Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
 
  16#include "extent_io.h"
 
  17#include "extent_map.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23#include "rcu-string.h"
  24#include "backref.h"
  25#include "disk-io.h"
 
 
 
  26
  27static struct kmem_cache *extent_state_cache;
  28static struct kmem_cache *extent_buffer_cache;
  29static struct bio_set btrfs_bioset;
  30
  31static inline bool extent_state_in_tree(const struct extent_state *state)
  32{
  33	return !RB_EMPTY_NODE(&state->rb_node);
  34}
  35
  36#ifdef CONFIG_BTRFS_DEBUG
  37static LIST_HEAD(buffers);
  38static LIST_HEAD(states);
  39
  40static DEFINE_SPINLOCK(leak_lock);
  41
  42static inline
  43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
 
  44{
  45	unsigned long flags;
  46
  47	spin_lock_irqsave(&leak_lock, flags);
  48	list_add(new, head);
  49	spin_unlock_irqrestore(&leak_lock, flags);
  50}
  51
  52static inline
  53void btrfs_leak_debug_del(struct list_head *entry)
  54{
  55	unsigned long flags;
  56
  57	spin_lock_irqsave(&leak_lock, flags);
  58	list_del(entry);
  59	spin_unlock_irqrestore(&leak_lock, flags);
  60}
  61
  62static inline
  63void btrfs_leak_debug_check(void)
  64{
  65	struct extent_state *state;
  66	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68	while (!list_empty(&states)) {
  69		state = list_entry(states.next, struct extent_state, leak_list);
  70		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  71		       state->start, state->end, state->state,
  72		       extent_state_in_tree(state),
  73		       refcount_read(&state->refs));
  74		list_del(&state->leak_list);
  75		kmem_cache_free(extent_state_cache, state);
  76	}
  77
  78	while (!list_empty(&buffers)) {
  79		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  80		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
  81		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
  82		list_del(&eb->leak_list);
  83		kmem_cache_free(extent_buffer_cache, eb);
  84	}
  85}
  86
  87#define btrfs_debug_check_extent_io_range(tree, start, end)		\
  88	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  90		struct extent_io_tree *tree, u64 start, u64 end)
  91{
  92	struct inode *inode = tree->private_data;
  93	u64 isize;
  94
  95	if (!inode || !is_data_inode(inode))
  96		return;
  97
  98	isize = i_size_read(inode);
  99	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 100		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 101		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 102			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
 103	}
 104}
 105#else
 106#define btrfs_leak_debug_add(new, head)	do {} while (0)
 107#define btrfs_leak_debug_del(entry)	do {} while (0)
 108#define btrfs_leak_debug_check()	do {} while (0)
 109#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 110#endif
 111
 112struct tree_entry {
 113	u64 start;
 114	u64 end;
 115	struct rb_node rb_node;
 116};
 117
 118struct extent_page_data {
 119	struct bio *bio;
 120	struct extent_io_tree *tree;
 121	/* tells writepage not to lock the state bits for this range
 122	 * it still does the unlocking
 123	 */
 124	unsigned int extent_locked:1;
 125
 126	/* tells the submit_bio code to use REQ_SYNC */
 127	unsigned int sync_io:1;
 128};
 129
 130static int add_extent_changeset(struct extent_state *state, unsigned bits,
 131				 struct extent_changeset *changeset,
 132				 int set)
 133{
 134	int ret;
 135
 136	if (!changeset)
 137		return 0;
 138	if (set && (state->state & bits) == bits)
 139		return 0;
 140	if (!set && (state->state & bits) == 0)
 141		return 0;
 142	changeset->bytes_changed += state->end - state->start + 1;
 143	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 144			GFP_ATOMIC);
 145	return ret;
 146}
 147
 148static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
 149				       unsigned long bio_flags)
 150{
 151	blk_status_t ret = 0;
 152	struct extent_io_tree *tree = bio->bi_private;
 153
 154	bio->bi_private = NULL;
 155
 156	if (tree->ops)
 157		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
 158						 mirror_num, bio_flags);
 159	else
 160		btrfsic_submit_bio(bio);
 
 161
 162	return blk_status_to_errno(ret);
 163}
 164
 165/* Cleanup unsubmitted bios */
 166static void end_write_bio(struct extent_page_data *epd, int ret)
 167{
 168	if (epd->bio) {
 169		epd->bio->bi_status = errno_to_blk_status(ret);
 170		bio_endio(epd->bio);
 171		epd->bio = NULL;
 
 
 172	}
 173}
 174
 175/*
 176 * Submit bio from extent page data via submit_one_bio
 177 *
 178 * Return 0 if everything is OK.
 179 * Return <0 for error.
 180 */
 181static int __must_check flush_write_bio(struct extent_page_data *epd)
 182{
 183	int ret = 0;
 
 184
 185	if (epd->bio) {
 186		ret = submit_one_bio(epd->bio, 0, 0);
 187		/*
 188		 * Clean up of epd->bio is handled by its endio function.
 189		 * And endio is either triggered by successful bio execution
 190		 * or the error handler of submit bio hook.
 191		 * So at this point, no matter what happened, we don't need
 192		 * to clean up epd->bio.
 193		 */
 194		epd->bio = NULL;
 195	}
 196	return ret;
 197}
 198
 199int __init extent_io_init(void)
 200{
 201	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 202			sizeof(struct extent_state), 0,
 203			SLAB_MEM_SPREAD, NULL);
 204	if (!extent_state_cache)
 205		return -ENOMEM;
 
 
 206
 
 
 207	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 208			sizeof(struct extent_buffer), 0,
 209			SLAB_MEM_SPREAD, NULL);
 210	if (!extent_buffer_cache)
 211		goto free_state_cache;
 212
 213	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 214			offsetof(struct btrfs_io_bio, bio),
 215			BIOSET_NEED_BVECS))
 216		goto free_buffer_cache;
 217
 218	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 219		goto free_bioset;
 220
 221	return 0;
 222
 223free_bioset:
 224	bioset_exit(&btrfs_bioset);
 225
 226free_buffer_cache:
 227	kmem_cache_destroy(extent_buffer_cache);
 228	extent_buffer_cache = NULL;
 
 
 229
 230free_state_cache:
 
 
 231	kmem_cache_destroy(extent_state_cache);
 232	extent_state_cache = NULL;
 233	return -ENOMEM;
 234}
 235
 236void __cold extent_io_exit(void)
 237{
 238	btrfs_leak_debug_check();
 239
 240	/*
 241	 * Make sure all delayed rcu free are flushed before we
 242	 * destroy caches.
 243	 */
 244	rcu_barrier();
 245	kmem_cache_destroy(extent_state_cache);
 246	kmem_cache_destroy(extent_buffer_cache);
 247	bioset_exit(&btrfs_bioset);
 248}
 249
 
 
 
 
 
 
 
 
 
 250void extent_io_tree_init(struct btrfs_fs_info *fs_info,
 251			 struct extent_io_tree *tree, unsigned int owner,
 252			 void *private_data)
 253{
 254	tree->fs_info = fs_info;
 255	tree->state = RB_ROOT;
 256	tree->ops = NULL;
 257	tree->dirty_bytes = 0;
 258	spin_lock_init(&tree->lock);
 259	tree->private_data = private_data;
 260	tree->owner = owner;
 
 
 261}
 262
 263void extent_io_tree_release(struct extent_io_tree *tree)
 264{
 265	spin_lock(&tree->lock);
 266	/*
 267	 * Do a single barrier for the waitqueue_active check here, the state
 268	 * of the waitqueue should not change once extent_io_tree_release is
 269	 * called.
 270	 */
 271	smp_mb();
 272	while (!RB_EMPTY_ROOT(&tree->state)) {
 273		struct rb_node *node;
 274		struct extent_state *state;
 275
 276		node = rb_first(&tree->state);
 277		state = rb_entry(node, struct extent_state, rb_node);
 278		rb_erase(&state->rb_node, &tree->state);
 279		RB_CLEAR_NODE(&state->rb_node);
 280		/*
 281		 * btree io trees aren't supposed to have tasks waiting for
 282		 * changes in the flags of extent states ever.
 283		 */
 284		ASSERT(!waitqueue_active(&state->wq));
 285		free_extent_state(state);
 286
 287		cond_resched_lock(&tree->lock);
 288	}
 289	spin_unlock(&tree->lock);
 290}
 291
 292static struct extent_state *alloc_extent_state(gfp_t mask)
 293{
 294	struct extent_state *state;
 295
 296	/*
 297	 * The given mask might be not appropriate for the slab allocator,
 298	 * drop the unsupported bits
 299	 */
 300	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 301	state = kmem_cache_alloc(extent_state_cache, mask);
 302	if (!state)
 303		return state;
 304	state->state = 0;
 305	state->failrec = NULL;
 306	RB_CLEAR_NODE(&state->rb_node);
 307	btrfs_leak_debug_add(&state->leak_list, &states);
 308	refcount_set(&state->refs, 1);
 309	init_waitqueue_head(&state->wq);
 310	trace_alloc_extent_state(state, mask, _RET_IP_);
 311	return state;
 312}
 313
 314void free_extent_state(struct extent_state *state)
 315{
 316	if (!state)
 317		return;
 318	if (refcount_dec_and_test(&state->refs)) {
 319		WARN_ON(extent_state_in_tree(state));
 320		btrfs_leak_debug_del(&state->leak_list);
 321		trace_free_extent_state(state, _RET_IP_);
 322		kmem_cache_free(extent_state_cache, state);
 323	}
 324}
 325
 326static struct rb_node *tree_insert(struct rb_root *root,
 327				   struct rb_node *search_start,
 328				   u64 offset,
 329				   struct rb_node *node,
 330				   struct rb_node ***p_in,
 331				   struct rb_node **parent_in)
 332{
 333	struct rb_node **p;
 334	struct rb_node *parent = NULL;
 335	struct tree_entry *entry;
 336
 337	if (p_in && parent_in) {
 338		p = *p_in;
 339		parent = *parent_in;
 340		goto do_insert;
 341	}
 342
 343	p = search_start ? &search_start : &root->rb_node;
 344	while (*p) {
 345		parent = *p;
 346		entry = rb_entry(parent, struct tree_entry, rb_node);
 347
 348		if (offset < entry->start)
 349			p = &(*p)->rb_left;
 350		else if (offset > entry->end)
 351			p = &(*p)->rb_right;
 352		else
 353			return parent;
 354	}
 355
 356do_insert:
 357	rb_link_node(node, parent, p);
 358	rb_insert_color(node, root);
 359	return NULL;
 360}
 361
 362/**
 363 * __etree_search - searche @tree for an entry that contains @offset. Such
 364 * entry would have entry->start <= offset && entry->end >= offset.
 365 *
 366 * @tree - the tree to search
 367 * @offset - offset that should fall within an entry in @tree
 368 * @next_ret - pointer to the first entry whose range ends after @offset
 369 * @prev - pointer to the first entry whose range begins before @offset
 370 * @p_ret - pointer where new node should be anchored (used when inserting an
 371 *	    entry in the tree)
 372 * @parent_ret - points to entry which would have been the parent of the entry,
 373 *               containing @offset
 374 *
 375 * This function returns a pointer to the entry that contains @offset byte
 376 * address. If no such entry exists, then NULL is returned and the other
 377 * pointer arguments to the function are filled, otherwise the found entry is
 378 * returned and other pointers are left untouched.
 379 */
 380static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 381				      struct rb_node **next_ret,
 382				      struct rb_node **prev_ret,
 383				      struct rb_node ***p_ret,
 384				      struct rb_node **parent_ret)
 385{
 386	struct rb_root *root = &tree->state;
 387	struct rb_node **n = &root->rb_node;
 388	struct rb_node *prev = NULL;
 389	struct rb_node *orig_prev = NULL;
 390	struct tree_entry *entry;
 391	struct tree_entry *prev_entry = NULL;
 392
 393	while (*n) {
 394		prev = *n;
 395		entry = rb_entry(prev, struct tree_entry, rb_node);
 396		prev_entry = entry;
 397
 398		if (offset < entry->start)
 399			n = &(*n)->rb_left;
 400		else if (offset > entry->end)
 401			n = &(*n)->rb_right;
 402		else
 403			return *n;
 404	}
 405
 406	if (p_ret)
 407		*p_ret = n;
 408	if (parent_ret)
 409		*parent_ret = prev;
 410
 411	if (next_ret) {
 412		orig_prev = prev;
 413		while (prev && offset > prev_entry->end) {
 414			prev = rb_next(prev);
 415			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 416		}
 417		*next_ret = prev;
 418		prev = orig_prev;
 419	}
 420
 421	if (prev_ret) {
 422		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 423		while (prev && offset < prev_entry->start) {
 424			prev = rb_prev(prev);
 425			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 426		}
 427		*prev_ret = prev;
 428	}
 429	return NULL;
 430}
 431
 432static inline struct rb_node *
 433tree_search_for_insert(struct extent_io_tree *tree,
 434		       u64 offset,
 435		       struct rb_node ***p_ret,
 436		       struct rb_node **parent_ret)
 437{
 438	struct rb_node *next= NULL;
 439	struct rb_node *ret;
 440
 441	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
 442	if (!ret)
 443		return next;
 444	return ret;
 445}
 446
 447static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 448					  u64 offset)
 449{
 450	return tree_search_for_insert(tree, offset, NULL, NULL);
 451}
 452
 453/*
 454 * utility function to look for merge candidates inside a given range.
 455 * Any extents with matching state are merged together into a single
 456 * extent in the tree.  Extents with EXTENT_IO in their state field
 457 * are not merged because the end_io handlers need to be able to do
 458 * operations on them without sleeping (or doing allocations/splits).
 459 *
 460 * This should be called with the tree lock held.
 461 */
 462static void merge_state(struct extent_io_tree *tree,
 463		        struct extent_state *state)
 464{
 465	struct extent_state *other;
 466	struct rb_node *other_node;
 467
 468	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 469		return;
 470
 471	other_node = rb_prev(&state->rb_node);
 472	if (other_node) {
 473		other = rb_entry(other_node, struct extent_state, rb_node);
 474		if (other->end == state->start - 1 &&
 475		    other->state == state->state) {
 476			if (tree->private_data &&
 477			    is_data_inode(tree->private_data))
 478				btrfs_merge_delalloc_extent(tree->private_data,
 479							    state, other);
 480			state->start = other->start;
 481			rb_erase(&other->rb_node, &tree->state);
 482			RB_CLEAR_NODE(&other->rb_node);
 483			free_extent_state(other);
 484		}
 485	}
 486	other_node = rb_next(&state->rb_node);
 487	if (other_node) {
 488		other = rb_entry(other_node, struct extent_state, rb_node);
 489		if (other->start == state->end + 1 &&
 490		    other->state == state->state) {
 491			if (tree->private_data &&
 492			    is_data_inode(tree->private_data))
 493				btrfs_merge_delalloc_extent(tree->private_data,
 494							    state, other);
 495			state->end = other->end;
 496			rb_erase(&other->rb_node, &tree->state);
 497			RB_CLEAR_NODE(&other->rb_node);
 498			free_extent_state(other);
 499		}
 500	}
 501}
 502
 503static void set_state_bits(struct extent_io_tree *tree,
 504			   struct extent_state *state, unsigned *bits,
 505			   struct extent_changeset *changeset);
 506
 507/*
 508 * insert an extent_state struct into the tree.  'bits' are set on the
 509 * struct before it is inserted.
 510 *
 511 * This may return -EEXIST if the extent is already there, in which case the
 512 * state struct is freed.
 513 *
 514 * The tree lock is not taken internally.  This is a utility function and
 515 * probably isn't what you want to call (see set/clear_extent_bit).
 516 */
 517static int insert_state(struct extent_io_tree *tree,
 518			struct extent_state *state, u64 start, u64 end,
 519			struct rb_node ***p,
 520			struct rb_node **parent,
 521			unsigned *bits, struct extent_changeset *changeset)
 522{
 523	struct rb_node *node;
 524
 525	if (end < start) {
 526		btrfs_err(tree->fs_info,
 527			"insert state: end < start %llu %llu", end, start);
 528		WARN_ON(1);
 529	}
 530	state->start = start;
 531	state->end = end;
 532
 533	set_state_bits(tree, state, bits, changeset);
 534
 535	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 536	if (node) {
 537		struct extent_state *found;
 538		found = rb_entry(node, struct extent_state, rb_node);
 539		btrfs_err(tree->fs_info,
 540		       "found node %llu %llu on insert of %llu %llu",
 541		       found->start, found->end, start, end);
 542		return -EEXIST;
 543	}
 544	merge_state(tree, state);
 545	return 0;
 546}
 547
 548/*
 549 * split a given extent state struct in two, inserting the preallocated
 550 * struct 'prealloc' as the newly created second half.  'split' indicates an
 551 * offset inside 'orig' where it should be split.
 552 *
 553 * Before calling,
 554 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 555 * are two extent state structs in the tree:
 556 * prealloc: [orig->start, split - 1]
 557 * orig: [ split, orig->end ]
 558 *
 559 * The tree locks are not taken by this function. They need to be held
 560 * by the caller.
 561 */
 562static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 563		       struct extent_state *prealloc, u64 split)
 564{
 565	struct rb_node *node;
 566
 567	if (tree->private_data && is_data_inode(tree->private_data))
 568		btrfs_split_delalloc_extent(tree->private_data, orig, split);
 569
 570	prealloc->start = orig->start;
 571	prealloc->end = split - 1;
 572	prealloc->state = orig->state;
 573	orig->start = split;
 574
 575	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 576			   &prealloc->rb_node, NULL, NULL);
 577	if (node) {
 578		free_extent_state(prealloc);
 579		return -EEXIST;
 580	}
 581	return 0;
 582}
 583
 584static struct extent_state *next_state(struct extent_state *state)
 585{
 586	struct rb_node *next = rb_next(&state->rb_node);
 587	if (next)
 588		return rb_entry(next, struct extent_state, rb_node);
 589	else
 590		return NULL;
 591}
 592
 593/*
 594 * utility function to clear some bits in an extent state struct.
 595 * it will optionally wake up anyone waiting on this state (wake == 1).
 596 *
 597 * If no bits are set on the state struct after clearing things, the
 598 * struct is freed and removed from the tree
 599 */
 600static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 601					    struct extent_state *state,
 602					    unsigned *bits, int wake,
 603					    struct extent_changeset *changeset)
 604{
 605	struct extent_state *next;
 606	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 607	int ret;
 608
 609	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 610		u64 range = state->end - state->start + 1;
 611		WARN_ON(range > tree->dirty_bytes);
 612		tree->dirty_bytes -= range;
 613	}
 614
 615	if (tree->private_data && is_data_inode(tree->private_data))
 616		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
 617
 618	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 619	BUG_ON(ret < 0);
 620	state->state &= ~bits_to_clear;
 621	if (wake)
 622		wake_up(&state->wq);
 623	if (state->state == 0) {
 624		next = next_state(state);
 625		if (extent_state_in_tree(state)) {
 626			rb_erase(&state->rb_node, &tree->state);
 627			RB_CLEAR_NODE(&state->rb_node);
 628			free_extent_state(state);
 629		} else {
 630			WARN_ON(1);
 631		}
 632	} else {
 633		merge_state(tree, state);
 634		next = next_state(state);
 635	}
 636	return next;
 637}
 638
 639static struct extent_state *
 640alloc_extent_state_atomic(struct extent_state *prealloc)
 641{
 642	if (!prealloc)
 643		prealloc = alloc_extent_state(GFP_ATOMIC);
 644
 645	return prealloc;
 646}
 647
 648static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 649{
 650	struct inode *inode = tree->private_data;
 651
 652	btrfs_panic(btrfs_sb(inode->i_sb), err,
 653	"locking error: extent tree was modified by another thread while locked");
 654}
 655
 656/*
 657 * clear some bits on a range in the tree.  This may require splitting
 658 * or inserting elements in the tree, so the gfp mask is used to
 659 * indicate which allocations or sleeping are allowed.
 660 *
 661 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 662 * the given range from the tree regardless of state (ie for truncate).
 663 *
 664 * the range [start, end] is inclusive.
 665 *
 666 * This takes the tree lock, and returns 0 on success and < 0 on error.
 667 */
 668int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 669			      unsigned bits, int wake, int delete,
 670			      struct extent_state **cached_state,
 671			      gfp_t mask, struct extent_changeset *changeset)
 672{
 673	struct extent_state *state;
 674	struct extent_state *cached;
 675	struct extent_state *prealloc = NULL;
 676	struct rb_node *node;
 677	u64 last_end;
 678	int err;
 679	int clear = 0;
 680
 681	btrfs_debug_check_extent_io_range(tree, start, end);
 682	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
 683
 684	if (bits & EXTENT_DELALLOC)
 685		bits |= EXTENT_NORESERVE;
 686
 687	if (delete)
 688		bits |= ~EXTENT_CTLBITS;
 689
 690	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 691		clear = 1;
 692again:
 693	if (!prealloc && gfpflags_allow_blocking(mask)) {
 694		/*
 695		 * Don't care for allocation failure here because we might end
 696		 * up not needing the pre-allocated extent state at all, which
 697		 * is the case if we only have in the tree extent states that
 698		 * cover our input range and don't cover too any other range.
 699		 * If we end up needing a new extent state we allocate it later.
 700		 */
 701		prealloc = alloc_extent_state(mask);
 702	}
 703
 704	spin_lock(&tree->lock);
 705	if (cached_state) {
 706		cached = *cached_state;
 707
 708		if (clear) {
 709			*cached_state = NULL;
 710			cached_state = NULL;
 711		}
 712
 713		if (cached && extent_state_in_tree(cached) &&
 714		    cached->start <= start && cached->end > start) {
 715			if (clear)
 716				refcount_dec(&cached->refs);
 717			state = cached;
 718			goto hit_next;
 719		}
 720		if (clear)
 721			free_extent_state(cached);
 722	}
 723	/*
 724	 * this search will find the extents that end after
 725	 * our range starts
 726	 */
 727	node = tree_search(tree, start);
 728	if (!node)
 729		goto out;
 730	state = rb_entry(node, struct extent_state, rb_node);
 731hit_next:
 732	if (state->start > end)
 733		goto out;
 734	WARN_ON(state->end < start);
 735	last_end = state->end;
 736
 737	/* the state doesn't have the wanted bits, go ahead */
 738	if (!(state->state & bits)) {
 739		state = next_state(state);
 740		goto next;
 741	}
 742
 743	/*
 744	 *     | ---- desired range ---- |
 745	 *  | state | or
 746	 *  | ------------- state -------------- |
 747	 *
 748	 * We need to split the extent we found, and may flip
 749	 * bits on second half.
 750	 *
 751	 * If the extent we found extends past our range, we
 752	 * just split and search again.  It'll get split again
 753	 * the next time though.
 754	 *
 755	 * If the extent we found is inside our range, we clear
 756	 * the desired bit on it.
 757	 */
 758
 759	if (state->start < start) {
 760		prealloc = alloc_extent_state_atomic(prealloc);
 761		BUG_ON(!prealloc);
 762		err = split_state(tree, state, prealloc, start);
 763		if (err)
 764			extent_io_tree_panic(tree, err);
 765
 766		prealloc = NULL;
 767		if (err)
 768			goto out;
 769		if (state->end <= end) {
 770			state = clear_state_bit(tree, state, &bits, wake,
 771						changeset);
 772			goto next;
 773		}
 774		goto search_again;
 775	}
 776	/*
 777	 * | ---- desired range ---- |
 778	 *                        | state |
 779	 * We need to split the extent, and clear the bit
 780	 * on the first half
 781	 */
 782	if (state->start <= end && state->end > end) {
 783		prealloc = alloc_extent_state_atomic(prealloc);
 784		BUG_ON(!prealloc);
 785		err = split_state(tree, state, prealloc, end + 1);
 786		if (err)
 787			extent_io_tree_panic(tree, err);
 788
 789		if (wake)
 790			wake_up(&state->wq);
 791
 792		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 793
 794		prealloc = NULL;
 795		goto out;
 796	}
 797
 798	state = clear_state_bit(tree, state, &bits, wake, changeset);
 799next:
 800	if (last_end == (u64)-1)
 801		goto out;
 802	start = last_end + 1;
 803	if (start <= end && state && !need_resched())
 804		goto hit_next;
 805
 806search_again:
 807	if (start > end)
 808		goto out;
 809	spin_unlock(&tree->lock);
 810	if (gfpflags_allow_blocking(mask))
 811		cond_resched();
 812	goto again;
 813
 814out:
 815	spin_unlock(&tree->lock);
 816	if (prealloc)
 817		free_extent_state(prealloc);
 818
 819	return 0;
 820
 821}
 822
 823static void wait_on_state(struct extent_io_tree *tree,
 824			  struct extent_state *state)
 825		__releases(tree->lock)
 826		__acquires(tree->lock)
 827{
 828	DEFINE_WAIT(wait);
 829	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 830	spin_unlock(&tree->lock);
 831	schedule();
 832	spin_lock(&tree->lock);
 833	finish_wait(&state->wq, &wait);
 834}
 835
 836/*
 837 * waits for one or more bits to clear on a range in the state tree.
 838 * The range [start, end] is inclusive.
 839 * The tree lock is taken by this function
 840 */
 841static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 842			    unsigned long bits)
 843{
 844	struct extent_state *state;
 845	struct rb_node *node;
 846
 847	btrfs_debug_check_extent_io_range(tree, start, end);
 848
 849	spin_lock(&tree->lock);
 850again:
 851	while (1) {
 852		/*
 853		 * this search will find all the extents that end after
 854		 * our range starts
 855		 */
 856		node = tree_search(tree, start);
 857process_node:
 858		if (!node)
 859			break;
 860
 861		state = rb_entry(node, struct extent_state, rb_node);
 862
 863		if (state->start > end)
 864			goto out;
 865
 866		if (state->state & bits) {
 867			start = state->start;
 868			refcount_inc(&state->refs);
 869			wait_on_state(tree, state);
 870			free_extent_state(state);
 871			goto again;
 872		}
 873		start = state->end + 1;
 874
 875		if (start > end)
 876			break;
 877
 878		if (!cond_resched_lock(&tree->lock)) {
 879			node = rb_next(node);
 880			goto process_node;
 881		}
 882	}
 883out:
 884	spin_unlock(&tree->lock);
 885}
 886
 887static void set_state_bits(struct extent_io_tree *tree,
 888			   struct extent_state *state,
 889			   unsigned *bits, struct extent_changeset *changeset)
 890{
 891	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 892	int ret;
 893
 894	if (tree->private_data && is_data_inode(tree->private_data))
 895		btrfs_set_delalloc_extent(tree->private_data, state, bits);
 896
 897	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 898		u64 range = state->end - state->start + 1;
 899		tree->dirty_bytes += range;
 900	}
 901	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 902	BUG_ON(ret < 0);
 903	state->state |= bits_to_set;
 904}
 905
 906static void cache_state_if_flags(struct extent_state *state,
 907				 struct extent_state **cached_ptr,
 908				 unsigned flags)
 909{
 910	if (cached_ptr && !(*cached_ptr)) {
 911		if (!flags || (state->state & flags)) {
 912			*cached_ptr = state;
 913			refcount_inc(&state->refs);
 914		}
 915	}
 916}
 917
 918static void cache_state(struct extent_state *state,
 919			struct extent_state **cached_ptr)
 920{
 921	return cache_state_if_flags(state, cached_ptr,
 922				    EXTENT_LOCKED | EXTENT_BOUNDARY);
 923}
 924
 925/*
 926 * set some bits on a range in the tree.  This may require allocations or
 927 * sleeping, so the gfp mask is used to indicate what is allowed.
 928 *
 929 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 930 * part of the range already has the desired bits set.  The start of the
 931 * existing range is returned in failed_start in this case.
 932 *
 933 * [start, end] is inclusive This takes the tree lock.
 934 */
 935
 936static int __must_check
 937__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 938		 unsigned bits, unsigned exclusive_bits,
 939		 u64 *failed_start, struct extent_state **cached_state,
 940		 gfp_t mask, struct extent_changeset *changeset)
 941{
 942	struct extent_state *state;
 943	struct extent_state *prealloc = NULL;
 944	struct rb_node *node;
 945	struct rb_node **p;
 946	struct rb_node *parent;
 947	int err = 0;
 948	u64 last_start;
 949	u64 last_end;
 950
 951	btrfs_debug_check_extent_io_range(tree, start, end);
 952	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
 953
 
 
 
 
 954again:
 955	if (!prealloc && gfpflags_allow_blocking(mask)) {
 956		/*
 957		 * Don't care for allocation failure here because we might end
 958		 * up not needing the pre-allocated extent state at all, which
 959		 * is the case if we only have in the tree extent states that
 960		 * cover our input range and don't cover too any other range.
 961		 * If we end up needing a new extent state we allocate it later.
 962		 */
 963		prealloc = alloc_extent_state(mask);
 964	}
 965
 966	spin_lock(&tree->lock);
 967	if (cached_state && *cached_state) {
 968		state = *cached_state;
 969		if (state->start <= start && state->end > start &&
 970		    extent_state_in_tree(state)) {
 971			node = &state->rb_node;
 972			goto hit_next;
 973		}
 974	}
 975	/*
 976	 * this search will find all the extents that end after
 977	 * our range starts.
 978	 */
 979	node = tree_search_for_insert(tree, start, &p, &parent);
 980	if (!node) {
 981		prealloc = alloc_extent_state_atomic(prealloc);
 982		BUG_ON(!prealloc);
 983		err = insert_state(tree, prealloc, start, end,
 984				   &p, &parent, &bits, changeset);
 985		if (err)
 986			extent_io_tree_panic(tree, err);
 987
 988		cache_state(prealloc, cached_state);
 989		prealloc = NULL;
 990		goto out;
 991	}
 992	state = rb_entry(node, struct extent_state, rb_node);
 993hit_next:
 994	last_start = state->start;
 995	last_end = state->end;
 996
 997	/*
 998	 * | ---- desired range ---- |
 999	 * | state |
1000	 *
1001	 * Just lock what we found and keep going
1002	 */
1003	if (state->start == start && state->end <= end) {
1004		if (state->state & exclusive_bits) {
1005			*failed_start = state->start;
1006			err = -EEXIST;
1007			goto out;
1008		}
1009
1010		set_state_bits(tree, state, &bits, changeset);
1011		cache_state(state, cached_state);
1012		merge_state(tree, state);
1013		if (last_end == (u64)-1)
1014			goto out;
1015		start = last_end + 1;
1016		state = next_state(state);
1017		if (start < end && state && state->start == start &&
1018		    !need_resched())
1019			goto hit_next;
1020		goto search_again;
1021	}
1022
1023	/*
1024	 *     | ---- desired range ---- |
1025	 * | state |
1026	 *   or
1027	 * | ------------- state -------------- |
1028	 *
1029	 * We need to split the extent we found, and may flip bits on
1030	 * second half.
1031	 *
1032	 * If the extent we found extends past our
1033	 * range, we just split and search again.  It'll get split
1034	 * again the next time though.
1035	 *
1036	 * If the extent we found is inside our range, we set the
1037	 * desired bit on it.
1038	 */
1039	if (state->start < start) {
1040		if (state->state & exclusive_bits) {
1041			*failed_start = start;
1042			err = -EEXIST;
1043			goto out;
1044		}
1045
 
 
 
 
 
 
 
 
 
 
1046		prealloc = alloc_extent_state_atomic(prealloc);
1047		BUG_ON(!prealloc);
1048		err = split_state(tree, state, prealloc, start);
1049		if (err)
1050			extent_io_tree_panic(tree, err);
1051
1052		prealloc = NULL;
1053		if (err)
1054			goto out;
1055		if (state->end <= end) {
1056			set_state_bits(tree, state, &bits, changeset);
1057			cache_state(state, cached_state);
1058			merge_state(tree, state);
1059			if (last_end == (u64)-1)
1060				goto out;
1061			start = last_end + 1;
1062			state = next_state(state);
1063			if (start < end && state && state->start == start &&
1064			    !need_resched())
1065				goto hit_next;
1066		}
1067		goto search_again;
1068	}
1069	/*
1070	 * | ---- desired range ---- |
1071	 *     | state | or               | state |
1072	 *
1073	 * There's a hole, we need to insert something in it and
1074	 * ignore the extent we found.
1075	 */
1076	if (state->start > start) {
1077		u64 this_end;
1078		if (end < last_start)
1079			this_end = end;
1080		else
1081			this_end = last_start - 1;
1082
1083		prealloc = alloc_extent_state_atomic(prealloc);
1084		BUG_ON(!prealloc);
1085
1086		/*
1087		 * Avoid to free 'prealloc' if it can be merged with
1088		 * the later extent.
1089		 */
1090		err = insert_state(tree, prealloc, start, this_end,
1091				   NULL, NULL, &bits, changeset);
1092		if (err)
1093			extent_io_tree_panic(tree, err);
1094
1095		cache_state(prealloc, cached_state);
1096		prealloc = NULL;
1097		start = this_end + 1;
1098		goto search_again;
1099	}
1100	/*
1101	 * | ---- desired range ---- |
1102	 *                        | state |
1103	 * We need to split the extent, and set the bit
1104	 * on the first half
1105	 */
1106	if (state->start <= end && state->end > end) {
1107		if (state->state & exclusive_bits) {
1108			*failed_start = start;
1109			err = -EEXIST;
1110			goto out;
1111		}
1112
1113		prealloc = alloc_extent_state_atomic(prealloc);
1114		BUG_ON(!prealloc);
1115		err = split_state(tree, state, prealloc, end + 1);
1116		if (err)
1117			extent_io_tree_panic(tree, err);
1118
1119		set_state_bits(tree, prealloc, &bits, changeset);
1120		cache_state(prealloc, cached_state);
1121		merge_state(tree, prealloc);
1122		prealloc = NULL;
1123		goto out;
1124	}
1125
1126search_again:
1127	if (start > end)
1128		goto out;
1129	spin_unlock(&tree->lock);
1130	if (gfpflags_allow_blocking(mask))
1131		cond_resched();
1132	goto again;
1133
1134out:
1135	spin_unlock(&tree->lock);
1136	if (prealloc)
1137		free_extent_state(prealloc);
1138
1139	return err;
1140
1141}
1142
1143int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1144		   unsigned bits, u64 * failed_start,
1145		   struct extent_state **cached_state, gfp_t mask)
1146{
1147	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1148				cached_state, mask, NULL);
1149}
1150
1151
1152/**
1153 * convert_extent_bit - convert all bits in a given range from one bit to
1154 * 			another
1155 * @tree:	the io tree to search
1156 * @start:	the start offset in bytes
1157 * @end:	the end offset in bytes (inclusive)
1158 * @bits:	the bits to set in this range
1159 * @clear_bits:	the bits to clear in this range
1160 * @cached_state:	state that we're going to cache
1161 *
1162 * This will go through and set bits for the given range.  If any states exist
1163 * already in this range they are set with the given bit and cleared of the
1164 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1165 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1166 * boundary bits like LOCK.
1167 *
1168 * All allocations are done with GFP_NOFS.
1169 */
1170int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1171		       unsigned bits, unsigned clear_bits,
1172		       struct extent_state **cached_state)
1173{
1174	struct extent_state *state;
1175	struct extent_state *prealloc = NULL;
1176	struct rb_node *node;
1177	struct rb_node **p;
1178	struct rb_node *parent;
1179	int err = 0;
1180	u64 last_start;
1181	u64 last_end;
1182	bool first_iteration = true;
1183
1184	btrfs_debug_check_extent_io_range(tree, start, end);
1185	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1186				       clear_bits);
1187
1188again:
1189	if (!prealloc) {
1190		/*
1191		 * Best effort, don't worry if extent state allocation fails
1192		 * here for the first iteration. We might have a cached state
1193		 * that matches exactly the target range, in which case no
1194		 * extent state allocations are needed. We'll only know this
1195		 * after locking the tree.
1196		 */
1197		prealloc = alloc_extent_state(GFP_NOFS);
1198		if (!prealloc && !first_iteration)
1199			return -ENOMEM;
1200	}
1201
1202	spin_lock(&tree->lock);
1203	if (cached_state && *cached_state) {
1204		state = *cached_state;
1205		if (state->start <= start && state->end > start &&
1206		    extent_state_in_tree(state)) {
1207			node = &state->rb_node;
1208			goto hit_next;
1209		}
1210	}
1211
1212	/*
1213	 * this search will find all the extents that end after
1214	 * our range starts.
1215	 */
1216	node = tree_search_for_insert(tree, start, &p, &parent);
1217	if (!node) {
1218		prealloc = alloc_extent_state_atomic(prealloc);
1219		if (!prealloc) {
1220			err = -ENOMEM;
1221			goto out;
1222		}
1223		err = insert_state(tree, prealloc, start, end,
1224				   &p, &parent, &bits, NULL);
1225		if (err)
1226			extent_io_tree_panic(tree, err);
1227		cache_state(prealloc, cached_state);
1228		prealloc = NULL;
1229		goto out;
1230	}
1231	state = rb_entry(node, struct extent_state, rb_node);
1232hit_next:
1233	last_start = state->start;
1234	last_end = state->end;
1235
1236	/*
1237	 * | ---- desired range ---- |
1238	 * | state |
1239	 *
1240	 * Just lock what we found and keep going
1241	 */
1242	if (state->start == start && state->end <= end) {
1243		set_state_bits(tree, state, &bits, NULL);
1244		cache_state(state, cached_state);
1245		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1246		if (last_end == (u64)-1)
1247			goto out;
1248		start = last_end + 1;
1249		if (start < end && state && state->start == start &&
1250		    !need_resched())
1251			goto hit_next;
1252		goto search_again;
1253	}
1254
1255	/*
1256	 *     | ---- desired range ---- |
1257	 * | state |
1258	 *   or
1259	 * | ------------- state -------------- |
1260	 *
1261	 * We need to split the extent we found, and may flip bits on
1262	 * second half.
1263	 *
1264	 * If the extent we found extends past our
1265	 * range, we just split and search again.  It'll get split
1266	 * again the next time though.
1267	 *
1268	 * If the extent we found is inside our range, we set the
1269	 * desired bit on it.
1270	 */
1271	if (state->start < start) {
1272		prealloc = alloc_extent_state_atomic(prealloc);
1273		if (!prealloc) {
1274			err = -ENOMEM;
1275			goto out;
1276		}
1277		err = split_state(tree, state, prealloc, start);
1278		if (err)
1279			extent_io_tree_panic(tree, err);
1280		prealloc = NULL;
1281		if (err)
1282			goto out;
1283		if (state->end <= end) {
1284			set_state_bits(tree, state, &bits, NULL);
1285			cache_state(state, cached_state);
1286			state = clear_state_bit(tree, state, &clear_bits, 0,
1287						NULL);
1288			if (last_end == (u64)-1)
1289				goto out;
1290			start = last_end + 1;
1291			if (start < end && state && state->start == start &&
1292			    !need_resched())
1293				goto hit_next;
1294		}
1295		goto search_again;
1296	}
1297	/*
1298	 * | ---- desired range ---- |
1299	 *     | state | or               | state |
1300	 *
1301	 * There's a hole, we need to insert something in it and
1302	 * ignore the extent we found.
1303	 */
1304	if (state->start > start) {
1305		u64 this_end;
1306		if (end < last_start)
1307			this_end = end;
1308		else
1309			this_end = last_start - 1;
1310
1311		prealloc = alloc_extent_state_atomic(prealloc);
1312		if (!prealloc) {
1313			err = -ENOMEM;
1314			goto out;
1315		}
1316
1317		/*
1318		 * Avoid to free 'prealloc' if it can be merged with
1319		 * the later extent.
1320		 */
1321		err = insert_state(tree, prealloc, start, this_end,
1322				   NULL, NULL, &bits, NULL);
1323		if (err)
1324			extent_io_tree_panic(tree, err);
1325		cache_state(prealloc, cached_state);
1326		prealloc = NULL;
1327		start = this_end + 1;
1328		goto search_again;
1329	}
1330	/*
1331	 * | ---- desired range ---- |
1332	 *                        | state |
1333	 * We need to split the extent, and set the bit
1334	 * on the first half
1335	 */
1336	if (state->start <= end && state->end > end) {
1337		prealloc = alloc_extent_state_atomic(prealloc);
1338		if (!prealloc) {
1339			err = -ENOMEM;
1340			goto out;
1341		}
1342
1343		err = split_state(tree, state, prealloc, end + 1);
1344		if (err)
1345			extent_io_tree_panic(tree, err);
1346
1347		set_state_bits(tree, prealloc, &bits, NULL);
1348		cache_state(prealloc, cached_state);
1349		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1350		prealloc = NULL;
1351		goto out;
1352	}
1353
1354search_again:
1355	if (start > end)
1356		goto out;
1357	spin_unlock(&tree->lock);
1358	cond_resched();
1359	first_iteration = false;
1360	goto again;
1361
1362out:
1363	spin_unlock(&tree->lock);
1364	if (prealloc)
1365		free_extent_state(prealloc);
1366
1367	return err;
1368}
1369
1370/* wrappers around set/clear extent bit */
1371int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1372			   unsigned bits, struct extent_changeset *changeset)
1373{
1374	/*
1375	 * We don't support EXTENT_LOCKED yet, as current changeset will
1376	 * record any bits changed, so for EXTENT_LOCKED case, it will
1377	 * either fail with -EEXIST or changeset will record the whole
1378	 * range.
1379	 */
1380	BUG_ON(bits & EXTENT_LOCKED);
1381
1382	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1383				changeset);
1384}
1385
1386int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1387			   unsigned bits)
1388{
1389	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1390				GFP_NOWAIT, NULL);
1391}
1392
1393int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1394		     unsigned bits, int wake, int delete,
1395		     struct extent_state **cached)
1396{
1397	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1398				  cached, GFP_NOFS, NULL);
1399}
1400
1401int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1402		unsigned bits, struct extent_changeset *changeset)
1403{
1404	/*
1405	 * Don't support EXTENT_LOCKED case, same reason as
1406	 * set_record_extent_bits().
1407	 */
1408	BUG_ON(bits & EXTENT_LOCKED);
1409
1410	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1411				  changeset);
1412}
1413
1414/*
1415 * either insert or lock state struct between start and end use mask to tell
1416 * us if waiting is desired.
1417 */
1418int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419		     struct extent_state **cached_state)
1420{
1421	int err;
1422	u64 failed_start;
1423
1424	while (1) {
1425		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1426				       EXTENT_LOCKED, &failed_start,
1427				       cached_state, GFP_NOFS, NULL);
1428		if (err == -EEXIST) {
1429			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1430			start = failed_start;
1431		} else
1432			break;
1433		WARN_ON(start > end);
1434	}
1435	return err;
1436}
1437
1438int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1439{
1440	int err;
1441	u64 failed_start;
1442
1443	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1444			       &failed_start, NULL, GFP_NOFS, NULL);
1445	if (err == -EEXIST) {
1446		if (failed_start > start)
1447			clear_extent_bit(tree, start, failed_start - 1,
1448					 EXTENT_LOCKED, 1, 0, NULL);
1449		return 0;
1450	}
1451	return 1;
1452}
1453
1454void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455{
1456	unsigned long index = start >> PAGE_SHIFT;
1457	unsigned long end_index = end >> PAGE_SHIFT;
1458	struct page *page;
1459
1460	while (index <= end_index) {
1461		page = find_get_page(inode->i_mapping, index);
1462		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463		clear_page_dirty_for_io(page);
1464		put_page(page);
1465		index++;
1466	}
1467}
1468
1469void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470{
1471	unsigned long index = start >> PAGE_SHIFT;
1472	unsigned long end_index = end >> PAGE_SHIFT;
1473	struct page *page;
1474
1475	while (index <= end_index) {
1476		page = find_get_page(inode->i_mapping, index);
1477		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478		__set_page_dirty_nobuffers(page);
1479		account_page_redirty(page);
1480		put_page(page);
1481		index++;
1482	}
1483}
1484
1485/* find the first state struct with 'bits' set after 'start', and
1486 * return it.  tree->lock must be held.  NULL will returned if
1487 * nothing was found after 'start'
1488 */
1489static struct extent_state *
1490find_first_extent_bit_state(struct extent_io_tree *tree,
1491			    u64 start, unsigned bits)
1492{
1493	struct rb_node *node;
1494	struct extent_state *state;
1495
1496	/*
1497	 * this search will find all the extents that end after
1498	 * our range starts.
1499	 */
1500	node = tree_search(tree, start);
1501	if (!node)
1502		goto out;
1503
1504	while (1) {
1505		state = rb_entry(node, struct extent_state, rb_node);
1506		if (state->end >= start && (state->state & bits))
1507			return state;
1508
1509		node = rb_next(node);
1510		if (!node)
1511			break;
1512	}
1513out:
1514	return NULL;
1515}
1516
1517/*
1518 * find the first offset in the io tree with 'bits' set. zero is
1519 * returned if we find something, and *start_ret and *end_ret are
1520 * set to reflect the state struct that was found.
1521 *
1522 * If nothing was found, 1 is returned. If found something, return 0.
 
1523 */
1524int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1525			  u64 *start_ret, u64 *end_ret, unsigned bits,
1526			  struct extent_state **cached_state)
1527{
1528	struct extent_state *state;
1529	int ret = 1;
1530
1531	spin_lock(&tree->lock);
1532	if (cached_state && *cached_state) {
1533		state = *cached_state;
1534		if (state->end == start - 1 && extent_state_in_tree(state)) {
1535			while ((state = next_state(state)) != NULL) {
1536				if (state->state & bits)
1537					goto got_it;
1538			}
1539			free_extent_state(*cached_state);
1540			*cached_state = NULL;
1541			goto out;
1542		}
1543		free_extent_state(*cached_state);
1544		*cached_state = NULL;
1545	}
1546
1547	state = find_first_extent_bit_state(tree, start, bits);
1548got_it:
1549	if (state) {
1550		cache_state_if_flags(state, cached_state, 0);
1551		*start_ret = state->start;
1552		*end_ret = state->end;
1553		ret = 0;
1554	}
1555out:
1556	spin_unlock(&tree->lock);
1557	return ret;
1558}
1559
1560/**
1561 * find_first_clear_extent_bit - find the first range that has @bits not set.
1562 * This range could start before @start.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563 *
1564 * @tree - the tree to search
1565 * @start - the offset at/after which the found extent should start
1566 * @start_ret - records the beginning of the range
1567 * @end_ret - records the end of the range (inclusive)
1568 * @bits - the set of bits which must be unset
1569 *
1570 * Since unallocated range is also considered one which doesn't have the bits
1571 * set it's possible that @end_ret contains -1, this happens in case the range
1572 * spans (last_range_end, end of device]. In this case it's up to the caller to
1573 * trim @end_ret to the appropriate size.
1574 */
1575void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1576				 u64 *start_ret, u64 *end_ret, unsigned bits)
1577{
1578	struct extent_state *state;
1579	struct rb_node *node, *prev = NULL, *next;
1580
1581	spin_lock(&tree->lock);
1582
1583	/* Find first extent with bits cleared */
1584	while (1) {
1585		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1586		if (!node) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587			node = next;
1588			if (!node) {
1589				/*
1590				 * We are past the last allocated chunk,
1591				 * set start at the end of the last extent. The
1592				 * device alloc tree should never be empty so
1593				 * prev is always set.
1594				 */
1595				ASSERT(prev);
1596				state = rb_entry(prev, struct extent_state, rb_node);
1597				*start_ret = state->end + 1;
1598				*end_ret = -1;
1599				goto out;
1600			}
1601		}
1602		/*
1603		 * At this point 'node' either contains 'start' or start is
1604		 * before 'node'
1605		 */
1606		state = rb_entry(node, struct extent_state, rb_node);
1607
1608		if (in_range(start, state->start, state->end - state->start + 1)) {
1609			if (state->state & bits) {
1610				/*
1611				 * |--range with bits sets--|
1612				 *    |
1613				 *    start
1614				 */
1615				start = state->end + 1;
1616			} else {
1617				/*
1618				 * 'start' falls within a range that doesn't
1619				 * have the bits set, so take its start as
1620				 * the beginning of the desired range
1621				 *
1622				 * |--range with bits cleared----|
1623				 *      |
1624				 *      start
1625				 */
1626				*start_ret = state->start;
1627				break;
1628			}
1629		} else {
1630			/*
1631			 * |---prev range---|---hole/unset---|---node range---|
1632			 *                          |
1633			 *                        start
1634			 *
1635			 *                        or
1636			 *
1637			 * |---hole/unset--||--first node--|
1638			 * 0   |
1639			 *    start
1640			 */
1641			if (prev) {
1642				state = rb_entry(prev, struct extent_state,
1643						 rb_node);
1644				*start_ret = state->end + 1;
1645			} else {
1646				*start_ret = 0;
1647			}
1648			break;
1649		}
1650	}
1651
1652	/*
1653	 * Find the longest stretch from start until an entry which has the
1654	 * bits set
1655	 */
1656	while (1) {
1657		state = rb_entry(node, struct extent_state, rb_node);
1658		if (state->end >= start && !(state->state & bits)) {
1659			*end_ret = state->end;
1660		} else {
1661			*end_ret = state->start - 1;
1662			break;
1663		}
1664
1665		node = rb_next(node);
1666		if (!node)
1667			break;
1668	}
1669out:
1670	spin_unlock(&tree->lock);
1671}
1672
1673/*
1674 * find a contiguous range of bytes in the file marked as delalloc, not
1675 * more than 'max_bytes'.  start and end are used to return the range,
1676 *
1677 * true is returned if we find something, false if nothing was in the tree
1678 */
1679static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1680					u64 *start, u64 *end, u64 max_bytes,
1681					struct extent_state **cached_state)
1682{
1683	struct rb_node *node;
1684	struct extent_state *state;
1685	u64 cur_start = *start;
1686	bool found = false;
1687	u64 total_bytes = 0;
1688
1689	spin_lock(&tree->lock);
1690
1691	/*
1692	 * this search will find all the extents that end after
1693	 * our range starts.
1694	 */
1695	node = tree_search(tree, cur_start);
1696	if (!node) {
1697		*end = (u64)-1;
1698		goto out;
1699	}
1700
1701	while (1) {
1702		state = rb_entry(node, struct extent_state, rb_node);
1703		if (found && (state->start != cur_start ||
1704			      (state->state & EXTENT_BOUNDARY))) {
1705			goto out;
1706		}
1707		if (!(state->state & EXTENT_DELALLOC)) {
1708			if (!found)
1709				*end = state->end;
1710			goto out;
1711		}
1712		if (!found) {
1713			*start = state->start;
1714			*cached_state = state;
1715			refcount_inc(&state->refs);
1716		}
1717		found = true;
1718		*end = state->end;
1719		cur_start = state->end + 1;
1720		node = rb_next(node);
1721		total_bytes += state->end - state->start + 1;
1722		if (total_bytes >= max_bytes)
1723			break;
1724		if (!node)
1725			break;
1726	}
1727out:
1728	spin_unlock(&tree->lock);
1729	return found;
1730}
1731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732static int __process_pages_contig(struct address_space *mapping,
1733				  struct page *locked_page,
1734				  pgoff_t start_index, pgoff_t end_index,
1735				  unsigned long page_ops, pgoff_t *index_ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736
1737static noinline void __unlock_for_delalloc(struct inode *inode,
1738					   struct page *locked_page,
1739					   u64 start, u64 end)
1740{
1741	unsigned long index = start >> PAGE_SHIFT;
1742	unsigned long end_index = end >> PAGE_SHIFT;
1743
1744	ASSERT(locked_page);
1745	if (index == locked_page->index && end_index == index)
1746		return;
1747
1748	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1749			       PAGE_UNLOCK, NULL);
1750}
1751
1752static noinline int lock_delalloc_pages(struct inode *inode,
1753					struct page *locked_page,
1754					u64 delalloc_start,
1755					u64 delalloc_end)
1756{
1757	unsigned long index = delalloc_start >> PAGE_SHIFT;
1758	unsigned long index_ret = index;
1759	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
 
1760	int ret;
1761
1762	ASSERT(locked_page);
1763	if (index == locked_page->index && index == end_index)
1764		return 0;
1765
1766	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1767				     end_index, PAGE_LOCK, &index_ret);
1768	if (ret == -EAGAIN)
1769		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1770				      (u64)index_ret << PAGE_SHIFT);
1771	return ret;
1772}
1773
1774/*
1775 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1776 * more than @max_bytes.  @Start and @end are used to return the range,
1777 *
1778 * Return: true if we find something
1779 *         false if nothing was in the tree
1780 */
1781EXPORT_FOR_TESTS
1782noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1783				    struct page *locked_page, u64 *start,
1784				    u64 *end)
1785{
1786	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1787	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1788	u64 delalloc_start;
1789	u64 delalloc_end;
1790	bool found;
1791	struct extent_state *cached_state = NULL;
1792	int ret;
1793	int loops = 0;
1794
1795again:
1796	/* step one, find a bunch of delalloc bytes starting at start */
1797	delalloc_start = *start;
1798	delalloc_end = 0;
1799	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1800				    max_bytes, &cached_state);
1801	if (!found || delalloc_end <= *start) {
1802		*start = delalloc_start;
1803		*end = delalloc_end;
1804		free_extent_state(cached_state);
1805		return false;
1806	}
1807
1808	/*
1809	 * start comes from the offset of locked_page.  We have to lock
1810	 * pages in order, so we can't process delalloc bytes before
1811	 * locked_page
1812	 */
1813	if (delalloc_start < *start)
1814		delalloc_start = *start;
1815
1816	/*
1817	 * make sure to limit the number of pages we try to lock down
1818	 */
1819	if (delalloc_end + 1 - delalloc_start > max_bytes)
1820		delalloc_end = delalloc_start + max_bytes - 1;
1821
1822	/* step two, lock all the pages after the page that has start */
1823	ret = lock_delalloc_pages(inode, locked_page,
1824				  delalloc_start, delalloc_end);
1825	ASSERT(!ret || ret == -EAGAIN);
1826	if (ret == -EAGAIN) {
1827		/* some of the pages are gone, lets avoid looping by
1828		 * shortening the size of the delalloc range we're searching
1829		 */
1830		free_extent_state(cached_state);
1831		cached_state = NULL;
1832		if (!loops) {
1833			max_bytes = PAGE_SIZE;
1834			loops = 1;
1835			goto again;
1836		} else {
1837			found = false;
1838			goto out_failed;
1839		}
1840	}
1841
1842	/* step three, lock the state bits for the whole range */
1843	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1844
1845	/* then test to make sure it is all still delalloc */
1846	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1847			     EXTENT_DELALLOC, 1, cached_state);
1848	if (!ret) {
1849		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1850				     &cached_state);
1851		__unlock_for_delalloc(inode, locked_page,
1852			      delalloc_start, delalloc_end);
1853		cond_resched();
1854		goto again;
1855	}
1856	free_extent_state(cached_state);
1857	*start = delalloc_start;
1858	*end = delalloc_end;
1859out_failed:
1860	return found;
1861}
1862
1863static int __process_pages_contig(struct address_space *mapping,
1864				  struct page *locked_page,
1865				  pgoff_t start_index, pgoff_t end_index,
1866				  unsigned long page_ops, pgoff_t *index_ret)
1867{
1868	unsigned long nr_pages = end_index - start_index + 1;
1869	unsigned long pages_locked = 0;
1870	pgoff_t index = start_index;
1871	struct page *pages[16];
1872	unsigned ret;
1873	int err = 0;
1874	int i;
1875
1876	if (page_ops & PAGE_LOCK) {
1877		ASSERT(page_ops == PAGE_LOCK);
1878		ASSERT(index_ret && *index_ret == start_index);
1879	}
1880
1881	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882		mapping_set_error(mapping, -EIO);
1883
1884	while (nr_pages > 0) {
1885		ret = find_get_pages_contig(mapping, index,
1886				     min_t(unsigned long,
1887				     nr_pages, ARRAY_SIZE(pages)), pages);
1888		if (ret == 0) {
1889			/*
1890			 * Only if we're going to lock these pages,
1891			 * can we find nothing at @index.
1892			 */
1893			ASSERT(page_ops & PAGE_LOCK);
1894			err = -EAGAIN;
1895			goto out;
1896		}
1897
1898		for (i = 0; i < ret; i++) {
1899			if (page_ops & PAGE_SET_PRIVATE2)
1900				SetPagePrivate2(pages[i]);
1901
1902			if (pages[i] == locked_page) {
1903				put_page(pages[i]);
1904				pages_locked++;
1905				continue;
1906			}
1907			if (page_ops & PAGE_CLEAR_DIRTY)
1908				clear_page_dirty_for_io(pages[i]);
1909			if (page_ops & PAGE_SET_WRITEBACK)
1910				set_page_writeback(pages[i]);
1911			if (page_ops & PAGE_SET_ERROR)
1912				SetPageError(pages[i]);
1913			if (page_ops & PAGE_END_WRITEBACK)
1914				end_page_writeback(pages[i]);
1915			if (page_ops & PAGE_UNLOCK)
1916				unlock_page(pages[i]);
1917			if (page_ops & PAGE_LOCK) {
1918				lock_page(pages[i]);
1919				if (!PageDirty(pages[i]) ||
1920				    pages[i]->mapping != mapping) {
1921					unlock_page(pages[i]);
1922					put_page(pages[i]);
1923					err = -EAGAIN;
1924					goto out;
1925				}
1926			}
1927			put_page(pages[i]);
1928			pages_locked++;
1929		}
1930		nr_pages -= ret;
1931		index += ret;
1932		cond_resched();
1933	}
1934out:
1935	if (err && index_ret)
1936		*index_ret = start_index + pages_locked - 1;
1937	return err;
1938}
1939
1940void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1941				  struct page *locked_page,
1942				  unsigned clear_bits,
1943				  unsigned long page_ops)
1944{
1945	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1946			 NULL);
1947
1948	__process_pages_contig(inode->i_mapping, locked_page,
1949			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1950			       page_ops, NULL);
1951}
1952
1953/*
1954 * count the number of bytes in the tree that have a given bit(s)
1955 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1956 * cached.  The total number found is returned.
1957 */
1958u64 count_range_bits(struct extent_io_tree *tree,
1959		     u64 *start, u64 search_end, u64 max_bytes,
1960		     unsigned bits, int contig)
1961{
1962	struct rb_node *node;
1963	struct extent_state *state;
1964	u64 cur_start = *start;
1965	u64 total_bytes = 0;
1966	u64 last = 0;
1967	int found = 0;
1968
1969	if (WARN_ON(search_end <= cur_start))
1970		return 0;
1971
1972	spin_lock(&tree->lock);
1973	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1974		total_bytes = tree->dirty_bytes;
1975		goto out;
1976	}
1977	/*
1978	 * this search will find all the extents that end after
1979	 * our range starts.
1980	 */
1981	node = tree_search(tree, cur_start);
1982	if (!node)
1983		goto out;
1984
1985	while (1) {
1986		state = rb_entry(node, struct extent_state, rb_node);
1987		if (state->start > search_end)
1988			break;
1989		if (contig && found && state->start > last + 1)
1990			break;
1991		if (state->end >= cur_start && (state->state & bits) == bits) {
1992			total_bytes += min(search_end, state->end) + 1 -
1993				       max(cur_start, state->start);
1994			if (total_bytes >= max_bytes)
1995				break;
1996			if (!found) {
1997				*start = max(cur_start, state->start);
1998				found = 1;
1999			}
2000			last = state->end;
2001		} else if (contig && found) {
2002			break;
2003		}
2004		node = rb_next(node);
2005		if (!node)
2006			break;
2007	}
2008out:
2009	spin_unlock(&tree->lock);
2010	return total_bytes;
2011}
2012
2013/*
2014 * set the private field for a given byte offset in the tree.  If there isn't
2015 * an extent_state there already, this does nothing.
2016 */
2017static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
2018		struct io_failure_record *failrec)
2019{
2020	struct rb_node *node;
2021	struct extent_state *state;
2022	int ret = 0;
2023
2024	spin_lock(&tree->lock);
2025	/*
2026	 * this search will find all the extents that end after
2027	 * our range starts.
2028	 */
2029	node = tree_search(tree, start);
2030	if (!node) {
2031		ret = -ENOENT;
2032		goto out;
2033	}
2034	state = rb_entry(node, struct extent_state, rb_node);
2035	if (state->start != start) {
2036		ret = -ENOENT;
2037		goto out;
2038	}
2039	state->failrec = failrec;
2040out:
2041	spin_unlock(&tree->lock);
2042	return ret;
2043}
2044
2045static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
2046		struct io_failure_record **failrec)
2047{
2048	struct rb_node *node;
2049	struct extent_state *state;
2050	int ret = 0;
2051
2052	spin_lock(&tree->lock);
2053	/*
2054	 * this search will find all the extents that end after
2055	 * our range starts.
2056	 */
2057	node = tree_search(tree, start);
2058	if (!node) {
2059		ret = -ENOENT;
2060		goto out;
2061	}
2062	state = rb_entry(node, struct extent_state, rb_node);
2063	if (state->start != start) {
2064		ret = -ENOENT;
2065		goto out;
2066	}
2067	*failrec = state->failrec;
 
2068out:
2069	spin_unlock(&tree->lock);
2070	return ret;
2071}
2072
2073/*
2074 * searches a range in the state tree for a given mask.
2075 * If 'filled' == 1, this returns 1 only if every extent in the tree
2076 * has the bits set.  Otherwise, 1 is returned if any bit in the
2077 * range is found set.
2078 */
2079int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2080		   unsigned bits, int filled, struct extent_state *cached)
2081{
2082	struct extent_state *state = NULL;
2083	struct rb_node *node;
2084	int bitset = 0;
2085
2086	spin_lock(&tree->lock);
2087	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2088	    cached->end > start)
2089		node = &cached->rb_node;
2090	else
2091		node = tree_search(tree, start);
2092	while (node && start <= end) {
2093		state = rb_entry(node, struct extent_state, rb_node);
2094
2095		if (filled && state->start > start) {
2096			bitset = 0;
2097			break;
2098		}
2099
2100		if (state->start > end)
2101			break;
2102
2103		if (state->state & bits) {
2104			bitset = 1;
2105			if (!filled)
2106				break;
2107		} else if (filled) {
2108			bitset = 0;
2109			break;
2110		}
2111
2112		if (state->end == (u64)-1)
2113			break;
2114
2115		start = state->end + 1;
2116		if (start > end)
2117			break;
2118		node = rb_next(node);
2119		if (!node) {
2120			if (filled)
2121				bitset = 0;
2122			break;
2123		}
2124	}
2125	spin_unlock(&tree->lock);
2126	return bitset;
2127}
2128
2129/*
2130 * helper function to set a given page up to date if all the
2131 * extents in the tree for that page are up to date
2132 */
2133static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2134{
2135	u64 start = page_offset(page);
2136	u64 end = start + PAGE_SIZE - 1;
2137	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2138		SetPageUptodate(page);
2139}
2140
2141int free_io_failure(struct extent_io_tree *failure_tree,
2142		    struct extent_io_tree *io_tree,
2143		    struct io_failure_record *rec)
2144{
2145	int ret;
2146	int err = 0;
2147
2148	set_state_failrec(failure_tree, rec->start, NULL);
2149	ret = clear_extent_bits(failure_tree, rec->start,
2150				rec->start + rec->len - 1,
2151				EXTENT_LOCKED | EXTENT_DIRTY);
2152	if (ret)
2153		err = ret;
2154
2155	ret = clear_extent_bits(io_tree, rec->start,
2156				rec->start + rec->len - 1,
2157				EXTENT_DAMAGED);
2158	if (ret && !err)
2159		err = ret;
2160
2161	kfree(rec);
2162	return err;
2163}
2164
2165/*
2166 * this bypasses the standard btrfs submit functions deliberately, as
2167 * the standard behavior is to write all copies in a raid setup. here we only
2168 * want to write the one bad copy. so we do the mapping for ourselves and issue
2169 * submit_bio directly.
2170 * to avoid any synchronization issues, wait for the data after writing, which
2171 * actually prevents the read that triggered the error from finishing.
2172 * currently, there can be no more than two copies of every data bit. thus,
2173 * exactly one rewrite is required.
2174 */
2175int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2176		      u64 length, u64 logical, struct page *page,
2177		      unsigned int pg_offset, int mirror_num)
2178{
2179	struct bio *bio;
2180	struct btrfs_device *dev;
2181	u64 map_length = 0;
2182	u64 sector;
2183	struct btrfs_bio *bbio = NULL;
2184	int ret;
2185
2186	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2187	BUG_ON(!mirror_num);
2188
 
 
 
2189	bio = btrfs_io_bio_alloc(1);
2190	bio->bi_iter.bi_size = 0;
2191	map_length = length;
2192
2193	/*
2194	 * Avoid races with device replace and make sure our bbio has devices
2195	 * associated to its stripes that don't go away while we are doing the
2196	 * read repair operation.
2197	 */
2198	btrfs_bio_counter_inc_blocked(fs_info);
2199	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2200		/*
2201		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2202		 * to update all raid stripes, but here we just want to correct
2203		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2204		 * stripe's dev and sector.
2205		 */
2206		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2207				      &map_length, &bbio, 0);
2208		if (ret) {
2209			btrfs_bio_counter_dec(fs_info);
2210			bio_put(bio);
2211			return -EIO;
2212		}
2213		ASSERT(bbio->mirror_num == 1);
2214	} else {
2215		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2216				      &map_length, &bbio, mirror_num);
2217		if (ret) {
2218			btrfs_bio_counter_dec(fs_info);
2219			bio_put(bio);
2220			return -EIO;
2221		}
2222		BUG_ON(mirror_num != bbio->mirror_num);
2223	}
2224
2225	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2226	bio->bi_iter.bi_sector = sector;
2227	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2228	btrfs_put_bbio(bbio);
2229	if (!dev || !dev->bdev ||
2230	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2231		btrfs_bio_counter_dec(fs_info);
2232		bio_put(bio);
2233		return -EIO;
2234	}
2235	bio_set_dev(bio, dev->bdev);
2236	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2237	bio_add_page(bio, page, length, pg_offset);
2238
2239	if (btrfsic_submit_bio_wait(bio)) {
2240		/* try to remap that extent elsewhere? */
2241		btrfs_bio_counter_dec(fs_info);
2242		bio_put(bio);
2243		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2244		return -EIO;
2245	}
2246
2247	btrfs_info_rl_in_rcu(fs_info,
2248		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2249				  ino, start,
2250				  rcu_str_deref(dev->name), sector);
2251	btrfs_bio_counter_dec(fs_info);
2252	bio_put(bio);
2253	return 0;
2254}
2255
2256int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2257{
2258	struct btrfs_fs_info *fs_info = eb->fs_info;
2259	u64 start = eb->start;
2260	int i, num_pages = num_extent_pages(eb);
2261	int ret = 0;
2262
2263	if (sb_rdonly(fs_info->sb))
2264		return -EROFS;
2265
2266	for (i = 0; i < num_pages; i++) {
2267		struct page *p = eb->pages[i];
2268
2269		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2270					start - page_offset(p), mirror_num);
2271		if (ret)
2272			break;
2273		start += PAGE_SIZE;
2274	}
2275
2276	return ret;
2277}
2278
2279/*
2280 * each time an IO finishes, we do a fast check in the IO failure tree
2281 * to see if we need to process or clean up an io_failure_record
2282 */
2283int clean_io_failure(struct btrfs_fs_info *fs_info,
2284		     struct extent_io_tree *failure_tree,
2285		     struct extent_io_tree *io_tree, u64 start,
2286		     struct page *page, u64 ino, unsigned int pg_offset)
2287{
2288	u64 private;
2289	struct io_failure_record *failrec;
2290	struct extent_state *state;
2291	int num_copies;
2292	int ret;
2293
2294	private = 0;
2295	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2296			       EXTENT_DIRTY, 0);
2297	if (!ret)
2298		return 0;
2299
2300	ret = get_state_failrec(failure_tree, start, &failrec);
2301	if (ret)
2302		return 0;
2303
2304	BUG_ON(!failrec->this_mirror);
2305
2306	if (failrec->in_validation) {
2307		/* there was no real error, just free the record */
2308		btrfs_debug(fs_info,
2309			"clean_io_failure: freeing dummy error at %llu",
2310			failrec->start);
2311		goto out;
2312	}
2313	if (sb_rdonly(fs_info->sb))
2314		goto out;
2315
2316	spin_lock(&io_tree->lock);
2317	state = find_first_extent_bit_state(io_tree,
2318					    failrec->start,
2319					    EXTENT_LOCKED);
2320	spin_unlock(&io_tree->lock);
2321
2322	if (state && state->start <= failrec->start &&
2323	    state->end >= failrec->start + failrec->len - 1) {
2324		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2325					      failrec->len);
2326		if (num_copies > 1)  {
2327			repair_io_failure(fs_info, ino, start, failrec->len,
2328					  failrec->logical, page, pg_offset,
2329					  failrec->failed_mirror);
2330		}
2331	}
2332
2333out:
2334	free_io_failure(failure_tree, io_tree, failrec);
2335
2336	return 0;
2337}
2338
2339/*
2340 * Can be called when
2341 * - hold extent lock
2342 * - under ordered extent
2343 * - the inode is freeing
2344 */
2345void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2346{
2347	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2348	struct io_failure_record *failrec;
2349	struct extent_state *state, *next;
2350
2351	if (RB_EMPTY_ROOT(&failure_tree->state))
2352		return;
2353
2354	spin_lock(&failure_tree->lock);
2355	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2356	while (state) {
2357		if (state->start > end)
2358			break;
2359
2360		ASSERT(state->end <= end);
2361
2362		next = next_state(state);
2363
2364		failrec = state->failrec;
2365		free_extent_state(state);
2366		kfree(failrec);
2367
2368		state = next;
2369	}
2370	spin_unlock(&failure_tree->lock);
2371}
2372
2373int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2374		struct io_failure_record **failrec_ret)
2375{
2376	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377	struct io_failure_record *failrec;
2378	struct extent_map *em;
2379	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2381	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 
2382	int ret;
2383	u64 logical;
2384
2385	ret = get_state_failrec(failure_tree, start, &failrec);
2386	if (ret) {
2387		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2388		if (!failrec)
2389			return -ENOMEM;
 
 
 
 
 
2390
2391		failrec->start = start;
2392		failrec->len = end - start + 1;
2393		failrec->this_mirror = 0;
2394		failrec->bio_flags = 0;
2395		failrec->in_validation = 0;
2396
2397		read_lock(&em_tree->lock);
2398		em = lookup_extent_mapping(em_tree, start, failrec->len);
2399		if (!em) {
2400			read_unlock(&em_tree->lock);
2401			kfree(failrec);
2402			return -EIO;
2403		}
2404
2405		if (em->start > start || em->start + em->len <= start) {
2406			free_extent_map(em);
2407			em = NULL;
2408		}
 
 
 
 
2409		read_unlock(&em_tree->lock);
2410		if (!em) {
2411			kfree(failrec);
2412			return -EIO;
2413		}
2414
2415		logical = start - em->start;
2416		logical = em->block_start + logical;
2417		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2418			logical = em->block_start;
2419			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2420			extent_set_compress_type(&failrec->bio_flags,
2421						 em->compress_type);
2422		}
2423
2424		btrfs_debug(fs_info,
2425			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2426			logical, start, failrec->len);
2427
2428		failrec->logical = logical;
2429		free_extent_map(em);
 
 
 
 
 
 
 
2430
2431		/* set the bits in the private failure tree */
2432		ret = set_extent_bits(failure_tree, start, end,
2433					EXTENT_LOCKED | EXTENT_DIRTY);
2434		if (ret >= 0)
2435			ret = set_state_failrec(failure_tree, start, failrec);
2436		/* set the bits in the inode's tree */
2437		if (ret >= 0)
2438			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2439		if (ret < 0) {
2440			kfree(failrec);
2441			return ret;
2442		}
2443	} else {
2444		btrfs_debug(fs_info,
2445			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2446			failrec->logical, failrec->start, failrec->len,
2447			failrec->in_validation);
2448		/*
2449		 * when data can be on disk more than twice, add to failrec here
2450		 * (e.g. with a list for failed_mirror) to make
2451		 * clean_io_failure() clean all those errors at once.
2452		 */
2453	}
2454
2455	*failrec_ret = failrec;
 
 
2456
2457	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458}
2459
2460bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2461			   struct io_failure_record *failrec, int failed_mirror)
 
2462{
2463	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2464	int num_copies;
2465
2466	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2467	if (num_copies == 1) {
2468		/*
2469		 * we only have a single copy of the data, so don't bother with
2470		 * all the retry and error correction code that follows. no
2471		 * matter what the error is, it is very likely to persist.
2472		 */
2473		btrfs_debug(fs_info,
2474			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2475			num_copies, failrec->this_mirror, failed_mirror);
2476		return false;
2477	}
2478
 
 
 
2479	/*
2480	 * there are two premises:
2481	 *	a) deliver good data to the caller
2482	 *	b) correct the bad sectors on disk
2483	 */
2484	if (failed_bio_pages > 1) {
2485		/*
2486		 * to fulfill b), we need to know the exact failing sectors, as
2487		 * we don't want to rewrite any more than the failed ones. thus,
2488		 * we need separate read requests for the failed bio
2489		 *
2490		 * if the following BUG_ON triggers, our validation request got
2491		 * merged. we need separate requests for our algorithm to work.
2492		 */
2493		BUG_ON(failrec->in_validation);
2494		failrec->in_validation = 1;
2495		failrec->this_mirror = failed_mirror;
2496	} else {
2497		/*
2498		 * we're ready to fulfill a) and b) alongside. get a good copy
2499		 * of the failed sector and if we succeed, we have setup
2500		 * everything for repair_io_failure to do the rest for us.
2501		 */
2502		if (failrec->in_validation) {
2503			BUG_ON(failrec->this_mirror != failed_mirror);
2504			failrec->in_validation = 0;
2505			failrec->this_mirror = 0;
2506		}
2507		failrec->failed_mirror = failed_mirror;
2508		failrec->this_mirror++;
2509		if (failrec->this_mirror == failed_mirror)
2510			failrec->this_mirror++;
2511	}
2512
2513	if (failrec->this_mirror > num_copies) {
2514		btrfs_debug(fs_info,
2515			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2516			num_copies, failrec->this_mirror, failed_mirror);
2517		return false;
2518	}
2519
2520	return true;
2521}
2522
2523
2524struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2525				    struct io_failure_record *failrec,
2526				    struct page *page, int pg_offset, int icsum,
2527				    bio_end_io_t *endio_func, void *data)
2528{
2529	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530	struct bio *bio;
2531	struct btrfs_io_bio *btrfs_failed_bio;
2532	struct btrfs_io_bio *btrfs_bio;
2533
2534	bio = btrfs_io_bio_alloc(1);
2535	bio->bi_end_io = endio_func;
2536	bio->bi_iter.bi_sector = failrec->logical >> 9;
2537	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2538	bio->bi_iter.bi_size = 0;
2539	bio->bi_private = data;
2540
2541	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2542	if (btrfs_failed_bio->csum) {
2543		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2544
2545		btrfs_bio = btrfs_io_bio(bio);
2546		btrfs_bio->csum = btrfs_bio->csum_inline;
2547		icsum *= csum_size;
2548		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2549		       csum_size);
2550	}
2551
2552	bio_add_page(bio, page, failrec->len, pg_offset);
2553
2554	return bio;
2555}
2556
2557/*
2558 * This is a generic handler for readpage errors. If other copies exist, read
2559 * those and write back good data to the failed position. Does not investigate
2560 * in remapping the failed extent elsewhere, hoping the device will be smart
2561 * enough to do this as needed
2562 */
2563static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2564			      struct page *page, u64 start, u64 end,
2565			      int failed_mirror)
2566{
2567	struct io_failure_record *failrec;
2568	struct inode *inode = page->mapping->host;
2569	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2570	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2571	struct bio *bio;
2572	int read_mode = 0;
 
 
2573	blk_status_t status;
2574	int ret;
2575	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
 
2576
2577	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2578
2579	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2580	if (ret)
2581		return ret;
 
2582
2583	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2584				    failed_mirror)) {
2585		free_io_failure(failure_tree, tree, failrec);
2586		return -EIO;
2587	}
2588
2589	if (failed_bio_pages > 1)
2590		read_mode |= REQ_FAILFAST_DEV;
2591
2592	phy_offset >>= inode->i_sb->s_blocksize_bits;
2593	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2594				      start - page_offset(page),
2595				      (int)phy_offset, failed_bio->bi_end_io,
2596				      NULL);
2597	bio->bi_opf = REQ_OP_READ | read_mode;
 
 
 
 
 
 
 
 
 
2598
2599	btrfs_debug(btrfs_sb(inode->i_sb),
2600		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2601		read_mode, failrec->this_mirror, failrec->in_validation);
2602
2603	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2604					 failrec->bio_flags);
2605	if (status) {
2606		free_io_failure(failure_tree, tree, failrec);
2607		bio_put(bio);
2608		ret = blk_status_to_errno(status);
2609	}
 
 
2610
2611	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2612}
2613
2614/* lots and lots of room for performance fixes in the end_bio funcs */
2615
2616void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2617{
 
2618	int uptodate = (err == 0);
2619	int ret = 0;
2620
2621	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
 
 
2622
2623	if (!uptodate) {
2624		ClearPageUptodate(page);
2625		SetPageError(page);
2626		ret = err < 0 ? err : -EIO;
2627		mapping_set_error(page->mapping, ret);
2628	}
2629}
2630
2631/*
2632 * after a writepage IO is done, we need to:
2633 * clear the uptodate bits on error
2634 * clear the writeback bits in the extent tree for this IO
2635 * end_page_writeback if the page has no more pending IO
2636 *
2637 * Scheduling is not allowed, so the extent state tree is expected
2638 * to have one and only one object corresponding to this IO.
2639 */
2640static void end_bio_extent_writepage(struct bio *bio)
2641{
2642	int error = blk_status_to_errno(bio->bi_status);
2643	struct bio_vec *bvec;
2644	u64 start;
2645	u64 end;
2646	struct bvec_iter_all iter_all;
 
2647
2648	ASSERT(!bio_flagged(bio, BIO_CLONED));
2649	bio_for_each_segment_all(bvec, bio, iter_all) {
2650		struct page *page = bvec->bv_page;
2651		struct inode *inode = page->mapping->host;
2652		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
2653
2654		/* We always issue full-page reads, but if some block
2655		 * in a page fails to read, blk_update_request() will
2656		 * advance bv_offset and adjust bv_len to compensate.
2657		 * Print a warning for nonzero offsets, and an error
2658		 * if they don't add up to a full page.  */
2659		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2660			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2661				btrfs_err(fs_info,
2662				   "partial page write in btrfs with offset %u and length %u",
2663					bvec->bv_offset, bvec->bv_len);
2664			else
2665				btrfs_info(fs_info,
2666				   "incomplete page write in btrfs with offset %u and length %u",
2667					bvec->bv_offset, bvec->bv_len);
 
 
2668		}
2669
2670		start = page_offset(page);
2671		end = start + bvec->bv_offset + bvec->bv_len - 1;
2672
2673		end_extent_writepage(page, error, start, end);
2674		end_page_writeback(page);
 
2675	}
2676
2677	bio_put(bio);
2678}
2679
2680static void
2681endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2682			      int uptodate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683{
2684	struct extent_state *cached = NULL;
2685	u64 end = start + len - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686
2687	if (uptodate && tree->track_uptodate)
2688		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2689	unlock_extent_cached_atomic(tree, start, end, &cached);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690}
2691
2692/*
2693 * after a readpage IO is done, we need to:
2694 * clear the uptodate bits on error
2695 * set the uptodate bits if things worked
2696 * set the page up to date if all extents in the tree are uptodate
2697 * clear the lock bit in the extent tree
2698 * unlock the page if there are no other extents locked for it
2699 *
2700 * Scheduling is not allowed, so the extent state tree is expected
2701 * to have one and only one object corresponding to this IO.
2702 */
2703static void end_bio_extent_readpage(struct bio *bio)
2704{
2705	struct bio_vec *bvec;
2706	int uptodate = !bio->bi_status;
2707	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2708	struct extent_io_tree *tree, *failure_tree;
2709	u64 offset = 0;
2710	u64 start;
2711	u64 end;
2712	u64 len;
2713	u64 extent_start = 0;
2714	u64 extent_len = 0;
2715	int mirror;
2716	int ret;
2717	struct bvec_iter_all iter_all;
2718
2719	ASSERT(!bio_flagged(bio, BIO_CLONED));
2720	bio_for_each_segment_all(bvec, bio, iter_all) {
 
2721		struct page *page = bvec->bv_page;
2722		struct inode *inode = page->mapping->host;
2723		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2724		bool data_inode = btrfs_ino(BTRFS_I(inode))
2725			!= BTRFS_BTREE_INODE_OBJECTID;
 
 
 
2726
2727		btrfs_debug(fs_info,
2728			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2729			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2730			io_bio->mirror_num);
2731		tree = &BTRFS_I(inode)->io_tree;
2732		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2733
2734		/* We always issue full-page reads, but if some block
2735		 * in a page fails to read, blk_update_request() will
2736		 * advance bv_offset and adjust bv_len to compensate.
2737		 * Print a warning for nonzero offsets, and an error
2738		 * if they don't add up to a full page.  */
2739		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2740			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2741				btrfs_err(fs_info,
2742					"partial page read in btrfs with offset %u and length %u",
2743					bvec->bv_offset, bvec->bv_len);
2744			else
2745				btrfs_info(fs_info,
2746					"incomplete page read in btrfs with offset %u and length %u",
2747					bvec->bv_offset, bvec->bv_len);
2748		}
 
2749
2750		start = page_offset(page);
2751		end = start + bvec->bv_offset + bvec->bv_len - 1;
2752		len = bvec->bv_len;
2753
2754		mirror = io_bio->mirror_num;
2755		if (likely(uptodate)) {
2756			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2757							      page, start, end,
2758							      mirror);
 
 
 
 
 
2759			if (ret)
2760				uptodate = 0;
2761			else
2762				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2763						 failure_tree, tree, start,
2764						 page,
2765						 btrfs_ino(BTRFS_I(inode)), 0);
2766		}
2767
2768		if (likely(uptodate))
2769			goto readpage_ok;
2770
2771		if (data_inode) {
2772
2773			/*
2774			 * The generic bio_readpage_error handles errors the
2775			 * following way: If possible, new read requests are
2776			 * created and submitted and will end up in
2777			 * end_bio_extent_readpage as well (if we're lucky,
2778			 * not in the !uptodate case). In that case it returns
2779			 * 0 and we just go on with the next page in our bio.
2780			 * If it can't handle the error it will return -EIO and
2781			 * we remain responsible for that page.
2782			 */
2783			ret = bio_readpage_error(bio, offset, page, start, end,
2784						 mirror);
2785			if (ret == 0) {
2786				uptodate = !bio->bi_status;
2787				offset += len;
2788				continue;
2789			}
 
2790		} else {
2791			struct extent_buffer *eb;
2792
2793			eb = (struct extent_buffer *)page->private;
2794			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2795			eb->read_mirror = mirror;
2796			atomic_dec(&eb->io_pages);
2797			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2798					       &eb->bflags))
2799				btree_readahead_hook(eb, -EIO);
2800		}
2801readpage_ok:
2802		if (likely(uptodate)) {
2803			loff_t i_size = i_size_read(inode);
2804			pgoff_t end_index = i_size >> PAGE_SHIFT;
2805			unsigned off;
2806
2807			/* Zero out the end if this page straddles i_size */
2808			off = offset_in_page(i_size);
2809			if (page->index == end_index && off)
2810				zero_user_segment(page, off, PAGE_SIZE);
2811			SetPageUptodate(page);
2812		} else {
2813			ClearPageUptodate(page);
2814			SetPageError(page);
2815		}
2816		unlock_page(page);
2817		offset += len;
 
2818
2819		if (unlikely(!uptodate)) {
2820			if (extent_len) {
2821				endio_readpage_release_extent(tree,
2822							      extent_start,
2823							      extent_len, 1);
2824				extent_start = 0;
2825				extent_len = 0;
2826			}
2827			endio_readpage_release_extent(tree, start,
2828						      end - start + 1, 0);
2829		} else if (!extent_len) {
2830			extent_start = start;
2831			extent_len = end + 1 - start;
2832		} else if (extent_start + extent_len == start) {
2833			extent_len += end + 1 - start;
2834		} else {
2835			endio_readpage_release_extent(tree, extent_start,
2836						      extent_len, uptodate);
2837			extent_start = start;
2838			extent_len = end + 1 - start;
2839		}
2840	}
 
2841
2842	if (extent_len)
2843		endio_readpage_release_extent(tree, extent_start, extent_len,
2844					      uptodate);
 
 
 
 
2845	btrfs_io_bio_free_csum(io_bio);
2846	bio_put(bio);
2847}
2848
2849/*
2850 * Initialize the members up to but not including 'bio'. Use after allocating a
2851 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2852 * 'bio' because use of __GFP_ZERO is not supported.
2853 */
2854static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2855{
2856	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2857}
2858
2859/*
2860 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2861 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2862 * for the appropriate container_of magic
2863 */
2864struct bio *btrfs_bio_alloc(u64 first_byte)
2865{
2866	struct bio *bio;
2867
2868	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2869	bio->bi_iter.bi_sector = first_byte >> 9;
2870	btrfs_io_bio_init(btrfs_io_bio(bio));
2871	return bio;
2872}
2873
2874struct bio *btrfs_bio_clone(struct bio *bio)
2875{
2876	struct btrfs_io_bio *btrfs_bio;
2877	struct bio *new;
2878
2879	/* Bio allocation backed by a bioset does not fail */
2880	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2881	btrfs_bio = btrfs_io_bio(new);
2882	btrfs_io_bio_init(btrfs_bio);
2883	btrfs_bio->iter = bio->bi_iter;
2884	return new;
2885}
2886
2887struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2888{
2889	struct bio *bio;
2890
2891	/* Bio allocation backed by a bioset does not fail */
2892	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2893	btrfs_io_bio_init(btrfs_io_bio(bio));
2894	return bio;
2895}
2896
2897struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2898{
2899	struct bio *bio;
2900	struct btrfs_io_bio *btrfs_bio;
2901
2902	/* this will never fail when it's backed by a bioset */
2903	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2904	ASSERT(bio);
2905
2906	btrfs_bio = btrfs_io_bio(bio);
2907	btrfs_io_bio_init(btrfs_bio);
2908
2909	bio_trim(bio, offset >> 9, size >> 9);
2910	btrfs_bio->iter = bio->bi_iter;
2911	return bio;
2912}
2913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2914/*
2915 * @opf:	bio REQ_OP_* and REQ_* flags as one value
2916 * @tree:	tree so we can call our merge_bio hook
2917 * @wbc:	optional writeback control for io accounting
2918 * @page:	page to add to the bio
 
 
2919 * @pg_offset:	offset of the new bio or to check whether we are adding
2920 *              a contiguous page to the previous one
2921 * @size:	portion of page that we want to write
2922 * @offset:	starting offset in the page
2923 * @bdev:	attach newly created bios to this bdev
2924 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2925 * @end_io_func:     end_io callback for new bio
2926 * @mirror_num:	     desired mirror to read/write
2927 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2928 * @bio_flags:	flags of the current bio to see if we can merge them
2929 */
2930static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2931			      struct writeback_control *wbc,
2932			      struct page *page, u64 offset,
 
2933			      size_t size, unsigned long pg_offset,
2934			      struct block_device *bdev,
2935			      struct bio **bio_ret,
2936			      bio_end_io_t end_io_func,
2937			      int mirror_num,
2938			      unsigned long prev_bio_flags,
2939			      unsigned long bio_flags,
2940			      bool force_bio_submit)
2941{
2942	int ret = 0;
2943	struct bio *bio;
2944	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2945	sector_t sector = offset >> 9;
2946
2947	ASSERT(bio_ret);
2948
2949	if (*bio_ret) {
2950		bool contig;
2951		bool can_merge = true;
2952
2953		bio = *bio_ret;
2954		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2955			contig = bio->bi_iter.bi_sector == sector;
2956		else
2957			contig = bio_end_sector(bio) == sector;
2958
2959		ASSERT(tree->ops);
2960		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2961			can_merge = false;
2962
2963		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2964		    force_bio_submit ||
2965		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2966			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2967			if (ret < 0) {
2968				*bio_ret = NULL;
2969				return ret;
2970			}
2971			bio = NULL;
2972		} else {
2973			if (wbc)
2974				wbc_account_cgroup_owner(wbc, page, page_size);
2975			return 0;
2976		}
2977	}
2978
2979	bio = btrfs_bio_alloc(offset);
2980	bio_set_dev(bio, bdev);
2981	bio_add_page(bio, page, page_size, pg_offset);
2982	bio->bi_end_io = end_io_func;
2983	bio->bi_private = tree;
2984	bio->bi_write_hint = page->mapping->host->i_write_hint;
2985	bio->bi_opf = opf;
2986	if (wbc) {
 
 
 
 
2987		wbc_init_bio(wbc, bio);
2988		wbc_account_cgroup_owner(wbc, page, page_size);
 
 
 
 
 
 
 
 
 
2989	}
2990
2991	*bio_ret = bio;
 
 
2992
2993	return ret;
2994}
2995
2996static void attach_extent_buffer_page(struct extent_buffer *eb,
2997				      struct page *page)
 
2998{
2999	if (!PagePrivate(page)) {
3000		SetPagePrivate(page);
3001		get_page(page);
3002		set_page_private(page, (unsigned long)eb);
3003	} else {
3004		WARN_ON(page->private != (unsigned long)eb);
 
 
 
 
 
 
 
 
 
 
 
 
3005	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006}
3007
3008void set_page_extent_mapped(struct page *page)
3009{
3010	if (!PagePrivate(page)) {
3011		SetPagePrivate(page);
3012		get_page(page);
3013		set_page_private(page, EXTENT_PAGE_PRIVATE);
3014	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3015}
3016
3017static struct extent_map *
3018__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3019		 u64 start, u64 len, get_extent_t *get_extent,
3020		 struct extent_map **em_cached)
3021{
3022	struct extent_map *em;
3023
3024	if (em_cached && *em_cached) {
3025		em = *em_cached;
3026		if (extent_map_in_tree(em) && start >= em->start &&
3027		    start < extent_map_end(em)) {
3028			refcount_inc(&em->refs);
3029			return em;
3030		}
3031
3032		free_extent_map(em);
3033		*em_cached = NULL;
3034	}
3035
3036	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3037	if (em_cached && !IS_ERR_OR_NULL(em)) {
3038		BUG_ON(*em_cached);
3039		refcount_inc(&em->refs);
3040		*em_cached = em;
3041	}
3042	return em;
3043}
3044/*
3045 * basic readpage implementation.  Locked extent state structs are inserted
3046 * into the tree that are removed when the IO is done (by the end_io
3047 * handlers)
3048 * XXX JDM: This needs looking at to ensure proper page locking
3049 * return 0 on success, otherwise return error
3050 */
3051static int __do_readpage(struct extent_io_tree *tree,
3052			 struct page *page,
3053			 get_extent_t *get_extent,
3054			 struct extent_map **em_cached,
3055			 struct bio **bio, int mirror_num,
3056			 unsigned long *bio_flags, unsigned int read_flags,
3057			 u64 *prev_em_start)
3058{
3059	struct inode *inode = page->mapping->host;
 
3060	u64 start = page_offset(page);
3061	const u64 end = start + PAGE_SIZE - 1;
3062	u64 cur = start;
3063	u64 extent_offset;
3064	u64 last_byte = i_size_read(inode);
3065	u64 block_start;
3066	u64 cur_end;
3067	struct extent_map *em;
3068	struct block_device *bdev;
3069	int ret = 0;
3070	int nr = 0;
3071	size_t pg_offset = 0;
3072	size_t iosize;
3073	size_t disk_io_size;
3074	size_t blocksize = inode->i_sb->s_blocksize;
3075	unsigned long this_bio_flag = 0;
 
3076
3077	set_page_extent_mapped(page);
 
 
 
 
 
 
3078
3079	if (!PageUptodate(page)) {
3080		if (cleancache_get_page(page) == 0) {
3081			BUG_ON(blocksize != PAGE_SIZE);
3082			unlock_extent(tree, start, end);
 
3083			goto out;
3084		}
3085	}
3086
3087	if (page->index == last_byte >> PAGE_SHIFT) {
3088		char *userpage;
3089		size_t zero_offset = offset_in_page(last_byte);
3090
3091		if (zero_offset) {
3092			iosize = PAGE_SIZE - zero_offset;
3093			userpage = kmap_atomic(page);
3094			memset(userpage + zero_offset, 0, iosize);
3095			flush_dcache_page(page);
3096			kunmap_atomic(userpage);
3097		}
3098	}
 
3099	while (cur <= end) {
3100		bool force_bio_submit = false;
3101		u64 offset;
3102
3103		if (cur >= last_byte) {
3104			char *userpage;
3105			struct extent_state *cached = NULL;
3106
3107			iosize = PAGE_SIZE - pg_offset;
3108			userpage = kmap_atomic(page);
3109			memset(userpage + pg_offset, 0, iosize);
3110			flush_dcache_page(page);
3111			kunmap_atomic(userpage);
3112			set_extent_uptodate(tree, cur, cur + iosize - 1,
3113					    &cached, GFP_NOFS);
3114			unlock_extent_cached(tree, cur,
3115					     cur + iosize - 1, &cached);
 
3116			break;
3117		}
3118		em = __get_extent_map(inode, page, pg_offset, cur,
3119				      end - cur + 1, get_extent, em_cached);
3120		if (IS_ERR_OR_NULL(em)) {
3121			SetPageError(page);
3122			unlock_extent(tree, cur, end);
 
3123			break;
3124		}
3125		extent_offset = cur - em->start;
3126		BUG_ON(extent_map_end(em) <= cur);
3127		BUG_ON(end < cur);
3128
3129		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3130			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3131			extent_set_compress_type(&this_bio_flag,
3132						 em->compress_type);
3133		}
3134
3135		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3136		cur_end = min(extent_map_end(em) - 1, end);
3137		iosize = ALIGN(iosize, blocksize);
3138		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3139			disk_io_size = em->block_len;
3140			offset = em->block_start;
3141		} else {
3142			offset = em->block_start + extent_offset;
3143			disk_io_size = iosize;
3144		}
3145		bdev = em->bdev;
3146		block_start = em->block_start;
3147		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3148			block_start = EXTENT_MAP_HOLE;
3149
3150		/*
3151		 * If we have a file range that points to a compressed extent
3152		 * and it's followed by a consecutive file range that points to
3153		 * to the same compressed extent (possibly with a different
3154		 * offset and/or length, so it either points to the whole extent
3155		 * or only part of it), we must make sure we do not submit a
3156		 * single bio to populate the pages for the 2 ranges because
3157		 * this makes the compressed extent read zero out the pages
3158		 * belonging to the 2nd range. Imagine the following scenario:
3159		 *
3160		 *  File layout
3161		 *  [0 - 8K]                     [8K - 24K]
3162		 *    |                               |
3163		 *    |                               |
3164		 * points to extent X,         points to extent X,
3165		 * offset 4K, length of 8K     offset 0, length 16K
3166		 *
3167		 * [extent X, compressed length = 4K uncompressed length = 16K]
3168		 *
3169		 * If the bio to read the compressed extent covers both ranges,
3170		 * it will decompress extent X into the pages belonging to the
3171		 * first range and then it will stop, zeroing out the remaining
3172		 * pages that belong to the other range that points to extent X.
3173		 * So here we make sure we submit 2 bios, one for the first
3174		 * range and another one for the third range. Both will target
3175		 * the same physical extent from disk, but we can't currently
3176		 * make the compressed bio endio callback populate the pages
3177		 * for both ranges because each compressed bio is tightly
3178		 * coupled with a single extent map, and each range can have
3179		 * an extent map with a different offset value relative to the
3180		 * uncompressed data of our extent and different lengths. This
3181		 * is a corner case so we prioritize correctness over
3182		 * non-optimal behavior (submitting 2 bios for the same extent).
3183		 */
3184		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3185		    prev_em_start && *prev_em_start != (u64)-1 &&
3186		    *prev_em_start != em->start)
3187			force_bio_submit = true;
3188
3189		if (prev_em_start)
3190			*prev_em_start = em->start;
3191
3192		free_extent_map(em);
3193		em = NULL;
3194
3195		/* we've found a hole, just zero and go on */
3196		if (block_start == EXTENT_MAP_HOLE) {
3197			char *userpage;
3198			struct extent_state *cached = NULL;
3199
3200			userpage = kmap_atomic(page);
3201			memset(userpage + pg_offset, 0, iosize);
3202			flush_dcache_page(page);
3203			kunmap_atomic(userpage);
3204
3205			set_extent_uptodate(tree, cur, cur + iosize - 1,
3206					    &cached, GFP_NOFS);
3207			unlock_extent_cached(tree, cur,
3208					     cur + iosize - 1, &cached);
 
3209			cur = cur + iosize;
3210			pg_offset += iosize;
3211			continue;
3212		}
3213		/* the get_extent function already copied into the page */
3214		if (test_range_bit(tree, cur, cur_end,
3215				   EXTENT_UPTODATE, 1, NULL)) {
3216			check_page_uptodate(tree, page);
3217			unlock_extent(tree, cur, cur + iosize - 1);
 
3218			cur = cur + iosize;
3219			pg_offset += iosize;
3220			continue;
3221		}
3222		/* we have an inline extent but it didn't get marked up
3223		 * to date.  Error out
3224		 */
3225		if (block_start == EXTENT_MAP_INLINE) {
3226			SetPageError(page);
3227			unlock_extent(tree, cur, cur + iosize - 1);
 
3228			cur = cur + iosize;
3229			pg_offset += iosize;
3230			continue;
3231		}
3232
3233		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3234					 page, offset, disk_io_size,
3235					 pg_offset, bdev, bio,
3236					 end_bio_extent_readpage, mirror_num,
3237					 *bio_flags,
3238					 this_bio_flag,
3239					 force_bio_submit);
3240		if (!ret) {
3241			nr++;
3242			*bio_flags = this_bio_flag;
3243		} else {
3244			SetPageError(page);
3245			unlock_extent(tree, cur, cur + iosize - 1);
 
3246			goto out;
3247		}
3248		cur = cur + iosize;
3249		pg_offset += iosize;
3250	}
3251out:
3252	if (!nr) {
3253		if (!PageError(page))
3254			SetPageUptodate(page);
3255		unlock_page(page);
3256	}
3257	return ret;
3258}
3259
3260static inline void contiguous_readpages(struct extent_io_tree *tree,
3261					     struct page *pages[], int nr_pages,
3262					     u64 start, u64 end,
3263					     struct extent_map **em_cached,
3264					     struct bio **bio,
3265					     unsigned long *bio_flags,
3266					     u64 *prev_em_start)
3267{
3268	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3269	int index;
3270
3271	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3272
3273	for (index = 0; index < nr_pages; index++) {
3274		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3275				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3276		put_page(pages[index]);
3277	}
3278}
3279
3280static int __extent_read_full_page(struct extent_io_tree *tree,
3281				   struct page *page,
3282				   get_extent_t *get_extent,
3283				   struct bio **bio, int mirror_num,
3284				   unsigned long *bio_flags,
3285				   unsigned int read_flags)
3286{
3287	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3288	u64 start = page_offset(page);
3289	u64 end = start + PAGE_SIZE - 1;
3290	int ret;
3291
3292	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3293
3294	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3295			    bio_flags, read_flags, NULL);
3296	return ret;
3297}
3298
3299int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3300			    get_extent_t *get_extent, int mirror_num)
3301{
3302	struct bio *bio = NULL;
3303	unsigned long bio_flags = 0;
3304	int ret;
3305
3306	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3307				      &bio_flags, 0);
3308	if (bio)
3309		ret = submit_one_bio(bio, mirror_num, bio_flags);
3310	return ret;
3311}
3312
3313static void update_nr_written(struct writeback_control *wbc,
3314			      unsigned long nr_written)
3315{
3316	wbc->nr_to_write -= nr_written;
3317}
3318
3319/*
3320 * helper for __extent_writepage, doing all of the delayed allocation setup.
3321 *
3322 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3323 * to write the page (copy into inline extent).  In this case the IO has
3324 * been started and the page is already unlocked.
3325 *
3326 * This returns 0 if all went well (page still locked)
3327 * This returns < 0 if there were errors (page still locked)
3328 */
3329static noinline_for_stack int writepage_delalloc(struct inode *inode,
3330		struct page *page, struct writeback_control *wbc,
3331		u64 delalloc_start, unsigned long *nr_written)
3332{
3333	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3334	bool found;
3335	u64 delalloc_to_write = 0;
3336	u64 delalloc_end = 0;
3337	int ret;
3338	int page_started = 0;
3339
3340
3341	while (delalloc_end < page_end) {
3342		found = find_lock_delalloc_range(inode, page,
3343					       &delalloc_start,
3344					       &delalloc_end);
3345		if (!found) {
3346			delalloc_start = delalloc_end + 1;
3347			continue;
3348		}
3349		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3350				delalloc_end, &page_started, nr_written, wbc);
3351		if (ret) {
3352			SetPageError(page);
3353			/*
3354			 * btrfs_run_delalloc_range should return < 0 for error
3355			 * but just in case, we use > 0 here meaning the IO is
3356			 * started, so we don't want to return > 0 unless
3357			 * things are going well.
3358			 */
3359			ret = ret < 0 ? ret : -EIO;
3360			goto done;
3361		}
3362		/*
3363		 * delalloc_end is already one less than the total length, so
3364		 * we don't subtract one from PAGE_SIZE
3365		 */
3366		delalloc_to_write += (delalloc_end - delalloc_start +
3367				      PAGE_SIZE) >> PAGE_SHIFT;
3368		delalloc_start = delalloc_end + 1;
3369	}
3370	if (wbc->nr_to_write < delalloc_to_write) {
3371		int thresh = 8192;
3372
3373		if (delalloc_to_write < thresh * 2)
3374			thresh = delalloc_to_write;
3375		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3376					 thresh);
3377	}
3378
3379	/* did the fill delalloc function already unlock and start
3380	 * the IO?
3381	 */
3382	if (page_started) {
3383		/*
3384		 * we've unlocked the page, so we can't update
3385		 * the mapping's writeback index, just update
3386		 * nr_to_write.
3387		 */
3388		wbc->nr_to_write -= *nr_written;
3389		return 1;
3390	}
3391
3392	ret = 0;
 
3393
3394done:
3395	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3396}
3397
3398/*
3399 * helper for __extent_writepage.  This calls the writepage start hooks,
3400 * and does the loop to map the page into extents and bios.
3401 *
3402 * We return 1 if the IO is started and the page is unlocked,
3403 * 0 if all went well (page still locked)
3404 * < 0 if there were errors (page still locked)
3405 */
3406static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3407				 struct page *page,
3408				 struct writeback_control *wbc,
3409				 struct extent_page_data *epd,
3410				 loff_t i_size,
3411				 unsigned long nr_written,
3412				 unsigned int write_flags, int *nr_ret)
3413{
3414	struct extent_io_tree *tree = epd->tree;
3415	u64 start = page_offset(page);
3416	u64 page_end = start + PAGE_SIZE - 1;
3417	u64 end;
3418	u64 cur = start;
3419	u64 extent_offset;
3420	u64 block_start;
3421	u64 iosize;
3422	struct extent_map *em;
3423	struct block_device *bdev;
3424	size_t pg_offset = 0;
3425	size_t blocksize;
3426	int ret = 0;
3427	int nr = 0;
 
 
3428	bool compressed;
3429
3430	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3431	if (ret) {
3432		/* Fixup worker will requeue */
3433		if (ret == -EBUSY)
3434			wbc->pages_skipped++;
3435		else
3436			redirty_page_for_writepage(wbc, page);
3437
3438		update_nr_written(wbc, nr_written);
3439		unlock_page(page);
3440		return 1;
3441	}
3442
3443	/*
3444	 * we don't want to touch the inode after unlocking the page,
3445	 * so we update the mapping writeback index now
3446	 */
3447	update_nr_written(wbc, nr_written + 1);
3448
3449	end = page_end;
3450	if (i_size <= start) {
3451		btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3452		goto done;
3453	}
3454
3455	blocksize = inode->i_sb->s_blocksize;
3456
3457	while (cur <= end) {
 
3458		u64 em_end;
3459		u64 offset;
 
 
3460
3461		if (cur >= i_size) {
3462			btrfs_writepage_endio_finish_ordered(page, cur,
3463							     page_end, 1);
3464			break;
3465		}
3466		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3467				     end - cur + 1, 1);
 
 
 
 
 
 
 
3468		if (IS_ERR_OR_NULL(em)) {
3469			SetPageError(page);
3470			ret = PTR_ERR_OR_ZERO(em);
3471			break;
3472		}
3473
3474		extent_offset = cur - em->start;
3475		em_end = extent_map_end(em);
3476		BUG_ON(em_end <= cur);
3477		BUG_ON(end < cur);
3478		iosize = min(em_end - cur, end - cur + 1);
3479		iosize = ALIGN(iosize, blocksize);
3480		offset = em->block_start + extent_offset;
3481		bdev = em->bdev;
3482		block_start = em->block_start;
3483		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 
 
 
 
 
 
 
 
 
 
 
3484		free_extent_map(em);
3485		em = NULL;
3486
3487		/*
3488		 * compressed and inline extents are written through other
3489		 * paths in the FS
3490		 */
3491		if (compressed || block_start == EXTENT_MAP_HOLE ||
3492		    block_start == EXTENT_MAP_INLINE) {
3493			/*
3494			 * end_io notification does not happen here for
3495			 * compressed extents
3496			 */
3497			if (!compressed)
3498				btrfs_writepage_endio_finish_ordered(page, cur,
3499							    cur + iosize - 1,
3500							    1);
3501			else if (compressed) {
3502				/* we don't want to end_page_writeback on
3503				 * a compressed extent.  this happens
3504				 * elsewhere
3505				 */
3506				nr++;
3507			}
3508
 
3509			cur += iosize;
3510			pg_offset += iosize;
3511			continue;
3512		}
3513
3514		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3515		if (!PageWriteback(page)) {
3516			btrfs_err(BTRFS_I(inode)->root->fs_info,
3517				   "page %lu not writeback, cur %llu end %llu",
3518			       page->index, cur, end);
3519		}
3520
3521		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3522					 page, offset, iosize, pg_offset,
3523					 bdev, &epd->bio,
 
 
 
 
 
 
 
 
 
3524					 end_bio_extent_writepage,
3525					 0, 0, 0, false);
3526		if (ret) {
3527			SetPageError(page);
3528			if (PageWriteback(page))
3529				end_page_writeback(page);
 
3530		}
3531
3532		cur = cur + iosize;
3533		pg_offset += iosize;
3534		nr++;
3535	}
3536done:
3537	*nr_ret = nr;
3538	return ret;
3539}
3540
3541/*
3542 * the writepage semantics are similar to regular writepage.  extent
3543 * records are inserted to lock ranges in the tree, and as dirty areas
3544 * are found, they are marked writeback.  Then the lock bits are removed
3545 * and the end_io handler clears the writeback ranges
3546 *
3547 * Return 0 if everything goes well.
3548 * Return <0 for error.
3549 */
3550static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3551			      struct extent_page_data *epd)
3552{
3553	struct inode *inode = page->mapping->host;
3554	u64 start = page_offset(page);
3555	u64 page_end = start + PAGE_SIZE - 1;
3556	int ret;
3557	int nr = 0;
3558	size_t pg_offset = 0;
3559	loff_t i_size = i_size_read(inode);
3560	unsigned long end_index = i_size >> PAGE_SHIFT;
3561	unsigned int write_flags = 0;
3562	unsigned long nr_written = 0;
3563
3564	write_flags = wbc_to_write_flags(wbc);
3565
3566	trace___extent_writepage(page, inode, wbc);
3567
3568	WARN_ON(!PageLocked(page));
3569
3570	ClearPageError(page);
3571
3572	pg_offset = offset_in_page(i_size);
3573	if (page->index > end_index ||
3574	   (page->index == end_index && !pg_offset)) {
3575		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3576		unlock_page(page);
3577		return 0;
3578	}
3579
3580	if (page->index == end_index) {
3581		char *userpage;
3582
3583		userpage = kmap_atomic(page);
3584		memset(userpage + pg_offset, 0,
3585		       PAGE_SIZE - pg_offset);
3586		kunmap_atomic(userpage);
3587		flush_dcache_page(page);
3588	}
3589
3590	pg_offset = 0;
3591
3592	set_page_extent_mapped(page);
 
 
3593
3594	if (!epd->extent_locked) {
3595		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
 
3596		if (ret == 1)
3597			goto done_unlocked;
3598		if (ret)
3599			goto done;
3600	}
3601
3602	ret = __extent_writepage_io(inode, page, wbc, epd,
3603				    i_size, nr_written, write_flags, &nr);
3604	if (ret == 1)
3605		goto done_unlocked;
3606
3607done:
3608	if (nr == 0) {
3609		/* make sure the mapping tag for page dirty gets cleared */
3610		set_page_writeback(page);
3611		end_page_writeback(page);
3612	}
3613	if (PageError(page)) {
3614		ret = ret < 0 ? ret : -EIO;
3615		end_extent_writepage(page, ret, start, page_end);
3616	}
3617	unlock_page(page);
3618	ASSERT(ret <= 0);
3619	return ret;
3620
3621done_unlocked:
3622	return 0;
3623}
3624
3625void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3626{
3627	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3628		       TASK_UNINTERRUPTIBLE);
3629}
3630
3631static void end_extent_buffer_writeback(struct extent_buffer *eb)
3632{
3633	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3634	smp_mb__after_atomic();
3635	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3636}
3637
3638/*
3639 * Lock eb pages and flush the bio if we can't the locks
3640 *
3641 * Return  0 if nothing went wrong
3642 * Return >0 is same as 0, except bio is not submitted
3643 * Return <0 if something went wrong, no page is locked
 
 
 
3644 */
3645static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3646			  struct extent_page_data *epd)
3647{
3648	struct btrfs_fs_info *fs_info = eb->fs_info;
3649	int i, num_pages, failed_page_nr;
3650	int flush = 0;
3651	int ret = 0;
3652
3653	if (!btrfs_try_tree_write_lock(eb)) {
3654		ret = flush_write_bio(epd);
3655		if (ret < 0)
3656			return ret;
3657		flush = 1;
3658		btrfs_tree_lock(eb);
3659	}
3660
3661	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3662		btrfs_tree_unlock(eb);
3663		if (!epd->sync_io)
3664			return 0;
3665		if (!flush) {
3666			ret = flush_write_bio(epd);
3667			if (ret < 0)
3668				return ret;
3669			flush = 1;
3670		}
3671		while (1) {
3672			wait_on_extent_buffer_writeback(eb);
3673			btrfs_tree_lock(eb);
3674			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3675				break;
3676			btrfs_tree_unlock(eb);
3677		}
3678	}
3679
3680	/*
3681	 * We need to do this to prevent races in people who check if the eb is
3682	 * under IO since we can end up having no IO bits set for a short period
3683	 * of time.
3684	 */
3685	spin_lock(&eb->refs_lock);
3686	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3687		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3688		spin_unlock(&eb->refs_lock);
3689		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3690		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3691					 -eb->len,
3692					 fs_info->dirty_metadata_batch);
3693		ret = 1;
3694	} else {
3695		spin_unlock(&eb->refs_lock);
3696	}
3697
3698	btrfs_tree_unlock(eb);
3699
3700	if (!ret)
 
 
 
 
 
 
3701		return ret;
3702
3703	num_pages = num_extent_pages(eb);
3704	for (i = 0; i < num_pages; i++) {
3705		struct page *p = eb->pages[i];
3706
3707		if (!trylock_page(p)) {
3708			if (!flush) {
3709				int err;
3710
3711				err = flush_write_bio(epd);
3712				if (err < 0) {
3713					ret = err;
3714					failed_page_nr = i;
3715					goto err_unlock;
3716				}
3717				flush = 1;
3718			}
3719			lock_page(p);
3720		}
3721	}
3722
3723	return ret;
3724err_unlock:
3725	/* Unlock already locked pages */
3726	for (i = 0; i < failed_page_nr; i++)
3727		unlock_page(eb->pages[i]);
3728	/*
3729	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3730	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3731	 * be made and undo everything done before.
3732	 */
3733	btrfs_tree_lock(eb);
3734	spin_lock(&eb->refs_lock);
3735	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3736	end_extent_buffer_writeback(eb);
3737	spin_unlock(&eb->refs_lock);
3738	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3739				 fs_info->dirty_metadata_batch);
3740	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3741	btrfs_tree_unlock(eb);
3742	return ret;
3743}
3744
3745static void set_btree_ioerr(struct page *page)
3746{
3747	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3748	struct btrfs_fs_info *fs_info;
3749
3750	SetPageError(page);
3751	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3752		return;
3753
3754	/*
3755	 * If we error out, we should add back the dirty_metadata_bytes
3756	 * to make it consistent.
3757	 */
3758	fs_info = eb->fs_info;
3759	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3760				 eb->len, fs_info->dirty_metadata_batch);
3761
3762	/*
3763	 * If writeback for a btree extent that doesn't belong to a log tree
3764	 * failed, increment the counter transaction->eb_write_errors.
3765	 * We do this because while the transaction is running and before it's
3766	 * committing (when we call filemap_fdata[write|wait]_range against
3767	 * the btree inode), we might have
3768	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3769	 * returns an error or an error happens during writeback, when we're
3770	 * committing the transaction we wouldn't know about it, since the pages
3771	 * can be no longer dirty nor marked anymore for writeback (if a
3772	 * subsequent modification to the extent buffer didn't happen before the
3773	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3774	 * able to find the pages tagged with SetPageError at transaction
3775	 * commit time. So if this happens we must abort the transaction,
3776	 * otherwise we commit a super block with btree roots that point to
3777	 * btree nodes/leafs whose content on disk is invalid - either garbage
3778	 * or the content of some node/leaf from a past generation that got
3779	 * cowed or deleted and is no longer valid.
3780	 *
3781	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3782	 * not be enough - we need to distinguish between log tree extents vs
3783	 * non-log tree extents, and the next filemap_fdatawait_range() call
3784	 * will catch and clear such errors in the mapping - and that call might
3785	 * be from a log sync and not from a transaction commit. Also, checking
3786	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3787	 * not done and would not be reliable - the eb might have been released
3788	 * from memory and reading it back again means that flag would not be
3789	 * set (since it's a runtime flag, not persisted on disk).
3790	 *
3791	 * Using the flags below in the btree inode also makes us achieve the
3792	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3793	 * writeback for all dirty pages and before filemap_fdatawait_range()
3794	 * is called, the writeback for all dirty pages had already finished
3795	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3796	 * filemap_fdatawait_range() would return success, as it could not know
3797	 * that writeback errors happened (the pages were no longer tagged for
3798	 * writeback).
3799	 */
3800	switch (eb->log_index) {
3801	case -1:
3802		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3803		break;
3804	case 0:
3805		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3806		break;
3807	case 1:
3808		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3809		break;
3810	default:
3811		BUG(); /* unexpected, logic error */
3812	}
3813}
3814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3815static void end_bio_extent_buffer_writepage(struct bio *bio)
3816{
3817	struct bio_vec *bvec;
3818	struct extent_buffer *eb;
3819	int done;
3820	struct bvec_iter_all iter_all;
3821
3822	ASSERT(!bio_flagged(bio, BIO_CLONED));
3823	bio_for_each_segment_all(bvec, bio, iter_all) {
3824		struct page *page = bvec->bv_page;
3825
3826		eb = (struct extent_buffer *)page->private;
3827		BUG_ON(!eb);
3828		done = atomic_dec_and_test(&eb->io_pages);
3829
3830		if (bio->bi_status ||
3831		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3832			ClearPageUptodate(page);
3833			set_btree_ioerr(page);
3834		}
3835
3836		end_page_writeback(page);
3837
3838		if (!done)
3839			continue;
3840
3841		end_extent_buffer_writeback(eb);
3842	}
3843
3844	bio_put(bio);
3845}
3846
3847static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3848			struct writeback_control *wbc,
3849			struct extent_page_data *epd)
3850{
3851	struct btrfs_fs_info *fs_info = eb->fs_info;
3852	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3853	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3854	u64 offset = eb->start;
3855	u32 nritems;
3856	int i, num_pages;
3857	unsigned long start, end;
3858	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3859	int ret = 0;
3860
3861	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3862	num_pages = num_extent_pages(eb);
3863	atomic_set(&eb->io_pages, num_pages);
3864
3865	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3866	nritems = btrfs_header_nritems(eb);
3867	if (btrfs_header_level(eb) > 0) {
3868		end = btrfs_node_key_ptr_offset(nritems);
3869
3870		memzero_extent_buffer(eb, end, eb->len - end);
3871	} else {
3872		/*
3873		 * leaf:
3874		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3875		 */
3876		start = btrfs_item_nr_offset(nritems);
3877		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3878		memzero_extent_buffer(eb, start, end - start);
3879	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3880
 
3881	for (i = 0; i < num_pages; i++) {
3882		struct page *p = eb->pages[i];
3883
3884		clear_page_dirty_for_io(p);
3885		set_page_writeback(p);
3886		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3887					 p, offset, PAGE_SIZE, 0, bdev,
3888					 &epd->bio,
3889					 end_bio_extent_buffer_writepage,
3890					 0, 0, 0, false);
3891		if (ret) {
3892			set_btree_ioerr(p);
3893			if (PageWriteback(p))
3894				end_page_writeback(p);
3895			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3896				end_extent_buffer_writeback(eb);
3897			ret = -EIO;
3898			break;
3899		}
3900		offset += PAGE_SIZE;
3901		update_nr_written(wbc, 1);
3902		unlock_page(p);
3903	}
3904
3905	if (unlikely(ret)) {
3906		for (; i < num_pages; i++) {
3907			struct page *p = eb->pages[i];
3908			clear_page_dirty_for_io(p);
3909			unlock_page(p);
3910		}
3911	}
3912
3913	return ret;
3914}
3915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3916int btree_write_cache_pages(struct address_space *mapping,
3917				   struct writeback_control *wbc)
3918{
3919	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3920	struct extent_buffer *eb, *prev_eb = NULL;
3921	struct extent_page_data epd = {
3922		.bio = NULL,
3923		.tree = tree,
3924		.extent_locked = 0,
3925		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3926	};
 
3927	int ret = 0;
3928	int done = 0;
3929	int nr_to_write_done = 0;
3930	struct pagevec pvec;
3931	int nr_pages;
3932	pgoff_t index;
3933	pgoff_t end;		/* Inclusive */
3934	int scanned = 0;
3935	xa_mark_t tag;
3936
3937	pagevec_init(&pvec);
3938	if (wbc->range_cyclic) {
3939		index = mapping->writeback_index; /* Start from prev offset */
3940		end = -1;
 
 
 
 
 
3941	} else {
3942		index = wbc->range_start >> PAGE_SHIFT;
3943		end = wbc->range_end >> PAGE_SHIFT;
3944		scanned = 1;
3945	}
3946	if (wbc->sync_mode == WB_SYNC_ALL)
3947		tag = PAGECACHE_TAG_TOWRITE;
3948	else
3949		tag = PAGECACHE_TAG_DIRTY;
 
3950retry:
3951	if (wbc->sync_mode == WB_SYNC_ALL)
3952		tag_pages_for_writeback(mapping, index, end);
3953	while (!done && !nr_to_write_done && (index <= end) &&
3954	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3955			tag))) {
3956		unsigned i;
3957
3958		scanned = 1;
3959		for (i = 0; i < nr_pages; i++) {
3960			struct page *page = pvec.pages[i];
3961
3962			if (!PagePrivate(page))
3963				continue;
3964
3965			spin_lock(&mapping->private_lock);
3966			if (!PagePrivate(page)) {
3967				spin_unlock(&mapping->private_lock);
3968				continue;
3969			}
3970
3971			eb = (struct extent_buffer *)page->private;
3972
3973			/*
3974			 * Shouldn't happen and normally this would be a BUG_ON
3975			 * but no sense in crashing the users box for something
3976			 * we can survive anyway.
3977			 */
3978			if (WARN_ON(!eb)) {
3979				spin_unlock(&mapping->private_lock);
3980				continue;
3981			}
3982
3983			if (eb == prev_eb) {
3984				spin_unlock(&mapping->private_lock);
3985				continue;
3986			}
3987
3988			ret = atomic_inc_not_zero(&eb->refs);
3989			spin_unlock(&mapping->private_lock);
3990			if (!ret)
3991				continue;
3992
3993			prev_eb = eb;
3994			ret = lock_extent_buffer_for_io(eb, &epd);
3995			if (!ret) {
3996				free_extent_buffer(eb);
3997				continue;
3998			} else if (ret < 0) {
3999				done = 1;
4000				free_extent_buffer(eb);
4001				break;
4002			}
4003
4004			ret = write_one_eb(eb, wbc, &epd);
4005			if (ret) {
4006				done = 1;
4007				free_extent_buffer(eb);
4008				break;
4009			}
4010			free_extent_buffer(eb);
4011
4012			/*
4013			 * the filesystem may choose to bump up nr_to_write.
4014			 * We have to make sure to honor the new nr_to_write
4015			 * at any time
4016			 */
4017			nr_to_write_done = wbc->nr_to_write <= 0;
4018		}
4019		pagevec_release(&pvec);
4020		cond_resched();
4021	}
4022	if (!scanned && !done) {
4023		/*
4024		 * We hit the last page and there is more work to be done: wrap
4025		 * back to the start of the file
4026		 */
4027		scanned = 1;
4028		index = 0;
4029		goto retry;
4030	}
4031	ASSERT(ret <= 0);
4032	if (ret < 0) {
4033		end_write_bio(&epd, ret);
4034		return ret;
4035	}
4036	ret = flush_write_bio(&epd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4037	return ret;
4038}
4039
4040/**
4041 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 
4042 * @mapping: address space structure to write
4043 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4044 * @data: data passed to __extent_writepage function
4045 *
4046 * If a page is already under I/O, write_cache_pages() skips it, even
4047 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4048 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4049 * and msync() need to guarantee that all the data which was dirty at the time
4050 * the call was made get new I/O started against them.  If wbc->sync_mode is
4051 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4052 * existing IO to complete.
4053 */
4054static int extent_write_cache_pages(struct address_space *mapping,
4055			     struct writeback_control *wbc,
4056			     struct extent_page_data *epd)
4057{
4058	struct inode *inode = mapping->host;
4059	int ret = 0;
4060	int done = 0;
4061	int nr_to_write_done = 0;
4062	struct pagevec pvec;
4063	int nr_pages;
4064	pgoff_t index;
4065	pgoff_t end;		/* Inclusive */
4066	pgoff_t done_index;
4067	int range_whole = 0;
4068	int scanned = 0;
4069	xa_mark_t tag;
4070
4071	/*
4072	 * We have to hold onto the inode so that ordered extents can do their
4073	 * work when the IO finishes.  The alternative to this is failing to add
4074	 * an ordered extent if the igrab() fails there and that is a huge pain
4075	 * to deal with, so instead just hold onto the inode throughout the
4076	 * writepages operation.  If it fails here we are freeing up the inode
4077	 * anyway and we'd rather not waste our time writing out stuff that is
4078	 * going to be truncated anyway.
4079	 */
4080	if (!igrab(inode))
4081		return 0;
4082
4083	pagevec_init(&pvec);
4084	if (wbc->range_cyclic) {
4085		index = mapping->writeback_index; /* Start from prev offset */
4086		end = -1;
 
 
 
 
 
4087	} else {
4088		index = wbc->range_start >> PAGE_SHIFT;
4089		end = wbc->range_end >> PAGE_SHIFT;
4090		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4091			range_whole = 1;
4092		scanned = 1;
4093	}
4094
4095	/*
4096	 * We do the tagged writepage as long as the snapshot flush bit is set
4097	 * and we are the first one who do the filemap_flush() on this inode.
4098	 *
4099	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4100	 * not race in and drop the bit.
4101	 */
4102	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4103	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4104			       &BTRFS_I(inode)->runtime_flags))
4105		wbc->tagged_writepages = 1;
4106
4107	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4108		tag = PAGECACHE_TAG_TOWRITE;
4109	else
4110		tag = PAGECACHE_TAG_DIRTY;
4111retry:
4112	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4113		tag_pages_for_writeback(mapping, index, end);
4114	done_index = index;
4115	while (!done && !nr_to_write_done && (index <= end) &&
4116			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4117						&index, end, tag))) {
4118		unsigned i;
4119
4120		scanned = 1;
4121		for (i = 0; i < nr_pages; i++) {
4122			struct page *page = pvec.pages[i];
4123
4124			done_index = page->index;
4125			/*
4126			 * At this point we hold neither the i_pages lock nor
4127			 * the page lock: the page may be truncated or
4128			 * invalidated (changing page->mapping to NULL),
4129			 * or even swizzled back from swapper_space to
4130			 * tmpfs file mapping
4131			 */
4132			if (!trylock_page(page)) {
4133				ret = flush_write_bio(epd);
4134				BUG_ON(ret < 0);
4135				lock_page(page);
4136			}
4137
4138			if (unlikely(page->mapping != mapping)) {
4139				unlock_page(page);
4140				continue;
4141			}
4142
4143			if (wbc->sync_mode != WB_SYNC_NONE) {
4144				if (PageWriteback(page)) {
4145					ret = flush_write_bio(epd);
4146					BUG_ON(ret < 0);
4147				}
4148				wait_on_page_writeback(page);
4149			}
4150
4151			if (PageWriteback(page) ||
4152			    !clear_page_dirty_for_io(page)) {
4153				unlock_page(page);
4154				continue;
4155			}
4156
4157			ret = __extent_writepage(page, wbc, epd);
4158			if (ret < 0) {
4159				/*
4160				 * done_index is set past this page,
4161				 * so media errors will not choke
4162				 * background writeout for the entire
4163				 * file. This has consequences for
4164				 * range_cyclic semantics (ie. it may
4165				 * not be suitable for data integrity
4166				 * writeout).
4167				 */
4168				done_index = page->index + 1;
4169				done = 1;
4170				break;
4171			}
4172
4173			/*
4174			 * the filesystem may choose to bump up nr_to_write.
4175			 * We have to make sure to honor the new nr_to_write
4176			 * at any time
4177			 */
4178			nr_to_write_done = wbc->nr_to_write <= 0;
4179		}
4180		pagevec_release(&pvec);
4181		cond_resched();
4182	}
4183	if (!scanned && !done) {
4184		/*
4185		 * We hit the last page and there is more work to be done: wrap
4186		 * back to the start of the file
4187		 */
4188		scanned = 1;
4189		index = 0;
4190		goto retry;
 
 
 
 
 
 
 
 
 
4191	}
4192
4193	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4194		mapping->writeback_index = done_index;
4195
4196	btrfs_add_delayed_iput(inode);
4197	return ret;
4198}
4199
4200int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4201{
4202	int ret;
4203	struct extent_page_data epd = {
4204		.bio = NULL,
4205		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4206		.extent_locked = 0,
4207		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4208	};
4209
4210	ret = __extent_writepage(page, wbc, &epd);
4211	ASSERT(ret <= 0);
4212	if (ret < 0) {
4213		end_write_bio(&epd, ret);
4214		return ret;
4215	}
4216
4217	ret = flush_write_bio(&epd);
4218	ASSERT(ret <= 0);
4219	return ret;
4220}
4221
4222int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4223			      int mode)
4224{
4225	int ret = 0;
4226	struct address_space *mapping = inode->i_mapping;
4227	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4228	struct page *page;
4229	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4230		PAGE_SHIFT;
4231
4232	struct extent_page_data epd = {
4233		.bio = NULL,
4234		.tree = tree,
4235		.extent_locked = 1,
4236		.sync_io = mode == WB_SYNC_ALL,
4237	};
4238	struct writeback_control wbc_writepages = {
4239		.sync_mode	= mode,
4240		.nr_to_write	= nr_pages * 2,
4241		.range_start	= start,
4242		.range_end	= end + 1,
 
 
 
4243	};
4244
 
4245	while (start <= end) {
4246		page = find_get_page(mapping, start >> PAGE_SHIFT);
4247		if (clear_page_dirty_for_io(page))
4248			ret = __extent_writepage(page, &wbc_writepages, &epd);
4249		else {
4250			btrfs_writepage_endio_finish_ordered(page, start,
4251						    start + PAGE_SIZE - 1, 1);
4252			unlock_page(page);
4253		}
4254		put_page(page);
4255		start += PAGE_SIZE;
4256	}
4257
4258	ASSERT(ret <= 0);
4259	if (ret < 0) {
 
 
4260		end_write_bio(&epd, ret);
4261		return ret;
4262	}
4263	ret = flush_write_bio(&epd);
4264	return ret;
4265}
4266
4267int extent_writepages(struct address_space *mapping,
4268		      struct writeback_control *wbc)
4269{
4270	int ret = 0;
4271	struct extent_page_data epd = {
4272		.bio = NULL,
4273		.tree = &BTRFS_I(mapping->host)->io_tree,
4274		.extent_locked = 0,
4275		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4276	};
4277
4278	ret = extent_write_cache_pages(mapping, wbc, &epd);
4279	ASSERT(ret <= 0);
4280	if (ret < 0) {
4281		end_write_bio(&epd, ret);
4282		return ret;
4283	}
4284	ret = flush_write_bio(&epd);
4285	return ret;
4286}
4287
4288int extent_readpages(struct address_space *mapping, struct list_head *pages,
4289		     unsigned nr_pages)
4290{
4291	struct bio *bio = NULL;
4292	unsigned long bio_flags = 0;
4293	struct page *pagepool[16];
4294	struct extent_map *em_cached = NULL;
4295	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4296	int nr = 0;
4297	u64 prev_em_start = (u64)-1;
 
4298
4299	while (!list_empty(pages)) {
4300		u64 contig_end = 0;
4301
4302		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4303			struct page *page = lru_to_page(pages);
4304
4305			prefetchw(&page->flags);
4306			list_del(&page->lru);
4307			if (add_to_page_cache_lru(page, mapping, page->index,
4308						readahead_gfp_mask(mapping))) {
4309				put_page(page);
4310				break;
4311			}
4312
4313			pagepool[nr++] = page;
4314			contig_end = page_offset(page) + PAGE_SIZE - 1;
4315		}
4316
4317		if (nr) {
4318			u64 contig_start = page_offset(pagepool[0]);
4319
4320			ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4321
4322			contiguous_readpages(tree, pagepool, nr, contig_start,
4323				     contig_end, &em_cached, &bio, &bio_flags,
4324				     &prev_em_start);
4325		}
4326	}
4327
4328	if (em_cached)
4329		free_extent_map(em_cached);
4330
4331	if (bio)
4332		return submit_one_bio(bio, 0, bio_flags);
4333	return 0;
 
4334}
4335
4336/*
4337 * basic invalidatepage code, this waits on any locked or writeback
4338 * ranges corresponding to the page, and then deletes any extent state
4339 * records from the tree
4340 */
4341int extent_invalidatepage(struct extent_io_tree *tree,
4342			  struct page *page, unsigned long offset)
4343{
4344	struct extent_state *cached_state = NULL;
4345	u64 start = page_offset(page);
4346	u64 end = start + PAGE_SIZE - 1;
4347	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4348
 
 
 
4349	start += ALIGN(offset, blocksize);
4350	if (start > end)
4351		return 0;
4352
4353	lock_extent_bits(tree, start, end, &cached_state);
4354	wait_on_page_writeback(page);
4355	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4356			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
 
 
 
 
 
4357	return 0;
4358}
4359
4360/*
4361 * a helper for releasepage, this tests for areas of the page that
4362 * are locked or under IO and drops the related state bits if it is safe
4363 * to drop the page.
4364 */
4365static int try_release_extent_state(struct extent_io_tree *tree,
4366				    struct page *page, gfp_t mask)
4367{
4368	u64 start = page_offset(page);
4369	u64 end = start + PAGE_SIZE - 1;
4370	int ret = 1;
4371
4372	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4373		ret = 0;
4374	} else {
4375		/*
4376		 * at this point we can safely clear everything except the
4377		 * locked bit and the nodatasum bit
 
 
4378		 */
4379		ret = __clear_extent_bit(tree, start, end,
4380				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4381				 0, 0, NULL, mask, NULL);
4382
4383		/* if clear_extent_bit failed for enomem reasons,
4384		 * we can't allow the release to continue.
4385		 */
4386		if (ret < 0)
4387			ret = 0;
4388		else
4389			ret = 1;
4390	}
4391	return ret;
4392}
4393
4394/*
4395 * a helper for releasepage.  As long as there are no locked extents
4396 * in the range corresponding to the page, both state records and extent
4397 * map records are removed
4398 */
4399int try_release_extent_mapping(struct page *page, gfp_t mask)
4400{
4401	struct extent_map *em;
4402	u64 start = page_offset(page);
4403	u64 end = start + PAGE_SIZE - 1;
4404	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4405	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4406	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4407
4408	if (gfpflags_allow_blocking(mask) &&
4409	    page->mapping->host->i_size > SZ_16M) {
4410		u64 len;
4411		while (start <= end) {
 
 
 
4412			len = end - start + 1;
4413			write_lock(&map->lock);
4414			em = lookup_extent_mapping(map, start, len);
4415			if (!em) {
4416				write_unlock(&map->lock);
4417				break;
4418			}
4419			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4420			    em->start != start) {
4421				write_unlock(&map->lock);
4422				free_extent_map(em);
4423				break;
4424			}
4425			if (!test_range_bit(tree, em->start,
4426					    extent_map_end(em) - 1,
4427					    EXTENT_LOCKED, 0, NULL)) {
4428				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4429					&btrfs_inode->runtime_flags);
4430				remove_extent_mapping(map, em);
4431				/* once for the rb tree */
4432				free_extent_map(em);
4433			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4434			start = extent_map_end(em);
4435			write_unlock(&map->lock);
4436
4437			/* once for us */
4438			free_extent_map(em);
 
 
4439		}
4440	}
4441	return try_release_extent_state(tree, page, mask);
4442}
4443
4444/*
4445 * helper function for fiemap, which doesn't want to see any holes.
4446 * This maps until we find something past 'last'
4447 */
4448static struct extent_map *get_extent_skip_holes(struct inode *inode,
4449						u64 offset, u64 last)
4450{
4451	u64 sectorsize = btrfs_inode_sectorsize(inode);
4452	struct extent_map *em;
4453	u64 len;
4454
4455	if (offset >= last)
4456		return NULL;
4457
4458	while (1) {
4459		len = last - offset;
4460		if (len == 0)
4461			break;
4462		len = ALIGN(len, sectorsize);
4463		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4464		if (IS_ERR_OR_NULL(em))
4465			return em;
4466
4467		/* if this isn't a hole return it */
4468		if (em->block_start != EXTENT_MAP_HOLE)
4469			return em;
4470
4471		/* this is a hole, advance to the next extent */
4472		offset = extent_map_end(em);
4473		free_extent_map(em);
4474		if (offset >= last)
4475			break;
4476	}
4477	return NULL;
4478}
4479
4480/*
4481 * To cache previous fiemap extent
4482 *
4483 * Will be used for merging fiemap extent
4484 */
4485struct fiemap_cache {
4486	u64 offset;
4487	u64 phys;
4488	u64 len;
4489	u32 flags;
4490	bool cached;
4491};
4492
4493/*
4494 * Helper to submit fiemap extent.
4495 *
4496 * Will try to merge current fiemap extent specified by @offset, @phys,
4497 * @len and @flags with cached one.
4498 * And only when we fails to merge, cached one will be submitted as
4499 * fiemap extent.
4500 *
4501 * Return value is the same as fiemap_fill_next_extent().
4502 */
4503static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4504				struct fiemap_cache *cache,
4505				u64 offset, u64 phys, u64 len, u32 flags)
4506{
4507	int ret = 0;
4508
4509	if (!cache->cached)
4510		goto assign;
4511
4512	/*
4513	 * Sanity check, extent_fiemap() should have ensured that new
4514	 * fiemap extent won't overlap with cached one.
4515	 * Not recoverable.
4516	 *
4517	 * NOTE: Physical address can overlap, due to compression
4518	 */
4519	if (cache->offset + cache->len > offset) {
4520		WARN_ON(1);
4521		return -EINVAL;
4522	}
4523
4524	/*
4525	 * Only merges fiemap extents if
4526	 * 1) Their logical addresses are continuous
4527	 *
4528	 * 2) Their physical addresses are continuous
4529	 *    So truly compressed (physical size smaller than logical size)
4530	 *    extents won't get merged with each other
4531	 *
4532	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4533	 *    So regular extent won't get merged with prealloc extent
4534	 */
4535	if (cache->offset + cache->len  == offset &&
4536	    cache->phys + cache->len == phys  &&
4537	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4538			(flags & ~FIEMAP_EXTENT_LAST)) {
4539		cache->len += len;
4540		cache->flags |= flags;
4541		goto try_submit_last;
4542	}
4543
4544	/* Not mergeable, need to submit cached one */
4545	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4546				      cache->len, cache->flags);
4547	cache->cached = false;
4548	if (ret)
4549		return ret;
4550assign:
4551	cache->cached = true;
4552	cache->offset = offset;
4553	cache->phys = phys;
4554	cache->len = len;
4555	cache->flags = flags;
4556try_submit_last:
4557	if (cache->flags & FIEMAP_EXTENT_LAST) {
4558		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4559				cache->phys, cache->len, cache->flags);
4560		cache->cached = false;
4561	}
4562	return ret;
4563}
4564
4565/*
4566 * Emit last fiemap cache
4567 *
4568 * The last fiemap cache may still be cached in the following case:
4569 * 0		      4k		    8k
4570 * |<- Fiemap range ->|
4571 * |<------------  First extent ----------->|
4572 *
4573 * In this case, the first extent range will be cached but not emitted.
4574 * So we must emit it before ending extent_fiemap().
4575 */
4576static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4577				  struct fiemap_cache *cache)
4578{
4579	int ret;
4580
4581	if (!cache->cached)
4582		return 0;
4583
4584	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4585				      cache->len, cache->flags);
4586	cache->cached = false;
4587	if (ret > 0)
4588		ret = 0;
4589	return ret;
4590}
4591
4592int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4593		__u64 start, __u64 len)
4594{
4595	int ret = 0;
4596	u64 off = start;
4597	u64 max = start + len;
4598	u32 flags = 0;
4599	u32 found_type;
4600	u64 last;
4601	u64 last_for_get_extent = 0;
4602	u64 disko = 0;
4603	u64 isize = i_size_read(inode);
4604	struct btrfs_key found_key;
4605	struct extent_map *em = NULL;
4606	struct extent_state *cached_state = NULL;
4607	struct btrfs_path *path;
4608	struct btrfs_root *root = BTRFS_I(inode)->root;
4609	struct fiemap_cache cache = { 0 };
4610	struct ulist *roots;
4611	struct ulist *tmp_ulist;
4612	int end = 0;
4613	u64 em_start = 0;
4614	u64 em_len = 0;
4615	u64 em_end = 0;
4616
4617	if (len == 0)
4618		return -EINVAL;
4619
4620	path = btrfs_alloc_path();
4621	if (!path)
4622		return -ENOMEM;
4623	path->leave_spinning = 1;
4624
4625	roots = ulist_alloc(GFP_KERNEL);
4626	tmp_ulist = ulist_alloc(GFP_KERNEL);
4627	if (!roots || !tmp_ulist) {
4628		ret = -ENOMEM;
4629		goto out_free_ulist;
4630	}
4631
 
 
 
 
 
4632	start = round_down(start, btrfs_inode_sectorsize(inode));
4633	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4634
4635	/*
4636	 * lookup the last file extent.  We're not using i_size here
4637	 * because there might be preallocation past i_size
4638	 */
4639	ret = btrfs_lookup_file_extent(NULL, root, path,
4640			btrfs_ino(BTRFS_I(inode)), -1, 0);
4641	if (ret < 0) {
4642		goto out_free_ulist;
4643	} else {
4644		WARN_ON(!ret);
4645		if (ret == 1)
4646			ret = 0;
4647	}
4648
4649	path->slots[0]--;
4650	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4651	found_type = found_key.type;
4652
4653	/* No extents, but there might be delalloc bits */
4654	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4655	    found_type != BTRFS_EXTENT_DATA_KEY) {
4656		/* have to trust i_size as the end */
4657		last = (u64)-1;
4658		last_for_get_extent = isize;
4659	} else {
4660		/*
4661		 * remember the start of the last extent.  There are a
4662		 * bunch of different factors that go into the length of the
4663		 * extent, so its much less complex to remember where it started
4664		 */
4665		last = found_key.offset;
4666		last_for_get_extent = last + 1;
4667	}
4668	btrfs_release_path(path);
4669
4670	/*
4671	 * we might have some extents allocated but more delalloc past those
4672	 * extents.  so, we trust isize unless the start of the last extent is
4673	 * beyond isize
4674	 */
4675	if (last < isize) {
4676		last = (u64)-1;
4677		last_for_get_extent = isize;
4678	}
4679
4680	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4681			 &cached_state);
4682
4683	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4684	if (!em)
4685		goto out;
4686	if (IS_ERR(em)) {
4687		ret = PTR_ERR(em);
4688		goto out;
4689	}
4690
4691	while (!end) {
4692		u64 offset_in_extent = 0;
4693
4694		/* break if the extent we found is outside the range */
4695		if (em->start >= max || extent_map_end(em) < off)
4696			break;
4697
4698		/*
4699		 * get_extent may return an extent that starts before our
4700		 * requested range.  We have to make sure the ranges
4701		 * we return to fiemap always move forward and don't
4702		 * overlap, so adjust the offsets here
4703		 */
4704		em_start = max(em->start, off);
4705
4706		/*
4707		 * record the offset from the start of the extent
4708		 * for adjusting the disk offset below.  Only do this if the
4709		 * extent isn't compressed since our in ram offset may be past
4710		 * what we have actually allocated on disk.
4711		 */
4712		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4713			offset_in_extent = em_start - em->start;
4714		em_end = extent_map_end(em);
4715		em_len = em_end - em_start;
4716		flags = 0;
4717		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4718			disko = em->block_start + offset_in_extent;
4719		else
4720			disko = 0;
4721
4722		/*
4723		 * bump off for our next call to get_extent
4724		 */
4725		off = extent_map_end(em);
4726		if (off >= max)
4727			end = 1;
4728
4729		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4730			end = 1;
4731			flags |= FIEMAP_EXTENT_LAST;
4732		} else if (em->block_start == EXTENT_MAP_INLINE) {
4733			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4734				  FIEMAP_EXTENT_NOT_ALIGNED);
4735		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4736			flags |= (FIEMAP_EXTENT_DELALLOC |
4737				  FIEMAP_EXTENT_UNKNOWN);
4738		} else if (fieinfo->fi_extents_max) {
4739			u64 bytenr = em->block_start -
4740				(em->start - em->orig_start);
4741
4742			/*
4743			 * As btrfs supports shared space, this information
4744			 * can be exported to userspace tools via
4745			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4746			 * then we're just getting a count and we can skip the
4747			 * lookup stuff.
4748			 */
4749			ret = btrfs_check_shared(root,
4750						 btrfs_ino(BTRFS_I(inode)),
4751						 bytenr, roots, tmp_ulist);
4752			if (ret < 0)
4753				goto out_free;
4754			if (ret)
4755				flags |= FIEMAP_EXTENT_SHARED;
4756			ret = 0;
4757		}
4758		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4759			flags |= FIEMAP_EXTENT_ENCODED;
4760		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4761			flags |= FIEMAP_EXTENT_UNWRITTEN;
4762
4763		free_extent_map(em);
4764		em = NULL;
4765		if ((em_start >= last) || em_len == (u64)-1 ||
4766		   (last == (u64)-1 && isize <= em_end)) {
4767			flags |= FIEMAP_EXTENT_LAST;
4768			end = 1;
4769		}
4770
4771		/* now scan forward to see if this is really the last extent. */
4772		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4773		if (IS_ERR(em)) {
4774			ret = PTR_ERR(em);
4775			goto out;
4776		}
4777		if (!em) {
4778			flags |= FIEMAP_EXTENT_LAST;
4779			end = 1;
4780		}
4781		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4782					   em_len, flags);
4783		if (ret) {
4784			if (ret == 1)
4785				ret = 0;
4786			goto out_free;
4787		}
4788	}
4789out_free:
4790	if (!ret)
4791		ret = emit_last_fiemap_cache(fieinfo, &cache);
4792	free_extent_map(em);
4793out:
4794	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4795			     &cached_state);
4796
4797out_free_ulist:
4798	btrfs_free_path(path);
4799	ulist_free(roots);
4800	ulist_free(tmp_ulist);
4801	return ret;
4802}
4803
4804static void __free_extent_buffer(struct extent_buffer *eb)
4805{
4806	btrfs_leak_debug_del(&eb->leak_list);
4807	kmem_cache_free(extent_buffer_cache, eb);
4808}
4809
4810int extent_buffer_under_io(struct extent_buffer *eb)
4811{
4812	return (atomic_read(&eb->io_pages) ||
4813		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4814		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4815}
4816
4817/*
4818 * Release all pages attached to the extent buffer.
4819 */
4820static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4821{
4822	int i;
4823	int num_pages;
4824	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4825
4826	BUG_ON(extent_buffer_under_io(eb));
4827
4828	num_pages = num_extent_pages(eb);
4829	for (i = 0; i < num_pages; i++) {
4830		struct page *page = eb->pages[i];
 
 
 
 
 
 
 
 
 
 
4831
4832		if (!page)
4833			continue;
 
 
 
 
 
 
 
 
 
 
 
4834		if (mapped)
4835			spin_lock(&page->mapping->private_lock);
 
 
 
 
4836		/*
4837		 * We do this since we'll remove the pages after we've
4838		 * removed the eb from the radix tree, so we could race
4839		 * and have this page now attached to the new eb.  So
4840		 * only clear page_private if it's still connected to
4841		 * this eb.
4842		 */
4843		if (PagePrivate(page) &&
4844		    page->private == (unsigned long)eb) {
4845			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4846			BUG_ON(PageDirty(page));
4847			BUG_ON(PageWriteback(page));
4848			/*
4849			 * We need to make sure we haven't be attached
4850			 * to a new eb.
4851			 */
4852			ClearPagePrivate(page);
4853			set_page_private(page, 0);
4854			/* One for the page private */
4855			put_page(page);
4856		}
4857
4858		if (mapped)
4859			spin_unlock(&page->mapping->private_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4860
4861		/* One for when we allocated the page */
4862		put_page(page);
4863	}
4864}
4865
4866/*
4867 * Helper for releasing the extent buffer.
4868 */
4869static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4870{
4871	btrfs_release_extent_buffer_pages(eb);
 
4872	__free_extent_buffer(eb);
4873}
4874
4875static struct extent_buffer *
4876__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4877		      unsigned long len)
4878{
4879	struct extent_buffer *eb = NULL;
4880
4881	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4882	eb->start = start;
4883	eb->len = len;
4884	eb->fs_info = fs_info;
4885	eb->bflags = 0;
4886	rwlock_init(&eb->lock);
4887	atomic_set(&eb->blocking_readers, 0);
4888	eb->blocking_writers = 0;
4889	eb->lock_nested = false;
4890	init_waitqueue_head(&eb->write_lock_wq);
4891	init_waitqueue_head(&eb->read_lock_wq);
4892
4893	btrfs_leak_debug_add(&eb->leak_list, &buffers);
 
 
4894
4895	spin_lock_init(&eb->refs_lock);
4896	atomic_set(&eb->refs, 1);
4897	atomic_set(&eb->io_pages, 0);
4898
4899	/*
4900	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4901	 */
4902	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4903		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4904	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4905
4906#ifdef CONFIG_BTRFS_DEBUG
4907	eb->spinning_writers = 0;
4908	atomic_set(&eb->spinning_readers, 0);
4909	atomic_set(&eb->read_locks, 0);
4910	eb->write_locks = 0;
4911#endif
4912
4913	return eb;
4914}
4915
4916struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4917{
4918	int i;
4919	struct page *p;
4920	struct extent_buffer *new;
4921	int num_pages = num_extent_pages(src);
4922
4923	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4924	if (new == NULL)
4925		return NULL;
4926
 
 
 
 
 
 
 
4927	for (i = 0; i < num_pages; i++) {
 
 
4928		p = alloc_page(GFP_NOFS);
4929		if (!p) {
4930			btrfs_release_extent_buffer(new);
4931			return NULL;
4932		}
4933		attach_extent_buffer_page(new, p);
 
 
 
 
 
4934		WARN_ON(PageDirty(p));
4935		SetPageUptodate(p);
4936		new->pages[i] = p;
4937		copy_page(page_address(p), page_address(src->pages[i]));
4938	}
4939
4940	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4941	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4942
4943	return new;
4944}
4945
4946struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4947						  u64 start, unsigned long len)
4948{
4949	struct extent_buffer *eb;
4950	int num_pages;
4951	int i;
4952
4953	eb = __alloc_extent_buffer(fs_info, start, len);
4954	if (!eb)
4955		return NULL;
4956
4957	num_pages = num_extent_pages(eb);
4958	for (i = 0; i < num_pages; i++) {
 
 
4959		eb->pages[i] = alloc_page(GFP_NOFS);
4960		if (!eb->pages[i])
4961			goto err;
 
 
 
4962	}
4963	set_extent_buffer_uptodate(eb);
4964	btrfs_set_header_nritems(eb, 0);
4965	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4966
4967	return eb;
4968err:
4969	for (; i > 0; i--)
 
4970		__free_page(eb->pages[i - 1]);
 
4971	__free_extent_buffer(eb);
4972	return NULL;
4973}
4974
4975struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4976						u64 start)
4977{
4978	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4979}
4980
4981static void check_buffer_tree_ref(struct extent_buffer *eb)
4982{
4983	int refs;
4984	/* the ref bit is tricky.  We have to make sure it is set
4985	 * if we have the buffer dirty.   Otherwise the
4986	 * code to free a buffer can end up dropping a dirty
4987	 * page
4988	 *
4989	 * Once the ref bit is set, it won't go away while the
4990	 * buffer is dirty or in writeback, and it also won't
4991	 * go away while we have the reference count on the
4992	 * eb bumped.
4993	 *
4994	 * We can't just set the ref bit without bumping the
4995	 * ref on the eb because free_extent_buffer might
4996	 * see the ref bit and try to clear it.  If this happens
4997	 * free_extent_buffer might end up dropping our original
4998	 * ref by mistake and freeing the page before we are able
4999	 * to add one more ref.
5000	 *
5001	 * So bump the ref count first, then set the bit.  If someone
5002	 * beat us to it, drop the ref we added.
 
 
 
 
 
5003	 */
5004	refs = atomic_read(&eb->refs);
5005	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5006		return;
5007
5008	spin_lock(&eb->refs_lock);
5009	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5010		atomic_inc(&eb->refs);
5011	spin_unlock(&eb->refs_lock);
5012}
5013
5014static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5015		struct page *accessed)
5016{
5017	int num_pages, i;
5018
5019	check_buffer_tree_ref(eb);
5020
5021	num_pages = num_extent_pages(eb);
5022	for (i = 0; i < num_pages; i++) {
5023		struct page *p = eb->pages[i];
5024
5025		if (p != accessed)
5026			mark_page_accessed(p);
5027	}
5028}
5029
5030struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5031					 u64 start)
5032{
5033	struct extent_buffer *eb;
5034
5035	rcu_read_lock();
5036	eb = radix_tree_lookup(&fs_info->buffer_radix,
5037			       start >> PAGE_SHIFT);
5038	if (eb && atomic_inc_not_zero(&eb->refs)) {
5039		rcu_read_unlock();
5040		/*
5041		 * Lock our eb's refs_lock to avoid races with
5042		 * free_extent_buffer. When we get our eb it might be flagged
5043		 * with EXTENT_BUFFER_STALE and another task running
5044		 * free_extent_buffer might have seen that flag set,
5045		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5046		 * writeback flags not set) and it's still in the tree (flag
5047		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5048		 * of decrementing the extent buffer's reference count twice.
5049		 * So here we could race and increment the eb's reference count,
5050		 * clear its stale flag, mark it as dirty and drop our reference
5051		 * before the other task finishes executing free_extent_buffer,
5052		 * which would later result in an attempt to free an extent
5053		 * buffer that is dirty.
5054		 */
5055		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5056			spin_lock(&eb->refs_lock);
5057			spin_unlock(&eb->refs_lock);
5058		}
5059		mark_extent_buffer_accessed(eb, NULL);
5060		return eb;
5061	}
5062	rcu_read_unlock();
5063
5064	return NULL;
5065}
5066
5067#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5068struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5069					u64 start)
5070{
5071	struct extent_buffer *eb, *exists = NULL;
5072	int ret;
5073
5074	eb = find_extent_buffer(fs_info, start);
5075	if (eb)
5076		return eb;
5077	eb = alloc_dummy_extent_buffer(fs_info, start);
5078	if (!eb)
5079		return NULL;
5080	eb->fs_info = fs_info;
5081again:
5082	ret = radix_tree_preload(GFP_NOFS);
5083	if (ret)
 
5084		goto free_eb;
 
5085	spin_lock(&fs_info->buffer_lock);
5086	ret = radix_tree_insert(&fs_info->buffer_radix,
5087				start >> PAGE_SHIFT, eb);
5088	spin_unlock(&fs_info->buffer_lock);
5089	radix_tree_preload_end();
5090	if (ret == -EEXIST) {
5091		exists = find_extent_buffer(fs_info, start);
5092		if (exists)
5093			goto free_eb;
5094		else
5095			goto again;
5096	}
5097	check_buffer_tree_ref(eb);
5098	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5099
5100	return eb;
5101free_eb:
5102	btrfs_release_extent_buffer(eb);
5103	return exists;
5104}
5105#endif
5106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5107struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5108					  u64 start)
5109{
5110	unsigned long len = fs_info->nodesize;
5111	int num_pages;
5112	int i;
5113	unsigned long index = start >> PAGE_SHIFT;
5114	struct extent_buffer *eb;
5115	struct extent_buffer *exists = NULL;
5116	struct page *p;
5117	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5118	int uptodate = 1;
5119	int ret;
5120
5121	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5122		btrfs_err(fs_info, "bad tree block start %llu", start);
5123		return ERR_PTR(-EINVAL);
5124	}
5125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5126	eb = find_extent_buffer(fs_info, start);
5127	if (eb)
5128		return eb;
5129
5130	eb = __alloc_extent_buffer(fs_info, start, len);
5131	if (!eb)
5132		return ERR_PTR(-ENOMEM);
 
5133
5134	num_pages = num_extent_pages(eb);
5135	for (i = 0; i < num_pages; i++, index++) {
 
 
5136		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5137		if (!p) {
5138			exists = ERR_PTR(-ENOMEM);
5139			goto free_eb;
5140		}
5141
5142		spin_lock(&mapping->private_lock);
5143		if (PagePrivate(p)) {
5144			/*
5145			 * We could have already allocated an eb for this page
5146			 * and attached one so lets see if we can get a ref on
5147			 * the existing eb, and if we can we know it's good and
5148			 * we can just return that one, else we know we can just
5149			 * overwrite page->private.
5150			 */
5151			exists = (struct extent_buffer *)p->private;
5152			if (atomic_inc_not_zero(&exists->refs)) {
5153				spin_unlock(&mapping->private_lock);
5154				unlock_page(p);
5155				put_page(p);
5156				mark_extent_buffer_accessed(exists, p);
5157				goto free_eb;
5158			}
5159			exists = NULL;
5160
5161			/*
5162			 * Do this so attach doesn't complain and we need to
5163			 * drop the ref the old guy had.
5164			 */
5165			ClearPagePrivate(p);
5166			WARN_ON(PageDirty(p));
5167			put_page(p);
 
 
 
5168		}
5169		attach_extent_buffer_page(eb, p);
 
 
 
 
 
 
 
 
 
 
 
 
5170		spin_unlock(&mapping->private_lock);
5171		WARN_ON(PageDirty(p));
 
5172		eb->pages[i] = p;
5173		if (!PageUptodate(p))
5174			uptodate = 0;
5175
5176		/*
5177		 * We can't unlock the pages just yet since the extent buffer
5178		 * hasn't been properly inserted in the radix tree, this
5179		 * opens a race with btree_releasepage which can free a page
5180		 * while we are still filling in all pages for the buffer and
5181		 * we could crash.
5182		 */
5183	}
5184	if (uptodate)
5185		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5186again:
5187	ret = radix_tree_preload(GFP_NOFS);
5188	if (ret) {
5189		exists = ERR_PTR(ret);
5190		goto free_eb;
5191	}
5192
5193	spin_lock(&fs_info->buffer_lock);
5194	ret = radix_tree_insert(&fs_info->buffer_radix,
5195				start >> PAGE_SHIFT, eb);
5196	spin_unlock(&fs_info->buffer_lock);
5197	radix_tree_preload_end();
5198	if (ret == -EEXIST) {
5199		exists = find_extent_buffer(fs_info, start);
5200		if (exists)
5201			goto free_eb;
5202		else
5203			goto again;
5204	}
5205	/* add one reference for the tree */
5206	check_buffer_tree_ref(eb);
5207	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5208
5209	/*
5210	 * Now it's safe to unlock the pages because any calls to
5211	 * btree_releasepage will correctly detect that a page belongs to a
5212	 * live buffer and won't free them prematurely.
5213	 */
5214	for (i = 0; i < num_pages; i++)
5215		unlock_page(eb->pages[i]);
5216	return eb;
5217
5218free_eb:
5219	WARN_ON(!atomic_dec_and_test(&eb->refs));
5220	for (i = 0; i < num_pages; i++) {
5221		if (eb->pages[i])
5222			unlock_page(eb->pages[i]);
5223	}
5224
5225	btrfs_release_extent_buffer(eb);
5226	return exists;
5227}
5228
5229static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5230{
5231	struct extent_buffer *eb =
5232			container_of(head, struct extent_buffer, rcu_head);
5233
5234	__free_extent_buffer(eb);
5235}
5236
5237static int release_extent_buffer(struct extent_buffer *eb)
 
5238{
5239	lockdep_assert_held(&eb->refs_lock);
5240
5241	WARN_ON(atomic_read(&eb->refs) == 0);
5242	if (atomic_dec_and_test(&eb->refs)) {
5243		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5244			struct btrfs_fs_info *fs_info = eb->fs_info;
5245
5246			spin_unlock(&eb->refs_lock);
5247
5248			spin_lock(&fs_info->buffer_lock);
5249			radix_tree_delete(&fs_info->buffer_radix,
5250					  eb->start >> PAGE_SHIFT);
5251			spin_unlock(&fs_info->buffer_lock);
5252		} else {
5253			spin_unlock(&eb->refs_lock);
5254		}
5255
 
5256		/* Should be safe to release our pages at this point */
5257		btrfs_release_extent_buffer_pages(eb);
5258#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5259		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5260			__free_extent_buffer(eb);
5261			return 1;
5262		}
5263#endif
5264		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5265		return 1;
5266	}
5267	spin_unlock(&eb->refs_lock);
5268
5269	return 0;
5270}
5271
5272void free_extent_buffer(struct extent_buffer *eb)
5273{
5274	int refs;
5275	int old;
5276	if (!eb)
5277		return;
5278
5279	while (1) {
5280		refs = atomic_read(&eb->refs);
5281		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5282		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5283			refs == 1))
5284			break;
5285		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5286		if (old == refs)
5287			return;
5288	}
5289
5290	spin_lock(&eb->refs_lock);
5291	if (atomic_read(&eb->refs) == 2 &&
5292	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5293	    !extent_buffer_under_io(eb) &&
5294	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5295		atomic_dec(&eb->refs);
5296
5297	/*
5298	 * I know this is terrible, but it's temporary until we stop tracking
5299	 * the uptodate bits and such for the extent buffers.
5300	 */
5301	release_extent_buffer(eb);
5302}
5303
5304void free_extent_buffer_stale(struct extent_buffer *eb)
5305{
5306	if (!eb)
5307		return;
5308
5309	spin_lock(&eb->refs_lock);
5310	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5311
5312	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5313	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5314		atomic_dec(&eb->refs);
5315	release_extent_buffer(eb);
5316}
5317
5318void clear_extent_buffer_dirty(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5319{
5320	int i;
5321	int num_pages;
5322	struct page *page;
5323
 
 
 
5324	num_pages = num_extent_pages(eb);
5325
5326	for (i = 0; i < num_pages; i++) {
5327		page = eb->pages[i];
5328		if (!PageDirty(page))
5329			continue;
5330
5331		lock_page(page);
5332		WARN_ON(!PagePrivate(page));
5333
5334		clear_page_dirty_for_io(page);
5335		xa_lock_irq(&page->mapping->i_pages);
5336		if (!PageDirty(page))
5337			__xa_clear_mark(&page->mapping->i_pages,
5338					page_index(page), PAGECACHE_TAG_DIRTY);
5339		xa_unlock_irq(&page->mapping->i_pages);
5340		ClearPageError(page);
5341		unlock_page(page);
5342	}
5343	WARN_ON(atomic_read(&eb->refs) == 0);
5344}
5345
5346bool set_extent_buffer_dirty(struct extent_buffer *eb)
5347{
5348	int i;
5349	int num_pages;
5350	bool was_dirty;
5351
5352	check_buffer_tree_ref(eb);
5353
5354	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5355
5356	num_pages = num_extent_pages(eb);
5357	WARN_ON(atomic_read(&eb->refs) == 0);
5358	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5359
5360	if (!was_dirty)
5361		for (i = 0; i < num_pages; i++)
5362			set_page_dirty(eb->pages[i]);
5363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5364#ifdef CONFIG_BTRFS_DEBUG
5365	for (i = 0; i < num_pages; i++)
5366		ASSERT(PageDirty(eb->pages[i]));
5367#endif
5368
5369	return was_dirty;
5370}
5371
5372void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5373{
5374	int i;
5375	struct page *page;
5376	int num_pages;
 
5377
5378	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5379	num_pages = num_extent_pages(eb);
5380	for (i = 0; i < num_pages; i++) {
5381		page = eb->pages[i];
5382		if (page)
5383			ClearPageUptodate(page);
 
5384	}
5385}
5386
5387void set_extent_buffer_uptodate(struct extent_buffer *eb)
5388{
5389	int i;
5390	struct page *page;
5391	int num_pages;
 
5392
5393	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5394	num_pages = num_extent_pages(eb);
5395	for (i = 0; i < num_pages; i++) {
5396		page = eb->pages[i];
5397		SetPageUptodate(page);
5398	}
5399}
5400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5401int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5402{
5403	int i;
5404	struct page *page;
5405	int err;
5406	int ret = 0;
5407	int locked_pages = 0;
5408	int all_uptodate = 1;
5409	int num_pages;
5410	unsigned long num_reads = 0;
5411	struct bio *bio = NULL;
5412	unsigned long bio_flags = 0;
5413	struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5414
5415	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5416		return 0;
5417
 
 
 
5418	num_pages = num_extent_pages(eb);
5419	for (i = 0; i < num_pages; i++) {
5420		page = eb->pages[i];
5421		if (wait == WAIT_NONE) {
 
 
 
 
 
 
 
5422			if (!trylock_page(page))
5423				goto unlock_exit;
5424		} else {
5425			lock_page(page);
5426		}
5427		locked_pages++;
5428	}
5429	/*
5430	 * We need to firstly lock all pages to make sure that
5431	 * the uptodate bit of our pages won't be affected by
5432	 * clear_extent_buffer_uptodate().
5433	 */
5434	for (i = 0; i < num_pages; i++) {
5435		page = eb->pages[i];
5436		if (!PageUptodate(page)) {
5437			num_reads++;
5438			all_uptodate = 0;
5439		}
5440	}
5441
5442	if (all_uptodate) {
5443		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5444		goto unlock_exit;
5445	}
5446
5447	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5448	eb->read_mirror = 0;
5449	atomic_set(&eb->io_pages, num_reads);
 
 
 
 
 
5450	for (i = 0; i < num_pages; i++) {
5451		page = eb->pages[i];
5452
5453		if (!PageUptodate(page)) {
5454			if (ret) {
5455				atomic_dec(&eb->io_pages);
5456				unlock_page(page);
5457				continue;
5458			}
5459
5460			ClearPageError(page);
5461			err = __extent_read_full_page(tree, page,
5462						      btree_get_extent, &bio,
5463						      mirror_num, &bio_flags,
5464						      REQ_META);
5465			if (err) {
5466				ret = err;
5467				/*
5468				 * We use &bio in above __extent_read_full_page,
5469				 * so we ensure that if it returns error, the
5470				 * current page fails to add itself to bio and
5471				 * it's been unlocked.
5472				 *
5473				 * We must dec io_pages by ourselves.
5474				 */
 
 
 
5475				atomic_dec(&eb->io_pages);
5476			}
5477		} else {
5478			unlock_page(page);
5479		}
5480	}
5481
5482	if (bio) {
5483		err = submit_one_bio(bio, mirror_num, bio_flags);
 
5484		if (err)
5485			return err;
5486	}
5487
5488	if (ret || wait != WAIT_COMPLETE)
5489		return ret;
5490
5491	for (i = 0; i < num_pages; i++) {
5492		page = eb->pages[i];
5493		wait_on_page_locked(page);
5494		if (!PageUptodate(page))
5495			ret = -EIO;
5496	}
5497
5498	return ret;
5499
5500unlock_exit:
5501	while (locked_pages > 0) {
5502		locked_pages--;
5503		page = eb->pages[locked_pages];
5504		unlock_page(page);
5505	}
5506	return ret;
5507}
5508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5509void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5510			unsigned long start, unsigned long len)
5511{
5512	size_t cur;
5513	size_t offset;
5514	struct page *page;
5515	char *kaddr;
5516	char *dst = (char *)dstv;
5517	size_t start_offset = offset_in_page(eb->start);
5518	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5519
5520	if (start + len > eb->len) {
5521		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5522		     eb->start, eb->len, start, len);
5523		memset(dst, 0, len);
5524		return;
5525	}
5526
5527	offset = offset_in_page(start_offset + start);
5528
5529	while (len > 0) {
5530		page = eb->pages[i];
5531
5532		cur = min(len, (PAGE_SIZE - offset));
5533		kaddr = page_address(page);
5534		memcpy(dst, kaddr + offset, cur);
5535
5536		dst += cur;
5537		len -= cur;
5538		offset = 0;
5539		i++;
5540	}
5541}
5542
5543int read_extent_buffer_to_user(const struct extent_buffer *eb,
5544			       void __user *dstv,
5545			       unsigned long start, unsigned long len)
5546{
5547	size_t cur;
5548	size_t offset;
5549	struct page *page;
5550	char *kaddr;
5551	char __user *dst = (char __user *)dstv;
5552	size_t start_offset = offset_in_page(eb->start);
5553	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5554	int ret = 0;
5555
5556	WARN_ON(start > eb->len);
5557	WARN_ON(start + len > eb->start + eb->len);
5558
5559	offset = offset_in_page(start_offset + start);
5560
5561	while (len > 0) {
5562		page = eb->pages[i];
5563
5564		cur = min(len, (PAGE_SIZE - offset));
5565		kaddr = page_address(page);
5566		if (copy_to_user(dst, kaddr + offset, cur)) {
5567			ret = -EFAULT;
5568			break;
5569		}
5570
5571		dst += cur;
5572		len -= cur;
5573		offset = 0;
5574		i++;
5575	}
5576
5577	return ret;
5578}
5579
5580/*
5581 * return 0 if the item is found within a page.
5582 * return 1 if the item spans two pages.
5583 * return -EINVAL otherwise.
5584 */
5585int map_private_extent_buffer(const struct extent_buffer *eb,
5586			      unsigned long start, unsigned long min_len,
5587			      char **map, unsigned long *map_start,
5588			      unsigned long *map_len)
5589{
5590	size_t offset;
5591	char *kaddr;
5592	struct page *p;
5593	size_t start_offset = offset_in_page(eb->start);
5594	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5595	unsigned long end_i = (start_offset + start + min_len - 1) >>
5596		PAGE_SHIFT;
5597
5598	if (start + min_len > eb->len) {
5599		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5600		       eb->start, eb->len, start, min_len);
5601		return -EINVAL;
5602	}
5603
5604	if (i != end_i)
5605		return 1;
5606
5607	if (i == 0) {
5608		offset = start_offset;
5609		*map_start = 0;
5610	} else {
5611		offset = 0;
5612		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5613	}
5614
5615	p = eb->pages[i];
5616	kaddr = page_address(p);
5617	*map = kaddr + offset;
5618	*map_len = PAGE_SIZE - offset;
5619	return 0;
5620}
5621
5622int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5623			 unsigned long start, unsigned long len)
5624{
5625	size_t cur;
5626	size_t offset;
5627	struct page *page;
5628	char *kaddr;
5629	char *ptr = (char *)ptrv;
5630	size_t start_offset = offset_in_page(eb->start);
5631	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5632	int ret = 0;
5633
5634	WARN_ON(start > eb->len);
5635	WARN_ON(start + len > eb->start + eb->len);
5636
5637	offset = offset_in_page(start_offset + start);
5638
5639	while (len > 0) {
5640		page = eb->pages[i];
5641
5642		cur = min(len, (PAGE_SIZE - offset));
5643
5644		kaddr = page_address(page);
5645		ret = memcmp(ptr, kaddr + offset, cur);
5646		if (ret)
5647			break;
5648
5649		ptr += cur;
5650		len -= cur;
5651		offset = 0;
5652		i++;
5653	}
5654	return ret;
5655}
5656
5657void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5658		const void *srcv)
5659{
5660	char *kaddr;
5661
5662	WARN_ON(!PageUptodate(eb->pages[0]));
5663	kaddr = page_address(eb->pages[0]);
5664	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5665			BTRFS_FSID_SIZE);
 
5666}
5667
5668void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5669{
5670	char *kaddr;
5671
5672	WARN_ON(!PageUptodate(eb->pages[0]));
5673	kaddr = page_address(eb->pages[0]);
5674	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5675			BTRFS_FSID_SIZE);
5676}
5677
5678void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5679			 unsigned long start, unsigned long len)
5680{
5681	size_t cur;
5682	size_t offset;
5683	struct page *page;
5684	char *kaddr;
5685	char *src = (char *)srcv;
5686	size_t start_offset = offset_in_page(eb->start);
5687	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5688
5689	WARN_ON(start > eb->len);
5690	WARN_ON(start + len > eb->start + eb->len);
 
 
5691
5692	offset = offset_in_page(start_offset + start);
5693
5694	while (len > 0) {
5695		page = eb->pages[i];
5696		WARN_ON(!PageUptodate(page));
5697
5698		cur = min(len, PAGE_SIZE - offset);
5699		kaddr = page_address(page);
5700		memcpy(kaddr + offset, src, cur);
5701
5702		src += cur;
5703		len -= cur;
5704		offset = 0;
5705		i++;
5706	}
5707}
5708
5709void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5710		unsigned long len)
5711{
5712	size_t cur;
5713	size_t offset;
5714	struct page *page;
5715	char *kaddr;
5716	size_t start_offset = offset_in_page(eb->start);
5717	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5718
5719	WARN_ON(start > eb->len);
5720	WARN_ON(start + len > eb->start + eb->len);
5721
5722	offset = offset_in_page(start_offset + start);
5723
5724	while (len > 0) {
5725		page = eb->pages[i];
5726		WARN_ON(!PageUptodate(page));
5727
5728		cur = min(len, PAGE_SIZE - offset);
5729		kaddr = page_address(page);
5730		memset(kaddr + offset, 0, cur);
5731
5732		len -= cur;
5733		offset = 0;
5734		i++;
5735	}
5736}
5737
5738void copy_extent_buffer_full(struct extent_buffer *dst,
5739			     struct extent_buffer *src)
5740{
5741	int i;
5742	int num_pages;
5743
5744	ASSERT(dst->len == src->len);
5745
5746	num_pages = num_extent_pages(dst);
5747	for (i = 0; i < num_pages; i++)
5748		copy_page(page_address(dst->pages[i]),
5749				page_address(src->pages[i]));
 
 
 
 
 
 
 
 
 
 
5750}
5751
5752void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 
5753			unsigned long dst_offset, unsigned long src_offset,
5754			unsigned long len)
5755{
5756	u64 dst_len = dst->len;
5757	size_t cur;
5758	size_t offset;
5759	struct page *page;
5760	char *kaddr;
5761	size_t start_offset = offset_in_page(dst->start);
5762	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
 
 
 
5763
5764	WARN_ON(src->len != dst_len);
5765
5766	offset = offset_in_page(start_offset + dst_offset);
5767
5768	while (len > 0) {
5769		page = dst->pages[i];
5770		WARN_ON(!PageUptodate(page));
5771
5772		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5773
5774		kaddr = page_address(page);
5775		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5776
5777		src_offset += cur;
5778		len -= cur;
5779		offset = 0;
5780		i++;
5781	}
5782}
5783
5784/*
5785 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5786 * given bit number
5787 * @eb: the extent buffer
5788 * @start: offset of the bitmap item in the extent buffer
5789 * @nr: bit number
5790 * @page_index: return index of the page in the extent buffer that contains the
5791 * given bit number
5792 * @page_offset: return offset into the page given by page_index
5793 *
5794 * This helper hides the ugliness of finding the byte in an extent buffer which
5795 * contains a given bit.
5796 */
5797static inline void eb_bitmap_offset(struct extent_buffer *eb,
5798				    unsigned long start, unsigned long nr,
5799				    unsigned long *page_index,
5800				    size_t *page_offset)
5801{
5802	size_t start_offset = offset_in_page(eb->start);
5803	size_t byte_offset = BIT_BYTE(nr);
5804	size_t offset;
5805
5806	/*
5807	 * The byte we want is the offset of the extent buffer + the offset of
5808	 * the bitmap item in the extent buffer + the offset of the byte in the
5809	 * bitmap item.
5810	 */
5811	offset = start_offset + start + byte_offset;
5812
5813	*page_index = offset >> PAGE_SHIFT;
5814	*page_offset = offset_in_page(offset);
5815}
5816
5817/**
5818 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5819 * @eb: the extent buffer
5820 * @start: offset of the bitmap item in the extent buffer
5821 * @nr: bit number to test
5822 */
5823int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5824			   unsigned long nr)
5825{
5826	u8 *kaddr;
5827	struct page *page;
5828	unsigned long i;
5829	size_t offset;
5830
5831	eb_bitmap_offset(eb, start, nr, &i, &offset);
5832	page = eb->pages[i];
5833	WARN_ON(!PageUptodate(page));
5834	kaddr = page_address(page);
5835	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5836}
5837
5838/**
5839 * extent_buffer_bitmap_set - set an area of a bitmap
5840 * @eb: the extent buffer
5841 * @start: offset of the bitmap item in the extent buffer
5842 * @pos: bit number of the first bit
5843 * @len: number of bits to set
5844 */
5845void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5846			      unsigned long pos, unsigned long len)
5847{
5848	u8 *kaddr;
5849	struct page *page;
5850	unsigned long i;
5851	size_t offset;
5852	const unsigned int size = pos + len;
5853	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5854	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5855
5856	eb_bitmap_offset(eb, start, pos, &i, &offset);
5857	page = eb->pages[i];
5858	WARN_ON(!PageUptodate(page));
5859	kaddr = page_address(page);
5860
5861	while (len >= bits_to_set) {
5862		kaddr[offset] |= mask_to_set;
5863		len -= bits_to_set;
5864		bits_to_set = BITS_PER_BYTE;
5865		mask_to_set = ~0;
5866		if (++offset >= PAGE_SIZE && len > 0) {
5867			offset = 0;
5868			page = eb->pages[++i];
5869			WARN_ON(!PageUptodate(page));
5870			kaddr = page_address(page);
5871		}
5872	}
5873	if (len) {
5874		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5875		kaddr[offset] |= mask_to_set;
5876	}
5877}
5878
5879
5880/**
5881 * extent_buffer_bitmap_clear - clear an area of a bitmap
5882 * @eb: the extent buffer
5883 * @start: offset of the bitmap item in the extent buffer
5884 * @pos: bit number of the first bit
5885 * @len: number of bits to clear
5886 */
5887void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5888				unsigned long pos, unsigned long len)
 
5889{
5890	u8 *kaddr;
5891	struct page *page;
5892	unsigned long i;
5893	size_t offset;
5894	const unsigned int size = pos + len;
5895	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5896	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5897
5898	eb_bitmap_offset(eb, start, pos, &i, &offset);
5899	page = eb->pages[i];
5900	WARN_ON(!PageUptodate(page));
5901	kaddr = page_address(page);
5902
5903	while (len >= bits_to_clear) {
5904		kaddr[offset] &= ~mask_to_clear;
5905		len -= bits_to_clear;
5906		bits_to_clear = BITS_PER_BYTE;
5907		mask_to_clear = ~0;
5908		if (++offset >= PAGE_SIZE && len > 0) {
5909			offset = 0;
5910			page = eb->pages[++i];
5911			WARN_ON(!PageUptodate(page));
5912			kaddr = page_address(page);
5913		}
5914	}
5915	if (len) {
5916		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5917		kaddr[offset] &= ~mask_to_clear;
5918	}
5919}
5920
5921static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5922{
5923	unsigned long distance = (src > dst) ? src - dst : dst - src;
5924	return distance < len;
5925}
5926
5927static void copy_pages(struct page *dst_page, struct page *src_page,
5928		       unsigned long dst_off, unsigned long src_off,
5929		       unsigned long len)
5930{
5931	char *dst_kaddr = page_address(dst_page);
5932	char *src_kaddr;
5933	int must_memmove = 0;
5934
5935	if (dst_page != src_page) {
5936		src_kaddr = page_address(src_page);
5937	} else {
5938		src_kaddr = dst_kaddr;
5939		if (areas_overlap(src_off, dst_off, len))
5940			must_memmove = 1;
5941	}
5942
5943	if (must_memmove)
5944		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5945	else
5946		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5947}
5948
5949void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5950			   unsigned long src_offset, unsigned long len)
 
5951{
5952	struct btrfs_fs_info *fs_info = dst->fs_info;
5953	size_t cur;
5954	size_t dst_off_in_page;
5955	size_t src_off_in_page;
5956	size_t start_offset = offset_in_page(dst->start);
5957	unsigned long dst_i;
5958	unsigned long src_i;
5959
5960	if (src_offset + len > dst->len) {
5961		btrfs_err(fs_info,
5962			"memmove bogus src_offset %lu move len %lu dst len %lu",
5963			 src_offset, len, dst->len);
5964		BUG();
5965	}
5966	if (dst_offset + len > dst->len) {
5967		btrfs_err(fs_info,
5968			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5969			 dst_offset, len, dst->len);
5970		BUG();
5971	}
5972
5973	while (len > 0) {
5974		dst_off_in_page = offset_in_page(start_offset + dst_offset);
5975		src_off_in_page = offset_in_page(start_offset + src_offset);
5976
5977		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5978		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5979
5980		cur = min(len, (unsigned long)(PAGE_SIZE -
5981					       src_off_in_page));
5982		cur = min_t(unsigned long, cur,
5983			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5984
5985		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5986			   dst_off_in_page, src_off_in_page, cur);
5987
5988		src_offset += cur;
5989		dst_offset += cur;
5990		len -= cur;
5991	}
5992}
5993
5994void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5995			   unsigned long src_offset, unsigned long len)
 
5996{
5997	struct btrfs_fs_info *fs_info = dst->fs_info;
5998	size_t cur;
5999	size_t dst_off_in_page;
6000	size_t src_off_in_page;
6001	unsigned long dst_end = dst_offset + len - 1;
6002	unsigned long src_end = src_offset + len - 1;
6003	size_t start_offset = offset_in_page(dst->start);
6004	unsigned long dst_i;
6005	unsigned long src_i;
6006
6007	if (src_offset + len > dst->len) {
6008		btrfs_err(fs_info,
6009			  "memmove bogus src_offset %lu move len %lu len %lu",
6010			  src_offset, len, dst->len);
6011		BUG();
6012	}
6013	if (dst_offset + len > dst->len) {
6014		btrfs_err(fs_info,
6015			  "memmove bogus dst_offset %lu move len %lu len %lu",
6016			  dst_offset, len, dst->len);
6017		BUG();
6018	}
6019	if (dst_offset < src_offset) {
6020		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6021		return;
6022	}
6023	while (len > 0) {
6024		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6025		src_i = (start_offset + src_end) >> PAGE_SHIFT;
6026
6027		dst_off_in_page = offset_in_page(start_offset + dst_end);
6028		src_off_in_page = offset_in_page(start_offset + src_end);
6029
6030		cur = min_t(unsigned long, len, src_off_in_page + 1);
6031		cur = min(cur, dst_off_in_page + 1);
6032		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6033			   dst_off_in_page - cur + 1,
6034			   src_off_in_page - cur + 1, cur);
6035
6036		dst_end -= cur;
6037		src_end -= cur;
6038		len -= cur;
6039	}
6040}
6041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6042int try_release_extent_buffer(struct page *page)
6043{
6044	struct extent_buffer *eb;
6045
 
 
 
6046	/*
6047	 * We need to make sure nobody is attaching this page to an eb right
6048	 * now.
6049	 */
6050	spin_lock(&page->mapping->private_lock);
6051	if (!PagePrivate(page)) {
6052		spin_unlock(&page->mapping->private_lock);
6053		return 1;
6054	}
6055
6056	eb = (struct extent_buffer *)page->private;
6057	BUG_ON(!eb);
6058
6059	/*
6060	 * This is a little awful but should be ok, we need to make sure that
6061	 * the eb doesn't disappear out from under us while we're looking at
6062	 * this page.
6063	 */
6064	spin_lock(&eb->refs_lock);
6065	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6066		spin_unlock(&eb->refs_lock);
6067		spin_unlock(&page->mapping->private_lock);
6068		return 0;
6069	}
6070	spin_unlock(&page->mapping->private_lock);
6071
6072	/*
6073	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6074	 * so just return, this page will likely be freed soon anyway.
6075	 */
6076	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6077		spin_unlock(&eb->refs_lock);
6078		return 0;
6079	}
6080
6081	return release_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6082}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include "misc.h"
  17#include "extent_io.h"
  18#include "extent-io-tree.h"
  19#include "extent_map.h"
  20#include "ctree.h"
  21#include "btrfs_inode.h"
  22#include "volumes.h"
  23#include "check-integrity.h"
  24#include "locking.h"
  25#include "rcu-string.h"
  26#include "backref.h"
  27#include "disk-io.h"
  28#include "subpage.h"
  29#include "zoned.h"
  30#include "block-group.h"
  31
  32static struct kmem_cache *extent_state_cache;
  33static struct kmem_cache *extent_buffer_cache;
  34static struct bio_set btrfs_bioset;
  35
  36static inline bool extent_state_in_tree(const struct extent_state *state)
  37{
  38	return !RB_EMPTY_NODE(&state->rb_node);
  39}
  40
  41#ifdef CONFIG_BTRFS_DEBUG
 
  42static LIST_HEAD(states);
 
  43static DEFINE_SPINLOCK(leak_lock);
  44
  45static inline void btrfs_leak_debug_add(spinlock_t *lock,
  46					struct list_head *new,
  47					struct list_head *head)
  48{
  49	unsigned long flags;
  50
  51	spin_lock_irqsave(lock, flags);
  52	list_add(new, head);
  53	spin_unlock_irqrestore(lock, flags);
  54}
  55
  56static inline void btrfs_leak_debug_del(spinlock_t *lock,
  57					struct list_head *entry)
  58{
  59	unsigned long flags;
  60
  61	spin_lock_irqsave(lock, flags);
  62	list_del(entry);
  63	spin_unlock_irqrestore(lock, flags);
  64}
  65
  66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
 
  67{
 
  68	struct extent_buffer *eb;
  69	unsigned long flags;
  70
  71	/*
  72	 * If we didn't get into open_ctree our allocated_ebs will not be
  73	 * initialized, so just skip this.
  74	 */
  75	if (!fs_info->allocated_ebs.next)
  76		return;
  77
  78	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  79	while (!list_empty(&fs_info->allocated_ebs)) {
  80		eb = list_first_entry(&fs_info->allocated_ebs,
  81				      struct extent_buffer, leak_list);
  82		pr_err(
  83	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  84		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  85		       btrfs_header_owner(eb));
  86		list_del(&eb->leak_list);
  87		kmem_cache_free(extent_buffer_cache, eb);
  88	}
  89	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  90}
  91
  92static inline void btrfs_extent_state_leak_debug_check(void)
  93{
  94	struct extent_state *state;
  95
  96	while (!list_empty(&states)) {
  97		state = list_entry(states.next, struct extent_state, leak_list);
  98		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  99		       state->start, state->end, state->state,
 100		       extent_state_in_tree(state),
 101		       refcount_read(&state->refs));
 102		list_del(&state->leak_list);
 103		kmem_cache_free(extent_state_cache, state);
 104	}
 
 
 
 
 
 
 
 
 105}
 106
 107#define btrfs_debug_check_extent_io_range(tree, start, end)		\
 108	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
 109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
 110		struct extent_io_tree *tree, u64 start, u64 end)
 111{
 112	struct inode *inode = tree->private_data;
 113	u64 isize;
 114
 115	if (!inode || !is_data_inode(inode))
 116		return;
 117
 118	isize = i_size_read(inode);
 119	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 120		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 121		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 122			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
 123	}
 124}
 125#else
 126#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
 127#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
 128#define btrfs_extent_state_leak_debug_check()	do {} while (0)
 129#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 130#endif
 131
 132struct tree_entry {
 133	u64 start;
 134	u64 end;
 135	struct rb_node rb_node;
 136};
 137
 138struct extent_page_data {
 139	struct btrfs_bio_ctrl bio_ctrl;
 
 140	/* tells writepage not to lock the state bits for this range
 141	 * it still does the unlocking
 142	 */
 143	unsigned int extent_locked:1;
 144
 145	/* tells the submit_bio code to use REQ_SYNC */
 146	unsigned int sync_io:1;
 147};
 148
 149static int add_extent_changeset(struct extent_state *state, u32 bits,
 150				 struct extent_changeset *changeset,
 151				 int set)
 152{
 153	int ret;
 154
 155	if (!changeset)
 156		return 0;
 157	if (set && (state->state & bits) == bits)
 158		return 0;
 159	if (!set && (state->state & bits) == 0)
 160		return 0;
 161	changeset->bytes_changed += state->end - state->start + 1;
 162	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 163			GFP_ATOMIC);
 164	return ret;
 165}
 166
 167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
 168				unsigned long bio_flags)
 169{
 170	blk_status_t ret = 0;
 171	struct extent_io_tree *tree = bio->bi_private;
 172
 173	bio->bi_private = NULL;
 174
 175	if (is_data_inode(tree->private_data))
 176		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
 177					    bio_flags);
 178	else
 179		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
 180						mirror_num, bio_flags);
 181
 182	return blk_status_to_errno(ret);
 183}
 184
 185/* Cleanup unsubmitted bios */
 186static void end_write_bio(struct extent_page_data *epd, int ret)
 187{
 188	struct bio *bio = epd->bio_ctrl.bio;
 189
 190	if (bio) {
 191		bio->bi_status = errno_to_blk_status(ret);
 192		bio_endio(bio);
 193		epd->bio_ctrl.bio = NULL;
 194	}
 195}
 196
 197/*
 198 * Submit bio from extent page data via submit_one_bio
 199 *
 200 * Return 0 if everything is OK.
 201 * Return <0 for error.
 202 */
 203static int __must_check flush_write_bio(struct extent_page_data *epd)
 204{
 205	int ret = 0;
 206	struct bio *bio = epd->bio_ctrl.bio;
 207
 208	if (bio) {
 209		ret = submit_one_bio(bio, 0, 0);
 210		/*
 211		 * Clean up of epd->bio is handled by its endio function.
 212		 * And endio is either triggered by successful bio execution
 213		 * or the error handler of submit bio hook.
 214		 * So at this point, no matter what happened, we don't need
 215		 * to clean up epd->bio.
 216		 */
 217		epd->bio_ctrl.bio = NULL;
 218	}
 219	return ret;
 220}
 221
 222int __init extent_state_cache_init(void)
 223{
 224	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 225			sizeof(struct extent_state), 0,
 226			SLAB_MEM_SPREAD, NULL);
 227	if (!extent_state_cache)
 228		return -ENOMEM;
 229	return 0;
 230}
 231
 232int __init extent_io_init(void)
 233{
 234	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 235			sizeof(struct extent_buffer), 0,
 236			SLAB_MEM_SPREAD, NULL);
 237	if (!extent_buffer_cache)
 238		return -ENOMEM;
 239
 240	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 241			offsetof(struct btrfs_io_bio, bio),
 242			BIOSET_NEED_BVECS))
 243		goto free_buffer_cache;
 244
 245	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 246		goto free_bioset;
 247
 248	return 0;
 249
 250free_bioset:
 251	bioset_exit(&btrfs_bioset);
 252
 253free_buffer_cache:
 254	kmem_cache_destroy(extent_buffer_cache);
 255	extent_buffer_cache = NULL;
 256	return -ENOMEM;
 257}
 258
 259void __cold extent_state_cache_exit(void)
 260{
 261	btrfs_extent_state_leak_debug_check();
 262	kmem_cache_destroy(extent_state_cache);
 
 
 263}
 264
 265void __cold extent_io_exit(void)
 266{
 
 
 267	/*
 268	 * Make sure all delayed rcu free are flushed before we
 269	 * destroy caches.
 270	 */
 271	rcu_barrier();
 
 272	kmem_cache_destroy(extent_buffer_cache);
 273	bioset_exit(&btrfs_bioset);
 274}
 275
 276/*
 277 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 278 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 279 * the tree lock and get the inode lock when setting delalloc.  These two things
 280 * are unrelated, so make a class for the file_extent_tree so we don't get the
 281 * two locking patterns mixed up.
 282 */
 283static struct lock_class_key file_extent_tree_class;
 284
 285void extent_io_tree_init(struct btrfs_fs_info *fs_info,
 286			 struct extent_io_tree *tree, unsigned int owner,
 287			 void *private_data)
 288{
 289	tree->fs_info = fs_info;
 290	tree->state = RB_ROOT;
 
 291	tree->dirty_bytes = 0;
 292	spin_lock_init(&tree->lock);
 293	tree->private_data = private_data;
 294	tree->owner = owner;
 295	if (owner == IO_TREE_INODE_FILE_EXTENT)
 296		lockdep_set_class(&tree->lock, &file_extent_tree_class);
 297}
 298
 299void extent_io_tree_release(struct extent_io_tree *tree)
 300{
 301	spin_lock(&tree->lock);
 302	/*
 303	 * Do a single barrier for the waitqueue_active check here, the state
 304	 * of the waitqueue should not change once extent_io_tree_release is
 305	 * called.
 306	 */
 307	smp_mb();
 308	while (!RB_EMPTY_ROOT(&tree->state)) {
 309		struct rb_node *node;
 310		struct extent_state *state;
 311
 312		node = rb_first(&tree->state);
 313		state = rb_entry(node, struct extent_state, rb_node);
 314		rb_erase(&state->rb_node, &tree->state);
 315		RB_CLEAR_NODE(&state->rb_node);
 316		/*
 317		 * btree io trees aren't supposed to have tasks waiting for
 318		 * changes in the flags of extent states ever.
 319		 */
 320		ASSERT(!waitqueue_active(&state->wq));
 321		free_extent_state(state);
 322
 323		cond_resched_lock(&tree->lock);
 324	}
 325	spin_unlock(&tree->lock);
 326}
 327
 328static struct extent_state *alloc_extent_state(gfp_t mask)
 329{
 330	struct extent_state *state;
 331
 332	/*
 333	 * The given mask might be not appropriate for the slab allocator,
 334	 * drop the unsupported bits
 335	 */
 336	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 337	state = kmem_cache_alloc(extent_state_cache, mask);
 338	if (!state)
 339		return state;
 340	state->state = 0;
 341	state->failrec = NULL;
 342	RB_CLEAR_NODE(&state->rb_node);
 343	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
 344	refcount_set(&state->refs, 1);
 345	init_waitqueue_head(&state->wq);
 346	trace_alloc_extent_state(state, mask, _RET_IP_);
 347	return state;
 348}
 349
 350void free_extent_state(struct extent_state *state)
 351{
 352	if (!state)
 353		return;
 354	if (refcount_dec_and_test(&state->refs)) {
 355		WARN_ON(extent_state_in_tree(state));
 356		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
 357		trace_free_extent_state(state, _RET_IP_);
 358		kmem_cache_free(extent_state_cache, state);
 359	}
 360}
 361
 362static struct rb_node *tree_insert(struct rb_root *root,
 363				   struct rb_node *search_start,
 364				   u64 offset,
 365				   struct rb_node *node,
 366				   struct rb_node ***p_in,
 367				   struct rb_node **parent_in)
 368{
 369	struct rb_node **p;
 370	struct rb_node *parent = NULL;
 371	struct tree_entry *entry;
 372
 373	if (p_in && parent_in) {
 374		p = *p_in;
 375		parent = *parent_in;
 376		goto do_insert;
 377	}
 378
 379	p = search_start ? &search_start : &root->rb_node;
 380	while (*p) {
 381		parent = *p;
 382		entry = rb_entry(parent, struct tree_entry, rb_node);
 383
 384		if (offset < entry->start)
 385			p = &(*p)->rb_left;
 386		else if (offset > entry->end)
 387			p = &(*p)->rb_right;
 388		else
 389			return parent;
 390	}
 391
 392do_insert:
 393	rb_link_node(node, parent, p);
 394	rb_insert_color(node, root);
 395	return NULL;
 396}
 397
 398/**
 399 * Search @tree for an entry that contains @offset. Such entry would have
 400 * entry->start <= offset && entry->end >= offset.
 401 *
 402 * @tree:       the tree to search
 403 * @offset:     offset that should fall within an entry in @tree
 404 * @next_ret:   pointer to the first entry whose range ends after @offset
 405 * @prev_ret:   pointer to the first entry whose range begins before @offset
 406 * @p_ret:      pointer where new node should be anchored (used when inserting an
 407 *	        entry in the tree)
 408 * @parent_ret: points to entry which would have been the parent of the entry,
 409 *               containing @offset
 410 *
 411 * This function returns a pointer to the entry that contains @offset byte
 412 * address. If no such entry exists, then NULL is returned and the other
 413 * pointer arguments to the function are filled, otherwise the found entry is
 414 * returned and other pointers are left untouched.
 415 */
 416static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 417				      struct rb_node **next_ret,
 418				      struct rb_node **prev_ret,
 419				      struct rb_node ***p_ret,
 420				      struct rb_node **parent_ret)
 421{
 422	struct rb_root *root = &tree->state;
 423	struct rb_node **n = &root->rb_node;
 424	struct rb_node *prev = NULL;
 425	struct rb_node *orig_prev = NULL;
 426	struct tree_entry *entry;
 427	struct tree_entry *prev_entry = NULL;
 428
 429	while (*n) {
 430		prev = *n;
 431		entry = rb_entry(prev, struct tree_entry, rb_node);
 432		prev_entry = entry;
 433
 434		if (offset < entry->start)
 435			n = &(*n)->rb_left;
 436		else if (offset > entry->end)
 437			n = &(*n)->rb_right;
 438		else
 439			return *n;
 440	}
 441
 442	if (p_ret)
 443		*p_ret = n;
 444	if (parent_ret)
 445		*parent_ret = prev;
 446
 447	if (next_ret) {
 448		orig_prev = prev;
 449		while (prev && offset > prev_entry->end) {
 450			prev = rb_next(prev);
 451			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 452		}
 453		*next_ret = prev;
 454		prev = orig_prev;
 455	}
 456
 457	if (prev_ret) {
 458		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 459		while (prev && offset < prev_entry->start) {
 460			prev = rb_prev(prev);
 461			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 462		}
 463		*prev_ret = prev;
 464	}
 465	return NULL;
 466}
 467
 468static inline struct rb_node *
 469tree_search_for_insert(struct extent_io_tree *tree,
 470		       u64 offset,
 471		       struct rb_node ***p_ret,
 472		       struct rb_node **parent_ret)
 473{
 474	struct rb_node *next= NULL;
 475	struct rb_node *ret;
 476
 477	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
 478	if (!ret)
 479		return next;
 480	return ret;
 481}
 482
 483static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 484					  u64 offset)
 485{
 486	return tree_search_for_insert(tree, offset, NULL, NULL);
 487}
 488
 489/*
 490 * utility function to look for merge candidates inside a given range.
 491 * Any extents with matching state are merged together into a single
 492 * extent in the tree.  Extents with EXTENT_IO in their state field
 493 * are not merged because the end_io handlers need to be able to do
 494 * operations on them without sleeping (or doing allocations/splits).
 495 *
 496 * This should be called with the tree lock held.
 497 */
 498static void merge_state(struct extent_io_tree *tree,
 499		        struct extent_state *state)
 500{
 501	struct extent_state *other;
 502	struct rb_node *other_node;
 503
 504	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 505		return;
 506
 507	other_node = rb_prev(&state->rb_node);
 508	if (other_node) {
 509		other = rb_entry(other_node, struct extent_state, rb_node);
 510		if (other->end == state->start - 1 &&
 511		    other->state == state->state) {
 512			if (tree->private_data &&
 513			    is_data_inode(tree->private_data))
 514				btrfs_merge_delalloc_extent(tree->private_data,
 515							    state, other);
 516			state->start = other->start;
 517			rb_erase(&other->rb_node, &tree->state);
 518			RB_CLEAR_NODE(&other->rb_node);
 519			free_extent_state(other);
 520		}
 521	}
 522	other_node = rb_next(&state->rb_node);
 523	if (other_node) {
 524		other = rb_entry(other_node, struct extent_state, rb_node);
 525		if (other->start == state->end + 1 &&
 526		    other->state == state->state) {
 527			if (tree->private_data &&
 528			    is_data_inode(tree->private_data))
 529				btrfs_merge_delalloc_extent(tree->private_data,
 530							    state, other);
 531			state->end = other->end;
 532			rb_erase(&other->rb_node, &tree->state);
 533			RB_CLEAR_NODE(&other->rb_node);
 534			free_extent_state(other);
 535		}
 536	}
 537}
 538
 539static void set_state_bits(struct extent_io_tree *tree,
 540			   struct extent_state *state, u32 *bits,
 541			   struct extent_changeset *changeset);
 542
 543/*
 544 * insert an extent_state struct into the tree.  'bits' are set on the
 545 * struct before it is inserted.
 546 *
 547 * This may return -EEXIST if the extent is already there, in which case the
 548 * state struct is freed.
 549 *
 550 * The tree lock is not taken internally.  This is a utility function and
 551 * probably isn't what you want to call (see set/clear_extent_bit).
 552 */
 553static int insert_state(struct extent_io_tree *tree,
 554			struct extent_state *state, u64 start, u64 end,
 555			struct rb_node ***p,
 556			struct rb_node **parent,
 557			u32 *bits, struct extent_changeset *changeset)
 558{
 559	struct rb_node *node;
 560
 561	if (end < start) {
 562		btrfs_err(tree->fs_info,
 563			"insert state: end < start %llu %llu", end, start);
 564		WARN_ON(1);
 565	}
 566	state->start = start;
 567	state->end = end;
 568
 569	set_state_bits(tree, state, bits, changeset);
 570
 571	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 572	if (node) {
 573		struct extent_state *found;
 574		found = rb_entry(node, struct extent_state, rb_node);
 575		btrfs_err(tree->fs_info,
 576		       "found node %llu %llu on insert of %llu %llu",
 577		       found->start, found->end, start, end);
 578		return -EEXIST;
 579	}
 580	merge_state(tree, state);
 581	return 0;
 582}
 583
 584/*
 585 * split a given extent state struct in two, inserting the preallocated
 586 * struct 'prealloc' as the newly created second half.  'split' indicates an
 587 * offset inside 'orig' where it should be split.
 588 *
 589 * Before calling,
 590 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 591 * are two extent state structs in the tree:
 592 * prealloc: [orig->start, split - 1]
 593 * orig: [ split, orig->end ]
 594 *
 595 * The tree locks are not taken by this function. They need to be held
 596 * by the caller.
 597 */
 598static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 599		       struct extent_state *prealloc, u64 split)
 600{
 601	struct rb_node *node;
 602
 603	if (tree->private_data && is_data_inode(tree->private_data))
 604		btrfs_split_delalloc_extent(tree->private_data, orig, split);
 605
 606	prealloc->start = orig->start;
 607	prealloc->end = split - 1;
 608	prealloc->state = orig->state;
 609	orig->start = split;
 610
 611	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 612			   &prealloc->rb_node, NULL, NULL);
 613	if (node) {
 614		free_extent_state(prealloc);
 615		return -EEXIST;
 616	}
 617	return 0;
 618}
 619
 620static struct extent_state *next_state(struct extent_state *state)
 621{
 622	struct rb_node *next = rb_next(&state->rb_node);
 623	if (next)
 624		return rb_entry(next, struct extent_state, rb_node);
 625	else
 626		return NULL;
 627}
 628
 629/*
 630 * utility function to clear some bits in an extent state struct.
 631 * it will optionally wake up anyone waiting on this state (wake == 1).
 632 *
 633 * If no bits are set on the state struct after clearing things, the
 634 * struct is freed and removed from the tree
 635 */
 636static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 637					    struct extent_state *state,
 638					    u32 *bits, int wake,
 639					    struct extent_changeset *changeset)
 640{
 641	struct extent_state *next;
 642	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
 643	int ret;
 644
 645	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 646		u64 range = state->end - state->start + 1;
 647		WARN_ON(range > tree->dirty_bytes);
 648		tree->dirty_bytes -= range;
 649	}
 650
 651	if (tree->private_data && is_data_inode(tree->private_data))
 652		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
 653
 654	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 655	BUG_ON(ret < 0);
 656	state->state &= ~bits_to_clear;
 657	if (wake)
 658		wake_up(&state->wq);
 659	if (state->state == 0) {
 660		next = next_state(state);
 661		if (extent_state_in_tree(state)) {
 662			rb_erase(&state->rb_node, &tree->state);
 663			RB_CLEAR_NODE(&state->rb_node);
 664			free_extent_state(state);
 665		} else {
 666			WARN_ON(1);
 667		}
 668	} else {
 669		merge_state(tree, state);
 670		next = next_state(state);
 671	}
 672	return next;
 673}
 674
 675static struct extent_state *
 676alloc_extent_state_atomic(struct extent_state *prealloc)
 677{
 678	if (!prealloc)
 679		prealloc = alloc_extent_state(GFP_ATOMIC);
 680
 681	return prealloc;
 682}
 683
 684static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 685{
 686	btrfs_panic(tree->fs_info, err,
 
 
 687	"locking error: extent tree was modified by another thread while locked");
 688}
 689
 690/*
 691 * clear some bits on a range in the tree.  This may require splitting
 692 * or inserting elements in the tree, so the gfp mask is used to
 693 * indicate which allocations or sleeping are allowed.
 694 *
 695 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 696 * the given range from the tree regardless of state (ie for truncate).
 697 *
 698 * the range [start, end] is inclusive.
 699 *
 700 * This takes the tree lock, and returns 0 on success and < 0 on error.
 701 */
 702int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 703		       u32 bits, int wake, int delete,
 704		       struct extent_state **cached_state,
 705		       gfp_t mask, struct extent_changeset *changeset)
 706{
 707	struct extent_state *state;
 708	struct extent_state *cached;
 709	struct extent_state *prealloc = NULL;
 710	struct rb_node *node;
 711	u64 last_end;
 712	int err;
 713	int clear = 0;
 714
 715	btrfs_debug_check_extent_io_range(tree, start, end);
 716	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
 717
 718	if (bits & EXTENT_DELALLOC)
 719		bits |= EXTENT_NORESERVE;
 720
 721	if (delete)
 722		bits |= ~EXTENT_CTLBITS;
 723
 724	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 725		clear = 1;
 726again:
 727	if (!prealloc && gfpflags_allow_blocking(mask)) {
 728		/*
 729		 * Don't care for allocation failure here because we might end
 730		 * up not needing the pre-allocated extent state at all, which
 731		 * is the case if we only have in the tree extent states that
 732		 * cover our input range and don't cover too any other range.
 733		 * If we end up needing a new extent state we allocate it later.
 734		 */
 735		prealloc = alloc_extent_state(mask);
 736	}
 737
 738	spin_lock(&tree->lock);
 739	if (cached_state) {
 740		cached = *cached_state;
 741
 742		if (clear) {
 743			*cached_state = NULL;
 744			cached_state = NULL;
 745		}
 746
 747		if (cached && extent_state_in_tree(cached) &&
 748		    cached->start <= start && cached->end > start) {
 749			if (clear)
 750				refcount_dec(&cached->refs);
 751			state = cached;
 752			goto hit_next;
 753		}
 754		if (clear)
 755			free_extent_state(cached);
 756	}
 757	/*
 758	 * this search will find the extents that end after
 759	 * our range starts
 760	 */
 761	node = tree_search(tree, start);
 762	if (!node)
 763		goto out;
 764	state = rb_entry(node, struct extent_state, rb_node);
 765hit_next:
 766	if (state->start > end)
 767		goto out;
 768	WARN_ON(state->end < start);
 769	last_end = state->end;
 770
 771	/* the state doesn't have the wanted bits, go ahead */
 772	if (!(state->state & bits)) {
 773		state = next_state(state);
 774		goto next;
 775	}
 776
 777	/*
 778	 *     | ---- desired range ---- |
 779	 *  | state | or
 780	 *  | ------------- state -------------- |
 781	 *
 782	 * We need to split the extent we found, and may flip
 783	 * bits on second half.
 784	 *
 785	 * If the extent we found extends past our range, we
 786	 * just split and search again.  It'll get split again
 787	 * the next time though.
 788	 *
 789	 * If the extent we found is inside our range, we clear
 790	 * the desired bit on it.
 791	 */
 792
 793	if (state->start < start) {
 794		prealloc = alloc_extent_state_atomic(prealloc);
 795		BUG_ON(!prealloc);
 796		err = split_state(tree, state, prealloc, start);
 797		if (err)
 798			extent_io_tree_panic(tree, err);
 799
 800		prealloc = NULL;
 801		if (err)
 802			goto out;
 803		if (state->end <= end) {
 804			state = clear_state_bit(tree, state, &bits, wake,
 805						changeset);
 806			goto next;
 807		}
 808		goto search_again;
 809	}
 810	/*
 811	 * | ---- desired range ---- |
 812	 *                        | state |
 813	 * We need to split the extent, and clear the bit
 814	 * on the first half
 815	 */
 816	if (state->start <= end && state->end > end) {
 817		prealloc = alloc_extent_state_atomic(prealloc);
 818		BUG_ON(!prealloc);
 819		err = split_state(tree, state, prealloc, end + 1);
 820		if (err)
 821			extent_io_tree_panic(tree, err);
 822
 823		if (wake)
 824			wake_up(&state->wq);
 825
 826		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 827
 828		prealloc = NULL;
 829		goto out;
 830	}
 831
 832	state = clear_state_bit(tree, state, &bits, wake, changeset);
 833next:
 834	if (last_end == (u64)-1)
 835		goto out;
 836	start = last_end + 1;
 837	if (start <= end && state && !need_resched())
 838		goto hit_next;
 839
 840search_again:
 841	if (start > end)
 842		goto out;
 843	spin_unlock(&tree->lock);
 844	if (gfpflags_allow_blocking(mask))
 845		cond_resched();
 846	goto again;
 847
 848out:
 849	spin_unlock(&tree->lock);
 850	if (prealloc)
 851		free_extent_state(prealloc);
 852
 853	return 0;
 854
 855}
 856
 857static void wait_on_state(struct extent_io_tree *tree,
 858			  struct extent_state *state)
 859		__releases(tree->lock)
 860		__acquires(tree->lock)
 861{
 862	DEFINE_WAIT(wait);
 863	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 864	spin_unlock(&tree->lock);
 865	schedule();
 866	spin_lock(&tree->lock);
 867	finish_wait(&state->wq, &wait);
 868}
 869
 870/*
 871 * waits for one or more bits to clear on a range in the state tree.
 872 * The range [start, end] is inclusive.
 873 * The tree lock is taken by this function
 874 */
 875static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 876			    u32 bits)
 877{
 878	struct extent_state *state;
 879	struct rb_node *node;
 880
 881	btrfs_debug_check_extent_io_range(tree, start, end);
 882
 883	spin_lock(&tree->lock);
 884again:
 885	while (1) {
 886		/*
 887		 * this search will find all the extents that end after
 888		 * our range starts
 889		 */
 890		node = tree_search(tree, start);
 891process_node:
 892		if (!node)
 893			break;
 894
 895		state = rb_entry(node, struct extent_state, rb_node);
 896
 897		if (state->start > end)
 898			goto out;
 899
 900		if (state->state & bits) {
 901			start = state->start;
 902			refcount_inc(&state->refs);
 903			wait_on_state(tree, state);
 904			free_extent_state(state);
 905			goto again;
 906		}
 907		start = state->end + 1;
 908
 909		if (start > end)
 910			break;
 911
 912		if (!cond_resched_lock(&tree->lock)) {
 913			node = rb_next(node);
 914			goto process_node;
 915		}
 916	}
 917out:
 918	spin_unlock(&tree->lock);
 919}
 920
 921static void set_state_bits(struct extent_io_tree *tree,
 922			   struct extent_state *state,
 923			   u32 *bits, struct extent_changeset *changeset)
 924{
 925	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
 926	int ret;
 927
 928	if (tree->private_data && is_data_inode(tree->private_data))
 929		btrfs_set_delalloc_extent(tree->private_data, state, bits);
 930
 931	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 932		u64 range = state->end - state->start + 1;
 933		tree->dirty_bytes += range;
 934	}
 935	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 936	BUG_ON(ret < 0);
 937	state->state |= bits_to_set;
 938}
 939
 940static void cache_state_if_flags(struct extent_state *state,
 941				 struct extent_state **cached_ptr,
 942				 unsigned flags)
 943{
 944	if (cached_ptr && !(*cached_ptr)) {
 945		if (!flags || (state->state & flags)) {
 946			*cached_ptr = state;
 947			refcount_inc(&state->refs);
 948		}
 949	}
 950}
 951
 952static void cache_state(struct extent_state *state,
 953			struct extent_state **cached_ptr)
 954{
 955	return cache_state_if_flags(state, cached_ptr,
 956				    EXTENT_LOCKED | EXTENT_BOUNDARY);
 957}
 958
 959/*
 960 * set some bits on a range in the tree.  This may require allocations or
 961 * sleeping, so the gfp mask is used to indicate what is allowed.
 962 *
 963 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 964 * part of the range already has the desired bits set.  The start of the
 965 * existing range is returned in failed_start in this case.
 966 *
 967 * [start, end] is inclusive This takes the tree lock.
 968 */
 969int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
 970		   u32 exclusive_bits, u64 *failed_start,
 971		   struct extent_state **cached_state, gfp_t mask,
 972		   struct extent_changeset *changeset)
 
 
 973{
 974	struct extent_state *state;
 975	struct extent_state *prealloc = NULL;
 976	struct rb_node *node;
 977	struct rb_node **p;
 978	struct rb_node *parent;
 979	int err = 0;
 980	u64 last_start;
 981	u64 last_end;
 982
 983	btrfs_debug_check_extent_io_range(tree, start, end);
 984	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
 985
 986	if (exclusive_bits)
 987		ASSERT(failed_start);
 988	else
 989		ASSERT(failed_start == NULL);
 990again:
 991	if (!prealloc && gfpflags_allow_blocking(mask)) {
 992		/*
 993		 * Don't care for allocation failure here because we might end
 994		 * up not needing the pre-allocated extent state at all, which
 995		 * is the case if we only have in the tree extent states that
 996		 * cover our input range and don't cover too any other range.
 997		 * If we end up needing a new extent state we allocate it later.
 998		 */
 999		prealloc = alloc_extent_state(mask);
1000	}
1001
1002	spin_lock(&tree->lock);
1003	if (cached_state && *cached_state) {
1004		state = *cached_state;
1005		if (state->start <= start && state->end > start &&
1006		    extent_state_in_tree(state)) {
1007			node = &state->rb_node;
1008			goto hit_next;
1009		}
1010	}
1011	/*
1012	 * this search will find all the extents that end after
1013	 * our range starts.
1014	 */
1015	node = tree_search_for_insert(tree, start, &p, &parent);
1016	if (!node) {
1017		prealloc = alloc_extent_state_atomic(prealloc);
1018		BUG_ON(!prealloc);
1019		err = insert_state(tree, prealloc, start, end,
1020				   &p, &parent, &bits, changeset);
1021		if (err)
1022			extent_io_tree_panic(tree, err);
1023
1024		cache_state(prealloc, cached_state);
1025		prealloc = NULL;
1026		goto out;
1027	}
1028	state = rb_entry(node, struct extent_state, rb_node);
1029hit_next:
1030	last_start = state->start;
1031	last_end = state->end;
1032
1033	/*
1034	 * | ---- desired range ---- |
1035	 * | state |
1036	 *
1037	 * Just lock what we found and keep going
1038	 */
1039	if (state->start == start && state->end <= end) {
1040		if (state->state & exclusive_bits) {
1041			*failed_start = state->start;
1042			err = -EEXIST;
1043			goto out;
1044		}
1045
1046		set_state_bits(tree, state, &bits, changeset);
1047		cache_state(state, cached_state);
1048		merge_state(tree, state);
1049		if (last_end == (u64)-1)
1050			goto out;
1051		start = last_end + 1;
1052		state = next_state(state);
1053		if (start < end && state && state->start == start &&
1054		    !need_resched())
1055			goto hit_next;
1056		goto search_again;
1057	}
1058
1059	/*
1060	 *     | ---- desired range ---- |
1061	 * | state |
1062	 *   or
1063	 * | ------------- state -------------- |
1064	 *
1065	 * We need to split the extent we found, and may flip bits on
1066	 * second half.
1067	 *
1068	 * If the extent we found extends past our
1069	 * range, we just split and search again.  It'll get split
1070	 * again the next time though.
1071	 *
1072	 * If the extent we found is inside our range, we set the
1073	 * desired bit on it.
1074	 */
1075	if (state->start < start) {
1076		if (state->state & exclusive_bits) {
1077			*failed_start = start;
1078			err = -EEXIST;
1079			goto out;
1080		}
1081
1082		/*
1083		 * If this extent already has all the bits we want set, then
1084		 * skip it, not necessary to split it or do anything with it.
1085		 */
1086		if ((state->state & bits) == bits) {
1087			start = state->end + 1;
1088			cache_state(state, cached_state);
1089			goto search_again;
1090		}
1091
1092		prealloc = alloc_extent_state_atomic(prealloc);
1093		BUG_ON(!prealloc);
1094		err = split_state(tree, state, prealloc, start);
1095		if (err)
1096			extent_io_tree_panic(tree, err);
1097
1098		prealloc = NULL;
1099		if (err)
1100			goto out;
1101		if (state->end <= end) {
1102			set_state_bits(tree, state, &bits, changeset);
1103			cache_state(state, cached_state);
1104			merge_state(tree, state);
1105			if (last_end == (u64)-1)
1106				goto out;
1107			start = last_end + 1;
1108			state = next_state(state);
1109			if (start < end && state && state->start == start &&
1110			    !need_resched())
1111				goto hit_next;
1112		}
1113		goto search_again;
1114	}
1115	/*
1116	 * | ---- desired range ---- |
1117	 *     | state | or               | state |
1118	 *
1119	 * There's a hole, we need to insert something in it and
1120	 * ignore the extent we found.
1121	 */
1122	if (state->start > start) {
1123		u64 this_end;
1124		if (end < last_start)
1125			this_end = end;
1126		else
1127			this_end = last_start - 1;
1128
1129		prealloc = alloc_extent_state_atomic(prealloc);
1130		BUG_ON(!prealloc);
1131
1132		/*
1133		 * Avoid to free 'prealloc' if it can be merged with
1134		 * the later extent.
1135		 */
1136		err = insert_state(tree, prealloc, start, this_end,
1137				   NULL, NULL, &bits, changeset);
1138		if (err)
1139			extent_io_tree_panic(tree, err);
1140
1141		cache_state(prealloc, cached_state);
1142		prealloc = NULL;
1143		start = this_end + 1;
1144		goto search_again;
1145	}
1146	/*
1147	 * | ---- desired range ---- |
1148	 *                        | state |
1149	 * We need to split the extent, and set the bit
1150	 * on the first half
1151	 */
1152	if (state->start <= end && state->end > end) {
1153		if (state->state & exclusive_bits) {
1154			*failed_start = start;
1155			err = -EEXIST;
1156			goto out;
1157		}
1158
1159		prealloc = alloc_extent_state_atomic(prealloc);
1160		BUG_ON(!prealloc);
1161		err = split_state(tree, state, prealloc, end + 1);
1162		if (err)
1163			extent_io_tree_panic(tree, err);
1164
1165		set_state_bits(tree, prealloc, &bits, changeset);
1166		cache_state(prealloc, cached_state);
1167		merge_state(tree, prealloc);
1168		prealloc = NULL;
1169		goto out;
1170	}
1171
1172search_again:
1173	if (start > end)
1174		goto out;
1175	spin_unlock(&tree->lock);
1176	if (gfpflags_allow_blocking(mask))
1177		cond_resched();
1178	goto again;
1179
1180out:
1181	spin_unlock(&tree->lock);
1182	if (prealloc)
1183		free_extent_state(prealloc);
1184
1185	return err;
1186
1187}
1188
 
 
 
 
 
 
 
 
 
1189/**
1190 * convert_extent_bit - convert all bits in a given range from one bit to
1191 * 			another
1192 * @tree:	the io tree to search
1193 * @start:	the start offset in bytes
1194 * @end:	the end offset in bytes (inclusive)
1195 * @bits:	the bits to set in this range
1196 * @clear_bits:	the bits to clear in this range
1197 * @cached_state:	state that we're going to cache
1198 *
1199 * This will go through and set bits for the given range.  If any states exist
1200 * already in this range they are set with the given bit and cleared of the
1201 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1202 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1203 * boundary bits like LOCK.
1204 *
1205 * All allocations are done with GFP_NOFS.
1206 */
1207int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208		       u32 bits, u32 clear_bits,
1209		       struct extent_state **cached_state)
1210{
1211	struct extent_state *state;
1212	struct extent_state *prealloc = NULL;
1213	struct rb_node *node;
1214	struct rb_node **p;
1215	struct rb_node *parent;
1216	int err = 0;
1217	u64 last_start;
1218	u64 last_end;
1219	bool first_iteration = true;
1220
1221	btrfs_debug_check_extent_io_range(tree, start, end);
1222	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223				       clear_bits);
1224
1225again:
1226	if (!prealloc) {
1227		/*
1228		 * Best effort, don't worry if extent state allocation fails
1229		 * here for the first iteration. We might have a cached state
1230		 * that matches exactly the target range, in which case no
1231		 * extent state allocations are needed. We'll only know this
1232		 * after locking the tree.
1233		 */
1234		prealloc = alloc_extent_state(GFP_NOFS);
1235		if (!prealloc && !first_iteration)
1236			return -ENOMEM;
1237	}
1238
1239	spin_lock(&tree->lock);
1240	if (cached_state && *cached_state) {
1241		state = *cached_state;
1242		if (state->start <= start && state->end > start &&
1243		    extent_state_in_tree(state)) {
1244			node = &state->rb_node;
1245			goto hit_next;
1246		}
1247	}
1248
1249	/*
1250	 * this search will find all the extents that end after
1251	 * our range starts.
1252	 */
1253	node = tree_search_for_insert(tree, start, &p, &parent);
1254	if (!node) {
1255		prealloc = alloc_extent_state_atomic(prealloc);
1256		if (!prealloc) {
1257			err = -ENOMEM;
1258			goto out;
1259		}
1260		err = insert_state(tree, prealloc, start, end,
1261				   &p, &parent, &bits, NULL);
1262		if (err)
1263			extent_io_tree_panic(tree, err);
1264		cache_state(prealloc, cached_state);
1265		prealloc = NULL;
1266		goto out;
1267	}
1268	state = rb_entry(node, struct extent_state, rb_node);
1269hit_next:
1270	last_start = state->start;
1271	last_end = state->end;
1272
1273	/*
1274	 * | ---- desired range ---- |
1275	 * | state |
1276	 *
1277	 * Just lock what we found and keep going
1278	 */
1279	if (state->start == start && state->end <= end) {
1280		set_state_bits(tree, state, &bits, NULL);
1281		cache_state(state, cached_state);
1282		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283		if (last_end == (u64)-1)
1284			goto out;
1285		start = last_end + 1;
1286		if (start < end && state && state->start == start &&
1287		    !need_resched())
1288			goto hit_next;
1289		goto search_again;
1290	}
1291
1292	/*
1293	 *     | ---- desired range ---- |
1294	 * | state |
1295	 *   or
1296	 * | ------------- state -------------- |
1297	 *
1298	 * We need to split the extent we found, and may flip bits on
1299	 * second half.
1300	 *
1301	 * If the extent we found extends past our
1302	 * range, we just split and search again.  It'll get split
1303	 * again the next time though.
1304	 *
1305	 * If the extent we found is inside our range, we set the
1306	 * desired bit on it.
1307	 */
1308	if (state->start < start) {
1309		prealloc = alloc_extent_state_atomic(prealloc);
1310		if (!prealloc) {
1311			err = -ENOMEM;
1312			goto out;
1313		}
1314		err = split_state(tree, state, prealloc, start);
1315		if (err)
1316			extent_io_tree_panic(tree, err);
1317		prealloc = NULL;
1318		if (err)
1319			goto out;
1320		if (state->end <= end) {
1321			set_state_bits(tree, state, &bits, NULL);
1322			cache_state(state, cached_state);
1323			state = clear_state_bit(tree, state, &clear_bits, 0,
1324						NULL);
1325			if (last_end == (u64)-1)
1326				goto out;
1327			start = last_end + 1;
1328			if (start < end && state && state->start == start &&
1329			    !need_resched())
1330				goto hit_next;
1331		}
1332		goto search_again;
1333	}
1334	/*
1335	 * | ---- desired range ---- |
1336	 *     | state | or               | state |
1337	 *
1338	 * There's a hole, we need to insert something in it and
1339	 * ignore the extent we found.
1340	 */
1341	if (state->start > start) {
1342		u64 this_end;
1343		if (end < last_start)
1344			this_end = end;
1345		else
1346			this_end = last_start - 1;
1347
1348		prealloc = alloc_extent_state_atomic(prealloc);
1349		if (!prealloc) {
1350			err = -ENOMEM;
1351			goto out;
1352		}
1353
1354		/*
1355		 * Avoid to free 'prealloc' if it can be merged with
1356		 * the later extent.
1357		 */
1358		err = insert_state(tree, prealloc, start, this_end,
1359				   NULL, NULL, &bits, NULL);
1360		if (err)
1361			extent_io_tree_panic(tree, err);
1362		cache_state(prealloc, cached_state);
1363		prealloc = NULL;
1364		start = this_end + 1;
1365		goto search_again;
1366	}
1367	/*
1368	 * | ---- desired range ---- |
1369	 *                        | state |
1370	 * We need to split the extent, and set the bit
1371	 * on the first half
1372	 */
1373	if (state->start <= end && state->end > end) {
1374		prealloc = alloc_extent_state_atomic(prealloc);
1375		if (!prealloc) {
1376			err = -ENOMEM;
1377			goto out;
1378		}
1379
1380		err = split_state(tree, state, prealloc, end + 1);
1381		if (err)
1382			extent_io_tree_panic(tree, err);
1383
1384		set_state_bits(tree, prealloc, &bits, NULL);
1385		cache_state(prealloc, cached_state);
1386		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387		prealloc = NULL;
1388		goto out;
1389	}
1390
1391search_again:
1392	if (start > end)
1393		goto out;
1394	spin_unlock(&tree->lock);
1395	cond_resched();
1396	first_iteration = false;
1397	goto again;
1398
1399out:
1400	spin_unlock(&tree->lock);
1401	if (prealloc)
1402		free_extent_state(prealloc);
1403
1404	return err;
1405}
1406
1407/* wrappers around set/clear extent bit */
1408int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409			   u32 bits, struct extent_changeset *changeset)
1410{
1411	/*
1412	 * We don't support EXTENT_LOCKED yet, as current changeset will
1413	 * record any bits changed, so for EXTENT_LOCKED case, it will
1414	 * either fail with -EEXIST or changeset will record the whole
1415	 * range.
1416	 */
1417	BUG_ON(bits & EXTENT_LOCKED);
1418
1419	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420			      changeset);
1421}
1422
1423int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424			   u32 bits)
1425{
1426	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427			      GFP_NOWAIT, NULL);
1428}
1429
1430int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431		     u32 bits, int wake, int delete,
1432		     struct extent_state **cached)
1433{
1434	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435				  cached, GFP_NOFS, NULL);
1436}
1437
1438int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439		u32 bits, struct extent_changeset *changeset)
1440{
1441	/*
1442	 * Don't support EXTENT_LOCKED case, same reason as
1443	 * set_record_extent_bits().
1444	 */
1445	BUG_ON(bits & EXTENT_LOCKED);
1446
1447	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448				  changeset);
1449}
1450
1451/*
1452 * either insert or lock state struct between start and end use mask to tell
1453 * us if waiting is desired.
1454 */
1455int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456		     struct extent_state **cached_state)
1457{
1458	int err;
1459	u64 failed_start;
1460
1461	while (1) {
1462		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463				     EXTENT_LOCKED, &failed_start,
1464				     cached_state, GFP_NOFS, NULL);
1465		if (err == -EEXIST) {
1466			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467			start = failed_start;
1468		} else
1469			break;
1470		WARN_ON(start > end);
1471	}
1472	return err;
1473}
1474
1475int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476{
1477	int err;
1478	u64 failed_start;
1479
1480	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481			     &failed_start, NULL, GFP_NOFS, NULL);
1482	if (err == -EEXIST) {
1483		if (failed_start > start)
1484			clear_extent_bit(tree, start, failed_start - 1,
1485					 EXTENT_LOCKED, 1, 0, NULL);
1486		return 0;
1487	}
1488	return 1;
1489}
1490
1491void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492{
1493	unsigned long index = start >> PAGE_SHIFT;
1494	unsigned long end_index = end >> PAGE_SHIFT;
1495	struct page *page;
1496
1497	while (index <= end_index) {
1498		page = find_get_page(inode->i_mapping, index);
1499		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500		clear_page_dirty_for_io(page);
1501		put_page(page);
1502		index++;
1503	}
1504}
1505
1506void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507{
1508	unsigned long index = start >> PAGE_SHIFT;
1509	unsigned long end_index = end >> PAGE_SHIFT;
1510	struct page *page;
1511
1512	while (index <= end_index) {
1513		page = find_get_page(inode->i_mapping, index);
1514		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515		__set_page_dirty_nobuffers(page);
1516		account_page_redirty(page);
1517		put_page(page);
1518		index++;
1519	}
1520}
1521
1522/* find the first state struct with 'bits' set after 'start', and
1523 * return it.  tree->lock must be held.  NULL will returned if
1524 * nothing was found after 'start'
1525 */
1526static struct extent_state *
1527find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
 
1528{
1529	struct rb_node *node;
1530	struct extent_state *state;
1531
1532	/*
1533	 * this search will find all the extents that end after
1534	 * our range starts.
1535	 */
1536	node = tree_search(tree, start);
1537	if (!node)
1538		goto out;
1539
1540	while (1) {
1541		state = rb_entry(node, struct extent_state, rb_node);
1542		if (state->end >= start && (state->state & bits))
1543			return state;
1544
1545		node = rb_next(node);
1546		if (!node)
1547			break;
1548	}
1549out:
1550	return NULL;
1551}
1552
1553/*
1554 * Find the first offset in the io tree with one or more @bits set.
1555 *
1556 * Note: If there are multiple bits set in @bits, any of them will match.
1557 *
1558 * Return 0 if we find something, and update @start_ret and @end_ret.
1559 * Return 1 if we found nothing.
1560 */
1561int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562			  u64 *start_ret, u64 *end_ret, u32 bits,
1563			  struct extent_state **cached_state)
1564{
1565	struct extent_state *state;
1566	int ret = 1;
1567
1568	spin_lock(&tree->lock);
1569	if (cached_state && *cached_state) {
1570		state = *cached_state;
1571		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572			while ((state = next_state(state)) != NULL) {
1573				if (state->state & bits)
1574					goto got_it;
1575			}
1576			free_extent_state(*cached_state);
1577			*cached_state = NULL;
1578			goto out;
1579		}
1580		free_extent_state(*cached_state);
1581		*cached_state = NULL;
1582	}
1583
1584	state = find_first_extent_bit_state(tree, start, bits);
1585got_it:
1586	if (state) {
1587		cache_state_if_flags(state, cached_state, 0);
1588		*start_ret = state->start;
1589		*end_ret = state->end;
1590		ret = 0;
1591	}
1592out:
1593	spin_unlock(&tree->lock);
1594	return ret;
1595}
1596
1597/**
1598 * Find a contiguous area of bits
1599 *
1600 * @tree:      io tree to check
1601 * @start:     offset to start the search from
1602 * @start_ret: the first offset we found with the bits set
1603 * @end_ret:   the final contiguous range of the bits that were set
1604 * @bits:      bits to look for
1605 *
1606 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1607 * to set bits appropriately, and then merge them again.  During this time it
1608 * will drop the tree->lock, so use this helper if you want to find the actual
1609 * contiguous area for given bits.  We will search to the first bit we find, and
1610 * then walk down the tree until we find a non-contiguous area.  The area
1611 * returned will be the full contiguous area with the bits set.
1612 */
1613int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614			       u64 *start_ret, u64 *end_ret, u32 bits)
1615{
1616	struct extent_state *state;
1617	int ret = 1;
1618
1619	spin_lock(&tree->lock);
1620	state = find_first_extent_bit_state(tree, start, bits);
1621	if (state) {
1622		*start_ret = state->start;
1623		*end_ret = state->end;
1624		while ((state = next_state(state)) != NULL) {
1625			if (state->start > (*end_ret + 1))
1626				break;
1627			*end_ret = state->end;
1628		}
1629		ret = 0;
1630	}
1631	spin_unlock(&tree->lock);
1632	return ret;
1633}
1634
1635/**
1636 * Find the first range that has @bits not set. This range could start before
1637 * @start.
1638 *
1639 * @tree:      the tree to search
1640 * @start:     offset at/after which the found extent should start
1641 * @start_ret: records the beginning of the range
1642 * @end_ret:   records the end of the range (inclusive)
1643 * @bits:      the set of bits which must be unset
1644 *
1645 * Since unallocated range is also considered one which doesn't have the bits
1646 * set it's possible that @end_ret contains -1, this happens in case the range
1647 * spans (last_range_end, end of device]. In this case it's up to the caller to
1648 * trim @end_ret to the appropriate size.
1649 */
1650void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651				 u64 *start_ret, u64 *end_ret, u32 bits)
1652{
1653	struct extent_state *state;
1654	struct rb_node *node, *prev = NULL, *next;
1655
1656	spin_lock(&tree->lock);
1657
1658	/* Find first extent with bits cleared */
1659	while (1) {
1660		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661		if (!node && !next && !prev) {
1662			/*
1663			 * Tree is completely empty, send full range and let
1664			 * caller deal with it
1665			 */
1666			*start_ret = 0;
1667			*end_ret = -1;
1668			goto out;
1669		} else if (!node && !next) {
1670			/*
1671			 * We are past the last allocated chunk, set start at
1672			 * the end of the last extent.
1673			 */
1674			state = rb_entry(prev, struct extent_state, rb_node);
1675			*start_ret = state->end + 1;
1676			*end_ret = -1;
1677			goto out;
1678		} else if (!node) {
1679			node = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
1680		}
1681		/*
1682		 * At this point 'node' either contains 'start' or start is
1683		 * before 'node'
1684		 */
1685		state = rb_entry(node, struct extent_state, rb_node);
1686
1687		if (in_range(start, state->start, state->end - state->start + 1)) {
1688			if (state->state & bits) {
1689				/*
1690				 * |--range with bits sets--|
1691				 *    |
1692				 *    start
1693				 */
1694				start = state->end + 1;
1695			} else {
1696				/*
1697				 * 'start' falls within a range that doesn't
1698				 * have the bits set, so take its start as
1699				 * the beginning of the desired range
1700				 *
1701				 * |--range with bits cleared----|
1702				 *      |
1703				 *      start
1704				 */
1705				*start_ret = state->start;
1706				break;
1707			}
1708		} else {
1709			/*
1710			 * |---prev range---|---hole/unset---|---node range---|
1711			 *                          |
1712			 *                        start
1713			 *
1714			 *                        or
1715			 *
1716			 * |---hole/unset--||--first node--|
1717			 * 0   |
1718			 *    start
1719			 */
1720			if (prev) {
1721				state = rb_entry(prev, struct extent_state,
1722						 rb_node);
1723				*start_ret = state->end + 1;
1724			} else {
1725				*start_ret = 0;
1726			}
1727			break;
1728		}
1729	}
1730
1731	/*
1732	 * Find the longest stretch from start until an entry which has the
1733	 * bits set
1734	 */
1735	while (1) {
1736		state = rb_entry(node, struct extent_state, rb_node);
1737		if (state->end >= start && !(state->state & bits)) {
1738			*end_ret = state->end;
1739		} else {
1740			*end_ret = state->start - 1;
1741			break;
1742		}
1743
1744		node = rb_next(node);
1745		if (!node)
1746			break;
1747	}
1748out:
1749	spin_unlock(&tree->lock);
1750}
1751
1752/*
1753 * find a contiguous range of bytes in the file marked as delalloc, not
1754 * more than 'max_bytes'.  start and end are used to return the range,
1755 *
1756 * true is returned if we find something, false if nothing was in the tree
1757 */
1758bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1759			       u64 *end, u64 max_bytes,
1760			       struct extent_state **cached_state)
1761{
1762	struct rb_node *node;
1763	struct extent_state *state;
1764	u64 cur_start = *start;
1765	bool found = false;
1766	u64 total_bytes = 0;
1767
1768	spin_lock(&tree->lock);
1769
1770	/*
1771	 * this search will find all the extents that end after
1772	 * our range starts.
1773	 */
1774	node = tree_search(tree, cur_start);
1775	if (!node) {
1776		*end = (u64)-1;
1777		goto out;
1778	}
1779
1780	while (1) {
1781		state = rb_entry(node, struct extent_state, rb_node);
1782		if (found && (state->start != cur_start ||
1783			      (state->state & EXTENT_BOUNDARY))) {
1784			goto out;
1785		}
1786		if (!(state->state & EXTENT_DELALLOC)) {
1787			if (!found)
1788				*end = state->end;
1789			goto out;
1790		}
1791		if (!found) {
1792			*start = state->start;
1793			*cached_state = state;
1794			refcount_inc(&state->refs);
1795		}
1796		found = true;
1797		*end = state->end;
1798		cur_start = state->end + 1;
1799		node = rb_next(node);
1800		total_bytes += state->end - state->start + 1;
1801		if (total_bytes >= max_bytes)
1802			break;
1803		if (!node)
1804			break;
1805	}
1806out:
1807	spin_unlock(&tree->lock);
1808	return found;
1809}
1810
1811/*
1812 * Process one page for __process_pages_contig().
1813 *
1814 * Return >0 if we hit @page == @locked_page.
1815 * Return 0 if we updated the page status.
1816 * Return -EGAIN if the we need to try again.
1817 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1818 */
1819static int process_one_page(struct btrfs_fs_info *fs_info,
1820			    struct address_space *mapping,
1821			    struct page *page, struct page *locked_page,
1822			    unsigned long page_ops, u64 start, u64 end)
1823{
1824	u32 len;
1825
1826	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1827	len = end + 1 - start;
1828
1829	if (page_ops & PAGE_SET_ORDERED)
1830		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1831	if (page_ops & PAGE_SET_ERROR)
1832		btrfs_page_clamp_set_error(fs_info, page, start, len);
1833	if (page_ops & PAGE_START_WRITEBACK) {
1834		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1835		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1836	}
1837	if (page_ops & PAGE_END_WRITEBACK)
1838		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1839
1840	if (page == locked_page)
1841		return 1;
1842
1843	if (page_ops & PAGE_LOCK) {
1844		int ret;
1845
1846		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1847		if (ret)
1848			return ret;
1849		if (!PageDirty(page) || page->mapping != mapping) {
1850			btrfs_page_end_writer_lock(fs_info, page, start, len);
1851			return -EAGAIN;
1852		}
1853	}
1854	if (page_ops & PAGE_UNLOCK)
1855		btrfs_page_end_writer_lock(fs_info, page, start, len);
1856	return 0;
1857}
1858
1859static int __process_pages_contig(struct address_space *mapping,
1860				  struct page *locked_page,
1861				  u64 start, u64 end, unsigned long page_ops,
1862				  u64 *processed_end)
1863{
1864	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1865	pgoff_t start_index = start >> PAGE_SHIFT;
1866	pgoff_t end_index = end >> PAGE_SHIFT;
1867	pgoff_t index = start_index;
1868	unsigned long nr_pages = end_index - start_index + 1;
1869	unsigned long pages_processed = 0;
1870	struct page *pages[16];
1871	int err = 0;
1872	int i;
1873
1874	if (page_ops & PAGE_LOCK) {
1875		ASSERT(page_ops == PAGE_LOCK);
1876		ASSERT(processed_end && *processed_end == start);
1877	}
1878
1879	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1880		mapping_set_error(mapping, -EIO);
1881
1882	while (nr_pages > 0) {
1883		int found_pages;
1884
1885		found_pages = find_get_pages_contig(mapping, index,
1886				     min_t(unsigned long,
1887				     nr_pages, ARRAY_SIZE(pages)), pages);
1888		if (found_pages == 0) {
1889			/*
1890			 * Only if we're going to lock these pages, we can find
1891			 * nothing at @index.
1892			 */
1893			ASSERT(page_ops & PAGE_LOCK);
1894			err = -EAGAIN;
1895			goto out;
1896		}
1897
1898		for (i = 0; i < found_pages; i++) {
1899			int process_ret;
1900
1901			process_ret = process_one_page(fs_info, mapping,
1902					pages[i], locked_page, page_ops,
1903					start, end);
1904			if (process_ret < 0) {
1905				for (; i < found_pages; i++)
1906					put_page(pages[i]);
1907				err = -EAGAIN;
1908				goto out;
1909			}
1910			put_page(pages[i]);
1911			pages_processed++;
1912		}
1913		nr_pages -= found_pages;
1914		index += found_pages;
1915		cond_resched();
1916	}
1917out:
1918	if (err && processed_end) {
1919		/*
1920		 * Update @processed_end. I know this is awful since it has
1921		 * two different return value patterns (inclusive vs exclusive).
1922		 *
1923		 * But the exclusive pattern is necessary if @start is 0, or we
1924		 * underflow and check against processed_end won't work as
1925		 * expected.
1926		 */
1927		if (pages_processed)
1928			*processed_end = min(end,
1929			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1930		else
1931			*processed_end = start;
1932	}
1933	return err;
1934}
1935
1936static noinline void __unlock_for_delalloc(struct inode *inode,
1937					   struct page *locked_page,
1938					   u64 start, u64 end)
1939{
1940	unsigned long index = start >> PAGE_SHIFT;
1941	unsigned long end_index = end >> PAGE_SHIFT;
1942
1943	ASSERT(locked_page);
1944	if (index == locked_page->index && end_index == index)
1945		return;
1946
1947	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1948			       PAGE_UNLOCK, NULL);
1949}
1950
1951static noinline int lock_delalloc_pages(struct inode *inode,
1952					struct page *locked_page,
1953					u64 delalloc_start,
1954					u64 delalloc_end)
1955{
1956	unsigned long index = delalloc_start >> PAGE_SHIFT;
 
1957	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1958	u64 processed_end = delalloc_start;
1959	int ret;
1960
1961	ASSERT(locked_page);
1962	if (index == locked_page->index && index == end_index)
1963		return 0;
1964
1965	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1966				     delalloc_end, PAGE_LOCK, &processed_end);
1967	if (ret == -EAGAIN && processed_end > delalloc_start)
1968		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1969				      processed_end);
1970	return ret;
1971}
1972
1973/*
1974 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1975 * more than @max_bytes.  @Start and @end are used to return the range,
1976 *
1977 * Return: true if we find something
1978 *         false if nothing was in the tree
1979 */
1980EXPORT_FOR_TESTS
1981noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1982				    struct page *locked_page, u64 *start,
1983				    u64 *end)
1984{
1985	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1986	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1987	u64 delalloc_start;
1988	u64 delalloc_end;
1989	bool found;
1990	struct extent_state *cached_state = NULL;
1991	int ret;
1992	int loops = 0;
1993
1994again:
1995	/* step one, find a bunch of delalloc bytes starting at start */
1996	delalloc_start = *start;
1997	delalloc_end = 0;
1998	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1999					  max_bytes, &cached_state);
2000	if (!found || delalloc_end <= *start) {
2001		*start = delalloc_start;
2002		*end = delalloc_end;
2003		free_extent_state(cached_state);
2004		return false;
2005	}
2006
2007	/*
2008	 * start comes from the offset of locked_page.  We have to lock
2009	 * pages in order, so we can't process delalloc bytes before
2010	 * locked_page
2011	 */
2012	if (delalloc_start < *start)
2013		delalloc_start = *start;
2014
2015	/*
2016	 * make sure to limit the number of pages we try to lock down
2017	 */
2018	if (delalloc_end + 1 - delalloc_start > max_bytes)
2019		delalloc_end = delalloc_start + max_bytes - 1;
2020
2021	/* step two, lock all the pages after the page that has start */
2022	ret = lock_delalloc_pages(inode, locked_page,
2023				  delalloc_start, delalloc_end);
2024	ASSERT(!ret || ret == -EAGAIN);
2025	if (ret == -EAGAIN) {
2026		/* some of the pages are gone, lets avoid looping by
2027		 * shortening the size of the delalloc range we're searching
2028		 */
2029		free_extent_state(cached_state);
2030		cached_state = NULL;
2031		if (!loops) {
2032			max_bytes = PAGE_SIZE;
2033			loops = 1;
2034			goto again;
2035		} else {
2036			found = false;
2037			goto out_failed;
2038		}
2039	}
2040
2041	/* step three, lock the state bits for the whole range */
2042	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2043
2044	/* then test to make sure it is all still delalloc */
2045	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2046			     EXTENT_DELALLOC, 1, cached_state);
2047	if (!ret) {
2048		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2049				     &cached_state);
2050		__unlock_for_delalloc(inode, locked_page,
2051			      delalloc_start, delalloc_end);
2052		cond_resched();
2053		goto again;
2054	}
2055	free_extent_state(cached_state);
2056	*start = delalloc_start;
2057	*end = delalloc_end;
2058out_failed:
2059	return found;
2060}
2061
2062void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2063				  struct page *locked_page,
2064				  u32 clear_bits, unsigned long page_ops)
 
2065{
2066	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
 
 
 
 
 
 
2067
2068	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2069			       start, end, page_ops, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2070}
2071
2072/*
2073 * count the number of bytes in the tree that have a given bit(s)
2074 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2075 * cached.  The total number found is returned.
2076 */
2077u64 count_range_bits(struct extent_io_tree *tree,
2078		     u64 *start, u64 search_end, u64 max_bytes,
2079		     u32 bits, int contig)
2080{
2081	struct rb_node *node;
2082	struct extent_state *state;
2083	u64 cur_start = *start;
2084	u64 total_bytes = 0;
2085	u64 last = 0;
2086	int found = 0;
2087
2088	if (WARN_ON(search_end <= cur_start))
2089		return 0;
2090
2091	spin_lock(&tree->lock);
2092	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2093		total_bytes = tree->dirty_bytes;
2094		goto out;
2095	}
2096	/*
2097	 * this search will find all the extents that end after
2098	 * our range starts.
2099	 */
2100	node = tree_search(tree, cur_start);
2101	if (!node)
2102		goto out;
2103
2104	while (1) {
2105		state = rb_entry(node, struct extent_state, rb_node);
2106		if (state->start > search_end)
2107			break;
2108		if (contig && found && state->start > last + 1)
2109			break;
2110		if (state->end >= cur_start && (state->state & bits) == bits) {
2111			total_bytes += min(search_end, state->end) + 1 -
2112				       max(cur_start, state->start);
2113			if (total_bytes >= max_bytes)
2114				break;
2115			if (!found) {
2116				*start = max(cur_start, state->start);
2117				found = 1;
2118			}
2119			last = state->end;
2120		} else if (contig && found) {
2121			break;
2122		}
2123		node = rb_next(node);
2124		if (!node)
2125			break;
2126	}
2127out:
2128	spin_unlock(&tree->lock);
2129	return total_bytes;
2130}
2131
2132/*
2133 * set the private field for a given byte offset in the tree.  If there isn't
2134 * an extent_state there already, this does nothing.
2135 */
2136int set_state_failrec(struct extent_io_tree *tree, u64 start,
2137		      struct io_failure_record *failrec)
2138{
2139	struct rb_node *node;
2140	struct extent_state *state;
2141	int ret = 0;
2142
2143	spin_lock(&tree->lock);
2144	/*
2145	 * this search will find all the extents that end after
2146	 * our range starts.
2147	 */
2148	node = tree_search(tree, start);
2149	if (!node) {
2150		ret = -ENOENT;
2151		goto out;
2152	}
2153	state = rb_entry(node, struct extent_state, rb_node);
2154	if (state->start != start) {
2155		ret = -ENOENT;
2156		goto out;
2157	}
2158	state->failrec = failrec;
2159out:
2160	spin_unlock(&tree->lock);
2161	return ret;
2162}
2163
2164struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
 
2165{
2166	struct rb_node *node;
2167	struct extent_state *state;
2168	struct io_failure_record *failrec;
2169
2170	spin_lock(&tree->lock);
2171	/*
2172	 * this search will find all the extents that end after
2173	 * our range starts.
2174	 */
2175	node = tree_search(tree, start);
2176	if (!node) {
2177		failrec = ERR_PTR(-ENOENT);
2178		goto out;
2179	}
2180	state = rb_entry(node, struct extent_state, rb_node);
2181	if (state->start != start) {
2182		failrec = ERR_PTR(-ENOENT);
2183		goto out;
2184	}
2185
2186	failrec = state->failrec;
2187out:
2188	spin_unlock(&tree->lock);
2189	return failrec;
2190}
2191
2192/*
2193 * searches a range in the state tree for a given mask.
2194 * If 'filled' == 1, this returns 1 only if every extent in the tree
2195 * has the bits set.  Otherwise, 1 is returned if any bit in the
2196 * range is found set.
2197 */
2198int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2199		   u32 bits, int filled, struct extent_state *cached)
2200{
2201	struct extent_state *state = NULL;
2202	struct rb_node *node;
2203	int bitset = 0;
2204
2205	spin_lock(&tree->lock);
2206	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2207	    cached->end > start)
2208		node = &cached->rb_node;
2209	else
2210		node = tree_search(tree, start);
2211	while (node && start <= end) {
2212		state = rb_entry(node, struct extent_state, rb_node);
2213
2214		if (filled && state->start > start) {
2215			bitset = 0;
2216			break;
2217		}
2218
2219		if (state->start > end)
2220			break;
2221
2222		if (state->state & bits) {
2223			bitset = 1;
2224			if (!filled)
2225				break;
2226		} else if (filled) {
2227			bitset = 0;
2228			break;
2229		}
2230
2231		if (state->end == (u64)-1)
2232			break;
2233
2234		start = state->end + 1;
2235		if (start > end)
2236			break;
2237		node = rb_next(node);
2238		if (!node) {
2239			if (filled)
2240				bitset = 0;
2241			break;
2242		}
2243	}
2244	spin_unlock(&tree->lock);
2245	return bitset;
2246}
2247
2248/*
2249 * helper function to set a given page up to date if all the
2250 * extents in the tree for that page are up to date
2251 */
2252static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2253{
2254	u64 start = page_offset(page);
2255	u64 end = start + PAGE_SIZE - 1;
2256	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2257		SetPageUptodate(page);
2258}
2259
2260int free_io_failure(struct extent_io_tree *failure_tree,
2261		    struct extent_io_tree *io_tree,
2262		    struct io_failure_record *rec)
2263{
2264	int ret;
2265	int err = 0;
2266
2267	set_state_failrec(failure_tree, rec->start, NULL);
2268	ret = clear_extent_bits(failure_tree, rec->start,
2269				rec->start + rec->len - 1,
2270				EXTENT_LOCKED | EXTENT_DIRTY);
2271	if (ret)
2272		err = ret;
2273
2274	ret = clear_extent_bits(io_tree, rec->start,
2275				rec->start + rec->len - 1,
2276				EXTENT_DAMAGED);
2277	if (ret && !err)
2278		err = ret;
2279
2280	kfree(rec);
2281	return err;
2282}
2283
2284/*
2285 * this bypasses the standard btrfs submit functions deliberately, as
2286 * the standard behavior is to write all copies in a raid setup. here we only
2287 * want to write the one bad copy. so we do the mapping for ourselves and issue
2288 * submit_bio directly.
2289 * to avoid any synchronization issues, wait for the data after writing, which
2290 * actually prevents the read that triggered the error from finishing.
2291 * currently, there can be no more than two copies of every data bit. thus,
2292 * exactly one rewrite is required.
2293 */
2294int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2295		      u64 length, u64 logical, struct page *page,
2296		      unsigned int pg_offset, int mirror_num)
2297{
2298	struct bio *bio;
2299	struct btrfs_device *dev;
2300	u64 map_length = 0;
2301	u64 sector;
2302	struct btrfs_bio *bbio = NULL;
2303	int ret;
2304
2305	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2306	BUG_ON(!mirror_num);
2307
2308	if (btrfs_is_zoned(fs_info))
2309		return btrfs_repair_one_zone(fs_info, logical);
2310
2311	bio = btrfs_io_bio_alloc(1);
2312	bio->bi_iter.bi_size = 0;
2313	map_length = length;
2314
2315	/*
2316	 * Avoid races with device replace and make sure our bbio has devices
2317	 * associated to its stripes that don't go away while we are doing the
2318	 * read repair operation.
2319	 */
2320	btrfs_bio_counter_inc_blocked(fs_info);
2321	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2322		/*
2323		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2324		 * to update all raid stripes, but here we just want to correct
2325		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2326		 * stripe's dev and sector.
2327		 */
2328		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2329				      &map_length, &bbio, 0);
2330		if (ret) {
2331			btrfs_bio_counter_dec(fs_info);
2332			bio_put(bio);
2333			return -EIO;
2334		}
2335		ASSERT(bbio->mirror_num == 1);
2336	} else {
2337		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2338				      &map_length, &bbio, mirror_num);
2339		if (ret) {
2340			btrfs_bio_counter_dec(fs_info);
2341			bio_put(bio);
2342			return -EIO;
2343		}
2344		BUG_ON(mirror_num != bbio->mirror_num);
2345	}
2346
2347	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2348	bio->bi_iter.bi_sector = sector;
2349	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2350	btrfs_put_bbio(bbio);
2351	if (!dev || !dev->bdev ||
2352	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2353		btrfs_bio_counter_dec(fs_info);
2354		bio_put(bio);
2355		return -EIO;
2356	}
2357	bio_set_dev(bio, dev->bdev);
2358	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2359	bio_add_page(bio, page, length, pg_offset);
2360
2361	if (btrfsic_submit_bio_wait(bio)) {
2362		/* try to remap that extent elsewhere? */
2363		btrfs_bio_counter_dec(fs_info);
2364		bio_put(bio);
2365		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2366		return -EIO;
2367	}
2368
2369	btrfs_info_rl_in_rcu(fs_info,
2370		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2371				  ino, start,
2372				  rcu_str_deref(dev->name), sector);
2373	btrfs_bio_counter_dec(fs_info);
2374	bio_put(bio);
2375	return 0;
2376}
2377
2378int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2379{
2380	struct btrfs_fs_info *fs_info = eb->fs_info;
2381	u64 start = eb->start;
2382	int i, num_pages = num_extent_pages(eb);
2383	int ret = 0;
2384
2385	if (sb_rdonly(fs_info->sb))
2386		return -EROFS;
2387
2388	for (i = 0; i < num_pages; i++) {
2389		struct page *p = eb->pages[i];
2390
2391		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2392					start - page_offset(p), mirror_num);
2393		if (ret)
2394			break;
2395		start += PAGE_SIZE;
2396	}
2397
2398	return ret;
2399}
2400
2401/*
2402 * each time an IO finishes, we do a fast check in the IO failure tree
2403 * to see if we need to process or clean up an io_failure_record
2404 */
2405int clean_io_failure(struct btrfs_fs_info *fs_info,
2406		     struct extent_io_tree *failure_tree,
2407		     struct extent_io_tree *io_tree, u64 start,
2408		     struct page *page, u64 ino, unsigned int pg_offset)
2409{
2410	u64 private;
2411	struct io_failure_record *failrec;
2412	struct extent_state *state;
2413	int num_copies;
2414	int ret;
2415
2416	private = 0;
2417	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2418			       EXTENT_DIRTY, 0);
2419	if (!ret)
2420		return 0;
2421
2422	failrec = get_state_failrec(failure_tree, start);
2423	if (IS_ERR(failrec))
2424		return 0;
2425
2426	BUG_ON(!failrec->this_mirror);
2427
 
 
 
 
 
 
 
2428	if (sb_rdonly(fs_info->sb))
2429		goto out;
2430
2431	spin_lock(&io_tree->lock);
2432	state = find_first_extent_bit_state(io_tree,
2433					    failrec->start,
2434					    EXTENT_LOCKED);
2435	spin_unlock(&io_tree->lock);
2436
2437	if (state && state->start <= failrec->start &&
2438	    state->end >= failrec->start + failrec->len - 1) {
2439		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2440					      failrec->len);
2441		if (num_copies > 1)  {
2442			repair_io_failure(fs_info, ino, start, failrec->len,
2443					  failrec->logical, page, pg_offset,
2444					  failrec->failed_mirror);
2445		}
2446	}
2447
2448out:
2449	free_io_failure(failure_tree, io_tree, failrec);
2450
2451	return 0;
2452}
2453
2454/*
2455 * Can be called when
2456 * - hold extent lock
2457 * - under ordered extent
2458 * - the inode is freeing
2459 */
2460void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2461{
2462	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2463	struct io_failure_record *failrec;
2464	struct extent_state *state, *next;
2465
2466	if (RB_EMPTY_ROOT(&failure_tree->state))
2467		return;
2468
2469	spin_lock(&failure_tree->lock);
2470	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2471	while (state) {
2472		if (state->start > end)
2473			break;
2474
2475		ASSERT(state->end <= end);
2476
2477		next = next_state(state);
2478
2479		failrec = state->failrec;
2480		free_extent_state(state);
2481		kfree(failrec);
2482
2483		state = next;
2484	}
2485	spin_unlock(&failure_tree->lock);
2486}
2487
2488static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2489							     u64 start)
2490{
2491	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2492	struct io_failure_record *failrec;
2493	struct extent_map *em;
2494	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2495	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2496	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2497	const u32 sectorsize = fs_info->sectorsize;
2498	int ret;
2499	u64 logical;
2500
2501	failrec = get_state_failrec(failure_tree, start);
2502	if (!IS_ERR(failrec)) {
2503		btrfs_debug(fs_info,
2504	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2505			failrec->logical, failrec->start, failrec->len);
2506		/*
2507		 * when data can be on disk more than twice, add to failrec here
2508		 * (e.g. with a list for failed_mirror) to make
2509		 * clean_io_failure() clean all those errors at once.
2510		 */
2511
2512		return failrec;
2513	}
 
 
 
2514
2515	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2516	if (!failrec)
2517		return ERR_PTR(-ENOMEM);
 
 
 
 
2518
2519	failrec->start = start;
2520	failrec->len = sectorsize;
2521	failrec->this_mirror = 0;
2522	failrec->bio_flags = 0;
2523
2524	read_lock(&em_tree->lock);
2525	em = lookup_extent_mapping(em_tree, start, failrec->len);
2526	if (!em) {
2527		read_unlock(&em_tree->lock);
2528		kfree(failrec);
2529		return ERR_PTR(-EIO);
2530	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531
2532	if (em->start > start || em->start + em->len <= start) {
2533		free_extent_map(em);
2534		em = NULL;
2535	}
2536	read_unlock(&em_tree->lock);
2537	if (!em) {
2538		kfree(failrec);
2539		return ERR_PTR(-EIO);
2540	}
2541
2542	logical = start - em->start;
2543	logical = em->block_start + logical;
2544	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2545		logical = em->block_start;
2546		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2547		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2548	}
2549
2550	btrfs_debug(fs_info,
2551		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2552		    logical, start, failrec->len);
2553
2554	failrec->logical = logical;
2555	free_extent_map(em);
2556
2557	/* Set the bits in the private failure tree */
2558	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2559			      EXTENT_LOCKED | EXTENT_DIRTY);
2560	if (ret >= 0) {
2561		ret = set_state_failrec(failure_tree, start, failrec);
2562		/* Set the bits in the inode's tree */
2563		ret = set_extent_bits(tree, start, start + sectorsize - 1,
2564				      EXTENT_DAMAGED);
2565	} else if (ret < 0) {
2566		kfree(failrec);
2567		return ERR_PTR(ret);
2568	}
2569
2570	return failrec;
2571}
2572
2573static bool btrfs_check_repairable(struct inode *inode,
2574				   struct io_failure_record *failrec,
2575				   int failed_mirror)
2576{
2577	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2578	int num_copies;
2579
2580	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2581	if (num_copies == 1) {
2582		/*
2583		 * we only have a single copy of the data, so don't bother with
2584		 * all the retry and error correction code that follows. no
2585		 * matter what the error is, it is very likely to persist.
2586		 */
2587		btrfs_debug(fs_info,
2588			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2589			num_copies, failrec->this_mirror, failed_mirror);
2590		return false;
2591	}
2592
2593	/* The failure record should only contain one sector */
2594	ASSERT(failrec->len == fs_info->sectorsize);
2595
2596	/*
2597	 * There are two premises:
2598	 * a) deliver good data to the caller
2599	 * b) correct the bad sectors on disk
2600	 *
2601	 * Since we're only doing repair for one sector, we only need to get
2602	 * a good copy of the failed sector and if we succeed, we have setup
2603	 * everything for repair_io_failure to do the rest for us.
2604	 */
2605	failrec->failed_mirror = failed_mirror;
2606	failrec->this_mirror++;
2607	if (failrec->this_mirror == failed_mirror)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608		failrec->this_mirror++;
 
 
 
2609
2610	if (failrec->this_mirror > num_copies) {
2611		btrfs_debug(fs_info,
2612			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2613			num_copies, failrec->this_mirror, failed_mirror);
2614		return false;
2615	}
2616
2617	return true;
2618}
2619
2620int btrfs_repair_one_sector(struct inode *inode,
2621			    struct bio *failed_bio, u32 bio_offset,
2622			    struct page *page, unsigned int pgoff,
2623			    u64 start, int failed_mirror,
2624			    submit_bio_hook_t *submit_bio_hook)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625{
2626	struct io_failure_record *failrec;
2627	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2628	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2629	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2630	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2631	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2632	struct bio *repair_bio;
2633	struct btrfs_io_bio *repair_io_bio;
2634	blk_status_t status;
2635
2636	btrfs_debug(fs_info,
2637		   "repair read error: read error at %llu", start);
2638
2639	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2640
2641	failrec = btrfs_get_io_failure_record(inode, start);
2642	if (IS_ERR(failrec))
2643		return PTR_ERR(failrec);
2644
2645
2646	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
 
2647		free_io_failure(failure_tree, tree, failrec);
2648		return -EIO;
2649	}
2650
2651	repair_bio = btrfs_io_bio_alloc(1);
2652	repair_io_bio = btrfs_io_bio(repair_bio);
2653	repair_bio->bi_opf = REQ_OP_READ;
2654	repair_bio->bi_end_io = failed_bio->bi_end_io;
2655	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2656	repair_bio->bi_private = failed_bio->bi_private;
2657
2658	if (failed_io_bio->csum) {
2659		const u32 csum_size = fs_info->csum_size;
2660
2661		repair_io_bio->csum = repair_io_bio->csum_inline;
2662		memcpy(repair_io_bio->csum,
2663		       failed_io_bio->csum + csum_size * icsum, csum_size);
2664	}
2665
2666	bio_add_page(repair_bio, page, failrec->len, pgoff);
2667	repair_io_bio->logical = failrec->start;
2668	repair_io_bio->iter = repair_bio->bi_iter;
2669
2670	btrfs_debug(btrfs_sb(inode->i_sb),
2671		    "repair read error: submitting new read to mirror %d",
2672		    failrec->this_mirror);
2673
2674	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2675				 failrec->bio_flags);
2676	if (status) {
2677		free_io_failure(failure_tree, tree, failrec);
2678		bio_put(repair_bio);
 
2679	}
2680	return blk_status_to_errno(status);
2681}
2682
2683static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2684{
2685	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2686
2687	ASSERT(page_offset(page) <= start &&
2688	       start + len <= page_offset(page) + PAGE_SIZE);
2689
2690	if (uptodate) {
2691		btrfs_page_set_uptodate(fs_info, page, start, len);
2692	} else {
2693		btrfs_page_clear_uptodate(fs_info, page, start, len);
2694		btrfs_page_set_error(fs_info, page, start, len);
2695	}
2696
2697	if (fs_info->sectorsize == PAGE_SIZE)
2698		unlock_page(page);
2699	else
2700		btrfs_subpage_end_reader(fs_info, page, start, len);
2701}
2702
2703static blk_status_t submit_read_repair(struct inode *inode,
2704				      struct bio *failed_bio, u32 bio_offset,
2705				      struct page *page, unsigned int pgoff,
2706				      u64 start, u64 end, int failed_mirror,
2707				      unsigned int error_bitmap,
2708				      submit_bio_hook_t *submit_bio_hook)
2709{
2710	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2711	const u32 sectorsize = fs_info->sectorsize;
2712	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2713	int error = 0;
2714	int i;
2715
2716	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2717
2718	/* We're here because we had some read errors or csum mismatch */
2719	ASSERT(error_bitmap);
2720
2721	/*
2722	 * We only get called on buffered IO, thus page must be mapped and bio
2723	 * must not be cloned.
2724	 */
2725	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2726
2727	/* Iterate through all the sectors in the range */
2728	for (i = 0; i < nr_bits; i++) {
2729		const unsigned int offset = i * sectorsize;
2730		struct extent_state *cached = NULL;
2731		bool uptodate = false;
2732		int ret;
2733
2734		if (!(error_bitmap & (1U << i))) {
2735			/*
2736			 * This sector has no error, just end the page read
2737			 * and unlock the range.
2738			 */
2739			uptodate = true;
2740			goto next;
2741		}
2742
2743		ret = btrfs_repair_one_sector(inode, failed_bio,
2744				bio_offset + offset,
2745				page, pgoff + offset, start + offset,
2746				failed_mirror, submit_bio_hook);
2747		if (!ret) {
2748			/*
2749			 * We have submitted the read repair, the page release
2750			 * will be handled by the endio function of the
2751			 * submitted repair bio.
2752			 * Thus we don't need to do any thing here.
2753			 */
2754			continue;
2755		}
2756		/*
2757		 * Repair failed, just record the error but still continue.
2758		 * Or the remaining sectors will not be properly unlocked.
2759		 */
2760		if (!error)
2761			error = ret;
2762next:
2763		end_page_read(page, uptodate, start + offset, sectorsize);
2764		if (uptodate)
2765			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2766					start + offset,
2767					start + offset + sectorsize - 1,
2768					&cached, GFP_ATOMIC);
2769		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2770				start + offset,
2771				start + offset + sectorsize - 1,
2772				&cached);
2773	}
2774	return errno_to_blk_status(error);
2775}
2776
2777/* lots and lots of room for performance fixes in the end_bio funcs */
2778
2779void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2780{
2781	struct btrfs_inode *inode;
2782	int uptodate = (err == 0);
2783	int ret = 0;
2784
2785	ASSERT(page && page->mapping);
2786	inode = BTRFS_I(page->mapping->host);
2787	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2788
2789	if (!uptodate) {
2790		ClearPageUptodate(page);
2791		SetPageError(page);
2792		ret = err < 0 ? err : -EIO;
2793		mapping_set_error(page->mapping, ret);
2794	}
2795}
2796
2797/*
2798 * after a writepage IO is done, we need to:
2799 * clear the uptodate bits on error
2800 * clear the writeback bits in the extent tree for this IO
2801 * end_page_writeback if the page has no more pending IO
2802 *
2803 * Scheduling is not allowed, so the extent state tree is expected
2804 * to have one and only one object corresponding to this IO.
2805 */
2806static void end_bio_extent_writepage(struct bio *bio)
2807{
2808	int error = blk_status_to_errno(bio->bi_status);
2809	struct bio_vec *bvec;
2810	u64 start;
2811	u64 end;
2812	struct bvec_iter_all iter_all;
2813	bool first_bvec = true;
2814
2815	ASSERT(!bio_flagged(bio, BIO_CLONED));
2816	bio_for_each_segment_all(bvec, bio, iter_all) {
2817		struct page *page = bvec->bv_page;
2818		struct inode *inode = page->mapping->host;
2819		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820		const u32 sectorsize = fs_info->sectorsize;
2821
2822		/* Our read/write should always be sector aligned. */
2823		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2824			btrfs_err(fs_info,
2825		"partial page write in btrfs with offset %u and length %u",
2826				  bvec->bv_offset, bvec->bv_len);
2827		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2828			btrfs_info(fs_info,
2829		"incomplete page write with offset %u and length %u",
2830				   bvec->bv_offset, bvec->bv_len);
2831
2832		start = page_offset(page) + bvec->bv_offset;
2833		end = start + bvec->bv_len - 1;
2834
2835		if (first_bvec) {
2836			btrfs_record_physical_zoned(inode, start, bio);
2837			first_bvec = false;
2838		}
2839
 
 
 
2840		end_extent_writepage(page, error, start, end);
2841
2842		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2843	}
2844
2845	bio_put(bio);
2846}
2847
2848/*
2849 * Record previously processed extent range
2850 *
2851 * For endio_readpage_release_extent() to handle a full extent range, reducing
2852 * the extent io operations.
2853 */
2854struct processed_extent {
2855	struct btrfs_inode *inode;
2856	/* Start of the range in @inode */
2857	u64 start;
2858	/* End of the range in @inode */
2859	u64 end;
2860	bool uptodate;
2861};
2862
2863/*
2864 * Try to release processed extent range
2865 *
2866 * May not release the extent range right now if the current range is
2867 * contiguous to processed extent.
2868 *
2869 * Will release processed extent when any of @inode, @uptodate, the range is
2870 * no longer contiguous to the processed range.
2871 *
2872 * Passing @inode == NULL will force processed extent to be released.
2873 */
2874static void endio_readpage_release_extent(struct processed_extent *processed,
2875			      struct btrfs_inode *inode, u64 start, u64 end,
2876			      bool uptodate)
2877{
2878	struct extent_state *cached = NULL;
2879	struct extent_io_tree *tree;
2880
2881	/* The first extent, initialize @processed */
2882	if (!processed->inode)
2883		goto update;
2884
2885	/*
2886	 * Contiguous to processed extent, just uptodate the end.
2887	 *
2888	 * Several things to notice:
2889	 *
2890	 * - bio can be merged as long as on-disk bytenr is contiguous
2891	 *   This means we can have page belonging to other inodes, thus need to
2892	 *   check if the inode still matches.
2893	 * - bvec can contain range beyond current page for multi-page bvec
2894	 *   Thus we need to do processed->end + 1 >= start check
2895	 */
2896	if (processed->inode == inode && processed->uptodate == uptodate &&
2897	    processed->end + 1 >= start && end >= processed->end) {
2898		processed->end = end;
2899		return;
2900	}
2901
2902	tree = &processed->inode->io_tree;
2903	/*
2904	 * Now we don't have range contiguous to the processed range, release
2905	 * the processed range now.
2906	 */
2907	if (processed->uptodate && tree->track_uptodate)
2908		set_extent_uptodate(tree, processed->start, processed->end,
2909				    &cached, GFP_ATOMIC);
2910	unlock_extent_cached_atomic(tree, processed->start, processed->end,
2911				    &cached);
2912
2913update:
2914	/* Update processed to current range */
2915	processed->inode = inode;
2916	processed->start = start;
2917	processed->end = end;
2918	processed->uptodate = uptodate;
2919}
2920
2921static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2922{
2923	ASSERT(PageLocked(page));
2924	if (fs_info->sectorsize == PAGE_SIZE)
2925		return;
2926
2927	ASSERT(PagePrivate(page));
2928	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2929}
2930
2931/*
2932 * Find extent buffer for a givne bytenr.
2933 *
2934 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2935 * in endio context.
2936 */
2937static struct extent_buffer *find_extent_buffer_readpage(
2938		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2939{
2940	struct extent_buffer *eb;
2941
2942	/*
2943	 * For regular sectorsize, we can use page->private to grab extent
2944	 * buffer
2945	 */
2946	if (fs_info->sectorsize == PAGE_SIZE) {
2947		ASSERT(PagePrivate(page) && page->private);
2948		return (struct extent_buffer *)page->private;
2949	}
2950
2951	/* For subpage case, we need to lookup buffer radix tree */
2952	rcu_read_lock();
2953	eb = radix_tree_lookup(&fs_info->buffer_radix,
2954			       bytenr >> fs_info->sectorsize_bits);
2955	rcu_read_unlock();
2956	ASSERT(eb);
2957	return eb;
2958}
2959
2960/*
2961 * after a readpage IO is done, we need to:
2962 * clear the uptodate bits on error
2963 * set the uptodate bits if things worked
2964 * set the page up to date if all extents in the tree are uptodate
2965 * clear the lock bit in the extent tree
2966 * unlock the page if there are no other extents locked for it
2967 *
2968 * Scheduling is not allowed, so the extent state tree is expected
2969 * to have one and only one object corresponding to this IO.
2970 */
2971static void end_bio_extent_readpage(struct bio *bio)
2972{
2973	struct bio_vec *bvec;
 
2974	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2975	struct extent_io_tree *tree, *failure_tree;
2976	struct processed_extent processed = { 0 };
2977	/*
2978	 * The offset to the beginning of a bio, since one bio can never be
2979	 * larger than UINT_MAX, u32 here is enough.
2980	 */
2981	u32 bio_offset = 0;
2982	int mirror;
2983	int ret;
2984	struct bvec_iter_all iter_all;
2985
2986	ASSERT(!bio_flagged(bio, BIO_CLONED));
2987	bio_for_each_segment_all(bvec, bio, iter_all) {
2988		bool uptodate = !bio->bi_status;
2989		struct page *page = bvec->bv_page;
2990		struct inode *inode = page->mapping->host;
2991		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992		const u32 sectorsize = fs_info->sectorsize;
2993		unsigned int error_bitmap = (unsigned int)-1;
2994		u64 start;
2995		u64 end;
2996		u32 len;
2997
2998		btrfs_debug(fs_info,
2999			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3000			bio->bi_iter.bi_sector, bio->bi_status,
3001			io_bio->mirror_num);
3002		tree = &BTRFS_I(inode)->io_tree;
3003		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3004
3005		/*
3006		 * We always issue full-sector reads, but if some block in a
3007		 * page fails to read, blk_update_request() will advance
3008		 * bv_offset and adjust bv_len to compensate.  Print a warning
3009		 * for unaligned offsets, and an error if they don't add up to
3010		 * a full sector.
3011		 */
3012		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3013			btrfs_err(fs_info,
3014		"partial page read in btrfs with offset %u and length %u",
3015				  bvec->bv_offset, bvec->bv_len);
3016		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3017				     sectorsize))
3018			btrfs_info(fs_info,
3019		"incomplete page read with offset %u and length %u",
3020				   bvec->bv_offset, bvec->bv_len);
3021
3022		start = page_offset(page) + bvec->bv_offset;
3023		end = start + bvec->bv_len - 1;
3024		len = bvec->bv_len;
3025
3026		mirror = io_bio->mirror_num;
3027		if (likely(uptodate)) {
3028			if (is_data_inode(inode)) {
3029				error_bitmap = btrfs_verify_data_csum(io_bio,
3030						bio_offset, page, start, end);
3031				ret = error_bitmap;
3032			} else {
3033				ret = btrfs_validate_metadata_buffer(io_bio,
3034					page, start, end, mirror);
3035			}
3036			if (ret)
3037				uptodate = false;
3038			else
3039				clean_io_failure(BTRFS_I(inode)->root->fs_info,
3040						 failure_tree, tree, start,
3041						 page,
3042						 btrfs_ino(BTRFS_I(inode)), 0);
3043		}
3044
3045		if (likely(uptodate))
3046			goto readpage_ok;
3047
3048		if (is_data_inode(inode)) {
 
3049			/*
3050			 * btrfs_submit_read_repair() will handle all the good
3051			 * and bad sectors, we just continue to the next bvec.
 
 
 
 
 
 
3052			 */
3053			submit_read_repair(inode, bio, bio_offset, page,
3054					   start - page_offset(page), start,
3055					   end, mirror, error_bitmap,
3056					   btrfs_submit_data_bio);
3057
3058			ASSERT(bio_offset + len > bio_offset);
3059			bio_offset += len;
3060			continue;
3061		} else {
3062			struct extent_buffer *eb;
3063
3064			eb = find_extent_buffer_readpage(fs_info, page, start);
3065			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3066			eb->read_mirror = mirror;
3067			atomic_dec(&eb->io_pages);
3068			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3069					       &eb->bflags))
3070				btree_readahead_hook(eb, -EIO);
3071		}
3072readpage_ok:
3073		if (likely(uptodate)) {
3074			loff_t i_size = i_size_read(inode);
3075			pgoff_t end_index = i_size >> PAGE_SHIFT;
 
3076
3077			/*
3078			 * Zero out the remaining part if this range straddles
3079			 * i_size.
3080			 *
3081			 * Here we should only zero the range inside the bvec,
3082			 * not touch anything else.
3083			 *
3084			 * NOTE: i_size is exclusive while end is inclusive.
3085			 */
3086			if (page->index == end_index && i_size <= end) {
3087				u32 zero_start = max(offset_in_page(i_size),
3088						     offset_in_page(start));
3089
3090				zero_user_segment(page, zero_start,
3091						  offset_in_page(end) + 1);
 
 
 
 
 
3092			}
 
 
 
 
 
 
 
 
 
 
 
 
3093		}
3094		ASSERT(bio_offset + len > bio_offset);
3095		bio_offset += len;
3096
3097		/* Update page status and unlock */
3098		end_page_read(page, uptodate, start, len);
3099		endio_readpage_release_extent(&processed, BTRFS_I(inode),
3100					      start, end, uptodate);
3101	}
3102	/* Release the last extent */
3103	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3104	btrfs_io_bio_free_csum(io_bio);
3105	bio_put(bio);
3106}
3107
3108/*
3109 * Initialize the members up to but not including 'bio'. Use after allocating a
3110 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3111 * 'bio' because use of __GFP_ZERO is not supported.
3112 */
3113static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3114{
3115	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3116}
3117
3118/*
3119 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3120 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3121 * for the appropriate container_of magic
3122 */
3123struct bio *btrfs_bio_alloc(u64 first_byte)
3124{
3125	struct bio *bio;
3126
3127	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3128	bio->bi_iter.bi_sector = first_byte >> 9;
3129	btrfs_io_bio_init(btrfs_io_bio(bio));
3130	return bio;
3131}
3132
3133struct bio *btrfs_bio_clone(struct bio *bio)
3134{
3135	struct btrfs_io_bio *btrfs_bio;
3136	struct bio *new;
3137
3138	/* Bio allocation backed by a bioset does not fail */
3139	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3140	btrfs_bio = btrfs_io_bio(new);
3141	btrfs_io_bio_init(btrfs_bio);
3142	btrfs_bio->iter = bio->bi_iter;
3143	return new;
3144}
3145
3146struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3147{
3148	struct bio *bio;
3149
3150	/* Bio allocation backed by a bioset does not fail */
3151	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3152	btrfs_io_bio_init(btrfs_io_bio(bio));
3153	return bio;
3154}
3155
3156struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3157{
3158	struct bio *bio;
3159	struct btrfs_io_bio *btrfs_bio;
3160
3161	/* this will never fail when it's backed by a bioset */
3162	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3163	ASSERT(bio);
3164
3165	btrfs_bio = btrfs_io_bio(bio);
3166	btrfs_io_bio_init(btrfs_bio);
3167
3168	bio_trim(bio, offset >> 9, size >> 9);
3169	btrfs_bio->iter = bio->bi_iter;
3170	return bio;
3171}
3172
3173/**
3174 * Attempt to add a page to bio
3175 *
3176 * @bio:	destination bio
3177 * @page:	page to add to the bio
3178 * @disk_bytenr:  offset of the new bio or to check whether we are adding
3179 *                a contiguous page to the previous one
3180 * @pg_offset:	starting offset in the page
3181 * @size:	portion of page that we want to write
3182 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3183 * @bio_flags:	flags of the current bio to see if we can merge them
3184 * @return:	true if page was added, false otherwise
3185 *
3186 * Attempt to add a page to bio considering stripe alignment etc.
3187 *
3188 * Return true if successfully page added. Otherwise, return false.
3189 */
3190static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3191			       struct page *page,
3192			       u64 disk_bytenr, unsigned int size,
3193			       unsigned int pg_offset,
3194			       unsigned long bio_flags)
3195{
3196	struct bio *bio = bio_ctrl->bio;
3197	u32 bio_size = bio->bi_iter.bi_size;
3198	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3199	bool contig;
3200	int ret;
3201
3202	ASSERT(bio);
3203	/* The limit should be calculated when bio_ctrl->bio is allocated */
3204	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3205	if (bio_ctrl->bio_flags != bio_flags)
3206		return false;
3207
3208	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3209		contig = bio->bi_iter.bi_sector == sector;
3210	else
3211		contig = bio_end_sector(bio) == sector;
3212	if (!contig)
3213		return false;
3214
3215	if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
3216	    bio_size + size > bio_ctrl->len_to_stripe_boundary)
3217		return false;
3218
3219	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3220		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3221	else
3222		ret = bio_add_page(bio, page, size, pg_offset);
3223
3224	return ret == size;
3225}
3226
3227static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3228			       struct btrfs_inode *inode)
3229{
3230	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3231	struct btrfs_io_geometry geom;
3232	struct btrfs_ordered_extent *ordered;
3233	struct extent_map *em;
3234	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3235	int ret;
3236
3237	/*
3238	 * Pages for compressed extent are never submitted to disk directly,
3239	 * thus it has no real boundary, just set them to U32_MAX.
3240	 *
3241	 * The split happens for real compressed bio, which happens in
3242	 * btrfs_submit_compressed_read/write().
3243	 */
3244	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3245		bio_ctrl->len_to_oe_boundary = U32_MAX;
3246		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3247		return 0;
3248	}
3249	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3250	if (IS_ERR(em))
3251		return PTR_ERR(em);
3252	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3253				    logical, &geom);
3254	free_extent_map(em);
3255	if (ret < 0) {
3256		return ret;
3257	}
3258	if (geom.len > U32_MAX)
3259		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3260	else
3261		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3262
3263	if (!btrfs_is_zoned(fs_info) ||
3264	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3265		bio_ctrl->len_to_oe_boundary = U32_MAX;
3266		return 0;
3267	}
3268
3269	ASSERT(fs_info->max_zone_append_size > 0);
3270	/* Ordered extent not yet created, so we're good */
3271	ordered = btrfs_lookup_ordered_extent(inode, logical);
3272	if (!ordered) {
3273		bio_ctrl->len_to_oe_boundary = U32_MAX;
3274		return 0;
3275	}
3276
3277	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3278		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3279	btrfs_put_ordered_extent(ordered);
3280	return 0;
3281}
3282
3283/*
3284 * @opf:	bio REQ_OP_* and REQ_* flags as one value
 
3285 * @wbc:	optional writeback control for io accounting
3286 * @page:	page to add to the bio
3287 * @disk_bytenr: logical bytenr where the write will be
3288 * @size:	portion of page that we want to write to
3289 * @pg_offset:	offset of the new bio or to check whether we are adding
3290 *              a contiguous page to the previous one
 
 
 
3291 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3292 * @end_io_func:     end_io callback for new bio
3293 * @mirror_num:	     desired mirror to read/write
3294 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3295 * @bio_flags:	flags of the current bio to see if we can merge them
3296 */
3297static int submit_extent_page(unsigned int opf,
3298			      struct writeback_control *wbc,
3299			      struct btrfs_bio_ctrl *bio_ctrl,
3300			      struct page *page, u64 disk_bytenr,
3301			      size_t size, unsigned long pg_offset,
 
 
3302			      bio_end_io_t end_io_func,
3303			      int mirror_num,
 
3304			      unsigned long bio_flags,
3305			      bool force_bio_submit)
3306{
3307	int ret = 0;
3308	struct bio *bio;
3309	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3310	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3311	struct extent_io_tree *tree = &inode->io_tree;
3312	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3313
3314	ASSERT(bio_ctrl);
 
 
 
 
 
 
 
 
3315
3316	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3317	       pg_offset + size <= PAGE_SIZE);
3318	if (bio_ctrl->bio) {
3319		bio = bio_ctrl->bio;
3320		if (force_bio_submit ||
3321		    !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
3322					pg_offset, bio_flags)) {
3323			ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
3324			bio_ctrl->bio = NULL;
3325			if (ret < 0)
3326				return ret;
 
 
3327		} else {
3328			if (wbc)
3329				wbc_account_cgroup_owner(wbc, page, io_size);
3330			return 0;
3331		}
3332	}
3333
3334	bio = btrfs_bio_alloc(disk_bytenr);
3335	bio_add_page(bio, page, io_size, pg_offset);
 
3336	bio->bi_end_io = end_io_func;
3337	bio->bi_private = tree;
3338	bio->bi_write_hint = page->mapping->host->i_write_hint;
3339	bio->bi_opf = opf;
3340	if (wbc) {
3341		struct block_device *bdev;
3342
3343		bdev = fs_info->fs_devices->latest_bdev;
3344		bio_set_dev(bio, bdev);
3345		wbc_init_bio(wbc, bio);
3346		wbc_account_cgroup_owner(wbc, page, io_size);
3347	}
3348	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3349		struct btrfs_device *device;
3350
3351		device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
3352		if (IS_ERR(device))
3353			return PTR_ERR(device);
3354
3355		btrfs_io_bio(bio)->device = device;
3356	}
3357
3358	bio_ctrl->bio = bio;
3359	bio_ctrl->bio_flags = bio_flags;
3360	ret = calc_bio_boundaries(bio_ctrl, inode);
3361
3362	return ret;
3363}
3364
3365static int attach_extent_buffer_page(struct extent_buffer *eb,
3366				     struct page *page,
3367				     struct btrfs_subpage *prealloc)
3368{
3369	struct btrfs_fs_info *fs_info = eb->fs_info;
3370	int ret = 0;
3371
3372	/*
3373	 * If the page is mapped to btree inode, we should hold the private
3374	 * lock to prevent race.
3375	 * For cloned or dummy extent buffers, their pages are not mapped and
3376	 * will not race with any other ebs.
3377	 */
3378	if (page->mapping)
3379		lockdep_assert_held(&page->mapping->private_lock);
3380
3381	if (fs_info->sectorsize == PAGE_SIZE) {
3382		if (!PagePrivate(page))
3383			attach_page_private(page, eb);
3384		else
3385			WARN_ON(page->private != (unsigned long)eb);
3386		return 0;
3387	}
3388
3389	/* Already mapped, just free prealloc */
3390	if (PagePrivate(page)) {
3391		btrfs_free_subpage(prealloc);
3392		return 0;
3393	}
3394
3395	if (prealloc)
3396		/* Has preallocated memory for subpage */
3397		attach_page_private(page, prealloc);
3398	else
3399		/* Do new allocation to attach subpage */
3400		ret = btrfs_attach_subpage(fs_info, page,
3401					   BTRFS_SUBPAGE_METADATA);
3402	return ret;
3403}
3404
3405int set_page_extent_mapped(struct page *page)
3406{
3407	struct btrfs_fs_info *fs_info;
3408
3409	ASSERT(page->mapping);
3410
3411	if (PagePrivate(page))
3412		return 0;
3413
3414	fs_info = btrfs_sb(page->mapping->host->i_sb);
3415
3416	if (fs_info->sectorsize < PAGE_SIZE)
3417		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3418
3419	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3420	return 0;
3421}
3422
3423void clear_page_extent_mapped(struct page *page)
3424{
3425	struct btrfs_fs_info *fs_info;
3426
3427	ASSERT(page->mapping);
3428
3429	if (!PagePrivate(page))
3430		return;
3431
3432	fs_info = btrfs_sb(page->mapping->host->i_sb);
3433	if (fs_info->sectorsize < PAGE_SIZE)
3434		return btrfs_detach_subpage(fs_info, page);
3435
3436	detach_page_private(page);
3437}
3438
3439static struct extent_map *
3440__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3441		 u64 start, u64 len, struct extent_map **em_cached)
 
3442{
3443	struct extent_map *em;
3444
3445	if (em_cached && *em_cached) {
3446		em = *em_cached;
3447		if (extent_map_in_tree(em) && start >= em->start &&
3448		    start < extent_map_end(em)) {
3449			refcount_inc(&em->refs);
3450			return em;
3451		}
3452
3453		free_extent_map(em);
3454		*em_cached = NULL;
3455	}
3456
3457	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3458	if (em_cached && !IS_ERR_OR_NULL(em)) {
3459		BUG_ON(*em_cached);
3460		refcount_inc(&em->refs);
3461		*em_cached = em;
3462	}
3463	return em;
3464}
3465/*
3466 * basic readpage implementation.  Locked extent state structs are inserted
3467 * into the tree that are removed when the IO is done (by the end_io
3468 * handlers)
3469 * XXX JDM: This needs looking at to ensure proper page locking
3470 * return 0 on success, otherwise return error
3471 */
3472int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3473		      struct btrfs_bio_ctrl *bio_ctrl,
3474		      unsigned int read_flags, u64 *prev_em_start)
 
 
 
 
3475{
3476	struct inode *inode = page->mapping->host;
3477	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3478	u64 start = page_offset(page);
3479	const u64 end = start + PAGE_SIZE - 1;
3480	u64 cur = start;
3481	u64 extent_offset;
3482	u64 last_byte = i_size_read(inode);
3483	u64 block_start;
3484	u64 cur_end;
3485	struct extent_map *em;
 
3486	int ret = 0;
3487	int nr = 0;
3488	size_t pg_offset = 0;
3489	size_t iosize;
 
3490	size_t blocksize = inode->i_sb->s_blocksize;
3491	unsigned long this_bio_flag = 0;
3492	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3493
3494	ret = set_page_extent_mapped(page);
3495	if (ret < 0) {
3496		unlock_extent(tree, start, end);
3497		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3498		unlock_page(page);
3499		goto out;
3500	}
3501
3502	if (!PageUptodate(page)) {
3503		if (cleancache_get_page(page) == 0) {
3504			BUG_ON(blocksize != PAGE_SIZE);
3505			unlock_extent(tree, start, end);
3506			unlock_page(page);
3507			goto out;
3508		}
3509	}
3510
3511	if (page->index == last_byte >> PAGE_SHIFT) {
 
3512		size_t zero_offset = offset_in_page(last_byte);
3513
3514		if (zero_offset) {
3515			iosize = PAGE_SIZE - zero_offset;
3516			memzero_page(page, zero_offset, iosize);
 
3517			flush_dcache_page(page);
 
3518		}
3519	}
3520	begin_page_read(fs_info, page);
3521	while (cur <= end) {
3522		bool force_bio_submit = false;
3523		u64 disk_bytenr;
3524
3525		if (cur >= last_byte) {
 
3526			struct extent_state *cached = NULL;
3527
3528			iosize = PAGE_SIZE - pg_offset;
3529			memzero_page(page, pg_offset, iosize);
 
3530			flush_dcache_page(page);
 
3531			set_extent_uptodate(tree, cur, cur + iosize - 1,
3532					    &cached, GFP_NOFS);
3533			unlock_extent_cached(tree, cur,
3534					     cur + iosize - 1, &cached);
3535			end_page_read(page, true, cur, iosize);
3536			break;
3537		}
3538		em = __get_extent_map(inode, page, pg_offset, cur,
3539				      end - cur + 1, em_cached);
3540		if (IS_ERR_OR_NULL(em)) {
 
3541			unlock_extent(tree, cur, end);
3542			end_page_read(page, false, cur, end + 1 - cur);
3543			break;
3544		}
3545		extent_offset = cur - em->start;
3546		BUG_ON(extent_map_end(em) <= cur);
3547		BUG_ON(end < cur);
3548
3549		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3550			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3551			extent_set_compress_type(&this_bio_flag,
3552						 em->compress_type);
3553		}
3554
3555		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3556		cur_end = min(extent_map_end(em) - 1, end);
3557		iosize = ALIGN(iosize, blocksize);
3558		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3559			disk_bytenr = em->block_start;
3560		else
3561			disk_bytenr = em->block_start + extent_offset;
 
 
 
 
3562		block_start = em->block_start;
3563		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3564			block_start = EXTENT_MAP_HOLE;
3565
3566		/*
3567		 * If we have a file range that points to a compressed extent
3568		 * and it's followed by a consecutive file range that points
3569		 * to the same compressed extent (possibly with a different
3570		 * offset and/or length, so it either points to the whole extent
3571		 * or only part of it), we must make sure we do not submit a
3572		 * single bio to populate the pages for the 2 ranges because
3573		 * this makes the compressed extent read zero out the pages
3574		 * belonging to the 2nd range. Imagine the following scenario:
3575		 *
3576		 *  File layout
3577		 *  [0 - 8K]                     [8K - 24K]
3578		 *    |                               |
3579		 *    |                               |
3580		 * points to extent X,         points to extent X,
3581		 * offset 4K, length of 8K     offset 0, length 16K
3582		 *
3583		 * [extent X, compressed length = 4K uncompressed length = 16K]
3584		 *
3585		 * If the bio to read the compressed extent covers both ranges,
3586		 * it will decompress extent X into the pages belonging to the
3587		 * first range and then it will stop, zeroing out the remaining
3588		 * pages that belong to the other range that points to extent X.
3589		 * So here we make sure we submit 2 bios, one for the first
3590		 * range and another one for the third range. Both will target
3591		 * the same physical extent from disk, but we can't currently
3592		 * make the compressed bio endio callback populate the pages
3593		 * for both ranges because each compressed bio is tightly
3594		 * coupled with a single extent map, and each range can have
3595		 * an extent map with a different offset value relative to the
3596		 * uncompressed data of our extent and different lengths. This
3597		 * is a corner case so we prioritize correctness over
3598		 * non-optimal behavior (submitting 2 bios for the same extent).
3599		 */
3600		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3601		    prev_em_start && *prev_em_start != (u64)-1 &&
3602		    *prev_em_start != em->start)
3603			force_bio_submit = true;
3604
3605		if (prev_em_start)
3606			*prev_em_start = em->start;
3607
3608		free_extent_map(em);
3609		em = NULL;
3610
3611		/* we've found a hole, just zero and go on */
3612		if (block_start == EXTENT_MAP_HOLE) {
 
3613			struct extent_state *cached = NULL;
3614
3615			memzero_page(page, pg_offset, iosize);
 
3616			flush_dcache_page(page);
 
3617
3618			set_extent_uptodate(tree, cur, cur + iosize - 1,
3619					    &cached, GFP_NOFS);
3620			unlock_extent_cached(tree, cur,
3621					     cur + iosize - 1, &cached);
3622			end_page_read(page, true, cur, iosize);
3623			cur = cur + iosize;
3624			pg_offset += iosize;
3625			continue;
3626		}
3627		/* the get_extent function already copied into the page */
3628		if (test_range_bit(tree, cur, cur_end,
3629				   EXTENT_UPTODATE, 1, NULL)) {
3630			check_page_uptodate(tree, page);
3631			unlock_extent(tree, cur, cur + iosize - 1);
3632			end_page_read(page, true, cur, iosize);
3633			cur = cur + iosize;
3634			pg_offset += iosize;
3635			continue;
3636		}
3637		/* we have an inline extent but it didn't get marked up
3638		 * to date.  Error out
3639		 */
3640		if (block_start == EXTENT_MAP_INLINE) {
 
3641			unlock_extent(tree, cur, cur + iosize - 1);
3642			end_page_read(page, false, cur, iosize);
3643			cur = cur + iosize;
3644			pg_offset += iosize;
3645			continue;
3646		}
3647
3648		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3649					 bio_ctrl, page, disk_bytenr, iosize,
3650					 pg_offset,
3651					 end_bio_extent_readpage, 0,
 
3652					 this_bio_flag,
3653					 force_bio_submit);
3654		if (!ret) {
3655			nr++;
 
3656		} else {
 
3657			unlock_extent(tree, cur, cur + iosize - 1);
3658			end_page_read(page, false, cur, iosize);
3659			goto out;
3660		}
3661		cur = cur + iosize;
3662		pg_offset += iosize;
3663	}
3664out:
 
 
 
 
 
3665	return ret;
3666}
3667
3668static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3669					u64 start, u64 end,
3670					struct extent_map **em_cached,
3671					struct btrfs_bio_ctrl *bio_ctrl,
3672					u64 *prev_em_start)
 
 
3673{
3674	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3675	int index;
3676
3677	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3678
3679	for (index = 0; index < nr_pages; index++) {
3680		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3681				  REQ_RAHEAD, prev_em_start);
3682		put_page(pages[index]);
3683	}
3684}
3685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3686static void update_nr_written(struct writeback_control *wbc,
3687			      unsigned long nr_written)
3688{
3689	wbc->nr_to_write -= nr_written;
3690}
3691
3692/*
3693 * helper for __extent_writepage, doing all of the delayed allocation setup.
3694 *
3695 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3696 * to write the page (copy into inline extent).  In this case the IO has
3697 * been started and the page is already unlocked.
3698 *
3699 * This returns 0 if all went well (page still locked)
3700 * This returns < 0 if there were errors (page still locked)
3701 */
3702static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3703		struct page *page, struct writeback_control *wbc,
3704		u64 delalloc_start, unsigned long *nr_written)
3705{
3706	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3707	bool found;
3708	u64 delalloc_to_write = 0;
3709	u64 delalloc_end = 0;
3710	int ret;
3711	int page_started = 0;
3712
3713
3714	while (delalloc_end < page_end) {
3715		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3716					       &delalloc_start,
3717					       &delalloc_end);
3718		if (!found) {
3719			delalloc_start = delalloc_end + 1;
3720			continue;
3721		}
3722		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3723				delalloc_end, &page_started, nr_written, wbc);
3724		if (ret) {
3725			SetPageError(page);
3726			/*
3727			 * btrfs_run_delalloc_range should return < 0 for error
3728			 * but just in case, we use > 0 here meaning the IO is
3729			 * started, so we don't want to return > 0 unless
3730			 * things are going well.
3731			 */
3732			return ret < 0 ? ret : -EIO;
 
3733		}
3734		/*
3735		 * delalloc_end is already one less than the total length, so
3736		 * we don't subtract one from PAGE_SIZE
3737		 */
3738		delalloc_to_write += (delalloc_end - delalloc_start +
3739				      PAGE_SIZE) >> PAGE_SHIFT;
3740		delalloc_start = delalloc_end + 1;
3741	}
3742	if (wbc->nr_to_write < delalloc_to_write) {
3743		int thresh = 8192;
3744
3745		if (delalloc_to_write < thresh * 2)
3746			thresh = delalloc_to_write;
3747		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3748					 thresh);
3749	}
3750
3751	/* did the fill delalloc function already unlock and start
3752	 * the IO?
3753	 */
3754	if (page_started) {
3755		/*
3756		 * we've unlocked the page, so we can't update
3757		 * the mapping's writeback index, just update
3758		 * nr_to_write.
3759		 */
3760		wbc->nr_to_write -= *nr_written;
3761		return 1;
3762	}
3763
3764	return 0;
3765}
3766
3767/*
3768 * Find the first byte we need to write.
3769 *
3770 * For subpage, one page can contain several sectors, and
3771 * __extent_writepage_io() will just grab all extent maps in the page
3772 * range and try to submit all non-inline/non-compressed extents.
3773 *
3774 * This is a big problem for subpage, we shouldn't re-submit already written
3775 * data at all.
3776 * This function will lookup subpage dirty bit to find which range we really
3777 * need to submit.
3778 *
3779 * Return the next dirty range in [@start, @end).
3780 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3781 */
3782static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3783				 struct page *page, u64 *start, u64 *end)
3784{
3785	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3786	u64 orig_start = *start;
3787	/* Declare as unsigned long so we can use bitmap ops */
3788	unsigned long dirty_bitmap;
3789	unsigned long flags;
3790	int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3791	int range_start_bit = nbits;
3792	int range_end_bit;
3793
3794	/*
3795	 * For regular sector size == page size case, since one page only
3796	 * contains one sector, we return the page offset directly.
3797	 */
3798	if (fs_info->sectorsize == PAGE_SIZE) {
3799		*start = page_offset(page);
3800		*end = page_offset(page) + PAGE_SIZE;
3801		return;
3802	}
3803
3804	/* We should have the page locked, but just in case */
3805	spin_lock_irqsave(&subpage->lock, flags);
3806	dirty_bitmap = subpage->dirty_bitmap;
3807	spin_unlock_irqrestore(&subpage->lock, flags);
3808
3809	bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3810			       BTRFS_SUBPAGE_BITMAP_SIZE);
3811	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3812	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3813}
3814
3815/*
3816 * helper for __extent_writepage.  This calls the writepage start hooks,
3817 * and does the loop to map the page into extents and bios.
3818 *
3819 * We return 1 if the IO is started and the page is unlocked,
3820 * 0 if all went well (page still locked)
3821 * < 0 if there were errors (page still locked)
3822 */
3823static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3824				 struct page *page,
3825				 struct writeback_control *wbc,
3826				 struct extent_page_data *epd,
3827				 loff_t i_size,
3828				 unsigned long nr_written,
3829				 int *nr_ret)
3830{
3831	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3832	u64 start = page_offset(page);
3833	u64 end = start + PAGE_SIZE - 1;
 
3834	u64 cur = start;
3835	u64 extent_offset;
3836	u64 block_start;
 
3837	struct extent_map *em;
 
 
 
3838	int ret = 0;
3839	int nr = 0;
3840	u32 opf = REQ_OP_WRITE;
3841	const unsigned int write_flags = wbc_to_write_flags(wbc);
3842	bool compressed;
3843
3844	ret = btrfs_writepage_cow_fixup(page, start, end);
3845	if (ret) {
3846		/* Fixup worker will requeue */
3847		redirty_page_for_writepage(wbc, page);
 
 
 
 
3848		update_nr_written(wbc, nr_written);
3849		unlock_page(page);
3850		return 1;
3851	}
3852
3853	/*
3854	 * we don't want to touch the inode after unlocking the page,
3855	 * so we update the mapping writeback index now
3856	 */
3857	update_nr_written(wbc, nr_written + 1);
3858
 
 
 
 
 
 
 
 
3859	while (cur <= end) {
3860		u64 disk_bytenr;
3861		u64 em_end;
3862		u64 dirty_range_start = cur;
3863		u64 dirty_range_end;
3864		u32 iosize;
3865
3866		if (cur >= i_size) {
3867			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3868							     end, 1);
3869			break;
3870		}
3871
3872		find_next_dirty_byte(fs_info, page, &dirty_range_start,
3873				     &dirty_range_end);
3874		if (cur < dirty_range_start) {
3875			cur = dirty_range_start;
3876			continue;
3877		}
3878
3879		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3880		if (IS_ERR_OR_NULL(em)) {
3881			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3882			ret = PTR_ERR_OR_ZERO(em);
3883			break;
3884		}
3885
3886		extent_offset = cur - em->start;
3887		em_end = extent_map_end(em);
3888		ASSERT(cur <= em_end);
3889		ASSERT(cur < end);
3890		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3891		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
 
 
3892		block_start = em->block_start;
3893		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3894		disk_bytenr = em->block_start + extent_offset;
3895
3896		/*
3897		 * Note that em_end from extent_map_end() and dirty_range_end from
3898		 * find_next_dirty_byte() are all exclusive
3899		 */
3900		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3901
3902		if (btrfs_use_zone_append(inode, em->block_start))
3903			opf = REQ_OP_ZONE_APPEND;
3904
3905		free_extent_map(em);
3906		em = NULL;
3907
3908		/*
3909		 * compressed and inline extents are written through other
3910		 * paths in the FS
3911		 */
3912		if (compressed || block_start == EXTENT_MAP_HOLE ||
3913		    block_start == EXTENT_MAP_INLINE) {
3914			if (compressed)
 
 
 
 
 
 
 
 
 
 
 
 
3915				nr++;
3916			else
3917				btrfs_writepage_endio_finish_ordered(inode,
3918						page, cur, cur + iosize - 1, 1);
3919			cur += iosize;
 
3920			continue;
3921		}
3922
3923		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3924		if (!PageWriteback(page)) {
3925			btrfs_err(inode->root->fs_info,
3926				   "page %lu not writeback, cur %llu end %llu",
3927			       page->index, cur, end);
3928		}
3929
3930		/*
3931		 * Although the PageDirty bit is cleared before entering this
3932		 * function, subpage dirty bit is not cleared.
3933		 * So clear subpage dirty bit here so next time we won't submit
3934		 * page for range already written to disk.
3935		 */
3936		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
3937
3938		ret = submit_extent_page(opf | write_flags, wbc,
3939					 &epd->bio_ctrl, page,
3940					 disk_bytenr, iosize,
3941					 cur - page_offset(page),
3942					 end_bio_extent_writepage,
3943					 0, 0, false);
3944		if (ret) {
3945			btrfs_page_set_error(fs_info, page, cur, iosize);
3946			if (PageWriteback(page))
3947				btrfs_page_clear_writeback(fs_info, page, cur,
3948							   iosize);
3949		}
3950
3951		cur += iosize;
 
3952		nr++;
3953	}
 
3954	*nr_ret = nr;
3955	return ret;
3956}
3957
3958/*
3959 * the writepage semantics are similar to regular writepage.  extent
3960 * records are inserted to lock ranges in the tree, and as dirty areas
3961 * are found, they are marked writeback.  Then the lock bits are removed
3962 * and the end_io handler clears the writeback ranges
3963 *
3964 * Return 0 if everything goes well.
3965 * Return <0 for error.
3966 */
3967static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3968			      struct extent_page_data *epd)
3969{
3970	struct inode *inode = page->mapping->host;
3971	u64 start = page_offset(page);
3972	u64 page_end = start + PAGE_SIZE - 1;
3973	int ret;
3974	int nr = 0;
3975	size_t pg_offset;
3976	loff_t i_size = i_size_read(inode);
3977	unsigned long end_index = i_size >> PAGE_SHIFT;
 
3978	unsigned long nr_written = 0;
3979
 
 
3980	trace___extent_writepage(page, inode, wbc);
3981
3982	WARN_ON(!PageLocked(page));
3983
3984	ClearPageError(page);
3985
3986	pg_offset = offset_in_page(i_size);
3987	if (page->index > end_index ||
3988	   (page->index == end_index && !pg_offset)) {
3989		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3990		unlock_page(page);
3991		return 0;
3992	}
3993
3994	if (page->index == end_index) {
3995		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
 
 
 
 
 
3996		flush_dcache_page(page);
3997	}
3998
3999	ret = set_page_extent_mapped(page);
4000	if (ret < 0) {
4001		SetPageError(page);
4002		goto done;
4003	}
4004
4005	if (!epd->extent_locked) {
4006		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4007					 &nr_written);
4008		if (ret == 1)
4009			return 0;
4010		if (ret)
4011			goto done;
4012	}
4013
4014	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4015				    nr_written, &nr);
4016	if (ret == 1)
4017		return 0;
4018
4019done:
4020	if (nr == 0) {
4021		/* make sure the mapping tag for page dirty gets cleared */
4022		set_page_writeback(page);
4023		end_page_writeback(page);
4024	}
4025	if (PageError(page)) {
4026		ret = ret < 0 ? ret : -EIO;
4027		end_extent_writepage(page, ret, start, page_end);
4028	}
4029	unlock_page(page);
4030	ASSERT(ret <= 0);
4031	return ret;
 
 
 
4032}
4033
4034void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4035{
4036	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4037		       TASK_UNINTERRUPTIBLE);
4038}
4039
4040static void end_extent_buffer_writeback(struct extent_buffer *eb)
4041{
4042	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4043	smp_mb__after_atomic();
4044	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4045}
4046
4047/*
4048 * Lock extent buffer status and pages for writeback.
4049 *
4050 * May try to flush write bio if we can't get the lock.
4051 *
4052 * Return  0 if the extent buffer doesn't need to be submitted.
4053 *           (E.g. the extent buffer is not dirty)
4054 * Return >0 is the extent buffer is submitted to bio.
4055 * Return <0 if something went wrong, no page is locked.
4056 */
4057static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4058			  struct extent_page_data *epd)
4059{
4060	struct btrfs_fs_info *fs_info = eb->fs_info;
4061	int i, num_pages, failed_page_nr;
4062	int flush = 0;
4063	int ret = 0;
4064
4065	if (!btrfs_try_tree_write_lock(eb)) {
4066		ret = flush_write_bio(epd);
4067		if (ret < 0)
4068			return ret;
4069		flush = 1;
4070		btrfs_tree_lock(eb);
4071	}
4072
4073	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4074		btrfs_tree_unlock(eb);
4075		if (!epd->sync_io)
4076			return 0;
4077		if (!flush) {
4078			ret = flush_write_bio(epd);
4079			if (ret < 0)
4080				return ret;
4081			flush = 1;
4082		}
4083		while (1) {
4084			wait_on_extent_buffer_writeback(eb);
4085			btrfs_tree_lock(eb);
4086			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4087				break;
4088			btrfs_tree_unlock(eb);
4089		}
4090	}
4091
4092	/*
4093	 * We need to do this to prevent races in people who check if the eb is
4094	 * under IO since we can end up having no IO bits set for a short period
4095	 * of time.
4096	 */
4097	spin_lock(&eb->refs_lock);
4098	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4099		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4100		spin_unlock(&eb->refs_lock);
4101		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4102		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103					 -eb->len,
4104					 fs_info->dirty_metadata_batch);
4105		ret = 1;
4106	} else {
4107		spin_unlock(&eb->refs_lock);
4108	}
4109
4110	btrfs_tree_unlock(eb);
4111
4112	/*
4113	 * Either we don't need to submit any tree block, or we're submitting
4114	 * subpage eb.
4115	 * Subpage metadata doesn't use page locking at all, so we can skip
4116	 * the page locking.
4117	 */
4118	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4119		return ret;
4120
4121	num_pages = num_extent_pages(eb);
4122	for (i = 0; i < num_pages; i++) {
4123		struct page *p = eb->pages[i];
4124
4125		if (!trylock_page(p)) {
4126			if (!flush) {
4127				int err;
4128
4129				err = flush_write_bio(epd);
4130				if (err < 0) {
4131					ret = err;
4132					failed_page_nr = i;
4133					goto err_unlock;
4134				}
4135				flush = 1;
4136			}
4137			lock_page(p);
4138		}
4139	}
4140
4141	return ret;
4142err_unlock:
4143	/* Unlock already locked pages */
4144	for (i = 0; i < failed_page_nr; i++)
4145		unlock_page(eb->pages[i]);
4146	/*
4147	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4148	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4149	 * be made and undo everything done before.
4150	 */
4151	btrfs_tree_lock(eb);
4152	spin_lock(&eb->refs_lock);
4153	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4154	end_extent_buffer_writeback(eb);
4155	spin_unlock(&eb->refs_lock);
4156	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4157				 fs_info->dirty_metadata_batch);
4158	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4159	btrfs_tree_unlock(eb);
4160	return ret;
4161}
4162
4163static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4164{
4165	struct btrfs_fs_info *fs_info = eb->fs_info;
 
4166
4167	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4168	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4169		return;
4170
4171	/*
4172	 * If we error out, we should add back the dirty_metadata_bytes
4173	 * to make it consistent.
4174	 */
 
4175	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4176				 eb->len, fs_info->dirty_metadata_batch);
4177
4178	/*
4179	 * If writeback for a btree extent that doesn't belong to a log tree
4180	 * failed, increment the counter transaction->eb_write_errors.
4181	 * We do this because while the transaction is running and before it's
4182	 * committing (when we call filemap_fdata[write|wait]_range against
4183	 * the btree inode), we might have
4184	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4185	 * returns an error or an error happens during writeback, when we're
4186	 * committing the transaction we wouldn't know about it, since the pages
4187	 * can be no longer dirty nor marked anymore for writeback (if a
4188	 * subsequent modification to the extent buffer didn't happen before the
4189	 * transaction commit), which makes filemap_fdata[write|wait]_range not
4190	 * able to find the pages tagged with SetPageError at transaction
4191	 * commit time. So if this happens we must abort the transaction,
4192	 * otherwise we commit a super block with btree roots that point to
4193	 * btree nodes/leafs whose content on disk is invalid - either garbage
4194	 * or the content of some node/leaf from a past generation that got
4195	 * cowed or deleted and is no longer valid.
4196	 *
4197	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4198	 * not be enough - we need to distinguish between log tree extents vs
4199	 * non-log tree extents, and the next filemap_fdatawait_range() call
4200	 * will catch and clear such errors in the mapping - and that call might
4201	 * be from a log sync and not from a transaction commit. Also, checking
4202	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4203	 * not done and would not be reliable - the eb might have been released
4204	 * from memory and reading it back again means that flag would not be
4205	 * set (since it's a runtime flag, not persisted on disk).
4206	 *
4207	 * Using the flags below in the btree inode also makes us achieve the
4208	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4209	 * writeback for all dirty pages and before filemap_fdatawait_range()
4210	 * is called, the writeback for all dirty pages had already finished
4211	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4212	 * filemap_fdatawait_range() would return success, as it could not know
4213	 * that writeback errors happened (the pages were no longer tagged for
4214	 * writeback).
4215	 */
4216	switch (eb->log_index) {
4217	case -1:
4218		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4219		break;
4220	case 0:
4221		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4222		break;
4223	case 1:
4224		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4225		break;
4226	default:
4227		BUG(); /* unexpected, logic error */
4228	}
4229}
4230
4231/*
4232 * The endio specific version which won't touch any unsafe spinlock in endio
4233 * context.
4234 */
4235static struct extent_buffer *find_extent_buffer_nolock(
4236		struct btrfs_fs_info *fs_info, u64 start)
4237{
4238	struct extent_buffer *eb;
4239
4240	rcu_read_lock();
4241	eb = radix_tree_lookup(&fs_info->buffer_radix,
4242			       start >> fs_info->sectorsize_bits);
4243	if (eb && atomic_inc_not_zero(&eb->refs)) {
4244		rcu_read_unlock();
4245		return eb;
4246	}
4247	rcu_read_unlock();
4248	return NULL;
4249}
4250
4251/*
4252 * The endio function for subpage extent buffer write.
4253 *
4254 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4255 * after all extent buffers in the page has finished their writeback.
4256 */
4257static void end_bio_subpage_eb_writepage(struct bio *bio)
4258{
4259	struct btrfs_fs_info *fs_info;
4260	struct bio_vec *bvec;
4261	struct bvec_iter_all iter_all;
4262
4263	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4264	ASSERT(fs_info->sectorsize < PAGE_SIZE);
4265
4266	ASSERT(!bio_flagged(bio, BIO_CLONED));
4267	bio_for_each_segment_all(bvec, bio, iter_all) {
4268		struct page *page = bvec->bv_page;
4269		u64 bvec_start = page_offset(page) + bvec->bv_offset;
4270		u64 bvec_end = bvec_start + bvec->bv_len - 1;
4271		u64 cur_bytenr = bvec_start;
4272
4273		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4274
4275		/* Iterate through all extent buffers in the range */
4276		while (cur_bytenr <= bvec_end) {
4277			struct extent_buffer *eb;
4278			int done;
4279
4280			/*
4281			 * Here we can't use find_extent_buffer(), as it may
4282			 * try to lock eb->refs_lock, which is not safe in endio
4283			 * context.
4284			 */
4285			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4286			ASSERT(eb);
4287
4288			cur_bytenr = eb->start + eb->len;
4289
4290			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4291			done = atomic_dec_and_test(&eb->io_pages);
4292			ASSERT(done);
4293
4294			if (bio->bi_status ||
4295			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4296				ClearPageUptodate(page);
4297				set_btree_ioerr(page, eb);
4298			}
4299
4300			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4301						      eb->len);
4302			end_extent_buffer_writeback(eb);
4303			/*
4304			 * free_extent_buffer() will grab spinlock which is not
4305			 * safe in endio context. Thus here we manually dec
4306			 * the ref.
4307			 */
4308			atomic_dec(&eb->refs);
4309		}
4310	}
4311	bio_put(bio);
4312}
4313
4314static void end_bio_extent_buffer_writepage(struct bio *bio)
4315{
4316	struct bio_vec *bvec;
4317	struct extent_buffer *eb;
4318	int done;
4319	struct bvec_iter_all iter_all;
4320
4321	ASSERT(!bio_flagged(bio, BIO_CLONED));
4322	bio_for_each_segment_all(bvec, bio, iter_all) {
4323		struct page *page = bvec->bv_page;
4324
4325		eb = (struct extent_buffer *)page->private;
4326		BUG_ON(!eb);
4327		done = atomic_dec_and_test(&eb->io_pages);
4328
4329		if (bio->bi_status ||
4330		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4331			ClearPageUptodate(page);
4332			set_btree_ioerr(page, eb);
4333		}
4334
4335		end_page_writeback(page);
4336
4337		if (!done)
4338			continue;
4339
4340		end_extent_buffer_writeback(eb);
4341	}
4342
4343	bio_put(bio);
4344}
4345
4346static void prepare_eb_write(struct extent_buffer *eb)
 
 
4347{
 
 
 
 
4348	u32 nritems;
4349	unsigned long start;
4350	unsigned long end;
 
 
4351
4352	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4353	atomic_set(&eb->io_pages, num_extent_pages(eb));
 
4354
4355	/* Set btree blocks beyond nritems with 0 to avoid stale content */
4356	nritems = btrfs_header_nritems(eb);
4357	if (btrfs_header_level(eb) > 0) {
4358		end = btrfs_node_key_ptr_offset(nritems);
 
4359		memzero_extent_buffer(eb, end, eb->len - end);
4360	} else {
4361		/*
4362		 * Leaf:
4363		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4364		 */
4365		start = btrfs_item_nr_offset(nritems);
4366		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4367		memzero_extent_buffer(eb, start, end - start);
4368	}
4369}
4370
4371/*
4372 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4373 * Page locking is only utilized at minimum to keep the VMM code happy.
4374 */
4375static int write_one_subpage_eb(struct extent_buffer *eb,
4376				struct writeback_control *wbc,
4377				struct extent_page_data *epd)
4378{
4379	struct btrfs_fs_info *fs_info = eb->fs_info;
4380	struct page *page = eb->pages[0];
4381	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4382	bool no_dirty_ebs = false;
4383	int ret;
4384
4385	prepare_eb_write(eb);
4386
4387	/* clear_page_dirty_for_io() in subpage helper needs page locked */
4388	lock_page(page);
4389	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4390
4391	/* Check if this is the last dirty bit to update nr_written */
4392	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4393							  eb->start, eb->len);
4394	if (no_dirty_ebs)
4395		clear_page_dirty_for_io(page);
4396
4397	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4398			&epd->bio_ctrl, page, eb->start, eb->len,
4399			eb->start - page_offset(page),
4400			end_bio_subpage_eb_writepage, 0, 0, false);
4401	if (ret) {
4402		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4403		set_btree_ioerr(page, eb);
4404		unlock_page(page);
4405
4406		if (atomic_dec_and_test(&eb->io_pages))
4407			end_extent_buffer_writeback(eb);
4408		return -EIO;
4409	}
4410	unlock_page(page);
4411	/*
4412	 * Submission finished without problem, if no range of the page is
4413	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
4414	 */
4415	if (no_dirty_ebs)
4416		update_nr_written(wbc, 1);
4417	return ret;
4418}
4419
4420static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4421			struct writeback_control *wbc,
4422			struct extent_page_data *epd)
4423{
4424	u64 disk_bytenr = eb->start;
4425	int i, num_pages;
4426	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4427	int ret = 0;
4428
4429	prepare_eb_write(eb);
4430
4431	num_pages = num_extent_pages(eb);
4432	for (i = 0; i < num_pages; i++) {
4433		struct page *p = eb->pages[i];
4434
4435		clear_page_dirty_for_io(p);
4436		set_page_writeback(p);
4437		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4438					 &epd->bio_ctrl, p, disk_bytenr,
4439					 PAGE_SIZE, 0,
4440					 end_bio_extent_buffer_writepage,
4441					 0, 0, false);
4442		if (ret) {
4443			set_btree_ioerr(p, eb);
4444			if (PageWriteback(p))
4445				end_page_writeback(p);
4446			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4447				end_extent_buffer_writeback(eb);
4448			ret = -EIO;
4449			break;
4450		}
4451		disk_bytenr += PAGE_SIZE;
4452		update_nr_written(wbc, 1);
4453		unlock_page(p);
4454	}
4455
4456	if (unlikely(ret)) {
4457		for (; i < num_pages; i++) {
4458			struct page *p = eb->pages[i];
4459			clear_page_dirty_for_io(p);
4460			unlock_page(p);
4461		}
4462	}
4463
4464	return ret;
4465}
4466
4467/*
4468 * Submit one subpage btree page.
4469 *
4470 * The main difference to submit_eb_page() is:
4471 * - Page locking
4472 *   For subpage, we don't rely on page locking at all.
4473 *
4474 * - Flush write bio
4475 *   We only flush bio if we may be unable to fit current extent buffers into
4476 *   current bio.
4477 *
4478 * Return >=0 for the number of submitted extent buffers.
4479 * Return <0 for fatal error.
4480 */
4481static int submit_eb_subpage(struct page *page,
4482			     struct writeback_control *wbc,
4483			     struct extent_page_data *epd)
4484{
4485	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4486	int submitted = 0;
4487	u64 page_start = page_offset(page);
4488	int bit_start = 0;
4489	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4490	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4491	int ret;
4492
4493	/* Lock and write each dirty extent buffers in the range */
4494	while (bit_start < nbits) {
4495		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4496		struct extent_buffer *eb;
4497		unsigned long flags;
4498		u64 start;
4499
4500		/*
4501		 * Take private lock to ensure the subpage won't be detached
4502		 * in the meantime.
4503		 */
4504		spin_lock(&page->mapping->private_lock);
4505		if (!PagePrivate(page)) {
4506			spin_unlock(&page->mapping->private_lock);
4507			break;
4508		}
4509		spin_lock_irqsave(&subpage->lock, flags);
4510		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4511			spin_unlock_irqrestore(&subpage->lock, flags);
4512			spin_unlock(&page->mapping->private_lock);
4513			bit_start++;
4514			continue;
4515		}
4516
4517		start = page_start + bit_start * fs_info->sectorsize;
4518		bit_start += sectors_per_node;
4519
4520		/*
4521		 * Here we just want to grab the eb without touching extra
4522		 * spin locks, so call find_extent_buffer_nolock().
4523		 */
4524		eb = find_extent_buffer_nolock(fs_info, start);
4525		spin_unlock_irqrestore(&subpage->lock, flags);
4526		spin_unlock(&page->mapping->private_lock);
4527
4528		/*
4529		 * The eb has already reached 0 refs thus find_extent_buffer()
4530		 * doesn't return it. We don't need to write back such eb
4531		 * anyway.
4532		 */
4533		if (!eb)
4534			continue;
4535
4536		ret = lock_extent_buffer_for_io(eb, epd);
4537		if (ret == 0) {
4538			free_extent_buffer(eb);
4539			continue;
4540		}
4541		if (ret < 0) {
4542			free_extent_buffer(eb);
4543			goto cleanup;
4544		}
4545		ret = write_one_subpage_eb(eb, wbc, epd);
4546		free_extent_buffer(eb);
4547		if (ret < 0)
4548			goto cleanup;
4549		submitted++;
4550	}
4551	return submitted;
4552
4553cleanup:
4554	/* We hit error, end bio for the submitted extent buffers */
4555	end_write_bio(epd, ret);
4556	return ret;
4557}
4558
4559/*
4560 * Submit all page(s) of one extent buffer.
4561 *
4562 * @page:	the page of one extent buffer
4563 * @eb_context:	to determine if we need to submit this page, if current page
4564 *		belongs to this eb, we don't need to submit
4565 *
4566 * The caller should pass each page in their bytenr order, and here we use
4567 * @eb_context to determine if we have submitted pages of one extent buffer.
4568 *
4569 * If we have, we just skip until we hit a new page that doesn't belong to
4570 * current @eb_context.
4571 *
4572 * If not, we submit all the page(s) of the extent buffer.
4573 *
4574 * Return >0 if we have submitted the extent buffer successfully.
4575 * Return 0 if we don't need to submit the page, as it's already submitted by
4576 * previous call.
4577 * Return <0 for fatal error.
4578 */
4579static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4580			  struct extent_page_data *epd,
4581			  struct extent_buffer **eb_context)
4582{
4583	struct address_space *mapping = page->mapping;
4584	struct btrfs_block_group *cache = NULL;
4585	struct extent_buffer *eb;
4586	int ret;
4587
4588	if (!PagePrivate(page))
4589		return 0;
4590
4591	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4592		return submit_eb_subpage(page, wbc, epd);
4593
4594	spin_lock(&mapping->private_lock);
4595	if (!PagePrivate(page)) {
4596		spin_unlock(&mapping->private_lock);
4597		return 0;
4598	}
4599
4600	eb = (struct extent_buffer *)page->private;
4601
4602	/*
4603	 * Shouldn't happen and normally this would be a BUG_ON but no point
4604	 * crashing the machine for something we can survive anyway.
4605	 */
4606	if (WARN_ON(!eb)) {
4607		spin_unlock(&mapping->private_lock);
4608		return 0;
4609	}
4610
4611	if (eb == *eb_context) {
4612		spin_unlock(&mapping->private_lock);
4613		return 0;
4614	}
4615	ret = atomic_inc_not_zero(&eb->refs);
4616	spin_unlock(&mapping->private_lock);
4617	if (!ret)
4618		return 0;
4619
4620	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4621		/*
4622		 * If for_sync, this hole will be filled with
4623		 * trasnsaction commit.
4624		 */
4625		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4626			ret = -EAGAIN;
4627		else
4628			ret = 0;
4629		free_extent_buffer(eb);
4630		return ret;
4631	}
4632
4633	*eb_context = eb;
4634
4635	ret = lock_extent_buffer_for_io(eb, epd);
4636	if (ret <= 0) {
4637		btrfs_revert_meta_write_pointer(cache, eb);
4638		if (cache)
4639			btrfs_put_block_group(cache);
4640		free_extent_buffer(eb);
4641		return ret;
4642	}
4643	if (cache)
4644		btrfs_put_block_group(cache);
4645	ret = write_one_eb(eb, wbc, epd);
4646	free_extent_buffer(eb);
4647	if (ret < 0)
4648		return ret;
4649	return 1;
4650}
4651
4652int btree_write_cache_pages(struct address_space *mapping,
4653				   struct writeback_control *wbc)
4654{
4655	struct extent_buffer *eb_context = NULL;
 
4656	struct extent_page_data epd = {
4657		.bio_ctrl = { 0 },
 
4658		.extent_locked = 0,
4659		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4660	};
4661	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4662	int ret = 0;
4663	int done = 0;
4664	int nr_to_write_done = 0;
4665	struct pagevec pvec;
4666	int nr_pages;
4667	pgoff_t index;
4668	pgoff_t end;		/* Inclusive */
4669	int scanned = 0;
4670	xa_mark_t tag;
4671
4672	pagevec_init(&pvec);
4673	if (wbc->range_cyclic) {
4674		index = mapping->writeback_index; /* Start from prev offset */
4675		end = -1;
4676		/*
4677		 * Start from the beginning does not need to cycle over the
4678		 * range, mark it as scanned.
4679		 */
4680		scanned = (index == 0);
4681	} else {
4682		index = wbc->range_start >> PAGE_SHIFT;
4683		end = wbc->range_end >> PAGE_SHIFT;
4684		scanned = 1;
4685	}
4686	if (wbc->sync_mode == WB_SYNC_ALL)
4687		tag = PAGECACHE_TAG_TOWRITE;
4688	else
4689		tag = PAGECACHE_TAG_DIRTY;
4690	btrfs_zoned_meta_io_lock(fs_info);
4691retry:
4692	if (wbc->sync_mode == WB_SYNC_ALL)
4693		tag_pages_for_writeback(mapping, index, end);
4694	while (!done && !nr_to_write_done && (index <= end) &&
4695	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4696			tag))) {
4697		unsigned i;
4698
 
4699		for (i = 0; i < nr_pages; i++) {
4700			struct page *page = pvec.pages[i];
4701
4702			ret = submit_eb_page(page, wbc, &epd, &eb_context);
4703			if (ret == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4704				continue;
4705			if (ret < 0) {
 
 
 
 
 
 
 
4706				done = 1;
 
4707				break;
4708			}
 
4709
4710			/*
4711			 * the filesystem may choose to bump up nr_to_write.
4712			 * We have to make sure to honor the new nr_to_write
4713			 * at any time
4714			 */
4715			nr_to_write_done = wbc->nr_to_write <= 0;
4716		}
4717		pagevec_release(&pvec);
4718		cond_resched();
4719	}
4720	if (!scanned && !done) {
4721		/*
4722		 * We hit the last page and there is more work to be done: wrap
4723		 * back to the start of the file
4724		 */
4725		scanned = 1;
4726		index = 0;
4727		goto retry;
4728	}
 
4729	if (ret < 0) {
4730		end_write_bio(&epd, ret);
4731		goto out;
4732	}
4733	/*
4734	 * If something went wrong, don't allow any metadata write bio to be
4735	 * submitted.
4736	 *
4737	 * This would prevent use-after-free if we had dirty pages not
4738	 * cleaned up, which can still happen by fuzzed images.
4739	 *
4740	 * - Bad extent tree
4741	 *   Allowing existing tree block to be allocated for other trees.
4742	 *
4743	 * - Log tree operations
4744	 *   Exiting tree blocks get allocated to log tree, bumps its
4745	 *   generation, then get cleaned in tree re-balance.
4746	 *   Such tree block will not be written back, since it's clean,
4747	 *   thus no WRITTEN flag set.
4748	 *   And after log writes back, this tree block is not traced by
4749	 *   any dirty extent_io_tree.
4750	 *
4751	 * - Offending tree block gets re-dirtied from its original owner
4752	 *   Since it has bumped generation, no WRITTEN flag, it can be
4753	 *   reused without COWing. This tree block will not be traced
4754	 *   by btrfs_transaction::dirty_pages.
4755	 *
4756	 *   Now such dirty tree block will not be cleaned by any dirty
4757	 *   extent io tree. Thus we don't want to submit such wild eb
4758	 *   if the fs already has error.
4759	 */
4760	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4761		ret = flush_write_bio(&epd);
4762	} else {
4763		ret = -EROFS;
4764		end_write_bio(&epd, ret);
4765	}
4766out:
4767	btrfs_zoned_meta_io_unlock(fs_info);
4768	return ret;
4769}
4770
4771/**
4772 * Walk the list of dirty pages of the given address space and write all of them.
4773 *
4774 * @mapping: address space structure to write
4775 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4776 * @epd:     holds context for the write, namely the bio
4777 *
4778 * If a page is already under I/O, write_cache_pages() skips it, even
4779 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4780 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4781 * and msync() need to guarantee that all the data which was dirty at the time
4782 * the call was made get new I/O started against them.  If wbc->sync_mode is
4783 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4784 * existing IO to complete.
4785 */
4786static int extent_write_cache_pages(struct address_space *mapping,
4787			     struct writeback_control *wbc,
4788			     struct extent_page_data *epd)
4789{
4790	struct inode *inode = mapping->host;
4791	int ret = 0;
4792	int done = 0;
4793	int nr_to_write_done = 0;
4794	struct pagevec pvec;
4795	int nr_pages;
4796	pgoff_t index;
4797	pgoff_t end;		/* Inclusive */
4798	pgoff_t done_index;
4799	int range_whole = 0;
4800	int scanned = 0;
4801	xa_mark_t tag;
4802
4803	/*
4804	 * We have to hold onto the inode so that ordered extents can do their
4805	 * work when the IO finishes.  The alternative to this is failing to add
4806	 * an ordered extent if the igrab() fails there and that is a huge pain
4807	 * to deal with, so instead just hold onto the inode throughout the
4808	 * writepages operation.  If it fails here we are freeing up the inode
4809	 * anyway and we'd rather not waste our time writing out stuff that is
4810	 * going to be truncated anyway.
4811	 */
4812	if (!igrab(inode))
4813		return 0;
4814
4815	pagevec_init(&pvec);
4816	if (wbc->range_cyclic) {
4817		index = mapping->writeback_index; /* Start from prev offset */
4818		end = -1;
4819		/*
4820		 * Start from the beginning does not need to cycle over the
4821		 * range, mark it as scanned.
4822		 */
4823		scanned = (index == 0);
4824	} else {
4825		index = wbc->range_start >> PAGE_SHIFT;
4826		end = wbc->range_end >> PAGE_SHIFT;
4827		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4828			range_whole = 1;
4829		scanned = 1;
4830	}
4831
4832	/*
4833	 * We do the tagged writepage as long as the snapshot flush bit is set
4834	 * and we are the first one who do the filemap_flush() on this inode.
4835	 *
4836	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4837	 * not race in and drop the bit.
4838	 */
4839	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4840	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4841			       &BTRFS_I(inode)->runtime_flags))
4842		wbc->tagged_writepages = 1;
4843
4844	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4845		tag = PAGECACHE_TAG_TOWRITE;
4846	else
4847		tag = PAGECACHE_TAG_DIRTY;
4848retry:
4849	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4850		tag_pages_for_writeback(mapping, index, end);
4851	done_index = index;
4852	while (!done && !nr_to_write_done && (index <= end) &&
4853			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4854						&index, end, tag))) {
4855		unsigned i;
4856
 
4857		for (i = 0; i < nr_pages; i++) {
4858			struct page *page = pvec.pages[i];
4859
4860			done_index = page->index + 1;
4861			/*
4862			 * At this point we hold neither the i_pages lock nor
4863			 * the page lock: the page may be truncated or
4864			 * invalidated (changing page->mapping to NULL),
4865			 * or even swizzled back from swapper_space to
4866			 * tmpfs file mapping
4867			 */
4868			if (!trylock_page(page)) {
4869				ret = flush_write_bio(epd);
4870				BUG_ON(ret < 0);
4871				lock_page(page);
4872			}
4873
4874			if (unlikely(page->mapping != mapping)) {
4875				unlock_page(page);
4876				continue;
4877			}
4878
4879			if (wbc->sync_mode != WB_SYNC_NONE) {
4880				if (PageWriteback(page)) {
4881					ret = flush_write_bio(epd);
4882					BUG_ON(ret < 0);
4883				}
4884				wait_on_page_writeback(page);
4885			}
4886
4887			if (PageWriteback(page) ||
4888			    !clear_page_dirty_for_io(page)) {
4889				unlock_page(page);
4890				continue;
4891			}
4892
4893			ret = __extent_writepage(page, wbc, epd);
4894			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
4895				done = 1;
4896				break;
4897			}
4898
4899			/*
4900			 * the filesystem may choose to bump up nr_to_write.
4901			 * We have to make sure to honor the new nr_to_write
4902			 * at any time
4903			 */
4904			nr_to_write_done = wbc->nr_to_write <= 0;
4905		}
4906		pagevec_release(&pvec);
4907		cond_resched();
4908	}
4909	if (!scanned && !done) {
4910		/*
4911		 * We hit the last page and there is more work to be done: wrap
4912		 * back to the start of the file
4913		 */
4914		scanned = 1;
4915		index = 0;
4916
4917		/*
4918		 * If we're looping we could run into a page that is locked by a
4919		 * writer and that writer could be waiting on writeback for a
4920		 * page in our current bio, and thus deadlock, so flush the
4921		 * write bio here.
4922		 */
4923		ret = flush_write_bio(epd);
4924		if (!ret)
4925			goto retry;
4926	}
4927
4928	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4929		mapping->writeback_index = done_index;
4930
4931	btrfs_add_delayed_iput(inode);
4932	return ret;
4933}
4934
4935int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4936{
4937	int ret;
4938	struct extent_page_data epd = {
4939		.bio_ctrl = { 0 },
 
4940		.extent_locked = 0,
4941		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4942	};
4943
4944	ret = __extent_writepage(page, wbc, &epd);
4945	ASSERT(ret <= 0);
4946	if (ret < 0) {
4947		end_write_bio(&epd, ret);
4948		return ret;
4949	}
4950
4951	ret = flush_write_bio(&epd);
4952	ASSERT(ret <= 0);
4953	return ret;
4954}
4955
4956int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4957			      int mode)
4958{
4959	int ret = 0;
4960	struct address_space *mapping = inode->i_mapping;
 
4961	struct page *page;
4962	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4963		PAGE_SHIFT;
4964
4965	struct extent_page_data epd = {
4966		.bio_ctrl = { 0 },
 
4967		.extent_locked = 1,
4968		.sync_io = mode == WB_SYNC_ALL,
4969	};
4970	struct writeback_control wbc_writepages = {
4971		.sync_mode	= mode,
4972		.nr_to_write	= nr_pages * 2,
4973		.range_start	= start,
4974		.range_end	= end + 1,
4975		/* We're called from an async helper function */
4976		.punt_to_cgroup	= 1,
4977		.no_cgroup_owner = 1,
4978	};
4979
4980	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4981	while (start <= end) {
4982		page = find_get_page(mapping, start >> PAGE_SHIFT);
4983		if (clear_page_dirty_for_io(page))
4984			ret = __extent_writepage(page, &wbc_writepages, &epd);
4985		else {
4986			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
4987					page, start, start + PAGE_SIZE - 1, 1);
4988			unlock_page(page);
4989		}
4990		put_page(page);
4991		start += PAGE_SIZE;
4992	}
4993
4994	ASSERT(ret <= 0);
4995	if (ret == 0)
4996		ret = flush_write_bio(&epd);
4997	else
4998		end_write_bio(&epd, ret);
4999
5000	wbc_detach_inode(&wbc_writepages);
 
5001	return ret;
5002}
5003
5004int extent_writepages(struct address_space *mapping,
5005		      struct writeback_control *wbc)
5006{
5007	int ret = 0;
5008	struct extent_page_data epd = {
5009		.bio_ctrl = { 0 },
 
5010		.extent_locked = 0,
5011		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5012	};
5013
5014	ret = extent_write_cache_pages(mapping, wbc, &epd);
5015	ASSERT(ret <= 0);
5016	if (ret < 0) {
5017		end_write_bio(&epd, ret);
5018		return ret;
5019	}
5020	ret = flush_write_bio(&epd);
5021	return ret;
5022}
5023
5024void extent_readahead(struct readahead_control *rac)
 
5025{
5026	struct btrfs_bio_ctrl bio_ctrl = { 0 };
 
5027	struct page *pagepool[16];
5028	struct extent_map *em_cached = NULL;
 
 
5029	u64 prev_em_start = (u64)-1;
5030	int nr;
5031
5032	while ((nr = readahead_page_batch(rac, pagepool))) {
5033		u64 contig_start = readahead_pos(rac);
5034		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
 
 
 
 
 
 
 
 
 
 
5035
5036		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5037				&em_cached, &bio_ctrl, &prev_em_start);
 
 
 
 
 
 
 
 
 
 
 
5038	}
5039
5040	if (em_cached)
5041		free_extent_map(em_cached);
5042
5043	if (bio_ctrl.bio) {
5044		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5045			return;
5046	}
5047}
5048
5049/*
5050 * basic invalidatepage code, this waits on any locked or writeback
5051 * ranges corresponding to the page, and then deletes any extent state
5052 * records from the tree
5053 */
5054int extent_invalidatepage(struct extent_io_tree *tree,
5055			  struct page *page, unsigned long offset)
5056{
5057	struct extent_state *cached_state = NULL;
5058	u64 start = page_offset(page);
5059	u64 end = start + PAGE_SIZE - 1;
5060	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5061
5062	/* This function is only called for the btree inode */
5063	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5064
5065	start += ALIGN(offset, blocksize);
5066	if (start > end)
5067		return 0;
5068
5069	lock_extent_bits(tree, start, end, &cached_state);
5070	wait_on_page_writeback(page);
5071
5072	/*
5073	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5074	 * so here we only need to unlock the extent range to free any
5075	 * existing extent state.
5076	 */
5077	unlock_extent_cached(tree, start, end, &cached_state);
5078	return 0;
5079}
5080
5081/*
5082 * a helper for releasepage, this tests for areas of the page that
5083 * are locked or under IO and drops the related state bits if it is safe
5084 * to drop the page.
5085 */
5086static int try_release_extent_state(struct extent_io_tree *tree,
5087				    struct page *page, gfp_t mask)
5088{
5089	u64 start = page_offset(page);
5090	u64 end = start + PAGE_SIZE - 1;
5091	int ret = 1;
5092
5093	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5094		ret = 0;
5095	} else {
5096		/*
5097		 * At this point we can safely clear everything except the
5098		 * locked bit, the nodatasum bit and the delalloc new bit.
5099		 * The delalloc new bit will be cleared by ordered extent
5100		 * completion.
5101		 */
5102		ret = __clear_extent_bit(tree, start, end,
5103			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5104			 0, 0, NULL, mask, NULL);
5105
5106		/* if clear_extent_bit failed for enomem reasons,
5107		 * we can't allow the release to continue.
5108		 */
5109		if (ret < 0)
5110			ret = 0;
5111		else
5112			ret = 1;
5113	}
5114	return ret;
5115}
5116
5117/*
5118 * a helper for releasepage.  As long as there are no locked extents
5119 * in the range corresponding to the page, both state records and extent
5120 * map records are removed
5121 */
5122int try_release_extent_mapping(struct page *page, gfp_t mask)
5123{
5124	struct extent_map *em;
5125	u64 start = page_offset(page);
5126	u64 end = start + PAGE_SIZE - 1;
5127	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5128	struct extent_io_tree *tree = &btrfs_inode->io_tree;
5129	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5130
5131	if (gfpflags_allow_blocking(mask) &&
5132	    page->mapping->host->i_size > SZ_16M) {
5133		u64 len;
5134		while (start <= end) {
5135			struct btrfs_fs_info *fs_info;
5136			u64 cur_gen;
5137
5138			len = end - start + 1;
5139			write_lock(&map->lock);
5140			em = lookup_extent_mapping(map, start, len);
5141			if (!em) {
5142				write_unlock(&map->lock);
5143				break;
5144			}
5145			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5146			    em->start != start) {
5147				write_unlock(&map->lock);
5148				free_extent_map(em);
5149				break;
5150			}
5151			if (test_range_bit(tree, em->start,
5152					   extent_map_end(em) - 1,
5153					   EXTENT_LOCKED, 0, NULL))
5154				goto next;
5155			/*
5156			 * If it's not in the list of modified extents, used
5157			 * by a fast fsync, we can remove it. If it's being
5158			 * logged we can safely remove it since fsync took an
5159			 * extra reference on the em.
5160			 */
5161			if (list_empty(&em->list) ||
5162			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5163				goto remove_em;
5164			/*
5165			 * If it's in the list of modified extents, remove it
5166			 * only if its generation is older then the current one,
5167			 * in which case we don't need it for a fast fsync.
5168			 * Otherwise don't remove it, we could be racing with an
5169			 * ongoing fast fsync that could miss the new extent.
5170			 */
5171			fs_info = btrfs_inode->root->fs_info;
5172			spin_lock(&fs_info->trans_lock);
5173			cur_gen = fs_info->generation;
5174			spin_unlock(&fs_info->trans_lock);
5175			if (em->generation >= cur_gen)
5176				goto next;
5177remove_em:
5178			/*
5179			 * We only remove extent maps that are not in the list of
5180			 * modified extents or that are in the list but with a
5181			 * generation lower then the current generation, so there
5182			 * is no need to set the full fsync flag on the inode (it
5183			 * hurts the fsync performance for workloads with a data
5184			 * size that exceeds or is close to the system's memory).
5185			 */
5186			remove_extent_mapping(map, em);
5187			/* once for the rb tree */
5188			free_extent_map(em);
5189next:
5190			start = extent_map_end(em);
5191			write_unlock(&map->lock);
5192
5193			/* once for us */
5194			free_extent_map(em);
5195
5196			cond_resched(); /* Allow large-extent preemption. */
5197		}
5198	}
5199	return try_release_extent_state(tree, page, mask);
5200}
5201
5202/*
5203 * helper function for fiemap, which doesn't want to see any holes.
5204 * This maps until we find something past 'last'
5205 */
5206static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5207						u64 offset, u64 last)
5208{
5209	u64 sectorsize = btrfs_inode_sectorsize(inode);
5210	struct extent_map *em;
5211	u64 len;
5212
5213	if (offset >= last)
5214		return NULL;
5215
5216	while (1) {
5217		len = last - offset;
5218		if (len == 0)
5219			break;
5220		len = ALIGN(len, sectorsize);
5221		em = btrfs_get_extent_fiemap(inode, offset, len);
5222		if (IS_ERR_OR_NULL(em))
5223			return em;
5224
5225		/* if this isn't a hole return it */
5226		if (em->block_start != EXTENT_MAP_HOLE)
5227			return em;
5228
5229		/* this is a hole, advance to the next extent */
5230		offset = extent_map_end(em);
5231		free_extent_map(em);
5232		if (offset >= last)
5233			break;
5234	}
5235	return NULL;
5236}
5237
5238/*
5239 * To cache previous fiemap extent
5240 *
5241 * Will be used for merging fiemap extent
5242 */
5243struct fiemap_cache {
5244	u64 offset;
5245	u64 phys;
5246	u64 len;
5247	u32 flags;
5248	bool cached;
5249};
5250
5251/*
5252 * Helper to submit fiemap extent.
5253 *
5254 * Will try to merge current fiemap extent specified by @offset, @phys,
5255 * @len and @flags with cached one.
5256 * And only when we fails to merge, cached one will be submitted as
5257 * fiemap extent.
5258 *
5259 * Return value is the same as fiemap_fill_next_extent().
5260 */
5261static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5262				struct fiemap_cache *cache,
5263				u64 offset, u64 phys, u64 len, u32 flags)
5264{
5265	int ret = 0;
5266
5267	if (!cache->cached)
5268		goto assign;
5269
5270	/*
5271	 * Sanity check, extent_fiemap() should have ensured that new
5272	 * fiemap extent won't overlap with cached one.
5273	 * Not recoverable.
5274	 *
5275	 * NOTE: Physical address can overlap, due to compression
5276	 */
5277	if (cache->offset + cache->len > offset) {
5278		WARN_ON(1);
5279		return -EINVAL;
5280	}
5281
5282	/*
5283	 * Only merges fiemap extents if
5284	 * 1) Their logical addresses are continuous
5285	 *
5286	 * 2) Their physical addresses are continuous
5287	 *    So truly compressed (physical size smaller than logical size)
5288	 *    extents won't get merged with each other
5289	 *
5290	 * 3) Share same flags except FIEMAP_EXTENT_LAST
5291	 *    So regular extent won't get merged with prealloc extent
5292	 */
5293	if (cache->offset + cache->len  == offset &&
5294	    cache->phys + cache->len == phys  &&
5295	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5296			(flags & ~FIEMAP_EXTENT_LAST)) {
5297		cache->len += len;
5298		cache->flags |= flags;
5299		goto try_submit_last;
5300	}
5301
5302	/* Not mergeable, need to submit cached one */
5303	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5304				      cache->len, cache->flags);
5305	cache->cached = false;
5306	if (ret)
5307		return ret;
5308assign:
5309	cache->cached = true;
5310	cache->offset = offset;
5311	cache->phys = phys;
5312	cache->len = len;
5313	cache->flags = flags;
5314try_submit_last:
5315	if (cache->flags & FIEMAP_EXTENT_LAST) {
5316		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5317				cache->phys, cache->len, cache->flags);
5318		cache->cached = false;
5319	}
5320	return ret;
5321}
5322
5323/*
5324 * Emit last fiemap cache
5325 *
5326 * The last fiemap cache may still be cached in the following case:
5327 * 0		      4k		    8k
5328 * |<- Fiemap range ->|
5329 * |<------------  First extent ----------->|
5330 *
5331 * In this case, the first extent range will be cached but not emitted.
5332 * So we must emit it before ending extent_fiemap().
5333 */
5334static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5335				  struct fiemap_cache *cache)
5336{
5337	int ret;
5338
5339	if (!cache->cached)
5340		return 0;
5341
5342	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5343				      cache->len, cache->flags);
5344	cache->cached = false;
5345	if (ret > 0)
5346		ret = 0;
5347	return ret;
5348}
5349
5350int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5351		  u64 start, u64 len)
5352{
5353	int ret = 0;
5354	u64 off;
5355	u64 max = start + len;
5356	u32 flags = 0;
5357	u32 found_type;
5358	u64 last;
5359	u64 last_for_get_extent = 0;
5360	u64 disko = 0;
5361	u64 isize = i_size_read(&inode->vfs_inode);
5362	struct btrfs_key found_key;
5363	struct extent_map *em = NULL;
5364	struct extent_state *cached_state = NULL;
5365	struct btrfs_path *path;
5366	struct btrfs_root *root = inode->root;
5367	struct fiemap_cache cache = { 0 };
5368	struct ulist *roots;
5369	struct ulist *tmp_ulist;
5370	int end = 0;
5371	u64 em_start = 0;
5372	u64 em_len = 0;
5373	u64 em_end = 0;
5374
5375	if (len == 0)
5376		return -EINVAL;
5377
5378	path = btrfs_alloc_path();
5379	if (!path)
5380		return -ENOMEM;
 
5381
5382	roots = ulist_alloc(GFP_KERNEL);
5383	tmp_ulist = ulist_alloc(GFP_KERNEL);
5384	if (!roots || !tmp_ulist) {
5385		ret = -ENOMEM;
5386		goto out_free_ulist;
5387	}
5388
5389	/*
5390	 * We can't initialize that to 'start' as this could miss extents due
5391	 * to extent item merging
5392	 */
5393	off = 0;
5394	start = round_down(start, btrfs_inode_sectorsize(inode));
5395	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5396
5397	/*
5398	 * lookup the last file extent.  We're not using i_size here
5399	 * because there might be preallocation past i_size
5400	 */
5401	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5402				       0);
5403	if (ret < 0) {
5404		goto out_free_ulist;
5405	} else {
5406		WARN_ON(!ret);
5407		if (ret == 1)
5408			ret = 0;
5409	}
5410
5411	path->slots[0]--;
5412	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5413	found_type = found_key.type;
5414
5415	/* No extents, but there might be delalloc bits */
5416	if (found_key.objectid != btrfs_ino(inode) ||
5417	    found_type != BTRFS_EXTENT_DATA_KEY) {
5418		/* have to trust i_size as the end */
5419		last = (u64)-1;
5420		last_for_get_extent = isize;
5421	} else {
5422		/*
5423		 * remember the start of the last extent.  There are a
5424		 * bunch of different factors that go into the length of the
5425		 * extent, so its much less complex to remember where it started
5426		 */
5427		last = found_key.offset;
5428		last_for_get_extent = last + 1;
5429	}
5430	btrfs_release_path(path);
5431
5432	/*
5433	 * we might have some extents allocated but more delalloc past those
5434	 * extents.  so, we trust isize unless the start of the last extent is
5435	 * beyond isize
5436	 */
5437	if (last < isize) {
5438		last = (u64)-1;
5439		last_for_get_extent = isize;
5440	}
5441
5442	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5443			 &cached_state);
5444
5445	em = get_extent_skip_holes(inode, start, last_for_get_extent);
5446	if (!em)
5447		goto out;
5448	if (IS_ERR(em)) {
5449		ret = PTR_ERR(em);
5450		goto out;
5451	}
5452
5453	while (!end) {
5454		u64 offset_in_extent = 0;
5455
5456		/* break if the extent we found is outside the range */
5457		if (em->start >= max || extent_map_end(em) < off)
5458			break;
5459
5460		/*
5461		 * get_extent may return an extent that starts before our
5462		 * requested range.  We have to make sure the ranges
5463		 * we return to fiemap always move forward and don't
5464		 * overlap, so adjust the offsets here
5465		 */
5466		em_start = max(em->start, off);
5467
5468		/*
5469		 * record the offset from the start of the extent
5470		 * for adjusting the disk offset below.  Only do this if the
5471		 * extent isn't compressed since our in ram offset may be past
5472		 * what we have actually allocated on disk.
5473		 */
5474		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5475			offset_in_extent = em_start - em->start;
5476		em_end = extent_map_end(em);
5477		em_len = em_end - em_start;
5478		flags = 0;
5479		if (em->block_start < EXTENT_MAP_LAST_BYTE)
5480			disko = em->block_start + offset_in_extent;
5481		else
5482			disko = 0;
5483
5484		/*
5485		 * bump off for our next call to get_extent
5486		 */
5487		off = extent_map_end(em);
5488		if (off >= max)
5489			end = 1;
5490
5491		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5492			end = 1;
5493			flags |= FIEMAP_EXTENT_LAST;
5494		} else if (em->block_start == EXTENT_MAP_INLINE) {
5495			flags |= (FIEMAP_EXTENT_DATA_INLINE |
5496				  FIEMAP_EXTENT_NOT_ALIGNED);
5497		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
5498			flags |= (FIEMAP_EXTENT_DELALLOC |
5499				  FIEMAP_EXTENT_UNKNOWN);
5500		} else if (fieinfo->fi_extents_max) {
5501			u64 bytenr = em->block_start -
5502				(em->start - em->orig_start);
5503
5504			/*
5505			 * As btrfs supports shared space, this information
5506			 * can be exported to userspace tools via
5507			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5508			 * then we're just getting a count and we can skip the
5509			 * lookup stuff.
5510			 */
5511			ret = btrfs_check_shared(root, btrfs_ino(inode),
 
5512						 bytenr, roots, tmp_ulist);
5513			if (ret < 0)
5514				goto out_free;
5515			if (ret)
5516				flags |= FIEMAP_EXTENT_SHARED;
5517			ret = 0;
5518		}
5519		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5520			flags |= FIEMAP_EXTENT_ENCODED;
5521		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5522			flags |= FIEMAP_EXTENT_UNWRITTEN;
5523
5524		free_extent_map(em);
5525		em = NULL;
5526		if ((em_start >= last) || em_len == (u64)-1 ||
5527		   (last == (u64)-1 && isize <= em_end)) {
5528			flags |= FIEMAP_EXTENT_LAST;
5529			end = 1;
5530		}
5531
5532		/* now scan forward to see if this is really the last extent. */
5533		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5534		if (IS_ERR(em)) {
5535			ret = PTR_ERR(em);
5536			goto out;
5537		}
5538		if (!em) {
5539			flags |= FIEMAP_EXTENT_LAST;
5540			end = 1;
5541		}
5542		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5543					   em_len, flags);
5544		if (ret) {
5545			if (ret == 1)
5546				ret = 0;
5547			goto out_free;
5548		}
5549	}
5550out_free:
5551	if (!ret)
5552		ret = emit_last_fiemap_cache(fieinfo, &cache);
5553	free_extent_map(em);
5554out:
5555	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5556			     &cached_state);
5557
5558out_free_ulist:
5559	btrfs_free_path(path);
5560	ulist_free(roots);
5561	ulist_free(tmp_ulist);
5562	return ret;
5563}
5564
5565static void __free_extent_buffer(struct extent_buffer *eb)
5566{
 
5567	kmem_cache_free(extent_buffer_cache, eb);
5568}
5569
5570int extent_buffer_under_io(const struct extent_buffer *eb)
5571{
5572	return (atomic_read(&eb->io_pages) ||
5573		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5574		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5575}
5576
5577static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
 
 
 
5578{
5579	struct btrfs_subpage *subpage;
 
 
5580
5581	lockdep_assert_held(&page->mapping->private_lock);
5582
5583	if (PagePrivate(page)) {
5584		subpage = (struct btrfs_subpage *)page->private;
5585		if (atomic_read(&subpage->eb_refs))
5586			return true;
5587		/*
5588		 * Even there is no eb refs here, we may still have
5589		 * end_page_read() call relying on page::private.
5590		 */
5591		if (atomic_read(&subpage->readers))
5592			return true;
5593	}
5594	return false;
5595}
5596
5597static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5598{
5599	struct btrfs_fs_info *fs_info = eb->fs_info;
5600	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5601
5602	/*
5603	 * For mapped eb, we're going to change the page private, which should
5604	 * be done under the private_lock.
5605	 */
5606	if (mapped)
5607		spin_lock(&page->mapping->private_lock);
5608
5609	if (!PagePrivate(page)) {
5610		if (mapped)
5611			spin_unlock(&page->mapping->private_lock);
5612		return;
5613	}
5614
5615	if (fs_info->sectorsize == PAGE_SIZE) {
5616		/*
5617		 * We do this since we'll remove the pages after we've
5618		 * removed the eb from the radix tree, so we could race
5619		 * and have this page now attached to the new eb.  So
5620		 * only clear page_private if it's still connected to
5621		 * this eb.
5622		 */
5623		if (PagePrivate(page) &&
5624		    page->private == (unsigned long)eb) {
5625			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5626			BUG_ON(PageDirty(page));
5627			BUG_ON(PageWriteback(page));
5628			/*
5629			 * We need to make sure we haven't be attached
5630			 * to a new eb.
5631			 */
5632			detach_page_private(page);
 
 
 
5633		}
 
5634		if (mapped)
5635			spin_unlock(&page->mapping->private_lock);
5636		return;
5637	}
5638
5639	/*
5640	 * For subpage, we can have dummy eb with page private.  In this case,
5641	 * we can directly detach the private as such page is only attached to
5642	 * one dummy eb, no sharing.
5643	 */
5644	if (!mapped) {
5645		btrfs_detach_subpage(fs_info, page);
5646		return;
5647	}
5648
5649	btrfs_page_dec_eb_refs(fs_info, page);
5650
5651	/*
5652	 * We can only detach the page private if there are no other ebs in the
5653	 * page range and no unfinished IO.
5654	 */
5655	if (!page_range_has_eb(fs_info, page))
5656		btrfs_detach_subpage(fs_info, page);
5657
5658	spin_unlock(&page->mapping->private_lock);
5659}
5660
5661/* Release all pages attached to the extent buffer */
5662static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5663{
5664	int i;
5665	int num_pages;
5666
5667	ASSERT(!extent_buffer_under_io(eb));
5668
5669	num_pages = num_extent_pages(eb);
5670	for (i = 0; i < num_pages; i++) {
5671		struct page *page = eb->pages[i];
5672
5673		if (!page)
5674			continue;
5675
5676		detach_extent_buffer_page(eb, page);
5677
5678		/* One for when we allocated the page */
5679		put_page(page);
5680	}
5681}
5682
5683/*
5684 * Helper for releasing the extent buffer.
5685 */
5686static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5687{
5688	btrfs_release_extent_buffer_pages(eb);
5689	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5690	__free_extent_buffer(eb);
5691}
5692
5693static struct extent_buffer *
5694__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5695		      unsigned long len)
5696{
5697	struct extent_buffer *eb = NULL;
5698
5699	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5700	eb->start = start;
5701	eb->len = len;
5702	eb->fs_info = fs_info;
5703	eb->bflags = 0;
5704	init_rwsem(&eb->lock);
 
 
 
 
 
5705
5706	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5707			     &fs_info->allocated_ebs);
5708	INIT_LIST_HEAD(&eb->release_list);
5709
5710	spin_lock_init(&eb->refs_lock);
5711	atomic_set(&eb->refs, 1);
5712	atomic_set(&eb->io_pages, 0);
5713
5714	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
 
 
 
 
 
 
 
 
 
 
 
 
5715
5716	return eb;
5717}
5718
5719struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5720{
5721	int i;
5722	struct page *p;
5723	struct extent_buffer *new;
5724	int num_pages = num_extent_pages(src);
5725
5726	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5727	if (new == NULL)
5728		return NULL;
5729
5730	/*
5731	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5732	 * btrfs_release_extent_buffer() have different behavior for
5733	 * UNMAPPED subpage extent buffer.
5734	 */
5735	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5736
5737	for (i = 0; i < num_pages; i++) {
5738		int ret;
5739
5740		p = alloc_page(GFP_NOFS);
5741		if (!p) {
5742			btrfs_release_extent_buffer(new);
5743			return NULL;
5744		}
5745		ret = attach_extent_buffer_page(new, p, NULL);
5746		if (ret < 0) {
5747			put_page(p);
5748			btrfs_release_extent_buffer(new);
5749			return NULL;
5750		}
5751		WARN_ON(PageDirty(p));
 
5752		new->pages[i] = p;
5753		copy_page(page_address(p), page_address(src->pages[i]));
5754	}
5755	set_extent_buffer_uptodate(new);
 
 
5756
5757	return new;
5758}
5759
5760struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5761						  u64 start, unsigned long len)
5762{
5763	struct extent_buffer *eb;
5764	int num_pages;
5765	int i;
5766
5767	eb = __alloc_extent_buffer(fs_info, start, len);
5768	if (!eb)
5769		return NULL;
5770
5771	num_pages = num_extent_pages(eb);
5772	for (i = 0; i < num_pages; i++) {
5773		int ret;
5774
5775		eb->pages[i] = alloc_page(GFP_NOFS);
5776		if (!eb->pages[i])
5777			goto err;
5778		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5779		if (ret < 0)
5780			goto err;
5781	}
5782	set_extent_buffer_uptodate(eb);
5783	btrfs_set_header_nritems(eb, 0);
5784	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5785
5786	return eb;
5787err:
5788	for (; i > 0; i--) {
5789		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5790		__free_page(eb->pages[i - 1]);
5791	}
5792	__free_extent_buffer(eb);
5793	return NULL;
5794}
5795
5796struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5797						u64 start)
5798{
5799	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5800}
5801
5802static void check_buffer_tree_ref(struct extent_buffer *eb)
5803{
5804	int refs;
5805	/*
5806	 * The TREE_REF bit is first set when the extent_buffer is added
5807	 * to the radix tree. It is also reset, if unset, when a new reference
5808	 * is created by find_extent_buffer.
5809	 *
5810	 * It is only cleared in two cases: freeing the last non-tree
5811	 * reference to the extent_buffer when its STALE bit is set or
5812	 * calling releasepage when the tree reference is the only reference.
 
5813	 *
5814	 * In both cases, care is taken to ensure that the extent_buffer's
5815	 * pages are not under io. However, releasepage can be concurrently
5816	 * called with creating new references, which is prone to race
5817	 * conditions between the calls to check_buffer_tree_ref in those
5818	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
 
5819	 *
5820	 * The actual lifetime of the extent_buffer in the radix tree is
5821	 * adequately protected by the refcount, but the TREE_REF bit and
5822	 * its corresponding reference are not. To protect against this
5823	 * class of races, we call check_buffer_tree_ref from the codepaths
5824	 * which trigger io after they set eb->io_pages. Note that once io is
5825	 * initiated, TREE_REF can no longer be cleared, so that is the
5826	 * moment at which any such race is best fixed.
5827	 */
5828	refs = atomic_read(&eb->refs);
5829	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5830		return;
5831
5832	spin_lock(&eb->refs_lock);
5833	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5834		atomic_inc(&eb->refs);
5835	spin_unlock(&eb->refs_lock);
5836}
5837
5838static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5839		struct page *accessed)
5840{
5841	int num_pages, i;
5842
5843	check_buffer_tree_ref(eb);
5844
5845	num_pages = num_extent_pages(eb);
5846	for (i = 0; i < num_pages; i++) {
5847		struct page *p = eb->pages[i];
5848
5849		if (p != accessed)
5850			mark_page_accessed(p);
5851	}
5852}
5853
5854struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5855					 u64 start)
5856{
5857	struct extent_buffer *eb;
5858
5859	eb = find_extent_buffer_nolock(fs_info, start);
5860	if (!eb)
5861		return NULL;
5862	/*
5863	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5864	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5865	 * another task running free_extent_buffer() might have seen that flag
5866	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5867	 * writeback flags not set) and it's still in the tree (flag
5868	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5869	 * decrementing the extent buffer's reference count twice.  So here we
5870	 * could race and increment the eb's reference count, clear its stale
5871	 * flag, mark it as dirty and drop our reference before the other task
5872	 * finishes executing free_extent_buffer, which would later result in
5873	 * an attempt to free an extent buffer that is dirty.
5874	 */
5875	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5876		spin_lock(&eb->refs_lock);
5877		spin_unlock(&eb->refs_lock);
 
 
 
 
 
 
 
5878	}
5879	mark_extent_buffer_accessed(eb, NULL);
5880	return eb;
 
5881}
5882
5883#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5884struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5885					u64 start)
5886{
5887	struct extent_buffer *eb, *exists = NULL;
5888	int ret;
5889
5890	eb = find_extent_buffer(fs_info, start);
5891	if (eb)
5892		return eb;
5893	eb = alloc_dummy_extent_buffer(fs_info, start);
5894	if (!eb)
5895		return ERR_PTR(-ENOMEM);
5896	eb->fs_info = fs_info;
5897again:
5898	ret = radix_tree_preload(GFP_NOFS);
5899	if (ret) {
5900		exists = ERR_PTR(ret);
5901		goto free_eb;
5902	}
5903	spin_lock(&fs_info->buffer_lock);
5904	ret = radix_tree_insert(&fs_info->buffer_radix,
5905				start >> fs_info->sectorsize_bits, eb);
5906	spin_unlock(&fs_info->buffer_lock);
5907	radix_tree_preload_end();
5908	if (ret == -EEXIST) {
5909		exists = find_extent_buffer(fs_info, start);
5910		if (exists)
5911			goto free_eb;
5912		else
5913			goto again;
5914	}
5915	check_buffer_tree_ref(eb);
5916	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5917
5918	return eb;
5919free_eb:
5920	btrfs_release_extent_buffer(eb);
5921	return exists;
5922}
5923#endif
5924
5925static struct extent_buffer *grab_extent_buffer(
5926		struct btrfs_fs_info *fs_info, struct page *page)
5927{
5928	struct extent_buffer *exists;
5929
5930	/*
5931	 * For subpage case, we completely rely on radix tree to ensure we
5932	 * don't try to insert two ebs for the same bytenr.  So here we always
5933	 * return NULL and just continue.
5934	 */
5935	if (fs_info->sectorsize < PAGE_SIZE)
5936		return NULL;
5937
5938	/* Page not yet attached to an extent buffer */
5939	if (!PagePrivate(page))
5940		return NULL;
5941
5942	/*
5943	 * We could have already allocated an eb for this page and attached one
5944	 * so lets see if we can get a ref on the existing eb, and if we can we
5945	 * know it's good and we can just return that one, else we know we can
5946	 * just overwrite page->private.
5947	 */
5948	exists = (struct extent_buffer *)page->private;
5949	if (atomic_inc_not_zero(&exists->refs))
5950		return exists;
5951
5952	WARN_ON(PageDirty(page));
5953	detach_page_private(page);
5954	return NULL;
5955}
5956
5957struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5958					  u64 start, u64 owner_root, int level)
5959{
5960	unsigned long len = fs_info->nodesize;
5961	int num_pages;
5962	int i;
5963	unsigned long index = start >> PAGE_SHIFT;
5964	struct extent_buffer *eb;
5965	struct extent_buffer *exists = NULL;
5966	struct page *p;
5967	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5968	int uptodate = 1;
5969	int ret;
5970
5971	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5972		btrfs_err(fs_info, "bad tree block start %llu", start);
5973		return ERR_PTR(-EINVAL);
5974	}
5975
5976#if BITS_PER_LONG == 32
5977	if (start >= MAX_LFS_FILESIZE) {
5978		btrfs_err_rl(fs_info,
5979		"extent buffer %llu is beyond 32bit page cache limit", start);
5980		btrfs_err_32bit_limit(fs_info);
5981		return ERR_PTR(-EOVERFLOW);
5982	}
5983	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
5984		btrfs_warn_32bit_limit(fs_info);
5985#endif
5986
5987	if (fs_info->sectorsize < PAGE_SIZE &&
5988	    offset_in_page(start) + len > PAGE_SIZE) {
5989		btrfs_err(fs_info,
5990		"tree block crosses page boundary, start %llu nodesize %lu",
5991			  start, len);
5992		return ERR_PTR(-EINVAL);
5993	}
5994
5995	eb = find_extent_buffer(fs_info, start);
5996	if (eb)
5997		return eb;
5998
5999	eb = __alloc_extent_buffer(fs_info, start, len);
6000	if (!eb)
6001		return ERR_PTR(-ENOMEM);
6002	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6003
6004	num_pages = num_extent_pages(eb);
6005	for (i = 0; i < num_pages; i++, index++) {
6006		struct btrfs_subpage *prealloc = NULL;
6007
6008		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6009		if (!p) {
6010			exists = ERR_PTR(-ENOMEM);
6011			goto free_eb;
6012		}
6013
6014		/*
6015		 * Preallocate page->private for subpage case, so that we won't
6016		 * allocate memory with private_lock hold.  The memory will be
6017		 * freed by attach_extent_buffer_page() or freed manually if
6018		 * we exit earlier.
6019		 *
6020		 * Although we have ensured one subpage eb can only have one
6021		 * page, but it may change in the future for 16K page size
6022		 * support, so we still preallocate the memory in the loop.
6023		 */
6024		ret = btrfs_alloc_subpage(fs_info, &prealloc,
6025					  BTRFS_SUBPAGE_METADATA);
6026		if (ret < 0) {
6027			unlock_page(p);
6028			put_page(p);
6029			exists = ERR_PTR(ret);
6030			goto free_eb;
6031		}
6032
6033		spin_lock(&mapping->private_lock);
6034		exists = grab_extent_buffer(fs_info, p);
6035		if (exists) {
6036			spin_unlock(&mapping->private_lock);
6037			unlock_page(p);
 
6038			put_page(p);
6039			mark_extent_buffer_accessed(exists, p);
6040			btrfs_free_subpage(prealloc);
6041			goto free_eb;
6042		}
6043		/* Should not fail, as we have preallocated the memory */
6044		ret = attach_extent_buffer_page(eb, p, prealloc);
6045		ASSERT(!ret);
6046		/*
6047		 * To inform we have extra eb under allocation, so that
6048		 * detach_extent_buffer_page() won't release the page private
6049		 * when the eb hasn't yet been inserted into radix tree.
6050		 *
6051		 * The ref will be decreased when the eb released the page, in
6052		 * detach_extent_buffer_page().
6053		 * Thus needs no special handling in error path.
6054		 */
6055		btrfs_page_inc_eb_refs(fs_info, p);
6056		spin_unlock(&mapping->private_lock);
6057
6058		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6059		eb->pages[i] = p;
6060		if (!PageUptodate(p))
6061			uptodate = 0;
6062
6063		/*
6064		 * We can't unlock the pages just yet since the extent buffer
6065		 * hasn't been properly inserted in the radix tree, this
6066		 * opens a race with btree_releasepage which can free a page
6067		 * while we are still filling in all pages for the buffer and
6068		 * we could crash.
6069		 */
6070	}
6071	if (uptodate)
6072		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6073again:
6074	ret = radix_tree_preload(GFP_NOFS);
6075	if (ret) {
6076		exists = ERR_PTR(ret);
6077		goto free_eb;
6078	}
6079
6080	spin_lock(&fs_info->buffer_lock);
6081	ret = radix_tree_insert(&fs_info->buffer_radix,
6082				start >> fs_info->sectorsize_bits, eb);
6083	spin_unlock(&fs_info->buffer_lock);
6084	radix_tree_preload_end();
6085	if (ret == -EEXIST) {
6086		exists = find_extent_buffer(fs_info, start);
6087		if (exists)
6088			goto free_eb;
6089		else
6090			goto again;
6091	}
6092	/* add one reference for the tree */
6093	check_buffer_tree_ref(eb);
6094	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6095
6096	/*
6097	 * Now it's safe to unlock the pages because any calls to
6098	 * btree_releasepage will correctly detect that a page belongs to a
6099	 * live buffer and won't free them prematurely.
6100	 */
6101	for (i = 0; i < num_pages; i++)
6102		unlock_page(eb->pages[i]);
6103	return eb;
6104
6105free_eb:
6106	WARN_ON(!atomic_dec_and_test(&eb->refs));
6107	for (i = 0; i < num_pages; i++) {
6108		if (eb->pages[i])
6109			unlock_page(eb->pages[i]);
6110	}
6111
6112	btrfs_release_extent_buffer(eb);
6113	return exists;
6114}
6115
6116static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6117{
6118	struct extent_buffer *eb =
6119			container_of(head, struct extent_buffer, rcu_head);
6120
6121	__free_extent_buffer(eb);
6122}
6123
6124static int release_extent_buffer(struct extent_buffer *eb)
6125	__releases(&eb->refs_lock)
6126{
6127	lockdep_assert_held(&eb->refs_lock);
6128
6129	WARN_ON(atomic_read(&eb->refs) == 0);
6130	if (atomic_dec_and_test(&eb->refs)) {
6131		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6132			struct btrfs_fs_info *fs_info = eb->fs_info;
6133
6134			spin_unlock(&eb->refs_lock);
6135
6136			spin_lock(&fs_info->buffer_lock);
6137			radix_tree_delete(&fs_info->buffer_radix,
6138					  eb->start >> fs_info->sectorsize_bits);
6139			spin_unlock(&fs_info->buffer_lock);
6140		} else {
6141			spin_unlock(&eb->refs_lock);
6142		}
6143
6144		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6145		/* Should be safe to release our pages at this point */
6146		btrfs_release_extent_buffer_pages(eb);
6147#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6148		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6149			__free_extent_buffer(eb);
6150			return 1;
6151		}
6152#endif
6153		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6154		return 1;
6155	}
6156	spin_unlock(&eb->refs_lock);
6157
6158	return 0;
6159}
6160
6161void free_extent_buffer(struct extent_buffer *eb)
6162{
6163	int refs;
6164	int old;
6165	if (!eb)
6166		return;
6167
6168	while (1) {
6169		refs = atomic_read(&eb->refs);
6170		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6171		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6172			refs == 1))
6173			break;
6174		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6175		if (old == refs)
6176			return;
6177	}
6178
6179	spin_lock(&eb->refs_lock);
6180	if (atomic_read(&eb->refs) == 2 &&
6181	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6182	    !extent_buffer_under_io(eb) &&
6183	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6184		atomic_dec(&eb->refs);
6185
6186	/*
6187	 * I know this is terrible, but it's temporary until we stop tracking
6188	 * the uptodate bits and such for the extent buffers.
6189	 */
6190	release_extent_buffer(eb);
6191}
6192
6193void free_extent_buffer_stale(struct extent_buffer *eb)
6194{
6195	if (!eb)
6196		return;
6197
6198	spin_lock(&eb->refs_lock);
6199	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6200
6201	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6202	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6203		atomic_dec(&eb->refs);
6204	release_extent_buffer(eb);
6205}
6206
6207static void btree_clear_page_dirty(struct page *page)
6208{
6209	ASSERT(PageDirty(page));
6210	ASSERT(PageLocked(page));
6211	clear_page_dirty_for_io(page);
6212	xa_lock_irq(&page->mapping->i_pages);
6213	if (!PageDirty(page))
6214		__xa_clear_mark(&page->mapping->i_pages,
6215				page_index(page), PAGECACHE_TAG_DIRTY);
6216	xa_unlock_irq(&page->mapping->i_pages);
6217}
6218
6219static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6220{
6221	struct btrfs_fs_info *fs_info = eb->fs_info;
6222	struct page *page = eb->pages[0];
6223	bool last;
6224
6225	/* btree_clear_page_dirty() needs page locked */
6226	lock_page(page);
6227	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6228						  eb->len);
6229	if (last)
6230		btree_clear_page_dirty(page);
6231	unlock_page(page);
6232	WARN_ON(atomic_read(&eb->refs) == 0);
6233}
6234
6235void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6236{
6237	int i;
6238	int num_pages;
6239	struct page *page;
6240
6241	if (eb->fs_info->sectorsize < PAGE_SIZE)
6242		return clear_subpage_extent_buffer_dirty(eb);
6243
6244	num_pages = num_extent_pages(eb);
6245
6246	for (i = 0; i < num_pages; i++) {
6247		page = eb->pages[i];
6248		if (!PageDirty(page))
6249			continue;
 
6250		lock_page(page);
6251		btree_clear_page_dirty(page);
 
 
 
 
 
 
 
6252		ClearPageError(page);
6253		unlock_page(page);
6254	}
6255	WARN_ON(atomic_read(&eb->refs) == 0);
6256}
6257
6258bool set_extent_buffer_dirty(struct extent_buffer *eb)
6259{
6260	int i;
6261	int num_pages;
6262	bool was_dirty;
6263
6264	check_buffer_tree_ref(eb);
6265
6266	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6267
6268	num_pages = num_extent_pages(eb);
6269	WARN_ON(atomic_read(&eb->refs) == 0);
6270	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6271
6272	if (!was_dirty) {
6273		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
 
6274
6275		/*
6276		 * For subpage case, we can have other extent buffers in the
6277		 * same page, and in clear_subpage_extent_buffer_dirty() we
6278		 * have to clear page dirty without subpage lock held.
6279		 * This can cause race where our page gets dirty cleared after
6280		 * we just set it.
6281		 *
6282		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6283		 * its page for other reasons, we can use page lock to prevent
6284		 * the above race.
6285		 */
6286		if (subpage)
6287			lock_page(eb->pages[0]);
6288		for (i = 0; i < num_pages; i++)
6289			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6290					     eb->start, eb->len);
6291		if (subpage)
6292			unlock_page(eb->pages[0]);
6293	}
6294#ifdef CONFIG_BTRFS_DEBUG
6295	for (i = 0; i < num_pages; i++)
6296		ASSERT(PageDirty(eb->pages[i]));
6297#endif
6298
6299	return was_dirty;
6300}
6301
6302void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6303{
6304	struct btrfs_fs_info *fs_info = eb->fs_info;
6305	struct page *page;
6306	int num_pages;
6307	int i;
6308
6309	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6310	num_pages = num_extent_pages(eb);
6311	for (i = 0; i < num_pages; i++) {
6312		page = eb->pages[i];
6313		if (page)
6314			btrfs_page_clear_uptodate(fs_info, page,
6315						  eb->start, eb->len);
6316	}
6317}
6318
6319void set_extent_buffer_uptodate(struct extent_buffer *eb)
6320{
6321	struct btrfs_fs_info *fs_info = eb->fs_info;
6322	struct page *page;
6323	int num_pages;
6324	int i;
6325
6326	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6327	num_pages = num_extent_pages(eb);
6328	for (i = 0; i < num_pages; i++) {
6329		page = eb->pages[i];
6330		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6331	}
6332}
6333
6334static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6335				      int mirror_num)
6336{
6337	struct btrfs_fs_info *fs_info = eb->fs_info;
6338	struct extent_io_tree *io_tree;
6339	struct page *page = eb->pages[0];
6340	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6341	int ret = 0;
6342
6343	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6344	ASSERT(PagePrivate(page));
6345	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6346
6347	if (wait == WAIT_NONE) {
6348		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6349			return -EAGAIN;
6350	} else {
6351		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6352		if (ret < 0)
6353			return ret;
6354	}
6355
6356	ret = 0;
6357	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6358	    PageUptodate(page) ||
6359	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6360		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6361		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6362		return ret;
6363	}
6364
6365	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6366	eb->read_mirror = 0;
6367	atomic_set(&eb->io_pages, 1);
6368	check_buffer_tree_ref(eb);
6369	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6370
6371	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6372	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6373				 page, eb->start, eb->len,
6374				 eb->start - page_offset(page),
6375				 end_bio_extent_readpage, mirror_num, 0,
6376				 true);
6377	if (ret) {
6378		/*
6379		 * In the endio function, if we hit something wrong we will
6380		 * increase the io_pages, so here we need to decrease it for
6381		 * error path.
6382		 */
6383		atomic_dec(&eb->io_pages);
6384	}
6385	if (bio_ctrl.bio) {
6386		int tmp;
6387
6388		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6389		bio_ctrl.bio = NULL;
6390		if (tmp < 0)
6391			return tmp;
6392	}
6393	if (ret || wait != WAIT_COMPLETE)
6394		return ret;
6395
6396	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6397	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6398		ret = -EIO;
6399	return ret;
6400}
6401
6402int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6403{
6404	int i;
6405	struct page *page;
6406	int err;
6407	int ret = 0;
6408	int locked_pages = 0;
6409	int all_uptodate = 1;
6410	int num_pages;
6411	unsigned long num_reads = 0;
6412	struct btrfs_bio_ctrl bio_ctrl = { 0 };
 
 
6413
6414	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6415		return 0;
6416
6417	if (eb->fs_info->sectorsize < PAGE_SIZE)
6418		return read_extent_buffer_subpage(eb, wait, mirror_num);
6419
6420	num_pages = num_extent_pages(eb);
6421	for (i = 0; i < num_pages; i++) {
6422		page = eb->pages[i];
6423		if (wait == WAIT_NONE) {
6424			/*
6425			 * WAIT_NONE is only utilized by readahead. If we can't
6426			 * acquire the lock atomically it means either the eb
6427			 * is being read out or under modification.
6428			 * Either way the eb will be or has been cached,
6429			 * readahead can exit safely.
6430			 */
6431			if (!trylock_page(page))
6432				goto unlock_exit;
6433		} else {
6434			lock_page(page);
6435		}
6436		locked_pages++;
6437	}
6438	/*
6439	 * We need to firstly lock all pages to make sure that
6440	 * the uptodate bit of our pages won't be affected by
6441	 * clear_extent_buffer_uptodate().
6442	 */
6443	for (i = 0; i < num_pages; i++) {
6444		page = eb->pages[i];
6445		if (!PageUptodate(page)) {
6446			num_reads++;
6447			all_uptodate = 0;
6448		}
6449	}
6450
6451	if (all_uptodate) {
6452		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6453		goto unlock_exit;
6454	}
6455
6456	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6457	eb->read_mirror = 0;
6458	atomic_set(&eb->io_pages, num_reads);
6459	/*
6460	 * It is possible for releasepage to clear the TREE_REF bit before we
6461	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6462	 */
6463	check_buffer_tree_ref(eb);
6464	for (i = 0; i < num_pages; i++) {
6465		page = eb->pages[i];
6466
6467		if (!PageUptodate(page)) {
6468			if (ret) {
6469				atomic_dec(&eb->io_pages);
6470				unlock_page(page);
6471				continue;
6472			}
6473
6474			ClearPageError(page);
6475			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6476					 &bio_ctrl, page, page_offset(page),
6477					 PAGE_SIZE, 0, end_bio_extent_readpage,
6478					 mirror_num, 0, false);
6479			if (err) {
 
6480				/*
6481				 * We failed to submit the bio so it's the
6482				 * caller's responsibility to perform cleanup
6483				 * i.e unlock page/set error bit.
 
 
 
6484				 */
6485				ret = err;
6486				SetPageError(page);
6487				unlock_page(page);
6488				atomic_dec(&eb->io_pages);
6489			}
6490		} else {
6491			unlock_page(page);
6492		}
6493	}
6494
6495	if (bio_ctrl.bio) {
6496		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6497		bio_ctrl.bio = NULL;
6498		if (err)
6499			return err;
6500	}
6501
6502	if (ret || wait != WAIT_COMPLETE)
6503		return ret;
6504
6505	for (i = 0; i < num_pages; i++) {
6506		page = eb->pages[i];
6507		wait_on_page_locked(page);
6508		if (!PageUptodate(page))
6509			ret = -EIO;
6510	}
6511
6512	return ret;
6513
6514unlock_exit:
6515	while (locked_pages > 0) {
6516		locked_pages--;
6517		page = eb->pages[locked_pages];
6518		unlock_page(page);
6519	}
6520	return ret;
6521}
6522
6523static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6524			    unsigned long len)
6525{
6526	btrfs_warn(eb->fs_info,
6527		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
6528		eb->start, eb->len, start, len);
6529	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6530
6531	return true;
6532}
6533
6534/*
6535 * Check if the [start, start + len) range is valid before reading/writing
6536 * the eb.
6537 * NOTE: @start and @len are offset inside the eb, not logical address.
6538 *
6539 * Caller should not touch the dst/src memory if this function returns error.
6540 */
6541static inline int check_eb_range(const struct extent_buffer *eb,
6542				 unsigned long start, unsigned long len)
6543{
6544	unsigned long offset;
6545
6546	/* start, start + len should not go beyond eb->len nor overflow */
6547	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6548		return report_eb_range(eb, start, len);
6549
6550	return false;
6551}
6552
6553void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6554			unsigned long start, unsigned long len)
6555{
6556	size_t cur;
6557	size_t offset;
6558	struct page *page;
6559	char *kaddr;
6560	char *dst = (char *)dstv;
6561	unsigned long i = get_eb_page_index(start);
 
6562
6563	if (check_eb_range(eb, start, len))
 
 
 
6564		return;
 
6565
6566	offset = get_eb_offset_in_page(eb, start);
6567
6568	while (len > 0) {
6569		page = eb->pages[i];
6570
6571		cur = min(len, (PAGE_SIZE - offset));
6572		kaddr = page_address(page);
6573		memcpy(dst, kaddr + offset, cur);
6574
6575		dst += cur;
6576		len -= cur;
6577		offset = 0;
6578		i++;
6579	}
6580}
6581
6582int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6583				       void __user *dstv,
6584				       unsigned long start, unsigned long len)
6585{
6586	size_t cur;
6587	size_t offset;
6588	struct page *page;
6589	char *kaddr;
6590	char __user *dst = (char __user *)dstv;
6591	unsigned long i = get_eb_page_index(start);
 
6592	int ret = 0;
6593
6594	WARN_ON(start > eb->len);
6595	WARN_ON(start + len > eb->start + eb->len);
6596
6597	offset = get_eb_offset_in_page(eb, start);
6598
6599	while (len > 0) {
6600		page = eb->pages[i];
6601
6602		cur = min(len, (PAGE_SIZE - offset));
6603		kaddr = page_address(page);
6604		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6605			ret = -EFAULT;
6606			break;
6607		}
6608
6609		dst += cur;
6610		len -= cur;
6611		offset = 0;
6612		i++;
6613	}
6614
6615	return ret;
6616}
6617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6618int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6619			 unsigned long start, unsigned long len)
6620{
6621	size_t cur;
6622	size_t offset;
6623	struct page *page;
6624	char *kaddr;
6625	char *ptr = (char *)ptrv;
6626	unsigned long i = get_eb_page_index(start);
 
6627	int ret = 0;
6628
6629	if (check_eb_range(eb, start, len))
6630		return -EINVAL;
6631
6632	offset = get_eb_offset_in_page(eb, start);
6633
6634	while (len > 0) {
6635		page = eb->pages[i];
6636
6637		cur = min(len, (PAGE_SIZE - offset));
6638
6639		kaddr = page_address(page);
6640		ret = memcmp(ptr, kaddr + offset, cur);
6641		if (ret)
6642			break;
6643
6644		ptr += cur;
6645		len -= cur;
6646		offset = 0;
6647		i++;
6648	}
6649	return ret;
6650}
6651
6652/*
6653 * Check that the extent buffer is uptodate.
6654 *
6655 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6656 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6657 */
6658static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6659				    struct page *page)
6660{
6661	struct btrfs_fs_info *fs_info = eb->fs_info;
6662
6663	if (fs_info->sectorsize < PAGE_SIZE) {
6664		bool uptodate;
6665
6666		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6667						       eb->start, eb->len);
6668		WARN_ON(!uptodate);
6669	} else {
6670		WARN_ON(!PageUptodate(page));
6671	}
6672}
6673
6674void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6675		const void *srcv)
6676{
6677	char *kaddr;
6678
6679	assert_eb_page_uptodate(eb, eb->pages[0]);
6680	kaddr = page_address(eb->pages[0]) +
6681		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6682						   chunk_tree_uuid));
6683	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6684}
6685
6686void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6687{
6688	char *kaddr;
6689
6690	assert_eb_page_uptodate(eb, eb->pages[0]);
6691	kaddr = page_address(eb->pages[0]) +
6692		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6693	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6694}
6695
6696void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6697			 unsigned long start, unsigned long len)
6698{
6699	size_t cur;
6700	size_t offset;
6701	struct page *page;
6702	char *kaddr;
6703	char *src = (char *)srcv;
6704	unsigned long i = get_eb_page_index(start);
 
6705
6706	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6707
6708	if (check_eb_range(eb, start, len))
6709		return;
6710
6711	offset = get_eb_offset_in_page(eb, start);
6712
6713	while (len > 0) {
6714		page = eb->pages[i];
6715		assert_eb_page_uptodate(eb, page);
6716
6717		cur = min(len, PAGE_SIZE - offset);
6718		kaddr = page_address(page);
6719		memcpy(kaddr + offset, src, cur);
6720
6721		src += cur;
6722		len -= cur;
6723		offset = 0;
6724		i++;
6725	}
6726}
6727
6728void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6729		unsigned long len)
6730{
6731	size_t cur;
6732	size_t offset;
6733	struct page *page;
6734	char *kaddr;
6735	unsigned long i = get_eb_page_index(start);
 
6736
6737	if (check_eb_range(eb, start, len))
6738		return;
6739
6740	offset = get_eb_offset_in_page(eb, start);
6741
6742	while (len > 0) {
6743		page = eb->pages[i];
6744		assert_eb_page_uptodate(eb, page);
6745
6746		cur = min(len, PAGE_SIZE - offset);
6747		kaddr = page_address(page);
6748		memset(kaddr + offset, 0, cur);
6749
6750		len -= cur;
6751		offset = 0;
6752		i++;
6753	}
6754}
6755
6756void copy_extent_buffer_full(const struct extent_buffer *dst,
6757			     const struct extent_buffer *src)
6758{
6759	int i;
6760	int num_pages;
6761
6762	ASSERT(dst->len == src->len);
6763
6764	if (dst->fs_info->sectorsize == PAGE_SIZE) {
6765		num_pages = num_extent_pages(dst);
6766		for (i = 0; i < num_pages; i++)
6767			copy_page(page_address(dst->pages[i]),
6768				  page_address(src->pages[i]));
6769	} else {
6770		size_t src_offset = get_eb_offset_in_page(src, 0);
6771		size_t dst_offset = get_eb_offset_in_page(dst, 0);
6772
6773		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6774		memcpy(page_address(dst->pages[0]) + dst_offset,
6775		       page_address(src->pages[0]) + src_offset,
6776		       src->len);
6777	}
6778}
6779
6780void copy_extent_buffer(const struct extent_buffer *dst,
6781			const struct extent_buffer *src,
6782			unsigned long dst_offset, unsigned long src_offset,
6783			unsigned long len)
6784{
6785	u64 dst_len = dst->len;
6786	size_t cur;
6787	size_t offset;
6788	struct page *page;
6789	char *kaddr;
6790	unsigned long i = get_eb_page_index(dst_offset);
6791
6792	if (check_eb_range(dst, dst_offset, len) ||
6793	    check_eb_range(src, src_offset, len))
6794		return;
6795
6796	WARN_ON(src->len != dst_len);
6797
6798	offset = get_eb_offset_in_page(dst, dst_offset);
6799
6800	while (len > 0) {
6801		page = dst->pages[i];
6802		assert_eb_page_uptodate(dst, page);
6803
6804		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6805
6806		kaddr = page_address(page);
6807		read_extent_buffer(src, kaddr + offset, src_offset, cur);
6808
6809		src_offset += cur;
6810		len -= cur;
6811		offset = 0;
6812		i++;
6813	}
6814}
6815
6816/*
6817 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6818 * given bit number
6819 * @eb: the extent buffer
6820 * @start: offset of the bitmap item in the extent buffer
6821 * @nr: bit number
6822 * @page_index: return index of the page in the extent buffer that contains the
6823 * given bit number
6824 * @page_offset: return offset into the page given by page_index
6825 *
6826 * This helper hides the ugliness of finding the byte in an extent buffer which
6827 * contains a given bit.
6828 */
6829static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6830				    unsigned long start, unsigned long nr,
6831				    unsigned long *page_index,
6832				    size_t *page_offset)
6833{
 
6834	size_t byte_offset = BIT_BYTE(nr);
6835	size_t offset;
6836
6837	/*
6838	 * The byte we want is the offset of the extent buffer + the offset of
6839	 * the bitmap item in the extent buffer + the offset of the byte in the
6840	 * bitmap item.
6841	 */
6842	offset = start + offset_in_page(eb->start) + byte_offset;
6843
6844	*page_index = offset >> PAGE_SHIFT;
6845	*page_offset = offset_in_page(offset);
6846}
6847
6848/**
6849 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6850 * @eb: the extent buffer
6851 * @start: offset of the bitmap item in the extent buffer
6852 * @nr: bit number to test
6853 */
6854int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6855			   unsigned long nr)
6856{
6857	u8 *kaddr;
6858	struct page *page;
6859	unsigned long i;
6860	size_t offset;
6861
6862	eb_bitmap_offset(eb, start, nr, &i, &offset);
6863	page = eb->pages[i];
6864	assert_eb_page_uptodate(eb, page);
6865	kaddr = page_address(page);
6866	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6867}
6868
6869/**
6870 * extent_buffer_bitmap_set - set an area of a bitmap
6871 * @eb: the extent buffer
6872 * @start: offset of the bitmap item in the extent buffer
6873 * @pos: bit number of the first bit
6874 * @len: number of bits to set
6875 */
6876void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6877			      unsigned long pos, unsigned long len)
6878{
6879	u8 *kaddr;
6880	struct page *page;
6881	unsigned long i;
6882	size_t offset;
6883	const unsigned int size = pos + len;
6884	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6885	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6886
6887	eb_bitmap_offset(eb, start, pos, &i, &offset);
6888	page = eb->pages[i];
6889	assert_eb_page_uptodate(eb, page);
6890	kaddr = page_address(page);
6891
6892	while (len >= bits_to_set) {
6893		kaddr[offset] |= mask_to_set;
6894		len -= bits_to_set;
6895		bits_to_set = BITS_PER_BYTE;
6896		mask_to_set = ~0;
6897		if (++offset >= PAGE_SIZE && len > 0) {
6898			offset = 0;
6899			page = eb->pages[++i];
6900			assert_eb_page_uptodate(eb, page);
6901			kaddr = page_address(page);
6902		}
6903	}
6904	if (len) {
6905		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6906		kaddr[offset] |= mask_to_set;
6907	}
6908}
6909
6910
6911/**
6912 * extent_buffer_bitmap_clear - clear an area of a bitmap
6913 * @eb: the extent buffer
6914 * @start: offset of the bitmap item in the extent buffer
6915 * @pos: bit number of the first bit
6916 * @len: number of bits to clear
6917 */
6918void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6919				unsigned long start, unsigned long pos,
6920				unsigned long len)
6921{
6922	u8 *kaddr;
6923	struct page *page;
6924	unsigned long i;
6925	size_t offset;
6926	const unsigned int size = pos + len;
6927	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6928	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6929
6930	eb_bitmap_offset(eb, start, pos, &i, &offset);
6931	page = eb->pages[i];
6932	assert_eb_page_uptodate(eb, page);
6933	kaddr = page_address(page);
6934
6935	while (len >= bits_to_clear) {
6936		kaddr[offset] &= ~mask_to_clear;
6937		len -= bits_to_clear;
6938		bits_to_clear = BITS_PER_BYTE;
6939		mask_to_clear = ~0;
6940		if (++offset >= PAGE_SIZE && len > 0) {
6941			offset = 0;
6942			page = eb->pages[++i];
6943			assert_eb_page_uptodate(eb, page);
6944			kaddr = page_address(page);
6945		}
6946	}
6947	if (len) {
6948		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6949		kaddr[offset] &= ~mask_to_clear;
6950	}
6951}
6952
6953static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6954{
6955	unsigned long distance = (src > dst) ? src - dst : dst - src;
6956	return distance < len;
6957}
6958
6959static void copy_pages(struct page *dst_page, struct page *src_page,
6960		       unsigned long dst_off, unsigned long src_off,
6961		       unsigned long len)
6962{
6963	char *dst_kaddr = page_address(dst_page);
6964	char *src_kaddr;
6965	int must_memmove = 0;
6966
6967	if (dst_page != src_page) {
6968		src_kaddr = page_address(src_page);
6969	} else {
6970		src_kaddr = dst_kaddr;
6971		if (areas_overlap(src_off, dst_off, len))
6972			must_memmove = 1;
6973	}
6974
6975	if (must_memmove)
6976		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6977	else
6978		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6979}
6980
6981void memcpy_extent_buffer(const struct extent_buffer *dst,
6982			  unsigned long dst_offset, unsigned long src_offset,
6983			  unsigned long len)
6984{
 
6985	size_t cur;
6986	size_t dst_off_in_page;
6987	size_t src_off_in_page;
 
6988	unsigned long dst_i;
6989	unsigned long src_i;
6990
6991	if (check_eb_range(dst, dst_offset, len) ||
6992	    check_eb_range(dst, src_offset, len))
6993		return;
 
 
 
 
 
 
 
 
 
6994
6995	while (len > 0) {
6996		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6997		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6998
6999		dst_i = get_eb_page_index(dst_offset);
7000		src_i = get_eb_page_index(src_offset);
7001
7002		cur = min(len, (unsigned long)(PAGE_SIZE -
7003					       src_off_in_page));
7004		cur = min_t(unsigned long, cur,
7005			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7006
7007		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7008			   dst_off_in_page, src_off_in_page, cur);
7009
7010		src_offset += cur;
7011		dst_offset += cur;
7012		len -= cur;
7013	}
7014}
7015
7016void memmove_extent_buffer(const struct extent_buffer *dst,
7017			   unsigned long dst_offset, unsigned long src_offset,
7018			   unsigned long len)
7019{
 
7020	size_t cur;
7021	size_t dst_off_in_page;
7022	size_t src_off_in_page;
7023	unsigned long dst_end = dst_offset + len - 1;
7024	unsigned long src_end = src_offset + len - 1;
 
7025	unsigned long dst_i;
7026	unsigned long src_i;
7027
7028	if (check_eb_range(dst, dst_offset, len) ||
7029	    check_eb_range(dst, src_offset, len))
7030		return;
 
 
 
 
 
 
 
 
 
7031	if (dst_offset < src_offset) {
7032		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7033		return;
7034	}
7035	while (len > 0) {
7036		dst_i = get_eb_page_index(dst_end);
7037		src_i = get_eb_page_index(src_end);
7038
7039		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7040		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7041
7042		cur = min_t(unsigned long, len, src_off_in_page + 1);
7043		cur = min(cur, dst_off_in_page + 1);
7044		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7045			   dst_off_in_page - cur + 1,
7046			   src_off_in_page - cur + 1, cur);
7047
7048		dst_end -= cur;
7049		src_end -= cur;
7050		len -= cur;
7051	}
7052}
7053
7054static struct extent_buffer *get_next_extent_buffer(
7055		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7056{
7057	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7058	struct extent_buffer *found = NULL;
7059	u64 page_start = page_offset(page);
7060	int ret;
7061	int i;
7062
7063	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7064	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7065	lockdep_assert_held(&fs_info->buffer_lock);
7066
7067	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7068			bytenr >> fs_info->sectorsize_bits,
7069			PAGE_SIZE / fs_info->nodesize);
7070	for (i = 0; i < ret; i++) {
7071		/* Already beyond page end */
7072		if (gang[i]->start >= page_start + PAGE_SIZE)
7073			break;
7074		/* Found one */
7075		if (gang[i]->start >= bytenr) {
7076			found = gang[i];
7077			break;
7078		}
7079	}
7080	return found;
7081}
7082
7083static int try_release_subpage_extent_buffer(struct page *page)
7084{
7085	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7086	u64 cur = page_offset(page);
7087	const u64 end = page_offset(page) + PAGE_SIZE;
7088	int ret;
7089
7090	while (cur < end) {
7091		struct extent_buffer *eb = NULL;
7092
7093		/*
7094		 * Unlike try_release_extent_buffer() which uses page->private
7095		 * to grab buffer, for subpage case we rely on radix tree, thus
7096		 * we need to ensure radix tree consistency.
7097		 *
7098		 * We also want an atomic snapshot of the radix tree, thus go
7099		 * with spinlock rather than RCU.
7100		 */
7101		spin_lock(&fs_info->buffer_lock);
7102		eb = get_next_extent_buffer(fs_info, page, cur);
7103		if (!eb) {
7104			/* No more eb in the page range after or at cur */
7105			spin_unlock(&fs_info->buffer_lock);
7106			break;
7107		}
7108		cur = eb->start + eb->len;
7109
7110		/*
7111		 * The same as try_release_extent_buffer(), to ensure the eb
7112		 * won't disappear out from under us.
7113		 */
7114		spin_lock(&eb->refs_lock);
7115		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7116			spin_unlock(&eb->refs_lock);
7117			spin_unlock(&fs_info->buffer_lock);
7118			break;
7119		}
7120		spin_unlock(&fs_info->buffer_lock);
7121
7122		/*
7123		 * If tree ref isn't set then we know the ref on this eb is a
7124		 * real ref, so just return, this eb will likely be freed soon
7125		 * anyway.
7126		 */
7127		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7128			spin_unlock(&eb->refs_lock);
7129			break;
7130		}
7131
7132		/*
7133		 * Here we don't care about the return value, we will always
7134		 * check the page private at the end.  And
7135		 * release_extent_buffer() will release the refs_lock.
7136		 */
7137		release_extent_buffer(eb);
7138	}
7139	/*
7140	 * Finally to check if we have cleared page private, as if we have
7141	 * released all ebs in the page, the page private should be cleared now.
7142	 */
7143	spin_lock(&page->mapping->private_lock);
7144	if (!PagePrivate(page))
7145		ret = 1;
7146	else
7147		ret = 0;
7148	spin_unlock(&page->mapping->private_lock);
7149	return ret;
7150
7151}
7152
7153int try_release_extent_buffer(struct page *page)
7154{
7155	struct extent_buffer *eb;
7156
7157	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7158		return try_release_subpage_extent_buffer(page);
7159
7160	/*
7161	 * We need to make sure nobody is changing page->private, as we rely on
7162	 * page->private as the pointer to extent buffer.
7163	 */
7164	spin_lock(&page->mapping->private_lock);
7165	if (!PagePrivate(page)) {
7166		spin_unlock(&page->mapping->private_lock);
7167		return 1;
7168	}
7169
7170	eb = (struct extent_buffer *)page->private;
7171	BUG_ON(!eb);
7172
7173	/*
7174	 * This is a little awful but should be ok, we need to make sure that
7175	 * the eb doesn't disappear out from under us while we're looking at
7176	 * this page.
7177	 */
7178	spin_lock(&eb->refs_lock);
7179	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7180		spin_unlock(&eb->refs_lock);
7181		spin_unlock(&page->mapping->private_lock);
7182		return 0;
7183	}
7184	spin_unlock(&page->mapping->private_lock);
7185
7186	/*
7187	 * If tree ref isn't set then we know the ref on this eb is a real ref,
7188	 * so just return, this page will likely be freed soon anyway.
7189	 */
7190	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7191		spin_unlock(&eb->refs_lock);
7192		return 0;
7193	}
7194
7195	return release_extent_buffer(eb);
7196}
7197
7198/*
7199 * btrfs_readahead_tree_block - attempt to readahead a child block
7200 * @fs_info:	the fs_info
7201 * @bytenr:	bytenr to read
7202 * @owner_root: objectid of the root that owns this eb
7203 * @gen:	generation for the uptodate check, can be 0
7204 * @level:	level for the eb
7205 *
7206 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
7207 * normal uptodate check of the eb, without checking the generation.  If we have
7208 * to read the block we will not block on anything.
7209 */
7210void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7211				u64 bytenr, u64 owner_root, u64 gen, int level)
7212{
7213	struct extent_buffer *eb;
7214	int ret;
7215
7216	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7217	if (IS_ERR(eb))
7218		return;
7219
7220	if (btrfs_buffer_uptodate(eb, gen, 1)) {
7221		free_extent_buffer(eb);
7222		return;
7223	}
7224
7225	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7226	if (ret < 0)
7227		free_extent_buffer_stale(eb);
7228	else
7229		free_extent_buffer(eb);
7230}
7231
7232/*
7233 * btrfs_readahead_node_child - readahead a node's child block
7234 * @node:	parent node we're reading from
7235 * @slot:	slot in the parent node for the child we want to read
7236 *
7237 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7238 * the slot in the node provided.
7239 */
7240void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7241{
7242	btrfs_readahead_tree_block(node->fs_info,
7243				   btrfs_node_blockptr(node, slot),
7244				   btrfs_header_owner(node),
7245				   btrfs_node_ptr_generation(node, slot),
7246				   btrfs_header_level(node) - 1);
7247}