Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/backing-dev.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "trace.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
 
  39		return -EFSCORRUPTED;
  40	}
  41	return 0;
  42}
  43
  44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  45{
  46	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
  47	struct sysinfo val;
  48	unsigned long avail_ram;
  49	unsigned long mem_size = 0;
  50	bool res = false;
  51
 
 
 
  52	si_meminfo(&val);
  53
  54	/* only uses low memory */
  55	avail_ram = val.totalram - val.totalhigh;
  56
  57	/*
  58	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  59	 */
  60	if (type == FREE_NIDS) {
  61		mem_size = (nm_i->nid_cnt[FREE_NID] *
  62				sizeof(struct free_nid)) >> PAGE_SHIFT;
  63		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  64	} else if (type == NAT_ENTRIES) {
  65		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  66							PAGE_SHIFT;
  67		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  68		if (excess_cached_nats(sbi))
  69			res = false;
  70	} else if (type == DIRTY_DENTS) {
  71		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  72			return false;
  73		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  74		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75	} else if (type == INO_ENTRIES) {
  76		int i;
  77
  78		for (i = 0; i < MAX_INO_ENTRY; i++)
  79			mem_size += sbi->im[i].ino_num *
  80						sizeof(struct ino_entry);
  81		mem_size >>= PAGE_SHIFT;
  82		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  83	} else if (type == EXTENT_CACHE) {
  84		mem_size = (atomic_read(&sbi->total_ext_tree) *
 
 
 
 
  85				sizeof(struct extent_tree) +
  86				atomic_read(&sbi->total_ext_node) *
  87				sizeof(struct extent_node)) >> PAGE_SHIFT;
  88		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  89	} else if (type == INMEM_PAGES) {
  90		/* it allows 20% / total_ram for inmemory pages */
  91		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  92		res = mem_size < (val.totalram / 5);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93	} else {
  94		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  95			return true;
  96	}
  97	return res;
  98}
  99
 100static void clear_node_page_dirty(struct page *page)
 101{
 102	if (PageDirty(page)) {
 103		f2fs_clear_page_cache_dirty_tag(page);
 104		clear_page_dirty_for_io(page);
 105		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 106	}
 107	ClearPageUptodate(page);
 108}
 109
 110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 111{
 112	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
 113}
 114
 115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 116{
 117	struct page *src_page;
 118	struct page *dst_page;
 119	pgoff_t dst_off;
 120	void *src_addr;
 121	void *dst_addr;
 122	struct f2fs_nm_info *nm_i = NM_I(sbi);
 123
 124	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 125
 126	/* get current nat block page with lock */
 127	src_page = get_current_nat_page(sbi, nid);
 128	if (IS_ERR(src_page))
 129		return src_page;
 130	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 131	f2fs_bug_on(sbi, PageDirty(src_page));
 132
 133	src_addr = page_address(src_page);
 134	dst_addr = page_address(dst_page);
 135	memcpy(dst_addr, src_addr, PAGE_SIZE);
 136	set_page_dirty(dst_page);
 137	f2fs_put_page(src_page, 1);
 138
 139	set_to_next_nat(nm_i, nid);
 140
 141	return dst_page;
 142}
 143
 144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 
 145{
 146	struct nat_entry *new;
 147
 148	if (no_fail)
 149		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 150	else
 151		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 152	if (new) {
 153		nat_set_nid(new, nid);
 154		nat_reset_flag(new);
 155	}
 156	return new;
 157}
 158
 159static void __free_nat_entry(struct nat_entry *e)
 160{
 161	kmem_cache_free(nat_entry_slab, e);
 162}
 163
 164/* must be locked by nat_tree_lock */
 165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 166	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 167{
 168	if (no_fail)
 169		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 170	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 171		return NULL;
 172
 173	if (raw_ne)
 174		node_info_from_raw_nat(&ne->ni, raw_ne);
 175
 176	spin_lock(&nm_i->nat_list_lock);
 177	list_add_tail(&ne->list, &nm_i->nat_entries);
 178	spin_unlock(&nm_i->nat_list_lock);
 179
 180	nm_i->nat_cnt++;
 
 181	return ne;
 182}
 183
 184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 185{
 186	struct nat_entry *ne;
 187
 188	ne = radix_tree_lookup(&nm_i->nat_root, n);
 189
 190	/* for recent accessed nat entry, move it to tail of lru list */
 191	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 192		spin_lock(&nm_i->nat_list_lock);
 193		if (!list_empty(&ne->list))
 194			list_move_tail(&ne->list, &nm_i->nat_entries);
 195		spin_unlock(&nm_i->nat_list_lock);
 196	}
 197
 198	return ne;
 199}
 200
 201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 202		nid_t start, unsigned int nr, struct nat_entry **ep)
 203{
 204	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 205}
 206
 207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 208{
 209	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 210	nm_i->nat_cnt--;
 
 211	__free_nat_entry(e);
 212}
 213
 214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 215							struct nat_entry *ne)
 216{
 217	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 218	struct nat_entry_set *head;
 219
 220	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 221	if (!head) {
 222		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 
 223
 224		INIT_LIST_HEAD(&head->entry_list);
 225		INIT_LIST_HEAD(&head->set_list);
 226		head->set = set;
 227		head->entry_cnt = 0;
 228		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 229	}
 230	return head;
 231}
 232
 233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 234						struct nat_entry *ne)
 235{
 236	struct nat_entry_set *head;
 237	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 238
 239	if (!new_ne)
 240		head = __grab_nat_entry_set(nm_i, ne);
 241
 242	/*
 243	 * update entry_cnt in below condition:
 244	 * 1. update NEW_ADDR to valid block address;
 245	 * 2. update old block address to new one;
 246	 */
 247	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 248				!get_nat_flag(ne, IS_DIRTY)))
 249		head->entry_cnt++;
 250
 251	set_nat_flag(ne, IS_PREALLOC, new_ne);
 252
 253	if (get_nat_flag(ne, IS_DIRTY))
 254		goto refresh_list;
 255
 256	nm_i->dirty_nat_cnt++;
 
 257	set_nat_flag(ne, IS_DIRTY, true);
 258refresh_list:
 259	spin_lock(&nm_i->nat_list_lock);
 260	if (new_ne)
 261		list_del_init(&ne->list);
 262	else
 263		list_move_tail(&ne->list, &head->entry_list);
 264	spin_unlock(&nm_i->nat_list_lock);
 265}
 266
 267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 268		struct nat_entry_set *set, struct nat_entry *ne)
 269{
 270	spin_lock(&nm_i->nat_list_lock);
 271	list_move_tail(&ne->list, &nm_i->nat_entries);
 272	spin_unlock(&nm_i->nat_list_lock);
 273
 274	set_nat_flag(ne, IS_DIRTY, false);
 275	set->entry_cnt--;
 276	nm_i->dirty_nat_cnt--;
 
 277}
 278
 279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 280		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 281{
 282	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 283							start, nr);
 284}
 285
 286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 287{
 288	return NODE_MAPPING(sbi) == page->mapping &&
 289			IS_DNODE(page) && is_cold_node(page);
 290}
 291
 292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 293{
 294	spin_lock_init(&sbi->fsync_node_lock);
 295	INIT_LIST_HEAD(&sbi->fsync_node_list);
 296	sbi->fsync_seg_id = 0;
 297	sbi->fsync_node_num = 0;
 298}
 299
 300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 301							struct page *page)
 302{
 303	struct fsync_node_entry *fn;
 304	unsigned long flags;
 305	unsigned int seq_id;
 306
 307	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
 
 308
 309	get_page(page);
 310	fn->page = page;
 311	INIT_LIST_HEAD(&fn->list);
 312
 313	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 314	list_add_tail(&fn->list, &sbi->fsync_node_list);
 315	fn->seq_id = sbi->fsync_seg_id++;
 316	seq_id = fn->seq_id;
 317	sbi->fsync_node_num++;
 318	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 319
 320	return seq_id;
 321}
 322
 323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 324{
 325	struct fsync_node_entry *fn;
 326	unsigned long flags;
 327
 328	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 329	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 330		if (fn->page == page) {
 331			list_del(&fn->list);
 332			sbi->fsync_node_num--;
 333			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 334			kmem_cache_free(fsync_node_entry_slab, fn);
 335			put_page(page);
 336			return;
 337		}
 338	}
 339	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 340	f2fs_bug_on(sbi, 1);
 341}
 342
 343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 344{
 345	unsigned long flags;
 346
 347	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 348	sbi->fsync_seg_id = 0;
 349	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 350}
 351
 352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 353{
 354	struct f2fs_nm_info *nm_i = NM_I(sbi);
 355	struct nat_entry *e;
 356	bool need = false;
 357
 358	down_read(&nm_i->nat_tree_lock);
 359	e = __lookup_nat_cache(nm_i, nid);
 360	if (e) {
 361		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 362				!get_nat_flag(e, HAS_FSYNCED_INODE))
 363			need = true;
 364	}
 365	up_read(&nm_i->nat_tree_lock);
 366	return need;
 367}
 368
 369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 370{
 371	struct f2fs_nm_info *nm_i = NM_I(sbi);
 372	struct nat_entry *e;
 373	bool is_cp = true;
 374
 375	down_read(&nm_i->nat_tree_lock);
 376	e = __lookup_nat_cache(nm_i, nid);
 377	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 378		is_cp = false;
 379	up_read(&nm_i->nat_tree_lock);
 380	return is_cp;
 381}
 382
 383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 384{
 385	struct f2fs_nm_info *nm_i = NM_I(sbi);
 386	struct nat_entry *e;
 387	bool need_update = true;
 388
 389	down_read(&nm_i->nat_tree_lock);
 390	e = __lookup_nat_cache(nm_i, ino);
 391	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 392			(get_nat_flag(e, IS_CHECKPOINTED) ||
 393			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 394		need_update = false;
 395	up_read(&nm_i->nat_tree_lock);
 396	return need_update;
 397}
 398
 399/* must be locked by nat_tree_lock */
 400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 401						struct f2fs_nat_entry *ne)
 402{
 403	struct f2fs_nm_info *nm_i = NM_I(sbi);
 404	struct nat_entry *new, *e;
 405
 406	new = __alloc_nat_entry(nid, false);
 
 
 
 
 407	if (!new)
 408		return;
 409
 410	down_write(&nm_i->nat_tree_lock);
 411	e = __lookup_nat_cache(nm_i, nid);
 412	if (!e)
 413		e = __init_nat_entry(nm_i, new, ne, false);
 414	else
 415		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 416				nat_get_blkaddr(e) !=
 417					le32_to_cpu(ne->block_addr) ||
 418				nat_get_version(e) != ne->version);
 419	up_write(&nm_i->nat_tree_lock);
 420	if (e != new)
 421		__free_nat_entry(new);
 422}
 423
 424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 425			block_t new_blkaddr, bool fsync_done)
 426{
 427	struct f2fs_nm_info *nm_i = NM_I(sbi);
 428	struct nat_entry *e;
 429	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 430
 431	down_write(&nm_i->nat_tree_lock);
 432	e = __lookup_nat_cache(nm_i, ni->nid);
 433	if (!e) {
 434		e = __init_nat_entry(nm_i, new, NULL, true);
 435		copy_node_info(&e->ni, ni);
 436		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 437	} else if (new_blkaddr == NEW_ADDR) {
 438		/*
 439		 * when nid is reallocated,
 440		 * previous nat entry can be remained in nat cache.
 441		 * So, reinitialize it with new information.
 442		 */
 443		copy_node_info(&e->ni, ni);
 444		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 445	}
 446	/* let's free early to reduce memory consumption */
 447	if (e != new)
 448		__free_nat_entry(new);
 449
 450	/* sanity check */
 451	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 452	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 453			new_blkaddr == NULL_ADDR);
 454	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 455			new_blkaddr == NEW_ADDR);
 456	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 457			new_blkaddr == NEW_ADDR);
 458
 459	/* increment version no as node is removed */
 460	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 461		unsigned char version = nat_get_version(e);
 
 462		nat_set_version(e, inc_node_version(version));
 463	}
 464
 465	/* change address */
 466	nat_set_blkaddr(e, new_blkaddr);
 467	if (!__is_valid_data_blkaddr(new_blkaddr))
 468		set_nat_flag(e, IS_CHECKPOINTED, false);
 469	__set_nat_cache_dirty(nm_i, e);
 470
 471	/* update fsync_mark if its inode nat entry is still alive */
 472	if (ni->nid != ni->ino)
 473		e = __lookup_nat_cache(nm_i, ni->ino);
 474	if (e) {
 475		if (fsync_done && ni->nid == ni->ino)
 476			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 477		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 478	}
 479	up_write(&nm_i->nat_tree_lock);
 480}
 481
 482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 483{
 484	struct f2fs_nm_info *nm_i = NM_I(sbi);
 485	int nr = nr_shrink;
 486
 487	if (!down_write_trylock(&nm_i->nat_tree_lock))
 488		return 0;
 489
 490	spin_lock(&nm_i->nat_list_lock);
 491	while (nr_shrink) {
 492		struct nat_entry *ne;
 493
 494		if (list_empty(&nm_i->nat_entries))
 495			break;
 496
 497		ne = list_first_entry(&nm_i->nat_entries,
 498					struct nat_entry, list);
 499		list_del(&ne->list);
 500		spin_unlock(&nm_i->nat_list_lock);
 501
 502		__del_from_nat_cache(nm_i, ne);
 503		nr_shrink--;
 504
 505		spin_lock(&nm_i->nat_list_lock);
 506	}
 507	spin_unlock(&nm_i->nat_list_lock);
 508
 509	up_write(&nm_i->nat_tree_lock);
 510	return nr - nr_shrink;
 511}
 512
 513/*
 514 * This function always returns success
 515 */
 516int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 517						struct node_info *ni)
 518{
 519	struct f2fs_nm_info *nm_i = NM_I(sbi);
 520	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 521	struct f2fs_journal *journal = curseg->journal;
 522	nid_t start_nid = START_NID(nid);
 523	struct f2fs_nat_block *nat_blk;
 524	struct page *page = NULL;
 525	struct f2fs_nat_entry ne;
 526	struct nat_entry *e;
 527	pgoff_t index;
 528	block_t blkaddr;
 529	int i;
 530
 531	ni->nid = nid;
 532
 533	/* Check nat cache */
 534	down_read(&nm_i->nat_tree_lock);
 535	e = __lookup_nat_cache(nm_i, nid);
 536	if (e) {
 537		ni->ino = nat_get_ino(e);
 538		ni->blk_addr = nat_get_blkaddr(e);
 539		ni->version = nat_get_version(e);
 540		up_read(&nm_i->nat_tree_lock);
 541		return 0;
 542	}
 543
 544	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 
 
 
 
 
 
 
 
 
 
 
 
 545
 546	/* Check current segment summary */
 547	down_read(&curseg->journal_rwsem);
 548	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 549	if (i >= 0) {
 550		ne = nat_in_journal(journal, i);
 551		node_info_from_raw_nat(ni, &ne);
 552	}
 553	up_read(&curseg->journal_rwsem);
 554	if (i >= 0) {
 555		up_read(&nm_i->nat_tree_lock);
 556		goto cache;
 557	}
 558
 559	/* Fill node_info from nat page */
 560	index = current_nat_addr(sbi, nid);
 561	up_read(&nm_i->nat_tree_lock);
 562
 563	page = f2fs_get_meta_page(sbi, index);
 564	if (IS_ERR(page))
 565		return PTR_ERR(page);
 566
 567	nat_blk = (struct f2fs_nat_block *)page_address(page);
 568	ne = nat_blk->entries[nid - start_nid];
 569	node_info_from_raw_nat(ni, &ne);
 570	f2fs_put_page(page, 1);
 571cache:
 572	blkaddr = le32_to_cpu(ne.block_addr);
 573	if (__is_valid_data_blkaddr(blkaddr) &&
 574		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 575		return -EFAULT;
 576
 577	/* cache nat entry */
 578	cache_nat_entry(sbi, nid, &ne);
 579	return 0;
 580}
 581
 582/*
 583 * readahead MAX_RA_NODE number of node pages.
 584 */
 585static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 586{
 587	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 588	struct blk_plug plug;
 589	int i, end;
 590	nid_t nid;
 591
 592	blk_start_plug(&plug);
 593
 594	/* Then, try readahead for siblings of the desired node */
 595	end = start + n;
 596	end = min(end, NIDS_PER_BLOCK);
 597	for (i = start; i < end; i++) {
 598		nid = get_nid(parent, i, false);
 599		f2fs_ra_node_page(sbi, nid);
 600	}
 601
 602	blk_finish_plug(&plug);
 603}
 604
 605pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 606{
 607	const long direct_index = ADDRS_PER_INODE(dn->inode);
 608	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 609	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 610	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 611	int cur_level = dn->cur_level;
 612	int max_level = dn->max_level;
 613	pgoff_t base = 0;
 614
 615	if (!dn->max_level)
 616		return pgofs + 1;
 617
 618	while (max_level-- > cur_level)
 619		skipped_unit *= NIDS_PER_BLOCK;
 620
 621	switch (dn->max_level) {
 622	case 3:
 623		base += 2 * indirect_blks;
 624		/* fall through */
 625	case 2:
 626		base += 2 * direct_blks;
 627		/* fall through */
 628	case 1:
 629		base += direct_index;
 630		break;
 631	default:
 632		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 633	}
 634
 635	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 636}
 637
 638/*
 639 * The maximum depth is four.
 640 * Offset[0] will have raw inode offset.
 641 */
 642static int get_node_path(struct inode *inode, long block,
 643				int offset[4], unsigned int noffset[4])
 644{
 645	const long direct_index = ADDRS_PER_INODE(inode);
 646	const long direct_blks = ADDRS_PER_BLOCK(inode);
 647	const long dptrs_per_blk = NIDS_PER_BLOCK;
 648	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 649	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 650	int n = 0;
 651	int level = 0;
 652
 653	noffset[0] = 0;
 654
 655	if (block < direct_index) {
 656		offset[n] = block;
 657		goto got;
 658	}
 659	block -= direct_index;
 660	if (block < direct_blks) {
 661		offset[n++] = NODE_DIR1_BLOCK;
 662		noffset[n] = 1;
 663		offset[n] = block;
 664		level = 1;
 665		goto got;
 666	}
 667	block -= direct_blks;
 668	if (block < direct_blks) {
 669		offset[n++] = NODE_DIR2_BLOCK;
 670		noffset[n] = 2;
 671		offset[n] = block;
 672		level = 1;
 673		goto got;
 674	}
 675	block -= direct_blks;
 676	if (block < indirect_blks) {
 677		offset[n++] = NODE_IND1_BLOCK;
 678		noffset[n] = 3;
 679		offset[n++] = block / direct_blks;
 680		noffset[n] = 4 + offset[n - 1];
 681		offset[n] = block % direct_blks;
 682		level = 2;
 683		goto got;
 684	}
 685	block -= indirect_blks;
 686	if (block < indirect_blks) {
 687		offset[n++] = NODE_IND2_BLOCK;
 688		noffset[n] = 4 + dptrs_per_blk;
 689		offset[n++] = block / direct_blks;
 690		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 691		offset[n] = block % direct_blks;
 692		level = 2;
 693		goto got;
 694	}
 695	block -= indirect_blks;
 696	if (block < dindirect_blks) {
 697		offset[n++] = NODE_DIND_BLOCK;
 698		noffset[n] = 5 + (dptrs_per_blk * 2);
 699		offset[n++] = block / indirect_blks;
 700		noffset[n] = 6 + (dptrs_per_blk * 2) +
 701			      offset[n - 1] * (dptrs_per_blk + 1);
 702		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 703		noffset[n] = 7 + (dptrs_per_blk * 2) +
 704			      offset[n - 2] * (dptrs_per_blk + 1) +
 705			      offset[n - 1];
 706		offset[n] = block % direct_blks;
 707		level = 3;
 708		goto got;
 709	} else {
 710		return -E2BIG;
 711	}
 712got:
 713	return level;
 714}
 715
 716/*
 717 * Caller should call f2fs_put_dnode(dn).
 718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 719 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 720 * In the case of RDONLY_NODE, we don't need to care about mutex.
 721 */
 722int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 723{
 724	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 725	struct page *npage[4];
 726	struct page *parent = NULL;
 727	int offset[4];
 728	unsigned int noffset[4];
 729	nid_t nids[4];
 730	int level, i = 0;
 731	int err = 0;
 732
 733	level = get_node_path(dn->inode, index, offset, noffset);
 734	if (level < 0)
 735		return level;
 736
 737	nids[0] = dn->inode->i_ino;
 738	npage[0] = dn->inode_page;
 739
 740	if (!npage[0]) {
 741		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 742		if (IS_ERR(npage[0]))
 743			return PTR_ERR(npage[0]);
 744	}
 745
 746	/* if inline_data is set, should not report any block indices */
 747	if (f2fs_has_inline_data(dn->inode) && index) {
 748		err = -ENOENT;
 749		f2fs_put_page(npage[0], 1);
 750		goto release_out;
 751	}
 752
 753	parent = npage[0];
 754	if (level != 0)
 755		nids[1] = get_nid(parent, offset[0], true);
 756	dn->inode_page = npage[0];
 757	dn->inode_page_locked = true;
 758
 759	/* get indirect or direct nodes */
 760	for (i = 1; i <= level; i++) {
 761		bool done = false;
 762
 763		if (!nids[i] && mode == ALLOC_NODE) {
 764			/* alloc new node */
 765			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 766				err = -ENOSPC;
 767				goto release_pages;
 768			}
 769
 770			dn->nid = nids[i];
 771			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 772			if (IS_ERR(npage[i])) {
 773				f2fs_alloc_nid_failed(sbi, nids[i]);
 774				err = PTR_ERR(npage[i]);
 775				goto release_pages;
 776			}
 777
 778			set_nid(parent, offset[i - 1], nids[i], i == 1);
 779			f2fs_alloc_nid_done(sbi, nids[i]);
 780			done = true;
 781		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 782			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 783			if (IS_ERR(npage[i])) {
 784				err = PTR_ERR(npage[i]);
 785				goto release_pages;
 786			}
 787			done = true;
 788		}
 789		if (i == 1) {
 790			dn->inode_page_locked = false;
 791			unlock_page(parent);
 792		} else {
 793			f2fs_put_page(parent, 1);
 794		}
 795
 796		if (!done) {
 797			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 798			if (IS_ERR(npage[i])) {
 799				err = PTR_ERR(npage[i]);
 800				f2fs_put_page(npage[0], 0);
 801				goto release_out;
 802			}
 803		}
 804		if (i < level) {
 805			parent = npage[i];
 806			nids[i + 1] = get_nid(parent, offset[i], false);
 807		}
 808	}
 809	dn->nid = nids[level];
 810	dn->ofs_in_node = offset[level];
 811	dn->node_page = npage[level];
 812	dn->data_blkaddr = datablock_addr(dn->inode,
 813				dn->node_page, dn->ofs_in_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814	return 0;
 815
 816release_pages:
 817	f2fs_put_page(parent, 1);
 818	if (i > 1)
 819		f2fs_put_page(npage[0], 0);
 820release_out:
 821	dn->inode_page = NULL;
 822	dn->node_page = NULL;
 823	if (err == -ENOENT) {
 824		dn->cur_level = i;
 825		dn->max_level = level;
 826		dn->ofs_in_node = offset[level];
 827	}
 828	return err;
 829}
 830
 831static int truncate_node(struct dnode_of_data *dn)
 832{
 833	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 834	struct node_info ni;
 835	int err;
 836	pgoff_t index;
 837
 838	err = f2fs_get_node_info(sbi, dn->nid, &ni);
 839	if (err)
 840		return err;
 841
 842	/* Deallocate node address */
 843	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 844	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 845	set_node_addr(sbi, &ni, NULL_ADDR, false);
 846
 847	if (dn->nid == dn->inode->i_ino) {
 848		f2fs_remove_orphan_inode(sbi, dn->nid);
 849		dec_valid_inode_count(sbi);
 850		f2fs_inode_synced(dn->inode);
 851	}
 852
 853	clear_node_page_dirty(dn->node_page);
 854	set_sbi_flag(sbi, SBI_IS_DIRTY);
 855
 856	index = dn->node_page->index;
 857	f2fs_put_page(dn->node_page, 1);
 858
 859	invalidate_mapping_pages(NODE_MAPPING(sbi),
 860			index, index);
 861
 862	dn->node_page = NULL;
 863	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 864
 865	return 0;
 866}
 867
 868static int truncate_dnode(struct dnode_of_data *dn)
 869{
 
 870	struct page *page;
 871	int err;
 872
 873	if (dn->nid == 0)
 874		return 1;
 875
 876	/* get direct node */
 877	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 878	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 879		return 1;
 880	else if (IS_ERR(page))
 881		return PTR_ERR(page);
 882
 
 
 
 
 
 
 
 
 
 883	/* Make dnode_of_data for parameter */
 884	dn->node_page = page;
 885	dn->ofs_in_node = 0;
 886	f2fs_truncate_data_blocks(dn);
 887	err = truncate_node(dn);
 888	if (err)
 
 889		return err;
 
 890
 891	return 1;
 892}
 893
 894static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 895						int ofs, int depth)
 896{
 897	struct dnode_of_data rdn = *dn;
 898	struct page *page;
 899	struct f2fs_node *rn;
 900	nid_t child_nid;
 901	unsigned int child_nofs;
 902	int freed = 0;
 903	int i, ret;
 904
 905	if (dn->nid == 0)
 906		return NIDS_PER_BLOCK + 1;
 907
 908	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 909
 910	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 911	if (IS_ERR(page)) {
 912		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 913		return PTR_ERR(page);
 914	}
 915
 916	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 917
 918	rn = F2FS_NODE(page);
 919	if (depth < 3) {
 920		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 921			child_nid = le32_to_cpu(rn->in.nid[i]);
 922			if (child_nid == 0)
 923				continue;
 924			rdn.nid = child_nid;
 925			ret = truncate_dnode(&rdn);
 926			if (ret < 0)
 927				goto out_err;
 928			if (set_nid(page, i, 0, false))
 929				dn->node_changed = true;
 930		}
 931	} else {
 932		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 933		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 934			child_nid = le32_to_cpu(rn->in.nid[i]);
 935			if (child_nid == 0) {
 936				child_nofs += NIDS_PER_BLOCK + 1;
 937				continue;
 938			}
 939			rdn.nid = child_nid;
 940			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 941			if (ret == (NIDS_PER_BLOCK + 1)) {
 942				if (set_nid(page, i, 0, false))
 943					dn->node_changed = true;
 944				child_nofs += ret;
 945			} else if (ret < 0 && ret != -ENOENT) {
 946				goto out_err;
 947			}
 948		}
 949		freed = child_nofs;
 950	}
 951
 952	if (!ofs) {
 953		/* remove current indirect node */
 954		dn->node_page = page;
 955		ret = truncate_node(dn);
 956		if (ret)
 957			goto out_err;
 958		freed++;
 959	} else {
 960		f2fs_put_page(page, 1);
 961	}
 962	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 963	return freed;
 964
 965out_err:
 966	f2fs_put_page(page, 1);
 967	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 968	return ret;
 969}
 970
 971static int truncate_partial_nodes(struct dnode_of_data *dn,
 972			struct f2fs_inode *ri, int *offset, int depth)
 973{
 974	struct page *pages[2];
 975	nid_t nid[3];
 976	nid_t child_nid;
 977	int err = 0;
 978	int i;
 979	int idx = depth - 2;
 980
 981	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 982	if (!nid[0])
 983		return 0;
 984
 985	/* get indirect nodes in the path */
 986	for (i = 0; i < idx + 1; i++) {
 987		/* reference count'll be increased */
 988		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 989		if (IS_ERR(pages[i])) {
 990			err = PTR_ERR(pages[i]);
 991			idx = i - 1;
 992			goto fail;
 993		}
 994		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 995	}
 996
 997	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 998
 999	/* free direct nodes linked to a partial indirect node */
1000	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001		child_nid = get_nid(pages[idx], i, false);
1002		if (!child_nid)
1003			continue;
1004		dn->nid = child_nid;
1005		err = truncate_dnode(dn);
1006		if (err < 0)
1007			goto fail;
1008		if (set_nid(pages[idx], i, 0, false))
1009			dn->node_changed = true;
1010	}
1011
1012	if (offset[idx + 1] == 0) {
1013		dn->node_page = pages[idx];
1014		dn->nid = nid[idx];
1015		err = truncate_node(dn);
1016		if (err)
1017			goto fail;
1018	} else {
1019		f2fs_put_page(pages[idx], 1);
1020	}
1021	offset[idx]++;
1022	offset[idx + 1] = 0;
1023	idx--;
1024fail:
1025	for (i = idx; i >= 0; i--)
1026		f2fs_put_page(pages[i], 1);
1027
1028	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029
1030	return err;
1031}
1032
1033/*
1034 * All the block addresses of data and nodes should be nullified.
1035 */
1036int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037{
1038	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039	int err = 0, cont = 1;
1040	int level, offset[4], noffset[4];
1041	unsigned int nofs = 0;
1042	struct f2fs_inode *ri;
1043	struct dnode_of_data dn;
1044	struct page *page;
1045
1046	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047
1048	level = get_node_path(inode, from, offset, noffset);
1049	if (level < 0)
 
1050		return level;
 
1051
1052	page = f2fs_get_node_page(sbi, inode->i_ino);
1053	if (IS_ERR(page)) {
1054		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055		return PTR_ERR(page);
1056	}
1057
1058	set_new_dnode(&dn, inode, page, NULL, 0);
1059	unlock_page(page);
1060
1061	ri = F2FS_INODE(page);
1062	switch (level) {
1063	case 0:
1064	case 1:
1065		nofs = noffset[1];
1066		break;
1067	case 2:
1068		nofs = noffset[1];
1069		if (!offset[level - 1])
1070			goto skip_partial;
1071		err = truncate_partial_nodes(&dn, ri, offset, level);
1072		if (err < 0 && err != -ENOENT)
1073			goto fail;
1074		nofs += 1 + NIDS_PER_BLOCK;
1075		break;
1076	case 3:
1077		nofs = 5 + 2 * NIDS_PER_BLOCK;
1078		if (!offset[level - 1])
1079			goto skip_partial;
1080		err = truncate_partial_nodes(&dn, ri, offset, level);
1081		if (err < 0 && err != -ENOENT)
1082			goto fail;
1083		break;
1084	default:
1085		BUG();
1086	}
1087
1088skip_partial:
1089	while (cont) {
1090		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091		switch (offset[0]) {
1092		case NODE_DIR1_BLOCK:
1093		case NODE_DIR2_BLOCK:
1094			err = truncate_dnode(&dn);
1095			break;
1096
1097		case NODE_IND1_BLOCK:
1098		case NODE_IND2_BLOCK:
1099			err = truncate_nodes(&dn, nofs, offset[1], 2);
1100			break;
1101
1102		case NODE_DIND_BLOCK:
1103			err = truncate_nodes(&dn, nofs, offset[1], 3);
1104			cont = 0;
1105			break;
1106
1107		default:
1108			BUG();
1109		}
1110		if (err < 0 && err != -ENOENT)
1111			goto fail;
1112		if (offset[1] == 0 &&
1113				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114			lock_page(page);
1115			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116			f2fs_wait_on_page_writeback(page, NODE, true, true);
1117			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118			set_page_dirty(page);
1119			unlock_page(page);
1120		}
1121		offset[1] = 0;
1122		offset[0]++;
1123		nofs += err;
1124	}
1125fail:
1126	f2fs_put_page(page, 0);
1127	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128	return err > 0 ? 0 : err;
1129}
1130
1131/* caller must lock inode page */
1132int f2fs_truncate_xattr_node(struct inode *inode)
1133{
1134	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136	struct dnode_of_data dn;
1137	struct page *npage;
1138	int err;
1139
1140	if (!nid)
1141		return 0;
1142
1143	npage = f2fs_get_node_page(sbi, nid);
1144	if (IS_ERR(npage))
1145		return PTR_ERR(npage);
1146
1147	set_new_dnode(&dn, inode, NULL, npage, nid);
1148	err = truncate_node(&dn);
1149	if (err) {
1150		f2fs_put_page(npage, 1);
1151		return err;
1152	}
1153
1154	f2fs_i_xnid_write(inode, 0);
1155
1156	return 0;
1157}
1158
1159/*
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161 * f2fs_unlock_op().
1162 */
1163int f2fs_remove_inode_page(struct inode *inode)
1164{
1165	struct dnode_of_data dn;
1166	int err;
1167
1168	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170	if (err)
1171		return err;
1172
1173	err = f2fs_truncate_xattr_node(inode);
1174	if (err) {
1175		f2fs_put_dnode(&dn);
1176		return err;
1177	}
1178
1179	/* remove potential inline_data blocks */
1180	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181				S_ISLNK(inode->i_mode))
1182		f2fs_truncate_data_blocks_range(&dn, 1);
1183
1184	/* 0 is possible, after f2fs_new_inode() has failed */
1185	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186		f2fs_put_dnode(&dn);
1187		return -EIO;
1188	}
1189
1190	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191		f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192			  inode->i_ino, (unsigned long long)inode->i_blocks);
 
1193		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194	}
1195
1196	/* will put inode & node pages */
1197	err = truncate_node(&dn);
1198	if (err) {
1199		f2fs_put_dnode(&dn);
1200		return err;
1201	}
1202	return 0;
1203}
1204
1205struct page *f2fs_new_inode_page(struct inode *inode)
1206{
1207	struct dnode_of_data dn;
1208
1209	/* allocate inode page for new inode */
1210	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211
1212	/* caller should f2fs_put_page(page, 1); */
1213	return f2fs_new_node_page(&dn, 0);
1214}
1215
1216struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1217{
1218	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219	struct node_info new_ni;
1220	struct page *page;
1221	int err;
1222
1223	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224		return ERR_PTR(-EPERM);
1225
1226	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227	if (!page)
1228		return ERR_PTR(-ENOMEM);
1229
1230	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231		goto fail;
1232
1233#ifdef CONFIG_F2FS_CHECK_FS
1234	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235	if (err) {
1236		dec_valid_node_count(sbi, dn->inode, !ofs);
1237		goto fail;
1238	}
1239	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
 
 
 
 
 
 
1240#endif
1241	new_ni.nid = dn->nid;
1242	new_ni.ino = dn->inode->i_ino;
1243	new_ni.blk_addr = NULL_ADDR;
1244	new_ni.flag = 0;
1245	new_ni.version = 0;
1246	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247
1248	f2fs_wait_on_page_writeback(page, NODE, true, true);
1249	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251	if (!PageUptodate(page))
1252		SetPageUptodate(page);
1253	if (set_page_dirty(page))
1254		dn->node_changed = true;
1255
1256	if (f2fs_has_xattr_block(ofs))
1257		f2fs_i_xnid_write(dn->inode, dn->nid);
1258
1259	if (ofs == 0)
1260		inc_valid_inode_count(sbi);
1261	return page;
1262
1263fail:
1264	clear_node_page_dirty(page);
1265	f2fs_put_page(page, 1);
1266	return ERR_PTR(err);
1267}
1268
1269/*
1270 * Caller should do after getting the following values.
1271 * 0: f2fs_put_page(page, 0)
1272 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1273 */
1274static int read_node_page(struct page *page, int op_flags)
1275{
1276	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277	struct node_info ni;
1278	struct f2fs_io_info fio = {
1279		.sbi = sbi,
1280		.type = NODE,
1281		.op = REQ_OP_READ,
1282		.op_flags = op_flags,
1283		.page = page,
1284		.encrypted_page = NULL,
1285	};
1286	int err;
1287
1288	if (PageUptodate(page)) {
1289		if (!f2fs_inode_chksum_verify(sbi, page)) {
1290			ClearPageUptodate(page);
1291			return -EFSBADCRC;
1292		}
1293		return LOCKED_PAGE;
1294	}
1295
1296	err = f2fs_get_node_info(sbi, page->index, &ni);
1297	if (err)
1298		return err;
1299
1300	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302		ClearPageUptodate(page);
1303		return -ENOENT;
1304	}
1305
1306	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307	return f2fs_submit_page_bio(&fio);
 
 
 
 
 
 
1308}
1309
1310/*
1311 * Readahead a node page
1312 */
1313void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314{
1315	struct page *apage;
1316	int err;
1317
1318	if (!nid)
1319		return;
1320	if (f2fs_check_nid_range(sbi, nid))
1321		return;
1322
1323	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324	if (apage)
1325		return;
1326
1327	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328	if (!apage)
1329		return;
1330
1331	err = read_node_page(apage, REQ_RAHEAD);
1332	f2fs_put_page(apage, err ? 1 : 0);
1333}
1334
1335static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336					struct page *parent, int start)
1337{
1338	struct page *page;
1339	int err;
1340
1341	if (!nid)
1342		return ERR_PTR(-ENOENT);
1343	if (f2fs_check_nid_range(sbi, nid))
1344		return ERR_PTR(-EINVAL);
1345repeat:
1346	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347	if (!page)
1348		return ERR_PTR(-ENOMEM);
1349
1350	err = read_node_page(page, 0);
1351	if (err < 0) {
1352		f2fs_put_page(page, 1);
1353		return ERR_PTR(err);
1354	} else if (err == LOCKED_PAGE) {
1355		err = 0;
1356		goto page_hit;
1357	}
1358
1359	if (parent)
1360		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361
1362	lock_page(page);
1363
1364	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365		f2fs_put_page(page, 1);
1366		goto repeat;
1367	}
1368
1369	if (unlikely(!PageUptodate(page))) {
1370		err = -EIO;
1371		goto out_err;
1372	}
1373
1374	if (!f2fs_inode_chksum_verify(sbi, page)) {
1375		err = -EFSBADCRC;
1376		goto out_err;
1377	}
1378page_hit:
1379	if(unlikely(nid != nid_of_node(page))) {
1380		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
 
 
1381			  nid, nid_of_node(page), ino_of_node(page),
1382			  ofs_of_node(page), cpver_of_node(page),
1383			  next_blkaddr_of_node(page));
1384		err = -EINVAL;
 
 
1385out_err:
1386		ClearPageUptodate(page);
1387		f2fs_put_page(page, 1);
1388		return ERR_PTR(err);
1389	}
1390	return page;
 
 
1391}
1392
1393struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394{
1395	return __get_node_page(sbi, nid, NULL, 0);
1396}
1397
1398struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399{
1400	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401	nid_t nid = get_nid(parent, start, false);
1402
1403	return __get_node_page(sbi, nid, parent, start);
1404}
1405
1406static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407{
1408	struct inode *inode;
1409	struct page *page;
1410	int ret;
1411
1412	/* should flush inline_data before evict_inode */
1413	inode = ilookup(sbi->sb, ino);
1414	if (!inode)
1415		return;
1416
1417	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418					FGP_LOCK|FGP_NOWAIT, 0);
1419	if (!page)
1420		goto iput_out;
1421
1422	if (!PageUptodate(page))
1423		goto page_out;
1424
1425	if (!PageDirty(page))
1426		goto page_out;
1427
1428	if (!clear_page_dirty_for_io(page))
1429		goto page_out;
1430
1431	ret = f2fs_write_inline_data(inode, page);
1432	inode_dec_dirty_pages(inode);
1433	f2fs_remove_dirty_inode(inode);
1434	if (ret)
1435		set_page_dirty(page);
1436page_out:
1437	f2fs_put_page(page, 1);
1438iput_out:
1439	iput(inode);
1440}
1441
1442static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443{
1444	pgoff_t index;
1445	struct pagevec pvec;
1446	struct page *last_page = NULL;
1447	int nr_pages;
1448
1449	pagevec_init(&pvec);
1450	index = 0;
1451
1452	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453				PAGECACHE_TAG_DIRTY))) {
 
1454		int i;
1455
1456		for (i = 0; i < nr_pages; i++) {
1457			struct page *page = pvec.pages[i];
1458
1459			if (unlikely(f2fs_cp_error(sbi))) {
1460				f2fs_put_page(last_page, 0);
1461				pagevec_release(&pvec);
1462				return ERR_PTR(-EIO);
1463			}
1464
1465			if (!IS_DNODE(page) || !is_cold_node(page))
1466				continue;
1467			if (ino_of_node(page) != ino)
1468				continue;
1469
1470			lock_page(page);
1471
1472			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473continue_unlock:
1474				unlock_page(page);
1475				continue;
1476			}
1477			if (ino_of_node(page) != ino)
1478				goto continue_unlock;
1479
1480			if (!PageDirty(page)) {
1481				/* someone wrote it for us */
1482				goto continue_unlock;
1483			}
1484
1485			if (last_page)
1486				f2fs_put_page(last_page, 0);
1487
1488			get_page(page);
1489			last_page = page;
1490			unlock_page(page);
1491		}
1492		pagevec_release(&pvec);
1493		cond_resched();
1494	}
1495	return last_page;
1496}
1497
1498static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499				struct writeback_control *wbc, bool do_balance,
1500				enum iostat_type io_type, unsigned int *seq_id)
1501{
1502	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503	nid_t nid;
1504	struct node_info ni;
1505	struct f2fs_io_info fio = {
1506		.sbi = sbi,
1507		.ino = ino_of_node(page),
1508		.type = NODE,
1509		.op = REQ_OP_WRITE,
1510		.op_flags = wbc_to_write_flags(wbc),
1511		.page = page,
1512		.encrypted_page = NULL,
1513		.submitted = false,
1514		.io_type = io_type,
1515		.io_wbc = wbc,
1516	};
1517	unsigned int seq;
1518
1519	trace_f2fs_writepage(page, NODE);
1520
1521	if (unlikely(f2fs_cp_error(sbi)))
1522		goto redirty_out;
 
 
 
 
 
 
 
1523
1524	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525		goto redirty_out;
1526
1527	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528			wbc->sync_mode == WB_SYNC_NONE &&
1529			IS_DNODE(page) && is_cold_node(page))
1530		goto redirty_out;
1531
1532	/* get old block addr of this node page */
1533	nid = nid_of_node(page);
1534	f2fs_bug_on(sbi, page->index != nid);
1535
1536	if (f2fs_get_node_info(sbi, nid, &ni))
1537		goto redirty_out;
1538
1539	if (wbc->for_reclaim) {
1540		if (!down_read_trylock(&sbi->node_write))
1541			goto redirty_out;
1542	} else {
1543		down_read(&sbi->node_write);
1544	}
1545
1546	/* This page is already truncated */
1547	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548		ClearPageUptodate(page);
1549		dec_page_count(sbi, F2FS_DIRTY_NODES);
1550		up_read(&sbi->node_write);
1551		unlock_page(page);
1552		return 0;
1553	}
1554
1555	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557					DATA_GENERIC_ENHANCE)) {
1558		up_read(&sbi->node_write);
1559		goto redirty_out;
1560	}
1561
1562	if (atomic && !test_opt(sbi, NOBARRIER))
1563		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1564
1565	set_page_writeback(page);
1566	ClearPageError(page);
1567
1568	if (f2fs_in_warm_node_list(sbi, page)) {
1569		seq = f2fs_add_fsync_node_entry(sbi, page);
1570		if (seq_id)
1571			*seq_id = seq;
1572	}
1573
 
 
1574	fio.old_blkaddr = ni.blk_addr;
1575	f2fs_do_write_node_page(nid, &fio);
1576	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1577	dec_page_count(sbi, F2FS_DIRTY_NODES);
1578	up_read(&sbi->node_write);
1579
1580	if (wbc->for_reclaim) {
1581		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1582		submitted = NULL;
1583	}
1584
1585	unlock_page(page);
1586
1587	if (unlikely(f2fs_cp_error(sbi))) {
1588		f2fs_submit_merged_write(sbi, NODE);
1589		submitted = NULL;
1590	}
1591	if (submitted)
1592		*submitted = fio.submitted;
1593
1594	if (do_balance)
1595		f2fs_balance_fs(sbi, false);
1596	return 0;
1597
1598redirty_out:
1599	redirty_page_for_writepage(wbc, page);
1600	return AOP_WRITEPAGE_ACTIVATE;
1601}
1602
1603int f2fs_move_node_page(struct page *node_page, int gc_type)
1604{
1605	int err = 0;
1606
1607	if (gc_type == FG_GC) {
1608		struct writeback_control wbc = {
1609			.sync_mode = WB_SYNC_ALL,
1610			.nr_to_write = 1,
1611			.for_reclaim = 0,
1612		};
1613
1614		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1615
1616		set_page_dirty(node_page);
1617
1618		if (!clear_page_dirty_for_io(node_page)) {
1619			err = -EAGAIN;
1620			goto out_page;
1621		}
1622
1623		if (__write_node_page(node_page, false, NULL,
1624					&wbc, false, FS_GC_NODE_IO, NULL)) {
1625			err = -EAGAIN;
1626			unlock_page(node_page);
1627		}
1628		goto release_page;
1629	} else {
1630		/* set page dirty and write it */
1631		if (!PageWriteback(node_page))
1632			set_page_dirty(node_page);
1633	}
1634out_page:
1635	unlock_page(node_page);
1636release_page:
1637	f2fs_put_page(node_page, 0);
1638	return err;
1639}
1640
1641static int f2fs_write_node_page(struct page *page,
1642				struct writeback_control *wbc)
1643{
1644	return __write_node_page(page, false, NULL, wbc, false,
1645						FS_NODE_IO, NULL);
1646}
1647
1648int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1649			struct writeback_control *wbc, bool atomic,
1650			unsigned int *seq_id)
1651{
1652	pgoff_t index;
1653	struct pagevec pvec;
1654	int ret = 0;
1655	struct page *last_page = NULL;
1656	bool marked = false;
1657	nid_t ino = inode->i_ino;
1658	int nr_pages;
1659	int nwritten = 0;
1660
1661	if (atomic) {
1662		last_page = last_fsync_dnode(sbi, ino);
1663		if (IS_ERR_OR_NULL(last_page))
1664			return PTR_ERR_OR_ZERO(last_page);
1665	}
1666retry:
1667	pagevec_init(&pvec);
1668	index = 0;
1669
1670	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1671				PAGECACHE_TAG_DIRTY))) {
 
1672		int i;
1673
1674		for (i = 0; i < nr_pages; i++) {
1675			struct page *page = pvec.pages[i];
1676			bool submitted = false;
1677
1678			if (unlikely(f2fs_cp_error(sbi))) {
1679				f2fs_put_page(last_page, 0);
1680				pagevec_release(&pvec);
1681				ret = -EIO;
1682				goto out;
1683			}
1684
1685			if (!IS_DNODE(page) || !is_cold_node(page))
1686				continue;
1687			if (ino_of_node(page) != ino)
1688				continue;
1689
1690			lock_page(page);
1691
1692			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1693continue_unlock:
1694				unlock_page(page);
1695				continue;
1696			}
1697			if (ino_of_node(page) != ino)
1698				goto continue_unlock;
1699
1700			if (!PageDirty(page) && page != last_page) {
1701				/* someone wrote it for us */
1702				goto continue_unlock;
1703			}
1704
1705			f2fs_wait_on_page_writeback(page, NODE, true, true);
1706
1707			set_fsync_mark(page, 0);
1708			set_dentry_mark(page, 0);
1709
1710			if (!atomic || page == last_page) {
1711				set_fsync_mark(page, 1);
 
1712				if (IS_INODE(page)) {
1713					if (is_inode_flag_set(inode,
1714								FI_DIRTY_INODE))
1715						f2fs_update_inode(inode, page);
1716					set_dentry_mark(page,
1717						f2fs_need_dentry_mark(sbi, ino));
1718				}
1719				/*  may be written by other thread */
1720				if (!PageDirty(page))
1721					set_page_dirty(page);
1722			}
1723
1724			if (!clear_page_dirty_for_io(page))
1725				goto continue_unlock;
1726
1727			ret = __write_node_page(page, atomic &&
1728						page == last_page,
1729						&submitted, wbc, true,
1730						FS_NODE_IO, seq_id);
1731			if (ret) {
1732				unlock_page(page);
1733				f2fs_put_page(last_page, 0);
1734				break;
1735			} else if (submitted) {
1736				nwritten++;
1737			}
1738
1739			if (page == last_page) {
1740				f2fs_put_page(page, 0);
1741				marked = true;
1742				break;
1743			}
1744		}
1745		pagevec_release(&pvec);
1746		cond_resched();
1747
1748		if (ret || marked)
1749			break;
1750	}
1751	if (!ret && atomic && !marked) {
1752		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1753			   ino, last_page->index);
1754		lock_page(last_page);
1755		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1756		set_page_dirty(last_page);
1757		unlock_page(last_page);
1758		goto retry;
1759	}
1760out:
1761	if (nwritten)
1762		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1763	return ret ? -EIO: 0;
1764}
1765
1766static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1767{
1768	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769	bool clean;
1770
1771	if (inode->i_ino != ino)
1772		return 0;
1773
1774	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1775		return 0;
1776
1777	spin_lock(&sbi->inode_lock[DIRTY_META]);
1778	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1779	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1780
1781	if (clean)
1782		return 0;
1783
1784	inode = igrab(inode);
1785	if (!inode)
1786		return 0;
1787	return 1;
1788}
1789
1790static bool flush_dirty_inode(struct page *page)
1791{
1792	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1793	struct inode *inode;
1794	nid_t ino = ino_of_node(page);
1795
1796	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1797	if (!inode)
1798		return false;
1799
1800	f2fs_update_inode(inode, page);
1801	unlock_page(page);
1802
1803	iput(inode);
1804	return true;
1805}
1806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1808				struct writeback_control *wbc,
1809				bool do_balance, enum iostat_type io_type)
1810{
1811	pgoff_t index;
1812	struct pagevec pvec;
1813	int step = 0;
1814	int nwritten = 0;
1815	int ret = 0;
1816	int nr_pages, done = 0;
1817
1818	pagevec_init(&pvec);
1819
1820next_step:
1821	index = 0;
1822
1823	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1824			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
 
1825		int i;
1826
1827		for (i = 0; i < nr_pages; i++) {
1828			struct page *page = pvec.pages[i];
1829			bool submitted = false;
1830			bool may_dirty = true;
1831
1832			/* give a priority to WB_SYNC threads */
1833			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1834					wbc->sync_mode == WB_SYNC_NONE) {
1835				done = 1;
1836				break;
1837			}
1838
1839			/*
1840			 * flushing sequence with step:
1841			 * 0. indirect nodes
1842			 * 1. dentry dnodes
1843			 * 2. file dnodes
1844			 */
1845			if (step == 0 && IS_DNODE(page))
1846				continue;
1847			if (step == 1 && (!IS_DNODE(page) ||
1848						is_cold_node(page)))
1849				continue;
1850			if (step == 2 && (!IS_DNODE(page) ||
1851						!is_cold_node(page)))
1852				continue;
1853lock_node:
1854			if (wbc->sync_mode == WB_SYNC_ALL)
1855				lock_page(page);
1856			else if (!trylock_page(page))
1857				continue;
1858
1859			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860continue_unlock:
1861				unlock_page(page);
1862				continue;
1863			}
1864
1865			if (!PageDirty(page)) {
1866				/* someone wrote it for us */
1867				goto continue_unlock;
1868			}
1869
 
 
 
 
1870			/* flush inline_data */
1871			if (is_inline_node(page)) {
1872				clear_inline_node(page);
1873				unlock_page(page);
1874				flush_inline_data(sbi, ino_of_node(page));
1875				goto lock_node;
1876			}
1877
1878			/* flush dirty inode */
1879			if (IS_INODE(page) && may_dirty) {
1880				may_dirty = false;
1881				if (flush_dirty_inode(page))
1882					goto lock_node;
1883			}
1884
1885			f2fs_wait_on_page_writeback(page, NODE, true, true);
1886
1887			if (!clear_page_dirty_for_io(page))
1888				goto continue_unlock;
1889
1890			set_fsync_mark(page, 0);
1891			set_dentry_mark(page, 0);
1892
1893			ret = __write_node_page(page, false, &submitted,
1894						wbc, do_balance, io_type, NULL);
1895			if (ret)
1896				unlock_page(page);
1897			else if (submitted)
1898				nwritten++;
1899
1900			if (--wbc->nr_to_write == 0)
1901				break;
1902		}
1903		pagevec_release(&pvec);
1904		cond_resched();
1905
1906		if (wbc->nr_to_write == 0) {
1907			step = 2;
1908			break;
1909		}
1910	}
1911
1912	if (step < 2) {
1913		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1915			goto out;
1916		step++;
1917		goto next_step;
1918	}
1919out:
1920	if (nwritten)
1921		f2fs_submit_merged_write(sbi, NODE);
1922
1923	if (unlikely(f2fs_cp_error(sbi)))
1924		return -EIO;
1925	return ret;
1926}
1927
1928int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1929						unsigned int seq_id)
1930{
1931	struct fsync_node_entry *fn;
1932	struct page *page;
1933	struct list_head *head = &sbi->fsync_node_list;
1934	unsigned long flags;
1935	unsigned int cur_seq_id = 0;
1936	int ret2, ret = 0;
1937
1938	while (seq_id && cur_seq_id < seq_id) {
1939		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1940		if (list_empty(head)) {
1941			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1942			break;
1943		}
1944		fn = list_first_entry(head, struct fsync_node_entry, list);
1945		if (fn->seq_id > seq_id) {
1946			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1947			break;
1948		}
1949		cur_seq_id = fn->seq_id;
1950		page = fn->page;
1951		get_page(page);
1952		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1953
1954		f2fs_wait_on_page_writeback(page, NODE, true, false);
1955		if (TestClearPageError(page))
1956			ret = -EIO;
1957
1958		put_page(page);
1959
1960		if (ret)
1961			break;
1962	}
1963
1964	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1965	if (!ret)
1966		ret = ret2;
1967
1968	return ret;
1969}
1970
1971static int f2fs_write_node_pages(struct address_space *mapping,
1972			    struct writeback_control *wbc)
1973{
1974	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1975	struct blk_plug plug;
1976	long diff;
1977
1978	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1979		goto skip_write;
1980
1981	/* balancing f2fs's metadata in background */
1982	f2fs_balance_fs_bg(sbi);
1983
1984	/* collect a number of dirty node pages and write together */
1985	if (wbc->sync_mode != WB_SYNC_ALL &&
1986			get_pages(sbi, F2FS_DIRTY_NODES) <
1987					nr_pages_to_skip(sbi, NODE))
1988		goto skip_write;
1989
1990	if (wbc->sync_mode == WB_SYNC_ALL)
1991		atomic_inc(&sbi->wb_sync_req[NODE]);
1992	else if (atomic_read(&sbi->wb_sync_req[NODE]))
 
 
 
1993		goto skip_write;
 
1994
1995	trace_f2fs_writepages(mapping->host, wbc, NODE);
1996
1997	diff = nr_pages_to_write(sbi, NODE, wbc);
1998	blk_start_plug(&plug);
1999	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2000	blk_finish_plug(&plug);
2001	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2002
2003	if (wbc->sync_mode == WB_SYNC_ALL)
2004		atomic_dec(&sbi->wb_sync_req[NODE]);
2005	return 0;
2006
2007skip_write:
2008	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2009	trace_f2fs_writepages(mapping->host, wbc, NODE);
2010	return 0;
2011}
2012
2013static int f2fs_set_node_page_dirty(struct page *page)
 
2014{
2015	trace_f2fs_set_page_dirty(page, NODE);
2016
2017	if (!PageUptodate(page))
2018		SetPageUptodate(page);
2019#ifdef CONFIG_F2FS_CHECK_FS
2020	if (IS_INODE(page))
2021		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2022#endif
2023	if (!PageDirty(page)) {
2024		__set_page_dirty_nobuffers(page);
2025		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2026		f2fs_set_page_private(page, 0);
2027		f2fs_trace_pid(page);
2028		return 1;
2029	}
2030	return 0;
2031}
2032
2033/*
2034 * Structure of the f2fs node operations
2035 */
2036const struct address_space_operations f2fs_node_aops = {
2037	.writepage	= f2fs_write_node_page,
2038	.writepages	= f2fs_write_node_pages,
2039	.set_page_dirty	= f2fs_set_node_page_dirty,
2040	.invalidatepage	= f2fs_invalidate_page,
2041	.releasepage	= f2fs_release_page,
2042#ifdef CONFIG_MIGRATION
2043	.migratepage    = f2fs_migrate_page,
2044#endif
2045};
2046
2047static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2048						nid_t n)
2049{
2050	return radix_tree_lookup(&nm_i->free_nid_root, n);
2051}
2052
2053static int __insert_free_nid(struct f2fs_sb_info *sbi,
2054			struct free_nid *i, enum nid_state state)
2055{
2056	struct f2fs_nm_info *nm_i = NM_I(sbi);
2057
2058	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
 
2059	if (err)
2060		return err;
2061
2062	f2fs_bug_on(sbi, state != i->state);
2063	nm_i->nid_cnt[state]++;
2064	if (state == FREE_NID)
2065		list_add_tail(&i->list, &nm_i->free_nid_list);
2066	return 0;
2067}
2068
2069static void __remove_free_nid(struct f2fs_sb_info *sbi,
2070			struct free_nid *i, enum nid_state state)
2071{
2072	struct f2fs_nm_info *nm_i = NM_I(sbi);
2073
2074	f2fs_bug_on(sbi, state != i->state);
2075	nm_i->nid_cnt[state]--;
2076	if (state == FREE_NID)
2077		list_del(&i->list);
2078	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2079}
2080
2081static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2082			enum nid_state org_state, enum nid_state dst_state)
2083{
2084	struct f2fs_nm_info *nm_i = NM_I(sbi);
2085
2086	f2fs_bug_on(sbi, org_state != i->state);
2087	i->state = dst_state;
2088	nm_i->nid_cnt[org_state]--;
2089	nm_i->nid_cnt[dst_state]++;
2090
2091	switch (dst_state) {
2092	case PREALLOC_NID:
2093		list_del(&i->list);
2094		break;
2095	case FREE_NID:
2096		list_add_tail(&i->list, &nm_i->free_nid_list);
2097		break;
2098	default:
2099		BUG_ON(1);
2100	}
2101}
2102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2104							bool set, bool build)
2105{
2106	struct f2fs_nm_info *nm_i = NM_I(sbi);
2107	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2108	unsigned int nid_ofs = nid - START_NID(nid);
2109
2110	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2111		return;
2112
2113	if (set) {
2114		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2115			return;
2116		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2117		nm_i->free_nid_count[nat_ofs]++;
2118	} else {
2119		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2120			return;
2121		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2122		if (!build)
2123			nm_i->free_nid_count[nat_ofs]--;
2124	}
2125}
2126
2127/* return if the nid is recognized as free */
2128static bool add_free_nid(struct f2fs_sb_info *sbi,
2129				nid_t nid, bool build, bool update)
2130{
2131	struct f2fs_nm_info *nm_i = NM_I(sbi);
2132	struct free_nid *i, *e;
2133	struct nat_entry *ne;
2134	int err = -EINVAL;
2135	bool ret = false;
2136
2137	/* 0 nid should not be used */
2138	if (unlikely(nid == 0))
2139		return false;
2140
2141	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2142		return false;
2143
2144	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2145	i->nid = nid;
2146	i->state = FREE_NID;
2147
2148	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2149
2150	spin_lock(&nm_i->nid_list_lock);
2151
2152	if (build) {
2153		/*
2154		 *   Thread A             Thread B
2155		 *  - f2fs_create
2156		 *   - f2fs_new_inode
2157		 *    - f2fs_alloc_nid
2158		 *     - __insert_nid_to_list(PREALLOC_NID)
2159		 *                     - f2fs_balance_fs_bg
2160		 *                      - f2fs_build_free_nids
2161		 *                       - __f2fs_build_free_nids
2162		 *                        - scan_nat_page
2163		 *                         - add_free_nid
2164		 *                          - __lookup_nat_cache
2165		 *  - f2fs_add_link
2166		 *   - f2fs_init_inode_metadata
2167		 *    - f2fs_new_inode_page
2168		 *     - f2fs_new_node_page
2169		 *      - set_node_addr
2170		 *  - f2fs_alloc_nid_done
2171		 *   - __remove_nid_from_list(PREALLOC_NID)
2172		 *                         - __insert_nid_to_list(FREE_NID)
2173		 */
2174		ne = __lookup_nat_cache(nm_i, nid);
2175		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2176				nat_get_blkaddr(ne) != NULL_ADDR))
2177			goto err_out;
2178
2179		e = __lookup_free_nid_list(nm_i, nid);
2180		if (e) {
2181			if (e->state == FREE_NID)
2182				ret = true;
2183			goto err_out;
2184		}
2185	}
2186	ret = true;
2187	err = __insert_free_nid(sbi, i, FREE_NID);
2188err_out:
2189	if (update) {
2190		update_free_nid_bitmap(sbi, nid, ret, build);
2191		if (!build)
2192			nm_i->available_nids++;
2193	}
2194	spin_unlock(&nm_i->nid_list_lock);
2195	radix_tree_preload_end();
2196
2197	if (err)
2198		kmem_cache_free(free_nid_slab, i);
2199	return ret;
2200}
2201
2202static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2203{
2204	struct f2fs_nm_info *nm_i = NM_I(sbi);
2205	struct free_nid *i;
2206	bool need_free = false;
2207
2208	spin_lock(&nm_i->nid_list_lock);
2209	i = __lookup_free_nid_list(nm_i, nid);
2210	if (i && i->state == FREE_NID) {
2211		__remove_free_nid(sbi, i, FREE_NID);
2212		need_free = true;
2213	}
2214	spin_unlock(&nm_i->nid_list_lock);
2215
2216	if (need_free)
2217		kmem_cache_free(free_nid_slab, i);
2218}
2219
2220static int scan_nat_page(struct f2fs_sb_info *sbi,
2221			struct page *nat_page, nid_t start_nid)
2222{
2223	struct f2fs_nm_info *nm_i = NM_I(sbi);
2224	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2225	block_t blk_addr;
2226	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2227	int i;
2228
2229	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2230
2231	i = start_nid % NAT_ENTRY_PER_BLOCK;
2232
2233	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2234		if (unlikely(start_nid >= nm_i->max_nid))
2235			break;
2236
2237		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2238
2239		if (blk_addr == NEW_ADDR)
2240			return -EINVAL;
2241
2242		if (blk_addr == NULL_ADDR) {
2243			add_free_nid(sbi, start_nid, true, true);
2244		} else {
2245			spin_lock(&NM_I(sbi)->nid_list_lock);
2246			update_free_nid_bitmap(sbi, start_nid, false, true);
2247			spin_unlock(&NM_I(sbi)->nid_list_lock);
2248		}
2249	}
2250
2251	return 0;
2252}
2253
2254static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2255{
2256	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2257	struct f2fs_journal *journal = curseg->journal;
2258	int i;
2259
2260	down_read(&curseg->journal_rwsem);
2261	for (i = 0; i < nats_in_cursum(journal); i++) {
2262		block_t addr;
2263		nid_t nid;
2264
2265		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2266		nid = le32_to_cpu(nid_in_journal(journal, i));
2267		if (addr == NULL_ADDR)
2268			add_free_nid(sbi, nid, true, false);
2269		else
2270			remove_free_nid(sbi, nid);
2271	}
2272	up_read(&curseg->journal_rwsem);
2273}
2274
2275static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2276{
2277	struct f2fs_nm_info *nm_i = NM_I(sbi);
2278	unsigned int i, idx;
2279	nid_t nid;
2280
2281	down_read(&nm_i->nat_tree_lock);
2282
2283	for (i = 0; i < nm_i->nat_blocks; i++) {
2284		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2285			continue;
2286		if (!nm_i->free_nid_count[i])
2287			continue;
2288		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2289			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2290						NAT_ENTRY_PER_BLOCK, idx);
2291			if (idx >= NAT_ENTRY_PER_BLOCK)
2292				break;
2293
2294			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2295			add_free_nid(sbi, nid, true, false);
2296
2297			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2298				goto out;
2299		}
2300	}
2301out:
2302	scan_curseg_cache(sbi);
2303
2304	up_read(&nm_i->nat_tree_lock);
2305}
2306
2307static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2308						bool sync, bool mount)
2309{
2310	struct f2fs_nm_info *nm_i = NM_I(sbi);
2311	int i = 0, ret;
2312	nid_t nid = nm_i->next_scan_nid;
2313
2314	if (unlikely(nid >= nm_i->max_nid))
2315		nid = 0;
2316
 
 
 
2317	/* Enough entries */
2318	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2319		return 0;
2320
2321	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2322		return 0;
2323
2324	if (!mount) {
2325		/* try to find free nids in free_nid_bitmap */
2326		scan_free_nid_bits(sbi);
2327
2328		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2329			return 0;
2330	}
2331
2332	/* readahead nat pages to be scanned */
2333	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2334							META_NAT, true);
2335
2336	down_read(&nm_i->nat_tree_lock);
2337
2338	while (1) {
2339		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2340						nm_i->nat_block_bitmap)) {
2341			struct page *page = get_current_nat_page(sbi, nid);
2342
2343			if (IS_ERR(page)) {
2344				ret = PTR_ERR(page);
2345			} else {
2346				ret = scan_nat_page(sbi, page, nid);
2347				f2fs_put_page(page, 1);
2348			}
2349
2350			if (ret) {
2351				up_read(&nm_i->nat_tree_lock);
2352				f2fs_bug_on(sbi, !mount);
2353				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
 
 
 
 
 
 
2354				return ret;
2355			}
2356		}
2357
2358		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2359		if (unlikely(nid >= nm_i->max_nid))
2360			nid = 0;
2361
2362		if (++i >= FREE_NID_PAGES)
2363			break;
2364	}
2365
2366	/* go to the next free nat pages to find free nids abundantly */
2367	nm_i->next_scan_nid = nid;
2368
2369	/* find free nids from current sum_pages */
2370	scan_curseg_cache(sbi);
2371
2372	up_read(&nm_i->nat_tree_lock);
2373
2374	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2375					nm_i->ra_nid_pages, META_NAT, false);
2376
2377	return 0;
2378}
2379
2380int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2381{
2382	int ret;
2383
2384	mutex_lock(&NM_I(sbi)->build_lock);
2385	ret = __f2fs_build_free_nids(sbi, sync, mount);
2386	mutex_unlock(&NM_I(sbi)->build_lock);
2387
2388	return ret;
2389}
2390
2391/*
2392 * If this function returns success, caller can obtain a new nid
2393 * from second parameter of this function.
2394 * The returned nid could be used ino as well as nid when inode is created.
2395 */
2396bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2397{
2398	struct f2fs_nm_info *nm_i = NM_I(sbi);
2399	struct free_nid *i = NULL;
2400retry:
2401	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2402		f2fs_show_injection_info(FAULT_ALLOC_NID);
2403		return false;
2404	}
2405
2406	spin_lock(&nm_i->nid_list_lock);
2407
2408	if (unlikely(nm_i->available_nids == 0)) {
2409		spin_unlock(&nm_i->nid_list_lock);
2410		return false;
2411	}
2412
2413	/* We should not use stale free nids created by f2fs_build_free_nids */
2414	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2415		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2416		i = list_first_entry(&nm_i->free_nid_list,
2417					struct free_nid, list);
2418		*nid = i->nid;
2419
2420		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2421		nm_i->available_nids--;
2422
2423		update_free_nid_bitmap(sbi, *nid, false, false);
2424
2425		spin_unlock(&nm_i->nid_list_lock);
2426		return true;
2427	}
2428	spin_unlock(&nm_i->nid_list_lock);
2429
2430	/* Let's scan nat pages and its caches to get free nids */
2431	if (!f2fs_build_free_nids(sbi, true, false))
2432		goto retry;
2433	return false;
2434}
2435
2436/*
2437 * f2fs_alloc_nid() should be called prior to this function.
2438 */
2439void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2440{
2441	struct f2fs_nm_info *nm_i = NM_I(sbi);
2442	struct free_nid *i;
2443
2444	spin_lock(&nm_i->nid_list_lock);
2445	i = __lookup_free_nid_list(nm_i, nid);
2446	f2fs_bug_on(sbi, !i);
2447	__remove_free_nid(sbi, i, PREALLOC_NID);
2448	spin_unlock(&nm_i->nid_list_lock);
2449
2450	kmem_cache_free(free_nid_slab, i);
2451}
2452
2453/*
2454 * f2fs_alloc_nid() should be called prior to this function.
2455 */
2456void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2457{
2458	struct f2fs_nm_info *nm_i = NM_I(sbi);
2459	struct free_nid *i;
2460	bool need_free = false;
2461
2462	if (!nid)
2463		return;
2464
2465	spin_lock(&nm_i->nid_list_lock);
2466	i = __lookup_free_nid_list(nm_i, nid);
2467	f2fs_bug_on(sbi, !i);
2468
2469	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2470		__remove_free_nid(sbi, i, PREALLOC_NID);
2471		need_free = true;
2472	} else {
2473		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2474	}
2475
2476	nm_i->available_nids++;
2477
2478	update_free_nid_bitmap(sbi, nid, true, false);
2479
2480	spin_unlock(&nm_i->nid_list_lock);
2481
2482	if (need_free)
2483		kmem_cache_free(free_nid_slab, i);
2484}
2485
2486int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2487{
2488	struct f2fs_nm_info *nm_i = NM_I(sbi);
2489	struct free_nid *i, *next;
2490	int nr = nr_shrink;
2491
2492	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2493		return 0;
2494
2495	if (!mutex_trylock(&nm_i->build_lock))
2496		return 0;
2497
2498	spin_lock(&nm_i->nid_list_lock);
2499	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2500		if (nr_shrink <= 0 ||
2501				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2502			break;
2503
2504		__remove_free_nid(sbi, i, FREE_NID);
2505		kmem_cache_free(free_nid_slab, i);
2506		nr_shrink--;
 
 
 
 
 
 
 
 
2507	}
2508	spin_unlock(&nm_i->nid_list_lock);
2509	mutex_unlock(&nm_i->build_lock);
2510
2511	return nr - nr_shrink;
2512}
2513
2514void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2515{
2516	void *src_addr, *dst_addr;
2517	size_t inline_size;
2518	struct page *ipage;
2519	struct f2fs_inode *ri;
2520
2521	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2522	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
 
2523
2524	ri = F2FS_INODE(page);
2525	if (ri->i_inline & F2FS_INLINE_XATTR) {
2526		set_inode_flag(inode, FI_INLINE_XATTR);
 
 
 
2527	} else {
2528		clear_inode_flag(inode, FI_INLINE_XATTR);
 
 
 
2529		goto update_inode;
2530	}
2531
2532	dst_addr = inline_xattr_addr(inode, ipage);
2533	src_addr = inline_xattr_addr(inode, page);
2534	inline_size = inline_xattr_size(inode);
2535
2536	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2537	memcpy(dst_addr, src_addr, inline_size);
2538update_inode:
2539	f2fs_update_inode(inode, ipage);
2540	f2fs_put_page(ipage, 1);
 
2541}
2542
2543int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2544{
2545	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2546	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2547	nid_t new_xnid;
2548	struct dnode_of_data dn;
2549	struct node_info ni;
2550	struct page *xpage;
2551	int err;
2552
2553	if (!prev_xnid)
2554		goto recover_xnid;
2555
2556	/* 1: invalidate the previous xattr nid */
2557	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2558	if (err)
2559		return err;
2560
2561	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2562	dec_valid_node_count(sbi, inode, false);
2563	set_node_addr(sbi, &ni, NULL_ADDR, false);
2564
2565recover_xnid:
2566	/* 2: update xattr nid in inode */
2567	if (!f2fs_alloc_nid(sbi, &new_xnid))
2568		return -ENOSPC;
2569
2570	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2571	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2572	if (IS_ERR(xpage)) {
2573		f2fs_alloc_nid_failed(sbi, new_xnid);
2574		return PTR_ERR(xpage);
2575	}
2576
2577	f2fs_alloc_nid_done(sbi, new_xnid);
2578	f2fs_update_inode_page(inode);
2579
2580	/* 3: update and set xattr node page dirty */
2581	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2582
2583	set_page_dirty(xpage);
 
 
2584	f2fs_put_page(xpage, 1);
2585
2586	return 0;
2587}
2588
2589int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2590{
2591	struct f2fs_inode *src, *dst;
2592	nid_t ino = ino_of_node(page);
2593	struct node_info old_ni, new_ni;
2594	struct page *ipage;
2595	int err;
2596
2597	err = f2fs_get_node_info(sbi, ino, &old_ni);
2598	if (err)
2599		return err;
2600
2601	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2602		return -EINVAL;
2603retry:
2604	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2605	if (!ipage) {
2606		congestion_wait(BLK_RW_ASYNC, HZ/50);
2607		goto retry;
2608	}
2609
2610	/* Should not use this inode from free nid list */
2611	remove_free_nid(sbi, ino);
2612
2613	if (!PageUptodate(ipage))
2614		SetPageUptodate(ipage);
2615	fill_node_footer(ipage, ino, ino, 0, true);
2616	set_cold_node(ipage, false);
2617
2618	src = F2FS_INODE(page);
2619	dst = F2FS_INODE(ipage);
2620
2621	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2622	dst->i_size = 0;
2623	dst->i_blocks = cpu_to_le64(1);
2624	dst->i_links = cpu_to_le32(1);
2625	dst->i_xattr_nid = 0;
2626	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2627	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2628		dst->i_extra_isize = src->i_extra_isize;
2629
2630		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2631			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2632							i_inline_xattr_size))
2633			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2634
2635		if (f2fs_sb_has_project_quota(sbi) &&
2636			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2637								i_projid))
2638			dst->i_projid = src->i_projid;
2639
2640		if (f2fs_sb_has_inode_crtime(sbi) &&
2641			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2642							i_crtime_nsec)) {
2643			dst->i_crtime = src->i_crtime;
2644			dst->i_crtime_nsec = src->i_crtime_nsec;
2645		}
2646	}
2647
2648	new_ni = old_ni;
2649	new_ni.ino = ino;
2650
2651	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2652		WARN_ON(1);
2653	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2654	inc_valid_inode_count(sbi);
2655	set_page_dirty(ipage);
2656	f2fs_put_page(ipage, 1);
2657	return 0;
2658}
2659
2660int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2661			unsigned int segno, struct f2fs_summary_block *sum)
2662{
2663	struct f2fs_node *rn;
2664	struct f2fs_summary *sum_entry;
2665	block_t addr;
2666	int i, idx, last_offset, nrpages;
2667
2668	/* scan the node segment */
2669	last_offset = sbi->blocks_per_seg;
2670	addr = START_BLOCK(sbi, segno);
2671	sum_entry = &sum->entries[0];
2672
2673	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2674		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2675
2676		/* readahead node pages */
2677		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2678
2679		for (idx = addr; idx < addr + nrpages; idx++) {
2680			struct page *page = f2fs_get_tmp_page(sbi, idx);
2681
2682			if (IS_ERR(page))
2683				return PTR_ERR(page);
2684
2685			rn = F2FS_NODE(page);
2686			sum_entry->nid = rn->footer.nid;
2687			sum_entry->version = 0;
2688			sum_entry->ofs_in_node = 0;
2689			sum_entry++;
2690			f2fs_put_page(page, 1);
2691		}
2692
2693		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2694							addr + nrpages);
2695	}
2696	return 0;
2697}
2698
2699static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2700{
2701	struct f2fs_nm_info *nm_i = NM_I(sbi);
2702	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2703	struct f2fs_journal *journal = curseg->journal;
2704	int i;
2705
2706	down_write(&curseg->journal_rwsem);
2707	for (i = 0; i < nats_in_cursum(journal); i++) {
2708		struct nat_entry *ne;
2709		struct f2fs_nat_entry raw_ne;
2710		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2711
 
 
 
2712		raw_ne = nat_in_journal(journal, i);
2713
2714		ne = __lookup_nat_cache(nm_i, nid);
2715		if (!ne) {
2716			ne = __alloc_nat_entry(nid, true);
2717			__init_nat_entry(nm_i, ne, &raw_ne, true);
2718		}
2719
2720		/*
2721		 * if a free nat in journal has not been used after last
2722		 * checkpoint, we should remove it from available nids,
2723		 * since later we will add it again.
2724		 */
2725		if (!get_nat_flag(ne, IS_DIRTY) &&
2726				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2727			spin_lock(&nm_i->nid_list_lock);
2728			nm_i->available_nids--;
2729			spin_unlock(&nm_i->nid_list_lock);
2730		}
2731
2732		__set_nat_cache_dirty(nm_i, ne);
2733	}
2734	update_nats_in_cursum(journal, -i);
2735	up_write(&curseg->journal_rwsem);
2736}
2737
2738static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2739						struct list_head *head, int max)
2740{
2741	struct nat_entry_set *cur;
2742
2743	if (nes->entry_cnt >= max)
2744		goto add_out;
2745
2746	list_for_each_entry(cur, head, set_list) {
2747		if (cur->entry_cnt >= nes->entry_cnt) {
2748			list_add(&nes->set_list, cur->set_list.prev);
2749			return;
2750		}
2751	}
2752add_out:
2753	list_add_tail(&nes->set_list, head);
2754}
2755
2756static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757						struct page *page)
2758{
2759	struct f2fs_nm_info *nm_i = NM_I(sbi);
2760	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2761	struct f2fs_nat_block *nat_blk = page_address(page);
2762	int valid = 0;
2763	int i = 0;
2764
2765	if (!enabled_nat_bits(sbi, NULL))
2766		return;
2767
2768	if (nat_index == 0) {
2769		valid = 1;
2770		i = 1;
2771	}
2772	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2773		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2774			valid++;
2775	}
2776	if (valid == 0) {
2777		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2778		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2779		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2780	}
2781
2782	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2783	if (valid == NAT_ENTRY_PER_BLOCK)
2784		__set_bit_le(nat_index, nm_i->full_nat_bits);
2785	else
2786		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2787}
2788
2789static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2790		struct nat_entry_set *set, struct cp_control *cpc)
2791{
2792	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2793	struct f2fs_journal *journal = curseg->journal;
2794	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2795	bool to_journal = true;
2796	struct f2fs_nat_block *nat_blk;
2797	struct nat_entry *ne, *cur;
2798	struct page *page = NULL;
2799
2800	/*
2801	 * there are two steps to flush nat entries:
2802	 * #1, flush nat entries to journal in current hot data summary block.
2803	 * #2, flush nat entries to nat page.
2804	 */
2805	if (enabled_nat_bits(sbi, cpc) ||
2806		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2807		to_journal = false;
2808
2809	if (to_journal) {
2810		down_write(&curseg->journal_rwsem);
2811	} else {
2812		page = get_next_nat_page(sbi, start_nid);
2813		if (IS_ERR(page))
2814			return PTR_ERR(page);
2815
2816		nat_blk = page_address(page);
2817		f2fs_bug_on(sbi, !nat_blk);
2818	}
2819
2820	/* flush dirty nats in nat entry set */
2821	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2822		struct f2fs_nat_entry *raw_ne;
2823		nid_t nid = nat_get_nid(ne);
2824		int offset;
2825
2826		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2827
2828		if (to_journal) {
2829			offset = f2fs_lookup_journal_in_cursum(journal,
2830							NAT_JOURNAL, nid, 1);
2831			f2fs_bug_on(sbi, offset < 0);
2832			raw_ne = &nat_in_journal(journal, offset);
2833			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2834		} else {
2835			raw_ne = &nat_blk->entries[nid - start_nid];
2836		}
2837		raw_nat_from_node_info(raw_ne, &ne->ni);
2838		nat_reset_flag(ne);
2839		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2840		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2841			add_free_nid(sbi, nid, false, true);
2842		} else {
2843			spin_lock(&NM_I(sbi)->nid_list_lock);
2844			update_free_nid_bitmap(sbi, nid, false, false);
2845			spin_unlock(&NM_I(sbi)->nid_list_lock);
2846		}
2847	}
2848
2849	if (to_journal) {
2850		up_write(&curseg->journal_rwsem);
2851	} else {
2852		__update_nat_bits(sbi, start_nid, page);
2853		f2fs_put_page(page, 1);
2854	}
2855
2856	/* Allow dirty nats by node block allocation in write_begin */
2857	if (!set->entry_cnt) {
2858		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2859		kmem_cache_free(nat_entry_set_slab, set);
2860	}
2861	return 0;
2862}
2863
2864/*
2865 * This function is called during the checkpointing process.
2866 */
2867int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2868{
2869	struct f2fs_nm_info *nm_i = NM_I(sbi);
2870	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2871	struct f2fs_journal *journal = curseg->journal;
2872	struct nat_entry_set *setvec[SETVEC_SIZE];
2873	struct nat_entry_set *set, *tmp;
2874	unsigned int found;
2875	nid_t set_idx = 0;
2876	LIST_HEAD(sets);
2877	int err = 0;
2878
2879	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2880	if (enabled_nat_bits(sbi, cpc)) {
2881		down_write(&nm_i->nat_tree_lock);
 
 
 
2882		remove_nats_in_journal(sbi);
2883		up_write(&nm_i->nat_tree_lock);
2884	}
2885
2886	if (!nm_i->dirty_nat_cnt)
2887		return 0;
2888
2889	down_write(&nm_i->nat_tree_lock);
2890
2891	/*
2892	 * if there are no enough space in journal to store dirty nat
2893	 * entries, remove all entries from journal and merge them
2894	 * into nat entry set.
2895	 */
2896	if (enabled_nat_bits(sbi, cpc) ||
2897		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
 
2898		remove_nats_in_journal(sbi);
2899
2900	while ((found = __gang_lookup_nat_set(nm_i,
2901					set_idx, SETVEC_SIZE, setvec))) {
2902		unsigned idx;
 
2903		set_idx = setvec[found - 1]->set + 1;
2904		for (idx = 0; idx < found; idx++)
2905			__adjust_nat_entry_set(setvec[idx], &sets,
2906						MAX_NAT_JENTRIES(journal));
2907	}
2908
2909	/* flush dirty nats in nat entry set */
2910	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2911		err = __flush_nat_entry_set(sbi, set, cpc);
2912		if (err)
2913			break;
2914	}
2915
2916	up_write(&nm_i->nat_tree_lock);
2917	/* Allow dirty nats by node block allocation in write_begin */
2918
2919	return err;
2920}
2921
2922static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2923{
2924	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2925	struct f2fs_nm_info *nm_i = NM_I(sbi);
2926	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2927	unsigned int i;
2928	__u64 cp_ver = cur_cp_version(ckpt);
2929	block_t nat_bits_addr;
2930
2931	if (!enabled_nat_bits(sbi, NULL))
2932		return 0;
2933
2934	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2935	nm_i->nat_bits = f2fs_kzalloc(sbi,
2936			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2937	if (!nm_i->nat_bits)
2938		return -ENOMEM;
2939
2940	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
 
 
 
 
 
 
2941						nm_i->nat_bits_blocks;
2942	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2943		struct page *page;
2944
2945		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2946		if (IS_ERR(page))
2947			return PTR_ERR(page);
2948
2949		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2950					page_address(page), F2FS_BLKSIZE);
2951		f2fs_put_page(page, 1);
2952	}
2953
2954	cp_ver |= (cur_cp_crc(ckpt) << 32);
2955	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2956		disable_nat_bits(sbi, true);
 
 
2957		return 0;
2958	}
2959
2960	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2961	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2962
2963	f2fs_notice(sbi, "Found nat_bits in checkpoint");
2964	return 0;
2965}
2966
2967static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2968{
2969	struct f2fs_nm_info *nm_i = NM_I(sbi);
2970	unsigned int i = 0;
2971	nid_t nid, last_nid;
2972
2973	if (!enabled_nat_bits(sbi, NULL))
2974		return;
2975
2976	for (i = 0; i < nm_i->nat_blocks; i++) {
2977		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2978		if (i >= nm_i->nat_blocks)
2979			break;
2980
2981		__set_bit_le(i, nm_i->nat_block_bitmap);
2982
2983		nid = i * NAT_ENTRY_PER_BLOCK;
2984		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2985
2986		spin_lock(&NM_I(sbi)->nid_list_lock);
2987		for (; nid < last_nid; nid++)
2988			update_free_nid_bitmap(sbi, nid, true, true);
2989		spin_unlock(&NM_I(sbi)->nid_list_lock);
2990	}
2991
2992	for (i = 0; i < nm_i->nat_blocks; i++) {
2993		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2994		if (i >= nm_i->nat_blocks)
2995			break;
2996
2997		__set_bit_le(i, nm_i->nat_block_bitmap);
2998	}
2999}
3000
3001static int init_node_manager(struct f2fs_sb_info *sbi)
3002{
3003	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3004	struct f2fs_nm_info *nm_i = NM_I(sbi);
3005	unsigned char *version_bitmap;
3006	unsigned int nat_segs;
3007	int err;
3008
3009	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3010
3011	/* segment_count_nat includes pair segment so divide to 2. */
3012	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3013	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3014	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3015
3016	/* not used nids: 0, node, meta, (and root counted as valid node) */
3017	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3018						F2FS_RESERVED_NODE_NUM;
3019	nm_i->nid_cnt[FREE_NID] = 0;
3020	nm_i->nid_cnt[PREALLOC_NID] = 0;
3021	nm_i->nat_cnt = 0;
3022	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3023	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3024	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
 
3025
3026	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3027	INIT_LIST_HEAD(&nm_i->free_nid_list);
3028	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3029	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3030	INIT_LIST_HEAD(&nm_i->nat_entries);
3031	spin_lock_init(&nm_i->nat_list_lock);
3032
3033	mutex_init(&nm_i->build_lock);
3034	spin_lock_init(&nm_i->nid_list_lock);
3035	init_rwsem(&nm_i->nat_tree_lock);
3036
3037	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3038	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3039	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3040	if (!version_bitmap)
3041		return -EFAULT;
3042
3043	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3044					GFP_KERNEL);
3045	if (!nm_i->nat_bitmap)
3046		return -ENOMEM;
3047
3048	err = __get_nat_bitmaps(sbi);
3049	if (err)
3050		return err;
3051
3052#ifdef CONFIG_F2FS_CHECK_FS
3053	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3054					GFP_KERNEL);
3055	if (!nm_i->nat_bitmap_mir)
3056		return -ENOMEM;
3057#endif
3058
3059	return 0;
3060}
3061
3062static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3063{
3064	struct f2fs_nm_info *nm_i = NM_I(sbi);
3065	int i;
3066
3067	nm_i->free_nid_bitmap =
3068		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3069					     nm_i->nat_blocks),
3070			     GFP_KERNEL);
3071	if (!nm_i->free_nid_bitmap)
3072		return -ENOMEM;
3073
3074	for (i = 0; i < nm_i->nat_blocks; i++) {
3075		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3076			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3077		if (!nm_i->free_nid_bitmap[i])
3078			return -ENOMEM;
3079	}
3080
3081	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3082								GFP_KERNEL);
3083	if (!nm_i->nat_block_bitmap)
3084		return -ENOMEM;
3085
3086	nm_i->free_nid_count =
3087		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3088					      nm_i->nat_blocks),
3089			      GFP_KERNEL);
3090	if (!nm_i->free_nid_count)
3091		return -ENOMEM;
3092	return 0;
3093}
3094
3095int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3096{
3097	int err;
3098
3099	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3100							GFP_KERNEL);
3101	if (!sbi->nm_info)
3102		return -ENOMEM;
3103
3104	err = init_node_manager(sbi);
3105	if (err)
3106		return err;
3107
3108	err = init_free_nid_cache(sbi);
3109	if (err)
3110		return err;
3111
3112	/* load free nid status from nat_bits table */
3113	load_free_nid_bitmap(sbi);
3114
3115	return f2fs_build_free_nids(sbi, true, true);
3116}
3117
3118void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3119{
3120	struct f2fs_nm_info *nm_i = NM_I(sbi);
3121	struct free_nid *i, *next_i;
3122	struct nat_entry *natvec[NATVEC_SIZE];
3123	struct nat_entry_set *setvec[SETVEC_SIZE];
 
3124	nid_t nid = 0;
3125	unsigned int found;
3126
3127	if (!nm_i)
3128		return;
3129
3130	/* destroy free nid list */
3131	spin_lock(&nm_i->nid_list_lock);
3132	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3133		__remove_free_nid(sbi, i, FREE_NID);
3134		spin_unlock(&nm_i->nid_list_lock);
3135		kmem_cache_free(free_nid_slab, i);
3136		spin_lock(&nm_i->nid_list_lock);
3137	}
3138	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3139	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3140	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3141	spin_unlock(&nm_i->nid_list_lock);
3142
3143	/* destroy nat cache */
3144	down_write(&nm_i->nat_tree_lock);
3145	while ((found = __gang_lookup_nat_cache(nm_i,
3146					nid, NATVEC_SIZE, natvec))) {
3147		unsigned idx;
3148
3149		nid = nat_get_nid(natvec[found - 1]) + 1;
3150		for (idx = 0; idx < found; idx++) {
3151			spin_lock(&nm_i->nat_list_lock);
3152			list_del(&natvec[idx]->list);
3153			spin_unlock(&nm_i->nat_list_lock);
3154
3155			__del_from_nat_cache(nm_i, natvec[idx]);
3156		}
3157	}
3158	f2fs_bug_on(sbi, nm_i->nat_cnt);
3159
3160	/* destroy nat set cache */
3161	nid = 0;
 
3162	while ((found = __gang_lookup_nat_set(nm_i,
3163					nid, SETVEC_SIZE, setvec))) {
3164		unsigned idx;
3165
3166		nid = setvec[found - 1]->set + 1;
3167		for (idx = 0; idx < found; idx++) {
3168			/* entry_cnt is not zero, when cp_error was occurred */
3169			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3170			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3171			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3172		}
3173	}
3174	up_write(&nm_i->nat_tree_lock);
3175
3176	kvfree(nm_i->nat_block_bitmap);
3177	if (nm_i->free_nid_bitmap) {
3178		int i;
3179
3180		for (i = 0; i < nm_i->nat_blocks; i++)
3181			kvfree(nm_i->free_nid_bitmap[i]);
3182		kvfree(nm_i->free_nid_bitmap);
3183	}
3184	kvfree(nm_i->free_nid_count);
3185
3186	kvfree(nm_i->nat_bitmap);
3187	kvfree(nm_i->nat_bits);
3188#ifdef CONFIG_F2FS_CHECK_FS
3189	kvfree(nm_i->nat_bitmap_mir);
3190#endif
3191	sbi->nm_info = NULL;
3192	kvfree(nm_i);
3193}
3194
3195int __init f2fs_create_node_manager_caches(void)
3196{
3197	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3198			sizeof(struct nat_entry));
3199	if (!nat_entry_slab)
3200		goto fail;
3201
3202	free_nid_slab = f2fs_kmem_cache_create("free_nid",
3203			sizeof(struct free_nid));
3204	if (!free_nid_slab)
3205		goto destroy_nat_entry;
3206
3207	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3208			sizeof(struct nat_entry_set));
3209	if (!nat_entry_set_slab)
3210		goto destroy_free_nid;
3211
3212	fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3213			sizeof(struct fsync_node_entry));
3214	if (!fsync_node_entry_slab)
3215		goto destroy_nat_entry_set;
3216	return 0;
3217
3218destroy_nat_entry_set:
3219	kmem_cache_destroy(nat_entry_set_slab);
3220destroy_free_nid:
3221	kmem_cache_destroy(free_nid_slab);
3222destroy_nat_entry:
3223	kmem_cache_destroy(nat_entry_slab);
3224fail:
3225	return -ENOMEM;
3226}
3227
3228void f2fs_destroy_node_manager_caches(void)
3229{
3230	kmem_cache_destroy(fsync_node_entry_slab);
3231	kmem_cache_destroy(nat_entry_set_slab);
3232	kmem_cache_destroy(free_nid_slab);
3233	kmem_cache_destroy(nat_entry_slab);
3234}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/sched/mm.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "iostat.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
  40		return -EFSCORRUPTED;
  41	}
  42	return 0;
  43}
  44
  45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  46{
  47	struct f2fs_nm_info *nm_i = NM_I(sbi);
  48	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  49	struct sysinfo val;
  50	unsigned long avail_ram;
  51	unsigned long mem_size = 0;
  52	bool res = false;
  53
  54	if (!nm_i)
  55		return true;
  56
  57	si_meminfo(&val);
  58
  59	/* only uses low memory */
  60	avail_ram = val.totalram - val.totalhigh;
  61
  62	/*
  63	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
  64	 */
  65	if (type == FREE_NIDS) {
  66		mem_size = (nm_i->nid_cnt[FREE_NID] *
  67				sizeof(struct free_nid)) >> PAGE_SHIFT;
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  69	} else if (type == NAT_ENTRIES) {
  70		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
  71				sizeof(struct nat_entry)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  73		if (excess_cached_nats(sbi))
  74			res = false;
  75	} else if (type == DIRTY_DENTS) {
  76		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return false;
  78		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  79		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  80	} else if (type == INO_ENTRIES) {
  81		int i;
  82
  83		for (i = 0; i < MAX_INO_ENTRY; i++)
  84			mem_size += sbi->im[i].ino_num *
  85						sizeof(struct ino_entry);
  86		mem_size >>= PAGE_SHIFT;
  87		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  88	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
  89		enum extent_type etype = type == READ_EXTENT_CACHE ?
  90						EX_READ : EX_BLOCK_AGE;
  91		struct extent_tree_info *eti = &sbi->extent_tree[etype];
  92
  93		mem_size = (atomic_read(&eti->total_ext_tree) *
  94				sizeof(struct extent_tree) +
  95				atomic_read(&eti->total_ext_node) *
  96				sizeof(struct extent_node)) >> PAGE_SHIFT;
  97		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  98	} else if (type == DISCARD_CACHE) {
  99		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
 100				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
 101		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
 102	} else if (type == COMPRESS_PAGE) {
 103#ifdef CONFIG_F2FS_FS_COMPRESSION
 104		unsigned long free_ram = val.freeram;
 105
 106		/*
 107		 * free memory is lower than watermark or cached page count
 108		 * exceed threshold, deny caching compress page.
 109		 */
 110		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
 111			(COMPRESS_MAPPING(sbi)->nrpages <
 112			 free_ram * sbi->compress_percent / 100);
 113#else
 114		res = false;
 115#endif
 116	} else {
 117		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 118			return true;
 119	}
 120	return res;
 121}
 122
 123static void clear_node_page_dirty(struct page *page)
 124{
 125	if (PageDirty(page)) {
 126		f2fs_clear_page_cache_dirty_tag(page);
 127		clear_page_dirty_for_io(page);
 128		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 129	}
 130	ClearPageUptodate(page);
 131}
 132
 133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 134{
 135	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
 136}
 137
 138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 139{
 140	struct page *src_page;
 141	struct page *dst_page;
 142	pgoff_t dst_off;
 143	void *src_addr;
 144	void *dst_addr;
 145	struct f2fs_nm_info *nm_i = NM_I(sbi);
 146
 147	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 148
 149	/* get current nat block page with lock */
 150	src_page = get_current_nat_page(sbi, nid);
 151	if (IS_ERR(src_page))
 152		return src_page;
 153	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 154	f2fs_bug_on(sbi, PageDirty(src_page));
 155
 156	src_addr = page_address(src_page);
 157	dst_addr = page_address(dst_page);
 158	memcpy(dst_addr, src_addr, PAGE_SIZE);
 159	set_page_dirty(dst_page);
 160	f2fs_put_page(src_page, 1);
 161
 162	set_to_next_nat(nm_i, nid);
 163
 164	return dst_page;
 165}
 166
 167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
 168						nid_t nid, bool no_fail)
 169{
 170	struct nat_entry *new;
 171
 172	new = f2fs_kmem_cache_alloc(nat_entry_slab,
 173					GFP_F2FS_ZERO, no_fail, sbi);
 
 
 174	if (new) {
 175		nat_set_nid(new, nid);
 176		nat_reset_flag(new);
 177	}
 178	return new;
 179}
 180
 181static void __free_nat_entry(struct nat_entry *e)
 182{
 183	kmem_cache_free(nat_entry_slab, e);
 184}
 185
 186/* must be locked by nat_tree_lock */
 187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 188	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 189{
 190	if (no_fail)
 191		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 192	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 193		return NULL;
 194
 195	if (raw_ne)
 196		node_info_from_raw_nat(&ne->ni, raw_ne);
 197
 198	spin_lock(&nm_i->nat_list_lock);
 199	list_add_tail(&ne->list, &nm_i->nat_entries);
 200	spin_unlock(&nm_i->nat_list_lock);
 201
 202	nm_i->nat_cnt[TOTAL_NAT]++;
 203	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 204	return ne;
 205}
 206
 207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 208{
 209	struct nat_entry *ne;
 210
 211	ne = radix_tree_lookup(&nm_i->nat_root, n);
 212
 213	/* for recent accessed nat entry, move it to tail of lru list */
 214	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 215		spin_lock(&nm_i->nat_list_lock);
 216		if (!list_empty(&ne->list))
 217			list_move_tail(&ne->list, &nm_i->nat_entries);
 218		spin_unlock(&nm_i->nat_list_lock);
 219	}
 220
 221	return ne;
 222}
 223
 224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 225		nid_t start, unsigned int nr, struct nat_entry **ep)
 226{
 227	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 228}
 229
 230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 231{
 232	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 233	nm_i->nat_cnt[TOTAL_NAT]--;
 234	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 235	__free_nat_entry(e);
 236}
 237
 238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 239							struct nat_entry *ne)
 240{
 241	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 242	struct nat_entry_set *head;
 243
 244	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 245	if (!head) {
 246		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
 247						GFP_NOFS, true, NULL);
 248
 249		INIT_LIST_HEAD(&head->entry_list);
 250		INIT_LIST_HEAD(&head->set_list);
 251		head->set = set;
 252		head->entry_cnt = 0;
 253		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 254	}
 255	return head;
 256}
 257
 258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 259						struct nat_entry *ne)
 260{
 261	struct nat_entry_set *head;
 262	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 263
 264	if (!new_ne)
 265		head = __grab_nat_entry_set(nm_i, ne);
 266
 267	/*
 268	 * update entry_cnt in below condition:
 269	 * 1. update NEW_ADDR to valid block address;
 270	 * 2. update old block address to new one;
 271	 */
 272	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 273				!get_nat_flag(ne, IS_DIRTY)))
 274		head->entry_cnt++;
 275
 276	set_nat_flag(ne, IS_PREALLOC, new_ne);
 277
 278	if (get_nat_flag(ne, IS_DIRTY))
 279		goto refresh_list;
 280
 281	nm_i->nat_cnt[DIRTY_NAT]++;
 282	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 283	set_nat_flag(ne, IS_DIRTY, true);
 284refresh_list:
 285	spin_lock(&nm_i->nat_list_lock);
 286	if (new_ne)
 287		list_del_init(&ne->list);
 288	else
 289		list_move_tail(&ne->list, &head->entry_list);
 290	spin_unlock(&nm_i->nat_list_lock);
 291}
 292
 293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 294		struct nat_entry_set *set, struct nat_entry *ne)
 295{
 296	spin_lock(&nm_i->nat_list_lock);
 297	list_move_tail(&ne->list, &nm_i->nat_entries);
 298	spin_unlock(&nm_i->nat_list_lock);
 299
 300	set_nat_flag(ne, IS_DIRTY, false);
 301	set->entry_cnt--;
 302	nm_i->nat_cnt[DIRTY_NAT]--;
 303	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 304}
 305
 306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 307		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 308{
 309	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 310							start, nr);
 311}
 312
 313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 314{
 315	return NODE_MAPPING(sbi) == page->mapping &&
 316			IS_DNODE(page) && is_cold_node(page);
 317}
 318
 319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 320{
 321	spin_lock_init(&sbi->fsync_node_lock);
 322	INIT_LIST_HEAD(&sbi->fsync_node_list);
 323	sbi->fsync_seg_id = 0;
 324	sbi->fsync_node_num = 0;
 325}
 326
 327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 328							struct page *page)
 329{
 330	struct fsync_node_entry *fn;
 331	unsigned long flags;
 332	unsigned int seq_id;
 333
 334	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
 335					GFP_NOFS, true, NULL);
 336
 337	get_page(page);
 338	fn->page = page;
 339	INIT_LIST_HEAD(&fn->list);
 340
 341	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 342	list_add_tail(&fn->list, &sbi->fsync_node_list);
 343	fn->seq_id = sbi->fsync_seg_id++;
 344	seq_id = fn->seq_id;
 345	sbi->fsync_node_num++;
 346	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 347
 348	return seq_id;
 349}
 350
 351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 352{
 353	struct fsync_node_entry *fn;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 357	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 358		if (fn->page == page) {
 359			list_del(&fn->list);
 360			sbi->fsync_node_num--;
 361			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 362			kmem_cache_free(fsync_node_entry_slab, fn);
 363			put_page(page);
 364			return;
 365		}
 366	}
 367	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 368	f2fs_bug_on(sbi, 1);
 369}
 370
 371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 372{
 373	unsigned long flags;
 374
 375	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 376	sbi->fsync_seg_id = 0;
 377	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 378}
 379
 380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 381{
 382	struct f2fs_nm_info *nm_i = NM_I(sbi);
 383	struct nat_entry *e;
 384	bool need = false;
 385
 386	f2fs_down_read(&nm_i->nat_tree_lock);
 387	e = __lookup_nat_cache(nm_i, nid);
 388	if (e) {
 389		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 390				!get_nat_flag(e, HAS_FSYNCED_INODE))
 391			need = true;
 392	}
 393	f2fs_up_read(&nm_i->nat_tree_lock);
 394	return need;
 395}
 396
 397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 398{
 399	struct f2fs_nm_info *nm_i = NM_I(sbi);
 400	struct nat_entry *e;
 401	bool is_cp = true;
 402
 403	f2fs_down_read(&nm_i->nat_tree_lock);
 404	e = __lookup_nat_cache(nm_i, nid);
 405	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 406		is_cp = false;
 407	f2fs_up_read(&nm_i->nat_tree_lock);
 408	return is_cp;
 409}
 410
 411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 412{
 413	struct f2fs_nm_info *nm_i = NM_I(sbi);
 414	struct nat_entry *e;
 415	bool need_update = true;
 416
 417	f2fs_down_read(&nm_i->nat_tree_lock);
 418	e = __lookup_nat_cache(nm_i, ino);
 419	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 420			(get_nat_flag(e, IS_CHECKPOINTED) ||
 421			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 422		need_update = false;
 423	f2fs_up_read(&nm_i->nat_tree_lock);
 424	return need_update;
 425}
 426
 427/* must be locked by nat_tree_lock */
 428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 429						struct f2fs_nat_entry *ne)
 430{
 431	struct f2fs_nm_info *nm_i = NM_I(sbi);
 432	struct nat_entry *new, *e;
 433
 434	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
 435	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
 436		return;
 437
 438	new = __alloc_nat_entry(sbi, nid, false);
 439	if (!new)
 440		return;
 441
 442	f2fs_down_write(&nm_i->nat_tree_lock);
 443	e = __lookup_nat_cache(nm_i, nid);
 444	if (!e)
 445		e = __init_nat_entry(nm_i, new, ne, false);
 446	else
 447		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 448				nat_get_blkaddr(e) !=
 449					le32_to_cpu(ne->block_addr) ||
 450				nat_get_version(e) != ne->version);
 451	f2fs_up_write(&nm_i->nat_tree_lock);
 452	if (e != new)
 453		__free_nat_entry(new);
 454}
 455
 456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 457			block_t new_blkaddr, bool fsync_done)
 458{
 459	struct f2fs_nm_info *nm_i = NM_I(sbi);
 460	struct nat_entry *e;
 461	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
 462
 463	f2fs_down_write(&nm_i->nat_tree_lock);
 464	e = __lookup_nat_cache(nm_i, ni->nid);
 465	if (!e) {
 466		e = __init_nat_entry(nm_i, new, NULL, true);
 467		copy_node_info(&e->ni, ni);
 468		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 469	} else if (new_blkaddr == NEW_ADDR) {
 470		/*
 471		 * when nid is reallocated,
 472		 * previous nat entry can be remained in nat cache.
 473		 * So, reinitialize it with new information.
 474		 */
 475		copy_node_info(&e->ni, ni);
 476		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 477	}
 478	/* let's free early to reduce memory consumption */
 479	if (e != new)
 480		__free_nat_entry(new);
 481
 482	/* sanity check */
 483	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 484	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 485			new_blkaddr == NULL_ADDR);
 486	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 487			new_blkaddr == NEW_ADDR);
 488	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 489			new_blkaddr == NEW_ADDR);
 490
 491	/* increment version no as node is removed */
 492	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 493		unsigned char version = nat_get_version(e);
 494
 495		nat_set_version(e, inc_node_version(version));
 496	}
 497
 498	/* change address */
 499	nat_set_blkaddr(e, new_blkaddr);
 500	if (!__is_valid_data_blkaddr(new_blkaddr))
 501		set_nat_flag(e, IS_CHECKPOINTED, false);
 502	__set_nat_cache_dirty(nm_i, e);
 503
 504	/* update fsync_mark if its inode nat entry is still alive */
 505	if (ni->nid != ni->ino)
 506		e = __lookup_nat_cache(nm_i, ni->ino);
 507	if (e) {
 508		if (fsync_done && ni->nid == ni->ino)
 509			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 510		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 511	}
 512	f2fs_up_write(&nm_i->nat_tree_lock);
 513}
 514
 515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 516{
 517	struct f2fs_nm_info *nm_i = NM_I(sbi);
 518	int nr = nr_shrink;
 519
 520	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
 521		return 0;
 522
 523	spin_lock(&nm_i->nat_list_lock);
 524	while (nr_shrink) {
 525		struct nat_entry *ne;
 526
 527		if (list_empty(&nm_i->nat_entries))
 528			break;
 529
 530		ne = list_first_entry(&nm_i->nat_entries,
 531					struct nat_entry, list);
 532		list_del(&ne->list);
 533		spin_unlock(&nm_i->nat_list_lock);
 534
 535		__del_from_nat_cache(nm_i, ne);
 536		nr_shrink--;
 537
 538		spin_lock(&nm_i->nat_list_lock);
 539	}
 540	spin_unlock(&nm_i->nat_list_lock);
 541
 542	f2fs_up_write(&nm_i->nat_tree_lock);
 543	return nr - nr_shrink;
 544}
 545
 
 
 
 546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 547				struct node_info *ni, bool checkpoint_context)
 548{
 549	struct f2fs_nm_info *nm_i = NM_I(sbi);
 550	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 551	struct f2fs_journal *journal = curseg->journal;
 552	nid_t start_nid = START_NID(nid);
 553	struct f2fs_nat_block *nat_blk;
 554	struct page *page = NULL;
 555	struct f2fs_nat_entry ne;
 556	struct nat_entry *e;
 557	pgoff_t index;
 558	block_t blkaddr;
 559	int i;
 560
 561	ni->nid = nid;
 562retry:
 563	/* Check nat cache */
 564	f2fs_down_read(&nm_i->nat_tree_lock);
 565	e = __lookup_nat_cache(nm_i, nid);
 566	if (e) {
 567		ni->ino = nat_get_ino(e);
 568		ni->blk_addr = nat_get_blkaddr(e);
 569		ni->version = nat_get_version(e);
 570		f2fs_up_read(&nm_i->nat_tree_lock);
 571		return 0;
 572	}
 573
 574	/*
 575	 * Check current segment summary by trying to grab journal_rwsem first.
 576	 * This sem is on the critical path on the checkpoint requiring the above
 577	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
 578	 * while not bothering checkpoint.
 579	 */
 580	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
 581		down_read(&curseg->journal_rwsem);
 582	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
 583				!down_read_trylock(&curseg->journal_rwsem)) {
 584		f2fs_up_read(&nm_i->nat_tree_lock);
 585		goto retry;
 586	}
 587
 
 
 588	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 589	if (i >= 0) {
 590		ne = nat_in_journal(journal, i);
 591		node_info_from_raw_nat(ni, &ne);
 592	}
 593	up_read(&curseg->journal_rwsem);
 594	if (i >= 0) {
 595		f2fs_up_read(&nm_i->nat_tree_lock);
 596		goto cache;
 597	}
 598
 599	/* Fill node_info from nat page */
 600	index = current_nat_addr(sbi, nid);
 601	f2fs_up_read(&nm_i->nat_tree_lock);
 602
 603	page = f2fs_get_meta_page(sbi, index);
 604	if (IS_ERR(page))
 605		return PTR_ERR(page);
 606
 607	nat_blk = (struct f2fs_nat_block *)page_address(page);
 608	ne = nat_blk->entries[nid - start_nid];
 609	node_info_from_raw_nat(ni, &ne);
 610	f2fs_put_page(page, 1);
 611cache:
 612	blkaddr = le32_to_cpu(ne.block_addr);
 613	if (__is_valid_data_blkaddr(blkaddr) &&
 614		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 615		return -EFAULT;
 616
 617	/* cache nat entry */
 618	cache_nat_entry(sbi, nid, &ne);
 619	return 0;
 620}
 621
 622/*
 623 * readahead MAX_RA_NODE number of node pages.
 624 */
 625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 626{
 627	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 628	struct blk_plug plug;
 629	int i, end;
 630	nid_t nid;
 631
 632	blk_start_plug(&plug);
 633
 634	/* Then, try readahead for siblings of the desired node */
 635	end = start + n;
 636	end = min(end, (int)NIDS_PER_BLOCK);
 637	for (i = start; i < end; i++) {
 638		nid = get_nid(parent, i, false);
 639		f2fs_ra_node_page(sbi, nid);
 640	}
 641
 642	blk_finish_plug(&plug);
 643}
 644
 645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 646{
 647	const long direct_index = ADDRS_PER_INODE(dn->inode);
 648	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 649	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 650	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 651	int cur_level = dn->cur_level;
 652	int max_level = dn->max_level;
 653	pgoff_t base = 0;
 654
 655	if (!dn->max_level)
 656		return pgofs + 1;
 657
 658	while (max_level-- > cur_level)
 659		skipped_unit *= NIDS_PER_BLOCK;
 660
 661	switch (dn->max_level) {
 662	case 3:
 663		base += 2 * indirect_blks;
 664		fallthrough;
 665	case 2:
 666		base += 2 * direct_blks;
 667		fallthrough;
 668	case 1:
 669		base += direct_index;
 670		break;
 671	default:
 672		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 673	}
 674
 675	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 676}
 677
 678/*
 679 * The maximum depth is four.
 680 * Offset[0] will have raw inode offset.
 681 */
 682static int get_node_path(struct inode *inode, long block,
 683				int offset[4], unsigned int noffset[4])
 684{
 685	const long direct_index = ADDRS_PER_INODE(inode);
 686	const long direct_blks = ADDRS_PER_BLOCK(inode);
 687	const long dptrs_per_blk = NIDS_PER_BLOCK;
 688	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 689	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 690	int n = 0;
 691	int level = 0;
 692
 693	noffset[0] = 0;
 694
 695	if (block < direct_index) {
 696		offset[n] = block;
 697		goto got;
 698	}
 699	block -= direct_index;
 700	if (block < direct_blks) {
 701		offset[n++] = NODE_DIR1_BLOCK;
 702		noffset[n] = 1;
 703		offset[n] = block;
 704		level = 1;
 705		goto got;
 706	}
 707	block -= direct_blks;
 708	if (block < direct_blks) {
 709		offset[n++] = NODE_DIR2_BLOCK;
 710		noffset[n] = 2;
 711		offset[n] = block;
 712		level = 1;
 713		goto got;
 714	}
 715	block -= direct_blks;
 716	if (block < indirect_blks) {
 717		offset[n++] = NODE_IND1_BLOCK;
 718		noffset[n] = 3;
 719		offset[n++] = block / direct_blks;
 720		noffset[n] = 4 + offset[n - 1];
 721		offset[n] = block % direct_blks;
 722		level = 2;
 723		goto got;
 724	}
 725	block -= indirect_blks;
 726	if (block < indirect_blks) {
 727		offset[n++] = NODE_IND2_BLOCK;
 728		noffset[n] = 4 + dptrs_per_blk;
 729		offset[n++] = block / direct_blks;
 730		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 731		offset[n] = block % direct_blks;
 732		level = 2;
 733		goto got;
 734	}
 735	block -= indirect_blks;
 736	if (block < dindirect_blks) {
 737		offset[n++] = NODE_DIND_BLOCK;
 738		noffset[n] = 5 + (dptrs_per_blk * 2);
 739		offset[n++] = block / indirect_blks;
 740		noffset[n] = 6 + (dptrs_per_blk * 2) +
 741			      offset[n - 1] * (dptrs_per_blk + 1);
 742		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 743		noffset[n] = 7 + (dptrs_per_blk * 2) +
 744			      offset[n - 2] * (dptrs_per_blk + 1) +
 745			      offset[n - 1];
 746		offset[n] = block % direct_blks;
 747		level = 3;
 748		goto got;
 749	} else {
 750		return -E2BIG;
 751	}
 752got:
 753	return level;
 754}
 755
 756/*
 757 * Caller should call f2fs_put_dnode(dn).
 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
 
 760 */
 761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 762{
 763	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 764	struct page *npage[4];
 765	struct page *parent = NULL;
 766	int offset[4];
 767	unsigned int noffset[4];
 768	nid_t nids[4];
 769	int level, i = 0;
 770	int err = 0;
 771
 772	level = get_node_path(dn->inode, index, offset, noffset);
 773	if (level < 0)
 774		return level;
 775
 776	nids[0] = dn->inode->i_ino;
 777	npage[0] = dn->inode_page;
 778
 779	if (!npage[0]) {
 780		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 781		if (IS_ERR(npage[0]))
 782			return PTR_ERR(npage[0]);
 783	}
 784
 785	/* if inline_data is set, should not report any block indices */
 786	if (f2fs_has_inline_data(dn->inode) && index) {
 787		err = -ENOENT;
 788		f2fs_put_page(npage[0], 1);
 789		goto release_out;
 790	}
 791
 792	parent = npage[0];
 793	if (level != 0)
 794		nids[1] = get_nid(parent, offset[0], true);
 795	dn->inode_page = npage[0];
 796	dn->inode_page_locked = true;
 797
 798	/* get indirect or direct nodes */
 799	for (i = 1; i <= level; i++) {
 800		bool done = false;
 801
 802		if (!nids[i] && mode == ALLOC_NODE) {
 803			/* alloc new node */
 804			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 805				err = -ENOSPC;
 806				goto release_pages;
 807			}
 808
 809			dn->nid = nids[i];
 810			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 811			if (IS_ERR(npage[i])) {
 812				f2fs_alloc_nid_failed(sbi, nids[i]);
 813				err = PTR_ERR(npage[i]);
 814				goto release_pages;
 815			}
 816
 817			set_nid(parent, offset[i - 1], nids[i], i == 1);
 818			f2fs_alloc_nid_done(sbi, nids[i]);
 819			done = true;
 820		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 821			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 822			if (IS_ERR(npage[i])) {
 823				err = PTR_ERR(npage[i]);
 824				goto release_pages;
 825			}
 826			done = true;
 827		}
 828		if (i == 1) {
 829			dn->inode_page_locked = false;
 830			unlock_page(parent);
 831		} else {
 832			f2fs_put_page(parent, 1);
 833		}
 834
 835		if (!done) {
 836			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 837			if (IS_ERR(npage[i])) {
 838				err = PTR_ERR(npage[i]);
 839				f2fs_put_page(npage[0], 0);
 840				goto release_out;
 841			}
 842		}
 843		if (i < level) {
 844			parent = npage[i];
 845			nids[i + 1] = get_nid(parent, offset[i], false);
 846		}
 847	}
 848	dn->nid = nids[level];
 849	dn->ofs_in_node = offset[level];
 850	dn->node_page = npage[level];
 851	dn->data_blkaddr = f2fs_data_blkaddr(dn);
 852
 853	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
 854					f2fs_sb_has_readonly(sbi)) {
 855		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
 856		unsigned int ofs_in_node = dn->ofs_in_node;
 857		pgoff_t fofs = index;
 858		unsigned int c_len;
 859		block_t blkaddr;
 860
 861		/* should align fofs and ofs_in_node to cluster_size */
 862		if (fofs % cluster_size) {
 863			fofs = round_down(fofs, cluster_size);
 864			ofs_in_node = round_down(ofs_in_node, cluster_size);
 865		}
 866
 867		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
 868		if (!c_len)
 869			goto out;
 870
 871		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
 872		if (blkaddr == COMPRESS_ADDR)
 873			blkaddr = data_blkaddr(dn->inode, dn->node_page,
 874						ofs_in_node + 1);
 875
 876		f2fs_update_read_extent_tree_range_compressed(dn->inode,
 877					fofs, blkaddr, cluster_size, c_len);
 878	}
 879out:
 880	return 0;
 881
 882release_pages:
 883	f2fs_put_page(parent, 1);
 884	if (i > 1)
 885		f2fs_put_page(npage[0], 0);
 886release_out:
 887	dn->inode_page = NULL;
 888	dn->node_page = NULL;
 889	if (err == -ENOENT) {
 890		dn->cur_level = i;
 891		dn->max_level = level;
 892		dn->ofs_in_node = offset[level];
 893	}
 894	return err;
 895}
 896
 897static int truncate_node(struct dnode_of_data *dn)
 898{
 899	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 900	struct node_info ni;
 901	int err;
 902	pgoff_t index;
 903
 904	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
 905	if (err)
 906		return err;
 907
 908	/* Deallocate node address */
 909	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 910	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 911	set_node_addr(sbi, &ni, NULL_ADDR, false);
 912
 913	if (dn->nid == dn->inode->i_ino) {
 914		f2fs_remove_orphan_inode(sbi, dn->nid);
 915		dec_valid_inode_count(sbi);
 916		f2fs_inode_synced(dn->inode);
 917	}
 918
 919	clear_node_page_dirty(dn->node_page);
 920	set_sbi_flag(sbi, SBI_IS_DIRTY);
 921
 922	index = dn->node_page->index;
 923	f2fs_put_page(dn->node_page, 1);
 924
 925	invalidate_mapping_pages(NODE_MAPPING(sbi),
 926			index, index);
 927
 928	dn->node_page = NULL;
 929	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 930
 931	return 0;
 932}
 933
 934static int truncate_dnode(struct dnode_of_data *dn)
 935{
 936	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 937	struct page *page;
 938	int err;
 939
 940	if (dn->nid == 0)
 941		return 1;
 942
 943	/* get direct node */
 944	page = f2fs_get_node_page(sbi, dn->nid);
 945	if (PTR_ERR(page) == -ENOENT)
 946		return 1;
 947	else if (IS_ERR(page))
 948		return PTR_ERR(page);
 949
 950	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
 951		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
 952				dn->inode->i_ino, dn->nid, ino_of_node(page));
 953		set_sbi_flag(sbi, SBI_NEED_FSCK);
 954		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
 955		f2fs_put_page(page, 1);
 956		return -EFSCORRUPTED;
 957	}
 958
 959	/* Make dnode_of_data for parameter */
 960	dn->node_page = page;
 961	dn->ofs_in_node = 0;
 962	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
 963	err = truncate_node(dn);
 964	if (err) {
 965		f2fs_put_page(page, 1);
 966		return err;
 967	}
 968
 969	return 1;
 970}
 971
 972static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 973						int ofs, int depth)
 974{
 975	struct dnode_of_data rdn = *dn;
 976	struct page *page;
 977	struct f2fs_node *rn;
 978	nid_t child_nid;
 979	unsigned int child_nofs;
 980	int freed = 0;
 981	int i, ret;
 982
 983	if (dn->nid == 0)
 984		return NIDS_PER_BLOCK + 1;
 985
 986	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 987
 988	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 989	if (IS_ERR(page)) {
 990		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 991		return PTR_ERR(page);
 992	}
 993
 994	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 995
 996	rn = F2FS_NODE(page);
 997	if (depth < 3) {
 998		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 999			child_nid = le32_to_cpu(rn->in.nid[i]);
1000			if (child_nid == 0)
1001				continue;
1002			rdn.nid = child_nid;
1003			ret = truncate_dnode(&rdn);
1004			if (ret < 0)
1005				goto out_err;
1006			if (set_nid(page, i, 0, false))
1007				dn->node_changed = true;
1008		}
1009	} else {
1010		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1011		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1012			child_nid = le32_to_cpu(rn->in.nid[i]);
1013			if (child_nid == 0) {
1014				child_nofs += NIDS_PER_BLOCK + 1;
1015				continue;
1016			}
1017			rdn.nid = child_nid;
1018			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1019			if (ret == (NIDS_PER_BLOCK + 1)) {
1020				if (set_nid(page, i, 0, false))
1021					dn->node_changed = true;
1022				child_nofs += ret;
1023			} else if (ret < 0 && ret != -ENOENT) {
1024				goto out_err;
1025			}
1026		}
1027		freed = child_nofs;
1028	}
1029
1030	if (!ofs) {
1031		/* remove current indirect node */
1032		dn->node_page = page;
1033		ret = truncate_node(dn);
1034		if (ret)
1035			goto out_err;
1036		freed++;
1037	} else {
1038		f2fs_put_page(page, 1);
1039	}
1040	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1041	return freed;
1042
1043out_err:
1044	f2fs_put_page(page, 1);
1045	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1046	return ret;
1047}
1048
1049static int truncate_partial_nodes(struct dnode_of_data *dn,
1050			struct f2fs_inode *ri, int *offset, int depth)
1051{
1052	struct page *pages[2];
1053	nid_t nid[3];
1054	nid_t child_nid;
1055	int err = 0;
1056	int i;
1057	int idx = depth - 2;
1058
1059	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1060	if (!nid[0])
1061		return 0;
1062
1063	/* get indirect nodes in the path */
1064	for (i = 0; i < idx + 1; i++) {
1065		/* reference count'll be increased */
1066		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1067		if (IS_ERR(pages[i])) {
1068			err = PTR_ERR(pages[i]);
1069			idx = i - 1;
1070			goto fail;
1071		}
1072		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1073	}
1074
1075	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1076
1077	/* free direct nodes linked to a partial indirect node */
1078	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1079		child_nid = get_nid(pages[idx], i, false);
1080		if (!child_nid)
1081			continue;
1082		dn->nid = child_nid;
1083		err = truncate_dnode(dn);
1084		if (err < 0)
1085			goto fail;
1086		if (set_nid(pages[idx], i, 0, false))
1087			dn->node_changed = true;
1088	}
1089
1090	if (offset[idx + 1] == 0) {
1091		dn->node_page = pages[idx];
1092		dn->nid = nid[idx];
1093		err = truncate_node(dn);
1094		if (err)
1095			goto fail;
1096	} else {
1097		f2fs_put_page(pages[idx], 1);
1098	}
1099	offset[idx]++;
1100	offset[idx + 1] = 0;
1101	idx--;
1102fail:
1103	for (i = idx; i >= 0; i--)
1104		f2fs_put_page(pages[i], 1);
1105
1106	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1107
1108	return err;
1109}
1110
1111/*
1112 * All the block addresses of data and nodes should be nullified.
1113 */
1114int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1115{
1116	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1117	int err = 0, cont = 1;
1118	int level, offset[4], noffset[4];
1119	unsigned int nofs = 0;
1120	struct f2fs_inode *ri;
1121	struct dnode_of_data dn;
1122	struct page *page;
1123
1124	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1125
1126	level = get_node_path(inode, from, offset, noffset);
1127	if (level < 0) {
1128		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1129		return level;
1130	}
1131
1132	page = f2fs_get_node_page(sbi, inode->i_ino);
1133	if (IS_ERR(page)) {
1134		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1135		return PTR_ERR(page);
1136	}
1137
1138	set_new_dnode(&dn, inode, page, NULL, 0);
1139	unlock_page(page);
1140
1141	ri = F2FS_INODE(page);
1142	switch (level) {
1143	case 0:
1144	case 1:
1145		nofs = noffset[1];
1146		break;
1147	case 2:
1148		nofs = noffset[1];
1149		if (!offset[level - 1])
1150			goto skip_partial;
1151		err = truncate_partial_nodes(&dn, ri, offset, level);
1152		if (err < 0 && err != -ENOENT)
1153			goto fail;
1154		nofs += 1 + NIDS_PER_BLOCK;
1155		break;
1156	case 3:
1157		nofs = 5 + 2 * NIDS_PER_BLOCK;
1158		if (!offset[level - 1])
1159			goto skip_partial;
1160		err = truncate_partial_nodes(&dn, ri, offset, level);
1161		if (err < 0 && err != -ENOENT)
1162			goto fail;
1163		break;
1164	default:
1165		BUG();
1166	}
1167
1168skip_partial:
1169	while (cont) {
1170		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1171		switch (offset[0]) {
1172		case NODE_DIR1_BLOCK:
1173		case NODE_DIR2_BLOCK:
1174			err = truncate_dnode(&dn);
1175			break;
1176
1177		case NODE_IND1_BLOCK:
1178		case NODE_IND2_BLOCK:
1179			err = truncate_nodes(&dn, nofs, offset[1], 2);
1180			break;
1181
1182		case NODE_DIND_BLOCK:
1183			err = truncate_nodes(&dn, nofs, offset[1], 3);
1184			cont = 0;
1185			break;
1186
1187		default:
1188			BUG();
1189		}
1190		if (err < 0 && err != -ENOENT)
1191			goto fail;
1192		if (offset[1] == 0 &&
1193				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1194			lock_page(page);
1195			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1196			f2fs_wait_on_page_writeback(page, NODE, true, true);
1197			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1198			set_page_dirty(page);
1199			unlock_page(page);
1200		}
1201		offset[1] = 0;
1202		offset[0]++;
1203		nofs += err;
1204	}
1205fail:
1206	f2fs_put_page(page, 0);
1207	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1208	return err > 0 ? 0 : err;
1209}
1210
1211/* caller must lock inode page */
1212int f2fs_truncate_xattr_node(struct inode *inode)
1213{
1214	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1216	struct dnode_of_data dn;
1217	struct page *npage;
1218	int err;
1219
1220	if (!nid)
1221		return 0;
1222
1223	npage = f2fs_get_node_page(sbi, nid);
1224	if (IS_ERR(npage))
1225		return PTR_ERR(npage);
1226
1227	set_new_dnode(&dn, inode, NULL, npage, nid);
1228	err = truncate_node(&dn);
1229	if (err) {
1230		f2fs_put_page(npage, 1);
1231		return err;
1232	}
1233
1234	f2fs_i_xnid_write(inode, 0);
1235
1236	return 0;
1237}
1238
1239/*
1240 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1241 * f2fs_unlock_op().
1242 */
1243int f2fs_remove_inode_page(struct inode *inode)
1244{
1245	struct dnode_of_data dn;
1246	int err;
1247
1248	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1249	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1250	if (err)
1251		return err;
1252
1253	err = f2fs_truncate_xattr_node(inode);
1254	if (err) {
1255		f2fs_put_dnode(&dn);
1256		return err;
1257	}
1258
1259	/* remove potential inline_data blocks */
1260	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1261				S_ISLNK(inode->i_mode))
1262		f2fs_truncate_data_blocks_range(&dn, 1);
1263
1264	/* 0 is possible, after f2fs_new_inode() has failed */
1265	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1266		f2fs_put_dnode(&dn);
1267		return -EIO;
1268	}
1269
1270	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1271		f2fs_warn(F2FS_I_SB(inode),
1272			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1273			inode->i_ino, (unsigned long long)inode->i_blocks);
1274		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1275	}
1276
1277	/* will put inode & node pages */
1278	err = truncate_node(&dn);
1279	if (err) {
1280		f2fs_put_dnode(&dn);
1281		return err;
1282	}
1283	return 0;
1284}
1285
1286struct page *f2fs_new_inode_page(struct inode *inode)
1287{
1288	struct dnode_of_data dn;
1289
1290	/* allocate inode page for new inode */
1291	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1292
1293	/* caller should f2fs_put_page(page, 1); */
1294	return f2fs_new_node_page(&dn, 0);
1295}
1296
1297struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1298{
1299	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1300	struct node_info new_ni;
1301	struct page *page;
1302	int err;
1303
1304	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1305		return ERR_PTR(-EPERM);
1306
1307	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1308	if (!page)
1309		return ERR_PTR(-ENOMEM);
1310
1311	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1312		goto fail;
1313
1314#ifdef CONFIG_F2FS_CHECK_FS
1315	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1316	if (err) {
1317		dec_valid_node_count(sbi, dn->inode, !ofs);
1318		goto fail;
1319	}
1320	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1321		err = -EFSCORRUPTED;
1322		dec_valid_node_count(sbi, dn->inode, !ofs);
1323		set_sbi_flag(sbi, SBI_NEED_FSCK);
1324		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1325		goto fail;
1326	}
1327#endif
1328	new_ni.nid = dn->nid;
1329	new_ni.ino = dn->inode->i_ino;
1330	new_ni.blk_addr = NULL_ADDR;
1331	new_ni.flag = 0;
1332	new_ni.version = 0;
1333	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1334
1335	f2fs_wait_on_page_writeback(page, NODE, true, true);
1336	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1337	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1338	if (!PageUptodate(page))
1339		SetPageUptodate(page);
1340	if (set_page_dirty(page))
1341		dn->node_changed = true;
1342
1343	if (f2fs_has_xattr_block(ofs))
1344		f2fs_i_xnid_write(dn->inode, dn->nid);
1345
1346	if (ofs == 0)
1347		inc_valid_inode_count(sbi);
1348	return page;
 
1349fail:
1350	clear_node_page_dirty(page);
1351	f2fs_put_page(page, 1);
1352	return ERR_PTR(err);
1353}
1354
1355/*
1356 * Caller should do after getting the following values.
1357 * 0: f2fs_put_page(page, 0)
1358 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1359 */
1360static int read_node_page(struct page *page, blk_opf_t op_flags)
1361{
1362	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1363	struct node_info ni;
1364	struct f2fs_io_info fio = {
1365		.sbi = sbi,
1366		.type = NODE,
1367		.op = REQ_OP_READ,
1368		.op_flags = op_flags,
1369		.page = page,
1370		.encrypted_page = NULL,
1371	};
1372	int err;
1373
1374	if (PageUptodate(page)) {
1375		if (!f2fs_inode_chksum_verify(sbi, page)) {
1376			ClearPageUptodate(page);
1377			return -EFSBADCRC;
1378		}
1379		return LOCKED_PAGE;
1380	}
1381
1382	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1383	if (err)
1384		return err;
1385
1386	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1387	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1388		ClearPageUptodate(page);
1389		return -ENOENT;
1390	}
1391
1392	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1393
1394	err = f2fs_submit_page_bio(&fio);
1395
1396	if (!err)
1397		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1398
1399	return err;
1400}
1401
1402/*
1403 * Readahead a node page
1404 */
1405void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1406{
1407	struct page *apage;
1408	int err;
1409
1410	if (!nid)
1411		return;
1412	if (f2fs_check_nid_range(sbi, nid))
1413		return;
1414
1415	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1416	if (apage)
1417		return;
1418
1419	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1420	if (!apage)
1421		return;
1422
1423	err = read_node_page(apage, REQ_RAHEAD);
1424	f2fs_put_page(apage, err ? 1 : 0);
1425}
1426
1427static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1428					struct page *parent, int start)
1429{
1430	struct page *page;
1431	int err;
1432
1433	if (!nid)
1434		return ERR_PTR(-ENOENT);
1435	if (f2fs_check_nid_range(sbi, nid))
1436		return ERR_PTR(-EINVAL);
1437repeat:
1438	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1439	if (!page)
1440		return ERR_PTR(-ENOMEM);
1441
1442	err = read_node_page(page, 0);
1443	if (err < 0) {
1444		goto out_put_err;
 
1445	} else if (err == LOCKED_PAGE) {
1446		err = 0;
1447		goto page_hit;
1448	}
1449
1450	if (parent)
1451		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1452
1453	lock_page(page);
1454
1455	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1456		f2fs_put_page(page, 1);
1457		goto repeat;
1458	}
1459
1460	if (unlikely(!PageUptodate(page))) {
1461		err = -EIO;
1462		goto out_err;
1463	}
1464
1465	if (!f2fs_inode_chksum_verify(sbi, page)) {
1466		err = -EFSBADCRC;
1467		goto out_err;
1468	}
1469page_hit:
1470	if (likely(nid == nid_of_node(page)))
1471		return page;
1472
1473	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1474			  nid, nid_of_node(page), ino_of_node(page),
1475			  ofs_of_node(page), cpver_of_node(page),
1476			  next_blkaddr_of_node(page));
1477	set_sbi_flag(sbi, SBI_NEED_FSCK);
1478	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1479	err = -EFSCORRUPTED;
1480out_err:
1481	ClearPageUptodate(page);
1482out_put_err:
1483	/* ENOENT comes from read_node_page which is not an error. */
1484	if (err != -ENOENT)
1485		f2fs_handle_page_eio(sbi, page->index, NODE);
1486	f2fs_put_page(page, 1);
1487	return ERR_PTR(err);
1488}
1489
1490struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1491{
1492	return __get_node_page(sbi, nid, NULL, 0);
1493}
1494
1495struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1496{
1497	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1498	nid_t nid = get_nid(parent, start, false);
1499
1500	return __get_node_page(sbi, nid, parent, start);
1501}
1502
1503static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1504{
1505	struct inode *inode;
1506	struct page *page;
1507	int ret;
1508
1509	/* should flush inline_data before evict_inode */
1510	inode = ilookup(sbi->sb, ino);
1511	if (!inode)
1512		return;
1513
1514	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1515					FGP_LOCK|FGP_NOWAIT, 0);
1516	if (!page)
1517		goto iput_out;
1518
1519	if (!PageUptodate(page))
1520		goto page_out;
1521
1522	if (!PageDirty(page))
1523		goto page_out;
1524
1525	if (!clear_page_dirty_for_io(page))
1526		goto page_out;
1527
1528	ret = f2fs_write_inline_data(inode, page);
1529	inode_dec_dirty_pages(inode);
1530	f2fs_remove_dirty_inode(inode);
1531	if (ret)
1532		set_page_dirty(page);
1533page_out:
1534	f2fs_put_page(page, 1);
1535iput_out:
1536	iput(inode);
1537}
1538
1539static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1540{
1541	pgoff_t index;
1542	struct folio_batch fbatch;
1543	struct page *last_page = NULL;
1544	int nr_folios;
1545
1546	folio_batch_init(&fbatch);
1547	index = 0;
1548
1549	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1550					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1551					&fbatch))) {
1552		int i;
1553
1554		for (i = 0; i < nr_folios; i++) {
1555			struct page *page = &fbatch.folios[i]->page;
1556
1557			if (unlikely(f2fs_cp_error(sbi))) {
1558				f2fs_put_page(last_page, 0);
1559				folio_batch_release(&fbatch);
1560				return ERR_PTR(-EIO);
1561			}
1562
1563			if (!IS_DNODE(page) || !is_cold_node(page))
1564				continue;
1565			if (ino_of_node(page) != ino)
1566				continue;
1567
1568			lock_page(page);
1569
1570			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1571continue_unlock:
1572				unlock_page(page);
1573				continue;
1574			}
1575			if (ino_of_node(page) != ino)
1576				goto continue_unlock;
1577
1578			if (!PageDirty(page)) {
1579				/* someone wrote it for us */
1580				goto continue_unlock;
1581			}
1582
1583			if (last_page)
1584				f2fs_put_page(last_page, 0);
1585
1586			get_page(page);
1587			last_page = page;
1588			unlock_page(page);
1589		}
1590		folio_batch_release(&fbatch);
1591		cond_resched();
1592	}
1593	return last_page;
1594}
1595
1596static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1597				struct writeback_control *wbc, bool do_balance,
1598				enum iostat_type io_type, unsigned int *seq_id)
1599{
1600	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1601	nid_t nid;
1602	struct node_info ni;
1603	struct f2fs_io_info fio = {
1604		.sbi = sbi,
1605		.ino = ino_of_node(page),
1606		.type = NODE,
1607		.op = REQ_OP_WRITE,
1608		.op_flags = wbc_to_write_flags(wbc),
1609		.page = page,
1610		.encrypted_page = NULL,
1611		.submitted = 0,
1612		.io_type = io_type,
1613		.io_wbc = wbc,
1614	};
1615	unsigned int seq;
1616
1617	trace_f2fs_writepage(page, NODE);
1618
1619	if (unlikely(f2fs_cp_error(sbi))) {
1620		/* keep node pages in remount-ro mode */
1621		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1622			goto redirty_out;
1623		ClearPageUptodate(page);
1624		dec_page_count(sbi, F2FS_DIRTY_NODES);
1625		unlock_page(page);
1626		return 0;
1627	}
1628
1629	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1630		goto redirty_out;
1631
1632	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1633			wbc->sync_mode == WB_SYNC_NONE &&
1634			IS_DNODE(page) && is_cold_node(page))
1635		goto redirty_out;
1636
1637	/* get old block addr of this node page */
1638	nid = nid_of_node(page);
1639	f2fs_bug_on(sbi, page->index != nid);
1640
1641	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1642		goto redirty_out;
1643
1644	if (wbc->for_reclaim) {
1645		if (!f2fs_down_read_trylock(&sbi->node_write))
1646			goto redirty_out;
1647	} else {
1648		f2fs_down_read(&sbi->node_write);
1649	}
1650
1651	/* This page is already truncated */
1652	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1653		ClearPageUptodate(page);
1654		dec_page_count(sbi, F2FS_DIRTY_NODES);
1655		f2fs_up_read(&sbi->node_write);
1656		unlock_page(page);
1657		return 0;
1658	}
1659
1660	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1661		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1662					DATA_GENERIC_ENHANCE)) {
1663		f2fs_up_read(&sbi->node_write);
1664		goto redirty_out;
1665	}
1666
1667	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1668		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1669
1670	/* should add to global list before clearing PAGECACHE status */
 
 
1671	if (f2fs_in_warm_node_list(sbi, page)) {
1672		seq = f2fs_add_fsync_node_entry(sbi, page);
1673		if (seq_id)
1674			*seq_id = seq;
1675	}
1676
1677	set_page_writeback(page);
1678
1679	fio.old_blkaddr = ni.blk_addr;
1680	f2fs_do_write_node_page(nid, &fio);
1681	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1682	dec_page_count(sbi, F2FS_DIRTY_NODES);
1683	f2fs_up_read(&sbi->node_write);
1684
1685	if (wbc->for_reclaim) {
1686		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1687		submitted = NULL;
1688	}
1689
1690	unlock_page(page);
1691
1692	if (unlikely(f2fs_cp_error(sbi))) {
1693		f2fs_submit_merged_write(sbi, NODE);
1694		submitted = NULL;
1695	}
1696	if (submitted)
1697		*submitted = fio.submitted;
1698
1699	if (do_balance)
1700		f2fs_balance_fs(sbi, false);
1701	return 0;
1702
1703redirty_out:
1704	redirty_page_for_writepage(wbc, page);
1705	return AOP_WRITEPAGE_ACTIVATE;
1706}
1707
1708int f2fs_move_node_page(struct page *node_page, int gc_type)
1709{
1710	int err = 0;
1711
1712	if (gc_type == FG_GC) {
1713		struct writeback_control wbc = {
1714			.sync_mode = WB_SYNC_ALL,
1715			.nr_to_write = 1,
1716			.for_reclaim = 0,
1717		};
1718
1719		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1720
1721		set_page_dirty(node_page);
1722
1723		if (!clear_page_dirty_for_io(node_page)) {
1724			err = -EAGAIN;
1725			goto out_page;
1726		}
1727
1728		if (__write_node_page(node_page, false, NULL,
1729					&wbc, false, FS_GC_NODE_IO, NULL)) {
1730			err = -EAGAIN;
1731			unlock_page(node_page);
1732		}
1733		goto release_page;
1734	} else {
1735		/* set page dirty and write it */
1736		if (!PageWriteback(node_page))
1737			set_page_dirty(node_page);
1738	}
1739out_page:
1740	unlock_page(node_page);
1741release_page:
1742	f2fs_put_page(node_page, 0);
1743	return err;
1744}
1745
1746static int f2fs_write_node_page(struct page *page,
1747				struct writeback_control *wbc)
1748{
1749	return __write_node_page(page, false, NULL, wbc, false,
1750						FS_NODE_IO, NULL);
1751}
1752
1753int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1754			struct writeback_control *wbc, bool atomic,
1755			unsigned int *seq_id)
1756{
1757	pgoff_t index;
1758	struct folio_batch fbatch;
1759	int ret = 0;
1760	struct page *last_page = NULL;
1761	bool marked = false;
1762	nid_t ino = inode->i_ino;
1763	int nr_folios;
1764	int nwritten = 0;
1765
1766	if (atomic) {
1767		last_page = last_fsync_dnode(sbi, ino);
1768		if (IS_ERR_OR_NULL(last_page))
1769			return PTR_ERR_OR_ZERO(last_page);
1770	}
1771retry:
1772	folio_batch_init(&fbatch);
1773	index = 0;
1774
1775	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1776					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1777					&fbatch))) {
1778		int i;
1779
1780		for (i = 0; i < nr_folios; i++) {
1781			struct page *page = &fbatch.folios[i]->page;
1782			bool submitted = false;
1783
1784			if (unlikely(f2fs_cp_error(sbi))) {
1785				f2fs_put_page(last_page, 0);
1786				folio_batch_release(&fbatch);
1787				ret = -EIO;
1788				goto out;
1789			}
1790
1791			if (!IS_DNODE(page) || !is_cold_node(page))
1792				continue;
1793			if (ino_of_node(page) != ino)
1794				continue;
1795
1796			lock_page(page);
1797
1798			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1799continue_unlock:
1800				unlock_page(page);
1801				continue;
1802			}
1803			if (ino_of_node(page) != ino)
1804				goto continue_unlock;
1805
1806			if (!PageDirty(page) && page != last_page) {
1807				/* someone wrote it for us */
1808				goto continue_unlock;
1809			}
1810
1811			f2fs_wait_on_page_writeback(page, NODE, true, true);
1812
1813			set_fsync_mark(page, 0);
1814			set_dentry_mark(page, 0);
1815
1816			if (!atomic || page == last_page) {
1817				set_fsync_mark(page, 1);
1818				percpu_counter_inc(&sbi->rf_node_block_count);
1819				if (IS_INODE(page)) {
1820					if (is_inode_flag_set(inode,
1821								FI_DIRTY_INODE))
1822						f2fs_update_inode(inode, page);
1823					set_dentry_mark(page,
1824						f2fs_need_dentry_mark(sbi, ino));
1825				}
1826				/* may be written by other thread */
1827				if (!PageDirty(page))
1828					set_page_dirty(page);
1829			}
1830
1831			if (!clear_page_dirty_for_io(page))
1832				goto continue_unlock;
1833
1834			ret = __write_node_page(page, atomic &&
1835						page == last_page,
1836						&submitted, wbc, true,
1837						FS_NODE_IO, seq_id);
1838			if (ret) {
1839				unlock_page(page);
1840				f2fs_put_page(last_page, 0);
1841				break;
1842			} else if (submitted) {
1843				nwritten++;
1844			}
1845
1846			if (page == last_page) {
1847				f2fs_put_page(page, 0);
1848				marked = true;
1849				break;
1850			}
1851		}
1852		folio_batch_release(&fbatch);
1853		cond_resched();
1854
1855		if (ret || marked)
1856			break;
1857	}
1858	if (!ret && atomic && !marked) {
1859		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1860			   ino, last_page->index);
1861		lock_page(last_page);
1862		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1863		set_page_dirty(last_page);
1864		unlock_page(last_page);
1865		goto retry;
1866	}
1867out:
1868	if (nwritten)
1869		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1870	return ret ? -EIO : 0;
1871}
1872
1873static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1874{
1875	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1876	bool clean;
1877
1878	if (inode->i_ino != ino)
1879		return 0;
1880
1881	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1882		return 0;
1883
1884	spin_lock(&sbi->inode_lock[DIRTY_META]);
1885	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1886	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1887
1888	if (clean)
1889		return 0;
1890
1891	inode = igrab(inode);
1892	if (!inode)
1893		return 0;
1894	return 1;
1895}
1896
1897static bool flush_dirty_inode(struct page *page)
1898{
1899	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1900	struct inode *inode;
1901	nid_t ino = ino_of_node(page);
1902
1903	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1904	if (!inode)
1905		return false;
1906
1907	f2fs_update_inode(inode, page);
1908	unlock_page(page);
1909
1910	iput(inode);
1911	return true;
1912}
1913
1914void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1915{
1916	pgoff_t index = 0;
1917	struct folio_batch fbatch;
1918	int nr_folios;
1919
1920	folio_batch_init(&fbatch);
1921
1922	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1923					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1924					&fbatch))) {
1925		int i;
1926
1927		for (i = 0; i < nr_folios; i++) {
1928			struct page *page = &fbatch.folios[i]->page;
1929
1930			if (!IS_INODE(page))
1931				continue;
1932
1933			lock_page(page);
1934
1935			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1936continue_unlock:
1937				unlock_page(page);
1938				continue;
1939			}
1940
1941			if (!PageDirty(page)) {
1942				/* someone wrote it for us */
1943				goto continue_unlock;
1944			}
1945
1946			/* flush inline_data, if it's async context. */
1947			if (page_private_inline(page)) {
1948				clear_page_private_inline(page);
1949				unlock_page(page);
1950				flush_inline_data(sbi, ino_of_node(page));
1951				continue;
1952			}
1953			unlock_page(page);
1954		}
1955		folio_batch_release(&fbatch);
1956		cond_resched();
1957	}
1958}
1959
1960int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1961				struct writeback_control *wbc,
1962				bool do_balance, enum iostat_type io_type)
1963{
1964	pgoff_t index;
1965	struct folio_batch fbatch;
1966	int step = 0;
1967	int nwritten = 0;
1968	int ret = 0;
1969	int nr_folios, done = 0;
1970
1971	folio_batch_init(&fbatch);
1972
1973next_step:
1974	index = 0;
1975
1976	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1977				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1978				&fbatch))) {
1979		int i;
1980
1981		for (i = 0; i < nr_folios; i++) {
1982			struct page *page = &fbatch.folios[i]->page;
1983			bool submitted = false;
 
1984
1985			/* give a priority to WB_SYNC threads */
1986			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1987					wbc->sync_mode == WB_SYNC_NONE) {
1988				done = 1;
1989				break;
1990			}
1991
1992			/*
1993			 * flushing sequence with step:
1994			 * 0. indirect nodes
1995			 * 1. dentry dnodes
1996			 * 2. file dnodes
1997			 */
1998			if (step == 0 && IS_DNODE(page))
1999				continue;
2000			if (step == 1 && (!IS_DNODE(page) ||
2001						is_cold_node(page)))
2002				continue;
2003			if (step == 2 && (!IS_DNODE(page) ||
2004						!is_cold_node(page)))
2005				continue;
2006lock_node:
2007			if (wbc->sync_mode == WB_SYNC_ALL)
2008				lock_page(page);
2009			else if (!trylock_page(page))
2010				continue;
2011
2012			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2013continue_unlock:
2014				unlock_page(page);
2015				continue;
2016			}
2017
2018			if (!PageDirty(page)) {
2019				/* someone wrote it for us */
2020				goto continue_unlock;
2021			}
2022
2023			/* flush inline_data/inode, if it's async context. */
2024			if (!do_balance)
2025				goto write_node;
2026
2027			/* flush inline_data */
2028			if (page_private_inline(page)) {
2029				clear_page_private_inline(page);
2030				unlock_page(page);
2031				flush_inline_data(sbi, ino_of_node(page));
2032				goto lock_node;
2033			}
2034
2035			/* flush dirty inode */
2036			if (IS_INODE(page) && flush_dirty_inode(page))
2037				goto lock_node;
2038write_node:
 
 
 
2039			f2fs_wait_on_page_writeback(page, NODE, true, true);
2040
2041			if (!clear_page_dirty_for_io(page))
2042				goto continue_unlock;
2043
2044			set_fsync_mark(page, 0);
2045			set_dentry_mark(page, 0);
2046
2047			ret = __write_node_page(page, false, &submitted,
2048						wbc, do_balance, io_type, NULL);
2049			if (ret)
2050				unlock_page(page);
2051			else if (submitted)
2052				nwritten++;
2053
2054			if (--wbc->nr_to_write == 0)
2055				break;
2056		}
2057		folio_batch_release(&fbatch);
2058		cond_resched();
2059
2060		if (wbc->nr_to_write == 0) {
2061			step = 2;
2062			break;
2063		}
2064	}
2065
2066	if (step < 2) {
2067		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2068				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2069			goto out;
2070		step++;
2071		goto next_step;
2072	}
2073out:
2074	if (nwritten)
2075		f2fs_submit_merged_write(sbi, NODE);
2076
2077	if (unlikely(f2fs_cp_error(sbi)))
2078		return -EIO;
2079	return ret;
2080}
2081
2082int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2083						unsigned int seq_id)
2084{
2085	struct fsync_node_entry *fn;
2086	struct page *page;
2087	struct list_head *head = &sbi->fsync_node_list;
2088	unsigned long flags;
2089	unsigned int cur_seq_id = 0;
 
2090
2091	while (seq_id && cur_seq_id < seq_id) {
2092		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2093		if (list_empty(head)) {
2094			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2095			break;
2096		}
2097		fn = list_first_entry(head, struct fsync_node_entry, list);
2098		if (fn->seq_id > seq_id) {
2099			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2100			break;
2101		}
2102		cur_seq_id = fn->seq_id;
2103		page = fn->page;
2104		get_page(page);
2105		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2106
2107		f2fs_wait_on_page_writeback(page, NODE, true, false);
 
 
2108
2109		put_page(page);
 
 
 
2110	}
2111
2112	return filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
 
2113}
2114
2115static int f2fs_write_node_pages(struct address_space *mapping,
2116			    struct writeback_control *wbc)
2117{
2118	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2119	struct blk_plug plug;
2120	long diff;
2121
2122	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2123		goto skip_write;
2124
2125	/* balancing f2fs's metadata in background */
2126	f2fs_balance_fs_bg(sbi, true);
2127
2128	/* collect a number of dirty node pages and write together */
2129	if (wbc->sync_mode != WB_SYNC_ALL &&
2130			get_pages(sbi, F2FS_DIRTY_NODES) <
2131					nr_pages_to_skip(sbi, NODE))
2132		goto skip_write;
2133
2134	if (wbc->sync_mode == WB_SYNC_ALL)
2135		atomic_inc(&sbi->wb_sync_req[NODE]);
2136	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2137		/* to avoid potential deadlock */
2138		if (current->plug)
2139			blk_finish_plug(current->plug);
2140		goto skip_write;
2141	}
2142
2143	trace_f2fs_writepages(mapping->host, wbc, NODE);
2144
2145	diff = nr_pages_to_write(sbi, NODE, wbc);
2146	blk_start_plug(&plug);
2147	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2148	blk_finish_plug(&plug);
2149	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2150
2151	if (wbc->sync_mode == WB_SYNC_ALL)
2152		atomic_dec(&sbi->wb_sync_req[NODE]);
2153	return 0;
2154
2155skip_write:
2156	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2157	trace_f2fs_writepages(mapping->host, wbc, NODE);
2158	return 0;
2159}
2160
2161static bool f2fs_dirty_node_folio(struct address_space *mapping,
2162		struct folio *folio)
2163{
2164	trace_f2fs_set_page_dirty(&folio->page, NODE);
2165
2166	if (!folio_test_uptodate(folio))
2167		folio_mark_uptodate(folio);
2168#ifdef CONFIG_F2FS_CHECK_FS
2169	if (IS_INODE(&folio->page))
2170		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2171#endif
2172	if (filemap_dirty_folio(mapping, folio)) {
2173		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2174		set_page_private_reference(&folio->page);
2175		return true;
 
 
2176	}
2177	return false;
2178}
2179
2180/*
2181 * Structure of the f2fs node operations
2182 */
2183const struct address_space_operations f2fs_node_aops = {
2184	.writepage	= f2fs_write_node_page,
2185	.writepages	= f2fs_write_node_pages,
2186	.dirty_folio	= f2fs_dirty_node_folio,
2187	.invalidate_folio = f2fs_invalidate_folio,
2188	.release_folio	= f2fs_release_folio,
2189	.migrate_folio	= filemap_migrate_folio,
 
 
2190};
2191
2192static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2193						nid_t n)
2194{
2195	return radix_tree_lookup(&nm_i->free_nid_root, n);
2196}
2197
2198static int __insert_free_nid(struct f2fs_sb_info *sbi,
2199				struct free_nid *i)
2200{
2201	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
2202	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2203
2204	if (err)
2205		return err;
2206
2207	nm_i->nid_cnt[FREE_NID]++;
2208	list_add_tail(&i->list, &nm_i->free_nid_list);
 
 
2209	return 0;
2210}
2211
2212static void __remove_free_nid(struct f2fs_sb_info *sbi,
2213			struct free_nid *i, enum nid_state state)
2214{
2215	struct f2fs_nm_info *nm_i = NM_I(sbi);
2216
2217	f2fs_bug_on(sbi, state != i->state);
2218	nm_i->nid_cnt[state]--;
2219	if (state == FREE_NID)
2220		list_del(&i->list);
2221	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2222}
2223
2224static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2225			enum nid_state org_state, enum nid_state dst_state)
2226{
2227	struct f2fs_nm_info *nm_i = NM_I(sbi);
2228
2229	f2fs_bug_on(sbi, org_state != i->state);
2230	i->state = dst_state;
2231	nm_i->nid_cnt[org_state]--;
2232	nm_i->nid_cnt[dst_state]++;
2233
2234	switch (dst_state) {
2235	case PREALLOC_NID:
2236		list_del(&i->list);
2237		break;
2238	case FREE_NID:
2239		list_add_tail(&i->list, &nm_i->free_nid_list);
2240		break;
2241	default:
2242		BUG_ON(1);
2243	}
2244}
2245
2246bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2247{
2248	struct f2fs_nm_info *nm_i = NM_I(sbi);
2249	unsigned int i;
2250	bool ret = true;
2251
2252	f2fs_down_read(&nm_i->nat_tree_lock);
2253	for (i = 0; i < nm_i->nat_blocks; i++) {
2254		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2255			ret = false;
2256			break;
2257		}
2258	}
2259	f2fs_up_read(&nm_i->nat_tree_lock);
2260
2261	return ret;
2262}
2263
2264static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2265							bool set, bool build)
2266{
2267	struct f2fs_nm_info *nm_i = NM_I(sbi);
2268	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2269	unsigned int nid_ofs = nid - START_NID(nid);
2270
2271	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2272		return;
2273
2274	if (set) {
2275		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2276			return;
2277		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2278		nm_i->free_nid_count[nat_ofs]++;
2279	} else {
2280		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2281			return;
2282		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2283		if (!build)
2284			nm_i->free_nid_count[nat_ofs]--;
2285	}
2286}
2287
2288/* return if the nid is recognized as free */
2289static bool add_free_nid(struct f2fs_sb_info *sbi,
2290				nid_t nid, bool build, bool update)
2291{
2292	struct f2fs_nm_info *nm_i = NM_I(sbi);
2293	struct free_nid *i, *e;
2294	struct nat_entry *ne;
2295	int err = -EINVAL;
2296	bool ret = false;
2297
2298	/* 0 nid should not be used */
2299	if (unlikely(nid == 0))
2300		return false;
2301
2302	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2303		return false;
2304
2305	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2306	i->nid = nid;
2307	i->state = FREE_NID;
2308
2309	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2310
2311	spin_lock(&nm_i->nid_list_lock);
2312
2313	if (build) {
2314		/*
2315		 *   Thread A             Thread B
2316		 *  - f2fs_create
2317		 *   - f2fs_new_inode
2318		 *    - f2fs_alloc_nid
2319		 *     - __insert_nid_to_list(PREALLOC_NID)
2320		 *                     - f2fs_balance_fs_bg
2321		 *                      - f2fs_build_free_nids
2322		 *                       - __f2fs_build_free_nids
2323		 *                        - scan_nat_page
2324		 *                         - add_free_nid
2325		 *                          - __lookup_nat_cache
2326		 *  - f2fs_add_link
2327		 *   - f2fs_init_inode_metadata
2328		 *    - f2fs_new_inode_page
2329		 *     - f2fs_new_node_page
2330		 *      - set_node_addr
2331		 *  - f2fs_alloc_nid_done
2332		 *   - __remove_nid_from_list(PREALLOC_NID)
2333		 *                         - __insert_nid_to_list(FREE_NID)
2334		 */
2335		ne = __lookup_nat_cache(nm_i, nid);
2336		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2337				nat_get_blkaddr(ne) != NULL_ADDR))
2338			goto err_out;
2339
2340		e = __lookup_free_nid_list(nm_i, nid);
2341		if (e) {
2342			if (e->state == FREE_NID)
2343				ret = true;
2344			goto err_out;
2345		}
2346	}
2347	ret = true;
2348	err = __insert_free_nid(sbi, i);
2349err_out:
2350	if (update) {
2351		update_free_nid_bitmap(sbi, nid, ret, build);
2352		if (!build)
2353			nm_i->available_nids++;
2354	}
2355	spin_unlock(&nm_i->nid_list_lock);
2356	radix_tree_preload_end();
2357
2358	if (err)
2359		kmem_cache_free(free_nid_slab, i);
2360	return ret;
2361}
2362
2363static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2364{
2365	struct f2fs_nm_info *nm_i = NM_I(sbi);
2366	struct free_nid *i;
2367	bool need_free = false;
2368
2369	spin_lock(&nm_i->nid_list_lock);
2370	i = __lookup_free_nid_list(nm_i, nid);
2371	if (i && i->state == FREE_NID) {
2372		__remove_free_nid(sbi, i, FREE_NID);
2373		need_free = true;
2374	}
2375	spin_unlock(&nm_i->nid_list_lock);
2376
2377	if (need_free)
2378		kmem_cache_free(free_nid_slab, i);
2379}
2380
2381static int scan_nat_page(struct f2fs_sb_info *sbi,
2382			struct page *nat_page, nid_t start_nid)
2383{
2384	struct f2fs_nm_info *nm_i = NM_I(sbi);
2385	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2386	block_t blk_addr;
2387	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2388	int i;
2389
2390	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2391
2392	i = start_nid % NAT_ENTRY_PER_BLOCK;
2393
2394	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2395		if (unlikely(start_nid >= nm_i->max_nid))
2396			break;
2397
2398		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2399
2400		if (blk_addr == NEW_ADDR)
2401			return -EFSCORRUPTED;
2402
2403		if (blk_addr == NULL_ADDR) {
2404			add_free_nid(sbi, start_nid, true, true);
2405		} else {
2406			spin_lock(&NM_I(sbi)->nid_list_lock);
2407			update_free_nid_bitmap(sbi, start_nid, false, true);
2408			spin_unlock(&NM_I(sbi)->nid_list_lock);
2409		}
2410	}
2411
2412	return 0;
2413}
2414
2415static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2416{
2417	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2418	struct f2fs_journal *journal = curseg->journal;
2419	int i;
2420
2421	down_read(&curseg->journal_rwsem);
2422	for (i = 0; i < nats_in_cursum(journal); i++) {
2423		block_t addr;
2424		nid_t nid;
2425
2426		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2427		nid = le32_to_cpu(nid_in_journal(journal, i));
2428		if (addr == NULL_ADDR)
2429			add_free_nid(sbi, nid, true, false);
2430		else
2431			remove_free_nid(sbi, nid);
2432	}
2433	up_read(&curseg->journal_rwsem);
2434}
2435
2436static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2437{
2438	struct f2fs_nm_info *nm_i = NM_I(sbi);
2439	unsigned int i, idx;
2440	nid_t nid;
2441
2442	f2fs_down_read(&nm_i->nat_tree_lock);
2443
2444	for (i = 0; i < nm_i->nat_blocks; i++) {
2445		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2446			continue;
2447		if (!nm_i->free_nid_count[i])
2448			continue;
2449		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2450			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2451						NAT_ENTRY_PER_BLOCK, idx);
2452			if (idx >= NAT_ENTRY_PER_BLOCK)
2453				break;
2454
2455			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2456			add_free_nid(sbi, nid, true, false);
2457
2458			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2459				goto out;
2460		}
2461	}
2462out:
2463	scan_curseg_cache(sbi);
2464
2465	f2fs_up_read(&nm_i->nat_tree_lock);
2466}
2467
2468static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2469						bool sync, bool mount)
2470{
2471	struct f2fs_nm_info *nm_i = NM_I(sbi);
2472	int i = 0, ret;
2473	nid_t nid = nm_i->next_scan_nid;
2474
2475	if (unlikely(nid >= nm_i->max_nid))
2476		nid = 0;
2477
2478	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2479		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2480
2481	/* Enough entries */
2482	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2483		return 0;
2484
2485	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2486		return 0;
2487
2488	if (!mount) {
2489		/* try to find free nids in free_nid_bitmap */
2490		scan_free_nid_bits(sbi);
2491
2492		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2493			return 0;
2494	}
2495
2496	/* readahead nat pages to be scanned */
2497	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2498							META_NAT, true);
2499
2500	f2fs_down_read(&nm_i->nat_tree_lock);
2501
2502	while (1) {
2503		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2504						nm_i->nat_block_bitmap)) {
2505			struct page *page = get_current_nat_page(sbi, nid);
2506
2507			if (IS_ERR(page)) {
2508				ret = PTR_ERR(page);
2509			} else {
2510				ret = scan_nat_page(sbi, page, nid);
2511				f2fs_put_page(page, 1);
2512			}
2513
2514			if (ret) {
2515				f2fs_up_read(&nm_i->nat_tree_lock);
2516
2517				if (ret == -EFSCORRUPTED) {
2518					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2519					set_sbi_flag(sbi, SBI_NEED_FSCK);
2520					f2fs_handle_error(sbi,
2521						ERROR_INCONSISTENT_NAT);
2522				}
2523
2524				return ret;
2525			}
2526		}
2527
2528		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2529		if (unlikely(nid >= nm_i->max_nid))
2530			nid = 0;
2531
2532		if (++i >= FREE_NID_PAGES)
2533			break;
2534	}
2535
2536	/* go to the next free nat pages to find free nids abundantly */
2537	nm_i->next_scan_nid = nid;
2538
2539	/* find free nids from current sum_pages */
2540	scan_curseg_cache(sbi);
2541
2542	f2fs_up_read(&nm_i->nat_tree_lock);
2543
2544	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2545					nm_i->ra_nid_pages, META_NAT, false);
2546
2547	return 0;
2548}
2549
2550int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2551{
2552	int ret;
2553
2554	mutex_lock(&NM_I(sbi)->build_lock);
2555	ret = __f2fs_build_free_nids(sbi, sync, mount);
2556	mutex_unlock(&NM_I(sbi)->build_lock);
2557
2558	return ret;
2559}
2560
2561/*
2562 * If this function returns success, caller can obtain a new nid
2563 * from second parameter of this function.
2564 * The returned nid could be used ino as well as nid when inode is created.
2565 */
2566bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2567{
2568	struct f2fs_nm_info *nm_i = NM_I(sbi);
2569	struct free_nid *i = NULL;
2570retry:
2571	if (time_to_inject(sbi, FAULT_ALLOC_NID))
 
2572		return false;
 
2573
2574	spin_lock(&nm_i->nid_list_lock);
2575
2576	if (unlikely(nm_i->available_nids == 0)) {
2577		spin_unlock(&nm_i->nid_list_lock);
2578		return false;
2579	}
2580
2581	/* We should not use stale free nids created by f2fs_build_free_nids */
2582	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2583		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2584		i = list_first_entry(&nm_i->free_nid_list,
2585					struct free_nid, list);
2586		*nid = i->nid;
2587
2588		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2589		nm_i->available_nids--;
2590
2591		update_free_nid_bitmap(sbi, *nid, false, false);
2592
2593		spin_unlock(&nm_i->nid_list_lock);
2594		return true;
2595	}
2596	spin_unlock(&nm_i->nid_list_lock);
2597
2598	/* Let's scan nat pages and its caches to get free nids */
2599	if (!f2fs_build_free_nids(sbi, true, false))
2600		goto retry;
2601	return false;
2602}
2603
2604/*
2605 * f2fs_alloc_nid() should be called prior to this function.
2606 */
2607void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2608{
2609	struct f2fs_nm_info *nm_i = NM_I(sbi);
2610	struct free_nid *i;
2611
2612	spin_lock(&nm_i->nid_list_lock);
2613	i = __lookup_free_nid_list(nm_i, nid);
2614	f2fs_bug_on(sbi, !i);
2615	__remove_free_nid(sbi, i, PREALLOC_NID);
2616	spin_unlock(&nm_i->nid_list_lock);
2617
2618	kmem_cache_free(free_nid_slab, i);
2619}
2620
2621/*
2622 * f2fs_alloc_nid() should be called prior to this function.
2623 */
2624void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2625{
2626	struct f2fs_nm_info *nm_i = NM_I(sbi);
2627	struct free_nid *i;
2628	bool need_free = false;
2629
2630	if (!nid)
2631		return;
2632
2633	spin_lock(&nm_i->nid_list_lock);
2634	i = __lookup_free_nid_list(nm_i, nid);
2635	f2fs_bug_on(sbi, !i);
2636
2637	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2638		__remove_free_nid(sbi, i, PREALLOC_NID);
2639		need_free = true;
2640	} else {
2641		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2642	}
2643
2644	nm_i->available_nids++;
2645
2646	update_free_nid_bitmap(sbi, nid, true, false);
2647
2648	spin_unlock(&nm_i->nid_list_lock);
2649
2650	if (need_free)
2651		kmem_cache_free(free_nid_slab, i);
2652}
2653
2654int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2655{
2656	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
2657	int nr = nr_shrink;
2658
2659	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2660		return 0;
2661
2662	if (!mutex_trylock(&nm_i->build_lock))
2663		return 0;
2664
2665	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2666		struct free_nid *i, *next;
2667		unsigned int batch = SHRINK_NID_BATCH_SIZE;
 
 
2668
2669		spin_lock(&nm_i->nid_list_lock);
2670		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2671			if (!nr_shrink || !batch ||
2672				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2673				break;
2674			__remove_free_nid(sbi, i, FREE_NID);
2675			kmem_cache_free(free_nid_slab, i);
2676			nr_shrink--;
2677			batch--;
2678		}
2679		spin_unlock(&nm_i->nid_list_lock);
2680	}
2681
2682	mutex_unlock(&nm_i->build_lock);
2683
2684	return nr - nr_shrink;
2685}
2686
2687int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2688{
2689	void *src_addr, *dst_addr;
2690	size_t inline_size;
2691	struct page *ipage;
2692	struct f2fs_inode *ri;
2693
2694	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2695	if (IS_ERR(ipage))
2696		return PTR_ERR(ipage);
2697
2698	ri = F2FS_INODE(page);
2699	if (ri->i_inline & F2FS_INLINE_XATTR) {
2700		if (!f2fs_has_inline_xattr(inode)) {
2701			set_inode_flag(inode, FI_INLINE_XATTR);
2702			stat_inc_inline_xattr(inode);
2703		}
2704	} else {
2705		if (f2fs_has_inline_xattr(inode)) {
2706			stat_dec_inline_xattr(inode);
2707			clear_inode_flag(inode, FI_INLINE_XATTR);
2708		}
2709		goto update_inode;
2710	}
2711
2712	dst_addr = inline_xattr_addr(inode, ipage);
2713	src_addr = inline_xattr_addr(inode, page);
2714	inline_size = inline_xattr_size(inode);
2715
2716	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2717	memcpy(dst_addr, src_addr, inline_size);
2718update_inode:
2719	f2fs_update_inode(inode, ipage);
2720	f2fs_put_page(ipage, 1);
2721	return 0;
2722}
2723
2724int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2725{
2726	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2727	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2728	nid_t new_xnid;
2729	struct dnode_of_data dn;
2730	struct node_info ni;
2731	struct page *xpage;
2732	int err;
2733
2734	if (!prev_xnid)
2735		goto recover_xnid;
2736
2737	/* 1: invalidate the previous xattr nid */
2738	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2739	if (err)
2740		return err;
2741
2742	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2743	dec_valid_node_count(sbi, inode, false);
2744	set_node_addr(sbi, &ni, NULL_ADDR, false);
2745
2746recover_xnid:
2747	/* 2: update xattr nid in inode */
2748	if (!f2fs_alloc_nid(sbi, &new_xnid))
2749		return -ENOSPC;
2750
2751	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2752	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2753	if (IS_ERR(xpage)) {
2754		f2fs_alloc_nid_failed(sbi, new_xnid);
2755		return PTR_ERR(xpage);
2756	}
2757
2758	f2fs_alloc_nid_done(sbi, new_xnid);
2759	f2fs_update_inode_page(inode);
2760
2761	/* 3: update and set xattr node page dirty */
2762	if (page) {
2763		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2764				VALID_XATTR_BLOCK_SIZE);
2765		set_page_dirty(xpage);
2766	}
2767	f2fs_put_page(xpage, 1);
2768
2769	return 0;
2770}
2771
2772int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2773{
2774	struct f2fs_inode *src, *dst;
2775	nid_t ino = ino_of_node(page);
2776	struct node_info old_ni, new_ni;
2777	struct page *ipage;
2778	int err;
2779
2780	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2781	if (err)
2782		return err;
2783
2784	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2785		return -EINVAL;
2786retry:
2787	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2788	if (!ipage) {
2789		memalloc_retry_wait(GFP_NOFS);
2790		goto retry;
2791	}
2792
2793	/* Should not use this inode from free nid list */
2794	remove_free_nid(sbi, ino);
2795
2796	if (!PageUptodate(ipage))
2797		SetPageUptodate(ipage);
2798	fill_node_footer(ipage, ino, ino, 0, true);
2799	set_cold_node(ipage, false);
2800
2801	src = F2FS_INODE(page);
2802	dst = F2FS_INODE(ipage);
2803
2804	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2805	dst->i_size = 0;
2806	dst->i_blocks = cpu_to_le64(1);
2807	dst->i_links = cpu_to_le32(1);
2808	dst->i_xattr_nid = 0;
2809	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2810	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2811		dst->i_extra_isize = src->i_extra_isize;
2812
2813		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2814			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2815							i_inline_xattr_size))
2816			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2817
2818		if (f2fs_sb_has_project_quota(sbi) &&
2819			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2820								i_projid))
2821			dst->i_projid = src->i_projid;
2822
2823		if (f2fs_sb_has_inode_crtime(sbi) &&
2824			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2825							i_crtime_nsec)) {
2826			dst->i_crtime = src->i_crtime;
2827			dst->i_crtime_nsec = src->i_crtime_nsec;
2828		}
2829	}
2830
2831	new_ni = old_ni;
2832	new_ni.ino = ino;
2833
2834	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2835		WARN_ON(1);
2836	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2837	inc_valid_inode_count(sbi);
2838	set_page_dirty(ipage);
2839	f2fs_put_page(ipage, 1);
2840	return 0;
2841}
2842
2843int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2844			unsigned int segno, struct f2fs_summary_block *sum)
2845{
2846	struct f2fs_node *rn;
2847	struct f2fs_summary *sum_entry;
2848	block_t addr;
2849	int i, idx, last_offset, nrpages;
2850
2851	/* scan the node segment */
2852	last_offset = BLKS_PER_SEG(sbi);
2853	addr = START_BLOCK(sbi, segno);
2854	sum_entry = &sum->entries[0];
2855
2856	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2857		nrpages = bio_max_segs(last_offset - i);
2858
2859		/* readahead node pages */
2860		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2861
2862		for (idx = addr; idx < addr + nrpages; idx++) {
2863			struct page *page = f2fs_get_tmp_page(sbi, idx);
2864
2865			if (IS_ERR(page))
2866				return PTR_ERR(page);
2867
2868			rn = F2FS_NODE(page);
2869			sum_entry->nid = rn->footer.nid;
2870			sum_entry->version = 0;
2871			sum_entry->ofs_in_node = 0;
2872			sum_entry++;
2873			f2fs_put_page(page, 1);
2874		}
2875
2876		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2877							addr + nrpages);
2878	}
2879	return 0;
2880}
2881
2882static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2883{
2884	struct f2fs_nm_info *nm_i = NM_I(sbi);
2885	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2886	struct f2fs_journal *journal = curseg->journal;
2887	int i;
2888
2889	down_write(&curseg->journal_rwsem);
2890	for (i = 0; i < nats_in_cursum(journal); i++) {
2891		struct nat_entry *ne;
2892		struct f2fs_nat_entry raw_ne;
2893		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2894
2895		if (f2fs_check_nid_range(sbi, nid))
2896			continue;
2897
2898		raw_ne = nat_in_journal(journal, i);
2899
2900		ne = __lookup_nat_cache(nm_i, nid);
2901		if (!ne) {
2902			ne = __alloc_nat_entry(sbi, nid, true);
2903			__init_nat_entry(nm_i, ne, &raw_ne, true);
2904		}
2905
2906		/*
2907		 * if a free nat in journal has not been used after last
2908		 * checkpoint, we should remove it from available nids,
2909		 * since later we will add it again.
2910		 */
2911		if (!get_nat_flag(ne, IS_DIRTY) &&
2912				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2913			spin_lock(&nm_i->nid_list_lock);
2914			nm_i->available_nids--;
2915			spin_unlock(&nm_i->nid_list_lock);
2916		}
2917
2918		__set_nat_cache_dirty(nm_i, ne);
2919	}
2920	update_nats_in_cursum(journal, -i);
2921	up_write(&curseg->journal_rwsem);
2922}
2923
2924static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2925						struct list_head *head, int max)
2926{
2927	struct nat_entry_set *cur;
2928
2929	if (nes->entry_cnt >= max)
2930		goto add_out;
2931
2932	list_for_each_entry(cur, head, set_list) {
2933		if (cur->entry_cnt >= nes->entry_cnt) {
2934			list_add(&nes->set_list, cur->set_list.prev);
2935			return;
2936		}
2937	}
2938add_out:
2939	list_add_tail(&nes->set_list, head);
2940}
2941
2942static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2943							unsigned int valid)
2944{
2945	if (valid == 0) {
2946		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2947		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2948		return;
2949	}
2950
2951	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2952	if (valid == NAT_ENTRY_PER_BLOCK)
2953		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2954	else
2955		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2956}
2957
2958static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2959						struct page *page)
2960{
2961	struct f2fs_nm_info *nm_i = NM_I(sbi);
2962	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2963	struct f2fs_nat_block *nat_blk = page_address(page);
2964	int valid = 0;
2965	int i = 0;
2966
2967	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2968		return;
2969
2970	if (nat_index == 0) {
2971		valid = 1;
2972		i = 1;
2973	}
2974	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2975		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2976			valid++;
2977	}
2978
2979	__update_nat_bits(nm_i, nat_index, valid);
2980}
2981
2982void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2983{
2984	struct f2fs_nm_info *nm_i = NM_I(sbi);
2985	unsigned int nat_ofs;
2986
2987	f2fs_down_read(&nm_i->nat_tree_lock);
2988
2989	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2990		unsigned int valid = 0, nid_ofs = 0;
2991
2992		/* handle nid zero due to it should never be used */
2993		if (unlikely(nat_ofs == 0)) {
2994			valid = 1;
2995			nid_ofs = 1;
2996		}
2997
2998		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2999			if (!test_bit_le(nid_ofs,
3000					nm_i->free_nid_bitmap[nat_ofs]))
3001				valid++;
3002		}
3003
3004		__update_nat_bits(nm_i, nat_ofs, valid);
3005	}
3006
3007	f2fs_up_read(&nm_i->nat_tree_lock);
 
 
 
 
3008}
3009
3010static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3011		struct nat_entry_set *set, struct cp_control *cpc)
3012{
3013	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3014	struct f2fs_journal *journal = curseg->journal;
3015	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3016	bool to_journal = true;
3017	struct f2fs_nat_block *nat_blk;
3018	struct nat_entry *ne, *cur;
3019	struct page *page = NULL;
3020
3021	/*
3022	 * there are two steps to flush nat entries:
3023	 * #1, flush nat entries to journal in current hot data summary block.
3024	 * #2, flush nat entries to nat page.
3025	 */
3026	if ((cpc->reason & CP_UMOUNT) ||
3027		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3028		to_journal = false;
3029
3030	if (to_journal) {
3031		down_write(&curseg->journal_rwsem);
3032	} else {
3033		page = get_next_nat_page(sbi, start_nid);
3034		if (IS_ERR(page))
3035			return PTR_ERR(page);
3036
3037		nat_blk = page_address(page);
3038		f2fs_bug_on(sbi, !nat_blk);
3039	}
3040
3041	/* flush dirty nats in nat entry set */
3042	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3043		struct f2fs_nat_entry *raw_ne;
3044		nid_t nid = nat_get_nid(ne);
3045		int offset;
3046
3047		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3048
3049		if (to_journal) {
3050			offset = f2fs_lookup_journal_in_cursum(journal,
3051							NAT_JOURNAL, nid, 1);
3052			f2fs_bug_on(sbi, offset < 0);
3053			raw_ne = &nat_in_journal(journal, offset);
3054			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3055		} else {
3056			raw_ne = &nat_blk->entries[nid - start_nid];
3057		}
3058		raw_nat_from_node_info(raw_ne, &ne->ni);
3059		nat_reset_flag(ne);
3060		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3061		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3062			add_free_nid(sbi, nid, false, true);
3063		} else {
3064			spin_lock(&NM_I(sbi)->nid_list_lock);
3065			update_free_nid_bitmap(sbi, nid, false, false);
3066			spin_unlock(&NM_I(sbi)->nid_list_lock);
3067		}
3068	}
3069
3070	if (to_journal) {
3071		up_write(&curseg->journal_rwsem);
3072	} else {
3073		update_nat_bits(sbi, start_nid, page);
3074		f2fs_put_page(page, 1);
3075	}
3076
3077	/* Allow dirty nats by node block allocation in write_begin */
3078	if (!set->entry_cnt) {
3079		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3080		kmem_cache_free(nat_entry_set_slab, set);
3081	}
3082	return 0;
3083}
3084
3085/*
3086 * This function is called during the checkpointing process.
3087 */
3088int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3089{
3090	struct f2fs_nm_info *nm_i = NM_I(sbi);
3091	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3092	struct f2fs_journal *journal = curseg->journal;
3093	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3094	struct nat_entry_set *set, *tmp;
3095	unsigned int found;
3096	nid_t set_idx = 0;
3097	LIST_HEAD(sets);
3098	int err = 0;
3099
3100	/*
3101	 * during unmount, let's flush nat_bits before checking
3102	 * nat_cnt[DIRTY_NAT].
3103	 */
3104	if (cpc->reason & CP_UMOUNT) {
3105		f2fs_down_write(&nm_i->nat_tree_lock);
3106		remove_nats_in_journal(sbi);
3107		f2fs_up_write(&nm_i->nat_tree_lock);
3108	}
3109
3110	if (!nm_i->nat_cnt[DIRTY_NAT])
3111		return 0;
3112
3113	f2fs_down_write(&nm_i->nat_tree_lock);
3114
3115	/*
3116	 * if there are no enough space in journal to store dirty nat
3117	 * entries, remove all entries from journal and merge them
3118	 * into nat entry set.
3119	 */
3120	if (cpc->reason & CP_UMOUNT ||
3121		!__has_cursum_space(journal,
3122			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3123		remove_nats_in_journal(sbi);
3124
3125	while ((found = __gang_lookup_nat_set(nm_i,
3126					set_idx, NAT_VEC_SIZE, setvec))) {
3127		unsigned idx;
3128
3129		set_idx = setvec[found - 1]->set + 1;
3130		for (idx = 0; idx < found; idx++)
3131			__adjust_nat_entry_set(setvec[idx], &sets,
3132						MAX_NAT_JENTRIES(journal));
3133	}
3134
3135	/* flush dirty nats in nat entry set */
3136	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3137		err = __flush_nat_entry_set(sbi, set, cpc);
3138		if (err)
3139			break;
3140	}
3141
3142	f2fs_up_write(&nm_i->nat_tree_lock);
3143	/* Allow dirty nats by node block allocation in write_begin */
3144
3145	return err;
3146}
3147
3148static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3149{
3150	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3151	struct f2fs_nm_info *nm_i = NM_I(sbi);
3152	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3153	unsigned int i;
3154	__u64 cp_ver = cur_cp_version(ckpt);
3155	block_t nat_bits_addr;
3156
 
 
 
3157	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3158	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3159			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3160	if (!nm_i->nat_bits)
3161		return -ENOMEM;
3162
3163	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3164	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3165
3166	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3167		return 0;
3168
3169	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3170						nm_i->nat_bits_blocks;
3171	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3172		struct page *page;
3173
3174		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3175		if (IS_ERR(page))
3176			return PTR_ERR(page);
3177
3178		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3179					page_address(page), F2FS_BLKSIZE);
3180		f2fs_put_page(page, 1);
3181	}
3182
3183	cp_ver |= (cur_cp_crc(ckpt) << 32);
3184	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3185		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3186		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3187			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3188		return 0;
3189	}
3190
 
 
 
3191	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3192	return 0;
3193}
3194
3195static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3196{
3197	struct f2fs_nm_info *nm_i = NM_I(sbi);
3198	unsigned int i = 0;
3199	nid_t nid, last_nid;
3200
3201	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3202		return;
3203
3204	for (i = 0; i < nm_i->nat_blocks; i++) {
3205		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3206		if (i >= nm_i->nat_blocks)
3207			break;
3208
3209		__set_bit_le(i, nm_i->nat_block_bitmap);
3210
3211		nid = i * NAT_ENTRY_PER_BLOCK;
3212		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3213
3214		spin_lock(&NM_I(sbi)->nid_list_lock);
3215		for (; nid < last_nid; nid++)
3216			update_free_nid_bitmap(sbi, nid, true, true);
3217		spin_unlock(&NM_I(sbi)->nid_list_lock);
3218	}
3219
3220	for (i = 0; i < nm_i->nat_blocks; i++) {
3221		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3222		if (i >= nm_i->nat_blocks)
3223			break;
3224
3225		__set_bit_le(i, nm_i->nat_block_bitmap);
3226	}
3227}
3228
3229static int init_node_manager(struct f2fs_sb_info *sbi)
3230{
3231	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3232	struct f2fs_nm_info *nm_i = NM_I(sbi);
3233	unsigned char *version_bitmap;
3234	unsigned int nat_segs;
3235	int err;
3236
3237	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3238
3239	/* segment_count_nat includes pair segment so divide to 2. */
3240	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3241	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3242	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3243
3244	/* not used nids: 0, node, meta, (and root counted as valid node) */
3245	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3246						F2FS_RESERVED_NODE_NUM;
3247	nm_i->nid_cnt[FREE_NID] = 0;
3248	nm_i->nid_cnt[PREALLOC_NID] = 0;
 
3249	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3250	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3251	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3252	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3253
3254	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3255	INIT_LIST_HEAD(&nm_i->free_nid_list);
3256	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3257	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3258	INIT_LIST_HEAD(&nm_i->nat_entries);
3259	spin_lock_init(&nm_i->nat_list_lock);
3260
3261	mutex_init(&nm_i->build_lock);
3262	spin_lock_init(&nm_i->nid_list_lock);
3263	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3264
3265	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3266	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3267	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
 
 
 
3268	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3269					GFP_KERNEL);
3270	if (!nm_i->nat_bitmap)
3271		return -ENOMEM;
3272
3273	err = __get_nat_bitmaps(sbi);
3274	if (err)
3275		return err;
3276
3277#ifdef CONFIG_F2FS_CHECK_FS
3278	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3279					GFP_KERNEL);
3280	if (!nm_i->nat_bitmap_mir)
3281		return -ENOMEM;
3282#endif
3283
3284	return 0;
3285}
3286
3287static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3288{
3289	struct f2fs_nm_info *nm_i = NM_I(sbi);
3290	int i;
3291
3292	nm_i->free_nid_bitmap =
3293		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3294					      nm_i->nat_blocks),
3295			      GFP_KERNEL);
3296	if (!nm_i->free_nid_bitmap)
3297		return -ENOMEM;
3298
3299	for (i = 0; i < nm_i->nat_blocks; i++) {
3300		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3301			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3302		if (!nm_i->free_nid_bitmap[i])
3303			return -ENOMEM;
3304	}
3305
3306	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3307								GFP_KERNEL);
3308	if (!nm_i->nat_block_bitmap)
3309		return -ENOMEM;
3310
3311	nm_i->free_nid_count =
3312		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3313					      nm_i->nat_blocks),
3314			      GFP_KERNEL);
3315	if (!nm_i->free_nid_count)
3316		return -ENOMEM;
3317	return 0;
3318}
3319
3320int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3321{
3322	int err;
3323
3324	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3325							GFP_KERNEL);
3326	if (!sbi->nm_info)
3327		return -ENOMEM;
3328
3329	err = init_node_manager(sbi);
3330	if (err)
3331		return err;
3332
3333	err = init_free_nid_cache(sbi);
3334	if (err)
3335		return err;
3336
3337	/* load free nid status from nat_bits table */
3338	load_free_nid_bitmap(sbi);
3339
3340	return f2fs_build_free_nids(sbi, true, true);
3341}
3342
3343void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3344{
3345	struct f2fs_nm_info *nm_i = NM_I(sbi);
3346	struct free_nid *i, *next_i;
3347	void *vec[NAT_VEC_SIZE];
3348	struct nat_entry **natvec = (struct nat_entry **)vec;
3349	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3350	nid_t nid = 0;
3351	unsigned int found;
3352
3353	if (!nm_i)
3354		return;
3355
3356	/* destroy free nid list */
3357	spin_lock(&nm_i->nid_list_lock);
3358	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3359		__remove_free_nid(sbi, i, FREE_NID);
3360		spin_unlock(&nm_i->nid_list_lock);
3361		kmem_cache_free(free_nid_slab, i);
3362		spin_lock(&nm_i->nid_list_lock);
3363	}
3364	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3365	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3366	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3367	spin_unlock(&nm_i->nid_list_lock);
3368
3369	/* destroy nat cache */
3370	f2fs_down_write(&nm_i->nat_tree_lock);
3371	while ((found = __gang_lookup_nat_cache(nm_i,
3372					nid, NAT_VEC_SIZE, natvec))) {
3373		unsigned idx;
3374
3375		nid = nat_get_nid(natvec[found - 1]) + 1;
3376		for (idx = 0; idx < found; idx++) {
3377			spin_lock(&nm_i->nat_list_lock);
3378			list_del(&natvec[idx]->list);
3379			spin_unlock(&nm_i->nat_list_lock);
3380
3381			__del_from_nat_cache(nm_i, natvec[idx]);
3382		}
3383	}
3384	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3385
3386	/* destroy nat set cache */
3387	nid = 0;
3388	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3389	while ((found = __gang_lookup_nat_set(nm_i,
3390					nid, NAT_VEC_SIZE, setvec))) {
3391		unsigned idx;
3392
3393		nid = setvec[found - 1]->set + 1;
3394		for (idx = 0; idx < found; idx++) {
3395			/* entry_cnt is not zero, when cp_error was occurred */
3396			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3397			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3398			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3399		}
3400	}
3401	f2fs_up_write(&nm_i->nat_tree_lock);
3402
3403	kvfree(nm_i->nat_block_bitmap);
3404	if (nm_i->free_nid_bitmap) {
3405		int i;
3406
3407		for (i = 0; i < nm_i->nat_blocks; i++)
3408			kvfree(nm_i->free_nid_bitmap[i]);
3409		kvfree(nm_i->free_nid_bitmap);
3410	}
3411	kvfree(nm_i->free_nid_count);
3412
3413	kvfree(nm_i->nat_bitmap);
3414	kvfree(nm_i->nat_bits);
3415#ifdef CONFIG_F2FS_CHECK_FS
3416	kvfree(nm_i->nat_bitmap_mir);
3417#endif
3418	sbi->nm_info = NULL;
3419	kfree(nm_i);
3420}
3421
3422int __init f2fs_create_node_manager_caches(void)
3423{
3424	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3425			sizeof(struct nat_entry));
3426	if (!nat_entry_slab)
3427		goto fail;
3428
3429	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3430			sizeof(struct free_nid));
3431	if (!free_nid_slab)
3432		goto destroy_nat_entry;
3433
3434	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3435			sizeof(struct nat_entry_set));
3436	if (!nat_entry_set_slab)
3437		goto destroy_free_nid;
3438
3439	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3440			sizeof(struct fsync_node_entry));
3441	if (!fsync_node_entry_slab)
3442		goto destroy_nat_entry_set;
3443	return 0;
3444
3445destroy_nat_entry_set:
3446	kmem_cache_destroy(nat_entry_set_slab);
3447destroy_free_nid:
3448	kmem_cache_destroy(free_nid_slab);
3449destroy_nat_entry:
3450	kmem_cache_destroy(nat_entry_slab);
3451fail:
3452	return -ENOMEM;
3453}
3454
3455void f2fs_destroy_node_manager_caches(void)
3456{
3457	kmem_cache_destroy(fsync_node_entry_slab);
3458	kmem_cache_destroy(nat_entry_set_slab);
3459	kmem_cache_destroy(free_nid_slab);
3460	kmem_cache_destroy(nat_entry_slab);
3461}