Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/backing-dev.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "trace.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		return -EFSCORRUPTED;
  40	}
  41	return 0;
  42}
  43
  44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  45{
  46	struct f2fs_nm_info *nm_i = NM_I(sbi);
  47	struct sysinfo val;
  48	unsigned long avail_ram;
  49	unsigned long mem_size = 0;
  50	bool res = false;
  51
  52	si_meminfo(&val);
 
 
 
 
 
  53
  54	/* only uses low memory */
  55	avail_ram = val.totalram - val.totalhigh;
  56
  57	/*
  58	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  59	 */
  60	if (type == FREE_NIDS) {
  61		mem_size = (nm_i->nid_cnt[FREE_NID] *
  62				sizeof(struct free_nid)) >> PAGE_SHIFT;
  63		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  64	} else if (type == NAT_ENTRIES) {
  65		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  66							PAGE_SHIFT;
  67		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  68		if (excess_cached_nats(sbi))
  69			res = false;
  70	} else if (type == DIRTY_DENTS) {
  71		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  72			return false;
  73		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  74		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75	} else if (type == INO_ENTRIES) {
  76		int i;
  77
  78		for (i = 0; i < MAX_INO_ENTRY; i++)
  79			mem_size += sbi->im[i].ino_num *
  80						sizeof(struct ino_entry);
  81		mem_size >>= PAGE_SHIFT;
  82		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  83	} else if (type == EXTENT_CACHE) {
  84		mem_size = (atomic_read(&sbi->total_ext_tree) *
  85				sizeof(struct extent_tree) +
  86				atomic_read(&sbi->total_ext_node) *
  87				sizeof(struct extent_node)) >> PAGE_SHIFT;
  88		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  89	} else if (type == INMEM_PAGES) {
  90		/* it allows 20% / total_ram for inmemory pages */
  91		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  92		res = mem_size < (val.totalram / 5);
  93	} else {
  94		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  95			return true;
  96	}
  97	return res;
  98}
  99
 100static void clear_node_page_dirty(struct page *page)
 101{
 
 
 
 
 102	if (PageDirty(page)) {
 103		f2fs_clear_page_cache_dirty_tag(page);
 
 
 
 
 
 104		clear_page_dirty_for_io(page);
 105		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 106	}
 107	ClearPageUptodate(page);
 108}
 109
 110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 111{
 112	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
 
 113}
 114
 115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 116{
 117	struct page *src_page;
 118	struct page *dst_page;
 
 119	pgoff_t dst_off;
 120	void *src_addr;
 121	void *dst_addr;
 122	struct f2fs_nm_info *nm_i = NM_I(sbi);
 123
 124	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 
 125
 126	/* get current nat block page with lock */
 127	src_page = get_current_nat_page(sbi, nid);
 128	if (IS_ERR(src_page))
 
 
 129		return src_page;
 130	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 131	f2fs_bug_on(sbi, PageDirty(src_page));
 132
 133	src_addr = page_address(src_page);
 134	dst_addr = page_address(dst_page);
 135	memcpy(dst_addr, src_addr, PAGE_SIZE);
 136	set_page_dirty(dst_page);
 137	f2fs_put_page(src_page, 1);
 138
 139	set_to_next_nat(nm_i, nid);
 140
 141	return dst_page;
 142}
 143
 144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 145{
 146	struct nat_entry *new;
 147
 148	if (no_fail)
 149		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 150	else
 151		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 152	if (new) {
 153		nat_set_nid(new, nid);
 154		nat_reset_flag(new);
 155	}
 156	return new;
 157}
 158
 159static void __free_nat_entry(struct nat_entry *e)
 160{
 161	kmem_cache_free(nat_entry_slab, e);
 162}
 163
 164/* must be locked by nat_tree_lock */
 165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 166	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 167{
 168	if (no_fail)
 169		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 170	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 171		return NULL;
 172
 173	if (raw_ne)
 174		node_info_from_raw_nat(&ne->ni, raw_ne);
 175
 176	spin_lock(&nm_i->nat_list_lock);
 177	list_add_tail(&ne->list, &nm_i->nat_entries);
 178	spin_unlock(&nm_i->nat_list_lock);
 179
 180	nm_i->nat_cnt++;
 181	return ne;
 182}
 183
 184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 185{
 186	struct nat_entry *ne;
 187
 188	ne = radix_tree_lookup(&nm_i->nat_root, n);
 189
 190	/* for recent accessed nat entry, move it to tail of lru list */
 191	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 192		spin_lock(&nm_i->nat_list_lock);
 193		if (!list_empty(&ne->list))
 194			list_move_tail(&ne->list, &nm_i->nat_entries);
 195		spin_unlock(&nm_i->nat_list_lock);
 196	}
 197
 198	return ne;
 199}
 200
 201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 202		nid_t start, unsigned int nr, struct nat_entry **ep)
 203{
 204	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 205}
 206
 207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 208{
 
 209	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 210	nm_i->nat_cnt--;
 211	__free_nat_entry(e);
 212}
 213
 214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 215							struct nat_entry *ne)
 216{
 217	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 218	struct nat_entry_set *head;
 219
 220	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 221	if (!head) {
 222		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 223
 224		INIT_LIST_HEAD(&head->entry_list);
 225		INIT_LIST_HEAD(&head->set_list);
 226		head->set = set;
 227		head->entry_cnt = 0;
 228		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 229	}
 230	return head;
 231}
 232
 233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 234						struct nat_entry *ne)
 235{
 236	struct nat_entry_set *head;
 237	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 238
 239	if (!new_ne)
 240		head = __grab_nat_entry_set(nm_i, ne);
 241
 242	/*
 243	 * update entry_cnt in below condition:
 244	 * 1. update NEW_ADDR to valid block address;
 245	 * 2. update old block address to new one;
 246	 */
 247	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 248				!get_nat_flag(ne, IS_DIRTY)))
 249		head->entry_cnt++;
 250
 251	set_nat_flag(ne, IS_PREALLOC, new_ne);
 252
 253	if (get_nat_flag(ne, IS_DIRTY))
 254		goto refresh_list;
 255
 256	nm_i->dirty_nat_cnt++;
 257	set_nat_flag(ne, IS_DIRTY, true);
 258refresh_list:
 259	spin_lock(&nm_i->nat_list_lock);
 260	if (new_ne)
 261		list_del_init(&ne->list);
 262	else
 263		list_move_tail(&ne->list, &head->entry_list);
 264	spin_unlock(&nm_i->nat_list_lock);
 265}
 266
 267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 268		struct nat_entry_set *set, struct nat_entry *ne)
 269{
 270	spin_lock(&nm_i->nat_list_lock);
 271	list_move_tail(&ne->list, &nm_i->nat_entries);
 272	spin_unlock(&nm_i->nat_list_lock);
 273
 274	set_nat_flag(ne, IS_DIRTY, false);
 275	set->entry_cnt--;
 276	nm_i->dirty_nat_cnt--;
 277}
 278
 279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 280		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 281{
 282	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 283							start, nr);
 284}
 285
 286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 287{
 288	return NODE_MAPPING(sbi) == page->mapping &&
 289			IS_DNODE(page) && is_cold_node(page);
 290}
 291
 292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 293{
 294	spin_lock_init(&sbi->fsync_node_lock);
 295	INIT_LIST_HEAD(&sbi->fsync_node_list);
 296	sbi->fsync_seg_id = 0;
 297	sbi->fsync_node_num = 0;
 298}
 299
 300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 301							struct page *page)
 302{
 303	struct fsync_node_entry *fn;
 304	unsigned long flags;
 305	unsigned int seq_id;
 306
 307	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
 308
 309	get_page(page);
 310	fn->page = page;
 311	INIT_LIST_HEAD(&fn->list);
 312
 313	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 314	list_add_tail(&fn->list, &sbi->fsync_node_list);
 315	fn->seq_id = sbi->fsync_seg_id++;
 316	seq_id = fn->seq_id;
 317	sbi->fsync_node_num++;
 318	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 319
 320	return seq_id;
 321}
 322
 323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 324{
 325	struct fsync_node_entry *fn;
 326	unsigned long flags;
 327
 328	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 329	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 330		if (fn->page == page) {
 331			list_del(&fn->list);
 332			sbi->fsync_node_num--;
 333			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 334			kmem_cache_free(fsync_node_entry_slab, fn);
 335			put_page(page);
 336			return;
 337		}
 338	}
 339	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 340	f2fs_bug_on(sbi, 1);
 341}
 342
 343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 344{
 345	unsigned long flags;
 346
 347	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 348	sbi->fsync_seg_id = 0;
 349	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 350}
 351
 352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 353{
 354	struct f2fs_nm_info *nm_i = NM_I(sbi);
 355	struct nat_entry *e;
 356	bool need = false;
 357
 358	down_read(&nm_i->nat_tree_lock);
 359	e = __lookup_nat_cache(nm_i, nid);
 360	if (e) {
 361		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 362				!get_nat_flag(e, HAS_FSYNCED_INODE))
 363			need = true;
 364	}
 365	up_read(&nm_i->nat_tree_lock);
 366	return need;
 367}
 368
 369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 370{
 371	struct f2fs_nm_info *nm_i = NM_I(sbi);
 372	struct nat_entry *e;
 373	bool is_cp = true;
 374
 375	down_read(&nm_i->nat_tree_lock);
 376	e = __lookup_nat_cache(nm_i, nid);
 377	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 378		is_cp = false;
 379	up_read(&nm_i->nat_tree_lock);
 380	return is_cp;
 381}
 382
 383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 384{
 385	struct f2fs_nm_info *nm_i = NM_I(sbi);
 386	struct nat_entry *e;
 387	bool need_update = true;
 388
 389	down_read(&nm_i->nat_tree_lock);
 390	e = __lookup_nat_cache(nm_i, ino);
 391	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 392			(get_nat_flag(e, IS_CHECKPOINTED) ||
 393			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 394		need_update = false;
 395	up_read(&nm_i->nat_tree_lock);
 396	return need_update;
 
 
 
 
 
 397}
 398
 399/* must be locked by nat_tree_lock */
 400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 401						struct f2fs_nat_entry *ne)
 402{
 403	struct f2fs_nm_info *nm_i = NM_I(sbi);
 404	struct nat_entry *new, *e;
 405
 406	new = __alloc_nat_entry(nid, false);
 407	if (!new)
 408		return;
 409
 410	down_write(&nm_i->nat_tree_lock);
 411	e = __lookup_nat_cache(nm_i, nid);
 412	if (!e)
 413		e = __init_nat_entry(nm_i, new, ne, false);
 414	else
 415		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 416				nat_get_blkaddr(e) !=
 417					le32_to_cpu(ne->block_addr) ||
 418				nat_get_version(e) != ne->version);
 419	up_write(&nm_i->nat_tree_lock);
 420	if (e != new)
 421		__free_nat_entry(new);
 
 422}
 423
 424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 425			block_t new_blkaddr, bool fsync_done)
 426{
 427	struct f2fs_nm_info *nm_i = NM_I(sbi);
 428	struct nat_entry *e;
 429	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 430
 431	down_write(&nm_i->nat_tree_lock);
 432	e = __lookup_nat_cache(nm_i, ni->nid);
 433	if (!e) {
 434		e = __init_nat_entry(nm_i, new, NULL, true);
 435		copy_node_info(&e->ni, ni);
 436		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 
 
 
 
 437	} else if (new_blkaddr == NEW_ADDR) {
 438		/*
 439		 * when nid is reallocated,
 440		 * previous nat entry can be remained in nat cache.
 441		 * So, reinitialize it with new information.
 442		 */
 443		copy_node_info(&e->ni, ni);
 444		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 445	}
 446	/* let's free early to reduce memory consumption */
 447	if (e != new)
 448		__free_nat_entry(new);
 449
 450	/* sanity check */
 451	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 452	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 453			new_blkaddr == NULL_ADDR);
 454	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 455			new_blkaddr == NEW_ADDR);
 456	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 
 457			new_blkaddr == NEW_ADDR);
 458
 459	/* increment version no as node is removed */
 460	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 461		unsigned char version = nat_get_version(e);
 462		nat_set_version(e, inc_node_version(version));
 463	}
 464
 465	/* change address */
 466	nat_set_blkaddr(e, new_blkaddr);
 467	if (!__is_valid_data_blkaddr(new_blkaddr))
 468		set_nat_flag(e, IS_CHECKPOINTED, false);
 469	__set_nat_cache_dirty(nm_i, e);
 470
 471	/* update fsync_mark if its inode nat entry is still alive */
 472	if (ni->nid != ni->ino)
 473		e = __lookup_nat_cache(nm_i, ni->ino);
 474	if (e) {
 475		if (fsync_done && ni->nid == ni->ino)
 476			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 477		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 478	}
 479	up_write(&nm_i->nat_tree_lock);
 480}
 481
 482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 483{
 484	struct f2fs_nm_info *nm_i = NM_I(sbi);
 485	int nr = nr_shrink;
 486
 487	if (!down_write_trylock(&nm_i->nat_tree_lock))
 488		return 0;
 489
 490	spin_lock(&nm_i->nat_list_lock);
 491	while (nr_shrink) {
 492		struct nat_entry *ne;
 493
 494		if (list_empty(&nm_i->nat_entries))
 495			break;
 496
 497		ne = list_first_entry(&nm_i->nat_entries,
 498					struct nat_entry, list);
 499		list_del(&ne->list);
 500		spin_unlock(&nm_i->nat_list_lock);
 501
 502		__del_from_nat_cache(nm_i, ne);
 503		nr_shrink--;
 504
 505		spin_lock(&nm_i->nat_list_lock);
 506	}
 507	spin_unlock(&nm_i->nat_list_lock);
 508
 509	up_write(&nm_i->nat_tree_lock);
 510	return nr - nr_shrink;
 511}
 512
 513/*
 514 * This function always returns success
 515 */
 516int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 517						struct node_info *ni)
 518{
 519	struct f2fs_nm_info *nm_i = NM_I(sbi);
 520	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 521	struct f2fs_journal *journal = curseg->journal;
 522	nid_t start_nid = START_NID(nid);
 523	struct f2fs_nat_block *nat_blk;
 524	struct page *page = NULL;
 525	struct f2fs_nat_entry ne;
 526	struct nat_entry *e;
 527	pgoff_t index;
 528	block_t blkaddr;
 529	int i;
 530
 
 531	ni->nid = nid;
 532
 533	/* Check nat cache */
 534	down_read(&nm_i->nat_tree_lock);
 535	e = __lookup_nat_cache(nm_i, nid);
 536	if (e) {
 537		ni->ino = nat_get_ino(e);
 538		ni->blk_addr = nat_get_blkaddr(e);
 539		ni->version = nat_get_version(e);
 540		up_read(&nm_i->nat_tree_lock);
 541		return 0;
 542	}
 543
 544	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 
 545
 546	/* Check current segment summary */
 547	down_read(&curseg->journal_rwsem);
 548	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 549	if (i >= 0) {
 550		ne = nat_in_journal(journal, i);
 551		node_info_from_raw_nat(ni, &ne);
 552	}
 553	up_read(&curseg->journal_rwsem);
 554	if (i >= 0) {
 555		up_read(&nm_i->nat_tree_lock);
 556		goto cache;
 557	}
 558
 559	/* Fill node_info from nat page */
 560	index = current_nat_addr(sbi, nid);
 561	up_read(&nm_i->nat_tree_lock);
 562
 563	page = f2fs_get_meta_page(sbi, index);
 564	if (IS_ERR(page))
 565		return PTR_ERR(page);
 566
 567	nat_blk = (struct f2fs_nat_block *)page_address(page);
 568	ne = nat_blk->entries[nid - start_nid];
 569	node_info_from_raw_nat(ni, &ne);
 570	f2fs_put_page(page, 1);
 571cache:
 572	blkaddr = le32_to_cpu(ne.block_addr);
 573	if (__is_valid_data_blkaddr(blkaddr) &&
 574		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 575		return -EFAULT;
 576
 577	/* cache nat entry */
 578	cache_nat_entry(sbi, nid, &ne);
 579	return 0;
 580}
 581
 582/*
 583 * readahead MAX_RA_NODE number of node pages.
 584 */
 585static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 586{
 587	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 588	struct blk_plug plug;
 589	int i, end;
 590	nid_t nid;
 591
 592	blk_start_plug(&plug);
 593
 594	/* Then, try readahead for siblings of the desired node */
 595	end = start + n;
 596	end = min(end, NIDS_PER_BLOCK);
 597	for (i = start; i < end; i++) {
 598		nid = get_nid(parent, i, false);
 599		f2fs_ra_node_page(sbi, nid);
 600	}
 601
 602	blk_finish_plug(&plug);
 603}
 604
 605pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 606{
 607	const long direct_index = ADDRS_PER_INODE(dn->inode);
 608	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 609	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 610	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 611	int cur_level = dn->cur_level;
 612	int max_level = dn->max_level;
 613	pgoff_t base = 0;
 614
 615	if (!dn->max_level)
 616		return pgofs + 1;
 617
 618	while (max_level-- > cur_level)
 619		skipped_unit *= NIDS_PER_BLOCK;
 620
 621	switch (dn->max_level) {
 622	case 3:
 623		base += 2 * indirect_blks;
 624		/* fall through */
 625	case 2:
 626		base += 2 * direct_blks;
 627		/* fall through */
 628	case 1:
 629		base += direct_index;
 630		break;
 631	default:
 632		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 633	}
 634
 635	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 636}
 637
 638/*
 639 * The maximum depth is four.
 640 * Offset[0] will have raw inode offset.
 641 */
 642static int get_node_path(struct inode *inode, long block,
 643				int offset[4], unsigned int noffset[4])
 644{
 645	const long direct_index = ADDRS_PER_INODE(inode);
 646	const long direct_blks = ADDRS_PER_BLOCK(inode);
 647	const long dptrs_per_blk = NIDS_PER_BLOCK;
 648	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 649	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 650	int n = 0;
 651	int level = 0;
 652
 653	noffset[0] = 0;
 654
 655	if (block < direct_index) {
 656		offset[n] = block;
 657		goto got;
 658	}
 659	block -= direct_index;
 660	if (block < direct_blks) {
 661		offset[n++] = NODE_DIR1_BLOCK;
 662		noffset[n] = 1;
 663		offset[n] = block;
 664		level = 1;
 665		goto got;
 666	}
 667	block -= direct_blks;
 668	if (block < direct_blks) {
 669		offset[n++] = NODE_DIR2_BLOCK;
 670		noffset[n] = 2;
 671		offset[n] = block;
 672		level = 1;
 673		goto got;
 674	}
 675	block -= direct_blks;
 676	if (block < indirect_blks) {
 677		offset[n++] = NODE_IND1_BLOCK;
 678		noffset[n] = 3;
 679		offset[n++] = block / direct_blks;
 680		noffset[n] = 4 + offset[n - 1];
 681		offset[n] = block % direct_blks;
 682		level = 2;
 683		goto got;
 684	}
 685	block -= indirect_blks;
 686	if (block < indirect_blks) {
 687		offset[n++] = NODE_IND2_BLOCK;
 688		noffset[n] = 4 + dptrs_per_blk;
 689		offset[n++] = block / direct_blks;
 690		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 691		offset[n] = block % direct_blks;
 692		level = 2;
 693		goto got;
 694	}
 695	block -= indirect_blks;
 696	if (block < dindirect_blks) {
 697		offset[n++] = NODE_DIND_BLOCK;
 698		noffset[n] = 5 + (dptrs_per_blk * 2);
 699		offset[n++] = block / indirect_blks;
 700		noffset[n] = 6 + (dptrs_per_blk * 2) +
 701			      offset[n - 1] * (dptrs_per_blk + 1);
 702		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 703		noffset[n] = 7 + (dptrs_per_blk * 2) +
 704			      offset[n - 2] * (dptrs_per_blk + 1) +
 705			      offset[n - 1];
 706		offset[n] = block % direct_blks;
 707		level = 3;
 708		goto got;
 709	} else {
 710		return -E2BIG;
 711	}
 712got:
 713	return level;
 714}
 715
 716/*
 717 * Caller should call f2fs_put_dnode(dn).
 718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 719 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 720 * In the case of RDONLY_NODE, we don't need to care about mutex.
 721 */
 722int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 723{
 724	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 725	struct page *npage[4];
 726	struct page *parent = NULL;
 727	int offset[4];
 728	unsigned int noffset[4];
 729	nid_t nids[4];
 730	int level, i = 0;
 731	int err = 0;
 732
 733	level = get_node_path(dn->inode, index, offset, noffset);
 734	if (level < 0)
 735		return level;
 736
 737	nids[0] = dn->inode->i_ino;
 738	npage[0] = dn->inode_page;
 739
 740	if (!npage[0]) {
 741		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 742		if (IS_ERR(npage[0]))
 743			return PTR_ERR(npage[0]);
 744	}
 745
 746	/* if inline_data is set, should not report any block indices */
 747	if (f2fs_has_inline_data(dn->inode) && index) {
 748		err = -ENOENT;
 749		f2fs_put_page(npage[0], 1);
 750		goto release_out;
 751	}
 752
 753	parent = npage[0];
 754	if (level != 0)
 755		nids[1] = get_nid(parent, offset[0], true);
 756	dn->inode_page = npage[0];
 757	dn->inode_page_locked = true;
 758
 759	/* get indirect or direct nodes */
 760	for (i = 1; i <= level; i++) {
 761		bool done = false;
 762
 763		if (!nids[i] && mode == ALLOC_NODE) {
 764			/* alloc new node */
 765			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 766				err = -ENOSPC;
 767				goto release_pages;
 768			}
 769
 770			dn->nid = nids[i];
 771			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 772			if (IS_ERR(npage[i])) {
 773				f2fs_alloc_nid_failed(sbi, nids[i]);
 774				err = PTR_ERR(npage[i]);
 775				goto release_pages;
 776			}
 777
 778			set_nid(parent, offset[i - 1], nids[i], i == 1);
 779			f2fs_alloc_nid_done(sbi, nids[i]);
 780			done = true;
 781		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 782			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 783			if (IS_ERR(npage[i])) {
 784				err = PTR_ERR(npage[i]);
 785				goto release_pages;
 786			}
 787			done = true;
 788		}
 789		if (i == 1) {
 790			dn->inode_page_locked = false;
 791			unlock_page(parent);
 792		} else {
 793			f2fs_put_page(parent, 1);
 794		}
 795
 796		if (!done) {
 797			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 798			if (IS_ERR(npage[i])) {
 799				err = PTR_ERR(npage[i]);
 800				f2fs_put_page(npage[0], 0);
 801				goto release_out;
 802			}
 803		}
 804		if (i < level) {
 805			parent = npage[i];
 806			nids[i + 1] = get_nid(parent, offset[i], false);
 807		}
 808	}
 809	dn->nid = nids[level];
 810	dn->ofs_in_node = offset[level];
 811	dn->node_page = npage[level];
 812	dn->data_blkaddr = datablock_addr(dn->inode,
 813				dn->node_page, dn->ofs_in_node);
 814	return 0;
 815
 816release_pages:
 817	f2fs_put_page(parent, 1);
 818	if (i > 1)
 819		f2fs_put_page(npage[0], 0);
 820release_out:
 821	dn->inode_page = NULL;
 822	dn->node_page = NULL;
 823	if (err == -ENOENT) {
 824		dn->cur_level = i;
 825		dn->max_level = level;
 826		dn->ofs_in_node = offset[level];
 827	}
 828	return err;
 829}
 830
 831static int truncate_node(struct dnode_of_data *dn)
 832{
 833	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 834	struct node_info ni;
 835	int err;
 836	pgoff_t index;
 837
 838	err = f2fs_get_node_info(sbi, dn->nid, &ni);
 839	if (err)
 840		return err;
 
 
 
 841
 842	/* Deallocate node address */
 843	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 844	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 845	set_node_addr(sbi, &ni, NULL_ADDR, false);
 846
 847	if (dn->nid == dn->inode->i_ino) {
 848		f2fs_remove_orphan_inode(sbi, dn->nid);
 849		dec_valid_inode_count(sbi);
 850		f2fs_inode_synced(dn->inode);
 
 851	}
 852
 853	clear_node_page_dirty(dn->node_page);
 854	set_sbi_flag(sbi, SBI_IS_DIRTY);
 855
 856	index = dn->node_page->index;
 857	f2fs_put_page(dn->node_page, 1);
 858
 859	invalidate_mapping_pages(NODE_MAPPING(sbi),
 860			index, index);
 861
 862	dn->node_page = NULL;
 863	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 864
 865	return 0;
 866}
 867
 868static int truncate_dnode(struct dnode_of_data *dn)
 869{
 
 870	struct page *page;
 871	int err;
 872
 873	if (dn->nid == 0)
 874		return 1;
 875
 876	/* get direct node */
 877	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 878	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 879		return 1;
 880	else if (IS_ERR(page))
 881		return PTR_ERR(page);
 882
 883	/* Make dnode_of_data for parameter */
 884	dn->node_page = page;
 885	dn->ofs_in_node = 0;
 886	f2fs_truncate_data_blocks(dn);
 887	err = truncate_node(dn);
 888	if (err)
 889		return err;
 890
 891	return 1;
 892}
 893
 894static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 895						int ofs, int depth)
 896{
 
 897	struct dnode_of_data rdn = *dn;
 898	struct page *page;
 899	struct f2fs_node *rn;
 900	nid_t child_nid;
 901	unsigned int child_nofs;
 902	int freed = 0;
 903	int i, ret;
 904
 905	if (dn->nid == 0)
 906		return NIDS_PER_BLOCK + 1;
 907
 908	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 909
 910	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 911	if (IS_ERR(page)) {
 912		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 913		return PTR_ERR(page);
 914	}
 915
 916	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 917
 918	rn = F2FS_NODE(page);
 919	if (depth < 3) {
 920		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 921			child_nid = le32_to_cpu(rn->in.nid[i]);
 922			if (child_nid == 0)
 923				continue;
 924			rdn.nid = child_nid;
 925			ret = truncate_dnode(&rdn);
 926			if (ret < 0)
 927				goto out_err;
 928			if (set_nid(page, i, 0, false))
 929				dn->node_changed = true;
 930		}
 931	} else {
 932		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 933		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 934			child_nid = le32_to_cpu(rn->in.nid[i]);
 935			if (child_nid == 0) {
 936				child_nofs += NIDS_PER_BLOCK + 1;
 937				continue;
 938			}
 939			rdn.nid = child_nid;
 940			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 941			if (ret == (NIDS_PER_BLOCK + 1)) {
 942				if (set_nid(page, i, 0, false))
 943					dn->node_changed = true;
 944				child_nofs += ret;
 945			} else if (ret < 0 && ret != -ENOENT) {
 946				goto out_err;
 947			}
 948		}
 949		freed = child_nofs;
 950	}
 951
 952	if (!ofs) {
 953		/* remove current indirect node */
 954		dn->node_page = page;
 955		ret = truncate_node(dn);
 956		if (ret)
 957			goto out_err;
 958		freed++;
 959	} else {
 960		f2fs_put_page(page, 1);
 961	}
 962	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 963	return freed;
 964
 965out_err:
 966	f2fs_put_page(page, 1);
 967	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 968	return ret;
 969}
 970
 971static int truncate_partial_nodes(struct dnode_of_data *dn,
 972			struct f2fs_inode *ri, int *offset, int depth)
 973{
 
 974	struct page *pages[2];
 975	nid_t nid[3];
 976	nid_t child_nid;
 977	int err = 0;
 978	int i;
 979	int idx = depth - 2;
 980
 981	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 982	if (!nid[0])
 983		return 0;
 984
 985	/* get indirect nodes in the path */
 986	for (i = 0; i < idx + 1; i++) {
 987		/* reference count'll be increased */
 988		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 989		if (IS_ERR(pages[i])) {
 990			err = PTR_ERR(pages[i]);
 991			idx = i - 1;
 992			goto fail;
 993		}
 994		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 995	}
 996
 997	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 998
 999	/* free direct nodes linked to a partial indirect node */
1000	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001		child_nid = get_nid(pages[idx], i, false);
1002		if (!child_nid)
1003			continue;
1004		dn->nid = child_nid;
1005		err = truncate_dnode(dn);
1006		if (err < 0)
1007			goto fail;
1008		if (set_nid(pages[idx], i, 0, false))
1009			dn->node_changed = true;
1010	}
1011
1012	if (offset[idx + 1] == 0) {
1013		dn->node_page = pages[idx];
1014		dn->nid = nid[idx];
1015		err = truncate_node(dn);
1016		if (err)
1017			goto fail;
1018	} else {
1019		f2fs_put_page(pages[idx], 1);
1020	}
1021	offset[idx]++;
1022	offset[idx + 1] = 0;
1023	idx--;
1024fail:
1025	for (i = idx; i >= 0; i--)
1026		f2fs_put_page(pages[i], 1);
1027
1028	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029
1030	return err;
1031}
1032
1033/*
1034 * All the block addresses of data and nodes should be nullified.
1035 */
1036int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037{
1038	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039	int err = 0, cont = 1;
1040	int level, offset[4], noffset[4];
1041	unsigned int nofs = 0;
1042	struct f2fs_inode *ri;
1043	struct dnode_of_data dn;
1044	struct page *page;
1045
1046	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047
1048	level = get_node_path(inode, from, offset, noffset);
1049	if (level < 0)
1050		return level;
1051
1052	page = f2fs_get_node_page(sbi, inode->i_ino);
1053	if (IS_ERR(page)) {
1054		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055		return PTR_ERR(page);
1056	}
1057
1058	set_new_dnode(&dn, inode, page, NULL, 0);
1059	unlock_page(page);
1060
1061	ri = F2FS_INODE(page);
1062	switch (level) {
1063	case 0:
1064	case 1:
1065		nofs = noffset[1];
1066		break;
1067	case 2:
1068		nofs = noffset[1];
1069		if (!offset[level - 1])
1070			goto skip_partial;
1071		err = truncate_partial_nodes(&dn, ri, offset, level);
1072		if (err < 0 && err != -ENOENT)
1073			goto fail;
1074		nofs += 1 + NIDS_PER_BLOCK;
1075		break;
1076	case 3:
1077		nofs = 5 + 2 * NIDS_PER_BLOCK;
1078		if (!offset[level - 1])
1079			goto skip_partial;
1080		err = truncate_partial_nodes(&dn, ri, offset, level);
1081		if (err < 0 && err != -ENOENT)
1082			goto fail;
1083		break;
1084	default:
1085		BUG();
1086	}
1087
1088skip_partial:
1089	while (cont) {
1090		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091		switch (offset[0]) {
1092		case NODE_DIR1_BLOCK:
1093		case NODE_DIR2_BLOCK:
1094			err = truncate_dnode(&dn);
1095			break;
1096
1097		case NODE_IND1_BLOCK:
1098		case NODE_IND2_BLOCK:
1099			err = truncate_nodes(&dn, nofs, offset[1], 2);
1100			break;
1101
1102		case NODE_DIND_BLOCK:
1103			err = truncate_nodes(&dn, nofs, offset[1], 3);
1104			cont = 0;
1105			break;
1106
1107		default:
1108			BUG();
1109		}
1110		if (err < 0 && err != -ENOENT)
1111			goto fail;
1112		if (offset[1] == 0 &&
1113				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114			lock_page(page);
1115			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116			f2fs_wait_on_page_writeback(page, NODE, true, true);
 
 
 
1117			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118			set_page_dirty(page);
1119			unlock_page(page);
1120		}
1121		offset[1] = 0;
1122		offset[0]++;
1123		nofs += err;
1124	}
1125fail:
1126	f2fs_put_page(page, 0);
1127	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128	return err > 0 ? 0 : err;
1129}
1130
1131/* caller must lock inode page */
1132int f2fs_truncate_xattr_node(struct inode *inode)
1133{
1134	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136	struct dnode_of_data dn;
1137	struct page *npage;
1138	int err;
1139
1140	if (!nid)
1141		return 0;
1142
1143	npage = f2fs_get_node_page(sbi, nid);
1144	if (IS_ERR(npage))
1145		return PTR_ERR(npage);
1146
1147	set_new_dnode(&dn, inode, NULL, npage, nid);
1148	err = truncate_node(&dn);
1149	if (err) {
1150		f2fs_put_page(npage, 1);
1151		return err;
1152	}
1153
1154	f2fs_i_xnid_write(inode, 0);
 
1155
 
 
 
 
 
1156	return 0;
1157}
1158
1159/*
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161 * f2fs_unlock_op().
1162 */
1163int f2fs_remove_inode_page(struct inode *inode)
1164{
 
 
 
1165	struct dnode_of_data dn;
1166	int err;
1167
1168	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170	if (err)
1171		return err;
1172
1173	err = f2fs_truncate_xattr_node(inode);
1174	if (err) {
1175		f2fs_put_dnode(&dn);
1176		return err;
1177	}
1178
1179	/* remove potential inline_data blocks */
1180	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181				S_ISLNK(inode->i_mode))
1182		f2fs_truncate_data_blocks_range(&dn, 1);
1183
1184	/* 0 is possible, after f2fs_new_inode() has failed */
1185	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186		f2fs_put_dnode(&dn);
1187		return -EIO;
1188	}
1189
1190	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191		f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192			  inode->i_ino, (unsigned long long)inode->i_blocks);
1193		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194	}
1195
1196	/* will put inode & node pages */
1197	err = truncate_node(&dn);
1198	if (err) {
1199		f2fs_put_dnode(&dn);
1200		return err;
1201	}
1202	return 0;
 
 
 
1203}
1204
1205struct page *f2fs_new_inode_page(struct inode *inode)
1206{
1207	struct dnode_of_data dn;
1208
1209	/* allocate inode page for new inode */
1210	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211
1212	/* caller should f2fs_put_page(page, 1); */
1213	return f2fs_new_node_page(&dn, 0);
1214}
1215
1216struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
 
1217{
1218	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219	struct node_info new_ni;
1220	struct page *page;
1221	int err;
1222
1223	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224		return ERR_PTR(-EPERM);
1225
1226	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
 
1227	if (!page)
1228		return ERR_PTR(-ENOMEM);
1229
1230	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231		goto fail;
1232
1233#ifdef CONFIG_F2FS_CHECK_FS
1234	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235	if (err) {
1236		dec_valid_node_count(sbi, dn->inode, !ofs);
1237		goto fail;
1238	}
1239	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240#endif
1241	new_ni.nid = dn->nid;
 
 
 
1242	new_ni.ino = dn->inode->i_ino;
1243	new_ni.blk_addr = NULL_ADDR;
1244	new_ni.flag = 0;
1245	new_ni.version = 0;
1246	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247
1248	f2fs_wait_on_page_writeback(page, NODE, true, true);
1249	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251	if (!PageUptodate(page))
1252		SetPageUptodate(page);
1253	if (set_page_dirty(page))
1254		dn->node_changed = true;
1255
1256	if (f2fs_has_xattr_block(ofs))
1257		f2fs_i_xnid_write(dn->inode, dn->nid);
1258
 
 
 
 
 
1259	if (ofs == 0)
1260		inc_valid_inode_count(sbi);
 
1261	return page;
1262
1263fail:
1264	clear_node_page_dirty(page);
1265	f2fs_put_page(page, 1);
1266	return ERR_PTR(err);
1267}
1268
1269/*
1270 * Caller should do after getting the following values.
1271 * 0: f2fs_put_page(page, 0)
1272 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
 
1273 */
1274static int read_node_page(struct page *page, int op_flags)
1275{
1276	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277	struct node_info ni;
1278	struct f2fs_io_info fio = {
1279		.sbi = sbi,
1280		.type = NODE,
1281		.op = REQ_OP_READ,
1282		.op_flags = op_flags,
1283		.page = page,
1284		.encrypted_page = NULL,
1285	};
1286	int err;
1287
1288	if (PageUptodate(page)) {
1289		if (!f2fs_inode_chksum_verify(sbi, page)) {
1290			ClearPageUptodate(page);
1291			return -EFSBADCRC;
1292		}
1293		return LOCKED_PAGE;
1294	}
1295
1296	err = f2fs_get_node_info(sbi, page->index, &ni);
1297	if (err)
1298		return err;
1299
1300	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302		ClearPageUptodate(page);
1303		return -ENOENT;
1304	}
1305
1306	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307	return f2fs_submit_page_bio(&fio);
 
 
1308}
1309
1310/*
1311 * Readahead a node page
1312 */
1313void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314{
1315	struct page *apage;
1316	int err;
1317
1318	if (!nid)
1319		return;
1320	if (f2fs_check_nid_range(sbi, nid))
1321		return;
1322
1323	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324	if (apage)
1325		return;
 
 
1326
1327	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328	if (!apage)
1329		return;
1330
1331	err = read_node_page(apage, REQ_RAHEAD);
1332	f2fs_put_page(apage, err ? 1 : 0);
 
 
 
1333}
1334
1335static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336					struct page *parent, int start)
1337{
1338	struct page *page;
1339	int err;
1340
1341	if (!nid)
1342		return ERR_PTR(-ENOENT);
1343	if (f2fs_check_nid_range(sbi, nid))
1344		return ERR_PTR(-EINVAL);
1345repeat:
1346	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
 
1347	if (!page)
1348		return ERR_PTR(-ENOMEM);
1349
1350	err = read_node_page(page, 0);
1351	if (err < 0) {
1352		f2fs_put_page(page, 1);
1353		return ERR_PTR(err);
1354	} else if (err == LOCKED_PAGE) {
1355		err = 0;
1356		goto page_hit;
1357	}
1358
1359	if (parent)
1360		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361
1362	lock_page(page);
1363
1364	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365		f2fs_put_page(page, 1);
1366		goto repeat;
1367	}
1368
1369	if (unlikely(!PageUptodate(page))) {
1370		err = -EIO;
1371		goto out_err;
1372	}
1373
1374	if (!f2fs_inode_chksum_verify(sbi, page)) {
1375		err = -EFSBADCRC;
1376		goto out_err;
1377	}
1378page_hit:
1379	if(unlikely(nid != nid_of_node(page))) {
1380		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381			  nid, nid_of_node(page), ino_of_node(page),
1382			  ofs_of_node(page), cpver_of_node(page),
1383			  next_blkaddr_of_node(page));
1384		err = -EINVAL;
1385out_err:
1386		ClearPageUptodate(page);
1387		f2fs_put_page(page, 1);
1388		return ERR_PTR(err);
1389	}
 
 
1390	return page;
1391}
1392
1393struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394{
1395	return __get_node_page(sbi, nid, NULL, 0);
1396}
1397
1398struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399{
1400	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401	nid_t nid = get_nid(parent, start, false);
1402
1403	return __get_node_page(sbi, nid, parent, start);
1404}
1405
1406static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407{
1408	struct inode *inode;
 
1409	struct page *page;
1410	int ret;
1411
1412	/* should flush inline_data before evict_inode */
1413	inode = ilookup(sbi->sb, ino);
1414	if (!inode)
1415		return;
1416
1417	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418					FGP_LOCK|FGP_NOWAIT, 0);
1419	if (!page)
1420		goto iput_out;
1421
1422	if (!PageUptodate(page))
1423		goto page_out;
1424
1425	if (!PageDirty(page))
1426		goto page_out;
1427
1428	if (!clear_page_dirty_for_io(page))
1429		goto page_out;
1430
1431	ret = f2fs_write_inline_data(inode, page);
1432	inode_dec_dirty_pages(inode);
1433	f2fs_remove_dirty_inode(inode);
1434	if (ret)
1435		set_page_dirty(page);
1436page_out:
1437	f2fs_put_page(page, 1);
1438iput_out:
1439	iput(inode);
1440}
1441
1442static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443{
1444	pgoff_t index;
1445	struct pagevec pvec;
1446	struct page *last_page = NULL;
1447	int nr_pages;
1448
1449	pagevec_init(&pvec);
1450	index = 0;
1451
1452	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453				PAGECACHE_TAG_DIRTY))) {
1454		int i;
1455
1456		for (i = 0; i < nr_pages; i++) {
1457			struct page *page = pvec.pages[i];
1458
1459			if (unlikely(f2fs_cp_error(sbi))) {
1460				f2fs_put_page(last_page, 0);
1461				pagevec_release(&pvec);
1462				return ERR_PTR(-EIO);
1463			}
1464
1465			if (!IS_DNODE(page) || !is_cold_node(page))
1466				continue;
1467			if (ino_of_node(page) != ino)
1468				continue;
1469
1470			lock_page(page);
1471
1472			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473continue_unlock:
1474				unlock_page(page);
1475				continue;
1476			}
1477			if (ino_of_node(page) != ino)
1478				goto continue_unlock;
1479
1480			if (!PageDirty(page)) {
1481				/* someone wrote it for us */
1482				goto continue_unlock;
1483			}
1484
1485			if (last_page)
1486				f2fs_put_page(last_page, 0);
1487
1488			get_page(page);
1489			last_page = page;
1490			unlock_page(page);
1491		}
1492		pagevec_release(&pvec);
1493		cond_resched();
1494	}
1495	return last_page;
1496}
1497
1498static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499				struct writeback_control *wbc, bool do_balance,
1500				enum iostat_type io_type, unsigned int *seq_id)
1501{
1502	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503	nid_t nid;
1504	struct node_info ni;
1505	struct f2fs_io_info fio = {
1506		.sbi = sbi,
1507		.ino = ino_of_node(page),
1508		.type = NODE,
1509		.op = REQ_OP_WRITE,
1510		.op_flags = wbc_to_write_flags(wbc),
1511		.page = page,
1512		.encrypted_page = NULL,
1513		.submitted = false,
1514		.io_type = io_type,
1515		.io_wbc = wbc,
1516	};
1517	unsigned int seq;
1518
1519	trace_f2fs_writepage(page, NODE);
1520
1521	if (unlikely(f2fs_cp_error(sbi)))
1522		goto redirty_out;
1523
1524	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525		goto redirty_out;
1526
1527	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528			wbc->sync_mode == WB_SYNC_NONE &&
1529			IS_DNODE(page) && is_cold_node(page))
1530		goto redirty_out;
1531
1532	/* get old block addr of this node page */
1533	nid = nid_of_node(page);
1534	f2fs_bug_on(sbi, page->index != nid);
1535
1536	if (f2fs_get_node_info(sbi, nid, &ni))
1537		goto redirty_out;
1538
1539	if (wbc->for_reclaim) {
1540		if (!down_read_trylock(&sbi->node_write))
1541			goto redirty_out;
1542	} else {
1543		down_read(&sbi->node_write);
1544	}
1545
1546	/* This page is already truncated */
1547	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548		ClearPageUptodate(page);
1549		dec_page_count(sbi, F2FS_DIRTY_NODES);
1550		up_read(&sbi->node_write);
1551		unlock_page(page);
1552		return 0;
1553	}
1554
1555	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557					DATA_GENERIC_ENHANCE)) {
1558		up_read(&sbi->node_write);
1559		goto redirty_out;
1560	}
 
 
1561
1562	if (atomic && !test_opt(sbi, NOBARRIER))
1563		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
 
 
 
1564
1565	set_page_writeback(page);
1566	ClearPageError(page);
1567
1568	if (f2fs_in_warm_node_list(sbi, page)) {
1569		seq = f2fs_add_fsync_node_entry(sbi, page);
1570		if (seq_id)
1571			*seq_id = seq;
 
 
 
 
1572	}
1573
1574	fio.old_blkaddr = ni.blk_addr;
1575	f2fs_do_write_node_page(nid, &fio);
1576	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1577	dec_page_count(sbi, F2FS_DIRTY_NODES);
1578	up_read(&sbi->node_write);
1579
1580	if (wbc->for_reclaim) {
1581		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1582		submitted = NULL;
 
1583	}
1584
1585	unlock_page(page);
1586
1587	if (unlikely(f2fs_cp_error(sbi))) {
1588		f2fs_submit_merged_write(sbi, NODE);
1589		submitted = NULL;
1590	}
1591	if (submitted)
1592		*submitted = fio.submitted;
1593
1594	if (do_balance)
1595		f2fs_balance_fs(sbi, false);
1596	return 0;
1597
1598redirty_out:
1599	redirty_page_for_writepage(wbc, page);
1600	return AOP_WRITEPAGE_ACTIVATE;
1601}
1602
1603int f2fs_move_node_page(struct page *node_page, int gc_type)
1604{
1605	int err = 0;
1606
1607	if (gc_type == FG_GC) {
1608		struct writeback_control wbc = {
1609			.sync_mode = WB_SYNC_ALL,
1610			.nr_to_write = 1,
1611			.for_reclaim = 0,
1612		};
1613
1614		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1615
1616		set_page_dirty(node_page);
1617
1618		if (!clear_page_dirty_for_io(node_page)) {
1619			err = -EAGAIN;
1620			goto out_page;
1621		}
1622
1623		if (__write_node_page(node_page, false, NULL,
1624					&wbc, false, FS_GC_NODE_IO, NULL)) {
1625			err = -EAGAIN;
1626			unlock_page(node_page);
1627		}
1628		goto release_page;
1629	} else {
1630		/* set page dirty and write it */
1631		if (!PageWriteback(node_page))
1632			set_page_dirty(node_page);
1633	}
1634out_page:
1635	unlock_page(node_page);
1636release_page:
1637	f2fs_put_page(node_page, 0);
1638	return err;
1639}
1640
1641static int f2fs_write_node_page(struct page *page,
1642				struct writeback_control *wbc)
1643{
1644	return __write_node_page(page, false, NULL, wbc, false,
1645						FS_NODE_IO, NULL);
1646}
1647
1648int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1649			struct writeback_control *wbc, bool atomic,
1650			unsigned int *seq_id)
1651{
1652	pgoff_t index;
1653	struct pagevec pvec;
1654	int ret = 0;
1655	struct page *last_page = NULL;
1656	bool marked = false;
1657	nid_t ino = inode->i_ino;
1658	int nr_pages;
1659	int nwritten = 0;
1660
1661	if (atomic) {
1662		last_page = last_fsync_dnode(sbi, ino);
1663		if (IS_ERR_OR_NULL(last_page))
1664			return PTR_ERR_OR_ZERO(last_page);
1665	}
1666retry:
1667	pagevec_init(&pvec);
1668	index = 0;
1669
1670	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1671				PAGECACHE_TAG_DIRTY))) {
1672		int i;
1673
1674		for (i = 0; i < nr_pages; i++) {
1675			struct page *page = pvec.pages[i];
1676			bool submitted = false;
1677
1678			if (unlikely(f2fs_cp_error(sbi))) {
1679				f2fs_put_page(last_page, 0);
1680				pagevec_release(&pvec);
1681				ret = -EIO;
1682				goto out;
1683			}
1684
1685			if (!IS_DNODE(page) || !is_cold_node(page))
1686				continue;
1687			if (ino_of_node(page) != ino)
1688				continue;
1689
1690			lock_page(page);
1691
1692			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1693continue_unlock:
1694				unlock_page(page);
1695				continue;
1696			}
1697			if (ino_of_node(page) != ino)
1698				goto continue_unlock;
1699
1700			if (!PageDirty(page) && page != last_page) {
1701				/* someone wrote it for us */
1702				goto continue_unlock;
1703			}
1704
1705			f2fs_wait_on_page_writeback(page, NODE, true, true);
1706
1707			set_fsync_mark(page, 0);
1708			set_dentry_mark(page, 0);
1709
1710			if (!atomic || page == last_page) {
1711				set_fsync_mark(page, 1);
1712				if (IS_INODE(page)) {
1713					if (is_inode_flag_set(inode,
1714								FI_DIRTY_INODE))
1715						f2fs_update_inode(inode, page);
1716					set_dentry_mark(page,
1717						f2fs_need_dentry_mark(sbi, ino));
1718				}
1719				/*  may be written by other thread */
1720				if (!PageDirty(page))
1721					set_page_dirty(page);
1722			}
1723
1724			if (!clear_page_dirty_for_io(page))
1725				goto continue_unlock;
1726
1727			ret = __write_node_page(page, atomic &&
1728						page == last_page,
1729						&submitted, wbc, true,
1730						FS_NODE_IO, seq_id);
1731			if (ret) {
1732				unlock_page(page);
1733				f2fs_put_page(last_page, 0);
1734				break;
1735			} else if (submitted) {
1736				nwritten++;
1737			}
1738
1739			if (page == last_page) {
1740				f2fs_put_page(page, 0);
1741				marked = true;
1742				break;
1743			}
1744		}
1745		pagevec_release(&pvec);
1746		cond_resched();
1747
1748		if (ret || marked)
1749			break;
1750	}
1751	if (!ret && atomic && !marked) {
1752		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1753			   ino, last_page->index);
1754		lock_page(last_page);
1755		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1756		set_page_dirty(last_page);
1757		unlock_page(last_page);
1758		goto retry;
1759	}
1760out:
1761	if (nwritten)
1762		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1763	return ret ? -EIO: 0;
1764}
1765
1766static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1767{
1768	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769	bool clean;
1770
1771	if (inode->i_ino != ino)
1772		return 0;
1773
1774	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1775		return 0;
1776
1777	spin_lock(&sbi->inode_lock[DIRTY_META]);
1778	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1779	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1780
1781	if (clean)
1782		return 0;
1783
1784	inode = igrab(inode);
1785	if (!inode)
1786		return 0;
1787	return 1;
1788}
1789
1790static bool flush_dirty_inode(struct page *page)
 
1791{
1792	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1793	struct inode *inode;
1794	nid_t ino = ino_of_node(page);
1795
1796	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1797	if (!inode)
1798		return false;
1799
1800	f2fs_update_inode(inode, page);
1801	unlock_page(page);
1802
1803	iput(inode);
1804	return true;
1805}
1806
1807int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1808				struct writeback_control *wbc,
1809				bool do_balance, enum iostat_type io_type)
1810{
1811	pgoff_t index;
1812	struct pagevec pvec;
1813	int step = 0;
1814	int nwritten = 0;
1815	int ret = 0;
1816	int nr_pages, done = 0;
1817
1818	pagevec_init(&pvec);
1819
1820next_step:
1821	index = 0;
 
1822
1823	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1824			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1825		int i;
 
 
 
 
1826
1827		for (i = 0; i < nr_pages; i++) {
1828			struct page *page = pvec.pages[i];
1829			bool submitted = false;
1830			bool may_dirty = true;
1831
1832			/* give a priority to WB_SYNC threads */
1833			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1834					wbc->sync_mode == WB_SYNC_NONE) {
1835				done = 1;
1836				break;
1837			}
1838
1839			/*
1840			 * flushing sequence with step:
1841			 * 0. indirect nodes
1842			 * 1. dentry dnodes
1843			 * 2. file dnodes
1844			 */
1845			if (step == 0 && IS_DNODE(page))
1846				continue;
1847			if (step == 1 && (!IS_DNODE(page) ||
1848						is_cold_node(page)))
1849				continue;
1850			if (step == 2 && (!IS_DNODE(page) ||
1851						!is_cold_node(page)))
1852				continue;
1853lock_node:
1854			if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
1855				lock_page(page);
1856			else if (!trylock_page(page))
1857				continue;
1858
1859			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860continue_unlock:
1861				unlock_page(page);
1862				continue;
1863			}
 
 
1864
1865			if (!PageDirty(page)) {
1866				/* someone wrote it for us */
1867				goto continue_unlock;
1868			}
1869
1870			/* flush inline_data */
1871			if (is_inline_node(page)) {
1872				clear_inline_node(page);
1873				unlock_page(page);
1874				flush_inline_data(sbi, ino_of_node(page));
1875				goto lock_node;
1876			}
1877
1878			/* flush dirty inode */
1879			if (IS_INODE(page) && may_dirty) {
1880				may_dirty = false;
1881				if (flush_dirty_inode(page))
1882					goto lock_node;
1883			}
1884
1885			f2fs_wait_on_page_writeback(page, NODE, true, true);
1886
1887			if (!clear_page_dirty_for_io(page))
1888				goto continue_unlock;
1889
1890			set_fsync_mark(page, 0);
1891			set_dentry_mark(page, 0);
1892
1893			ret = __write_node_page(page, false, &submitted,
1894						wbc, do_balance, io_type, NULL);
1895			if (ret)
1896				unlock_page(page);
1897			else if (submitted)
1898				nwritten++;
 
 
 
 
 
 
1899
1900			if (--wbc->nr_to_write == 0)
1901				break;
1902		}
1903		pagevec_release(&pvec);
1904		cond_resched();
1905
1906		if (wbc->nr_to_write == 0) {
1907			step = 2;
1908			break;
1909		}
1910	}
1911
1912	if (step < 2) {
1913		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1915			goto out;
1916		step++;
1917		goto next_step;
1918	}
1919out:
1920	if (nwritten)
1921		f2fs_submit_merged_write(sbi, NODE);
1922
1923	if (unlikely(f2fs_cp_error(sbi)))
1924		return -EIO;
1925	return ret;
1926}
1927
1928int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1929						unsigned int seq_id)
1930{
1931	struct fsync_node_entry *fn;
1932	struct page *page;
1933	struct list_head *head = &sbi->fsync_node_list;
1934	unsigned long flags;
1935	unsigned int cur_seq_id = 0;
1936	int ret2, ret = 0;
1937
1938	while (seq_id && cur_seq_id < seq_id) {
1939		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1940		if (list_empty(head)) {
1941			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1942			break;
1943		}
1944		fn = list_first_entry(head, struct fsync_node_entry, list);
1945		if (fn->seq_id > seq_id) {
1946			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1947			break;
1948		}
1949		cur_seq_id = fn->seq_id;
1950		page = fn->page;
1951		get_page(page);
1952		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1953
1954		f2fs_wait_on_page_writeback(page, NODE, true, false);
1955		if (TestClearPageError(page))
1956			ret = -EIO;
1957
1958		put_page(page);
1959
1960		if (ret)
 
 
 
 
 
1961			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962	}
1963
1964	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
1965	if (!ret)
1966		ret = ret2;
1967
1968	return ret;
1969}
1970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971static int f2fs_write_node_pages(struct address_space *mapping,
1972			    struct writeback_control *wbc)
1973{
1974	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1975	struct blk_plug plug;
1976	long diff;
1977
1978	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1979		goto skip_write;
1980
1981	/* balancing f2fs's metadata in background */
1982	f2fs_balance_fs_bg(sbi);
1983
1984	/* collect a number of dirty node pages and write together */
1985	if (wbc->sync_mode != WB_SYNC_ALL &&
1986			get_pages(sbi, F2FS_DIRTY_NODES) <
1987					nr_pages_to_skip(sbi, NODE))
1988		goto skip_write;
1989
1990	if (wbc->sync_mode == WB_SYNC_ALL)
1991		atomic_inc(&sbi->wb_sync_req[NODE]);
1992	else if (atomic_read(&sbi->wb_sync_req[NODE]))
1993		goto skip_write;
1994
1995	trace_f2fs_writepages(mapping->host, wbc, NODE);
1996
1997	diff = nr_pages_to_write(sbi, NODE, wbc);
1998	blk_start_plug(&plug);
1999	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2000	blk_finish_plug(&plug);
2001	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2002
2003	if (wbc->sync_mode == WB_SYNC_ALL)
2004		atomic_dec(&sbi->wb_sync_req[NODE]);
2005	return 0;
2006
2007skip_write:
2008	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2009	trace_f2fs_writepages(mapping->host, wbc, NODE);
2010	return 0;
2011}
2012
2013static int f2fs_set_node_page_dirty(struct page *page)
2014{
 
 
 
2015	trace_f2fs_set_page_dirty(page, NODE);
2016
2017	if (!PageUptodate(page))
2018		SetPageUptodate(page);
2019#ifdef CONFIG_F2FS_CHECK_FS
2020	if (IS_INODE(page))
2021		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2022#endif
2023	if (!PageDirty(page)) {
2024		__set_page_dirty_nobuffers(page);
2025		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2026		f2fs_set_page_private(page, 0);
2027		f2fs_trace_pid(page);
2028		return 1;
2029	}
2030	return 0;
2031}
2032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2033/*
2034 * Structure of the f2fs node operations
2035 */
2036const struct address_space_operations f2fs_node_aops = {
2037	.writepage	= f2fs_write_node_page,
2038	.writepages	= f2fs_write_node_pages,
2039	.set_page_dirty	= f2fs_set_node_page_dirty,
2040	.invalidatepage	= f2fs_invalidate_page,
2041	.releasepage	= f2fs_release_page,
2042#ifdef CONFIG_MIGRATION
2043	.migratepage    = f2fs_migrate_page,
2044#endif
2045};
2046
2047static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2048						nid_t n)
2049{
2050	return radix_tree_lookup(&nm_i->free_nid_root, n);
2051}
2052
2053static int __insert_free_nid(struct f2fs_sb_info *sbi,
2054			struct free_nid *i, enum nid_state state)
2055{
2056	struct f2fs_nm_info *nm_i = NM_I(sbi);
2057
2058	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2059	if (err)
2060		return err;
2061
2062	f2fs_bug_on(sbi, state != i->state);
2063	nm_i->nid_cnt[state]++;
2064	if (state == FREE_NID)
2065		list_add_tail(&i->list, &nm_i->free_nid_list);
2066	return 0;
2067}
2068
2069static void __remove_free_nid(struct f2fs_sb_info *sbi,
2070			struct free_nid *i, enum nid_state state)
2071{
2072	struct f2fs_nm_info *nm_i = NM_I(sbi);
2073
2074	f2fs_bug_on(sbi, state != i->state);
2075	nm_i->nid_cnt[state]--;
2076	if (state == FREE_NID)
2077		list_del(&i->list);
2078	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2079}
2080
2081static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2082			enum nid_state org_state, enum nid_state dst_state)
2083{
2084	struct f2fs_nm_info *nm_i = NM_I(sbi);
2085
2086	f2fs_bug_on(sbi, org_state != i->state);
2087	i->state = dst_state;
2088	nm_i->nid_cnt[org_state]--;
2089	nm_i->nid_cnt[dst_state]++;
2090
2091	switch (dst_state) {
2092	case PREALLOC_NID:
2093		list_del(&i->list);
2094		break;
2095	case FREE_NID:
2096		list_add_tail(&i->list, &nm_i->free_nid_list);
2097		break;
2098	default:
2099		BUG_ON(1);
2100	}
2101}
2102
2103static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2104							bool set, bool build)
2105{
2106	struct f2fs_nm_info *nm_i = NM_I(sbi);
2107	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2108	unsigned int nid_ofs = nid - START_NID(nid);
2109
2110	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2111		return;
2112
2113	if (set) {
2114		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2115			return;
2116		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2117		nm_i->free_nid_count[nat_ofs]++;
2118	} else {
2119		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2120			return;
2121		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2122		if (!build)
2123			nm_i->free_nid_count[nat_ofs]--;
2124	}
2125}
2126
2127/* return if the nid is recognized as free */
2128static bool add_free_nid(struct f2fs_sb_info *sbi,
2129				nid_t nid, bool build, bool update)
2130{
2131	struct f2fs_nm_info *nm_i = NM_I(sbi);
2132	struct free_nid *i, *e;
2133	struct nat_entry *ne;
2134	int err = -EINVAL;
2135	bool ret = false;
 
 
2136
2137	/* 0 nid should not be used */
2138	if (unlikely(nid == 0))
2139		return false;
2140
2141	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2142		return false;
2143
2144	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2145	i->nid = nid;
2146	i->state = FREE_NID;
2147
2148	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2149
2150	spin_lock(&nm_i->nid_list_lock);
2151
2152	if (build) {
2153		/*
2154		 *   Thread A             Thread B
2155		 *  - f2fs_create
2156		 *   - f2fs_new_inode
2157		 *    - f2fs_alloc_nid
2158		 *     - __insert_nid_to_list(PREALLOC_NID)
2159		 *                     - f2fs_balance_fs_bg
2160		 *                      - f2fs_build_free_nids
2161		 *                       - __f2fs_build_free_nids
2162		 *                        - scan_nat_page
2163		 *                         - add_free_nid
2164		 *                          - __lookup_nat_cache
2165		 *  - f2fs_add_link
2166		 *   - f2fs_init_inode_metadata
2167		 *    - f2fs_new_inode_page
2168		 *     - f2fs_new_node_page
2169		 *      - set_node_addr
2170		 *  - f2fs_alloc_nid_done
2171		 *   - __remove_nid_from_list(PREALLOC_NID)
2172		 *                         - __insert_nid_to_list(FREE_NID)
2173		 */
2174		ne = __lookup_nat_cache(nm_i, nid);
2175		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2176				nat_get_blkaddr(ne) != NULL_ADDR))
2177			goto err_out;
2178
2179		e = __lookup_free_nid_list(nm_i, nid);
2180		if (e) {
2181			if (e->state == FREE_NID)
2182				ret = true;
2183			goto err_out;
2184		}
2185	}
2186	ret = true;
2187	err = __insert_free_nid(sbi, i, FREE_NID);
2188err_out:
2189	if (update) {
2190		update_free_nid_bitmap(sbi, nid, ret, build);
2191		if (!build)
2192			nm_i->available_nids++;
2193	}
2194	spin_unlock(&nm_i->nid_list_lock);
2195	radix_tree_preload_end();
2196
2197	if (err)
 
 
 
 
 
 
2198		kmem_cache_free(free_nid_slab, i);
2199	return ret;
 
 
 
 
 
2200}
2201
2202static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2203{
2204	struct f2fs_nm_info *nm_i = NM_I(sbi);
2205	struct free_nid *i;
2206	bool need_free = false;
2207
2208	spin_lock(&nm_i->nid_list_lock);
2209	i = __lookup_free_nid_list(nm_i, nid);
2210	if (i && i->state == FREE_NID) {
2211		__remove_free_nid(sbi, i, FREE_NID);
 
2212		need_free = true;
2213	}
2214	spin_unlock(&nm_i->nid_list_lock);
2215
2216	if (need_free)
2217		kmem_cache_free(free_nid_slab, i);
2218}
2219
2220static int scan_nat_page(struct f2fs_sb_info *sbi,
2221			struct page *nat_page, nid_t start_nid)
2222{
2223	struct f2fs_nm_info *nm_i = NM_I(sbi);
2224	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2225	block_t blk_addr;
2226	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2227	int i;
2228
2229	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2230
2231	i = start_nid % NAT_ENTRY_PER_BLOCK;
2232
2233	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
 
2234		if (unlikely(start_nid >= nm_i->max_nid))
2235			break;
2236
2237		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2238
2239		if (blk_addr == NEW_ADDR)
2240			return -EINVAL;
2241
2242		if (blk_addr == NULL_ADDR) {
2243			add_free_nid(sbi, start_nid, true, true);
2244		} else {
2245			spin_lock(&NM_I(sbi)->nid_list_lock);
2246			update_free_nid_bitmap(sbi, start_nid, false, true);
2247			spin_unlock(&NM_I(sbi)->nid_list_lock);
2248		}
2249	}
2250
2251	return 0;
2252}
2253
2254static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2255{
2256	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2257	struct f2fs_journal *journal = curseg->journal;
2258	int i;
2259
2260	down_read(&curseg->journal_rwsem);
2261	for (i = 0; i < nats_in_cursum(journal); i++) {
2262		block_t addr;
2263		nid_t nid;
2264
2265		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2266		nid = le32_to_cpu(nid_in_journal(journal, i));
2267		if (addr == NULL_ADDR)
2268			add_free_nid(sbi, nid, true, false);
2269		else
2270			remove_free_nid(sbi, nid);
2271	}
2272	up_read(&curseg->journal_rwsem);
2273}
2274
2275static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2276{
2277	struct f2fs_nm_info *nm_i = NM_I(sbi);
2278	unsigned int i, idx;
2279	nid_t nid;
2280
2281	down_read(&nm_i->nat_tree_lock);
2282
2283	for (i = 0; i < nm_i->nat_blocks; i++) {
2284		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2285			continue;
2286		if (!nm_i->free_nid_count[i])
2287			continue;
2288		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2289			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2290						NAT_ENTRY_PER_BLOCK, idx);
2291			if (idx >= NAT_ENTRY_PER_BLOCK)
2292				break;
2293
2294			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2295			add_free_nid(sbi, nid, true, false);
2296
2297			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2298				goto out;
2299		}
2300	}
2301out:
2302	scan_curseg_cache(sbi);
2303
2304	up_read(&nm_i->nat_tree_lock);
2305}
2306
2307static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2308						bool sync, bool mount)
2309{
2310	struct f2fs_nm_info *nm_i = NM_I(sbi);
2311	int i = 0, ret;
 
 
2312	nid_t nid = nm_i->next_scan_nid;
2313
2314	if (unlikely(nid >= nm_i->max_nid))
2315		nid = 0;
2316
2317	/* Enough entries */
2318	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2319		return 0;
2320
2321	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2322		return 0;
2323
2324	if (!mount) {
2325		/* try to find free nids in free_nid_bitmap */
2326		scan_free_nid_bits(sbi);
2327
2328		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2329			return 0;
2330	}
2331
2332	/* readahead nat pages to be scanned */
2333	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2334							META_NAT, true);
2335
2336	down_read(&nm_i->nat_tree_lock);
2337
2338	while (1) {
2339		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2340						nm_i->nat_block_bitmap)) {
2341			struct page *page = get_current_nat_page(sbi, nid);
2342
2343			if (IS_ERR(page)) {
2344				ret = PTR_ERR(page);
2345			} else {
2346				ret = scan_nat_page(sbi, page, nid);
2347				f2fs_put_page(page, 1);
2348			}
2349
2350			if (ret) {
2351				up_read(&nm_i->nat_tree_lock);
2352				f2fs_bug_on(sbi, !mount);
2353				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2354				return ret;
2355			}
2356		}
2357
2358		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2359		if (unlikely(nid >= nm_i->max_nid))
2360			nid = 0;
2361
2362		if (++i >= FREE_NID_PAGES)
2363			break;
2364	}
2365
2366	/* go to the next free nat pages to find free nids abundantly */
2367	nm_i->next_scan_nid = nid;
2368
2369	/* find free nids from current sum_pages */
2370	scan_curseg_cache(sbi);
2371
2372	up_read(&nm_i->nat_tree_lock);
2373
2374	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2375					nm_i->ra_nid_pages, META_NAT, false);
2376
2377	return 0;
2378}
2379
2380int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2381{
2382	int ret;
2383
2384	mutex_lock(&NM_I(sbi)->build_lock);
2385	ret = __f2fs_build_free_nids(sbi, sync, mount);
2386	mutex_unlock(&NM_I(sbi)->build_lock);
2387
2388	return ret;
2389}
2390
2391/*
2392 * If this function returns success, caller can obtain a new nid
2393 * from second parameter of this function.
2394 * The returned nid could be used ino as well as nid when inode is created.
2395 */
2396bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2397{
2398	struct f2fs_nm_info *nm_i = NM_I(sbi);
2399	struct free_nid *i = NULL;
2400retry:
2401	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2402		f2fs_show_injection_info(FAULT_ALLOC_NID);
2403		return false;
2404	}
2405
2406	spin_lock(&nm_i->nid_list_lock);
2407
2408	if (unlikely(nm_i->available_nids == 0)) {
2409		spin_unlock(&nm_i->nid_list_lock);
2410		return false;
2411	}
 
 
2412
2413	/* We should not use stale free nids created by f2fs_build_free_nids */
2414	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2415		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2416		i = list_first_entry(&nm_i->free_nid_list,
2417					struct free_nid, list);
2418		*nid = i->nid;
2419
2420		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2421		nm_i->available_nids--;
2422
2423		update_free_nid_bitmap(sbi, *nid, false, false);
2424
2425		spin_unlock(&nm_i->nid_list_lock);
2426		return true;
2427	}
2428	spin_unlock(&nm_i->nid_list_lock);
2429
2430	/* Let's scan nat pages and its caches to get free nids */
2431	if (!f2fs_build_free_nids(sbi, true, false))
2432		goto retry;
2433	return false;
 
2434}
2435
2436/*
2437 * f2fs_alloc_nid() should be called prior to this function.
2438 */
2439void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2440{
2441	struct f2fs_nm_info *nm_i = NM_I(sbi);
2442	struct free_nid *i;
2443
2444	spin_lock(&nm_i->nid_list_lock);
2445	i = __lookup_free_nid_list(nm_i, nid);
2446	f2fs_bug_on(sbi, !i);
2447	__remove_free_nid(sbi, i, PREALLOC_NID);
2448	spin_unlock(&nm_i->nid_list_lock);
2449
2450	kmem_cache_free(free_nid_slab, i);
2451}
2452
2453/*
2454 * f2fs_alloc_nid() should be called prior to this function.
2455 */
2456void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2457{
2458	struct f2fs_nm_info *nm_i = NM_I(sbi);
2459	struct free_nid *i;
2460	bool need_free = false;
2461
2462	if (!nid)
2463		return;
2464
2465	spin_lock(&nm_i->nid_list_lock);
2466	i = __lookup_free_nid_list(nm_i, nid);
2467	f2fs_bug_on(sbi, !i);
2468
2469	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2470		__remove_free_nid(sbi, i, PREALLOC_NID);
2471		need_free = true;
2472	} else {
2473		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
 
2474	}
2475
2476	nm_i->available_nids++;
2477
2478	update_free_nid_bitmap(sbi, nid, true, false);
2479
2480	spin_unlock(&nm_i->nid_list_lock);
2481
2482	if (need_free)
2483		kmem_cache_free(free_nid_slab, i);
2484}
2485
2486int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
 
 
2487{
2488	struct f2fs_nm_info *nm_i = NM_I(sbi);
2489	struct free_nid *i, *next;
2490	int nr = nr_shrink;
2491
2492	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2493		return 0;
2494
2495	if (!mutex_trylock(&nm_i->build_lock))
2496		return 0;
2497
2498	spin_lock(&nm_i->nid_list_lock);
2499	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2500		if (nr_shrink <= 0 ||
2501				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2502			break;
2503
2504		__remove_free_nid(sbi, i, FREE_NID);
2505		kmem_cache_free(free_nid_slab, i);
2506		nr_shrink--;
2507	}
2508	spin_unlock(&nm_i->nid_list_lock);
2509	mutex_unlock(&nm_i->build_lock);
2510
2511	return nr - nr_shrink;
2512}
2513
2514void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2515{
 
2516	void *src_addr, *dst_addr;
2517	size_t inline_size;
2518	struct page *ipage;
2519	struct f2fs_inode *ri;
2520
2521	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2522	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
 
 
 
2523
2524	ri = F2FS_INODE(page);
2525	if (ri->i_inline & F2FS_INLINE_XATTR) {
2526		set_inode_flag(inode, FI_INLINE_XATTR);
2527	} else {
2528		clear_inode_flag(inode, FI_INLINE_XATTR);
2529		goto update_inode;
2530	}
2531
2532	dst_addr = inline_xattr_addr(inode, ipage);
2533	src_addr = inline_xattr_addr(inode, page);
 
 
 
2534	inline_size = inline_xattr_size(inode);
2535
2536	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2537	memcpy(dst_addr, src_addr, inline_size);
2538update_inode:
2539	f2fs_update_inode(inode, ipage);
2540	f2fs_put_page(ipage, 1);
2541}
2542
2543int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2544{
2545	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2546	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2547	nid_t new_xnid;
2548	struct dnode_of_data dn;
2549	struct node_info ni;
2550	struct page *xpage;
2551	int err;
2552
2553	if (!prev_xnid)
2554		goto recover_xnid;
 
 
2555
2556	/* 1: invalidate the previous xattr nid */
2557	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2558	if (err)
2559		return err;
2560
2561	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2562	dec_valid_node_count(sbi, inode, false);
 
 
 
2563	set_node_addr(sbi, &ni, NULL_ADDR, false);
2564
2565recover_xnid:
2566	/* 2: update xattr nid in inode */
2567	if (!f2fs_alloc_nid(sbi, &new_xnid))
2568		return -ENOSPC;
2569
2570	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2571	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2572	if (IS_ERR(xpage)) {
2573		f2fs_alloc_nid_failed(sbi, new_xnid);
2574		return PTR_ERR(xpage);
2575	}
2576
2577	f2fs_alloc_nid_done(sbi, new_xnid);
2578	f2fs_update_inode_page(inode);
2579
2580	/* 3: update and set xattr node page dirty */
2581	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2582
2583	set_page_dirty(xpage);
2584	f2fs_put_page(xpage, 1);
2585
2586	return 0;
 
2587}
2588
2589int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2590{
2591	struct f2fs_inode *src, *dst;
2592	nid_t ino = ino_of_node(page);
2593	struct node_info old_ni, new_ni;
2594	struct page *ipage;
2595	int err;
2596
2597	err = f2fs_get_node_info(sbi, ino, &old_ni);
2598	if (err)
2599		return err;
2600
2601	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2602		return -EINVAL;
2603retry:
2604	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2605	if (!ipage) {
2606		congestion_wait(BLK_RW_ASYNC, HZ/50);
2607		goto retry;
2608	}
2609
2610	/* Should not use this inode from free nid list */
2611	remove_free_nid(sbi, ino);
2612
2613	if (!PageUptodate(ipage))
2614		SetPageUptodate(ipage);
2615	fill_node_footer(ipage, ino, ino, 0, true);
2616	set_cold_node(ipage, false);
2617
2618	src = F2FS_INODE(page);
2619	dst = F2FS_INODE(ipage);
2620
2621	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2622	dst->i_size = 0;
2623	dst->i_blocks = cpu_to_le64(1);
2624	dst->i_links = cpu_to_le32(1);
2625	dst->i_xattr_nid = 0;
2626	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2627	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2628		dst->i_extra_isize = src->i_extra_isize;
2629
2630		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2631			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2632							i_inline_xattr_size))
2633			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2634
2635		if (f2fs_sb_has_project_quota(sbi) &&
2636			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2637								i_projid))
2638			dst->i_projid = src->i_projid;
2639
2640		if (f2fs_sb_has_inode_crtime(sbi) &&
2641			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2642							i_crtime_nsec)) {
2643			dst->i_crtime = src->i_crtime;
2644			dst->i_crtime_nsec = src->i_crtime_nsec;
2645		}
2646	}
2647
2648	new_ni = old_ni;
2649	new_ni.ino = ino;
2650
2651	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2652		WARN_ON(1);
2653	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2654	inc_valid_inode_count(sbi);
2655	set_page_dirty(ipage);
2656	f2fs_put_page(ipage, 1);
2657	return 0;
2658}
2659
2660int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661			unsigned int segno, struct f2fs_summary_block *sum)
2662{
2663	struct f2fs_node *rn;
2664	struct f2fs_summary *sum_entry;
 
2665	block_t addr;
2666	int i, idx, last_offset, nrpages;
 
 
2667
2668	/* scan the node segment */
2669	last_offset = sbi->blocks_per_seg;
2670	addr = START_BLOCK(sbi, segno);
2671	sum_entry = &sum->entries[0];
2672
2673	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2674		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2675
2676		/* readahead node pages */
2677		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2678
2679		for (idx = addr; idx < addr + nrpages; idx++) {
2680			struct page *page = f2fs_get_tmp_page(sbi, idx);
2681
2682			if (IS_ERR(page))
2683				return PTR_ERR(page);
 
2684
2685			rn = F2FS_NODE(page);
2686			sum_entry->nid = rn->footer.nid;
2687			sum_entry->version = 0;
2688			sum_entry->ofs_in_node = 0;
2689			sum_entry++;
2690			f2fs_put_page(page, 1);
 
 
 
 
 
 
 
 
2691		}
2692
2693		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2694							addr + nrpages);
2695	}
2696	return 0;
2697}
2698
2699static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2700{
2701	struct f2fs_nm_info *nm_i = NM_I(sbi);
2702	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2703	struct f2fs_journal *journal = curseg->journal;
2704	int i;
2705
2706	down_write(&curseg->journal_rwsem);
2707	for (i = 0; i < nats_in_cursum(journal); i++) {
 
 
 
 
 
 
2708		struct nat_entry *ne;
2709		struct f2fs_nat_entry raw_ne;
2710		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2711
2712		raw_ne = nat_in_journal(journal, i);
2713
 
 
 
2714		ne = __lookup_nat_cache(nm_i, nid);
2715		if (!ne) {
2716			ne = __alloc_nat_entry(nid, true);
2717			__init_nat_entry(nm_i, ne, &raw_ne, true);
 
2718		}
2719
2720		/*
2721		 * if a free nat in journal has not been used after last
2722		 * checkpoint, we should remove it from available nids,
2723		 * since later we will add it again.
2724		 */
2725		if (!get_nat_flag(ne, IS_DIRTY) &&
2726				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2727			spin_lock(&nm_i->nid_list_lock);
2728			nm_i->available_nids--;
2729			spin_unlock(&nm_i->nid_list_lock);
2730		}
2731
 
 
2732		__set_nat_cache_dirty(nm_i, ne);
 
2733	}
2734	update_nats_in_cursum(journal, -i);
2735	up_write(&curseg->journal_rwsem);
2736}
2737
2738static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2739						struct list_head *head, int max)
2740{
2741	struct nat_entry_set *cur;
2742
2743	if (nes->entry_cnt >= max)
2744		goto add_out;
2745
2746	list_for_each_entry(cur, head, set_list) {
2747		if (cur->entry_cnt >= nes->entry_cnt) {
2748			list_add(&nes->set_list, cur->set_list.prev);
2749			return;
2750		}
2751	}
2752add_out:
2753	list_add_tail(&nes->set_list, head);
2754}
2755
2756static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2757						struct page *page)
2758{
2759	struct f2fs_nm_info *nm_i = NM_I(sbi);
2760	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2761	struct f2fs_nat_block *nat_blk = page_address(page);
2762	int valid = 0;
2763	int i = 0;
2764
2765	if (!enabled_nat_bits(sbi, NULL))
2766		return;
2767
2768	if (nat_index == 0) {
2769		valid = 1;
2770		i = 1;
2771	}
2772	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2773		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2774			valid++;
2775	}
2776	if (valid == 0) {
2777		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2778		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2779		return;
2780	}
2781
2782	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2783	if (valid == NAT_ENTRY_PER_BLOCK)
2784		__set_bit_le(nat_index, nm_i->full_nat_bits);
2785	else
2786		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2787}
2788
2789static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2790		struct nat_entry_set *set, struct cp_control *cpc)
2791{
2792	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2793	struct f2fs_journal *journal = curseg->journal;
2794	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2795	bool to_journal = true;
2796	struct f2fs_nat_block *nat_blk;
2797	struct nat_entry *ne, *cur;
2798	struct page *page = NULL;
2799
2800	/*
2801	 * there are two steps to flush nat entries:
2802	 * #1, flush nat entries to journal in current hot data summary block.
2803	 * #2, flush nat entries to nat page.
2804	 */
2805	if (enabled_nat_bits(sbi, cpc) ||
2806		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2807		to_journal = false;
2808
2809	if (to_journal) {
2810		down_write(&curseg->journal_rwsem);
2811	} else {
2812		page = get_next_nat_page(sbi, start_nid);
2813		if (IS_ERR(page))
2814			return PTR_ERR(page);
2815
2816		nat_blk = page_address(page);
2817		f2fs_bug_on(sbi, !nat_blk);
2818	}
2819
2820	/* flush dirty nats in nat entry set */
2821	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2822		struct f2fs_nat_entry *raw_ne;
2823		nid_t nid = nat_get_nid(ne);
2824		int offset;
2825
2826		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2827
2828		if (to_journal) {
2829			offset = f2fs_lookup_journal_in_cursum(journal,
2830							NAT_JOURNAL, nid, 1);
2831			f2fs_bug_on(sbi, offset < 0);
2832			raw_ne = &nat_in_journal(journal, offset);
2833			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2834		} else {
2835			raw_ne = &nat_blk->entries[nid - start_nid];
2836		}
2837		raw_nat_from_node_info(raw_ne, &ne->ni);
2838		nat_reset_flag(ne);
2839		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2840		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2841			add_free_nid(sbi, nid, false, true);
2842		} else {
2843			spin_lock(&NM_I(sbi)->nid_list_lock);
2844			update_free_nid_bitmap(sbi, nid, false, false);
2845			spin_unlock(&NM_I(sbi)->nid_list_lock);
2846		}
2847	}
2848
2849	if (to_journal) {
2850		up_write(&curseg->journal_rwsem);
2851	} else {
2852		__update_nat_bits(sbi, start_nid, page);
2853		f2fs_put_page(page, 1);
2854	}
2855
2856	/* Allow dirty nats by node block allocation in write_begin */
2857	if (!set->entry_cnt) {
2858		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2859		kmem_cache_free(nat_entry_set_slab, set);
2860	}
2861	return 0;
2862}
2863
2864/*
2865 * This function is called during the checkpointing process.
2866 */
2867int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2868{
2869	struct f2fs_nm_info *nm_i = NM_I(sbi);
2870	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2871	struct f2fs_journal *journal = curseg->journal;
2872	struct nat_entry_set *setvec[SETVEC_SIZE];
2873	struct nat_entry_set *set, *tmp;
2874	unsigned int found;
2875	nid_t set_idx = 0;
2876	LIST_HEAD(sets);
2877	int err = 0;
2878
2879	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2880	if (enabled_nat_bits(sbi, cpc)) {
2881		down_write(&nm_i->nat_tree_lock);
2882		remove_nats_in_journal(sbi);
2883		up_write(&nm_i->nat_tree_lock);
2884	}
2885
2886	if (!nm_i->dirty_nat_cnt)
2887		return 0;
2888
2889	down_write(&nm_i->nat_tree_lock);
2890
2891	/*
2892	 * if there are no enough space in journal to store dirty nat
2893	 * entries, remove all entries from journal and merge them
2894	 * into nat entry set.
2895	 */
2896	if (enabled_nat_bits(sbi, cpc) ||
2897		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2898		remove_nats_in_journal(sbi);
2899
2900	while ((found = __gang_lookup_nat_set(nm_i,
2901					set_idx, SETVEC_SIZE, setvec))) {
2902		unsigned idx;
2903		set_idx = setvec[found - 1]->set + 1;
2904		for (idx = 0; idx < found; idx++)
2905			__adjust_nat_entry_set(setvec[idx], &sets,
2906						MAX_NAT_JENTRIES(journal));
2907	}
2908
2909	/* flush dirty nats in nat entry set */
2910	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2911		err = __flush_nat_entry_set(sbi, set, cpc);
2912		if (err)
2913			break;
2914	}
2915
2916	up_write(&nm_i->nat_tree_lock);
2917	/* Allow dirty nats by node block allocation in write_begin */
2918
2919	return err;
2920}
2921
2922static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2923{
2924	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2925	struct f2fs_nm_info *nm_i = NM_I(sbi);
2926	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2927	unsigned int i;
2928	__u64 cp_ver = cur_cp_version(ckpt);
2929	block_t nat_bits_addr;
2930
2931	if (!enabled_nat_bits(sbi, NULL))
2932		return 0;
2933
2934	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2935	nm_i->nat_bits = f2fs_kzalloc(sbi,
2936			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2937	if (!nm_i->nat_bits)
2938		return -ENOMEM;
2939
2940	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2941						nm_i->nat_bits_blocks;
2942	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2943		struct page *page;
2944
2945		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2946		if (IS_ERR(page))
2947			return PTR_ERR(page);
2948
2949		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2950					page_address(page), F2FS_BLKSIZE);
2951		f2fs_put_page(page, 1);
2952	}
2953
2954	cp_ver |= (cur_cp_crc(ckpt) << 32);
2955	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2956		disable_nat_bits(sbi, true);
2957		return 0;
2958	}
2959
2960	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2961	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
 
 
 
 
2962
2963	f2fs_notice(sbi, "Found nat_bits in checkpoint");
2964	return 0;
2965}
2966
2967static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2968{
2969	struct f2fs_nm_info *nm_i = NM_I(sbi);
2970	unsigned int i = 0;
2971	nid_t nid, last_nid;
2972
2973	if (!enabled_nat_bits(sbi, NULL))
2974		return;
2975
2976	for (i = 0; i < nm_i->nat_blocks; i++) {
2977		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2978		if (i >= nm_i->nat_blocks)
2979			break;
 
 
 
 
 
 
 
 
 
 
2980
2981		__set_bit_le(i, nm_i->nat_block_bitmap);
 
 
 
 
 
 
2982
2983		nid = i * NAT_ENTRY_PER_BLOCK;
2984		last_nid = nid + NAT_ENTRY_PER_BLOCK;
 
 
2985
2986		spin_lock(&NM_I(sbi)->nid_list_lock);
2987		for (; nid < last_nid; nid++)
2988			update_free_nid_bitmap(sbi, nid, true, true);
2989		spin_unlock(&NM_I(sbi)->nid_list_lock);
2990	}
2991
2992	for (i = 0; i < nm_i->nat_blocks; i++) {
2993		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2994		if (i >= nm_i->nat_blocks)
2995			break;
 
 
2996
2997		__set_bit_le(i, nm_i->nat_block_bitmap);
 
 
 
 
 
 
 
 
 
2998	}
 
 
 
2999}
3000
3001static int init_node_manager(struct f2fs_sb_info *sbi)
3002{
3003	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3004	struct f2fs_nm_info *nm_i = NM_I(sbi);
3005	unsigned char *version_bitmap;
3006	unsigned int nat_segs;
3007	int err;
3008
3009	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3010
3011	/* segment_count_nat includes pair segment so divide to 2. */
3012	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3013	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3014	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3015
3016	/* not used nids: 0, node, meta, (and root counted as valid node) */
3017	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3018						F2FS_RESERVED_NODE_NUM;
3019	nm_i->nid_cnt[FREE_NID] = 0;
3020	nm_i->nid_cnt[PREALLOC_NID] = 0;
3021	nm_i->nat_cnt = 0;
3022	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3023	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3024	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3025
3026	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3027	INIT_LIST_HEAD(&nm_i->free_nid_list);
3028	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3029	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3030	INIT_LIST_HEAD(&nm_i->nat_entries);
3031	spin_lock_init(&nm_i->nat_list_lock);
3032
3033	mutex_init(&nm_i->build_lock);
3034	spin_lock_init(&nm_i->nid_list_lock);
3035	init_rwsem(&nm_i->nat_tree_lock);
3036
3037	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3038	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3039	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3040	if (!version_bitmap)
3041		return -EFAULT;
3042
3043	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3044					GFP_KERNEL);
3045	if (!nm_i->nat_bitmap)
3046		return -ENOMEM;
3047
3048	err = __get_nat_bitmaps(sbi);
3049	if (err)
3050		return err;
3051
3052#ifdef CONFIG_F2FS_CHECK_FS
3053	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3054					GFP_KERNEL);
3055	if (!nm_i->nat_bitmap_mir)
3056		return -ENOMEM;
3057#endif
3058
3059	return 0;
3060}
3061
3062static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3063{
3064	struct f2fs_nm_info *nm_i = NM_I(sbi);
3065	int i;
3066
3067	nm_i->free_nid_bitmap =
3068		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3069					     nm_i->nat_blocks),
3070			     GFP_KERNEL);
3071	if (!nm_i->free_nid_bitmap)
3072		return -ENOMEM;
3073
3074	for (i = 0; i < nm_i->nat_blocks; i++) {
3075		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3076			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3077		if (!nm_i->free_nid_bitmap[i])
3078			return -ENOMEM;
3079	}
3080
3081	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3082								GFP_KERNEL);
3083	if (!nm_i->nat_block_bitmap)
3084		return -ENOMEM;
3085
3086	nm_i->free_nid_count =
3087		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3088					      nm_i->nat_blocks),
3089			      GFP_KERNEL);
3090	if (!nm_i->free_nid_count)
3091		return -ENOMEM;
3092	return 0;
3093}
3094
3095int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3096{
3097	int err;
3098
3099	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3100							GFP_KERNEL);
3101	if (!sbi->nm_info)
3102		return -ENOMEM;
3103
3104	err = init_node_manager(sbi);
3105	if (err)
3106		return err;
3107
3108	err = init_free_nid_cache(sbi);
3109	if (err)
3110		return err;
3111
3112	/* load free nid status from nat_bits table */
3113	load_free_nid_bitmap(sbi);
3114
3115	return f2fs_build_free_nids(sbi, true, true);
3116}
3117
3118void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3119{
3120	struct f2fs_nm_info *nm_i = NM_I(sbi);
3121	struct free_nid *i, *next_i;
3122	struct nat_entry *natvec[NATVEC_SIZE];
3123	struct nat_entry_set *setvec[SETVEC_SIZE];
3124	nid_t nid = 0;
3125	unsigned int found;
3126
3127	if (!nm_i)
3128		return;
3129
3130	/* destroy free nid list */
3131	spin_lock(&nm_i->nid_list_lock);
3132	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3133		__remove_free_nid(sbi, i, FREE_NID);
3134		spin_unlock(&nm_i->nid_list_lock);
 
 
3135		kmem_cache_free(free_nid_slab, i);
3136		spin_lock(&nm_i->nid_list_lock);
3137	}
3138	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3139	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3140	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3141	spin_unlock(&nm_i->nid_list_lock);
3142
3143	/* destroy nat cache */
3144	down_write(&nm_i->nat_tree_lock);
3145	while ((found = __gang_lookup_nat_cache(nm_i,
3146					nid, NATVEC_SIZE, natvec))) {
3147		unsigned idx;
3148
3149		nid = nat_get_nid(natvec[found - 1]) + 1;
3150		for (idx = 0; idx < found; idx++) {
3151			spin_lock(&nm_i->nat_list_lock);
3152			list_del(&natvec[idx]->list);
3153			spin_unlock(&nm_i->nat_list_lock);
3154
3155			__del_from_nat_cache(nm_i, natvec[idx]);
3156		}
3157	}
3158	f2fs_bug_on(sbi, nm_i->nat_cnt);
3159
3160	/* destroy nat set cache */
3161	nid = 0;
3162	while ((found = __gang_lookup_nat_set(nm_i,
3163					nid, SETVEC_SIZE, setvec))) {
3164		unsigned idx;
3165
3166		nid = setvec[found - 1]->set + 1;
3167		for (idx = 0; idx < found; idx++) {
3168			/* entry_cnt is not zero, when cp_error was occurred */
3169			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3170			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3171			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3172		}
3173	}
3174	up_write(&nm_i->nat_tree_lock);
3175
3176	kvfree(nm_i->nat_block_bitmap);
3177	if (nm_i->free_nid_bitmap) {
3178		int i;
3179
3180		for (i = 0; i < nm_i->nat_blocks; i++)
3181			kvfree(nm_i->free_nid_bitmap[i]);
3182		kvfree(nm_i->free_nid_bitmap);
3183	}
3184	kvfree(nm_i->free_nid_count);
3185
3186	kvfree(nm_i->nat_bitmap);
3187	kvfree(nm_i->nat_bits);
3188#ifdef CONFIG_F2FS_CHECK_FS
3189	kvfree(nm_i->nat_bitmap_mir);
3190#endif
3191	sbi->nm_info = NULL;
3192	kvfree(nm_i);
3193}
3194
3195int __init f2fs_create_node_manager_caches(void)
3196{
3197	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3198			sizeof(struct nat_entry));
3199	if (!nat_entry_slab)
3200		goto fail;
3201
3202	free_nid_slab = f2fs_kmem_cache_create("free_nid",
3203			sizeof(struct free_nid));
3204	if (!free_nid_slab)
3205		goto destroy_nat_entry;
3206
3207	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3208			sizeof(struct nat_entry_set));
3209	if (!nat_entry_set_slab)
3210		goto destroy_free_nid;
3211
3212	fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3213			sizeof(struct fsync_node_entry));
3214	if (!fsync_node_entry_slab)
3215		goto destroy_nat_entry_set;
3216	return 0;
3217
3218destroy_nat_entry_set:
3219	kmem_cache_destroy(nat_entry_set_slab);
3220destroy_free_nid:
3221	kmem_cache_destroy(free_nid_slab);
3222destroy_nat_entry:
3223	kmem_cache_destroy(nat_entry_slab);
3224fail:
3225	return -ENOMEM;
3226}
3227
3228void f2fs_destroy_node_manager_caches(void)
3229{
3230	kmem_cache_destroy(fsync_node_entry_slab);
3231	kmem_cache_destroy(nat_entry_set_slab);
3232	kmem_cache_destroy(free_nid_slab);
3233	kmem_cache_destroy(nat_entry_slab);
3234}
v3.15
 
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
 
 
  22#include <trace/events/f2fs.h>
  23
  24#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  25
  26static struct kmem_cache *nat_entry_slab;
  27static struct kmem_cache *free_nid_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28
  29static inline bool available_free_memory(struct f2fs_nm_info *nm_i, int type)
  30{
 
  31	struct sysinfo val;
 
  32	unsigned long mem_size = 0;
 
  33
  34	si_meminfo(&val);
  35	if (type == FREE_NIDS)
  36		mem_size = nm_i->fcnt * sizeof(struct free_nid);
  37	else if (type == NAT_ENTRIES)
  38		mem_size += nm_i->nat_cnt * sizeof(struct nat_entry);
  39	mem_size >>= 12;
  40
  41	/* give 50:50 memory for free nids and nat caches respectively */
  42	return (mem_size < ((val.totalram * nm_i->ram_thresh) >> 11));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43}
  44
  45static void clear_node_page_dirty(struct page *page)
  46{
  47	struct address_space *mapping = page->mapping;
  48	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  49	unsigned int long flags;
  50
  51	if (PageDirty(page)) {
  52		spin_lock_irqsave(&mapping->tree_lock, flags);
  53		radix_tree_tag_clear(&mapping->page_tree,
  54				page_index(page),
  55				PAGECACHE_TAG_DIRTY);
  56		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  57
  58		clear_page_dirty_for_io(page);
  59		dec_page_count(sbi, F2FS_DIRTY_NODES);
  60	}
  61	ClearPageUptodate(page);
  62}
  63
  64static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  65{
  66	pgoff_t index = current_nat_addr(sbi, nid);
  67	return get_meta_page(sbi, index);
  68}
  69
  70static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  71{
  72	struct page *src_page;
  73	struct page *dst_page;
  74	pgoff_t src_off;
  75	pgoff_t dst_off;
  76	void *src_addr;
  77	void *dst_addr;
  78	struct f2fs_nm_info *nm_i = NM_I(sbi);
  79
  80	src_off = current_nat_addr(sbi, nid);
  81	dst_off = next_nat_addr(sbi, src_off);
  82
  83	/* get current nat block page with lock */
  84	src_page = get_meta_page(sbi, src_off);
  85
  86	/* Dirty src_page means that it is already the new target NAT page. */
  87	if (PageDirty(src_page))
  88		return src_page;
  89
  90	dst_page = grab_meta_page(sbi, dst_off);
  91
  92	src_addr = page_address(src_page);
  93	dst_addr = page_address(dst_page);
  94	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  95	set_page_dirty(dst_page);
  96	f2fs_put_page(src_page, 1);
  97
  98	set_to_next_nat(nm_i, nid);
  99
 100	return dst_page;
 101}
 102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 104{
 105	return radix_tree_lookup(&nm_i->nat_root, n);
 
 
 
 
 
 
 
 
 
 
 
 
 106}
 107
 108static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 109		nid_t start, unsigned int nr, struct nat_entry **ep)
 110{
 111	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 112}
 113
 114static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 115{
 116	list_del(&e->list);
 117	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 118	nm_i->nat_cnt--;
 119	kmem_cache_free(nat_entry_slab, e);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120}
 121
 122int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 123{
 124	struct f2fs_nm_info *nm_i = NM_I(sbi);
 125	struct nat_entry *e;
 126	int is_cp = 1;
 127
 128	read_lock(&nm_i->nat_tree_lock);
 129	e = __lookup_nat_cache(nm_i, nid);
 130	if (e && !e->checkpointed)
 131		is_cp = 0;
 132	read_unlock(&nm_i->nat_tree_lock);
 133	return is_cp;
 
 
 
 134}
 135
 136bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
 137{
 138	struct f2fs_nm_info *nm_i = NM_I(sbi);
 139	struct nat_entry *e;
 140	bool fsync_done = false;
 141
 142	read_lock(&nm_i->nat_tree_lock);
 143	e = __lookup_nat_cache(nm_i, nid);
 144	if (e)
 145		fsync_done = e->fsync_done;
 146	read_unlock(&nm_i->nat_tree_lock);
 147	return fsync_done;
 148}
 149
 150static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 151{
 152	struct nat_entry *new;
 
 
 153
 154	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
 155	if (!new)
 156		return NULL;
 157	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
 158		kmem_cache_free(nat_entry_slab, new);
 159		return NULL;
 160	}
 161	memset(new, 0, sizeof(struct nat_entry));
 162	nat_set_nid(new, nid);
 163	new->checkpointed = true;
 164	list_add_tail(&new->list, &nm_i->nat_entries);
 165	nm_i->nat_cnt++;
 166	return new;
 167}
 168
 169static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
 
 170						struct f2fs_nat_entry *ne)
 171{
 172	struct nat_entry *e;
 173retry:
 174	write_lock(&nm_i->nat_tree_lock);
 
 
 
 
 
 175	e = __lookup_nat_cache(nm_i, nid);
 176	if (!e) {
 177		e = grab_nat_entry(nm_i, nid);
 178		if (!e) {
 179			write_unlock(&nm_i->nat_tree_lock);
 180			goto retry;
 181		}
 182		nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
 183		nat_set_ino(e, le32_to_cpu(ne->ino));
 184		nat_set_version(e, ne->version);
 185	}
 186	write_unlock(&nm_i->nat_tree_lock);
 187}
 188
 189static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 190			block_t new_blkaddr, bool fsync_done)
 191{
 192	struct f2fs_nm_info *nm_i = NM_I(sbi);
 193	struct nat_entry *e;
 194retry:
 195	write_lock(&nm_i->nat_tree_lock);
 
 196	e = __lookup_nat_cache(nm_i, ni->nid);
 197	if (!e) {
 198		e = grab_nat_entry(nm_i, ni->nid);
 199		if (!e) {
 200			write_unlock(&nm_i->nat_tree_lock);
 201			goto retry;
 202		}
 203		e->ni = *ni;
 204		f2fs_bug_on(ni->blk_addr == NEW_ADDR);
 205	} else if (new_blkaddr == NEW_ADDR) {
 206		/*
 207		 * when nid is reallocated,
 208		 * previous nat entry can be remained in nat cache.
 209		 * So, reinitialize it with new information.
 210		 */
 211		e->ni = *ni;
 212		f2fs_bug_on(ni->blk_addr != NULL_ADDR);
 213	}
 
 
 
 214
 215	/* sanity check */
 216	f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
 217	f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
 218			new_blkaddr == NULL_ADDR);
 219	f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
 220			new_blkaddr == NEW_ADDR);
 221	f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
 222			nat_get_blkaddr(e) != NULL_ADDR &&
 223			new_blkaddr == NEW_ADDR);
 224
 225	/* increament version no as node is removed */
 226	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 227		unsigned char version = nat_get_version(e);
 228		nat_set_version(e, inc_node_version(version));
 229	}
 230
 231	/* change address */
 232	nat_set_blkaddr(e, new_blkaddr);
 
 
 233	__set_nat_cache_dirty(nm_i, e);
 234
 235	/* update fsync_mark if its inode nat entry is still alive */
 236	e = __lookup_nat_cache(nm_i, ni->ino);
 237	if (e)
 238		e->fsync_done = fsync_done;
 239	write_unlock(&nm_i->nat_tree_lock);
 
 
 
 
 240}
 241
 242int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 243{
 244	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
 245
 246	if (available_free_memory(nm_i, NAT_ENTRIES))
 247		return 0;
 248
 249	write_lock(&nm_i->nat_tree_lock);
 250	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 251		struct nat_entry *ne;
 
 
 
 
 252		ne = list_first_entry(&nm_i->nat_entries,
 253					struct nat_entry, list);
 
 
 
 254		__del_from_nat_cache(nm_i, ne);
 255		nr_shrink--;
 
 
 256	}
 257	write_unlock(&nm_i->nat_tree_lock);
 258	return nr_shrink;
 
 
 259}
 260
 261/*
 262 * This function returns always success
 263 */
 264void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 
 265{
 266	struct f2fs_nm_info *nm_i = NM_I(sbi);
 267	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 268	struct f2fs_summary_block *sum = curseg->sum_blk;
 269	nid_t start_nid = START_NID(nid);
 270	struct f2fs_nat_block *nat_blk;
 271	struct page *page = NULL;
 272	struct f2fs_nat_entry ne;
 273	struct nat_entry *e;
 
 
 274	int i;
 275
 276	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 277	ni->nid = nid;
 278
 279	/* Check nat cache */
 280	read_lock(&nm_i->nat_tree_lock);
 281	e = __lookup_nat_cache(nm_i, nid);
 282	if (e) {
 283		ni->ino = nat_get_ino(e);
 284		ni->blk_addr = nat_get_blkaddr(e);
 285		ni->version = nat_get_version(e);
 
 
 286	}
 287	read_unlock(&nm_i->nat_tree_lock);
 288	if (e)
 289		return;
 290
 291	/* Check current segment summary */
 292	mutex_lock(&curseg->curseg_mutex);
 293	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
 294	if (i >= 0) {
 295		ne = nat_in_journal(sum, i);
 296		node_info_from_raw_nat(ni, &ne);
 297	}
 298	mutex_unlock(&curseg->curseg_mutex);
 299	if (i >= 0)
 
 300		goto cache;
 
 301
 302	/* Fill node_info from nat page */
 303	page = get_current_nat_page(sbi, start_nid);
 
 
 
 
 
 
 304	nat_blk = (struct f2fs_nat_block *)page_address(page);
 305	ne = nat_blk->entries[nid - start_nid];
 306	node_info_from_raw_nat(ni, &ne);
 307	f2fs_put_page(page, 1);
 308cache:
 
 
 
 
 
 309	/* cache nat entry */
 310	cache_nat_entry(NM_I(sbi), nid, &ne);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311}
 312
 313/*
 314 * The maximum depth is four.
 315 * Offset[0] will have raw inode offset.
 316 */
 317static int get_node_path(struct f2fs_inode_info *fi, long block,
 318				int offset[4], unsigned int noffset[4])
 319{
 320	const long direct_index = ADDRS_PER_INODE(fi);
 321	const long direct_blks = ADDRS_PER_BLOCK;
 322	const long dptrs_per_blk = NIDS_PER_BLOCK;
 323	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 324	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 325	int n = 0;
 326	int level = 0;
 327
 328	noffset[0] = 0;
 329
 330	if (block < direct_index) {
 331		offset[n] = block;
 332		goto got;
 333	}
 334	block -= direct_index;
 335	if (block < direct_blks) {
 336		offset[n++] = NODE_DIR1_BLOCK;
 337		noffset[n] = 1;
 338		offset[n] = block;
 339		level = 1;
 340		goto got;
 341	}
 342	block -= direct_blks;
 343	if (block < direct_blks) {
 344		offset[n++] = NODE_DIR2_BLOCK;
 345		noffset[n] = 2;
 346		offset[n] = block;
 347		level = 1;
 348		goto got;
 349	}
 350	block -= direct_blks;
 351	if (block < indirect_blks) {
 352		offset[n++] = NODE_IND1_BLOCK;
 353		noffset[n] = 3;
 354		offset[n++] = block / direct_blks;
 355		noffset[n] = 4 + offset[n - 1];
 356		offset[n] = block % direct_blks;
 357		level = 2;
 358		goto got;
 359	}
 360	block -= indirect_blks;
 361	if (block < indirect_blks) {
 362		offset[n++] = NODE_IND2_BLOCK;
 363		noffset[n] = 4 + dptrs_per_blk;
 364		offset[n++] = block / direct_blks;
 365		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 366		offset[n] = block % direct_blks;
 367		level = 2;
 368		goto got;
 369	}
 370	block -= indirect_blks;
 371	if (block < dindirect_blks) {
 372		offset[n++] = NODE_DIND_BLOCK;
 373		noffset[n] = 5 + (dptrs_per_blk * 2);
 374		offset[n++] = block / indirect_blks;
 375		noffset[n] = 6 + (dptrs_per_blk * 2) +
 376			      offset[n - 1] * (dptrs_per_blk + 1);
 377		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 378		noffset[n] = 7 + (dptrs_per_blk * 2) +
 379			      offset[n - 2] * (dptrs_per_blk + 1) +
 380			      offset[n - 1];
 381		offset[n] = block % direct_blks;
 382		level = 3;
 383		goto got;
 384	} else {
 385		BUG();
 386	}
 387got:
 388	return level;
 389}
 390
 391/*
 392 * Caller should call f2fs_put_dnode(dn).
 393 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 394 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 395 * In the case of RDONLY_NODE, we don't need to care about mutex.
 396 */
 397int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 398{
 399	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 400	struct page *npage[4];
 401	struct page *parent;
 402	int offset[4];
 403	unsigned int noffset[4];
 404	nid_t nids[4];
 405	int level, i;
 406	int err = 0;
 407
 408	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
 
 
 409
 410	nids[0] = dn->inode->i_ino;
 411	npage[0] = dn->inode_page;
 412
 413	if (!npage[0]) {
 414		npage[0] = get_node_page(sbi, nids[0]);
 415		if (IS_ERR(npage[0]))
 416			return PTR_ERR(npage[0]);
 417	}
 
 
 
 
 
 
 
 
 418	parent = npage[0];
 419	if (level != 0)
 420		nids[1] = get_nid(parent, offset[0], true);
 421	dn->inode_page = npage[0];
 422	dn->inode_page_locked = true;
 423
 424	/* get indirect or direct nodes */
 425	for (i = 1; i <= level; i++) {
 426		bool done = false;
 427
 428		if (!nids[i] && mode == ALLOC_NODE) {
 429			/* alloc new node */
 430			if (!alloc_nid(sbi, &(nids[i]))) {
 431				err = -ENOSPC;
 432				goto release_pages;
 433			}
 434
 435			dn->nid = nids[i];
 436			npage[i] = new_node_page(dn, noffset[i], NULL);
 437			if (IS_ERR(npage[i])) {
 438				alloc_nid_failed(sbi, nids[i]);
 439				err = PTR_ERR(npage[i]);
 440				goto release_pages;
 441			}
 442
 443			set_nid(parent, offset[i - 1], nids[i], i == 1);
 444			alloc_nid_done(sbi, nids[i]);
 445			done = true;
 446		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 447			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 448			if (IS_ERR(npage[i])) {
 449				err = PTR_ERR(npage[i]);
 450				goto release_pages;
 451			}
 452			done = true;
 453		}
 454		if (i == 1) {
 455			dn->inode_page_locked = false;
 456			unlock_page(parent);
 457		} else {
 458			f2fs_put_page(parent, 1);
 459		}
 460
 461		if (!done) {
 462			npage[i] = get_node_page(sbi, nids[i]);
 463			if (IS_ERR(npage[i])) {
 464				err = PTR_ERR(npage[i]);
 465				f2fs_put_page(npage[0], 0);
 466				goto release_out;
 467			}
 468		}
 469		if (i < level) {
 470			parent = npage[i];
 471			nids[i + 1] = get_nid(parent, offset[i], false);
 472		}
 473	}
 474	dn->nid = nids[level];
 475	dn->ofs_in_node = offset[level];
 476	dn->node_page = npage[level];
 477	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 
 478	return 0;
 479
 480release_pages:
 481	f2fs_put_page(parent, 1);
 482	if (i > 1)
 483		f2fs_put_page(npage[0], 0);
 484release_out:
 485	dn->inode_page = NULL;
 486	dn->node_page = NULL;
 
 
 
 
 
 487	return err;
 488}
 489
 490static void truncate_node(struct dnode_of_data *dn)
 491{
 492	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 493	struct node_info ni;
 
 
 494
 495	get_node_info(sbi, dn->nid, &ni);
 496	if (dn->inode->i_blocks == 0) {
 497		f2fs_bug_on(ni.blk_addr != NULL_ADDR);
 498		goto invalidate;
 499	}
 500	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
 501
 502	/* Deallocate node address */
 503	invalidate_blocks(sbi, ni.blk_addr);
 504	dec_valid_node_count(sbi, dn->inode);
 505	set_node_addr(sbi, &ni, NULL_ADDR, false);
 506
 507	if (dn->nid == dn->inode->i_ino) {
 508		remove_orphan_inode(sbi, dn->nid);
 509		dec_valid_inode_count(sbi);
 510	} else {
 511		sync_inode_page(dn);
 512	}
 513invalidate:
 514	clear_node_page_dirty(dn->node_page);
 515	F2FS_SET_SB_DIRT(sbi);
 516
 
 517	f2fs_put_page(dn->node_page, 1);
 518
 519	invalidate_mapping_pages(NODE_MAPPING(sbi),
 520			dn->node_page->index, dn->node_page->index);
 521
 522	dn->node_page = NULL;
 523	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 
 
 524}
 525
 526static int truncate_dnode(struct dnode_of_data *dn)
 527{
 528	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 529	struct page *page;
 
 530
 531	if (dn->nid == 0)
 532		return 1;
 533
 534	/* get direct node */
 535	page = get_node_page(sbi, dn->nid);
 536	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 537		return 1;
 538	else if (IS_ERR(page))
 539		return PTR_ERR(page);
 540
 541	/* Make dnode_of_data for parameter */
 542	dn->node_page = page;
 543	dn->ofs_in_node = 0;
 544	truncate_data_blocks(dn);
 545	truncate_node(dn);
 
 
 
 546	return 1;
 547}
 548
 549static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 550						int ofs, int depth)
 551{
 552	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 553	struct dnode_of_data rdn = *dn;
 554	struct page *page;
 555	struct f2fs_node *rn;
 556	nid_t child_nid;
 557	unsigned int child_nofs;
 558	int freed = 0;
 559	int i, ret;
 560
 561	if (dn->nid == 0)
 562		return NIDS_PER_BLOCK + 1;
 563
 564	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 565
 566	page = get_node_page(sbi, dn->nid);
 567	if (IS_ERR(page)) {
 568		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 569		return PTR_ERR(page);
 570	}
 571
 
 
 572	rn = F2FS_NODE(page);
 573	if (depth < 3) {
 574		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 575			child_nid = le32_to_cpu(rn->in.nid[i]);
 576			if (child_nid == 0)
 577				continue;
 578			rdn.nid = child_nid;
 579			ret = truncate_dnode(&rdn);
 580			if (ret < 0)
 581				goto out_err;
 582			set_nid(page, i, 0, false);
 
 583		}
 584	} else {
 585		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 586		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 587			child_nid = le32_to_cpu(rn->in.nid[i]);
 588			if (child_nid == 0) {
 589				child_nofs += NIDS_PER_BLOCK + 1;
 590				continue;
 591			}
 592			rdn.nid = child_nid;
 593			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 594			if (ret == (NIDS_PER_BLOCK + 1)) {
 595				set_nid(page, i, 0, false);
 
 596				child_nofs += ret;
 597			} else if (ret < 0 && ret != -ENOENT) {
 598				goto out_err;
 599			}
 600		}
 601		freed = child_nofs;
 602	}
 603
 604	if (!ofs) {
 605		/* remove current indirect node */
 606		dn->node_page = page;
 607		truncate_node(dn);
 
 
 608		freed++;
 609	} else {
 610		f2fs_put_page(page, 1);
 611	}
 612	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 613	return freed;
 614
 615out_err:
 616	f2fs_put_page(page, 1);
 617	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 618	return ret;
 619}
 620
 621static int truncate_partial_nodes(struct dnode_of_data *dn,
 622			struct f2fs_inode *ri, int *offset, int depth)
 623{
 624	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 625	struct page *pages[2];
 626	nid_t nid[3];
 627	nid_t child_nid;
 628	int err = 0;
 629	int i;
 630	int idx = depth - 2;
 631
 632	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 633	if (!nid[0])
 634		return 0;
 635
 636	/* get indirect nodes in the path */
 637	for (i = 0; i < idx + 1; i++) {
 638		/* refernece count'll be increased */
 639		pages[i] = get_node_page(sbi, nid[i]);
 640		if (IS_ERR(pages[i])) {
 641			err = PTR_ERR(pages[i]);
 642			idx = i - 1;
 643			goto fail;
 644		}
 645		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 646	}
 647
 
 
 648	/* free direct nodes linked to a partial indirect node */
 649	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 650		child_nid = get_nid(pages[idx], i, false);
 651		if (!child_nid)
 652			continue;
 653		dn->nid = child_nid;
 654		err = truncate_dnode(dn);
 655		if (err < 0)
 656			goto fail;
 657		set_nid(pages[idx], i, 0, false);
 
 658	}
 659
 660	if (offset[idx + 1] == 0) {
 661		dn->node_page = pages[idx];
 662		dn->nid = nid[idx];
 663		truncate_node(dn);
 
 
 664	} else {
 665		f2fs_put_page(pages[idx], 1);
 666	}
 667	offset[idx]++;
 668	offset[idx + 1] = 0;
 669	idx--;
 670fail:
 671	for (i = idx; i >= 0; i--)
 672		f2fs_put_page(pages[i], 1);
 673
 674	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 675
 676	return err;
 677}
 678
 679/*
 680 * All the block addresses of data and nodes should be nullified.
 681 */
 682int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 683{
 684	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 685	int err = 0, cont = 1;
 686	int level, offset[4], noffset[4];
 687	unsigned int nofs = 0;
 688	struct f2fs_inode *ri;
 689	struct dnode_of_data dn;
 690	struct page *page;
 691
 692	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 693
 694	level = get_node_path(F2FS_I(inode), from, offset, noffset);
 695restart:
 696	page = get_node_page(sbi, inode->i_ino);
 
 
 697	if (IS_ERR(page)) {
 698		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 699		return PTR_ERR(page);
 700	}
 701
 702	set_new_dnode(&dn, inode, page, NULL, 0);
 703	unlock_page(page);
 704
 705	ri = F2FS_INODE(page);
 706	switch (level) {
 707	case 0:
 708	case 1:
 709		nofs = noffset[1];
 710		break;
 711	case 2:
 712		nofs = noffset[1];
 713		if (!offset[level - 1])
 714			goto skip_partial;
 715		err = truncate_partial_nodes(&dn, ri, offset, level);
 716		if (err < 0 && err != -ENOENT)
 717			goto fail;
 718		nofs += 1 + NIDS_PER_BLOCK;
 719		break;
 720	case 3:
 721		nofs = 5 + 2 * NIDS_PER_BLOCK;
 722		if (!offset[level - 1])
 723			goto skip_partial;
 724		err = truncate_partial_nodes(&dn, ri, offset, level);
 725		if (err < 0 && err != -ENOENT)
 726			goto fail;
 727		break;
 728	default:
 729		BUG();
 730	}
 731
 732skip_partial:
 733	while (cont) {
 734		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 735		switch (offset[0]) {
 736		case NODE_DIR1_BLOCK:
 737		case NODE_DIR2_BLOCK:
 738			err = truncate_dnode(&dn);
 739			break;
 740
 741		case NODE_IND1_BLOCK:
 742		case NODE_IND2_BLOCK:
 743			err = truncate_nodes(&dn, nofs, offset[1], 2);
 744			break;
 745
 746		case NODE_DIND_BLOCK:
 747			err = truncate_nodes(&dn, nofs, offset[1], 3);
 748			cont = 0;
 749			break;
 750
 751		default:
 752			BUG();
 753		}
 754		if (err < 0 && err != -ENOENT)
 755			goto fail;
 756		if (offset[1] == 0 &&
 757				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 758			lock_page(page);
 759			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 760				f2fs_put_page(page, 1);
 761				goto restart;
 762			}
 763			f2fs_wait_on_page_writeback(page, NODE);
 764			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 765			set_page_dirty(page);
 766			unlock_page(page);
 767		}
 768		offset[1] = 0;
 769		offset[0]++;
 770		nofs += err;
 771	}
 772fail:
 773	f2fs_put_page(page, 0);
 774	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 775	return err > 0 ? 0 : err;
 776}
 777
 778int truncate_xattr_node(struct inode *inode, struct page *page)
 
 779{
 780	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 781	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 782	struct dnode_of_data dn;
 783	struct page *npage;
 
 784
 785	if (!nid)
 786		return 0;
 787
 788	npage = get_node_page(sbi, nid);
 789	if (IS_ERR(npage))
 790		return PTR_ERR(npage);
 791
 792	F2FS_I(inode)->i_xattr_nid = 0;
 
 
 
 
 
 793
 794	/* need to do checkpoint during fsync */
 795	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 796
 797	set_new_dnode(&dn, inode, page, npage, nid);
 798
 799	if (page)
 800		dn.inode_page_locked = true;
 801	truncate_node(&dn);
 802	return 0;
 803}
 804
 805/*
 806 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 807 * f2fs_unlock_op().
 808 */
 809void remove_inode_page(struct inode *inode)
 810{
 811	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 812	struct page *page;
 813	nid_t ino = inode->i_ino;
 814	struct dnode_of_data dn;
 
 
 
 
 
 
 815
 816	page = get_node_page(sbi, ino);
 817	if (IS_ERR(page))
 818		return;
 
 
 819
 820	if (truncate_xattr_node(inode, page)) {
 821		f2fs_put_page(page, 1);
 822		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	}
 824	/* 0 is possible, after f2fs_new_inode() is failed */
 825	f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
 826	set_new_dnode(&dn, inode, page, page, ino);
 827	truncate_node(&dn);
 828}
 829
 830struct page *new_inode_page(struct inode *inode, const struct qstr *name)
 831{
 832	struct dnode_of_data dn;
 833
 834	/* allocate inode page for new inode */
 835	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 836
 837	/* caller should f2fs_put_page(page, 1); */
 838	return new_node_page(&dn, 0, NULL);
 839}
 840
 841struct page *new_node_page(struct dnode_of_data *dn,
 842				unsigned int ofs, struct page *ipage)
 843{
 844	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 845	struct node_info old_ni, new_ni;
 846	struct page *page;
 847	int err;
 848
 849	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 850		return ERR_PTR(-EPERM);
 851
 852	page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
 853					dn->nid, AOP_FLAG_NOFS);
 854	if (!page)
 855		return ERR_PTR(-ENOMEM);
 856
 857	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
 858		err = -ENOSPC;
 
 
 
 
 
 859		goto fail;
 860	}
 861
 862	get_node_info(sbi, dn->nid, &old_ni);
 863
 864	/* Reinitialize old_ni with new node page */
 865	f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
 866	new_ni = old_ni;
 867	new_ni.ino = dn->inode->i_ino;
 
 
 
 868	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
 869
 
 870	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
 871	set_cold_node(dn->inode, page);
 872	SetPageUptodate(page);
 873	set_page_dirty(page);
 
 
 874
 875	if (f2fs_has_xattr_block(ofs))
 876		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
 877
 878	dn->node_page = page;
 879	if (ipage)
 880		update_inode(dn->inode, ipage);
 881	else
 882		sync_inode_page(dn);
 883	if (ofs == 0)
 884		inc_valid_inode_count(sbi);
 885
 886	return page;
 887
 888fail:
 889	clear_node_page_dirty(page);
 890	f2fs_put_page(page, 1);
 891	return ERR_PTR(err);
 892}
 893
 894/*
 895 * Caller should do after getting the following values.
 896 * 0: f2fs_put_page(page, 0)
 897 * LOCKED_PAGE: f2fs_put_page(page, 1)
 898 * error: nothing
 899 */
 900static int read_node_page(struct page *page, int rw)
 901{
 902	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
 903	struct node_info ni;
 
 
 
 
 
 
 
 
 
 904
 905	get_node_info(sbi, page->index, &ni);
 
 
 
 
 
 
 
 
 
 
 906
 907	if (unlikely(ni.blk_addr == NULL_ADDR)) {
 908		f2fs_put_page(page, 1);
 
 909		return -ENOENT;
 910	}
 911
 912	if (PageUptodate(page))
 913		return LOCKED_PAGE;
 914
 915	return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
 916}
 917
 918/*
 919 * Readahead a node page
 920 */
 921void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
 922{
 923	struct page *apage;
 924	int err;
 925
 926	apage = find_get_page(NODE_MAPPING(sbi), nid);
 927	if (apage && PageUptodate(apage)) {
 928		f2fs_put_page(apage, 0);
 
 
 
 
 929		return;
 930	}
 931	f2fs_put_page(apage, 0);
 932
 933	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
 934	if (!apage)
 935		return;
 936
 937	err = read_node_page(apage, READA);
 938	if (err == 0)
 939		f2fs_put_page(apage, 0);
 940	else if (err == LOCKED_PAGE)
 941		f2fs_put_page(apage, 1);
 942}
 943
 944struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
 
 945{
 946	struct page *page;
 947	int err;
 
 
 
 
 
 948repeat:
 949	page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
 950					nid, AOP_FLAG_NOFS);
 951	if (!page)
 952		return ERR_PTR(-ENOMEM);
 953
 954	err = read_node_page(page, READ_SYNC);
 955	if (err < 0)
 
 956		return ERR_PTR(err);
 957	else if (err == LOCKED_PAGE)
 958		goto got_it;
 
 
 
 
 
 959
 960	lock_page(page);
 961	if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
 
 962		f2fs_put_page(page, 1);
 963		return ERR_PTR(-EIO);
 
 
 
 
 
 964	}
 965	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 966		f2fs_put_page(page, 1);
 967		goto repeat;
 968	}
 969got_it:
 970	mark_page_accessed(page);
 971	return page;
 972}
 973
 974/*
 975 * Return a locked page for the desired node page.
 976 * And, readahead MAX_RA_NODE number of node pages.
 977 */
 978struct page *get_node_page_ra(struct page *parent, int start)
 
 
 
 
 
 
 
 
 
 979{
 980	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
 981	struct blk_plug plug;
 982	struct page *page;
 983	int err, i, end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984	nid_t nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986	/* First, try getting the desired direct node. */
 987	nid = get_nid(parent, start, false);
 988	if (!nid)
 989		return ERR_PTR(-ENOENT);
 990repeat:
 991	page = grab_cache_page(NODE_MAPPING(sbi), nid);
 992	if (!page)
 993		return ERR_PTR(-ENOMEM);
 994
 995	err = read_node_page(page, READ_SYNC);
 996	if (err < 0)
 997		return ERR_PTR(err);
 998	else if (err == LOCKED_PAGE)
 999		goto page_hit;
1000
1001	blk_start_plug(&plug);
 
1002
1003	/* Then, try readahead for siblings of the desired node */
1004	end = start + MAX_RA_NODE;
1005	end = min(end, NIDS_PER_BLOCK);
1006	for (i = start + 1; i < end; i++) {
1007		nid = get_nid(parent, i, false);
1008		if (!nid)
1009			continue;
1010		ra_node_page(sbi, nid);
1011	}
1012
1013	blk_finish_plug(&plug);
 
 
 
 
1014
1015	lock_page(page);
1016	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1017		f2fs_put_page(page, 1);
1018		goto repeat;
1019	}
1020page_hit:
1021	if (unlikely(!PageUptodate(page))) {
1022		f2fs_put_page(page, 1);
1023		return ERR_PTR(-EIO);
 
 
1024	}
1025	mark_page_accessed(page);
1026	return page;
 
 
 
 
 
 
 
 
1027}
1028
1029void sync_inode_page(struct dnode_of_data *dn)
1030{
1031	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1032		update_inode(dn->inode, dn->node_page);
1033	} else if (dn->inode_page) {
1034		if (!dn->inode_page_locked)
1035			lock_page(dn->inode_page);
1036		update_inode(dn->inode, dn->inode_page);
1037		if (!dn->inode_page_locked)
1038			unlock_page(dn->inode_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039	} else {
1040		update_inode_page(dn->inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042}
1043
1044int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1045					struct writeback_control *wbc)
1046{
1047	pgoff_t index, end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048	struct pagevec pvec;
1049	int step = ino ? 2 : 0;
1050	int nwritten = 0, wrote = 0;
 
 
1051
1052	pagevec_init(&pvec, 0);
1053
1054next_step:
1055	index = 0;
1056	end = LONG_MAX;
1057
1058	while (index <= end) {
1059		int i, nr_pages;
1060		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1061				PAGECACHE_TAG_DIRTY,
1062				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1063		if (nr_pages == 0)
1064			break;
1065
1066		for (i = 0; i < nr_pages; i++) {
1067			struct page *page = pvec.pages[i];
 
 
 
 
 
 
 
 
 
1068
1069			/*
1070			 * flushing sequence with step:
1071			 * 0. indirect nodes
1072			 * 1. dentry dnodes
1073			 * 2. file dnodes
1074			 */
1075			if (step == 0 && IS_DNODE(page))
1076				continue;
1077			if (step == 1 && (!IS_DNODE(page) ||
1078						is_cold_node(page)))
1079				continue;
1080			if (step == 2 && (!IS_DNODE(page) ||
1081						!is_cold_node(page)))
1082				continue;
1083
1084			/*
1085			 * If an fsync mode,
1086			 * we should not skip writing node pages.
1087			 */
1088			if (ino && ino_of_node(page) == ino)
1089				lock_page(page);
1090			else if (!trylock_page(page))
1091				continue;
1092
1093			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1094continue_unlock:
1095				unlock_page(page);
1096				continue;
1097			}
1098			if (ino && ino_of_node(page) != ino)
1099				goto continue_unlock;
1100
1101			if (!PageDirty(page)) {
1102				/* someone wrote it for us */
1103				goto continue_unlock;
1104			}
1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106			if (!clear_page_dirty_for_io(page))
1107				goto continue_unlock;
1108
1109			/* called by fsync() */
1110			if (ino && IS_DNODE(page)) {
1111				int mark = !is_checkpointed_node(sbi, ino);
1112				set_fsync_mark(page, 1);
1113				if (IS_INODE(page))
1114					set_dentry_mark(page, mark);
 
 
1115				nwritten++;
1116			} else {
1117				set_fsync_mark(page, 0);
1118				set_dentry_mark(page, 0);
1119			}
1120			NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1121			wrote++;
1122
1123			if (--wbc->nr_to_write == 0)
1124				break;
1125		}
1126		pagevec_release(&pvec);
1127		cond_resched();
1128
1129		if (wbc->nr_to_write == 0) {
1130			step = 2;
1131			break;
1132		}
1133	}
1134
1135	if (step < 2) {
 
 
 
1136		step++;
1137		goto next_step;
1138	}
 
 
 
1139
1140	if (wrote)
1141		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1142	return nwritten;
1143}
1144
1145int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
 
1146{
1147	pgoff_t index = 0, end = LONG_MAX;
1148	struct pagevec pvec;
1149	int ret2 = 0, ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151	pagevec_init(&pvec, 0);
1152
1153	while (index <= end) {
1154		int i, nr_pages;
1155		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1156				PAGECACHE_TAG_WRITEBACK,
1157				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1158		if (nr_pages == 0)
1159			break;
1160
1161		for (i = 0; i < nr_pages; i++) {
1162			struct page *page = pvec.pages[i];
1163
1164			/* until radix tree lookup accepts end_index */
1165			if (unlikely(page->index > end))
1166				continue;
1167
1168			if (ino && ino_of_node(page) == ino) {
1169				f2fs_wait_on_page_writeback(page, NODE);
1170				if (TestClearPageError(page))
1171					ret = -EIO;
1172			}
1173		}
1174		pagevec_release(&pvec);
1175		cond_resched();
1176	}
1177
1178	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1179		ret2 = -ENOSPC;
1180	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1181		ret2 = -EIO;
1182	if (!ret)
1183		ret = ret2;
 
1184	return ret;
1185}
1186
1187static int f2fs_write_node_page(struct page *page,
1188				struct writeback_control *wbc)
1189{
1190	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1191	nid_t nid;
1192	block_t new_addr;
1193	struct node_info ni;
1194	struct f2fs_io_info fio = {
1195		.type = NODE,
1196		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1197	};
1198
1199	if (unlikely(sbi->por_doing))
1200		goto redirty_out;
1201
1202	f2fs_wait_on_page_writeback(page, NODE);
1203
1204	/* get old block addr of this node page */
1205	nid = nid_of_node(page);
1206	f2fs_bug_on(page->index != nid);
1207
1208	get_node_info(sbi, nid, &ni);
1209
1210	/* This page is already truncated */
1211	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1212		dec_page_count(sbi, F2FS_DIRTY_NODES);
1213		unlock_page(page);
1214		return 0;
1215	}
1216
1217	if (wbc->for_reclaim)
1218		goto redirty_out;
1219
1220	mutex_lock(&sbi->node_write);
1221	set_page_writeback(page);
1222	write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1223	set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1224	dec_page_count(sbi, F2FS_DIRTY_NODES);
1225	mutex_unlock(&sbi->node_write);
1226	unlock_page(page);
1227	return 0;
1228
1229redirty_out:
1230	dec_page_count(sbi, F2FS_DIRTY_NODES);
1231	wbc->pages_skipped++;
1232	account_page_redirty(page);
1233	set_page_dirty(page);
1234	return AOP_WRITEPAGE_ACTIVATE;
1235}
1236
1237static int f2fs_write_node_pages(struct address_space *mapping,
1238			    struct writeback_control *wbc)
1239{
1240	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
 
1241	long diff;
1242
 
 
 
1243	/* balancing f2fs's metadata in background */
1244	f2fs_balance_fs_bg(sbi);
1245
1246	/* collect a number of dirty node pages and write together */
1247	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 
 
 
 
 
 
 
1248		goto skip_write;
1249
 
 
1250	diff = nr_pages_to_write(sbi, NODE, wbc);
1251	wbc->sync_mode = WB_SYNC_NONE;
1252	sync_node_pages(sbi, 0, wbc);
 
1253	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 
 
 
1254	return 0;
1255
1256skip_write:
1257	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
 
1258	return 0;
1259}
1260
1261static int f2fs_set_node_page_dirty(struct page *page)
1262{
1263	struct address_space *mapping = page->mapping;
1264	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1265
1266	trace_f2fs_set_page_dirty(page, NODE);
1267
1268	SetPageUptodate(page);
 
 
 
 
 
1269	if (!PageDirty(page)) {
1270		__set_page_dirty_nobuffers(page);
1271		inc_page_count(sbi, F2FS_DIRTY_NODES);
1272		SetPagePrivate(page);
 
1273		return 1;
1274	}
1275	return 0;
1276}
1277
1278static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1279				      unsigned int length)
1280{
1281	struct inode *inode = page->mapping->host;
1282	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1283	if (PageDirty(page))
1284		dec_page_count(sbi, F2FS_DIRTY_NODES);
1285	ClearPagePrivate(page);
1286}
1287
1288static int f2fs_release_node_page(struct page *page, gfp_t wait)
1289{
1290	ClearPagePrivate(page);
1291	return 1;
1292}
1293
1294/*
1295 * Structure of the f2fs node operations
1296 */
1297const struct address_space_operations f2fs_node_aops = {
1298	.writepage	= f2fs_write_node_page,
1299	.writepages	= f2fs_write_node_pages,
1300	.set_page_dirty	= f2fs_set_node_page_dirty,
1301	.invalidatepage	= f2fs_invalidate_node_page,
1302	.releasepage	= f2fs_release_node_page,
 
 
 
1303};
1304
1305static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1306						nid_t n)
1307{
1308	return radix_tree_lookup(&nm_i->free_nid_root, n);
1309}
1310
1311static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1312						struct free_nid *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313{
1314	list_del(&i->list);
 
 
 
 
 
1315	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1316}
1317
1318static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319{
1320	struct free_nid *i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321	struct nat_entry *ne;
1322	bool allocated = false;
1323
1324	if (!available_free_memory(nm_i, FREE_NIDS))
1325		return -1;
1326
1327	/* 0 nid should not be used */
1328	if (unlikely(nid == 0))
1329		return 0;
 
 
 
 
 
 
 
 
 
 
 
1330
1331	if (build) {
1332		/* do not add allocated nids */
1333		read_lock(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334		ne = __lookup_nat_cache(nm_i, nid);
1335		if (ne &&
1336			(!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1337			allocated = true;
1338		read_unlock(&nm_i->nat_tree_lock);
1339		if (allocated)
1340			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1341	}
 
 
1342
1343	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1344	i->nid = nid;
1345	i->state = NID_NEW;
1346
1347	spin_lock(&nm_i->free_nid_list_lock);
1348	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1349		spin_unlock(&nm_i->free_nid_list_lock);
1350		kmem_cache_free(free_nid_slab, i);
1351		return 0;
1352	}
1353	list_add_tail(&i->list, &nm_i->free_nid_list);
1354	nm_i->fcnt++;
1355	spin_unlock(&nm_i->free_nid_list_lock);
1356	return 1;
1357}
1358
1359static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1360{
 
1361	struct free_nid *i;
1362	bool need_free = false;
1363
1364	spin_lock(&nm_i->free_nid_list_lock);
1365	i = __lookup_free_nid_list(nm_i, nid);
1366	if (i && i->state == NID_NEW) {
1367		__del_from_free_nid_list(nm_i, i);
1368		nm_i->fcnt--;
1369		need_free = true;
1370	}
1371	spin_unlock(&nm_i->free_nid_list_lock);
1372
1373	if (need_free)
1374		kmem_cache_free(free_nid_slab, i);
1375}
1376
1377static void scan_nat_page(struct f2fs_nm_info *nm_i,
1378			struct page *nat_page, nid_t start_nid)
1379{
 
1380	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1381	block_t blk_addr;
 
1382	int i;
1383
 
 
1384	i = start_nid % NAT_ENTRY_PER_BLOCK;
1385
1386	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1387
1388		if (unlikely(start_nid >= nm_i->max_nid))
1389			break;
1390
1391		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1392		f2fs_bug_on(blk_addr == NEW_ADDR);
 
 
 
1393		if (blk_addr == NULL_ADDR) {
1394			if (add_free_nid(nm_i, start_nid, true) < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395				break;
 
 
 
 
 
 
1396		}
1397	}
 
 
 
 
1398}
1399
1400static void build_free_nids(struct f2fs_sb_info *sbi)
 
1401{
1402	struct f2fs_nm_info *nm_i = NM_I(sbi);
1403	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1404	struct f2fs_summary_block *sum = curseg->sum_blk;
1405	int i = 0;
1406	nid_t nid = nm_i->next_scan_nid;
1407
 
 
 
1408	/* Enough entries */
1409	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1410		return;
 
 
 
 
 
 
 
 
 
 
 
1411
1412	/* readahead nat pages to be scanned */
1413	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
 
 
 
1414
1415	while (1) {
1416		struct page *page = get_current_nat_page(sbi, nid);
 
 
 
 
 
 
 
 
 
1417
1418		scan_nat_page(nm_i, page, nid);
1419		f2fs_put_page(page, 1);
 
 
 
 
 
1420
1421		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1422		if (unlikely(nid >= nm_i->max_nid))
1423			nid = 0;
1424
1425		if (i++ == FREE_NID_PAGES)
1426			break;
1427	}
1428
1429	/* go to the next free nat pages to find free nids abundantly */
1430	nm_i->next_scan_nid = nid;
1431
1432	/* find free nids from current sum_pages */
1433	mutex_lock(&curseg->curseg_mutex);
1434	for (i = 0; i < nats_in_cursum(sum); i++) {
1435		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1436		nid = le32_to_cpu(nid_in_journal(sum, i));
1437		if (addr == NULL_ADDR)
1438			add_free_nid(nm_i, nid, true);
1439		else
1440			remove_free_nid(nm_i, nid);
1441	}
1442	mutex_unlock(&curseg->curseg_mutex);
 
 
 
 
 
 
 
 
 
1443}
1444
1445/*
1446 * If this function returns success, caller can obtain a new nid
1447 * from second parameter of this function.
1448 * The returned nid could be used ino as well as nid when inode is created.
1449 */
1450bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1451{
1452	struct f2fs_nm_info *nm_i = NM_I(sbi);
1453	struct free_nid *i = NULL;
1454retry:
1455	if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
 
1456		return false;
 
1457
1458	spin_lock(&nm_i->free_nid_list_lock);
1459
1460	/* We should not use stale free nids created by build_free_nids */
1461	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1462		f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1463		list_for_each_entry(i, &nm_i->free_nid_list, list)
1464			if (i->state == NID_NEW)
1465				break;
1466
1467		f2fs_bug_on(i->state != NID_NEW);
 
 
 
 
1468		*nid = i->nid;
1469		i->state = NID_ALLOC;
1470		nm_i->fcnt--;
1471		spin_unlock(&nm_i->free_nid_list_lock);
 
 
 
 
1472		return true;
1473	}
1474	spin_unlock(&nm_i->free_nid_list_lock);
1475
1476	/* Let's scan nat pages and its caches to get free nids */
1477	mutex_lock(&nm_i->build_lock);
1478	build_free_nids(sbi);
1479	mutex_unlock(&nm_i->build_lock);
1480	goto retry;
1481}
1482
1483/*
1484 * alloc_nid() should be called prior to this function.
1485 */
1486void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1487{
1488	struct f2fs_nm_info *nm_i = NM_I(sbi);
1489	struct free_nid *i;
1490
1491	spin_lock(&nm_i->free_nid_list_lock);
1492	i = __lookup_free_nid_list(nm_i, nid);
1493	f2fs_bug_on(!i || i->state != NID_ALLOC);
1494	__del_from_free_nid_list(nm_i, i);
1495	spin_unlock(&nm_i->free_nid_list_lock);
1496
1497	kmem_cache_free(free_nid_slab, i);
1498}
1499
1500/*
1501 * alloc_nid() should be called prior to this function.
1502 */
1503void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1504{
1505	struct f2fs_nm_info *nm_i = NM_I(sbi);
1506	struct free_nid *i;
1507	bool need_free = false;
1508
1509	if (!nid)
1510		return;
1511
1512	spin_lock(&nm_i->free_nid_list_lock);
1513	i = __lookup_free_nid_list(nm_i, nid);
1514	f2fs_bug_on(!i || i->state != NID_ALLOC);
1515	if (!available_free_memory(nm_i, FREE_NIDS)) {
1516		__del_from_free_nid_list(nm_i, i);
 
1517		need_free = true;
1518	} else {
1519		i->state = NID_NEW;
1520		nm_i->fcnt++;
1521	}
1522	spin_unlock(&nm_i->free_nid_list_lock);
 
 
 
 
 
1523
1524	if (need_free)
1525		kmem_cache_free(free_nid_slab, i);
1526}
1527
1528void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1529		struct f2fs_summary *sum, struct node_info *ni,
1530		block_t new_blkaddr)
1531{
1532	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1533	set_node_addr(sbi, ni, new_blkaddr, false);
1534	clear_node_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535}
1536
1537void recover_inline_xattr(struct inode *inode, struct page *page)
1538{
1539	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1540	void *src_addr, *dst_addr;
1541	size_t inline_size;
1542	struct page *ipage;
1543	struct f2fs_inode *ri;
1544
1545	if (!f2fs_has_inline_xattr(inode))
1546		return;
1547
1548	if (!IS_INODE(page))
1549		return;
1550
1551	ri = F2FS_INODE(page);
1552	if (!(ri->i_inline & F2FS_INLINE_XATTR))
1553		return;
 
 
 
 
1554
1555	ipage = get_node_page(sbi, inode->i_ino);
1556	f2fs_bug_on(IS_ERR(ipage));
1557
1558	dst_addr = inline_xattr_addr(ipage);
1559	src_addr = inline_xattr_addr(page);
1560	inline_size = inline_xattr_size(inode);
1561
 
1562	memcpy(dst_addr, src_addr, inline_size);
1563
1564	update_inode(inode, ipage);
1565	f2fs_put_page(ipage, 1);
1566}
1567
1568bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1569{
1570	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1571	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1572	nid_t new_xnid = nid_of_node(page);
 
1573	struct node_info ni;
 
 
1574
1575	recover_inline_xattr(inode, page);
1576
1577	if (!f2fs_has_xattr_block(ofs_of_node(page)))
1578		return false;
1579
1580	/* 1: invalidate the previous xattr nid */
1581	if (!prev_xnid)
1582		goto recover_xnid;
 
1583
1584	/* Deallocate node address */
1585	get_node_info(sbi, prev_xnid, &ni);
1586	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1587	invalidate_blocks(sbi, ni.blk_addr);
1588	dec_valid_node_count(sbi, inode);
1589	set_node_addr(sbi, &ni, NULL_ADDR, false);
1590
1591recover_xnid:
1592	/* 2: allocate new xattr nid */
1593	if (unlikely(!inc_valid_node_count(sbi, inode)))
1594		f2fs_bug_on(1);
1595
1596	remove_free_nid(NM_I(sbi), new_xnid);
1597	get_node_info(sbi, new_xnid, &ni);
1598	ni.ino = inode->i_ino;
1599	set_node_addr(sbi, &ni, NEW_ADDR, false);
1600	F2FS_I(inode)->i_xattr_nid = new_xnid;
1601
1602	/* 3: update xattr blkaddr */
1603	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1604	set_node_addr(sbi, &ni, blkaddr, false);
 
 
 
 
 
 
1605
1606	update_inode_page(inode);
1607	return true;
1608}
1609
1610int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1611{
1612	struct f2fs_inode *src, *dst;
1613	nid_t ino = ino_of_node(page);
1614	struct node_info old_ni, new_ni;
1615	struct page *ipage;
 
1616
1617	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1618	if (!ipage)
1619		return -ENOMEM;
 
 
 
 
 
 
 
 
 
1620
1621	/* Should not use this inode  from free nid list */
1622	remove_free_nid(NM_I(sbi), ino);
1623
1624	get_node_info(sbi, ino, &old_ni);
1625	SetPageUptodate(ipage);
1626	fill_node_footer(ipage, ino, ino, 0, true);
 
1627
1628	src = F2FS_INODE(page);
1629	dst = F2FS_INODE(ipage);
1630
1631	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1632	dst->i_size = 0;
1633	dst->i_blocks = cpu_to_le64(1);
1634	dst->i_links = cpu_to_le32(1);
1635	dst->i_xattr_nid = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637	new_ni = old_ni;
1638	new_ni.ino = ino;
1639
1640	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1641		WARN_ON(1);
1642	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1643	inc_valid_inode_count(sbi);
 
1644	f2fs_put_page(ipage, 1);
1645	return 0;
1646}
1647
1648/*
1649 * ra_sum_pages() merge contiguous pages into one bio and submit.
1650 * these pre-readed pages are linked in pages list.
1651 */
1652static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1653				int start, int nrpages)
1654{
1655	struct page *page;
1656	int page_idx = start;
1657	struct f2fs_io_info fio = {
1658		.type = META,
1659		.rw = READ_SYNC | REQ_META | REQ_PRIO
1660	};
1661
1662	for (; page_idx < start + nrpages; page_idx++) {
1663		/* alloc temporal page for read node summary info*/
1664		page = alloc_page(GFP_F2FS_ZERO);
1665		if (!page)
1666			break;
1667
1668		lock_page(page);
1669		page->index = page_idx;
1670		list_add_tail(&page->lru, pages);
1671	}
1672
1673	list_for_each_entry(page, pages, lru)
1674		f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1675
1676	f2fs_submit_merged_bio(sbi, META, READ);
1677
1678	return page_idx - start;
1679}
1680
1681int restore_node_summary(struct f2fs_sb_info *sbi,
1682			unsigned int segno, struct f2fs_summary_block *sum)
1683{
1684	struct f2fs_node *rn;
1685	struct f2fs_summary *sum_entry;
1686	struct page *page, *tmp;
1687	block_t addr;
1688	int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1689	int i, last_offset, nrpages, err = 0;
1690	LIST_HEAD(page_list);
1691
1692	/* scan the node segment */
1693	last_offset = sbi->blocks_per_seg;
1694	addr = START_BLOCK(sbi, segno);
1695	sum_entry = &sum->entries[0];
1696
1697	for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1698		nrpages = min(last_offset - i, bio_blocks);
1699
1700		/* read ahead node pages */
1701		nrpages = ra_sum_pages(sbi, &page_list, addr, nrpages);
1702		if (!nrpages)
1703			return -ENOMEM;
 
1704
1705		list_for_each_entry_safe(page, tmp, &page_list, lru) {
1706			if (err)
1707				goto skip;
1708
1709			lock_page(page);
1710			if (unlikely(!PageUptodate(page))) {
1711				err = -EIO;
1712			} else {
1713				rn = F2FS_NODE(page);
1714				sum_entry->nid = rn->footer.nid;
1715				sum_entry->version = 0;
1716				sum_entry->ofs_in_node = 0;
1717				sum_entry++;
1718			}
1719			unlock_page(page);
1720skip:
1721			list_del(&page->lru);
1722			__free_pages(page, 0);
1723		}
 
 
 
1724	}
1725	return err;
1726}
1727
1728static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1729{
1730	struct f2fs_nm_info *nm_i = NM_I(sbi);
1731	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1732	struct f2fs_summary_block *sum = curseg->sum_blk;
1733	int i;
1734
1735	mutex_lock(&curseg->curseg_mutex);
1736
1737	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1738		mutex_unlock(&curseg->curseg_mutex);
1739		return false;
1740	}
1741
1742	for (i = 0; i < nats_in_cursum(sum); i++) {
1743		struct nat_entry *ne;
1744		struct f2fs_nat_entry raw_ne;
1745		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
 
 
1746
1747		raw_ne = nat_in_journal(sum, i);
1748retry:
1749		write_lock(&nm_i->nat_tree_lock);
1750		ne = __lookup_nat_cache(nm_i, nid);
1751		if (ne) {
1752			__set_nat_cache_dirty(nm_i, ne);
1753			write_unlock(&nm_i->nat_tree_lock);
1754			continue;
1755		}
1756		ne = grab_nat_entry(nm_i, nid);
1757		if (!ne) {
1758			write_unlock(&nm_i->nat_tree_lock);
1759			goto retry;
 
 
 
 
 
 
 
1760		}
1761		nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1762		nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1763		nat_set_version(ne, raw_ne.version);
1764		__set_nat_cache_dirty(nm_i, ne);
1765		write_unlock(&nm_i->nat_tree_lock);
1766	}
1767	update_nats_in_cursum(sum, -i);
1768	mutex_unlock(&curseg->curseg_mutex);
1769	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770}
1771
1772/*
1773 * This function is called during the checkpointing process.
1774 */
1775void flush_nat_entries(struct f2fs_sb_info *sbi)
1776{
1777	struct f2fs_nm_info *nm_i = NM_I(sbi);
1778	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1779	struct f2fs_summary_block *sum = curseg->sum_blk;
1780	struct nat_entry *ne, *cur;
1781	struct page *page = NULL;
1782	struct f2fs_nat_block *nat_blk = NULL;
1783	nid_t start_nid = 0, end_nid = 0;
1784	bool flushed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
1786	flushed = flush_nats_in_journal(sbi);
 
 
 
 
 
 
 
1787
1788	if (!flushed)
1789		mutex_lock(&curseg->curseg_mutex);
 
 
 
 
 
 
 
 
1790
1791	/* 1) flush dirty nat caches */
1792	list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1793		nid_t nid;
1794		struct f2fs_nat_entry raw_ne;
1795		int offset = -1;
1796		block_t new_blkaddr;
1797
1798		if (nat_get_blkaddr(ne) == NEW_ADDR)
1799			continue;
 
1800
1801		nid = nat_get_nid(ne);
 
 
 
 
1802
1803		if (flushed)
1804			goto to_nat_page;
1805
1806		/* if there is room for nat enries in curseg->sumpage */
1807		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1808		if (offset >= 0) {
1809			raw_ne = nat_in_journal(sum, offset);
1810			goto flush_now;
1811		}
1812to_nat_page:
1813		if (!page || (start_nid > nid || nid > end_nid)) {
1814			if (page) {
1815				f2fs_put_page(page, 1);
1816				page = NULL;
1817			}
1818			start_nid = START_NID(nid);
1819			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1820
1821			/*
1822			 * get nat block with dirty flag, increased reference
1823			 * count, mapped and lock
1824			 */
1825			page = get_next_nat_page(sbi, start_nid);
1826			nat_blk = page_address(page);
1827		}
1828
1829		f2fs_bug_on(!nat_blk);
1830		raw_ne = nat_blk->entries[nid - start_nid];
1831flush_now:
1832		new_blkaddr = nat_get_blkaddr(ne);
1833
1834		raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1835		raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1836		raw_ne.version = nat_get_version(ne);
 
 
1837
1838		if (offset < 0) {
1839			nat_blk->entries[nid - start_nid] = raw_ne;
1840		} else {
1841			nat_in_journal(sum, offset) = raw_ne;
1842			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1843		}
1844
1845		if (nat_get_blkaddr(ne) == NULL_ADDR &&
1846				add_free_nid(NM_I(sbi), nid, false) <= 0) {
1847			write_lock(&nm_i->nat_tree_lock);
1848			__del_from_nat_cache(nm_i, ne);
1849			write_unlock(&nm_i->nat_tree_lock);
1850		} else {
1851			write_lock(&nm_i->nat_tree_lock);
1852			__clear_nat_cache_dirty(nm_i, ne);
1853			write_unlock(&nm_i->nat_tree_lock);
1854		}
1855	}
1856	if (!flushed)
1857		mutex_unlock(&curseg->curseg_mutex);
1858	f2fs_put_page(page, 1);
1859}
1860
1861static int init_node_manager(struct f2fs_sb_info *sbi)
1862{
1863	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1864	struct f2fs_nm_info *nm_i = NM_I(sbi);
1865	unsigned char *version_bitmap;
1866	unsigned int nat_segs, nat_blocks;
 
1867
1868	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1869
1870	/* segment_count_nat includes pair segment so divide to 2. */
1871	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1872	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
 
1873
1874	/* not used nids: 0, node, meta, (and root counted as valid node) */
1875	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
1876	nm_i->fcnt = 0;
 
 
1877	nm_i->nat_cnt = 0;
1878	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
 
 
1879
1880	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1881	INIT_LIST_HEAD(&nm_i->free_nid_list);
1882	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
 
1883	INIT_LIST_HEAD(&nm_i->nat_entries);
1884	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1885
1886	mutex_init(&nm_i->build_lock);
1887	spin_lock_init(&nm_i->free_nid_list_lock);
1888	rwlock_init(&nm_i->nat_tree_lock);
1889
1890	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1891	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1892	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1893	if (!version_bitmap)
1894		return -EFAULT;
1895
1896	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1897					GFP_KERNEL);
1898	if (!nm_i->nat_bitmap)
1899		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900	return 0;
1901}
1902
1903int build_node_manager(struct f2fs_sb_info *sbi)
1904{
1905	int err;
1906
1907	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
 
1908	if (!sbi->nm_info)
1909		return -ENOMEM;
1910
1911	err = init_node_manager(sbi);
1912	if (err)
1913		return err;
1914
1915	build_free_nids(sbi);
1916	return 0;
 
 
 
 
 
 
1917}
1918
1919void destroy_node_manager(struct f2fs_sb_info *sbi)
1920{
1921	struct f2fs_nm_info *nm_i = NM_I(sbi);
1922	struct free_nid *i, *next_i;
1923	struct nat_entry *natvec[NATVEC_SIZE];
 
1924	nid_t nid = 0;
1925	unsigned int found;
1926
1927	if (!nm_i)
1928		return;
1929
1930	/* destroy free nid list */
1931	spin_lock(&nm_i->free_nid_list_lock);
1932	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1933		f2fs_bug_on(i->state == NID_ALLOC);
1934		__del_from_free_nid_list(nm_i, i);
1935		nm_i->fcnt--;
1936		spin_unlock(&nm_i->free_nid_list_lock);
1937		kmem_cache_free(free_nid_slab, i);
1938		spin_lock(&nm_i->free_nid_list_lock);
1939	}
1940	f2fs_bug_on(nm_i->fcnt);
1941	spin_unlock(&nm_i->free_nid_list_lock);
 
 
1942
1943	/* destroy nat cache */
1944	write_lock(&nm_i->nat_tree_lock);
1945	while ((found = __gang_lookup_nat_cache(nm_i,
1946					nid, NATVEC_SIZE, natvec))) {
1947		unsigned idx;
 
1948		nid = nat_get_nid(natvec[found - 1]) + 1;
1949		for (idx = 0; idx < found; idx++)
 
 
 
 
1950			__del_from_nat_cache(nm_i, natvec[idx]);
 
1951	}
1952	f2fs_bug_on(nm_i->nat_cnt);
1953	write_unlock(&nm_i->nat_tree_lock);
 
 
 
 
 
1954
1955	kfree(nm_i->nat_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1956	sbi->nm_info = NULL;
1957	kfree(nm_i);
1958}
1959
1960int __init create_node_manager_caches(void)
1961{
1962	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1963			sizeof(struct nat_entry));
1964	if (!nat_entry_slab)
1965		return -ENOMEM;
1966
1967	free_nid_slab = f2fs_kmem_cache_create("free_nid",
1968			sizeof(struct free_nid));
1969	if (!free_nid_slab) {
1970		kmem_cache_destroy(nat_entry_slab);
1971		return -ENOMEM;
1972	}
 
 
 
 
 
 
 
 
1973	return 0;
 
 
 
 
 
 
 
 
 
1974}
1975
1976void destroy_node_manager_caches(void)
1977{
 
 
1978	kmem_cache_destroy(free_nid_slab);
1979	kmem_cache_destroy(nat_entry_slab);
1980}