Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "extent_io.h"
17#include "extent_map.h"
18#include "ctree.h"
19#include "btrfs_inode.h"
20#include "volumes.h"
21#include "check-integrity.h"
22#include "locking.h"
23#include "rcu-string.h"
24#include "backref.h"
25#include "disk-io.h"
26
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
29static struct bio_set btrfs_bioset;
30
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
36#ifdef CONFIG_BTRFS_DEBUG
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
39
40static DEFINE_SPINLOCK(leak_lock);
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
86
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91{
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
104}
105#else
106#define btrfs_leak_debug_add(new, head) do {} while (0)
107#define btrfs_leak_debug_del(entry) do {} while (0)
108#define btrfs_leak_debug_check() do {} while (0)
109#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
110#endif
111
112struct tree_entry {
113 u64 start;
114 u64 end;
115 struct rb_node rb_node;
116};
117
118struct extent_page_data {
119 struct bio *bio;
120 struct extent_io_tree *tree;
121 /* tells writepage not to lock the state bits for this range
122 * it still does the unlocking
123 */
124 unsigned int extent_locked:1;
125
126 /* tells the submit_bio code to use REQ_SYNC */
127 unsigned int sync_io:1;
128};
129
130static int add_extent_changeset(struct extent_state *state, unsigned bits,
131 struct extent_changeset *changeset,
132 int set)
133{
134 int ret;
135
136 if (!changeset)
137 return 0;
138 if (set && (state->state & bits) == bits)
139 return 0;
140 if (!set && (state->state & bits) == 0)
141 return 0;
142 changeset->bytes_changed += state->end - state->start + 1;
143 ret = ulist_add(&changeset->range_changed, state->start, state->end,
144 GFP_ATOMIC);
145 return ret;
146}
147
148static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 unsigned long bio_flags)
150{
151 blk_status_t ret = 0;
152 struct extent_io_tree *tree = bio->bi_private;
153
154 bio->bi_private = NULL;
155
156 if (tree->ops)
157 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
158 mirror_num, bio_flags);
159 else
160 btrfsic_submit_bio(bio);
161
162 return blk_status_to_errno(ret);
163}
164
165/* Cleanup unsubmitted bios */
166static void end_write_bio(struct extent_page_data *epd, int ret)
167{
168 if (epd->bio) {
169 epd->bio->bi_status = errno_to_blk_status(ret);
170 bio_endio(epd->bio);
171 epd->bio = NULL;
172 }
173}
174
175/*
176 * Submit bio from extent page data via submit_one_bio
177 *
178 * Return 0 if everything is OK.
179 * Return <0 for error.
180 */
181static int __must_check flush_write_bio(struct extent_page_data *epd)
182{
183 int ret = 0;
184
185 if (epd->bio) {
186 ret = submit_one_bio(epd->bio, 0, 0);
187 /*
188 * Clean up of epd->bio is handled by its endio function.
189 * And endio is either triggered by successful bio execution
190 * or the error handler of submit bio hook.
191 * So at this point, no matter what happened, we don't need
192 * to clean up epd->bio.
193 */
194 epd->bio = NULL;
195 }
196 return ret;
197}
198
199int __init extent_io_init(void)
200{
201 extent_state_cache = kmem_cache_create("btrfs_extent_state",
202 sizeof(struct extent_state), 0,
203 SLAB_MEM_SPREAD, NULL);
204 if (!extent_state_cache)
205 return -ENOMEM;
206
207 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
208 sizeof(struct extent_buffer), 0,
209 SLAB_MEM_SPREAD, NULL);
210 if (!extent_buffer_cache)
211 goto free_state_cache;
212
213 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
214 offsetof(struct btrfs_io_bio, bio),
215 BIOSET_NEED_BVECS))
216 goto free_buffer_cache;
217
218 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
219 goto free_bioset;
220
221 return 0;
222
223free_bioset:
224 bioset_exit(&btrfs_bioset);
225
226free_buffer_cache:
227 kmem_cache_destroy(extent_buffer_cache);
228 extent_buffer_cache = NULL;
229
230free_state_cache:
231 kmem_cache_destroy(extent_state_cache);
232 extent_state_cache = NULL;
233 return -ENOMEM;
234}
235
236void __cold extent_io_exit(void)
237{
238 btrfs_leak_debug_check();
239
240 /*
241 * Make sure all delayed rcu free are flushed before we
242 * destroy caches.
243 */
244 rcu_barrier();
245 kmem_cache_destroy(extent_state_cache);
246 kmem_cache_destroy(extent_buffer_cache);
247 bioset_exit(&btrfs_bioset);
248}
249
250void extent_io_tree_init(struct btrfs_fs_info *fs_info,
251 struct extent_io_tree *tree, unsigned int owner,
252 void *private_data)
253{
254 tree->fs_info = fs_info;
255 tree->state = RB_ROOT;
256 tree->ops = NULL;
257 tree->dirty_bytes = 0;
258 spin_lock_init(&tree->lock);
259 tree->private_data = private_data;
260 tree->owner = owner;
261}
262
263void extent_io_tree_release(struct extent_io_tree *tree)
264{
265 spin_lock(&tree->lock);
266 /*
267 * Do a single barrier for the waitqueue_active check here, the state
268 * of the waitqueue should not change once extent_io_tree_release is
269 * called.
270 */
271 smp_mb();
272 while (!RB_EMPTY_ROOT(&tree->state)) {
273 struct rb_node *node;
274 struct extent_state *state;
275
276 node = rb_first(&tree->state);
277 state = rb_entry(node, struct extent_state, rb_node);
278 rb_erase(&state->rb_node, &tree->state);
279 RB_CLEAR_NODE(&state->rb_node);
280 /*
281 * btree io trees aren't supposed to have tasks waiting for
282 * changes in the flags of extent states ever.
283 */
284 ASSERT(!waitqueue_active(&state->wq));
285 free_extent_state(state);
286
287 cond_resched_lock(&tree->lock);
288 }
289 spin_unlock(&tree->lock);
290}
291
292static struct extent_state *alloc_extent_state(gfp_t mask)
293{
294 struct extent_state *state;
295
296 /*
297 * The given mask might be not appropriate for the slab allocator,
298 * drop the unsupported bits
299 */
300 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
301 state = kmem_cache_alloc(extent_state_cache, mask);
302 if (!state)
303 return state;
304 state->state = 0;
305 state->failrec = NULL;
306 RB_CLEAR_NODE(&state->rb_node);
307 btrfs_leak_debug_add(&state->leak_list, &states);
308 refcount_set(&state->refs, 1);
309 init_waitqueue_head(&state->wq);
310 trace_alloc_extent_state(state, mask, _RET_IP_);
311 return state;
312}
313
314void free_extent_state(struct extent_state *state)
315{
316 if (!state)
317 return;
318 if (refcount_dec_and_test(&state->refs)) {
319 WARN_ON(extent_state_in_tree(state));
320 btrfs_leak_debug_del(&state->leak_list);
321 trace_free_extent_state(state, _RET_IP_);
322 kmem_cache_free(extent_state_cache, state);
323 }
324}
325
326static struct rb_node *tree_insert(struct rb_root *root,
327 struct rb_node *search_start,
328 u64 offset,
329 struct rb_node *node,
330 struct rb_node ***p_in,
331 struct rb_node **parent_in)
332{
333 struct rb_node **p;
334 struct rb_node *parent = NULL;
335 struct tree_entry *entry;
336
337 if (p_in && parent_in) {
338 p = *p_in;
339 parent = *parent_in;
340 goto do_insert;
341 }
342
343 p = search_start ? &search_start : &root->rb_node;
344 while (*p) {
345 parent = *p;
346 entry = rb_entry(parent, struct tree_entry, rb_node);
347
348 if (offset < entry->start)
349 p = &(*p)->rb_left;
350 else if (offset > entry->end)
351 p = &(*p)->rb_right;
352 else
353 return parent;
354 }
355
356do_insert:
357 rb_link_node(node, parent, p);
358 rb_insert_color(node, root);
359 return NULL;
360}
361
362/**
363 * __etree_search - searche @tree for an entry that contains @offset. Such
364 * entry would have entry->start <= offset && entry->end >= offset.
365 *
366 * @tree - the tree to search
367 * @offset - offset that should fall within an entry in @tree
368 * @next_ret - pointer to the first entry whose range ends after @offset
369 * @prev - pointer to the first entry whose range begins before @offset
370 * @p_ret - pointer where new node should be anchored (used when inserting an
371 * entry in the tree)
372 * @parent_ret - points to entry which would have been the parent of the entry,
373 * containing @offset
374 *
375 * This function returns a pointer to the entry that contains @offset byte
376 * address. If no such entry exists, then NULL is returned and the other
377 * pointer arguments to the function are filled, otherwise the found entry is
378 * returned and other pointers are left untouched.
379 */
380static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
381 struct rb_node **next_ret,
382 struct rb_node **prev_ret,
383 struct rb_node ***p_ret,
384 struct rb_node **parent_ret)
385{
386 struct rb_root *root = &tree->state;
387 struct rb_node **n = &root->rb_node;
388 struct rb_node *prev = NULL;
389 struct rb_node *orig_prev = NULL;
390 struct tree_entry *entry;
391 struct tree_entry *prev_entry = NULL;
392
393 while (*n) {
394 prev = *n;
395 entry = rb_entry(prev, struct tree_entry, rb_node);
396 prev_entry = entry;
397
398 if (offset < entry->start)
399 n = &(*n)->rb_left;
400 else if (offset > entry->end)
401 n = &(*n)->rb_right;
402 else
403 return *n;
404 }
405
406 if (p_ret)
407 *p_ret = n;
408 if (parent_ret)
409 *parent_ret = prev;
410
411 if (next_ret) {
412 orig_prev = prev;
413 while (prev && offset > prev_entry->end) {
414 prev = rb_next(prev);
415 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
416 }
417 *next_ret = prev;
418 prev = orig_prev;
419 }
420
421 if (prev_ret) {
422 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
423 while (prev && offset < prev_entry->start) {
424 prev = rb_prev(prev);
425 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 }
427 *prev_ret = prev;
428 }
429 return NULL;
430}
431
432static inline struct rb_node *
433tree_search_for_insert(struct extent_io_tree *tree,
434 u64 offset,
435 struct rb_node ***p_ret,
436 struct rb_node **parent_ret)
437{
438 struct rb_node *next= NULL;
439 struct rb_node *ret;
440
441 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
442 if (!ret)
443 return next;
444 return ret;
445}
446
447static inline struct rb_node *tree_search(struct extent_io_tree *tree,
448 u64 offset)
449{
450 return tree_search_for_insert(tree, offset, NULL, NULL);
451}
452
453/*
454 * utility function to look for merge candidates inside a given range.
455 * Any extents with matching state are merged together into a single
456 * extent in the tree. Extents with EXTENT_IO in their state field
457 * are not merged because the end_io handlers need to be able to do
458 * operations on them without sleeping (or doing allocations/splits).
459 *
460 * This should be called with the tree lock held.
461 */
462static void merge_state(struct extent_io_tree *tree,
463 struct extent_state *state)
464{
465 struct extent_state *other;
466 struct rb_node *other_node;
467
468 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
469 return;
470
471 other_node = rb_prev(&state->rb_node);
472 if (other_node) {
473 other = rb_entry(other_node, struct extent_state, rb_node);
474 if (other->end == state->start - 1 &&
475 other->state == state->state) {
476 if (tree->private_data &&
477 is_data_inode(tree->private_data))
478 btrfs_merge_delalloc_extent(tree->private_data,
479 state, other);
480 state->start = other->start;
481 rb_erase(&other->rb_node, &tree->state);
482 RB_CLEAR_NODE(&other->rb_node);
483 free_extent_state(other);
484 }
485 }
486 other_node = rb_next(&state->rb_node);
487 if (other_node) {
488 other = rb_entry(other_node, struct extent_state, rb_node);
489 if (other->start == state->end + 1 &&
490 other->state == state->state) {
491 if (tree->private_data &&
492 is_data_inode(tree->private_data))
493 btrfs_merge_delalloc_extent(tree->private_data,
494 state, other);
495 state->end = other->end;
496 rb_erase(&other->rb_node, &tree->state);
497 RB_CLEAR_NODE(&other->rb_node);
498 free_extent_state(other);
499 }
500 }
501}
502
503static void set_state_bits(struct extent_io_tree *tree,
504 struct extent_state *state, unsigned *bits,
505 struct extent_changeset *changeset);
506
507/*
508 * insert an extent_state struct into the tree. 'bits' are set on the
509 * struct before it is inserted.
510 *
511 * This may return -EEXIST if the extent is already there, in which case the
512 * state struct is freed.
513 *
514 * The tree lock is not taken internally. This is a utility function and
515 * probably isn't what you want to call (see set/clear_extent_bit).
516 */
517static int insert_state(struct extent_io_tree *tree,
518 struct extent_state *state, u64 start, u64 end,
519 struct rb_node ***p,
520 struct rb_node **parent,
521 unsigned *bits, struct extent_changeset *changeset)
522{
523 struct rb_node *node;
524
525 if (end < start) {
526 btrfs_err(tree->fs_info,
527 "insert state: end < start %llu %llu", end, start);
528 WARN_ON(1);
529 }
530 state->start = start;
531 state->end = end;
532
533 set_state_bits(tree, state, bits, changeset);
534
535 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
536 if (node) {
537 struct extent_state *found;
538 found = rb_entry(node, struct extent_state, rb_node);
539 btrfs_err(tree->fs_info,
540 "found node %llu %llu on insert of %llu %llu",
541 found->start, found->end, start, end);
542 return -EEXIST;
543 }
544 merge_state(tree, state);
545 return 0;
546}
547
548/*
549 * split a given extent state struct in two, inserting the preallocated
550 * struct 'prealloc' as the newly created second half. 'split' indicates an
551 * offset inside 'orig' where it should be split.
552 *
553 * Before calling,
554 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
555 * are two extent state structs in the tree:
556 * prealloc: [orig->start, split - 1]
557 * orig: [ split, orig->end ]
558 *
559 * The tree locks are not taken by this function. They need to be held
560 * by the caller.
561 */
562static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
563 struct extent_state *prealloc, u64 split)
564{
565 struct rb_node *node;
566
567 if (tree->private_data && is_data_inode(tree->private_data))
568 btrfs_split_delalloc_extent(tree->private_data, orig, split);
569
570 prealloc->start = orig->start;
571 prealloc->end = split - 1;
572 prealloc->state = orig->state;
573 orig->start = split;
574
575 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
576 &prealloc->rb_node, NULL, NULL);
577 if (node) {
578 free_extent_state(prealloc);
579 return -EEXIST;
580 }
581 return 0;
582}
583
584static struct extent_state *next_state(struct extent_state *state)
585{
586 struct rb_node *next = rb_next(&state->rb_node);
587 if (next)
588 return rb_entry(next, struct extent_state, rb_node);
589 else
590 return NULL;
591}
592
593/*
594 * utility function to clear some bits in an extent state struct.
595 * it will optionally wake up anyone waiting on this state (wake == 1).
596 *
597 * If no bits are set on the state struct after clearing things, the
598 * struct is freed and removed from the tree
599 */
600static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
601 struct extent_state *state,
602 unsigned *bits, int wake,
603 struct extent_changeset *changeset)
604{
605 struct extent_state *next;
606 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
607 int ret;
608
609 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
610 u64 range = state->end - state->start + 1;
611 WARN_ON(range > tree->dirty_bytes);
612 tree->dirty_bytes -= range;
613 }
614
615 if (tree->private_data && is_data_inode(tree->private_data))
616 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
617
618 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
619 BUG_ON(ret < 0);
620 state->state &= ~bits_to_clear;
621 if (wake)
622 wake_up(&state->wq);
623 if (state->state == 0) {
624 next = next_state(state);
625 if (extent_state_in_tree(state)) {
626 rb_erase(&state->rb_node, &tree->state);
627 RB_CLEAR_NODE(&state->rb_node);
628 free_extent_state(state);
629 } else {
630 WARN_ON(1);
631 }
632 } else {
633 merge_state(tree, state);
634 next = next_state(state);
635 }
636 return next;
637}
638
639static struct extent_state *
640alloc_extent_state_atomic(struct extent_state *prealloc)
641{
642 if (!prealloc)
643 prealloc = alloc_extent_state(GFP_ATOMIC);
644
645 return prealloc;
646}
647
648static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
649{
650 struct inode *inode = tree->private_data;
651
652 btrfs_panic(btrfs_sb(inode->i_sb), err,
653 "locking error: extent tree was modified by another thread while locked");
654}
655
656/*
657 * clear some bits on a range in the tree. This may require splitting
658 * or inserting elements in the tree, so the gfp mask is used to
659 * indicate which allocations or sleeping are allowed.
660 *
661 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
662 * the given range from the tree regardless of state (ie for truncate).
663 *
664 * the range [start, end] is inclusive.
665 *
666 * This takes the tree lock, and returns 0 on success and < 0 on error.
667 */
668int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
669 unsigned bits, int wake, int delete,
670 struct extent_state **cached_state,
671 gfp_t mask, struct extent_changeset *changeset)
672{
673 struct extent_state *state;
674 struct extent_state *cached;
675 struct extent_state *prealloc = NULL;
676 struct rb_node *node;
677 u64 last_end;
678 int err;
679 int clear = 0;
680
681 btrfs_debug_check_extent_io_range(tree, start, end);
682 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
683
684 if (bits & EXTENT_DELALLOC)
685 bits |= EXTENT_NORESERVE;
686
687 if (delete)
688 bits |= ~EXTENT_CTLBITS;
689
690 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
691 clear = 1;
692again:
693 if (!prealloc && gfpflags_allow_blocking(mask)) {
694 /*
695 * Don't care for allocation failure here because we might end
696 * up not needing the pre-allocated extent state at all, which
697 * is the case if we only have in the tree extent states that
698 * cover our input range and don't cover too any other range.
699 * If we end up needing a new extent state we allocate it later.
700 */
701 prealloc = alloc_extent_state(mask);
702 }
703
704 spin_lock(&tree->lock);
705 if (cached_state) {
706 cached = *cached_state;
707
708 if (clear) {
709 *cached_state = NULL;
710 cached_state = NULL;
711 }
712
713 if (cached && extent_state_in_tree(cached) &&
714 cached->start <= start && cached->end > start) {
715 if (clear)
716 refcount_dec(&cached->refs);
717 state = cached;
718 goto hit_next;
719 }
720 if (clear)
721 free_extent_state(cached);
722 }
723 /*
724 * this search will find the extents that end after
725 * our range starts
726 */
727 node = tree_search(tree, start);
728 if (!node)
729 goto out;
730 state = rb_entry(node, struct extent_state, rb_node);
731hit_next:
732 if (state->start > end)
733 goto out;
734 WARN_ON(state->end < start);
735 last_end = state->end;
736
737 /* the state doesn't have the wanted bits, go ahead */
738 if (!(state->state & bits)) {
739 state = next_state(state);
740 goto next;
741 }
742
743 /*
744 * | ---- desired range ---- |
745 * | state | or
746 * | ------------- state -------------- |
747 *
748 * We need to split the extent we found, and may flip
749 * bits on second half.
750 *
751 * If the extent we found extends past our range, we
752 * just split and search again. It'll get split again
753 * the next time though.
754 *
755 * If the extent we found is inside our range, we clear
756 * the desired bit on it.
757 */
758
759 if (state->start < start) {
760 prealloc = alloc_extent_state_atomic(prealloc);
761 BUG_ON(!prealloc);
762 err = split_state(tree, state, prealloc, start);
763 if (err)
764 extent_io_tree_panic(tree, err);
765
766 prealloc = NULL;
767 if (err)
768 goto out;
769 if (state->end <= end) {
770 state = clear_state_bit(tree, state, &bits, wake,
771 changeset);
772 goto next;
773 }
774 goto search_again;
775 }
776 /*
777 * | ---- desired range ---- |
778 * | state |
779 * We need to split the extent, and clear the bit
780 * on the first half
781 */
782 if (state->start <= end && state->end > end) {
783 prealloc = alloc_extent_state_atomic(prealloc);
784 BUG_ON(!prealloc);
785 err = split_state(tree, state, prealloc, end + 1);
786 if (err)
787 extent_io_tree_panic(tree, err);
788
789 if (wake)
790 wake_up(&state->wq);
791
792 clear_state_bit(tree, prealloc, &bits, wake, changeset);
793
794 prealloc = NULL;
795 goto out;
796 }
797
798 state = clear_state_bit(tree, state, &bits, wake, changeset);
799next:
800 if (last_end == (u64)-1)
801 goto out;
802 start = last_end + 1;
803 if (start <= end && state && !need_resched())
804 goto hit_next;
805
806search_again:
807 if (start > end)
808 goto out;
809 spin_unlock(&tree->lock);
810 if (gfpflags_allow_blocking(mask))
811 cond_resched();
812 goto again;
813
814out:
815 spin_unlock(&tree->lock);
816 if (prealloc)
817 free_extent_state(prealloc);
818
819 return 0;
820
821}
822
823static void wait_on_state(struct extent_io_tree *tree,
824 struct extent_state *state)
825 __releases(tree->lock)
826 __acquires(tree->lock)
827{
828 DEFINE_WAIT(wait);
829 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
830 spin_unlock(&tree->lock);
831 schedule();
832 spin_lock(&tree->lock);
833 finish_wait(&state->wq, &wait);
834}
835
836/*
837 * waits for one or more bits to clear on a range in the state tree.
838 * The range [start, end] is inclusive.
839 * The tree lock is taken by this function
840 */
841static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
842 unsigned long bits)
843{
844 struct extent_state *state;
845 struct rb_node *node;
846
847 btrfs_debug_check_extent_io_range(tree, start, end);
848
849 spin_lock(&tree->lock);
850again:
851 while (1) {
852 /*
853 * this search will find all the extents that end after
854 * our range starts
855 */
856 node = tree_search(tree, start);
857process_node:
858 if (!node)
859 break;
860
861 state = rb_entry(node, struct extent_state, rb_node);
862
863 if (state->start > end)
864 goto out;
865
866 if (state->state & bits) {
867 start = state->start;
868 refcount_inc(&state->refs);
869 wait_on_state(tree, state);
870 free_extent_state(state);
871 goto again;
872 }
873 start = state->end + 1;
874
875 if (start > end)
876 break;
877
878 if (!cond_resched_lock(&tree->lock)) {
879 node = rb_next(node);
880 goto process_node;
881 }
882 }
883out:
884 spin_unlock(&tree->lock);
885}
886
887static void set_state_bits(struct extent_io_tree *tree,
888 struct extent_state *state,
889 unsigned *bits, struct extent_changeset *changeset)
890{
891 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
892 int ret;
893
894 if (tree->private_data && is_data_inode(tree->private_data))
895 btrfs_set_delalloc_extent(tree->private_data, state, bits);
896
897 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
898 u64 range = state->end - state->start + 1;
899 tree->dirty_bytes += range;
900 }
901 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
902 BUG_ON(ret < 0);
903 state->state |= bits_to_set;
904}
905
906static void cache_state_if_flags(struct extent_state *state,
907 struct extent_state **cached_ptr,
908 unsigned flags)
909{
910 if (cached_ptr && !(*cached_ptr)) {
911 if (!flags || (state->state & flags)) {
912 *cached_ptr = state;
913 refcount_inc(&state->refs);
914 }
915 }
916}
917
918static void cache_state(struct extent_state *state,
919 struct extent_state **cached_ptr)
920{
921 return cache_state_if_flags(state, cached_ptr,
922 EXTENT_LOCKED | EXTENT_BOUNDARY);
923}
924
925/*
926 * set some bits on a range in the tree. This may require allocations or
927 * sleeping, so the gfp mask is used to indicate what is allowed.
928 *
929 * If any of the exclusive bits are set, this will fail with -EEXIST if some
930 * part of the range already has the desired bits set. The start of the
931 * existing range is returned in failed_start in this case.
932 *
933 * [start, end] is inclusive This takes the tree lock.
934 */
935
936static int __must_check
937__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
938 unsigned bits, unsigned exclusive_bits,
939 u64 *failed_start, struct extent_state **cached_state,
940 gfp_t mask, struct extent_changeset *changeset)
941{
942 struct extent_state *state;
943 struct extent_state *prealloc = NULL;
944 struct rb_node *node;
945 struct rb_node **p;
946 struct rb_node *parent;
947 int err = 0;
948 u64 last_start;
949 u64 last_end;
950
951 btrfs_debug_check_extent_io_range(tree, start, end);
952 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
953
954again:
955 if (!prealloc && gfpflags_allow_blocking(mask)) {
956 /*
957 * Don't care for allocation failure here because we might end
958 * up not needing the pre-allocated extent state at all, which
959 * is the case if we only have in the tree extent states that
960 * cover our input range and don't cover too any other range.
961 * If we end up needing a new extent state we allocate it later.
962 */
963 prealloc = alloc_extent_state(mask);
964 }
965
966 spin_lock(&tree->lock);
967 if (cached_state && *cached_state) {
968 state = *cached_state;
969 if (state->start <= start && state->end > start &&
970 extent_state_in_tree(state)) {
971 node = &state->rb_node;
972 goto hit_next;
973 }
974 }
975 /*
976 * this search will find all the extents that end after
977 * our range starts.
978 */
979 node = tree_search_for_insert(tree, start, &p, &parent);
980 if (!node) {
981 prealloc = alloc_extent_state_atomic(prealloc);
982 BUG_ON(!prealloc);
983 err = insert_state(tree, prealloc, start, end,
984 &p, &parent, &bits, changeset);
985 if (err)
986 extent_io_tree_panic(tree, err);
987
988 cache_state(prealloc, cached_state);
989 prealloc = NULL;
990 goto out;
991 }
992 state = rb_entry(node, struct extent_state, rb_node);
993hit_next:
994 last_start = state->start;
995 last_end = state->end;
996
997 /*
998 * | ---- desired range ---- |
999 * | state |
1000 *
1001 * Just lock what we found and keep going
1002 */
1003 if (state->start == start && state->end <= end) {
1004 if (state->state & exclusive_bits) {
1005 *failed_start = state->start;
1006 err = -EEXIST;
1007 goto out;
1008 }
1009
1010 set_state_bits(tree, state, &bits, changeset);
1011 cache_state(state, cached_state);
1012 merge_state(tree, state);
1013 if (last_end == (u64)-1)
1014 goto out;
1015 start = last_end + 1;
1016 state = next_state(state);
1017 if (start < end && state && state->start == start &&
1018 !need_resched())
1019 goto hit_next;
1020 goto search_again;
1021 }
1022
1023 /*
1024 * | ---- desired range ---- |
1025 * | state |
1026 * or
1027 * | ------------- state -------------- |
1028 *
1029 * We need to split the extent we found, and may flip bits on
1030 * second half.
1031 *
1032 * If the extent we found extends past our
1033 * range, we just split and search again. It'll get split
1034 * again the next time though.
1035 *
1036 * If the extent we found is inside our range, we set the
1037 * desired bit on it.
1038 */
1039 if (state->start < start) {
1040 if (state->state & exclusive_bits) {
1041 *failed_start = start;
1042 err = -EEXIST;
1043 goto out;
1044 }
1045
1046 prealloc = alloc_extent_state_atomic(prealloc);
1047 BUG_ON(!prealloc);
1048 err = split_state(tree, state, prealloc, start);
1049 if (err)
1050 extent_io_tree_panic(tree, err);
1051
1052 prealloc = NULL;
1053 if (err)
1054 goto out;
1055 if (state->end <= end) {
1056 set_state_bits(tree, state, &bits, changeset);
1057 cache_state(state, cached_state);
1058 merge_state(tree, state);
1059 if (last_end == (u64)-1)
1060 goto out;
1061 start = last_end + 1;
1062 state = next_state(state);
1063 if (start < end && state && state->start == start &&
1064 !need_resched())
1065 goto hit_next;
1066 }
1067 goto search_again;
1068 }
1069 /*
1070 * | ---- desired range ---- |
1071 * | state | or | state |
1072 *
1073 * There's a hole, we need to insert something in it and
1074 * ignore the extent we found.
1075 */
1076 if (state->start > start) {
1077 u64 this_end;
1078 if (end < last_start)
1079 this_end = end;
1080 else
1081 this_end = last_start - 1;
1082
1083 prealloc = alloc_extent_state_atomic(prealloc);
1084 BUG_ON(!prealloc);
1085
1086 /*
1087 * Avoid to free 'prealloc' if it can be merged with
1088 * the later extent.
1089 */
1090 err = insert_state(tree, prealloc, start, this_end,
1091 NULL, NULL, &bits, changeset);
1092 if (err)
1093 extent_io_tree_panic(tree, err);
1094
1095 cache_state(prealloc, cached_state);
1096 prealloc = NULL;
1097 start = this_end + 1;
1098 goto search_again;
1099 }
1100 /*
1101 * | ---- desired range ---- |
1102 * | state |
1103 * We need to split the extent, and set the bit
1104 * on the first half
1105 */
1106 if (state->start <= end && state->end > end) {
1107 if (state->state & exclusive_bits) {
1108 *failed_start = start;
1109 err = -EEXIST;
1110 goto out;
1111 }
1112
1113 prealloc = alloc_extent_state_atomic(prealloc);
1114 BUG_ON(!prealloc);
1115 err = split_state(tree, state, prealloc, end + 1);
1116 if (err)
1117 extent_io_tree_panic(tree, err);
1118
1119 set_state_bits(tree, prealloc, &bits, changeset);
1120 cache_state(prealloc, cached_state);
1121 merge_state(tree, prealloc);
1122 prealloc = NULL;
1123 goto out;
1124 }
1125
1126search_again:
1127 if (start > end)
1128 goto out;
1129 spin_unlock(&tree->lock);
1130 if (gfpflags_allow_blocking(mask))
1131 cond_resched();
1132 goto again;
1133
1134out:
1135 spin_unlock(&tree->lock);
1136 if (prealloc)
1137 free_extent_state(prealloc);
1138
1139 return err;
1140
1141}
1142
1143int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1144 unsigned bits, u64 * failed_start,
1145 struct extent_state **cached_state, gfp_t mask)
1146{
1147 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1148 cached_state, mask, NULL);
1149}
1150
1151
1152/**
1153 * convert_extent_bit - convert all bits in a given range from one bit to
1154 * another
1155 * @tree: the io tree to search
1156 * @start: the start offset in bytes
1157 * @end: the end offset in bytes (inclusive)
1158 * @bits: the bits to set in this range
1159 * @clear_bits: the bits to clear in this range
1160 * @cached_state: state that we're going to cache
1161 *
1162 * This will go through and set bits for the given range. If any states exist
1163 * already in this range they are set with the given bit and cleared of the
1164 * clear_bits. This is only meant to be used by things that are mergeable, ie
1165 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1166 * boundary bits like LOCK.
1167 *
1168 * All allocations are done with GFP_NOFS.
1169 */
1170int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1171 unsigned bits, unsigned clear_bits,
1172 struct extent_state **cached_state)
1173{
1174 struct extent_state *state;
1175 struct extent_state *prealloc = NULL;
1176 struct rb_node *node;
1177 struct rb_node **p;
1178 struct rb_node *parent;
1179 int err = 0;
1180 u64 last_start;
1181 u64 last_end;
1182 bool first_iteration = true;
1183
1184 btrfs_debug_check_extent_io_range(tree, start, end);
1185 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1186 clear_bits);
1187
1188again:
1189 if (!prealloc) {
1190 /*
1191 * Best effort, don't worry if extent state allocation fails
1192 * here for the first iteration. We might have a cached state
1193 * that matches exactly the target range, in which case no
1194 * extent state allocations are needed. We'll only know this
1195 * after locking the tree.
1196 */
1197 prealloc = alloc_extent_state(GFP_NOFS);
1198 if (!prealloc && !first_iteration)
1199 return -ENOMEM;
1200 }
1201
1202 spin_lock(&tree->lock);
1203 if (cached_state && *cached_state) {
1204 state = *cached_state;
1205 if (state->start <= start && state->end > start &&
1206 extent_state_in_tree(state)) {
1207 node = &state->rb_node;
1208 goto hit_next;
1209 }
1210 }
1211
1212 /*
1213 * this search will find all the extents that end after
1214 * our range starts.
1215 */
1216 node = tree_search_for_insert(tree, start, &p, &parent);
1217 if (!node) {
1218 prealloc = alloc_extent_state_atomic(prealloc);
1219 if (!prealloc) {
1220 err = -ENOMEM;
1221 goto out;
1222 }
1223 err = insert_state(tree, prealloc, start, end,
1224 &p, &parent, &bits, NULL);
1225 if (err)
1226 extent_io_tree_panic(tree, err);
1227 cache_state(prealloc, cached_state);
1228 prealloc = NULL;
1229 goto out;
1230 }
1231 state = rb_entry(node, struct extent_state, rb_node);
1232hit_next:
1233 last_start = state->start;
1234 last_end = state->end;
1235
1236 /*
1237 * | ---- desired range ---- |
1238 * | state |
1239 *
1240 * Just lock what we found and keep going
1241 */
1242 if (state->start == start && state->end <= end) {
1243 set_state_bits(tree, state, &bits, NULL);
1244 cache_state(state, cached_state);
1245 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1246 if (last_end == (u64)-1)
1247 goto out;
1248 start = last_end + 1;
1249 if (start < end && state && state->start == start &&
1250 !need_resched())
1251 goto hit_next;
1252 goto search_again;
1253 }
1254
1255 /*
1256 * | ---- desired range ---- |
1257 * | state |
1258 * or
1259 * | ------------- state -------------- |
1260 *
1261 * We need to split the extent we found, and may flip bits on
1262 * second half.
1263 *
1264 * If the extent we found extends past our
1265 * range, we just split and search again. It'll get split
1266 * again the next time though.
1267 *
1268 * If the extent we found is inside our range, we set the
1269 * desired bit on it.
1270 */
1271 if (state->start < start) {
1272 prealloc = alloc_extent_state_atomic(prealloc);
1273 if (!prealloc) {
1274 err = -ENOMEM;
1275 goto out;
1276 }
1277 err = split_state(tree, state, prealloc, start);
1278 if (err)
1279 extent_io_tree_panic(tree, err);
1280 prealloc = NULL;
1281 if (err)
1282 goto out;
1283 if (state->end <= end) {
1284 set_state_bits(tree, state, &bits, NULL);
1285 cache_state(state, cached_state);
1286 state = clear_state_bit(tree, state, &clear_bits, 0,
1287 NULL);
1288 if (last_end == (u64)-1)
1289 goto out;
1290 start = last_end + 1;
1291 if (start < end && state && state->start == start &&
1292 !need_resched())
1293 goto hit_next;
1294 }
1295 goto search_again;
1296 }
1297 /*
1298 * | ---- desired range ---- |
1299 * | state | or | state |
1300 *
1301 * There's a hole, we need to insert something in it and
1302 * ignore the extent we found.
1303 */
1304 if (state->start > start) {
1305 u64 this_end;
1306 if (end < last_start)
1307 this_end = end;
1308 else
1309 this_end = last_start - 1;
1310
1311 prealloc = alloc_extent_state_atomic(prealloc);
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
1316
1317 /*
1318 * Avoid to free 'prealloc' if it can be merged with
1319 * the later extent.
1320 */
1321 err = insert_state(tree, prealloc, start, this_end,
1322 NULL, NULL, &bits, NULL);
1323 if (err)
1324 extent_io_tree_panic(tree, err);
1325 cache_state(prealloc, cached_state);
1326 prealloc = NULL;
1327 start = this_end + 1;
1328 goto search_again;
1329 }
1330 /*
1331 * | ---- desired range ---- |
1332 * | state |
1333 * We need to split the extent, and set the bit
1334 * on the first half
1335 */
1336 if (state->start <= end && state->end > end) {
1337 prealloc = alloc_extent_state_atomic(prealloc);
1338 if (!prealloc) {
1339 err = -ENOMEM;
1340 goto out;
1341 }
1342
1343 err = split_state(tree, state, prealloc, end + 1);
1344 if (err)
1345 extent_io_tree_panic(tree, err);
1346
1347 set_state_bits(tree, prealloc, &bits, NULL);
1348 cache_state(prealloc, cached_state);
1349 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1350 prealloc = NULL;
1351 goto out;
1352 }
1353
1354search_again:
1355 if (start > end)
1356 goto out;
1357 spin_unlock(&tree->lock);
1358 cond_resched();
1359 first_iteration = false;
1360 goto again;
1361
1362out:
1363 spin_unlock(&tree->lock);
1364 if (prealloc)
1365 free_extent_state(prealloc);
1366
1367 return err;
1368}
1369
1370/* wrappers around set/clear extent bit */
1371int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1372 unsigned bits, struct extent_changeset *changeset)
1373{
1374 /*
1375 * We don't support EXTENT_LOCKED yet, as current changeset will
1376 * record any bits changed, so for EXTENT_LOCKED case, it will
1377 * either fail with -EEXIST or changeset will record the whole
1378 * range.
1379 */
1380 BUG_ON(bits & EXTENT_LOCKED);
1381
1382 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1383 changeset);
1384}
1385
1386int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1387 unsigned bits)
1388{
1389 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1390 GFP_NOWAIT, NULL);
1391}
1392
1393int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1394 unsigned bits, int wake, int delete,
1395 struct extent_state **cached)
1396{
1397 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1398 cached, GFP_NOFS, NULL);
1399}
1400
1401int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1402 unsigned bits, struct extent_changeset *changeset)
1403{
1404 /*
1405 * Don't support EXTENT_LOCKED case, same reason as
1406 * set_record_extent_bits().
1407 */
1408 BUG_ON(bits & EXTENT_LOCKED);
1409
1410 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1411 changeset);
1412}
1413
1414/*
1415 * either insert or lock state struct between start and end use mask to tell
1416 * us if waiting is desired.
1417 */
1418int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419 struct extent_state **cached_state)
1420{
1421 int err;
1422 u64 failed_start;
1423
1424 while (1) {
1425 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1426 EXTENT_LOCKED, &failed_start,
1427 cached_state, GFP_NOFS, NULL);
1428 if (err == -EEXIST) {
1429 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1430 start = failed_start;
1431 } else
1432 break;
1433 WARN_ON(start > end);
1434 }
1435 return err;
1436}
1437
1438int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1439{
1440 int err;
1441 u64 failed_start;
1442
1443 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1444 &failed_start, NULL, GFP_NOFS, NULL);
1445 if (err == -EEXIST) {
1446 if (failed_start > start)
1447 clear_extent_bit(tree, start, failed_start - 1,
1448 EXTENT_LOCKED, 1, 0, NULL);
1449 return 0;
1450 }
1451 return 1;
1452}
1453
1454void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455{
1456 unsigned long index = start >> PAGE_SHIFT;
1457 unsigned long end_index = end >> PAGE_SHIFT;
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 put_page(page);
1465 index++;
1466 }
1467}
1468
1469void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470{
1471 unsigned long index = start >> PAGE_SHIFT;
1472 unsigned long end_index = end >> PAGE_SHIFT;
1473 struct page *page;
1474
1475 while (index <= end_index) {
1476 page = find_get_page(inode->i_mapping, index);
1477 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478 __set_page_dirty_nobuffers(page);
1479 account_page_redirty(page);
1480 put_page(page);
1481 index++;
1482 }
1483}
1484
1485/* find the first state struct with 'bits' set after 'start', and
1486 * return it. tree->lock must be held. NULL will returned if
1487 * nothing was found after 'start'
1488 */
1489static struct extent_state *
1490find_first_extent_bit_state(struct extent_io_tree *tree,
1491 u64 start, unsigned bits)
1492{
1493 struct rb_node *node;
1494 struct extent_state *state;
1495
1496 /*
1497 * this search will find all the extents that end after
1498 * our range starts.
1499 */
1500 node = tree_search(tree, start);
1501 if (!node)
1502 goto out;
1503
1504 while (1) {
1505 state = rb_entry(node, struct extent_state, rb_node);
1506 if (state->end >= start && (state->state & bits))
1507 return state;
1508
1509 node = rb_next(node);
1510 if (!node)
1511 break;
1512 }
1513out:
1514 return NULL;
1515}
1516
1517/*
1518 * find the first offset in the io tree with 'bits' set. zero is
1519 * returned if we find something, and *start_ret and *end_ret are
1520 * set to reflect the state struct that was found.
1521 *
1522 * If nothing was found, 1 is returned. If found something, return 0.
1523 */
1524int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1525 u64 *start_ret, u64 *end_ret, unsigned bits,
1526 struct extent_state **cached_state)
1527{
1528 struct extent_state *state;
1529 int ret = 1;
1530
1531 spin_lock(&tree->lock);
1532 if (cached_state && *cached_state) {
1533 state = *cached_state;
1534 if (state->end == start - 1 && extent_state_in_tree(state)) {
1535 while ((state = next_state(state)) != NULL) {
1536 if (state->state & bits)
1537 goto got_it;
1538 }
1539 free_extent_state(*cached_state);
1540 *cached_state = NULL;
1541 goto out;
1542 }
1543 free_extent_state(*cached_state);
1544 *cached_state = NULL;
1545 }
1546
1547 state = find_first_extent_bit_state(tree, start, bits);
1548got_it:
1549 if (state) {
1550 cache_state_if_flags(state, cached_state, 0);
1551 *start_ret = state->start;
1552 *end_ret = state->end;
1553 ret = 0;
1554 }
1555out:
1556 spin_unlock(&tree->lock);
1557 return ret;
1558}
1559
1560/**
1561 * find_first_clear_extent_bit - find the first range that has @bits not set.
1562 * This range could start before @start.
1563 *
1564 * @tree - the tree to search
1565 * @start - the offset at/after which the found extent should start
1566 * @start_ret - records the beginning of the range
1567 * @end_ret - records the end of the range (inclusive)
1568 * @bits - the set of bits which must be unset
1569 *
1570 * Since unallocated range is also considered one which doesn't have the bits
1571 * set it's possible that @end_ret contains -1, this happens in case the range
1572 * spans (last_range_end, end of device]. In this case it's up to the caller to
1573 * trim @end_ret to the appropriate size.
1574 */
1575void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1576 u64 *start_ret, u64 *end_ret, unsigned bits)
1577{
1578 struct extent_state *state;
1579 struct rb_node *node, *prev = NULL, *next;
1580
1581 spin_lock(&tree->lock);
1582
1583 /* Find first extent with bits cleared */
1584 while (1) {
1585 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1586 if (!node) {
1587 node = next;
1588 if (!node) {
1589 /*
1590 * We are past the last allocated chunk,
1591 * set start at the end of the last extent. The
1592 * device alloc tree should never be empty so
1593 * prev is always set.
1594 */
1595 ASSERT(prev);
1596 state = rb_entry(prev, struct extent_state, rb_node);
1597 *start_ret = state->end + 1;
1598 *end_ret = -1;
1599 goto out;
1600 }
1601 }
1602 /*
1603 * At this point 'node' either contains 'start' or start is
1604 * before 'node'
1605 */
1606 state = rb_entry(node, struct extent_state, rb_node);
1607
1608 if (in_range(start, state->start, state->end - state->start + 1)) {
1609 if (state->state & bits) {
1610 /*
1611 * |--range with bits sets--|
1612 * |
1613 * start
1614 */
1615 start = state->end + 1;
1616 } else {
1617 /*
1618 * 'start' falls within a range that doesn't
1619 * have the bits set, so take its start as
1620 * the beginning of the desired range
1621 *
1622 * |--range with bits cleared----|
1623 * |
1624 * start
1625 */
1626 *start_ret = state->start;
1627 break;
1628 }
1629 } else {
1630 /*
1631 * |---prev range---|---hole/unset---|---node range---|
1632 * |
1633 * start
1634 *
1635 * or
1636 *
1637 * |---hole/unset--||--first node--|
1638 * 0 |
1639 * start
1640 */
1641 if (prev) {
1642 state = rb_entry(prev, struct extent_state,
1643 rb_node);
1644 *start_ret = state->end + 1;
1645 } else {
1646 *start_ret = 0;
1647 }
1648 break;
1649 }
1650 }
1651
1652 /*
1653 * Find the longest stretch from start until an entry which has the
1654 * bits set
1655 */
1656 while (1) {
1657 state = rb_entry(node, struct extent_state, rb_node);
1658 if (state->end >= start && !(state->state & bits)) {
1659 *end_ret = state->end;
1660 } else {
1661 *end_ret = state->start - 1;
1662 break;
1663 }
1664
1665 node = rb_next(node);
1666 if (!node)
1667 break;
1668 }
1669out:
1670 spin_unlock(&tree->lock);
1671}
1672
1673/*
1674 * find a contiguous range of bytes in the file marked as delalloc, not
1675 * more than 'max_bytes'. start and end are used to return the range,
1676 *
1677 * true is returned if we find something, false if nothing was in the tree
1678 */
1679static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1680 u64 *start, u64 *end, u64 max_bytes,
1681 struct extent_state **cached_state)
1682{
1683 struct rb_node *node;
1684 struct extent_state *state;
1685 u64 cur_start = *start;
1686 bool found = false;
1687 u64 total_bytes = 0;
1688
1689 spin_lock(&tree->lock);
1690
1691 /*
1692 * this search will find all the extents that end after
1693 * our range starts.
1694 */
1695 node = tree_search(tree, cur_start);
1696 if (!node) {
1697 *end = (u64)-1;
1698 goto out;
1699 }
1700
1701 while (1) {
1702 state = rb_entry(node, struct extent_state, rb_node);
1703 if (found && (state->start != cur_start ||
1704 (state->state & EXTENT_BOUNDARY))) {
1705 goto out;
1706 }
1707 if (!(state->state & EXTENT_DELALLOC)) {
1708 if (!found)
1709 *end = state->end;
1710 goto out;
1711 }
1712 if (!found) {
1713 *start = state->start;
1714 *cached_state = state;
1715 refcount_inc(&state->refs);
1716 }
1717 found = true;
1718 *end = state->end;
1719 cur_start = state->end + 1;
1720 node = rb_next(node);
1721 total_bytes += state->end - state->start + 1;
1722 if (total_bytes >= max_bytes)
1723 break;
1724 if (!node)
1725 break;
1726 }
1727out:
1728 spin_unlock(&tree->lock);
1729 return found;
1730}
1731
1732static int __process_pages_contig(struct address_space *mapping,
1733 struct page *locked_page,
1734 pgoff_t start_index, pgoff_t end_index,
1735 unsigned long page_ops, pgoff_t *index_ret);
1736
1737static noinline void __unlock_for_delalloc(struct inode *inode,
1738 struct page *locked_page,
1739 u64 start, u64 end)
1740{
1741 unsigned long index = start >> PAGE_SHIFT;
1742 unsigned long end_index = end >> PAGE_SHIFT;
1743
1744 ASSERT(locked_page);
1745 if (index == locked_page->index && end_index == index)
1746 return;
1747
1748 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1749 PAGE_UNLOCK, NULL);
1750}
1751
1752static noinline int lock_delalloc_pages(struct inode *inode,
1753 struct page *locked_page,
1754 u64 delalloc_start,
1755 u64 delalloc_end)
1756{
1757 unsigned long index = delalloc_start >> PAGE_SHIFT;
1758 unsigned long index_ret = index;
1759 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1760 int ret;
1761
1762 ASSERT(locked_page);
1763 if (index == locked_page->index && index == end_index)
1764 return 0;
1765
1766 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1767 end_index, PAGE_LOCK, &index_ret);
1768 if (ret == -EAGAIN)
1769 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1770 (u64)index_ret << PAGE_SHIFT);
1771 return ret;
1772}
1773
1774/*
1775 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1776 * more than @max_bytes. @Start and @end are used to return the range,
1777 *
1778 * Return: true if we find something
1779 * false if nothing was in the tree
1780 */
1781EXPORT_FOR_TESTS
1782noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1783 struct page *locked_page, u64 *start,
1784 u64 *end)
1785{
1786 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1787 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1788 u64 delalloc_start;
1789 u64 delalloc_end;
1790 bool found;
1791 struct extent_state *cached_state = NULL;
1792 int ret;
1793 int loops = 0;
1794
1795again:
1796 /* step one, find a bunch of delalloc bytes starting at start */
1797 delalloc_start = *start;
1798 delalloc_end = 0;
1799 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1800 max_bytes, &cached_state);
1801 if (!found || delalloc_end <= *start) {
1802 *start = delalloc_start;
1803 *end = delalloc_end;
1804 free_extent_state(cached_state);
1805 return false;
1806 }
1807
1808 /*
1809 * start comes from the offset of locked_page. We have to lock
1810 * pages in order, so we can't process delalloc bytes before
1811 * locked_page
1812 */
1813 if (delalloc_start < *start)
1814 delalloc_start = *start;
1815
1816 /*
1817 * make sure to limit the number of pages we try to lock down
1818 */
1819 if (delalloc_end + 1 - delalloc_start > max_bytes)
1820 delalloc_end = delalloc_start + max_bytes - 1;
1821
1822 /* step two, lock all the pages after the page that has start */
1823 ret = lock_delalloc_pages(inode, locked_page,
1824 delalloc_start, delalloc_end);
1825 ASSERT(!ret || ret == -EAGAIN);
1826 if (ret == -EAGAIN) {
1827 /* some of the pages are gone, lets avoid looping by
1828 * shortening the size of the delalloc range we're searching
1829 */
1830 free_extent_state(cached_state);
1831 cached_state = NULL;
1832 if (!loops) {
1833 max_bytes = PAGE_SIZE;
1834 loops = 1;
1835 goto again;
1836 } else {
1837 found = false;
1838 goto out_failed;
1839 }
1840 }
1841
1842 /* step three, lock the state bits for the whole range */
1843 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1844
1845 /* then test to make sure it is all still delalloc */
1846 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1847 EXTENT_DELALLOC, 1, cached_state);
1848 if (!ret) {
1849 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1850 &cached_state);
1851 __unlock_for_delalloc(inode, locked_page,
1852 delalloc_start, delalloc_end);
1853 cond_resched();
1854 goto again;
1855 }
1856 free_extent_state(cached_state);
1857 *start = delalloc_start;
1858 *end = delalloc_end;
1859out_failed:
1860 return found;
1861}
1862
1863static int __process_pages_contig(struct address_space *mapping,
1864 struct page *locked_page,
1865 pgoff_t start_index, pgoff_t end_index,
1866 unsigned long page_ops, pgoff_t *index_ret)
1867{
1868 unsigned long nr_pages = end_index - start_index + 1;
1869 unsigned long pages_locked = 0;
1870 pgoff_t index = start_index;
1871 struct page *pages[16];
1872 unsigned ret;
1873 int err = 0;
1874 int i;
1875
1876 if (page_ops & PAGE_LOCK) {
1877 ASSERT(page_ops == PAGE_LOCK);
1878 ASSERT(index_ret && *index_ret == start_index);
1879 }
1880
1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882 mapping_set_error(mapping, -EIO);
1883
1884 while (nr_pages > 0) {
1885 ret = find_get_pages_contig(mapping, index,
1886 min_t(unsigned long,
1887 nr_pages, ARRAY_SIZE(pages)), pages);
1888 if (ret == 0) {
1889 /*
1890 * Only if we're going to lock these pages,
1891 * can we find nothing at @index.
1892 */
1893 ASSERT(page_ops & PAGE_LOCK);
1894 err = -EAGAIN;
1895 goto out;
1896 }
1897
1898 for (i = 0; i < ret; i++) {
1899 if (page_ops & PAGE_SET_PRIVATE2)
1900 SetPagePrivate2(pages[i]);
1901
1902 if (pages[i] == locked_page) {
1903 put_page(pages[i]);
1904 pages_locked++;
1905 continue;
1906 }
1907 if (page_ops & PAGE_CLEAR_DIRTY)
1908 clear_page_dirty_for_io(pages[i]);
1909 if (page_ops & PAGE_SET_WRITEBACK)
1910 set_page_writeback(pages[i]);
1911 if (page_ops & PAGE_SET_ERROR)
1912 SetPageError(pages[i]);
1913 if (page_ops & PAGE_END_WRITEBACK)
1914 end_page_writeback(pages[i]);
1915 if (page_ops & PAGE_UNLOCK)
1916 unlock_page(pages[i]);
1917 if (page_ops & PAGE_LOCK) {
1918 lock_page(pages[i]);
1919 if (!PageDirty(pages[i]) ||
1920 pages[i]->mapping != mapping) {
1921 unlock_page(pages[i]);
1922 put_page(pages[i]);
1923 err = -EAGAIN;
1924 goto out;
1925 }
1926 }
1927 put_page(pages[i]);
1928 pages_locked++;
1929 }
1930 nr_pages -= ret;
1931 index += ret;
1932 cond_resched();
1933 }
1934out:
1935 if (err && index_ret)
1936 *index_ret = start_index + pages_locked - 1;
1937 return err;
1938}
1939
1940void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1941 struct page *locked_page,
1942 unsigned clear_bits,
1943 unsigned long page_ops)
1944{
1945 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1946 NULL);
1947
1948 __process_pages_contig(inode->i_mapping, locked_page,
1949 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1950 page_ops, NULL);
1951}
1952
1953/*
1954 * count the number of bytes in the tree that have a given bit(s)
1955 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1956 * cached. The total number found is returned.
1957 */
1958u64 count_range_bits(struct extent_io_tree *tree,
1959 u64 *start, u64 search_end, u64 max_bytes,
1960 unsigned bits, int contig)
1961{
1962 struct rb_node *node;
1963 struct extent_state *state;
1964 u64 cur_start = *start;
1965 u64 total_bytes = 0;
1966 u64 last = 0;
1967 int found = 0;
1968
1969 if (WARN_ON(search_end <= cur_start))
1970 return 0;
1971
1972 spin_lock(&tree->lock);
1973 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1974 total_bytes = tree->dirty_bytes;
1975 goto out;
1976 }
1977 /*
1978 * this search will find all the extents that end after
1979 * our range starts.
1980 */
1981 node = tree_search(tree, cur_start);
1982 if (!node)
1983 goto out;
1984
1985 while (1) {
1986 state = rb_entry(node, struct extent_state, rb_node);
1987 if (state->start > search_end)
1988 break;
1989 if (contig && found && state->start > last + 1)
1990 break;
1991 if (state->end >= cur_start && (state->state & bits) == bits) {
1992 total_bytes += min(search_end, state->end) + 1 -
1993 max(cur_start, state->start);
1994 if (total_bytes >= max_bytes)
1995 break;
1996 if (!found) {
1997 *start = max(cur_start, state->start);
1998 found = 1;
1999 }
2000 last = state->end;
2001 } else if (contig && found) {
2002 break;
2003 }
2004 node = rb_next(node);
2005 if (!node)
2006 break;
2007 }
2008out:
2009 spin_unlock(&tree->lock);
2010 return total_bytes;
2011}
2012
2013/*
2014 * set the private field for a given byte offset in the tree. If there isn't
2015 * an extent_state there already, this does nothing.
2016 */
2017static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
2018 struct io_failure_record *failrec)
2019{
2020 struct rb_node *node;
2021 struct extent_state *state;
2022 int ret = 0;
2023
2024 spin_lock(&tree->lock);
2025 /*
2026 * this search will find all the extents that end after
2027 * our range starts.
2028 */
2029 node = tree_search(tree, start);
2030 if (!node) {
2031 ret = -ENOENT;
2032 goto out;
2033 }
2034 state = rb_entry(node, struct extent_state, rb_node);
2035 if (state->start != start) {
2036 ret = -ENOENT;
2037 goto out;
2038 }
2039 state->failrec = failrec;
2040out:
2041 spin_unlock(&tree->lock);
2042 return ret;
2043}
2044
2045static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
2046 struct io_failure_record **failrec)
2047{
2048 struct rb_node *node;
2049 struct extent_state *state;
2050 int ret = 0;
2051
2052 spin_lock(&tree->lock);
2053 /*
2054 * this search will find all the extents that end after
2055 * our range starts.
2056 */
2057 node = tree_search(tree, start);
2058 if (!node) {
2059 ret = -ENOENT;
2060 goto out;
2061 }
2062 state = rb_entry(node, struct extent_state, rb_node);
2063 if (state->start != start) {
2064 ret = -ENOENT;
2065 goto out;
2066 }
2067 *failrec = state->failrec;
2068out:
2069 spin_unlock(&tree->lock);
2070 return ret;
2071}
2072
2073/*
2074 * searches a range in the state tree for a given mask.
2075 * If 'filled' == 1, this returns 1 only if every extent in the tree
2076 * has the bits set. Otherwise, 1 is returned if any bit in the
2077 * range is found set.
2078 */
2079int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2080 unsigned bits, int filled, struct extent_state *cached)
2081{
2082 struct extent_state *state = NULL;
2083 struct rb_node *node;
2084 int bitset = 0;
2085
2086 spin_lock(&tree->lock);
2087 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2088 cached->end > start)
2089 node = &cached->rb_node;
2090 else
2091 node = tree_search(tree, start);
2092 while (node && start <= end) {
2093 state = rb_entry(node, struct extent_state, rb_node);
2094
2095 if (filled && state->start > start) {
2096 bitset = 0;
2097 break;
2098 }
2099
2100 if (state->start > end)
2101 break;
2102
2103 if (state->state & bits) {
2104 bitset = 1;
2105 if (!filled)
2106 break;
2107 } else if (filled) {
2108 bitset = 0;
2109 break;
2110 }
2111
2112 if (state->end == (u64)-1)
2113 break;
2114
2115 start = state->end + 1;
2116 if (start > end)
2117 break;
2118 node = rb_next(node);
2119 if (!node) {
2120 if (filled)
2121 bitset = 0;
2122 break;
2123 }
2124 }
2125 spin_unlock(&tree->lock);
2126 return bitset;
2127}
2128
2129/*
2130 * helper function to set a given page up to date if all the
2131 * extents in the tree for that page are up to date
2132 */
2133static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2134{
2135 u64 start = page_offset(page);
2136 u64 end = start + PAGE_SIZE - 1;
2137 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2138 SetPageUptodate(page);
2139}
2140
2141int free_io_failure(struct extent_io_tree *failure_tree,
2142 struct extent_io_tree *io_tree,
2143 struct io_failure_record *rec)
2144{
2145 int ret;
2146 int err = 0;
2147
2148 set_state_failrec(failure_tree, rec->start, NULL);
2149 ret = clear_extent_bits(failure_tree, rec->start,
2150 rec->start + rec->len - 1,
2151 EXTENT_LOCKED | EXTENT_DIRTY);
2152 if (ret)
2153 err = ret;
2154
2155 ret = clear_extent_bits(io_tree, rec->start,
2156 rec->start + rec->len - 1,
2157 EXTENT_DAMAGED);
2158 if (ret && !err)
2159 err = ret;
2160
2161 kfree(rec);
2162 return err;
2163}
2164
2165/*
2166 * this bypasses the standard btrfs submit functions deliberately, as
2167 * the standard behavior is to write all copies in a raid setup. here we only
2168 * want to write the one bad copy. so we do the mapping for ourselves and issue
2169 * submit_bio directly.
2170 * to avoid any synchronization issues, wait for the data after writing, which
2171 * actually prevents the read that triggered the error from finishing.
2172 * currently, there can be no more than two copies of every data bit. thus,
2173 * exactly one rewrite is required.
2174 */
2175int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2176 u64 length, u64 logical, struct page *page,
2177 unsigned int pg_offset, int mirror_num)
2178{
2179 struct bio *bio;
2180 struct btrfs_device *dev;
2181 u64 map_length = 0;
2182 u64 sector;
2183 struct btrfs_bio *bbio = NULL;
2184 int ret;
2185
2186 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2187 BUG_ON(!mirror_num);
2188
2189 bio = btrfs_io_bio_alloc(1);
2190 bio->bi_iter.bi_size = 0;
2191 map_length = length;
2192
2193 /*
2194 * Avoid races with device replace and make sure our bbio has devices
2195 * associated to its stripes that don't go away while we are doing the
2196 * read repair operation.
2197 */
2198 btrfs_bio_counter_inc_blocked(fs_info);
2199 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2200 /*
2201 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2202 * to update all raid stripes, but here we just want to correct
2203 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2204 * stripe's dev and sector.
2205 */
2206 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2207 &map_length, &bbio, 0);
2208 if (ret) {
2209 btrfs_bio_counter_dec(fs_info);
2210 bio_put(bio);
2211 return -EIO;
2212 }
2213 ASSERT(bbio->mirror_num == 1);
2214 } else {
2215 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2216 &map_length, &bbio, mirror_num);
2217 if (ret) {
2218 btrfs_bio_counter_dec(fs_info);
2219 bio_put(bio);
2220 return -EIO;
2221 }
2222 BUG_ON(mirror_num != bbio->mirror_num);
2223 }
2224
2225 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2226 bio->bi_iter.bi_sector = sector;
2227 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2228 btrfs_put_bbio(bbio);
2229 if (!dev || !dev->bdev ||
2230 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2231 btrfs_bio_counter_dec(fs_info);
2232 bio_put(bio);
2233 return -EIO;
2234 }
2235 bio_set_dev(bio, dev->bdev);
2236 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2237 bio_add_page(bio, page, length, pg_offset);
2238
2239 if (btrfsic_submit_bio_wait(bio)) {
2240 /* try to remap that extent elsewhere? */
2241 btrfs_bio_counter_dec(fs_info);
2242 bio_put(bio);
2243 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2244 return -EIO;
2245 }
2246
2247 btrfs_info_rl_in_rcu(fs_info,
2248 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2249 ino, start,
2250 rcu_str_deref(dev->name), sector);
2251 btrfs_bio_counter_dec(fs_info);
2252 bio_put(bio);
2253 return 0;
2254}
2255
2256int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2257{
2258 struct btrfs_fs_info *fs_info = eb->fs_info;
2259 u64 start = eb->start;
2260 int i, num_pages = num_extent_pages(eb);
2261 int ret = 0;
2262
2263 if (sb_rdonly(fs_info->sb))
2264 return -EROFS;
2265
2266 for (i = 0; i < num_pages; i++) {
2267 struct page *p = eb->pages[i];
2268
2269 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2270 start - page_offset(p), mirror_num);
2271 if (ret)
2272 break;
2273 start += PAGE_SIZE;
2274 }
2275
2276 return ret;
2277}
2278
2279/*
2280 * each time an IO finishes, we do a fast check in the IO failure tree
2281 * to see if we need to process or clean up an io_failure_record
2282 */
2283int clean_io_failure(struct btrfs_fs_info *fs_info,
2284 struct extent_io_tree *failure_tree,
2285 struct extent_io_tree *io_tree, u64 start,
2286 struct page *page, u64 ino, unsigned int pg_offset)
2287{
2288 u64 private;
2289 struct io_failure_record *failrec;
2290 struct extent_state *state;
2291 int num_copies;
2292 int ret;
2293
2294 private = 0;
2295 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2296 EXTENT_DIRTY, 0);
2297 if (!ret)
2298 return 0;
2299
2300 ret = get_state_failrec(failure_tree, start, &failrec);
2301 if (ret)
2302 return 0;
2303
2304 BUG_ON(!failrec->this_mirror);
2305
2306 if (failrec->in_validation) {
2307 /* there was no real error, just free the record */
2308 btrfs_debug(fs_info,
2309 "clean_io_failure: freeing dummy error at %llu",
2310 failrec->start);
2311 goto out;
2312 }
2313 if (sb_rdonly(fs_info->sb))
2314 goto out;
2315
2316 spin_lock(&io_tree->lock);
2317 state = find_first_extent_bit_state(io_tree,
2318 failrec->start,
2319 EXTENT_LOCKED);
2320 spin_unlock(&io_tree->lock);
2321
2322 if (state && state->start <= failrec->start &&
2323 state->end >= failrec->start + failrec->len - 1) {
2324 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2325 failrec->len);
2326 if (num_copies > 1) {
2327 repair_io_failure(fs_info, ino, start, failrec->len,
2328 failrec->logical, page, pg_offset,
2329 failrec->failed_mirror);
2330 }
2331 }
2332
2333out:
2334 free_io_failure(failure_tree, io_tree, failrec);
2335
2336 return 0;
2337}
2338
2339/*
2340 * Can be called when
2341 * - hold extent lock
2342 * - under ordered extent
2343 * - the inode is freeing
2344 */
2345void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2346{
2347 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2348 struct io_failure_record *failrec;
2349 struct extent_state *state, *next;
2350
2351 if (RB_EMPTY_ROOT(&failure_tree->state))
2352 return;
2353
2354 spin_lock(&failure_tree->lock);
2355 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2356 while (state) {
2357 if (state->start > end)
2358 break;
2359
2360 ASSERT(state->end <= end);
2361
2362 next = next_state(state);
2363
2364 failrec = state->failrec;
2365 free_extent_state(state);
2366 kfree(failrec);
2367
2368 state = next;
2369 }
2370 spin_unlock(&failure_tree->lock);
2371}
2372
2373int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2374 struct io_failure_record **failrec_ret)
2375{
2376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377 struct io_failure_record *failrec;
2378 struct extent_map *em;
2379 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2381 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2382 int ret;
2383 u64 logical;
2384
2385 ret = get_state_failrec(failure_tree, start, &failrec);
2386 if (ret) {
2387 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2388 if (!failrec)
2389 return -ENOMEM;
2390
2391 failrec->start = start;
2392 failrec->len = end - start + 1;
2393 failrec->this_mirror = 0;
2394 failrec->bio_flags = 0;
2395 failrec->in_validation = 0;
2396
2397 read_lock(&em_tree->lock);
2398 em = lookup_extent_mapping(em_tree, start, failrec->len);
2399 if (!em) {
2400 read_unlock(&em_tree->lock);
2401 kfree(failrec);
2402 return -EIO;
2403 }
2404
2405 if (em->start > start || em->start + em->len <= start) {
2406 free_extent_map(em);
2407 em = NULL;
2408 }
2409 read_unlock(&em_tree->lock);
2410 if (!em) {
2411 kfree(failrec);
2412 return -EIO;
2413 }
2414
2415 logical = start - em->start;
2416 logical = em->block_start + logical;
2417 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2418 logical = em->block_start;
2419 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2420 extent_set_compress_type(&failrec->bio_flags,
2421 em->compress_type);
2422 }
2423
2424 btrfs_debug(fs_info,
2425 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2426 logical, start, failrec->len);
2427
2428 failrec->logical = logical;
2429 free_extent_map(em);
2430
2431 /* set the bits in the private failure tree */
2432 ret = set_extent_bits(failure_tree, start, end,
2433 EXTENT_LOCKED | EXTENT_DIRTY);
2434 if (ret >= 0)
2435 ret = set_state_failrec(failure_tree, start, failrec);
2436 /* set the bits in the inode's tree */
2437 if (ret >= 0)
2438 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2439 if (ret < 0) {
2440 kfree(failrec);
2441 return ret;
2442 }
2443 } else {
2444 btrfs_debug(fs_info,
2445 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2446 failrec->logical, failrec->start, failrec->len,
2447 failrec->in_validation);
2448 /*
2449 * when data can be on disk more than twice, add to failrec here
2450 * (e.g. with a list for failed_mirror) to make
2451 * clean_io_failure() clean all those errors at once.
2452 */
2453 }
2454
2455 *failrec_ret = failrec;
2456
2457 return 0;
2458}
2459
2460bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2461 struct io_failure_record *failrec, int failed_mirror)
2462{
2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2464 int num_copies;
2465
2466 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2467 if (num_copies == 1) {
2468 /*
2469 * we only have a single copy of the data, so don't bother with
2470 * all the retry and error correction code that follows. no
2471 * matter what the error is, it is very likely to persist.
2472 */
2473 btrfs_debug(fs_info,
2474 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2475 num_copies, failrec->this_mirror, failed_mirror);
2476 return false;
2477 }
2478
2479 /*
2480 * there are two premises:
2481 * a) deliver good data to the caller
2482 * b) correct the bad sectors on disk
2483 */
2484 if (failed_bio_pages > 1) {
2485 /*
2486 * to fulfill b), we need to know the exact failing sectors, as
2487 * we don't want to rewrite any more than the failed ones. thus,
2488 * we need separate read requests for the failed bio
2489 *
2490 * if the following BUG_ON triggers, our validation request got
2491 * merged. we need separate requests for our algorithm to work.
2492 */
2493 BUG_ON(failrec->in_validation);
2494 failrec->in_validation = 1;
2495 failrec->this_mirror = failed_mirror;
2496 } else {
2497 /*
2498 * we're ready to fulfill a) and b) alongside. get a good copy
2499 * of the failed sector and if we succeed, we have setup
2500 * everything for repair_io_failure to do the rest for us.
2501 */
2502 if (failrec->in_validation) {
2503 BUG_ON(failrec->this_mirror != failed_mirror);
2504 failrec->in_validation = 0;
2505 failrec->this_mirror = 0;
2506 }
2507 failrec->failed_mirror = failed_mirror;
2508 failrec->this_mirror++;
2509 if (failrec->this_mirror == failed_mirror)
2510 failrec->this_mirror++;
2511 }
2512
2513 if (failrec->this_mirror > num_copies) {
2514 btrfs_debug(fs_info,
2515 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2516 num_copies, failrec->this_mirror, failed_mirror);
2517 return false;
2518 }
2519
2520 return true;
2521}
2522
2523
2524struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2525 struct io_failure_record *failrec,
2526 struct page *page, int pg_offset, int icsum,
2527 bio_end_io_t *endio_func, void *data)
2528{
2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530 struct bio *bio;
2531 struct btrfs_io_bio *btrfs_failed_bio;
2532 struct btrfs_io_bio *btrfs_bio;
2533
2534 bio = btrfs_io_bio_alloc(1);
2535 bio->bi_end_io = endio_func;
2536 bio->bi_iter.bi_sector = failrec->logical >> 9;
2537 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2538 bio->bi_iter.bi_size = 0;
2539 bio->bi_private = data;
2540
2541 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2542 if (btrfs_failed_bio->csum) {
2543 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2544
2545 btrfs_bio = btrfs_io_bio(bio);
2546 btrfs_bio->csum = btrfs_bio->csum_inline;
2547 icsum *= csum_size;
2548 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2549 csum_size);
2550 }
2551
2552 bio_add_page(bio, page, failrec->len, pg_offset);
2553
2554 return bio;
2555}
2556
2557/*
2558 * This is a generic handler for readpage errors. If other copies exist, read
2559 * those and write back good data to the failed position. Does not investigate
2560 * in remapping the failed extent elsewhere, hoping the device will be smart
2561 * enough to do this as needed
2562 */
2563static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2564 struct page *page, u64 start, u64 end,
2565 int failed_mirror)
2566{
2567 struct io_failure_record *failrec;
2568 struct inode *inode = page->mapping->host;
2569 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2570 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2571 struct bio *bio;
2572 int read_mode = 0;
2573 blk_status_t status;
2574 int ret;
2575 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2576
2577 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2578
2579 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2580 if (ret)
2581 return ret;
2582
2583 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2584 failed_mirror)) {
2585 free_io_failure(failure_tree, tree, failrec);
2586 return -EIO;
2587 }
2588
2589 if (failed_bio_pages > 1)
2590 read_mode |= REQ_FAILFAST_DEV;
2591
2592 phy_offset >>= inode->i_sb->s_blocksize_bits;
2593 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2594 start - page_offset(page),
2595 (int)phy_offset, failed_bio->bi_end_io,
2596 NULL);
2597 bio->bi_opf = REQ_OP_READ | read_mode;
2598
2599 btrfs_debug(btrfs_sb(inode->i_sb),
2600 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2601 read_mode, failrec->this_mirror, failrec->in_validation);
2602
2603 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2604 failrec->bio_flags);
2605 if (status) {
2606 free_io_failure(failure_tree, tree, failrec);
2607 bio_put(bio);
2608 ret = blk_status_to_errno(status);
2609 }
2610
2611 return ret;
2612}
2613
2614/* lots and lots of room for performance fixes in the end_bio funcs */
2615
2616void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2617{
2618 int uptodate = (err == 0);
2619 int ret = 0;
2620
2621 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2622
2623 if (!uptodate) {
2624 ClearPageUptodate(page);
2625 SetPageError(page);
2626 ret = err < 0 ? err : -EIO;
2627 mapping_set_error(page->mapping, ret);
2628 }
2629}
2630
2631/*
2632 * after a writepage IO is done, we need to:
2633 * clear the uptodate bits on error
2634 * clear the writeback bits in the extent tree for this IO
2635 * end_page_writeback if the page has no more pending IO
2636 *
2637 * Scheduling is not allowed, so the extent state tree is expected
2638 * to have one and only one object corresponding to this IO.
2639 */
2640static void end_bio_extent_writepage(struct bio *bio)
2641{
2642 int error = blk_status_to_errno(bio->bi_status);
2643 struct bio_vec *bvec;
2644 u64 start;
2645 u64 end;
2646 struct bvec_iter_all iter_all;
2647
2648 ASSERT(!bio_flagged(bio, BIO_CLONED));
2649 bio_for_each_segment_all(bvec, bio, iter_all) {
2650 struct page *page = bvec->bv_page;
2651 struct inode *inode = page->mapping->host;
2652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653
2654 /* We always issue full-page reads, but if some block
2655 * in a page fails to read, blk_update_request() will
2656 * advance bv_offset and adjust bv_len to compensate.
2657 * Print a warning for nonzero offsets, and an error
2658 * if they don't add up to a full page. */
2659 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2660 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2661 btrfs_err(fs_info,
2662 "partial page write in btrfs with offset %u and length %u",
2663 bvec->bv_offset, bvec->bv_len);
2664 else
2665 btrfs_info(fs_info,
2666 "incomplete page write in btrfs with offset %u and length %u",
2667 bvec->bv_offset, bvec->bv_len);
2668 }
2669
2670 start = page_offset(page);
2671 end = start + bvec->bv_offset + bvec->bv_len - 1;
2672
2673 end_extent_writepage(page, error, start, end);
2674 end_page_writeback(page);
2675 }
2676
2677 bio_put(bio);
2678}
2679
2680static void
2681endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2682 int uptodate)
2683{
2684 struct extent_state *cached = NULL;
2685 u64 end = start + len - 1;
2686
2687 if (uptodate && tree->track_uptodate)
2688 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2689 unlock_extent_cached_atomic(tree, start, end, &cached);
2690}
2691
2692/*
2693 * after a readpage IO is done, we need to:
2694 * clear the uptodate bits on error
2695 * set the uptodate bits if things worked
2696 * set the page up to date if all extents in the tree are uptodate
2697 * clear the lock bit in the extent tree
2698 * unlock the page if there are no other extents locked for it
2699 *
2700 * Scheduling is not allowed, so the extent state tree is expected
2701 * to have one and only one object corresponding to this IO.
2702 */
2703static void end_bio_extent_readpage(struct bio *bio)
2704{
2705 struct bio_vec *bvec;
2706 int uptodate = !bio->bi_status;
2707 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2708 struct extent_io_tree *tree, *failure_tree;
2709 u64 offset = 0;
2710 u64 start;
2711 u64 end;
2712 u64 len;
2713 u64 extent_start = 0;
2714 u64 extent_len = 0;
2715 int mirror;
2716 int ret;
2717 struct bvec_iter_all iter_all;
2718
2719 ASSERT(!bio_flagged(bio, BIO_CLONED));
2720 bio_for_each_segment_all(bvec, bio, iter_all) {
2721 struct page *page = bvec->bv_page;
2722 struct inode *inode = page->mapping->host;
2723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2724 bool data_inode = btrfs_ino(BTRFS_I(inode))
2725 != BTRFS_BTREE_INODE_OBJECTID;
2726
2727 btrfs_debug(fs_info,
2728 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2729 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2730 io_bio->mirror_num);
2731 tree = &BTRFS_I(inode)->io_tree;
2732 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2733
2734 /* We always issue full-page reads, but if some block
2735 * in a page fails to read, blk_update_request() will
2736 * advance bv_offset and adjust bv_len to compensate.
2737 * Print a warning for nonzero offsets, and an error
2738 * if they don't add up to a full page. */
2739 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2740 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2741 btrfs_err(fs_info,
2742 "partial page read in btrfs with offset %u and length %u",
2743 bvec->bv_offset, bvec->bv_len);
2744 else
2745 btrfs_info(fs_info,
2746 "incomplete page read in btrfs with offset %u and length %u",
2747 bvec->bv_offset, bvec->bv_len);
2748 }
2749
2750 start = page_offset(page);
2751 end = start + bvec->bv_offset + bvec->bv_len - 1;
2752 len = bvec->bv_len;
2753
2754 mirror = io_bio->mirror_num;
2755 if (likely(uptodate)) {
2756 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2757 page, start, end,
2758 mirror);
2759 if (ret)
2760 uptodate = 0;
2761 else
2762 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2763 failure_tree, tree, start,
2764 page,
2765 btrfs_ino(BTRFS_I(inode)), 0);
2766 }
2767
2768 if (likely(uptodate))
2769 goto readpage_ok;
2770
2771 if (data_inode) {
2772
2773 /*
2774 * The generic bio_readpage_error handles errors the
2775 * following way: If possible, new read requests are
2776 * created and submitted and will end up in
2777 * end_bio_extent_readpage as well (if we're lucky,
2778 * not in the !uptodate case). In that case it returns
2779 * 0 and we just go on with the next page in our bio.
2780 * If it can't handle the error it will return -EIO and
2781 * we remain responsible for that page.
2782 */
2783 ret = bio_readpage_error(bio, offset, page, start, end,
2784 mirror);
2785 if (ret == 0) {
2786 uptodate = !bio->bi_status;
2787 offset += len;
2788 continue;
2789 }
2790 } else {
2791 struct extent_buffer *eb;
2792
2793 eb = (struct extent_buffer *)page->private;
2794 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2795 eb->read_mirror = mirror;
2796 atomic_dec(&eb->io_pages);
2797 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2798 &eb->bflags))
2799 btree_readahead_hook(eb, -EIO);
2800 }
2801readpage_ok:
2802 if (likely(uptodate)) {
2803 loff_t i_size = i_size_read(inode);
2804 pgoff_t end_index = i_size >> PAGE_SHIFT;
2805 unsigned off;
2806
2807 /* Zero out the end if this page straddles i_size */
2808 off = offset_in_page(i_size);
2809 if (page->index == end_index && off)
2810 zero_user_segment(page, off, PAGE_SIZE);
2811 SetPageUptodate(page);
2812 } else {
2813 ClearPageUptodate(page);
2814 SetPageError(page);
2815 }
2816 unlock_page(page);
2817 offset += len;
2818
2819 if (unlikely(!uptodate)) {
2820 if (extent_len) {
2821 endio_readpage_release_extent(tree,
2822 extent_start,
2823 extent_len, 1);
2824 extent_start = 0;
2825 extent_len = 0;
2826 }
2827 endio_readpage_release_extent(tree, start,
2828 end - start + 1, 0);
2829 } else if (!extent_len) {
2830 extent_start = start;
2831 extent_len = end + 1 - start;
2832 } else if (extent_start + extent_len == start) {
2833 extent_len += end + 1 - start;
2834 } else {
2835 endio_readpage_release_extent(tree, extent_start,
2836 extent_len, uptodate);
2837 extent_start = start;
2838 extent_len = end + 1 - start;
2839 }
2840 }
2841
2842 if (extent_len)
2843 endio_readpage_release_extent(tree, extent_start, extent_len,
2844 uptodate);
2845 btrfs_io_bio_free_csum(io_bio);
2846 bio_put(bio);
2847}
2848
2849/*
2850 * Initialize the members up to but not including 'bio'. Use after allocating a
2851 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2852 * 'bio' because use of __GFP_ZERO is not supported.
2853 */
2854static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2855{
2856 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2857}
2858
2859/*
2860 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2861 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2862 * for the appropriate container_of magic
2863 */
2864struct bio *btrfs_bio_alloc(u64 first_byte)
2865{
2866 struct bio *bio;
2867
2868 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2869 bio->bi_iter.bi_sector = first_byte >> 9;
2870 btrfs_io_bio_init(btrfs_io_bio(bio));
2871 return bio;
2872}
2873
2874struct bio *btrfs_bio_clone(struct bio *bio)
2875{
2876 struct btrfs_io_bio *btrfs_bio;
2877 struct bio *new;
2878
2879 /* Bio allocation backed by a bioset does not fail */
2880 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2881 btrfs_bio = btrfs_io_bio(new);
2882 btrfs_io_bio_init(btrfs_bio);
2883 btrfs_bio->iter = bio->bi_iter;
2884 return new;
2885}
2886
2887struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2888{
2889 struct bio *bio;
2890
2891 /* Bio allocation backed by a bioset does not fail */
2892 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2893 btrfs_io_bio_init(btrfs_io_bio(bio));
2894 return bio;
2895}
2896
2897struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2898{
2899 struct bio *bio;
2900 struct btrfs_io_bio *btrfs_bio;
2901
2902 /* this will never fail when it's backed by a bioset */
2903 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2904 ASSERT(bio);
2905
2906 btrfs_bio = btrfs_io_bio(bio);
2907 btrfs_io_bio_init(btrfs_bio);
2908
2909 bio_trim(bio, offset >> 9, size >> 9);
2910 btrfs_bio->iter = bio->bi_iter;
2911 return bio;
2912}
2913
2914/*
2915 * @opf: bio REQ_OP_* and REQ_* flags as one value
2916 * @tree: tree so we can call our merge_bio hook
2917 * @wbc: optional writeback control for io accounting
2918 * @page: page to add to the bio
2919 * @pg_offset: offset of the new bio or to check whether we are adding
2920 * a contiguous page to the previous one
2921 * @size: portion of page that we want to write
2922 * @offset: starting offset in the page
2923 * @bdev: attach newly created bios to this bdev
2924 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2925 * @end_io_func: end_io callback for new bio
2926 * @mirror_num: desired mirror to read/write
2927 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2928 * @bio_flags: flags of the current bio to see if we can merge them
2929 */
2930static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2931 struct writeback_control *wbc,
2932 struct page *page, u64 offset,
2933 size_t size, unsigned long pg_offset,
2934 struct block_device *bdev,
2935 struct bio **bio_ret,
2936 bio_end_io_t end_io_func,
2937 int mirror_num,
2938 unsigned long prev_bio_flags,
2939 unsigned long bio_flags,
2940 bool force_bio_submit)
2941{
2942 int ret = 0;
2943 struct bio *bio;
2944 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2945 sector_t sector = offset >> 9;
2946
2947 ASSERT(bio_ret);
2948
2949 if (*bio_ret) {
2950 bool contig;
2951 bool can_merge = true;
2952
2953 bio = *bio_ret;
2954 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2955 contig = bio->bi_iter.bi_sector == sector;
2956 else
2957 contig = bio_end_sector(bio) == sector;
2958
2959 ASSERT(tree->ops);
2960 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2961 can_merge = false;
2962
2963 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2964 force_bio_submit ||
2965 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2966 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2967 if (ret < 0) {
2968 *bio_ret = NULL;
2969 return ret;
2970 }
2971 bio = NULL;
2972 } else {
2973 if (wbc)
2974 wbc_account_cgroup_owner(wbc, page, page_size);
2975 return 0;
2976 }
2977 }
2978
2979 bio = btrfs_bio_alloc(offset);
2980 bio_set_dev(bio, bdev);
2981 bio_add_page(bio, page, page_size, pg_offset);
2982 bio->bi_end_io = end_io_func;
2983 bio->bi_private = tree;
2984 bio->bi_write_hint = page->mapping->host->i_write_hint;
2985 bio->bi_opf = opf;
2986 if (wbc) {
2987 wbc_init_bio(wbc, bio);
2988 wbc_account_cgroup_owner(wbc, page, page_size);
2989 }
2990
2991 *bio_ret = bio;
2992
2993 return ret;
2994}
2995
2996static void attach_extent_buffer_page(struct extent_buffer *eb,
2997 struct page *page)
2998{
2999 if (!PagePrivate(page)) {
3000 SetPagePrivate(page);
3001 get_page(page);
3002 set_page_private(page, (unsigned long)eb);
3003 } else {
3004 WARN_ON(page->private != (unsigned long)eb);
3005 }
3006}
3007
3008void set_page_extent_mapped(struct page *page)
3009{
3010 if (!PagePrivate(page)) {
3011 SetPagePrivate(page);
3012 get_page(page);
3013 set_page_private(page, EXTENT_PAGE_PRIVATE);
3014 }
3015}
3016
3017static struct extent_map *
3018__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3019 u64 start, u64 len, get_extent_t *get_extent,
3020 struct extent_map **em_cached)
3021{
3022 struct extent_map *em;
3023
3024 if (em_cached && *em_cached) {
3025 em = *em_cached;
3026 if (extent_map_in_tree(em) && start >= em->start &&
3027 start < extent_map_end(em)) {
3028 refcount_inc(&em->refs);
3029 return em;
3030 }
3031
3032 free_extent_map(em);
3033 *em_cached = NULL;
3034 }
3035
3036 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3037 if (em_cached && !IS_ERR_OR_NULL(em)) {
3038 BUG_ON(*em_cached);
3039 refcount_inc(&em->refs);
3040 *em_cached = em;
3041 }
3042 return em;
3043}
3044/*
3045 * basic readpage implementation. Locked extent state structs are inserted
3046 * into the tree that are removed when the IO is done (by the end_io
3047 * handlers)
3048 * XXX JDM: This needs looking at to ensure proper page locking
3049 * return 0 on success, otherwise return error
3050 */
3051static int __do_readpage(struct extent_io_tree *tree,
3052 struct page *page,
3053 get_extent_t *get_extent,
3054 struct extent_map **em_cached,
3055 struct bio **bio, int mirror_num,
3056 unsigned long *bio_flags, unsigned int read_flags,
3057 u64 *prev_em_start)
3058{
3059 struct inode *inode = page->mapping->host;
3060 u64 start = page_offset(page);
3061 const u64 end = start + PAGE_SIZE - 1;
3062 u64 cur = start;
3063 u64 extent_offset;
3064 u64 last_byte = i_size_read(inode);
3065 u64 block_start;
3066 u64 cur_end;
3067 struct extent_map *em;
3068 struct block_device *bdev;
3069 int ret = 0;
3070 int nr = 0;
3071 size_t pg_offset = 0;
3072 size_t iosize;
3073 size_t disk_io_size;
3074 size_t blocksize = inode->i_sb->s_blocksize;
3075 unsigned long this_bio_flag = 0;
3076
3077 set_page_extent_mapped(page);
3078
3079 if (!PageUptodate(page)) {
3080 if (cleancache_get_page(page) == 0) {
3081 BUG_ON(blocksize != PAGE_SIZE);
3082 unlock_extent(tree, start, end);
3083 goto out;
3084 }
3085 }
3086
3087 if (page->index == last_byte >> PAGE_SHIFT) {
3088 char *userpage;
3089 size_t zero_offset = offset_in_page(last_byte);
3090
3091 if (zero_offset) {
3092 iosize = PAGE_SIZE - zero_offset;
3093 userpage = kmap_atomic(page);
3094 memset(userpage + zero_offset, 0, iosize);
3095 flush_dcache_page(page);
3096 kunmap_atomic(userpage);
3097 }
3098 }
3099 while (cur <= end) {
3100 bool force_bio_submit = false;
3101 u64 offset;
3102
3103 if (cur >= last_byte) {
3104 char *userpage;
3105 struct extent_state *cached = NULL;
3106
3107 iosize = PAGE_SIZE - pg_offset;
3108 userpage = kmap_atomic(page);
3109 memset(userpage + pg_offset, 0, iosize);
3110 flush_dcache_page(page);
3111 kunmap_atomic(userpage);
3112 set_extent_uptodate(tree, cur, cur + iosize - 1,
3113 &cached, GFP_NOFS);
3114 unlock_extent_cached(tree, cur,
3115 cur + iosize - 1, &cached);
3116 break;
3117 }
3118 em = __get_extent_map(inode, page, pg_offset, cur,
3119 end - cur + 1, get_extent, em_cached);
3120 if (IS_ERR_OR_NULL(em)) {
3121 SetPageError(page);
3122 unlock_extent(tree, cur, end);
3123 break;
3124 }
3125 extent_offset = cur - em->start;
3126 BUG_ON(extent_map_end(em) <= cur);
3127 BUG_ON(end < cur);
3128
3129 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3130 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3131 extent_set_compress_type(&this_bio_flag,
3132 em->compress_type);
3133 }
3134
3135 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3136 cur_end = min(extent_map_end(em) - 1, end);
3137 iosize = ALIGN(iosize, blocksize);
3138 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3139 disk_io_size = em->block_len;
3140 offset = em->block_start;
3141 } else {
3142 offset = em->block_start + extent_offset;
3143 disk_io_size = iosize;
3144 }
3145 bdev = em->bdev;
3146 block_start = em->block_start;
3147 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3148 block_start = EXTENT_MAP_HOLE;
3149
3150 /*
3151 * If we have a file range that points to a compressed extent
3152 * and it's followed by a consecutive file range that points to
3153 * to the same compressed extent (possibly with a different
3154 * offset and/or length, so it either points to the whole extent
3155 * or only part of it), we must make sure we do not submit a
3156 * single bio to populate the pages for the 2 ranges because
3157 * this makes the compressed extent read zero out the pages
3158 * belonging to the 2nd range. Imagine the following scenario:
3159 *
3160 * File layout
3161 * [0 - 8K] [8K - 24K]
3162 * | |
3163 * | |
3164 * points to extent X, points to extent X,
3165 * offset 4K, length of 8K offset 0, length 16K
3166 *
3167 * [extent X, compressed length = 4K uncompressed length = 16K]
3168 *
3169 * If the bio to read the compressed extent covers both ranges,
3170 * it will decompress extent X into the pages belonging to the
3171 * first range and then it will stop, zeroing out the remaining
3172 * pages that belong to the other range that points to extent X.
3173 * So here we make sure we submit 2 bios, one for the first
3174 * range and another one for the third range. Both will target
3175 * the same physical extent from disk, but we can't currently
3176 * make the compressed bio endio callback populate the pages
3177 * for both ranges because each compressed bio is tightly
3178 * coupled with a single extent map, and each range can have
3179 * an extent map with a different offset value relative to the
3180 * uncompressed data of our extent and different lengths. This
3181 * is a corner case so we prioritize correctness over
3182 * non-optimal behavior (submitting 2 bios for the same extent).
3183 */
3184 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3185 prev_em_start && *prev_em_start != (u64)-1 &&
3186 *prev_em_start != em->start)
3187 force_bio_submit = true;
3188
3189 if (prev_em_start)
3190 *prev_em_start = em->start;
3191
3192 free_extent_map(em);
3193 em = NULL;
3194
3195 /* we've found a hole, just zero and go on */
3196 if (block_start == EXTENT_MAP_HOLE) {
3197 char *userpage;
3198 struct extent_state *cached = NULL;
3199
3200 userpage = kmap_atomic(page);
3201 memset(userpage + pg_offset, 0, iosize);
3202 flush_dcache_page(page);
3203 kunmap_atomic(userpage);
3204
3205 set_extent_uptodate(tree, cur, cur + iosize - 1,
3206 &cached, GFP_NOFS);
3207 unlock_extent_cached(tree, cur,
3208 cur + iosize - 1, &cached);
3209 cur = cur + iosize;
3210 pg_offset += iosize;
3211 continue;
3212 }
3213 /* the get_extent function already copied into the page */
3214 if (test_range_bit(tree, cur, cur_end,
3215 EXTENT_UPTODATE, 1, NULL)) {
3216 check_page_uptodate(tree, page);
3217 unlock_extent(tree, cur, cur + iosize - 1);
3218 cur = cur + iosize;
3219 pg_offset += iosize;
3220 continue;
3221 }
3222 /* we have an inline extent but it didn't get marked up
3223 * to date. Error out
3224 */
3225 if (block_start == EXTENT_MAP_INLINE) {
3226 SetPageError(page);
3227 unlock_extent(tree, cur, cur + iosize - 1);
3228 cur = cur + iosize;
3229 pg_offset += iosize;
3230 continue;
3231 }
3232
3233 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3234 page, offset, disk_io_size,
3235 pg_offset, bdev, bio,
3236 end_bio_extent_readpage, mirror_num,
3237 *bio_flags,
3238 this_bio_flag,
3239 force_bio_submit);
3240 if (!ret) {
3241 nr++;
3242 *bio_flags = this_bio_flag;
3243 } else {
3244 SetPageError(page);
3245 unlock_extent(tree, cur, cur + iosize - 1);
3246 goto out;
3247 }
3248 cur = cur + iosize;
3249 pg_offset += iosize;
3250 }
3251out:
3252 if (!nr) {
3253 if (!PageError(page))
3254 SetPageUptodate(page);
3255 unlock_page(page);
3256 }
3257 return ret;
3258}
3259
3260static inline void contiguous_readpages(struct extent_io_tree *tree,
3261 struct page *pages[], int nr_pages,
3262 u64 start, u64 end,
3263 struct extent_map **em_cached,
3264 struct bio **bio,
3265 unsigned long *bio_flags,
3266 u64 *prev_em_start)
3267{
3268 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3269 int index;
3270
3271 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3272
3273 for (index = 0; index < nr_pages; index++) {
3274 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3275 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3276 put_page(pages[index]);
3277 }
3278}
3279
3280static int __extent_read_full_page(struct extent_io_tree *tree,
3281 struct page *page,
3282 get_extent_t *get_extent,
3283 struct bio **bio, int mirror_num,
3284 unsigned long *bio_flags,
3285 unsigned int read_flags)
3286{
3287 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3288 u64 start = page_offset(page);
3289 u64 end = start + PAGE_SIZE - 1;
3290 int ret;
3291
3292 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3293
3294 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3295 bio_flags, read_flags, NULL);
3296 return ret;
3297}
3298
3299int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3300 get_extent_t *get_extent, int mirror_num)
3301{
3302 struct bio *bio = NULL;
3303 unsigned long bio_flags = 0;
3304 int ret;
3305
3306 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3307 &bio_flags, 0);
3308 if (bio)
3309 ret = submit_one_bio(bio, mirror_num, bio_flags);
3310 return ret;
3311}
3312
3313static void update_nr_written(struct writeback_control *wbc,
3314 unsigned long nr_written)
3315{
3316 wbc->nr_to_write -= nr_written;
3317}
3318
3319/*
3320 * helper for __extent_writepage, doing all of the delayed allocation setup.
3321 *
3322 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3323 * to write the page (copy into inline extent). In this case the IO has
3324 * been started and the page is already unlocked.
3325 *
3326 * This returns 0 if all went well (page still locked)
3327 * This returns < 0 if there were errors (page still locked)
3328 */
3329static noinline_for_stack int writepage_delalloc(struct inode *inode,
3330 struct page *page, struct writeback_control *wbc,
3331 u64 delalloc_start, unsigned long *nr_written)
3332{
3333 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3334 bool found;
3335 u64 delalloc_to_write = 0;
3336 u64 delalloc_end = 0;
3337 int ret;
3338 int page_started = 0;
3339
3340
3341 while (delalloc_end < page_end) {
3342 found = find_lock_delalloc_range(inode, page,
3343 &delalloc_start,
3344 &delalloc_end);
3345 if (!found) {
3346 delalloc_start = delalloc_end + 1;
3347 continue;
3348 }
3349 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3350 delalloc_end, &page_started, nr_written, wbc);
3351 if (ret) {
3352 SetPageError(page);
3353 /*
3354 * btrfs_run_delalloc_range should return < 0 for error
3355 * but just in case, we use > 0 here meaning the IO is
3356 * started, so we don't want to return > 0 unless
3357 * things are going well.
3358 */
3359 ret = ret < 0 ? ret : -EIO;
3360 goto done;
3361 }
3362 /*
3363 * delalloc_end is already one less than the total length, so
3364 * we don't subtract one from PAGE_SIZE
3365 */
3366 delalloc_to_write += (delalloc_end - delalloc_start +
3367 PAGE_SIZE) >> PAGE_SHIFT;
3368 delalloc_start = delalloc_end + 1;
3369 }
3370 if (wbc->nr_to_write < delalloc_to_write) {
3371 int thresh = 8192;
3372
3373 if (delalloc_to_write < thresh * 2)
3374 thresh = delalloc_to_write;
3375 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3376 thresh);
3377 }
3378
3379 /* did the fill delalloc function already unlock and start
3380 * the IO?
3381 */
3382 if (page_started) {
3383 /*
3384 * we've unlocked the page, so we can't update
3385 * the mapping's writeback index, just update
3386 * nr_to_write.
3387 */
3388 wbc->nr_to_write -= *nr_written;
3389 return 1;
3390 }
3391
3392 ret = 0;
3393
3394done:
3395 return ret;
3396}
3397
3398/*
3399 * helper for __extent_writepage. This calls the writepage start hooks,
3400 * and does the loop to map the page into extents and bios.
3401 *
3402 * We return 1 if the IO is started and the page is unlocked,
3403 * 0 if all went well (page still locked)
3404 * < 0 if there were errors (page still locked)
3405 */
3406static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3407 struct page *page,
3408 struct writeback_control *wbc,
3409 struct extent_page_data *epd,
3410 loff_t i_size,
3411 unsigned long nr_written,
3412 unsigned int write_flags, int *nr_ret)
3413{
3414 struct extent_io_tree *tree = epd->tree;
3415 u64 start = page_offset(page);
3416 u64 page_end = start + PAGE_SIZE - 1;
3417 u64 end;
3418 u64 cur = start;
3419 u64 extent_offset;
3420 u64 block_start;
3421 u64 iosize;
3422 struct extent_map *em;
3423 struct block_device *bdev;
3424 size_t pg_offset = 0;
3425 size_t blocksize;
3426 int ret = 0;
3427 int nr = 0;
3428 bool compressed;
3429
3430 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3431 if (ret) {
3432 /* Fixup worker will requeue */
3433 if (ret == -EBUSY)
3434 wbc->pages_skipped++;
3435 else
3436 redirty_page_for_writepage(wbc, page);
3437
3438 update_nr_written(wbc, nr_written);
3439 unlock_page(page);
3440 return 1;
3441 }
3442
3443 /*
3444 * we don't want to touch the inode after unlocking the page,
3445 * so we update the mapping writeback index now
3446 */
3447 update_nr_written(wbc, nr_written + 1);
3448
3449 end = page_end;
3450 if (i_size <= start) {
3451 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3452 goto done;
3453 }
3454
3455 blocksize = inode->i_sb->s_blocksize;
3456
3457 while (cur <= end) {
3458 u64 em_end;
3459 u64 offset;
3460
3461 if (cur >= i_size) {
3462 btrfs_writepage_endio_finish_ordered(page, cur,
3463 page_end, 1);
3464 break;
3465 }
3466 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3467 end - cur + 1, 1);
3468 if (IS_ERR_OR_NULL(em)) {
3469 SetPageError(page);
3470 ret = PTR_ERR_OR_ZERO(em);
3471 break;
3472 }
3473
3474 extent_offset = cur - em->start;
3475 em_end = extent_map_end(em);
3476 BUG_ON(em_end <= cur);
3477 BUG_ON(end < cur);
3478 iosize = min(em_end - cur, end - cur + 1);
3479 iosize = ALIGN(iosize, blocksize);
3480 offset = em->block_start + extent_offset;
3481 bdev = em->bdev;
3482 block_start = em->block_start;
3483 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3484 free_extent_map(em);
3485 em = NULL;
3486
3487 /*
3488 * compressed and inline extents are written through other
3489 * paths in the FS
3490 */
3491 if (compressed || block_start == EXTENT_MAP_HOLE ||
3492 block_start == EXTENT_MAP_INLINE) {
3493 /*
3494 * end_io notification does not happen here for
3495 * compressed extents
3496 */
3497 if (!compressed)
3498 btrfs_writepage_endio_finish_ordered(page, cur,
3499 cur + iosize - 1,
3500 1);
3501 else if (compressed) {
3502 /* we don't want to end_page_writeback on
3503 * a compressed extent. this happens
3504 * elsewhere
3505 */
3506 nr++;
3507 }
3508
3509 cur += iosize;
3510 pg_offset += iosize;
3511 continue;
3512 }
3513
3514 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3515 if (!PageWriteback(page)) {
3516 btrfs_err(BTRFS_I(inode)->root->fs_info,
3517 "page %lu not writeback, cur %llu end %llu",
3518 page->index, cur, end);
3519 }
3520
3521 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3522 page, offset, iosize, pg_offset,
3523 bdev, &epd->bio,
3524 end_bio_extent_writepage,
3525 0, 0, 0, false);
3526 if (ret) {
3527 SetPageError(page);
3528 if (PageWriteback(page))
3529 end_page_writeback(page);
3530 }
3531
3532 cur = cur + iosize;
3533 pg_offset += iosize;
3534 nr++;
3535 }
3536done:
3537 *nr_ret = nr;
3538 return ret;
3539}
3540
3541/*
3542 * the writepage semantics are similar to regular writepage. extent
3543 * records are inserted to lock ranges in the tree, and as dirty areas
3544 * are found, they are marked writeback. Then the lock bits are removed
3545 * and the end_io handler clears the writeback ranges
3546 *
3547 * Return 0 if everything goes well.
3548 * Return <0 for error.
3549 */
3550static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3551 struct extent_page_data *epd)
3552{
3553 struct inode *inode = page->mapping->host;
3554 u64 start = page_offset(page);
3555 u64 page_end = start + PAGE_SIZE - 1;
3556 int ret;
3557 int nr = 0;
3558 size_t pg_offset = 0;
3559 loff_t i_size = i_size_read(inode);
3560 unsigned long end_index = i_size >> PAGE_SHIFT;
3561 unsigned int write_flags = 0;
3562 unsigned long nr_written = 0;
3563
3564 write_flags = wbc_to_write_flags(wbc);
3565
3566 trace___extent_writepage(page, inode, wbc);
3567
3568 WARN_ON(!PageLocked(page));
3569
3570 ClearPageError(page);
3571
3572 pg_offset = offset_in_page(i_size);
3573 if (page->index > end_index ||
3574 (page->index == end_index && !pg_offset)) {
3575 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3576 unlock_page(page);
3577 return 0;
3578 }
3579
3580 if (page->index == end_index) {
3581 char *userpage;
3582
3583 userpage = kmap_atomic(page);
3584 memset(userpage + pg_offset, 0,
3585 PAGE_SIZE - pg_offset);
3586 kunmap_atomic(userpage);
3587 flush_dcache_page(page);
3588 }
3589
3590 pg_offset = 0;
3591
3592 set_page_extent_mapped(page);
3593
3594 if (!epd->extent_locked) {
3595 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3596 if (ret == 1)
3597 goto done_unlocked;
3598 if (ret)
3599 goto done;
3600 }
3601
3602 ret = __extent_writepage_io(inode, page, wbc, epd,
3603 i_size, nr_written, write_flags, &nr);
3604 if (ret == 1)
3605 goto done_unlocked;
3606
3607done:
3608 if (nr == 0) {
3609 /* make sure the mapping tag for page dirty gets cleared */
3610 set_page_writeback(page);
3611 end_page_writeback(page);
3612 }
3613 if (PageError(page)) {
3614 ret = ret < 0 ? ret : -EIO;
3615 end_extent_writepage(page, ret, start, page_end);
3616 }
3617 unlock_page(page);
3618 ASSERT(ret <= 0);
3619 return ret;
3620
3621done_unlocked:
3622 return 0;
3623}
3624
3625void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3626{
3627 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3628 TASK_UNINTERRUPTIBLE);
3629}
3630
3631static void end_extent_buffer_writeback(struct extent_buffer *eb)
3632{
3633 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3634 smp_mb__after_atomic();
3635 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3636}
3637
3638/*
3639 * Lock eb pages and flush the bio if we can't the locks
3640 *
3641 * Return 0 if nothing went wrong
3642 * Return >0 is same as 0, except bio is not submitted
3643 * Return <0 if something went wrong, no page is locked
3644 */
3645static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3646 struct extent_page_data *epd)
3647{
3648 struct btrfs_fs_info *fs_info = eb->fs_info;
3649 int i, num_pages, failed_page_nr;
3650 int flush = 0;
3651 int ret = 0;
3652
3653 if (!btrfs_try_tree_write_lock(eb)) {
3654 ret = flush_write_bio(epd);
3655 if (ret < 0)
3656 return ret;
3657 flush = 1;
3658 btrfs_tree_lock(eb);
3659 }
3660
3661 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3662 btrfs_tree_unlock(eb);
3663 if (!epd->sync_io)
3664 return 0;
3665 if (!flush) {
3666 ret = flush_write_bio(epd);
3667 if (ret < 0)
3668 return ret;
3669 flush = 1;
3670 }
3671 while (1) {
3672 wait_on_extent_buffer_writeback(eb);
3673 btrfs_tree_lock(eb);
3674 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3675 break;
3676 btrfs_tree_unlock(eb);
3677 }
3678 }
3679
3680 /*
3681 * We need to do this to prevent races in people who check if the eb is
3682 * under IO since we can end up having no IO bits set for a short period
3683 * of time.
3684 */
3685 spin_lock(&eb->refs_lock);
3686 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3687 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3688 spin_unlock(&eb->refs_lock);
3689 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3690 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3691 -eb->len,
3692 fs_info->dirty_metadata_batch);
3693 ret = 1;
3694 } else {
3695 spin_unlock(&eb->refs_lock);
3696 }
3697
3698 btrfs_tree_unlock(eb);
3699
3700 if (!ret)
3701 return ret;
3702
3703 num_pages = num_extent_pages(eb);
3704 for (i = 0; i < num_pages; i++) {
3705 struct page *p = eb->pages[i];
3706
3707 if (!trylock_page(p)) {
3708 if (!flush) {
3709 int err;
3710
3711 err = flush_write_bio(epd);
3712 if (err < 0) {
3713 ret = err;
3714 failed_page_nr = i;
3715 goto err_unlock;
3716 }
3717 flush = 1;
3718 }
3719 lock_page(p);
3720 }
3721 }
3722
3723 return ret;
3724err_unlock:
3725 /* Unlock already locked pages */
3726 for (i = 0; i < failed_page_nr; i++)
3727 unlock_page(eb->pages[i]);
3728 /*
3729 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3730 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3731 * be made and undo everything done before.
3732 */
3733 btrfs_tree_lock(eb);
3734 spin_lock(&eb->refs_lock);
3735 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3736 end_extent_buffer_writeback(eb);
3737 spin_unlock(&eb->refs_lock);
3738 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3739 fs_info->dirty_metadata_batch);
3740 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3741 btrfs_tree_unlock(eb);
3742 return ret;
3743}
3744
3745static void set_btree_ioerr(struct page *page)
3746{
3747 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3748 struct btrfs_fs_info *fs_info;
3749
3750 SetPageError(page);
3751 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3752 return;
3753
3754 /*
3755 * If we error out, we should add back the dirty_metadata_bytes
3756 * to make it consistent.
3757 */
3758 fs_info = eb->fs_info;
3759 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3760 eb->len, fs_info->dirty_metadata_batch);
3761
3762 /*
3763 * If writeback for a btree extent that doesn't belong to a log tree
3764 * failed, increment the counter transaction->eb_write_errors.
3765 * We do this because while the transaction is running and before it's
3766 * committing (when we call filemap_fdata[write|wait]_range against
3767 * the btree inode), we might have
3768 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3769 * returns an error or an error happens during writeback, when we're
3770 * committing the transaction we wouldn't know about it, since the pages
3771 * can be no longer dirty nor marked anymore for writeback (if a
3772 * subsequent modification to the extent buffer didn't happen before the
3773 * transaction commit), which makes filemap_fdata[write|wait]_range not
3774 * able to find the pages tagged with SetPageError at transaction
3775 * commit time. So if this happens we must abort the transaction,
3776 * otherwise we commit a super block with btree roots that point to
3777 * btree nodes/leafs whose content on disk is invalid - either garbage
3778 * or the content of some node/leaf from a past generation that got
3779 * cowed or deleted and is no longer valid.
3780 *
3781 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3782 * not be enough - we need to distinguish between log tree extents vs
3783 * non-log tree extents, and the next filemap_fdatawait_range() call
3784 * will catch and clear such errors in the mapping - and that call might
3785 * be from a log sync and not from a transaction commit. Also, checking
3786 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3787 * not done and would not be reliable - the eb might have been released
3788 * from memory and reading it back again means that flag would not be
3789 * set (since it's a runtime flag, not persisted on disk).
3790 *
3791 * Using the flags below in the btree inode also makes us achieve the
3792 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3793 * writeback for all dirty pages and before filemap_fdatawait_range()
3794 * is called, the writeback for all dirty pages had already finished
3795 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3796 * filemap_fdatawait_range() would return success, as it could not know
3797 * that writeback errors happened (the pages were no longer tagged for
3798 * writeback).
3799 */
3800 switch (eb->log_index) {
3801 case -1:
3802 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3803 break;
3804 case 0:
3805 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3806 break;
3807 case 1:
3808 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3809 break;
3810 default:
3811 BUG(); /* unexpected, logic error */
3812 }
3813}
3814
3815static void end_bio_extent_buffer_writepage(struct bio *bio)
3816{
3817 struct bio_vec *bvec;
3818 struct extent_buffer *eb;
3819 int done;
3820 struct bvec_iter_all iter_all;
3821
3822 ASSERT(!bio_flagged(bio, BIO_CLONED));
3823 bio_for_each_segment_all(bvec, bio, iter_all) {
3824 struct page *page = bvec->bv_page;
3825
3826 eb = (struct extent_buffer *)page->private;
3827 BUG_ON(!eb);
3828 done = atomic_dec_and_test(&eb->io_pages);
3829
3830 if (bio->bi_status ||
3831 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3832 ClearPageUptodate(page);
3833 set_btree_ioerr(page);
3834 }
3835
3836 end_page_writeback(page);
3837
3838 if (!done)
3839 continue;
3840
3841 end_extent_buffer_writeback(eb);
3842 }
3843
3844 bio_put(bio);
3845}
3846
3847static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3848 struct writeback_control *wbc,
3849 struct extent_page_data *epd)
3850{
3851 struct btrfs_fs_info *fs_info = eb->fs_info;
3852 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3853 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3854 u64 offset = eb->start;
3855 u32 nritems;
3856 int i, num_pages;
3857 unsigned long start, end;
3858 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3859 int ret = 0;
3860
3861 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3862 num_pages = num_extent_pages(eb);
3863 atomic_set(&eb->io_pages, num_pages);
3864
3865 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3866 nritems = btrfs_header_nritems(eb);
3867 if (btrfs_header_level(eb) > 0) {
3868 end = btrfs_node_key_ptr_offset(nritems);
3869
3870 memzero_extent_buffer(eb, end, eb->len - end);
3871 } else {
3872 /*
3873 * leaf:
3874 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3875 */
3876 start = btrfs_item_nr_offset(nritems);
3877 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3878 memzero_extent_buffer(eb, start, end - start);
3879 }
3880
3881 for (i = 0; i < num_pages; i++) {
3882 struct page *p = eb->pages[i];
3883
3884 clear_page_dirty_for_io(p);
3885 set_page_writeback(p);
3886 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3887 p, offset, PAGE_SIZE, 0, bdev,
3888 &epd->bio,
3889 end_bio_extent_buffer_writepage,
3890 0, 0, 0, false);
3891 if (ret) {
3892 set_btree_ioerr(p);
3893 if (PageWriteback(p))
3894 end_page_writeback(p);
3895 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3896 end_extent_buffer_writeback(eb);
3897 ret = -EIO;
3898 break;
3899 }
3900 offset += PAGE_SIZE;
3901 update_nr_written(wbc, 1);
3902 unlock_page(p);
3903 }
3904
3905 if (unlikely(ret)) {
3906 for (; i < num_pages; i++) {
3907 struct page *p = eb->pages[i];
3908 clear_page_dirty_for_io(p);
3909 unlock_page(p);
3910 }
3911 }
3912
3913 return ret;
3914}
3915
3916int btree_write_cache_pages(struct address_space *mapping,
3917 struct writeback_control *wbc)
3918{
3919 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3920 struct extent_buffer *eb, *prev_eb = NULL;
3921 struct extent_page_data epd = {
3922 .bio = NULL,
3923 .tree = tree,
3924 .extent_locked = 0,
3925 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3926 };
3927 int ret = 0;
3928 int done = 0;
3929 int nr_to_write_done = 0;
3930 struct pagevec pvec;
3931 int nr_pages;
3932 pgoff_t index;
3933 pgoff_t end; /* Inclusive */
3934 int scanned = 0;
3935 xa_mark_t tag;
3936
3937 pagevec_init(&pvec);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
3942 index = wbc->range_start >> PAGE_SHIFT;
3943 end = wbc->range_end >> PAGE_SHIFT;
3944 scanned = 1;
3945 }
3946 if (wbc->sync_mode == WB_SYNC_ALL)
3947 tag = PAGECACHE_TAG_TOWRITE;
3948 else
3949 tag = PAGECACHE_TAG_DIRTY;
3950retry:
3951 if (wbc->sync_mode == WB_SYNC_ALL)
3952 tag_pages_for_writeback(mapping, index, end);
3953 while (!done && !nr_to_write_done && (index <= end) &&
3954 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3955 tag))) {
3956 unsigned i;
3957
3958 scanned = 1;
3959 for (i = 0; i < nr_pages; i++) {
3960 struct page *page = pvec.pages[i];
3961
3962 if (!PagePrivate(page))
3963 continue;
3964
3965 spin_lock(&mapping->private_lock);
3966 if (!PagePrivate(page)) {
3967 spin_unlock(&mapping->private_lock);
3968 continue;
3969 }
3970
3971 eb = (struct extent_buffer *)page->private;
3972
3973 /*
3974 * Shouldn't happen and normally this would be a BUG_ON
3975 * but no sense in crashing the users box for something
3976 * we can survive anyway.
3977 */
3978 if (WARN_ON(!eb)) {
3979 spin_unlock(&mapping->private_lock);
3980 continue;
3981 }
3982
3983 if (eb == prev_eb) {
3984 spin_unlock(&mapping->private_lock);
3985 continue;
3986 }
3987
3988 ret = atomic_inc_not_zero(&eb->refs);
3989 spin_unlock(&mapping->private_lock);
3990 if (!ret)
3991 continue;
3992
3993 prev_eb = eb;
3994 ret = lock_extent_buffer_for_io(eb, &epd);
3995 if (!ret) {
3996 free_extent_buffer(eb);
3997 continue;
3998 } else if (ret < 0) {
3999 done = 1;
4000 free_extent_buffer(eb);
4001 break;
4002 }
4003
4004 ret = write_one_eb(eb, wbc, &epd);
4005 if (ret) {
4006 done = 1;
4007 free_extent_buffer(eb);
4008 break;
4009 }
4010 free_extent_buffer(eb);
4011
4012 /*
4013 * the filesystem may choose to bump up nr_to_write.
4014 * We have to make sure to honor the new nr_to_write
4015 * at any time
4016 */
4017 nr_to_write_done = wbc->nr_to_write <= 0;
4018 }
4019 pagevec_release(&pvec);
4020 cond_resched();
4021 }
4022 if (!scanned && !done) {
4023 /*
4024 * We hit the last page and there is more work to be done: wrap
4025 * back to the start of the file
4026 */
4027 scanned = 1;
4028 index = 0;
4029 goto retry;
4030 }
4031 ASSERT(ret <= 0);
4032 if (ret < 0) {
4033 end_write_bio(&epd, ret);
4034 return ret;
4035 }
4036 ret = flush_write_bio(&epd);
4037 return ret;
4038}
4039
4040/**
4041 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4042 * @mapping: address space structure to write
4043 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4044 * @data: data passed to __extent_writepage function
4045 *
4046 * If a page is already under I/O, write_cache_pages() skips it, even
4047 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4048 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4049 * and msync() need to guarantee that all the data which was dirty at the time
4050 * the call was made get new I/O started against them. If wbc->sync_mode is
4051 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4052 * existing IO to complete.
4053 */
4054static int extent_write_cache_pages(struct address_space *mapping,
4055 struct writeback_control *wbc,
4056 struct extent_page_data *epd)
4057{
4058 struct inode *inode = mapping->host;
4059 int ret = 0;
4060 int done = 0;
4061 int nr_to_write_done = 0;
4062 struct pagevec pvec;
4063 int nr_pages;
4064 pgoff_t index;
4065 pgoff_t end; /* Inclusive */
4066 pgoff_t done_index;
4067 int range_whole = 0;
4068 int scanned = 0;
4069 xa_mark_t tag;
4070
4071 /*
4072 * We have to hold onto the inode so that ordered extents can do their
4073 * work when the IO finishes. The alternative to this is failing to add
4074 * an ordered extent if the igrab() fails there and that is a huge pain
4075 * to deal with, so instead just hold onto the inode throughout the
4076 * writepages operation. If it fails here we are freeing up the inode
4077 * anyway and we'd rather not waste our time writing out stuff that is
4078 * going to be truncated anyway.
4079 */
4080 if (!igrab(inode))
4081 return 0;
4082
4083 pagevec_init(&pvec);
4084 if (wbc->range_cyclic) {
4085 index = mapping->writeback_index; /* Start from prev offset */
4086 end = -1;
4087 } else {
4088 index = wbc->range_start >> PAGE_SHIFT;
4089 end = wbc->range_end >> PAGE_SHIFT;
4090 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4091 range_whole = 1;
4092 scanned = 1;
4093 }
4094
4095 /*
4096 * We do the tagged writepage as long as the snapshot flush bit is set
4097 * and we are the first one who do the filemap_flush() on this inode.
4098 *
4099 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4100 * not race in and drop the bit.
4101 */
4102 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4103 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4104 &BTRFS_I(inode)->runtime_flags))
4105 wbc->tagged_writepages = 1;
4106
4107 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4108 tag = PAGECACHE_TAG_TOWRITE;
4109 else
4110 tag = PAGECACHE_TAG_DIRTY;
4111retry:
4112 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4113 tag_pages_for_writeback(mapping, index, end);
4114 done_index = index;
4115 while (!done && !nr_to_write_done && (index <= end) &&
4116 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4117 &index, end, tag))) {
4118 unsigned i;
4119
4120 scanned = 1;
4121 for (i = 0; i < nr_pages; i++) {
4122 struct page *page = pvec.pages[i];
4123
4124 done_index = page->index;
4125 /*
4126 * At this point we hold neither the i_pages lock nor
4127 * the page lock: the page may be truncated or
4128 * invalidated (changing page->mapping to NULL),
4129 * or even swizzled back from swapper_space to
4130 * tmpfs file mapping
4131 */
4132 if (!trylock_page(page)) {
4133 ret = flush_write_bio(epd);
4134 BUG_ON(ret < 0);
4135 lock_page(page);
4136 }
4137
4138 if (unlikely(page->mapping != mapping)) {
4139 unlock_page(page);
4140 continue;
4141 }
4142
4143 if (wbc->sync_mode != WB_SYNC_NONE) {
4144 if (PageWriteback(page)) {
4145 ret = flush_write_bio(epd);
4146 BUG_ON(ret < 0);
4147 }
4148 wait_on_page_writeback(page);
4149 }
4150
4151 if (PageWriteback(page) ||
4152 !clear_page_dirty_for_io(page)) {
4153 unlock_page(page);
4154 continue;
4155 }
4156
4157 ret = __extent_writepage(page, wbc, epd);
4158 if (ret < 0) {
4159 /*
4160 * done_index is set past this page,
4161 * so media errors will not choke
4162 * background writeout for the entire
4163 * file. This has consequences for
4164 * range_cyclic semantics (ie. it may
4165 * not be suitable for data integrity
4166 * writeout).
4167 */
4168 done_index = page->index + 1;
4169 done = 1;
4170 break;
4171 }
4172
4173 /*
4174 * the filesystem may choose to bump up nr_to_write.
4175 * We have to make sure to honor the new nr_to_write
4176 * at any time
4177 */
4178 nr_to_write_done = wbc->nr_to_write <= 0;
4179 }
4180 pagevec_release(&pvec);
4181 cond_resched();
4182 }
4183 if (!scanned && !done) {
4184 /*
4185 * We hit the last page and there is more work to be done: wrap
4186 * back to the start of the file
4187 */
4188 scanned = 1;
4189 index = 0;
4190 goto retry;
4191 }
4192
4193 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4194 mapping->writeback_index = done_index;
4195
4196 btrfs_add_delayed_iput(inode);
4197 return ret;
4198}
4199
4200int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4201{
4202 int ret;
4203 struct extent_page_data epd = {
4204 .bio = NULL,
4205 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4206 .extent_locked = 0,
4207 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4208 };
4209
4210 ret = __extent_writepage(page, wbc, &epd);
4211 ASSERT(ret <= 0);
4212 if (ret < 0) {
4213 end_write_bio(&epd, ret);
4214 return ret;
4215 }
4216
4217 ret = flush_write_bio(&epd);
4218 ASSERT(ret <= 0);
4219 return ret;
4220}
4221
4222int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4223 int mode)
4224{
4225 int ret = 0;
4226 struct address_space *mapping = inode->i_mapping;
4227 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4228 struct page *page;
4229 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4230 PAGE_SHIFT;
4231
4232 struct extent_page_data epd = {
4233 .bio = NULL,
4234 .tree = tree,
4235 .extent_locked = 1,
4236 .sync_io = mode == WB_SYNC_ALL,
4237 };
4238 struct writeback_control wbc_writepages = {
4239 .sync_mode = mode,
4240 .nr_to_write = nr_pages * 2,
4241 .range_start = start,
4242 .range_end = end + 1,
4243 };
4244
4245 while (start <= end) {
4246 page = find_get_page(mapping, start >> PAGE_SHIFT);
4247 if (clear_page_dirty_for_io(page))
4248 ret = __extent_writepage(page, &wbc_writepages, &epd);
4249 else {
4250 btrfs_writepage_endio_finish_ordered(page, start,
4251 start + PAGE_SIZE - 1, 1);
4252 unlock_page(page);
4253 }
4254 put_page(page);
4255 start += PAGE_SIZE;
4256 }
4257
4258 ASSERT(ret <= 0);
4259 if (ret < 0) {
4260 end_write_bio(&epd, ret);
4261 return ret;
4262 }
4263 ret = flush_write_bio(&epd);
4264 return ret;
4265}
4266
4267int extent_writepages(struct address_space *mapping,
4268 struct writeback_control *wbc)
4269{
4270 int ret = 0;
4271 struct extent_page_data epd = {
4272 .bio = NULL,
4273 .tree = &BTRFS_I(mapping->host)->io_tree,
4274 .extent_locked = 0,
4275 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4276 };
4277
4278 ret = extent_write_cache_pages(mapping, wbc, &epd);
4279 ASSERT(ret <= 0);
4280 if (ret < 0) {
4281 end_write_bio(&epd, ret);
4282 return ret;
4283 }
4284 ret = flush_write_bio(&epd);
4285 return ret;
4286}
4287
4288int extent_readpages(struct address_space *mapping, struct list_head *pages,
4289 unsigned nr_pages)
4290{
4291 struct bio *bio = NULL;
4292 unsigned long bio_flags = 0;
4293 struct page *pagepool[16];
4294 struct extent_map *em_cached = NULL;
4295 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4296 int nr = 0;
4297 u64 prev_em_start = (u64)-1;
4298
4299 while (!list_empty(pages)) {
4300 u64 contig_end = 0;
4301
4302 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4303 struct page *page = lru_to_page(pages);
4304
4305 prefetchw(&page->flags);
4306 list_del(&page->lru);
4307 if (add_to_page_cache_lru(page, mapping, page->index,
4308 readahead_gfp_mask(mapping))) {
4309 put_page(page);
4310 break;
4311 }
4312
4313 pagepool[nr++] = page;
4314 contig_end = page_offset(page) + PAGE_SIZE - 1;
4315 }
4316
4317 if (nr) {
4318 u64 contig_start = page_offset(pagepool[0]);
4319
4320 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4321
4322 contiguous_readpages(tree, pagepool, nr, contig_start,
4323 contig_end, &em_cached, &bio, &bio_flags,
4324 &prev_em_start);
4325 }
4326 }
4327
4328 if (em_cached)
4329 free_extent_map(em_cached);
4330
4331 if (bio)
4332 return submit_one_bio(bio, 0, bio_flags);
4333 return 0;
4334}
4335
4336/*
4337 * basic invalidatepage code, this waits on any locked or writeback
4338 * ranges corresponding to the page, and then deletes any extent state
4339 * records from the tree
4340 */
4341int extent_invalidatepage(struct extent_io_tree *tree,
4342 struct page *page, unsigned long offset)
4343{
4344 struct extent_state *cached_state = NULL;
4345 u64 start = page_offset(page);
4346 u64 end = start + PAGE_SIZE - 1;
4347 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4348
4349 start += ALIGN(offset, blocksize);
4350 if (start > end)
4351 return 0;
4352
4353 lock_extent_bits(tree, start, end, &cached_state);
4354 wait_on_page_writeback(page);
4355 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4356 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4357 return 0;
4358}
4359
4360/*
4361 * a helper for releasepage, this tests for areas of the page that
4362 * are locked or under IO and drops the related state bits if it is safe
4363 * to drop the page.
4364 */
4365static int try_release_extent_state(struct extent_io_tree *tree,
4366 struct page *page, gfp_t mask)
4367{
4368 u64 start = page_offset(page);
4369 u64 end = start + PAGE_SIZE - 1;
4370 int ret = 1;
4371
4372 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4373 ret = 0;
4374 } else {
4375 /*
4376 * at this point we can safely clear everything except the
4377 * locked bit and the nodatasum bit
4378 */
4379 ret = __clear_extent_bit(tree, start, end,
4380 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4381 0, 0, NULL, mask, NULL);
4382
4383 /* if clear_extent_bit failed for enomem reasons,
4384 * we can't allow the release to continue.
4385 */
4386 if (ret < 0)
4387 ret = 0;
4388 else
4389 ret = 1;
4390 }
4391 return ret;
4392}
4393
4394/*
4395 * a helper for releasepage. As long as there are no locked extents
4396 * in the range corresponding to the page, both state records and extent
4397 * map records are removed
4398 */
4399int try_release_extent_mapping(struct page *page, gfp_t mask)
4400{
4401 struct extent_map *em;
4402 u64 start = page_offset(page);
4403 u64 end = start + PAGE_SIZE - 1;
4404 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4405 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4406 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4407
4408 if (gfpflags_allow_blocking(mask) &&
4409 page->mapping->host->i_size > SZ_16M) {
4410 u64 len;
4411 while (start <= end) {
4412 len = end - start + 1;
4413 write_lock(&map->lock);
4414 em = lookup_extent_mapping(map, start, len);
4415 if (!em) {
4416 write_unlock(&map->lock);
4417 break;
4418 }
4419 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4420 em->start != start) {
4421 write_unlock(&map->lock);
4422 free_extent_map(em);
4423 break;
4424 }
4425 if (!test_range_bit(tree, em->start,
4426 extent_map_end(em) - 1,
4427 EXTENT_LOCKED, 0, NULL)) {
4428 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4429 &btrfs_inode->runtime_flags);
4430 remove_extent_mapping(map, em);
4431 /* once for the rb tree */
4432 free_extent_map(em);
4433 }
4434 start = extent_map_end(em);
4435 write_unlock(&map->lock);
4436
4437 /* once for us */
4438 free_extent_map(em);
4439 }
4440 }
4441 return try_release_extent_state(tree, page, mask);
4442}
4443
4444/*
4445 * helper function for fiemap, which doesn't want to see any holes.
4446 * This maps until we find something past 'last'
4447 */
4448static struct extent_map *get_extent_skip_holes(struct inode *inode,
4449 u64 offset, u64 last)
4450{
4451 u64 sectorsize = btrfs_inode_sectorsize(inode);
4452 struct extent_map *em;
4453 u64 len;
4454
4455 if (offset >= last)
4456 return NULL;
4457
4458 while (1) {
4459 len = last - offset;
4460 if (len == 0)
4461 break;
4462 len = ALIGN(len, sectorsize);
4463 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4464 if (IS_ERR_OR_NULL(em))
4465 return em;
4466
4467 /* if this isn't a hole return it */
4468 if (em->block_start != EXTENT_MAP_HOLE)
4469 return em;
4470
4471 /* this is a hole, advance to the next extent */
4472 offset = extent_map_end(em);
4473 free_extent_map(em);
4474 if (offset >= last)
4475 break;
4476 }
4477 return NULL;
4478}
4479
4480/*
4481 * To cache previous fiemap extent
4482 *
4483 * Will be used for merging fiemap extent
4484 */
4485struct fiemap_cache {
4486 u64 offset;
4487 u64 phys;
4488 u64 len;
4489 u32 flags;
4490 bool cached;
4491};
4492
4493/*
4494 * Helper to submit fiemap extent.
4495 *
4496 * Will try to merge current fiemap extent specified by @offset, @phys,
4497 * @len and @flags with cached one.
4498 * And only when we fails to merge, cached one will be submitted as
4499 * fiemap extent.
4500 *
4501 * Return value is the same as fiemap_fill_next_extent().
4502 */
4503static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4504 struct fiemap_cache *cache,
4505 u64 offset, u64 phys, u64 len, u32 flags)
4506{
4507 int ret = 0;
4508
4509 if (!cache->cached)
4510 goto assign;
4511
4512 /*
4513 * Sanity check, extent_fiemap() should have ensured that new
4514 * fiemap extent won't overlap with cached one.
4515 * Not recoverable.
4516 *
4517 * NOTE: Physical address can overlap, due to compression
4518 */
4519 if (cache->offset + cache->len > offset) {
4520 WARN_ON(1);
4521 return -EINVAL;
4522 }
4523
4524 /*
4525 * Only merges fiemap extents if
4526 * 1) Their logical addresses are continuous
4527 *
4528 * 2) Their physical addresses are continuous
4529 * So truly compressed (physical size smaller than logical size)
4530 * extents won't get merged with each other
4531 *
4532 * 3) Share same flags except FIEMAP_EXTENT_LAST
4533 * So regular extent won't get merged with prealloc extent
4534 */
4535 if (cache->offset + cache->len == offset &&
4536 cache->phys + cache->len == phys &&
4537 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4538 (flags & ~FIEMAP_EXTENT_LAST)) {
4539 cache->len += len;
4540 cache->flags |= flags;
4541 goto try_submit_last;
4542 }
4543
4544 /* Not mergeable, need to submit cached one */
4545 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4546 cache->len, cache->flags);
4547 cache->cached = false;
4548 if (ret)
4549 return ret;
4550assign:
4551 cache->cached = true;
4552 cache->offset = offset;
4553 cache->phys = phys;
4554 cache->len = len;
4555 cache->flags = flags;
4556try_submit_last:
4557 if (cache->flags & FIEMAP_EXTENT_LAST) {
4558 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4559 cache->phys, cache->len, cache->flags);
4560 cache->cached = false;
4561 }
4562 return ret;
4563}
4564
4565/*
4566 * Emit last fiemap cache
4567 *
4568 * The last fiemap cache may still be cached in the following case:
4569 * 0 4k 8k
4570 * |<- Fiemap range ->|
4571 * |<------------ First extent ----------->|
4572 *
4573 * In this case, the first extent range will be cached but not emitted.
4574 * So we must emit it before ending extent_fiemap().
4575 */
4576static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4577 struct fiemap_cache *cache)
4578{
4579 int ret;
4580
4581 if (!cache->cached)
4582 return 0;
4583
4584 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4585 cache->len, cache->flags);
4586 cache->cached = false;
4587 if (ret > 0)
4588 ret = 0;
4589 return ret;
4590}
4591
4592int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4593 __u64 start, __u64 len)
4594{
4595 int ret = 0;
4596 u64 off = start;
4597 u64 max = start + len;
4598 u32 flags = 0;
4599 u32 found_type;
4600 u64 last;
4601 u64 last_for_get_extent = 0;
4602 u64 disko = 0;
4603 u64 isize = i_size_read(inode);
4604 struct btrfs_key found_key;
4605 struct extent_map *em = NULL;
4606 struct extent_state *cached_state = NULL;
4607 struct btrfs_path *path;
4608 struct btrfs_root *root = BTRFS_I(inode)->root;
4609 struct fiemap_cache cache = { 0 };
4610 struct ulist *roots;
4611 struct ulist *tmp_ulist;
4612 int end = 0;
4613 u64 em_start = 0;
4614 u64 em_len = 0;
4615 u64 em_end = 0;
4616
4617 if (len == 0)
4618 return -EINVAL;
4619
4620 path = btrfs_alloc_path();
4621 if (!path)
4622 return -ENOMEM;
4623 path->leave_spinning = 1;
4624
4625 roots = ulist_alloc(GFP_KERNEL);
4626 tmp_ulist = ulist_alloc(GFP_KERNEL);
4627 if (!roots || !tmp_ulist) {
4628 ret = -ENOMEM;
4629 goto out_free_ulist;
4630 }
4631
4632 start = round_down(start, btrfs_inode_sectorsize(inode));
4633 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4634
4635 /*
4636 * lookup the last file extent. We're not using i_size here
4637 * because there might be preallocation past i_size
4638 */
4639 ret = btrfs_lookup_file_extent(NULL, root, path,
4640 btrfs_ino(BTRFS_I(inode)), -1, 0);
4641 if (ret < 0) {
4642 goto out_free_ulist;
4643 } else {
4644 WARN_ON(!ret);
4645 if (ret == 1)
4646 ret = 0;
4647 }
4648
4649 path->slots[0]--;
4650 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4651 found_type = found_key.type;
4652
4653 /* No extents, but there might be delalloc bits */
4654 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4655 found_type != BTRFS_EXTENT_DATA_KEY) {
4656 /* have to trust i_size as the end */
4657 last = (u64)-1;
4658 last_for_get_extent = isize;
4659 } else {
4660 /*
4661 * remember the start of the last extent. There are a
4662 * bunch of different factors that go into the length of the
4663 * extent, so its much less complex to remember where it started
4664 */
4665 last = found_key.offset;
4666 last_for_get_extent = last + 1;
4667 }
4668 btrfs_release_path(path);
4669
4670 /*
4671 * we might have some extents allocated but more delalloc past those
4672 * extents. so, we trust isize unless the start of the last extent is
4673 * beyond isize
4674 */
4675 if (last < isize) {
4676 last = (u64)-1;
4677 last_for_get_extent = isize;
4678 }
4679
4680 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4681 &cached_state);
4682
4683 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4684 if (!em)
4685 goto out;
4686 if (IS_ERR(em)) {
4687 ret = PTR_ERR(em);
4688 goto out;
4689 }
4690
4691 while (!end) {
4692 u64 offset_in_extent = 0;
4693
4694 /* break if the extent we found is outside the range */
4695 if (em->start >= max || extent_map_end(em) < off)
4696 break;
4697
4698 /*
4699 * get_extent may return an extent that starts before our
4700 * requested range. We have to make sure the ranges
4701 * we return to fiemap always move forward and don't
4702 * overlap, so adjust the offsets here
4703 */
4704 em_start = max(em->start, off);
4705
4706 /*
4707 * record the offset from the start of the extent
4708 * for adjusting the disk offset below. Only do this if the
4709 * extent isn't compressed since our in ram offset may be past
4710 * what we have actually allocated on disk.
4711 */
4712 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4713 offset_in_extent = em_start - em->start;
4714 em_end = extent_map_end(em);
4715 em_len = em_end - em_start;
4716 flags = 0;
4717 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4718 disko = em->block_start + offset_in_extent;
4719 else
4720 disko = 0;
4721
4722 /*
4723 * bump off for our next call to get_extent
4724 */
4725 off = extent_map_end(em);
4726 if (off >= max)
4727 end = 1;
4728
4729 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4730 end = 1;
4731 flags |= FIEMAP_EXTENT_LAST;
4732 } else if (em->block_start == EXTENT_MAP_INLINE) {
4733 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4734 FIEMAP_EXTENT_NOT_ALIGNED);
4735 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4736 flags |= (FIEMAP_EXTENT_DELALLOC |
4737 FIEMAP_EXTENT_UNKNOWN);
4738 } else if (fieinfo->fi_extents_max) {
4739 u64 bytenr = em->block_start -
4740 (em->start - em->orig_start);
4741
4742 /*
4743 * As btrfs supports shared space, this information
4744 * can be exported to userspace tools via
4745 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4746 * then we're just getting a count and we can skip the
4747 * lookup stuff.
4748 */
4749 ret = btrfs_check_shared(root,
4750 btrfs_ino(BTRFS_I(inode)),
4751 bytenr, roots, tmp_ulist);
4752 if (ret < 0)
4753 goto out_free;
4754 if (ret)
4755 flags |= FIEMAP_EXTENT_SHARED;
4756 ret = 0;
4757 }
4758 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4759 flags |= FIEMAP_EXTENT_ENCODED;
4760 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4761 flags |= FIEMAP_EXTENT_UNWRITTEN;
4762
4763 free_extent_map(em);
4764 em = NULL;
4765 if ((em_start >= last) || em_len == (u64)-1 ||
4766 (last == (u64)-1 && isize <= em_end)) {
4767 flags |= FIEMAP_EXTENT_LAST;
4768 end = 1;
4769 }
4770
4771 /* now scan forward to see if this is really the last extent. */
4772 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4773 if (IS_ERR(em)) {
4774 ret = PTR_ERR(em);
4775 goto out;
4776 }
4777 if (!em) {
4778 flags |= FIEMAP_EXTENT_LAST;
4779 end = 1;
4780 }
4781 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4782 em_len, flags);
4783 if (ret) {
4784 if (ret == 1)
4785 ret = 0;
4786 goto out_free;
4787 }
4788 }
4789out_free:
4790 if (!ret)
4791 ret = emit_last_fiemap_cache(fieinfo, &cache);
4792 free_extent_map(em);
4793out:
4794 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4795 &cached_state);
4796
4797out_free_ulist:
4798 btrfs_free_path(path);
4799 ulist_free(roots);
4800 ulist_free(tmp_ulist);
4801 return ret;
4802}
4803
4804static void __free_extent_buffer(struct extent_buffer *eb)
4805{
4806 btrfs_leak_debug_del(&eb->leak_list);
4807 kmem_cache_free(extent_buffer_cache, eb);
4808}
4809
4810int extent_buffer_under_io(struct extent_buffer *eb)
4811{
4812 return (atomic_read(&eb->io_pages) ||
4813 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4814 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4815}
4816
4817/*
4818 * Release all pages attached to the extent buffer.
4819 */
4820static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4821{
4822 int i;
4823 int num_pages;
4824 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4825
4826 BUG_ON(extent_buffer_under_io(eb));
4827
4828 num_pages = num_extent_pages(eb);
4829 for (i = 0; i < num_pages; i++) {
4830 struct page *page = eb->pages[i];
4831
4832 if (!page)
4833 continue;
4834 if (mapped)
4835 spin_lock(&page->mapping->private_lock);
4836 /*
4837 * We do this since we'll remove the pages after we've
4838 * removed the eb from the radix tree, so we could race
4839 * and have this page now attached to the new eb. So
4840 * only clear page_private if it's still connected to
4841 * this eb.
4842 */
4843 if (PagePrivate(page) &&
4844 page->private == (unsigned long)eb) {
4845 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4846 BUG_ON(PageDirty(page));
4847 BUG_ON(PageWriteback(page));
4848 /*
4849 * We need to make sure we haven't be attached
4850 * to a new eb.
4851 */
4852 ClearPagePrivate(page);
4853 set_page_private(page, 0);
4854 /* One for the page private */
4855 put_page(page);
4856 }
4857
4858 if (mapped)
4859 spin_unlock(&page->mapping->private_lock);
4860
4861 /* One for when we allocated the page */
4862 put_page(page);
4863 }
4864}
4865
4866/*
4867 * Helper for releasing the extent buffer.
4868 */
4869static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4870{
4871 btrfs_release_extent_buffer_pages(eb);
4872 __free_extent_buffer(eb);
4873}
4874
4875static struct extent_buffer *
4876__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4877 unsigned long len)
4878{
4879 struct extent_buffer *eb = NULL;
4880
4881 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4882 eb->start = start;
4883 eb->len = len;
4884 eb->fs_info = fs_info;
4885 eb->bflags = 0;
4886 rwlock_init(&eb->lock);
4887 atomic_set(&eb->blocking_readers, 0);
4888 eb->blocking_writers = 0;
4889 eb->lock_nested = false;
4890 init_waitqueue_head(&eb->write_lock_wq);
4891 init_waitqueue_head(&eb->read_lock_wq);
4892
4893 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4894
4895 spin_lock_init(&eb->refs_lock);
4896 atomic_set(&eb->refs, 1);
4897 atomic_set(&eb->io_pages, 0);
4898
4899 /*
4900 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4901 */
4902 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4903 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4904 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4905
4906#ifdef CONFIG_BTRFS_DEBUG
4907 eb->spinning_writers = 0;
4908 atomic_set(&eb->spinning_readers, 0);
4909 atomic_set(&eb->read_locks, 0);
4910 eb->write_locks = 0;
4911#endif
4912
4913 return eb;
4914}
4915
4916struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4917{
4918 int i;
4919 struct page *p;
4920 struct extent_buffer *new;
4921 int num_pages = num_extent_pages(src);
4922
4923 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4924 if (new == NULL)
4925 return NULL;
4926
4927 for (i = 0; i < num_pages; i++) {
4928 p = alloc_page(GFP_NOFS);
4929 if (!p) {
4930 btrfs_release_extent_buffer(new);
4931 return NULL;
4932 }
4933 attach_extent_buffer_page(new, p);
4934 WARN_ON(PageDirty(p));
4935 SetPageUptodate(p);
4936 new->pages[i] = p;
4937 copy_page(page_address(p), page_address(src->pages[i]));
4938 }
4939
4940 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4941 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4942
4943 return new;
4944}
4945
4946struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4947 u64 start, unsigned long len)
4948{
4949 struct extent_buffer *eb;
4950 int num_pages;
4951 int i;
4952
4953 eb = __alloc_extent_buffer(fs_info, start, len);
4954 if (!eb)
4955 return NULL;
4956
4957 num_pages = num_extent_pages(eb);
4958 for (i = 0; i < num_pages; i++) {
4959 eb->pages[i] = alloc_page(GFP_NOFS);
4960 if (!eb->pages[i])
4961 goto err;
4962 }
4963 set_extent_buffer_uptodate(eb);
4964 btrfs_set_header_nritems(eb, 0);
4965 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4966
4967 return eb;
4968err:
4969 for (; i > 0; i--)
4970 __free_page(eb->pages[i - 1]);
4971 __free_extent_buffer(eb);
4972 return NULL;
4973}
4974
4975struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4976 u64 start)
4977{
4978 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4979}
4980
4981static void check_buffer_tree_ref(struct extent_buffer *eb)
4982{
4983 int refs;
4984 /* the ref bit is tricky. We have to make sure it is set
4985 * if we have the buffer dirty. Otherwise the
4986 * code to free a buffer can end up dropping a dirty
4987 * page
4988 *
4989 * Once the ref bit is set, it won't go away while the
4990 * buffer is dirty or in writeback, and it also won't
4991 * go away while we have the reference count on the
4992 * eb bumped.
4993 *
4994 * We can't just set the ref bit without bumping the
4995 * ref on the eb because free_extent_buffer might
4996 * see the ref bit and try to clear it. If this happens
4997 * free_extent_buffer might end up dropping our original
4998 * ref by mistake and freeing the page before we are able
4999 * to add one more ref.
5000 *
5001 * So bump the ref count first, then set the bit. If someone
5002 * beat us to it, drop the ref we added.
5003 */
5004 refs = atomic_read(&eb->refs);
5005 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5006 return;
5007
5008 spin_lock(&eb->refs_lock);
5009 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5010 atomic_inc(&eb->refs);
5011 spin_unlock(&eb->refs_lock);
5012}
5013
5014static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5015 struct page *accessed)
5016{
5017 int num_pages, i;
5018
5019 check_buffer_tree_ref(eb);
5020
5021 num_pages = num_extent_pages(eb);
5022 for (i = 0; i < num_pages; i++) {
5023 struct page *p = eb->pages[i];
5024
5025 if (p != accessed)
5026 mark_page_accessed(p);
5027 }
5028}
5029
5030struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5031 u64 start)
5032{
5033 struct extent_buffer *eb;
5034
5035 rcu_read_lock();
5036 eb = radix_tree_lookup(&fs_info->buffer_radix,
5037 start >> PAGE_SHIFT);
5038 if (eb && atomic_inc_not_zero(&eb->refs)) {
5039 rcu_read_unlock();
5040 /*
5041 * Lock our eb's refs_lock to avoid races with
5042 * free_extent_buffer. When we get our eb it might be flagged
5043 * with EXTENT_BUFFER_STALE and another task running
5044 * free_extent_buffer might have seen that flag set,
5045 * eb->refs == 2, that the buffer isn't under IO (dirty and
5046 * writeback flags not set) and it's still in the tree (flag
5047 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5048 * of decrementing the extent buffer's reference count twice.
5049 * So here we could race and increment the eb's reference count,
5050 * clear its stale flag, mark it as dirty and drop our reference
5051 * before the other task finishes executing free_extent_buffer,
5052 * which would later result in an attempt to free an extent
5053 * buffer that is dirty.
5054 */
5055 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5056 spin_lock(&eb->refs_lock);
5057 spin_unlock(&eb->refs_lock);
5058 }
5059 mark_extent_buffer_accessed(eb, NULL);
5060 return eb;
5061 }
5062 rcu_read_unlock();
5063
5064 return NULL;
5065}
5066
5067#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5068struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5069 u64 start)
5070{
5071 struct extent_buffer *eb, *exists = NULL;
5072 int ret;
5073
5074 eb = find_extent_buffer(fs_info, start);
5075 if (eb)
5076 return eb;
5077 eb = alloc_dummy_extent_buffer(fs_info, start);
5078 if (!eb)
5079 return NULL;
5080 eb->fs_info = fs_info;
5081again:
5082 ret = radix_tree_preload(GFP_NOFS);
5083 if (ret)
5084 goto free_eb;
5085 spin_lock(&fs_info->buffer_lock);
5086 ret = radix_tree_insert(&fs_info->buffer_radix,
5087 start >> PAGE_SHIFT, eb);
5088 spin_unlock(&fs_info->buffer_lock);
5089 radix_tree_preload_end();
5090 if (ret == -EEXIST) {
5091 exists = find_extent_buffer(fs_info, start);
5092 if (exists)
5093 goto free_eb;
5094 else
5095 goto again;
5096 }
5097 check_buffer_tree_ref(eb);
5098 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5099
5100 return eb;
5101free_eb:
5102 btrfs_release_extent_buffer(eb);
5103 return exists;
5104}
5105#endif
5106
5107struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5108 u64 start)
5109{
5110 unsigned long len = fs_info->nodesize;
5111 int num_pages;
5112 int i;
5113 unsigned long index = start >> PAGE_SHIFT;
5114 struct extent_buffer *eb;
5115 struct extent_buffer *exists = NULL;
5116 struct page *p;
5117 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5118 int uptodate = 1;
5119 int ret;
5120
5121 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5122 btrfs_err(fs_info, "bad tree block start %llu", start);
5123 return ERR_PTR(-EINVAL);
5124 }
5125
5126 eb = find_extent_buffer(fs_info, start);
5127 if (eb)
5128 return eb;
5129
5130 eb = __alloc_extent_buffer(fs_info, start, len);
5131 if (!eb)
5132 return ERR_PTR(-ENOMEM);
5133
5134 num_pages = num_extent_pages(eb);
5135 for (i = 0; i < num_pages; i++, index++) {
5136 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5137 if (!p) {
5138 exists = ERR_PTR(-ENOMEM);
5139 goto free_eb;
5140 }
5141
5142 spin_lock(&mapping->private_lock);
5143 if (PagePrivate(p)) {
5144 /*
5145 * We could have already allocated an eb for this page
5146 * and attached one so lets see if we can get a ref on
5147 * the existing eb, and if we can we know it's good and
5148 * we can just return that one, else we know we can just
5149 * overwrite page->private.
5150 */
5151 exists = (struct extent_buffer *)p->private;
5152 if (atomic_inc_not_zero(&exists->refs)) {
5153 spin_unlock(&mapping->private_lock);
5154 unlock_page(p);
5155 put_page(p);
5156 mark_extent_buffer_accessed(exists, p);
5157 goto free_eb;
5158 }
5159 exists = NULL;
5160
5161 /*
5162 * Do this so attach doesn't complain and we need to
5163 * drop the ref the old guy had.
5164 */
5165 ClearPagePrivate(p);
5166 WARN_ON(PageDirty(p));
5167 put_page(p);
5168 }
5169 attach_extent_buffer_page(eb, p);
5170 spin_unlock(&mapping->private_lock);
5171 WARN_ON(PageDirty(p));
5172 eb->pages[i] = p;
5173 if (!PageUptodate(p))
5174 uptodate = 0;
5175
5176 /*
5177 * We can't unlock the pages just yet since the extent buffer
5178 * hasn't been properly inserted in the radix tree, this
5179 * opens a race with btree_releasepage which can free a page
5180 * while we are still filling in all pages for the buffer and
5181 * we could crash.
5182 */
5183 }
5184 if (uptodate)
5185 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5186again:
5187 ret = radix_tree_preload(GFP_NOFS);
5188 if (ret) {
5189 exists = ERR_PTR(ret);
5190 goto free_eb;
5191 }
5192
5193 spin_lock(&fs_info->buffer_lock);
5194 ret = radix_tree_insert(&fs_info->buffer_radix,
5195 start >> PAGE_SHIFT, eb);
5196 spin_unlock(&fs_info->buffer_lock);
5197 radix_tree_preload_end();
5198 if (ret == -EEXIST) {
5199 exists = find_extent_buffer(fs_info, start);
5200 if (exists)
5201 goto free_eb;
5202 else
5203 goto again;
5204 }
5205 /* add one reference for the tree */
5206 check_buffer_tree_ref(eb);
5207 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5208
5209 /*
5210 * Now it's safe to unlock the pages because any calls to
5211 * btree_releasepage will correctly detect that a page belongs to a
5212 * live buffer and won't free them prematurely.
5213 */
5214 for (i = 0; i < num_pages; i++)
5215 unlock_page(eb->pages[i]);
5216 return eb;
5217
5218free_eb:
5219 WARN_ON(!atomic_dec_and_test(&eb->refs));
5220 for (i = 0; i < num_pages; i++) {
5221 if (eb->pages[i])
5222 unlock_page(eb->pages[i]);
5223 }
5224
5225 btrfs_release_extent_buffer(eb);
5226 return exists;
5227}
5228
5229static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5230{
5231 struct extent_buffer *eb =
5232 container_of(head, struct extent_buffer, rcu_head);
5233
5234 __free_extent_buffer(eb);
5235}
5236
5237static int release_extent_buffer(struct extent_buffer *eb)
5238{
5239 lockdep_assert_held(&eb->refs_lock);
5240
5241 WARN_ON(atomic_read(&eb->refs) == 0);
5242 if (atomic_dec_and_test(&eb->refs)) {
5243 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5244 struct btrfs_fs_info *fs_info = eb->fs_info;
5245
5246 spin_unlock(&eb->refs_lock);
5247
5248 spin_lock(&fs_info->buffer_lock);
5249 radix_tree_delete(&fs_info->buffer_radix,
5250 eb->start >> PAGE_SHIFT);
5251 spin_unlock(&fs_info->buffer_lock);
5252 } else {
5253 spin_unlock(&eb->refs_lock);
5254 }
5255
5256 /* Should be safe to release our pages at this point */
5257 btrfs_release_extent_buffer_pages(eb);
5258#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5259 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5260 __free_extent_buffer(eb);
5261 return 1;
5262 }
5263#endif
5264 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5265 return 1;
5266 }
5267 spin_unlock(&eb->refs_lock);
5268
5269 return 0;
5270}
5271
5272void free_extent_buffer(struct extent_buffer *eb)
5273{
5274 int refs;
5275 int old;
5276 if (!eb)
5277 return;
5278
5279 while (1) {
5280 refs = atomic_read(&eb->refs);
5281 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5282 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5283 refs == 1))
5284 break;
5285 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5286 if (old == refs)
5287 return;
5288 }
5289
5290 spin_lock(&eb->refs_lock);
5291 if (atomic_read(&eb->refs) == 2 &&
5292 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5293 !extent_buffer_under_io(eb) &&
5294 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5295 atomic_dec(&eb->refs);
5296
5297 /*
5298 * I know this is terrible, but it's temporary until we stop tracking
5299 * the uptodate bits and such for the extent buffers.
5300 */
5301 release_extent_buffer(eb);
5302}
5303
5304void free_extent_buffer_stale(struct extent_buffer *eb)
5305{
5306 if (!eb)
5307 return;
5308
5309 spin_lock(&eb->refs_lock);
5310 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5311
5312 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5313 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5314 atomic_dec(&eb->refs);
5315 release_extent_buffer(eb);
5316}
5317
5318void clear_extent_buffer_dirty(struct extent_buffer *eb)
5319{
5320 int i;
5321 int num_pages;
5322 struct page *page;
5323
5324 num_pages = num_extent_pages(eb);
5325
5326 for (i = 0; i < num_pages; i++) {
5327 page = eb->pages[i];
5328 if (!PageDirty(page))
5329 continue;
5330
5331 lock_page(page);
5332 WARN_ON(!PagePrivate(page));
5333
5334 clear_page_dirty_for_io(page);
5335 xa_lock_irq(&page->mapping->i_pages);
5336 if (!PageDirty(page))
5337 __xa_clear_mark(&page->mapping->i_pages,
5338 page_index(page), PAGECACHE_TAG_DIRTY);
5339 xa_unlock_irq(&page->mapping->i_pages);
5340 ClearPageError(page);
5341 unlock_page(page);
5342 }
5343 WARN_ON(atomic_read(&eb->refs) == 0);
5344}
5345
5346bool set_extent_buffer_dirty(struct extent_buffer *eb)
5347{
5348 int i;
5349 int num_pages;
5350 bool was_dirty;
5351
5352 check_buffer_tree_ref(eb);
5353
5354 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5355
5356 num_pages = num_extent_pages(eb);
5357 WARN_ON(atomic_read(&eb->refs) == 0);
5358 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5359
5360 if (!was_dirty)
5361 for (i = 0; i < num_pages; i++)
5362 set_page_dirty(eb->pages[i]);
5363
5364#ifdef CONFIG_BTRFS_DEBUG
5365 for (i = 0; i < num_pages; i++)
5366 ASSERT(PageDirty(eb->pages[i]));
5367#endif
5368
5369 return was_dirty;
5370}
5371
5372void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5373{
5374 int i;
5375 struct page *page;
5376 int num_pages;
5377
5378 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5379 num_pages = num_extent_pages(eb);
5380 for (i = 0; i < num_pages; i++) {
5381 page = eb->pages[i];
5382 if (page)
5383 ClearPageUptodate(page);
5384 }
5385}
5386
5387void set_extent_buffer_uptodate(struct extent_buffer *eb)
5388{
5389 int i;
5390 struct page *page;
5391 int num_pages;
5392
5393 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5394 num_pages = num_extent_pages(eb);
5395 for (i = 0; i < num_pages; i++) {
5396 page = eb->pages[i];
5397 SetPageUptodate(page);
5398 }
5399}
5400
5401int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5402{
5403 int i;
5404 struct page *page;
5405 int err;
5406 int ret = 0;
5407 int locked_pages = 0;
5408 int all_uptodate = 1;
5409 int num_pages;
5410 unsigned long num_reads = 0;
5411 struct bio *bio = NULL;
5412 unsigned long bio_flags = 0;
5413 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5414
5415 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5416 return 0;
5417
5418 num_pages = num_extent_pages(eb);
5419 for (i = 0; i < num_pages; i++) {
5420 page = eb->pages[i];
5421 if (wait == WAIT_NONE) {
5422 if (!trylock_page(page))
5423 goto unlock_exit;
5424 } else {
5425 lock_page(page);
5426 }
5427 locked_pages++;
5428 }
5429 /*
5430 * We need to firstly lock all pages to make sure that
5431 * the uptodate bit of our pages won't be affected by
5432 * clear_extent_buffer_uptodate().
5433 */
5434 for (i = 0; i < num_pages; i++) {
5435 page = eb->pages[i];
5436 if (!PageUptodate(page)) {
5437 num_reads++;
5438 all_uptodate = 0;
5439 }
5440 }
5441
5442 if (all_uptodate) {
5443 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5444 goto unlock_exit;
5445 }
5446
5447 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5448 eb->read_mirror = 0;
5449 atomic_set(&eb->io_pages, num_reads);
5450 for (i = 0; i < num_pages; i++) {
5451 page = eb->pages[i];
5452
5453 if (!PageUptodate(page)) {
5454 if (ret) {
5455 atomic_dec(&eb->io_pages);
5456 unlock_page(page);
5457 continue;
5458 }
5459
5460 ClearPageError(page);
5461 err = __extent_read_full_page(tree, page,
5462 btree_get_extent, &bio,
5463 mirror_num, &bio_flags,
5464 REQ_META);
5465 if (err) {
5466 ret = err;
5467 /*
5468 * We use &bio in above __extent_read_full_page,
5469 * so we ensure that if it returns error, the
5470 * current page fails to add itself to bio and
5471 * it's been unlocked.
5472 *
5473 * We must dec io_pages by ourselves.
5474 */
5475 atomic_dec(&eb->io_pages);
5476 }
5477 } else {
5478 unlock_page(page);
5479 }
5480 }
5481
5482 if (bio) {
5483 err = submit_one_bio(bio, mirror_num, bio_flags);
5484 if (err)
5485 return err;
5486 }
5487
5488 if (ret || wait != WAIT_COMPLETE)
5489 return ret;
5490
5491 for (i = 0; i < num_pages; i++) {
5492 page = eb->pages[i];
5493 wait_on_page_locked(page);
5494 if (!PageUptodate(page))
5495 ret = -EIO;
5496 }
5497
5498 return ret;
5499
5500unlock_exit:
5501 while (locked_pages > 0) {
5502 locked_pages--;
5503 page = eb->pages[locked_pages];
5504 unlock_page(page);
5505 }
5506 return ret;
5507}
5508
5509void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5510 unsigned long start, unsigned long len)
5511{
5512 size_t cur;
5513 size_t offset;
5514 struct page *page;
5515 char *kaddr;
5516 char *dst = (char *)dstv;
5517 size_t start_offset = offset_in_page(eb->start);
5518 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5519
5520 if (start + len > eb->len) {
5521 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5522 eb->start, eb->len, start, len);
5523 memset(dst, 0, len);
5524 return;
5525 }
5526
5527 offset = offset_in_page(start_offset + start);
5528
5529 while (len > 0) {
5530 page = eb->pages[i];
5531
5532 cur = min(len, (PAGE_SIZE - offset));
5533 kaddr = page_address(page);
5534 memcpy(dst, kaddr + offset, cur);
5535
5536 dst += cur;
5537 len -= cur;
5538 offset = 0;
5539 i++;
5540 }
5541}
5542
5543int read_extent_buffer_to_user(const struct extent_buffer *eb,
5544 void __user *dstv,
5545 unsigned long start, unsigned long len)
5546{
5547 size_t cur;
5548 size_t offset;
5549 struct page *page;
5550 char *kaddr;
5551 char __user *dst = (char __user *)dstv;
5552 size_t start_offset = offset_in_page(eb->start);
5553 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5554 int ret = 0;
5555
5556 WARN_ON(start > eb->len);
5557 WARN_ON(start + len > eb->start + eb->len);
5558
5559 offset = offset_in_page(start_offset + start);
5560
5561 while (len > 0) {
5562 page = eb->pages[i];
5563
5564 cur = min(len, (PAGE_SIZE - offset));
5565 kaddr = page_address(page);
5566 if (copy_to_user(dst, kaddr + offset, cur)) {
5567 ret = -EFAULT;
5568 break;
5569 }
5570
5571 dst += cur;
5572 len -= cur;
5573 offset = 0;
5574 i++;
5575 }
5576
5577 return ret;
5578}
5579
5580/*
5581 * return 0 if the item is found within a page.
5582 * return 1 if the item spans two pages.
5583 * return -EINVAL otherwise.
5584 */
5585int map_private_extent_buffer(const struct extent_buffer *eb,
5586 unsigned long start, unsigned long min_len,
5587 char **map, unsigned long *map_start,
5588 unsigned long *map_len)
5589{
5590 size_t offset;
5591 char *kaddr;
5592 struct page *p;
5593 size_t start_offset = offset_in_page(eb->start);
5594 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5595 unsigned long end_i = (start_offset + start + min_len - 1) >>
5596 PAGE_SHIFT;
5597
5598 if (start + min_len > eb->len) {
5599 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5600 eb->start, eb->len, start, min_len);
5601 return -EINVAL;
5602 }
5603
5604 if (i != end_i)
5605 return 1;
5606
5607 if (i == 0) {
5608 offset = start_offset;
5609 *map_start = 0;
5610 } else {
5611 offset = 0;
5612 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5613 }
5614
5615 p = eb->pages[i];
5616 kaddr = page_address(p);
5617 *map = kaddr + offset;
5618 *map_len = PAGE_SIZE - offset;
5619 return 0;
5620}
5621
5622int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5623 unsigned long start, unsigned long len)
5624{
5625 size_t cur;
5626 size_t offset;
5627 struct page *page;
5628 char *kaddr;
5629 char *ptr = (char *)ptrv;
5630 size_t start_offset = offset_in_page(eb->start);
5631 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5632 int ret = 0;
5633
5634 WARN_ON(start > eb->len);
5635 WARN_ON(start + len > eb->start + eb->len);
5636
5637 offset = offset_in_page(start_offset + start);
5638
5639 while (len > 0) {
5640 page = eb->pages[i];
5641
5642 cur = min(len, (PAGE_SIZE - offset));
5643
5644 kaddr = page_address(page);
5645 ret = memcmp(ptr, kaddr + offset, cur);
5646 if (ret)
5647 break;
5648
5649 ptr += cur;
5650 len -= cur;
5651 offset = 0;
5652 i++;
5653 }
5654 return ret;
5655}
5656
5657void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5658 const void *srcv)
5659{
5660 char *kaddr;
5661
5662 WARN_ON(!PageUptodate(eb->pages[0]));
5663 kaddr = page_address(eb->pages[0]);
5664 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5665 BTRFS_FSID_SIZE);
5666}
5667
5668void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5669{
5670 char *kaddr;
5671
5672 WARN_ON(!PageUptodate(eb->pages[0]));
5673 kaddr = page_address(eb->pages[0]);
5674 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5675 BTRFS_FSID_SIZE);
5676}
5677
5678void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5679 unsigned long start, unsigned long len)
5680{
5681 size_t cur;
5682 size_t offset;
5683 struct page *page;
5684 char *kaddr;
5685 char *src = (char *)srcv;
5686 size_t start_offset = offset_in_page(eb->start);
5687 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5688
5689 WARN_ON(start > eb->len);
5690 WARN_ON(start + len > eb->start + eb->len);
5691
5692 offset = offset_in_page(start_offset + start);
5693
5694 while (len > 0) {
5695 page = eb->pages[i];
5696 WARN_ON(!PageUptodate(page));
5697
5698 cur = min(len, PAGE_SIZE - offset);
5699 kaddr = page_address(page);
5700 memcpy(kaddr + offset, src, cur);
5701
5702 src += cur;
5703 len -= cur;
5704 offset = 0;
5705 i++;
5706 }
5707}
5708
5709void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5710 unsigned long len)
5711{
5712 size_t cur;
5713 size_t offset;
5714 struct page *page;
5715 char *kaddr;
5716 size_t start_offset = offset_in_page(eb->start);
5717 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5718
5719 WARN_ON(start > eb->len);
5720 WARN_ON(start + len > eb->start + eb->len);
5721
5722 offset = offset_in_page(start_offset + start);
5723
5724 while (len > 0) {
5725 page = eb->pages[i];
5726 WARN_ON(!PageUptodate(page));
5727
5728 cur = min(len, PAGE_SIZE - offset);
5729 kaddr = page_address(page);
5730 memset(kaddr + offset, 0, cur);
5731
5732 len -= cur;
5733 offset = 0;
5734 i++;
5735 }
5736}
5737
5738void copy_extent_buffer_full(struct extent_buffer *dst,
5739 struct extent_buffer *src)
5740{
5741 int i;
5742 int num_pages;
5743
5744 ASSERT(dst->len == src->len);
5745
5746 num_pages = num_extent_pages(dst);
5747 for (i = 0; i < num_pages; i++)
5748 copy_page(page_address(dst->pages[i]),
5749 page_address(src->pages[i]));
5750}
5751
5752void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5753 unsigned long dst_offset, unsigned long src_offset,
5754 unsigned long len)
5755{
5756 u64 dst_len = dst->len;
5757 size_t cur;
5758 size_t offset;
5759 struct page *page;
5760 char *kaddr;
5761 size_t start_offset = offset_in_page(dst->start);
5762 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5763
5764 WARN_ON(src->len != dst_len);
5765
5766 offset = offset_in_page(start_offset + dst_offset);
5767
5768 while (len > 0) {
5769 page = dst->pages[i];
5770 WARN_ON(!PageUptodate(page));
5771
5772 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5773
5774 kaddr = page_address(page);
5775 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5776
5777 src_offset += cur;
5778 len -= cur;
5779 offset = 0;
5780 i++;
5781 }
5782}
5783
5784/*
5785 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5786 * given bit number
5787 * @eb: the extent buffer
5788 * @start: offset of the bitmap item in the extent buffer
5789 * @nr: bit number
5790 * @page_index: return index of the page in the extent buffer that contains the
5791 * given bit number
5792 * @page_offset: return offset into the page given by page_index
5793 *
5794 * This helper hides the ugliness of finding the byte in an extent buffer which
5795 * contains a given bit.
5796 */
5797static inline void eb_bitmap_offset(struct extent_buffer *eb,
5798 unsigned long start, unsigned long nr,
5799 unsigned long *page_index,
5800 size_t *page_offset)
5801{
5802 size_t start_offset = offset_in_page(eb->start);
5803 size_t byte_offset = BIT_BYTE(nr);
5804 size_t offset;
5805
5806 /*
5807 * The byte we want is the offset of the extent buffer + the offset of
5808 * the bitmap item in the extent buffer + the offset of the byte in the
5809 * bitmap item.
5810 */
5811 offset = start_offset + start + byte_offset;
5812
5813 *page_index = offset >> PAGE_SHIFT;
5814 *page_offset = offset_in_page(offset);
5815}
5816
5817/**
5818 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5819 * @eb: the extent buffer
5820 * @start: offset of the bitmap item in the extent buffer
5821 * @nr: bit number to test
5822 */
5823int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5824 unsigned long nr)
5825{
5826 u8 *kaddr;
5827 struct page *page;
5828 unsigned long i;
5829 size_t offset;
5830
5831 eb_bitmap_offset(eb, start, nr, &i, &offset);
5832 page = eb->pages[i];
5833 WARN_ON(!PageUptodate(page));
5834 kaddr = page_address(page);
5835 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5836}
5837
5838/**
5839 * extent_buffer_bitmap_set - set an area of a bitmap
5840 * @eb: the extent buffer
5841 * @start: offset of the bitmap item in the extent buffer
5842 * @pos: bit number of the first bit
5843 * @len: number of bits to set
5844 */
5845void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5846 unsigned long pos, unsigned long len)
5847{
5848 u8 *kaddr;
5849 struct page *page;
5850 unsigned long i;
5851 size_t offset;
5852 const unsigned int size = pos + len;
5853 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5854 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5855
5856 eb_bitmap_offset(eb, start, pos, &i, &offset);
5857 page = eb->pages[i];
5858 WARN_ON(!PageUptodate(page));
5859 kaddr = page_address(page);
5860
5861 while (len >= bits_to_set) {
5862 kaddr[offset] |= mask_to_set;
5863 len -= bits_to_set;
5864 bits_to_set = BITS_PER_BYTE;
5865 mask_to_set = ~0;
5866 if (++offset >= PAGE_SIZE && len > 0) {
5867 offset = 0;
5868 page = eb->pages[++i];
5869 WARN_ON(!PageUptodate(page));
5870 kaddr = page_address(page);
5871 }
5872 }
5873 if (len) {
5874 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5875 kaddr[offset] |= mask_to_set;
5876 }
5877}
5878
5879
5880/**
5881 * extent_buffer_bitmap_clear - clear an area of a bitmap
5882 * @eb: the extent buffer
5883 * @start: offset of the bitmap item in the extent buffer
5884 * @pos: bit number of the first bit
5885 * @len: number of bits to clear
5886 */
5887void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5888 unsigned long pos, unsigned long len)
5889{
5890 u8 *kaddr;
5891 struct page *page;
5892 unsigned long i;
5893 size_t offset;
5894 const unsigned int size = pos + len;
5895 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5896 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5897
5898 eb_bitmap_offset(eb, start, pos, &i, &offset);
5899 page = eb->pages[i];
5900 WARN_ON(!PageUptodate(page));
5901 kaddr = page_address(page);
5902
5903 while (len >= bits_to_clear) {
5904 kaddr[offset] &= ~mask_to_clear;
5905 len -= bits_to_clear;
5906 bits_to_clear = BITS_PER_BYTE;
5907 mask_to_clear = ~0;
5908 if (++offset >= PAGE_SIZE && len > 0) {
5909 offset = 0;
5910 page = eb->pages[++i];
5911 WARN_ON(!PageUptodate(page));
5912 kaddr = page_address(page);
5913 }
5914 }
5915 if (len) {
5916 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5917 kaddr[offset] &= ~mask_to_clear;
5918 }
5919}
5920
5921static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5922{
5923 unsigned long distance = (src > dst) ? src - dst : dst - src;
5924 return distance < len;
5925}
5926
5927static void copy_pages(struct page *dst_page, struct page *src_page,
5928 unsigned long dst_off, unsigned long src_off,
5929 unsigned long len)
5930{
5931 char *dst_kaddr = page_address(dst_page);
5932 char *src_kaddr;
5933 int must_memmove = 0;
5934
5935 if (dst_page != src_page) {
5936 src_kaddr = page_address(src_page);
5937 } else {
5938 src_kaddr = dst_kaddr;
5939 if (areas_overlap(src_off, dst_off, len))
5940 must_memmove = 1;
5941 }
5942
5943 if (must_memmove)
5944 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5945 else
5946 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5947}
5948
5949void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5950 unsigned long src_offset, unsigned long len)
5951{
5952 struct btrfs_fs_info *fs_info = dst->fs_info;
5953 size_t cur;
5954 size_t dst_off_in_page;
5955 size_t src_off_in_page;
5956 size_t start_offset = offset_in_page(dst->start);
5957 unsigned long dst_i;
5958 unsigned long src_i;
5959
5960 if (src_offset + len > dst->len) {
5961 btrfs_err(fs_info,
5962 "memmove bogus src_offset %lu move len %lu dst len %lu",
5963 src_offset, len, dst->len);
5964 BUG();
5965 }
5966 if (dst_offset + len > dst->len) {
5967 btrfs_err(fs_info,
5968 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5969 dst_offset, len, dst->len);
5970 BUG();
5971 }
5972
5973 while (len > 0) {
5974 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5975 src_off_in_page = offset_in_page(start_offset + src_offset);
5976
5977 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5978 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5979
5980 cur = min(len, (unsigned long)(PAGE_SIZE -
5981 src_off_in_page));
5982 cur = min_t(unsigned long, cur,
5983 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5984
5985 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5986 dst_off_in_page, src_off_in_page, cur);
5987
5988 src_offset += cur;
5989 dst_offset += cur;
5990 len -= cur;
5991 }
5992}
5993
5994void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5995 unsigned long src_offset, unsigned long len)
5996{
5997 struct btrfs_fs_info *fs_info = dst->fs_info;
5998 size_t cur;
5999 size_t dst_off_in_page;
6000 size_t src_off_in_page;
6001 unsigned long dst_end = dst_offset + len - 1;
6002 unsigned long src_end = src_offset + len - 1;
6003 size_t start_offset = offset_in_page(dst->start);
6004 unsigned long dst_i;
6005 unsigned long src_i;
6006
6007 if (src_offset + len > dst->len) {
6008 btrfs_err(fs_info,
6009 "memmove bogus src_offset %lu move len %lu len %lu",
6010 src_offset, len, dst->len);
6011 BUG();
6012 }
6013 if (dst_offset + len > dst->len) {
6014 btrfs_err(fs_info,
6015 "memmove bogus dst_offset %lu move len %lu len %lu",
6016 dst_offset, len, dst->len);
6017 BUG();
6018 }
6019 if (dst_offset < src_offset) {
6020 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6021 return;
6022 }
6023 while (len > 0) {
6024 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6025 src_i = (start_offset + src_end) >> PAGE_SHIFT;
6026
6027 dst_off_in_page = offset_in_page(start_offset + dst_end);
6028 src_off_in_page = offset_in_page(start_offset + src_end);
6029
6030 cur = min_t(unsigned long, len, src_off_in_page + 1);
6031 cur = min(cur, dst_off_in_page + 1);
6032 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6033 dst_off_in_page - cur + 1,
6034 src_off_in_page - cur + 1, cur);
6035
6036 dst_end -= cur;
6037 src_end -= cur;
6038 len -= cur;
6039 }
6040}
6041
6042int try_release_extent_buffer(struct page *page)
6043{
6044 struct extent_buffer *eb;
6045
6046 /*
6047 * We need to make sure nobody is attaching this page to an eb right
6048 * now.
6049 */
6050 spin_lock(&page->mapping->private_lock);
6051 if (!PagePrivate(page)) {
6052 spin_unlock(&page->mapping->private_lock);
6053 return 1;
6054 }
6055
6056 eb = (struct extent_buffer *)page->private;
6057 BUG_ON(!eb);
6058
6059 /*
6060 * This is a little awful but should be ok, we need to make sure that
6061 * the eb doesn't disappear out from under us while we're looking at
6062 * this page.
6063 */
6064 spin_lock(&eb->refs_lock);
6065 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6066 spin_unlock(&eb->refs_lock);
6067 spin_unlock(&page->mapping->private_lock);
6068 return 0;
6069 }
6070 spin_unlock(&page->mapping->private_lock);
6071
6072 /*
6073 * If tree ref isn't set then we know the ref on this eb is a real ref,
6074 * so just return, this page will likely be freed soon anyway.
6075 */
6076 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6077 spin_unlock(&eb->refs_lock);
6078 return 0;
6079 }
6080
6081 return release_extent_buffer(eb);
6082}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/sched/mm.h>
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/prefetch.h>
16#include <linux/fsverity.h>
17#include "extent_io.h"
18#include "extent-io-tree.h"
19#include "extent_map.h"
20#include "ctree.h"
21#include "btrfs_inode.h"
22#include "bio.h"
23#include "locking.h"
24#include "backref.h"
25#include "disk-io.h"
26#include "subpage.h"
27#include "zoned.h"
28#include "block-group.h"
29#include "compression.h"
30#include "fs.h"
31#include "accessors.h"
32#include "file-item.h"
33#include "file.h"
34#include "dev-replace.h"
35#include "super.h"
36#include "transaction.h"
37
38static struct kmem_cache *extent_buffer_cache;
39
40#ifdef CONFIG_BTRFS_DEBUG
41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42{
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49}
50
51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52{
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59}
60
61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62{
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87}
88#else
89#define btrfs_leak_debug_add_eb(eb) do {} while (0)
90#define btrfs_leak_debug_del_eb(eb) do {} while (0)
91#endif
92
93/*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 enum btrfs_compression_type compress_type;
100 u32 len_to_oe_boundary;
101 blk_opf_t opf;
102 btrfs_bio_end_io_t end_io_func;
103 struct writeback_control *wbc;
104
105 /*
106 * The sectors of the page which are going to be submitted by
107 * extent_writepage_io().
108 * This is to avoid touching ranges covered by compression/inline.
109 */
110 unsigned long submit_bitmap;
111};
112
113static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
114{
115 struct btrfs_bio *bbio = bio_ctrl->bbio;
116
117 if (!bbio)
118 return;
119
120 /* Caller should ensure the bio has at least some range added */
121 ASSERT(bbio->bio.bi_iter.bi_size);
122
123 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
124 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
125 btrfs_submit_compressed_read(bbio);
126 else
127 btrfs_submit_bbio(bbio, 0);
128
129 /* The bbio is owned by the end_io handler now */
130 bio_ctrl->bbio = NULL;
131}
132
133/*
134 * Submit or fail the current bio in the bio_ctrl structure.
135 */
136static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
137{
138 struct btrfs_bio *bbio = bio_ctrl->bbio;
139
140 if (!bbio)
141 return;
142
143 if (ret) {
144 ASSERT(ret < 0);
145 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
146 /* The bio is owned by the end_io handler now */
147 bio_ctrl->bbio = NULL;
148 } else {
149 submit_one_bio(bio_ctrl);
150 }
151}
152
153int __init extent_buffer_init_cachep(void)
154{
155 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
156 sizeof(struct extent_buffer), 0, 0,
157 NULL);
158 if (!extent_buffer_cache)
159 return -ENOMEM;
160
161 return 0;
162}
163
164void __cold extent_buffer_free_cachep(void)
165{
166 /*
167 * Make sure all delayed rcu free are flushed before we
168 * destroy caches.
169 */
170 rcu_barrier();
171 kmem_cache_destroy(extent_buffer_cache);
172}
173
174static void process_one_folio(struct btrfs_fs_info *fs_info,
175 struct folio *folio, const struct folio *locked_folio,
176 unsigned long page_ops, u64 start, u64 end)
177{
178 u32 len;
179
180 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
181 len = end + 1 - start;
182
183 if (page_ops & PAGE_SET_ORDERED)
184 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
185 if (page_ops & PAGE_START_WRITEBACK) {
186 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
187 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
188 }
189 if (page_ops & PAGE_END_WRITEBACK)
190 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
191
192 if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
193 btrfs_folio_end_lock(fs_info, folio, start, len);
194}
195
196static void __process_folios_contig(struct address_space *mapping,
197 const struct folio *locked_folio, u64 start,
198 u64 end, unsigned long page_ops)
199{
200 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
201 pgoff_t start_index = start >> PAGE_SHIFT;
202 pgoff_t end_index = end >> PAGE_SHIFT;
203 pgoff_t index = start_index;
204 struct folio_batch fbatch;
205 int i;
206
207 folio_batch_init(&fbatch);
208 while (index <= end_index) {
209 int found_folios;
210
211 found_folios = filemap_get_folios_contig(mapping, &index,
212 end_index, &fbatch);
213 for (i = 0; i < found_folios; i++) {
214 struct folio *folio = fbatch.folios[i];
215
216 process_one_folio(fs_info, folio, locked_folio,
217 page_ops, start, end);
218 }
219 folio_batch_release(&fbatch);
220 cond_resched();
221 }
222}
223
224static noinline void __unlock_for_delalloc(const struct inode *inode,
225 const struct folio *locked_folio,
226 u64 start, u64 end)
227{
228 unsigned long index = start >> PAGE_SHIFT;
229 unsigned long end_index = end >> PAGE_SHIFT;
230
231 ASSERT(locked_folio);
232 if (index == locked_folio->index && end_index == index)
233 return;
234
235 __process_folios_contig(inode->i_mapping, locked_folio, start, end,
236 PAGE_UNLOCK);
237}
238
239static noinline int lock_delalloc_folios(struct inode *inode,
240 const struct folio *locked_folio,
241 u64 start, u64 end)
242{
243 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
244 struct address_space *mapping = inode->i_mapping;
245 pgoff_t start_index = start >> PAGE_SHIFT;
246 pgoff_t end_index = end >> PAGE_SHIFT;
247 pgoff_t index = start_index;
248 u64 processed_end = start;
249 struct folio_batch fbatch;
250
251 if (index == locked_folio->index && index == end_index)
252 return 0;
253
254 folio_batch_init(&fbatch);
255 while (index <= end_index) {
256 unsigned int found_folios, i;
257
258 found_folios = filemap_get_folios_contig(mapping, &index,
259 end_index, &fbatch);
260 if (found_folios == 0)
261 goto out;
262
263 for (i = 0; i < found_folios; i++) {
264 struct folio *folio = fbatch.folios[i];
265 u64 range_start;
266 u32 range_len;
267
268 if (folio == locked_folio)
269 continue;
270
271 folio_lock(folio);
272 if (!folio_test_dirty(folio) || folio->mapping != mapping) {
273 folio_unlock(folio);
274 goto out;
275 }
276 range_start = max_t(u64, folio_pos(folio), start);
277 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
278 end + 1) - range_start;
279 btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
280
281 processed_end = range_start + range_len - 1;
282 }
283 folio_batch_release(&fbatch);
284 cond_resched();
285 }
286
287 return 0;
288out:
289 folio_batch_release(&fbatch);
290 if (processed_end > start)
291 __unlock_for_delalloc(inode, locked_folio, start,
292 processed_end);
293 return -EAGAIN;
294}
295
296/*
297 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
298 * more than @max_bytes.
299 *
300 * @start: The original start bytenr to search.
301 * Will store the extent range start bytenr.
302 * @end: The original end bytenr of the search range
303 * Will store the extent range end bytenr.
304 *
305 * Return true if we find a delalloc range which starts inside the original
306 * range, and @start/@end will store the delalloc range start/end.
307 *
308 * Return false if we can't find any delalloc range which starts inside the
309 * original range, and @start/@end will be the non-delalloc range start/end.
310 */
311EXPORT_FOR_TESTS
312noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
313 struct folio *locked_folio,
314 u64 *start, u64 *end)
315{
316 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
317 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
318 const u64 orig_start = *start;
319 const u64 orig_end = *end;
320 /* The sanity tests may not set a valid fs_info. */
321 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
322 u64 delalloc_start;
323 u64 delalloc_end;
324 bool found;
325 struct extent_state *cached_state = NULL;
326 int ret;
327 int loops = 0;
328
329 /* Caller should pass a valid @end to indicate the search range end */
330 ASSERT(orig_end > orig_start);
331
332 /* The range should at least cover part of the folio */
333 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
334 orig_end <= folio_pos(locked_folio)));
335again:
336 /* step one, find a bunch of delalloc bytes starting at start */
337 delalloc_start = *start;
338 delalloc_end = 0;
339 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
340 max_bytes, &cached_state);
341 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
342 *start = delalloc_start;
343
344 /* @delalloc_end can be -1, never go beyond @orig_end */
345 *end = min(delalloc_end, orig_end);
346 free_extent_state(cached_state);
347 return false;
348 }
349
350 /*
351 * start comes from the offset of locked_folio. We have to lock
352 * folios in order, so we can't process delalloc bytes before
353 * locked_folio
354 */
355 if (delalloc_start < *start)
356 delalloc_start = *start;
357
358 /*
359 * make sure to limit the number of folios we try to lock down
360 */
361 if (delalloc_end + 1 - delalloc_start > max_bytes)
362 delalloc_end = delalloc_start + max_bytes - 1;
363
364 /* step two, lock all the folioss after the folios that has start */
365 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
366 delalloc_end);
367 ASSERT(!ret || ret == -EAGAIN);
368 if (ret == -EAGAIN) {
369 /* some of the folios are gone, lets avoid looping by
370 * shortening the size of the delalloc range we're searching
371 */
372 free_extent_state(cached_state);
373 cached_state = NULL;
374 if (!loops) {
375 max_bytes = PAGE_SIZE;
376 loops = 1;
377 goto again;
378 } else {
379 found = false;
380 goto out_failed;
381 }
382 }
383
384 /* step three, lock the state bits for the whole range */
385 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
386
387 /* then test to make sure it is all still delalloc */
388 ret = test_range_bit(tree, delalloc_start, delalloc_end,
389 EXTENT_DELALLOC, cached_state);
390
391 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
392 if (!ret) {
393 __unlock_for_delalloc(inode, locked_folio, delalloc_start,
394 delalloc_end);
395 cond_resched();
396 goto again;
397 }
398 *start = delalloc_start;
399 *end = delalloc_end;
400out_failed:
401 return found;
402}
403
404void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
405 const struct folio *locked_folio,
406 struct extent_state **cached,
407 u32 clear_bits, unsigned long page_ops)
408{
409 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
410
411 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
412 end, page_ops);
413}
414
415static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
416{
417 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
418
419 if (!fsverity_active(folio->mapping->host) ||
420 btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
421 start >= i_size_read(folio->mapping->host))
422 return true;
423 return fsverity_verify_folio(folio);
424}
425
426static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
427{
428 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
429
430 ASSERT(folio_pos(folio) <= start &&
431 start + len <= folio_pos(folio) + PAGE_SIZE);
432
433 if (uptodate && btrfs_verify_folio(folio, start, len))
434 btrfs_folio_set_uptodate(fs_info, folio, start, len);
435 else
436 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
437
438 if (!btrfs_is_subpage(fs_info, folio->mapping))
439 folio_unlock(folio);
440 else
441 btrfs_folio_end_lock(fs_info, folio, start, len);
442}
443
444/*
445 * After a write IO is done, we need to:
446 *
447 * - clear the uptodate bits on error
448 * - clear the writeback bits in the extent tree for the range
449 * - filio_end_writeback() if there is no more pending io for the folio
450 *
451 * Scheduling is not allowed, so the extent state tree is expected
452 * to have one and only one object corresponding to this IO.
453 */
454static void end_bbio_data_write(struct btrfs_bio *bbio)
455{
456 struct btrfs_fs_info *fs_info = bbio->fs_info;
457 struct bio *bio = &bbio->bio;
458 int error = blk_status_to_errno(bio->bi_status);
459 struct folio_iter fi;
460 const u32 sectorsize = fs_info->sectorsize;
461
462 ASSERT(!bio_flagged(bio, BIO_CLONED));
463 bio_for_each_folio_all(fi, bio) {
464 struct folio *folio = fi.folio;
465 u64 start = folio_pos(folio) + fi.offset;
466 u32 len = fi.length;
467
468 /* Only order 0 (single page) folios are allowed for data. */
469 ASSERT(folio_order(folio) == 0);
470
471 /* Our read/write should always be sector aligned. */
472 if (!IS_ALIGNED(fi.offset, sectorsize))
473 btrfs_err(fs_info,
474 "partial page write in btrfs with offset %zu and length %zu",
475 fi.offset, fi.length);
476 else if (!IS_ALIGNED(fi.length, sectorsize))
477 btrfs_info(fs_info,
478 "incomplete page write with offset %zu and length %zu",
479 fi.offset, fi.length);
480
481 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
482 !error);
483 if (error)
484 mapping_set_error(folio->mapping, error);
485 btrfs_folio_clear_writeback(fs_info, folio, start, len);
486 }
487
488 bio_put(bio);
489}
490
491static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
492{
493 ASSERT(folio_test_locked(folio));
494 if (!btrfs_is_subpage(fs_info, folio->mapping))
495 return;
496
497 ASSERT(folio_test_private(folio));
498 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE);
499}
500
501/*
502 * After a data read IO is done, we need to:
503 *
504 * - clear the uptodate bits on error
505 * - set the uptodate bits if things worked
506 * - set the folio up to date if all extents in the tree are uptodate
507 * - clear the lock bit in the extent tree
508 * - unlock the folio if there are no other extents locked for it
509 *
510 * Scheduling is not allowed, so the extent state tree is expected
511 * to have one and only one object corresponding to this IO.
512 */
513static void end_bbio_data_read(struct btrfs_bio *bbio)
514{
515 struct btrfs_fs_info *fs_info = bbio->fs_info;
516 struct bio *bio = &bbio->bio;
517 struct folio_iter fi;
518 const u32 sectorsize = fs_info->sectorsize;
519
520 ASSERT(!bio_flagged(bio, BIO_CLONED));
521 bio_for_each_folio_all(fi, &bbio->bio) {
522 bool uptodate = !bio->bi_status;
523 struct folio *folio = fi.folio;
524 struct inode *inode = folio->mapping->host;
525 u64 start;
526 u64 end;
527 u32 len;
528
529 /* For now only order 0 folios are supported for data. */
530 ASSERT(folio_order(folio) == 0);
531 btrfs_debug(fs_info,
532 "%s: bi_sector=%llu, err=%d, mirror=%u",
533 __func__, bio->bi_iter.bi_sector, bio->bi_status,
534 bbio->mirror_num);
535
536 /*
537 * We always issue full-sector reads, but if some block in a
538 * folio fails to read, blk_update_request() will advance
539 * bv_offset and adjust bv_len to compensate. Print a warning
540 * for unaligned offsets, and an error if they don't add up to
541 * a full sector.
542 */
543 if (!IS_ALIGNED(fi.offset, sectorsize))
544 btrfs_err(fs_info,
545 "partial page read in btrfs with offset %zu and length %zu",
546 fi.offset, fi.length);
547 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
548 btrfs_info(fs_info,
549 "incomplete page read with offset %zu and length %zu",
550 fi.offset, fi.length);
551
552 start = folio_pos(folio) + fi.offset;
553 end = start + fi.length - 1;
554 len = fi.length;
555
556 if (likely(uptodate)) {
557 loff_t i_size = i_size_read(inode);
558 pgoff_t end_index = i_size >> folio_shift(folio);
559
560 /*
561 * Zero out the remaining part if this range straddles
562 * i_size.
563 *
564 * Here we should only zero the range inside the folio,
565 * not touch anything else.
566 *
567 * NOTE: i_size is exclusive while end is inclusive.
568 */
569 if (folio_index(folio) == end_index && i_size <= end) {
570 u32 zero_start = max(offset_in_folio(folio, i_size),
571 offset_in_folio(folio, start));
572 u32 zero_len = offset_in_folio(folio, end) + 1 -
573 zero_start;
574
575 folio_zero_range(folio, zero_start, zero_len);
576 }
577 }
578
579 /* Update page status and unlock. */
580 end_folio_read(folio, uptodate, start, len);
581 }
582 bio_put(bio);
583}
584
585/*
586 * Populate every free slot in a provided array with folios using GFP_NOFS.
587 *
588 * @nr_folios: number of folios to allocate
589 * @folio_array: the array to fill with folios; any existing non-NULL entries in
590 * the array will be skipped
591 *
592 * Return: 0 if all folios were able to be allocated;
593 * -ENOMEM otherwise, the partially allocated folios would be freed and
594 * the array slots zeroed
595 */
596int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
597{
598 for (int i = 0; i < nr_folios; i++) {
599 if (folio_array[i])
600 continue;
601 folio_array[i] = folio_alloc(GFP_NOFS, 0);
602 if (!folio_array[i])
603 goto error;
604 }
605 return 0;
606error:
607 for (int i = 0; i < nr_folios; i++) {
608 if (folio_array[i])
609 folio_put(folio_array[i]);
610 }
611 return -ENOMEM;
612}
613
614/*
615 * Populate every free slot in a provided array with pages, using GFP_NOFS.
616 *
617 * @nr_pages: number of pages to allocate
618 * @page_array: the array to fill with pages; any existing non-null entries in
619 * the array will be skipped
620 * @nofail: whether using __GFP_NOFAIL flag
621 *
622 * Return: 0 if all pages were able to be allocated;
623 * -ENOMEM otherwise, the partially allocated pages would be freed and
624 * the array slots zeroed
625 */
626int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
627 bool nofail)
628{
629 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
630 unsigned int allocated;
631
632 for (allocated = 0; allocated < nr_pages;) {
633 unsigned int last = allocated;
634
635 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
636 if (unlikely(allocated == last)) {
637 /* No progress, fail and do cleanup. */
638 for (int i = 0; i < allocated; i++) {
639 __free_page(page_array[i]);
640 page_array[i] = NULL;
641 }
642 return -ENOMEM;
643 }
644 }
645 return 0;
646}
647
648/*
649 * Populate needed folios for the extent buffer.
650 *
651 * For now, the folios populated are always in order 0 (aka, single page).
652 */
653static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
654{
655 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
656 int num_pages = num_extent_pages(eb);
657 int ret;
658
659 ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
660 if (ret < 0)
661 return ret;
662
663 for (int i = 0; i < num_pages; i++)
664 eb->folios[i] = page_folio(page_array[i]);
665 eb->folio_size = PAGE_SIZE;
666 eb->folio_shift = PAGE_SHIFT;
667 return 0;
668}
669
670static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
671 struct folio *folio, u64 disk_bytenr,
672 unsigned int pg_offset)
673{
674 struct bio *bio = &bio_ctrl->bbio->bio;
675 struct bio_vec *bvec = bio_last_bvec_all(bio);
676 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
677 struct folio *bv_folio = page_folio(bvec->bv_page);
678
679 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
680 /*
681 * For compression, all IO should have its logical bytenr set
682 * to the starting bytenr of the compressed extent.
683 */
684 return bio->bi_iter.bi_sector == sector;
685 }
686
687 /*
688 * The contig check requires the following conditions to be met:
689 *
690 * 1) The folios are belonging to the same inode
691 * This is implied by the call chain.
692 *
693 * 2) The range has adjacent logical bytenr
694 *
695 * 3) The range has adjacent file offset
696 * This is required for the usage of btrfs_bio->file_offset.
697 */
698 return bio_end_sector(bio) == sector &&
699 folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
700 folio_pos(folio) + pg_offset;
701}
702
703static void alloc_new_bio(struct btrfs_inode *inode,
704 struct btrfs_bio_ctrl *bio_ctrl,
705 u64 disk_bytenr, u64 file_offset)
706{
707 struct btrfs_fs_info *fs_info = inode->root->fs_info;
708 struct btrfs_bio *bbio;
709
710 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
711 bio_ctrl->end_io_func, NULL);
712 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
713 bbio->inode = inode;
714 bbio->file_offset = file_offset;
715 bio_ctrl->bbio = bbio;
716 bio_ctrl->len_to_oe_boundary = U32_MAX;
717
718 /* Limit data write bios to the ordered boundary. */
719 if (bio_ctrl->wbc) {
720 struct btrfs_ordered_extent *ordered;
721
722 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
723 if (ordered) {
724 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
725 ordered->file_offset +
726 ordered->disk_num_bytes - file_offset);
727 bbio->ordered = ordered;
728 }
729
730 /*
731 * Pick the last added device to support cgroup writeback. For
732 * multi-device file systems this means blk-cgroup policies have
733 * to always be set on the last added/replaced device.
734 * This is a bit odd but has been like that for a long time.
735 */
736 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
737 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
738 }
739}
740
741/*
742 * @disk_bytenr: logical bytenr where the write will be
743 * @page: page to add to the bio
744 * @size: portion of page that we want to write to
745 * @pg_offset: offset of the new bio or to check whether we are adding
746 * a contiguous page to the previous one
747 *
748 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
749 * new one in @bio_ctrl->bbio.
750 * The mirror number for this IO should already be initizlied in
751 * @bio_ctrl->mirror_num.
752 */
753static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
754 u64 disk_bytenr, struct folio *folio,
755 size_t size, unsigned long pg_offset)
756{
757 struct btrfs_inode *inode = folio_to_inode(folio);
758
759 ASSERT(pg_offset + size <= PAGE_SIZE);
760 ASSERT(bio_ctrl->end_io_func);
761
762 if (bio_ctrl->bbio &&
763 !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
764 submit_one_bio(bio_ctrl);
765
766 do {
767 u32 len = size;
768
769 /* Allocate new bio if needed */
770 if (!bio_ctrl->bbio) {
771 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
772 folio_pos(folio) + pg_offset);
773 }
774
775 /* Cap to the current ordered extent boundary if there is one. */
776 if (len > bio_ctrl->len_to_oe_boundary) {
777 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
778 ASSERT(is_data_inode(inode));
779 len = bio_ctrl->len_to_oe_boundary;
780 }
781
782 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
783 /* bio full: move on to a new one */
784 submit_one_bio(bio_ctrl);
785 continue;
786 }
787
788 if (bio_ctrl->wbc)
789 wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
790 len);
791
792 size -= len;
793 pg_offset += len;
794 disk_bytenr += len;
795
796 /*
797 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
798 * sector aligned. alloc_new_bio() then sets it to the end of
799 * our ordered extent for writes into zoned devices.
800 *
801 * When len_to_oe_boundary is tracking an ordered extent, we
802 * trust the ordered extent code to align things properly, and
803 * the check above to cap our write to the ordered extent
804 * boundary is correct.
805 *
806 * When len_to_oe_boundary is U32_MAX, the cap above would
807 * result in a 4095 byte IO for the last folio right before
808 * we hit the bio limit of UINT_MAX. bio_add_folio() has all
809 * the checks required to make sure we don't overflow the bio,
810 * and we should just ignore len_to_oe_boundary completely
811 * unless we're using it to track an ordered extent.
812 *
813 * It's pretty hard to make a bio sized U32_MAX, but it can
814 * happen when the page cache is able to feed us contiguous
815 * folios for large extents.
816 */
817 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
818 bio_ctrl->len_to_oe_boundary -= len;
819
820 /* Ordered extent boundary: move on to a new bio. */
821 if (bio_ctrl->len_to_oe_boundary == 0)
822 submit_one_bio(bio_ctrl);
823 } while (size);
824}
825
826static int attach_extent_buffer_folio(struct extent_buffer *eb,
827 struct folio *folio,
828 struct btrfs_subpage *prealloc)
829{
830 struct btrfs_fs_info *fs_info = eb->fs_info;
831 int ret = 0;
832
833 /*
834 * If the page is mapped to btree inode, we should hold the private
835 * lock to prevent race.
836 * For cloned or dummy extent buffers, their pages are not mapped and
837 * will not race with any other ebs.
838 */
839 if (folio->mapping)
840 lockdep_assert_held(&folio->mapping->i_private_lock);
841
842 if (fs_info->nodesize >= PAGE_SIZE) {
843 if (!folio_test_private(folio))
844 folio_attach_private(folio, eb);
845 else
846 WARN_ON(folio_get_private(folio) != eb);
847 return 0;
848 }
849
850 /* Already mapped, just free prealloc */
851 if (folio_test_private(folio)) {
852 btrfs_free_subpage(prealloc);
853 return 0;
854 }
855
856 if (prealloc)
857 /* Has preallocated memory for subpage */
858 folio_attach_private(folio, prealloc);
859 else
860 /* Do new allocation to attach subpage */
861 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
862 return ret;
863}
864
865int set_page_extent_mapped(struct page *page)
866{
867 return set_folio_extent_mapped(page_folio(page));
868}
869
870int set_folio_extent_mapped(struct folio *folio)
871{
872 struct btrfs_fs_info *fs_info;
873
874 ASSERT(folio->mapping);
875
876 if (folio_test_private(folio))
877 return 0;
878
879 fs_info = folio_to_fs_info(folio);
880
881 if (btrfs_is_subpage(fs_info, folio->mapping))
882 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
883
884 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
885 return 0;
886}
887
888void clear_folio_extent_mapped(struct folio *folio)
889{
890 struct btrfs_fs_info *fs_info;
891
892 ASSERT(folio->mapping);
893
894 if (!folio_test_private(folio))
895 return;
896
897 fs_info = folio_to_fs_info(folio);
898 if (btrfs_is_subpage(fs_info, folio->mapping))
899 return btrfs_detach_subpage(fs_info, folio);
900
901 folio_detach_private(folio);
902}
903
904static struct extent_map *get_extent_map(struct btrfs_inode *inode,
905 struct folio *folio, u64 start,
906 u64 len, struct extent_map **em_cached)
907{
908 struct extent_map *em;
909
910 ASSERT(em_cached);
911
912 if (*em_cached) {
913 em = *em_cached;
914 if (extent_map_in_tree(em) && start >= em->start &&
915 start < extent_map_end(em)) {
916 refcount_inc(&em->refs);
917 return em;
918 }
919
920 free_extent_map(em);
921 *em_cached = NULL;
922 }
923
924 em = btrfs_get_extent(inode, folio, start, len);
925 if (!IS_ERR(em)) {
926 BUG_ON(*em_cached);
927 refcount_inc(&em->refs);
928 *em_cached = em;
929 }
930
931 return em;
932}
933/*
934 * basic readpage implementation. Locked extent state structs are inserted
935 * into the tree that are removed when the IO is done (by the end_io
936 * handlers)
937 * XXX JDM: This needs looking at to ensure proper page locking
938 * return 0 on success, otherwise return error
939 */
940static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
941 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
942{
943 struct inode *inode = folio->mapping->host;
944 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
945 u64 start = folio_pos(folio);
946 const u64 end = start + PAGE_SIZE - 1;
947 u64 cur = start;
948 u64 extent_offset;
949 u64 last_byte = i_size_read(inode);
950 u64 block_start;
951 struct extent_map *em;
952 int ret = 0;
953 size_t pg_offset = 0;
954 size_t iosize;
955 size_t blocksize = fs_info->sectorsize;
956
957 ret = set_folio_extent_mapped(folio);
958 if (ret < 0) {
959 folio_unlock(folio);
960 return ret;
961 }
962
963 if (folio->index == last_byte >> folio_shift(folio)) {
964 size_t zero_offset = offset_in_folio(folio, last_byte);
965
966 if (zero_offset) {
967 iosize = folio_size(folio) - zero_offset;
968 folio_zero_range(folio, zero_offset, iosize);
969 }
970 }
971 bio_ctrl->end_io_func = end_bbio_data_read;
972 begin_folio_read(fs_info, folio);
973 while (cur <= end) {
974 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
975 bool force_bio_submit = false;
976 u64 disk_bytenr;
977
978 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
979 if (cur >= last_byte) {
980 iosize = folio_size(folio) - pg_offset;
981 folio_zero_range(folio, pg_offset, iosize);
982 end_folio_read(folio, true, cur, iosize);
983 break;
984 }
985 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
986 if (IS_ERR(em)) {
987 end_folio_read(folio, false, cur, end + 1 - cur);
988 return PTR_ERR(em);
989 }
990 extent_offset = cur - em->start;
991 BUG_ON(extent_map_end(em) <= cur);
992 BUG_ON(end < cur);
993
994 compress_type = extent_map_compression(em);
995
996 iosize = min(extent_map_end(em) - cur, end - cur + 1);
997 iosize = ALIGN(iosize, blocksize);
998 if (compress_type != BTRFS_COMPRESS_NONE)
999 disk_bytenr = em->disk_bytenr;
1000 else
1001 disk_bytenr = extent_map_block_start(em) + extent_offset;
1002 block_start = extent_map_block_start(em);
1003 if (em->flags & EXTENT_FLAG_PREALLOC)
1004 block_start = EXTENT_MAP_HOLE;
1005
1006 /*
1007 * If we have a file range that points to a compressed extent
1008 * and it's followed by a consecutive file range that points
1009 * to the same compressed extent (possibly with a different
1010 * offset and/or length, so it either points to the whole extent
1011 * or only part of it), we must make sure we do not submit a
1012 * single bio to populate the folios for the 2 ranges because
1013 * this makes the compressed extent read zero out the folios
1014 * belonging to the 2nd range. Imagine the following scenario:
1015 *
1016 * File layout
1017 * [0 - 8K] [8K - 24K]
1018 * | |
1019 * | |
1020 * points to extent X, points to extent X,
1021 * offset 4K, length of 8K offset 0, length 16K
1022 *
1023 * [extent X, compressed length = 4K uncompressed length = 16K]
1024 *
1025 * If the bio to read the compressed extent covers both ranges,
1026 * it will decompress extent X into the folios belonging to the
1027 * first range and then it will stop, zeroing out the remaining
1028 * folios that belong to the other range that points to extent X.
1029 * So here we make sure we submit 2 bios, one for the first
1030 * range and another one for the third range. Both will target
1031 * the same physical extent from disk, but we can't currently
1032 * make the compressed bio endio callback populate the folios
1033 * for both ranges because each compressed bio is tightly
1034 * coupled with a single extent map, and each range can have
1035 * an extent map with a different offset value relative to the
1036 * uncompressed data of our extent and different lengths. This
1037 * is a corner case so we prioritize correctness over
1038 * non-optimal behavior (submitting 2 bios for the same extent).
1039 */
1040 if (compress_type != BTRFS_COMPRESS_NONE &&
1041 prev_em_start && *prev_em_start != (u64)-1 &&
1042 *prev_em_start != em->start)
1043 force_bio_submit = true;
1044
1045 if (prev_em_start)
1046 *prev_em_start = em->start;
1047
1048 free_extent_map(em);
1049 em = NULL;
1050
1051 /* we've found a hole, just zero and go on */
1052 if (block_start == EXTENT_MAP_HOLE) {
1053 folio_zero_range(folio, pg_offset, iosize);
1054
1055 end_folio_read(folio, true, cur, iosize);
1056 cur = cur + iosize;
1057 pg_offset += iosize;
1058 continue;
1059 }
1060 /* the get_extent function already copied into the folio */
1061 if (block_start == EXTENT_MAP_INLINE) {
1062 end_folio_read(folio, true, cur, iosize);
1063 cur = cur + iosize;
1064 pg_offset += iosize;
1065 continue;
1066 }
1067
1068 if (bio_ctrl->compress_type != compress_type) {
1069 submit_one_bio(bio_ctrl);
1070 bio_ctrl->compress_type = compress_type;
1071 }
1072
1073 if (force_bio_submit)
1074 submit_one_bio(bio_ctrl);
1075 submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
1076 pg_offset);
1077 cur = cur + iosize;
1078 pg_offset += iosize;
1079 }
1080
1081 return 0;
1082}
1083
1084int btrfs_read_folio(struct file *file, struct folio *folio)
1085{
1086 struct btrfs_inode *inode = folio_to_inode(folio);
1087 const u64 start = folio_pos(folio);
1088 const u64 end = start + folio_size(folio) - 1;
1089 struct extent_state *cached_state = NULL;
1090 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1091 struct extent_map *em_cached = NULL;
1092 int ret;
1093
1094 btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
1095 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1096 unlock_extent(&inode->io_tree, start, end, &cached_state);
1097
1098 free_extent_map(em_cached);
1099
1100 /*
1101 * If btrfs_do_readpage() failed we will want to submit the assembled
1102 * bio to do the cleanup.
1103 */
1104 submit_one_bio(&bio_ctrl);
1105 return ret;
1106}
1107
1108static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1109 u64 start, u32 len)
1110{
1111 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1112 const u64 folio_start = folio_pos(folio);
1113 unsigned int start_bit;
1114 unsigned int nbits;
1115
1116 ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE);
1117 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1118 nbits = len >> fs_info->sectorsize_bits;
1119 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1120 bitmap_set(delalloc_bitmap, start_bit, nbits);
1121}
1122
1123static bool find_next_delalloc_bitmap(struct folio *folio,
1124 unsigned long *delalloc_bitmap, u64 start,
1125 u64 *found_start, u32 *found_len)
1126{
1127 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1128 const u64 folio_start = folio_pos(folio);
1129 const unsigned int bitmap_size = fs_info->sectors_per_page;
1130 unsigned int start_bit;
1131 unsigned int first_zero;
1132 unsigned int first_set;
1133
1134 ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE);
1135
1136 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1137 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1138 if (first_set >= bitmap_size)
1139 return false;
1140
1141 *found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1142 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1143 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1144 return true;
1145}
1146
1147/*
1148 * Do all of the delayed allocation setup.
1149 *
1150 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1151 * The @folio should no longer be touched (treat it as already unlocked).
1152 *
1153 * Return 0 if there is still dirty block that needs to be submitted through
1154 * extent_writepage_io().
1155 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1156 * submitted, and @folio is still kept locked.
1157 *
1158 * Return <0 if there is any error hit.
1159 * Any allocated ordered extent range covering this folio will be marked
1160 * finished (IOERR), and @folio is still kept locked.
1161 */
1162static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1163 struct folio *folio,
1164 struct btrfs_bio_ctrl *bio_ctrl)
1165{
1166 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1167 struct writeback_control *wbc = bio_ctrl->wbc;
1168 const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
1169 const u64 page_start = folio_pos(folio);
1170 const u64 page_end = page_start + folio_size(folio) - 1;
1171 unsigned long delalloc_bitmap = 0;
1172 /*
1173 * Save the last found delalloc end. As the delalloc end can go beyond
1174 * page boundary, thus we cannot rely on subpage bitmap to locate the
1175 * last delalloc end.
1176 */
1177 u64 last_delalloc_end = 0;
1178 /*
1179 * The range end (exclusive) of the last successfully finished delalloc
1180 * range.
1181 * Any range covered by ordered extent must either be manually marked
1182 * finished (error handling), or has IO submitted (and finish the
1183 * ordered extent normally).
1184 *
1185 * This records the end of ordered extent cleanup if we hit an error.
1186 */
1187 u64 last_finished_delalloc_end = page_start;
1188 u64 delalloc_start = page_start;
1189 u64 delalloc_end = page_end;
1190 u64 delalloc_to_write = 0;
1191 int ret = 0;
1192 int bit;
1193
1194 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1195 if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
1196 ASSERT(fs_info->sectors_per_page > 1);
1197 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1198 } else {
1199 bio_ctrl->submit_bitmap = 1;
1200 }
1201
1202 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1203 u64 start = page_start + (bit << fs_info->sectorsize_bits);
1204
1205 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1206 }
1207
1208 /* Lock all (subpage) delalloc ranges inside the folio first. */
1209 while (delalloc_start < page_end) {
1210 delalloc_end = page_end;
1211 if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1212 &delalloc_start, &delalloc_end)) {
1213 delalloc_start = delalloc_end + 1;
1214 continue;
1215 }
1216 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1217 min(delalloc_end, page_end) + 1 - delalloc_start);
1218 last_delalloc_end = delalloc_end;
1219 delalloc_start = delalloc_end + 1;
1220 }
1221 delalloc_start = page_start;
1222
1223 if (!last_delalloc_end)
1224 goto out;
1225
1226 /* Run the delalloc ranges for the above locked ranges. */
1227 while (delalloc_start < page_end) {
1228 u64 found_start;
1229 u32 found_len;
1230 bool found;
1231
1232 if (!is_subpage) {
1233 /*
1234 * For non-subpage case, the found delalloc range must
1235 * cover this folio and there must be only one locked
1236 * delalloc range.
1237 */
1238 found_start = page_start;
1239 found_len = last_delalloc_end + 1 - found_start;
1240 found = true;
1241 } else {
1242 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1243 delalloc_start, &found_start, &found_len);
1244 }
1245 if (!found)
1246 break;
1247 /*
1248 * The subpage range covers the last sector, the delalloc range may
1249 * end beyond the folio boundary, use the saved delalloc_end
1250 * instead.
1251 */
1252 if (found_start + found_len >= page_end)
1253 found_len = last_delalloc_end + 1 - found_start;
1254
1255 if (ret >= 0) {
1256 /*
1257 * Some delalloc range may be created by previous folios.
1258 * Thus we still need to clean up this range during error
1259 * handling.
1260 */
1261 last_finished_delalloc_end = found_start;
1262 /* No errors hit so far, run the current delalloc range. */
1263 ret = btrfs_run_delalloc_range(inode, folio,
1264 found_start,
1265 found_start + found_len - 1,
1266 wbc);
1267 if (ret >= 0)
1268 last_finished_delalloc_end = found_start + found_len;
1269 } else {
1270 /*
1271 * We've hit an error during previous delalloc range,
1272 * have to cleanup the remaining locked ranges.
1273 */
1274 unlock_extent(&inode->io_tree, found_start,
1275 found_start + found_len - 1, NULL);
1276 __unlock_for_delalloc(&inode->vfs_inode, folio,
1277 found_start,
1278 found_start + found_len - 1);
1279 }
1280
1281 /*
1282 * We have some ranges that's going to be submitted asynchronously
1283 * (compression or inline). These range have their own control
1284 * on when to unlock the pages. We should not touch them
1285 * anymore, so clear the range from the submission bitmap.
1286 */
1287 if (ret > 0) {
1288 unsigned int start_bit = (found_start - page_start) >>
1289 fs_info->sectorsize_bits;
1290 unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1291 page_start) >> fs_info->sectorsize_bits;
1292 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1293 }
1294 /*
1295 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1296 * thus for the last range, we cannot touch the folio anymore.
1297 */
1298 if (found_start + found_len >= last_delalloc_end + 1)
1299 break;
1300
1301 delalloc_start = found_start + found_len;
1302 }
1303 /*
1304 * It's possible we had some ordered extents created before we hit
1305 * an error, cleanup non-async successfully created delalloc ranges.
1306 */
1307 if (unlikely(ret < 0)) {
1308 unsigned int bitmap_size = min(
1309 (last_finished_delalloc_end - page_start) >>
1310 fs_info->sectorsize_bits,
1311 fs_info->sectors_per_page);
1312
1313 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1314 btrfs_mark_ordered_io_finished(inode, folio,
1315 page_start + (bit << fs_info->sectorsize_bits),
1316 fs_info->sectorsize, false);
1317 return ret;
1318 }
1319out:
1320 if (last_delalloc_end)
1321 delalloc_end = last_delalloc_end;
1322 else
1323 delalloc_end = page_end;
1324 /*
1325 * delalloc_end is already one less than the total length, so
1326 * we don't subtract one from PAGE_SIZE
1327 */
1328 delalloc_to_write +=
1329 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1330
1331 /*
1332 * If all ranges are submitted asynchronously, we just need to account
1333 * for them here.
1334 */
1335 if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) {
1336 wbc->nr_to_write -= delalloc_to_write;
1337 return 1;
1338 }
1339
1340 if (wbc->nr_to_write < delalloc_to_write) {
1341 int thresh = 8192;
1342
1343 if (delalloc_to_write < thresh * 2)
1344 thresh = delalloc_to_write;
1345 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1346 thresh);
1347 }
1348
1349 return 0;
1350}
1351
1352/*
1353 * Return 0 if we have submitted or queued the sector for submission.
1354 * Return <0 for critical errors.
1355 *
1356 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1357 */
1358static int submit_one_sector(struct btrfs_inode *inode,
1359 struct folio *folio,
1360 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1361 loff_t i_size)
1362{
1363 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1364 struct extent_map *em;
1365 u64 block_start;
1366 u64 disk_bytenr;
1367 u64 extent_offset;
1368 u64 em_end;
1369 const u32 sectorsize = fs_info->sectorsize;
1370
1371 ASSERT(IS_ALIGNED(filepos, sectorsize));
1372
1373 /* @filepos >= i_size case should be handled by the caller. */
1374 ASSERT(filepos < i_size);
1375
1376 em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1377 if (IS_ERR(em))
1378 return PTR_ERR_OR_ZERO(em);
1379
1380 extent_offset = filepos - em->start;
1381 em_end = extent_map_end(em);
1382 ASSERT(filepos <= em_end);
1383 ASSERT(IS_ALIGNED(em->start, sectorsize));
1384 ASSERT(IS_ALIGNED(em->len, sectorsize));
1385
1386 block_start = extent_map_block_start(em);
1387 disk_bytenr = extent_map_block_start(em) + extent_offset;
1388
1389 ASSERT(!extent_map_is_compressed(em));
1390 ASSERT(block_start != EXTENT_MAP_HOLE);
1391 ASSERT(block_start != EXTENT_MAP_INLINE);
1392
1393 free_extent_map(em);
1394 em = NULL;
1395
1396 /*
1397 * Although the PageDirty bit is cleared before entering this
1398 * function, subpage dirty bit is not cleared.
1399 * So clear subpage dirty bit here so next time we won't submit
1400 * a folio for a range already written to disk.
1401 */
1402 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1403 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1404 /*
1405 * Above call should set the whole folio with writeback flag, even
1406 * just for a single subpage sector.
1407 * As long as the folio is properly locked and the range is correct,
1408 * we should always get the folio with writeback flag.
1409 */
1410 ASSERT(folio_test_writeback(folio));
1411
1412 submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1413 sectorsize, filepos - folio_pos(folio));
1414 return 0;
1415}
1416
1417/*
1418 * Helper for extent_writepage(). This calls the writepage start hooks,
1419 * and does the loop to map the page into extents and bios.
1420 *
1421 * We return 1 if the IO is started and the page is unlocked,
1422 * 0 if all went well (page still locked)
1423 * < 0 if there were errors (page still locked)
1424 */
1425static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1426 struct folio *folio,
1427 u64 start, u32 len,
1428 struct btrfs_bio_ctrl *bio_ctrl,
1429 loff_t i_size)
1430{
1431 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1432 unsigned long range_bitmap = 0;
1433 bool submitted_io = false;
1434 bool error = false;
1435 const u64 folio_start = folio_pos(folio);
1436 u64 cur;
1437 int bit;
1438 int ret = 0;
1439
1440 ASSERT(start >= folio_start &&
1441 start + len <= folio_start + folio_size(folio));
1442
1443 ret = btrfs_writepage_cow_fixup(folio);
1444 if (ret) {
1445 /* Fixup worker will requeue */
1446 folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1447 folio_unlock(folio);
1448 return 1;
1449 }
1450
1451 for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1452 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1453 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1454 fs_info->sectors_per_page);
1455
1456 bio_ctrl->end_io_func = end_bbio_data_write;
1457
1458 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1459 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1460
1461 if (cur >= i_size) {
1462 btrfs_mark_ordered_io_finished(inode, folio, cur,
1463 start + len - cur, true);
1464 /*
1465 * This range is beyond i_size, thus we don't need to
1466 * bother writing back.
1467 * But we still need to clear the dirty subpage bit, or
1468 * the next time the folio gets dirtied, we will try to
1469 * writeback the sectors with subpage dirty bits,
1470 * causing writeback without ordered extent.
1471 */
1472 btrfs_folio_clear_dirty(fs_info, folio, cur,
1473 start + len - cur);
1474 break;
1475 }
1476 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1477 if (unlikely(ret < 0)) {
1478 /*
1479 * bio_ctrl may contain a bio crossing several folios.
1480 * Submit it immediately so that the bio has a chance
1481 * to finish normally, other than marked as error.
1482 */
1483 submit_one_bio(bio_ctrl);
1484 /*
1485 * Failed to grab the extent map which should be very rare.
1486 * Since there is no bio submitted to finish the ordered
1487 * extent, we have to manually finish this sector.
1488 */
1489 btrfs_mark_ordered_io_finished(inode, folio, cur,
1490 fs_info->sectorsize, false);
1491 error = true;
1492 continue;
1493 }
1494 submitted_io = true;
1495 }
1496
1497 /*
1498 * If we didn't submitted any sector (>= i_size), folio dirty get
1499 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1500 * by folio_start_writeback() if the folio is not dirty).
1501 *
1502 * Here we set writeback and clear for the range. If the full folio
1503 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1504 *
1505 * If we hit any error, the corresponding sector will still be dirty
1506 * thus no need to clear PAGECACHE_TAG_DIRTY.
1507 */
1508 if (!submitted_io && !error) {
1509 btrfs_folio_set_writeback(fs_info, folio, start, len);
1510 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1511 }
1512 return ret;
1513}
1514
1515/*
1516 * the writepage semantics are similar to regular writepage. extent
1517 * records are inserted to lock ranges in the tree, and as dirty areas
1518 * are found, they are marked writeback. Then the lock bits are removed
1519 * and the end_io handler clears the writeback ranges
1520 *
1521 * Return 0 if everything goes well.
1522 * Return <0 for error.
1523 */
1524static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1525{
1526 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1527 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1528 int ret;
1529 size_t pg_offset;
1530 loff_t i_size = i_size_read(&inode->vfs_inode);
1531 unsigned long end_index = i_size >> PAGE_SHIFT;
1532
1533 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1534
1535 WARN_ON(!folio_test_locked(folio));
1536
1537 pg_offset = offset_in_folio(folio, i_size);
1538 if (folio->index > end_index ||
1539 (folio->index == end_index && !pg_offset)) {
1540 folio_invalidate(folio, 0, folio_size(folio));
1541 folio_unlock(folio);
1542 return 0;
1543 }
1544
1545 if (folio->index == end_index)
1546 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1547
1548 /*
1549 * Default to unlock the whole folio.
1550 * The proper bitmap can only be initialized until writepage_delalloc().
1551 */
1552 bio_ctrl->submit_bitmap = (unsigned long)-1;
1553 ret = set_folio_extent_mapped(folio);
1554 if (ret < 0)
1555 goto done;
1556
1557 ret = writepage_delalloc(inode, folio, bio_ctrl);
1558 if (ret == 1)
1559 return 0;
1560 if (ret)
1561 goto done;
1562
1563 ret = extent_writepage_io(inode, folio, folio_pos(folio),
1564 PAGE_SIZE, bio_ctrl, i_size);
1565 if (ret == 1)
1566 return 0;
1567
1568 bio_ctrl->wbc->nr_to_write--;
1569
1570done:
1571 if (ret < 0)
1572 mapping_set_error(folio->mapping, ret);
1573 /*
1574 * Only unlock ranges that are submitted. As there can be some async
1575 * submitted ranges inside the folio.
1576 */
1577 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1578 ASSERT(ret <= 0);
1579 return ret;
1580}
1581
1582void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1583{
1584 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1585 TASK_UNINTERRUPTIBLE);
1586}
1587
1588/*
1589 * Lock extent buffer status and pages for writeback.
1590 *
1591 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1592 * extent buffer is not dirty)
1593 * Return %true is the extent buffer is submitted to bio.
1594 */
1595static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1596 struct writeback_control *wbc)
1597{
1598 struct btrfs_fs_info *fs_info = eb->fs_info;
1599 bool ret = false;
1600
1601 btrfs_tree_lock(eb);
1602 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1603 btrfs_tree_unlock(eb);
1604 if (wbc->sync_mode != WB_SYNC_ALL)
1605 return false;
1606 wait_on_extent_buffer_writeback(eb);
1607 btrfs_tree_lock(eb);
1608 }
1609
1610 /*
1611 * We need to do this to prevent races in people who check if the eb is
1612 * under IO since we can end up having no IO bits set for a short period
1613 * of time.
1614 */
1615 spin_lock(&eb->refs_lock);
1616 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1617 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1618 spin_unlock(&eb->refs_lock);
1619 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1620 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1621 -eb->len,
1622 fs_info->dirty_metadata_batch);
1623 ret = true;
1624 } else {
1625 spin_unlock(&eb->refs_lock);
1626 }
1627 btrfs_tree_unlock(eb);
1628 return ret;
1629}
1630
1631static void set_btree_ioerr(struct extent_buffer *eb)
1632{
1633 struct btrfs_fs_info *fs_info = eb->fs_info;
1634
1635 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1636
1637 /*
1638 * A read may stumble upon this buffer later, make sure that it gets an
1639 * error and knows there was an error.
1640 */
1641 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1642
1643 /*
1644 * We need to set the mapping with the io error as well because a write
1645 * error will flip the file system readonly, and then syncfs() will
1646 * return a 0 because we are readonly if we don't modify the err seq for
1647 * the superblock.
1648 */
1649 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1650
1651 /*
1652 * If writeback for a btree extent that doesn't belong to a log tree
1653 * failed, increment the counter transaction->eb_write_errors.
1654 * We do this because while the transaction is running and before it's
1655 * committing (when we call filemap_fdata[write|wait]_range against
1656 * the btree inode), we might have
1657 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1658 * returns an error or an error happens during writeback, when we're
1659 * committing the transaction we wouldn't know about it, since the pages
1660 * can be no longer dirty nor marked anymore for writeback (if a
1661 * subsequent modification to the extent buffer didn't happen before the
1662 * transaction commit), which makes filemap_fdata[write|wait]_range not
1663 * able to find the pages which contain errors at transaction
1664 * commit time. So if this happens we must abort the transaction,
1665 * otherwise we commit a super block with btree roots that point to
1666 * btree nodes/leafs whose content on disk is invalid - either garbage
1667 * or the content of some node/leaf from a past generation that got
1668 * cowed or deleted and is no longer valid.
1669 *
1670 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1671 * not be enough - we need to distinguish between log tree extents vs
1672 * non-log tree extents, and the next filemap_fdatawait_range() call
1673 * will catch and clear such errors in the mapping - and that call might
1674 * be from a log sync and not from a transaction commit. Also, checking
1675 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1676 * not done and would not be reliable - the eb might have been released
1677 * from memory and reading it back again means that flag would not be
1678 * set (since it's a runtime flag, not persisted on disk).
1679 *
1680 * Using the flags below in the btree inode also makes us achieve the
1681 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1682 * writeback for all dirty pages and before filemap_fdatawait_range()
1683 * is called, the writeback for all dirty pages had already finished
1684 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1685 * filemap_fdatawait_range() would return success, as it could not know
1686 * that writeback errors happened (the pages were no longer tagged for
1687 * writeback).
1688 */
1689 switch (eb->log_index) {
1690 case -1:
1691 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1692 break;
1693 case 0:
1694 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1695 break;
1696 case 1:
1697 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1698 break;
1699 default:
1700 BUG(); /* unexpected, logic error */
1701 }
1702}
1703
1704/*
1705 * The endio specific version which won't touch any unsafe spinlock in endio
1706 * context.
1707 */
1708static struct extent_buffer *find_extent_buffer_nolock(
1709 const struct btrfs_fs_info *fs_info, u64 start)
1710{
1711 struct extent_buffer *eb;
1712
1713 rcu_read_lock();
1714 eb = radix_tree_lookup(&fs_info->buffer_radix,
1715 start >> fs_info->sectorsize_bits);
1716 if (eb && atomic_inc_not_zero(&eb->refs)) {
1717 rcu_read_unlock();
1718 return eb;
1719 }
1720 rcu_read_unlock();
1721 return NULL;
1722}
1723
1724static void end_bbio_meta_write(struct btrfs_bio *bbio)
1725{
1726 struct extent_buffer *eb = bbio->private;
1727 struct btrfs_fs_info *fs_info = eb->fs_info;
1728 bool uptodate = !bbio->bio.bi_status;
1729 struct folio_iter fi;
1730 u32 bio_offset = 0;
1731
1732 if (!uptodate)
1733 set_btree_ioerr(eb);
1734
1735 bio_for_each_folio_all(fi, &bbio->bio) {
1736 u64 start = eb->start + bio_offset;
1737 struct folio *folio = fi.folio;
1738 u32 len = fi.length;
1739
1740 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1741 bio_offset += len;
1742 }
1743
1744 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1745 smp_mb__after_atomic();
1746 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1747
1748 bio_put(&bbio->bio);
1749}
1750
1751static void prepare_eb_write(struct extent_buffer *eb)
1752{
1753 u32 nritems;
1754 unsigned long start;
1755 unsigned long end;
1756
1757 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1758
1759 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1760 nritems = btrfs_header_nritems(eb);
1761 if (btrfs_header_level(eb) > 0) {
1762 end = btrfs_node_key_ptr_offset(eb, nritems);
1763 memzero_extent_buffer(eb, end, eb->len - end);
1764 } else {
1765 /*
1766 * Leaf:
1767 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1768 */
1769 start = btrfs_item_nr_offset(eb, nritems);
1770 end = btrfs_item_nr_offset(eb, 0);
1771 if (nritems == 0)
1772 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1773 else
1774 end += btrfs_item_offset(eb, nritems - 1);
1775 memzero_extent_buffer(eb, start, end - start);
1776 }
1777}
1778
1779static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1780 struct writeback_control *wbc)
1781{
1782 struct btrfs_fs_info *fs_info = eb->fs_info;
1783 struct btrfs_bio *bbio;
1784
1785 prepare_eb_write(eb);
1786
1787 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1788 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1789 eb->fs_info, end_bbio_meta_write, eb);
1790 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1791 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1792 wbc_init_bio(wbc, &bbio->bio);
1793 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1794 bbio->file_offset = eb->start;
1795 if (fs_info->nodesize < PAGE_SIZE) {
1796 struct folio *folio = eb->folios[0];
1797 bool ret;
1798
1799 folio_lock(folio);
1800 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1801 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1802 eb->len)) {
1803 folio_clear_dirty_for_io(folio);
1804 wbc->nr_to_write--;
1805 }
1806 ret = bio_add_folio(&bbio->bio, folio, eb->len,
1807 eb->start - folio_pos(folio));
1808 ASSERT(ret);
1809 wbc_account_cgroup_owner(wbc, folio, eb->len);
1810 folio_unlock(folio);
1811 } else {
1812 int num_folios = num_extent_folios(eb);
1813
1814 for (int i = 0; i < num_folios; i++) {
1815 struct folio *folio = eb->folios[i];
1816 bool ret;
1817
1818 folio_lock(folio);
1819 folio_clear_dirty_for_io(folio);
1820 folio_start_writeback(folio);
1821 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1822 ASSERT(ret);
1823 wbc_account_cgroup_owner(wbc, folio, eb->folio_size);
1824 wbc->nr_to_write -= folio_nr_pages(folio);
1825 folio_unlock(folio);
1826 }
1827 }
1828 btrfs_submit_bbio(bbio, 0);
1829}
1830
1831/*
1832 * Submit one subpage btree page.
1833 *
1834 * The main difference to submit_eb_page() is:
1835 * - Page locking
1836 * For subpage, we don't rely on page locking at all.
1837 *
1838 * - Flush write bio
1839 * We only flush bio if we may be unable to fit current extent buffers into
1840 * current bio.
1841 *
1842 * Return >=0 for the number of submitted extent buffers.
1843 * Return <0 for fatal error.
1844 */
1845static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
1846{
1847 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1848 int submitted = 0;
1849 u64 folio_start = folio_pos(folio);
1850 int bit_start = 0;
1851 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1852
1853 /* Lock and write each dirty extent buffers in the range */
1854 while (bit_start < fs_info->sectors_per_page) {
1855 struct btrfs_subpage *subpage = folio_get_private(folio);
1856 struct extent_buffer *eb;
1857 unsigned long flags;
1858 u64 start;
1859
1860 /*
1861 * Take private lock to ensure the subpage won't be detached
1862 * in the meantime.
1863 */
1864 spin_lock(&folio->mapping->i_private_lock);
1865 if (!folio_test_private(folio)) {
1866 spin_unlock(&folio->mapping->i_private_lock);
1867 break;
1868 }
1869 spin_lock_irqsave(&subpage->lock, flags);
1870 if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page,
1871 subpage->bitmaps)) {
1872 spin_unlock_irqrestore(&subpage->lock, flags);
1873 spin_unlock(&folio->mapping->i_private_lock);
1874 bit_start++;
1875 continue;
1876 }
1877
1878 start = folio_start + bit_start * fs_info->sectorsize;
1879 bit_start += sectors_per_node;
1880
1881 /*
1882 * Here we just want to grab the eb without touching extra
1883 * spin locks, so call find_extent_buffer_nolock().
1884 */
1885 eb = find_extent_buffer_nolock(fs_info, start);
1886 spin_unlock_irqrestore(&subpage->lock, flags);
1887 spin_unlock(&folio->mapping->i_private_lock);
1888
1889 /*
1890 * The eb has already reached 0 refs thus find_extent_buffer()
1891 * doesn't return it. We don't need to write back such eb
1892 * anyway.
1893 */
1894 if (!eb)
1895 continue;
1896
1897 if (lock_extent_buffer_for_io(eb, wbc)) {
1898 write_one_eb(eb, wbc);
1899 submitted++;
1900 }
1901 free_extent_buffer(eb);
1902 }
1903 return submitted;
1904}
1905
1906/*
1907 * Submit all page(s) of one extent buffer.
1908 *
1909 * @page: the page of one extent buffer
1910 * @eb_context: to determine if we need to submit this page, if current page
1911 * belongs to this eb, we don't need to submit
1912 *
1913 * The caller should pass each page in their bytenr order, and here we use
1914 * @eb_context to determine if we have submitted pages of one extent buffer.
1915 *
1916 * If we have, we just skip until we hit a new page that doesn't belong to
1917 * current @eb_context.
1918 *
1919 * If not, we submit all the page(s) of the extent buffer.
1920 *
1921 * Return >0 if we have submitted the extent buffer successfully.
1922 * Return 0 if we don't need to submit the page, as it's already submitted by
1923 * previous call.
1924 * Return <0 for fatal error.
1925 */
1926static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
1927{
1928 struct writeback_control *wbc = ctx->wbc;
1929 struct address_space *mapping = folio->mapping;
1930 struct extent_buffer *eb;
1931 int ret;
1932
1933 if (!folio_test_private(folio))
1934 return 0;
1935
1936 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
1937 return submit_eb_subpage(folio, wbc);
1938
1939 spin_lock(&mapping->i_private_lock);
1940 if (!folio_test_private(folio)) {
1941 spin_unlock(&mapping->i_private_lock);
1942 return 0;
1943 }
1944
1945 eb = folio_get_private(folio);
1946
1947 /*
1948 * Shouldn't happen and normally this would be a BUG_ON but no point
1949 * crashing the machine for something we can survive anyway.
1950 */
1951 if (WARN_ON(!eb)) {
1952 spin_unlock(&mapping->i_private_lock);
1953 return 0;
1954 }
1955
1956 if (eb == ctx->eb) {
1957 spin_unlock(&mapping->i_private_lock);
1958 return 0;
1959 }
1960 ret = atomic_inc_not_zero(&eb->refs);
1961 spin_unlock(&mapping->i_private_lock);
1962 if (!ret)
1963 return 0;
1964
1965 ctx->eb = eb;
1966
1967 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1968 if (ret) {
1969 if (ret == -EBUSY)
1970 ret = 0;
1971 free_extent_buffer(eb);
1972 return ret;
1973 }
1974
1975 if (!lock_extent_buffer_for_io(eb, wbc)) {
1976 free_extent_buffer(eb);
1977 return 0;
1978 }
1979 /* Implies write in zoned mode. */
1980 if (ctx->zoned_bg) {
1981 /* Mark the last eb in the block group. */
1982 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1983 ctx->zoned_bg->meta_write_pointer += eb->len;
1984 }
1985 write_one_eb(eb, wbc);
1986 free_extent_buffer(eb);
1987 return 1;
1988}
1989
1990int btree_write_cache_pages(struct address_space *mapping,
1991 struct writeback_control *wbc)
1992{
1993 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1994 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1995 int ret = 0;
1996 int done = 0;
1997 int nr_to_write_done = 0;
1998 struct folio_batch fbatch;
1999 unsigned int nr_folios;
2000 pgoff_t index;
2001 pgoff_t end; /* Inclusive */
2002 int scanned = 0;
2003 xa_mark_t tag;
2004
2005 folio_batch_init(&fbatch);
2006 if (wbc->range_cyclic) {
2007 index = mapping->writeback_index; /* Start from prev offset */
2008 end = -1;
2009 /*
2010 * Start from the beginning does not need to cycle over the
2011 * range, mark it as scanned.
2012 */
2013 scanned = (index == 0);
2014 } else {
2015 index = wbc->range_start >> PAGE_SHIFT;
2016 end = wbc->range_end >> PAGE_SHIFT;
2017 scanned = 1;
2018 }
2019 if (wbc->sync_mode == WB_SYNC_ALL)
2020 tag = PAGECACHE_TAG_TOWRITE;
2021 else
2022 tag = PAGECACHE_TAG_DIRTY;
2023 btrfs_zoned_meta_io_lock(fs_info);
2024retry:
2025 if (wbc->sync_mode == WB_SYNC_ALL)
2026 tag_pages_for_writeback(mapping, index, end);
2027 while (!done && !nr_to_write_done && (index <= end) &&
2028 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
2029 tag, &fbatch))) {
2030 unsigned i;
2031
2032 for (i = 0; i < nr_folios; i++) {
2033 struct folio *folio = fbatch.folios[i];
2034
2035 ret = submit_eb_page(folio, &ctx);
2036 if (ret == 0)
2037 continue;
2038 if (ret < 0) {
2039 done = 1;
2040 break;
2041 }
2042
2043 /*
2044 * the filesystem may choose to bump up nr_to_write.
2045 * We have to make sure to honor the new nr_to_write
2046 * at any time
2047 */
2048 nr_to_write_done = wbc->nr_to_write <= 0;
2049 }
2050 folio_batch_release(&fbatch);
2051 cond_resched();
2052 }
2053 if (!scanned && !done) {
2054 /*
2055 * We hit the last page and there is more work to be done: wrap
2056 * back to the start of the file
2057 */
2058 scanned = 1;
2059 index = 0;
2060 goto retry;
2061 }
2062 /*
2063 * If something went wrong, don't allow any metadata write bio to be
2064 * submitted.
2065 *
2066 * This would prevent use-after-free if we had dirty pages not
2067 * cleaned up, which can still happen by fuzzed images.
2068 *
2069 * - Bad extent tree
2070 * Allowing existing tree block to be allocated for other trees.
2071 *
2072 * - Log tree operations
2073 * Exiting tree blocks get allocated to log tree, bumps its
2074 * generation, then get cleaned in tree re-balance.
2075 * Such tree block will not be written back, since it's clean,
2076 * thus no WRITTEN flag set.
2077 * And after log writes back, this tree block is not traced by
2078 * any dirty extent_io_tree.
2079 *
2080 * - Offending tree block gets re-dirtied from its original owner
2081 * Since it has bumped generation, no WRITTEN flag, it can be
2082 * reused without COWing. This tree block will not be traced
2083 * by btrfs_transaction::dirty_pages.
2084 *
2085 * Now such dirty tree block will not be cleaned by any dirty
2086 * extent io tree. Thus we don't want to submit such wild eb
2087 * if the fs already has error.
2088 *
2089 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2090 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2091 */
2092 if (ret > 0)
2093 ret = 0;
2094 if (!ret && BTRFS_FS_ERROR(fs_info))
2095 ret = -EROFS;
2096
2097 if (ctx.zoned_bg)
2098 btrfs_put_block_group(ctx.zoned_bg);
2099 btrfs_zoned_meta_io_unlock(fs_info);
2100 return ret;
2101}
2102
2103/*
2104 * Walk the list of dirty pages of the given address space and write all of them.
2105 *
2106 * @mapping: address space structure to write
2107 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2108 * @bio_ctrl: holds context for the write, namely the bio
2109 *
2110 * If a page is already under I/O, write_cache_pages() skips it, even
2111 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2112 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2113 * and msync() need to guarantee that all the data which was dirty at the time
2114 * the call was made get new I/O started against them. If wbc->sync_mode is
2115 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2116 * existing IO to complete.
2117 */
2118static int extent_write_cache_pages(struct address_space *mapping,
2119 struct btrfs_bio_ctrl *bio_ctrl)
2120{
2121 struct writeback_control *wbc = bio_ctrl->wbc;
2122 struct inode *inode = mapping->host;
2123 int ret = 0;
2124 int done = 0;
2125 int nr_to_write_done = 0;
2126 struct folio_batch fbatch;
2127 unsigned int nr_folios;
2128 pgoff_t index;
2129 pgoff_t end; /* Inclusive */
2130 pgoff_t done_index;
2131 int range_whole = 0;
2132 int scanned = 0;
2133 xa_mark_t tag;
2134
2135 /*
2136 * We have to hold onto the inode so that ordered extents can do their
2137 * work when the IO finishes. The alternative to this is failing to add
2138 * an ordered extent if the igrab() fails there and that is a huge pain
2139 * to deal with, so instead just hold onto the inode throughout the
2140 * writepages operation. If it fails here we are freeing up the inode
2141 * anyway and we'd rather not waste our time writing out stuff that is
2142 * going to be truncated anyway.
2143 */
2144 if (!igrab(inode))
2145 return 0;
2146
2147 folio_batch_init(&fbatch);
2148 if (wbc->range_cyclic) {
2149 index = mapping->writeback_index; /* Start from prev offset */
2150 end = -1;
2151 /*
2152 * Start from the beginning does not need to cycle over the
2153 * range, mark it as scanned.
2154 */
2155 scanned = (index == 0);
2156 } else {
2157 index = wbc->range_start >> PAGE_SHIFT;
2158 end = wbc->range_end >> PAGE_SHIFT;
2159 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2160 range_whole = 1;
2161 scanned = 1;
2162 }
2163
2164 /*
2165 * We do the tagged writepage as long as the snapshot flush bit is set
2166 * and we are the first one who do the filemap_flush() on this inode.
2167 *
2168 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2169 * not race in and drop the bit.
2170 */
2171 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2172 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2173 &BTRFS_I(inode)->runtime_flags))
2174 wbc->tagged_writepages = 1;
2175
2176 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2177 tag = PAGECACHE_TAG_TOWRITE;
2178 else
2179 tag = PAGECACHE_TAG_DIRTY;
2180retry:
2181 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2182 tag_pages_for_writeback(mapping, index, end);
2183 done_index = index;
2184 while (!done && !nr_to_write_done && (index <= end) &&
2185 (nr_folios = filemap_get_folios_tag(mapping, &index,
2186 end, tag, &fbatch))) {
2187 unsigned i;
2188
2189 for (i = 0; i < nr_folios; i++) {
2190 struct folio *folio = fbatch.folios[i];
2191
2192 done_index = folio_next_index(folio);
2193 /*
2194 * At this point we hold neither the i_pages lock nor
2195 * the page lock: the page may be truncated or
2196 * invalidated (changing page->mapping to NULL),
2197 * or even swizzled back from swapper_space to
2198 * tmpfs file mapping
2199 */
2200 if (!folio_trylock(folio)) {
2201 submit_write_bio(bio_ctrl, 0);
2202 folio_lock(folio);
2203 }
2204
2205 if (unlikely(folio->mapping != mapping)) {
2206 folio_unlock(folio);
2207 continue;
2208 }
2209
2210 if (!folio_test_dirty(folio)) {
2211 /* Someone wrote it for us. */
2212 folio_unlock(folio);
2213 continue;
2214 }
2215
2216 /*
2217 * For subpage case, compression can lead to mixed
2218 * writeback and dirty flags, e.g:
2219 * 0 32K 64K 96K 128K
2220 * | |//////||/////| |//|
2221 *
2222 * In above case, [32K, 96K) is asynchronously submitted
2223 * for compression, and [124K, 128K) needs to be written back.
2224 *
2225 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2226 * won't be submitted as the page still has writeback flag
2227 * and will be skipped in the next check.
2228 *
2229 * This mixed writeback and dirty case is only possible for
2230 * subpage case.
2231 *
2232 * TODO: Remove this check after migrating compression to
2233 * regular submission.
2234 */
2235 if (wbc->sync_mode != WB_SYNC_NONE ||
2236 btrfs_is_subpage(inode_to_fs_info(inode), mapping)) {
2237 if (folio_test_writeback(folio))
2238 submit_write_bio(bio_ctrl, 0);
2239 folio_wait_writeback(folio);
2240 }
2241
2242 if (folio_test_writeback(folio) ||
2243 !folio_clear_dirty_for_io(folio)) {
2244 folio_unlock(folio);
2245 continue;
2246 }
2247
2248 ret = extent_writepage(folio, bio_ctrl);
2249 if (ret < 0) {
2250 done = 1;
2251 break;
2252 }
2253
2254 /*
2255 * The filesystem may choose to bump up nr_to_write.
2256 * We have to make sure to honor the new nr_to_write
2257 * at any time.
2258 */
2259 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2260 wbc->nr_to_write <= 0);
2261 }
2262 folio_batch_release(&fbatch);
2263 cond_resched();
2264 }
2265 if (!scanned && !done) {
2266 /*
2267 * We hit the last page and there is more work to be done: wrap
2268 * back to the start of the file
2269 */
2270 scanned = 1;
2271 index = 0;
2272
2273 /*
2274 * If we're looping we could run into a page that is locked by a
2275 * writer and that writer could be waiting on writeback for a
2276 * page in our current bio, and thus deadlock, so flush the
2277 * write bio here.
2278 */
2279 submit_write_bio(bio_ctrl, 0);
2280 goto retry;
2281 }
2282
2283 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2284 mapping->writeback_index = done_index;
2285
2286 btrfs_add_delayed_iput(BTRFS_I(inode));
2287 return ret;
2288}
2289
2290/*
2291 * Submit the pages in the range to bio for call sites which delalloc range has
2292 * already been ran (aka, ordered extent inserted) and all pages are still
2293 * locked.
2294 */
2295void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2296 u64 start, u64 end, struct writeback_control *wbc,
2297 bool pages_dirty)
2298{
2299 bool found_error = false;
2300 int ret = 0;
2301 struct address_space *mapping = inode->i_mapping;
2302 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2303 const u32 sectorsize = fs_info->sectorsize;
2304 loff_t i_size = i_size_read(inode);
2305 u64 cur = start;
2306 struct btrfs_bio_ctrl bio_ctrl = {
2307 .wbc = wbc,
2308 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2309 };
2310
2311 if (wbc->no_cgroup_owner)
2312 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2313
2314 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2315
2316 while (cur <= end) {
2317 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2318 u32 cur_len = cur_end + 1 - cur;
2319 struct folio *folio;
2320
2321 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2322
2323 /*
2324 * This shouldn't happen, the pages are pinned and locked, this
2325 * code is just in case, but shouldn't actually be run.
2326 */
2327 if (IS_ERR(folio)) {
2328 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2329 cur, cur_len, false);
2330 mapping_set_error(mapping, PTR_ERR(folio));
2331 cur = cur_end + 1;
2332 continue;
2333 }
2334
2335 ASSERT(folio_test_locked(folio));
2336 if (pages_dirty && folio != locked_folio)
2337 ASSERT(folio_test_dirty(folio));
2338
2339 /*
2340 * Set the submission bitmap to submit all sectors.
2341 * extent_writepage_io() will do the truncation correctly.
2342 */
2343 bio_ctrl.submit_bitmap = (unsigned long)-1;
2344 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2345 &bio_ctrl, i_size);
2346 if (ret == 1)
2347 goto next_page;
2348
2349 if (ret)
2350 mapping_set_error(mapping, ret);
2351 btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2352 if (ret < 0)
2353 found_error = true;
2354next_page:
2355 folio_put(folio);
2356 cur = cur_end + 1;
2357 }
2358
2359 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2360}
2361
2362int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2363{
2364 struct inode *inode = mapping->host;
2365 int ret = 0;
2366 struct btrfs_bio_ctrl bio_ctrl = {
2367 .wbc = wbc,
2368 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2369 };
2370
2371 /*
2372 * Allow only a single thread to do the reloc work in zoned mode to
2373 * protect the write pointer updates.
2374 */
2375 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2376 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2377 submit_write_bio(&bio_ctrl, ret);
2378 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2379 return ret;
2380}
2381
2382void btrfs_readahead(struct readahead_control *rac)
2383{
2384 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2385 struct folio *folio;
2386 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2387 const u64 start = readahead_pos(rac);
2388 const u64 end = start + readahead_length(rac) - 1;
2389 struct extent_state *cached_state = NULL;
2390 struct extent_map *em_cached = NULL;
2391 u64 prev_em_start = (u64)-1;
2392
2393 btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
2394
2395 while ((folio = readahead_folio(rac)) != NULL)
2396 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2397
2398 unlock_extent(&inode->io_tree, start, end, &cached_state);
2399
2400 if (em_cached)
2401 free_extent_map(em_cached);
2402 submit_one_bio(&bio_ctrl);
2403}
2404
2405/*
2406 * basic invalidate_folio code, this waits on any locked or writeback
2407 * ranges corresponding to the folio, and then deletes any extent state
2408 * records from the tree
2409 */
2410int extent_invalidate_folio(struct extent_io_tree *tree,
2411 struct folio *folio, size_t offset)
2412{
2413 struct extent_state *cached_state = NULL;
2414 u64 start = folio_pos(folio);
2415 u64 end = start + folio_size(folio) - 1;
2416 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2417
2418 /* This function is only called for the btree inode */
2419 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2420
2421 start += ALIGN(offset, blocksize);
2422 if (start > end)
2423 return 0;
2424
2425 lock_extent(tree, start, end, &cached_state);
2426 folio_wait_writeback(folio);
2427
2428 /*
2429 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2430 * so here we only need to unlock the extent range to free any
2431 * existing extent state.
2432 */
2433 unlock_extent(tree, start, end, &cached_state);
2434 return 0;
2435}
2436
2437/*
2438 * a helper for release_folio, this tests for areas of the page that
2439 * are locked or under IO and drops the related state bits if it is safe
2440 * to drop the page.
2441 */
2442static bool try_release_extent_state(struct extent_io_tree *tree,
2443 struct folio *folio)
2444{
2445 u64 start = folio_pos(folio);
2446 u64 end = start + PAGE_SIZE - 1;
2447 bool ret;
2448
2449 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2450 ret = false;
2451 } else {
2452 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2453 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2454 EXTENT_QGROUP_RESERVED);
2455 int ret2;
2456
2457 /*
2458 * At this point we can safely clear everything except the
2459 * locked bit, the nodatasum bit and the delalloc new bit.
2460 * The delalloc new bit will be cleared by ordered extent
2461 * completion.
2462 */
2463 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2464
2465 /* if clear_extent_bit failed for enomem reasons,
2466 * we can't allow the release to continue.
2467 */
2468 if (ret2 < 0)
2469 ret = false;
2470 else
2471 ret = true;
2472 }
2473 return ret;
2474}
2475
2476/*
2477 * a helper for release_folio. As long as there are no locked extents
2478 * in the range corresponding to the page, both state records and extent
2479 * map records are removed
2480 */
2481bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2482{
2483 u64 start = folio_pos(folio);
2484 u64 end = start + PAGE_SIZE - 1;
2485 struct btrfs_inode *inode = folio_to_inode(folio);
2486 struct extent_io_tree *io_tree = &inode->io_tree;
2487
2488 while (start <= end) {
2489 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2490 const u64 len = end - start + 1;
2491 struct extent_map_tree *extent_tree = &inode->extent_tree;
2492 struct extent_map *em;
2493
2494 write_lock(&extent_tree->lock);
2495 em = lookup_extent_mapping(extent_tree, start, len);
2496 if (!em) {
2497 write_unlock(&extent_tree->lock);
2498 break;
2499 }
2500 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2501 write_unlock(&extent_tree->lock);
2502 free_extent_map(em);
2503 break;
2504 }
2505 if (test_range_bit_exists(io_tree, em->start,
2506 extent_map_end(em) - 1, EXTENT_LOCKED))
2507 goto next;
2508 /*
2509 * If it's not in the list of modified extents, used by a fast
2510 * fsync, we can remove it. If it's being logged we can safely
2511 * remove it since fsync took an extra reference on the em.
2512 */
2513 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2514 goto remove_em;
2515 /*
2516 * If it's in the list of modified extents, remove it only if
2517 * its generation is older then the current one, in which case
2518 * we don't need it for a fast fsync. Otherwise don't remove it,
2519 * we could be racing with an ongoing fast fsync that could miss
2520 * the new extent.
2521 */
2522 if (em->generation >= cur_gen)
2523 goto next;
2524remove_em:
2525 /*
2526 * We only remove extent maps that are not in the list of
2527 * modified extents or that are in the list but with a
2528 * generation lower then the current generation, so there is no
2529 * need to set the full fsync flag on the inode (it hurts the
2530 * fsync performance for workloads with a data size that exceeds
2531 * or is close to the system's memory).
2532 */
2533 remove_extent_mapping(inode, em);
2534 /* Once for the inode's extent map tree. */
2535 free_extent_map(em);
2536next:
2537 start = extent_map_end(em);
2538 write_unlock(&extent_tree->lock);
2539
2540 /* Once for us, for the lookup_extent_mapping() reference. */
2541 free_extent_map(em);
2542
2543 if (need_resched()) {
2544 /*
2545 * If we need to resched but we can't block just exit
2546 * and leave any remaining extent maps.
2547 */
2548 if (!gfpflags_allow_blocking(mask))
2549 break;
2550
2551 cond_resched();
2552 }
2553 }
2554 return try_release_extent_state(io_tree, folio);
2555}
2556
2557static void __free_extent_buffer(struct extent_buffer *eb)
2558{
2559 kmem_cache_free(extent_buffer_cache, eb);
2560}
2561
2562static int extent_buffer_under_io(const struct extent_buffer *eb)
2563{
2564 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2565 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2566}
2567
2568static bool folio_range_has_eb(struct folio *folio)
2569{
2570 struct btrfs_subpage *subpage;
2571
2572 lockdep_assert_held(&folio->mapping->i_private_lock);
2573
2574 if (folio_test_private(folio)) {
2575 subpage = folio_get_private(folio);
2576 if (atomic_read(&subpage->eb_refs))
2577 return true;
2578 }
2579 return false;
2580}
2581
2582static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2583{
2584 struct btrfs_fs_info *fs_info = eb->fs_info;
2585 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2586
2587 /*
2588 * For mapped eb, we're going to change the folio private, which should
2589 * be done under the i_private_lock.
2590 */
2591 if (mapped)
2592 spin_lock(&folio->mapping->i_private_lock);
2593
2594 if (!folio_test_private(folio)) {
2595 if (mapped)
2596 spin_unlock(&folio->mapping->i_private_lock);
2597 return;
2598 }
2599
2600 if (fs_info->nodesize >= PAGE_SIZE) {
2601 /*
2602 * We do this since we'll remove the pages after we've
2603 * removed the eb from the radix tree, so we could race
2604 * and have this page now attached to the new eb. So
2605 * only clear folio if it's still connected to
2606 * this eb.
2607 */
2608 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2609 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2610 BUG_ON(folio_test_dirty(folio));
2611 BUG_ON(folio_test_writeback(folio));
2612 /* We need to make sure we haven't be attached to a new eb. */
2613 folio_detach_private(folio);
2614 }
2615 if (mapped)
2616 spin_unlock(&folio->mapping->i_private_lock);
2617 return;
2618 }
2619
2620 /*
2621 * For subpage, we can have dummy eb with folio private attached. In
2622 * this case, we can directly detach the private as such folio is only
2623 * attached to one dummy eb, no sharing.
2624 */
2625 if (!mapped) {
2626 btrfs_detach_subpage(fs_info, folio);
2627 return;
2628 }
2629
2630 btrfs_folio_dec_eb_refs(fs_info, folio);
2631
2632 /*
2633 * We can only detach the folio private if there are no other ebs in the
2634 * page range and no unfinished IO.
2635 */
2636 if (!folio_range_has_eb(folio))
2637 btrfs_detach_subpage(fs_info, folio);
2638
2639 spin_unlock(&folio->mapping->i_private_lock);
2640}
2641
2642/* Release all pages attached to the extent buffer */
2643static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb)
2644{
2645 ASSERT(!extent_buffer_under_io(eb));
2646
2647 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2648 struct folio *folio = eb->folios[i];
2649
2650 if (!folio)
2651 continue;
2652
2653 detach_extent_buffer_folio(eb, folio);
2654
2655 /* One for when we allocated the folio. */
2656 folio_put(folio);
2657 }
2658}
2659
2660/*
2661 * Helper for releasing the extent buffer.
2662 */
2663static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2664{
2665 btrfs_release_extent_buffer_pages(eb);
2666 btrfs_leak_debug_del_eb(eb);
2667 __free_extent_buffer(eb);
2668}
2669
2670static struct extent_buffer *
2671__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
2672 unsigned long len)
2673{
2674 struct extent_buffer *eb = NULL;
2675
2676 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2677 eb->start = start;
2678 eb->len = len;
2679 eb->fs_info = fs_info;
2680 init_rwsem(&eb->lock);
2681
2682 btrfs_leak_debug_add_eb(eb);
2683
2684 spin_lock_init(&eb->refs_lock);
2685 atomic_set(&eb->refs, 1);
2686
2687 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2688
2689 return eb;
2690}
2691
2692struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2693{
2694 struct extent_buffer *new;
2695 int num_folios = num_extent_folios(src);
2696 int ret;
2697
2698 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
2699 if (new == NULL)
2700 return NULL;
2701
2702 /*
2703 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2704 * btrfs_release_extent_buffer() have different behavior for
2705 * UNMAPPED subpage extent buffer.
2706 */
2707 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2708
2709 ret = alloc_eb_folio_array(new, false);
2710 if (ret) {
2711 btrfs_release_extent_buffer(new);
2712 return NULL;
2713 }
2714
2715 for (int i = 0; i < num_folios; i++) {
2716 struct folio *folio = new->folios[i];
2717
2718 ret = attach_extent_buffer_folio(new, folio, NULL);
2719 if (ret < 0) {
2720 btrfs_release_extent_buffer(new);
2721 return NULL;
2722 }
2723 WARN_ON(folio_test_dirty(folio));
2724 }
2725 copy_extent_buffer_full(new, src);
2726 set_extent_buffer_uptodate(new);
2727
2728 return new;
2729}
2730
2731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2732 u64 start, unsigned long len)
2733{
2734 struct extent_buffer *eb;
2735 int num_folios = 0;
2736 int ret;
2737
2738 eb = __alloc_extent_buffer(fs_info, start, len);
2739 if (!eb)
2740 return NULL;
2741
2742 ret = alloc_eb_folio_array(eb, false);
2743 if (ret)
2744 goto err;
2745
2746 num_folios = num_extent_folios(eb);
2747 for (int i = 0; i < num_folios; i++) {
2748 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2749 if (ret < 0)
2750 goto err;
2751 }
2752
2753 set_extent_buffer_uptodate(eb);
2754 btrfs_set_header_nritems(eb, 0);
2755 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2756
2757 return eb;
2758err:
2759 for (int i = 0; i < num_folios; i++) {
2760 if (eb->folios[i]) {
2761 detach_extent_buffer_folio(eb, eb->folios[i]);
2762 folio_put(eb->folios[i]);
2763 }
2764 }
2765 __free_extent_buffer(eb);
2766 return NULL;
2767}
2768
2769struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2770 u64 start)
2771{
2772 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
2773}
2774
2775static void check_buffer_tree_ref(struct extent_buffer *eb)
2776{
2777 int refs;
2778 /*
2779 * The TREE_REF bit is first set when the extent_buffer is added
2780 * to the radix tree. It is also reset, if unset, when a new reference
2781 * is created by find_extent_buffer.
2782 *
2783 * It is only cleared in two cases: freeing the last non-tree
2784 * reference to the extent_buffer when its STALE bit is set or
2785 * calling release_folio when the tree reference is the only reference.
2786 *
2787 * In both cases, care is taken to ensure that the extent_buffer's
2788 * pages are not under io. However, release_folio can be concurrently
2789 * called with creating new references, which is prone to race
2790 * conditions between the calls to check_buffer_tree_ref in those
2791 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2792 *
2793 * The actual lifetime of the extent_buffer in the radix tree is
2794 * adequately protected by the refcount, but the TREE_REF bit and
2795 * its corresponding reference are not. To protect against this
2796 * class of races, we call check_buffer_tree_ref from the codepaths
2797 * which trigger io. Note that once io is initiated, TREE_REF can no
2798 * longer be cleared, so that is the moment at which any such race is
2799 * best fixed.
2800 */
2801 refs = atomic_read(&eb->refs);
2802 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2803 return;
2804
2805 spin_lock(&eb->refs_lock);
2806 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2807 atomic_inc(&eb->refs);
2808 spin_unlock(&eb->refs_lock);
2809}
2810
2811static void mark_extent_buffer_accessed(struct extent_buffer *eb)
2812{
2813 int num_folios= num_extent_folios(eb);
2814
2815 check_buffer_tree_ref(eb);
2816
2817 for (int i = 0; i < num_folios; i++)
2818 folio_mark_accessed(eb->folios[i]);
2819}
2820
2821struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2822 u64 start)
2823{
2824 struct extent_buffer *eb;
2825
2826 eb = find_extent_buffer_nolock(fs_info, start);
2827 if (!eb)
2828 return NULL;
2829 /*
2830 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2831 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2832 * another task running free_extent_buffer() might have seen that flag
2833 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2834 * writeback flags not set) and it's still in the tree (flag
2835 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
2836 * decrementing the extent buffer's reference count twice. So here we
2837 * could race and increment the eb's reference count, clear its stale
2838 * flag, mark it as dirty and drop our reference before the other task
2839 * finishes executing free_extent_buffer, which would later result in
2840 * an attempt to free an extent buffer that is dirty.
2841 */
2842 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
2843 spin_lock(&eb->refs_lock);
2844 spin_unlock(&eb->refs_lock);
2845 }
2846 mark_extent_buffer_accessed(eb);
2847 return eb;
2848}
2849
2850#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2851struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
2852 u64 start)
2853{
2854 struct extent_buffer *eb, *exists = NULL;
2855 int ret;
2856
2857 eb = find_extent_buffer(fs_info, start);
2858 if (eb)
2859 return eb;
2860 eb = alloc_dummy_extent_buffer(fs_info, start);
2861 if (!eb)
2862 return ERR_PTR(-ENOMEM);
2863 eb->fs_info = fs_info;
2864again:
2865 ret = radix_tree_preload(GFP_NOFS);
2866 if (ret) {
2867 exists = ERR_PTR(ret);
2868 goto free_eb;
2869 }
2870 spin_lock(&fs_info->buffer_lock);
2871 ret = radix_tree_insert(&fs_info->buffer_radix,
2872 start >> fs_info->sectorsize_bits, eb);
2873 spin_unlock(&fs_info->buffer_lock);
2874 radix_tree_preload_end();
2875 if (ret == -EEXIST) {
2876 exists = find_extent_buffer(fs_info, start);
2877 if (exists)
2878 goto free_eb;
2879 else
2880 goto again;
2881 }
2882 check_buffer_tree_ref(eb);
2883 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
2884
2885 return eb;
2886free_eb:
2887 btrfs_release_extent_buffer(eb);
2888 return exists;
2889}
2890#endif
2891
2892static struct extent_buffer *grab_extent_buffer(
2893 struct btrfs_fs_info *fs_info, struct page *page)
2894{
2895 struct folio *folio = page_folio(page);
2896 struct extent_buffer *exists;
2897
2898 lockdep_assert_held(&page->mapping->i_private_lock);
2899
2900 /*
2901 * For subpage case, we completely rely on radix tree to ensure we
2902 * don't try to insert two ebs for the same bytenr. So here we always
2903 * return NULL and just continue.
2904 */
2905 if (fs_info->nodesize < PAGE_SIZE)
2906 return NULL;
2907
2908 /* Page not yet attached to an extent buffer */
2909 if (!folio_test_private(folio))
2910 return NULL;
2911
2912 /*
2913 * We could have already allocated an eb for this page and attached one
2914 * so lets see if we can get a ref on the existing eb, and if we can we
2915 * know it's good and we can just return that one, else we know we can
2916 * just overwrite folio private.
2917 */
2918 exists = folio_get_private(folio);
2919 if (atomic_inc_not_zero(&exists->refs))
2920 return exists;
2921
2922 WARN_ON(PageDirty(page));
2923 folio_detach_private(folio);
2924 return NULL;
2925}
2926
2927static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
2928{
2929 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
2930 btrfs_err(fs_info, "bad tree block start %llu", start);
2931 return -EINVAL;
2932 }
2933
2934 if (fs_info->nodesize < PAGE_SIZE &&
2935 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
2936 btrfs_err(fs_info,
2937 "tree block crosses page boundary, start %llu nodesize %u",
2938 start, fs_info->nodesize);
2939 return -EINVAL;
2940 }
2941 if (fs_info->nodesize >= PAGE_SIZE &&
2942 !PAGE_ALIGNED(start)) {
2943 btrfs_err(fs_info,
2944 "tree block is not page aligned, start %llu nodesize %u",
2945 start, fs_info->nodesize);
2946 return -EINVAL;
2947 }
2948 if (!IS_ALIGNED(start, fs_info->nodesize) &&
2949 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
2950 btrfs_warn(fs_info,
2951"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
2952 start, fs_info->nodesize);
2953 }
2954 return 0;
2955}
2956
2957
2958/*
2959 * Return 0 if eb->folios[i] is attached to btree inode successfully.
2960 * Return >0 if there is already another extent buffer for the range,
2961 * and @found_eb_ret would be updated.
2962 * Return -EAGAIN if the filemap has an existing folio but with different size
2963 * than @eb.
2964 * The caller needs to free the existing folios and retry using the same order.
2965 */
2966static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
2967 struct btrfs_subpage *prealloc,
2968 struct extent_buffer **found_eb_ret)
2969{
2970
2971 struct btrfs_fs_info *fs_info = eb->fs_info;
2972 struct address_space *mapping = fs_info->btree_inode->i_mapping;
2973 const unsigned long index = eb->start >> PAGE_SHIFT;
2974 struct folio *existing_folio = NULL;
2975 int ret;
2976
2977 ASSERT(found_eb_ret);
2978
2979 /* Caller should ensure the folio exists. */
2980 ASSERT(eb->folios[i]);
2981
2982retry:
2983 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
2984 GFP_NOFS | __GFP_NOFAIL);
2985 if (!ret)
2986 goto finish;
2987
2988 existing_folio = filemap_lock_folio(mapping, index + i);
2989 /* The page cache only exists for a very short time, just retry. */
2990 if (IS_ERR(existing_folio)) {
2991 existing_folio = NULL;
2992 goto retry;
2993 }
2994
2995 /* For now, we should only have single-page folios for btree inode. */
2996 ASSERT(folio_nr_pages(existing_folio) == 1);
2997
2998 if (folio_size(existing_folio) != eb->folio_size) {
2999 folio_unlock(existing_folio);
3000 folio_put(existing_folio);
3001 return -EAGAIN;
3002 }
3003
3004finish:
3005 spin_lock(&mapping->i_private_lock);
3006 if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
3007 /* We're going to reuse the existing page, can drop our folio now. */
3008 __free_page(folio_page(eb->folios[i], 0));
3009 eb->folios[i] = existing_folio;
3010 } else if (existing_folio) {
3011 struct extent_buffer *existing_eb;
3012
3013 existing_eb = grab_extent_buffer(fs_info,
3014 folio_page(existing_folio, 0));
3015 if (existing_eb) {
3016 /* The extent buffer still exists, we can use it directly. */
3017 *found_eb_ret = existing_eb;
3018 spin_unlock(&mapping->i_private_lock);
3019 folio_unlock(existing_folio);
3020 folio_put(existing_folio);
3021 return 1;
3022 }
3023 /* The extent buffer no longer exists, we can reuse the folio. */
3024 __free_page(folio_page(eb->folios[i], 0));
3025 eb->folios[i] = existing_folio;
3026 }
3027 eb->folio_size = folio_size(eb->folios[i]);
3028 eb->folio_shift = folio_shift(eb->folios[i]);
3029 /* Should not fail, as we have preallocated the memory. */
3030 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3031 ASSERT(!ret);
3032 /*
3033 * To inform we have an extra eb under allocation, so that
3034 * detach_extent_buffer_page() won't release the folio private when the
3035 * eb hasn't been inserted into radix tree yet.
3036 *
3037 * The ref will be decreased when the eb releases the page, in
3038 * detach_extent_buffer_page(). Thus needs no special handling in the
3039 * error path.
3040 */
3041 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3042 spin_unlock(&mapping->i_private_lock);
3043 return 0;
3044}
3045
3046struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3047 u64 start, u64 owner_root, int level)
3048{
3049 unsigned long len = fs_info->nodesize;
3050 int num_folios;
3051 int attached = 0;
3052 struct extent_buffer *eb;
3053 struct extent_buffer *existing_eb = NULL;
3054 struct btrfs_subpage *prealloc = NULL;
3055 u64 lockdep_owner = owner_root;
3056 bool page_contig = true;
3057 int uptodate = 1;
3058 int ret;
3059
3060 if (check_eb_alignment(fs_info, start))
3061 return ERR_PTR(-EINVAL);
3062
3063#if BITS_PER_LONG == 32
3064 if (start >= MAX_LFS_FILESIZE) {
3065 btrfs_err_rl(fs_info,
3066 "extent buffer %llu is beyond 32bit page cache limit", start);
3067 btrfs_err_32bit_limit(fs_info);
3068 return ERR_PTR(-EOVERFLOW);
3069 }
3070 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3071 btrfs_warn_32bit_limit(fs_info);
3072#endif
3073
3074 eb = find_extent_buffer(fs_info, start);
3075 if (eb)
3076 return eb;
3077
3078 eb = __alloc_extent_buffer(fs_info, start, len);
3079 if (!eb)
3080 return ERR_PTR(-ENOMEM);
3081
3082 /*
3083 * The reloc trees are just snapshots, so we need them to appear to be
3084 * just like any other fs tree WRT lockdep.
3085 */
3086 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3087 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3088
3089 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3090
3091 /*
3092 * Preallocate folio private for subpage case, so that we won't
3093 * allocate memory with i_private_lock nor page lock hold.
3094 *
3095 * The memory will be freed by attach_extent_buffer_page() or freed
3096 * manually if we exit earlier.
3097 */
3098 if (fs_info->nodesize < PAGE_SIZE) {
3099 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3100 if (IS_ERR(prealloc)) {
3101 ret = PTR_ERR(prealloc);
3102 goto out;
3103 }
3104 }
3105
3106reallocate:
3107 /* Allocate all pages first. */
3108 ret = alloc_eb_folio_array(eb, true);
3109 if (ret < 0) {
3110 btrfs_free_subpage(prealloc);
3111 goto out;
3112 }
3113
3114 num_folios = num_extent_folios(eb);
3115 /* Attach all pages to the filemap. */
3116 for (int i = 0; i < num_folios; i++) {
3117 struct folio *folio;
3118
3119 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3120 if (ret > 0) {
3121 ASSERT(existing_eb);
3122 goto out;
3123 }
3124
3125 /*
3126 * TODO: Special handling for a corner case where the order of
3127 * folios mismatch between the new eb and filemap.
3128 *
3129 * This happens when:
3130 *
3131 * - the new eb is using higher order folio
3132 *
3133 * - the filemap is still using 0-order folios for the range
3134 * This can happen at the previous eb allocation, and we don't
3135 * have higher order folio for the call.
3136 *
3137 * - the existing eb has already been freed
3138 *
3139 * In this case, we have to free the existing folios first, and
3140 * re-allocate using the same order.
3141 * Thankfully this is not going to happen yet, as we're still
3142 * using 0-order folios.
3143 */
3144 if (unlikely(ret == -EAGAIN)) {
3145 ASSERT(0);
3146 goto reallocate;
3147 }
3148 attached++;
3149
3150 /*
3151 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3152 * reliable, as we may choose to reuse the existing page cache
3153 * and free the allocated page.
3154 */
3155 folio = eb->folios[i];
3156 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3157
3158 /*
3159 * Check if the current page is physically contiguous with previous eb
3160 * page.
3161 * At this stage, either we allocated a large folio, thus @i
3162 * would only be 0, or we fall back to per-page allocation.
3163 */
3164 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3165 page_contig = false;
3166
3167 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3168 uptodate = 0;
3169
3170 /*
3171 * We can't unlock the pages just yet since the extent buffer
3172 * hasn't been properly inserted in the radix tree, this
3173 * opens a race with btree_release_folio which can free a page
3174 * while we are still filling in all pages for the buffer and
3175 * we could crash.
3176 */
3177 }
3178 if (uptodate)
3179 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3180 /* All pages are physically contiguous, can skip cross page handling. */
3181 if (page_contig)
3182 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3183again:
3184 ret = radix_tree_preload(GFP_NOFS);
3185 if (ret)
3186 goto out;
3187
3188 spin_lock(&fs_info->buffer_lock);
3189 ret = radix_tree_insert(&fs_info->buffer_radix,
3190 start >> fs_info->sectorsize_bits, eb);
3191 spin_unlock(&fs_info->buffer_lock);
3192 radix_tree_preload_end();
3193 if (ret == -EEXIST) {
3194 ret = 0;
3195 existing_eb = find_extent_buffer(fs_info, start);
3196 if (existing_eb)
3197 goto out;
3198 else
3199 goto again;
3200 }
3201 /* add one reference for the tree */
3202 check_buffer_tree_ref(eb);
3203 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3204
3205 /*
3206 * Now it's safe to unlock the pages because any calls to
3207 * btree_release_folio will correctly detect that a page belongs to a
3208 * live buffer and won't free them prematurely.
3209 */
3210 for (int i = 0; i < num_folios; i++)
3211 unlock_page(folio_page(eb->folios[i], 0));
3212 return eb;
3213
3214out:
3215 WARN_ON(!atomic_dec_and_test(&eb->refs));
3216
3217 /*
3218 * Any attached folios need to be detached before we unlock them. This
3219 * is because when we're inserting our new folios into the mapping, and
3220 * then attaching our eb to that folio. If we fail to insert our folio
3221 * we'll lookup the folio for that index, and grab that EB. We do not
3222 * want that to grab this eb, as we're getting ready to free it. So we
3223 * have to detach it first and then unlock it.
3224 *
3225 * We have to drop our reference and NULL it out here because in the
3226 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3227 * Below when we call btrfs_release_extent_buffer() we will call
3228 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3229 * case. If we left eb->folios[i] populated in the subpage case we'd
3230 * double put our reference and be super sad.
3231 */
3232 for (int i = 0; i < attached; i++) {
3233 ASSERT(eb->folios[i]);
3234 detach_extent_buffer_folio(eb, eb->folios[i]);
3235 unlock_page(folio_page(eb->folios[i], 0));
3236 folio_put(eb->folios[i]);
3237 eb->folios[i] = NULL;
3238 }
3239 /*
3240 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3241 * so it can be cleaned up without utilizing page->mapping.
3242 */
3243 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3244
3245 btrfs_release_extent_buffer(eb);
3246 if (ret < 0)
3247 return ERR_PTR(ret);
3248 ASSERT(existing_eb);
3249 return existing_eb;
3250}
3251
3252static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3253{
3254 struct extent_buffer *eb =
3255 container_of(head, struct extent_buffer, rcu_head);
3256
3257 __free_extent_buffer(eb);
3258}
3259
3260static int release_extent_buffer(struct extent_buffer *eb)
3261 __releases(&eb->refs_lock)
3262{
3263 lockdep_assert_held(&eb->refs_lock);
3264
3265 WARN_ON(atomic_read(&eb->refs) == 0);
3266 if (atomic_dec_and_test(&eb->refs)) {
3267 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3268 struct btrfs_fs_info *fs_info = eb->fs_info;
3269
3270 spin_unlock(&eb->refs_lock);
3271
3272 spin_lock(&fs_info->buffer_lock);
3273 radix_tree_delete(&fs_info->buffer_radix,
3274 eb->start >> fs_info->sectorsize_bits);
3275 spin_unlock(&fs_info->buffer_lock);
3276 } else {
3277 spin_unlock(&eb->refs_lock);
3278 }
3279
3280 btrfs_leak_debug_del_eb(eb);
3281 /* Should be safe to release our pages at this point */
3282 btrfs_release_extent_buffer_pages(eb);
3283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3284 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3285 __free_extent_buffer(eb);
3286 return 1;
3287 }
3288#endif
3289 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3290 return 1;
3291 }
3292 spin_unlock(&eb->refs_lock);
3293
3294 return 0;
3295}
3296
3297void free_extent_buffer(struct extent_buffer *eb)
3298{
3299 int refs;
3300 if (!eb)
3301 return;
3302
3303 refs = atomic_read(&eb->refs);
3304 while (1) {
3305 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3306 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3307 refs == 1))
3308 break;
3309 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3310 return;
3311 }
3312
3313 spin_lock(&eb->refs_lock);
3314 if (atomic_read(&eb->refs) == 2 &&
3315 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3316 !extent_buffer_under_io(eb) &&
3317 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3318 atomic_dec(&eb->refs);
3319
3320 /*
3321 * I know this is terrible, but it's temporary until we stop tracking
3322 * the uptodate bits and such for the extent buffers.
3323 */
3324 release_extent_buffer(eb);
3325}
3326
3327void free_extent_buffer_stale(struct extent_buffer *eb)
3328{
3329 if (!eb)
3330 return;
3331
3332 spin_lock(&eb->refs_lock);
3333 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3334
3335 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3336 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3337 atomic_dec(&eb->refs);
3338 release_extent_buffer(eb);
3339}
3340
3341static void btree_clear_folio_dirty(struct folio *folio)
3342{
3343 ASSERT(folio_test_dirty(folio));
3344 ASSERT(folio_test_locked(folio));
3345 folio_clear_dirty_for_io(folio);
3346 xa_lock_irq(&folio->mapping->i_pages);
3347 if (!folio_test_dirty(folio))
3348 __xa_clear_mark(&folio->mapping->i_pages,
3349 folio_index(folio), PAGECACHE_TAG_DIRTY);
3350 xa_unlock_irq(&folio->mapping->i_pages);
3351}
3352
3353static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3354{
3355 struct btrfs_fs_info *fs_info = eb->fs_info;
3356 struct folio *folio = eb->folios[0];
3357 bool last;
3358
3359 /* btree_clear_folio_dirty() needs page locked. */
3360 folio_lock(folio);
3361 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
3362 if (last)
3363 btree_clear_folio_dirty(folio);
3364 folio_unlock(folio);
3365 WARN_ON(atomic_read(&eb->refs) == 0);
3366}
3367
3368void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3369 struct extent_buffer *eb)
3370{
3371 struct btrfs_fs_info *fs_info = eb->fs_info;
3372 int num_folios;
3373
3374 btrfs_assert_tree_write_locked(eb);
3375
3376 if (trans && btrfs_header_generation(eb) != trans->transid)
3377 return;
3378
3379 /*
3380 * Instead of clearing the dirty flag off of the buffer, mark it as
3381 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3382 * write-ordering in zoned mode, without the need to later re-dirty
3383 * the extent_buffer.
3384 *
3385 * The actual zeroout of the buffer will happen later in
3386 * btree_csum_one_bio.
3387 */
3388 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3389 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3390 return;
3391 }
3392
3393 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3394 return;
3395
3396 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3397 fs_info->dirty_metadata_batch);
3398
3399 if (eb->fs_info->nodesize < PAGE_SIZE)
3400 return clear_subpage_extent_buffer_dirty(eb);
3401
3402 num_folios = num_extent_folios(eb);
3403 for (int i = 0; i < num_folios; i++) {
3404 struct folio *folio = eb->folios[i];
3405
3406 if (!folio_test_dirty(folio))
3407 continue;
3408 folio_lock(folio);
3409 btree_clear_folio_dirty(folio);
3410 folio_unlock(folio);
3411 }
3412 WARN_ON(atomic_read(&eb->refs) == 0);
3413}
3414
3415void set_extent_buffer_dirty(struct extent_buffer *eb)
3416{
3417 int num_folios;
3418 bool was_dirty;
3419
3420 check_buffer_tree_ref(eb);
3421
3422 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3423
3424 num_folios = num_extent_folios(eb);
3425 WARN_ON(atomic_read(&eb->refs) == 0);
3426 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3427 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3428
3429 if (!was_dirty) {
3430 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3431
3432 /*
3433 * For subpage case, we can have other extent buffers in the
3434 * same page, and in clear_subpage_extent_buffer_dirty() we
3435 * have to clear page dirty without subpage lock held.
3436 * This can cause race where our page gets dirty cleared after
3437 * we just set it.
3438 *
3439 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3440 * its page for other reasons, we can use page lock to prevent
3441 * the above race.
3442 */
3443 if (subpage)
3444 lock_page(folio_page(eb->folios[0], 0));
3445 for (int i = 0; i < num_folios; i++)
3446 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
3447 eb->start, eb->len);
3448 if (subpage)
3449 unlock_page(folio_page(eb->folios[0], 0));
3450 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3451 eb->len,
3452 eb->fs_info->dirty_metadata_batch);
3453 }
3454#ifdef CONFIG_BTRFS_DEBUG
3455 for (int i = 0; i < num_folios; i++)
3456 ASSERT(folio_test_dirty(eb->folios[i]));
3457#endif
3458}
3459
3460void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3461{
3462 struct btrfs_fs_info *fs_info = eb->fs_info;
3463 int num_folios = num_extent_folios(eb);
3464
3465 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3466 for (int i = 0; i < num_folios; i++) {
3467 struct folio *folio = eb->folios[i];
3468
3469 if (!folio)
3470 continue;
3471
3472 /*
3473 * This is special handling for metadata subpage, as regular
3474 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3475 */
3476 if (fs_info->nodesize >= PAGE_SIZE)
3477 folio_clear_uptodate(folio);
3478 else
3479 btrfs_subpage_clear_uptodate(fs_info, folio,
3480 eb->start, eb->len);
3481 }
3482}
3483
3484void set_extent_buffer_uptodate(struct extent_buffer *eb)
3485{
3486 struct btrfs_fs_info *fs_info = eb->fs_info;
3487 int num_folios = num_extent_folios(eb);
3488
3489 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3490 for (int i = 0; i < num_folios; i++) {
3491 struct folio *folio = eb->folios[i];
3492
3493 /*
3494 * This is special handling for metadata subpage, as regular
3495 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3496 */
3497 if (fs_info->nodesize >= PAGE_SIZE)
3498 folio_mark_uptodate(folio);
3499 else
3500 btrfs_subpage_set_uptodate(fs_info, folio,
3501 eb->start, eb->len);
3502 }
3503}
3504
3505static void clear_extent_buffer_reading(struct extent_buffer *eb)
3506{
3507 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3508 smp_mb__after_atomic();
3509 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3510}
3511
3512static void end_bbio_meta_read(struct btrfs_bio *bbio)
3513{
3514 struct extent_buffer *eb = bbio->private;
3515 struct btrfs_fs_info *fs_info = eb->fs_info;
3516 bool uptodate = !bbio->bio.bi_status;
3517 struct folio_iter fi;
3518 u32 bio_offset = 0;
3519
3520 /*
3521 * If the extent buffer is marked UPTODATE before the read operation
3522 * completes, other calls to read_extent_buffer_pages() will return
3523 * early without waiting for the read to finish, causing data races.
3524 */
3525 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3526
3527 eb->read_mirror = bbio->mirror_num;
3528
3529 if (uptodate &&
3530 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3531 uptodate = false;
3532
3533 if (uptodate) {
3534 set_extent_buffer_uptodate(eb);
3535 } else {
3536 clear_extent_buffer_uptodate(eb);
3537 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3538 }
3539
3540 bio_for_each_folio_all(fi, &bbio->bio) {
3541 struct folio *folio = fi.folio;
3542 u64 start = eb->start + bio_offset;
3543 u32 len = fi.length;
3544
3545 if (uptodate)
3546 btrfs_folio_set_uptodate(fs_info, folio, start, len);
3547 else
3548 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
3549
3550 bio_offset += len;
3551 }
3552
3553 clear_extent_buffer_reading(eb);
3554 free_extent_buffer(eb);
3555
3556 bio_put(&bbio->bio);
3557}
3558
3559int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3560 const struct btrfs_tree_parent_check *check)
3561{
3562 struct btrfs_bio *bbio;
3563 bool ret;
3564
3565 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3566 return 0;
3567
3568 /*
3569 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3570 * operation, which could potentially still be in flight. In this case
3571 * we simply want to return an error.
3572 */
3573 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3574 return -EIO;
3575
3576 /* Someone else is already reading the buffer, just wait for it. */
3577 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3578 goto done;
3579
3580 /*
3581 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3582 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3583 * started and finished reading the same eb. In this case, UPTODATE
3584 * will now be set, and we shouldn't read it in again.
3585 */
3586 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3587 clear_extent_buffer_reading(eb);
3588 return 0;
3589 }
3590
3591 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3592 eb->read_mirror = 0;
3593 check_buffer_tree_ref(eb);
3594 atomic_inc(&eb->refs);
3595
3596 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3597 REQ_OP_READ | REQ_META, eb->fs_info,
3598 end_bbio_meta_read, eb);
3599 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3600 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3601 bbio->file_offset = eb->start;
3602 memcpy(&bbio->parent_check, check, sizeof(*check));
3603 if (eb->fs_info->nodesize < PAGE_SIZE) {
3604 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
3605 eb->start - folio_pos(eb->folios[0]));
3606 ASSERT(ret);
3607 } else {
3608 int num_folios = num_extent_folios(eb);
3609
3610 for (int i = 0; i < num_folios; i++) {
3611 struct folio *folio = eb->folios[i];
3612
3613 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
3614 ASSERT(ret);
3615 }
3616 }
3617 btrfs_submit_bbio(bbio, mirror_num);
3618
3619done:
3620 if (wait == WAIT_COMPLETE) {
3621 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3622 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3623 return -EIO;
3624 }
3625
3626 return 0;
3627}
3628
3629static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3630 unsigned long len)
3631{
3632 btrfs_warn(eb->fs_info,
3633 "access to eb bytenr %llu len %u out of range start %lu len %lu",
3634 eb->start, eb->len, start, len);
3635 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3636
3637 return true;
3638}
3639
3640/*
3641 * Check if the [start, start + len) range is valid before reading/writing
3642 * the eb.
3643 * NOTE: @start and @len are offset inside the eb, not logical address.
3644 *
3645 * Caller should not touch the dst/src memory if this function returns error.
3646 */
3647static inline int check_eb_range(const struct extent_buffer *eb,
3648 unsigned long start, unsigned long len)
3649{
3650 unsigned long offset;
3651
3652 /* start, start + len should not go beyond eb->len nor overflow */
3653 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3654 return report_eb_range(eb, start, len);
3655
3656 return false;
3657}
3658
3659void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3660 unsigned long start, unsigned long len)
3661{
3662 const int unit_size = eb->folio_size;
3663 size_t cur;
3664 size_t offset;
3665 char *dst = (char *)dstv;
3666 unsigned long i = get_eb_folio_index(eb, start);
3667
3668 if (check_eb_range(eb, start, len)) {
3669 /*
3670 * Invalid range hit, reset the memory, so callers won't get
3671 * some random garbage for their uninitialized memory.
3672 */
3673 memset(dstv, 0, len);
3674 return;
3675 }
3676
3677 if (eb->addr) {
3678 memcpy(dstv, eb->addr + start, len);
3679 return;
3680 }
3681
3682 offset = get_eb_offset_in_folio(eb, start);
3683
3684 while (len > 0) {
3685 char *kaddr;
3686
3687 cur = min(len, unit_size - offset);
3688 kaddr = folio_address(eb->folios[i]);
3689 memcpy(dst, kaddr + offset, cur);
3690
3691 dst += cur;
3692 len -= cur;
3693 offset = 0;
3694 i++;
3695 }
3696}
3697
3698int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3699 void __user *dstv,
3700 unsigned long start, unsigned long len)
3701{
3702 const int unit_size = eb->folio_size;
3703 size_t cur;
3704 size_t offset;
3705 char __user *dst = (char __user *)dstv;
3706 unsigned long i = get_eb_folio_index(eb, start);
3707 int ret = 0;
3708
3709 WARN_ON(start > eb->len);
3710 WARN_ON(start + len > eb->start + eb->len);
3711
3712 if (eb->addr) {
3713 if (copy_to_user_nofault(dstv, eb->addr + start, len))
3714 ret = -EFAULT;
3715 return ret;
3716 }
3717
3718 offset = get_eb_offset_in_folio(eb, start);
3719
3720 while (len > 0) {
3721 char *kaddr;
3722
3723 cur = min(len, unit_size - offset);
3724 kaddr = folio_address(eb->folios[i]);
3725 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3726 ret = -EFAULT;
3727 break;
3728 }
3729
3730 dst += cur;
3731 len -= cur;
3732 offset = 0;
3733 i++;
3734 }
3735
3736 return ret;
3737}
3738
3739int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3740 unsigned long start, unsigned long len)
3741{
3742 const int unit_size = eb->folio_size;
3743 size_t cur;
3744 size_t offset;
3745 char *kaddr;
3746 char *ptr = (char *)ptrv;
3747 unsigned long i = get_eb_folio_index(eb, start);
3748 int ret = 0;
3749
3750 if (check_eb_range(eb, start, len))
3751 return -EINVAL;
3752
3753 if (eb->addr)
3754 return memcmp(ptrv, eb->addr + start, len);
3755
3756 offset = get_eb_offset_in_folio(eb, start);
3757
3758 while (len > 0) {
3759 cur = min(len, unit_size - offset);
3760 kaddr = folio_address(eb->folios[i]);
3761 ret = memcmp(ptr, kaddr + offset, cur);
3762 if (ret)
3763 break;
3764
3765 ptr += cur;
3766 len -= cur;
3767 offset = 0;
3768 i++;
3769 }
3770 return ret;
3771}
3772
3773/*
3774 * Check that the extent buffer is uptodate.
3775 *
3776 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3777 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3778 */
3779static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3780{
3781 struct btrfs_fs_info *fs_info = eb->fs_info;
3782 struct folio *folio = eb->folios[i];
3783
3784 ASSERT(folio);
3785
3786 /*
3787 * If we are using the commit root we could potentially clear a page
3788 * Uptodate while we're using the extent buffer that we've previously
3789 * looked up. We don't want to complain in this case, as the page was
3790 * valid before, we just didn't write it out. Instead we want to catch
3791 * the case where we didn't actually read the block properly, which
3792 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3793 */
3794 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3795 return;
3796
3797 if (fs_info->nodesize < PAGE_SIZE) {
3798 folio = eb->folios[0];
3799 ASSERT(i == 0);
3800 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3801 eb->start, eb->len)))
3802 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3803 } else {
3804 WARN_ON(!folio_test_uptodate(folio));
3805 }
3806}
3807
3808static void __write_extent_buffer(const struct extent_buffer *eb,
3809 const void *srcv, unsigned long start,
3810 unsigned long len, bool use_memmove)
3811{
3812 const int unit_size = eb->folio_size;
3813 size_t cur;
3814 size_t offset;
3815 char *kaddr;
3816 const char *src = (const char *)srcv;
3817 unsigned long i = get_eb_folio_index(eb, start);
3818 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
3819 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3820
3821 if (check_eb_range(eb, start, len))
3822 return;
3823
3824 if (eb->addr) {
3825 if (use_memmove)
3826 memmove(eb->addr + start, srcv, len);
3827 else
3828 memcpy(eb->addr + start, srcv, len);
3829 return;
3830 }
3831
3832 offset = get_eb_offset_in_folio(eb, start);
3833
3834 while (len > 0) {
3835 if (check_uptodate)
3836 assert_eb_folio_uptodate(eb, i);
3837
3838 cur = min(len, unit_size - offset);
3839 kaddr = folio_address(eb->folios[i]);
3840 if (use_memmove)
3841 memmove(kaddr + offset, src, cur);
3842 else
3843 memcpy(kaddr + offset, src, cur);
3844
3845 src += cur;
3846 len -= cur;
3847 offset = 0;
3848 i++;
3849 }
3850}
3851
3852void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3853 unsigned long start, unsigned long len)
3854{
3855 return __write_extent_buffer(eb, srcv, start, len, false);
3856}
3857
3858static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3859 unsigned long start, unsigned long len)
3860{
3861 const int unit_size = eb->folio_size;
3862 unsigned long cur = start;
3863
3864 if (eb->addr) {
3865 memset(eb->addr + start, c, len);
3866 return;
3867 }
3868
3869 while (cur < start + len) {
3870 unsigned long index = get_eb_folio_index(eb, cur);
3871 unsigned int offset = get_eb_offset_in_folio(eb, cur);
3872 unsigned int cur_len = min(start + len - cur, unit_size - offset);
3873
3874 assert_eb_folio_uptodate(eb, index);
3875 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
3876
3877 cur += cur_len;
3878 }
3879}
3880
3881void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3882 unsigned long len)
3883{
3884 if (check_eb_range(eb, start, len))
3885 return;
3886 return memset_extent_buffer(eb, 0, start, len);
3887}
3888
3889void copy_extent_buffer_full(const struct extent_buffer *dst,
3890 const struct extent_buffer *src)
3891{
3892 const int unit_size = src->folio_size;
3893 unsigned long cur = 0;
3894
3895 ASSERT(dst->len == src->len);
3896
3897 while (cur < src->len) {
3898 unsigned long index = get_eb_folio_index(src, cur);
3899 unsigned long offset = get_eb_offset_in_folio(src, cur);
3900 unsigned long cur_len = min(src->len, unit_size - offset);
3901 void *addr = folio_address(src->folios[index]) + offset;
3902
3903 write_extent_buffer(dst, addr, cur, cur_len);
3904
3905 cur += cur_len;
3906 }
3907}
3908
3909void copy_extent_buffer(const struct extent_buffer *dst,
3910 const struct extent_buffer *src,
3911 unsigned long dst_offset, unsigned long src_offset,
3912 unsigned long len)
3913{
3914 const int unit_size = dst->folio_size;
3915 u64 dst_len = dst->len;
3916 size_t cur;
3917 size_t offset;
3918 char *kaddr;
3919 unsigned long i = get_eb_folio_index(dst, dst_offset);
3920
3921 if (check_eb_range(dst, dst_offset, len) ||
3922 check_eb_range(src, src_offset, len))
3923 return;
3924
3925 WARN_ON(src->len != dst_len);
3926
3927 offset = get_eb_offset_in_folio(dst, dst_offset);
3928
3929 while (len > 0) {
3930 assert_eb_folio_uptodate(dst, i);
3931
3932 cur = min(len, (unsigned long)(unit_size - offset));
3933
3934 kaddr = folio_address(dst->folios[i]);
3935 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3936
3937 src_offset += cur;
3938 len -= cur;
3939 offset = 0;
3940 i++;
3941 }
3942}
3943
3944/*
3945 * Calculate the folio and offset of the byte containing the given bit number.
3946 *
3947 * @eb: the extent buffer
3948 * @start: offset of the bitmap item in the extent buffer
3949 * @nr: bit number
3950 * @folio_index: return index of the folio in the extent buffer that contains
3951 * the given bit number
3952 * @folio_offset: return offset into the folio given by folio_index
3953 *
3954 * This helper hides the ugliness of finding the byte in an extent buffer which
3955 * contains a given bit.
3956 */
3957static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3958 unsigned long start, unsigned long nr,
3959 unsigned long *folio_index,
3960 size_t *folio_offset)
3961{
3962 size_t byte_offset = BIT_BYTE(nr);
3963 size_t offset;
3964
3965 /*
3966 * The byte we want is the offset of the extent buffer + the offset of
3967 * the bitmap item in the extent buffer + the offset of the byte in the
3968 * bitmap item.
3969 */
3970 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
3971
3972 *folio_index = offset >> eb->folio_shift;
3973 *folio_offset = offset_in_eb_folio(eb, offset);
3974}
3975
3976/*
3977 * Determine whether a bit in a bitmap item is set.
3978 *
3979 * @eb: the extent buffer
3980 * @start: offset of the bitmap item in the extent buffer
3981 * @nr: bit number to test
3982 */
3983int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3984 unsigned long nr)
3985{
3986 unsigned long i;
3987 size_t offset;
3988 u8 *kaddr;
3989
3990 eb_bitmap_offset(eb, start, nr, &i, &offset);
3991 assert_eb_folio_uptodate(eb, i);
3992 kaddr = folio_address(eb->folios[i]);
3993 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
3994}
3995
3996static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
3997{
3998 unsigned long index = get_eb_folio_index(eb, bytenr);
3999
4000 if (check_eb_range(eb, bytenr, 1))
4001 return NULL;
4002 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4003}
4004
4005/*
4006 * Set an area of a bitmap to 1.
4007 *
4008 * @eb: the extent buffer
4009 * @start: offset of the bitmap item in the extent buffer
4010 * @pos: bit number of the first bit
4011 * @len: number of bits to set
4012 */
4013void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4014 unsigned long pos, unsigned long len)
4015{
4016 unsigned int first_byte = start + BIT_BYTE(pos);
4017 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4018 const bool same_byte = (first_byte == last_byte);
4019 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4020 u8 *kaddr;
4021
4022 if (same_byte)
4023 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4024
4025 /* Handle the first byte. */
4026 kaddr = extent_buffer_get_byte(eb, first_byte);
4027 *kaddr |= mask;
4028 if (same_byte)
4029 return;
4030
4031 /* Handle the byte aligned part. */
4032 ASSERT(first_byte + 1 <= last_byte);
4033 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4034
4035 /* Handle the last byte. */
4036 kaddr = extent_buffer_get_byte(eb, last_byte);
4037 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4038}
4039
4040
4041/*
4042 * Clear an area of a bitmap.
4043 *
4044 * @eb: the extent buffer
4045 * @start: offset of the bitmap item in the extent buffer
4046 * @pos: bit number of the first bit
4047 * @len: number of bits to clear
4048 */
4049void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4050 unsigned long start, unsigned long pos,
4051 unsigned long len)
4052{
4053 unsigned int first_byte = start + BIT_BYTE(pos);
4054 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4055 const bool same_byte = (first_byte == last_byte);
4056 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4057 u8 *kaddr;
4058
4059 if (same_byte)
4060 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4061
4062 /* Handle the first byte. */
4063 kaddr = extent_buffer_get_byte(eb, first_byte);
4064 *kaddr &= ~mask;
4065 if (same_byte)
4066 return;
4067
4068 /* Handle the byte aligned part. */
4069 ASSERT(first_byte + 1 <= last_byte);
4070 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4071
4072 /* Handle the last byte. */
4073 kaddr = extent_buffer_get_byte(eb, last_byte);
4074 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4075}
4076
4077static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4078{
4079 unsigned long distance = (src > dst) ? src - dst : dst - src;
4080 return distance < len;
4081}
4082
4083void memcpy_extent_buffer(const struct extent_buffer *dst,
4084 unsigned long dst_offset, unsigned long src_offset,
4085 unsigned long len)
4086{
4087 const int unit_size = dst->folio_size;
4088 unsigned long cur_off = 0;
4089
4090 if (check_eb_range(dst, dst_offset, len) ||
4091 check_eb_range(dst, src_offset, len))
4092 return;
4093
4094 if (dst->addr) {
4095 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4096
4097 if (use_memmove)
4098 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4099 else
4100 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4101 return;
4102 }
4103
4104 while (cur_off < len) {
4105 unsigned long cur_src = cur_off + src_offset;
4106 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4107 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4108 unsigned long cur_len = min(src_offset + len - cur_src,
4109 unit_size - folio_off);
4110 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4111 const bool use_memmove = areas_overlap(src_offset + cur_off,
4112 dst_offset + cur_off, cur_len);
4113
4114 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4115 use_memmove);
4116 cur_off += cur_len;
4117 }
4118}
4119
4120void memmove_extent_buffer(const struct extent_buffer *dst,
4121 unsigned long dst_offset, unsigned long src_offset,
4122 unsigned long len)
4123{
4124 unsigned long dst_end = dst_offset + len - 1;
4125 unsigned long src_end = src_offset + len - 1;
4126
4127 if (check_eb_range(dst, dst_offset, len) ||
4128 check_eb_range(dst, src_offset, len))
4129 return;
4130
4131 if (dst_offset < src_offset) {
4132 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4133 return;
4134 }
4135
4136 if (dst->addr) {
4137 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4138 return;
4139 }
4140
4141 while (len > 0) {
4142 unsigned long src_i;
4143 size_t cur;
4144 size_t dst_off_in_folio;
4145 size_t src_off_in_folio;
4146 void *src_addr;
4147 bool use_memmove;
4148
4149 src_i = get_eb_folio_index(dst, src_end);
4150
4151 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4152 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4153
4154 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4155 cur = min(cur, dst_off_in_folio + 1);
4156
4157 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4158 cur + 1;
4159 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4160 cur);
4161
4162 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4163 use_memmove);
4164
4165 dst_end -= cur;
4166 src_end -= cur;
4167 len -= cur;
4168 }
4169}
4170
4171#define GANG_LOOKUP_SIZE 16
4172static struct extent_buffer *get_next_extent_buffer(
4173 const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4174{
4175 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4176 struct extent_buffer *found = NULL;
4177 u64 folio_start = folio_pos(folio);
4178 u64 cur = folio_start;
4179
4180 ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
4181 lockdep_assert_held(&fs_info->buffer_lock);
4182
4183 while (cur < folio_start + PAGE_SIZE) {
4184 int ret;
4185 int i;
4186
4187 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4188 (void **)gang, cur >> fs_info->sectorsize_bits,
4189 min_t(unsigned int, GANG_LOOKUP_SIZE,
4190 PAGE_SIZE / fs_info->nodesize));
4191 if (ret == 0)
4192 goto out;
4193 for (i = 0; i < ret; i++) {
4194 /* Already beyond page end */
4195 if (gang[i]->start >= folio_start + PAGE_SIZE)
4196 goto out;
4197 /* Found one */
4198 if (gang[i]->start >= bytenr) {
4199 found = gang[i];
4200 goto out;
4201 }
4202 }
4203 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4204 }
4205out:
4206 return found;
4207}
4208
4209static int try_release_subpage_extent_buffer(struct folio *folio)
4210{
4211 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4212 u64 cur = folio_pos(folio);
4213 const u64 end = cur + PAGE_SIZE;
4214 int ret;
4215
4216 while (cur < end) {
4217 struct extent_buffer *eb = NULL;
4218
4219 /*
4220 * Unlike try_release_extent_buffer() which uses folio private
4221 * to grab buffer, for subpage case we rely on radix tree, thus
4222 * we need to ensure radix tree consistency.
4223 *
4224 * We also want an atomic snapshot of the radix tree, thus go
4225 * with spinlock rather than RCU.
4226 */
4227 spin_lock(&fs_info->buffer_lock);
4228 eb = get_next_extent_buffer(fs_info, folio, cur);
4229 if (!eb) {
4230 /* No more eb in the page range after or at cur */
4231 spin_unlock(&fs_info->buffer_lock);
4232 break;
4233 }
4234 cur = eb->start + eb->len;
4235
4236 /*
4237 * The same as try_release_extent_buffer(), to ensure the eb
4238 * won't disappear out from under us.
4239 */
4240 spin_lock(&eb->refs_lock);
4241 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4242 spin_unlock(&eb->refs_lock);
4243 spin_unlock(&fs_info->buffer_lock);
4244 break;
4245 }
4246 spin_unlock(&fs_info->buffer_lock);
4247
4248 /*
4249 * If tree ref isn't set then we know the ref on this eb is a
4250 * real ref, so just return, this eb will likely be freed soon
4251 * anyway.
4252 */
4253 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4254 spin_unlock(&eb->refs_lock);
4255 break;
4256 }
4257
4258 /*
4259 * Here we don't care about the return value, we will always
4260 * check the folio private at the end. And
4261 * release_extent_buffer() will release the refs_lock.
4262 */
4263 release_extent_buffer(eb);
4264 }
4265 /*
4266 * Finally to check if we have cleared folio private, as if we have
4267 * released all ebs in the page, the folio private should be cleared now.
4268 */
4269 spin_lock(&folio->mapping->i_private_lock);
4270 if (!folio_test_private(folio))
4271 ret = 1;
4272 else
4273 ret = 0;
4274 spin_unlock(&folio->mapping->i_private_lock);
4275 return ret;
4276
4277}
4278
4279int try_release_extent_buffer(struct folio *folio)
4280{
4281 struct extent_buffer *eb;
4282
4283 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
4284 return try_release_subpage_extent_buffer(folio);
4285
4286 /*
4287 * We need to make sure nobody is changing folio private, as we rely on
4288 * folio private as the pointer to extent buffer.
4289 */
4290 spin_lock(&folio->mapping->i_private_lock);
4291 if (!folio_test_private(folio)) {
4292 spin_unlock(&folio->mapping->i_private_lock);
4293 return 1;
4294 }
4295
4296 eb = folio_get_private(folio);
4297 BUG_ON(!eb);
4298
4299 /*
4300 * This is a little awful but should be ok, we need to make sure that
4301 * the eb doesn't disappear out from under us while we're looking at
4302 * this page.
4303 */
4304 spin_lock(&eb->refs_lock);
4305 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4306 spin_unlock(&eb->refs_lock);
4307 spin_unlock(&folio->mapping->i_private_lock);
4308 return 0;
4309 }
4310 spin_unlock(&folio->mapping->i_private_lock);
4311
4312 /*
4313 * If tree ref isn't set then we know the ref on this eb is a real ref,
4314 * so just return, this page will likely be freed soon anyway.
4315 */
4316 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4317 spin_unlock(&eb->refs_lock);
4318 return 0;
4319 }
4320
4321 return release_extent_buffer(eb);
4322}
4323
4324/*
4325 * Attempt to readahead a child block.
4326 *
4327 * @fs_info: the fs_info
4328 * @bytenr: bytenr to read
4329 * @owner_root: objectid of the root that owns this eb
4330 * @gen: generation for the uptodate check, can be 0
4331 * @level: level for the eb
4332 *
4333 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4334 * normal uptodate check of the eb, without checking the generation. If we have
4335 * to read the block we will not block on anything.
4336 */
4337void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4338 u64 bytenr, u64 owner_root, u64 gen, int level)
4339{
4340 struct btrfs_tree_parent_check check = {
4341 .level = level,
4342 .transid = gen
4343 };
4344 struct extent_buffer *eb;
4345 int ret;
4346
4347 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4348 if (IS_ERR(eb))
4349 return;
4350
4351 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4352 free_extent_buffer(eb);
4353 return;
4354 }
4355
4356 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4357 if (ret < 0)
4358 free_extent_buffer_stale(eb);
4359 else
4360 free_extent_buffer(eb);
4361}
4362
4363/*
4364 * Readahead a node's child block.
4365 *
4366 * @node: parent node we're reading from
4367 * @slot: slot in the parent node for the child we want to read
4368 *
4369 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4370 * the slot in the node provided.
4371 */
4372void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4373{
4374 btrfs_readahead_tree_block(node->fs_info,
4375 btrfs_node_blockptr(node, slot),
4376 btrfs_header_owner(node),
4377 btrfs_node_ptr_generation(node, slot),
4378 btrfs_header_level(node) - 1);
4379}