Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/backing-dev.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "trace.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		return -EFSCORRUPTED;
  40	}
  41	return 0;
  42}
  43
  44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  45{
  46	struct f2fs_nm_info *nm_i = NM_I(sbi);
  47	struct sysinfo val;
  48	unsigned long avail_ram;
  49	unsigned long mem_size = 0;
  50	bool res = false;
  51
  52	si_meminfo(&val);
  53
  54	/* only uses low memory */
  55	avail_ram = val.totalram - val.totalhigh;
  56
  57	/*
  58	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  59	 */
  60	if (type == FREE_NIDS) {
  61		mem_size = (nm_i->nid_cnt[FREE_NID] *
  62				sizeof(struct free_nid)) >> PAGE_SHIFT;
  63		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  64	} else if (type == NAT_ENTRIES) {
  65		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  66							PAGE_SHIFT;
  67		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  68		if (excess_cached_nats(sbi))
  69			res = false;
  70	} else if (type == DIRTY_DENTS) {
  71		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  72			return false;
  73		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  74		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75	} else if (type == INO_ENTRIES) {
  76		int i;
  77
  78		for (i = 0; i < MAX_INO_ENTRY; i++)
  79			mem_size += sbi->im[i].ino_num *
  80						sizeof(struct ino_entry);
  81		mem_size >>= PAGE_SHIFT;
  82		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  83	} else if (type == EXTENT_CACHE) {
  84		mem_size = (atomic_read(&sbi->total_ext_tree) *
  85				sizeof(struct extent_tree) +
  86				atomic_read(&sbi->total_ext_node) *
  87				sizeof(struct extent_node)) >> PAGE_SHIFT;
  88		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  89	} else if (type == INMEM_PAGES) {
  90		/* it allows 20% / total_ram for inmemory pages */
  91		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  92		res = mem_size < (val.totalram / 5);
  93	} else {
  94		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  95			return true;
  96	}
  97	return res;
  98}
  99
 100static void clear_node_page_dirty(struct page *page)
 101{
 
 
 
 102	if (PageDirty(page)) {
 103		f2fs_clear_page_cache_dirty_tag(page);
 
 
 
 
 
 104		clear_page_dirty_for_io(page);
 105		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 106	}
 107	ClearPageUptodate(page);
 108}
 109
 110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 111{
 112	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
 
 113}
 114
 115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 116{
 117	struct page *src_page;
 118	struct page *dst_page;
 
 119	pgoff_t dst_off;
 120	void *src_addr;
 121	void *dst_addr;
 122	struct f2fs_nm_info *nm_i = NM_I(sbi);
 123
 124	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 
 125
 126	/* get current nat block page with lock */
 127	src_page = get_current_nat_page(sbi, nid);
 128	if (IS_ERR(src_page))
 129		return src_page;
 130	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 131	f2fs_bug_on(sbi, PageDirty(src_page));
 132
 133	src_addr = page_address(src_page);
 134	dst_addr = page_address(dst_page);
 135	memcpy(dst_addr, src_addr, PAGE_SIZE);
 136	set_page_dirty(dst_page);
 137	f2fs_put_page(src_page, 1);
 138
 139	set_to_next_nat(nm_i, nid);
 140
 141	return dst_page;
 142}
 143
 144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 145{
 146	struct nat_entry *new;
 147
 148	if (no_fail)
 149		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 150	else
 151		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 152	if (new) {
 153		nat_set_nid(new, nid);
 154		nat_reset_flag(new);
 155	}
 156	return new;
 157}
 158
 159static void __free_nat_entry(struct nat_entry *e)
 160{
 161	kmem_cache_free(nat_entry_slab, e);
 162}
 163
 164/* must be locked by nat_tree_lock */
 165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 166	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 167{
 168	if (no_fail)
 169		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 170	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 171		return NULL;
 172
 173	if (raw_ne)
 174		node_info_from_raw_nat(&ne->ni, raw_ne);
 175
 176	spin_lock(&nm_i->nat_list_lock);
 177	list_add_tail(&ne->list, &nm_i->nat_entries);
 178	spin_unlock(&nm_i->nat_list_lock);
 179
 180	nm_i->nat_cnt++;
 181	return ne;
 182}
 183
 184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 185{
 186	struct nat_entry *ne;
 187
 188	ne = radix_tree_lookup(&nm_i->nat_root, n);
 189
 190	/* for recent accessed nat entry, move it to tail of lru list */
 191	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 192		spin_lock(&nm_i->nat_list_lock);
 193		if (!list_empty(&ne->list))
 194			list_move_tail(&ne->list, &nm_i->nat_entries);
 195		spin_unlock(&nm_i->nat_list_lock);
 196	}
 197
 198	return ne;
 199}
 200
 201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 202		nid_t start, unsigned int nr, struct nat_entry **ep)
 203{
 204	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 205}
 206
 207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 208{
 
 209	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 210	nm_i->nat_cnt--;
 211	__free_nat_entry(e);
 212}
 213
 214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 215							struct nat_entry *ne)
 216{
 217	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 218	struct nat_entry_set *head;
 219
 220	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 221	if (!head) {
 222		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 223
 224		INIT_LIST_HEAD(&head->entry_list);
 225		INIT_LIST_HEAD(&head->set_list);
 226		head->set = set;
 227		head->entry_cnt = 0;
 228		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 229	}
 230	return head;
 231}
 232
 233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 234						struct nat_entry *ne)
 235{
 236	struct nat_entry_set *head;
 237	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 238
 239	if (!new_ne)
 240		head = __grab_nat_entry_set(nm_i, ne);
 241
 242	/*
 243	 * update entry_cnt in below condition:
 244	 * 1. update NEW_ADDR to valid block address;
 245	 * 2. update old block address to new one;
 246	 */
 247	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 248				!get_nat_flag(ne, IS_DIRTY)))
 249		head->entry_cnt++;
 250
 251	set_nat_flag(ne, IS_PREALLOC, new_ne);
 252
 253	if (get_nat_flag(ne, IS_DIRTY))
 254		goto refresh_list;
 255
 256	nm_i->dirty_nat_cnt++;
 257	set_nat_flag(ne, IS_DIRTY, true);
 258refresh_list:
 259	spin_lock(&nm_i->nat_list_lock);
 260	if (new_ne)
 261		list_del_init(&ne->list);
 262	else
 263		list_move_tail(&ne->list, &head->entry_list);
 264	spin_unlock(&nm_i->nat_list_lock);
 265}
 266
 267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 268		struct nat_entry_set *set, struct nat_entry *ne)
 269{
 270	spin_lock(&nm_i->nat_list_lock);
 271	list_move_tail(&ne->list, &nm_i->nat_entries);
 272	spin_unlock(&nm_i->nat_list_lock);
 273
 274	set_nat_flag(ne, IS_DIRTY, false);
 275	set->entry_cnt--;
 276	nm_i->dirty_nat_cnt--;
 277}
 278
 279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 280		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 281{
 282	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 283							start, nr);
 284}
 285
 286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 287{
 288	return NODE_MAPPING(sbi) == page->mapping &&
 289			IS_DNODE(page) && is_cold_node(page);
 290}
 291
 292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 293{
 294	spin_lock_init(&sbi->fsync_node_lock);
 295	INIT_LIST_HEAD(&sbi->fsync_node_list);
 296	sbi->fsync_seg_id = 0;
 297	sbi->fsync_node_num = 0;
 298}
 299
 300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 301							struct page *page)
 302{
 303	struct fsync_node_entry *fn;
 304	unsigned long flags;
 305	unsigned int seq_id;
 306
 307	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
 308
 309	get_page(page);
 310	fn->page = page;
 311	INIT_LIST_HEAD(&fn->list);
 312
 313	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 314	list_add_tail(&fn->list, &sbi->fsync_node_list);
 315	fn->seq_id = sbi->fsync_seg_id++;
 316	seq_id = fn->seq_id;
 317	sbi->fsync_node_num++;
 318	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 319
 320	return seq_id;
 321}
 322
 323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 324{
 325	struct fsync_node_entry *fn;
 326	unsigned long flags;
 327
 328	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 329	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 330		if (fn->page == page) {
 331			list_del(&fn->list);
 332			sbi->fsync_node_num--;
 333			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 334			kmem_cache_free(fsync_node_entry_slab, fn);
 335			put_page(page);
 336			return;
 337		}
 338	}
 339	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 340	f2fs_bug_on(sbi, 1);
 341}
 342
 343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 344{
 345	unsigned long flags;
 346
 347	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 348	sbi->fsync_seg_id = 0;
 349	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 350}
 351
 352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 353{
 354	struct f2fs_nm_info *nm_i = NM_I(sbi);
 355	struct nat_entry *e;
 356	bool need = false;
 357
 358	down_read(&nm_i->nat_tree_lock);
 359	e = __lookup_nat_cache(nm_i, nid);
 360	if (e) {
 361		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 362				!get_nat_flag(e, HAS_FSYNCED_INODE))
 363			need = true;
 364	}
 365	up_read(&nm_i->nat_tree_lock);
 366	return need;
 367}
 368
 369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 370{
 371	struct f2fs_nm_info *nm_i = NM_I(sbi);
 372	struct nat_entry *e;
 373	bool is_cp = true;
 374
 375	down_read(&nm_i->nat_tree_lock);
 376	e = __lookup_nat_cache(nm_i, nid);
 377	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 378		is_cp = false;
 379	up_read(&nm_i->nat_tree_lock);
 380	return is_cp;
 381}
 382
 383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 384{
 385	struct f2fs_nm_info *nm_i = NM_I(sbi);
 386	struct nat_entry *e;
 387	bool need_update = true;
 388
 389	down_read(&nm_i->nat_tree_lock);
 390	e = __lookup_nat_cache(nm_i, ino);
 391	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 392			(get_nat_flag(e, IS_CHECKPOINTED) ||
 393			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 394		need_update = false;
 395	up_read(&nm_i->nat_tree_lock);
 396	return need_update;
 397}
 398
 399/* must be locked by nat_tree_lock */
 400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 401						struct f2fs_nat_entry *ne)
 402{
 403	struct f2fs_nm_info *nm_i = NM_I(sbi);
 404	struct nat_entry *new, *e;
 405
 406	new = __alloc_nat_entry(nid, false);
 407	if (!new)
 408		return;
 409
 410	down_write(&nm_i->nat_tree_lock);
 411	e = __lookup_nat_cache(nm_i, nid);
 412	if (!e)
 413		e = __init_nat_entry(nm_i, new, ne, false);
 414	else
 415		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 416				nat_get_blkaddr(e) !=
 417					le32_to_cpu(ne->block_addr) ||
 418				nat_get_version(e) != ne->version);
 419	up_write(&nm_i->nat_tree_lock);
 420	if (e != new)
 421		__free_nat_entry(new);
 422}
 423
 424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 425			block_t new_blkaddr, bool fsync_done)
 426{
 427	struct f2fs_nm_info *nm_i = NM_I(sbi);
 428	struct nat_entry *e;
 429	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 430
 431	down_write(&nm_i->nat_tree_lock);
 432	e = __lookup_nat_cache(nm_i, ni->nid);
 433	if (!e) {
 434		e = __init_nat_entry(nm_i, new, NULL, true);
 435		copy_node_info(&e->ni, ni);
 436		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 437	} else if (new_blkaddr == NEW_ADDR) {
 438		/*
 439		 * when nid is reallocated,
 440		 * previous nat entry can be remained in nat cache.
 441		 * So, reinitialize it with new information.
 442		 */
 443		copy_node_info(&e->ni, ni);
 444		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 445	}
 446	/* let's free early to reduce memory consumption */
 447	if (e != new)
 448		__free_nat_entry(new);
 449
 450	/* sanity check */
 451	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 452	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 453			new_blkaddr == NULL_ADDR);
 454	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 455			new_blkaddr == NEW_ADDR);
 456	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 
 457			new_blkaddr == NEW_ADDR);
 458
 459	/* increment version no as node is removed */
 460	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 461		unsigned char version = nat_get_version(e);
 462		nat_set_version(e, inc_node_version(version));
 463	}
 464
 465	/* change address */
 466	nat_set_blkaddr(e, new_blkaddr);
 467	if (!__is_valid_data_blkaddr(new_blkaddr))
 468		set_nat_flag(e, IS_CHECKPOINTED, false);
 469	__set_nat_cache_dirty(nm_i, e);
 470
 471	/* update fsync_mark if its inode nat entry is still alive */
 472	if (ni->nid != ni->ino)
 473		e = __lookup_nat_cache(nm_i, ni->ino);
 474	if (e) {
 475		if (fsync_done && ni->nid == ni->ino)
 476			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 477		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 478	}
 479	up_write(&nm_i->nat_tree_lock);
 480}
 481
 482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 483{
 484	struct f2fs_nm_info *nm_i = NM_I(sbi);
 485	int nr = nr_shrink;
 486
 487	if (!down_write_trylock(&nm_i->nat_tree_lock))
 488		return 0;
 489
 490	spin_lock(&nm_i->nat_list_lock);
 491	while (nr_shrink) {
 492		struct nat_entry *ne;
 493
 494		if (list_empty(&nm_i->nat_entries))
 495			break;
 496
 497		ne = list_first_entry(&nm_i->nat_entries,
 498					struct nat_entry, list);
 499		list_del(&ne->list);
 500		spin_unlock(&nm_i->nat_list_lock);
 501
 502		__del_from_nat_cache(nm_i, ne);
 503		nr_shrink--;
 504
 505		spin_lock(&nm_i->nat_list_lock);
 506	}
 507	spin_unlock(&nm_i->nat_list_lock);
 508
 509	up_write(&nm_i->nat_tree_lock);
 510	return nr - nr_shrink;
 511}
 512
 513/*
 514 * This function always returns success
 515 */
 516int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 517						struct node_info *ni)
 518{
 519	struct f2fs_nm_info *nm_i = NM_I(sbi);
 520	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 521	struct f2fs_journal *journal = curseg->journal;
 522	nid_t start_nid = START_NID(nid);
 523	struct f2fs_nat_block *nat_blk;
 524	struct page *page = NULL;
 525	struct f2fs_nat_entry ne;
 526	struct nat_entry *e;
 527	pgoff_t index;
 528	block_t blkaddr;
 529	int i;
 530
 531	ni->nid = nid;
 532
 533	/* Check nat cache */
 534	down_read(&nm_i->nat_tree_lock);
 535	e = __lookup_nat_cache(nm_i, nid);
 536	if (e) {
 537		ni->ino = nat_get_ino(e);
 538		ni->blk_addr = nat_get_blkaddr(e);
 539		ni->version = nat_get_version(e);
 540		up_read(&nm_i->nat_tree_lock);
 541		return 0;
 542	}
 543
 544	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 545
 546	/* Check current segment summary */
 547	down_read(&curseg->journal_rwsem);
 548	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 549	if (i >= 0) {
 550		ne = nat_in_journal(journal, i);
 551		node_info_from_raw_nat(ni, &ne);
 552	}
 553	up_read(&curseg->journal_rwsem);
 554	if (i >= 0) {
 555		up_read(&nm_i->nat_tree_lock);
 556		goto cache;
 557	}
 558
 559	/* Fill node_info from nat page */
 560	index = current_nat_addr(sbi, nid);
 561	up_read(&nm_i->nat_tree_lock);
 562
 563	page = f2fs_get_meta_page(sbi, index);
 564	if (IS_ERR(page))
 565		return PTR_ERR(page);
 566
 567	nat_blk = (struct f2fs_nat_block *)page_address(page);
 568	ne = nat_blk->entries[nid - start_nid];
 569	node_info_from_raw_nat(ni, &ne);
 570	f2fs_put_page(page, 1);
 571cache:
 572	blkaddr = le32_to_cpu(ne.block_addr);
 573	if (__is_valid_data_blkaddr(blkaddr) &&
 574		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 575		return -EFAULT;
 576
 577	/* cache nat entry */
 578	cache_nat_entry(sbi, nid, &ne);
 579	return 0;
 580}
 581
 582/*
 583 * readahead MAX_RA_NODE number of node pages.
 584 */
 585static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 586{
 587	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 588	struct blk_plug plug;
 589	int i, end;
 590	nid_t nid;
 591
 592	blk_start_plug(&plug);
 593
 594	/* Then, try readahead for siblings of the desired node */
 595	end = start + n;
 596	end = min(end, NIDS_PER_BLOCK);
 597	for (i = start; i < end; i++) {
 598		nid = get_nid(parent, i, false);
 599		f2fs_ra_node_page(sbi, nid);
 600	}
 601
 602	blk_finish_plug(&plug);
 603}
 604
 605pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 606{
 607	const long direct_index = ADDRS_PER_INODE(dn->inode);
 608	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 609	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 610	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 611	int cur_level = dn->cur_level;
 612	int max_level = dn->max_level;
 613	pgoff_t base = 0;
 614
 615	if (!dn->max_level)
 616		return pgofs + 1;
 617
 618	while (max_level-- > cur_level)
 619		skipped_unit *= NIDS_PER_BLOCK;
 620
 621	switch (dn->max_level) {
 622	case 3:
 623		base += 2 * indirect_blks;
 624		/* fall through */
 625	case 2:
 626		base += 2 * direct_blks;
 627		/* fall through */
 628	case 1:
 629		base += direct_index;
 630		break;
 631	default:
 632		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 633	}
 634
 635	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 636}
 637
 638/*
 639 * The maximum depth is four.
 640 * Offset[0] will have raw inode offset.
 641 */
 642static int get_node_path(struct inode *inode, long block,
 643				int offset[4], unsigned int noffset[4])
 644{
 645	const long direct_index = ADDRS_PER_INODE(inode);
 646	const long direct_blks = ADDRS_PER_BLOCK(inode);
 647	const long dptrs_per_blk = NIDS_PER_BLOCK;
 648	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 649	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 650	int n = 0;
 651	int level = 0;
 652
 653	noffset[0] = 0;
 654
 655	if (block < direct_index) {
 656		offset[n] = block;
 657		goto got;
 658	}
 659	block -= direct_index;
 660	if (block < direct_blks) {
 661		offset[n++] = NODE_DIR1_BLOCK;
 662		noffset[n] = 1;
 663		offset[n] = block;
 664		level = 1;
 665		goto got;
 666	}
 667	block -= direct_blks;
 668	if (block < direct_blks) {
 669		offset[n++] = NODE_DIR2_BLOCK;
 670		noffset[n] = 2;
 671		offset[n] = block;
 672		level = 1;
 673		goto got;
 674	}
 675	block -= direct_blks;
 676	if (block < indirect_blks) {
 677		offset[n++] = NODE_IND1_BLOCK;
 678		noffset[n] = 3;
 679		offset[n++] = block / direct_blks;
 680		noffset[n] = 4 + offset[n - 1];
 681		offset[n] = block % direct_blks;
 682		level = 2;
 683		goto got;
 684	}
 685	block -= indirect_blks;
 686	if (block < indirect_blks) {
 687		offset[n++] = NODE_IND2_BLOCK;
 688		noffset[n] = 4 + dptrs_per_blk;
 689		offset[n++] = block / direct_blks;
 690		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 691		offset[n] = block % direct_blks;
 692		level = 2;
 693		goto got;
 694	}
 695	block -= indirect_blks;
 696	if (block < dindirect_blks) {
 697		offset[n++] = NODE_DIND_BLOCK;
 698		noffset[n] = 5 + (dptrs_per_blk * 2);
 699		offset[n++] = block / indirect_blks;
 700		noffset[n] = 6 + (dptrs_per_blk * 2) +
 701			      offset[n - 1] * (dptrs_per_blk + 1);
 702		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 703		noffset[n] = 7 + (dptrs_per_blk * 2) +
 704			      offset[n - 2] * (dptrs_per_blk + 1) +
 705			      offset[n - 1];
 706		offset[n] = block % direct_blks;
 707		level = 3;
 708		goto got;
 709	} else {
 710		return -E2BIG;
 711	}
 712got:
 713	return level;
 714}
 715
 716/*
 717 * Caller should call f2fs_put_dnode(dn).
 718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 719 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 720 * In the case of RDONLY_NODE, we don't need to care about mutex.
 721 */
 722int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 723{
 724	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 725	struct page *npage[4];
 726	struct page *parent = NULL;
 727	int offset[4];
 728	unsigned int noffset[4];
 729	nid_t nids[4];
 730	int level, i = 0;
 731	int err = 0;
 732
 733	level = get_node_path(dn->inode, index, offset, noffset);
 734	if (level < 0)
 735		return level;
 736
 737	nids[0] = dn->inode->i_ino;
 738	npage[0] = dn->inode_page;
 739
 740	if (!npage[0]) {
 741		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 742		if (IS_ERR(npage[0]))
 743			return PTR_ERR(npage[0]);
 744	}
 745
 746	/* if inline_data is set, should not report any block indices */
 747	if (f2fs_has_inline_data(dn->inode) && index) {
 748		err = -ENOENT;
 749		f2fs_put_page(npage[0], 1);
 750		goto release_out;
 751	}
 752
 753	parent = npage[0];
 754	if (level != 0)
 755		nids[1] = get_nid(parent, offset[0], true);
 756	dn->inode_page = npage[0];
 757	dn->inode_page_locked = true;
 758
 759	/* get indirect or direct nodes */
 760	for (i = 1; i <= level; i++) {
 761		bool done = false;
 762
 763		if (!nids[i] && mode == ALLOC_NODE) {
 764			/* alloc new node */
 765			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 766				err = -ENOSPC;
 767				goto release_pages;
 768			}
 769
 770			dn->nid = nids[i];
 771			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 772			if (IS_ERR(npage[i])) {
 773				f2fs_alloc_nid_failed(sbi, nids[i]);
 774				err = PTR_ERR(npage[i]);
 775				goto release_pages;
 776			}
 777
 778			set_nid(parent, offset[i - 1], nids[i], i == 1);
 779			f2fs_alloc_nid_done(sbi, nids[i]);
 780			done = true;
 781		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 782			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 783			if (IS_ERR(npage[i])) {
 784				err = PTR_ERR(npage[i]);
 785				goto release_pages;
 786			}
 787			done = true;
 788		}
 789		if (i == 1) {
 790			dn->inode_page_locked = false;
 791			unlock_page(parent);
 792		} else {
 793			f2fs_put_page(parent, 1);
 794		}
 795
 796		if (!done) {
 797			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 798			if (IS_ERR(npage[i])) {
 799				err = PTR_ERR(npage[i]);
 800				f2fs_put_page(npage[0], 0);
 801				goto release_out;
 802			}
 803		}
 804		if (i < level) {
 805			parent = npage[i];
 806			nids[i + 1] = get_nid(parent, offset[i], false);
 807		}
 808	}
 809	dn->nid = nids[level];
 810	dn->ofs_in_node = offset[level];
 811	dn->node_page = npage[level];
 812	dn->data_blkaddr = datablock_addr(dn->inode,
 813				dn->node_page, dn->ofs_in_node);
 814	return 0;
 815
 816release_pages:
 817	f2fs_put_page(parent, 1);
 818	if (i > 1)
 819		f2fs_put_page(npage[0], 0);
 820release_out:
 821	dn->inode_page = NULL;
 822	dn->node_page = NULL;
 823	if (err == -ENOENT) {
 824		dn->cur_level = i;
 825		dn->max_level = level;
 826		dn->ofs_in_node = offset[level];
 827	}
 828	return err;
 829}
 830
 831static int truncate_node(struct dnode_of_data *dn)
 832{
 833	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 834	struct node_info ni;
 835	int err;
 836	pgoff_t index;
 837
 838	err = f2fs_get_node_info(sbi, dn->nid, &ni);
 839	if (err)
 840		return err;
 841
 842	/* Deallocate node address */
 843	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 844	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 845	set_node_addr(sbi, &ni, NULL_ADDR, false);
 846
 847	if (dn->nid == dn->inode->i_ino) {
 848		f2fs_remove_orphan_inode(sbi, dn->nid);
 849		dec_valid_inode_count(sbi);
 850		f2fs_inode_synced(dn->inode);
 851	}
 852
 853	clear_node_page_dirty(dn->node_page);
 854	set_sbi_flag(sbi, SBI_IS_DIRTY);
 855
 856	index = dn->node_page->index;
 857	f2fs_put_page(dn->node_page, 1);
 858
 859	invalidate_mapping_pages(NODE_MAPPING(sbi),
 860			index, index);
 861
 862	dn->node_page = NULL;
 863	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 864
 865	return 0;
 866}
 867
 868static int truncate_dnode(struct dnode_of_data *dn)
 869{
 870	struct page *page;
 871	int err;
 872
 873	if (dn->nid == 0)
 874		return 1;
 875
 876	/* get direct node */
 877	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 878	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 879		return 1;
 880	else if (IS_ERR(page))
 881		return PTR_ERR(page);
 882
 883	/* Make dnode_of_data for parameter */
 884	dn->node_page = page;
 885	dn->ofs_in_node = 0;
 886	f2fs_truncate_data_blocks(dn);
 887	err = truncate_node(dn);
 888	if (err)
 889		return err;
 890
 891	return 1;
 892}
 893
 894static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 895						int ofs, int depth)
 896{
 897	struct dnode_of_data rdn = *dn;
 898	struct page *page;
 899	struct f2fs_node *rn;
 900	nid_t child_nid;
 901	unsigned int child_nofs;
 902	int freed = 0;
 903	int i, ret;
 904
 905	if (dn->nid == 0)
 906		return NIDS_PER_BLOCK + 1;
 907
 908	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 909
 910	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 911	if (IS_ERR(page)) {
 912		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 913		return PTR_ERR(page);
 914	}
 915
 916	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 917
 918	rn = F2FS_NODE(page);
 919	if (depth < 3) {
 920		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 921			child_nid = le32_to_cpu(rn->in.nid[i]);
 922			if (child_nid == 0)
 923				continue;
 924			rdn.nid = child_nid;
 925			ret = truncate_dnode(&rdn);
 926			if (ret < 0)
 927				goto out_err;
 928			if (set_nid(page, i, 0, false))
 929				dn->node_changed = true;
 930		}
 931	} else {
 932		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 933		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 934			child_nid = le32_to_cpu(rn->in.nid[i]);
 935			if (child_nid == 0) {
 936				child_nofs += NIDS_PER_BLOCK + 1;
 937				continue;
 938			}
 939			rdn.nid = child_nid;
 940			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 941			if (ret == (NIDS_PER_BLOCK + 1)) {
 942				if (set_nid(page, i, 0, false))
 943					dn->node_changed = true;
 944				child_nofs += ret;
 945			} else if (ret < 0 && ret != -ENOENT) {
 946				goto out_err;
 947			}
 948		}
 949		freed = child_nofs;
 950	}
 951
 952	if (!ofs) {
 953		/* remove current indirect node */
 954		dn->node_page = page;
 955		ret = truncate_node(dn);
 956		if (ret)
 957			goto out_err;
 958		freed++;
 959	} else {
 960		f2fs_put_page(page, 1);
 961	}
 962	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 963	return freed;
 964
 965out_err:
 966	f2fs_put_page(page, 1);
 967	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 968	return ret;
 969}
 970
 971static int truncate_partial_nodes(struct dnode_of_data *dn,
 972			struct f2fs_inode *ri, int *offset, int depth)
 973{
 974	struct page *pages[2];
 975	nid_t nid[3];
 976	nid_t child_nid;
 977	int err = 0;
 978	int i;
 979	int idx = depth - 2;
 980
 981	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 982	if (!nid[0])
 983		return 0;
 984
 985	/* get indirect nodes in the path */
 986	for (i = 0; i < idx + 1; i++) {
 987		/* reference count'll be increased */
 988		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 989		if (IS_ERR(pages[i])) {
 990			err = PTR_ERR(pages[i]);
 991			idx = i - 1;
 992			goto fail;
 993		}
 994		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 995	}
 996
 997	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 998
 999	/* free direct nodes linked to a partial indirect node */
1000	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001		child_nid = get_nid(pages[idx], i, false);
1002		if (!child_nid)
1003			continue;
1004		dn->nid = child_nid;
1005		err = truncate_dnode(dn);
1006		if (err < 0)
1007			goto fail;
1008		if (set_nid(pages[idx], i, 0, false))
1009			dn->node_changed = true;
1010	}
1011
1012	if (offset[idx + 1] == 0) {
1013		dn->node_page = pages[idx];
1014		dn->nid = nid[idx];
1015		err = truncate_node(dn);
1016		if (err)
1017			goto fail;
1018	} else {
1019		f2fs_put_page(pages[idx], 1);
1020	}
1021	offset[idx]++;
1022	offset[idx + 1] = 0;
1023	idx--;
1024fail:
1025	for (i = idx; i >= 0; i--)
1026		f2fs_put_page(pages[i], 1);
1027
1028	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029
1030	return err;
1031}
1032
1033/*
1034 * All the block addresses of data and nodes should be nullified.
1035 */
1036int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037{
1038	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039	int err = 0, cont = 1;
1040	int level, offset[4], noffset[4];
1041	unsigned int nofs = 0;
1042	struct f2fs_inode *ri;
1043	struct dnode_of_data dn;
1044	struct page *page;
1045
1046	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047
1048	level = get_node_path(inode, from, offset, noffset);
1049	if (level < 0)
1050		return level;
1051
1052	page = f2fs_get_node_page(sbi, inode->i_ino);
1053	if (IS_ERR(page)) {
1054		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055		return PTR_ERR(page);
1056	}
1057
1058	set_new_dnode(&dn, inode, page, NULL, 0);
1059	unlock_page(page);
1060
1061	ri = F2FS_INODE(page);
1062	switch (level) {
1063	case 0:
1064	case 1:
1065		nofs = noffset[1];
1066		break;
1067	case 2:
1068		nofs = noffset[1];
1069		if (!offset[level - 1])
1070			goto skip_partial;
1071		err = truncate_partial_nodes(&dn, ri, offset, level);
1072		if (err < 0 && err != -ENOENT)
1073			goto fail;
1074		nofs += 1 + NIDS_PER_BLOCK;
1075		break;
1076	case 3:
1077		nofs = 5 + 2 * NIDS_PER_BLOCK;
1078		if (!offset[level - 1])
1079			goto skip_partial;
1080		err = truncate_partial_nodes(&dn, ri, offset, level);
1081		if (err < 0 && err != -ENOENT)
1082			goto fail;
1083		break;
1084	default:
1085		BUG();
1086	}
1087
1088skip_partial:
1089	while (cont) {
1090		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091		switch (offset[0]) {
1092		case NODE_DIR1_BLOCK:
1093		case NODE_DIR2_BLOCK:
1094			err = truncate_dnode(&dn);
1095			break;
1096
1097		case NODE_IND1_BLOCK:
1098		case NODE_IND2_BLOCK:
1099			err = truncate_nodes(&dn, nofs, offset[1], 2);
1100			break;
1101
1102		case NODE_DIND_BLOCK:
1103			err = truncate_nodes(&dn, nofs, offset[1], 3);
1104			cont = 0;
1105			break;
1106
1107		default:
1108			BUG();
1109		}
1110		if (err < 0 && err != -ENOENT)
1111			goto fail;
1112		if (offset[1] == 0 &&
1113				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114			lock_page(page);
1115			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116			f2fs_wait_on_page_writeback(page, NODE, true, true);
1117			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118			set_page_dirty(page);
1119			unlock_page(page);
1120		}
1121		offset[1] = 0;
1122		offset[0]++;
1123		nofs += err;
1124	}
1125fail:
1126	f2fs_put_page(page, 0);
1127	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128	return err > 0 ? 0 : err;
1129}
1130
1131/* caller must lock inode page */
1132int f2fs_truncate_xattr_node(struct inode *inode)
1133{
1134	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136	struct dnode_of_data dn;
1137	struct page *npage;
1138	int err;
1139
1140	if (!nid)
1141		return 0;
1142
1143	npage = f2fs_get_node_page(sbi, nid);
1144	if (IS_ERR(npage))
1145		return PTR_ERR(npage);
1146
1147	set_new_dnode(&dn, inode, NULL, npage, nid);
1148	err = truncate_node(&dn);
1149	if (err) {
1150		f2fs_put_page(npage, 1);
1151		return err;
1152	}
1153
1154	f2fs_i_xnid_write(inode, 0);
1155
 
 
1156	return 0;
1157}
1158
1159/*
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161 * f2fs_unlock_op().
1162 */
1163int f2fs_remove_inode_page(struct inode *inode)
1164{
1165	struct dnode_of_data dn;
1166	int err;
1167
1168	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170	if (err)
1171		return err;
1172
1173	err = f2fs_truncate_xattr_node(inode);
1174	if (err) {
1175		f2fs_put_dnode(&dn);
1176		return err;
1177	}
1178
1179	/* remove potential inline_data blocks */
1180	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181				S_ISLNK(inode->i_mode))
1182		f2fs_truncate_data_blocks_range(&dn, 1);
1183
1184	/* 0 is possible, after f2fs_new_inode() has failed */
1185	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186		f2fs_put_dnode(&dn);
1187		return -EIO;
1188	}
1189
1190	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191		f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192			  inode->i_ino, (unsigned long long)inode->i_blocks);
1193		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194	}
1195
1196	/* will put inode & node pages */
1197	err = truncate_node(&dn);
1198	if (err) {
1199		f2fs_put_dnode(&dn);
1200		return err;
1201	}
1202	return 0;
1203}
1204
1205struct page *f2fs_new_inode_page(struct inode *inode)
1206{
1207	struct dnode_of_data dn;
1208
1209	/* allocate inode page for new inode */
1210	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211
1212	/* caller should f2fs_put_page(page, 1); */
1213	return f2fs_new_node_page(&dn, 0);
1214}
1215
1216struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1217{
1218	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219	struct node_info new_ni;
1220	struct page *page;
1221	int err;
1222
1223	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224		return ERR_PTR(-EPERM);
1225
1226	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227	if (!page)
1228		return ERR_PTR(-ENOMEM);
1229
1230	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231		goto fail;
1232
1233#ifdef CONFIG_F2FS_CHECK_FS
1234	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235	if (err) {
1236		dec_valid_node_count(sbi, dn->inode, !ofs);
1237		goto fail;
1238	}
1239	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240#endif
1241	new_ni.nid = dn->nid;
1242	new_ni.ino = dn->inode->i_ino;
1243	new_ni.blk_addr = NULL_ADDR;
1244	new_ni.flag = 0;
1245	new_ni.version = 0;
1246	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247
1248	f2fs_wait_on_page_writeback(page, NODE, true, true);
1249	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251	if (!PageUptodate(page))
1252		SetPageUptodate(page);
1253	if (set_page_dirty(page))
1254		dn->node_changed = true;
1255
1256	if (f2fs_has_xattr_block(ofs))
1257		f2fs_i_xnid_write(dn->inode, dn->nid);
1258
1259	if (ofs == 0)
1260		inc_valid_inode_count(sbi);
1261	return page;
1262
1263fail:
1264	clear_node_page_dirty(page);
1265	f2fs_put_page(page, 1);
1266	return ERR_PTR(err);
1267}
1268
1269/*
1270 * Caller should do after getting the following values.
1271 * 0: f2fs_put_page(page, 0)
1272 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1273 */
1274static int read_node_page(struct page *page, int op_flags)
1275{
1276	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277	struct node_info ni;
1278	struct f2fs_io_info fio = {
1279		.sbi = sbi,
1280		.type = NODE,
1281		.op = REQ_OP_READ,
1282		.op_flags = op_flags,
1283		.page = page,
1284		.encrypted_page = NULL,
1285	};
1286	int err;
1287
1288	if (PageUptodate(page)) {
1289		if (!f2fs_inode_chksum_verify(sbi, page)) {
1290			ClearPageUptodate(page);
1291			return -EFSBADCRC;
1292		}
1293		return LOCKED_PAGE;
1294	}
1295
1296	err = f2fs_get_node_info(sbi, page->index, &ni);
1297	if (err)
1298		return err;
1299
1300	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302		ClearPageUptodate(page);
1303		return -ENOENT;
1304	}
1305
1306	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307	return f2fs_submit_page_bio(&fio);
1308}
1309
1310/*
1311 * Readahead a node page
1312 */
1313void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314{
1315	struct page *apage;
1316	int err;
1317
1318	if (!nid)
1319		return;
1320	if (f2fs_check_nid_range(sbi, nid))
1321		return;
1322
1323	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
 
 
1324	if (apage)
1325		return;
1326
1327	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328	if (!apage)
1329		return;
1330
1331	err = read_node_page(apage, REQ_RAHEAD);
1332	f2fs_put_page(apage, err ? 1 : 0);
1333}
1334
1335static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336					struct page *parent, int start)
1337{
1338	struct page *page;
1339	int err;
1340
1341	if (!nid)
1342		return ERR_PTR(-ENOENT);
1343	if (f2fs_check_nid_range(sbi, nid))
1344		return ERR_PTR(-EINVAL);
1345repeat:
1346	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347	if (!page)
1348		return ERR_PTR(-ENOMEM);
1349
1350	err = read_node_page(page, 0);
1351	if (err < 0) {
1352		f2fs_put_page(page, 1);
1353		return ERR_PTR(err);
1354	} else if (err == LOCKED_PAGE) {
1355		err = 0;
1356		goto page_hit;
1357	}
1358
1359	if (parent)
1360		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361
1362	lock_page(page);
1363
1364	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365		f2fs_put_page(page, 1);
1366		goto repeat;
1367	}
1368
1369	if (unlikely(!PageUptodate(page))) {
1370		err = -EIO;
1371		goto out_err;
1372	}
1373
1374	if (!f2fs_inode_chksum_verify(sbi, page)) {
1375		err = -EFSBADCRC;
1376		goto out_err;
1377	}
1378page_hit:
1379	if(unlikely(nid != nid_of_node(page))) {
1380		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381			  nid, nid_of_node(page), ino_of_node(page),
1382			  ofs_of_node(page), cpver_of_node(page),
1383			  next_blkaddr_of_node(page));
 
1384		err = -EINVAL;
1385out_err:
1386		ClearPageUptodate(page);
1387		f2fs_put_page(page, 1);
1388		return ERR_PTR(err);
1389	}
1390	return page;
1391}
1392
1393struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394{
1395	return __get_node_page(sbi, nid, NULL, 0);
1396}
1397
1398struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399{
1400	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401	nid_t nid = get_nid(parent, start, false);
1402
1403	return __get_node_page(sbi, nid, parent, start);
1404}
1405
1406static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407{
1408	struct inode *inode;
1409	struct page *page;
1410	int ret;
1411
1412	/* should flush inline_data before evict_inode */
1413	inode = ilookup(sbi->sb, ino);
1414	if (!inode)
1415		return;
1416
1417	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418					FGP_LOCK|FGP_NOWAIT, 0);
1419	if (!page)
1420		goto iput_out;
1421
1422	if (!PageUptodate(page))
1423		goto page_out;
1424
1425	if (!PageDirty(page))
1426		goto page_out;
1427
1428	if (!clear_page_dirty_for_io(page))
1429		goto page_out;
1430
1431	ret = f2fs_write_inline_data(inode, page);
1432	inode_dec_dirty_pages(inode);
1433	f2fs_remove_dirty_inode(inode);
1434	if (ret)
1435		set_page_dirty(page);
1436page_out:
1437	f2fs_put_page(page, 1);
1438iput_out:
1439	iput(inode);
1440}
1441
1442static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443{
1444	pgoff_t index;
1445	struct pagevec pvec;
1446	struct page *last_page = NULL;
1447	int nr_pages;
1448
1449	pagevec_init(&pvec);
1450	index = 0;
1451
1452	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453				PAGECACHE_TAG_DIRTY))) {
1454		int i;
1455
1456		for (i = 0; i < nr_pages; i++) {
1457			struct page *page = pvec.pages[i];
1458
1459			if (unlikely(f2fs_cp_error(sbi))) {
1460				f2fs_put_page(last_page, 0);
1461				pagevec_release(&pvec);
1462				return ERR_PTR(-EIO);
1463			}
1464
1465			if (!IS_DNODE(page) || !is_cold_node(page))
1466				continue;
1467			if (ino_of_node(page) != ino)
1468				continue;
1469
1470			lock_page(page);
1471
1472			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473continue_unlock:
1474				unlock_page(page);
1475				continue;
1476			}
1477			if (ino_of_node(page) != ino)
1478				goto continue_unlock;
1479
1480			if (!PageDirty(page)) {
1481				/* someone wrote it for us */
1482				goto continue_unlock;
1483			}
1484
1485			if (last_page)
1486				f2fs_put_page(last_page, 0);
1487
1488			get_page(page);
1489			last_page = page;
1490			unlock_page(page);
1491		}
1492		pagevec_release(&pvec);
1493		cond_resched();
1494	}
1495	return last_page;
1496}
1497
1498static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499				struct writeback_control *wbc, bool do_balance,
1500				enum iostat_type io_type, unsigned int *seq_id)
1501{
1502	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503	nid_t nid;
1504	struct node_info ni;
1505	struct f2fs_io_info fio = {
1506		.sbi = sbi,
1507		.ino = ino_of_node(page),
1508		.type = NODE,
1509		.op = REQ_OP_WRITE,
1510		.op_flags = wbc_to_write_flags(wbc),
1511		.page = page,
1512		.encrypted_page = NULL,
1513		.submitted = false,
1514		.io_type = io_type,
1515		.io_wbc = wbc,
1516	};
1517	unsigned int seq;
1518
1519	trace_f2fs_writepage(page, NODE);
1520
1521	if (unlikely(f2fs_cp_error(sbi)))
1522		goto redirty_out;
 
 
 
1523
1524	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525		goto redirty_out;
1526
1527	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528			wbc->sync_mode == WB_SYNC_NONE &&
1529			IS_DNODE(page) && is_cold_node(page))
1530		goto redirty_out;
1531
1532	/* get old block addr of this node page */
1533	nid = nid_of_node(page);
1534	f2fs_bug_on(sbi, page->index != nid);
1535
1536	if (f2fs_get_node_info(sbi, nid, &ni))
1537		goto redirty_out;
1538
1539	if (wbc->for_reclaim) {
1540		if (!down_read_trylock(&sbi->node_write))
1541			goto redirty_out;
1542	} else {
1543		down_read(&sbi->node_write);
1544	}
1545
 
 
1546	/* This page is already truncated */
1547	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548		ClearPageUptodate(page);
1549		dec_page_count(sbi, F2FS_DIRTY_NODES);
1550		up_read(&sbi->node_write);
1551		unlock_page(page);
1552		return 0;
1553	}
1554
1555	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557					DATA_GENERIC_ENHANCE)) {
1558		up_read(&sbi->node_write);
1559		goto redirty_out;
1560	}
1561
1562	if (atomic && !test_opt(sbi, NOBARRIER))
1563		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1564
1565	set_page_writeback(page);
1566	ClearPageError(page);
1567
1568	if (f2fs_in_warm_node_list(sbi, page)) {
1569		seq = f2fs_add_fsync_node_entry(sbi, page);
1570		if (seq_id)
1571			*seq_id = seq;
1572	}
1573
1574	fio.old_blkaddr = ni.blk_addr;
1575	f2fs_do_write_node_page(nid, &fio);
1576	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1577	dec_page_count(sbi, F2FS_DIRTY_NODES);
1578	up_read(&sbi->node_write);
1579
1580	if (wbc->for_reclaim) {
1581		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
 
1582		submitted = NULL;
1583	}
1584
1585	unlock_page(page);
1586
1587	if (unlikely(f2fs_cp_error(sbi))) {
1588		f2fs_submit_merged_write(sbi, NODE);
1589		submitted = NULL;
1590	}
1591	if (submitted)
1592		*submitted = fio.submitted;
1593
1594	if (do_balance)
1595		f2fs_balance_fs(sbi, false);
1596	return 0;
1597
1598redirty_out:
1599	redirty_page_for_writepage(wbc, page);
1600	return AOP_WRITEPAGE_ACTIVATE;
1601}
1602
1603int f2fs_move_node_page(struct page *node_page, int gc_type)
1604{
1605	int err = 0;
1606
1607	if (gc_type == FG_GC) {
1608		struct writeback_control wbc = {
1609			.sync_mode = WB_SYNC_ALL,
1610			.nr_to_write = 1,
1611			.for_reclaim = 0,
1612		};
1613
1614		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1615
1616		set_page_dirty(node_page);
 
1617
1618		if (!clear_page_dirty_for_io(node_page)) {
1619			err = -EAGAIN;
1620			goto out_page;
1621		}
1622
1623		if (__write_node_page(node_page, false, NULL,
1624					&wbc, false, FS_GC_NODE_IO, NULL)) {
1625			err = -EAGAIN;
1626			unlock_page(node_page);
1627		}
1628		goto release_page;
1629	} else {
1630		/* set page dirty and write it */
1631		if (!PageWriteback(node_page))
1632			set_page_dirty(node_page);
1633	}
1634out_page:
1635	unlock_page(node_page);
1636release_page:
1637	f2fs_put_page(node_page, 0);
1638	return err;
1639}
1640
1641static int f2fs_write_node_page(struct page *page,
1642				struct writeback_control *wbc)
1643{
1644	return __write_node_page(page, false, NULL, wbc, false,
1645						FS_NODE_IO, NULL);
1646}
1647
1648int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1649			struct writeback_control *wbc, bool atomic,
1650			unsigned int *seq_id)
1651{
1652	pgoff_t index;
 
1653	struct pagevec pvec;
1654	int ret = 0;
1655	struct page *last_page = NULL;
1656	bool marked = false;
1657	nid_t ino = inode->i_ino;
1658	int nr_pages;
1659	int nwritten = 0;
1660
1661	if (atomic) {
1662		last_page = last_fsync_dnode(sbi, ino);
1663		if (IS_ERR_OR_NULL(last_page))
1664			return PTR_ERR_OR_ZERO(last_page);
1665	}
1666retry:
1667	pagevec_init(&pvec);
1668	index = 0;
1669
1670	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1671				PAGECACHE_TAG_DIRTY))) {
1672		int i;
1673
1674		for (i = 0; i < nr_pages; i++) {
1675			struct page *page = pvec.pages[i];
1676			bool submitted = false;
1677
1678			if (unlikely(f2fs_cp_error(sbi))) {
1679				f2fs_put_page(last_page, 0);
1680				pagevec_release(&pvec);
1681				ret = -EIO;
1682				goto out;
1683			}
1684
1685			if (!IS_DNODE(page) || !is_cold_node(page))
1686				continue;
1687			if (ino_of_node(page) != ino)
1688				continue;
1689
1690			lock_page(page);
1691
1692			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1693continue_unlock:
1694				unlock_page(page);
1695				continue;
1696			}
1697			if (ino_of_node(page) != ino)
1698				goto continue_unlock;
1699
1700			if (!PageDirty(page) && page != last_page) {
1701				/* someone wrote it for us */
1702				goto continue_unlock;
1703			}
1704
1705			f2fs_wait_on_page_writeback(page, NODE, true, true);
 
1706
1707			set_fsync_mark(page, 0);
1708			set_dentry_mark(page, 0);
1709
1710			if (!atomic || page == last_page) {
1711				set_fsync_mark(page, 1);
1712				if (IS_INODE(page)) {
1713					if (is_inode_flag_set(inode,
1714								FI_DIRTY_INODE))
1715						f2fs_update_inode(inode, page);
1716					set_dentry_mark(page,
1717						f2fs_need_dentry_mark(sbi, ino));
1718				}
1719				/*  may be written by other thread */
1720				if (!PageDirty(page))
1721					set_page_dirty(page);
1722			}
1723
1724			if (!clear_page_dirty_for_io(page))
1725				goto continue_unlock;
1726
1727			ret = __write_node_page(page, atomic &&
1728						page == last_page,
1729						&submitted, wbc, true,
1730						FS_NODE_IO, seq_id);
1731			if (ret) {
1732				unlock_page(page);
1733				f2fs_put_page(last_page, 0);
1734				break;
1735			} else if (submitted) {
1736				nwritten++;
1737			}
1738
1739			if (page == last_page) {
1740				f2fs_put_page(page, 0);
1741				marked = true;
1742				break;
1743			}
1744		}
1745		pagevec_release(&pvec);
1746		cond_resched();
1747
1748		if (ret || marked)
1749			break;
1750	}
1751	if (!ret && atomic && !marked) {
1752		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1753			   ino, last_page->index);
 
1754		lock_page(last_page);
1755		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1756		set_page_dirty(last_page);
1757		unlock_page(last_page);
1758		goto retry;
1759	}
1760out:
1761	if (nwritten)
1762		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1763	return ret ? -EIO: 0;
1764}
1765
1766static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1767{
1768	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769	bool clean;
1770
1771	if (inode->i_ino != ino)
1772		return 0;
1773
1774	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1775		return 0;
1776
1777	spin_lock(&sbi->inode_lock[DIRTY_META]);
1778	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1779	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1780
1781	if (clean)
1782		return 0;
1783
1784	inode = igrab(inode);
1785	if (!inode)
1786		return 0;
1787	return 1;
1788}
1789
1790static bool flush_dirty_inode(struct page *page)
1791{
1792	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1793	struct inode *inode;
1794	nid_t ino = ino_of_node(page);
1795
1796	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1797	if (!inode)
1798		return false;
1799
1800	f2fs_update_inode(inode, page);
1801	unlock_page(page);
1802
1803	iput(inode);
1804	return true;
1805}
1806
1807int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1808				struct writeback_control *wbc,
1809				bool do_balance, enum iostat_type io_type)
1810{
1811	pgoff_t index;
1812	struct pagevec pvec;
1813	int step = 0;
1814	int nwritten = 0;
1815	int ret = 0;
1816	int nr_pages, done = 0;
1817
1818	pagevec_init(&pvec);
1819
1820next_step:
1821	index = 0;
1822
1823	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1824			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1825		int i;
1826
1827		for (i = 0; i < nr_pages; i++) {
1828			struct page *page = pvec.pages[i];
1829			bool submitted = false;
1830			bool may_dirty = true;
1831
1832			/* give a priority to WB_SYNC threads */
1833			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1834					wbc->sync_mode == WB_SYNC_NONE) {
1835				done = 1;
1836				break;
1837			}
1838
1839			/*
1840			 * flushing sequence with step:
1841			 * 0. indirect nodes
1842			 * 1. dentry dnodes
1843			 * 2. file dnodes
1844			 */
1845			if (step == 0 && IS_DNODE(page))
1846				continue;
1847			if (step == 1 && (!IS_DNODE(page) ||
1848						is_cold_node(page)))
1849				continue;
1850			if (step == 2 && (!IS_DNODE(page) ||
1851						!is_cold_node(page)))
1852				continue;
1853lock_node:
1854			if (wbc->sync_mode == WB_SYNC_ALL)
1855				lock_page(page);
1856			else if (!trylock_page(page))
1857				continue;
1858
1859			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860continue_unlock:
1861				unlock_page(page);
1862				continue;
1863			}
1864
1865			if (!PageDirty(page)) {
1866				/* someone wrote it for us */
1867				goto continue_unlock;
1868			}
1869
1870			/* flush inline_data */
1871			if (is_inline_node(page)) {
1872				clear_inline_node(page);
1873				unlock_page(page);
1874				flush_inline_data(sbi, ino_of_node(page));
1875				goto lock_node;
1876			}
1877
1878			/* flush dirty inode */
1879			if (IS_INODE(page) && may_dirty) {
1880				may_dirty = false;
1881				if (flush_dirty_inode(page))
1882					goto lock_node;
1883			}
1884
1885			f2fs_wait_on_page_writeback(page, NODE, true, true);
1886
 
1887			if (!clear_page_dirty_for_io(page))
1888				goto continue_unlock;
1889
1890			set_fsync_mark(page, 0);
1891			set_dentry_mark(page, 0);
1892
1893			ret = __write_node_page(page, false, &submitted,
1894						wbc, do_balance, io_type, NULL);
1895			if (ret)
1896				unlock_page(page);
1897			else if (submitted)
1898				nwritten++;
1899
1900			if (--wbc->nr_to_write == 0)
1901				break;
1902		}
1903		pagevec_release(&pvec);
1904		cond_resched();
1905
1906		if (wbc->nr_to_write == 0) {
1907			step = 2;
1908			break;
1909		}
1910	}
1911
1912	if (step < 2) {
1913		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1915			goto out;
1916		step++;
1917		goto next_step;
1918	}
1919out:
1920	if (nwritten)
1921		f2fs_submit_merged_write(sbi, NODE);
1922
1923	if (unlikely(f2fs_cp_error(sbi)))
1924		return -EIO;
1925	return ret;
1926}
1927
1928int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1929						unsigned int seq_id)
1930{
1931	struct fsync_node_entry *fn;
1932	struct page *page;
1933	struct list_head *head = &sbi->fsync_node_list;
1934	unsigned long flags;
1935	unsigned int cur_seq_id = 0;
1936	int ret2, ret = 0;
 
1937
1938	while (seq_id && cur_seq_id < seq_id) {
1939		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1940		if (list_empty(head)) {
1941			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1942			break;
1943		}
1944		fn = list_first_entry(head, struct fsync_node_entry, list);
1945		if (fn->seq_id > seq_id) {
1946			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1947			break;
1948		}
1949		cur_seq_id = fn->seq_id;
1950		page = fn->page;
1951		get_page(page);
1952		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1953
1954		f2fs_wait_on_page_writeback(page, NODE, true, false);
1955		if (TestClearPageError(page))
1956			ret = -EIO;
1957
1958		put_page(page);
 
1959
1960		if (ret)
1961			break;
 
 
 
 
 
 
1962	}
1963
1964	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1965	if (!ret)
1966		ret = ret2;
1967
1968	return ret;
1969}
1970
1971static int f2fs_write_node_pages(struct address_space *mapping,
1972			    struct writeback_control *wbc)
1973{
1974	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1975	struct blk_plug plug;
1976	long diff;
1977
1978	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1979		goto skip_write;
1980
1981	/* balancing f2fs's metadata in background */
1982	f2fs_balance_fs_bg(sbi);
1983
1984	/* collect a number of dirty node pages and write together */
1985	if (wbc->sync_mode != WB_SYNC_ALL &&
1986			get_pages(sbi, F2FS_DIRTY_NODES) <
1987					nr_pages_to_skip(sbi, NODE))
1988		goto skip_write;
1989
1990	if (wbc->sync_mode == WB_SYNC_ALL)
1991		atomic_inc(&sbi->wb_sync_req[NODE]);
1992	else if (atomic_read(&sbi->wb_sync_req[NODE]))
1993		goto skip_write;
1994
1995	trace_f2fs_writepages(mapping->host, wbc, NODE);
1996
1997	diff = nr_pages_to_write(sbi, NODE, wbc);
 
1998	blk_start_plug(&plug);
1999	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2000	blk_finish_plug(&plug);
2001	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2002
2003	if (wbc->sync_mode == WB_SYNC_ALL)
2004		atomic_dec(&sbi->wb_sync_req[NODE]);
2005	return 0;
2006
2007skip_write:
2008	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2009	trace_f2fs_writepages(mapping->host, wbc, NODE);
2010	return 0;
2011}
2012
2013static int f2fs_set_node_page_dirty(struct page *page)
2014{
2015	trace_f2fs_set_page_dirty(page, NODE);
2016
2017	if (!PageUptodate(page))
2018		SetPageUptodate(page);
2019#ifdef CONFIG_F2FS_CHECK_FS
2020	if (IS_INODE(page))
2021		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2022#endif
2023	if (!PageDirty(page)) {
2024		__set_page_dirty_nobuffers(page);
2025		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2026		f2fs_set_page_private(page, 0);
2027		f2fs_trace_pid(page);
2028		return 1;
2029	}
2030	return 0;
2031}
2032
2033/*
2034 * Structure of the f2fs node operations
2035 */
2036const struct address_space_operations f2fs_node_aops = {
2037	.writepage	= f2fs_write_node_page,
2038	.writepages	= f2fs_write_node_pages,
2039	.set_page_dirty	= f2fs_set_node_page_dirty,
2040	.invalidatepage	= f2fs_invalidate_page,
2041	.releasepage	= f2fs_release_page,
2042#ifdef CONFIG_MIGRATION
2043	.migratepage    = f2fs_migrate_page,
2044#endif
2045};
2046
2047static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2048						nid_t n)
2049{
2050	return radix_tree_lookup(&nm_i->free_nid_root, n);
2051}
2052
2053static int __insert_free_nid(struct f2fs_sb_info *sbi,
2054			struct free_nid *i, enum nid_state state)
2055{
2056	struct f2fs_nm_info *nm_i = NM_I(sbi);
2057
2058	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2059	if (err)
2060		return err;
2061
2062	f2fs_bug_on(sbi, state != i->state);
2063	nm_i->nid_cnt[state]++;
2064	if (state == FREE_NID)
2065		list_add_tail(&i->list, &nm_i->free_nid_list);
2066	return 0;
2067}
2068
2069static void __remove_free_nid(struct f2fs_sb_info *sbi,
2070			struct free_nid *i, enum nid_state state)
2071{
2072	struct f2fs_nm_info *nm_i = NM_I(sbi);
2073
2074	f2fs_bug_on(sbi, state != i->state);
2075	nm_i->nid_cnt[state]--;
2076	if (state == FREE_NID)
2077		list_del(&i->list);
2078	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2079}
2080
2081static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2082			enum nid_state org_state, enum nid_state dst_state)
2083{
2084	struct f2fs_nm_info *nm_i = NM_I(sbi);
2085
2086	f2fs_bug_on(sbi, org_state != i->state);
2087	i->state = dst_state;
2088	nm_i->nid_cnt[org_state]--;
2089	nm_i->nid_cnt[dst_state]++;
2090
2091	switch (dst_state) {
2092	case PREALLOC_NID:
2093		list_del(&i->list);
2094		break;
2095	case FREE_NID:
2096		list_add_tail(&i->list, &nm_i->free_nid_list);
2097		break;
2098	default:
2099		BUG_ON(1);
2100	}
2101}
2102
2103static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2104							bool set, bool build)
2105{
2106	struct f2fs_nm_info *nm_i = NM_I(sbi);
2107	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2108	unsigned int nid_ofs = nid - START_NID(nid);
2109
2110	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2111		return;
2112
2113	if (set) {
2114		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2115			return;
2116		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2117		nm_i->free_nid_count[nat_ofs]++;
2118	} else {
2119		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2120			return;
2121		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2122		if (!build)
2123			nm_i->free_nid_count[nat_ofs]--;
2124	}
2125}
2126
2127/* return if the nid is recognized as free */
2128static bool add_free_nid(struct f2fs_sb_info *sbi,
2129				nid_t nid, bool build, bool update)
2130{
2131	struct f2fs_nm_info *nm_i = NM_I(sbi);
2132	struct free_nid *i, *e;
2133	struct nat_entry *ne;
2134	int err = -EINVAL;
2135	bool ret = false;
2136
2137	/* 0 nid should not be used */
2138	if (unlikely(nid == 0))
2139		return false;
2140
2141	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2142		return false;
2143
2144	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2145	i->nid = nid;
2146	i->state = FREE_NID;
2147
2148	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2149
2150	spin_lock(&nm_i->nid_list_lock);
2151
2152	if (build) {
2153		/*
2154		 *   Thread A             Thread B
2155		 *  - f2fs_create
2156		 *   - f2fs_new_inode
2157		 *    - f2fs_alloc_nid
2158		 *     - __insert_nid_to_list(PREALLOC_NID)
2159		 *                     - f2fs_balance_fs_bg
2160		 *                      - f2fs_build_free_nids
2161		 *                       - __f2fs_build_free_nids
2162		 *                        - scan_nat_page
2163		 *                         - add_free_nid
2164		 *                          - __lookup_nat_cache
2165		 *  - f2fs_add_link
2166		 *   - f2fs_init_inode_metadata
2167		 *    - f2fs_new_inode_page
2168		 *     - f2fs_new_node_page
2169		 *      - set_node_addr
2170		 *  - f2fs_alloc_nid_done
2171		 *   - __remove_nid_from_list(PREALLOC_NID)
2172		 *                         - __insert_nid_to_list(FREE_NID)
2173		 */
2174		ne = __lookup_nat_cache(nm_i, nid);
2175		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2176				nat_get_blkaddr(ne) != NULL_ADDR))
2177			goto err_out;
2178
2179		e = __lookup_free_nid_list(nm_i, nid);
2180		if (e) {
2181			if (e->state == FREE_NID)
2182				ret = true;
2183			goto err_out;
2184		}
2185	}
2186	ret = true;
2187	err = __insert_free_nid(sbi, i, FREE_NID);
2188err_out:
2189	if (update) {
2190		update_free_nid_bitmap(sbi, nid, ret, build);
2191		if (!build)
2192			nm_i->available_nids++;
2193	}
2194	spin_unlock(&nm_i->nid_list_lock);
2195	radix_tree_preload_end();
2196
2197	if (err)
2198		kmem_cache_free(free_nid_slab, i);
2199	return ret;
2200}
2201
2202static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2203{
2204	struct f2fs_nm_info *nm_i = NM_I(sbi);
2205	struct free_nid *i;
2206	bool need_free = false;
2207
2208	spin_lock(&nm_i->nid_list_lock);
2209	i = __lookup_free_nid_list(nm_i, nid);
2210	if (i && i->state == FREE_NID) {
2211		__remove_free_nid(sbi, i, FREE_NID);
2212		need_free = true;
2213	}
2214	spin_unlock(&nm_i->nid_list_lock);
2215
2216	if (need_free)
2217		kmem_cache_free(free_nid_slab, i);
2218}
2219
2220static int scan_nat_page(struct f2fs_sb_info *sbi,
2221			struct page *nat_page, nid_t start_nid)
2222{
2223	struct f2fs_nm_info *nm_i = NM_I(sbi);
2224	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2225	block_t blk_addr;
2226	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2227	int i;
2228
2229	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2230
2231	i = start_nid % NAT_ENTRY_PER_BLOCK;
2232
2233	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2234		if (unlikely(start_nid >= nm_i->max_nid))
2235			break;
2236
2237		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2238
2239		if (blk_addr == NEW_ADDR)
2240			return -EINVAL;
2241
2242		if (blk_addr == NULL_ADDR) {
2243			add_free_nid(sbi, start_nid, true, true);
2244		} else {
2245			spin_lock(&NM_I(sbi)->nid_list_lock);
2246			update_free_nid_bitmap(sbi, start_nid, false, true);
2247			spin_unlock(&NM_I(sbi)->nid_list_lock);
2248		}
2249	}
2250
2251	return 0;
2252}
2253
2254static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2255{
2256	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2257	struct f2fs_journal *journal = curseg->journal;
2258	int i;
2259
2260	down_read(&curseg->journal_rwsem);
2261	for (i = 0; i < nats_in_cursum(journal); i++) {
2262		block_t addr;
2263		nid_t nid;
2264
2265		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2266		nid = le32_to_cpu(nid_in_journal(journal, i));
2267		if (addr == NULL_ADDR)
2268			add_free_nid(sbi, nid, true, false);
2269		else
2270			remove_free_nid(sbi, nid);
2271	}
2272	up_read(&curseg->journal_rwsem);
2273}
2274
2275static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2276{
2277	struct f2fs_nm_info *nm_i = NM_I(sbi);
2278	unsigned int i, idx;
2279	nid_t nid;
2280
2281	down_read(&nm_i->nat_tree_lock);
2282
2283	for (i = 0; i < nm_i->nat_blocks; i++) {
2284		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2285			continue;
2286		if (!nm_i->free_nid_count[i])
2287			continue;
2288		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2289			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2290						NAT_ENTRY_PER_BLOCK, idx);
2291			if (idx >= NAT_ENTRY_PER_BLOCK)
2292				break;
2293
2294			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2295			add_free_nid(sbi, nid, true, false);
2296
2297			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2298				goto out;
2299		}
2300	}
2301out:
2302	scan_curseg_cache(sbi);
2303
2304	up_read(&nm_i->nat_tree_lock);
2305}
2306
2307static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2308						bool sync, bool mount)
2309{
2310	struct f2fs_nm_info *nm_i = NM_I(sbi);
2311	int i = 0, ret;
2312	nid_t nid = nm_i->next_scan_nid;
2313
2314	if (unlikely(nid >= nm_i->max_nid))
2315		nid = 0;
2316
2317	/* Enough entries */
2318	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2319		return 0;
2320
2321	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2322		return 0;
2323
2324	if (!mount) {
2325		/* try to find free nids in free_nid_bitmap */
2326		scan_free_nid_bits(sbi);
2327
2328		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2329			return 0;
2330	}
2331
2332	/* readahead nat pages to be scanned */
2333	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2334							META_NAT, true);
2335
2336	down_read(&nm_i->nat_tree_lock);
2337
2338	while (1) {
2339		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2340						nm_i->nat_block_bitmap)) {
2341			struct page *page = get_current_nat_page(sbi, nid);
2342
2343			if (IS_ERR(page)) {
2344				ret = PTR_ERR(page);
2345			} else {
2346				ret = scan_nat_page(sbi, page, nid);
2347				f2fs_put_page(page, 1);
2348			}
2349
2350			if (ret) {
2351				up_read(&nm_i->nat_tree_lock);
2352				f2fs_bug_on(sbi, !mount);
2353				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2354				return ret;
2355			}
2356		}
2357
2358		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2359		if (unlikely(nid >= nm_i->max_nid))
2360			nid = 0;
2361
2362		if (++i >= FREE_NID_PAGES)
2363			break;
2364	}
2365
2366	/* go to the next free nat pages to find free nids abundantly */
2367	nm_i->next_scan_nid = nid;
2368
2369	/* find free nids from current sum_pages */
2370	scan_curseg_cache(sbi);
2371
2372	up_read(&nm_i->nat_tree_lock);
2373
2374	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2375					nm_i->ra_nid_pages, META_NAT, false);
2376
2377	return 0;
2378}
2379
2380int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2381{
2382	int ret;
2383
2384	mutex_lock(&NM_I(sbi)->build_lock);
2385	ret = __f2fs_build_free_nids(sbi, sync, mount);
2386	mutex_unlock(&NM_I(sbi)->build_lock);
2387
2388	return ret;
2389}
2390
2391/*
2392 * If this function returns success, caller can obtain a new nid
2393 * from second parameter of this function.
2394 * The returned nid could be used ino as well as nid when inode is created.
2395 */
2396bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2397{
2398	struct f2fs_nm_info *nm_i = NM_I(sbi);
2399	struct free_nid *i = NULL;
2400retry:
 
2401	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2402		f2fs_show_injection_info(FAULT_ALLOC_NID);
2403		return false;
2404	}
2405
2406	spin_lock(&nm_i->nid_list_lock);
2407
2408	if (unlikely(nm_i->available_nids == 0)) {
2409		spin_unlock(&nm_i->nid_list_lock);
2410		return false;
2411	}
2412
2413	/* We should not use stale free nids created by f2fs_build_free_nids */
2414	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2415		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2416		i = list_first_entry(&nm_i->free_nid_list,
2417					struct free_nid, list);
2418		*nid = i->nid;
2419
2420		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2421		nm_i->available_nids--;
2422
2423		update_free_nid_bitmap(sbi, *nid, false, false);
2424
2425		spin_unlock(&nm_i->nid_list_lock);
2426		return true;
2427	}
2428	spin_unlock(&nm_i->nid_list_lock);
2429
2430	/* Let's scan nat pages and its caches to get free nids */
2431	if (!f2fs_build_free_nids(sbi, true, false))
2432		goto retry;
2433	return false;
2434}
2435
2436/*
2437 * f2fs_alloc_nid() should be called prior to this function.
2438 */
2439void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2440{
2441	struct f2fs_nm_info *nm_i = NM_I(sbi);
2442	struct free_nid *i;
2443
2444	spin_lock(&nm_i->nid_list_lock);
2445	i = __lookup_free_nid_list(nm_i, nid);
2446	f2fs_bug_on(sbi, !i);
2447	__remove_free_nid(sbi, i, PREALLOC_NID);
2448	spin_unlock(&nm_i->nid_list_lock);
2449
2450	kmem_cache_free(free_nid_slab, i);
2451}
2452
2453/*
2454 * f2fs_alloc_nid() should be called prior to this function.
2455 */
2456void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2457{
2458	struct f2fs_nm_info *nm_i = NM_I(sbi);
2459	struct free_nid *i;
2460	bool need_free = false;
2461
2462	if (!nid)
2463		return;
2464
2465	spin_lock(&nm_i->nid_list_lock);
2466	i = __lookup_free_nid_list(nm_i, nid);
2467	f2fs_bug_on(sbi, !i);
2468
2469	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2470		__remove_free_nid(sbi, i, PREALLOC_NID);
2471		need_free = true;
2472	} else {
2473		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2474	}
2475
2476	nm_i->available_nids++;
2477
2478	update_free_nid_bitmap(sbi, nid, true, false);
2479
2480	spin_unlock(&nm_i->nid_list_lock);
2481
2482	if (need_free)
2483		kmem_cache_free(free_nid_slab, i);
2484}
2485
2486int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2487{
2488	struct f2fs_nm_info *nm_i = NM_I(sbi);
2489	struct free_nid *i, *next;
2490	int nr = nr_shrink;
2491
2492	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2493		return 0;
2494
2495	if (!mutex_trylock(&nm_i->build_lock))
2496		return 0;
2497
2498	spin_lock(&nm_i->nid_list_lock);
2499	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2500		if (nr_shrink <= 0 ||
2501				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2502			break;
2503
2504		__remove_free_nid(sbi, i, FREE_NID);
2505		kmem_cache_free(free_nid_slab, i);
2506		nr_shrink--;
2507	}
2508	spin_unlock(&nm_i->nid_list_lock);
2509	mutex_unlock(&nm_i->build_lock);
2510
2511	return nr - nr_shrink;
2512}
2513
2514void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2515{
2516	void *src_addr, *dst_addr;
2517	size_t inline_size;
2518	struct page *ipage;
2519	struct f2fs_inode *ri;
2520
2521	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2522	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2523
2524	ri = F2FS_INODE(page);
2525	if (ri->i_inline & F2FS_INLINE_XATTR) {
2526		set_inode_flag(inode, FI_INLINE_XATTR);
2527	} else {
2528		clear_inode_flag(inode, FI_INLINE_XATTR);
2529		goto update_inode;
2530	}
2531
2532	dst_addr = inline_xattr_addr(inode, ipage);
2533	src_addr = inline_xattr_addr(inode, page);
2534	inline_size = inline_xattr_size(inode);
2535
2536	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2537	memcpy(dst_addr, src_addr, inline_size);
2538update_inode:
2539	f2fs_update_inode(inode, ipage);
2540	f2fs_put_page(ipage, 1);
2541}
2542
2543int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2544{
2545	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2546	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2547	nid_t new_xnid;
2548	struct dnode_of_data dn;
2549	struct node_info ni;
2550	struct page *xpage;
2551	int err;
2552
2553	if (!prev_xnid)
2554		goto recover_xnid;
2555
2556	/* 1: invalidate the previous xattr nid */
2557	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2558	if (err)
2559		return err;
2560
2561	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2562	dec_valid_node_count(sbi, inode, false);
2563	set_node_addr(sbi, &ni, NULL_ADDR, false);
2564
2565recover_xnid:
2566	/* 2: update xattr nid in inode */
2567	if (!f2fs_alloc_nid(sbi, &new_xnid))
2568		return -ENOSPC;
2569
2570	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2571	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2572	if (IS_ERR(xpage)) {
2573		f2fs_alloc_nid_failed(sbi, new_xnid);
2574		return PTR_ERR(xpage);
2575	}
2576
2577	f2fs_alloc_nid_done(sbi, new_xnid);
2578	f2fs_update_inode_page(inode);
2579
2580	/* 3: update and set xattr node page dirty */
2581	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2582
2583	set_page_dirty(xpage);
2584	f2fs_put_page(xpage, 1);
2585
2586	return 0;
2587}
2588
2589int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2590{
2591	struct f2fs_inode *src, *dst;
2592	nid_t ino = ino_of_node(page);
2593	struct node_info old_ni, new_ni;
2594	struct page *ipage;
2595	int err;
2596
2597	err = f2fs_get_node_info(sbi, ino, &old_ni);
2598	if (err)
2599		return err;
2600
2601	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2602		return -EINVAL;
2603retry:
2604	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2605	if (!ipage) {
2606		congestion_wait(BLK_RW_ASYNC, HZ/50);
2607		goto retry;
2608	}
2609
2610	/* Should not use this inode from free nid list */
2611	remove_free_nid(sbi, ino);
2612
2613	if (!PageUptodate(ipage))
2614		SetPageUptodate(ipage);
2615	fill_node_footer(ipage, ino, ino, 0, true);
2616	set_cold_node(ipage, false);
2617
2618	src = F2FS_INODE(page);
2619	dst = F2FS_INODE(ipage);
2620
2621	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2622	dst->i_size = 0;
2623	dst->i_blocks = cpu_to_le64(1);
2624	dst->i_links = cpu_to_le32(1);
2625	dst->i_xattr_nid = 0;
2626	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2627	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2628		dst->i_extra_isize = src->i_extra_isize;
2629
2630		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2631			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2632							i_inline_xattr_size))
2633			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2634
2635		if (f2fs_sb_has_project_quota(sbi) &&
2636			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2637								i_projid))
2638			dst->i_projid = src->i_projid;
2639
2640		if (f2fs_sb_has_inode_crtime(sbi) &&
2641			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2642							i_crtime_nsec)) {
2643			dst->i_crtime = src->i_crtime;
2644			dst->i_crtime_nsec = src->i_crtime_nsec;
2645		}
2646	}
2647
2648	new_ni = old_ni;
2649	new_ni.ino = ino;
2650
2651	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2652		WARN_ON(1);
2653	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2654	inc_valid_inode_count(sbi);
2655	set_page_dirty(ipage);
2656	f2fs_put_page(ipage, 1);
2657	return 0;
2658}
2659
2660int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2661			unsigned int segno, struct f2fs_summary_block *sum)
2662{
2663	struct f2fs_node *rn;
2664	struct f2fs_summary *sum_entry;
2665	block_t addr;
2666	int i, idx, last_offset, nrpages;
2667
2668	/* scan the node segment */
2669	last_offset = sbi->blocks_per_seg;
2670	addr = START_BLOCK(sbi, segno);
2671	sum_entry = &sum->entries[0];
2672
2673	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2674		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2675
2676		/* readahead node pages */
2677		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2678
2679		for (idx = addr; idx < addr + nrpages; idx++) {
2680			struct page *page = f2fs_get_tmp_page(sbi, idx);
2681
2682			if (IS_ERR(page))
2683				return PTR_ERR(page);
2684
2685			rn = F2FS_NODE(page);
2686			sum_entry->nid = rn->footer.nid;
2687			sum_entry->version = 0;
2688			sum_entry->ofs_in_node = 0;
2689			sum_entry++;
2690			f2fs_put_page(page, 1);
2691		}
2692
2693		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2694							addr + nrpages);
2695	}
2696	return 0;
2697}
2698
2699static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2700{
2701	struct f2fs_nm_info *nm_i = NM_I(sbi);
2702	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2703	struct f2fs_journal *journal = curseg->journal;
2704	int i;
2705
2706	down_write(&curseg->journal_rwsem);
2707	for (i = 0; i < nats_in_cursum(journal); i++) {
2708		struct nat_entry *ne;
2709		struct f2fs_nat_entry raw_ne;
2710		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2711
2712		raw_ne = nat_in_journal(journal, i);
2713
2714		ne = __lookup_nat_cache(nm_i, nid);
2715		if (!ne) {
2716			ne = __alloc_nat_entry(nid, true);
2717			__init_nat_entry(nm_i, ne, &raw_ne, true);
2718		}
2719
2720		/*
2721		 * if a free nat in journal has not been used after last
2722		 * checkpoint, we should remove it from available nids,
2723		 * since later we will add it again.
2724		 */
2725		if (!get_nat_flag(ne, IS_DIRTY) &&
2726				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2727			spin_lock(&nm_i->nid_list_lock);
2728			nm_i->available_nids--;
2729			spin_unlock(&nm_i->nid_list_lock);
2730		}
2731
2732		__set_nat_cache_dirty(nm_i, ne);
2733	}
2734	update_nats_in_cursum(journal, -i);
2735	up_write(&curseg->journal_rwsem);
2736}
2737
2738static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2739						struct list_head *head, int max)
2740{
2741	struct nat_entry_set *cur;
2742
2743	if (nes->entry_cnt >= max)
2744		goto add_out;
2745
2746	list_for_each_entry(cur, head, set_list) {
2747		if (cur->entry_cnt >= nes->entry_cnt) {
2748			list_add(&nes->set_list, cur->set_list.prev);
2749			return;
2750		}
2751	}
2752add_out:
2753	list_add_tail(&nes->set_list, head);
2754}
2755
2756static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2757						struct page *page)
2758{
2759	struct f2fs_nm_info *nm_i = NM_I(sbi);
2760	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2761	struct f2fs_nat_block *nat_blk = page_address(page);
2762	int valid = 0;
2763	int i = 0;
2764
2765	if (!enabled_nat_bits(sbi, NULL))
2766		return;
2767
2768	if (nat_index == 0) {
2769		valid = 1;
2770		i = 1;
2771	}
2772	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2773		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2774			valid++;
2775	}
2776	if (valid == 0) {
2777		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2778		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2779		return;
2780	}
2781
2782	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2783	if (valid == NAT_ENTRY_PER_BLOCK)
2784		__set_bit_le(nat_index, nm_i->full_nat_bits);
2785	else
2786		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2787}
2788
2789static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2790		struct nat_entry_set *set, struct cp_control *cpc)
2791{
2792	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2793	struct f2fs_journal *journal = curseg->journal;
2794	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2795	bool to_journal = true;
2796	struct f2fs_nat_block *nat_blk;
2797	struct nat_entry *ne, *cur;
2798	struct page *page = NULL;
2799
2800	/*
2801	 * there are two steps to flush nat entries:
2802	 * #1, flush nat entries to journal in current hot data summary block.
2803	 * #2, flush nat entries to nat page.
2804	 */
2805	if (enabled_nat_bits(sbi, cpc) ||
2806		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2807		to_journal = false;
2808
2809	if (to_journal) {
2810		down_write(&curseg->journal_rwsem);
2811	} else {
2812		page = get_next_nat_page(sbi, start_nid);
2813		if (IS_ERR(page))
2814			return PTR_ERR(page);
2815
2816		nat_blk = page_address(page);
2817		f2fs_bug_on(sbi, !nat_blk);
2818	}
2819
2820	/* flush dirty nats in nat entry set */
2821	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2822		struct f2fs_nat_entry *raw_ne;
2823		nid_t nid = nat_get_nid(ne);
2824		int offset;
2825
2826		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2827
2828		if (to_journal) {
2829			offset = f2fs_lookup_journal_in_cursum(journal,
2830							NAT_JOURNAL, nid, 1);
2831			f2fs_bug_on(sbi, offset < 0);
2832			raw_ne = &nat_in_journal(journal, offset);
2833			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2834		} else {
2835			raw_ne = &nat_blk->entries[nid - start_nid];
2836		}
2837		raw_nat_from_node_info(raw_ne, &ne->ni);
2838		nat_reset_flag(ne);
2839		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2840		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2841			add_free_nid(sbi, nid, false, true);
2842		} else {
2843			spin_lock(&NM_I(sbi)->nid_list_lock);
2844			update_free_nid_bitmap(sbi, nid, false, false);
2845			spin_unlock(&NM_I(sbi)->nid_list_lock);
2846		}
2847	}
2848
2849	if (to_journal) {
2850		up_write(&curseg->journal_rwsem);
2851	} else {
2852		__update_nat_bits(sbi, start_nid, page);
2853		f2fs_put_page(page, 1);
2854	}
2855
2856	/* Allow dirty nats by node block allocation in write_begin */
2857	if (!set->entry_cnt) {
2858		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2859		kmem_cache_free(nat_entry_set_slab, set);
2860	}
2861	return 0;
2862}
2863
2864/*
2865 * This function is called during the checkpointing process.
2866 */
2867int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2868{
2869	struct f2fs_nm_info *nm_i = NM_I(sbi);
2870	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2871	struct f2fs_journal *journal = curseg->journal;
2872	struct nat_entry_set *setvec[SETVEC_SIZE];
2873	struct nat_entry_set *set, *tmp;
2874	unsigned int found;
2875	nid_t set_idx = 0;
2876	LIST_HEAD(sets);
2877	int err = 0;
2878
2879	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2880	if (enabled_nat_bits(sbi, cpc)) {
2881		down_write(&nm_i->nat_tree_lock);
2882		remove_nats_in_journal(sbi);
2883		up_write(&nm_i->nat_tree_lock);
2884	}
2885
2886	if (!nm_i->dirty_nat_cnt)
2887		return 0;
2888
2889	down_write(&nm_i->nat_tree_lock);
2890
2891	/*
2892	 * if there are no enough space in journal to store dirty nat
2893	 * entries, remove all entries from journal and merge them
2894	 * into nat entry set.
2895	 */
2896	if (enabled_nat_bits(sbi, cpc) ||
2897		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2898		remove_nats_in_journal(sbi);
2899
2900	while ((found = __gang_lookup_nat_set(nm_i,
2901					set_idx, SETVEC_SIZE, setvec))) {
2902		unsigned idx;
2903		set_idx = setvec[found - 1]->set + 1;
2904		for (idx = 0; idx < found; idx++)
2905			__adjust_nat_entry_set(setvec[idx], &sets,
2906						MAX_NAT_JENTRIES(journal));
2907	}
2908
2909	/* flush dirty nats in nat entry set */
2910	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2911		err = __flush_nat_entry_set(sbi, set, cpc);
2912		if (err)
2913			break;
2914	}
2915
2916	up_write(&nm_i->nat_tree_lock);
2917	/* Allow dirty nats by node block allocation in write_begin */
2918
2919	return err;
2920}
2921
2922static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2923{
2924	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2925	struct f2fs_nm_info *nm_i = NM_I(sbi);
2926	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2927	unsigned int i;
2928	__u64 cp_ver = cur_cp_version(ckpt);
2929	block_t nat_bits_addr;
2930
2931	if (!enabled_nat_bits(sbi, NULL))
2932		return 0;
2933
2934	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2935	nm_i->nat_bits = f2fs_kzalloc(sbi,
2936			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2937	if (!nm_i->nat_bits)
2938		return -ENOMEM;
2939
2940	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2941						nm_i->nat_bits_blocks;
2942	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2943		struct page *page;
2944
2945		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2946		if (IS_ERR(page))
2947			return PTR_ERR(page);
2948
2949		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2950					page_address(page), F2FS_BLKSIZE);
2951		f2fs_put_page(page, 1);
2952	}
2953
2954	cp_ver |= (cur_cp_crc(ckpt) << 32);
2955	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2956		disable_nat_bits(sbi, true);
2957		return 0;
2958	}
2959
2960	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2961	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2962
2963	f2fs_notice(sbi, "Found nat_bits in checkpoint");
2964	return 0;
2965}
2966
2967static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2968{
2969	struct f2fs_nm_info *nm_i = NM_I(sbi);
2970	unsigned int i = 0;
2971	nid_t nid, last_nid;
2972
2973	if (!enabled_nat_bits(sbi, NULL))
2974		return;
2975
2976	for (i = 0; i < nm_i->nat_blocks; i++) {
2977		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2978		if (i >= nm_i->nat_blocks)
2979			break;
2980
2981		__set_bit_le(i, nm_i->nat_block_bitmap);
2982
2983		nid = i * NAT_ENTRY_PER_BLOCK;
2984		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2985
2986		spin_lock(&NM_I(sbi)->nid_list_lock);
2987		for (; nid < last_nid; nid++)
2988			update_free_nid_bitmap(sbi, nid, true, true);
2989		spin_unlock(&NM_I(sbi)->nid_list_lock);
2990	}
2991
2992	for (i = 0; i < nm_i->nat_blocks; i++) {
2993		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2994		if (i >= nm_i->nat_blocks)
2995			break;
2996
2997		__set_bit_le(i, nm_i->nat_block_bitmap);
2998	}
2999}
3000
3001static int init_node_manager(struct f2fs_sb_info *sbi)
3002{
3003	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3004	struct f2fs_nm_info *nm_i = NM_I(sbi);
3005	unsigned char *version_bitmap;
3006	unsigned int nat_segs;
3007	int err;
3008
3009	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3010
3011	/* segment_count_nat includes pair segment so divide to 2. */
3012	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3013	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3014	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3015
3016	/* not used nids: 0, node, meta, (and root counted as valid node) */
3017	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3018						F2FS_RESERVED_NODE_NUM;
3019	nm_i->nid_cnt[FREE_NID] = 0;
3020	nm_i->nid_cnt[PREALLOC_NID] = 0;
3021	nm_i->nat_cnt = 0;
3022	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3023	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3024	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3025
3026	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3027	INIT_LIST_HEAD(&nm_i->free_nid_list);
3028	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3029	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3030	INIT_LIST_HEAD(&nm_i->nat_entries);
3031	spin_lock_init(&nm_i->nat_list_lock);
3032
3033	mutex_init(&nm_i->build_lock);
3034	spin_lock_init(&nm_i->nid_list_lock);
3035	init_rwsem(&nm_i->nat_tree_lock);
3036
3037	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3038	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3039	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3040	if (!version_bitmap)
3041		return -EFAULT;
3042
3043	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3044					GFP_KERNEL);
3045	if (!nm_i->nat_bitmap)
3046		return -ENOMEM;
3047
3048	err = __get_nat_bitmaps(sbi);
3049	if (err)
3050		return err;
3051
3052#ifdef CONFIG_F2FS_CHECK_FS
3053	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3054					GFP_KERNEL);
3055	if (!nm_i->nat_bitmap_mir)
3056		return -ENOMEM;
3057#endif
3058
3059	return 0;
3060}
3061
3062static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3063{
3064	struct f2fs_nm_info *nm_i = NM_I(sbi);
3065	int i;
3066
3067	nm_i->free_nid_bitmap =
3068		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3069					     nm_i->nat_blocks),
3070			     GFP_KERNEL);
3071	if (!nm_i->free_nid_bitmap)
3072		return -ENOMEM;
3073
3074	for (i = 0; i < nm_i->nat_blocks; i++) {
3075		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3076			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3077		if (!nm_i->free_nid_bitmap[i])
3078			return -ENOMEM;
3079	}
3080
3081	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3082								GFP_KERNEL);
3083	if (!nm_i->nat_block_bitmap)
3084		return -ENOMEM;
3085
3086	nm_i->free_nid_count =
3087		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3088					      nm_i->nat_blocks),
3089			      GFP_KERNEL);
3090	if (!nm_i->free_nid_count)
3091		return -ENOMEM;
3092	return 0;
3093}
3094
3095int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3096{
3097	int err;
3098
3099	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3100							GFP_KERNEL);
3101	if (!sbi->nm_info)
3102		return -ENOMEM;
3103
3104	err = init_node_manager(sbi);
3105	if (err)
3106		return err;
3107
3108	err = init_free_nid_cache(sbi);
3109	if (err)
3110		return err;
3111
3112	/* load free nid status from nat_bits table */
3113	load_free_nid_bitmap(sbi);
3114
3115	return f2fs_build_free_nids(sbi, true, true);
 
3116}
3117
3118void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3119{
3120	struct f2fs_nm_info *nm_i = NM_I(sbi);
3121	struct free_nid *i, *next_i;
3122	struct nat_entry *natvec[NATVEC_SIZE];
3123	struct nat_entry_set *setvec[SETVEC_SIZE];
3124	nid_t nid = 0;
3125	unsigned int found;
3126
3127	if (!nm_i)
3128		return;
3129
3130	/* destroy free nid list */
3131	spin_lock(&nm_i->nid_list_lock);
3132	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3133		__remove_free_nid(sbi, i, FREE_NID);
3134		spin_unlock(&nm_i->nid_list_lock);
3135		kmem_cache_free(free_nid_slab, i);
3136		spin_lock(&nm_i->nid_list_lock);
3137	}
3138	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3139	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3140	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3141	spin_unlock(&nm_i->nid_list_lock);
3142
3143	/* destroy nat cache */
3144	down_write(&nm_i->nat_tree_lock);
3145	while ((found = __gang_lookup_nat_cache(nm_i,
3146					nid, NATVEC_SIZE, natvec))) {
3147		unsigned idx;
3148
3149		nid = nat_get_nid(natvec[found - 1]) + 1;
3150		for (idx = 0; idx < found; idx++) {
3151			spin_lock(&nm_i->nat_list_lock);
3152			list_del(&natvec[idx]->list);
3153			spin_unlock(&nm_i->nat_list_lock);
3154
3155			__del_from_nat_cache(nm_i, natvec[idx]);
3156		}
3157	}
3158	f2fs_bug_on(sbi, nm_i->nat_cnt);
3159
3160	/* destroy nat set cache */
3161	nid = 0;
3162	while ((found = __gang_lookup_nat_set(nm_i,
3163					nid, SETVEC_SIZE, setvec))) {
3164		unsigned idx;
3165
3166		nid = setvec[found - 1]->set + 1;
3167		for (idx = 0; idx < found; idx++) {
3168			/* entry_cnt is not zero, when cp_error was occurred */
3169			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3170			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3171			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3172		}
3173	}
3174	up_write(&nm_i->nat_tree_lock);
3175
3176	kvfree(nm_i->nat_block_bitmap);
3177	if (nm_i->free_nid_bitmap) {
3178		int i;
3179
3180		for (i = 0; i < nm_i->nat_blocks; i++)
3181			kvfree(nm_i->free_nid_bitmap[i]);
3182		kvfree(nm_i->free_nid_bitmap);
3183	}
3184	kvfree(nm_i->free_nid_count);
3185
3186	kvfree(nm_i->nat_bitmap);
3187	kvfree(nm_i->nat_bits);
3188#ifdef CONFIG_F2FS_CHECK_FS
3189	kvfree(nm_i->nat_bitmap_mir);
3190#endif
3191	sbi->nm_info = NULL;
3192	kvfree(nm_i);
3193}
3194
3195int __init f2fs_create_node_manager_caches(void)
3196{
3197	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3198			sizeof(struct nat_entry));
3199	if (!nat_entry_slab)
3200		goto fail;
3201
3202	free_nid_slab = f2fs_kmem_cache_create("free_nid",
3203			sizeof(struct free_nid));
3204	if (!free_nid_slab)
3205		goto destroy_nat_entry;
3206
3207	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3208			sizeof(struct nat_entry_set));
3209	if (!nat_entry_set_slab)
3210		goto destroy_free_nid;
3211
3212	fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3213			sizeof(struct fsync_node_entry));
3214	if (!fsync_node_entry_slab)
3215		goto destroy_nat_entry_set;
3216	return 0;
3217
3218destroy_nat_entry_set:
3219	kmem_cache_destroy(nat_entry_set_slab);
3220destroy_free_nid:
3221	kmem_cache_destroy(free_nid_slab);
3222destroy_nat_entry:
3223	kmem_cache_destroy(nat_entry_slab);
3224fail:
3225	return -ENOMEM;
3226}
3227
3228void f2fs_destroy_node_manager_caches(void)
3229{
3230	kmem_cache_destroy(fsync_node_entry_slab);
3231	kmem_cache_destroy(nat_entry_set_slab);
3232	kmem_cache_destroy(free_nid_slab);
3233	kmem_cache_destroy(nat_entry_slab);
3234}
v4.17
 
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "xattr.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  27
  28static struct kmem_cache *nat_entry_slab;
  29static struct kmem_cache *free_nid_slab;
  30static struct kmem_cache *nat_entry_set_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31
  32bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  33{
  34	struct f2fs_nm_info *nm_i = NM_I(sbi);
  35	struct sysinfo val;
  36	unsigned long avail_ram;
  37	unsigned long mem_size = 0;
  38	bool res = false;
  39
  40	si_meminfo(&val);
  41
  42	/* only uses low memory */
  43	avail_ram = val.totalram - val.totalhigh;
  44
  45	/*
  46	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  47	 */
  48	if (type == FREE_NIDS) {
  49		mem_size = (nm_i->nid_cnt[FREE_NID] *
  50				sizeof(struct free_nid)) >> PAGE_SHIFT;
  51		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  52	} else if (type == NAT_ENTRIES) {
  53		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  54							PAGE_SHIFT;
  55		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  56		if (excess_cached_nats(sbi))
  57			res = false;
  58	} else if (type == DIRTY_DENTS) {
  59		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  60			return false;
  61		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  62		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  63	} else if (type == INO_ENTRIES) {
  64		int i;
  65
  66		for (i = 0; i < MAX_INO_ENTRY; i++)
  67			mem_size += sbi->im[i].ino_num *
  68						sizeof(struct ino_entry);
  69		mem_size >>= PAGE_SHIFT;
  70		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  71	} else if (type == EXTENT_CACHE) {
  72		mem_size = (atomic_read(&sbi->total_ext_tree) *
  73				sizeof(struct extent_tree) +
  74				atomic_read(&sbi->total_ext_node) *
  75				sizeof(struct extent_node)) >> PAGE_SHIFT;
  76		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  77	} else if (type == INMEM_PAGES) {
  78		/* it allows 20% / total_ram for inmemory pages */
  79		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  80		res = mem_size < (val.totalram / 5);
  81	} else {
  82		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  83			return true;
  84	}
  85	return res;
  86}
  87
  88static void clear_node_page_dirty(struct page *page)
  89{
  90	struct address_space *mapping = page->mapping;
  91	unsigned int long flags;
  92
  93	if (PageDirty(page)) {
  94		xa_lock_irqsave(&mapping->i_pages, flags);
  95		radix_tree_tag_clear(&mapping->i_pages,
  96				page_index(page),
  97				PAGECACHE_TAG_DIRTY);
  98		xa_unlock_irqrestore(&mapping->i_pages, flags);
  99
 100		clear_page_dirty_for_io(page);
 101		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
 102	}
 103	ClearPageUptodate(page);
 104}
 105
 106static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 107{
 108	pgoff_t index = current_nat_addr(sbi, nid);
 109	return get_meta_page(sbi, index);
 110}
 111
 112static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 113{
 114	struct page *src_page;
 115	struct page *dst_page;
 116	pgoff_t src_off;
 117	pgoff_t dst_off;
 118	void *src_addr;
 119	void *dst_addr;
 120	struct f2fs_nm_info *nm_i = NM_I(sbi);
 121
 122	src_off = current_nat_addr(sbi, nid);
 123	dst_off = next_nat_addr(sbi, src_off);
 124
 125	/* get current nat block page with lock */
 126	src_page = get_meta_page(sbi, src_off);
 127	dst_page = grab_meta_page(sbi, dst_off);
 
 
 128	f2fs_bug_on(sbi, PageDirty(src_page));
 129
 130	src_addr = page_address(src_page);
 131	dst_addr = page_address(dst_page);
 132	memcpy(dst_addr, src_addr, PAGE_SIZE);
 133	set_page_dirty(dst_page);
 134	f2fs_put_page(src_page, 1);
 135
 136	set_to_next_nat(nm_i, nid);
 137
 138	return dst_page;
 139}
 140
 141static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 142{
 143	struct nat_entry *new;
 144
 145	if (no_fail)
 146		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 147	else
 148		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 149	if (new) {
 150		nat_set_nid(new, nid);
 151		nat_reset_flag(new);
 152	}
 153	return new;
 154}
 155
 156static void __free_nat_entry(struct nat_entry *e)
 157{
 158	kmem_cache_free(nat_entry_slab, e);
 159}
 160
 161/* must be locked by nat_tree_lock */
 162static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 163	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 164{
 165	if (no_fail)
 166		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 167	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 168		return NULL;
 169
 170	if (raw_ne)
 171		node_info_from_raw_nat(&ne->ni, raw_ne);
 
 
 172	list_add_tail(&ne->list, &nm_i->nat_entries);
 
 
 173	nm_i->nat_cnt++;
 174	return ne;
 175}
 176
 177static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 178{
 179	return radix_tree_lookup(&nm_i->nat_root, n);
 
 
 
 
 
 
 
 
 
 
 
 
 180}
 181
 182static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 183		nid_t start, unsigned int nr, struct nat_entry **ep)
 184{
 185	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 186}
 187
 188static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 189{
 190	list_del(&e->list);
 191	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 192	nm_i->nat_cnt--;
 193	__free_nat_entry(e);
 194}
 195
 196static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 197							struct nat_entry *ne)
 198{
 199	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 200	struct nat_entry_set *head;
 201
 202	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 203	if (!head) {
 204		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 205
 206		INIT_LIST_HEAD(&head->entry_list);
 207		INIT_LIST_HEAD(&head->set_list);
 208		head->set = set;
 209		head->entry_cnt = 0;
 210		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 211	}
 212	return head;
 213}
 214
 215static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 216						struct nat_entry *ne)
 217{
 218	struct nat_entry_set *head;
 219	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 220
 221	if (!new_ne)
 222		head = __grab_nat_entry_set(nm_i, ne);
 223
 224	/*
 225	 * update entry_cnt in below condition:
 226	 * 1. update NEW_ADDR to valid block address;
 227	 * 2. update old block address to new one;
 228	 */
 229	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 230				!get_nat_flag(ne, IS_DIRTY)))
 231		head->entry_cnt++;
 232
 233	set_nat_flag(ne, IS_PREALLOC, new_ne);
 234
 235	if (get_nat_flag(ne, IS_DIRTY))
 236		goto refresh_list;
 237
 238	nm_i->dirty_nat_cnt++;
 239	set_nat_flag(ne, IS_DIRTY, true);
 240refresh_list:
 
 241	if (new_ne)
 242		list_del_init(&ne->list);
 243	else
 244		list_move_tail(&ne->list, &head->entry_list);
 
 245}
 246
 247static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 248		struct nat_entry_set *set, struct nat_entry *ne)
 249{
 
 250	list_move_tail(&ne->list, &nm_i->nat_entries);
 
 
 251	set_nat_flag(ne, IS_DIRTY, false);
 252	set->entry_cnt--;
 253	nm_i->dirty_nat_cnt--;
 254}
 255
 256static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 257		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 258{
 259	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 260							start, nr);
 261}
 262
 263int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264{
 265	struct f2fs_nm_info *nm_i = NM_I(sbi);
 266	struct nat_entry *e;
 267	bool need = false;
 268
 269	down_read(&nm_i->nat_tree_lock);
 270	e = __lookup_nat_cache(nm_i, nid);
 271	if (e) {
 272		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 273				!get_nat_flag(e, HAS_FSYNCED_INODE))
 274			need = true;
 275	}
 276	up_read(&nm_i->nat_tree_lock);
 277	return need;
 278}
 279
 280bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 281{
 282	struct f2fs_nm_info *nm_i = NM_I(sbi);
 283	struct nat_entry *e;
 284	bool is_cp = true;
 285
 286	down_read(&nm_i->nat_tree_lock);
 287	e = __lookup_nat_cache(nm_i, nid);
 288	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 289		is_cp = false;
 290	up_read(&nm_i->nat_tree_lock);
 291	return is_cp;
 292}
 293
 294bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 295{
 296	struct f2fs_nm_info *nm_i = NM_I(sbi);
 297	struct nat_entry *e;
 298	bool need_update = true;
 299
 300	down_read(&nm_i->nat_tree_lock);
 301	e = __lookup_nat_cache(nm_i, ino);
 302	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 303			(get_nat_flag(e, IS_CHECKPOINTED) ||
 304			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 305		need_update = false;
 306	up_read(&nm_i->nat_tree_lock);
 307	return need_update;
 308}
 309
 310/* must be locked by nat_tree_lock */
 311static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 312						struct f2fs_nat_entry *ne)
 313{
 314	struct f2fs_nm_info *nm_i = NM_I(sbi);
 315	struct nat_entry *new, *e;
 316
 317	new = __alloc_nat_entry(nid, false);
 318	if (!new)
 319		return;
 320
 321	down_write(&nm_i->nat_tree_lock);
 322	e = __lookup_nat_cache(nm_i, nid);
 323	if (!e)
 324		e = __init_nat_entry(nm_i, new, ne, false);
 325	else
 326		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 327				nat_get_blkaddr(e) !=
 328					le32_to_cpu(ne->block_addr) ||
 329				nat_get_version(e) != ne->version);
 330	up_write(&nm_i->nat_tree_lock);
 331	if (e != new)
 332		__free_nat_entry(new);
 333}
 334
 335static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 336			block_t new_blkaddr, bool fsync_done)
 337{
 338	struct f2fs_nm_info *nm_i = NM_I(sbi);
 339	struct nat_entry *e;
 340	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 341
 342	down_write(&nm_i->nat_tree_lock);
 343	e = __lookup_nat_cache(nm_i, ni->nid);
 344	if (!e) {
 345		e = __init_nat_entry(nm_i, new, NULL, true);
 346		copy_node_info(&e->ni, ni);
 347		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 348	} else if (new_blkaddr == NEW_ADDR) {
 349		/*
 350		 * when nid is reallocated,
 351		 * previous nat entry can be remained in nat cache.
 352		 * So, reinitialize it with new information.
 353		 */
 354		copy_node_info(&e->ni, ni);
 355		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 356	}
 357	/* let's free early to reduce memory consumption */
 358	if (e != new)
 359		__free_nat_entry(new);
 360
 361	/* sanity check */
 362	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 363	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 364			new_blkaddr == NULL_ADDR);
 365	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 366			new_blkaddr == NEW_ADDR);
 367	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 368			nat_get_blkaddr(e) != NULL_ADDR &&
 369			new_blkaddr == NEW_ADDR);
 370
 371	/* increment version no as node is removed */
 372	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 373		unsigned char version = nat_get_version(e);
 374		nat_set_version(e, inc_node_version(version));
 375	}
 376
 377	/* change address */
 378	nat_set_blkaddr(e, new_blkaddr);
 379	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 380		set_nat_flag(e, IS_CHECKPOINTED, false);
 381	__set_nat_cache_dirty(nm_i, e);
 382
 383	/* update fsync_mark if its inode nat entry is still alive */
 384	if (ni->nid != ni->ino)
 385		e = __lookup_nat_cache(nm_i, ni->ino);
 386	if (e) {
 387		if (fsync_done && ni->nid == ni->ino)
 388			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 389		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 390	}
 391	up_write(&nm_i->nat_tree_lock);
 392}
 393
 394int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 395{
 396	struct f2fs_nm_info *nm_i = NM_I(sbi);
 397	int nr = nr_shrink;
 398
 399	if (!down_write_trylock(&nm_i->nat_tree_lock))
 400		return 0;
 401
 402	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 
 403		struct nat_entry *ne;
 
 
 
 
 404		ne = list_first_entry(&nm_i->nat_entries,
 405					struct nat_entry, list);
 
 
 
 406		__del_from_nat_cache(nm_i, ne);
 407		nr_shrink--;
 
 
 408	}
 
 
 409	up_write(&nm_i->nat_tree_lock);
 410	return nr - nr_shrink;
 411}
 412
 413/*
 414 * This function always returns success
 415 */
 416void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 
 417{
 418	struct f2fs_nm_info *nm_i = NM_I(sbi);
 419	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 420	struct f2fs_journal *journal = curseg->journal;
 421	nid_t start_nid = START_NID(nid);
 422	struct f2fs_nat_block *nat_blk;
 423	struct page *page = NULL;
 424	struct f2fs_nat_entry ne;
 425	struct nat_entry *e;
 426	pgoff_t index;
 
 427	int i;
 428
 429	ni->nid = nid;
 430
 431	/* Check nat cache */
 432	down_read(&nm_i->nat_tree_lock);
 433	e = __lookup_nat_cache(nm_i, nid);
 434	if (e) {
 435		ni->ino = nat_get_ino(e);
 436		ni->blk_addr = nat_get_blkaddr(e);
 437		ni->version = nat_get_version(e);
 438		up_read(&nm_i->nat_tree_lock);
 439		return;
 440	}
 441
 442	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 443
 444	/* Check current segment summary */
 445	down_read(&curseg->journal_rwsem);
 446	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 447	if (i >= 0) {
 448		ne = nat_in_journal(journal, i);
 449		node_info_from_raw_nat(ni, &ne);
 450	}
 451	up_read(&curseg->journal_rwsem);
 452	if (i >= 0) {
 453		up_read(&nm_i->nat_tree_lock);
 454		goto cache;
 455	}
 456
 457	/* Fill node_info from nat page */
 458	index = current_nat_addr(sbi, nid);
 459	up_read(&nm_i->nat_tree_lock);
 460
 461	page = get_meta_page(sbi, index);
 
 
 
 462	nat_blk = (struct f2fs_nat_block *)page_address(page);
 463	ne = nat_blk->entries[nid - start_nid];
 464	node_info_from_raw_nat(ni, &ne);
 465	f2fs_put_page(page, 1);
 466cache:
 
 
 
 
 
 467	/* cache nat entry */
 468	cache_nat_entry(sbi, nid, &ne);
 
 469}
 470
 471/*
 472 * readahead MAX_RA_NODE number of node pages.
 473 */
 474static void ra_node_pages(struct page *parent, int start, int n)
 475{
 476	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 477	struct blk_plug plug;
 478	int i, end;
 479	nid_t nid;
 480
 481	blk_start_plug(&plug);
 482
 483	/* Then, try readahead for siblings of the desired node */
 484	end = start + n;
 485	end = min(end, NIDS_PER_BLOCK);
 486	for (i = start; i < end; i++) {
 487		nid = get_nid(parent, i, false);
 488		ra_node_page(sbi, nid);
 489	}
 490
 491	blk_finish_plug(&plug);
 492}
 493
 494pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 495{
 496	const long direct_index = ADDRS_PER_INODE(dn->inode);
 497	const long direct_blks = ADDRS_PER_BLOCK;
 498	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 499	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 500	int cur_level = dn->cur_level;
 501	int max_level = dn->max_level;
 502	pgoff_t base = 0;
 503
 504	if (!dn->max_level)
 505		return pgofs + 1;
 506
 507	while (max_level-- > cur_level)
 508		skipped_unit *= NIDS_PER_BLOCK;
 509
 510	switch (dn->max_level) {
 511	case 3:
 512		base += 2 * indirect_blks;
 
 513	case 2:
 514		base += 2 * direct_blks;
 
 515	case 1:
 516		base += direct_index;
 517		break;
 518	default:
 519		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 520	}
 521
 522	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 523}
 524
 525/*
 526 * The maximum depth is four.
 527 * Offset[0] will have raw inode offset.
 528 */
 529static int get_node_path(struct inode *inode, long block,
 530				int offset[4], unsigned int noffset[4])
 531{
 532	const long direct_index = ADDRS_PER_INODE(inode);
 533	const long direct_blks = ADDRS_PER_BLOCK;
 534	const long dptrs_per_blk = NIDS_PER_BLOCK;
 535	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 536	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 537	int n = 0;
 538	int level = 0;
 539
 540	noffset[0] = 0;
 541
 542	if (block < direct_index) {
 543		offset[n] = block;
 544		goto got;
 545	}
 546	block -= direct_index;
 547	if (block < direct_blks) {
 548		offset[n++] = NODE_DIR1_BLOCK;
 549		noffset[n] = 1;
 550		offset[n] = block;
 551		level = 1;
 552		goto got;
 553	}
 554	block -= direct_blks;
 555	if (block < direct_blks) {
 556		offset[n++] = NODE_DIR2_BLOCK;
 557		noffset[n] = 2;
 558		offset[n] = block;
 559		level = 1;
 560		goto got;
 561	}
 562	block -= direct_blks;
 563	if (block < indirect_blks) {
 564		offset[n++] = NODE_IND1_BLOCK;
 565		noffset[n] = 3;
 566		offset[n++] = block / direct_blks;
 567		noffset[n] = 4 + offset[n - 1];
 568		offset[n] = block % direct_blks;
 569		level = 2;
 570		goto got;
 571	}
 572	block -= indirect_blks;
 573	if (block < indirect_blks) {
 574		offset[n++] = NODE_IND2_BLOCK;
 575		noffset[n] = 4 + dptrs_per_blk;
 576		offset[n++] = block / direct_blks;
 577		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 578		offset[n] = block % direct_blks;
 579		level = 2;
 580		goto got;
 581	}
 582	block -= indirect_blks;
 583	if (block < dindirect_blks) {
 584		offset[n++] = NODE_DIND_BLOCK;
 585		noffset[n] = 5 + (dptrs_per_blk * 2);
 586		offset[n++] = block / indirect_blks;
 587		noffset[n] = 6 + (dptrs_per_blk * 2) +
 588			      offset[n - 1] * (dptrs_per_blk + 1);
 589		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 590		noffset[n] = 7 + (dptrs_per_blk * 2) +
 591			      offset[n - 2] * (dptrs_per_blk + 1) +
 592			      offset[n - 1];
 593		offset[n] = block % direct_blks;
 594		level = 3;
 595		goto got;
 596	} else {
 597		return -E2BIG;
 598	}
 599got:
 600	return level;
 601}
 602
 603/*
 604 * Caller should call f2fs_put_dnode(dn).
 605 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 606 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 607 * In the case of RDONLY_NODE, we don't need to care about mutex.
 608 */
 609int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 610{
 611	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 612	struct page *npage[4];
 613	struct page *parent = NULL;
 614	int offset[4];
 615	unsigned int noffset[4];
 616	nid_t nids[4];
 617	int level, i = 0;
 618	int err = 0;
 619
 620	level = get_node_path(dn->inode, index, offset, noffset);
 621	if (level < 0)
 622		return level;
 623
 624	nids[0] = dn->inode->i_ino;
 625	npage[0] = dn->inode_page;
 626
 627	if (!npage[0]) {
 628		npage[0] = get_node_page(sbi, nids[0]);
 629		if (IS_ERR(npage[0]))
 630			return PTR_ERR(npage[0]);
 631	}
 632
 633	/* if inline_data is set, should not report any block indices */
 634	if (f2fs_has_inline_data(dn->inode) && index) {
 635		err = -ENOENT;
 636		f2fs_put_page(npage[0], 1);
 637		goto release_out;
 638	}
 639
 640	parent = npage[0];
 641	if (level != 0)
 642		nids[1] = get_nid(parent, offset[0], true);
 643	dn->inode_page = npage[0];
 644	dn->inode_page_locked = true;
 645
 646	/* get indirect or direct nodes */
 647	for (i = 1; i <= level; i++) {
 648		bool done = false;
 649
 650		if (!nids[i] && mode == ALLOC_NODE) {
 651			/* alloc new node */
 652			if (!alloc_nid(sbi, &(nids[i]))) {
 653				err = -ENOSPC;
 654				goto release_pages;
 655			}
 656
 657			dn->nid = nids[i];
 658			npage[i] = new_node_page(dn, noffset[i]);
 659			if (IS_ERR(npage[i])) {
 660				alloc_nid_failed(sbi, nids[i]);
 661				err = PTR_ERR(npage[i]);
 662				goto release_pages;
 663			}
 664
 665			set_nid(parent, offset[i - 1], nids[i], i == 1);
 666			alloc_nid_done(sbi, nids[i]);
 667			done = true;
 668		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 669			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 670			if (IS_ERR(npage[i])) {
 671				err = PTR_ERR(npage[i]);
 672				goto release_pages;
 673			}
 674			done = true;
 675		}
 676		if (i == 1) {
 677			dn->inode_page_locked = false;
 678			unlock_page(parent);
 679		} else {
 680			f2fs_put_page(parent, 1);
 681		}
 682
 683		if (!done) {
 684			npage[i] = get_node_page(sbi, nids[i]);
 685			if (IS_ERR(npage[i])) {
 686				err = PTR_ERR(npage[i]);
 687				f2fs_put_page(npage[0], 0);
 688				goto release_out;
 689			}
 690		}
 691		if (i < level) {
 692			parent = npage[i];
 693			nids[i + 1] = get_nid(parent, offset[i], false);
 694		}
 695	}
 696	dn->nid = nids[level];
 697	dn->ofs_in_node = offset[level];
 698	dn->node_page = npage[level];
 699	dn->data_blkaddr = datablock_addr(dn->inode,
 700				dn->node_page, dn->ofs_in_node);
 701	return 0;
 702
 703release_pages:
 704	f2fs_put_page(parent, 1);
 705	if (i > 1)
 706		f2fs_put_page(npage[0], 0);
 707release_out:
 708	dn->inode_page = NULL;
 709	dn->node_page = NULL;
 710	if (err == -ENOENT) {
 711		dn->cur_level = i;
 712		dn->max_level = level;
 713		dn->ofs_in_node = offset[level];
 714	}
 715	return err;
 716}
 717
 718static void truncate_node(struct dnode_of_data *dn)
 719{
 720	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 721	struct node_info ni;
 
 
 722
 723	get_node_info(sbi, dn->nid, &ni);
 
 
 724
 725	/* Deallocate node address */
 726	invalidate_blocks(sbi, ni.blk_addr);
 727	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 728	set_node_addr(sbi, &ni, NULL_ADDR, false);
 729
 730	if (dn->nid == dn->inode->i_ino) {
 731		remove_orphan_inode(sbi, dn->nid);
 732		dec_valid_inode_count(sbi);
 733		f2fs_inode_synced(dn->inode);
 734	}
 735
 736	clear_node_page_dirty(dn->node_page);
 737	set_sbi_flag(sbi, SBI_IS_DIRTY);
 738
 
 739	f2fs_put_page(dn->node_page, 1);
 740
 741	invalidate_mapping_pages(NODE_MAPPING(sbi),
 742			dn->node_page->index, dn->node_page->index);
 743
 744	dn->node_page = NULL;
 745	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 
 
 746}
 747
 748static int truncate_dnode(struct dnode_of_data *dn)
 749{
 750	struct page *page;
 
 751
 752	if (dn->nid == 0)
 753		return 1;
 754
 755	/* get direct node */
 756	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 757	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 758		return 1;
 759	else if (IS_ERR(page))
 760		return PTR_ERR(page);
 761
 762	/* Make dnode_of_data for parameter */
 763	dn->node_page = page;
 764	dn->ofs_in_node = 0;
 765	truncate_data_blocks(dn);
 766	truncate_node(dn);
 
 
 
 767	return 1;
 768}
 769
 770static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 771						int ofs, int depth)
 772{
 773	struct dnode_of_data rdn = *dn;
 774	struct page *page;
 775	struct f2fs_node *rn;
 776	nid_t child_nid;
 777	unsigned int child_nofs;
 778	int freed = 0;
 779	int i, ret;
 780
 781	if (dn->nid == 0)
 782		return NIDS_PER_BLOCK + 1;
 783
 784	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 785
 786	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 787	if (IS_ERR(page)) {
 788		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 789		return PTR_ERR(page);
 790	}
 791
 792	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 793
 794	rn = F2FS_NODE(page);
 795	if (depth < 3) {
 796		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 797			child_nid = le32_to_cpu(rn->in.nid[i]);
 798			if (child_nid == 0)
 799				continue;
 800			rdn.nid = child_nid;
 801			ret = truncate_dnode(&rdn);
 802			if (ret < 0)
 803				goto out_err;
 804			if (set_nid(page, i, 0, false))
 805				dn->node_changed = true;
 806		}
 807	} else {
 808		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 809		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 810			child_nid = le32_to_cpu(rn->in.nid[i]);
 811			if (child_nid == 0) {
 812				child_nofs += NIDS_PER_BLOCK + 1;
 813				continue;
 814			}
 815			rdn.nid = child_nid;
 816			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 817			if (ret == (NIDS_PER_BLOCK + 1)) {
 818				if (set_nid(page, i, 0, false))
 819					dn->node_changed = true;
 820				child_nofs += ret;
 821			} else if (ret < 0 && ret != -ENOENT) {
 822				goto out_err;
 823			}
 824		}
 825		freed = child_nofs;
 826	}
 827
 828	if (!ofs) {
 829		/* remove current indirect node */
 830		dn->node_page = page;
 831		truncate_node(dn);
 
 
 832		freed++;
 833	} else {
 834		f2fs_put_page(page, 1);
 835	}
 836	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 837	return freed;
 838
 839out_err:
 840	f2fs_put_page(page, 1);
 841	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 842	return ret;
 843}
 844
 845static int truncate_partial_nodes(struct dnode_of_data *dn,
 846			struct f2fs_inode *ri, int *offset, int depth)
 847{
 848	struct page *pages[2];
 849	nid_t nid[3];
 850	nid_t child_nid;
 851	int err = 0;
 852	int i;
 853	int idx = depth - 2;
 854
 855	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 856	if (!nid[0])
 857		return 0;
 858
 859	/* get indirect nodes in the path */
 860	for (i = 0; i < idx + 1; i++) {
 861		/* reference count'll be increased */
 862		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 863		if (IS_ERR(pages[i])) {
 864			err = PTR_ERR(pages[i]);
 865			idx = i - 1;
 866			goto fail;
 867		}
 868		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 869	}
 870
 871	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 872
 873	/* free direct nodes linked to a partial indirect node */
 874	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 875		child_nid = get_nid(pages[idx], i, false);
 876		if (!child_nid)
 877			continue;
 878		dn->nid = child_nid;
 879		err = truncate_dnode(dn);
 880		if (err < 0)
 881			goto fail;
 882		if (set_nid(pages[idx], i, 0, false))
 883			dn->node_changed = true;
 884	}
 885
 886	if (offset[idx + 1] == 0) {
 887		dn->node_page = pages[idx];
 888		dn->nid = nid[idx];
 889		truncate_node(dn);
 
 
 890	} else {
 891		f2fs_put_page(pages[idx], 1);
 892	}
 893	offset[idx]++;
 894	offset[idx + 1] = 0;
 895	idx--;
 896fail:
 897	for (i = idx; i >= 0; i--)
 898		f2fs_put_page(pages[i], 1);
 899
 900	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 901
 902	return err;
 903}
 904
 905/*
 906 * All the block addresses of data and nodes should be nullified.
 907 */
 908int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 909{
 910	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 911	int err = 0, cont = 1;
 912	int level, offset[4], noffset[4];
 913	unsigned int nofs = 0;
 914	struct f2fs_inode *ri;
 915	struct dnode_of_data dn;
 916	struct page *page;
 917
 918	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 919
 920	level = get_node_path(inode, from, offset, noffset);
 921	if (level < 0)
 922		return level;
 923
 924	page = get_node_page(sbi, inode->i_ino);
 925	if (IS_ERR(page)) {
 926		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 927		return PTR_ERR(page);
 928	}
 929
 930	set_new_dnode(&dn, inode, page, NULL, 0);
 931	unlock_page(page);
 932
 933	ri = F2FS_INODE(page);
 934	switch (level) {
 935	case 0:
 936	case 1:
 937		nofs = noffset[1];
 938		break;
 939	case 2:
 940		nofs = noffset[1];
 941		if (!offset[level - 1])
 942			goto skip_partial;
 943		err = truncate_partial_nodes(&dn, ri, offset, level);
 944		if (err < 0 && err != -ENOENT)
 945			goto fail;
 946		nofs += 1 + NIDS_PER_BLOCK;
 947		break;
 948	case 3:
 949		nofs = 5 + 2 * NIDS_PER_BLOCK;
 950		if (!offset[level - 1])
 951			goto skip_partial;
 952		err = truncate_partial_nodes(&dn, ri, offset, level);
 953		if (err < 0 && err != -ENOENT)
 954			goto fail;
 955		break;
 956	default:
 957		BUG();
 958	}
 959
 960skip_partial:
 961	while (cont) {
 962		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 963		switch (offset[0]) {
 964		case NODE_DIR1_BLOCK:
 965		case NODE_DIR2_BLOCK:
 966			err = truncate_dnode(&dn);
 967			break;
 968
 969		case NODE_IND1_BLOCK:
 970		case NODE_IND2_BLOCK:
 971			err = truncate_nodes(&dn, nofs, offset[1], 2);
 972			break;
 973
 974		case NODE_DIND_BLOCK:
 975			err = truncate_nodes(&dn, nofs, offset[1], 3);
 976			cont = 0;
 977			break;
 978
 979		default:
 980			BUG();
 981		}
 982		if (err < 0 && err != -ENOENT)
 983			goto fail;
 984		if (offset[1] == 0 &&
 985				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 986			lock_page(page);
 987			BUG_ON(page->mapping != NODE_MAPPING(sbi));
 988			f2fs_wait_on_page_writeback(page, NODE, true);
 989			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 990			set_page_dirty(page);
 991			unlock_page(page);
 992		}
 993		offset[1] = 0;
 994		offset[0]++;
 995		nofs += err;
 996	}
 997fail:
 998	f2fs_put_page(page, 0);
 999	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1000	return err > 0 ? 0 : err;
1001}
1002
1003/* caller must lock inode page */
1004int truncate_xattr_node(struct inode *inode)
1005{
1006	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1008	struct dnode_of_data dn;
1009	struct page *npage;
 
1010
1011	if (!nid)
1012		return 0;
1013
1014	npage = get_node_page(sbi, nid);
1015	if (IS_ERR(npage))
1016		return PTR_ERR(npage);
1017
 
 
 
 
 
 
 
1018	f2fs_i_xnid_write(inode, 0);
1019
1020	set_new_dnode(&dn, inode, NULL, npage, nid);
1021	truncate_node(&dn);
1022	return 0;
1023}
1024
1025/*
1026 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1027 * f2fs_unlock_op().
1028 */
1029int remove_inode_page(struct inode *inode)
1030{
1031	struct dnode_of_data dn;
1032	int err;
1033
1034	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1035	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1036	if (err)
1037		return err;
1038
1039	err = truncate_xattr_node(inode);
1040	if (err) {
1041		f2fs_put_dnode(&dn);
1042		return err;
1043	}
1044
1045	/* remove potential inline_data blocks */
1046	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1047				S_ISLNK(inode->i_mode))
1048		truncate_data_blocks_range(&dn, 1);
1049
1050	/* 0 is possible, after f2fs_new_inode() has failed */
1051	f2fs_bug_on(F2FS_I_SB(inode),
1052			inode->i_blocks != 0 && inode->i_blocks != 8);
 
 
 
 
 
 
 
 
1053
1054	/* will put inode & node pages */
1055	truncate_node(&dn);
 
 
 
 
1056	return 0;
1057}
1058
1059struct page *new_inode_page(struct inode *inode)
1060{
1061	struct dnode_of_data dn;
1062
1063	/* allocate inode page for new inode */
1064	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1065
1066	/* caller should f2fs_put_page(page, 1); */
1067	return new_node_page(&dn, 0);
1068}
1069
1070struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1071{
1072	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073	struct node_info new_ni;
1074	struct page *page;
1075	int err;
1076
1077	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078		return ERR_PTR(-EPERM);
1079
1080	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1081	if (!page)
1082		return ERR_PTR(-ENOMEM);
1083
1084	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1085		goto fail;
1086
1087#ifdef CONFIG_F2FS_CHECK_FS
1088	get_node_info(sbi, dn->nid, &new_ni);
 
 
 
 
1089	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1090#endif
1091	new_ni.nid = dn->nid;
1092	new_ni.ino = dn->inode->i_ino;
1093	new_ni.blk_addr = NULL_ADDR;
1094	new_ni.flag = 0;
1095	new_ni.version = 0;
1096	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1097
1098	f2fs_wait_on_page_writeback(page, NODE, true);
1099	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1100	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1101	if (!PageUptodate(page))
1102		SetPageUptodate(page);
1103	if (set_page_dirty(page))
1104		dn->node_changed = true;
1105
1106	if (f2fs_has_xattr_block(ofs))
1107		f2fs_i_xnid_write(dn->inode, dn->nid);
1108
1109	if (ofs == 0)
1110		inc_valid_inode_count(sbi);
1111	return page;
1112
1113fail:
1114	clear_node_page_dirty(page);
1115	f2fs_put_page(page, 1);
1116	return ERR_PTR(err);
1117}
1118
1119/*
1120 * Caller should do after getting the following values.
1121 * 0: f2fs_put_page(page, 0)
1122 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1123 */
1124static int read_node_page(struct page *page, int op_flags)
1125{
1126	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1127	struct node_info ni;
1128	struct f2fs_io_info fio = {
1129		.sbi = sbi,
1130		.type = NODE,
1131		.op = REQ_OP_READ,
1132		.op_flags = op_flags,
1133		.page = page,
1134		.encrypted_page = NULL,
1135	};
 
1136
1137	if (PageUptodate(page))
 
 
 
 
1138		return LOCKED_PAGE;
 
1139
1140	get_node_info(sbi, page->index, &ni);
 
 
1141
1142	if (unlikely(ni.blk_addr == NULL_ADDR)) {
 
1143		ClearPageUptodate(page);
1144		return -ENOENT;
1145	}
1146
1147	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1148	return f2fs_submit_page_bio(&fio);
1149}
1150
1151/*
1152 * Readahead a node page
1153 */
1154void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1155{
1156	struct page *apage;
1157	int err;
1158
1159	if (!nid)
1160		return;
1161	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1162
1163	rcu_read_lock();
1164	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1165	rcu_read_unlock();
1166	if (apage)
1167		return;
1168
1169	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1170	if (!apage)
1171		return;
1172
1173	err = read_node_page(apage, REQ_RAHEAD);
1174	f2fs_put_page(apage, err ? 1 : 0);
1175}
1176
1177static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1178					struct page *parent, int start)
1179{
1180	struct page *page;
1181	int err;
1182
1183	if (!nid)
1184		return ERR_PTR(-ENOENT);
1185	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1186repeat:
1187	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1188	if (!page)
1189		return ERR_PTR(-ENOMEM);
1190
1191	err = read_node_page(page, 0);
1192	if (err < 0) {
1193		f2fs_put_page(page, 1);
1194		return ERR_PTR(err);
1195	} else if (err == LOCKED_PAGE) {
1196		err = 0;
1197		goto page_hit;
1198	}
1199
1200	if (parent)
1201		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1202
1203	lock_page(page);
1204
1205	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1206		f2fs_put_page(page, 1);
1207		goto repeat;
1208	}
1209
1210	if (unlikely(!PageUptodate(page))) {
1211		err = -EIO;
1212		goto out_err;
1213	}
1214
1215	if (!f2fs_inode_chksum_verify(sbi, page)) {
1216		err = -EBADMSG;
1217		goto out_err;
1218	}
1219page_hit:
1220	if(unlikely(nid != nid_of_node(page))) {
1221		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1222			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1223			nid, nid_of_node(page), ino_of_node(page),
1224			ofs_of_node(page), cpver_of_node(page),
1225			next_blkaddr_of_node(page));
1226		err = -EINVAL;
1227out_err:
1228		ClearPageUptodate(page);
1229		f2fs_put_page(page, 1);
1230		return ERR_PTR(err);
1231	}
1232	return page;
1233}
1234
1235struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1236{
1237	return __get_node_page(sbi, nid, NULL, 0);
1238}
1239
1240struct page *get_node_page_ra(struct page *parent, int start)
1241{
1242	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1243	nid_t nid = get_nid(parent, start, false);
1244
1245	return __get_node_page(sbi, nid, parent, start);
1246}
1247
1248static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250	struct inode *inode;
1251	struct page *page;
1252	int ret;
1253
1254	/* should flush inline_data before evict_inode */
1255	inode = ilookup(sbi->sb, ino);
1256	if (!inode)
1257		return;
1258
1259	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1260					FGP_LOCK|FGP_NOWAIT, 0);
1261	if (!page)
1262		goto iput_out;
1263
1264	if (!PageUptodate(page))
1265		goto page_out;
1266
1267	if (!PageDirty(page))
1268		goto page_out;
1269
1270	if (!clear_page_dirty_for_io(page))
1271		goto page_out;
1272
1273	ret = f2fs_write_inline_data(inode, page);
1274	inode_dec_dirty_pages(inode);
1275	remove_dirty_inode(inode);
1276	if (ret)
1277		set_page_dirty(page);
1278page_out:
1279	f2fs_put_page(page, 1);
1280iput_out:
1281	iput(inode);
1282}
1283
1284static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1285{
1286	pgoff_t index;
1287	struct pagevec pvec;
1288	struct page *last_page = NULL;
1289	int nr_pages;
1290
1291	pagevec_init(&pvec);
1292	index = 0;
1293
1294	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1295				PAGECACHE_TAG_DIRTY))) {
1296		int i;
1297
1298		for (i = 0; i < nr_pages; i++) {
1299			struct page *page = pvec.pages[i];
1300
1301			if (unlikely(f2fs_cp_error(sbi))) {
1302				f2fs_put_page(last_page, 0);
1303				pagevec_release(&pvec);
1304				return ERR_PTR(-EIO);
1305			}
1306
1307			if (!IS_DNODE(page) || !is_cold_node(page))
1308				continue;
1309			if (ino_of_node(page) != ino)
1310				continue;
1311
1312			lock_page(page);
1313
1314			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1315continue_unlock:
1316				unlock_page(page);
1317				continue;
1318			}
1319			if (ino_of_node(page) != ino)
1320				goto continue_unlock;
1321
1322			if (!PageDirty(page)) {
1323				/* someone wrote it for us */
1324				goto continue_unlock;
1325			}
1326
1327			if (last_page)
1328				f2fs_put_page(last_page, 0);
1329
1330			get_page(page);
1331			last_page = page;
1332			unlock_page(page);
1333		}
1334		pagevec_release(&pvec);
1335		cond_resched();
1336	}
1337	return last_page;
1338}
1339
1340static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1341				struct writeback_control *wbc, bool do_balance,
1342				enum iostat_type io_type)
1343{
1344	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1345	nid_t nid;
1346	struct node_info ni;
1347	struct f2fs_io_info fio = {
1348		.sbi = sbi,
1349		.ino = ino_of_node(page),
1350		.type = NODE,
1351		.op = REQ_OP_WRITE,
1352		.op_flags = wbc_to_write_flags(wbc),
1353		.page = page,
1354		.encrypted_page = NULL,
1355		.submitted = false,
1356		.io_type = io_type,
1357		.io_wbc = wbc,
1358	};
 
1359
1360	trace_f2fs_writepage(page, NODE);
1361
1362	if (unlikely(f2fs_cp_error(sbi))) {
1363		dec_page_count(sbi, F2FS_DIRTY_NODES);
1364		unlock_page(page);
1365		return 0;
1366	}
1367
1368	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1369		goto redirty_out;
1370
 
 
 
 
 
1371	/* get old block addr of this node page */
1372	nid = nid_of_node(page);
1373	f2fs_bug_on(sbi, page->index != nid);
1374
 
 
 
1375	if (wbc->for_reclaim) {
1376		if (!down_read_trylock(&sbi->node_write))
1377			goto redirty_out;
1378	} else {
1379		down_read(&sbi->node_write);
1380	}
1381
1382	get_node_info(sbi, nid, &ni);
1383
1384	/* This page is already truncated */
1385	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1386		ClearPageUptodate(page);
1387		dec_page_count(sbi, F2FS_DIRTY_NODES);
1388		up_read(&sbi->node_write);
1389		unlock_page(page);
1390		return 0;
1391	}
1392
 
 
 
 
 
 
 
1393	if (atomic && !test_opt(sbi, NOBARRIER))
1394		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1395
1396	set_page_writeback(page);
 
 
 
 
 
 
 
 
1397	fio.old_blkaddr = ni.blk_addr;
1398	write_node_page(nid, &fio);
1399	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1400	dec_page_count(sbi, F2FS_DIRTY_NODES);
1401	up_read(&sbi->node_write);
1402
1403	if (wbc->for_reclaim) {
1404		f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1405						page->index, NODE);
1406		submitted = NULL;
1407	}
1408
1409	unlock_page(page);
1410
1411	if (unlikely(f2fs_cp_error(sbi))) {
1412		f2fs_submit_merged_write(sbi, NODE);
1413		submitted = NULL;
1414	}
1415	if (submitted)
1416		*submitted = fio.submitted;
1417
1418	if (do_balance)
1419		f2fs_balance_fs(sbi, false);
1420	return 0;
1421
1422redirty_out:
1423	redirty_page_for_writepage(wbc, page);
1424	return AOP_WRITEPAGE_ACTIVATE;
1425}
1426
1427void move_node_page(struct page *node_page, int gc_type)
1428{
 
 
1429	if (gc_type == FG_GC) {
1430		struct writeback_control wbc = {
1431			.sync_mode = WB_SYNC_ALL,
1432			.nr_to_write = 1,
1433			.for_reclaim = 0,
1434		};
1435
 
 
1436		set_page_dirty(node_page);
1437		f2fs_wait_on_page_writeback(node_page, NODE, true);
1438
1439		f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1440		if (!clear_page_dirty_for_io(node_page))
1441			goto out_page;
 
1442
1443		if (__write_node_page(node_page, false, NULL,
1444					&wbc, false, FS_GC_NODE_IO))
 
1445			unlock_page(node_page);
 
1446		goto release_page;
1447	} else {
1448		/* set page dirty and write it */
1449		if (!PageWriteback(node_page))
1450			set_page_dirty(node_page);
1451	}
1452out_page:
1453	unlock_page(node_page);
1454release_page:
1455	f2fs_put_page(node_page, 0);
 
1456}
1457
1458static int f2fs_write_node_page(struct page *page,
1459				struct writeback_control *wbc)
1460{
1461	return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
 
1462}
1463
1464int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1465			struct writeback_control *wbc, bool atomic)
 
1466{
1467	pgoff_t index;
1468	pgoff_t last_idx = ULONG_MAX;
1469	struct pagevec pvec;
1470	int ret = 0;
1471	struct page *last_page = NULL;
1472	bool marked = false;
1473	nid_t ino = inode->i_ino;
1474	int nr_pages;
 
1475
1476	if (atomic) {
1477		last_page = last_fsync_dnode(sbi, ino);
1478		if (IS_ERR_OR_NULL(last_page))
1479			return PTR_ERR_OR_ZERO(last_page);
1480	}
1481retry:
1482	pagevec_init(&pvec);
1483	index = 0;
1484
1485	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1486				PAGECACHE_TAG_DIRTY))) {
1487		int i;
1488
1489		for (i = 0; i < nr_pages; i++) {
1490			struct page *page = pvec.pages[i];
1491			bool submitted = false;
1492
1493			if (unlikely(f2fs_cp_error(sbi))) {
1494				f2fs_put_page(last_page, 0);
1495				pagevec_release(&pvec);
1496				ret = -EIO;
1497				goto out;
1498			}
1499
1500			if (!IS_DNODE(page) || !is_cold_node(page))
1501				continue;
1502			if (ino_of_node(page) != ino)
1503				continue;
1504
1505			lock_page(page);
1506
1507			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1508continue_unlock:
1509				unlock_page(page);
1510				continue;
1511			}
1512			if (ino_of_node(page) != ino)
1513				goto continue_unlock;
1514
1515			if (!PageDirty(page) && page != last_page) {
1516				/* someone wrote it for us */
1517				goto continue_unlock;
1518			}
1519
1520			f2fs_wait_on_page_writeback(page, NODE, true);
1521			BUG_ON(PageWriteback(page));
1522
1523			set_fsync_mark(page, 0);
1524			set_dentry_mark(page, 0);
1525
1526			if (!atomic || page == last_page) {
1527				set_fsync_mark(page, 1);
1528				if (IS_INODE(page)) {
1529					if (is_inode_flag_set(inode,
1530								FI_DIRTY_INODE))
1531						update_inode(inode, page);
1532					set_dentry_mark(page,
1533						need_dentry_mark(sbi, ino));
1534				}
1535				/*  may be written by other thread */
1536				if (!PageDirty(page))
1537					set_page_dirty(page);
1538			}
1539
1540			if (!clear_page_dirty_for_io(page))
1541				goto continue_unlock;
1542
1543			ret = __write_node_page(page, atomic &&
1544						page == last_page,
1545						&submitted, wbc, true,
1546						FS_NODE_IO);
1547			if (ret) {
1548				unlock_page(page);
1549				f2fs_put_page(last_page, 0);
1550				break;
1551			} else if (submitted) {
1552				last_idx = page->index;
1553			}
1554
1555			if (page == last_page) {
1556				f2fs_put_page(page, 0);
1557				marked = true;
1558				break;
1559			}
1560		}
1561		pagevec_release(&pvec);
1562		cond_resched();
1563
1564		if (ret || marked)
1565			break;
1566	}
1567	if (!ret && atomic && !marked) {
1568		f2fs_msg(sbi->sb, KERN_DEBUG,
1569			"Retry to write fsync mark: ino=%u, idx=%lx",
1570					ino, last_page->index);
1571		lock_page(last_page);
1572		f2fs_wait_on_page_writeback(last_page, NODE, true);
1573		set_page_dirty(last_page);
1574		unlock_page(last_page);
1575		goto retry;
1576	}
1577out:
1578	if (last_idx != ULONG_MAX)
1579		f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1580	return ret ? -EIO: 0;
1581}
1582
1583int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584				bool do_balance, enum iostat_type io_type)
1585{
1586	pgoff_t index;
1587	struct pagevec pvec;
1588	int step = 0;
1589	int nwritten = 0;
1590	int ret = 0;
1591	int nr_pages;
1592
1593	pagevec_init(&pvec);
1594
1595next_step:
1596	index = 0;
1597
1598	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1599				PAGECACHE_TAG_DIRTY))) {
1600		int i;
1601
1602		for (i = 0; i < nr_pages; i++) {
1603			struct page *page = pvec.pages[i];
1604			bool submitted = false;
 
 
 
 
 
 
 
 
1605
1606			/*
1607			 * flushing sequence with step:
1608			 * 0. indirect nodes
1609			 * 1. dentry dnodes
1610			 * 2. file dnodes
1611			 */
1612			if (step == 0 && IS_DNODE(page))
1613				continue;
1614			if (step == 1 && (!IS_DNODE(page) ||
1615						is_cold_node(page)))
1616				continue;
1617			if (step == 2 && (!IS_DNODE(page) ||
1618						!is_cold_node(page)))
1619				continue;
1620lock_node:
1621			if (!trylock_page(page))
 
 
1622				continue;
1623
1624			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1625continue_unlock:
1626				unlock_page(page);
1627				continue;
1628			}
1629
1630			if (!PageDirty(page)) {
1631				/* someone wrote it for us */
1632				goto continue_unlock;
1633			}
1634
1635			/* flush inline_data */
1636			if (is_inline_node(page)) {
1637				clear_inline_node(page);
1638				unlock_page(page);
1639				flush_inline_data(sbi, ino_of_node(page));
1640				goto lock_node;
1641			}
1642
1643			f2fs_wait_on_page_writeback(page, NODE, true);
 
 
 
 
 
 
 
1644
1645			BUG_ON(PageWriteback(page));
1646			if (!clear_page_dirty_for_io(page))
1647				goto continue_unlock;
1648
1649			set_fsync_mark(page, 0);
1650			set_dentry_mark(page, 0);
1651
1652			ret = __write_node_page(page, false, &submitted,
1653						wbc, do_balance, io_type);
1654			if (ret)
1655				unlock_page(page);
1656			else if (submitted)
1657				nwritten++;
1658
1659			if (--wbc->nr_to_write == 0)
1660				break;
1661		}
1662		pagevec_release(&pvec);
1663		cond_resched();
1664
1665		if (wbc->nr_to_write == 0) {
1666			step = 2;
1667			break;
1668		}
1669	}
1670
1671	if (step < 2) {
 
 
 
1672		step++;
1673		goto next_step;
1674	}
1675
1676	if (nwritten)
1677		f2fs_submit_merged_write(sbi, NODE);
1678
1679	if (unlikely(f2fs_cp_error(sbi)))
1680		return -EIO;
1681	return ret;
1682}
1683
1684int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
 
1685{
1686	pgoff_t index = 0;
1687	struct pagevec pvec;
 
 
 
1688	int ret2, ret = 0;
1689	int nr_pages;
1690
1691	pagevec_init(&pvec);
1692
1693	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694				PAGECACHE_TAG_WRITEBACK))) {
1695		int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696
1697		for (i = 0; i < nr_pages; i++) {
1698			struct page *page = pvec.pages[i];
1699
1700			if (ino && ino_of_node(page) == ino) {
1701				f2fs_wait_on_page_writeback(page, NODE, true);
1702				if (TestClearPageError(page))
1703					ret = -EIO;
1704			}
1705		}
1706		pagevec_release(&pvec);
1707		cond_resched();
1708	}
1709
1710	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1711	if (!ret)
1712		ret = ret2;
 
1713	return ret;
1714}
1715
1716static int f2fs_write_node_pages(struct address_space *mapping,
1717			    struct writeback_control *wbc)
1718{
1719	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1720	struct blk_plug plug;
1721	long diff;
1722
1723	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1724		goto skip_write;
1725
1726	/* balancing f2fs's metadata in background */
1727	f2fs_balance_fs_bg(sbi);
1728
1729	/* collect a number of dirty node pages and write together */
1730	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 
 
 
 
 
 
 
1731		goto skip_write;
1732
1733	trace_f2fs_writepages(mapping->host, wbc, NODE);
1734
1735	diff = nr_pages_to_write(sbi, NODE, wbc);
1736	wbc->sync_mode = WB_SYNC_NONE;
1737	blk_start_plug(&plug);
1738	sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1739	blk_finish_plug(&plug);
1740	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 
 
 
1741	return 0;
1742
1743skip_write:
1744	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1745	trace_f2fs_writepages(mapping->host, wbc, NODE);
1746	return 0;
1747}
1748
1749static int f2fs_set_node_page_dirty(struct page *page)
1750{
1751	trace_f2fs_set_page_dirty(page, NODE);
1752
1753	if (!PageUptodate(page))
1754		SetPageUptodate(page);
 
 
 
 
1755	if (!PageDirty(page)) {
1756		f2fs_set_page_dirty_nobuffers(page);
1757		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1758		SetPagePrivate(page);
1759		f2fs_trace_pid(page);
1760		return 1;
1761	}
1762	return 0;
1763}
1764
1765/*
1766 * Structure of the f2fs node operations
1767 */
1768const struct address_space_operations f2fs_node_aops = {
1769	.writepage	= f2fs_write_node_page,
1770	.writepages	= f2fs_write_node_pages,
1771	.set_page_dirty	= f2fs_set_node_page_dirty,
1772	.invalidatepage	= f2fs_invalidate_page,
1773	.releasepage	= f2fs_release_page,
1774#ifdef CONFIG_MIGRATION
1775	.migratepage    = f2fs_migrate_page,
1776#endif
1777};
1778
1779static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1780						nid_t n)
1781{
1782	return radix_tree_lookup(&nm_i->free_nid_root, n);
1783}
1784
1785static int __insert_free_nid(struct f2fs_sb_info *sbi,
1786			struct free_nid *i, enum nid_state state)
1787{
1788	struct f2fs_nm_info *nm_i = NM_I(sbi);
1789
1790	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1791	if (err)
1792		return err;
1793
1794	f2fs_bug_on(sbi, state != i->state);
1795	nm_i->nid_cnt[state]++;
1796	if (state == FREE_NID)
1797		list_add_tail(&i->list, &nm_i->free_nid_list);
1798	return 0;
1799}
1800
1801static void __remove_free_nid(struct f2fs_sb_info *sbi,
1802			struct free_nid *i, enum nid_state state)
1803{
1804	struct f2fs_nm_info *nm_i = NM_I(sbi);
1805
1806	f2fs_bug_on(sbi, state != i->state);
1807	nm_i->nid_cnt[state]--;
1808	if (state == FREE_NID)
1809		list_del(&i->list);
1810	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1811}
1812
1813static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1814			enum nid_state org_state, enum nid_state dst_state)
1815{
1816	struct f2fs_nm_info *nm_i = NM_I(sbi);
1817
1818	f2fs_bug_on(sbi, org_state != i->state);
1819	i->state = dst_state;
1820	nm_i->nid_cnt[org_state]--;
1821	nm_i->nid_cnt[dst_state]++;
1822
1823	switch (dst_state) {
1824	case PREALLOC_NID:
1825		list_del(&i->list);
1826		break;
1827	case FREE_NID:
1828		list_add_tail(&i->list, &nm_i->free_nid_list);
1829		break;
1830	default:
1831		BUG_ON(1);
1832	}
1833}
1834
1835static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1836							bool set, bool build)
1837{
1838	struct f2fs_nm_info *nm_i = NM_I(sbi);
1839	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1840	unsigned int nid_ofs = nid - START_NID(nid);
1841
1842	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1843		return;
1844
1845	if (set) {
1846		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1847			return;
1848		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1849		nm_i->free_nid_count[nat_ofs]++;
1850	} else {
1851		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1852			return;
1853		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1854		if (!build)
1855			nm_i->free_nid_count[nat_ofs]--;
1856	}
1857}
1858
1859/* return if the nid is recognized as free */
1860static bool add_free_nid(struct f2fs_sb_info *sbi,
1861				nid_t nid, bool build, bool update)
1862{
1863	struct f2fs_nm_info *nm_i = NM_I(sbi);
1864	struct free_nid *i, *e;
1865	struct nat_entry *ne;
1866	int err = -EINVAL;
1867	bool ret = false;
1868
1869	/* 0 nid should not be used */
1870	if (unlikely(nid == 0))
1871		return false;
1872
 
 
 
1873	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1874	i->nid = nid;
1875	i->state = FREE_NID;
1876
1877	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1878
1879	spin_lock(&nm_i->nid_list_lock);
1880
1881	if (build) {
1882		/*
1883		 *   Thread A             Thread B
1884		 *  - f2fs_create
1885		 *   - f2fs_new_inode
1886		 *    - alloc_nid
1887		 *     - __insert_nid_to_list(PREALLOC_NID)
1888		 *                     - f2fs_balance_fs_bg
1889		 *                      - build_free_nids
1890		 *                       - __build_free_nids
1891		 *                        - scan_nat_page
1892		 *                         - add_free_nid
1893		 *                          - __lookup_nat_cache
1894		 *  - f2fs_add_link
1895		 *   - init_inode_metadata
1896		 *    - new_inode_page
1897		 *     - new_node_page
1898		 *      - set_node_addr
1899		 *  - alloc_nid_done
1900		 *   - __remove_nid_from_list(PREALLOC_NID)
1901		 *                         - __insert_nid_to_list(FREE_NID)
1902		 */
1903		ne = __lookup_nat_cache(nm_i, nid);
1904		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1905				nat_get_blkaddr(ne) != NULL_ADDR))
1906			goto err_out;
1907
1908		e = __lookup_free_nid_list(nm_i, nid);
1909		if (e) {
1910			if (e->state == FREE_NID)
1911				ret = true;
1912			goto err_out;
1913		}
1914	}
1915	ret = true;
1916	err = __insert_free_nid(sbi, i, FREE_NID);
1917err_out:
1918	if (update) {
1919		update_free_nid_bitmap(sbi, nid, ret, build);
1920		if (!build)
1921			nm_i->available_nids++;
1922	}
1923	spin_unlock(&nm_i->nid_list_lock);
1924	radix_tree_preload_end();
1925
1926	if (err)
1927		kmem_cache_free(free_nid_slab, i);
1928	return ret;
1929}
1930
1931static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1932{
1933	struct f2fs_nm_info *nm_i = NM_I(sbi);
1934	struct free_nid *i;
1935	bool need_free = false;
1936
1937	spin_lock(&nm_i->nid_list_lock);
1938	i = __lookup_free_nid_list(nm_i, nid);
1939	if (i && i->state == FREE_NID) {
1940		__remove_free_nid(sbi, i, FREE_NID);
1941		need_free = true;
1942	}
1943	spin_unlock(&nm_i->nid_list_lock);
1944
1945	if (need_free)
1946		kmem_cache_free(free_nid_slab, i);
1947}
1948
1949static void scan_nat_page(struct f2fs_sb_info *sbi,
1950			struct page *nat_page, nid_t start_nid)
1951{
1952	struct f2fs_nm_info *nm_i = NM_I(sbi);
1953	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1954	block_t blk_addr;
1955	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1956	int i;
1957
1958	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1959
1960	i = start_nid % NAT_ENTRY_PER_BLOCK;
1961
1962	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1963		if (unlikely(start_nid >= nm_i->max_nid))
1964			break;
1965
1966		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1967		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
 
 
 
1968		if (blk_addr == NULL_ADDR) {
1969			add_free_nid(sbi, start_nid, true, true);
1970		} else {
1971			spin_lock(&NM_I(sbi)->nid_list_lock);
1972			update_free_nid_bitmap(sbi, start_nid, false, true);
1973			spin_unlock(&NM_I(sbi)->nid_list_lock);
1974		}
1975	}
 
 
1976}
1977
1978static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1979{
1980	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1981	struct f2fs_journal *journal = curseg->journal;
1982	int i;
1983
1984	down_read(&curseg->journal_rwsem);
1985	for (i = 0; i < nats_in_cursum(journal); i++) {
1986		block_t addr;
1987		nid_t nid;
1988
1989		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1990		nid = le32_to_cpu(nid_in_journal(journal, i));
1991		if (addr == NULL_ADDR)
1992			add_free_nid(sbi, nid, true, false);
1993		else
1994			remove_free_nid(sbi, nid);
1995	}
1996	up_read(&curseg->journal_rwsem);
1997}
1998
1999static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2000{
2001	struct f2fs_nm_info *nm_i = NM_I(sbi);
2002	unsigned int i, idx;
2003	nid_t nid;
2004
2005	down_read(&nm_i->nat_tree_lock);
2006
2007	for (i = 0; i < nm_i->nat_blocks; i++) {
2008		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2009			continue;
2010		if (!nm_i->free_nid_count[i])
2011			continue;
2012		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2013			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2014						NAT_ENTRY_PER_BLOCK, idx);
2015			if (idx >= NAT_ENTRY_PER_BLOCK)
2016				break;
2017
2018			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2019			add_free_nid(sbi, nid, true, false);
2020
2021			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2022				goto out;
2023		}
2024	}
2025out:
2026	scan_curseg_cache(sbi);
2027
2028	up_read(&nm_i->nat_tree_lock);
2029}
2030
2031static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
 
2032{
2033	struct f2fs_nm_info *nm_i = NM_I(sbi);
2034	int i = 0;
2035	nid_t nid = nm_i->next_scan_nid;
2036
2037	if (unlikely(nid >= nm_i->max_nid))
2038		nid = 0;
2039
2040	/* Enough entries */
2041	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2042		return;
2043
2044	if (!sync && !available_free_memory(sbi, FREE_NIDS))
2045		return;
2046
2047	if (!mount) {
2048		/* try to find free nids in free_nid_bitmap */
2049		scan_free_nid_bits(sbi);
2050
2051		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2052			return;
2053	}
2054
2055	/* readahead nat pages to be scanned */
2056	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2057							META_NAT, true);
2058
2059	down_read(&nm_i->nat_tree_lock);
2060
2061	while (1) {
2062		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2063						nm_i->nat_block_bitmap)) {
2064			struct page *page = get_current_nat_page(sbi, nid);
2065
2066			scan_nat_page(sbi, page, nid);
2067			f2fs_put_page(page, 1);
 
 
 
 
 
 
 
 
 
 
 
2068		}
2069
2070		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2071		if (unlikely(nid >= nm_i->max_nid))
2072			nid = 0;
2073
2074		if (++i >= FREE_NID_PAGES)
2075			break;
2076	}
2077
2078	/* go to the next free nat pages to find free nids abundantly */
2079	nm_i->next_scan_nid = nid;
2080
2081	/* find free nids from current sum_pages */
2082	scan_curseg_cache(sbi);
2083
2084	up_read(&nm_i->nat_tree_lock);
2085
2086	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2087					nm_i->ra_nid_pages, META_NAT, false);
 
 
2088}
2089
2090void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2091{
 
 
2092	mutex_lock(&NM_I(sbi)->build_lock);
2093	__build_free_nids(sbi, sync, mount);
2094	mutex_unlock(&NM_I(sbi)->build_lock);
 
 
2095}
2096
2097/*
2098 * If this function returns success, caller can obtain a new nid
2099 * from second parameter of this function.
2100 * The returned nid could be used ino as well as nid when inode is created.
2101 */
2102bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2103{
2104	struct f2fs_nm_info *nm_i = NM_I(sbi);
2105	struct free_nid *i = NULL;
2106retry:
2107#ifdef CONFIG_F2FS_FAULT_INJECTION
2108	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2109		f2fs_show_injection_info(FAULT_ALLOC_NID);
2110		return false;
2111	}
2112#endif
2113	spin_lock(&nm_i->nid_list_lock);
2114
2115	if (unlikely(nm_i->available_nids == 0)) {
2116		spin_unlock(&nm_i->nid_list_lock);
2117		return false;
2118	}
2119
2120	/* We should not use stale free nids created by build_free_nids */
2121	if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2122		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2123		i = list_first_entry(&nm_i->free_nid_list,
2124					struct free_nid, list);
2125		*nid = i->nid;
2126
2127		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2128		nm_i->available_nids--;
2129
2130		update_free_nid_bitmap(sbi, *nid, false, false);
2131
2132		spin_unlock(&nm_i->nid_list_lock);
2133		return true;
2134	}
2135	spin_unlock(&nm_i->nid_list_lock);
2136
2137	/* Let's scan nat pages and its caches to get free nids */
2138	build_free_nids(sbi, true, false);
2139	goto retry;
 
2140}
2141
2142/*
2143 * alloc_nid() should be called prior to this function.
2144 */
2145void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2146{
2147	struct f2fs_nm_info *nm_i = NM_I(sbi);
2148	struct free_nid *i;
2149
2150	spin_lock(&nm_i->nid_list_lock);
2151	i = __lookup_free_nid_list(nm_i, nid);
2152	f2fs_bug_on(sbi, !i);
2153	__remove_free_nid(sbi, i, PREALLOC_NID);
2154	spin_unlock(&nm_i->nid_list_lock);
2155
2156	kmem_cache_free(free_nid_slab, i);
2157}
2158
2159/*
2160 * alloc_nid() should be called prior to this function.
2161 */
2162void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2163{
2164	struct f2fs_nm_info *nm_i = NM_I(sbi);
2165	struct free_nid *i;
2166	bool need_free = false;
2167
2168	if (!nid)
2169		return;
2170
2171	spin_lock(&nm_i->nid_list_lock);
2172	i = __lookup_free_nid_list(nm_i, nid);
2173	f2fs_bug_on(sbi, !i);
2174
2175	if (!available_free_memory(sbi, FREE_NIDS)) {
2176		__remove_free_nid(sbi, i, PREALLOC_NID);
2177		need_free = true;
2178	} else {
2179		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2180	}
2181
2182	nm_i->available_nids++;
2183
2184	update_free_nid_bitmap(sbi, nid, true, false);
2185
2186	spin_unlock(&nm_i->nid_list_lock);
2187
2188	if (need_free)
2189		kmem_cache_free(free_nid_slab, i);
2190}
2191
2192int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2193{
2194	struct f2fs_nm_info *nm_i = NM_I(sbi);
2195	struct free_nid *i, *next;
2196	int nr = nr_shrink;
2197
2198	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2199		return 0;
2200
2201	if (!mutex_trylock(&nm_i->build_lock))
2202		return 0;
2203
2204	spin_lock(&nm_i->nid_list_lock);
2205	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2206		if (nr_shrink <= 0 ||
2207				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2208			break;
2209
2210		__remove_free_nid(sbi, i, FREE_NID);
2211		kmem_cache_free(free_nid_slab, i);
2212		nr_shrink--;
2213	}
2214	spin_unlock(&nm_i->nid_list_lock);
2215	mutex_unlock(&nm_i->build_lock);
2216
2217	return nr - nr_shrink;
2218}
2219
2220void recover_inline_xattr(struct inode *inode, struct page *page)
2221{
2222	void *src_addr, *dst_addr;
2223	size_t inline_size;
2224	struct page *ipage;
2225	struct f2fs_inode *ri;
2226
2227	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2228	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2229
2230	ri = F2FS_INODE(page);
2231	if (ri->i_inline & F2FS_INLINE_XATTR) {
2232		set_inode_flag(inode, FI_INLINE_XATTR);
2233	} else {
2234		clear_inode_flag(inode, FI_INLINE_XATTR);
2235		goto update_inode;
2236	}
2237
2238	dst_addr = inline_xattr_addr(inode, ipage);
2239	src_addr = inline_xattr_addr(inode, page);
2240	inline_size = inline_xattr_size(inode);
2241
2242	f2fs_wait_on_page_writeback(ipage, NODE, true);
2243	memcpy(dst_addr, src_addr, inline_size);
2244update_inode:
2245	update_inode(inode, ipage);
2246	f2fs_put_page(ipage, 1);
2247}
2248
2249int recover_xattr_data(struct inode *inode, struct page *page)
2250{
2251	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2252	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2253	nid_t new_xnid;
2254	struct dnode_of_data dn;
2255	struct node_info ni;
2256	struct page *xpage;
 
2257
2258	if (!prev_xnid)
2259		goto recover_xnid;
2260
2261	/* 1: invalidate the previous xattr nid */
2262	get_node_info(sbi, prev_xnid, &ni);
2263	invalidate_blocks(sbi, ni.blk_addr);
 
 
 
2264	dec_valid_node_count(sbi, inode, false);
2265	set_node_addr(sbi, &ni, NULL_ADDR, false);
2266
2267recover_xnid:
2268	/* 2: update xattr nid in inode */
2269	if (!alloc_nid(sbi, &new_xnid))
2270		return -ENOSPC;
2271
2272	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2273	xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2274	if (IS_ERR(xpage)) {
2275		alloc_nid_failed(sbi, new_xnid);
2276		return PTR_ERR(xpage);
2277	}
2278
2279	alloc_nid_done(sbi, new_xnid);
2280	update_inode_page(inode);
2281
2282	/* 3: update and set xattr node page dirty */
2283	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2284
2285	set_page_dirty(xpage);
2286	f2fs_put_page(xpage, 1);
2287
2288	return 0;
2289}
2290
2291int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2292{
2293	struct f2fs_inode *src, *dst;
2294	nid_t ino = ino_of_node(page);
2295	struct node_info old_ni, new_ni;
2296	struct page *ipage;
 
2297
2298	get_node_info(sbi, ino, &old_ni);
 
 
2299
2300	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2301		return -EINVAL;
2302retry:
2303	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2304	if (!ipage) {
2305		congestion_wait(BLK_RW_ASYNC, HZ/50);
2306		goto retry;
2307	}
2308
2309	/* Should not use this inode from free nid list */
2310	remove_free_nid(sbi, ino);
2311
2312	if (!PageUptodate(ipage))
2313		SetPageUptodate(ipage);
2314	fill_node_footer(ipage, ino, ino, 0, true);
2315	set_cold_node(page, false);
2316
2317	src = F2FS_INODE(page);
2318	dst = F2FS_INODE(ipage);
2319
2320	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2321	dst->i_size = 0;
2322	dst->i_blocks = cpu_to_le64(1);
2323	dst->i_links = cpu_to_le32(1);
2324	dst->i_xattr_nid = 0;
2325	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2326	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2327		dst->i_extra_isize = src->i_extra_isize;
2328
2329		if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2330			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2331							i_inline_xattr_size))
2332			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2333
2334		if (f2fs_sb_has_project_quota(sbi->sb) &&
2335			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2336								i_projid))
2337			dst->i_projid = src->i_projid;
 
 
 
 
 
 
 
2338	}
2339
2340	new_ni = old_ni;
2341	new_ni.ino = ino;
2342
2343	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2344		WARN_ON(1);
2345	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2346	inc_valid_inode_count(sbi);
2347	set_page_dirty(ipage);
2348	f2fs_put_page(ipage, 1);
2349	return 0;
2350}
2351
2352void restore_node_summary(struct f2fs_sb_info *sbi,
2353			unsigned int segno, struct f2fs_summary_block *sum)
2354{
2355	struct f2fs_node *rn;
2356	struct f2fs_summary *sum_entry;
2357	block_t addr;
2358	int i, idx, last_offset, nrpages;
2359
2360	/* scan the node segment */
2361	last_offset = sbi->blocks_per_seg;
2362	addr = START_BLOCK(sbi, segno);
2363	sum_entry = &sum->entries[0];
2364
2365	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2366		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2367
2368		/* readahead node pages */
2369		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2370
2371		for (idx = addr; idx < addr + nrpages; idx++) {
2372			struct page *page = get_tmp_page(sbi, idx);
 
 
 
2373
2374			rn = F2FS_NODE(page);
2375			sum_entry->nid = rn->footer.nid;
2376			sum_entry->version = 0;
2377			sum_entry->ofs_in_node = 0;
2378			sum_entry++;
2379			f2fs_put_page(page, 1);
2380		}
2381
2382		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2383							addr + nrpages);
2384	}
 
2385}
2386
2387static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2388{
2389	struct f2fs_nm_info *nm_i = NM_I(sbi);
2390	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2391	struct f2fs_journal *journal = curseg->journal;
2392	int i;
2393
2394	down_write(&curseg->journal_rwsem);
2395	for (i = 0; i < nats_in_cursum(journal); i++) {
2396		struct nat_entry *ne;
2397		struct f2fs_nat_entry raw_ne;
2398		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2399
2400		raw_ne = nat_in_journal(journal, i);
2401
2402		ne = __lookup_nat_cache(nm_i, nid);
2403		if (!ne) {
2404			ne = __alloc_nat_entry(nid, true);
2405			__init_nat_entry(nm_i, ne, &raw_ne, true);
2406		}
2407
2408		/*
2409		 * if a free nat in journal has not been used after last
2410		 * checkpoint, we should remove it from available nids,
2411		 * since later we will add it again.
2412		 */
2413		if (!get_nat_flag(ne, IS_DIRTY) &&
2414				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2415			spin_lock(&nm_i->nid_list_lock);
2416			nm_i->available_nids--;
2417			spin_unlock(&nm_i->nid_list_lock);
2418		}
2419
2420		__set_nat_cache_dirty(nm_i, ne);
2421	}
2422	update_nats_in_cursum(journal, -i);
2423	up_write(&curseg->journal_rwsem);
2424}
2425
2426static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2427						struct list_head *head, int max)
2428{
2429	struct nat_entry_set *cur;
2430
2431	if (nes->entry_cnt >= max)
2432		goto add_out;
2433
2434	list_for_each_entry(cur, head, set_list) {
2435		if (cur->entry_cnt >= nes->entry_cnt) {
2436			list_add(&nes->set_list, cur->set_list.prev);
2437			return;
2438		}
2439	}
2440add_out:
2441	list_add_tail(&nes->set_list, head);
2442}
2443
2444static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2445						struct page *page)
2446{
2447	struct f2fs_nm_info *nm_i = NM_I(sbi);
2448	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2449	struct f2fs_nat_block *nat_blk = page_address(page);
2450	int valid = 0;
2451	int i = 0;
2452
2453	if (!enabled_nat_bits(sbi, NULL))
2454		return;
2455
2456	if (nat_index == 0) {
2457		valid = 1;
2458		i = 1;
2459	}
2460	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2461		if (nat_blk->entries[i].block_addr != NULL_ADDR)
2462			valid++;
2463	}
2464	if (valid == 0) {
2465		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2466		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2467		return;
2468	}
2469
2470	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2471	if (valid == NAT_ENTRY_PER_BLOCK)
2472		__set_bit_le(nat_index, nm_i->full_nat_bits);
2473	else
2474		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2475}
2476
2477static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2478		struct nat_entry_set *set, struct cp_control *cpc)
2479{
2480	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2481	struct f2fs_journal *journal = curseg->journal;
2482	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2483	bool to_journal = true;
2484	struct f2fs_nat_block *nat_blk;
2485	struct nat_entry *ne, *cur;
2486	struct page *page = NULL;
2487
2488	/*
2489	 * there are two steps to flush nat entries:
2490	 * #1, flush nat entries to journal in current hot data summary block.
2491	 * #2, flush nat entries to nat page.
2492	 */
2493	if (enabled_nat_bits(sbi, cpc) ||
2494		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2495		to_journal = false;
2496
2497	if (to_journal) {
2498		down_write(&curseg->journal_rwsem);
2499	} else {
2500		page = get_next_nat_page(sbi, start_nid);
 
 
 
2501		nat_blk = page_address(page);
2502		f2fs_bug_on(sbi, !nat_blk);
2503	}
2504
2505	/* flush dirty nats in nat entry set */
2506	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2507		struct f2fs_nat_entry *raw_ne;
2508		nid_t nid = nat_get_nid(ne);
2509		int offset;
2510
2511		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2512
2513		if (to_journal) {
2514			offset = lookup_journal_in_cursum(journal,
2515							NAT_JOURNAL, nid, 1);
2516			f2fs_bug_on(sbi, offset < 0);
2517			raw_ne = &nat_in_journal(journal, offset);
2518			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2519		} else {
2520			raw_ne = &nat_blk->entries[nid - start_nid];
2521		}
2522		raw_nat_from_node_info(raw_ne, &ne->ni);
2523		nat_reset_flag(ne);
2524		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2525		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2526			add_free_nid(sbi, nid, false, true);
2527		} else {
2528			spin_lock(&NM_I(sbi)->nid_list_lock);
2529			update_free_nid_bitmap(sbi, nid, false, false);
2530			spin_unlock(&NM_I(sbi)->nid_list_lock);
2531		}
2532	}
2533
2534	if (to_journal) {
2535		up_write(&curseg->journal_rwsem);
2536	} else {
2537		__update_nat_bits(sbi, start_nid, page);
2538		f2fs_put_page(page, 1);
2539	}
2540
2541	/* Allow dirty nats by node block allocation in write_begin */
2542	if (!set->entry_cnt) {
2543		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2544		kmem_cache_free(nat_entry_set_slab, set);
2545	}
 
2546}
2547
2548/*
2549 * This function is called during the checkpointing process.
2550 */
2551void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2552{
2553	struct f2fs_nm_info *nm_i = NM_I(sbi);
2554	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2555	struct f2fs_journal *journal = curseg->journal;
2556	struct nat_entry_set *setvec[SETVEC_SIZE];
2557	struct nat_entry_set *set, *tmp;
2558	unsigned int found;
2559	nid_t set_idx = 0;
2560	LIST_HEAD(sets);
 
 
 
 
 
 
 
 
2561
2562	if (!nm_i->dirty_nat_cnt)
2563		return;
2564
2565	down_write(&nm_i->nat_tree_lock);
2566
2567	/*
2568	 * if there are no enough space in journal to store dirty nat
2569	 * entries, remove all entries from journal and merge them
2570	 * into nat entry set.
2571	 */
2572	if (enabled_nat_bits(sbi, cpc) ||
2573		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2574		remove_nats_in_journal(sbi);
2575
2576	while ((found = __gang_lookup_nat_set(nm_i,
2577					set_idx, SETVEC_SIZE, setvec))) {
2578		unsigned idx;
2579		set_idx = setvec[found - 1]->set + 1;
2580		for (idx = 0; idx < found; idx++)
2581			__adjust_nat_entry_set(setvec[idx], &sets,
2582						MAX_NAT_JENTRIES(journal));
2583	}
2584
2585	/* flush dirty nats in nat entry set */
2586	list_for_each_entry_safe(set, tmp, &sets, set_list)
2587		__flush_nat_entry_set(sbi, set, cpc);
 
 
 
2588
2589	up_write(&nm_i->nat_tree_lock);
2590	/* Allow dirty nats by node block allocation in write_begin */
 
 
2591}
2592
2593static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2594{
2595	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2596	struct f2fs_nm_info *nm_i = NM_I(sbi);
2597	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2598	unsigned int i;
2599	__u64 cp_ver = cur_cp_version(ckpt);
2600	block_t nat_bits_addr;
2601
2602	if (!enabled_nat_bits(sbi, NULL))
2603		return 0;
2604
2605	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2606	nm_i->nat_bits = f2fs_kzalloc(sbi,
2607			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2608	if (!nm_i->nat_bits)
2609		return -ENOMEM;
2610
2611	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2612						nm_i->nat_bits_blocks;
2613	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2614		struct page *page = get_meta_page(sbi, nat_bits_addr++);
 
 
 
 
2615
2616		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2617					page_address(page), F2FS_BLKSIZE);
2618		f2fs_put_page(page, 1);
2619	}
2620
2621	cp_ver |= (cur_cp_crc(ckpt) << 32);
2622	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2623		disable_nat_bits(sbi, true);
2624		return 0;
2625	}
2626
2627	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2628	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2629
2630	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2631	return 0;
2632}
2633
2634static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2635{
2636	struct f2fs_nm_info *nm_i = NM_I(sbi);
2637	unsigned int i = 0;
2638	nid_t nid, last_nid;
2639
2640	if (!enabled_nat_bits(sbi, NULL))
2641		return;
2642
2643	for (i = 0; i < nm_i->nat_blocks; i++) {
2644		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2645		if (i >= nm_i->nat_blocks)
2646			break;
2647
2648		__set_bit_le(i, nm_i->nat_block_bitmap);
2649
2650		nid = i * NAT_ENTRY_PER_BLOCK;
2651		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2652
2653		spin_lock(&NM_I(sbi)->nid_list_lock);
2654		for (; nid < last_nid; nid++)
2655			update_free_nid_bitmap(sbi, nid, true, true);
2656		spin_unlock(&NM_I(sbi)->nid_list_lock);
2657	}
2658
2659	for (i = 0; i < nm_i->nat_blocks; i++) {
2660		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2661		if (i >= nm_i->nat_blocks)
2662			break;
2663
2664		__set_bit_le(i, nm_i->nat_block_bitmap);
2665	}
2666}
2667
2668static int init_node_manager(struct f2fs_sb_info *sbi)
2669{
2670	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2671	struct f2fs_nm_info *nm_i = NM_I(sbi);
2672	unsigned char *version_bitmap;
2673	unsigned int nat_segs;
2674	int err;
2675
2676	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2677
2678	/* segment_count_nat includes pair segment so divide to 2. */
2679	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2680	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2681	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2682
2683	/* not used nids: 0, node, meta, (and root counted as valid node) */
2684	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2685				sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2686	nm_i->nid_cnt[FREE_NID] = 0;
2687	nm_i->nid_cnt[PREALLOC_NID] = 0;
2688	nm_i->nat_cnt = 0;
2689	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2690	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2691	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2692
2693	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2694	INIT_LIST_HEAD(&nm_i->free_nid_list);
2695	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2696	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2697	INIT_LIST_HEAD(&nm_i->nat_entries);
 
2698
2699	mutex_init(&nm_i->build_lock);
2700	spin_lock_init(&nm_i->nid_list_lock);
2701	init_rwsem(&nm_i->nat_tree_lock);
2702
2703	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2704	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2705	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2706	if (!version_bitmap)
2707		return -EFAULT;
2708
2709	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2710					GFP_KERNEL);
2711	if (!nm_i->nat_bitmap)
2712		return -ENOMEM;
2713
2714	err = __get_nat_bitmaps(sbi);
2715	if (err)
2716		return err;
2717
2718#ifdef CONFIG_F2FS_CHECK_FS
2719	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2720					GFP_KERNEL);
2721	if (!nm_i->nat_bitmap_mir)
2722		return -ENOMEM;
2723#endif
2724
2725	return 0;
2726}
2727
2728static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2729{
2730	struct f2fs_nm_info *nm_i = NM_I(sbi);
2731	int i;
2732
2733	nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks *
2734				sizeof(unsigned char *), GFP_KERNEL);
 
 
2735	if (!nm_i->free_nid_bitmap)
2736		return -ENOMEM;
2737
2738	for (i = 0; i < nm_i->nat_blocks; i++) {
2739		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2740				NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2741		if (!nm_i->free_nid_bitmap)
2742			return -ENOMEM;
2743	}
2744
2745	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2746								GFP_KERNEL);
2747	if (!nm_i->nat_block_bitmap)
2748		return -ENOMEM;
2749
2750	nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2751					sizeof(unsigned short), GFP_KERNEL);
 
 
2752	if (!nm_i->free_nid_count)
2753		return -ENOMEM;
2754	return 0;
2755}
2756
2757int build_node_manager(struct f2fs_sb_info *sbi)
2758{
2759	int err;
2760
2761	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2762							GFP_KERNEL);
2763	if (!sbi->nm_info)
2764		return -ENOMEM;
2765
2766	err = init_node_manager(sbi);
2767	if (err)
2768		return err;
2769
2770	err = init_free_nid_cache(sbi);
2771	if (err)
2772		return err;
2773
2774	/* load free nid status from nat_bits table */
2775	load_free_nid_bitmap(sbi);
2776
2777	build_free_nids(sbi, true, true);
2778	return 0;
2779}
2780
2781void destroy_node_manager(struct f2fs_sb_info *sbi)
2782{
2783	struct f2fs_nm_info *nm_i = NM_I(sbi);
2784	struct free_nid *i, *next_i;
2785	struct nat_entry *natvec[NATVEC_SIZE];
2786	struct nat_entry_set *setvec[SETVEC_SIZE];
2787	nid_t nid = 0;
2788	unsigned int found;
2789
2790	if (!nm_i)
2791		return;
2792
2793	/* destroy free nid list */
2794	spin_lock(&nm_i->nid_list_lock);
2795	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2796		__remove_free_nid(sbi, i, FREE_NID);
2797		spin_unlock(&nm_i->nid_list_lock);
2798		kmem_cache_free(free_nid_slab, i);
2799		spin_lock(&nm_i->nid_list_lock);
2800	}
2801	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2802	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2803	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2804	spin_unlock(&nm_i->nid_list_lock);
2805
2806	/* destroy nat cache */
2807	down_write(&nm_i->nat_tree_lock);
2808	while ((found = __gang_lookup_nat_cache(nm_i,
2809					nid, NATVEC_SIZE, natvec))) {
2810		unsigned idx;
2811
2812		nid = nat_get_nid(natvec[found - 1]) + 1;
2813		for (idx = 0; idx < found; idx++)
 
 
 
 
2814			__del_from_nat_cache(nm_i, natvec[idx]);
 
2815	}
2816	f2fs_bug_on(sbi, nm_i->nat_cnt);
2817
2818	/* destroy nat set cache */
2819	nid = 0;
2820	while ((found = __gang_lookup_nat_set(nm_i,
2821					nid, SETVEC_SIZE, setvec))) {
2822		unsigned idx;
2823
2824		nid = setvec[found - 1]->set + 1;
2825		for (idx = 0; idx < found; idx++) {
2826			/* entry_cnt is not zero, when cp_error was occurred */
2827			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2828			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2829			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2830		}
2831	}
2832	up_write(&nm_i->nat_tree_lock);
2833
2834	kvfree(nm_i->nat_block_bitmap);
2835	if (nm_i->free_nid_bitmap) {
2836		int i;
2837
2838		for (i = 0; i < nm_i->nat_blocks; i++)
2839			kvfree(nm_i->free_nid_bitmap[i]);
2840		kfree(nm_i->free_nid_bitmap);
2841	}
2842	kvfree(nm_i->free_nid_count);
2843
2844	kfree(nm_i->nat_bitmap);
2845	kfree(nm_i->nat_bits);
2846#ifdef CONFIG_F2FS_CHECK_FS
2847	kfree(nm_i->nat_bitmap_mir);
2848#endif
2849	sbi->nm_info = NULL;
2850	kfree(nm_i);
2851}
2852
2853int __init create_node_manager_caches(void)
2854{
2855	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2856			sizeof(struct nat_entry));
2857	if (!nat_entry_slab)
2858		goto fail;
2859
2860	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2861			sizeof(struct free_nid));
2862	if (!free_nid_slab)
2863		goto destroy_nat_entry;
2864
2865	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2866			sizeof(struct nat_entry_set));
2867	if (!nat_entry_set_slab)
2868		goto destroy_free_nid;
 
 
 
 
 
2869	return 0;
2870
 
 
2871destroy_free_nid:
2872	kmem_cache_destroy(free_nid_slab);
2873destroy_nat_entry:
2874	kmem_cache_destroy(nat_entry_slab);
2875fail:
2876	return -ENOMEM;
2877}
2878
2879void destroy_node_manager_caches(void)
2880{
 
2881	kmem_cache_destroy(nat_entry_set_slab);
2882	kmem_cache_destroy(free_nid_slab);
2883	kmem_cache_destroy(nat_entry_slab);
2884}