * We need to do this to prevent races in people who check if the eb is
3682	 * under IO since we can end up having no IO bits set for a short period
3683	 * of time.
3684	 */
3685	spin_lock(&eb->refs_lock);
3686	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3687		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3688		spin_unlock(&eb->refs_lock);
3689		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3690		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3691					 -eb->len,
3692					 fs_info->dirty_metadata_batch);
 
 
 
3693		ret = 1;
3694	} else {
3695		spin_unlock(&eb->refs_lock);
3696	}
3697
3698	btrfs_tree_unlock(eb);
3699
3700	if (!ret)
3701		return ret;
3702
3703	num_pages = num_extent_pages(eb);
3704	for (i = 0; i < num_pages; i++) {
3705		struct page *p = eb->pages[i];
3706
3707		if (!trylock_page(p)) {
3708			if (!flush) {
3709				int err;
3710
3711				err = flush_write_bio(epd);
3712				if (err < 0) {
3713					ret = err;
3714					failed_page_nr = i;
3715					goto err_unlock;
3716				}
3717				flush = 1;
3718			}
3719			lock_page(p);
3720		}
3721	}
3722
3723	return ret;
3724err_unlock:
3725	/* Unlock already locked pages */
3726	for (i = 0; i < failed_page_nr; i++)
3727		unlock_page(eb->pages[i]);
3728	/*
3729	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3730	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3731	 * be made and undo everything done before.
3732	 */
3733	btrfs_tree_lock(eb);
3734	spin_lock(&eb->refs_lock);
3735	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3736	end_extent_buffer_writeback(eb);
3737	spin_unlock(&eb->refs_lock);
3738	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3739				 fs_info->dirty_metadata_batch);
3740	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3741	btrfs_tree_unlock(eb);
3742	return ret;
3743}
3744
3745static void set_btree_ioerr(struct page *page)
3746{
3747	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3748	struct btrfs_fs_info *fs_info;
3749
3750	SetPageError(page);
3751	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3752		return;
3753
3754	/*
3755	 * If we error out, we should add back the dirty_metadata_bytes
3756	 * to make it consistent.
3757	 */
3758	fs_info = eb->fs_info;
3759	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3760				 eb->len, fs_info->dirty_metadata_batch);
3761
3762	/*
3763	 * If writeback for a btree extent that doesn't belong to a log tree
3764	 * failed, increment the counter transaction->eb_write_errors.
3765	 * We do this because while the transaction is running and before it's
3766	 * committing (when we call filemap_fdata[write|wait]_range against
3767	 * the btree inode), we might have
3768	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3769	 * returns an error or an error happens during writeback, when we're
3770	 * committing the transaction we wouldn't know about it, since the pages
3771	 * can be no longer dirty nor marked anymore for writeback (if a
3772	 * subsequent modification to the extent buffer didn't happen before the
3773	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3774	 * able to find the pages tagged with SetPageError at transaction
3775	 * commit time. So if this happens we must abort the transaction,
3776	 * otherwise we commit a super block with btree roots that point to
3777	 * btree nodes/leafs whose content on disk is invalid - either garbage
3778	 * or the content of some node/leaf from a past generation that got
3779	 * cowed or deleted and is no longer valid.
3780	 *
3781	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3782	 * not be enough - we need to distinguish between log tree extents vs
3783	 * non-log tree extents, and the next filemap_fdatawait_range() call
3784	 * will catch and clear such errors in the mapping - and that call might
3785	 * be from a log sync and not from a transaction commit. Also, checking
3786	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3787	 * not done and would not be reliable - the eb might have been released
3788	 * from memory and reading it back again means that flag would not be
3789	 * set (since it's a runtime flag, not persisted on disk).
3790	 *
3791	 * Using the flags below in the btree inode also makes us achieve the
3792	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3793	 * writeback for all dirty pages and before filemap_fdatawait_range()
3794	 * is called, the writeback for all dirty pages had already finished
3795	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3796	 * filemap_fdatawait_range() would return success, as it could not know
3797	 * that writeback errors happened (the pages were no longer tagged for
3798	 * writeback).
3799	 */
3800	switch (eb->log_index) {
3801	case -1:
3802		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3803		break;
3804	case 0:
3805		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3806		break;
3807	case 1:
3808		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3809		break;
3810	default:
3811		BUG(); /* unexpected, logic error */
3812	}
3813}
3814
3815static void end_bio_extent_buffer_writepage(struct bio *bio)
3816{
3817	struct bio_vec *bvec;
 
3818	struct extent_buffer *eb;
3819	int done;
3820	struct bvec_iter_all iter_all;
3821
3822	ASSERT(!bio_flagged(bio, BIO_CLONED));
3823	bio_for_each_segment_all(bvec, bio, iter_all) {
3824		struct page *page = bvec->bv_page;
3825
 
3826		eb = (struct extent_buffer *)page->private;
3827		BUG_ON(!eb);
3828		done = atomic_dec_and_test(&eb->io_pages);
3829
3830		if (bio->bi_status ||
3831		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3832			ClearPageUptodate(page);
3833			set_btree_ioerr(page);
3834		}
3835
3836		end_page_writeback(page);
3837
3838		if (!done)
3839			continue;
3840
3841		end_extent_buffer_writeback(eb);
3842	}
3843
3844	bio_put(bio);
 
3845}
3846
3847static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
 
3848			struct writeback_control *wbc,
3849			struct extent_page_data *epd)
3850{
3851	struct btrfs_fs_info *fs_info = eb->fs_info;
3852	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3853	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3854	u64 offset = eb->start;
3855	u32 nritems;
3856	int i, num_pages;
3857	unsigned long start, end;
3858	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3859	int ret = 0;
3860
3861	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3862	num_pages = num_extent_pages(eb);
3863	atomic_set(&eb->io_pages, num_pages);
3864
3865	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3866	nritems = btrfs_header_nritems(eb);
3867	if (btrfs_header_level(eb) > 0) {
3868		end = btrfs_node_key_ptr_offset(nritems);
3869
3870		memzero_extent_buffer(eb, end, eb->len - end);
3871	} else {
3872		/*
3873		 * leaf:
3874		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3875		 */
3876		start = btrfs_item_nr_offset(nritems);
3877		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3878		memzero_extent_buffer(eb, start, end - start);
3879	}
3880
3881	for (i = 0; i < num_pages; i++) {
3882		struct page *p = eb->pages[i];
3883
3884		clear_page_dirty_for_io(p);
3885		set_page_writeback(p);
3886		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3887					 p, offset, PAGE_SIZE, 0, bdev,
3888					 &epd->bio,
3889					 end_bio_extent_buffer_writepage,
3890					 0, 0, 0, false);
3891		if (ret) {
3892			set_btree_ioerr(p);
3893			if (PageWriteback(p))
3894				end_page_writeback(p);
3895			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3896				end_extent_buffer_writeback(eb);
3897			ret = -EIO;
3898			break;
3899		}
3900		offset += PAGE_SIZE;
3901		update_nr_written(wbc, 1);
3902		unlock_page(p);
3903	}
3904
3905	if (unlikely(ret)) {
3906		for (; i < num_pages; i++) {
3907			struct page *p = eb->pages[i];
3908			clear_page_dirty_for_io(p);
3909			unlock_page(p);
3910		}
3911	}
3912
3913	return ret;
3914}
3915
3916int btree_write_cache_pages(struct address_space *mapping,
3917				   struct writeback_control *wbc)
3918{
3919	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
 
3920	struct extent_buffer *eb, *prev_eb = NULL;
3921	struct extent_page_data epd = {
3922		.bio = NULL,
3923		.tree = tree,
3924		.extent_locked = 0,
3925		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3926	};
3927	int ret = 0;
3928	int done = 0;
3929	int nr_to_write_done = 0;
3930	struct pagevec pvec;
3931	int nr_pages;
3932	pgoff_t index;
3933	pgoff_t end;		/* Inclusive */
3934	int scanned = 0;
3935	xa_mark_t tag;
3936
3937	pagevec_init(&pvec);
3938	if (wbc->range_cyclic) {
3939		index = mapping->writeback_index; /* Start from prev offset */
3940		end = -1;
3941	} else {
3942		index = wbc->range_start >> PAGE_SHIFT;
3943		end = wbc->range_end >> PAGE_SHIFT;
3944		scanned = 1;
3945	}
3946	if (wbc->sync_mode == WB_SYNC_ALL)
3947		tag = PAGECACHE_TAG_TOWRITE;
3948	else
3949		tag = PAGECACHE_TAG_DIRTY;
3950retry:
3951	if (wbc->sync_mode == WB_SYNC_ALL)
3952		tag_pages_for_writeback(mapping, index, end);
3953	while (!done && !nr_to_write_done && (index <= end) &&
3954	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3955			tag))) {
3956		unsigned i;
3957
3958		scanned = 1;
3959		for (i = 0; i < nr_pages; i++) {
3960			struct page *page = pvec.pages[i];
3961
3962			if (!PagePrivate(page))
3963				continue;
3964
3965			spin_lock(&mapping->private_lock);
3966			if (!PagePrivate(page)) {
3967				spin_unlock(&mapping->private_lock);
3968				continue;
3969			}
3970
3971			eb = (struct extent_buffer *)page->private;
3972
3973			/*
3974			 * Shouldn't happen and normally this would be a BUG_ON
3975			 * but no sense in crashing the users box for something
3976			 * we can survive anyway.
3977			 */
3978			if (WARN_ON(!eb)) {
3979				spin_unlock(&mapping->private_lock);
3980				continue;
3981			}
3982
3983			if (eb == prev_eb) {
3984				spin_unlock(&mapping->private_lock);
3985				continue;
3986			}
3987
3988			ret = atomic_inc_not_zero(&eb->refs);
3989			spin_unlock(&mapping->private_lock);
3990			if (!ret)
3991				continue;
 
3992
3993			prev_eb = eb;
3994			ret = lock_extent_buffer_for_io(eb, &epd);
3995			if (!ret) {
3996				free_extent_buffer(eb);
3997				continue;
3998			} else if (ret < 0) {
3999				done = 1;
4000				free_extent_buffer(eb);
4001				break;
4002			}
4003
4004			ret = write_one_eb(eb, wbc, &epd);
4005			if (ret) {
4006				done = 1;
4007				free_extent_buffer(eb);
4008				break;
4009			}
4010			free_extent_buffer(eb);
4011
4012			/*
4013			 * the filesystem may choose to bump up nr_to_write.
4014			 * We have to make sure to honor the new nr_to_write
4015			 * at any time
4016			 */
4017			nr_to_write_done = wbc->nr_to_write <= 0;
4018		}
4019		pagevec_release(&pvec);
4020		cond_resched();
4021	}
4022	if (!scanned && !done) {
4023		/*
4024		 * We hit the last page and there is more work to be done: wrap
4025		 * back to the start of the file
4026		 */
4027		scanned = 1;
4028		index = 0;
4029		goto retry;
4030	}
4031	ASSERT(ret <= 0);
4032	if (ret < 0) {
4033		end_write_bio(&epd, ret);
4034		return ret;
4035	}
4036	ret = flush_write_bio(&epd);
4037	return ret;
4038}
4039
4040/**
4041 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4042 * @mapping: address space structure to write
4043 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4044 * @data: data passed to __extent_writepage function
 
4045 *
4046 * If a page is already under I/O, write_cache_pages() skips it, even
4047 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4048 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4049 * and msync() need to guarantee that all the data which was dirty at the time
4050 * the call was made get new I/O started against them.  If wbc->sync_mode is
4051 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4052 * existing IO to complete.
4053 */
4054static int extent_write_cache_pages(struct address_space *mapping,
 
4055			     struct writeback_control *wbc,
4056			     struct extent_page_data *epd)
 
4057{
4058	struct inode *inode = mapping->host;
4059	int ret = 0;
4060	int done = 0;
4061	int nr_to_write_done = 0;
4062	struct pagevec pvec;
4063	int nr_pages;
4064	pgoff_t index;
4065	pgoff_t end;		/* Inclusive */
4066	pgoff_t done_index;
4067	int range_whole = 0;
4068	int scanned = 0;
4069	xa_mark_t tag;
4070
4071	/*
4072	 * We have to hold onto the inode so that ordered extents can do their
4073	 * work when the IO finishes.  The alternative to this is failing to add
4074	 * an ordered extent if the igrab() fails there and that is a huge pain
4075	 * to deal with, so instead just hold onto the inode throughout the
4076	 * writepages operation.  If it fails here we are freeing up the inode
4077	 * anyway and we'd rather not waste our time writing out stuff that is
4078	 * going to be truncated anyway.
4079	 */
4080	if (!igrab(inode))
4081		return 0;
4082
4083	pagevec_init(&pvec);
4084	if (wbc->range_cyclic) {
4085		index = mapping->writeback_index; /* Start from prev offset */
4086		end = -1;
4087	} else {
4088		index = wbc->range_start >> PAGE_SHIFT;
4089		end = wbc->range_end >> PAGE_SHIFT;
4090		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4091			range_whole = 1;
4092		scanned = 1;
4093	}
4094
4095	/*
4096	 * We do the tagged writepage as long as the snapshot flush bit is set
4097	 * and we are the first one who do the filemap_flush() on this inode.
4098	 *
4099	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4100	 * not race in and drop the bit.
4101	 */
4102	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4103	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4104			       &BTRFS_I(inode)->runtime_flags))
4105		wbc->tagged_writepages = 1;
4106
4107	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4108		tag = PAGECACHE_TAG_TOWRITE;
4109	else
4110		tag = PAGECACHE_TAG_DIRTY;
4111retry:
4112	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4113		tag_pages_for_writeback(mapping, index, end);
4114	done_index = index;
4115	while (!done && !nr_to_write_done && (index <= end) &&
4116			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4117						&index, end, tag))) {
4118		unsigned i;
4119
4120		scanned = 1;
4121		for (i = 0; i < nr_pages; i++) {
4122			struct page *page = pvec.pages[i];
4123
4124			done_index = page->index;
4125			/*
4126			 * At this point we hold neither the i_pages lock nor
4127			 * the page lock: the page may be truncated or
4128			 * invalidated (changing page->mapping to NULL),
4129			 * or even swizzled back from swapper_space to
4130			 * tmpfs file mapping
4131			 */
4132			if (!trylock_page(page)) {
4133				ret = flush_write_bio(epd);
4134				BUG_ON(ret < 0);
4135				lock_page(page);
 
 
 
 
 
4136			}
4137
4138			if (unlikely(page->mapping != mapping)) {
4139				unlock_page(page);
4140				continue;
4141			}
4142
 
 
 
 
 
 
4143			if (wbc->sync_mode != WB_SYNC_NONE) {
4144				if (PageWriteback(page)) {
4145					ret = flush_write_bio(epd);
4146					BUG_ON(ret < 0);
4147				}
4148				wait_on_page_writeback(page);
4149			}
4150
4151			if (PageWriteback(page) ||
4152			    !clear_page_dirty_for_io(page)) {
4153				unlock_page(page);
4154				continue;
4155			}
4156
4157			ret = __extent_writepage(page, wbc, epd);
4158			if (ret < 0) {
4159				/*
4160				 * done_index is set past this page,
4161				 * so media errors will not choke
4162				 * background writeout for the entire
4163				 * file. This has consequences for
4164				 * range_cyclic semantics (ie. it may
4165				 * not be suitable for data integrity
4166				 * writeout).
4167				 */
4168				done_index = page->index + 1;
4169				done = 1;
4170				break;
4171			}
 
 
4172
4173			/*
4174			 * the filesystem may choose to bump up nr_to_write.
4175			 * We have to make sure to honor the new nr_to_write
4176			 * at any time
4177			 */
4178			nr_to_write_done = wbc->nr_to_write <= 0;
4179		}
4180		pagevec_release(&pvec);
4181		cond_resched();
4182	}
4183	if (!scanned && !done) {
4184		/*
4185		 * We hit the last page and there is more work to be done: wrap
4186		 * back to the start of the file
4187		 */
4188		scanned = 1;
4189		index = 0;
4190		goto retry;
4191	}
4192
4193	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4194		mapping->writeback_index = done_index;
4195
4196	btrfs_add_delayed_iput(inode);
4197	return ret;
4198}
4199
4200int extent_write_full_page(struct page *page, struct writeback_control *wbc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4201{
4202	int ret;
4203	struct extent_page_data epd = {
4204		.bio = NULL,
4205		.tree = &BTRFS_I(page->mapping->host)->io_tree,
 
4206		.extent_locked = 0,
4207		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4208	};
4209
4210	ret = __extent_writepage(page, wbc, &epd);
4211	ASSERT(ret <= 0);
4212	if (ret < 0) {
4213		end_write_bio(&epd, ret);
4214		return ret;
4215	}
4216
4217	ret = flush_write_bio(&epd);
4218	ASSERT(ret <= 0);
4219	return ret;
4220}
4221
4222int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
 
4223			      int mode)
4224{
4225	int ret = 0;
4226	struct address_space *mapping = inode->i_mapping;
4227	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4228	struct page *page;
4229	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4230		PAGE_SHIFT;
4231
4232	struct extent_page_data epd = {
4233		.bio = NULL,
4234		.tree = tree,
 
4235		.extent_locked = 1,
4236		.sync_io = mode == WB_SYNC_ALL,
4237	};
4238	struct writeback_control wbc_writepages = {
4239		.sync_mode	= mode,
4240		.nr_to_write	= nr_pages * 2,
4241		.range_start	= start,
4242		.range_end	= end + 1,
4243	};
4244
4245	while (start <= end) {
4246		page = find_get_page(mapping, start >> PAGE_SHIFT);
4247		if (clear_page_dirty_for_io(page))
4248			ret = __extent_writepage(page, &wbc_writepages, &epd);
4249		else {
4250			btrfs_writepage_endio_finish_ordered(page, start,
4251						    start + PAGE_SIZE - 1, 1);
 
 
4252			unlock_page(page);
4253		}
4254		put_page(page);
4255		start += PAGE_SIZE;
4256	}
4257
4258	ASSERT(ret <= 0);
4259	if (ret < 0) {
4260		end_write_bio(&epd, ret);
4261		return ret;
4262	}
4263	ret = flush_write_bio(&epd);
4264	return ret;
4265}
4266
4267int extent_writepages(struct address_space *mapping,
 
 
4268		      struct writeback_control *wbc)
4269{
4270	int ret = 0;
4271	struct extent_page_data epd = {
4272		.bio = NULL,
4273		.tree = &BTRFS_I(mapping->host)->io_tree,
 
4274		.extent_locked = 0,
4275		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4276	};
4277
4278	ret = extent_write_cache_pages(mapping, wbc, &epd);
4279	ASSERT(ret <= 0);
4280	if (ret < 0) {
4281		end_write_bio(&epd, ret);
4282		return ret;
4283	}
4284	ret = flush_write_bio(&epd);
4285	return ret;
4286}
4287
4288int extent_readpages(struct address_space *mapping, struct list_head *pages,
4289		     unsigned nr_pages)
 
 
4290{
4291	struct bio *bio = NULL;
 
4292	unsigned long bio_flags = 0;
4293	struct page *pagepool[16];
4294	struct extent_map *em_cached = NULL;
4295	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4296	int nr = 0;
4297	u64 prev_em_start = (u64)-1;
4298
4299	while (!list_empty(pages)) {
4300		u64 contig_end = 0;
4301
4302		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4303			struct page *page = lru_to_page(pages);
4304
4305			prefetchw(&page->flags);
4306			list_del(&page->lru);
4307			if (add_to_page_cache_lru(page, mapping, page->index,
4308						readahead_gfp_mask(mapping))) {
4309				put_page(page);
4310				break;
4311			}
4312
4313			pagepool[nr++] = page;
4314			contig_end = page_offset(page) + PAGE_SIZE - 1;
4315		}
4316
4317		if (nr) {
4318			u64 contig_start = page_offset(pagepool[0]);
4319
4320			ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4321
4322			contiguous_readpages(tree, pagepool, nr, contig_start,
4323				     contig_end, &em_cached, &bio, &bio_flags,
4324				     &prev_em_start);
4325		}
 
4326	}
4327
4328	if (em_cached)
4329		free_extent_map(em_cached);
4330
4331	if (bio)
4332		return submit_one_bio(bio, 0, bio_flags);
4333	return 0;
4334}
4335
4336/*
4337 * basic invalidatepage code, this waits on any locked or writeback
4338 * ranges corresponding to the page, and then deletes any extent state
4339 * records from the tree
4340 */
4341int extent_invalidatepage(struct extent_io_tree *tree,
4342			  struct page *page, unsigned long offset)
4343{
4344	struct extent_state *cached_state = NULL;
4345	u64 start = page_offset(page);
4346	u64 end = start + PAGE_SIZE - 1;
4347	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4348
4349	start += ALIGN(offset, blocksize);
4350	if (start > end)
4351		return 0;
4352
4353	lock_extent_bits(tree, start, end, &cached_state);
4354	wait_on_page_writeback(page);
4355	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4356			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
 
 
4357	return 0;
4358}
4359
4360/*
4361 * a helper for releasepage, this tests for areas of the page that
4362 * are locked or under IO and drops the related state bits if it is safe
4363 * to drop the page.
4364 */
4365static int try_release_extent_state(struct extent_io_tree *tree,
4366				    struct page *page, gfp_t mask)
 
4367{
4368	u64 start = page_offset(page);
4369	u64 end = start + PAGE_SIZE - 1;
4370	int ret = 1;
4371
4372	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
 
4373		ret = 0;
4374	} else {
 
 
4375		/*
4376		 * at this point we can safely clear everything except the
4377		 * locked bit and the nodatasum bit
4378		 */
4379		ret = __clear_extent_bit(tree, start, end,
4380				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4381				 0, 0, NULL, mask, NULL);
4382
4383		/* if clear_extent_bit failed for enomem reasons,
4384		 * we can't allow the release to continue.
4385		 */
4386		if (ret < 0)
4387			ret = 0;
4388		else
4389			ret = 1;
4390	}
4391	return ret;
4392}
4393
4394/*
4395 * a helper for releasepage.  As long as there are no locked extents
4396 * in the range corresponding to the page, both state records and extent
4397 * map records are removed
4398 */
4399int try_release_extent_mapping(struct page *page, gfp_t mask)
 
 
4400{
4401	struct extent_map *em;
4402	u64 start = page_offset(page);
4403	u64 end = start + PAGE_SIZE - 1;
4404	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4405	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4406	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4407
4408	if (gfpflags_allow_blocking(mask) &&
4409	    page->mapping->host->i_size > SZ_16M) {
4410		u64 len;
4411		while (start <= end) {
4412			len = end - start + 1;
4413			write_lock(&map->lock);
4414			em = lookup_extent_mapping(map, start, len);
4415			if (!em) {
4416				write_unlock(&map->lock);
4417				break;
4418			}
4419			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4420			    em->start != start) {
4421				write_unlock(&map->lock);
4422				free_extent_map(em);
4423				break;
4424			}
4425			if (!test_range_bit(tree, em->start,
4426					    extent_map_end(em) - 1,
4427					    EXTENT_LOCKED, 0, NULL)) {
4428				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4429					&btrfs_inode->runtime_flags);
4430				remove_extent_mapping(map, em);
4431				/* once for the rb tree */
4432				free_extent_map(em);
4433			}
4434			start = extent_map_end(em);
4435			write_unlock(&map->lock);
4436
4437			/* once for us */
4438			free_extent_map(em);
4439		}
4440	}
4441	return try_release_extent_state(tree, page, mask);
4442}
4443
4444/*
4445 * helper function for fiemap, which doesn't want to see any holes.
4446 * This maps until we find something past 'last'
4447 */
4448static struct extent_map *get_extent_skip_holes(struct inode *inode,
4449						u64 offset, u64 last)
 
 
4450{
4451	u64 sectorsize = btrfs_inode_sectorsize(inode);
4452	struct extent_map *em;
4453	u64 len;
4454
4455	if (offset >= last)
4456		return NULL;
4457
4458	while (1) {
4459		len = last - offset;
4460		if (len == 0)
4461			break;
4462		len = ALIGN(len, sectorsize);
4463		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4464		if (IS_ERR_OR_NULL(em))
4465			return em;
4466
4467		/* if this isn't a hole return it */
4468		if (em->block_start != EXTENT_MAP_HOLE)
 
4469			return em;
 
4470
4471		/* this is a hole, advance to the next extent */
4472		offset = extent_map_end(em);
4473		free_extent_map(em);
4474		if (offset >= last)
4475			break;
4476	}
4477	return NULL;
4478}
4479
4480/*
4481 * To cache previous fiemap extent
4482 *
4483 * Will be used for merging fiemap extent
4484 */
4485struct fiemap_cache {
4486	u64 offset;
4487	u64 phys;
4488	u64 len;
4489	u32 flags;
4490	bool cached;
4491};
4492
4493/*
4494 * Helper to submit fiemap extent.
4495 *
4496 * Will try to merge current fiemap extent specified by @offset, @phys,
4497 * @len and @flags with cached one.
4498 * And only when we fails to merge, cached one will be submitted as
4499 * fiemap extent.
4500 *
4501 * Return value is the same as fiemap_fill_next_extent().
4502 */
4503static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4504				struct fiemap_cache *cache,
4505				u64 offset, u64 phys, u64 len, u32 flags)
4506{
4507	int ret = 0;
4508
4509	if (!cache->cached)
4510		goto assign;
4511
4512	/*
4513	 * Sanity check, extent_fiemap() should have ensured that new
4514	 * fiemap extent won't overlap with cached one.
4515	 * Not recoverable.
4516	 *
4517	 * NOTE: Physical address can overlap, due to compression
4518	 */
4519	if (cache->offset + cache->len > offset) {
4520		WARN_ON(1);
4521		return -EINVAL;
4522	}
4523
4524	/*
4525	 * Only merges fiemap extents if
4526	 * 1) Their logical addresses are continuous
4527	 *
4528	 * 2) Their physical addresses are continuous
4529	 *    So truly compressed (physical size smaller than logical size)
4530	 *    extents won't get merged with each other
4531	 *
4532	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4533	 *    So regular extent won't get merged with prealloc extent
4534	 */
4535	if (cache->offset + cache->len  == offset &&
4536	    cache->phys + cache->len == phys  &&
4537	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4538			(flags & ~FIEMAP_EXTENT_LAST)) {
4539		cache->len += len;
4540		cache->flags |= flags;
4541		goto try_submit_last;
4542	}
4543
4544	/* Not mergeable, need to submit cached one */
4545	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4546				      cache->len, cache->flags);
4547	cache->cached = false;
4548	if (ret)
4549		return ret;
4550assign:
4551	cache->cached = true;
4552	cache->offset = offset;
4553	cache->phys = phys;
4554	cache->len = len;
4555	cache->flags = flags;
4556try_submit_last:
4557	if (cache->flags & FIEMAP_EXTENT_LAST) {
4558		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4559				cache->phys, cache->len, cache->flags);
4560		cache->cached = false;
4561	}
4562	return ret;
4563}
4564
4565/*
4566 * Emit last fiemap cache
4567 *
4568 * The last fiemap cache may still be cached in the following case:
4569 * 0		      4k		    8k
4570 * |<- Fiemap range ->|
4571 * |<------------  First extent ----------->|
4572 *
4573 * In this case, the first extent range will be cached but not emitted.
4574 * So we must emit it before ending extent_fiemap().
4575 */
4576static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4577				  struct fiemap_cache *cache)
4578{
4579	int ret;
4580
4581	if (!cache->cached)
4582		return 0;
4583
4584	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4585				      cache->len, cache->flags);
4586	cache->cached = false;
4587	if (ret > 0)
4588		ret = 0;
4589	return ret;
4590}
4591
4592int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4593		__u64 start, __u64 len)
4594{
4595	int ret = 0;
4596	u64 off = start;
4597	u64 max = start + len;
4598	u32 flags = 0;
4599	u32 found_type;
4600	u64 last;
4601	u64 last_for_get_extent = 0;
4602	u64 disko = 0;
4603	u64 isize = i_size_read(inode);
4604	struct btrfs_key found_key;
4605	struct extent_map *em = NULL;
4606	struct extent_state *cached_state = NULL;
4607	struct btrfs_path *path;
4608	struct btrfs_root *root = BTRFS_I(inode)->root;
4609	struct fiemap_cache cache = { 0 };
4610	struct ulist *roots;
4611	struct ulist *tmp_ulist;
4612	int end = 0;
4613	u64 em_start = 0;
4614	u64 em_len = 0;
4615	u64 em_end = 0;
 
4616
4617	if (len == 0)
4618		return -EINVAL;
4619
4620	path = btrfs_alloc_path();
4621	if (!path)
4622		return -ENOMEM;
4623	path->leave_spinning = 1;
4624
4625	roots = ulist_alloc(GFP_KERNEL);
4626	tmp_ulist = ulist_alloc(GFP_KERNEL);
4627	if (!roots || !tmp_ulist) {
4628		ret = -ENOMEM;
4629		goto out_free_ulist;
4630	}
4631
4632	start = round_down(start, btrfs_inode_sectorsize(inode));
4633	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4634
4635	/*
4636	 * lookup the last file extent.  We're not using i_size here
4637	 * because there might be preallocation past i_size
4638	 */
4639	ret = btrfs_lookup_file_extent(NULL, root, path,
4640			btrfs_ino(BTRFS_I(inode)), -1, 0);
4641	if (ret < 0) {
4642		goto out_free_ulist;
4643	} else {
4644		WARN_ON(!ret);
4645		if (ret == 1)
4646			ret = 0;
4647	}
4648
4649	path->slots[0]--;
 
 
4650	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4651	found_type = found_key.type;
4652
4653	/* No extents, but there might be delalloc bits */
4654	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4655	    found_type != BTRFS_EXTENT_DATA_KEY) {
4656		/* have to trust i_size as the end */
4657		last = (u64)-1;
4658		last_for_get_extent = isize;
4659	} else {
4660		/*
4661		 * remember the start of the last extent.  There are a
4662		 * bunch of different factors that go into the length of the
4663		 * extent, so its much less complex to remember where it started
4664		 */
4665		last = found_key.offset;
4666		last_for_get_extent = last + 1;
4667	}
4668	btrfs_release_path(path);
4669
4670	/*
4671	 * we might have some extents allocated but more delalloc past those
4672	 * extents.  so, we trust isize unless the start of the last extent is
4673	 * beyond isize
4674	 */
4675	if (last < isize) {
4676		last = (u64)-1;
4677		last_for_get_extent = isize;
4678	}
4679
4680	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4681			 &cached_state);
4682
4683	em = get_extent_skip_holes(inode, start, last_for_get_extent);
 
4684	if (!em)
4685		goto out;
4686	if (IS_ERR(em)) {
4687		ret = PTR_ERR(em);
4688		goto out;
4689	}
4690
4691	while (!end) {
4692		u64 offset_in_extent = 0;
4693
4694		/* break if the extent we found is outside the range */
4695		if (em->start >= max || extent_map_end(em) < off)
4696			break;
4697
4698		/*
4699		 * get_extent may return an extent that starts before our
4700		 * requested range.  We have to make sure the ranges
4701		 * we return to fiemap always move forward and don't
4702		 * overlap, so adjust the offsets here
4703		 */
4704		em_start = max(em->start, off);
4705
4706		/*
4707		 * record the offset from the start of the extent
4708		 * for adjusting the disk offset below.  Only do this if the
4709		 * extent isn't compressed since our in ram offset may be past
4710		 * what we have actually allocated on disk.
4711		 */
4712		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4713			offset_in_extent = em_start - em->start;
4714		em_end = extent_map_end(em);
4715		em_len = em_end - em_start;
 
 
4716		flags = 0;
4717		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4718			disko = em->block_start + offset_in_extent;
4719		else
4720			disko = 0;
4721
4722		/*
4723		 * bump off for our next call to get_extent
4724		 */
4725		off = extent_map_end(em);
4726		if (off >= max)
4727			end = 1;
4728
4729		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4730			end = 1;
4731			flags |= FIEMAP_EXTENT_LAST;
4732		} else if (em->block_start == EXTENT_MAP_INLINE) {
4733			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4734				  FIEMAP_EXTENT_NOT_ALIGNED);
4735		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4736			flags |= (FIEMAP_EXTENT_DELALLOC |
4737				  FIEMAP_EXTENT_UNKNOWN);
4738		} else if (fieinfo->fi_extents_max) {
4739			u64 bytenr = em->block_start -
4740				(em->start - em->orig_start);
4741
4742			/*
4743			 * As btrfs supports shared space, this information
4744			 * can be exported to userspace tools via
4745			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4746			 * then we're just getting a count and we can skip the
4747			 * lookup stuff.
4748			 */
4749			ret = btrfs_check_shared(root,
4750						 btrfs_ino(BTRFS_I(inode)),
4751						 bytenr, roots, tmp_ulist);
4752			if (ret < 0)
4753				goto out_free;
4754			if (ret)
4755				flags |= FIEMAP_EXTENT_SHARED;
4756			ret = 0;
4757		}
4758		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4759			flags |= FIEMAP_EXTENT_ENCODED;
4760		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4761			flags |= FIEMAP_EXTENT_UNWRITTEN;
4762
4763		free_extent_map(em);
4764		em = NULL;
4765		if ((em_start >= last) || em_len == (u64)-1 ||
4766		   (last == (u64)-1 && isize <= em_end)) {
4767			flags |= FIEMAP_EXTENT_LAST;
4768			end = 1;
4769		}
4770
4771		/* now scan forward to see if this is really the last extent. */
4772		em = get_extent_skip_holes(inode, off, last_for_get_extent);
 
4773		if (IS_ERR(em)) {
4774			ret = PTR_ERR(em);
4775			goto out;
4776		}
4777		if (!em) {
4778			flags |= FIEMAP_EXTENT_LAST;
4779			end = 1;
4780		}
4781		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4782					   em_len, flags);
4783		if (ret) {
4784			if (ret == 1)
4785				ret = 0;
4786			goto out_free;
4787		}
4788	}
4789out_free:
4790	if (!ret)
4791		ret = emit_last_fiemap_cache(fieinfo, &cache);
4792	free_extent_map(em);
4793out:
4794	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4795			     &cached_state);
4796
4797out_free_ulist:
4798	btrfs_free_path(path);
4799	ulist_free(roots);
4800	ulist_free(tmp_ulist);
4801	return ret;
4802}
4803
4804static void __free_extent_buffer(struct extent_buffer *eb)
 
4805{
4806	btrfs_leak_debug_del(&eb->leak_list);
4807	kmem_cache_free(extent_buffer_cache, eb);
4808}
4809
4810int extent_buffer_under_io(struct extent_buffer *eb)
4811{
4812	return (atomic_read(&eb->io_pages) ||
4813		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4814		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4815}
4816
4817/*
4818 * Release all pages attached to the extent buffer.
4819 */
4820static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4821{
4822	int i;
4823	int num_pages;
4824	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4825
4826	BUG_ON(extent_buffer_under_io(eb));
4827
4828	num_pages = num_extent_pages(eb);
4829	for (i = 0; i < num_pages; i++) {
4830		struct page *page = eb->pages[i];
4831
4832		if (!page)
4833			continue;
4834		if (mapped)
4835			spin_lock(&page->mapping->private_lock);
4836		/*
4837		 * We do this since we'll remove the pages after we've
4838		 * removed the eb from the radix tree, so we could race
4839		 * and have this page now attached to the new eb.  So
4840		 * only clear page_private if it's still connected to
4841		 * this eb.
4842		 */
4843		if (PagePrivate(page) &&
4844		    page->private == (unsigned long)eb) {
4845			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4846			BUG_ON(PageDirty(page));
4847			BUG_ON(PageWriteback(page));
4848			/*
4849			 * We need to make sure we haven't be attached
4850			 * to a new eb.
4851			 */
4852			ClearPagePrivate(page);
4853			set_page_private(page, 0);
4854			/* One for the page private */
4855			put_page(page);
4856		}
4857
4858		if (mapped)
4859			spin_unlock(&page->mapping->private_lock);
4860
4861		/* One for when we allocated the page */
4862		put_page(page);
4863	}
4864}
4865
4866/*
4867 * Helper for releasing the extent buffer.
4868 */
4869static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4870{
4871	btrfs_release_extent_buffer_pages(eb);
4872	__free_extent_buffer(eb);
 
 
 
 
 
 
 
4873}
4874
4875static struct extent_buffer *
4876__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4877		      unsigned long len)
 
4878{
4879	struct extent_buffer *eb = NULL;
 
 
 
4880
4881	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
 
 
4882	eb->start = start;
4883	eb->len = len;
4884	eb->fs_info = fs_info;
4885	eb->bflags = 0;
4886	rwlock_init(&eb->lock);
 
 
4887	atomic_set(&eb->blocking_readers, 0);
4888	eb->blocking_writers = 0;
4889	eb->lock_nested = false;
 
 
4890	init_waitqueue_head(&eb->write_lock_wq);
4891	init_waitqueue_head(&eb->read_lock_wq);
4892
4893	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4894
 
 
 
4895	spin_lock_init(&eb->refs_lock);
4896	atomic_set(&eb->refs, 1);
4897	atomic_set(&eb->io_pages, 0);
4898
4899	/*
4900	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4901	 */
4902	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4903		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4904	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4905
4906#ifdef CONFIG_BTRFS_DEBUG
4907	eb->spinning_writers = 0;
4908	atomic_set(&eb->spinning_readers, 0);
4909	atomic_set(&eb->read_locks, 0);
4910	eb->write_locks = 0;
4911#endif
4912
4913	return eb;
4914}
4915
4916struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4917{
4918	int i;
4919	struct page *p;
4920	struct extent_buffer *new;
4921	int num_pages = num_extent_pages(src);
4922
4923	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4924	if (new == NULL)
4925		return NULL;
4926
4927	for (i = 0; i < num_pages; i++) {
4928		p = alloc_page(GFP_NOFS);
4929		if (!p) {
4930			btrfs_release_extent_buffer(new);
4931			return NULL;
4932		}
4933		attach_extent_buffer_page(new, p);
4934		WARN_ON(PageDirty(p));
4935		SetPageUptodate(p);
4936		new->pages[i] = p;
4937		copy_page(page_address(p), page_address(src->pages[i]));
4938	}
4939
 
4940	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4941	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4942
4943	return new;
4944}
4945
4946struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4947						  u64 start, unsigned long len)
4948{
4949	struct extent_buffer *eb;
4950	int num_pages;
4951	int i;
4952
4953	eb = __alloc_extent_buffer(fs_info, start, len);
4954	if (!eb)
4955		return NULL;
4956
4957	num_pages = num_extent_pages(eb);
4958	for (i = 0; i < num_pages; i++) {
4959		eb->pages[i] = alloc_page(GFP_NOFS);
4960		if (!eb->pages[i])
4961			goto err;
4962	}
4963	set_extent_buffer_uptodate(eb);
4964	btrfs_set_header_nritems(eb, 0);
4965	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4966
4967	return eb;
4968err:
4969	for (; i > 0; i--)
4970		__free_page(eb->pages[i - 1]);
4971	__free_extent_buffer(eb);
4972	return NULL;
4973}
4974
4975struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4976						u64 start)
4977{
4978	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4979}
4980
4981static void check_buffer_tree_ref(struct extent_buffer *eb)
4982{
4983	int refs;
4984	/* the ref bit is tricky.  We have to make sure it is set
4985	 * if we have the buffer dirty.   Otherwise the
4986	 * code to free a buffer can end up dropping a dirty
4987	 * page
4988	 *
4989	 * Once the ref bit is set, it won't go away while the
4990	 * buffer is dirty or in writeback, and it also won't
4991	 * go away while we have the reference count on the
4992	 * eb bumped.
4993	 *
4994	 * We can't just set the ref bit without bumping the
4995	 * ref on the eb because free_extent_buffer might
4996	 * see the ref bit and try to clear it.  If this happens
4997	 * free_extent_buffer might end up dropping our original
4998	 * ref by mistake and freeing the page before we are able
4999	 * to add one more ref.
5000	 *
5001	 * So bump the ref count first, then set the bit.  If someone
5002	 * beat us to it, drop the ref we added.
5003	 */
5004	refs = atomic_read(&eb->refs);
5005	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5006		return;
5007
5008	spin_lock(&eb->refs_lock);
5009	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5010		atomic_inc(&eb->refs);
5011	spin_unlock(&eb->refs_lock);
 
 
5012}
5013
5014static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5015		struct page *accessed)
5016{
5017	int num_pages, i;
5018
5019	check_buffer_tree_ref(eb);
5020
5021	num_pages = num_extent_pages(eb);
5022	for (i = 0; i < num_pages; i++) {
5023		struct page *p = eb->pages[i];
5024
5025		if (p != accessed)
5026			mark_page_accessed(p);
5027	}
5028}
5029
5030struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5031					 u64 start)
5032{
 
 
 
5033	struct extent_buffer *eb;
 
 
 
 
 
5034
5035	rcu_read_lock();
5036	eb = radix_tree_lookup(&fs_info->buffer_radix,
5037			       start >> PAGE_SHIFT);
5038	if (eb && atomic_inc_not_zero(&eb->refs)) {
5039		rcu_read_unlock();
5040		/*
5041		 * Lock our eb's refs_lock to avoid races with
5042		 * free_extent_buffer. When we get our eb it might be flagged
5043		 * with EXTENT_BUFFER_STALE and another task running
5044		 * free_extent_buffer might have seen that flag set,
5045		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5046		 * writeback flags not set) and it's still in the tree (flag
5047		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5048		 * of decrementing the extent buffer's reference count twice.
5049		 * So here we could race and increment the eb's reference count,
5050		 * clear its stale flag, mark it as dirty and drop our reference
5051		 * before the other task finishes executing free_extent_buffer,
5052		 * which would later result in an attempt to free an extent
5053		 * buffer that is dirty.
5054		 */
5055		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5056			spin_lock(&eb->refs_lock);
5057			spin_unlock(&eb->refs_lock);
5058		}
5059		mark_extent_buffer_accessed(eb, NULL);
5060		return eb;
5061	}
5062	rcu_read_unlock();
5063
5064	return NULL;
5065}
5066
5067#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5068struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5069					u64 start)
5070{
5071	struct extent_buffer *eb, *exists = NULL;
5072	int ret;
5073
5074	eb = find_extent_buffer(fs_info, start);
5075	if (eb)
5076		return eb;
5077	eb = alloc_dummy_extent_buffer(fs_info, start);
5078	if (!eb)
5079		return NULL;
5080	eb->fs_info = fs_info;
5081again:
5082	ret = radix_tree_preload(GFP_NOFS);
5083	if (ret)
5084		goto free_eb;
5085	spin_lock(&fs_info->buffer_lock);
5086	ret = radix_tree_insert(&fs_info->buffer_radix,
5087				start >> PAGE_SHIFT, eb);
5088	spin_unlock(&fs_info->buffer_lock);
5089	radix_tree_preload_end();
5090	if (ret == -EEXIST) {
5091		exists = find_extent_buffer(fs_info, start);
5092		if (exists)
5093			goto free_eb;
5094		else
5095			goto again;
5096	}
5097	check_buffer_tree_ref(eb);
5098	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5099
5100	return eb;
5101free_eb:
5102	btrfs_release_extent_buffer(eb);
5103	return exists;
5104}
5105#endif
5106
5107struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5108					  u64 start)
5109{
5110	unsigned long len = fs_info->nodesize;
5111	int num_pages;
5112	int i;
5113	unsigned long index = start >> PAGE_SHIFT;
5114	struct extent_buffer *eb;
5115	struct extent_buffer *exists = NULL;
5116	struct page *p;
5117	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5118	int uptodate = 1;
5119	int ret;
5120
5121	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5122		btrfs_err(fs_info, "bad tree block start %llu", start);
5123		return ERR_PTR(-EINVAL);
5124	}
5125
5126	eb = find_extent_buffer(fs_info, start);
5127	if (eb)
5128		return eb;
5129
5130	eb = __alloc_extent_buffer(fs_info, start, len);
5131	if (!eb)
5132		return ERR_PTR(-ENOMEM);
5133
5134	num_pages = num_extent_pages(eb);
5135	for (i = 0; i < num_pages; i++, index++) {
5136		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5137		if (!p) {
5138			exists = ERR_PTR(-ENOMEM);
5139			goto free_eb;
5140		}
5141
5142		spin_lock(&mapping->private_lock);
5143		if (PagePrivate(p)) {
5144			/*
5145			 * We could have already allocated an eb for this page
5146			 * and attached one so lets see if we can get a ref on
5147			 * the existing eb, and if we can we know it's good and
5148			 * we can just return that one, else we know we can just
5149			 * overwrite page->private.
5150			 */
5151			exists = (struct extent_buffer *)p->private;
5152			if (atomic_inc_not_zero(&exists->refs)) {
5153				spin_unlock(&mapping->private_lock);
5154				unlock_page(p);
5155				put_page(p);
5156				mark_extent_buffer_accessed(exists, p);
5157				goto free_eb;
5158			}
5159			exists = NULL;
5160
5161			/*
5162			 * Do this so attach doesn't complain and we need to
5163			 * drop the ref the old guy had.
5164			 */
5165			ClearPagePrivate(p);
5166			WARN_ON(PageDirty(p));
5167			put_page(p);
5168		}
5169		attach_extent_buffer_page(eb, p);
5170		spin_unlock(&mapping->private_lock);
5171		WARN_ON(PageDirty(p));
 
5172		eb->pages[i] = p;
5173		if (!PageUptodate(p))
5174			uptodate = 0;
5175
5176		/*
5177		 * We can't unlock the pages just yet since the extent buffer
5178		 * hasn't been properly inserted in the radix tree, this
5179		 * opens a race with btree_releasepage which can free a page
5180		 * while we are still filling in all pages for the buffer and
5181		 * we could crash.
5182		 */
5183	}
5184	if (uptodate)
5185		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5186again:
5187	ret = radix_tree_preload(GFP_NOFS);
5188	if (ret) {
5189		exists = ERR_PTR(ret);
5190		goto free_eb;
5191	}
5192
5193	spin_lock(&fs_info->buffer_lock);
5194	ret = radix_tree_insert(&fs_info->buffer_radix,
5195				start >> PAGE_SHIFT, eb);
5196	spin_unlock(&fs_info->buffer_lock);
5197	radix_tree_preload_end();
5198	if (ret == -EEXIST) {
5199		exists = find_extent_buffer(fs_info, start);
5200		if (exists)
5201			goto free_eb;
5202		else
 
 
5203			goto again;
 
 
 
 
 
5204	}
5205	/* add one reference for the tree */
 
5206	check_buffer_tree_ref(eb);
5207	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
 
 
5208
5209	/*
5210	 * Now it's safe to unlock the pages because any calls to
5211	 * btree_releasepage will correctly detect that a page belongs to a
5212	 * live buffer and won't free them prematurely.
5213	 */
5214	for (i = 0; i < num_pages; i++)
5215		unlock_page(eb->pages[i]);
 
 
 
 
 
 
 
 
 
5216	return eb;
5217
5218free_eb:
5219	WARN_ON(!atomic_dec_and_test(&eb->refs));
5220	for (i = 0; i < num_pages; i++) {
5221		if (eb->pages[i])
5222			unlock_page(eb->pages[i]);
5223	}
5224
 
5225	btrfs_release_extent_buffer(eb);
5226	return exists;
5227}
5228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5229static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5230{
5231	struct extent_buffer *eb =
5232			container_of(head, struct extent_buffer, rcu_head);
5233
5234	__free_extent_buffer(eb);
5235}
5236
5237static int release_extent_buffer(struct extent_buffer *eb)
 
5238{
5239	lockdep_assert_held(&eb->refs_lock);
5240
5241	WARN_ON(atomic_read(&eb->refs) == 0);
5242	if (atomic_dec_and_test(&eb->refs)) {
5243		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5244			struct btrfs_fs_info *fs_info = eb->fs_info;
5245
5246			spin_unlock(&eb->refs_lock);
5247
5248			spin_lock(&fs_info->buffer_lock);
5249			radix_tree_delete(&fs_info->buffer_radix,
5250					  eb->start >> PAGE_SHIFT);
5251			spin_unlock(&fs_info->buffer_lock);
5252		} else {
 
 
5253			spin_unlock(&eb->refs_lock);
 
 
 
 
 
5254		}
5255
5256		/* Should be safe to release our pages at this point */
5257		btrfs_release_extent_buffer_pages(eb);
5258#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5259		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5260			__free_extent_buffer(eb);
5261			return 1;
5262		}
5263#endif
5264		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5265		return 1;
5266	}
5267	spin_unlock(&eb->refs_lock);
5268
5269	return 0;
5270}
5271
5272void free_extent_buffer(struct extent_buffer *eb)
5273{
5274	int refs;
5275	int old;
5276	if (!eb)
5277		return;
5278
5279	while (1) {
5280		refs = atomic_read(&eb->refs);
5281		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5282		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5283			refs == 1))
5284			break;
5285		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5286		if (old == refs)
5287			return;
5288	}
5289
5290	spin_lock(&eb->refs_lock);
5291	if (atomic_read(&eb->refs) == 2 &&
 
 
 
 
5292	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5293	    !extent_buffer_under_io(eb) &&
5294	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5295		atomic_dec(&eb->refs);
5296
5297	/*
5298	 * I know this is terrible, but it's temporary until we stop tracking
5299	 * the uptodate bits and such for the extent buffers.
5300	 */
5301	release_extent_buffer(eb);
5302}
5303
5304void free_extent_buffer_stale(struct extent_buffer *eb)
5305{
5306	if (!eb)
5307		return;
5308
5309	spin_lock(&eb->refs_lock);
5310	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5311
5312	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5313	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5314		atomic_dec(&eb->refs);
5315	release_extent_buffer(eb);
5316}
5317
5318void clear_extent_buffer_dirty(struct extent_buffer *eb)
5319{
5320	int i;
5321	int num_pages;
5322	struct page *page;
5323
5324	num_pages = num_extent_pages(eb);
5325
5326	for (i = 0; i < num_pages; i++) {
5327		page = eb->pages[i];
5328		if (!PageDirty(page))
5329			continue;
5330
5331		lock_page(page);
5332		WARN_ON(!PagePrivate(page));
5333
5334		clear_page_dirty_for_io(page);
5335		xa_lock_irq(&page->mapping->i_pages);
5336		if (!PageDirty(page))
5337			__xa_clear_mark(&page->mapping->i_pages,
5338					page_index(page), PAGECACHE_TAG_DIRTY);
5339		xa_unlock_irq(&page->mapping->i_pages);
 
 
5340		ClearPageError(page);
5341		unlock_page(page);
5342	}
5343	WARN_ON(atomic_read(&eb->refs) == 0);
5344}
5345
5346bool set_extent_buffer_dirty(struct extent_buffer *eb)
5347{
5348	int i;
5349	int num_pages;
5350	bool was_dirty;
5351
5352	check_buffer_tree_ref(eb);
5353
5354	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5355
5356	num_pages = num_extent_pages(eb);
5357	WARN_ON(atomic_read(&eb->refs) == 0);
5358	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5359
5360	if (!was_dirty)
5361		for (i = 0; i < num_pages; i++)
5362			set_page_dirty(eb->pages[i]);
5363
5364#ifdef CONFIG_BTRFS_DEBUG
5365	for (i = 0; i < num_pages; i++)
5366		ASSERT(PageDirty(eb->pages[i]));
5367#endif
5368
5369	return was_dirty;
5370}
5371
5372void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5373{
5374	int i;
 
 
 
 
 
 
 
 
 
 
 
5375	struct page *page;
5376	int num_pages;
5377
5378	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5379	num_pages = num_extent_pages(eb);
5380	for (i = 0; i < num_pages; i++) {
5381		page = eb->pages[i];
5382		if (page)
5383			ClearPageUptodate(page);
5384	}
 
5385}
5386
5387void set_extent_buffer_uptodate(struct extent_buffer *eb)
5388{
5389	int i;
5390	struct page *page;
5391	int num_pages;
5392
5393	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5394	num_pages = num_extent_pages(eb);
5395	for (i = 0; i < num_pages; i++) {
5396		page = eb->pages[i];
5397		SetPageUptodate(page);
5398	}
 
5399}
5400
5401int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
 
5402{
5403	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5404	struct page *page;
5405	int err;
5406	int ret = 0;
5407	int locked_pages = 0;
5408	int all_uptodate = 1;
5409	int num_pages;
5410	unsigned long num_reads = 0;
5411	struct bio *bio = NULL;
5412	unsigned long bio_flags = 0;
5413	struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5414
5415	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5416		return 0;
5417
5418	num_pages = num_extent_pages(eb);
5419	for (i = 0; i < num_pages; i++) {
5420		page = eb->pages[i];
 
 
 
 
 
 
 
 
5421		if (wait == WAIT_NONE) {
5422			if (!trylock_page(page))
5423				goto unlock_exit;
5424		} else {
5425			lock_page(page);
5426		}
5427		locked_pages++;
5428	}
5429	/*
5430	 * We need to firstly lock all pages to make sure that
5431	 * the uptodate bit of our pages won't be affected by
5432	 * clear_extent_buffer_uptodate().
5433	 */
5434	for (i = 0; i < num_pages; i++) {
5435		page = eb->pages[i];
5436		if (!PageUptodate(page)) {
5437			num_reads++;
5438			all_uptodate = 0;
5439		}
5440	}
5441
5442	if (all_uptodate) {
5443		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
5444		goto unlock_exit;
5445	}
5446
5447	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5448	eb->read_mirror = 0;
5449	atomic_set(&eb->io_pages, num_reads);
5450	for (i = 0; i < num_pages; i++) {
5451		page = eb->pages[i];
5452
5453		if (!PageUptodate(page)) {
5454			if (ret) {
5455				atomic_dec(&eb->io_pages);
5456				unlock_page(page);
5457				continue;
5458			}
5459
5460			ClearPageError(page);
5461			err = __extent_read_full_page(tree, page,
5462						      btree_get_extent, &bio,
5463						      mirror_num, &bio_flags,
5464						      REQ_META);
5465			if (err) {
5466				ret = err;
5467				/*
5468				 * We use &bio in above __extent_read_full_page,
5469				 * so we ensure that if it returns error, the
5470				 * current page fails to add itself to bio and
5471				 * it's been unlocked.
5472				 *
5473				 * We must dec io_pages by ourselves.
5474				 */
5475				atomic_dec(&eb->io_pages);
5476			}
5477		} else {
5478			unlock_page(page);
5479		}
5480	}
5481
5482	if (bio) {
5483		err = submit_one_bio(bio, mirror_num, bio_flags);
5484		if (err)
5485			return err;
5486	}
5487
5488	if (ret || wait != WAIT_COMPLETE)
5489		return ret;
5490
5491	for (i = 0; i < num_pages; i++) {
5492		page = eb->pages[i];
5493		wait_on_page_locked(page);
5494		if (!PageUptodate(page))
5495			ret = -EIO;
5496	}
5497
5498	return ret;
5499
5500unlock_exit:
 
5501	while (locked_pages > 0) {
5502		locked_pages--;
5503		page = eb->pages[locked_pages];
5504		unlock_page(page);
 
5505	}
5506	return ret;
5507}
5508
5509void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5510			unsigned long start, unsigned long len)
 
5511{
5512	size_t cur;
5513	size_t offset;
5514	struct page *page;
5515	char *kaddr;
5516	char *dst = (char *)dstv;
5517	size_t start_offset = offset_in_page(eb->start);
5518	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5519
5520	if (start + len > eb->len) {
5521		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5522		     eb->start, eb->len, start, len);
5523		memset(dst, 0, len);
5524		return;
5525	}
5526
5527	offset = offset_in_page(start_offset + start);
5528
5529	while (len > 0) {
5530		page = eb->pages[i];
5531
5532		cur = min(len, (PAGE_SIZE - offset));
5533		kaddr = page_address(page);
5534		memcpy(dst, kaddr + offset, cur);
5535
5536		dst += cur;
5537		len -= cur;
5538		offset = 0;
5539		i++;
5540	}
5541}
5542
5543int read_extent_buffer_to_user(const struct extent_buffer *eb,
5544			       void __user *dstv,
5545			       unsigned long start, unsigned long len)
5546{
5547	size_t cur;
5548	size_t offset;
5549	struct page *page;
5550	char *kaddr;
5551	char __user *dst = (char __user *)dstv;
5552	size_t start_offset = offset_in_page(eb->start);
5553	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5554	int ret = 0;
5555
5556	WARN_ON(start > eb->len);
5557	WARN_ON(start + len > eb->start + eb->len);
5558
5559	offset = offset_in_page(start_offset + start);
5560
5561	while (len > 0) {
5562		page = eb->pages[i];
5563
5564		cur = min(len, (PAGE_SIZE - offset));
5565		kaddr = page_address(page);
5566		if (copy_to_user(dst, kaddr + offset, cur)) {
5567			ret = -EFAULT;
5568			break;
5569		}
5570
5571		dst += cur;
5572		len -= cur;
5573		offset = 0;
5574		i++;
5575	}
5576
5577	return ret;
5578}
5579
5580/*
5581 * return 0 if the item is found within a page.
5582 * return 1 if the item spans two pages.
5583 * return -EINVAL otherwise.
5584 */
5585int map_private_extent_buffer(const struct extent_buffer *eb,
5586			      unsigned long start, unsigned long min_len,
5587			      char **map, unsigned long *map_start,
5588			      unsigned long *map_len)
5589{
5590	size_t offset;
5591	char *kaddr;
5592	struct page *p;
5593	size_t start_offset = offset_in_page(eb->start);
5594	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5595	unsigned long end_i = (start_offset + start + min_len - 1) >>
5596		PAGE_SHIFT;
5597
5598	if (start + min_len > eb->len) {
5599		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5600		       eb->start, eb->len, start, min_len);
5601		return -EINVAL;
5602	}
5603
5604	if (i != end_i)
5605		return 1;
5606
5607	if (i == 0) {
5608		offset = start_offset;
5609		*map_start = 0;
5610	} else {
5611		offset = 0;
5612		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5613	}
5614
5615	p = eb->pages[i];
 
 
 
 
 
 
 
 
5616	kaddr = page_address(p);
5617	*map = kaddr + offset;
5618	*map_len = PAGE_SIZE - offset;
5619	return 0;
5620}
5621
5622int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5623			 unsigned long start, unsigned long len)
 
5624{
5625	size_t cur;
5626	size_t offset;
5627	struct page *page;
5628	char *kaddr;
5629	char *ptr = (char *)ptrv;
5630	size_t start_offset = offset_in_page(eb->start);
5631	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5632	int ret = 0;
5633
5634	WARN_ON(start > eb->len);
5635	WARN_ON(start + len > eb->start + eb->len);
5636
5637	offset = offset_in_page(start_offset + start);
5638
5639	while (len > 0) {
5640		page = eb->pages[i];
5641
5642		cur = min(len, (PAGE_SIZE - offset));
5643
5644		kaddr = page_address(page);
5645		ret = memcmp(ptr, kaddr + offset, cur);
5646		if (ret)
5647			break;
5648
5649		ptr += cur;
5650		len -= cur;
5651		offset = 0;
5652		i++;
5653	}
5654	return ret;
5655}
5656
5657void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5658		const void *srcv)
5659{
5660	char *kaddr;
5661
5662	WARN_ON(!PageUptodate(eb->pages[0]));
5663	kaddr = page_address(eb->pages[0]);
5664	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5665			BTRFS_FSID_SIZE);
5666}
5667
5668void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5669{
5670	char *kaddr;
5671
5672	WARN_ON(!PageUptodate(eb->pages[0]));
5673	kaddr = page_address(eb->pages[0]);
5674	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5675			BTRFS_FSID_SIZE);
5676}
5677
5678void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5679			 unsigned long start, unsigned long len)
5680{
5681	size_t cur;
5682	size_t offset;
5683	struct page *page;
5684	char *kaddr;
5685	char *src = (char *)srcv;
5686	size_t start_offset = offset_in_page(eb->start);
5687	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5688
5689	WARN_ON(start > eb->len);
5690	WARN_ON(start + len > eb->start + eb->len);
5691
5692	offset = offset_in_page(start_offset + start);
5693
5694	while (len > 0) {
5695		page = eb->pages[i];
5696		WARN_ON(!PageUptodate(page));
5697
5698		cur = min(len, PAGE_SIZE - offset);
5699		kaddr = page_address(page);
5700		memcpy(kaddr + offset, src, cur);
5701
5702		src += cur;
5703		len -= cur;
5704		offset = 0;
5705		i++;
5706	}
5707}
5708
5709void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5710		unsigned long len)
5711{
5712	size_t cur;
5713	size_t offset;
5714	struct page *page;
5715	char *kaddr;
5716	size_t start_offset = offset_in_page(eb->start);
5717	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5718
5719	WARN_ON(start > eb->len);
5720	WARN_ON(start + len > eb->start + eb->len);
5721
5722	offset = offset_in_page(start_offset + start);
5723
5724	while (len > 0) {
5725		page = eb->pages[i];
5726		WARN_ON(!PageUptodate(page));
5727
5728		cur = min(len, PAGE_SIZE - offset);
5729		kaddr = page_address(page);
5730		memset(kaddr + offset, 0, cur);
5731
5732		len -= cur;
5733		offset = 0;
5734		i++;
5735	}
5736}
5737
5738void copy_extent_buffer_full(struct extent_buffer *dst,
5739			     struct extent_buffer *src)
5740{
5741	int i;
5742	int num_pages;
5743
5744	ASSERT(dst->len == src->len);
5745
5746	num_pages = num_extent_pages(dst);
5747	for (i = 0; i < num_pages; i++)
5748		copy_page(page_address(dst->pages[i]),
5749				page_address(src->pages[i]));
5750}
5751
5752void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5753			unsigned long dst_offset, unsigned long src_offset,
5754			unsigned long len)
5755{
5756	u64 dst_len = dst->len;
5757	size_t cur;
5758	size_t offset;
5759	struct page *page;
5760	char *kaddr;
5761	size_t start_offset = offset_in_page(dst->start);
5762	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5763
5764	WARN_ON(src->len != dst_len);
5765
5766	offset = offset_in_page(start_offset + dst_offset);
 
5767
5768	while (len > 0) {
5769		page = dst->pages[i];
5770		WARN_ON(!PageUptodate(page));
5771
5772		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5773
5774		kaddr = page_address(page);
5775		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5776
5777		src_offset += cur;
5778		len -= cur;
5779		offset = 0;
5780		i++;
5781	}
5782}
5783
5784/*
5785 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5786 * given bit number
5787 * @eb: the extent buffer
5788 * @start: offset of the bitmap item in the extent buffer
5789 * @nr: bit number
5790 * @page_index: return index of the page in the extent buffer that contains the
5791 * given bit number
5792 * @page_offset: return offset into the page given by page_index
5793 *
5794 * This helper hides the ugliness of finding the byte in an extent buffer which
5795 * contains a given bit.
5796 */
5797static inline void eb_bitmap_offset(struct extent_buffer *eb,
5798				    unsigned long start, unsigned long nr,
5799				    unsigned long *page_index,
5800				    size_t *page_offset)
5801{
5802	size_t start_offset = offset_in_page(eb->start);
5803	size_t byte_offset = BIT_BYTE(nr);
5804	size_t offset;
5805
5806	/*
5807	 * The byte we want is the offset of the extent buffer + the offset of
5808	 * the bitmap item in the extent buffer + the offset of the byte in the
5809	 * bitmap item.
5810	 */
5811	offset = start_offset + start + byte_offset;
5812
5813	*page_index = offset >> PAGE_SHIFT;
5814	*page_offset = offset_in_page(offset);
5815}
5816
5817/**
5818 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5819 * @eb: the extent buffer
5820 * @start: offset of the bitmap item in the extent buffer
5821 * @nr: bit number to test
5822 */
5823int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5824			   unsigned long nr)
5825{
5826	u8 *kaddr;
5827	struct page *page;
5828	unsigned long i;
5829	size_t offset;
5830
5831	eb_bitmap_offset(eb, start, nr, &i, &offset);
5832	page = eb->pages[i];
5833	WARN_ON(!PageUptodate(page));
5834	kaddr = page_address(page);
5835	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5836}
5837
5838/**
5839 * extent_buffer_bitmap_set - set an area of a bitmap
5840 * @eb: the extent buffer
5841 * @start: offset of the bitmap item in the extent buffer
5842 * @pos: bit number of the first bit
5843 * @len: number of bits to set
5844 */
5845void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5846			      unsigned long pos, unsigned long len)
5847{
5848	u8 *kaddr;
5849	struct page *page;
5850	unsigned long i;
5851	size_t offset;
5852	const unsigned int size = pos + len;
5853	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5854	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5855
5856	eb_bitmap_offset(eb, start, pos, &i, &offset);
5857	page = eb->pages[i];
5858	WARN_ON(!PageUptodate(page));
5859	kaddr = page_address(page);
5860
5861	while (len >= bits_to_set) {
5862		kaddr[offset] |= mask_to_set;
5863		len -= bits_to_set;
5864		bits_to_set = BITS_PER_BYTE;
5865		mask_to_set = ~0;
5866		if (++offset >= PAGE_SIZE && len > 0) {
5867			offset = 0;
5868			page = eb->pages[++i];
5869			WARN_ON(!PageUptodate(page));
5870			kaddr = page_address(page);
5871		}
5872	}
5873	if (len) {
5874		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5875		kaddr[offset] |= mask_to_set;
5876	}
5877}
5878
5879
5880/**
5881 * extent_buffer_bitmap_clear - clear an area of a bitmap
5882 * @eb: the extent buffer
5883 * @start: offset of the bitmap item in the extent buffer
5884 * @pos: bit number of the first bit
5885 * @len: number of bits to clear
5886 */
5887void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5888				unsigned long pos, unsigned long len)
5889{
5890	u8 *kaddr;
5891	struct page *page;
5892	unsigned long i;
5893	size_t offset;
5894	const unsigned int size = pos + len;
5895	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5896	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5897
5898	eb_bitmap_offset(eb, start, pos, &i, &offset);
5899	page = eb->pages[i];
5900	WARN_ON(!PageUptodate(page));
5901	kaddr = page_address(page);
5902
5903	while (len >= bits_to_clear) {
5904		kaddr[offset] &= ~mask_to_clear;
5905		len -= bits_to_clear;
5906		bits_to_clear = BITS_PER_BYTE;
5907		mask_to_clear = ~0;
5908		if (++offset >= PAGE_SIZE && len > 0) {
5909			offset = 0;
5910			page = eb->pages[++i];
5911			WARN_ON(!PageUptodate(page));
5912			kaddr = page_address(page);
5913		}
5914	}
5915	if (len) {
5916		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5917		kaddr[offset] &= ~mask_to_clear;
5918	}
5919}
5920
5921static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5922{
5923	unsigned long distance = (src > dst) ? src - dst : dst - src;
5924	return distance < len;
5925}
5926
5927static void copy_pages(struct page *dst_page, struct page *src_page,
5928		       unsigned long dst_off, unsigned long src_off,
5929		       unsigned long len)
5930{
5931	char *dst_kaddr = page_address(dst_page);
5932	char *src_kaddr;
5933	int must_memmove = 0;
5934
5935	if (dst_page != src_page) {
5936		src_kaddr = page_address(src_page);
5937	} else {
5938		src_kaddr = dst_kaddr;
5939		if (areas_overlap(src_off, dst_off, len))
5940			must_memmove = 1;
5941	}
5942
5943	if (must_memmove)
5944		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5945	else
5946		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5947}
5948
5949void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5950			   unsigned long src_offset, unsigned long len)
5951{
5952	struct btrfs_fs_info *fs_info = dst->fs_info;
5953	size_t cur;
5954	size_t dst_off_in_page;
5955	size_t src_off_in_page;
5956	size_t start_offset = offset_in_page(dst->start);
5957	unsigned long dst_i;
5958	unsigned long src_i;
5959
5960	if (src_offset + len > dst->len) {
5961		btrfs_err(fs_info,
5962			"memmove bogus src_offset %lu move len %lu dst len %lu",
5963			 src_offset, len, dst->len);
5964		BUG();
5965	}
5966	if (dst_offset + len > dst->len) {
5967		btrfs_err(fs_info,
5968			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5969			 dst_offset, len, dst->len);
5970		BUG();
5971	}
5972
5973	while (len > 0) {
5974		dst_off_in_page = offset_in_page(start_offset + dst_offset);
5975		src_off_in_page = offset_in_page(start_offset + src_offset);
 
 
5976
5977		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5978		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5979
5980		cur = min(len, (unsigned long)(PAGE_SIZE -
5981					       src_off_in_page));
5982		cur = min_t(unsigned long, cur,
5983			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5984
5985		copy_pages(dst->pages[dst_i], dst->pages[src_i],
 
5986			   dst_off_in_page, src_off_in_page, cur);
5987
5988		src_offset += cur;
5989		dst_offset += cur;
5990		len -= cur;
5991	}
5992}
5993
5994void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5995			   unsigned long src_offset, unsigned long len)
5996{
5997	struct btrfs_fs_info *fs_info = dst->fs_info;
5998	size_t cur;
5999	size_t dst_off_in_page;
6000	size_t src_off_in_page;
6001	unsigned long dst_end = dst_offset + len - 1;
6002	unsigned long src_end = src_offset + len - 1;
6003	size_t start_offset = offset_in_page(dst->start);
6004	unsigned long dst_i;
6005	unsigned long src_i;
6006
6007	if (src_offset + len > dst->len) {
6008		btrfs_err(fs_info,
6009			  "memmove bogus src_offset %lu move len %lu len %lu",
6010			  src_offset, len, dst->len);
6011		BUG();
6012	}
6013	if (dst_offset + len > dst->len) {
6014		btrfs_err(fs_info,
6015			  "memmove bogus dst_offset %lu move len %lu len %lu",
6016			  dst_offset, len, dst->len);
6017		BUG();
6018	}
6019	if (dst_offset < src_offset) {
6020		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6021		return;
6022	}
6023	while (len > 0) {
6024		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6025		src_i = (start_offset + src_end) >> PAGE_SHIFT;
6026
6027		dst_off_in_page = offset_in_page(start_offset + dst_end);
6028		src_off_in_page = offset_in_page(start_offset + src_end);
 
 
6029
6030		cur = min_t(unsigned long, len, src_off_in_page + 1);
6031		cur = min(cur, dst_off_in_page + 1);
6032		copy_pages(dst->pages[dst_i], dst->pages[src_i],
 
6033			   dst_off_in_page - cur + 1,
6034			   src_off_in_page - cur + 1, cur);
6035
6036		dst_end -= cur;
6037		src_end -= cur;
6038		len -= cur;
6039	}
6040}
6041
6042int try_release_extent_buffer(struct page *page)
6043{
6044	struct extent_buffer *eb;
6045
6046	/*
6047	 * We need to make sure nobody is attaching this page to an eb right
6048	 * now.
6049	 */
6050	spin_lock(&page->mapping->private_lock);
6051	if (!PagePrivate(page)) {
6052		spin_unlock(&page->mapping->private_lock);
6053		return 1;
6054	}
6055
6056	eb = (struct extent_buffer *)page->private;
6057	BUG_ON(!eb);
6058
6059	/*
6060	 * This is a little awful but should be ok, we need to make sure that
6061	 * the eb doesn't disappear out from under us while we're looking at
6062	 * this page.
6063	 */
6064	spin_lock(&eb->refs_lock);
6065	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6066		spin_unlock(&eb->refs_lock);
6067		spin_unlock(&page->mapping->private_lock);
6068		return 0;
6069	}
6070	spin_unlock(&page->mapping->private_lock);
6071
 
 
 
6072	/*
6073	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6074	 * so just return, this page will likely be freed soon anyway.
6075	 */
6076	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6077		spin_unlock(&eb->refs_lock);
6078		return 0;
6079	}
 
6080
6081	return release_extent_buffer(eb);
6082}
v3.5.6
 
 
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/module.h>
   8#include <linux/spinlock.h>
   9#include <linux/blkdev.h>
  10#include <linux/swap.h>
  11#include <linux/writeback.h>
  12#include <linux/pagevec.h>
  13#include <linux/prefetch.h>
  14#include <linux/cleancache.h>
  15#include "extent_io.h"
  16#include "extent_map.h"
  17#include "compat.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23#include "rcu-string.h"
 
 
  24
  25static struct kmem_cache *extent_state_cache;
  26static struct kmem_cache *extent_buffer_cache;
 
 
 
 
 
 
  27
 
  28static LIST_HEAD(buffers);
  29static LIST_HEAD(states);
  30
  31#define LEAK_DEBUG 0
  32#if LEAK_DEBUG
  33static DEFINE_SPINLOCK(leak_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34#endif
  35
  36#define BUFFER_LRU_MAX 64
  37
  38struct tree_entry {
  39	u64 start;
  40	u64 end;
  41	struct rb_node rb_node;
  42};
  43
  44struct extent_page_data {
  45	struct bio *bio;
  46	struct extent_io_tree *tree;
  47	get_extent_t *get_extent;
  48
  49	/* tells writepage not to lock the state bits for this range
  50	 * it still does the unlocking
  51	 */
  52	unsigned int extent_locked:1;
  53
  54	/* tells the submit_bio code to use a WRITE_SYNC */
  55	unsigned int sync_io:1;
  56};
  57
  58static noinline void flush_write_bio(void *data);
  59static inline struct btrfs_fs_info *
  60tree_fs_info(struct extent_io_tree *tree)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61{
  62	return btrfs_sb(tree->mapping->host->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63}
  64
  65int __init extent_io_init(void)
  66{
  67	extent_state_cache = kmem_cache_create("extent_state",
  68			sizeof(struct extent_state), 0,
  69			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  70	if (!extent_state_cache)
  71		return -ENOMEM;
  72
  73	extent_buffer_cache = kmem_cache_create("extent_buffers",
  74			sizeof(struct extent_buffer), 0,
  75			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  76	if (!extent_buffer_cache)
  77		goto free_state_cache;
 
 
 
 
 
 
 
 
 
  78	return 0;
  79
 
 
 
 
 
 
 
  80free_state_cache:
  81	kmem_cache_destroy(extent_state_cache);
 
  82	return -ENOMEM;
  83}
  84
  85void extent_io_exit(void)
  86{
  87	struct extent_state *state;
  88	struct extent_buffer *eb;
  89
  90	while (!list_empty(&states)) {
  91		state = list_entry(states.next, struct extent_state, leak_list);
  92		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  93		       "state %lu in tree %p refs %d\n",
  94		       (unsigned long long)state->start,
  95		       (unsigned long long)state->end,
  96		       state->state, state->tree, atomic_read(&state->refs));
  97		list_del(&state->leak_list);
  98		kmem_cache_free(extent_state_cache, state);
  99
 100	}
 101
 102	while (!list_empty(&buffers)) {
 103		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
 104		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
 105		       "refs %d\n", (unsigned long long)eb->start,
 106		       eb->len, atomic_read(&eb->refs));
 107		list_del(&eb->leak_list);
 108		kmem_cache_free(extent_buffer_cache, eb);
 109	}
 110	if (extent_state_cache)
 111		kmem_cache_destroy(extent_state_cache);
 112	if (extent_buffer_cache)
 113		kmem_cache_destroy(extent_buffer_cache);
 114}
 115
 116void extent_io_tree_init(struct extent_io_tree *tree,
 117			 struct address_space *mapping)
 
 118{
 
 119	tree->state = RB_ROOT;
 120	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 121	tree->ops = NULL;
 122	tree->dirty_bytes = 0;
 123	spin_lock_init(&tree->lock);
 124	spin_lock_init(&tree->buffer_lock);
 125	tree->mapping = mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126}
 127
 128static struct extent_state *alloc_extent_state(gfp_t mask)
 129{
 130	struct extent_state *state;
 131#if LEAK_DEBUG
 132	unsigned long flags;
 133#endif
 134
 
 
 
 
 
 135	state = kmem_cache_alloc(extent_state_cache, mask);
 136	if (!state)
 137		return state;
 138	state->state = 0;
 139	state->private = 0;
 140	state->tree = NULL;
 141#if LEAK_DEBUG
 142	spin_lock_irqsave(&leak_lock, flags);
 143	list_add(&state->leak_list, &states);
 144	spin_unlock_irqrestore(&leak_lock, flags);
 145#endif
 146	atomic_set(&state->refs, 1);
 147	init_waitqueue_head(&state->wq);
 148	trace_alloc_extent_state(state, mask, _RET_IP_);
 149	return state;
 150}
 151
 152void free_extent_state(struct extent_state *state)
 153{
 154	if (!state)
 155		return;
 156	if (atomic_dec_and_test(&state->refs)) {
 157#if LEAK_DEBUG
 158		unsigned long flags;
 159#endif
 160		WARN_ON(state->tree);
 161#if LEAK_DEBUG
 162		spin_lock_irqsave(&leak_lock, flags);
 163		list_del(&state->leak_list);
 164		spin_unlock_irqrestore(&leak_lock, flags);
 165#endif
 166		trace_free_extent_state(state, _RET_IP_);
 167		kmem_cache_free(extent_state_cache, state);
 168	}
 169}
 170
 171static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 172				   struct rb_node *node)
 
 
 
 
 173{
 174	struct rb_node **p = &root->rb_node;
 175	struct rb_node *parent = NULL;
 176	struct tree_entry *entry;
 177
 
 
 
 
 
 
 
 178	while (*p) {
 179		parent = *p;
 180		entry = rb_entry(parent, struct tree_entry, rb_node);
 181
 182		if (offset < entry->start)
 183			p = &(*p)->rb_left;
 184		else if (offset > entry->end)
 185			p = &(*p)->rb_right;
 186		else
 187			return parent;
 188	}
 189
 
 190	rb_link_node(node, parent, p);
 191	rb_insert_color(node, root);
 192	return NULL;
 193}
 194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 196				     struct rb_node **prev_ret,
 197				     struct rb_node **next_ret)
 
 
 198{
 199	struct rb_root *root = &tree->state;
 200	struct rb_node *n = root->rb_node;
 201	struct rb_node *prev = NULL;
 202	struct rb_node *orig_prev = NULL;
 203	struct tree_entry *entry;
 204	struct tree_entry *prev_entry = NULL;
 205
 206	while (n) {
 207		entry = rb_entry(n, struct tree_entry, rb_node);
 208		prev = n;
 209		prev_entry = entry;
 210
 211		if (offset < entry->start)
 212			n = n->rb_left;
 213		else if (offset > entry->end)
 214			n = n->rb_right;
 215		else
 216			return n;
 217	}
 218
 219	if (prev_ret) {
 
 
 
 
 
 220		orig_prev = prev;
 221		while (prev && offset > prev_entry->end) {
 222			prev = rb_next(prev);
 223			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 224		}
 225		*prev_ret = prev;
 226		prev = orig_prev;
 227	}
 228
 229	if (next_ret) {
 230		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 231		while (prev && offset < prev_entry->start) {
 232			prev = rb_prev(prev);
 233			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 234		}
 235		*next_ret = prev;
 236	}
 237	return NULL;
 238}
 239
 240static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 241					  u64 offset)
 
 
 
 242{
 243	struct rb_node *prev = NULL;
 244	struct rb_node *ret;
 245
 246	ret = __etree_search(tree, offset, &prev, NULL);
 247	if (!ret)
 248		return prev;
 249	return ret;
 250}
 251
 252static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 253		     struct extent_state *other)
 254{
 255	if (tree->ops && tree->ops->merge_extent_hook)
 256		tree->ops->merge_extent_hook(tree->mapping->host, new,
 257					     other);
 258}
 259
 260/*
 261 * utility function to look for merge candidates inside a given range.
 262 * Any extents with matching state are merged together into a single
 263 * extent in the tree.  Extents with EXTENT_IO in their state field
 264 * are not merged because the end_io handlers need to be able to do
 265 * operations on them without sleeping (or doing allocations/splits).
 266 *
 267 * This should be called with the tree lock held.
 268 */
 269static void merge_state(struct extent_io_tree *tree,
 270		        struct extent_state *state)
 271{
 272	struct extent_state *other;
 273	struct rb_node *other_node;
 274
 275	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 276		return;
 277
 278	other_node = rb_prev(&state->rb_node);
 279	if (other_node) {
 280		other = rb_entry(other_node, struct extent_state, rb_node);
 281		if (other->end == state->start - 1 &&
 282		    other->state == state->state) {
 283			merge_cb(tree, state, other);
 
 
 
 284			state->start = other->start;
 285			other->tree = NULL;
 286			rb_erase(&other->rb_node, &tree->state);
 
 287			free_extent_state(other);
 288		}
 289	}
 290	other_node = rb_next(&state->rb_node);
 291	if (other_node) {
 292		other = rb_entry(other_node, struct extent_state, rb_node);
 293		if (other->start == state->end + 1 &&
 294		    other->state == state->state) {
 295			merge_cb(tree, state, other);
 
 
 
 296			state->end = other->end;
 297			other->tree = NULL;
 298			rb_erase(&other->rb_node, &tree->state);
 
 299			free_extent_state(other);
 300		}
 301	}
 302}
 303
 304static void set_state_cb(struct extent_io_tree *tree,
 305			 struct extent_state *state, int *bits)
 306{
 307	if (tree->ops && tree->ops->set_bit_hook)
 308		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 309}
 310
 311static void clear_state_cb(struct extent_io_tree *tree,
 312			   struct extent_state *state, int *bits)
 313{
 314	if (tree->ops && tree->ops->clear_bit_hook)
 315		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 316}
 317
 318static void set_state_bits(struct extent_io_tree *tree,
 319			   struct extent_state *state, int *bits);
 
 320
 321/*
 322 * insert an extent_state struct into the tree.  'bits' are set on the
 323 * struct before it is inserted.
 324 *
 325 * This may return -EEXIST if the extent is already there, in which case the
 326 * state struct is freed.
 327 *
 328 * The tree lock is not taken internally.  This is a utility function and
 329 * probably isn't what you want to call (see set/clear_extent_bit).
 330 */
 331static int insert_state(struct extent_io_tree *tree,
 332			struct extent_state *state, u64 start, u64 end,
 333			int *bits)
 
 
 334{
 335	struct rb_node *node;
 336
 337	if (end < start) {
 338		printk(KERN_ERR "btrfs end < start %llu %llu\n",
 339		       (unsigned long long)end,
 340		       (unsigned long long)start);
 341		WARN_ON(1);
 342	}
 343	state->start = start;
 344	state->end = end;
 345
 346	set_state_bits(tree, state, bits);
 347
 348	node = tree_insert(&tree->state, end, &state->rb_node);
 349	if (node) {
 350		struct extent_state *found;
 351		found = rb_entry(node, struct extent_state, rb_node);
 352		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 353		       "%llu %llu\n", (unsigned long long)found->start,
 354		       (unsigned long long)found->end,
 355		       (unsigned long long)start, (unsigned long long)end);
 356		return -EEXIST;
 357	}
 358	state->tree = tree;
 359	merge_state(tree, state);
 360	return 0;
 361}
 362
 363static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 364		     u64 split)
 365{
 366	if (tree->ops && tree->ops->split_extent_hook)
 367		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 368}
 369
 370/*
 371 * split a given extent state struct in two, inserting the preallocated
 372 * struct 'prealloc' as the newly created second half.  'split' indicates an
 373 * offset inside 'orig' where it should be split.
 374 *
 375 * Before calling,
 376 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 377 * are two extent state structs in the tree:
 378 * prealloc: [orig->start, split - 1]
 379 * orig: [ split, orig->end ]
 380 *
 381 * The tree locks are not taken by this function. They need to be held
 382 * by the caller.
 383 */
 384static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 385		       struct extent_state *prealloc, u64 split)
 386{
 387	struct rb_node *node;
 388
 389	split_cb(tree, orig, split);
 
 390
 391	prealloc->start = orig->start;
 392	prealloc->end = split - 1;
 393	prealloc->state = orig->state;
 394	orig->start = split;
 395
 396	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 
 397	if (node) {
 398		free_extent_state(prealloc);
 399		return -EEXIST;
 400	}
 401	prealloc->tree = tree;
 402	return 0;
 403}
 404
 405static struct extent_state *next_state(struct extent_state *state)
 406{
 407	struct rb_node *next = rb_next(&state->rb_node);
 408	if (next)
 409		return rb_entry(next, struct extent_state, rb_node);
 410	else
 411		return NULL;
 412}
 413
 414/*
 415 * utility function to clear some bits in an extent state struct.
 416 * it will optionally wake up any one waiting on this state (wake == 1).
 417 *
 418 * If no bits are set on the state struct after clearing things, the
 419 * struct is freed and removed from the tree
 420 */
 421static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 422					    struct extent_state *state,
 423					    int *bits, int wake)
 
 424{
 425	struct extent_state *next;
 426	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
 
 427
 428	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 429		u64 range = state->end - state->start + 1;
 430		WARN_ON(range > tree->dirty_bytes);
 431		tree->dirty_bytes -= range;
 432	}
 433	clear_state_cb(tree, state, bits);
 
 
 
 
 
 434	state->state &= ~bits_to_clear;
 435	if (wake)
 436		wake_up(&state->wq);
 437	if (state->state == 0) {
 438		next = next_state(state);
 439		if (state->tree) {
 440			rb_erase(&state->rb_node, &tree->state);
 441			state->tree = NULL;
 442			free_extent_state(state);
 443		} else {
 444			WARN_ON(1);
 445		}
 446	} else {
 447		merge_state(tree, state);
 448		next = next_state(state);
 449	}
 450	return next;
 451}
 452
 453static struct extent_state *
 454alloc_extent_state_atomic(struct extent_state *prealloc)
 455{
 456	if (!prealloc)
 457		prealloc = alloc_extent_state(GFP_ATOMIC);
 458
 459	return prealloc;
 460}
 461
 462void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 463{
 464	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 465		    "Extent tree was modified by another "
 466		    "thread while locked.");
 
 467}
 468
 469/*
 470 * clear some bits on a range in the tree.  This may require splitting
 471 * or inserting elements in the tree, so the gfp mask is used to
 472 * indicate which allocations or sleeping are allowed.
 473 *
 474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 475 * the given range from the tree regardless of state (ie for truncate).
 476 *
 477 * the range [start, end] is inclusive.
 478 *
 479 * This takes the tree lock, and returns 0 on success and < 0 on error.
 480 */
 481int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 482		     int bits, int wake, int delete,
 483		     struct extent_state **cached_state,
 484		     gfp_t mask)
 485{
 486	struct extent_state *state;
 487	struct extent_state *cached;
 488	struct extent_state *prealloc = NULL;
 489	struct rb_node *node;
 490	u64 last_end;
 491	int err;
 492	int clear = 0;
 493
 
 
 
 
 
 
 494	if (delete)
 495		bits |= ~EXTENT_CTLBITS;
 496	bits |= EXTENT_FIRST_DELALLOC;
 497
 498	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 499		clear = 1;
 500again:
 501	if (!prealloc && (mask & __GFP_WAIT)) {
 
 
 
 
 
 
 
 502		prealloc = alloc_extent_state(mask);
 503		if (!prealloc)
 504			return -ENOMEM;
 505	}
 506
 507	spin_lock(&tree->lock);
 508	if (cached_state) {
 509		cached = *cached_state;
 510
 511		if (clear) {
 512			*cached_state = NULL;
 513			cached_state = NULL;
 514		}
 515
 516		if (cached && cached->tree && cached->start <= start &&
 517		    cached->end > start) {
 518			if (clear)
 519				atomic_dec(&cached->refs);
 520			state = cached;
 521			goto hit_next;
 522		}
 523		if (clear)
 524			free_extent_state(cached);
 525	}
 526	/*
 527	 * this search will find the extents that end after
 528	 * our range starts
 529	 */
 530	node = tree_search(tree, start);
 531	if (!node)
 532		goto out;
 533	state = rb_entry(node, struct extent_state, rb_node);
 534hit_next:
 535	if (state->start > end)
 536		goto out;
 537	WARN_ON(state->end < start);
 538	last_end = state->end;
 539
 540	/* the state doesn't have the wanted bits, go ahead */
 541	if (!(state->state & bits)) {
 542		state = next_state(state);
 543		goto next;
 544	}
 545
 546	/*
 547	 *     | ---- desired range ---- |
 548	 *  | state | or
 549	 *  | ------------- state -------------- |
 550	 *
 551	 * We need to split the extent we found, and may flip
 552	 * bits on second half.
 553	 *
 554	 * If the extent we found extends past our range, we
 555	 * just split and search again.  It'll get split again
 556	 * the next time though.
 557	 *
 558	 * If the extent we found is inside our range, we clear
 559	 * the desired bit on it.
 560	 */
 561
 562	if (state->start < start) {
 563		prealloc = alloc_extent_state_atomic(prealloc);
 564		BUG_ON(!prealloc);
 565		err = split_state(tree, state, prealloc, start);
 566		if (err)
 567			extent_io_tree_panic(tree, err);
 568
 569		prealloc = NULL;
 570		if (err)
 571			goto out;
 572		if (state->end <= end) {
 573			state = clear_state_bit(tree, state, &bits, wake);
 
 574			goto next;
 575		}
 576		goto search_again;
 577	}
 578	/*
 579	 * | ---- desired range ---- |
 580	 *                        | state |
 581	 * We need to split the extent, and clear the bit
 582	 * on the first half
 583	 */
 584	if (state->start <= end && state->end > end) {
 585		prealloc = alloc_extent_state_atomic(prealloc);
 586		BUG_ON(!prealloc);
 587		err = split_state(tree, state, prealloc, end + 1);
 588		if (err)
 589			extent_io_tree_panic(tree, err);
 590
 591		if (wake)
 592			wake_up(&state->wq);
 593
 594		clear_state_bit(tree, prealloc, &bits, wake);
 595
 596		prealloc = NULL;
 597		goto out;
 598	}
 599
 600	state = clear_state_bit(tree, state, &bits, wake);
 601next:
 602	if (last_end == (u64)-1)
 603		goto out;
 604	start = last_end + 1;
 605	if (start <= end && state && !need_resched())
 606		goto hit_next;
 607	goto search_again;
 
 
 
 
 
 
 
 608
 609out:
 610	spin_unlock(&tree->lock);
 611	if (prealloc)
 612		free_extent_state(prealloc);
 613
 614	return 0;
 615
 616search_again:
 617	if (start > end)
 618		goto out;
 619	spin_unlock(&tree->lock);
 620	if (mask & __GFP_WAIT)
 621		cond_resched();
 622	goto again;
 623}
 624
 625static void wait_on_state(struct extent_io_tree *tree,
 626			  struct extent_state *state)
 627		__releases(tree->lock)
 628		__acquires(tree->lock)
 629{
 630	DEFINE_WAIT(wait);
 631	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 632	spin_unlock(&tree->lock);
 633	schedule();
 634	spin_lock(&tree->lock);
 635	finish_wait(&state->wq, &wait);
 636}
 637
 638/*
 639 * waits for one or more bits to clear on a range in the state tree.
 640 * The range [start, end] is inclusive.
 641 * The tree lock is taken by this function
 642 */
 643void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 
 644{
 645	struct extent_state *state;
 646	struct rb_node *node;
 647
 
 
 648	spin_lock(&tree->lock);
 649again:
 650	while (1) {
 651		/*
 652		 * this search will find all the extents that end after
 653		 * our range starts
 654		 */
 655		node = tree_search(tree, start);
 
 656		if (!node)
 657			break;
 658
 659		state = rb_entry(node, struct extent_state, rb_node);
 660
 661		if (state->start > end)
 662			goto out;
 663
 664		if (state->state & bits) {
 665			start = state->start;
 666			atomic_inc(&state->refs);
 667			wait_on_state(tree, state);
 668			free_extent_state(state);
 669			goto again;
 670		}
 671		start = state->end + 1;
 672
 673		if (start > end)
 674			break;
 675
 676		cond_resched_lock(&tree->lock);
 
 
 
 677	}
 678out:
 679	spin_unlock(&tree->lock);
 680}
 681
 682static void set_state_bits(struct extent_io_tree *tree,
 683			   struct extent_state *state,
 684			   int *bits)
 685{
 686	int bits_to_set = *bits & ~EXTENT_CTLBITS;
 
 
 
 
 687
 688	set_state_cb(tree, state, bits);
 689	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 690		u64 range = state->end - state->start + 1;
 691		tree->dirty_bytes += range;
 692	}
 
 
 693	state->state |= bits_to_set;
 694}
 695
 696static void cache_state(struct extent_state *state,
 697			struct extent_state **cached_ptr)
 
 698{
 699	if (cached_ptr && !(*cached_ptr)) {
 700		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 701			*cached_ptr = state;
 702			atomic_inc(&state->refs);
 703		}
 704	}
 705}
 706
 707static void uncache_state(struct extent_state **cached_ptr)
 
 708{
 709	if (cached_ptr && (*cached_ptr)) {
 710		struct extent_state *state = *cached_ptr;
 711		*cached_ptr = NULL;
 712		free_extent_state(state);
 713	}
 714}
 715
 716/*
 717 * set some bits on a range in the tree.  This may require allocations or
 718 * sleeping, so the gfp mask is used to indicate what is allowed.
 719 *
 720 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 721 * part of the range already has the desired bits set.  The start of the
 722 * existing range is returned in failed_start in this case.
 723 *
 724 * [start, end] is inclusive This takes the tree lock.
 725 */
 726
 727static int __must_check
 728__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 729		 int bits, int exclusive_bits, u64 *failed_start,
 730		 struct extent_state **cached_state, gfp_t mask)
 
 731{
 732	struct extent_state *state;
 733	struct extent_state *prealloc = NULL;
 734	struct rb_node *node;
 
 
 735	int err = 0;
 736	u64 last_start;
 737	u64 last_end;
 738
 739	bits |= EXTENT_FIRST_DELALLOC;
 
 
 740again:
 741	if (!prealloc && (mask & __GFP_WAIT)) {
 
 
 
 
 
 
 
 742		prealloc = alloc_extent_state(mask);
 743		BUG_ON(!prealloc);
 744	}
 745
 746	spin_lock(&tree->lock);
 747	if (cached_state && *cached_state) {
 748		state = *cached_state;
 749		if (state->start <= start && state->end > start &&
 750		    state->tree) {
 751			node = &state->rb_node;
 752			goto hit_next;
 753		}
 754	}
 755	/*
 756	 * this search will find all the extents that end after
 757	 * our range starts.
 758	 */
 759	node = tree_search(tree, start);
 760	if (!node) {
 761		prealloc = alloc_extent_state_atomic(prealloc);
 762		BUG_ON(!prealloc);
 763		err = insert_state(tree, prealloc, start, end, &bits);
 
 764		if (err)
 765			extent_io_tree_panic(tree, err);
 766
 
 767		prealloc = NULL;
 768		goto out;
 769	}
 770	state = rb_entry(node, struct extent_state, rb_node);
 771hit_next:
 772	last_start = state->start;
 773	last_end = state->end;
 774
 775	/*
 776	 * | ---- desired range ---- |
 777	 * | state |
 778	 *
 779	 * Just lock what we found and keep going
 780	 */
 781	if (state->start == start && state->end <= end) {
 782		if (state->state & exclusive_bits) {
 783			*failed_start = state->start;
 784			err = -EEXIST;
 785			goto out;
 786		}
 787
 788		set_state_bits(tree, state, &bits);
 789		cache_state(state, cached_state);
 790		merge_state(tree, state);
 791		if (last_end == (u64)-1)
 792			goto out;
 793		start = last_end + 1;
 794		state = next_state(state);
 795		if (start < end && state && state->start == start &&
 796		    !need_resched())
 797			goto hit_next;
 798		goto search_again;
 799	}
 800
 801	/*
 802	 *     | ---- desired range ---- |
 803	 * | state |
 804	 *   or
 805	 * | ------------- state -------------- |
 806	 *
 807	 * We need to split the extent we found, and may flip bits on
 808	 * second half.
 809	 *
 810	 * If the extent we found extends past our
 811	 * range, we just split and search again.  It'll get split
 812	 * again the next time though.
 813	 *
 814	 * If the extent we found is inside our range, we set the
 815	 * desired bit on it.
 816	 */
 817	if (state->start < start) {
 818		if (state->state & exclusive_bits) {
 819			*failed_start = start;
 820			err = -EEXIST;
 821			goto out;
 822		}
 823
 824		prealloc = alloc_extent_state_atomic(prealloc);
 825		BUG_ON(!prealloc);
 826		err = split_state(tree, state, prealloc, start);
 827		if (err)
 828			extent_io_tree_panic(tree, err);
 829
 830		prealloc = NULL;
 831		if (err)
 832			goto out;
 833		if (state->end <= end) {
 834			set_state_bits(tree, state, &bits);
 835			cache_state(state, cached_state);
 836			merge_state(tree, state);
 837			if (last_end == (u64)-1)
 838				goto out;
 839			start = last_end + 1;
 840			state = next_state(state);
 841			if (start < end && state && state->start == start &&
 842			    !need_resched())
 843				goto hit_next;
 844		}
 845		goto search_again;
 846	}
 847	/*
 848	 * | ---- desired range ---- |
 849	 *     | state | or               | state |
 850	 *
 851	 * There's a hole, we need to insert something in it and
 852	 * ignore the extent we found.
 853	 */
 854	if (state->start > start) {
 855		u64 this_end;
 856		if (end < last_start)
 857			this_end = end;
 858		else
 859			this_end = last_start - 1;
 860
 861		prealloc = alloc_extent_state_atomic(prealloc);
 862		BUG_ON(!prealloc);
 863
 864		/*
 865		 * Avoid to free 'prealloc' if it can be merged with
 866		 * the later extent.
 867		 */
 868		err = insert_state(tree, prealloc, start, this_end,
 869				   &bits);
 870		if (err)
 871			extent_io_tree_panic(tree, err);
 872
 873		cache_state(prealloc, cached_state);
 874		prealloc = NULL;
 875		start = this_end + 1;
 876		goto search_again;
 877	}
 878	/*
 879	 * | ---- desired range ---- |
 880	 *                        | state |
 881	 * We need to split the extent, and set the bit
 882	 * on the first half
 883	 */
 884	if (state->start <= end && state->end > end) {
 885		if (state->state & exclusive_bits) {
 886			*failed_start = start;
 887			err = -EEXIST;
 888			goto out;
 889		}
 890
 891		prealloc = alloc_extent_state_atomic(prealloc);
 892		BUG_ON(!prealloc);
 893		err = split_state(tree, state, prealloc, end + 1);
 894		if (err)
 895			extent_io_tree_panic(tree, err);
 896
 897		set_state_bits(tree, prealloc, &bits);
 898		cache_state(prealloc, cached_state);
 899		merge_state(tree, prealloc);
 900		prealloc = NULL;
 901		goto out;
 902	}
 903
 904	goto search_again;
 
 
 
 
 
 
 905
 906out:
 907	spin_unlock(&tree->lock);
 908	if (prealloc)
 909		free_extent_state(prealloc);
 910
 911	return err;
 912
 913search_again:
 914	if (start > end)
 915		goto out;
 916	spin_unlock(&tree->lock);
 917	if (mask & __GFP_WAIT)
 918		cond_resched();
 919	goto again;
 920}
 921
 922int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
 923		   u64 *failed_start, struct extent_state **cached_state,
 924		   gfp_t mask)
 925{
 926	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
 927				cached_state, mask);
 928}
 929
 930
 931/**
 932 * convert_extent - convert all bits in a given range from one bit to another
 
 933 * @tree:	the io tree to search
 934 * @start:	the start offset in bytes
 935 * @end:	the end offset in bytes (inclusive)
 936 * @bits:	the bits to set in this range
 937 * @clear_bits:	the bits to clear in this range
 938 * @mask:	the allocation mask
 939 *
 940 * This will go through and set bits for the given range.  If any states exist
 941 * already in this range they are set with the given bit and cleared of the
 942 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 943 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 944 * boundary bits like LOCK.
 
 
 945 */
 946int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 947		       int bits, int clear_bits, gfp_t mask)
 
 948{
 949	struct extent_state *state;
 950	struct extent_state *prealloc = NULL;
 951	struct rb_node *node;
 
 
 952	int err = 0;
 953	u64 last_start;
 954	u64 last_end;
 
 
 
 
 
 955
 956again:
 957	if (!prealloc && (mask & __GFP_WAIT)) {
 958		prealloc = alloc_extent_state(mask);
 959		if (!prealloc)
 
 
 
 
 
 
 
 960			return -ENOMEM;
 961	}
 962
 963	spin_lock(&tree->lock);
 
 
 
 
 
 
 
 
 
 964	/*
 965	 * this search will find all the extents that end after
 966	 * our range starts.
 967	 */
 968	node = tree_search(tree, start);
 969	if (!node) {
 970		prealloc = alloc_extent_state_atomic(prealloc);
 971		if (!prealloc) {
 972			err = -ENOMEM;
 973			goto out;
 974		}
 975		err = insert_state(tree, prealloc, start, end, &bits);
 976		prealloc = NULL;
 977		if (err)
 978			extent_io_tree_panic(tree, err);
 
 
 979		goto out;
 980	}
 981	state = rb_entry(node, struct extent_state, rb_node);
 982hit_next:
 983	last_start = state->start;
 984	last_end = state->end;
 985
 986	/*
 987	 * | ---- desired range ---- |
 988	 * | state |
 989	 *
 990	 * Just lock what we found and keep going
 991	 */
 992	if (state->start == start && state->end <= end) {
 993		set_state_bits(tree, state, &bits);
 994		state = clear_state_bit(tree, state, &clear_bits, 0);
 
 995		if (last_end == (u64)-1)
 996			goto out;
 997		start = last_end + 1;
 998		if (start < end && state && state->start == start &&
 999		    !need_resched())
1000			goto hit_next;
1001		goto search_again;
1002	}
1003
1004	/*
1005	 *     | ---- desired range ---- |
1006	 * | state |
1007	 *   or
1008	 * | ------------- state -------------- |
1009	 *
1010	 * We need to split the extent we found, and may flip bits on
1011	 * second half.
1012	 *
1013	 * If the extent we found extends past our
1014	 * range, we just split and search again.  It'll get split
1015	 * again the next time though.
1016	 *
1017	 * If the extent we found is inside our range, we set the
1018	 * desired bit on it.
1019	 */
1020	if (state->start < start) {
1021		prealloc = alloc_extent_state_atomic(prealloc);
1022		if (!prealloc) {
1023			err = -ENOMEM;
1024			goto out;
1025		}
1026		err = split_state(tree, state, prealloc, start);
1027		if (err)
1028			extent_io_tree_panic(tree, err);
1029		prealloc = NULL;
1030		if (err)
1031			goto out;
1032		if (state->end <= end) {
1033			set_state_bits(tree, state, &bits);
1034			state = clear_state_bit(tree, state, &clear_bits, 0);
 
 
1035			if (last_end == (u64)-1)
1036				goto out;
1037			start = last_end + 1;
1038			if (start < end && state && state->start == start &&
1039			    !need_resched())
1040				goto hit_next;
1041		}
1042		goto search_again;
1043	}
1044	/*
1045	 * | ---- desired range ---- |
1046	 *     | state | or               | state |
1047	 *
1048	 * There's a hole, we need to insert something in it and
1049	 * ignore the extent we found.
1050	 */
1051	if (state->start > start) {
1052		u64 this_end;
1053		if (end < last_start)
1054			this_end = end;
1055		else
1056			this_end = last_start - 1;
1057
1058		prealloc = alloc_extent_state_atomic(prealloc);
1059		if (!prealloc) {
1060			err = -ENOMEM;
1061			goto out;
1062		}
1063
1064		/*
1065		 * Avoid to free 'prealloc' if it can be merged with
1066		 * the later extent.
1067		 */
1068		err = insert_state(tree, prealloc, start, this_end,
1069				   &bits);
1070		if (err)
1071			extent_io_tree_panic(tree, err);
 
1072		prealloc = NULL;
1073		start = this_end + 1;
1074		goto search_again;
1075	}
1076	/*
1077	 * | ---- desired range ---- |
1078	 *                        | state |
1079	 * We need to split the extent, and set the bit
1080	 * on the first half
1081	 */
1082	if (state->start <= end && state->end > end) {
1083		prealloc = alloc_extent_state_atomic(prealloc);
1084		if (!prealloc) {
1085			err = -ENOMEM;
1086			goto out;
1087		}
1088
1089		err = split_state(tree, state, prealloc, end + 1);
1090		if (err)
1091			extent_io_tree_panic(tree, err);
1092
1093		set_state_bits(tree, prealloc, &bits);
1094		clear_state_bit(tree, prealloc, &clear_bits, 0);
 
1095		prealloc = NULL;
1096		goto out;
1097	}
1098
1099	goto search_again;
 
 
 
 
 
 
1100
1101out:
1102	spin_unlock(&tree->lock);
1103	if (prealloc)
1104		free_extent_state(prealloc);
1105
1106	return err;
1107
1108search_again:
1109	if (start > end)
1110		goto out;
1111	spin_unlock(&tree->lock);
1112	if (mask & __GFP_WAIT)
1113		cond_resched();
1114	goto again;
1115}
1116
1117/* wrappers around set/clear extent bit */
1118int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1119		     gfp_t mask)
1120{
1121	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1122			      NULL, mask);
1123}
 
 
 
 
1124
1125int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1126		    int bits, gfp_t mask)
1127{
1128	return set_extent_bit(tree, start, end, bits, NULL,
1129			      NULL, mask);
1130}
1131
1132int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133		      int bits, gfp_t mask)
1134{
1135	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
 
1136}
1137
1138int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1139			struct extent_state **cached_state, gfp_t mask)
 
1140{
1141	return set_extent_bit(tree, start, end,
1142			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1143			      NULL, cached_state, mask);
1144}
1145
1146int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1147		       gfp_t mask)
1148{
1149	return clear_extent_bit(tree, start, end,
1150				EXTENT_DIRTY | EXTENT_DELALLOC |
1151				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1152}
 
1153
1154int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1155		     gfp_t mask)
1156{
1157	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1158			      NULL, mask);
1159}
1160
1161int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1162			struct extent_state **cached_state, gfp_t mask)
1163{
1164	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1165			      cached_state, mask);
1166}
1167
1168int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1169			  struct extent_state **cached_state, gfp_t mask)
1170{
1171	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1172				cached_state, mask);
1173}
1174
1175/*
1176 * either insert or lock state struct between start and end use mask to tell
1177 * us if waiting is desired.
1178 */
1179int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1180		     int bits, struct extent_state **cached_state)
1181{
1182	int err;
1183	u64 failed_start;
 
1184	while (1) {
1185		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1186				       EXTENT_LOCKED, &failed_start,
1187				       cached_state, GFP_NOFS);
1188		if (err == -EEXIST) {
1189			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1190			start = failed_start;
1191		} else
1192			break;
1193		WARN_ON(start > end);
1194	}
1195	return err;
1196}
1197
1198int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1199{
1200	return lock_extent_bits(tree, start, end, 0, NULL);
1201}
1202
1203int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1204{
1205	int err;
1206	u64 failed_start;
1207
1208	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1209			       &failed_start, NULL, GFP_NOFS);
1210	if (err == -EEXIST) {
1211		if (failed_start > start)
1212			clear_extent_bit(tree, start, failed_start - 1,
1213					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1214		return 0;
1215	}
1216	return 1;
1217}
1218
1219int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1220			 struct extent_state **cached, gfp_t mask)
1221{
1222	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1223				mask);
1224}
1225
1226int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1227{
1228	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1229				GFP_NOFS);
 
 
 
1230}
1231
1232/*
1233 * helper function to set both pages and extents in the tree writeback
1234 */
1235static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1236{
1237	unsigned long index = start >> PAGE_CACHE_SHIFT;
1238	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1239	struct page *page;
1240
1241	while (index <= end_index) {
1242		page = find_get_page(tree->mapping, index);
1243		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1244		set_page_writeback(page);
1245		page_cache_release(page);
 
1246		index++;
1247	}
1248	return 0;
1249}
1250
1251/* find the first state struct with 'bits' set after 'start', and
1252 * return it.  tree->lock must be held.  NULL will returned if
1253 * nothing was found after 'start'
1254 */
1255struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1256						 u64 start, int bits)
 
1257{
1258	struct rb_node *node;
1259	struct extent_state *state;
1260
1261	/*
1262	 * this search will find all the extents that end after
1263	 * our range starts.
1264	 */
1265	node = tree_search(tree, start);
1266	if (!node)
1267		goto out;
1268
1269	while (1) {
1270		state = rb_entry(node, struct extent_state, rb_node);
1271		if (state->end >= start && (state->state & bits))
1272			return state;
1273
1274		node = rb_next(node);
1275		if (!node)
1276			break;
1277	}
1278out:
1279	return NULL;
1280}
1281
1282/*
1283 * find the first offset in the io tree with 'bits' set. zero is
1284 * returned if we find something, and *start_ret and *end_ret are
1285 * set to reflect the state struct that was found.
1286 *
1287 * If nothing was found, 1 is returned. If found something, return 0.
1288 */
1289int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1290			  u64 *start_ret, u64 *end_ret, int bits)
 
1291{
1292	struct extent_state *state;
1293	int ret = 1;
1294
1295	spin_lock(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296	state = find_first_extent_bit_state(tree, start, bits);
 
1297	if (state) {
 
1298		*start_ret = state->start;
1299		*end_ret = state->end;
1300		ret = 0;
1301	}
 
1302	spin_unlock(&tree->lock);
1303	return ret;
1304}
1305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306/*
1307 * find a contiguous range of bytes in the file marked as delalloc, not
1308 * more than 'max_bytes'.  start and end are used to return the range,
1309 *
1310 * 1 is returned if we find something, 0 if nothing was in the tree
1311 */
1312static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1313					u64 *start, u64 *end, u64 max_bytes,
1314					struct extent_state **cached_state)
1315{
1316	struct rb_node *node;
1317	struct extent_state *state;
1318	u64 cur_start = *start;
1319	u64 found = 0;
1320	u64 total_bytes = 0;
1321
1322	spin_lock(&tree->lock);
1323
1324	/*
1325	 * this search will find all the extents that end after
1326	 * our range starts.
1327	 */
1328	node = tree_search(tree, cur_start);
1329	if (!node) {
1330		if (!found)
1331			*end = (u64)-1;
1332		goto out;
1333	}
1334
1335	while (1) {
1336		state = rb_entry(node, struct extent_state, rb_node);
1337		if (found && (state->start != cur_start ||
1338			      (state->state & EXTENT_BOUNDARY))) {
1339			goto out;
1340		}
1341		if (!(state->state & EXTENT_DELALLOC)) {
1342			if (!found)
1343				*end = state->end;
1344			goto out;
1345		}
1346		if (!found) {
1347			*start = state->start;
1348			*cached_state = state;
1349			atomic_inc(&state->refs);
1350		}
1351		found++;
1352		*end = state->end;
1353		cur_start = state->end + 1;
1354		node = rb_next(node);
1355		if (!node)
1356			break;
1357		total_bytes += state->end - state->start + 1;
1358		if (total_bytes >= max_bytes)
1359			break;
 
 
1360	}
1361out:
1362	spin_unlock(&tree->lock);
1363	return found;
1364}
1365
 
 
 
 
 
1366static noinline void __unlock_for_delalloc(struct inode *inode,
1367					   struct page *locked_page,
1368					   u64 start, u64 end)
1369{
1370	int ret;
1371	struct page *pages[16];
1372	unsigned long index = start >> PAGE_CACHE_SHIFT;
1373	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1374	unsigned long nr_pages = end_index - index + 1;
1375	int i;
1376
 
1377	if (index == locked_page->index && end_index == index)
1378		return;
1379
1380	while (nr_pages > 0) {
1381		ret = find_get_pages_contig(inode->i_mapping, index,
1382				     min_t(unsigned long, nr_pages,
1383				     ARRAY_SIZE(pages)), pages);
1384		for (i = 0; i < ret; i++) {
1385			if (pages[i] != locked_page)
1386				unlock_page(pages[i]);
1387			page_cache_release(pages[i]);
1388		}
1389		nr_pages -= ret;
1390		index += ret;
1391		cond_resched();
1392	}
1393}
1394
1395static noinline int lock_delalloc_pages(struct inode *inode,
1396					struct page *locked_page,
1397					u64 delalloc_start,
1398					u64 delalloc_end)
1399{
1400	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1401	unsigned long start_index = index;
1402	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1403	unsigned long pages_locked = 0;
1404	struct page *pages[16];
1405	unsigned long nrpages;
1406	int ret;
1407	int i;
1408
1409	/* the caller is responsible for locking the start index */
1410	if (index == locked_page->index && index == end_index)
1411		return 0;
1412
1413	/* skip the page at the start index */
1414	nrpages = end_index - index + 1;
1415	while (nrpages > 0) {
1416		ret = find_get_pages_contig(inode->i_mapping, index,
1417				     min_t(unsigned long,
1418				     nrpages, ARRAY_SIZE(pages)), pages);
1419		if (ret == 0) {
1420			ret = -EAGAIN;
1421			goto done;
1422		}
1423		/* now we have an array of pages, lock them all */
1424		for (i = 0; i < ret; i++) {
1425			/*
1426			 * the caller is taking responsibility for
1427			 * locked_page
1428			 */
1429			if (pages[i] != locked_page) {
1430				lock_page(pages[i]);
1431				if (!PageDirty(pages[i]) ||
1432				    pages[i]->mapping != inode->i_mapping) {
1433					ret = -EAGAIN;
1434					unlock_page(pages[i]);
1435					page_cache_release(pages[i]);
1436					goto done;
1437				}
1438			}
1439			page_cache_release(pages[i]);
1440			pages_locked++;
1441		}
1442		nrpages -= ret;
1443		index += ret;
1444		cond_resched();
1445	}
1446	ret = 0;
1447done:
1448	if (ret && pages_locked) {
1449		__unlock_for_delalloc(inode, locked_page,
1450			      delalloc_start,
1451			      ((u64)(start_index + pages_locked - 1)) <<
1452			      PAGE_CACHE_SHIFT);
1453	}
1454	return ret;
1455}
1456
1457/*
1458 * find a contiguous range of bytes in the file marked as delalloc, not
1459 * more than 'max_bytes'.  start and end are used to return the range,
1460 *
1461 * 1 is returned if we find something, 0 if nothing was in the tree
 
1462 */
1463static noinline u64 find_lock_delalloc_range(struct inode *inode,
1464					     struct extent_io_tree *tree,
1465					     struct page *locked_page,
1466					     u64 *start, u64 *end,
1467					     u64 max_bytes)
1468{
 
 
1469	u64 delalloc_start;
1470	u64 delalloc_end;
1471	u64 found;
1472	struct extent_state *cached_state = NULL;
1473	int ret;
1474	int loops = 0;
1475
1476again:
1477	/* step one, find a bunch of delalloc bytes starting at start */
1478	delalloc_start = *start;
1479	delalloc_end = 0;
1480	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1481				    max_bytes, &cached_state);
1482	if (!found || delalloc_end <= *start) {
1483		*start = delalloc_start;
1484		*end = delalloc_end;
1485		free_extent_state(cached_state);
1486		return found;
1487	}
1488
1489	/*
1490	 * start comes from the offset of locked_page.  We have to lock
1491	 * pages in order, so we can't process delalloc bytes before
1492	 * locked_page
1493	 */
1494	if (delalloc_start < *start)
1495		delalloc_start = *start;
1496
1497	/*
1498	 * make sure to limit the number of pages we try to lock down
1499	 * if we're looping.
1500	 */
1501	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1502		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1503
1504	/* step two, lock all the pages after the page that has start */
1505	ret = lock_delalloc_pages(inode, locked_page,
1506				  delalloc_start, delalloc_end);
 
1507	if (ret == -EAGAIN) {
1508		/* some of the pages are gone, lets avoid looping by
1509		 * shortening the size of the delalloc range we're searching
1510		 */
1511		free_extent_state(cached_state);
 
1512		if (!loops) {
1513			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1514			max_bytes = PAGE_CACHE_SIZE - offset;
1515			loops = 1;
1516			goto again;
1517		} else {
1518			found = 0;
1519			goto out_failed;
1520		}
1521	}
1522	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1523
1524	/* step three, lock the state bits for the whole range */
1525	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1526
1527	/* then test to make sure it is all still delalloc */
1528	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1529			     EXTENT_DELALLOC, 1, cached_state);
1530	if (!ret) {
1531		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1532				     &cached_state, GFP_NOFS);
1533		__unlock_for_delalloc(inode, locked_page,
1534			      delalloc_start, delalloc_end);
1535		cond_resched();
1536		goto again;
1537	}
1538	free_extent_state(cached_state);
1539	*start = delalloc_start;
1540	*end = delalloc_end;
1541out_failed:
1542	return found;
1543}
1544
1545int extent_clear_unlock_delalloc(struct inode *inode,
1546				struct extent_io_tree *tree,
1547				u64 start, u64 end, struct page *locked_page,
1548				unsigned long op)
1549{
1550	int ret;
 
 
1551	struct page *pages[16];
1552	unsigned long index = start >> PAGE_CACHE_SHIFT;
1553	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1554	unsigned long nr_pages = end_index - index + 1;
1555	int i;
1556	int clear_bits = 0;
1557
1558	if (op & EXTENT_CLEAR_UNLOCK)
1559		clear_bits |= EXTENT_LOCKED;
1560	if (op & EXTENT_CLEAR_DIRTY)
1561		clear_bits |= EXTENT_DIRTY;
1562
1563	if (op & EXTENT_CLEAR_DELALLOC)
1564		clear_bits |= EXTENT_DELALLOC;
1565
1566	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1567	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1568		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1569		    EXTENT_SET_PRIVATE2)))
1570		return 0;
1571
1572	while (nr_pages > 0) {
1573		ret = find_get_pages_contig(inode->i_mapping, index,
1574				     min_t(unsigned long,
1575				     nr_pages, ARRAY_SIZE(pages)), pages);
 
 
 
 
 
 
 
 
 
 
1576		for (i = 0; i < ret; i++) {
1577
1578			if (op & EXTENT_SET_PRIVATE2)
1579				SetPagePrivate2(pages[i]);
1580
1581			if (pages[i] == locked_page) {
1582				page_cache_release(pages[i]);
 
1583				continue;
1584			}
1585			if (op & EXTENT_CLEAR_DIRTY)
1586				clear_page_dirty_for_io(pages[i]);
1587			if (op & EXTENT_SET_WRITEBACK)
1588				set_page_writeback(pages[i]);
1589			if (op & EXTENT_END_WRITEBACK)
 
 
1590				end_page_writeback(pages[i]);
1591			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1592				unlock_page(pages[i]);
1593			page_cache_release(pages[i]);
 
 
 
 
 
 
 
 
 
 
 
1594		}
1595		nr_pages -= ret;
1596		index += ret;
1597		cond_resched();
1598	}
1599	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600}
1601
1602/*
1603 * count the number of bytes in the tree that have a given bit(s)
1604 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1605 * cached.  The total number found is returned.
1606 */
1607u64 count_range_bits(struct extent_io_tree *tree,
1608		     u64 *start, u64 search_end, u64 max_bytes,
1609		     unsigned long bits, int contig)
1610{
1611	struct rb_node *node;
1612	struct extent_state *state;
1613	u64 cur_start = *start;
1614	u64 total_bytes = 0;
1615	u64 last = 0;
1616	int found = 0;
1617
1618	if (search_end <= cur_start) {
1619		WARN_ON(1);
1620		return 0;
1621	}
1622
1623	spin_lock(&tree->lock);
1624	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1625		total_bytes = tree->dirty_bytes;
1626		goto out;
1627	}
1628	/*
1629	 * this search will find all the extents that end after
1630	 * our range starts.
1631	 */
1632	node = tree_search(tree, cur_start);
1633	if (!node)
1634		goto out;
1635
1636	while (1) {
1637		state = rb_entry(node, struct extent_state, rb_node);
1638		if (state->start > search_end)
1639			break;
1640		if (contig && found && state->start > last + 1)
1641			break;
1642		if (state->end >= cur_start && (state->state & bits) == bits) {
1643			total_bytes += min(search_end, state->end) + 1 -
1644				       max(cur_start, state->start);
1645			if (total_bytes >= max_bytes)
1646				break;
1647			if (!found) {
1648				*start = max(cur_start, state->start);
1649				found = 1;
1650			}
1651			last = state->end;
1652		} else if (contig && found) {
1653			break;
1654		}
1655		node = rb_next(node);
1656		if (!node)
1657			break;
1658	}
1659out:
1660	spin_unlock(&tree->lock);
1661	return total_bytes;
1662}
1663
1664/*
1665 * set the private field for a given byte offset in the tree.  If there isn't
1666 * an extent_state there already, this does nothing.
1667 */
1668int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
 
1669{
1670	struct rb_node *node;
1671	struct extent_state *state;
1672	int ret = 0;
1673
1674	spin_lock(&tree->lock);
1675	/*
1676	 * this search will find all the extents that end after
1677	 * our range starts.
1678	 */
1679	node = tree_search(tree, start);
1680	if (!node) {
1681		ret = -ENOENT;
1682		goto out;
1683	}
1684	state = rb_entry(node, struct extent_state, rb_node);
1685	if (state->start != start) {
1686		ret = -ENOENT;
1687		goto out;
1688	}
1689	state->private = private;
1690out:
1691	spin_unlock(&tree->lock);
1692	return ret;
1693}
1694
1695int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
 
1696{
1697	struct rb_node *node;
1698	struct extent_state *state;
1699	int ret = 0;
1700
1701	spin_lock(&tree->lock);
1702	/*
1703	 * this search will find all the extents that end after
1704	 * our range starts.
1705	 */
1706	node = tree_search(tree, start);
1707	if (!node) {
1708		ret = -ENOENT;
1709		goto out;
1710	}
1711	state = rb_entry(node, struct extent_state, rb_node);
1712	if (state->start != start) {
1713		ret = -ENOENT;
1714		goto out;
1715	}
1716	*private = state->private;
1717out:
1718	spin_unlock(&tree->lock);
1719	return ret;
1720}
1721
1722/*
1723 * searches a range in the state tree for a given mask.
1724 * If 'filled' == 1, this returns 1 only if every extent in the tree
1725 * has the bits set.  Otherwise, 1 is returned if any bit in the
1726 * range is found set.
1727 */
1728int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1729		   int bits, int filled, struct extent_state *cached)
1730{
1731	struct extent_state *state = NULL;
1732	struct rb_node *node;
1733	int bitset = 0;
1734
1735	spin_lock(&tree->lock);
1736	if (cached && cached->tree && cached->start <= start &&
1737	    cached->end > start)
1738		node = &cached->rb_node;
1739	else
1740		node = tree_search(tree, start);
1741	while (node && start <= end) {
1742		state = rb_entry(node, struct extent_state, rb_node);
1743
1744		if (filled && state->start > start) {
1745			bitset = 0;
1746			break;
1747		}
1748
1749		if (state->start > end)
1750			break;
1751
1752		if (state->state & bits) {
1753			bitset = 1;
1754			if (!filled)
1755				break;
1756		} else if (filled) {
1757			bitset = 0;
1758			break;
1759		}
1760
1761		if (state->end == (u64)-1)
1762			break;
1763
1764		start = state->end + 1;
1765		if (start > end)
1766			break;
1767		node = rb_next(node);
1768		if (!node) {
1769			if (filled)
1770				bitset = 0;
1771			break;
1772		}
1773	}
1774	spin_unlock(&tree->lock);
1775	return bitset;
1776}
1777
1778/*
1779 * helper function to set a given page up to date if all the
1780 * extents in the tree for that page are up to date
1781 */
1782static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1783{
1784	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1785	u64 end = start + PAGE_CACHE_SIZE - 1;
1786	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1787		SetPageUptodate(page);
1788}
1789
1790/*
1791 * helper function to unlock a page if all the extents in the tree
1792 * for that page are unlocked
1793 */
1794static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1795{
1796	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1797	u64 end = start + PAGE_CACHE_SIZE - 1;
1798	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1799		unlock_page(page);
1800}
1801
1802/*
1803 * helper function to end page writeback if all the extents
1804 * in the tree for that page are done with writeback
1805 */
1806static void check_page_writeback(struct extent_io_tree *tree,
1807				 struct page *page)
1808{
1809	end_page_writeback(page);
1810}
1811
1812/*
1813 * When IO fails, either with EIO or csum verification fails, we
1814 * try other mirrors that might have a good copy of the data.  This
1815 * io_failure_record is used to record state as we go through all the
1816 * mirrors.  If another mirror has good data, the page is set up to date
1817 * and things continue.  If a good mirror can't be found, the original
1818 * bio end_io callback is called to indicate things have failed.
1819 */
1820struct io_failure_record {
1821	struct page *page;
1822	u64 start;
1823	u64 len;
1824	u64 logical;
1825	unsigned long bio_flags;
1826	int this_mirror;
1827	int failed_mirror;
1828	int in_validation;
1829};
1830
1831static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1832				int did_repair)
1833{
1834	int ret;
1835	int err = 0;
1836	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1837
1838	set_state_private(failure_tree, rec->start, 0);
1839	ret = clear_extent_bits(failure_tree, rec->start,
1840				rec->start + rec->len - 1,
1841				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1842	if (ret)
1843		err = ret;
1844
1845	if (did_repair) {
1846		ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1847					rec->start + rec->len - 1,
1848					EXTENT_DAMAGED, GFP_NOFS);
1849		if (ret && !err)
1850			err = ret;
1851	}
1852
1853	kfree(rec);
1854	return err;
1855}
1856
1857static void repair_io_failure_callback(struct bio *bio, int err)
1858{
1859	complete(bio->bi_private);
1860}
1861
1862/*
1863 * this bypasses the standard btrfs submit functions deliberately, as
1864 * the standard behavior is to write all copies in a raid setup. here we only
1865 * want to write the one bad copy. so we do the mapping for ourselves and issue
1866 * submit_bio directly.
1867 * to avoid any synchonization issues, wait for the data after writing, which
1868 * actually prevents the read that triggered the error from finishing.
1869 * currently, there can be no more than two copies of every data bit. thus,
1870 * exactly one rewrite is required.
1871 */
1872int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1873			u64 length, u64 logical, struct page *page,
1874			int mirror_num)
1875{
1876	struct bio *bio;
1877	struct btrfs_device *dev;
1878	DECLARE_COMPLETION_ONSTACK(compl);
1879	u64 map_length = 0;
1880	u64 sector;
1881	struct btrfs_bio *bbio = NULL;
1882	int ret;
1883
 
1884	BUG_ON(!mirror_num);
1885
1886	bio = bio_alloc(GFP_NOFS, 1);
1887	if (!bio)
1888		return -EIO;
1889	bio->bi_private = &compl;
1890	bio->bi_end_io = repair_io_failure_callback;
1891	bio->bi_size = 0;
1892	map_length = length;
1893
1894	ret = btrfs_map_block(map_tree, WRITE, logical,
1895			      &map_length, &bbio, mirror_num);
1896	if (ret) {
1897		bio_put(bio);
1898		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1899	}
1900	BUG_ON(mirror_num != bbio->mirror_num);
1901	sector = bbio->stripes[mirror_num-1].physical >> 9;
1902	bio->bi_sector = sector;
1903	dev = bbio->stripes[mirror_num-1].dev;
1904	kfree(bbio);
1905	if (!dev || !dev->bdev || !dev->writeable) {
 
 
1906		bio_put(bio);
1907		return -EIO;
1908	}
1909	bio->bi_bdev = dev->bdev;
1910	bio_add_page(bio, page, length, start-page_offset(page));
1911	btrfsic_submit_bio(WRITE_SYNC, bio);
1912	wait_for_completion(&compl);
1913
1914	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1915		/* try to remap that extent elsewhere? */
 
1916		bio_put(bio);
1917		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1918		return -EIO;
1919	}
1920
1921	printk_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1922		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1923		      start, rcu_str_deref(dev->name), sector);
1924
 
1925	bio_put(bio);
1926	return 0;
1927}
1928
1929int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1930			 int mirror_num)
1931{
1932	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1933	u64 start = eb->start;
1934	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1935	int ret = 0;
1936
 
 
 
1937	for (i = 0; i < num_pages; i++) {
1938		struct page *p = extent_buffer_page(eb, i);
1939		ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1940					start, p, mirror_num);
 
1941		if (ret)
1942			break;
1943		start += PAGE_CACHE_SIZE;
1944	}
1945
1946	return ret;
1947}
1948
1949/*
1950 * each time an IO finishes, we do a fast check in the IO failure tree
1951 * to see if we need to process or clean up an io_failure_record
1952 */
1953static int clean_io_failure(u64 start, struct page *page)
 
 
 
1954{
1955	u64 private;
1956	u64 private_failure;
1957	struct io_failure_record *failrec;
1958	struct btrfs_mapping_tree *map_tree;
1959	struct extent_state *state;
1960	int num_copies;
1961	int did_repair = 0;
1962	int ret;
1963	struct inode *inode = page->mapping->host;
1964
1965	private = 0;
1966	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1967				(u64)-1, 1, EXTENT_DIRTY, 0);
1968	if (!ret)
1969		return 0;
1970
1971	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1972				&private_failure);
1973	if (ret)
1974		return 0;
1975
1976	failrec = (struct io_failure_record *)(unsigned long) private_failure;
1977	BUG_ON(!failrec->this_mirror);
1978
1979	if (failrec->in_validation) {
1980		/* there was no real error, just free the record */
1981		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1982			 failrec->start);
1983		did_repair = 1;
1984		goto out;
1985	}
 
 
1986
1987	spin_lock(&BTRFS_I(inode)->io_tree.lock);
1988	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1989					    failrec->start,
1990					    EXTENT_LOCKED);
1991	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1992
1993	if (state && state->start == failrec->start) {
1994		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1995		num_copies = btrfs_num_copies(map_tree, failrec->logical,
1996						failrec->len);
1997		if (num_copies > 1)  {
1998			ret = repair_io_failure(map_tree, start, failrec->len,
1999						failrec->logical, page,
2000						failrec->failed_mirror);
2001			did_repair = !ret;
2002		}
2003	}
2004
2005out:
2006	if (!ret)
2007		ret = free_io_failure(inode, failrec, did_repair);
2008
2009	return ret;
2010}
2011
2012/*
2013 * this is a generic handler for readpage errors (default
2014 * readpage_io_failed_hook). if other copies exist, read those and write back
2015 * good data to the failed position. does not investigate in remapping the
2016 * failed extent elsewhere, hoping the device will be smart enough to do this as
2017 * needed
2018 */
 
 
 
 
 
2019
2020static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2021				u64 start, u64 end, int failed_mirror,
2022				struct extent_state *state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023{
2024	struct io_failure_record *failrec = NULL;
2025	u64 private;
2026	struct extent_map *em;
2027	struct inode *inode = page->mapping->host;
2028	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2029	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2030	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2031	struct bio *bio;
2032	int num_copies;
2033	int ret;
2034	int read_mode;
2035	u64 logical;
2036
2037	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2038
2039	ret = get_state_private(failure_tree, start, &private);
2040	if (ret) {
2041		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2042		if (!failrec)
2043			return -ENOMEM;
 
2044		failrec->start = start;
2045		failrec->len = end - start + 1;
2046		failrec->this_mirror = 0;
2047		failrec->bio_flags = 0;
2048		failrec->in_validation = 0;
2049
2050		read_lock(&em_tree->lock);
2051		em = lookup_extent_mapping(em_tree, start, failrec->len);
2052		if (!em) {
2053			read_unlock(&em_tree->lock);
2054			kfree(failrec);
2055			return -EIO;
2056		}
2057
2058		if (em->start > start || em->start + em->len < start) {
2059			free_extent_map(em);
2060			em = NULL;
2061		}
2062		read_unlock(&em_tree->lock);
2063
2064		if (!em || IS_ERR(em)) {
2065			kfree(failrec);
2066			return -EIO;
2067		}
 
2068		logical = start - em->start;
2069		logical = em->block_start + logical;
2070		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2071			logical = em->block_start;
2072			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2073			extent_set_compress_type(&failrec->bio_flags,
2074						 em->compress_type);
2075		}
2076		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2077			 "len=%llu\n", logical, start, failrec->len);
 
 
 
2078		failrec->logical = logical;
2079		free_extent_map(em);
2080
2081		/* set the bits in the private failure tree */
2082		ret = set_extent_bits(failure_tree, start, end,
2083					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2084		if (ret >= 0)
2085			ret = set_state_private(failure_tree, start,
2086						(u64)(unsigned long)failrec);
2087		/* set the bits in the inode's tree */
2088		if (ret >= 0)
2089			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2090						GFP_NOFS);
2091		if (ret < 0) {
2092			kfree(failrec);
2093			return ret;
2094		}
2095	} else {
2096		failrec = (struct io_failure_record *)(unsigned long)private;
2097		pr_debug("bio_readpage_error: (found) logical=%llu, "
2098			 "start=%llu, len=%llu, validation=%d\n",
2099			 failrec->logical, failrec->start, failrec->len,
2100			 failrec->in_validation);
2101		/*
2102		 * when data can be on disk more than twice, add to failrec here
2103		 * (e.g. with a list for failed_mirror) to make
2104		 * clean_io_failure() clean all those errors at once.
2105		 */
2106	}
2107	num_copies = btrfs_num_copies(
2108			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
2109			      failrec->logical, failrec->len);
 
 
 
 
 
 
 
 
 
 
2110	if (num_copies == 1) {
2111		/*
2112		 * we only have a single copy of the data, so don't bother with
2113		 * all the retry and error correction code that follows. no
2114		 * matter what the error is, it is very likely to persist.
2115		 */
2116		pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2117			 "state=%p, num_copies=%d, next_mirror %d, "
2118			 "failed_mirror %d\n", state, num_copies,
2119			 failrec->this_mirror, failed_mirror);
2120		free_io_failure(inode, failrec, 0);
2121		return -EIO;
2122	}
2123
2124	if (!state) {
2125		spin_lock(&tree->lock);
2126		state = find_first_extent_bit_state(tree, failrec->start,
2127						    EXTENT_LOCKED);
2128		if (state && state->start != failrec->start)
2129			state = NULL;
2130		spin_unlock(&tree->lock);
2131	}
2132
2133	/*
2134	 * there are two premises:
2135	 *	a) deliver good data to the caller
2136	 *	b) correct the bad sectors on disk
2137	 */
2138	if (failed_bio->bi_vcnt > 1) {
2139		/*
2140		 * to fulfill b), we need to know the exact failing sectors, as
2141		 * we don't want to rewrite any more than the failed ones. thus,
2142		 * we need separate read requests for the failed bio
2143		 *
2144		 * if the following BUG_ON triggers, our validation request got
2145		 * merged. we need separate requests for our algorithm to work.
2146		 */
2147		BUG_ON(failrec->in_validation);
2148		failrec->in_validation = 1;
2149		failrec->this_mirror = failed_mirror;
2150		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2151	} else {
2152		/*
2153		 * we're ready to fulfill a) and b) alongside. get a good copy
2154		 * of the failed sector and if we succeed, we have setup
2155		 * everything for repair_io_failure to do the rest for us.
2156		 */
2157		if (failrec->in_validation) {
2158			BUG_ON(failrec->this_mirror != failed_mirror);
2159			failrec->in_validation = 0;
2160			failrec->this_mirror = 0;
2161		}
2162		failrec->failed_mirror = failed_mirror;
2163		failrec->this_mirror++;
2164		if (failrec->this_mirror == failed_mirror)
2165			failrec->this_mirror++;
2166		read_mode = READ_SYNC;
2167	}
2168
2169	if (!state || failrec->this_mirror > num_copies) {
2170		pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2171			 "next_mirror %d, failed_mirror %d\n", state,
2172			 num_copies, failrec->this_mirror, failed_mirror);
2173		free_io_failure(inode, failrec, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174		return -EIO;
2175	}
2176
2177	bio = bio_alloc(GFP_NOFS, 1);
2178	if (!bio) {
2179		free_io_failure(inode, failrec, 0);
2180		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181	}
2182	bio->bi_private = state;
2183	bio->bi_end_io = failed_bio->bi_end_io;
2184	bio->bi_sector = failrec->logical >> 9;
2185	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2186	bio->bi_size = 0;
2187
2188	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2189
2190	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2191		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2192		 failrec->this_mirror, num_copies, failrec->in_validation);
2193
2194	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2195					 failrec->this_mirror,
2196					 failrec->bio_flags, 0);
2197	return ret;
2198}
2199
2200/* lots and lots of room for performance fixes in the end_bio funcs */
2201
2202int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2203{
2204	int uptodate = (err == 0);
2205	struct extent_io_tree *tree;
2206	int ret;
2207
2208	tree = &BTRFS_I(page->mapping->host)->io_tree;
2209
2210	if (tree->ops && tree->ops->writepage_end_io_hook) {
2211		ret = tree->ops->writepage_end_io_hook(page, start,
2212					       end, NULL, uptodate);
2213		if (ret)
2214			uptodate = 0;
2215	}
2216
2217	if (!uptodate) {
2218		ClearPageUptodate(page);
2219		SetPageError(page);
 
 
2220	}
2221	return 0;
2222}
2223
2224/*
2225 * after a writepage IO is done, we need to:
2226 * clear the uptodate bits on error
2227 * clear the writeback bits in the extent tree for this IO
2228 * end_page_writeback if the page has no more pending IO
2229 *
2230 * Scheduling is not allowed, so the extent state tree is expected
2231 * to have one and only one object corresponding to this IO.
2232 */
2233static void end_bio_extent_writepage(struct bio *bio, int err)
2234{
2235	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2236	struct extent_io_tree *tree;
2237	u64 start;
2238	u64 end;
2239	int whole_page;
2240
2241	do {
 
2242		struct page *page = bvec->bv_page;
2243		tree = &BTRFS_I(page->mapping->host)->io_tree;
 
2244
2245		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2246			 bvec->bv_offset;
2247		end = start + bvec->bv_len - 1;
2248
2249		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2250			whole_page = 1;
2251		else
2252			whole_page = 0;
 
 
 
 
 
 
 
2253
2254		if (--bvec >= bio->bi_io_vec)
2255			prefetchw(&bvec->bv_page->flags);
2256
2257		if (end_extent_writepage(page, err, start, end))
2258			continue;
 
2259
2260		if (whole_page)
2261			end_page_writeback(page);
2262		else
2263			check_page_writeback(tree, page);
2264	} while (bvec >= bio->bi_io_vec);
2265
2266	bio_put(bio);
 
 
 
 
 
 
 
 
 
2267}
2268
2269/*
2270 * after a readpage IO is done, we need to:
2271 * clear the uptodate bits on error
2272 * set the uptodate bits if things worked
2273 * set the page up to date if all extents in the tree are uptodate
2274 * clear the lock bit in the extent tree
2275 * unlock the page if there are no other extents locked for it
2276 *
2277 * Scheduling is not allowed, so the extent state tree is expected
2278 * to have one and only one object corresponding to this IO.
2279 */
2280static void end_bio_extent_readpage(struct bio *bio, int err)
2281{
2282	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2283	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2284	struct bio_vec *bvec = bio->bi_io_vec;
2285	struct extent_io_tree *tree;
 
2286	u64 start;
2287	u64 end;
2288	int whole_page;
 
 
2289	int mirror;
2290	int ret;
 
2291
2292	if (err)
2293		uptodate = 0;
2294
2295	do {
2296		struct page *page = bvec->bv_page;
2297		struct extent_state *cached = NULL;
2298		struct extent_state *state;
2299
2300		pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2301			 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2302			 (long int)bio->bi_bdev);
2303		tree = &BTRFS_I(page->mapping->host)->io_tree;
2304
2305		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2306			bvec->bv_offset;
2307		end = start + bvec->bv_len - 1;
2308
2309		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2310			whole_page = 1;
2311		else
2312			whole_page = 0;
2313
2314		if (++bvec <= bvec_end)
2315			prefetchw(&bvec->bv_page->flags);
2316
2317		spin_lock(&tree->lock);
2318		state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2319		if (state && state->start == start) {
2320			/*
2321			 * take a reference on the state, unlock will drop
2322			 * the ref
2323			 */
2324			cache_state(state, &cached);
2325		}
2326		spin_unlock(&tree->lock);
2327
2328		mirror = (int)(unsigned long)bio->bi_bdev;
2329		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2330			ret = tree->ops->readpage_end_io_hook(page, start, end,
2331							      state, mirror);
 
 
 
 
 
2332			if (ret)
2333				uptodate = 0;
2334			else
2335				clean_io_failure(start, page);
 
 
 
2336		}
2337
2338		if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2339			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2340			if (!ret && !err &&
2341			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2342				uptodate = 1;
2343		} else if (!uptodate) {
2344			/*
2345			 * The generic bio_readpage_error handles errors the
2346			 * following way: If possible, new read requests are
2347			 * created and submitted and will end up in
2348			 * end_bio_extent_readpage as well (if we're lucky, not
2349			 * in the !uptodate case). In that case it returns 0 and
2350			 * we just go on with the next page in our bio. If it
2351			 * can't handle the error it will return -EIO and we
2352			 * remain responsible for that page.
2353			 */
2354			ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
 
2355			if (ret == 0) {
2356				uptodate =
2357					test_bit(BIO_UPTODATE, &bio->bi_flags);
2358				if (err)
2359					uptodate = 0;
2360				uncache_state(&cached);
2361				continue;
2362			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2363		}
 
 
2364
2365		if (uptodate && tree->track_uptodate) {
2366			set_extent_uptodate(tree, start, end, &cached,
2367					    GFP_ATOMIC);
2368		}
2369		unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2370
2371		if (whole_page) {
2372			if (uptodate) {
2373				SetPageUptodate(page);
2374			} else {
2375				ClearPageUptodate(page);
2376				SetPageError(page);
2377			}
2378			unlock_page(page);
 
 
 
 
 
 
2379		} else {
2380			if (uptodate) {
2381				check_page_uptodate(tree, page);
2382			} else {
2383				ClearPageUptodate(page);
2384				SetPageError(page);
2385			}
2386			check_page_locked(tree, page);
2387		}
2388	} while (bvec <= bvec_end);
2389
 
 
 
 
2390	bio_put(bio);
2391}
2392
2393struct bio *
2394btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2395		gfp_t gfp_flags)
 
 
 
2396{
2397	struct bio *bio;
2398
2399	bio = bio_alloc(gfp_flags, nr_vecs);
2400
2401	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2402		while (!bio && (nr_vecs /= 2))
2403			bio = bio_alloc(gfp_flags, nr_vecs);
2404	}
2405
2406	if (bio) {
2407		bio->bi_size = 0;
2408		bio->bi_bdev = bdev;
2409		bio->bi_sector = first_sector;
2410	}
2411	return bio;
2412}
2413
2414/*
2415 * Since writes are async, they will only return -ENOMEM.
2416 * Reads can return the full range of I/O error conditions.
 
2417 */
2418static int __must_check submit_one_bio(int rw, struct bio *bio,
2419				       int mirror_num, unsigned long bio_flags)
2420{
2421	int ret = 0;
2422	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2423	struct page *page = bvec->bv_page;
2424	struct extent_io_tree *tree = bio->bi_private;
2425	u64 start;
2426
2427	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
 
 
 
 
2428
2429	bio->bi_private = NULL;
 
 
 
2430
2431	bio_get(bio);
 
 
 
 
 
 
2432
2433	if (tree->ops && tree->ops->submit_bio_hook)
2434		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2435					   mirror_num, bio_flags, start);
2436	else
2437		btrfsic_submit_bio(rw, bio);
2438
2439	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2440		ret = -EOPNOTSUPP;
2441	bio_put(bio);
2442	return ret;
2443}
2444
2445static int merge_bio(struct extent_io_tree *tree, struct page *page,
2446		     unsigned long offset, size_t size, struct bio *bio,
2447		     unsigned long bio_flags)
2448{
2449	int ret = 0;
2450	if (tree->ops && tree->ops->merge_bio_hook)
2451		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2452						bio_flags);
2453	BUG_ON(ret < 0);
2454	return ret;
 
 
 
2455
 
 
 
2456}
2457
2458static int submit_extent_page(int rw, struct extent_io_tree *tree,
2459			      struct page *page, sector_t sector,
2460			      size_t size, unsigned long offset,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461			      struct block_device *bdev,
2462			      struct bio **bio_ret,
2463			      unsigned long max_pages,
2464			      bio_end_io_t end_io_func,
2465			      int mirror_num,
2466			      unsigned long prev_bio_flags,
2467			      unsigned long bio_flags)
 
2468{
2469	int ret = 0;
2470	struct bio *bio;
2471	int nr;
2472	int contig = 0;
2473	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2474	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2475	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
 
 
 
2476
2477	if (bio_ret && *bio_ret) {
2478		bio = *bio_ret;
2479		if (old_compressed)
2480			contig = bio->bi_sector == sector;
2481		else
2482			contig = bio->bi_sector + (bio->bi_size >> 9) ==
2483				sector;
2484
2485		if (prev_bio_flags != bio_flags || !contig ||
2486		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2487		    bio_add_page(bio, page, page_size, offset) < page_size) {
2488			ret = submit_one_bio(rw, bio, mirror_num,
2489					     prev_bio_flags);
2490			if (ret < 0)
 
 
 
 
2491				return ret;
 
2492			bio = NULL;
2493		} else {
 
 
2494			return 0;
2495		}
2496	}
2497	if (this_compressed)
2498		nr = BIO_MAX_PAGES;
2499	else
2500		nr = bio_get_nr_vecs(bdev);
2501
2502	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2503	if (!bio)
2504		return -ENOMEM;
2505
2506	bio_add_page(bio, page, page_size, offset);
 
 
2507	bio->bi_end_io = end_io_func;
2508	bio->bi_private = tree;
 
 
 
 
 
 
2509
2510	if (bio_ret)
2511		*bio_ret = bio;
2512	else
2513		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2514
2515	return ret;
2516}
2517
2518void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
 
2519{
2520	if (!PagePrivate(page)) {
2521		SetPagePrivate(page);
2522		page_cache_get(page);
2523		set_page_private(page, (unsigned long)eb);
2524	} else {
2525		WARN_ON(page->private != (unsigned long)eb);
2526	}
2527}
2528
2529void set_page_extent_mapped(struct page *page)
2530{
2531	if (!PagePrivate(page)) {
2532		SetPagePrivate(page);
2533		page_cache_get(page);
2534		set_page_private(page, EXTENT_PAGE_PRIVATE);
2535	}
2536}
2537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2538/*
2539 * basic readpage implementation.  Locked extent state structs are inserted
2540 * into the tree that are removed when the IO is done (by the end_io
2541 * handlers)
2542 * XXX JDM: This needs looking at to ensure proper page locking
 
2543 */
2544static int __extent_read_full_page(struct extent_io_tree *tree,
2545				   struct page *page,
2546				   get_extent_t *get_extent,
2547				   struct bio **bio, int mirror_num,
2548				   unsigned long *bio_flags)
 
 
2549{
2550	struct inode *inode = page->mapping->host;
2551	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2552	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2553	u64 end;
2554	u64 cur = start;
2555	u64 extent_offset;
2556	u64 last_byte = i_size_read(inode);
2557	u64 block_start;
2558	u64 cur_end;
2559	sector_t sector;
2560	struct extent_map *em;
2561	struct block_device *bdev;
2562	struct btrfs_ordered_extent *ordered;
2563	int ret;
2564	int nr = 0;
2565	size_t pg_offset = 0;
2566	size_t iosize;
2567	size_t disk_io_size;
2568	size_t blocksize = inode->i_sb->s_blocksize;
2569	unsigned long this_bio_flag = 0;
2570
2571	set_page_extent_mapped(page);
2572
2573	if (!PageUptodate(page)) {
2574		if (cleancache_get_page(page) == 0) {
2575			BUG_ON(blocksize != PAGE_SIZE);
 
2576			goto out;
2577		}
2578	}
2579
2580	end = page_end;
2581	while (1) {
2582		lock_extent(tree, start, end);
2583		ordered = btrfs_lookup_ordered_extent(inode, start);
2584		if (!ordered)
2585			break;
2586		unlock_extent(tree, start, end);
2587		btrfs_start_ordered_extent(inode, ordered, 1);
2588		btrfs_put_ordered_extent(ordered);
2589	}
2590
2591	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2592		char *userpage;
2593		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2594
2595		if (zero_offset) {
2596			iosize = PAGE_CACHE_SIZE - zero_offset;
2597			userpage = kmap_atomic(page);
2598			memset(userpage + zero_offset, 0, iosize);
2599			flush_dcache_page(page);
2600			kunmap_atomic(userpage);
2601		}
2602	}
2603	while (cur <= end) {
 
 
 
2604		if (cur >= last_byte) {
2605			char *userpage;
2606			struct extent_state *cached = NULL;
2607
2608			iosize = PAGE_CACHE_SIZE - pg_offset;
2609			userpage = kmap_atomic(page);
2610			memset(userpage + pg_offset, 0, iosize);
2611			flush_dcache_page(page);
2612			kunmap_atomic(userpage);
2613			set_extent_uptodate(tree, cur, cur + iosize - 1,
2614					    &cached, GFP_NOFS);
2615			unlock_extent_cached(tree, cur, cur + iosize - 1,
2616					     &cached, GFP_NOFS);
2617			break;
2618		}
2619		em = get_extent(inode, page, pg_offset, cur,
2620				end - cur + 1, 0);
2621		if (IS_ERR_OR_NULL(em)) {
2622			SetPageError(page);
2623			unlock_extent(tree, cur, end);
2624			break;
2625		}
2626		extent_offset = cur - em->start;
2627		BUG_ON(extent_map_end(em) <= cur);
2628		BUG_ON(end < cur);
2629
2630		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2631			this_bio_flag = EXTENT_BIO_COMPRESSED;
2632			extent_set_compress_type(&this_bio_flag,
2633						 em->compress_type);
2634		}
2635
2636		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2637		cur_end = min(extent_map_end(em) - 1, end);
2638		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2639		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2640			disk_io_size = em->block_len;
2641			sector = em->block_start >> 9;
2642		} else {
2643			sector = (em->block_start + extent_offset) >> 9;
2644			disk_io_size = iosize;
2645		}
2646		bdev = em->bdev;
2647		block_start = em->block_start;
2648		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2649			block_start = EXTENT_MAP_HOLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650		free_extent_map(em);
2651		em = NULL;
2652
2653		/* we've found a hole, just zero and go on */
2654		if (block_start == EXTENT_MAP_HOLE) {
2655			char *userpage;
2656			struct extent_state *cached = NULL;
2657
2658			userpage = kmap_atomic(page);
2659			memset(userpage + pg_offset, 0, iosize);
2660			flush_dcache_page(page);
2661			kunmap_atomic(userpage);
2662
2663			set_extent_uptodate(tree, cur, cur + iosize - 1,
2664					    &cached, GFP_NOFS);
2665			unlock_extent_cached(tree, cur, cur + iosize - 1,
2666			                     &cached, GFP_NOFS);
2667			cur = cur + iosize;
2668			pg_offset += iosize;
2669			continue;
2670		}
2671		/* the get_extent function already copied into the page */
2672		if (test_range_bit(tree, cur, cur_end,
2673				   EXTENT_UPTODATE, 1, NULL)) {
2674			check_page_uptodate(tree, page);
2675			unlock_extent(tree, cur, cur + iosize - 1);
2676			cur = cur + iosize;
2677			pg_offset += iosize;
2678			continue;
2679		}
2680		/* we have an inline extent but it didn't get marked up
2681		 * to date.  Error out
2682		 */
2683		if (block_start == EXTENT_MAP_INLINE) {
2684			SetPageError(page);
2685			unlock_extent(tree, cur, cur + iosize - 1);
2686			cur = cur + iosize;
2687			pg_offset += iosize;
2688			continue;
2689		}
2690
2691		ret = 0;
2692		if (tree->ops && tree->ops->readpage_io_hook) {
2693			ret = tree->ops->readpage_io_hook(page, cur,
2694							  cur + iosize - 1);
2695		}
2696		if (!ret) {
2697			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2698			pnr -= page->index;
2699			ret = submit_extent_page(READ, tree, page,
2700					 sector, disk_io_size, pg_offset,
2701					 bdev, bio, pnr,
2702					 end_bio_extent_readpage, mirror_num,
2703					 *bio_flags,
2704					 this_bio_flag);
2705			BUG_ON(ret == -ENOMEM);
 
2706			nr++;
2707			*bio_flags = this_bio_flag;
 
 
 
 
2708		}
2709		if (ret)
2710			SetPageError(page);
2711		cur = cur + iosize;
2712		pg_offset += iosize;
2713	}
2714out:
2715	if (!nr) {
2716		if (!PageError(page))
2717			SetPageUptodate(page);
2718		unlock_page(page);
2719	}
2720	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2721}
2722
2723int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2724			    get_extent_t *get_extent, int mirror_num)
2725{
2726	struct bio *bio = NULL;
2727	unsigned long bio_flags = 0;
2728	int ret;
2729
2730	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2731				      &bio_flags);
2732	if (bio)
2733		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2734	return ret;
2735}
2736
2737static noinline void update_nr_written(struct page *page,
2738				      struct writeback_control *wbc,
2739				      unsigned long nr_written)
2740{
2741	wbc->nr_to_write -= nr_written;
2742	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2743	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2744		page->mapping->writeback_index = page->index + nr_written;
2745}
2746
2747/*
2748 * the writepage semantics are similar to regular writepage.  extent
2749 * records are inserted to lock ranges in the tree, and as dirty areas
2750 * are found, they are marked writeback.  Then the lock bits are removed
2751 * and the end_io handler clears the writeback ranges
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752 */
2753static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2754			      void *data)
 
 
 
 
 
2755{
2756	struct inode *inode = page->mapping->host;
2757	struct extent_page_data *epd = data;
2758	struct extent_io_tree *tree = epd->tree;
2759	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2760	u64 delalloc_start;
2761	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2762	u64 end;
2763	u64 cur = start;
2764	u64 extent_offset;
2765	u64 last_byte = i_size_read(inode);
2766	u64 block_start;
2767	u64 iosize;
2768	sector_t sector;
2769	struct extent_state *cached_state = NULL;
2770	struct extent_map *em;
2771	struct block_device *bdev;
2772	int ret;
2773	int nr = 0;
2774	size_t pg_offset = 0;
2775	size_t blocksize;
2776	loff_t i_size = i_size_read(inode);
2777	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2778	u64 nr_delalloc;
2779	u64 delalloc_end;
2780	int page_started;
2781	int compressed;
2782	int write_flags;
2783	unsigned long nr_written = 0;
2784	bool fill_delalloc = true;
2785
2786	if (wbc->sync_mode == WB_SYNC_ALL)
2787		write_flags = WRITE_SYNC;
2788	else
2789		write_flags = WRITE;
2790
2791	trace___extent_writepage(page, inode, wbc);
2792
2793	WARN_ON(!PageLocked(page));
2794
2795	ClearPageError(page);
2796
2797	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2798	if (page->index > end_index ||
2799	   (page->index == end_index && !pg_offset)) {
2800		page->mapping->a_ops->invalidatepage(page, 0);
2801		unlock_page(page);
2802		return 0;
2803	}
2804
2805	if (page->index == end_index) {
2806		char *userpage;
2807
2808		userpage = kmap_atomic(page);
2809		memset(userpage + pg_offset, 0,
2810		       PAGE_CACHE_SIZE - pg_offset);
2811		kunmap_atomic(userpage);
2812		flush_dcache_page(page);
2813	}
2814	pg_offset = 0;
2815
2816	set_page_extent_mapped(page);
2817
2818	if (!tree->ops || !tree->ops->fill_delalloc)
2819		fill_delalloc = false;
2820
2821	delalloc_start = start;
2822	delalloc_end = 0;
2823	page_started = 0;
2824	if (!epd->extent_locked && fill_delalloc) {
2825		u64 delalloc_to_write = 0;
2826		/*
2827		 * make sure the wbc mapping index is at least updated
2828		 * to this page.
2829		 */
2830		update_nr_written(page, wbc, 0);
2831
2832		while (delalloc_end < page_end) {
2833			nr_delalloc = find_lock_delalloc_range(inode, tree,
2834						       page,
2835						       &delalloc_start,
2836						       &delalloc_end,
2837						       128 * 1024 * 1024);
2838			if (nr_delalloc == 0) {
2839				delalloc_start = delalloc_end + 1;
2840				continue;
2841			}
2842			ret = tree->ops->fill_delalloc(inode, page,
2843						       delalloc_start,
2844						       delalloc_end,
2845						       &page_started,
2846						       &nr_written);
2847			/* File system has been set read-only */
2848			if (ret) {
2849				SetPageError(page);
2850				goto done;
2851			}
2852			/*
2853			 * delalloc_end is already one less than the total
2854			 * length, so we don't subtract one from
2855			 * PAGE_CACHE_SIZE
2856			 */
2857			delalloc_to_write += (delalloc_end - delalloc_start +
2858					      PAGE_CACHE_SIZE) >>
2859					      PAGE_CACHE_SHIFT;
2860			delalloc_start = delalloc_end + 1;
2861		}
2862		if (wbc->nr_to_write < delalloc_to_write) {
2863			int thresh = 8192;
2864
2865			if (delalloc_to_write < thresh * 2)
2866				thresh = delalloc_to_write;
2867			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2868						 thresh);
2869		}
2870
2871		/* did the fill delalloc function already unlock and start
2872		 * the IO?
2873		 */
2874		if (page_started) {
2875			ret = 0;
2876			/*
2877			 * we've unlocked the page, so we can't update
2878			 * the mapping's writeback index, just update
2879			 * nr_to_write.
2880			 */
2881			wbc->nr_to_write -= nr_written;
2882			goto done_unlocked;
2883		}
2884	}
2885	if (tree->ops && tree->ops->writepage_start_hook) {
2886		ret = tree->ops->writepage_start_hook(page, start,
2887						      page_end);
2888		if (ret) {
2889			/* Fixup worker will requeue */
2890			if (ret == -EBUSY)
2891				wbc->pages_skipped++;
2892			else
2893				redirty_page_for_writepage(wbc, page);
2894			update_nr_written(page, wbc, nr_written);
2895			unlock_page(page);
2896			ret = 0;
2897			goto done_unlocked;
2898		}
2899	}
2900
2901	/*
2902	 * we don't want to touch the inode after unlocking the page,
2903	 * so we update the mapping writeback index now
2904	 */
2905	update_nr_written(page, wbc, nr_written + 1);
2906
2907	end = page_end;
2908	if (last_byte <= start) {
2909		if (tree->ops && tree->ops->writepage_end_io_hook)
2910			tree->ops->writepage_end_io_hook(page, start,
2911							 page_end, NULL, 1);
2912		goto done;
2913	}
2914
2915	blocksize = inode->i_sb->s_blocksize;
2916
2917	while (cur <= end) {
2918		if (cur >= last_byte) {
2919			if (tree->ops && tree->ops->writepage_end_io_hook)
2920				tree->ops->writepage_end_io_hook(page, cur,
2921							 page_end, NULL, 1);
 
 
2922			break;
2923		}
2924		em = epd->get_extent(inode, page, pg_offset, cur,
2925				     end - cur + 1, 1);
2926		if (IS_ERR_OR_NULL(em)) {
2927			SetPageError(page);
 
2928			break;
2929		}
2930
2931		extent_offset = cur - em->start;
2932		BUG_ON(extent_map_end(em) <= cur);
 
2933		BUG_ON(end < cur);
2934		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2935		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2936		sector = (em->block_start + extent_offset) >> 9;
2937		bdev = em->bdev;
2938		block_start = em->block_start;
2939		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2940		free_extent_map(em);
2941		em = NULL;
2942
2943		/*
2944		 * compressed and inline extents are written through other
2945		 * paths in the FS
2946		 */
2947		if (compressed || block_start == EXTENT_MAP_HOLE ||
2948		    block_start == EXTENT_MAP_INLINE) {
2949			/*
2950			 * end_io notification does not happen here for
2951			 * compressed extents
2952			 */
2953			if (!compressed && tree->ops &&
2954			    tree->ops->writepage_end_io_hook)
2955				tree->ops->writepage_end_io_hook(page, cur,
2956							 cur + iosize - 1,
2957							 NULL, 1);
2958			else if (compressed) {
2959				/* we don't want to end_page_writeback on
2960				 * a compressed extent.  this happens
2961				 * elsewhere
2962				 */
2963				nr++;
2964			}
2965
2966			cur += iosize;
2967			pg_offset += iosize;
2968			continue;
2969		}
2970		/* leave this out until we have a page_mkwrite call */
2971		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2972				   EXTENT_DIRTY, 0, NULL)) {
2973			cur = cur + iosize;
2974			pg_offset += iosize;
2975			continue;
2976		}
2977
2978		if (tree->ops && tree->ops->writepage_io_hook) {
2979			ret = tree->ops->writepage_io_hook(page, cur,
2980						cur + iosize - 1);
2981		} else {
2982			ret = 0;
2983		}
2984		if (ret) {
2985			SetPageError(page);
2986		} else {
2987			unsigned long max_nr = end_index + 1;
2988
2989			set_range_writeback(tree, cur, cur + iosize - 1);
2990			if (!PageWriteback(page)) {
2991				printk(KERN_ERR "btrfs warning page %lu not "
2992				       "writeback, cur %llu end %llu\n",
2993				       page->index, (unsigned long long)cur,
2994				       (unsigned long long)end);
2995			}
2996
2997			ret = submit_extent_page(write_flags, tree, page,
2998						 sector, iosize, pg_offset,
2999						 bdev, &epd->bio, max_nr,
3000						 end_bio_extent_writepage,
3001						 0, 0, 0);
3002			if (ret)
3003				SetPageError(page);
3004		}
3005		cur = cur + iosize;
3006		pg_offset += iosize;
3007		nr++;
3008	}
3009done:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3010	if (nr == 0) {
3011		/* make sure the mapping tag for page dirty gets cleared */
3012		set_page_writeback(page);
3013		end_page_writeback(page);
3014	}
 
 
 
 
3015	unlock_page(page);
 
 
3016
3017done_unlocked:
3018
3019	/* drop our reference on any cached states */
3020	free_extent_state(cached_state);
3021	return 0;
3022}
3023
3024static int eb_wait(void *word)
3025{
3026	io_schedule();
3027	return 0;
3028}
3029
3030static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3031{
3032	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3033		    TASK_UNINTERRUPTIBLE);
 
3034}
3035
3036static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3037				     struct btrfs_fs_info *fs_info,
3038				     struct extent_page_data *epd)
 
 
 
 
 
 
3039{
3040	unsigned long i, num_pages;
 
3041	int flush = 0;
3042	int ret = 0;
3043
3044	if (!btrfs_try_tree_write_lock(eb)) {
 
 
 
3045		flush = 1;
3046		flush_write_bio(epd);
3047		btrfs_tree_lock(eb);
3048	}
3049
3050	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3051		btrfs_tree_unlock(eb);
3052		if (!epd->sync_io)
3053			return 0;
3054		if (!flush) {
3055			flush_write_bio(epd);
 
 
3056			flush = 1;
3057		}
3058		while (1) {
3059			wait_on_extent_buffer_writeback(eb);
3060			btrfs_tree_lock(eb);
3061			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3062				break;
3063			btrfs_tree_unlock(eb);
3064		}
3065	}
3066
 
 
 
 
 
 
3067	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3068		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
 
3069		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3070		spin_lock(&fs_info->delalloc_lock);
3071		if (fs_info->dirty_metadata_bytes >= eb->len)
3072			fs_info->dirty_metadata_bytes -= eb->len;
3073		else
3074			WARN_ON(1);
3075		spin_unlock(&fs_info->delalloc_lock);
3076		ret = 1;
 
 
3077	}
3078
3079	btrfs_tree_unlock(eb);
3080
3081	if (!ret)
3082		return ret;
3083
3084	num_pages = num_extent_pages(eb->start, eb->len);
3085	for (i = 0; i < num_pages; i++) {
3086		struct page *p = extent_buffer_page(eb, i);
3087
3088		if (!trylock_page(p)) {
3089			if (!flush) {
3090				flush_write_bio(epd);
 
 
 
 
 
 
 
3091				flush = 1;
3092			}
3093			lock_page(p);
3094		}
3095	}
3096
3097	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098}
3099
3100static void end_extent_buffer_writeback(struct extent_buffer *eb)
3101{
3102	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3103	smp_mb__after_clear_bit();
3104	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3105}
3106
3107static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3108{
3109	int uptodate = err == 0;
3110	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3111	struct extent_buffer *eb;
3112	int done;
 
3113
3114	do {
 
3115		struct page *page = bvec->bv_page;
3116
3117		bvec--;
3118		eb = (struct extent_buffer *)page->private;
3119		BUG_ON(!eb);
3120		done = atomic_dec_and_test(&eb->io_pages);
3121
3122		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3123			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3124			ClearPageUptodate(page);
3125			SetPageError(page);
3126		}
3127
3128		end_page_writeback(page);
3129
3130		if (!done)
3131			continue;
3132
3133		end_extent_buffer_writeback(eb);
3134	} while (bvec >= bio->bi_io_vec);
3135
3136	bio_put(bio);
3137
3138}
3139
3140static int write_one_eb(struct extent_buffer *eb,
3141			struct btrfs_fs_info *fs_info,
3142			struct writeback_control *wbc,
3143			struct extent_page_data *epd)
3144{
 
3145	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
 
3146	u64 offset = eb->start;
3147	unsigned long i, num_pages;
3148	int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
 
 
3149	int ret = 0;
3150
3151	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3152	num_pages = num_extent_pages(eb->start, eb->len);
3153	atomic_set(&eb->io_pages, num_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154	for (i = 0; i < num_pages; i++) {
3155		struct page *p = extent_buffer_page(eb, i);
3156
3157		clear_page_dirty_for_io(p);
3158		set_page_writeback(p);
3159		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3160					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3161					 -1, end_bio_extent_buffer_writepage,
3162					 0, 0, 0);
 
3163		if (ret) {
3164			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3165			SetPageError(p);
 
3166			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3167				end_extent_buffer_writeback(eb);
3168			ret = -EIO;
3169			break;
3170		}
3171		offset += PAGE_CACHE_SIZE;
3172		update_nr_written(p, wbc, 1);
3173		unlock_page(p);
3174	}
3175
3176	if (unlikely(ret)) {
3177		for (; i < num_pages; i++) {
3178			struct page *p = extent_buffer_page(eb, i);
 
3179			unlock_page(p);
3180		}
3181	}
3182
3183	return ret;
3184}
3185
3186int btree_write_cache_pages(struct address_space *mapping,
3187				   struct writeback_control *wbc)
3188{
3189	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3190	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3191	struct extent_buffer *eb, *prev_eb = NULL;
3192	struct extent_page_data epd = {
3193		.bio = NULL,
3194		.tree = tree,
3195		.extent_locked = 0,
3196		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3197	};
3198	int ret = 0;
3199	int done = 0;
3200	int nr_to_write_done = 0;
3201	struct pagevec pvec;
3202	int nr_pages;
3203	pgoff_t index;
3204	pgoff_t end;		/* Inclusive */
3205	int scanned = 0;
3206	int tag;
3207
3208	pagevec_init(&pvec, 0);
3209	if (wbc->range_cyclic) {
3210		index = mapping->writeback_index; /* Start from prev offset */
3211		end = -1;
3212	} else {
3213		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3214		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3215		scanned = 1;
3216	}
3217	if (wbc->sync_mode == WB_SYNC_ALL)
3218		tag = PAGECACHE_TAG_TOWRITE;
3219	else
3220		tag = PAGECACHE_TAG_DIRTY;
3221retry:
3222	if (wbc->sync_mode == WB_SYNC_ALL)
3223		tag_pages_for_writeback(mapping, index, end);
3224	while (!done && !nr_to_write_done && (index <= end) &&
3225	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3226			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3227		unsigned i;
3228
3229		scanned = 1;
3230		for (i = 0; i < nr_pages; i++) {
3231			struct page *page = pvec.pages[i];
3232
3233			if (!PagePrivate(page))
3234				continue;
3235
3236			if (!wbc->range_cyclic && page->index > end) {
3237				done = 1;
3238				break;
 
3239			}
3240
3241			eb = (struct extent_buffer *)page->private;
3242			if (!eb) {
3243				WARN_ON(1);
 
 
 
 
 
 
3244				continue;
3245			}
3246
3247			if (eb == prev_eb)
 
3248				continue;
 
3249
3250			if (!atomic_inc_not_zero(&eb->refs)) {
3251				WARN_ON(1);
 
3252				continue;
3253			}
3254
3255			prev_eb = eb;
3256			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3257			if (!ret) {
3258				free_extent_buffer(eb);
3259				continue;
 
 
 
 
3260			}
3261
3262			ret = write_one_eb(eb, fs_info, wbc, &epd);
3263			if (ret) {
3264				done = 1;
3265				free_extent_buffer(eb);
3266				break;
3267			}
3268			free_extent_buffer(eb);
3269
3270			/*
3271			 * the filesystem may choose to bump up nr_to_write.
3272			 * We have to make sure to honor the new nr_to_write
3273			 * at any time
3274			 */
3275			nr_to_write_done = wbc->nr_to_write <= 0;
3276		}
3277		pagevec_release(&pvec);
3278		cond_resched();
3279	}
3280	if (!scanned && !done) {
3281		/*
3282		 * We hit the last page and there is more work to be done: wrap
3283		 * back to the start of the file
3284		 */
3285		scanned = 1;
3286		index = 0;
3287		goto retry;
3288	}
3289	flush_write_bio(&epd);
 
 
 
 
 
3290	return ret;
3291}
3292
3293/**
3294 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3295 * @mapping: address space structure to write
3296 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3297 * @writepage: function called for each page
3298 * @data: data passed to writepage function
3299 *
3300 * If a page is already under I/O, write_cache_pages() skips it, even
3301 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3302 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3303 * and msync() need to guarantee that all the data which was dirty at the time
3304 * the call was made get new I/O started against them.  If wbc->sync_mode is
3305 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3306 * existing IO to complete.
3307 */
3308static int extent_write_cache_pages(struct extent_io_tree *tree,
3309			     struct address_space *mapping,
3310			     struct writeback_control *wbc,
3311			     writepage_t writepage, void *data,
3312			     void (*flush_fn)(void *))
3313{
3314	struct inode *inode = mapping->host;
3315	int ret = 0;
3316	int done = 0;
3317	int nr_to_write_done = 0;
3318	struct pagevec pvec;
3319	int nr_pages;
3320	pgoff_t index;
3321	pgoff_t end;		/* Inclusive */
 
 
3322	int scanned = 0;
3323	int tag;
3324
3325	/*
3326	 * We have to hold onto the inode so that ordered extents can do their
3327	 * work when the IO finishes.  The alternative to this is failing to add
3328	 * an ordered extent if the igrab() fails there and that is a huge pain
3329	 * to deal with, so instead just hold onto the inode throughout the
3330	 * writepages operation.  If it fails here we are freeing up the inode
3331	 * anyway and we'd rather not waste our time writing out stuff that is
3332	 * going to be truncated anyway.
3333	 */
3334	if (!igrab(inode))
3335		return 0;
3336
3337	pagevec_init(&pvec, 0);
3338	if (wbc->range_cyclic) {
3339		index = mapping->writeback_index; /* Start from prev offset */
3340		end = -1;
3341	} else {
3342		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3343		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
3344		scanned = 1;
3345	}
3346	if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
 
 
 
 
 
 
 
 
 
3347		tag = PAGECACHE_TAG_TOWRITE;
3348	else
3349		tag = PAGECACHE_TAG_DIRTY;
3350retry:
3351	if (wbc->sync_mode == WB_SYNC_ALL)
3352		tag_pages_for_writeback(mapping, index, end);
 
3353	while (!done && !nr_to_write_done && (index <= end) &&
3354	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3355			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3356		unsigned i;
3357
3358		scanned = 1;
3359		for (i = 0; i < nr_pages; i++) {
3360			struct page *page = pvec.pages[i];
3361
 
3362			/*
3363			 * At this point we hold neither mapping->tree_lock nor
3364			 * lock on the page itself: the page may be truncated or
3365			 * invalidated (changing page->mapping to NULL), or even
3366			 * swizzled back from swapper_space to tmpfs file
3367			 * mapping
3368			 */
3369			if (tree->ops &&
3370			    tree->ops->write_cache_pages_lock_hook) {
3371				tree->ops->write_cache_pages_lock_hook(page,
3372							       data, flush_fn);
3373			} else {
3374				if (!trylock_page(page)) {
3375					flush_fn(data);
3376					lock_page(page);
3377				}
3378			}
3379
3380			if (unlikely(page->mapping != mapping)) {
3381				unlock_page(page);
3382				continue;
3383			}
3384
3385			if (!wbc->range_cyclic && page->index > end) {
3386				done = 1;
3387				unlock_page(page);
3388				continue;
3389			}
3390
3391			if (wbc->sync_mode != WB_SYNC_NONE) {
3392				if (PageWriteback(page))
3393					flush_fn(data);
 
 
3394				wait_on_page_writeback(page);
3395			}
3396
3397			if (PageWriteback(page) ||
3398			    !clear_page_dirty_for_io(page)) {
3399				unlock_page(page);
3400				continue;
3401			}
3402
3403			ret = (*writepage)(page, wbc, data);
3404
3405			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3406				unlock_page(page);
3407				ret = 0;
 
 
 
 
 
 
 
 
 
3408			}
3409			if (ret)
3410				done = 1;
3411
3412			/*
3413			 * the filesystem may choose to bump up nr_to_write.
3414			 * We have to make sure to honor the new nr_to_write
3415			 * at any time
3416			 */
3417			nr_to_write_done = wbc->nr_to_write <= 0;
3418		}
3419		pagevec_release(&pvec);
3420		cond_resched();
3421	}
3422	if (!scanned && !done) {
3423		/*
3424		 * We hit the last page and there is more work to be done: wrap
3425		 * back to the start of the file
3426		 */
3427		scanned = 1;
3428		index = 0;
3429		goto retry;
3430	}
 
 
 
 
3431	btrfs_add_delayed_iput(inode);
3432	return ret;
3433}
3434
3435static void flush_epd_write_bio(struct extent_page_data *epd)
3436{
3437	if (epd->bio) {
3438		int rw = WRITE;
3439		int ret;
3440
3441		if (epd->sync_io)
3442			rw = WRITE_SYNC;
3443
3444		ret = submit_one_bio(rw, epd->bio, 0, 0);
3445		BUG_ON(ret < 0); /* -ENOMEM */
3446		epd->bio = NULL;
3447	}
3448}
3449
3450static noinline void flush_write_bio(void *data)
3451{
3452	struct extent_page_data *epd = data;
3453	flush_epd_write_bio(epd);
3454}
3455
3456int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3457			  get_extent_t *get_extent,
3458			  struct writeback_control *wbc)
3459{
3460	int ret;
3461	struct extent_page_data epd = {
3462		.bio = NULL,
3463		.tree = tree,
3464		.get_extent = get_extent,
3465		.extent_locked = 0,
3466		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3467	};
3468
3469	ret = __extent_writepage(page, wbc, &epd);
 
 
 
 
 
3470
3471	flush_epd_write_bio(&epd);
 
3472	return ret;
3473}
3474
3475int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3476			      u64 start, u64 end, get_extent_t *get_extent,
3477			      int mode)
3478{
3479	int ret = 0;
3480	struct address_space *mapping = inode->i_mapping;
 
3481	struct page *page;
3482	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3483		PAGE_CACHE_SHIFT;
3484
3485	struct extent_page_data epd = {
3486		.bio = NULL,
3487		.tree = tree,
3488		.get_extent = get_extent,
3489		.extent_locked = 1,
3490		.sync_io = mode == WB_SYNC_ALL,
3491	};
3492	struct writeback_control wbc_writepages = {
3493		.sync_mode	= mode,
3494		.nr_to_write	= nr_pages * 2,
3495		.range_start	= start,
3496		.range_end	= end + 1,
3497	};
3498
3499	while (start <= end) {
3500		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3501		if (clear_page_dirty_for_io(page))
3502			ret = __extent_writepage(page, &wbc_writepages, &epd);
3503		else {
3504			if (tree->ops && tree->ops->writepage_end_io_hook)
3505				tree->ops->writepage_end_io_hook(page, start,
3506						 start + PAGE_CACHE_SIZE - 1,
3507						 NULL, 1);
3508			unlock_page(page);
3509		}
3510		page_cache_release(page);
3511		start += PAGE_CACHE_SIZE;
3512	}
3513
3514	flush_epd_write_bio(&epd);
 
 
 
 
 
3515	return ret;
3516}
3517
3518int extent_writepages(struct extent_io_tree *tree,
3519		      struct address_space *mapping,
3520		      get_extent_t *get_extent,
3521		      struct writeback_control *wbc)
3522{
3523	int ret = 0;
3524	struct extent_page_data epd = {
3525		.bio = NULL,
3526		.tree = tree,
3527		.get_extent = get_extent,
3528		.extent_locked = 0,
3529		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3530	};
3531
3532	ret = extent_write_cache_pages(tree, mapping, wbc,
3533				       __extent_writepage, &epd,
3534				       flush_write_bio);
3535	flush_epd_write_bio(&epd);
 
 
 
3536	return ret;
3537}
3538
3539int extent_readpages(struct extent_io_tree *tree,
3540		     struct address_space *mapping,
3541		     struct list_head *pages, unsigned nr_pages,
3542		     get_extent_t get_extent)
3543{
3544	struct bio *bio = NULL;
3545	unsigned page_idx;
3546	unsigned long bio_flags = 0;
 
 
 
 
 
 
 
 
3547
3548	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3549		struct page *page = list_entry(pages->prev, struct page, lru);
 
 
 
 
 
 
 
 
3550
3551		prefetchw(&page->flags);
3552		list_del(&page->lru);
3553		if (!add_to_page_cache_lru(page, mapping,
3554					page->index, GFP_NOFS)) {
3555			__extent_read_full_page(tree, page, get_extent,
3556						&bio, 0, &bio_flags);
 
 
 
 
 
 
3557		}
3558		page_cache_release(page);
3559	}
3560	BUG_ON(!list_empty(pages));
 
 
 
3561	if (bio)
3562		return submit_one_bio(READ, bio, 0, bio_flags);
3563	return 0;
3564}
3565
3566/*
3567 * basic invalidatepage code, this waits on any locked or writeback
3568 * ranges corresponding to the page, and then deletes any extent state
3569 * records from the tree
3570 */
3571int extent_invalidatepage(struct extent_io_tree *tree,
3572			  struct page *page, unsigned long offset)
3573{
3574	struct extent_state *cached_state = NULL;
3575	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3576	u64 end = start + PAGE_CACHE_SIZE - 1;
3577	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3578
3579	start += (offset + blocksize - 1) & ~(blocksize - 1);
3580	if (start > end)
3581		return 0;
3582
3583	lock_extent_bits(tree, start, end, 0, &cached_state);
3584	wait_on_page_writeback(page);
3585	clear_extent_bit(tree, start, end,
3586			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3587			 EXTENT_DO_ACCOUNTING,
3588			 1, 1, &cached_state, GFP_NOFS);
3589	return 0;
3590}
3591
3592/*
3593 * a helper for releasepage, this tests for areas of the page that
3594 * are locked or under IO and drops the related state bits if it is safe
3595 * to drop the page.
3596 */
3597int try_release_extent_state(struct extent_map_tree *map,
3598			     struct extent_io_tree *tree, struct page *page,
3599			     gfp_t mask)
3600{
3601	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3602	u64 end = start + PAGE_CACHE_SIZE - 1;
3603	int ret = 1;
3604
3605	if (test_range_bit(tree, start, end,
3606			   EXTENT_IOBITS, 0, NULL))
3607		ret = 0;
3608	else {
3609		if ((mask & GFP_NOFS) == GFP_NOFS)
3610			mask = GFP_NOFS;
3611		/*
3612		 * at this point we can safely clear everything except the
3613		 * locked bit and the nodatasum bit
3614		 */
3615		ret = clear_extent_bit(tree, start, end,
3616				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3617				 0, 0, NULL, mask);
3618
3619		/* if clear_extent_bit failed for enomem reasons,
3620		 * we can't allow the release to continue.
3621		 */
3622		if (ret < 0)
3623			ret = 0;
3624		else
3625			ret = 1;
3626	}
3627	return ret;
3628}
3629
3630/*
3631 * a helper for releasepage.  As long as there are no locked extents
3632 * in the range corresponding to the page, both state records and extent
3633 * map records are removed
3634 */
3635int try_release_extent_mapping(struct extent_map_tree *map,
3636			       struct extent_io_tree *tree, struct page *page,
3637			       gfp_t mask)
3638{
3639	struct extent_map *em;
3640	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3641	u64 end = start + PAGE_CACHE_SIZE - 1;
 
 
 
3642
3643	if ((mask & __GFP_WAIT) &&
3644	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3645		u64 len;
3646		while (start <= end) {
3647			len = end - start + 1;
3648			write_lock(&map->lock);
3649			em = lookup_extent_mapping(map, start, len);
3650			if (!em) {
3651				write_unlock(&map->lock);
3652				break;
3653			}
3654			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3655			    em->start != start) {
3656				write_unlock(&map->lock);
3657				free_extent_map(em);
3658				break;
3659			}
3660			if (!test_range_bit(tree, em->start,
3661					    extent_map_end(em) - 1,
3662					    EXTENT_LOCKED | EXTENT_WRITEBACK,
3663					    0, NULL)) {
 
3664				remove_extent_mapping(map, em);
3665				/* once for the rb tree */
3666				free_extent_map(em);
3667			}
3668			start = extent_map_end(em);
3669			write_unlock(&map->lock);
3670
3671			/* once for us */
3672			free_extent_map(em);
3673		}
3674	}
3675	return try_release_extent_state(map, tree, page, mask);
3676}
3677
3678/*
3679 * helper function for fiemap, which doesn't want to see any holes.
3680 * This maps until we find something past 'last'
3681 */
3682static struct extent_map *get_extent_skip_holes(struct inode *inode,
3683						u64 offset,
3684						u64 last,
3685						get_extent_t *get_extent)
3686{
3687	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3688	struct extent_map *em;
3689	u64 len;
3690
3691	if (offset >= last)
3692		return NULL;
3693
3694	while(1) {
3695		len = last - offset;
3696		if (len == 0)
3697			break;
3698		len = (len + sectorsize - 1) & ~(sectorsize - 1);
3699		em = get_extent(inode, NULL, 0, offset, len, 0);
3700		if (IS_ERR_OR_NULL(em))
3701			return em;
3702
3703		/* if this isn't a hole return it */
3704		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3705		    em->block_start != EXTENT_MAP_HOLE) {
3706			return em;
3707		}
3708
3709		/* this is a hole, advance to the next extent */
3710		offset = extent_map_end(em);
3711		free_extent_map(em);
3712		if (offset >= last)
3713			break;
3714	}
3715	return NULL;
3716}
3717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3718int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3719		__u64 start, __u64 len, get_extent_t *get_extent)
3720{
3721	int ret = 0;
3722	u64 off = start;
3723	u64 max = start + len;
3724	u32 flags = 0;
3725	u32 found_type;
3726	u64 last;
3727	u64 last_for_get_extent = 0;
3728	u64 disko = 0;
3729	u64 isize = i_size_read(inode);
3730	struct btrfs_key found_key;
3731	struct extent_map *em = NULL;
3732	struct extent_state *cached_state = NULL;
3733	struct btrfs_path *path;
3734	struct btrfs_file_extent_item *item;
 
 
 
3735	int end = 0;
3736	u64 em_start = 0;
3737	u64 em_len = 0;
3738	u64 em_end = 0;
3739	unsigned long emflags;
3740
3741	if (len == 0)
3742		return -EINVAL;
3743
3744	path = btrfs_alloc_path();
3745	if (!path)
3746		return -ENOMEM;
3747	path->leave_spinning = 1;
3748
3749	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3750	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
 
 
 
 
 
 
 
3751
3752	/*
3753	 * lookup the last file extent.  We're not using i_size here
3754	 * because there might be preallocation past i_size
3755	 */
3756	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3757				       path, btrfs_ino(inode), -1, 0);
3758	if (ret < 0) {
3759		btrfs_free_path(path);
3760		return ret;
 
 
 
3761	}
3762	WARN_ON(!ret);
3763	path->slots[0]--;
3764	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3765			      struct btrfs_file_extent_item);
3766	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3767	found_type = btrfs_key_type(&found_key);
3768
3769	/* No extents, but there might be delalloc bits */
3770	if (found_key.objectid != btrfs_ino(inode) ||
3771	    found_type != BTRFS_EXTENT_DATA_KEY) {
3772		/* have to trust i_size as the end */
3773		last = (u64)-1;
3774		last_for_get_extent = isize;
3775	} else {
3776		/*
3777		 * remember the start of the last extent.  There are a
3778		 * bunch of different factors that go into the length of the
3779		 * extent, so its much less complex to remember where it started
3780		 */
3781		last = found_key.offset;
3782		last_for_get_extent = last + 1;
3783	}
3784	btrfs_free_path(path);
3785
3786	/*
3787	 * we might have some extents allocated but more delalloc past those
3788	 * extents.  so, we trust isize unless the start of the last extent is
3789	 * beyond isize
3790	 */
3791	if (last < isize) {
3792		last = (u64)-1;
3793		last_for_get_extent = isize;
3794	}
3795
3796	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3797			 &cached_state);
3798
3799	em = get_extent_skip_holes(inode, start, last_for_get_extent,
3800				   get_extent);
3801	if (!em)
3802		goto out;
3803	if (IS_ERR(em)) {
3804		ret = PTR_ERR(em);
3805		goto out;
3806	}
3807
3808	while (!end) {
3809		u64 offset_in_extent;
3810
3811		/* break if the extent we found is outside the range */
3812		if (em->start >= max || extent_map_end(em) < off)
3813			break;
3814
3815		/*
3816		 * get_extent may return an extent that starts before our
3817		 * requested range.  We have to make sure the ranges
3818		 * we return to fiemap always move forward and don't
3819		 * overlap, so adjust the offsets here
3820		 */
3821		em_start = max(em->start, off);
3822
3823		/*
3824		 * record the offset from the start of the extent
3825		 * for adjusting the disk offset below
 
 
3826		 */
3827		offset_in_extent = em_start - em->start;
 
3828		em_end = extent_map_end(em);
3829		em_len = em_end - em_start;
3830		emflags = em->flags;
3831		disko = 0;
3832		flags = 0;
 
 
 
 
3833
3834		/*
3835		 * bump off for our next call to get_extent
3836		 */
3837		off = extent_map_end(em);
3838		if (off >= max)
3839			end = 1;
3840
3841		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3842			end = 1;
3843			flags |= FIEMAP_EXTENT_LAST;
3844		} else if (em->block_start == EXTENT_MAP_INLINE) {
3845			flags |= (FIEMAP_EXTENT_DATA_INLINE |
3846				  FIEMAP_EXTENT_NOT_ALIGNED);
3847		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
3848			flags |= (FIEMAP_EXTENT_DELALLOC |
3849				  FIEMAP_EXTENT_UNKNOWN);
3850		} else {
3851			disko = em->block_start + offset_in_extent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3852		}
3853		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3854			flags |= FIEMAP_EXTENT_ENCODED;
 
 
3855
3856		free_extent_map(em);
3857		em = NULL;
3858		if ((em_start >= last) || em_len == (u64)-1 ||
3859		   (last == (u64)-1 && isize <= em_end)) {
3860			flags |= FIEMAP_EXTENT_LAST;
3861			end = 1;
3862		}
3863
3864		/* now scan forward to see if this is really the last extent. */
3865		em = get_extent_skip_holes(inode, off, last_for_get_extent,
3866					   get_extent);
3867		if (IS_ERR(em)) {
3868			ret = PTR_ERR(em);
3869			goto out;
3870		}
3871		if (!em) {
3872			flags |= FIEMAP_EXTENT_LAST;
3873			end = 1;
3874		}
3875		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3876					      em_len, flags);
3877		if (ret)
 
 
3878			goto out_free;
 
3879	}
3880out_free:
 
 
3881	free_extent_map(em);
3882out:
3883	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3884			     &cached_state, GFP_NOFS);
 
 
 
 
 
3885	return ret;
3886}
3887
3888inline struct page *extent_buffer_page(struct extent_buffer *eb,
3889					      unsigned long i)
3890{
3891	return eb->pages[i];
 
3892}
3893
3894inline unsigned long num_extent_pages(u64 start, u64 len)
3895{
3896	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3897		(start >> PAGE_CACHE_SHIFT);
 
3898}
3899
3900static void __free_extent_buffer(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3901{
3902#if LEAK_DEBUG
3903	unsigned long flags;
3904	spin_lock_irqsave(&leak_lock, flags);
3905	list_del(&eb->leak_list);
3906	spin_unlock_irqrestore(&leak_lock, flags);
3907#endif
3908	if (eb->pages && eb->pages != eb->inline_pages)
3909		kfree(eb->pages);
3910	kmem_cache_free(extent_buffer_cache, eb);
3911}
3912
3913static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3914						   u64 start,
3915						   unsigned long len,
3916						   gfp_t mask)
3917{
3918	struct extent_buffer *eb = NULL;
3919#if LEAK_DEBUG
3920	unsigned long flags;
3921#endif
3922
3923	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3924	if (eb == NULL)
3925		return NULL;
3926	eb->start = start;
3927	eb->len = len;
3928	eb->tree = tree;
3929	eb->bflags = 0;
3930	rwlock_init(&eb->lock);
3931	atomic_set(&eb->write_locks, 0);
3932	atomic_set(&eb->read_locks, 0);
3933	atomic_set(&eb->blocking_readers, 0);
3934	atomic_set(&eb->blocking_writers, 0);
3935	atomic_set(&eb->spinning_readers, 0);
3936	atomic_set(&eb->spinning_writers, 0);
3937	eb->lock_nested = 0;
3938	init_waitqueue_head(&eb->write_lock_wq);
3939	init_waitqueue_head(&eb->read_lock_wq);
3940
3941#if LEAK_DEBUG
3942	spin_lock_irqsave(&leak_lock, flags);
3943	list_add(&eb->leak_list, &buffers);
3944	spin_unlock_irqrestore(&leak_lock, flags);
3945#endif
3946	spin_lock_init(&eb->refs_lock);
3947	atomic_set(&eb->refs, 1);
3948	atomic_set(&eb->io_pages, 0);
3949
3950	if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3951		struct page **pages;
3952		int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3953			PAGE_CACHE_SHIFT;
3954		pages = kzalloc(num_pages, mask);
3955		if (!pages) {
3956			__free_extent_buffer(eb);
3957			return NULL;
3958		}
3959		eb->pages = pages;
3960	} else {
3961		eb->pages = eb->inline_pages;
3962	}
3963
3964	return eb;
3965}
3966
3967struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
3968{
3969	unsigned long i;
3970	struct page *p;
3971	struct extent_buffer *new;
3972	unsigned long num_pages = num_extent_pages(src->start, src->len);
3973
3974	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
3975	if (new == NULL)
3976		return NULL;
3977
3978	for (i = 0; i < num_pages; i++) {
3979		p = alloc_page(GFP_ATOMIC);
3980		BUG_ON(!p);
 
 
 
3981		attach_extent_buffer_page(new, p);
3982		WARN_ON(PageDirty(p));
3983		SetPageUptodate(p);
3984		new->pages[i] = p;
 
3985	}
3986
3987	copy_extent_buffer(new, src, 0, 0, src->len);
3988	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
3989	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
3990
3991	return new;
3992}
3993
3994struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
 
3995{
3996	struct extent_buffer *eb;
3997	unsigned long num_pages = num_extent_pages(0, len);
3998	unsigned long i;
3999
4000	eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4001	if (!eb)
4002		return NULL;
4003
 
4004	for (i = 0; i < num_pages; i++) {
4005		eb->pages[i] = alloc_page(GFP_ATOMIC);
4006		if (!eb->pages[i])
4007			goto err;
4008	}
4009	set_extent_buffer_uptodate(eb);
4010	btrfs_set_header_nritems(eb, 0);
4011	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4012
4013	return eb;
4014err:
4015	for (i--; i > 0; i--)
4016		__free_page(eb->pages[i]);
4017	__free_extent_buffer(eb);
4018	return NULL;
4019}
4020
4021static int extent_buffer_under_io(struct extent_buffer *eb)
 
4022{
4023	return (atomic_read(&eb->io_pages) ||
4024		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4025		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4026}
4027
4028/*
4029 * Helper for releasing extent buffer page.
4030 */
4031static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4032						unsigned long start_idx)
4033{
4034	unsigned long index;
4035	unsigned long num_pages;
4036	struct page *page;
4037	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4038
4039	BUG_ON(extent_buffer_under_io(eb));
4040
4041	num_pages = num_extent_pages(eb->start, eb->len);
4042	index = start_idx + num_pages;
4043	if (start_idx >= index)
4044		return;
4045
4046	do {
4047		index--;
4048		page = extent_buffer_page(eb, index);
4049		if (page && mapped) {
4050			spin_lock(&page->mapping->private_lock);
4051			/*
4052			 * We do this since we'll remove the pages after we've
4053			 * removed the eb from the radix tree, so we could race
4054			 * and have this page now attached to the new eb.  So
4055			 * only clear page_private if it's still connected to
4056			 * this eb.
4057			 */
4058			if (PagePrivate(page) &&
4059			    page->private == (unsigned long)eb) {
4060				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4061				BUG_ON(PageDirty(page));
4062				BUG_ON(PageWriteback(page));
4063				/*
4064				 * We need to make sure we haven't be attached
4065				 * to a new eb.
4066				 */
4067				ClearPagePrivate(page);
4068				set_page_private(page, 0);
4069				/* One for the page private */
4070				page_cache_release(page);
4071			}
4072			spin_unlock(&page->mapping->private_lock);
4073
4074		}
4075		if (page) {
4076			/* One for when we alloced the page */
4077			page_cache_release(page);
4078		}
4079	} while (index != start_idx);
4080}
4081
4082/*
4083 * Helper for releasing the extent buffer.
4084 */
4085static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4086{
4087	btrfs_release_extent_buffer_page(eb, 0);
4088	__free_extent_buffer(eb);
4089}
4090
4091static void check_buffer_tree_ref(struct extent_buffer *eb)
4092{
 
4093	/* the ref bit is tricky.  We have to make sure it is set
4094	 * if we have the buffer dirty.   Otherwise the
4095	 * code to free a buffer can end up dropping a dirty
4096	 * page
4097	 *
4098	 * Once the ref bit is set, it won't go away while the
4099	 * buffer is dirty or in writeback, and it also won't
4100	 * go away while we have the reference count on the
4101	 * eb bumped.
4102	 *
4103	 * We can't just set the ref bit without bumping the
4104	 * ref on the eb because free_extent_buffer might
4105	 * see the ref bit and try to clear it.  If this happens
4106	 * free_extent_buffer might end up dropping our original
4107	 * ref by mistake and freeing the page before we are able
4108	 * to add one more ref.
4109	 *
4110	 * So bump the ref count first, then set the bit.  If someone
4111	 * beat us to it, drop the ref we added.
4112	 */
4113	if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
 
 
 
 
 
4114		atomic_inc(&eb->refs);
4115		if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4116			atomic_dec(&eb->refs);
4117	}
4118}
4119
4120static void mark_extent_buffer_accessed(struct extent_buffer *eb)
 
4121{
4122	unsigned long num_pages, i;
4123
4124	check_buffer_tree_ref(eb);
4125
4126	num_pages = num_extent_pages(eb->start, eb->len);
4127	for (i = 0; i < num_pages; i++) {
4128		struct page *p = extent_buffer_page(eb, i);
4129		mark_page_accessed(p);
 
 
4130	}
4131}
4132
4133struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4134					  u64 start, unsigned long len)
4135{
4136	unsigned long num_pages = num_extent_pages(start, len);
4137	unsigned long i;
4138	unsigned long index = start >> PAGE_CACHE_SHIFT;
4139	struct extent_buffer *eb;
4140	struct extent_buffer *exists = NULL;
4141	struct page *p;
4142	struct address_space *mapping = tree->mapping;
4143	int uptodate = 1;
4144	int ret;
4145
4146	rcu_read_lock();
4147	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
 
4148	if (eb && atomic_inc_not_zero(&eb->refs)) {
4149		rcu_read_unlock();
4150		mark_extent_buffer_accessed(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4151		return eb;
4152	}
4153	rcu_read_unlock();
4154
4155	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
4156	if (!eb)
4157		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4158
 
 
 
 
 
4159	for (i = 0; i < num_pages; i++, index++) {
4160		p = find_or_create_page(mapping, index, GFP_NOFS);
4161		if (!p) {
4162			WARN_ON(1);
4163			goto free_eb;
4164		}
4165
4166		spin_lock(&mapping->private_lock);
4167		if (PagePrivate(p)) {
4168			/*
4169			 * We could have already allocated an eb for this page
4170			 * and attached one so lets see if we can get a ref on
4171			 * the existing eb, and if we can we know it's good and
4172			 * we can just return that one, else we know we can just
4173			 * overwrite page->private.
4174			 */
4175			exists = (struct extent_buffer *)p->private;
4176			if (atomic_inc_not_zero(&exists->refs)) {
4177				spin_unlock(&mapping->private_lock);
4178				unlock_page(p);
4179				page_cache_release(p);
4180				mark_extent_buffer_accessed(exists);
4181				goto free_eb;
4182			}
 
4183
4184			/*
4185			 * Do this so attach doesn't complain and we need to
4186			 * drop the ref the old guy had.
4187			 */
4188			ClearPagePrivate(p);
4189			WARN_ON(PageDirty(p));
4190			page_cache_release(p);
4191		}
4192		attach_extent_buffer_page(eb, p);
4193		spin_unlock(&mapping->private_lock);
4194		WARN_ON(PageDirty(p));
4195		mark_page_accessed(p);
4196		eb->pages[i] = p;
4197		if (!PageUptodate(p))
4198			uptodate = 0;
4199
4200		/*
4201		 * see below about how we avoid a nasty race with release page
4202		 * and why we unlock later
 
 
 
4203		 */
4204	}
4205	if (uptodate)
4206		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4207again:
4208	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4209	if (ret)
 
4210		goto free_eb;
 
4211
4212	spin_lock(&tree->buffer_lock);
4213	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
 
 
 
4214	if (ret == -EEXIST) {
4215		exists = radix_tree_lookup(&tree->buffer,
4216						start >> PAGE_CACHE_SHIFT);
4217		if (!atomic_inc_not_zero(&exists->refs)) {
4218			spin_unlock(&tree->buffer_lock);
4219			radix_tree_preload_end();
4220			exists = NULL;
4221			goto again;
4222		}
4223		spin_unlock(&tree->buffer_lock);
4224		radix_tree_preload_end();
4225		mark_extent_buffer_accessed(exists);
4226		goto free_eb;
4227	}
4228	/* add one reference for the tree */
4229	spin_lock(&eb->refs_lock);
4230	check_buffer_tree_ref(eb);
4231	spin_unlock(&eb->refs_lock);
4232	spin_unlock(&tree->buffer_lock);
4233	radix_tree_preload_end();
4234
4235	/*
4236	 * there is a race where release page may have
4237	 * tried to find this extent buffer in the radix
4238	 * but failed.  It will tell the VM it is safe to
4239	 * reclaim the, and it will clear the page private bit.
4240	 * We must make sure to set the page private bit properly
4241	 * after the extent buffer is in the radix tree so
4242	 * it doesn't get lost
4243	 */
4244	SetPageChecked(eb->pages[0]);
4245	for (i = 1; i < num_pages; i++) {
4246		p = extent_buffer_page(eb, i);
4247		ClearPageChecked(p);
4248		unlock_page(p);
4249	}
4250	unlock_page(eb->pages[0]);
4251	return eb;
4252
4253free_eb:
 
4254	for (i = 0; i < num_pages; i++) {
4255		if (eb->pages[i])
4256			unlock_page(eb->pages[i]);
4257	}
4258
4259	WARN_ON(!atomic_dec_and_test(&eb->refs));
4260	btrfs_release_extent_buffer(eb);
4261	return exists;
4262}
4263
4264struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4265					 u64 start, unsigned long len)
4266{
4267	struct extent_buffer *eb;
4268
4269	rcu_read_lock();
4270	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4271	if (eb && atomic_inc_not_zero(&eb->refs)) {
4272		rcu_read_unlock();
4273		mark_extent_buffer_accessed(eb);
4274		return eb;
4275	}
4276	rcu_read_unlock();
4277
4278	return NULL;
4279}
4280
4281static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4282{
4283	struct extent_buffer *eb =
4284			container_of(head, struct extent_buffer, rcu_head);
4285
4286	__free_extent_buffer(eb);
4287}
4288
4289/* Expects to have eb->eb_lock already held */
4290static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4291{
 
 
4292	WARN_ON(atomic_read(&eb->refs) == 0);
4293	if (atomic_dec_and_test(&eb->refs)) {
4294		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
 
 
4295			spin_unlock(&eb->refs_lock);
 
 
 
 
 
4296		} else {
4297			struct extent_io_tree *tree = eb->tree;
4298
4299			spin_unlock(&eb->refs_lock);
4300
4301			spin_lock(&tree->buffer_lock);
4302			radix_tree_delete(&tree->buffer,
4303					  eb->start >> PAGE_CACHE_SHIFT);
4304			spin_unlock(&tree->buffer_lock);
4305		}
4306
4307		/* Should be safe to release our pages at this point */
4308		btrfs_release_extent_buffer_page(eb, 0);
4309
 
 
 
 
 
4310		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4311		return;
4312	}
4313	spin_unlock(&eb->refs_lock);
 
 
4314}
4315
4316void free_extent_buffer(struct extent_buffer *eb)
4317{
 
 
4318	if (!eb)
4319		return;
4320
 
 
 
 
 
 
 
 
 
 
 
4321	spin_lock(&eb->refs_lock);
4322	if (atomic_read(&eb->refs) == 2 &&
4323	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4324		atomic_dec(&eb->refs);
4325
4326	if (atomic_read(&eb->refs) == 2 &&
4327	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4328	    !extent_buffer_under_io(eb) &&
4329	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4330		atomic_dec(&eb->refs);
4331
4332	/*
4333	 * I know this is terrible, but it's temporary until we stop tracking
4334	 * the uptodate bits and such for the extent buffers.
4335	 */
4336	release_extent_buffer(eb, GFP_ATOMIC);
4337}
4338
4339void free_extent_buffer_stale(struct extent_buffer *eb)
4340{
4341	if (!eb)
4342		return;
4343
4344	spin_lock(&eb->refs_lock);
4345	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4346
4347	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4348	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4349		atomic_dec(&eb->refs);
4350	release_extent_buffer(eb, GFP_NOFS);
4351}
4352
4353void clear_extent_buffer_dirty(struct extent_buffer *eb)
4354{
4355	unsigned long i;
4356	unsigned long num_pages;
4357	struct page *page;
4358
4359	num_pages = num_extent_pages(eb->start, eb->len);
4360
4361	for (i = 0; i < num_pages; i++) {
4362		page = extent_buffer_page(eb, i);
4363		if (!PageDirty(page))
4364			continue;
4365
4366		lock_page(page);
4367		WARN_ON(!PagePrivate(page));
4368
4369		clear_page_dirty_for_io(page);
4370		spin_lock_irq(&page->mapping->tree_lock);
4371		if (!PageDirty(page)) {
4372			radix_tree_tag_clear(&page->mapping->page_tree,
4373						page_index(page),
4374						PAGECACHE_TAG_DIRTY);
4375		}
4376		spin_unlock_irq(&page->mapping->tree_lock);
4377		ClearPageError(page);
4378		unlock_page(page);
4379	}
4380	WARN_ON(atomic_read(&eb->refs) == 0);
4381}
4382
4383int set_extent_buffer_dirty(struct extent_buffer *eb)
4384{
4385	unsigned long i;
4386	unsigned long num_pages;
4387	int was_dirty = 0;
4388
4389	check_buffer_tree_ref(eb);
4390
4391	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4392
4393	num_pages = num_extent_pages(eb->start, eb->len);
4394	WARN_ON(atomic_read(&eb->refs) == 0);
4395	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4396
 
 
 
 
 
4397	for (i = 0; i < num_pages; i++)
4398		set_page_dirty(extent_buffer_page(eb, i));
 
 
4399	return was_dirty;
4400}
4401
4402static int range_straddles_pages(u64 start, u64 len)
4403{
4404	if (len < PAGE_CACHE_SIZE)
4405		return 1;
4406	if (start & (PAGE_CACHE_SIZE - 1))
4407		return 1;
4408	if ((start + len) & (PAGE_CACHE_SIZE - 1))
4409		return 1;
4410	return 0;
4411}
4412
4413int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4414{
4415	unsigned long i;
4416	struct page *page;
4417	unsigned long num_pages;
4418
4419	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4420	num_pages = num_extent_pages(eb->start, eb->len);
4421	for (i = 0; i < num_pages; i++) {
4422		page = extent_buffer_page(eb, i);
4423		if (page)
4424			ClearPageUptodate(page);
4425	}
4426	return 0;
4427}
4428
4429int set_extent_buffer_uptodate(struct extent_buffer *eb)
4430{
4431	unsigned long i;
4432	struct page *page;
4433	unsigned long num_pages;
4434
4435	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4436	num_pages = num_extent_pages(eb->start, eb->len);
4437	for (i = 0; i < num_pages; i++) {
4438		page = extent_buffer_page(eb, i);
4439		SetPageUptodate(page);
4440	}
4441	return 0;
4442}
4443
4444int extent_range_uptodate(struct extent_io_tree *tree,
4445			  u64 start, u64 end)
4446{
4447	struct page *page;
4448	int ret;
4449	int pg_uptodate = 1;
4450	int uptodate;
4451	unsigned long index;
4452
4453	if (range_straddles_pages(start, end - start + 1)) {
4454		ret = test_range_bit(tree, start, end,
4455				     EXTENT_UPTODATE, 1, NULL);
4456		if (ret)
4457			return 1;
4458	}
4459	while (start <= end) {
4460		index = start >> PAGE_CACHE_SHIFT;
4461		page = find_get_page(tree->mapping, index);
4462		if (!page)
4463			return 1;
4464		uptodate = PageUptodate(page);
4465		page_cache_release(page);
4466		if (!uptodate) {
4467			pg_uptodate = 0;
4468			break;
4469		}
4470		start += PAGE_CACHE_SIZE;
4471	}
4472	return pg_uptodate;
4473}
4474
4475int extent_buffer_uptodate(struct extent_buffer *eb)
4476{
4477	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4478}
4479
4480int read_extent_buffer_pages(struct extent_io_tree *tree,
4481			     struct extent_buffer *eb, u64 start, int wait,
4482			     get_extent_t *get_extent, int mirror_num)
4483{
4484	unsigned long i;
4485	unsigned long start_i;
4486	struct page *page;
4487	int err;
4488	int ret = 0;
4489	int locked_pages = 0;
4490	int all_uptodate = 1;
4491	unsigned long num_pages;
4492	unsigned long num_reads = 0;
4493	struct bio *bio = NULL;
4494	unsigned long bio_flags = 0;
 
4495
4496	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4497		return 0;
4498
4499	if (start) {
4500		WARN_ON(start < eb->start);
4501		start_i = (start >> PAGE_CACHE_SHIFT) -
4502			(eb->start >> PAGE_CACHE_SHIFT);
4503	} else {
4504		start_i = 0;
4505	}
4506
4507	num_pages = num_extent_pages(eb->start, eb->len);
4508	for (i = start_i; i < num_pages; i++) {
4509		page = extent_buffer_page(eb, i);
4510		if (wait == WAIT_NONE) {
4511			if (!trylock_page(page))
4512				goto unlock_exit;
4513		} else {
4514			lock_page(page);
4515		}
4516		locked_pages++;
 
 
 
 
 
 
 
 
4517		if (!PageUptodate(page)) {
4518			num_reads++;
4519			all_uptodate = 0;
4520		}
4521	}
 
4522	if (all_uptodate) {
4523		if (start_i == 0)
4524			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4525		goto unlock_exit;
4526	}
4527
4528	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4529	eb->read_mirror = 0;
4530	atomic_set(&eb->io_pages, num_reads);
4531	for (i = start_i; i < num_pages; i++) {
4532		page = extent_buffer_page(eb, i);
 
4533		if (!PageUptodate(page)) {
 
 
 
 
 
 
4534			ClearPageError(page);
4535			err = __extent_read_full_page(tree, page,
4536						      get_extent, &bio,
4537						      mirror_num, &bio_flags);
4538			if (err)
 
4539				ret = err;
 
 
 
 
 
 
 
 
 
 
4540		} else {
4541			unlock_page(page);
4542		}
4543	}
4544
4545	if (bio) {
4546		err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4547		if (err)
4548			return err;
4549	}
4550
4551	if (ret || wait != WAIT_COMPLETE)
4552		return ret;
4553
4554	for (i = start_i; i < num_pages; i++) {
4555		page = extent_buffer_page(eb, i);
4556		wait_on_page_locked(page);
4557		if (!PageUptodate(page))
4558			ret = -EIO;
4559	}
4560
4561	return ret;
4562
4563unlock_exit:
4564	i = start_i;
4565	while (locked_pages > 0) {
4566		page = extent_buffer_page(eb, i);
4567		i++;
4568		unlock_page(page);
4569		locked_pages--;
4570	}
4571	return ret;
4572}
4573
4574void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4575			unsigned long start,
4576			unsigned long len)
4577{
4578	size_t cur;
4579	size_t offset;
4580	struct page *page;
4581	char *kaddr;
4582	char *dst = (char *)dstv;
4583	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4584	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4585
4586	WARN_ON(start > eb->len);
4587	WARN_ON(start + len > eb->start + eb->len);
4588
4589	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4590
4591	while (len > 0) {
4592		page = extent_buffer_page(eb, i);
4593
4594		cur = min(len, (PAGE_CACHE_SIZE - offset));
4595		kaddr = page_address(page);
4596		memcpy(dst, kaddr + offset, cur);
 
 
 
4597
4598		dst += cur;
4599		len -= cur;
4600		offset = 0;
4601		i++;
4602	}
 
 
4603}
4604
4605int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4606			       unsigned long min_len, char **map,
4607			       unsigned long *map_start,
4608			       unsigned long *map_len)
 
 
 
 
 
4609{
4610	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4611	char *kaddr;
4612	struct page *p;
4613	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4614	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4615	unsigned long end_i = (start_offset + start + min_len - 1) >>
4616		PAGE_CACHE_SHIFT;
 
 
 
 
 
 
4617
4618	if (i != end_i)
4619		return -EINVAL;
4620
4621	if (i == 0) {
4622		offset = start_offset;
4623		*map_start = 0;
4624	} else {
4625		offset = 0;
4626		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4627	}
4628
4629	if (start + min_len > eb->len) {
4630		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4631		       "wanted %lu %lu\n", (unsigned long long)eb->start,
4632		       eb->len, start, min_len);
4633		WARN_ON(1);
4634		return -EINVAL;
4635	}
4636
4637	p = extent_buffer_page(eb, i);
4638	kaddr = page_address(p);
4639	*map = kaddr + offset;
4640	*map_len = PAGE_CACHE_SIZE - offset;
4641	return 0;
4642}
4643
4644int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4645			  unsigned long start,
4646			  unsigned long len)
4647{
4648	size_t cur;
4649	size_t offset;
4650	struct page *page;
4651	char *kaddr;
4652	char *ptr = (char *)ptrv;
4653	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4654	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4655	int ret = 0;
4656
4657	WARN_ON(start > eb->len);
4658	WARN_ON(start + len > eb->start + eb->len);
4659
4660	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4661
4662	while (len > 0) {
4663		page = extent_buffer_page(eb, i);
4664
4665		cur = min(len, (PAGE_CACHE_SIZE - offset));
4666
4667		kaddr = page_address(page);
4668		ret = memcmp(ptr, kaddr + offset, cur);
4669		if (ret)
4670			break;
4671
4672		ptr += cur;
4673		len -= cur;
4674		offset = 0;
4675		i++;
4676	}
4677	return ret;
4678}
4679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4680void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4681			 unsigned long start, unsigned long len)
4682{
4683	size_t cur;
4684	size_t offset;
4685	struct page *page;
4686	char *kaddr;
4687	char *src = (char *)srcv;
4688	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4689	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4690
4691	WARN_ON(start > eb->len);
4692	WARN_ON(start + len > eb->start + eb->len);
4693
4694	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4695
4696	while (len > 0) {
4697		page = extent_buffer_page(eb, i);
4698		WARN_ON(!PageUptodate(page));
4699
4700		cur = min(len, PAGE_CACHE_SIZE - offset);
4701		kaddr = page_address(page);
4702		memcpy(kaddr + offset, src, cur);
4703
4704		src += cur;
4705		len -= cur;
4706		offset = 0;
4707		i++;
4708	}
4709}
4710
4711void memset_extent_buffer(struct extent_buffer *eb, char c,
4712			  unsigned long start, unsigned long len)
4713{
4714	size_t cur;
4715	size_t offset;
4716	struct page *page;
4717	char *kaddr;
4718	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4719	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4720
4721	WARN_ON(start > eb->len);
4722	WARN_ON(start + len > eb->start + eb->len);
4723
4724	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4725
4726	while (len > 0) {
4727		page = extent_buffer_page(eb, i);
4728		WARN_ON(!PageUptodate(page));
4729
4730		cur = min(len, PAGE_CACHE_SIZE - offset);
4731		kaddr = page_address(page);
4732		memset(kaddr + offset, c, cur);
4733
4734		len -= cur;
4735		offset = 0;
4736		i++;
4737	}
4738}
4739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4740void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4741			unsigned long dst_offset, unsigned long src_offset,
4742			unsigned long len)
4743{
4744	u64 dst_len = dst->len;
4745	size_t cur;
4746	size_t offset;
4747	struct page *page;
4748	char *kaddr;
4749	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4750	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4751
4752	WARN_ON(src->len != dst_len);
4753
4754	offset = (start_offset + dst_offset) &
4755		((unsigned long)PAGE_CACHE_SIZE - 1);
4756
4757	while (len > 0) {
4758		page = extent_buffer_page(dst, i);
4759		WARN_ON(!PageUptodate(page));
4760
4761		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4762
4763		kaddr = page_address(page);
4764		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4765
4766		src_offset += cur;
4767		len -= cur;
4768		offset = 0;
4769		i++;
4770	}
4771}
4772
4773static void move_pages(struct page *dst_page, struct page *src_page,
4774		       unsigned long dst_off, unsigned long src_off,
4775		       unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4776{
4777	char *dst_kaddr = page_address(dst_page);
4778	if (dst_page == src_page) {
4779		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4780	} else {
4781		char *src_kaddr = page_address(src_page);
4782		char *p = dst_kaddr + dst_off + len;
4783		char *s = src_kaddr + src_off + len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4784
4785		while (len--)
4786			*--p = *--s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4787	}
4788}
4789
4790static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4791{
4792	unsigned long distance = (src > dst) ? src - dst : dst - src;
4793	return distance < len;
4794}
4795
4796static void copy_pages(struct page *dst_page, struct page *src_page,
4797		       unsigned long dst_off, unsigned long src_off,
4798		       unsigned long len)
4799{
4800	char *dst_kaddr = page_address(dst_page);
4801	char *src_kaddr;
4802	int must_memmove = 0;
4803
4804	if (dst_page != src_page) {
4805		src_kaddr = page_address(src_page);
4806	} else {
4807		src_kaddr = dst_kaddr;
4808		if (areas_overlap(src_off, dst_off, len))
4809			must_memmove = 1;
4810	}
4811
4812	if (must_memmove)
4813		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4814	else
4815		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4816}
4817
4818void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4819			   unsigned long src_offset, unsigned long len)
4820{
 
4821	size_t cur;
4822	size_t dst_off_in_page;
4823	size_t src_off_in_page;
4824	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4825	unsigned long dst_i;
4826	unsigned long src_i;
4827
4828	if (src_offset + len > dst->len) {
4829		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4830		       "len %lu dst len %lu\n", src_offset, len, dst->len);
4831		BUG_ON(1);
 
4832	}
4833	if (dst_offset + len > dst->len) {
4834		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4835		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
4836		BUG_ON(1);
 
4837	}
4838
4839	while (len > 0) {
4840		dst_off_in_page = (start_offset + dst_offset) &
4841			((unsigned long)PAGE_CACHE_SIZE - 1);
4842		src_off_in_page = (start_offset + src_offset) &
4843			((unsigned long)PAGE_CACHE_SIZE - 1);
4844
4845		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4846		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4847
4848		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4849					       src_off_in_page));
4850		cur = min_t(unsigned long, cur,
4851			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4852
4853		copy_pages(extent_buffer_page(dst, dst_i),
4854			   extent_buffer_page(dst, src_i),
4855			   dst_off_in_page, src_off_in_page, cur);
4856
4857		src_offset += cur;
4858		dst_offset += cur;
4859		len -= cur;
4860	}
4861}
4862
4863void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4864			   unsigned long src_offset, unsigned long len)
4865{
 
4866	size_t cur;
4867	size_t dst_off_in_page;
4868	size_t src_off_in_page;
4869	unsigned long dst_end = dst_offset + len - 1;
4870	unsigned long src_end = src_offset + len - 1;
4871	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4872	unsigned long dst_i;
4873	unsigned long src_i;
4874
4875	if (src_offset + len > dst->len) {
4876		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4877		       "len %lu len %lu\n", src_offset, len, dst->len);
4878		BUG_ON(1);
 
4879	}
4880	if (dst_offset + len > dst->len) {
4881		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4882		       "len %lu len %lu\n", dst_offset, len, dst->len);
4883		BUG_ON(1);
 
4884	}
4885	if (dst_offset < src_offset) {
4886		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4887		return;
4888	}
4889	while (len > 0) {
4890		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4891		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4892
4893		dst_off_in_page = (start_offset + dst_end) &
4894			((unsigned long)PAGE_CACHE_SIZE - 1);
4895		src_off_in_page = (start_offset + src_end) &
4896			((unsigned long)PAGE_CACHE_SIZE - 1);
4897
4898		cur = min_t(unsigned long, len, src_off_in_page + 1);
4899		cur = min(cur, dst_off_in_page + 1);
4900		move_pages(extent_buffer_page(dst, dst_i),
4901			   extent_buffer_page(dst, src_i),
4902			   dst_off_in_page - cur + 1,
4903			   src_off_in_page - cur + 1, cur);
4904
4905		dst_end -= cur;
4906		src_end -= cur;
4907		len -= cur;
4908	}
4909}
4910
4911int try_release_extent_buffer(struct page *page, gfp_t mask)
4912{
4913	struct extent_buffer *eb;
4914
4915	/*
4916	 * We need to make sure noboody is attaching this page to an eb right
4917	 * now.
4918	 */
4919	spin_lock(&page->mapping->private_lock);
4920	if (!PagePrivate(page)) {
4921		spin_unlock(&page->mapping->private_lock);
4922		return 1;
4923	}
4924
4925	eb = (struct extent_buffer *)page->private;
4926	BUG_ON(!eb);
4927
4928	/*
4929	 * This is a little awful but should be ok, we need to make sure that
4930	 * the eb doesn't disappear out from under us while we're looking at
4931	 * this page.
4932	 */
4933	spin_lock(&eb->refs_lock);
4934	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4935		spin_unlock(&eb->refs_lock);
4936		spin_unlock(&page->mapping->private_lock);
4937		return 0;
4938	}
4939	spin_unlock(&page->mapping->private_lock);
4940
4941	if ((mask & GFP_NOFS) == GFP_NOFS)
4942		mask = GFP_NOFS;
4943
4944	/*
4945	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4946	 * so just return, this page will likely be freed soon anyway.
4947	 */
4948	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4949		spin_unlock(&eb->refs_lock);
4950		return 0;
4951	}
4952	release_extent_buffer(eb, mask);
4953
4954	return 1;
4955}