Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "trace.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42}
43
44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45{
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98}
99
100static void clear_node_page_dirty(struct page *page)
101{
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108}
109
110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111{
112 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113}
114
115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116{
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142}
143
144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145{
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157}
158
159static void __free_nat_entry(struct nat_entry *e)
160{
161 kmem_cache_free(nat_entry_slab, e);
162}
163
164/* must be locked by nat_tree_lock */
165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167{
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt++;
181 return ne;
182}
183
184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185{
186 struct nat_entry *ne;
187
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
196 }
197
198 return ne;
199}
200
201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
203{
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205}
206
207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208{
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 nm_i->nat_cnt--;
211 __free_nat_entry(e);
212}
213
214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 struct nat_entry *ne)
216{
217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 struct nat_entry_set *head;
219
220 head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 if (!head) {
222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223
224 INIT_LIST_HEAD(&head->entry_list);
225 INIT_LIST_HEAD(&head->set_list);
226 head->set = set;
227 head->entry_cnt = 0;
228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229 }
230 return head;
231}
232
233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
235{
236 struct nat_entry_set *head;
237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238
239 if (!new_ne)
240 head = __grab_nat_entry_set(nm_i, ne);
241
242 /*
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
246 */
247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 !get_nat_flag(ne, IS_DIRTY)))
249 head->entry_cnt++;
250
251 set_nat_flag(ne, IS_PREALLOC, new_ne);
252
253 if (get_nat_flag(ne, IS_DIRTY))
254 goto refresh_list;
255
256 nm_i->dirty_nat_cnt++;
257 set_nat_flag(ne, IS_DIRTY, true);
258refresh_list:
259 spin_lock(&nm_i->nat_list_lock);
260 if (new_ne)
261 list_del_init(&ne->list);
262 else
263 list_move_tail(&ne->list, &head->entry_list);
264 spin_unlock(&nm_i->nat_list_lock);
265}
266
267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry_set *set, struct nat_entry *ne)
269{
270 spin_lock(&nm_i->nat_list_lock);
271 list_move_tail(&ne->list, &nm_i->nat_entries);
272 spin_unlock(&nm_i->nat_list_lock);
273
274 set_nat_flag(ne, IS_DIRTY, false);
275 set->entry_cnt--;
276 nm_i->dirty_nat_cnt--;
277}
278
279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281{
282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 start, nr);
284}
285
286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287{
288 return NODE_MAPPING(sbi) == page->mapping &&
289 IS_DNODE(page) && is_cold_node(page);
290}
291
292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293{
294 spin_lock_init(&sbi->fsync_node_lock);
295 INIT_LIST_HEAD(&sbi->fsync_node_list);
296 sbi->fsync_seg_id = 0;
297 sbi->fsync_node_num = 0;
298}
299
300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 struct page *page)
302{
303 struct fsync_node_entry *fn;
304 unsigned long flags;
305 unsigned int seq_id;
306
307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308
309 get_page(page);
310 fn->page = page;
311 INIT_LIST_HEAD(&fn->list);
312
313 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 list_add_tail(&fn->list, &sbi->fsync_node_list);
315 fn->seq_id = sbi->fsync_seg_id++;
316 seq_id = fn->seq_id;
317 sbi->fsync_node_num++;
318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319
320 return seq_id;
321}
322
323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324{
325 struct fsync_node_entry *fn;
326 unsigned long flags;
327
328 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 if (fn->page == page) {
331 list_del(&fn->list);
332 sbi->fsync_node_num--;
333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 kmem_cache_free(fsync_node_entry_slab, fn);
335 put_page(page);
336 return;
337 }
338 }
339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 f2fs_bug_on(sbi, 1);
341}
342
343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344{
345 unsigned long flags;
346
347 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 sbi->fsync_seg_id = 0;
349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350}
351
352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353{
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 struct nat_entry *e;
356 bool need = false;
357
358 down_read(&nm_i->nat_tree_lock);
359 e = __lookup_nat_cache(nm_i, nid);
360 if (e) {
361 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 !get_nat_flag(e, HAS_FSYNCED_INODE))
363 need = true;
364 }
365 up_read(&nm_i->nat_tree_lock);
366 return need;
367}
368
369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370{
371 struct f2fs_nm_info *nm_i = NM_I(sbi);
372 struct nat_entry *e;
373 bool is_cp = true;
374
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 is_cp = false;
379 up_read(&nm_i->nat_tree_lock);
380 return is_cp;
381}
382
383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384{
385 struct f2fs_nm_info *nm_i = NM_I(sbi);
386 struct nat_entry *e;
387 bool need_update = true;
388
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, ino);
391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 (get_nat_flag(e, IS_CHECKPOINTED) ||
393 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 need_update = false;
395 up_read(&nm_i->nat_tree_lock);
396 return need_update;
397}
398
399/* must be locked by nat_tree_lock */
400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 struct f2fs_nat_entry *ne)
402{
403 struct f2fs_nm_info *nm_i = NM_I(sbi);
404 struct nat_entry *new, *e;
405
406 new = __alloc_nat_entry(nid, false);
407 if (!new)
408 return;
409
410 down_write(&nm_i->nat_tree_lock);
411 e = __lookup_nat_cache(nm_i, nid);
412 if (!e)
413 e = __init_nat_entry(nm_i, new, ne, false);
414 else
415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 nat_get_blkaddr(e) !=
417 le32_to_cpu(ne->block_addr) ||
418 nat_get_version(e) != ne->version);
419 up_write(&nm_i->nat_tree_lock);
420 if (e != new)
421 __free_nat_entry(new);
422}
423
424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 block_t new_blkaddr, bool fsync_done)
426{
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *e;
429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430
431 down_write(&nm_i->nat_tree_lock);
432 e = __lookup_nat_cache(nm_i, ni->nid);
433 if (!e) {
434 e = __init_nat_entry(nm_i, new, NULL, true);
435 copy_node_info(&e->ni, ni);
436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 } else if (new_blkaddr == NEW_ADDR) {
438 /*
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
442 */
443 copy_node_info(&e->ni, ni);
444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445 }
446 /* let's free early to reduce memory consumption */
447 if (e != new)
448 __free_nat_entry(new);
449
450 /* sanity check */
451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 new_blkaddr == NULL_ADDR);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 new_blkaddr == NEW_ADDR);
456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 new_blkaddr == NEW_ADDR);
458
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 unsigned char version = nat_get_version(e);
462 nat_set_version(e, inc_node_version(version));
463 }
464
465 /* change address */
466 nat_set_blkaddr(e, new_blkaddr);
467 if (!__is_valid_data_blkaddr(new_blkaddr))
468 set_nat_flag(e, IS_CHECKPOINTED, false);
469 __set_nat_cache_dirty(nm_i, e);
470
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni->nid != ni->ino)
473 e = __lookup_nat_cache(nm_i, ni->ino);
474 if (e) {
475 if (fsync_done && ni->nid == ni->ino)
476 set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478 }
479 up_write(&nm_i->nat_tree_lock);
480}
481
482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483{
484 struct f2fs_nm_info *nm_i = NM_I(sbi);
485 int nr = nr_shrink;
486
487 if (!down_write_trylock(&nm_i->nat_tree_lock))
488 return 0;
489
490 spin_lock(&nm_i->nat_list_lock);
491 while (nr_shrink) {
492 struct nat_entry *ne;
493
494 if (list_empty(&nm_i->nat_entries))
495 break;
496
497 ne = list_first_entry(&nm_i->nat_entries,
498 struct nat_entry, list);
499 list_del(&ne->list);
500 spin_unlock(&nm_i->nat_list_lock);
501
502 __del_from_nat_cache(nm_i, ne);
503 nr_shrink--;
504
505 spin_lock(&nm_i->nat_list_lock);
506 }
507 spin_unlock(&nm_i->nat_list_lock);
508
509 up_write(&nm_i->nat_tree_lock);
510 return nr - nr_shrink;
511}
512
513/*
514 * This function always returns success
515 */
516int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517 struct node_info *ni)
518{
519 struct f2fs_nm_info *nm_i = NM_I(sbi);
520 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521 struct f2fs_journal *journal = curseg->journal;
522 nid_t start_nid = START_NID(nid);
523 struct f2fs_nat_block *nat_blk;
524 struct page *page = NULL;
525 struct f2fs_nat_entry ne;
526 struct nat_entry *e;
527 pgoff_t index;
528 block_t blkaddr;
529 int i;
530
531 ni->nid = nid;
532
533 /* Check nat cache */
534 down_read(&nm_i->nat_tree_lock);
535 e = __lookup_nat_cache(nm_i, nid);
536 if (e) {
537 ni->ino = nat_get_ino(e);
538 ni->blk_addr = nat_get_blkaddr(e);
539 ni->version = nat_get_version(e);
540 up_read(&nm_i->nat_tree_lock);
541 return 0;
542 }
543
544 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546 /* Check current segment summary */
547 down_read(&curseg->journal_rwsem);
548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 if (i >= 0) {
550 ne = nat_in_journal(journal, i);
551 node_info_from_raw_nat(ni, &ne);
552 }
553 up_read(&curseg->journal_rwsem);
554 if (i >= 0) {
555 up_read(&nm_i->nat_tree_lock);
556 goto cache;
557 }
558
559 /* Fill node_info from nat page */
560 index = current_nat_addr(sbi, nid);
561 up_read(&nm_i->nat_tree_lock);
562
563 page = f2fs_get_meta_page(sbi, index);
564 if (IS_ERR(page))
565 return PTR_ERR(page);
566
567 nat_blk = (struct f2fs_nat_block *)page_address(page);
568 ne = nat_blk->entries[nid - start_nid];
569 node_info_from_raw_nat(ni, &ne);
570 f2fs_put_page(page, 1);
571cache:
572 blkaddr = le32_to_cpu(ne.block_addr);
573 if (__is_valid_data_blkaddr(blkaddr) &&
574 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575 return -EFAULT;
576
577 /* cache nat entry */
578 cache_nat_entry(sbi, nid, &ne);
579 return 0;
580}
581
582/*
583 * readahead MAX_RA_NODE number of node pages.
584 */
585static void f2fs_ra_node_pages(struct page *parent, int start, int n)
586{
587 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588 struct blk_plug plug;
589 int i, end;
590 nid_t nid;
591
592 blk_start_plug(&plug);
593
594 /* Then, try readahead for siblings of the desired node */
595 end = start + n;
596 end = min(end, NIDS_PER_BLOCK);
597 for (i = start; i < end; i++) {
598 nid = get_nid(parent, i, false);
599 f2fs_ra_node_page(sbi, nid);
600 }
601
602 blk_finish_plug(&plug);
603}
604
605pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
606{
607 const long direct_index = ADDRS_PER_INODE(dn->inode);
608 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611 int cur_level = dn->cur_level;
612 int max_level = dn->max_level;
613 pgoff_t base = 0;
614
615 if (!dn->max_level)
616 return pgofs + 1;
617
618 while (max_level-- > cur_level)
619 skipped_unit *= NIDS_PER_BLOCK;
620
621 switch (dn->max_level) {
622 case 3:
623 base += 2 * indirect_blks;
624 /* fall through */
625 case 2:
626 base += 2 * direct_blks;
627 /* fall through */
628 case 1:
629 base += direct_index;
630 break;
631 default:
632 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
633 }
634
635 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
636}
637
638/*
639 * The maximum depth is four.
640 * Offset[0] will have raw inode offset.
641 */
642static int get_node_path(struct inode *inode, long block,
643 int offset[4], unsigned int noffset[4])
644{
645 const long direct_index = ADDRS_PER_INODE(inode);
646 const long direct_blks = ADDRS_PER_BLOCK(inode);
647 const long dptrs_per_blk = NIDS_PER_BLOCK;
648 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
649 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
650 int n = 0;
651 int level = 0;
652
653 noffset[0] = 0;
654
655 if (block < direct_index) {
656 offset[n] = block;
657 goto got;
658 }
659 block -= direct_index;
660 if (block < direct_blks) {
661 offset[n++] = NODE_DIR1_BLOCK;
662 noffset[n] = 1;
663 offset[n] = block;
664 level = 1;
665 goto got;
666 }
667 block -= direct_blks;
668 if (block < direct_blks) {
669 offset[n++] = NODE_DIR2_BLOCK;
670 noffset[n] = 2;
671 offset[n] = block;
672 level = 1;
673 goto got;
674 }
675 block -= direct_blks;
676 if (block < indirect_blks) {
677 offset[n++] = NODE_IND1_BLOCK;
678 noffset[n] = 3;
679 offset[n++] = block / direct_blks;
680 noffset[n] = 4 + offset[n - 1];
681 offset[n] = block % direct_blks;
682 level = 2;
683 goto got;
684 }
685 block -= indirect_blks;
686 if (block < indirect_blks) {
687 offset[n++] = NODE_IND2_BLOCK;
688 noffset[n] = 4 + dptrs_per_blk;
689 offset[n++] = block / direct_blks;
690 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
691 offset[n] = block % direct_blks;
692 level = 2;
693 goto got;
694 }
695 block -= indirect_blks;
696 if (block < dindirect_blks) {
697 offset[n++] = NODE_DIND_BLOCK;
698 noffset[n] = 5 + (dptrs_per_blk * 2);
699 offset[n++] = block / indirect_blks;
700 noffset[n] = 6 + (dptrs_per_blk * 2) +
701 offset[n - 1] * (dptrs_per_blk + 1);
702 offset[n++] = (block / direct_blks) % dptrs_per_blk;
703 noffset[n] = 7 + (dptrs_per_blk * 2) +
704 offset[n - 2] * (dptrs_per_blk + 1) +
705 offset[n - 1];
706 offset[n] = block % direct_blks;
707 level = 3;
708 goto got;
709 } else {
710 return -E2BIG;
711 }
712got:
713 return level;
714}
715
716/*
717 * Caller should call f2fs_put_dnode(dn).
718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
720 * In the case of RDONLY_NODE, we don't need to care about mutex.
721 */
722int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723{
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
732
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
736
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
739
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
744 }
745
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
751 }
752
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
758
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
762
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
768 }
769
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
776 }
777
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
786 }
787 done = true;
788 }
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
794 }
795
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
802 }
803 }
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
807 }
808 }
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = datablock_addr(dn->inode,
813 dn->node_page, dn->ofs_in_node);
814 return 0;
815
816release_pages:
817 f2fs_put_page(parent, 1);
818 if (i > 1)
819 f2fs_put_page(npage[0], 0);
820release_out:
821 dn->inode_page = NULL;
822 dn->node_page = NULL;
823 if (err == -ENOENT) {
824 dn->cur_level = i;
825 dn->max_level = level;
826 dn->ofs_in_node = offset[level];
827 }
828 return err;
829}
830
831static int truncate_node(struct dnode_of_data *dn)
832{
833 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
834 struct node_info ni;
835 int err;
836 pgoff_t index;
837
838 err = f2fs_get_node_info(sbi, dn->nid, &ni);
839 if (err)
840 return err;
841
842 /* Deallocate node address */
843 f2fs_invalidate_blocks(sbi, ni.blk_addr);
844 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
845 set_node_addr(sbi, &ni, NULL_ADDR, false);
846
847 if (dn->nid == dn->inode->i_ino) {
848 f2fs_remove_orphan_inode(sbi, dn->nid);
849 dec_valid_inode_count(sbi);
850 f2fs_inode_synced(dn->inode);
851 }
852
853 clear_node_page_dirty(dn->node_page);
854 set_sbi_flag(sbi, SBI_IS_DIRTY);
855
856 index = dn->node_page->index;
857 f2fs_put_page(dn->node_page, 1);
858
859 invalidate_mapping_pages(NODE_MAPPING(sbi),
860 index, index);
861
862 dn->node_page = NULL;
863 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
864
865 return 0;
866}
867
868static int truncate_dnode(struct dnode_of_data *dn)
869{
870 struct page *page;
871 int err;
872
873 if (dn->nid == 0)
874 return 1;
875
876 /* get direct node */
877 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
878 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
879 return 1;
880 else if (IS_ERR(page))
881 return PTR_ERR(page);
882
883 /* Make dnode_of_data for parameter */
884 dn->node_page = page;
885 dn->ofs_in_node = 0;
886 f2fs_truncate_data_blocks(dn);
887 err = truncate_node(dn);
888 if (err)
889 return err;
890
891 return 1;
892}
893
894static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
895 int ofs, int depth)
896{
897 struct dnode_of_data rdn = *dn;
898 struct page *page;
899 struct f2fs_node *rn;
900 nid_t child_nid;
901 unsigned int child_nofs;
902 int freed = 0;
903 int i, ret;
904
905 if (dn->nid == 0)
906 return NIDS_PER_BLOCK + 1;
907
908 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
909
910 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
911 if (IS_ERR(page)) {
912 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
913 return PTR_ERR(page);
914 }
915
916 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
917
918 rn = F2FS_NODE(page);
919 if (depth < 3) {
920 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
921 child_nid = le32_to_cpu(rn->in.nid[i]);
922 if (child_nid == 0)
923 continue;
924 rdn.nid = child_nid;
925 ret = truncate_dnode(&rdn);
926 if (ret < 0)
927 goto out_err;
928 if (set_nid(page, i, 0, false))
929 dn->node_changed = true;
930 }
931 } else {
932 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
933 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
934 child_nid = le32_to_cpu(rn->in.nid[i]);
935 if (child_nid == 0) {
936 child_nofs += NIDS_PER_BLOCK + 1;
937 continue;
938 }
939 rdn.nid = child_nid;
940 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
941 if (ret == (NIDS_PER_BLOCK + 1)) {
942 if (set_nid(page, i, 0, false))
943 dn->node_changed = true;
944 child_nofs += ret;
945 } else if (ret < 0 && ret != -ENOENT) {
946 goto out_err;
947 }
948 }
949 freed = child_nofs;
950 }
951
952 if (!ofs) {
953 /* remove current indirect node */
954 dn->node_page = page;
955 ret = truncate_node(dn);
956 if (ret)
957 goto out_err;
958 freed++;
959 } else {
960 f2fs_put_page(page, 1);
961 }
962 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
963 return freed;
964
965out_err:
966 f2fs_put_page(page, 1);
967 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
968 return ret;
969}
970
971static int truncate_partial_nodes(struct dnode_of_data *dn,
972 struct f2fs_inode *ri, int *offset, int depth)
973{
974 struct page *pages[2];
975 nid_t nid[3];
976 nid_t child_nid;
977 int err = 0;
978 int i;
979 int idx = depth - 2;
980
981 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
982 if (!nid[0])
983 return 0;
984
985 /* get indirect nodes in the path */
986 for (i = 0; i < idx + 1; i++) {
987 /* reference count'll be increased */
988 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
989 if (IS_ERR(pages[i])) {
990 err = PTR_ERR(pages[i]);
991 idx = i - 1;
992 goto fail;
993 }
994 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
995 }
996
997 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
998
999 /* free direct nodes linked to a partial indirect node */
1000 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001 child_nid = get_nid(pages[idx], i, false);
1002 if (!child_nid)
1003 continue;
1004 dn->nid = child_nid;
1005 err = truncate_dnode(dn);
1006 if (err < 0)
1007 goto fail;
1008 if (set_nid(pages[idx], i, 0, false))
1009 dn->node_changed = true;
1010 }
1011
1012 if (offset[idx + 1] == 0) {
1013 dn->node_page = pages[idx];
1014 dn->nid = nid[idx];
1015 err = truncate_node(dn);
1016 if (err)
1017 goto fail;
1018 } else {
1019 f2fs_put_page(pages[idx], 1);
1020 }
1021 offset[idx]++;
1022 offset[idx + 1] = 0;
1023 idx--;
1024fail:
1025 for (i = idx; i >= 0; i--)
1026 f2fs_put_page(pages[i], 1);
1027
1028 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029
1030 return err;
1031}
1032
1033/*
1034 * All the block addresses of data and nodes should be nullified.
1035 */
1036int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037{
1038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039 int err = 0, cont = 1;
1040 int level, offset[4], noffset[4];
1041 unsigned int nofs = 0;
1042 struct f2fs_inode *ri;
1043 struct dnode_of_data dn;
1044 struct page *page;
1045
1046 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047
1048 level = get_node_path(inode, from, offset, noffset);
1049 if (level < 0)
1050 return level;
1051
1052 page = f2fs_get_node_page(sbi, inode->i_ino);
1053 if (IS_ERR(page)) {
1054 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055 return PTR_ERR(page);
1056 }
1057
1058 set_new_dnode(&dn, inode, page, NULL, 0);
1059 unlock_page(page);
1060
1061 ri = F2FS_INODE(page);
1062 switch (level) {
1063 case 0:
1064 case 1:
1065 nofs = noffset[1];
1066 break;
1067 case 2:
1068 nofs = noffset[1];
1069 if (!offset[level - 1])
1070 goto skip_partial;
1071 err = truncate_partial_nodes(&dn, ri, offset, level);
1072 if (err < 0 && err != -ENOENT)
1073 goto fail;
1074 nofs += 1 + NIDS_PER_BLOCK;
1075 break;
1076 case 3:
1077 nofs = 5 + 2 * NIDS_PER_BLOCK;
1078 if (!offset[level - 1])
1079 goto skip_partial;
1080 err = truncate_partial_nodes(&dn, ri, offset, level);
1081 if (err < 0 && err != -ENOENT)
1082 goto fail;
1083 break;
1084 default:
1085 BUG();
1086 }
1087
1088skip_partial:
1089 while (cont) {
1090 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091 switch (offset[0]) {
1092 case NODE_DIR1_BLOCK:
1093 case NODE_DIR2_BLOCK:
1094 err = truncate_dnode(&dn);
1095 break;
1096
1097 case NODE_IND1_BLOCK:
1098 case NODE_IND2_BLOCK:
1099 err = truncate_nodes(&dn, nofs, offset[1], 2);
1100 break;
1101
1102 case NODE_DIND_BLOCK:
1103 err = truncate_nodes(&dn, nofs, offset[1], 3);
1104 cont = 0;
1105 break;
1106
1107 default:
1108 BUG();
1109 }
1110 if (err < 0 && err != -ENOENT)
1111 goto fail;
1112 if (offset[1] == 0 &&
1113 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114 lock_page(page);
1115 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116 f2fs_wait_on_page_writeback(page, NODE, true, true);
1117 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118 set_page_dirty(page);
1119 unlock_page(page);
1120 }
1121 offset[1] = 0;
1122 offset[0]++;
1123 nofs += err;
1124 }
1125fail:
1126 f2fs_put_page(page, 0);
1127 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128 return err > 0 ? 0 : err;
1129}
1130
1131/* caller must lock inode page */
1132int f2fs_truncate_xattr_node(struct inode *inode)
1133{
1134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136 struct dnode_of_data dn;
1137 struct page *npage;
1138 int err;
1139
1140 if (!nid)
1141 return 0;
1142
1143 npage = f2fs_get_node_page(sbi, nid);
1144 if (IS_ERR(npage))
1145 return PTR_ERR(npage);
1146
1147 set_new_dnode(&dn, inode, NULL, npage, nid);
1148 err = truncate_node(&dn);
1149 if (err) {
1150 f2fs_put_page(npage, 1);
1151 return err;
1152 }
1153
1154 f2fs_i_xnid_write(inode, 0);
1155
1156 return 0;
1157}
1158
1159/*
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161 * f2fs_unlock_op().
1162 */
1163int f2fs_remove_inode_page(struct inode *inode)
1164{
1165 struct dnode_of_data dn;
1166 int err;
1167
1168 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170 if (err)
1171 return err;
1172
1173 err = f2fs_truncate_xattr_node(inode);
1174 if (err) {
1175 f2fs_put_dnode(&dn);
1176 return err;
1177 }
1178
1179 /* remove potential inline_data blocks */
1180 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181 S_ISLNK(inode->i_mode))
1182 f2fs_truncate_data_blocks_range(&dn, 1);
1183
1184 /* 0 is possible, after f2fs_new_inode() has failed */
1185 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186 f2fs_put_dnode(&dn);
1187 return -EIO;
1188 }
1189
1190 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191 f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192 inode->i_ino, (unsigned long long)inode->i_blocks);
1193 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194 }
1195
1196 /* will put inode & node pages */
1197 err = truncate_node(&dn);
1198 if (err) {
1199 f2fs_put_dnode(&dn);
1200 return err;
1201 }
1202 return 0;
1203}
1204
1205struct page *f2fs_new_inode_page(struct inode *inode)
1206{
1207 struct dnode_of_data dn;
1208
1209 /* allocate inode page for new inode */
1210 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211
1212 /* caller should f2fs_put_page(page, 1); */
1213 return f2fs_new_node_page(&dn, 0);
1214}
1215
1216struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1217{
1218 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219 struct node_info new_ni;
1220 struct page *page;
1221 int err;
1222
1223 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224 return ERR_PTR(-EPERM);
1225
1226 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227 if (!page)
1228 return ERR_PTR(-ENOMEM);
1229
1230 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231 goto fail;
1232
1233#ifdef CONFIG_F2FS_CHECK_FS
1234 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235 if (err) {
1236 dec_valid_node_count(sbi, dn->inode, !ofs);
1237 goto fail;
1238 }
1239 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240#endif
1241 new_ni.nid = dn->nid;
1242 new_ni.ino = dn->inode->i_ino;
1243 new_ni.blk_addr = NULL_ADDR;
1244 new_ni.flag = 0;
1245 new_ni.version = 0;
1246 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247
1248 f2fs_wait_on_page_writeback(page, NODE, true, true);
1249 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251 if (!PageUptodate(page))
1252 SetPageUptodate(page);
1253 if (set_page_dirty(page))
1254 dn->node_changed = true;
1255
1256 if (f2fs_has_xattr_block(ofs))
1257 f2fs_i_xnid_write(dn->inode, dn->nid);
1258
1259 if (ofs == 0)
1260 inc_valid_inode_count(sbi);
1261 return page;
1262
1263fail:
1264 clear_node_page_dirty(page);
1265 f2fs_put_page(page, 1);
1266 return ERR_PTR(err);
1267}
1268
1269/*
1270 * Caller should do after getting the following values.
1271 * 0: f2fs_put_page(page, 0)
1272 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1273 */
1274static int read_node_page(struct page *page, int op_flags)
1275{
1276 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277 struct node_info ni;
1278 struct f2fs_io_info fio = {
1279 .sbi = sbi,
1280 .type = NODE,
1281 .op = REQ_OP_READ,
1282 .op_flags = op_flags,
1283 .page = page,
1284 .encrypted_page = NULL,
1285 };
1286 int err;
1287
1288 if (PageUptodate(page)) {
1289 if (!f2fs_inode_chksum_verify(sbi, page)) {
1290 ClearPageUptodate(page);
1291 return -EFSBADCRC;
1292 }
1293 return LOCKED_PAGE;
1294 }
1295
1296 err = f2fs_get_node_info(sbi, page->index, &ni);
1297 if (err)
1298 return err;
1299
1300 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302 ClearPageUptodate(page);
1303 return -ENOENT;
1304 }
1305
1306 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307 return f2fs_submit_page_bio(&fio);
1308}
1309
1310/*
1311 * Readahead a node page
1312 */
1313void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314{
1315 struct page *apage;
1316 int err;
1317
1318 if (!nid)
1319 return;
1320 if (f2fs_check_nid_range(sbi, nid))
1321 return;
1322
1323 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324 if (apage)
1325 return;
1326
1327 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328 if (!apage)
1329 return;
1330
1331 err = read_node_page(apage, REQ_RAHEAD);
1332 f2fs_put_page(apage, err ? 1 : 0);
1333}
1334
1335static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336 struct page *parent, int start)
1337{
1338 struct page *page;
1339 int err;
1340
1341 if (!nid)
1342 return ERR_PTR(-ENOENT);
1343 if (f2fs_check_nid_range(sbi, nid))
1344 return ERR_PTR(-EINVAL);
1345repeat:
1346 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347 if (!page)
1348 return ERR_PTR(-ENOMEM);
1349
1350 err = read_node_page(page, 0);
1351 if (err < 0) {
1352 f2fs_put_page(page, 1);
1353 return ERR_PTR(err);
1354 } else if (err == LOCKED_PAGE) {
1355 err = 0;
1356 goto page_hit;
1357 }
1358
1359 if (parent)
1360 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361
1362 lock_page(page);
1363
1364 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365 f2fs_put_page(page, 1);
1366 goto repeat;
1367 }
1368
1369 if (unlikely(!PageUptodate(page))) {
1370 err = -EIO;
1371 goto out_err;
1372 }
1373
1374 if (!f2fs_inode_chksum_verify(sbi, page)) {
1375 err = -EFSBADCRC;
1376 goto out_err;
1377 }
1378page_hit:
1379 if(unlikely(nid != nid_of_node(page))) {
1380 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381 nid, nid_of_node(page), ino_of_node(page),
1382 ofs_of_node(page), cpver_of_node(page),
1383 next_blkaddr_of_node(page));
1384 err = -EINVAL;
1385out_err:
1386 ClearPageUptodate(page);
1387 f2fs_put_page(page, 1);
1388 return ERR_PTR(err);
1389 }
1390 return page;
1391}
1392
1393struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394{
1395 return __get_node_page(sbi, nid, NULL, 0);
1396}
1397
1398struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399{
1400 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401 nid_t nid = get_nid(parent, start, false);
1402
1403 return __get_node_page(sbi, nid, parent, start);
1404}
1405
1406static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407{
1408 struct inode *inode;
1409 struct page *page;
1410 int ret;
1411
1412 /* should flush inline_data before evict_inode */
1413 inode = ilookup(sbi->sb, ino);
1414 if (!inode)
1415 return;
1416
1417 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418 FGP_LOCK|FGP_NOWAIT, 0);
1419 if (!page)
1420 goto iput_out;
1421
1422 if (!PageUptodate(page))
1423 goto page_out;
1424
1425 if (!PageDirty(page))
1426 goto page_out;
1427
1428 if (!clear_page_dirty_for_io(page))
1429 goto page_out;
1430
1431 ret = f2fs_write_inline_data(inode, page);
1432 inode_dec_dirty_pages(inode);
1433 f2fs_remove_dirty_inode(inode);
1434 if (ret)
1435 set_page_dirty(page);
1436page_out:
1437 f2fs_put_page(page, 1);
1438iput_out:
1439 iput(inode);
1440}
1441
1442static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443{
1444 pgoff_t index;
1445 struct pagevec pvec;
1446 struct page *last_page = NULL;
1447 int nr_pages;
1448
1449 pagevec_init(&pvec);
1450 index = 0;
1451
1452 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453 PAGECACHE_TAG_DIRTY))) {
1454 int i;
1455
1456 for (i = 0; i < nr_pages; i++) {
1457 struct page *page = pvec.pages[i];
1458
1459 if (unlikely(f2fs_cp_error(sbi))) {
1460 f2fs_put_page(last_page, 0);
1461 pagevec_release(&pvec);
1462 return ERR_PTR(-EIO);
1463 }
1464
1465 if (!IS_DNODE(page) || !is_cold_node(page))
1466 continue;
1467 if (ino_of_node(page) != ino)
1468 continue;
1469
1470 lock_page(page);
1471
1472 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473continue_unlock:
1474 unlock_page(page);
1475 continue;
1476 }
1477 if (ino_of_node(page) != ino)
1478 goto continue_unlock;
1479
1480 if (!PageDirty(page)) {
1481 /* someone wrote it for us */
1482 goto continue_unlock;
1483 }
1484
1485 if (last_page)
1486 f2fs_put_page(last_page, 0);
1487
1488 get_page(page);
1489 last_page = page;
1490 unlock_page(page);
1491 }
1492 pagevec_release(&pvec);
1493 cond_resched();
1494 }
1495 return last_page;
1496}
1497
1498static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499 struct writeback_control *wbc, bool do_balance,
1500 enum iostat_type io_type, unsigned int *seq_id)
1501{
1502 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503 nid_t nid;
1504 struct node_info ni;
1505 struct f2fs_io_info fio = {
1506 .sbi = sbi,
1507 .ino = ino_of_node(page),
1508 .type = NODE,
1509 .op = REQ_OP_WRITE,
1510 .op_flags = wbc_to_write_flags(wbc),
1511 .page = page,
1512 .encrypted_page = NULL,
1513 .submitted = false,
1514 .io_type = io_type,
1515 .io_wbc = wbc,
1516 };
1517 unsigned int seq;
1518
1519 trace_f2fs_writepage(page, NODE);
1520
1521 if (unlikely(f2fs_cp_error(sbi)))
1522 goto redirty_out;
1523
1524 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525 goto redirty_out;
1526
1527 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528 wbc->sync_mode == WB_SYNC_NONE &&
1529 IS_DNODE(page) && is_cold_node(page))
1530 goto redirty_out;
1531
1532 /* get old block addr of this node page */
1533 nid = nid_of_node(page);
1534 f2fs_bug_on(sbi, page->index != nid);
1535
1536 if (f2fs_get_node_info(sbi, nid, &ni))
1537 goto redirty_out;
1538
1539 if (wbc->for_reclaim) {
1540 if (!down_read_trylock(&sbi->node_write))
1541 goto redirty_out;
1542 } else {
1543 down_read(&sbi->node_write);
1544 }
1545
1546 /* This page is already truncated */
1547 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548 ClearPageUptodate(page);
1549 dec_page_count(sbi, F2FS_DIRTY_NODES);
1550 up_read(&sbi->node_write);
1551 unlock_page(page);
1552 return 0;
1553 }
1554
1555 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557 DATA_GENERIC_ENHANCE)) {
1558 up_read(&sbi->node_write);
1559 goto redirty_out;
1560 }
1561
1562 if (atomic && !test_opt(sbi, NOBARRIER))
1563 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1564
1565 set_page_writeback(page);
1566 ClearPageError(page);
1567
1568 if (f2fs_in_warm_node_list(sbi, page)) {
1569 seq = f2fs_add_fsync_node_entry(sbi, page);
1570 if (seq_id)
1571 *seq_id = seq;
1572 }
1573
1574 fio.old_blkaddr = ni.blk_addr;
1575 f2fs_do_write_node_page(nid, &fio);
1576 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1577 dec_page_count(sbi, F2FS_DIRTY_NODES);
1578 up_read(&sbi->node_write);
1579
1580 if (wbc->for_reclaim) {
1581 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1582 submitted = NULL;
1583 }
1584
1585 unlock_page(page);
1586
1587 if (unlikely(f2fs_cp_error(sbi))) {
1588 f2fs_submit_merged_write(sbi, NODE);
1589 submitted = NULL;
1590 }
1591 if (submitted)
1592 *submitted = fio.submitted;
1593
1594 if (do_balance)
1595 f2fs_balance_fs(sbi, false);
1596 return 0;
1597
1598redirty_out:
1599 redirty_page_for_writepage(wbc, page);
1600 return AOP_WRITEPAGE_ACTIVATE;
1601}
1602
1603int f2fs_move_node_page(struct page *node_page, int gc_type)
1604{
1605 int err = 0;
1606
1607 if (gc_type == FG_GC) {
1608 struct writeback_control wbc = {
1609 .sync_mode = WB_SYNC_ALL,
1610 .nr_to_write = 1,
1611 .for_reclaim = 0,
1612 };
1613
1614 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1615
1616 set_page_dirty(node_page);
1617
1618 if (!clear_page_dirty_for_io(node_page)) {
1619 err = -EAGAIN;
1620 goto out_page;
1621 }
1622
1623 if (__write_node_page(node_page, false, NULL,
1624 &wbc, false, FS_GC_NODE_IO, NULL)) {
1625 err = -EAGAIN;
1626 unlock_page(node_page);
1627 }
1628 goto release_page;
1629 } else {
1630 /* set page dirty and write it */
1631 if (!PageWriteback(node_page))
1632 set_page_dirty(node_page);
1633 }
1634out_page:
1635 unlock_page(node_page);
1636release_page:
1637 f2fs_put_page(node_page, 0);
1638 return err;
1639}
1640
1641static int f2fs_write_node_page(struct page *page,
1642 struct writeback_control *wbc)
1643{
1644 return __write_node_page(page, false, NULL, wbc, false,
1645 FS_NODE_IO, NULL);
1646}
1647
1648int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1649 struct writeback_control *wbc, bool atomic,
1650 unsigned int *seq_id)
1651{
1652 pgoff_t index;
1653 struct pagevec pvec;
1654 int ret = 0;
1655 struct page *last_page = NULL;
1656 bool marked = false;
1657 nid_t ino = inode->i_ino;
1658 int nr_pages;
1659 int nwritten = 0;
1660
1661 if (atomic) {
1662 last_page = last_fsync_dnode(sbi, ino);
1663 if (IS_ERR_OR_NULL(last_page))
1664 return PTR_ERR_OR_ZERO(last_page);
1665 }
1666retry:
1667 pagevec_init(&pvec);
1668 index = 0;
1669
1670 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1671 PAGECACHE_TAG_DIRTY))) {
1672 int i;
1673
1674 for (i = 0; i < nr_pages; i++) {
1675 struct page *page = pvec.pages[i];
1676 bool submitted = false;
1677
1678 if (unlikely(f2fs_cp_error(sbi))) {
1679 f2fs_put_page(last_page, 0);
1680 pagevec_release(&pvec);
1681 ret = -EIO;
1682 goto out;
1683 }
1684
1685 if (!IS_DNODE(page) || !is_cold_node(page))
1686 continue;
1687 if (ino_of_node(page) != ino)
1688 continue;
1689
1690 lock_page(page);
1691
1692 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1693continue_unlock:
1694 unlock_page(page);
1695 continue;
1696 }
1697 if (ino_of_node(page) != ino)
1698 goto continue_unlock;
1699
1700 if (!PageDirty(page) && page != last_page) {
1701 /* someone wrote it for us */
1702 goto continue_unlock;
1703 }
1704
1705 f2fs_wait_on_page_writeback(page, NODE, true, true);
1706
1707 set_fsync_mark(page, 0);
1708 set_dentry_mark(page, 0);
1709
1710 if (!atomic || page == last_page) {
1711 set_fsync_mark(page, 1);
1712 if (IS_INODE(page)) {
1713 if (is_inode_flag_set(inode,
1714 FI_DIRTY_INODE))
1715 f2fs_update_inode(inode, page);
1716 set_dentry_mark(page,
1717 f2fs_need_dentry_mark(sbi, ino));
1718 }
1719 /* may be written by other thread */
1720 if (!PageDirty(page))
1721 set_page_dirty(page);
1722 }
1723
1724 if (!clear_page_dirty_for_io(page))
1725 goto continue_unlock;
1726
1727 ret = __write_node_page(page, atomic &&
1728 page == last_page,
1729 &submitted, wbc, true,
1730 FS_NODE_IO, seq_id);
1731 if (ret) {
1732 unlock_page(page);
1733 f2fs_put_page(last_page, 0);
1734 break;
1735 } else if (submitted) {
1736 nwritten++;
1737 }
1738
1739 if (page == last_page) {
1740 f2fs_put_page(page, 0);
1741 marked = true;
1742 break;
1743 }
1744 }
1745 pagevec_release(&pvec);
1746 cond_resched();
1747
1748 if (ret || marked)
1749 break;
1750 }
1751 if (!ret && atomic && !marked) {
1752 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1753 ino, last_page->index);
1754 lock_page(last_page);
1755 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1756 set_page_dirty(last_page);
1757 unlock_page(last_page);
1758 goto retry;
1759 }
1760out:
1761 if (nwritten)
1762 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1763 return ret ? -EIO: 0;
1764}
1765
1766static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1767{
1768 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769 bool clean;
1770
1771 if (inode->i_ino != ino)
1772 return 0;
1773
1774 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1775 return 0;
1776
1777 spin_lock(&sbi->inode_lock[DIRTY_META]);
1778 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1779 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1780
1781 if (clean)
1782 return 0;
1783
1784 inode = igrab(inode);
1785 if (!inode)
1786 return 0;
1787 return 1;
1788}
1789
1790static bool flush_dirty_inode(struct page *page)
1791{
1792 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1793 struct inode *inode;
1794 nid_t ino = ino_of_node(page);
1795
1796 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1797 if (!inode)
1798 return false;
1799
1800 f2fs_update_inode(inode, page);
1801 unlock_page(page);
1802
1803 iput(inode);
1804 return true;
1805}
1806
1807int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1808 struct writeback_control *wbc,
1809 bool do_balance, enum iostat_type io_type)
1810{
1811 pgoff_t index;
1812 struct pagevec pvec;
1813 int step = 0;
1814 int nwritten = 0;
1815 int ret = 0;
1816 int nr_pages, done = 0;
1817
1818 pagevec_init(&pvec);
1819
1820next_step:
1821 index = 0;
1822
1823 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1824 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1825 int i;
1826
1827 for (i = 0; i < nr_pages; i++) {
1828 struct page *page = pvec.pages[i];
1829 bool submitted = false;
1830 bool may_dirty = true;
1831
1832 /* give a priority to WB_SYNC threads */
1833 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1834 wbc->sync_mode == WB_SYNC_NONE) {
1835 done = 1;
1836 break;
1837 }
1838
1839 /*
1840 * flushing sequence with step:
1841 * 0. indirect nodes
1842 * 1. dentry dnodes
1843 * 2. file dnodes
1844 */
1845 if (step == 0 && IS_DNODE(page))
1846 continue;
1847 if (step == 1 && (!IS_DNODE(page) ||
1848 is_cold_node(page)))
1849 continue;
1850 if (step == 2 && (!IS_DNODE(page) ||
1851 !is_cold_node(page)))
1852 continue;
1853lock_node:
1854 if (wbc->sync_mode == WB_SYNC_ALL)
1855 lock_page(page);
1856 else if (!trylock_page(page))
1857 continue;
1858
1859 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860continue_unlock:
1861 unlock_page(page);
1862 continue;
1863 }
1864
1865 if (!PageDirty(page)) {
1866 /* someone wrote it for us */
1867 goto continue_unlock;
1868 }
1869
1870 /* flush inline_data */
1871 if (is_inline_node(page)) {
1872 clear_inline_node(page);
1873 unlock_page(page);
1874 flush_inline_data(sbi, ino_of_node(page));
1875 goto lock_node;
1876 }
1877
1878 /* flush dirty inode */
1879 if (IS_INODE(page) && may_dirty) {
1880 may_dirty = false;
1881 if (flush_dirty_inode(page))
1882 goto lock_node;
1883 }
1884
1885 f2fs_wait_on_page_writeback(page, NODE, true, true);
1886
1887 if (!clear_page_dirty_for_io(page))
1888 goto continue_unlock;
1889
1890 set_fsync_mark(page, 0);
1891 set_dentry_mark(page, 0);
1892
1893 ret = __write_node_page(page, false, &submitted,
1894 wbc, do_balance, io_type, NULL);
1895 if (ret)
1896 unlock_page(page);
1897 else if (submitted)
1898 nwritten++;
1899
1900 if (--wbc->nr_to_write == 0)
1901 break;
1902 }
1903 pagevec_release(&pvec);
1904 cond_resched();
1905
1906 if (wbc->nr_to_write == 0) {
1907 step = 2;
1908 break;
1909 }
1910 }
1911
1912 if (step < 2) {
1913 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1915 goto out;
1916 step++;
1917 goto next_step;
1918 }
1919out:
1920 if (nwritten)
1921 f2fs_submit_merged_write(sbi, NODE);
1922
1923 if (unlikely(f2fs_cp_error(sbi)))
1924 return -EIO;
1925 return ret;
1926}
1927
1928int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1929 unsigned int seq_id)
1930{
1931 struct fsync_node_entry *fn;
1932 struct page *page;
1933 struct list_head *head = &sbi->fsync_node_list;
1934 unsigned long flags;
1935 unsigned int cur_seq_id = 0;
1936 int ret2, ret = 0;
1937
1938 while (seq_id && cur_seq_id < seq_id) {
1939 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1940 if (list_empty(head)) {
1941 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1942 break;
1943 }
1944 fn = list_first_entry(head, struct fsync_node_entry, list);
1945 if (fn->seq_id > seq_id) {
1946 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1947 break;
1948 }
1949 cur_seq_id = fn->seq_id;
1950 page = fn->page;
1951 get_page(page);
1952 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1953
1954 f2fs_wait_on_page_writeback(page, NODE, true, false);
1955 if (TestClearPageError(page))
1956 ret = -EIO;
1957
1958 put_page(page);
1959
1960 if (ret)
1961 break;
1962 }
1963
1964 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1965 if (!ret)
1966 ret = ret2;
1967
1968 return ret;
1969}
1970
1971static int f2fs_write_node_pages(struct address_space *mapping,
1972 struct writeback_control *wbc)
1973{
1974 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1975 struct blk_plug plug;
1976 long diff;
1977
1978 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1979 goto skip_write;
1980
1981 /* balancing f2fs's metadata in background */
1982 f2fs_balance_fs_bg(sbi);
1983
1984 /* collect a number of dirty node pages and write together */
1985 if (wbc->sync_mode != WB_SYNC_ALL &&
1986 get_pages(sbi, F2FS_DIRTY_NODES) <
1987 nr_pages_to_skip(sbi, NODE))
1988 goto skip_write;
1989
1990 if (wbc->sync_mode == WB_SYNC_ALL)
1991 atomic_inc(&sbi->wb_sync_req[NODE]);
1992 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1993 goto skip_write;
1994
1995 trace_f2fs_writepages(mapping->host, wbc, NODE);
1996
1997 diff = nr_pages_to_write(sbi, NODE, wbc);
1998 blk_start_plug(&plug);
1999 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2000 blk_finish_plug(&plug);
2001 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2002
2003 if (wbc->sync_mode == WB_SYNC_ALL)
2004 atomic_dec(&sbi->wb_sync_req[NODE]);
2005 return 0;
2006
2007skip_write:
2008 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2009 trace_f2fs_writepages(mapping->host, wbc, NODE);
2010 return 0;
2011}
2012
2013static int f2fs_set_node_page_dirty(struct page *page)
2014{
2015 trace_f2fs_set_page_dirty(page, NODE);
2016
2017 if (!PageUptodate(page))
2018 SetPageUptodate(page);
2019#ifdef CONFIG_F2FS_CHECK_FS
2020 if (IS_INODE(page))
2021 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2022#endif
2023 if (!PageDirty(page)) {
2024 __set_page_dirty_nobuffers(page);
2025 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2026 f2fs_set_page_private(page, 0);
2027 f2fs_trace_pid(page);
2028 return 1;
2029 }
2030 return 0;
2031}
2032
2033/*
2034 * Structure of the f2fs node operations
2035 */
2036const struct address_space_operations f2fs_node_aops = {
2037 .writepage = f2fs_write_node_page,
2038 .writepages = f2fs_write_node_pages,
2039 .set_page_dirty = f2fs_set_node_page_dirty,
2040 .invalidatepage = f2fs_invalidate_page,
2041 .releasepage = f2fs_release_page,
2042#ifdef CONFIG_MIGRATION
2043 .migratepage = f2fs_migrate_page,
2044#endif
2045};
2046
2047static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2048 nid_t n)
2049{
2050 return radix_tree_lookup(&nm_i->free_nid_root, n);
2051}
2052
2053static int __insert_free_nid(struct f2fs_sb_info *sbi,
2054 struct free_nid *i, enum nid_state state)
2055{
2056 struct f2fs_nm_info *nm_i = NM_I(sbi);
2057
2058 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2059 if (err)
2060 return err;
2061
2062 f2fs_bug_on(sbi, state != i->state);
2063 nm_i->nid_cnt[state]++;
2064 if (state == FREE_NID)
2065 list_add_tail(&i->list, &nm_i->free_nid_list);
2066 return 0;
2067}
2068
2069static void __remove_free_nid(struct f2fs_sb_info *sbi,
2070 struct free_nid *i, enum nid_state state)
2071{
2072 struct f2fs_nm_info *nm_i = NM_I(sbi);
2073
2074 f2fs_bug_on(sbi, state != i->state);
2075 nm_i->nid_cnt[state]--;
2076 if (state == FREE_NID)
2077 list_del(&i->list);
2078 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2079}
2080
2081static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2082 enum nid_state org_state, enum nid_state dst_state)
2083{
2084 struct f2fs_nm_info *nm_i = NM_I(sbi);
2085
2086 f2fs_bug_on(sbi, org_state != i->state);
2087 i->state = dst_state;
2088 nm_i->nid_cnt[org_state]--;
2089 nm_i->nid_cnt[dst_state]++;
2090
2091 switch (dst_state) {
2092 case PREALLOC_NID:
2093 list_del(&i->list);
2094 break;
2095 case FREE_NID:
2096 list_add_tail(&i->list, &nm_i->free_nid_list);
2097 break;
2098 default:
2099 BUG_ON(1);
2100 }
2101}
2102
2103static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2104 bool set, bool build)
2105{
2106 struct f2fs_nm_info *nm_i = NM_I(sbi);
2107 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2108 unsigned int nid_ofs = nid - START_NID(nid);
2109
2110 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2111 return;
2112
2113 if (set) {
2114 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2115 return;
2116 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2117 nm_i->free_nid_count[nat_ofs]++;
2118 } else {
2119 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2120 return;
2121 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2122 if (!build)
2123 nm_i->free_nid_count[nat_ofs]--;
2124 }
2125}
2126
2127/* return if the nid is recognized as free */
2128static bool add_free_nid(struct f2fs_sb_info *sbi,
2129 nid_t nid, bool build, bool update)
2130{
2131 struct f2fs_nm_info *nm_i = NM_I(sbi);
2132 struct free_nid *i, *e;
2133 struct nat_entry *ne;
2134 int err = -EINVAL;
2135 bool ret = false;
2136
2137 /* 0 nid should not be used */
2138 if (unlikely(nid == 0))
2139 return false;
2140
2141 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2142 return false;
2143
2144 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2145 i->nid = nid;
2146 i->state = FREE_NID;
2147
2148 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2149
2150 spin_lock(&nm_i->nid_list_lock);
2151
2152 if (build) {
2153 /*
2154 * Thread A Thread B
2155 * - f2fs_create
2156 * - f2fs_new_inode
2157 * - f2fs_alloc_nid
2158 * - __insert_nid_to_list(PREALLOC_NID)
2159 * - f2fs_balance_fs_bg
2160 * - f2fs_build_free_nids
2161 * - __f2fs_build_free_nids
2162 * - scan_nat_page
2163 * - add_free_nid
2164 * - __lookup_nat_cache
2165 * - f2fs_add_link
2166 * - f2fs_init_inode_metadata
2167 * - f2fs_new_inode_page
2168 * - f2fs_new_node_page
2169 * - set_node_addr
2170 * - f2fs_alloc_nid_done
2171 * - __remove_nid_from_list(PREALLOC_NID)
2172 * - __insert_nid_to_list(FREE_NID)
2173 */
2174 ne = __lookup_nat_cache(nm_i, nid);
2175 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2176 nat_get_blkaddr(ne) != NULL_ADDR))
2177 goto err_out;
2178
2179 e = __lookup_free_nid_list(nm_i, nid);
2180 if (e) {
2181 if (e->state == FREE_NID)
2182 ret = true;
2183 goto err_out;
2184 }
2185 }
2186 ret = true;
2187 err = __insert_free_nid(sbi, i, FREE_NID);
2188err_out:
2189 if (update) {
2190 update_free_nid_bitmap(sbi, nid, ret, build);
2191 if (!build)
2192 nm_i->available_nids++;
2193 }
2194 spin_unlock(&nm_i->nid_list_lock);
2195 radix_tree_preload_end();
2196
2197 if (err)
2198 kmem_cache_free(free_nid_slab, i);
2199 return ret;
2200}
2201
2202static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2203{
2204 struct f2fs_nm_info *nm_i = NM_I(sbi);
2205 struct free_nid *i;
2206 bool need_free = false;
2207
2208 spin_lock(&nm_i->nid_list_lock);
2209 i = __lookup_free_nid_list(nm_i, nid);
2210 if (i && i->state == FREE_NID) {
2211 __remove_free_nid(sbi, i, FREE_NID);
2212 need_free = true;
2213 }
2214 spin_unlock(&nm_i->nid_list_lock);
2215
2216 if (need_free)
2217 kmem_cache_free(free_nid_slab, i);
2218}
2219
2220static int scan_nat_page(struct f2fs_sb_info *sbi,
2221 struct page *nat_page, nid_t start_nid)
2222{
2223 struct f2fs_nm_info *nm_i = NM_I(sbi);
2224 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2225 block_t blk_addr;
2226 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2227 int i;
2228
2229 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2230
2231 i = start_nid % NAT_ENTRY_PER_BLOCK;
2232
2233 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2234 if (unlikely(start_nid >= nm_i->max_nid))
2235 break;
2236
2237 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2238
2239 if (blk_addr == NEW_ADDR)
2240 return -EINVAL;
2241
2242 if (blk_addr == NULL_ADDR) {
2243 add_free_nid(sbi, start_nid, true, true);
2244 } else {
2245 spin_lock(&NM_I(sbi)->nid_list_lock);
2246 update_free_nid_bitmap(sbi, start_nid, false, true);
2247 spin_unlock(&NM_I(sbi)->nid_list_lock);
2248 }
2249 }
2250
2251 return 0;
2252}
2253
2254static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2255{
2256 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2257 struct f2fs_journal *journal = curseg->journal;
2258 int i;
2259
2260 down_read(&curseg->journal_rwsem);
2261 for (i = 0; i < nats_in_cursum(journal); i++) {
2262 block_t addr;
2263 nid_t nid;
2264
2265 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2266 nid = le32_to_cpu(nid_in_journal(journal, i));
2267 if (addr == NULL_ADDR)
2268 add_free_nid(sbi, nid, true, false);
2269 else
2270 remove_free_nid(sbi, nid);
2271 }
2272 up_read(&curseg->journal_rwsem);
2273}
2274
2275static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2276{
2277 struct f2fs_nm_info *nm_i = NM_I(sbi);
2278 unsigned int i, idx;
2279 nid_t nid;
2280
2281 down_read(&nm_i->nat_tree_lock);
2282
2283 for (i = 0; i < nm_i->nat_blocks; i++) {
2284 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2285 continue;
2286 if (!nm_i->free_nid_count[i])
2287 continue;
2288 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2289 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2290 NAT_ENTRY_PER_BLOCK, idx);
2291 if (idx >= NAT_ENTRY_PER_BLOCK)
2292 break;
2293
2294 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2295 add_free_nid(sbi, nid, true, false);
2296
2297 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2298 goto out;
2299 }
2300 }
2301out:
2302 scan_curseg_cache(sbi);
2303
2304 up_read(&nm_i->nat_tree_lock);
2305}
2306
2307static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2308 bool sync, bool mount)
2309{
2310 struct f2fs_nm_info *nm_i = NM_I(sbi);
2311 int i = 0, ret;
2312 nid_t nid = nm_i->next_scan_nid;
2313
2314 if (unlikely(nid >= nm_i->max_nid))
2315 nid = 0;
2316
2317 /* Enough entries */
2318 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2319 return 0;
2320
2321 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2322 return 0;
2323
2324 if (!mount) {
2325 /* try to find free nids in free_nid_bitmap */
2326 scan_free_nid_bits(sbi);
2327
2328 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2329 return 0;
2330 }
2331
2332 /* readahead nat pages to be scanned */
2333 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2334 META_NAT, true);
2335
2336 down_read(&nm_i->nat_tree_lock);
2337
2338 while (1) {
2339 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2340 nm_i->nat_block_bitmap)) {
2341 struct page *page = get_current_nat_page(sbi, nid);
2342
2343 if (IS_ERR(page)) {
2344 ret = PTR_ERR(page);
2345 } else {
2346 ret = scan_nat_page(sbi, page, nid);
2347 f2fs_put_page(page, 1);
2348 }
2349
2350 if (ret) {
2351 up_read(&nm_i->nat_tree_lock);
2352 f2fs_bug_on(sbi, !mount);
2353 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2354 return ret;
2355 }
2356 }
2357
2358 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2359 if (unlikely(nid >= nm_i->max_nid))
2360 nid = 0;
2361
2362 if (++i >= FREE_NID_PAGES)
2363 break;
2364 }
2365
2366 /* go to the next free nat pages to find free nids abundantly */
2367 nm_i->next_scan_nid = nid;
2368
2369 /* find free nids from current sum_pages */
2370 scan_curseg_cache(sbi);
2371
2372 up_read(&nm_i->nat_tree_lock);
2373
2374 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2375 nm_i->ra_nid_pages, META_NAT, false);
2376
2377 return 0;
2378}
2379
2380int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2381{
2382 int ret;
2383
2384 mutex_lock(&NM_I(sbi)->build_lock);
2385 ret = __f2fs_build_free_nids(sbi, sync, mount);
2386 mutex_unlock(&NM_I(sbi)->build_lock);
2387
2388 return ret;
2389}
2390
2391/*
2392 * If this function returns success, caller can obtain a new nid
2393 * from second parameter of this function.
2394 * The returned nid could be used ino as well as nid when inode is created.
2395 */
2396bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2397{
2398 struct f2fs_nm_info *nm_i = NM_I(sbi);
2399 struct free_nid *i = NULL;
2400retry:
2401 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2402 f2fs_show_injection_info(FAULT_ALLOC_NID);
2403 return false;
2404 }
2405
2406 spin_lock(&nm_i->nid_list_lock);
2407
2408 if (unlikely(nm_i->available_nids == 0)) {
2409 spin_unlock(&nm_i->nid_list_lock);
2410 return false;
2411 }
2412
2413 /* We should not use stale free nids created by f2fs_build_free_nids */
2414 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2415 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2416 i = list_first_entry(&nm_i->free_nid_list,
2417 struct free_nid, list);
2418 *nid = i->nid;
2419
2420 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2421 nm_i->available_nids--;
2422
2423 update_free_nid_bitmap(sbi, *nid, false, false);
2424
2425 spin_unlock(&nm_i->nid_list_lock);
2426 return true;
2427 }
2428 spin_unlock(&nm_i->nid_list_lock);
2429
2430 /* Let's scan nat pages and its caches to get free nids */
2431 if (!f2fs_build_free_nids(sbi, true, false))
2432 goto retry;
2433 return false;
2434}
2435
2436/*
2437 * f2fs_alloc_nid() should be called prior to this function.
2438 */
2439void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2440{
2441 struct f2fs_nm_info *nm_i = NM_I(sbi);
2442 struct free_nid *i;
2443
2444 spin_lock(&nm_i->nid_list_lock);
2445 i = __lookup_free_nid_list(nm_i, nid);
2446 f2fs_bug_on(sbi, !i);
2447 __remove_free_nid(sbi, i, PREALLOC_NID);
2448 spin_unlock(&nm_i->nid_list_lock);
2449
2450 kmem_cache_free(free_nid_slab, i);
2451}
2452
2453/*
2454 * f2fs_alloc_nid() should be called prior to this function.
2455 */
2456void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2457{
2458 struct f2fs_nm_info *nm_i = NM_I(sbi);
2459 struct free_nid *i;
2460 bool need_free = false;
2461
2462 if (!nid)
2463 return;
2464
2465 spin_lock(&nm_i->nid_list_lock);
2466 i = __lookup_free_nid_list(nm_i, nid);
2467 f2fs_bug_on(sbi, !i);
2468
2469 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2470 __remove_free_nid(sbi, i, PREALLOC_NID);
2471 need_free = true;
2472 } else {
2473 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2474 }
2475
2476 nm_i->available_nids++;
2477
2478 update_free_nid_bitmap(sbi, nid, true, false);
2479
2480 spin_unlock(&nm_i->nid_list_lock);
2481
2482 if (need_free)
2483 kmem_cache_free(free_nid_slab, i);
2484}
2485
2486int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2487{
2488 struct f2fs_nm_info *nm_i = NM_I(sbi);
2489 struct free_nid *i, *next;
2490 int nr = nr_shrink;
2491
2492 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2493 return 0;
2494
2495 if (!mutex_trylock(&nm_i->build_lock))
2496 return 0;
2497
2498 spin_lock(&nm_i->nid_list_lock);
2499 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2500 if (nr_shrink <= 0 ||
2501 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2502 break;
2503
2504 __remove_free_nid(sbi, i, FREE_NID);
2505 kmem_cache_free(free_nid_slab, i);
2506 nr_shrink--;
2507 }
2508 spin_unlock(&nm_i->nid_list_lock);
2509 mutex_unlock(&nm_i->build_lock);
2510
2511 return nr - nr_shrink;
2512}
2513
2514void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2515{
2516 void *src_addr, *dst_addr;
2517 size_t inline_size;
2518 struct page *ipage;
2519 struct f2fs_inode *ri;
2520
2521 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2522 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2523
2524 ri = F2FS_INODE(page);
2525 if (ri->i_inline & F2FS_INLINE_XATTR) {
2526 set_inode_flag(inode, FI_INLINE_XATTR);
2527 } else {
2528 clear_inode_flag(inode, FI_INLINE_XATTR);
2529 goto update_inode;
2530 }
2531
2532 dst_addr = inline_xattr_addr(inode, ipage);
2533 src_addr = inline_xattr_addr(inode, page);
2534 inline_size = inline_xattr_size(inode);
2535
2536 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2537 memcpy(dst_addr, src_addr, inline_size);
2538update_inode:
2539 f2fs_update_inode(inode, ipage);
2540 f2fs_put_page(ipage, 1);
2541}
2542
2543int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2544{
2545 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2546 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2547 nid_t new_xnid;
2548 struct dnode_of_data dn;
2549 struct node_info ni;
2550 struct page *xpage;
2551 int err;
2552
2553 if (!prev_xnid)
2554 goto recover_xnid;
2555
2556 /* 1: invalidate the previous xattr nid */
2557 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2558 if (err)
2559 return err;
2560
2561 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2562 dec_valid_node_count(sbi, inode, false);
2563 set_node_addr(sbi, &ni, NULL_ADDR, false);
2564
2565recover_xnid:
2566 /* 2: update xattr nid in inode */
2567 if (!f2fs_alloc_nid(sbi, &new_xnid))
2568 return -ENOSPC;
2569
2570 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2571 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2572 if (IS_ERR(xpage)) {
2573 f2fs_alloc_nid_failed(sbi, new_xnid);
2574 return PTR_ERR(xpage);
2575 }
2576
2577 f2fs_alloc_nid_done(sbi, new_xnid);
2578 f2fs_update_inode_page(inode);
2579
2580 /* 3: update and set xattr node page dirty */
2581 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2582
2583 set_page_dirty(xpage);
2584 f2fs_put_page(xpage, 1);
2585
2586 return 0;
2587}
2588
2589int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2590{
2591 struct f2fs_inode *src, *dst;
2592 nid_t ino = ino_of_node(page);
2593 struct node_info old_ni, new_ni;
2594 struct page *ipage;
2595 int err;
2596
2597 err = f2fs_get_node_info(sbi, ino, &old_ni);
2598 if (err)
2599 return err;
2600
2601 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2602 return -EINVAL;
2603retry:
2604 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2605 if (!ipage) {
2606 congestion_wait(BLK_RW_ASYNC, HZ/50);
2607 goto retry;
2608 }
2609
2610 /* Should not use this inode from free nid list */
2611 remove_free_nid(sbi, ino);
2612
2613 if (!PageUptodate(ipage))
2614 SetPageUptodate(ipage);
2615 fill_node_footer(ipage, ino, ino, 0, true);
2616 set_cold_node(ipage, false);
2617
2618 src = F2FS_INODE(page);
2619 dst = F2FS_INODE(ipage);
2620
2621 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2622 dst->i_size = 0;
2623 dst->i_blocks = cpu_to_le64(1);
2624 dst->i_links = cpu_to_le32(1);
2625 dst->i_xattr_nid = 0;
2626 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2627 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2628 dst->i_extra_isize = src->i_extra_isize;
2629
2630 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2631 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2632 i_inline_xattr_size))
2633 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2634
2635 if (f2fs_sb_has_project_quota(sbi) &&
2636 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2637 i_projid))
2638 dst->i_projid = src->i_projid;
2639
2640 if (f2fs_sb_has_inode_crtime(sbi) &&
2641 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2642 i_crtime_nsec)) {
2643 dst->i_crtime = src->i_crtime;
2644 dst->i_crtime_nsec = src->i_crtime_nsec;
2645 }
2646 }
2647
2648 new_ni = old_ni;
2649 new_ni.ino = ino;
2650
2651 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2652 WARN_ON(1);
2653 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2654 inc_valid_inode_count(sbi);
2655 set_page_dirty(ipage);
2656 f2fs_put_page(ipage, 1);
2657 return 0;
2658}
2659
2660int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2661 unsigned int segno, struct f2fs_summary_block *sum)
2662{
2663 struct f2fs_node *rn;
2664 struct f2fs_summary *sum_entry;
2665 block_t addr;
2666 int i, idx, last_offset, nrpages;
2667
2668 /* scan the node segment */
2669 last_offset = sbi->blocks_per_seg;
2670 addr = START_BLOCK(sbi, segno);
2671 sum_entry = &sum->entries[0];
2672
2673 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2674 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2675
2676 /* readahead node pages */
2677 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2678
2679 for (idx = addr; idx < addr + nrpages; idx++) {
2680 struct page *page = f2fs_get_tmp_page(sbi, idx);
2681
2682 if (IS_ERR(page))
2683 return PTR_ERR(page);
2684
2685 rn = F2FS_NODE(page);
2686 sum_entry->nid = rn->footer.nid;
2687 sum_entry->version = 0;
2688 sum_entry->ofs_in_node = 0;
2689 sum_entry++;
2690 f2fs_put_page(page, 1);
2691 }
2692
2693 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2694 addr + nrpages);
2695 }
2696 return 0;
2697}
2698
2699static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2700{
2701 struct f2fs_nm_info *nm_i = NM_I(sbi);
2702 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2703 struct f2fs_journal *journal = curseg->journal;
2704 int i;
2705
2706 down_write(&curseg->journal_rwsem);
2707 for (i = 0; i < nats_in_cursum(journal); i++) {
2708 struct nat_entry *ne;
2709 struct f2fs_nat_entry raw_ne;
2710 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2711
2712 raw_ne = nat_in_journal(journal, i);
2713
2714 ne = __lookup_nat_cache(nm_i, nid);
2715 if (!ne) {
2716 ne = __alloc_nat_entry(nid, true);
2717 __init_nat_entry(nm_i, ne, &raw_ne, true);
2718 }
2719
2720 /*
2721 * if a free nat in journal has not been used after last
2722 * checkpoint, we should remove it from available nids,
2723 * since later we will add it again.
2724 */
2725 if (!get_nat_flag(ne, IS_DIRTY) &&
2726 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2727 spin_lock(&nm_i->nid_list_lock);
2728 nm_i->available_nids--;
2729 spin_unlock(&nm_i->nid_list_lock);
2730 }
2731
2732 __set_nat_cache_dirty(nm_i, ne);
2733 }
2734 update_nats_in_cursum(journal, -i);
2735 up_write(&curseg->journal_rwsem);
2736}
2737
2738static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2739 struct list_head *head, int max)
2740{
2741 struct nat_entry_set *cur;
2742
2743 if (nes->entry_cnt >= max)
2744 goto add_out;
2745
2746 list_for_each_entry(cur, head, set_list) {
2747 if (cur->entry_cnt >= nes->entry_cnt) {
2748 list_add(&nes->set_list, cur->set_list.prev);
2749 return;
2750 }
2751 }
2752add_out:
2753 list_add_tail(&nes->set_list, head);
2754}
2755
2756static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2757 struct page *page)
2758{
2759 struct f2fs_nm_info *nm_i = NM_I(sbi);
2760 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2761 struct f2fs_nat_block *nat_blk = page_address(page);
2762 int valid = 0;
2763 int i = 0;
2764
2765 if (!enabled_nat_bits(sbi, NULL))
2766 return;
2767
2768 if (nat_index == 0) {
2769 valid = 1;
2770 i = 1;
2771 }
2772 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2773 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2774 valid++;
2775 }
2776 if (valid == 0) {
2777 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2778 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2779 return;
2780 }
2781
2782 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2783 if (valid == NAT_ENTRY_PER_BLOCK)
2784 __set_bit_le(nat_index, nm_i->full_nat_bits);
2785 else
2786 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2787}
2788
2789static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2790 struct nat_entry_set *set, struct cp_control *cpc)
2791{
2792 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2793 struct f2fs_journal *journal = curseg->journal;
2794 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2795 bool to_journal = true;
2796 struct f2fs_nat_block *nat_blk;
2797 struct nat_entry *ne, *cur;
2798 struct page *page = NULL;
2799
2800 /*
2801 * there are two steps to flush nat entries:
2802 * #1, flush nat entries to journal in current hot data summary block.
2803 * #2, flush nat entries to nat page.
2804 */
2805 if (enabled_nat_bits(sbi, cpc) ||
2806 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2807 to_journal = false;
2808
2809 if (to_journal) {
2810 down_write(&curseg->journal_rwsem);
2811 } else {
2812 page = get_next_nat_page(sbi, start_nid);
2813 if (IS_ERR(page))
2814 return PTR_ERR(page);
2815
2816 nat_blk = page_address(page);
2817 f2fs_bug_on(sbi, !nat_blk);
2818 }
2819
2820 /* flush dirty nats in nat entry set */
2821 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2822 struct f2fs_nat_entry *raw_ne;
2823 nid_t nid = nat_get_nid(ne);
2824 int offset;
2825
2826 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2827
2828 if (to_journal) {
2829 offset = f2fs_lookup_journal_in_cursum(journal,
2830 NAT_JOURNAL, nid, 1);
2831 f2fs_bug_on(sbi, offset < 0);
2832 raw_ne = &nat_in_journal(journal, offset);
2833 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2834 } else {
2835 raw_ne = &nat_blk->entries[nid - start_nid];
2836 }
2837 raw_nat_from_node_info(raw_ne, &ne->ni);
2838 nat_reset_flag(ne);
2839 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2840 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2841 add_free_nid(sbi, nid, false, true);
2842 } else {
2843 spin_lock(&NM_I(sbi)->nid_list_lock);
2844 update_free_nid_bitmap(sbi, nid, false, false);
2845 spin_unlock(&NM_I(sbi)->nid_list_lock);
2846 }
2847 }
2848
2849 if (to_journal) {
2850 up_write(&curseg->journal_rwsem);
2851 } else {
2852 __update_nat_bits(sbi, start_nid, page);
2853 f2fs_put_page(page, 1);
2854 }
2855
2856 /* Allow dirty nats by node block allocation in write_begin */
2857 if (!set->entry_cnt) {
2858 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2859 kmem_cache_free(nat_entry_set_slab, set);
2860 }
2861 return 0;
2862}
2863
2864/*
2865 * This function is called during the checkpointing process.
2866 */
2867int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2868{
2869 struct f2fs_nm_info *nm_i = NM_I(sbi);
2870 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2871 struct f2fs_journal *journal = curseg->journal;
2872 struct nat_entry_set *setvec[SETVEC_SIZE];
2873 struct nat_entry_set *set, *tmp;
2874 unsigned int found;
2875 nid_t set_idx = 0;
2876 LIST_HEAD(sets);
2877 int err = 0;
2878
2879 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2880 if (enabled_nat_bits(sbi, cpc)) {
2881 down_write(&nm_i->nat_tree_lock);
2882 remove_nats_in_journal(sbi);
2883 up_write(&nm_i->nat_tree_lock);
2884 }
2885
2886 if (!nm_i->dirty_nat_cnt)
2887 return 0;
2888
2889 down_write(&nm_i->nat_tree_lock);
2890
2891 /*
2892 * if there are no enough space in journal to store dirty nat
2893 * entries, remove all entries from journal and merge them
2894 * into nat entry set.
2895 */
2896 if (enabled_nat_bits(sbi, cpc) ||
2897 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2898 remove_nats_in_journal(sbi);
2899
2900 while ((found = __gang_lookup_nat_set(nm_i,
2901 set_idx, SETVEC_SIZE, setvec))) {
2902 unsigned idx;
2903 set_idx = setvec[found - 1]->set + 1;
2904 for (idx = 0; idx < found; idx++)
2905 __adjust_nat_entry_set(setvec[idx], &sets,
2906 MAX_NAT_JENTRIES(journal));
2907 }
2908
2909 /* flush dirty nats in nat entry set */
2910 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2911 err = __flush_nat_entry_set(sbi, set, cpc);
2912 if (err)
2913 break;
2914 }
2915
2916 up_write(&nm_i->nat_tree_lock);
2917 /* Allow dirty nats by node block allocation in write_begin */
2918
2919 return err;
2920}
2921
2922static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2923{
2924 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2925 struct f2fs_nm_info *nm_i = NM_I(sbi);
2926 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2927 unsigned int i;
2928 __u64 cp_ver = cur_cp_version(ckpt);
2929 block_t nat_bits_addr;
2930
2931 if (!enabled_nat_bits(sbi, NULL))
2932 return 0;
2933
2934 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2935 nm_i->nat_bits = f2fs_kzalloc(sbi,
2936 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2937 if (!nm_i->nat_bits)
2938 return -ENOMEM;
2939
2940 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2941 nm_i->nat_bits_blocks;
2942 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2943 struct page *page;
2944
2945 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2946 if (IS_ERR(page))
2947 return PTR_ERR(page);
2948
2949 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2950 page_address(page), F2FS_BLKSIZE);
2951 f2fs_put_page(page, 1);
2952 }
2953
2954 cp_ver |= (cur_cp_crc(ckpt) << 32);
2955 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2956 disable_nat_bits(sbi, true);
2957 return 0;
2958 }
2959
2960 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2961 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2962
2963 f2fs_notice(sbi, "Found nat_bits in checkpoint");
2964 return 0;
2965}
2966
2967static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2968{
2969 struct f2fs_nm_info *nm_i = NM_I(sbi);
2970 unsigned int i = 0;
2971 nid_t nid, last_nid;
2972
2973 if (!enabled_nat_bits(sbi, NULL))
2974 return;
2975
2976 for (i = 0; i < nm_i->nat_blocks; i++) {
2977 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2978 if (i >= nm_i->nat_blocks)
2979 break;
2980
2981 __set_bit_le(i, nm_i->nat_block_bitmap);
2982
2983 nid = i * NAT_ENTRY_PER_BLOCK;
2984 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2985
2986 spin_lock(&NM_I(sbi)->nid_list_lock);
2987 for (; nid < last_nid; nid++)
2988 update_free_nid_bitmap(sbi, nid, true, true);
2989 spin_unlock(&NM_I(sbi)->nid_list_lock);
2990 }
2991
2992 for (i = 0; i < nm_i->nat_blocks; i++) {
2993 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2994 if (i >= nm_i->nat_blocks)
2995 break;
2996
2997 __set_bit_le(i, nm_i->nat_block_bitmap);
2998 }
2999}
3000
3001static int init_node_manager(struct f2fs_sb_info *sbi)
3002{
3003 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3004 struct f2fs_nm_info *nm_i = NM_I(sbi);
3005 unsigned char *version_bitmap;
3006 unsigned int nat_segs;
3007 int err;
3008
3009 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3010
3011 /* segment_count_nat includes pair segment so divide to 2. */
3012 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3013 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3014 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3015
3016 /* not used nids: 0, node, meta, (and root counted as valid node) */
3017 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3018 F2FS_RESERVED_NODE_NUM;
3019 nm_i->nid_cnt[FREE_NID] = 0;
3020 nm_i->nid_cnt[PREALLOC_NID] = 0;
3021 nm_i->nat_cnt = 0;
3022 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3023 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3024 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3025
3026 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3027 INIT_LIST_HEAD(&nm_i->free_nid_list);
3028 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3029 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3030 INIT_LIST_HEAD(&nm_i->nat_entries);
3031 spin_lock_init(&nm_i->nat_list_lock);
3032
3033 mutex_init(&nm_i->build_lock);
3034 spin_lock_init(&nm_i->nid_list_lock);
3035 init_rwsem(&nm_i->nat_tree_lock);
3036
3037 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3038 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3039 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3040 if (!version_bitmap)
3041 return -EFAULT;
3042
3043 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3044 GFP_KERNEL);
3045 if (!nm_i->nat_bitmap)
3046 return -ENOMEM;
3047
3048 err = __get_nat_bitmaps(sbi);
3049 if (err)
3050 return err;
3051
3052#ifdef CONFIG_F2FS_CHECK_FS
3053 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3054 GFP_KERNEL);
3055 if (!nm_i->nat_bitmap_mir)
3056 return -ENOMEM;
3057#endif
3058
3059 return 0;
3060}
3061
3062static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3063{
3064 struct f2fs_nm_info *nm_i = NM_I(sbi);
3065 int i;
3066
3067 nm_i->free_nid_bitmap =
3068 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3069 nm_i->nat_blocks),
3070 GFP_KERNEL);
3071 if (!nm_i->free_nid_bitmap)
3072 return -ENOMEM;
3073
3074 for (i = 0; i < nm_i->nat_blocks; i++) {
3075 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3076 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3077 if (!nm_i->free_nid_bitmap[i])
3078 return -ENOMEM;
3079 }
3080
3081 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3082 GFP_KERNEL);
3083 if (!nm_i->nat_block_bitmap)
3084 return -ENOMEM;
3085
3086 nm_i->free_nid_count =
3087 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3088 nm_i->nat_blocks),
3089 GFP_KERNEL);
3090 if (!nm_i->free_nid_count)
3091 return -ENOMEM;
3092 return 0;
3093}
3094
3095int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3096{
3097 int err;
3098
3099 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3100 GFP_KERNEL);
3101 if (!sbi->nm_info)
3102 return -ENOMEM;
3103
3104 err = init_node_manager(sbi);
3105 if (err)
3106 return err;
3107
3108 err = init_free_nid_cache(sbi);
3109 if (err)
3110 return err;
3111
3112 /* load free nid status from nat_bits table */
3113 load_free_nid_bitmap(sbi);
3114
3115 return f2fs_build_free_nids(sbi, true, true);
3116}
3117
3118void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3119{
3120 struct f2fs_nm_info *nm_i = NM_I(sbi);
3121 struct free_nid *i, *next_i;
3122 struct nat_entry *natvec[NATVEC_SIZE];
3123 struct nat_entry_set *setvec[SETVEC_SIZE];
3124 nid_t nid = 0;
3125 unsigned int found;
3126
3127 if (!nm_i)
3128 return;
3129
3130 /* destroy free nid list */
3131 spin_lock(&nm_i->nid_list_lock);
3132 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3133 __remove_free_nid(sbi, i, FREE_NID);
3134 spin_unlock(&nm_i->nid_list_lock);
3135 kmem_cache_free(free_nid_slab, i);
3136 spin_lock(&nm_i->nid_list_lock);
3137 }
3138 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3139 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3140 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3141 spin_unlock(&nm_i->nid_list_lock);
3142
3143 /* destroy nat cache */
3144 down_write(&nm_i->nat_tree_lock);
3145 while ((found = __gang_lookup_nat_cache(nm_i,
3146 nid, NATVEC_SIZE, natvec))) {
3147 unsigned idx;
3148
3149 nid = nat_get_nid(natvec[found - 1]) + 1;
3150 for (idx = 0; idx < found; idx++) {
3151 spin_lock(&nm_i->nat_list_lock);
3152 list_del(&natvec[idx]->list);
3153 spin_unlock(&nm_i->nat_list_lock);
3154
3155 __del_from_nat_cache(nm_i, natvec[idx]);
3156 }
3157 }
3158 f2fs_bug_on(sbi, nm_i->nat_cnt);
3159
3160 /* destroy nat set cache */
3161 nid = 0;
3162 while ((found = __gang_lookup_nat_set(nm_i,
3163 nid, SETVEC_SIZE, setvec))) {
3164 unsigned idx;
3165
3166 nid = setvec[found - 1]->set + 1;
3167 for (idx = 0; idx < found; idx++) {
3168 /* entry_cnt is not zero, when cp_error was occurred */
3169 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3170 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3171 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3172 }
3173 }
3174 up_write(&nm_i->nat_tree_lock);
3175
3176 kvfree(nm_i->nat_block_bitmap);
3177 if (nm_i->free_nid_bitmap) {
3178 int i;
3179
3180 for (i = 0; i < nm_i->nat_blocks; i++)
3181 kvfree(nm_i->free_nid_bitmap[i]);
3182 kvfree(nm_i->free_nid_bitmap);
3183 }
3184 kvfree(nm_i->free_nid_count);
3185
3186 kvfree(nm_i->nat_bitmap);
3187 kvfree(nm_i->nat_bits);
3188#ifdef CONFIG_F2FS_CHECK_FS
3189 kvfree(nm_i->nat_bitmap_mir);
3190#endif
3191 sbi->nm_info = NULL;
3192 kvfree(nm_i);
3193}
3194
3195int __init f2fs_create_node_manager_caches(void)
3196{
3197 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3198 sizeof(struct nat_entry));
3199 if (!nat_entry_slab)
3200 goto fail;
3201
3202 free_nid_slab = f2fs_kmem_cache_create("free_nid",
3203 sizeof(struct free_nid));
3204 if (!free_nid_slab)
3205 goto destroy_nat_entry;
3206
3207 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3208 sizeof(struct nat_entry_set));
3209 if (!nat_entry_set_slab)
3210 goto destroy_free_nid;
3211
3212 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3213 sizeof(struct fsync_node_entry));
3214 if (!fsync_node_entry_slab)
3215 goto destroy_nat_entry_set;
3216 return 0;
3217
3218destroy_nat_entry_set:
3219 kmem_cache_destroy(nat_entry_set_slab);
3220destroy_free_nid:
3221 kmem_cache_destroy(free_nid_slab);
3222destroy_nat_entry:
3223 kmem_cache_destroy(nat_entry_slab);
3224fail:
3225 return -ENOMEM;
3226}
3227
3228void f2fs_destroy_node_manager_caches(void)
3229{
3230 kmem_cache_destroy(fsync_node_entry_slab);
3231 kmem_cache_destroy(nat_entry_set_slab);
3232 kmem_cache_destroy(free_nid_slab);
3233 kmem_cache_destroy(nat_entry_slab);
3234}
1/*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22#include "trace.h"
23#include <trace/events/f2fs.h>
24
25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27static struct kmem_cache *nat_entry_slab;
28static struct kmem_cache *free_nid_slab;
29static struct kmem_cache *nat_entry_set_slab;
30
31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32{
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /*
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 */
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 } else if (type == DIRTY_DENTS) {
56 if (sbi->sb->s_bdi->wb.dirty_exceeded)
57 return false;
58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 } else if (type == INO_ENTRIES) {
61 int i;
62
63 for (i = 0; i <= UPDATE_INO; i++)
64 mem_size += (sbi->im[i].ino_num *
65 sizeof(struct ino_entry)) >> PAGE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 } else if (type == EXTENT_CACHE) {
68 mem_size = (atomic_read(&sbi->total_ext_tree) *
69 sizeof(struct extent_tree) +
70 atomic_read(&sbi->total_ext_node) *
71 sizeof(struct extent_node)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
73 } else {
74 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
75 return true;
76 }
77 return res;
78}
79
80static void clear_node_page_dirty(struct page *page)
81{
82 struct address_space *mapping = page->mapping;
83 unsigned int long flags;
84
85 if (PageDirty(page)) {
86 spin_lock_irqsave(&mapping->tree_lock, flags);
87 radix_tree_tag_clear(&mapping->page_tree,
88 page_index(page),
89 PAGECACHE_TAG_DIRTY);
90 spin_unlock_irqrestore(&mapping->tree_lock, flags);
91
92 clear_page_dirty_for_io(page);
93 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
94 }
95 ClearPageUptodate(page);
96}
97
98static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
99{
100 pgoff_t index = current_nat_addr(sbi, nid);
101 return get_meta_page(sbi, index);
102}
103
104static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105{
106 struct page *src_page;
107 struct page *dst_page;
108 pgoff_t src_off;
109 pgoff_t dst_off;
110 void *src_addr;
111 void *dst_addr;
112 struct f2fs_nm_info *nm_i = NM_I(sbi);
113
114 src_off = current_nat_addr(sbi, nid);
115 dst_off = next_nat_addr(sbi, src_off);
116
117 /* get current nat block page with lock */
118 src_page = get_meta_page(sbi, src_off);
119 dst_page = grab_meta_page(sbi, dst_off);
120 f2fs_bug_on(sbi, PageDirty(src_page));
121
122 src_addr = page_address(src_page);
123 dst_addr = page_address(dst_page);
124 memcpy(dst_addr, src_addr, PAGE_SIZE);
125 set_page_dirty(dst_page);
126 f2fs_put_page(src_page, 1);
127
128 set_to_next_nat(nm_i, nid);
129
130 return dst_page;
131}
132
133static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134{
135 return radix_tree_lookup(&nm_i->nat_root, n);
136}
137
138static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139 nid_t start, unsigned int nr, struct nat_entry **ep)
140{
141 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
142}
143
144static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145{
146 list_del(&e->list);
147 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148 nm_i->nat_cnt--;
149 kmem_cache_free(nat_entry_slab, e);
150}
151
152static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153 struct nat_entry *ne)
154{
155 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156 struct nat_entry_set *head;
157
158 if (get_nat_flag(ne, IS_DIRTY))
159 return;
160
161 head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 if (!head) {
163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164
165 INIT_LIST_HEAD(&head->entry_list);
166 INIT_LIST_HEAD(&head->set_list);
167 head->set = set;
168 head->entry_cnt = 0;
169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170 }
171 list_move_tail(&ne->list, &head->entry_list);
172 nm_i->dirty_nat_cnt++;
173 head->entry_cnt++;
174 set_nat_flag(ne, IS_DIRTY, true);
175}
176
177static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178 struct nat_entry *ne)
179{
180 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181 struct nat_entry_set *head;
182
183 head = radix_tree_lookup(&nm_i->nat_set_root, set);
184 if (head) {
185 list_move_tail(&ne->list, &nm_i->nat_entries);
186 set_nat_flag(ne, IS_DIRTY, false);
187 head->entry_cnt--;
188 nm_i->dirty_nat_cnt--;
189 }
190}
191
192static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193 nid_t start, unsigned int nr, struct nat_entry_set **ep)
194{
195 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196 start, nr);
197}
198
199int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
200{
201 struct f2fs_nm_info *nm_i = NM_I(sbi);
202 struct nat_entry *e;
203 bool need = false;
204
205 down_read(&nm_i->nat_tree_lock);
206 e = __lookup_nat_cache(nm_i, nid);
207 if (e) {
208 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209 !get_nat_flag(e, HAS_FSYNCED_INODE))
210 need = true;
211 }
212 up_read(&nm_i->nat_tree_lock);
213 return need;
214}
215
216bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
217{
218 struct f2fs_nm_info *nm_i = NM_I(sbi);
219 struct nat_entry *e;
220 bool is_cp = true;
221
222 down_read(&nm_i->nat_tree_lock);
223 e = __lookup_nat_cache(nm_i, nid);
224 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225 is_cp = false;
226 up_read(&nm_i->nat_tree_lock);
227 return is_cp;
228}
229
230bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
231{
232 struct f2fs_nm_info *nm_i = NM_I(sbi);
233 struct nat_entry *e;
234 bool need_update = true;
235
236 down_read(&nm_i->nat_tree_lock);
237 e = __lookup_nat_cache(nm_i, ino);
238 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239 (get_nat_flag(e, IS_CHECKPOINTED) ||
240 get_nat_flag(e, HAS_FSYNCED_INODE)))
241 need_update = false;
242 up_read(&nm_i->nat_tree_lock);
243 return need_update;
244}
245
246static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
247{
248 struct nat_entry *new;
249
250 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252 memset(new, 0, sizeof(struct nat_entry));
253 nat_set_nid(new, nid);
254 nat_reset_flag(new);
255 list_add_tail(&new->list, &nm_i->nat_entries);
256 nm_i->nat_cnt++;
257 return new;
258}
259
260static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
261 struct f2fs_nat_entry *ne)
262{
263 struct f2fs_nm_info *nm_i = NM_I(sbi);
264 struct nat_entry *e;
265
266 e = __lookup_nat_cache(nm_i, nid);
267 if (!e) {
268 e = grab_nat_entry(nm_i, nid);
269 node_info_from_raw_nat(&e->ni, ne);
270 } else {
271 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
272 nat_get_blkaddr(e) != ne->block_addr ||
273 nat_get_version(e) != ne->version);
274 }
275}
276
277static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
278 block_t new_blkaddr, bool fsync_done)
279{
280 struct f2fs_nm_info *nm_i = NM_I(sbi);
281 struct nat_entry *e;
282
283 down_write(&nm_i->nat_tree_lock);
284 e = __lookup_nat_cache(nm_i, ni->nid);
285 if (!e) {
286 e = grab_nat_entry(nm_i, ni->nid);
287 copy_node_info(&e->ni, ni);
288 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
289 } else if (new_blkaddr == NEW_ADDR) {
290 /*
291 * when nid is reallocated,
292 * previous nat entry can be remained in nat cache.
293 * So, reinitialize it with new information.
294 */
295 copy_node_info(&e->ni, ni);
296 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
297 }
298
299 /* sanity check */
300 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
301 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
302 new_blkaddr == NULL_ADDR);
303 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
304 new_blkaddr == NEW_ADDR);
305 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
306 nat_get_blkaddr(e) != NULL_ADDR &&
307 new_blkaddr == NEW_ADDR);
308
309 /* increment version no as node is removed */
310 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
311 unsigned char version = nat_get_version(e);
312 nat_set_version(e, inc_node_version(version));
313
314 /* in order to reuse the nid */
315 if (nm_i->next_scan_nid > ni->nid)
316 nm_i->next_scan_nid = ni->nid;
317 }
318
319 /* change address */
320 nat_set_blkaddr(e, new_blkaddr);
321 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
322 set_nat_flag(e, IS_CHECKPOINTED, false);
323 __set_nat_cache_dirty(nm_i, e);
324
325 /* update fsync_mark if its inode nat entry is still alive */
326 if (ni->nid != ni->ino)
327 e = __lookup_nat_cache(nm_i, ni->ino);
328 if (e) {
329 if (fsync_done && ni->nid == ni->ino)
330 set_nat_flag(e, HAS_FSYNCED_INODE, true);
331 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
332 }
333 up_write(&nm_i->nat_tree_lock);
334}
335
336int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
337{
338 struct f2fs_nm_info *nm_i = NM_I(sbi);
339 int nr = nr_shrink;
340
341 if (!down_write_trylock(&nm_i->nat_tree_lock))
342 return 0;
343
344 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
345 struct nat_entry *ne;
346 ne = list_first_entry(&nm_i->nat_entries,
347 struct nat_entry, list);
348 __del_from_nat_cache(nm_i, ne);
349 nr_shrink--;
350 }
351 up_write(&nm_i->nat_tree_lock);
352 return nr - nr_shrink;
353}
354
355/*
356 * This function always returns success
357 */
358void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
359{
360 struct f2fs_nm_info *nm_i = NM_I(sbi);
361 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
362 struct f2fs_journal *journal = curseg->journal;
363 nid_t start_nid = START_NID(nid);
364 struct f2fs_nat_block *nat_blk;
365 struct page *page = NULL;
366 struct f2fs_nat_entry ne;
367 struct nat_entry *e;
368 int i;
369
370 ni->nid = nid;
371
372 /* Check nat cache */
373 down_read(&nm_i->nat_tree_lock);
374 e = __lookup_nat_cache(nm_i, nid);
375 if (e) {
376 ni->ino = nat_get_ino(e);
377 ni->blk_addr = nat_get_blkaddr(e);
378 ni->version = nat_get_version(e);
379 up_read(&nm_i->nat_tree_lock);
380 return;
381 }
382
383 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
384
385 /* Check current segment summary */
386 down_read(&curseg->journal_rwsem);
387 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
388 if (i >= 0) {
389 ne = nat_in_journal(journal, i);
390 node_info_from_raw_nat(ni, &ne);
391 }
392 up_read(&curseg->journal_rwsem);
393 if (i >= 0)
394 goto cache;
395
396 /* Fill node_info from nat page */
397 page = get_current_nat_page(sbi, start_nid);
398 nat_blk = (struct f2fs_nat_block *)page_address(page);
399 ne = nat_blk->entries[nid - start_nid];
400 node_info_from_raw_nat(ni, &ne);
401 f2fs_put_page(page, 1);
402cache:
403 up_read(&nm_i->nat_tree_lock);
404 /* cache nat entry */
405 down_write(&nm_i->nat_tree_lock);
406 cache_nat_entry(sbi, nid, &ne);
407 up_write(&nm_i->nat_tree_lock);
408}
409
410pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
411{
412 const long direct_index = ADDRS_PER_INODE(dn->inode);
413 const long direct_blks = ADDRS_PER_BLOCK;
414 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
415 unsigned int skipped_unit = ADDRS_PER_BLOCK;
416 int cur_level = dn->cur_level;
417 int max_level = dn->max_level;
418 pgoff_t base = 0;
419
420 if (!dn->max_level)
421 return pgofs + 1;
422
423 while (max_level-- > cur_level)
424 skipped_unit *= NIDS_PER_BLOCK;
425
426 switch (dn->max_level) {
427 case 3:
428 base += 2 * indirect_blks;
429 case 2:
430 base += 2 * direct_blks;
431 case 1:
432 base += direct_index;
433 break;
434 default:
435 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
436 }
437
438 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
439}
440
441/*
442 * The maximum depth is four.
443 * Offset[0] will have raw inode offset.
444 */
445static int get_node_path(struct inode *inode, long block,
446 int offset[4], unsigned int noffset[4])
447{
448 const long direct_index = ADDRS_PER_INODE(inode);
449 const long direct_blks = ADDRS_PER_BLOCK;
450 const long dptrs_per_blk = NIDS_PER_BLOCK;
451 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
452 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
453 int n = 0;
454 int level = 0;
455
456 noffset[0] = 0;
457
458 if (block < direct_index) {
459 offset[n] = block;
460 goto got;
461 }
462 block -= direct_index;
463 if (block < direct_blks) {
464 offset[n++] = NODE_DIR1_BLOCK;
465 noffset[n] = 1;
466 offset[n] = block;
467 level = 1;
468 goto got;
469 }
470 block -= direct_blks;
471 if (block < direct_blks) {
472 offset[n++] = NODE_DIR2_BLOCK;
473 noffset[n] = 2;
474 offset[n] = block;
475 level = 1;
476 goto got;
477 }
478 block -= direct_blks;
479 if (block < indirect_blks) {
480 offset[n++] = NODE_IND1_BLOCK;
481 noffset[n] = 3;
482 offset[n++] = block / direct_blks;
483 noffset[n] = 4 + offset[n - 1];
484 offset[n] = block % direct_blks;
485 level = 2;
486 goto got;
487 }
488 block -= indirect_blks;
489 if (block < indirect_blks) {
490 offset[n++] = NODE_IND2_BLOCK;
491 noffset[n] = 4 + dptrs_per_blk;
492 offset[n++] = block / direct_blks;
493 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
494 offset[n] = block % direct_blks;
495 level = 2;
496 goto got;
497 }
498 block -= indirect_blks;
499 if (block < dindirect_blks) {
500 offset[n++] = NODE_DIND_BLOCK;
501 noffset[n] = 5 + (dptrs_per_blk * 2);
502 offset[n++] = block / indirect_blks;
503 noffset[n] = 6 + (dptrs_per_blk * 2) +
504 offset[n - 1] * (dptrs_per_blk + 1);
505 offset[n++] = (block / direct_blks) % dptrs_per_blk;
506 noffset[n] = 7 + (dptrs_per_blk * 2) +
507 offset[n - 2] * (dptrs_per_blk + 1) +
508 offset[n - 1];
509 offset[n] = block % direct_blks;
510 level = 3;
511 goto got;
512 } else {
513 BUG();
514 }
515got:
516 return level;
517}
518
519/*
520 * Caller should call f2fs_put_dnode(dn).
521 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
522 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
523 * In the case of RDONLY_NODE, we don't need to care about mutex.
524 */
525int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
526{
527 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
528 struct page *npage[4];
529 struct page *parent = NULL;
530 int offset[4];
531 unsigned int noffset[4];
532 nid_t nids[4];
533 int level, i = 0;
534 int err = 0;
535
536 level = get_node_path(dn->inode, index, offset, noffset);
537
538 nids[0] = dn->inode->i_ino;
539 npage[0] = dn->inode_page;
540
541 if (!npage[0]) {
542 npage[0] = get_node_page(sbi, nids[0]);
543 if (IS_ERR(npage[0]))
544 return PTR_ERR(npage[0]);
545 }
546
547 /* if inline_data is set, should not report any block indices */
548 if (f2fs_has_inline_data(dn->inode) && index) {
549 err = -ENOENT;
550 f2fs_put_page(npage[0], 1);
551 goto release_out;
552 }
553
554 parent = npage[0];
555 if (level != 0)
556 nids[1] = get_nid(parent, offset[0], true);
557 dn->inode_page = npage[0];
558 dn->inode_page_locked = true;
559
560 /* get indirect or direct nodes */
561 for (i = 1; i <= level; i++) {
562 bool done = false;
563
564 if (!nids[i] && mode == ALLOC_NODE) {
565 /* alloc new node */
566 if (!alloc_nid(sbi, &(nids[i]))) {
567 err = -ENOSPC;
568 goto release_pages;
569 }
570
571 dn->nid = nids[i];
572 npage[i] = new_node_page(dn, noffset[i], NULL);
573 if (IS_ERR(npage[i])) {
574 alloc_nid_failed(sbi, nids[i]);
575 err = PTR_ERR(npage[i]);
576 goto release_pages;
577 }
578
579 set_nid(parent, offset[i - 1], nids[i], i == 1);
580 alloc_nid_done(sbi, nids[i]);
581 done = true;
582 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
583 npage[i] = get_node_page_ra(parent, offset[i - 1]);
584 if (IS_ERR(npage[i])) {
585 err = PTR_ERR(npage[i]);
586 goto release_pages;
587 }
588 done = true;
589 }
590 if (i == 1) {
591 dn->inode_page_locked = false;
592 unlock_page(parent);
593 } else {
594 f2fs_put_page(parent, 1);
595 }
596
597 if (!done) {
598 npage[i] = get_node_page(sbi, nids[i]);
599 if (IS_ERR(npage[i])) {
600 err = PTR_ERR(npage[i]);
601 f2fs_put_page(npage[0], 0);
602 goto release_out;
603 }
604 }
605 if (i < level) {
606 parent = npage[i];
607 nids[i + 1] = get_nid(parent, offset[i], false);
608 }
609 }
610 dn->nid = nids[level];
611 dn->ofs_in_node = offset[level];
612 dn->node_page = npage[level];
613 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
614 return 0;
615
616release_pages:
617 f2fs_put_page(parent, 1);
618 if (i > 1)
619 f2fs_put_page(npage[0], 0);
620release_out:
621 dn->inode_page = NULL;
622 dn->node_page = NULL;
623 if (err == -ENOENT) {
624 dn->cur_level = i;
625 dn->max_level = level;
626 }
627 return err;
628}
629
630static void truncate_node(struct dnode_of_data *dn)
631{
632 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
633 struct node_info ni;
634
635 get_node_info(sbi, dn->nid, &ni);
636 if (dn->inode->i_blocks == 0) {
637 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
638 goto invalidate;
639 }
640 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
641
642 /* Deallocate node address */
643 invalidate_blocks(sbi, ni.blk_addr);
644 dec_valid_node_count(sbi, dn->inode);
645 set_node_addr(sbi, &ni, NULL_ADDR, false);
646
647 if (dn->nid == dn->inode->i_ino) {
648 remove_orphan_inode(sbi, dn->nid);
649 dec_valid_inode_count(sbi);
650 } else {
651 sync_inode_page(dn);
652 }
653invalidate:
654 clear_node_page_dirty(dn->node_page);
655 set_sbi_flag(sbi, SBI_IS_DIRTY);
656
657 f2fs_put_page(dn->node_page, 1);
658
659 invalidate_mapping_pages(NODE_MAPPING(sbi),
660 dn->node_page->index, dn->node_page->index);
661
662 dn->node_page = NULL;
663 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
664}
665
666static int truncate_dnode(struct dnode_of_data *dn)
667{
668 struct page *page;
669
670 if (dn->nid == 0)
671 return 1;
672
673 /* get direct node */
674 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
675 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
676 return 1;
677 else if (IS_ERR(page))
678 return PTR_ERR(page);
679
680 /* Make dnode_of_data for parameter */
681 dn->node_page = page;
682 dn->ofs_in_node = 0;
683 truncate_data_blocks(dn);
684 truncate_node(dn);
685 return 1;
686}
687
688static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
689 int ofs, int depth)
690{
691 struct dnode_of_data rdn = *dn;
692 struct page *page;
693 struct f2fs_node *rn;
694 nid_t child_nid;
695 unsigned int child_nofs;
696 int freed = 0;
697 int i, ret;
698
699 if (dn->nid == 0)
700 return NIDS_PER_BLOCK + 1;
701
702 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
703
704 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
705 if (IS_ERR(page)) {
706 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
707 return PTR_ERR(page);
708 }
709
710 rn = F2FS_NODE(page);
711 if (depth < 3) {
712 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
713 child_nid = le32_to_cpu(rn->in.nid[i]);
714 if (child_nid == 0)
715 continue;
716 rdn.nid = child_nid;
717 ret = truncate_dnode(&rdn);
718 if (ret < 0)
719 goto out_err;
720 if (set_nid(page, i, 0, false))
721 dn->node_changed = true;
722 }
723 } else {
724 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
725 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
726 child_nid = le32_to_cpu(rn->in.nid[i]);
727 if (child_nid == 0) {
728 child_nofs += NIDS_PER_BLOCK + 1;
729 continue;
730 }
731 rdn.nid = child_nid;
732 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
733 if (ret == (NIDS_PER_BLOCK + 1)) {
734 if (set_nid(page, i, 0, false))
735 dn->node_changed = true;
736 child_nofs += ret;
737 } else if (ret < 0 && ret != -ENOENT) {
738 goto out_err;
739 }
740 }
741 freed = child_nofs;
742 }
743
744 if (!ofs) {
745 /* remove current indirect node */
746 dn->node_page = page;
747 truncate_node(dn);
748 freed++;
749 } else {
750 f2fs_put_page(page, 1);
751 }
752 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
753 return freed;
754
755out_err:
756 f2fs_put_page(page, 1);
757 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
758 return ret;
759}
760
761static int truncate_partial_nodes(struct dnode_of_data *dn,
762 struct f2fs_inode *ri, int *offset, int depth)
763{
764 struct page *pages[2];
765 nid_t nid[3];
766 nid_t child_nid;
767 int err = 0;
768 int i;
769 int idx = depth - 2;
770
771 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
772 if (!nid[0])
773 return 0;
774
775 /* get indirect nodes in the path */
776 for (i = 0; i < idx + 1; i++) {
777 /* reference count'll be increased */
778 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
779 if (IS_ERR(pages[i])) {
780 err = PTR_ERR(pages[i]);
781 idx = i - 1;
782 goto fail;
783 }
784 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
785 }
786
787 /* free direct nodes linked to a partial indirect node */
788 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
789 child_nid = get_nid(pages[idx], i, false);
790 if (!child_nid)
791 continue;
792 dn->nid = child_nid;
793 err = truncate_dnode(dn);
794 if (err < 0)
795 goto fail;
796 if (set_nid(pages[idx], i, 0, false))
797 dn->node_changed = true;
798 }
799
800 if (offset[idx + 1] == 0) {
801 dn->node_page = pages[idx];
802 dn->nid = nid[idx];
803 truncate_node(dn);
804 } else {
805 f2fs_put_page(pages[idx], 1);
806 }
807 offset[idx]++;
808 offset[idx + 1] = 0;
809 idx--;
810fail:
811 for (i = idx; i >= 0; i--)
812 f2fs_put_page(pages[i], 1);
813
814 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
815
816 return err;
817}
818
819/*
820 * All the block addresses of data and nodes should be nullified.
821 */
822int truncate_inode_blocks(struct inode *inode, pgoff_t from)
823{
824 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
825 int err = 0, cont = 1;
826 int level, offset[4], noffset[4];
827 unsigned int nofs = 0;
828 struct f2fs_inode *ri;
829 struct dnode_of_data dn;
830 struct page *page;
831
832 trace_f2fs_truncate_inode_blocks_enter(inode, from);
833
834 level = get_node_path(inode, from, offset, noffset);
835restart:
836 page = get_node_page(sbi, inode->i_ino);
837 if (IS_ERR(page)) {
838 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
839 return PTR_ERR(page);
840 }
841
842 set_new_dnode(&dn, inode, page, NULL, 0);
843 unlock_page(page);
844
845 ri = F2FS_INODE(page);
846 switch (level) {
847 case 0:
848 case 1:
849 nofs = noffset[1];
850 break;
851 case 2:
852 nofs = noffset[1];
853 if (!offset[level - 1])
854 goto skip_partial;
855 err = truncate_partial_nodes(&dn, ri, offset, level);
856 if (err < 0 && err != -ENOENT)
857 goto fail;
858 nofs += 1 + NIDS_PER_BLOCK;
859 break;
860 case 3:
861 nofs = 5 + 2 * NIDS_PER_BLOCK;
862 if (!offset[level - 1])
863 goto skip_partial;
864 err = truncate_partial_nodes(&dn, ri, offset, level);
865 if (err < 0 && err != -ENOENT)
866 goto fail;
867 break;
868 default:
869 BUG();
870 }
871
872skip_partial:
873 while (cont) {
874 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
875 switch (offset[0]) {
876 case NODE_DIR1_BLOCK:
877 case NODE_DIR2_BLOCK:
878 err = truncate_dnode(&dn);
879 break;
880
881 case NODE_IND1_BLOCK:
882 case NODE_IND2_BLOCK:
883 err = truncate_nodes(&dn, nofs, offset[1], 2);
884 break;
885
886 case NODE_DIND_BLOCK:
887 err = truncate_nodes(&dn, nofs, offset[1], 3);
888 cont = 0;
889 break;
890
891 default:
892 BUG();
893 }
894 if (err < 0 && err != -ENOENT)
895 goto fail;
896 if (offset[1] == 0 &&
897 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
898 lock_page(page);
899 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
900 f2fs_put_page(page, 1);
901 goto restart;
902 }
903 f2fs_wait_on_page_writeback(page, NODE, true);
904 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
905 set_page_dirty(page);
906 unlock_page(page);
907 }
908 offset[1] = 0;
909 offset[0]++;
910 nofs += err;
911 }
912fail:
913 f2fs_put_page(page, 0);
914 trace_f2fs_truncate_inode_blocks_exit(inode, err);
915 return err > 0 ? 0 : err;
916}
917
918int truncate_xattr_node(struct inode *inode, struct page *page)
919{
920 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
921 nid_t nid = F2FS_I(inode)->i_xattr_nid;
922 struct dnode_of_data dn;
923 struct page *npage;
924
925 if (!nid)
926 return 0;
927
928 npage = get_node_page(sbi, nid);
929 if (IS_ERR(npage))
930 return PTR_ERR(npage);
931
932 F2FS_I(inode)->i_xattr_nid = 0;
933
934 /* need to do checkpoint during fsync */
935 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
936
937 set_new_dnode(&dn, inode, page, npage, nid);
938
939 if (page)
940 dn.inode_page_locked = true;
941 truncate_node(&dn);
942 return 0;
943}
944
945/*
946 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
947 * f2fs_unlock_op().
948 */
949int remove_inode_page(struct inode *inode)
950{
951 struct dnode_of_data dn;
952 int err;
953
954 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
955 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
956 if (err)
957 return err;
958
959 err = truncate_xattr_node(inode, dn.inode_page);
960 if (err) {
961 f2fs_put_dnode(&dn);
962 return err;
963 }
964
965 /* remove potential inline_data blocks */
966 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
967 S_ISLNK(inode->i_mode))
968 truncate_data_blocks_range(&dn, 1);
969
970 /* 0 is possible, after f2fs_new_inode() has failed */
971 f2fs_bug_on(F2FS_I_SB(inode),
972 inode->i_blocks != 0 && inode->i_blocks != 1);
973
974 /* will put inode & node pages */
975 truncate_node(&dn);
976 return 0;
977}
978
979struct page *new_inode_page(struct inode *inode)
980{
981 struct dnode_of_data dn;
982
983 /* allocate inode page for new inode */
984 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
985
986 /* caller should f2fs_put_page(page, 1); */
987 return new_node_page(&dn, 0, NULL);
988}
989
990struct page *new_node_page(struct dnode_of_data *dn,
991 unsigned int ofs, struct page *ipage)
992{
993 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
994 struct node_info old_ni, new_ni;
995 struct page *page;
996 int err;
997
998 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
999 return ERR_PTR(-EPERM);
1000
1001 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
1002 if (!page)
1003 return ERR_PTR(-ENOMEM);
1004
1005 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1006 err = -ENOSPC;
1007 goto fail;
1008 }
1009
1010 get_node_info(sbi, dn->nid, &old_ni);
1011
1012 /* Reinitialize old_ni with new node page */
1013 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1014 new_ni = old_ni;
1015 new_ni.ino = dn->inode->i_ino;
1016 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1017
1018 f2fs_wait_on_page_writeback(page, NODE, true);
1019 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1020 set_cold_node(dn->inode, page);
1021 SetPageUptodate(page);
1022 if (set_page_dirty(page))
1023 dn->node_changed = true;
1024
1025 if (f2fs_has_xattr_block(ofs))
1026 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1027
1028 dn->node_page = page;
1029 if (ipage)
1030 update_inode(dn->inode, ipage);
1031 else
1032 sync_inode_page(dn);
1033 if (ofs == 0)
1034 inc_valid_inode_count(sbi);
1035
1036 return page;
1037
1038fail:
1039 clear_node_page_dirty(page);
1040 f2fs_put_page(page, 1);
1041 return ERR_PTR(err);
1042}
1043
1044/*
1045 * Caller should do after getting the following values.
1046 * 0: f2fs_put_page(page, 0)
1047 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1048 */
1049static int read_node_page(struct page *page, int rw)
1050{
1051 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1052 struct node_info ni;
1053 struct f2fs_io_info fio = {
1054 .sbi = sbi,
1055 .type = NODE,
1056 .rw = rw,
1057 .page = page,
1058 .encrypted_page = NULL,
1059 };
1060
1061 get_node_info(sbi, page->index, &ni);
1062
1063 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1064 ClearPageUptodate(page);
1065 return -ENOENT;
1066 }
1067
1068 if (PageUptodate(page))
1069 return LOCKED_PAGE;
1070
1071 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1072 return f2fs_submit_page_bio(&fio);
1073}
1074
1075/*
1076 * Readahead a node page
1077 */
1078void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1079{
1080 struct page *apage;
1081 int err;
1082
1083 if (!nid)
1084 return;
1085 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1086
1087 rcu_read_lock();
1088 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1089 rcu_read_unlock();
1090 if (apage)
1091 return;
1092
1093 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1094 if (!apage)
1095 return;
1096
1097 err = read_node_page(apage, READA);
1098 f2fs_put_page(apage, err ? 1 : 0);
1099}
1100
1101/*
1102 * readahead MAX_RA_NODE number of node pages.
1103 */
1104static void ra_node_pages(struct page *parent, int start)
1105{
1106 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1107 struct blk_plug plug;
1108 int i, end;
1109 nid_t nid;
1110
1111 blk_start_plug(&plug);
1112
1113 /* Then, try readahead for siblings of the desired node */
1114 end = start + MAX_RA_NODE;
1115 end = min(end, NIDS_PER_BLOCK);
1116 for (i = start; i < end; i++) {
1117 nid = get_nid(parent, i, false);
1118 ra_node_page(sbi, nid);
1119 }
1120
1121 blk_finish_plug(&plug);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125 struct page *parent, int start)
1126{
1127 struct page *page;
1128 int err;
1129
1130 if (!nid)
1131 return ERR_PTR(-ENOENT);
1132 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133repeat:
1134 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1135 if (!page)
1136 return ERR_PTR(-ENOMEM);
1137
1138 err = read_node_page(page, READ_SYNC);
1139 if (err < 0) {
1140 f2fs_put_page(page, 1);
1141 return ERR_PTR(err);
1142 } else if (err == LOCKED_PAGE) {
1143 goto page_hit;
1144 }
1145
1146 if (parent)
1147 ra_node_pages(parent, start + 1);
1148
1149 lock_page(page);
1150
1151 if (unlikely(!PageUptodate(page))) {
1152 f2fs_put_page(page, 1);
1153 return ERR_PTR(-EIO);
1154 }
1155 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1156 f2fs_put_page(page, 1);
1157 goto repeat;
1158 }
1159page_hit:
1160 f2fs_bug_on(sbi, nid != nid_of_node(page));
1161 return page;
1162}
1163
1164struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1165{
1166 return __get_node_page(sbi, nid, NULL, 0);
1167}
1168
1169struct page *get_node_page_ra(struct page *parent, int start)
1170{
1171 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1172 nid_t nid = get_nid(parent, start, false);
1173
1174 return __get_node_page(sbi, nid, parent, start);
1175}
1176
1177void sync_inode_page(struct dnode_of_data *dn)
1178{
1179 int ret = 0;
1180
1181 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1182 ret = update_inode(dn->inode, dn->node_page);
1183 } else if (dn->inode_page) {
1184 if (!dn->inode_page_locked)
1185 lock_page(dn->inode_page);
1186 ret = update_inode(dn->inode, dn->inode_page);
1187 if (!dn->inode_page_locked)
1188 unlock_page(dn->inode_page);
1189 } else {
1190 ret = update_inode_page(dn->inode);
1191 }
1192 dn->node_changed = ret ? true: false;
1193}
1194
1195static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1196{
1197 struct inode *inode;
1198 struct page *page;
1199
1200 /* should flush inline_data before evict_inode */
1201 inode = ilookup(sbi->sb, ino);
1202 if (!inode)
1203 return;
1204
1205 page = pagecache_get_page(inode->i_mapping, 0, FGP_NOWAIT, 0);
1206 if (!page)
1207 goto iput_out;
1208
1209 if (!trylock_page(page))
1210 goto release_out;
1211
1212 if (!PageUptodate(page))
1213 goto page_out;
1214
1215 if (!PageDirty(page))
1216 goto page_out;
1217
1218 if (!clear_page_dirty_for_io(page))
1219 goto page_out;
1220
1221 if (!f2fs_write_inline_data(inode, page))
1222 inode_dec_dirty_pages(inode);
1223 else
1224 set_page_dirty(page);
1225page_out:
1226 unlock_page(page);
1227release_out:
1228 f2fs_put_page(page, 0);
1229iput_out:
1230 iput(inode);
1231}
1232
1233int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1234 struct writeback_control *wbc)
1235{
1236 pgoff_t index, end;
1237 struct pagevec pvec;
1238 int step = ino ? 2 : 0;
1239 int nwritten = 0;
1240
1241 pagevec_init(&pvec, 0);
1242
1243next_step:
1244 index = 0;
1245 end = ULONG_MAX;
1246
1247 while (index <= end) {
1248 int i, nr_pages;
1249 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1250 PAGECACHE_TAG_DIRTY,
1251 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1252 if (nr_pages == 0)
1253 break;
1254
1255 for (i = 0; i < nr_pages; i++) {
1256 struct page *page = pvec.pages[i];
1257
1258 if (unlikely(f2fs_cp_error(sbi))) {
1259 pagevec_release(&pvec);
1260 return -EIO;
1261 }
1262
1263 /*
1264 * flushing sequence with step:
1265 * 0. indirect nodes
1266 * 1. dentry dnodes
1267 * 2. file dnodes
1268 */
1269 if (step == 0 && IS_DNODE(page))
1270 continue;
1271 if (step == 1 && (!IS_DNODE(page) ||
1272 is_cold_node(page)))
1273 continue;
1274 if (step == 2 && (!IS_DNODE(page) ||
1275 !is_cold_node(page)))
1276 continue;
1277
1278 /*
1279 * If an fsync mode,
1280 * we should not skip writing node pages.
1281 */
1282lock_node:
1283 if (ino && ino_of_node(page) == ino)
1284 lock_page(page);
1285 else if (!trylock_page(page))
1286 continue;
1287
1288 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1289continue_unlock:
1290 unlock_page(page);
1291 continue;
1292 }
1293 if (ino && ino_of_node(page) != ino)
1294 goto continue_unlock;
1295
1296 if (!PageDirty(page)) {
1297 /* someone wrote it for us */
1298 goto continue_unlock;
1299 }
1300
1301 /* flush inline_data */
1302 if (!ino && is_inline_node(page)) {
1303 clear_inline_node(page);
1304 unlock_page(page);
1305 flush_inline_data(sbi, ino_of_node(page));
1306 goto lock_node;
1307 }
1308
1309 f2fs_wait_on_page_writeback(page, NODE, true);
1310
1311 BUG_ON(PageWriteback(page));
1312 if (!clear_page_dirty_for_io(page))
1313 goto continue_unlock;
1314
1315 /* called by fsync() */
1316 if (ino && IS_DNODE(page)) {
1317 set_fsync_mark(page, 1);
1318 if (IS_INODE(page))
1319 set_dentry_mark(page,
1320 need_dentry_mark(sbi, ino));
1321 nwritten++;
1322 } else {
1323 set_fsync_mark(page, 0);
1324 set_dentry_mark(page, 0);
1325 }
1326
1327 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1328 unlock_page(page);
1329
1330 if (--wbc->nr_to_write == 0)
1331 break;
1332 }
1333 pagevec_release(&pvec);
1334 cond_resched();
1335
1336 if (wbc->nr_to_write == 0) {
1337 step = 2;
1338 break;
1339 }
1340 }
1341
1342 if (step < 2) {
1343 step++;
1344 goto next_step;
1345 }
1346 return nwritten;
1347}
1348
1349int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1350{
1351 pgoff_t index = 0, end = ULONG_MAX;
1352 struct pagevec pvec;
1353 int ret2 = 0, ret = 0;
1354
1355 pagevec_init(&pvec, 0);
1356
1357 while (index <= end) {
1358 int i, nr_pages;
1359 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1360 PAGECACHE_TAG_WRITEBACK,
1361 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1362 if (nr_pages == 0)
1363 break;
1364
1365 for (i = 0; i < nr_pages; i++) {
1366 struct page *page = pvec.pages[i];
1367
1368 /* until radix tree lookup accepts end_index */
1369 if (unlikely(page->index > end))
1370 continue;
1371
1372 if (ino && ino_of_node(page) == ino) {
1373 f2fs_wait_on_page_writeback(page, NODE, true);
1374 if (TestClearPageError(page))
1375 ret = -EIO;
1376 }
1377 }
1378 pagevec_release(&pvec);
1379 cond_resched();
1380 }
1381
1382 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1383 ret2 = -ENOSPC;
1384 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1385 ret2 = -EIO;
1386 if (!ret)
1387 ret = ret2;
1388 return ret;
1389}
1390
1391static int f2fs_write_node_page(struct page *page,
1392 struct writeback_control *wbc)
1393{
1394 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395 nid_t nid;
1396 struct node_info ni;
1397 struct f2fs_io_info fio = {
1398 .sbi = sbi,
1399 .type = NODE,
1400 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1401 .page = page,
1402 .encrypted_page = NULL,
1403 };
1404
1405 trace_f2fs_writepage(page, NODE);
1406
1407 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1408 goto redirty_out;
1409 if (unlikely(f2fs_cp_error(sbi)))
1410 goto redirty_out;
1411
1412 /* get old block addr of this node page */
1413 nid = nid_of_node(page);
1414 f2fs_bug_on(sbi, page->index != nid);
1415
1416 if (wbc->for_reclaim) {
1417 if (!down_read_trylock(&sbi->node_write))
1418 goto redirty_out;
1419 } else {
1420 down_read(&sbi->node_write);
1421 }
1422
1423 get_node_info(sbi, nid, &ni);
1424
1425 /* This page is already truncated */
1426 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1427 ClearPageUptodate(page);
1428 dec_page_count(sbi, F2FS_DIRTY_NODES);
1429 up_read(&sbi->node_write);
1430 unlock_page(page);
1431 return 0;
1432 }
1433
1434 set_page_writeback(page);
1435 fio.old_blkaddr = ni.blk_addr;
1436 write_node_page(nid, &fio);
1437 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1438 dec_page_count(sbi, F2FS_DIRTY_NODES);
1439 up_read(&sbi->node_write);
1440
1441 if (wbc->for_reclaim)
1442 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1443
1444 unlock_page(page);
1445
1446 if (unlikely(f2fs_cp_error(sbi)))
1447 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1448
1449 return 0;
1450
1451redirty_out:
1452 redirty_page_for_writepage(wbc, page);
1453 return AOP_WRITEPAGE_ACTIVATE;
1454}
1455
1456static int f2fs_write_node_pages(struct address_space *mapping,
1457 struct writeback_control *wbc)
1458{
1459 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1460 long diff;
1461
1462 /* balancing f2fs's metadata in background */
1463 f2fs_balance_fs_bg(sbi);
1464
1465 /* collect a number of dirty node pages and write together */
1466 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1467 goto skip_write;
1468
1469 trace_f2fs_writepages(mapping->host, wbc, NODE);
1470
1471 diff = nr_pages_to_write(sbi, NODE, wbc);
1472 wbc->sync_mode = WB_SYNC_NONE;
1473 sync_node_pages(sbi, 0, wbc);
1474 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1475 return 0;
1476
1477skip_write:
1478 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1479 trace_f2fs_writepages(mapping->host, wbc, NODE);
1480 return 0;
1481}
1482
1483static int f2fs_set_node_page_dirty(struct page *page)
1484{
1485 trace_f2fs_set_page_dirty(page, NODE);
1486
1487 SetPageUptodate(page);
1488 if (!PageDirty(page)) {
1489 __set_page_dirty_nobuffers(page);
1490 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1491 SetPagePrivate(page);
1492 f2fs_trace_pid(page);
1493 return 1;
1494 }
1495 return 0;
1496}
1497
1498/*
1499 * Structure of the f2fs node operations
1500 */
1501const struct address_space_operations f2fs_node_aops = {
1502 .writepage = f2fs_write_node_page,
1503 .writepages = f2fs_write_node_pages,
1504 .set_page_dirty = f2fs_set_node_page_dirty,
1505 .invalidatepage = f2fs_invalidate_page,
1506 .releasepage = f2fs_release_page,
1507};
1508
1509static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1510 nid_t n)
1511{
1512 return radix_tree_lookup(&nm_i->free_nid_root, n);
1513}
1514
1515static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1516 struct free_nid *i)
1517{
1518 list_del(&i->list);
1519 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1520}
1521
1522static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1523{
1524 struct f2fs_nm_info *nm_i = NM_I(sbi);
1525 struct free_nid *i;
1526 struct nat_entry *ne;
1527 bool allocated = false;
1528
1529 if (!available_free_memory(sbi, FREE_NIDS))
1530 return -1;
1531
1532 /* 0 nid should not be used */
1533 if (unlikely(nid == 0))
1534 return 0;
1535
1536 if (build) {
1537 /* do not add allocated nids */
1538 ne = __lookup_nat_cache(nm_i, nid);
1539 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1540 nat_get_blkaddr(ne) != NULL_ADDR))
1541 allocated = true;
1542 if (allocated)
1543 return 0;
1544 }
1545
1546 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1547 i->nid = nid;
1548 i->state = NID_NEW;
1549
1550 if (radix_tree_preload(GFP_NOFS)) {
1551 kmem_cache_free(free_nid_slab, i);
1552 return 0;
1553 }
1554
1555 spin_lock(&nm_i->free_nid_list_lock);
1556 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1557 spin_unlock(&nm_i->free_nid_list_lock);
1558 radix_tree_preload_end();
1559 kmem_cache_free(free_nid_slab, i);
1560 return 0;
1561 }
1562 list_add_tail(&i->list, &nm_i->free_nid_list);
1563 nm_i->fcnt++;
1564 spin_unlock(&nm_i->free_nid_list_lock);
1565 radix_tree_preload_end();
1566 return 1;
1567}
1568
1569static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1570{
1571 struct free_nid *i;
1572 bool need_free = false;
1573
1574 spin_lock(&nm_i->free_nid_list_lock);
1575 i = __lookup_free_nid_list(nm_i, nid);
1576 if (i && i->state == NID_NEW) {
1577 __del_from_free_nid_list(nm_i, i);
1578 nm_i->fcnt--;
1579 need_free = true;
1580 }
1581 spin_unlock(&nm_i->free_nid_list_lock);
1582
1583 if (need_free)
1584 kmem_cache_free(free_nid_slab, i);
1585}
1586
1587static void scan_nat_page(struct f2fs_sb_info *sbi,
1588 struct page *nat_page, nid_t start_nid)
1589{
1590 struct f2fs_nm_info *nm_i = NM_I(sbi);
1591 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1592 block_t blk_addr;
1593 int i;
1594
1595 i = start_nid % NAT_ENTRY_PER_BLOCK;
1596
1597 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1598
1599 if (unlikely(start_nid >= nm_i->max_nid))
1600 break;
1601
1602 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1603 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1604 if (blk_addr == NULL_ADDR) {
1605 if (add_free_nid(sbi, start_nid, true) < 0)
1606 break;
1607 }
1608 }
1609}
1610
1611static void build_free_nids(struct f2fs_sb_info *sbi)
1612{
1613 struct f2fs_nm_info *nm_i = NM_I(sbi);
1614 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1615 struct f2fs_journal *journal = curseg->journal;
1616 int i = 0;
1617 nid_t nid = nm_i->next_scan_nid;
1618
1619 /* Enough entries */
1620 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1621 return;
1622
1623 /* readahead nat pages to be scanned */
1624 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1625 META_NAT, true);
1626
1627 down_read(&nm_i->nat_tree_lock);
1628
1629 while (1) {
1630 struct page *page = get_current_nat_page(sbi, nid);
1631
1632 scan_nat_page(sbi, page, nid);
1633 f2fs_put_page(page, 1);
1634
1635 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1636 if (unlikely(nid >= nm_i->max_nid))
1637 nid = 0;
1638
1639 if (++i >= FREE_NID_PAGES)
1640 break;
1641 }
1642
1643 /* go to the next free nat pages to find free nids abundantly */
1644 nm_i->next_scan_nid = nid;
1645
1646 /* find free nids from current sum_pages */
1647 down_read(&curseg->journal_rwsem);
1648 for (i = 0; i < nats_in_cursum(journal); i++) {
1649 block_t addr;
1650
1651 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1652 nid = le32_to_cpu(nid_in_journal(journal, i));
1653 if (addr == NULL_ADDR)
1654 add_free_nid(sbi, nid, true);
1655 else
1656 remove_free_nid(nm_i, nid);
1657 }
1658 up_read(&curseg->journal_rwsem);
1659 up_read(&nm_i->nat_tree_lock);
1660
1661 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1662 nm_i->ra_nid_pages, META_NAT, false);
1663}
1664
1665/*
1666 * If this function returns success, caller can obtain a new nid
1667 * from second parameter of this function.
1668 * The returned nid could be used ino as well as nid when inode is created.
1669 */
1670bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1671{
1672 struct f2fs_nm_info *nm_i = NM_I(sbi);
1673 struct free_nid *i = NULL;
1674retry:
1675 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1676 return false;
1677
1678 spin_lock(&nm_i->free_nid_list_lock);
1679
1680 /* We should not use stale free nids created by build_free_nids */
1681 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1682 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1683 list_for_each_entry(i, &nm_i->free_nid_list, list)
1684 if (i->state == NID_NEW)
1685 break;
1686
1687 f2fs_bug_on(sbi, i->state != NID_NEW);
1688 *nid = i->nid;
1689 i->state = NID_ALLOC;
1690 nm_i->fcnt--;
1691 spin_unlock(&nm_i->free_nid_list_lock);
1692 return true;
1693 }
1694 spin_unlock(&nm_i->free_nid_list_lock);
1695
1696 /* Let's scan nat pages and its caches to get free nids */
1697 mutex_lock(&nm_i->build_lock);
1698 build_free_nids(sbi);
1699 mutex_unlock(&nm_i->build_lock);
1700 goto retry;
1701}
1702
1703/*
1704 * alloc_nid() should be called prior to this function.
1705 */
1706void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1707{
1708 struct f2fs_nm_info *nm_i = NM_I(sbi);
1709 struct free_nid *i;
1710
1711 spin_lock(&nm_i->free_nid_list_lock);
1712 i = __lookup_free_nid_list(nm_i, nid);
1713 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1714 __del_from_free_nid_list(nm_i, i);
1715 spin_unlock(&nm_i->free_nid_list_lock);
1716
1717 kmem_cache_free(free_nid_slab, i);
1718}
1719
1720/*
1721 * alloc_nid() should be called prior to this function.
1722 */
1723void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1724{
1725 struct f2fs_nm_info *nm_i = NM_I(sbi);
1726 struct free_nid *i;
1727 bool need_free = false;
1728
1729 if (!nid)
1730 return;
1731
1732 spin_lock(&nm_i->free_nid_list_lock);
1733 i = __lookup_free_nid_list(nm_i, nid);
1734 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1735 if (!available_free_memory(sbi, FREE_NIDS)) {
1736 __del_from_free_nid_list(nm_i, i);
1737 need_free = true;
1738 } else {
1739 i->state = NID_NEW;
1740 nm_i->fcnt++;
1741 }
1742 spin_unlock(&nm_i->free_nid_list_lock);
1743
1744 if (need_free)
1745 kmem_cache_free(free_nid_slab, i);
1746}
1747
1748int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1749{
1750 struct f2fs_nm_info *nm_i = NM_I(sbi);
1751 struct free_nid *i, *next;
1752 int nr = nr_shrink;
1753
1754 if (!mutex_trylock(&nm_i->build_lock))
1755 return 0;
1756
1757 spin_lock(&nm_i->free_nid_list_lock);
1758 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1759 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1760 break;
1761 if (i->state == NID_ALLOC)
1762 continue;
1763 __del_from_free_nid_list(nm_i, i);
1764 kmem_cache_free(free_nid_slab, i);
1765 nm_i->fcnt--;
1766 nr_shrink--;
1767 }
1768 spin_unlock(&nm_i->free_nid_list_lock);
1769 mutex_unlock(&nm_i->build_lock);
1770
1771 return nr - nr_shrink;
1772}
1773
1774void recover_inline_xattr(struct inode *inode, struct page *page)
1775{
1776 void *src_addr, *dst_addr;
1777 size_t inline_size;
1778 struct page *ipage;
1779 struct f2fs_inode *ri;
1780
1781 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1782 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1783
1784 ri = F2FS_INODE(page);
1785 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1786 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1787 goto update_inode;
1788 }
1789
1790 dst_addr = inline_xattr_addr(ipage);
1791 src_addr = inline_xattr_addr(page);
1792 inline_size = inline_xattr_size(inode);
1793
1794 f2fs_wait_on_page_writeback(ipage, NODE, true);
1795 memcpy(dst_addr, src_addr, inline_size);
1796update_inode:
1797 update_inode(inode, ipage);
1798 f2fs_put_page(ipage, 1);
1799}
1800
1801void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1802{
1803 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1804 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1805 nid_t new_xnid = nid_of_node(page);
1806 struct node_info ni;
1807
1808 /* 1: invalidate the previous xattr nid */
1809 if (!prev_xnid)
1810 goto recover_xnid;
1811
1812 /* Deallocate node address */
1813 get_node_info(sbi, prev_xnid, &ni);
1814 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1815 invalidate_blocks(sbi, ni.blk_addr);
1816 dec_valid_node_count(sbi, inode);
1817 set_node_addr(sbi, &ni, NULL_ADDR, false);
1818
1819recover_xnid:
1820 /* 2: allocate new xattr nid */
1821 if (unlikely(!inc_valid_node_count(sbi, inode)))
1822 f2fs_bug_on(sbi, 1);
1823
1824 remove_free_nid(NM_I(sbi), new_xnid);
1825 get_node_info(sbi, new_xnid, &ni);
1826 ni.ino = inode->i_ino;
1827 set_node_addr(sbi, &ni, NEW_ADDR, false);
1828 F2FS_I(inode)->i_xattr_nid = new_xnid;
1829
1830 /* 3: update xattr blkaddr */
1831 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1832 set_node_addr(sbi, &ni, blkaddr, false);
1833
1834 update_inode_page(inode);
1835}
1836
1837int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1838{
1839 struct f2fs_inode *src, *dst;
1840 nid_t ino = ino_of_node(page);
1841 struct node_info old_ni, new_ni;
1842 struct page *ipage;
1843
1844 get_node_info(sbi, ino, &old_ni);
1845
1846 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1847 return -EINVAL;
1848
1849 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1850 if (!ipage)
1851 return -ENOMEM;
1852
1853 /* Should not use this inode from free nid list */
1854 remove_free_nid(NM_I(sbi), ino);
1855
1856 SetPageUptodate(ipage);
1857 fill_node_footer(ipage, ino, ino, 0, true);
1858
1859 src = F2FS_INODE(page);
1860 dst = F2FS_INODE(ipage);
1861
1862 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1863 dst->i_size = 0;
1864 dst->i_blocks = cpu_to_le64(1);
1865 dst->i_links = cpu_to_le32(1);
1866 dst->i_xattr_nid = 0;
1867 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1868
1869 new_ni = old_ni;
1870 new_ni.ino = ino;
1871
1872 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1873 WARN_ON(1);
1874 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1875 inc_valid_inode_count(sbi);
1876 set_page_dirty(ipage);
1877 f2fs_put_page(ipage, 1);
1878 return 0;
1879}
1880
1881int restore_node_summary(struct f2fs_sb_info *sbi,
1882 unsigned int segno, struct f2fs_summary_block *sum)
1883{
1884 struct f2fs_node *rn;
1885 struct f2fs_summary *sum_entry;
1886 block_t addr;
1887 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1888 int i, idx, last_offset, nrpages;
1889
1890 /* scan the node segment */
1891 last_offset = sbi->blocks_per_seg;
1892 addr = START_BLOCK(sbi, segno);
1893 sum_entry = &sum->entries[0];
1894
1895 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1896 nrpages = min(last_offset - i, bio_blocks);
1897
1898 /* readahead node pages */
1899 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1900
1901 for (idx = addr; idx < addr + nrpages; idx++) {
1902 struct page *page = get_tmp_page(sbi, idx);
1903
1904 rn = F2FS_NODE(page);
1905 sum_entry->nid = rn->footer.nid;
1906 sum_entry->version = 0;
1907 sum_entry->ofs_in_node = 0;
1908 sum_entry++;
1909 f2fs_put_page(page, 1);
1910 }
1911
1912 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1913 addr + nrpages);
1914 }
1915 return 0;
1916}
1917
1918static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1919{
1920 struct f2fs_nm_info *nm_i = NM_I(sbi);
1921 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1922 struct f2fs_journal *journal = curseg->journal;
1923 int i;
1924
1925 down_write(&curseg->journal_rwsem);
1926 for (i = 0; i < nats_in_cursum(journal); i++) {
1927 struct nat_entry *ne;
1928 struct f2fs_nat_entry raw_ne;
1929 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
1930
1931 raw_ne = nat_in_journal(journal, i);
1932
1933 ne = __lookup_nat_cache(nm_i, nid);
1934 if (!ne) {
1935 ne = grab_nat_entry(nm_i, nid);
1936 node_info_from_raw_nat(&ne->ni, &raw_ne);
1937 }
1938 __set_nat_cache_dirty(nm_i, ne);
1939 }
1940 update_nats_in_cursum(journal, -i);
1941 up_write(&curseg->journal_rwsem);
1942}
1943
1944static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1945 struct list_head *head, int max)
1946{
1947 struct nat_entry_set *cur;
1948
1949 if (nes->entry_cnt >= max)
1950 goto add_out;
1951
1952 list_for_each_entry(cur, head, set_list) {
1953 if (cur->entry_cnt >= nes->entry_cnt) {
1954 list_add(&nes->set_list, cur->set_list.prev);
1955 return;
1956 }
1957 }
1958add_out:
1959 list_add_tail(&nes->set_list, head);
1960}
1961
1962static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1963 struct nat_entry_set *set)
1964{
1965 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1966 struct f2fs_journal *journal = curseg->journal;
1967 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1968 bool to_journal = true;
1969 struct f2fs_nat_block *nat_blk;
1970 struct nat_entry *ne, *cur;
1971 struct page *page = NULL;
1972
1973 /*
1974 * there are two steps to flush nat entries:
1975 * #1, flush nat entries to journal in current hot data summary block.
1976 * #2, flush nat entries to nat page.
1977 */
1978 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
1979 to_journal = false;
1980
1981 if (to_journal) {
1982 down_write(&curseg->journal_rwsem);
1983 } else {
1984 page = get_next_nat_page(sbi, start_nid);
1985 nat_blk = page_address(page);
1986 f2fs_bug_on(sbi, !nat_blk);
1987 }
1988
1989 /* flush dirty nats in nat entry set */
1990 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1991 struct f2fs_nat_entry *raw_ne;
1992 nid_t nid = nat_get_nid(ne);
1993 int offset;
1994
1995 if (nat_get_blkaddr(ne) == NEW_ADDR)
1996 continue;
1997
1998 if (to_journal) {
1999 offset = lookup_journal_in_cursum(journal,
2000 NAT_JOURNAL, nid, 1);
2001 f2fs_bug_on(sbi, offset < 0);
2002 raw_ne = &nat_in_journal(journal, offset);
2003 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2004 } else {
2005 raw_ne = &nat_blk->entries[nid - start_nid];
2006 }
2007 raw_nat_from_node_info(raw_ne, &ne->ni);
2008 nat_reset_flag(ne);
2009 __clear_nat_cache_dirty(NM_I(sbi), ne);
2010 if (nat_get_blkaddr(ne) == NULL_ADDR)
2011 add_free_nid(sbi, nid, false);
2012 }
2013
2014 if (to_journal)
2015 up_write(&curseg->journal_rwsem);
2016 else
2017 f2fs_put_page(page, 1);
2018
2019 f2fs_bug_on(sbi, set->entry_cnt);
2020
2021 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2022 kmem_cache_free(nat_entry_set_slab, set);
2023}
2024
2025/*
2026 * This function is called during the checkpointing process.
2027 */
2028void flush_nat_entries(struct f2fs_sb_info *sbi)
2029{
2030 struct f2fs_nm_info *nm_i = NM_I(sbi);
2031 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2032 struct f2fs_journal *journal = curseg->journal;
2033 struct nat_entry_set *setvec[SETVEC_SIZE];
2034 struct nat_entry_set *set, *tmp;
2035 unsigned int found;
2036 nid_t set_idx = 0;
2037 LIST_HEAD(sets);
2038
2039 if (!nm_i->dirty_nat_cnt)
2040 return;
2041
2042 down_write(&nm_i->nat_tree_lock);
2043
2044 /*
2045 * if there are no enough space in journal to store dirty nat
2046 * entries, remove all entries from journal and merge them
2047 * into nat entry set.
2048 */
2049 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2050 remove_nats_in_journal(sbi);
2051
2052 while ((found = __gang_lookup_nat_set(nm_i,
2053 set_idx, SETVEC_SIZE, setvec))) {
2054 unsigned idx;
2055 set_idx = setvec[found - 1]->set + 1;
2056 for (idx = 0; idx < found; idx++)
2057 __adjust_nat_entry_set(setvec[idx], &sets,
2058 MAX_NAT_JENTRIES(journal));
2059 }
2060
2061 /* flush dirty nats in nat entry set */
2062 list_for_each_entry_safe(set, tmp, &sets, set_list)
2063 __flush_nat_entry_set(sbi, set);
2064
2065 up_write(&nm_i->nat_tree_lock);
2066
2067 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2068}
2069
2070static int init_node_manager(struct f2fs_sb_info *sbi)
2071{
2072 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2073 struct f2fs_nm_info *nm_i = NM_I(sbi);
2074 unsigned char *version_bitmap;
2075 unsigned int nat_segs, nat_blocks;
2076
2077 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2078
2079 /* segment_count_nat includes pair segment so divide to 2. */
2080 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2081 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2082
2083 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2084
2085 /* not used nids: 0, node, meta, (and root counted as valid node) */
2086 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2087 nm_i->fcnt = 0;
2088 nm_i->nat_cnt = 0;
2089 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2090 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2091 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2092
2093 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2094 INIT_LIST_HEAD(&nm_i->free_nid_list);
2095 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2096 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2097 INIT_LIST_HEAD(&nm_i->nat_entries);
2098
2099 mutex_init(&nm_i->build_lock);
2100 spin_lock_init(&nm_i->free_nid_list_lock);
2101 init_rwsem(&nm_i->nat_tree_lock);
2102
2103 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2104 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2105 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2106 if (!version_bitmap)
2107 return -EFAULT;
2108
2109 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2110 GFP_KERNEL);
2111 if (!nm_i->nat_bitmap)
2112 return -ENOMEM;
2113 return 0;
2114}
2115
2116int build_node_manager(struct f2fs_sb_info *sbi)
2117{
2118 int err;
2119
2120 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2121 if (!sbi->nm_info)
2122 return -ENOMEM;
2123
2124 err = init_node_manager(sbi);
2125 if (err)
2126 return err;
2127
2128 build_free_nids(sbi);
2129 return 0;
2130}
2131
2132void destroy_node_manager(struct f2fs_sb_info *sbi)
2133{
2134 struct f2fs_nm_info *nm_i = NM_I(sbi);
2135 struct free_nid *i, *next_i;
2136 struct nat_entry *natvec[NATVEC_SIZE];
2137 struct nat_entry_set *setvec[SETVEC_SIZE];
2138 nid_t nid = 0;
2139 unsigned int found;
2140
2141 if (!nm_i)
2142 return;
2143
2144 /* destroy free nid list */
2145 spin_lock(&nm_i->free_nid_list_lock);
2146 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2147 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2148 __del_from_free_nid_list(nm_i, i);
2149 nm_i->fcnt--;
2150 spin_unlock(&nm_i->free_nid_list_lock);
2151 kmem_cache_free(free_nid_slab, i);
2152 spin_lock(&nm_i->free_nid_list_lock);
2153 }
2154 f2fs_bug_on(sbi, nm_i->fcnt);
2155 spin_unlock(&nm_i->free_nid_list_lock);
2156
2157 /* destroy nat cache */
2158 down_write(&nm_i->nat_tree_lock);
2159 while ((found = __gang_lookup_nat_cache(nm_i,
2160 nid, NATVEC_SIZE, natvec))) {
2161 unsigned idx;
2162
2163 nid = nat_get_nid(natvec[found - 1]) + 1;
2164 for (idx = 0; idx < found; idx++)
2165 __del_from_nat_cache(nm_i, natvec[idx]);
2166 }
2167 f2fs_bug_on(sbi, nm_i->nat_cnt);
2168
2169 /* destroy nat set cache */
2170 nid = 0;
2171 while ((found = __gang_lookup_nat_set(nm_i,
2172 nid, SETVEC_SIZE, setvec))) {
2173 unsigned idx;
2174
2175 nid = setvec[found - 1]->set + 1;
2176 for (idx = 0; idx < found; idx++) {
2177 /* entry_cnt is not zero, when cp_error was occurred */
2178 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2179 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2180 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2181 }
2182 }
2183 up_write(&nm_i->nat_tree_lock);
2184
2185 kfree(nm_i->nat_bitmap);
2186 sbi->nm_info = NULL;
2187 kfree(nm_i);
2188}
2189
2190int __init create_node_manager_caches(void)
2191{
2192 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2193 sizeof(struct nat_entry));
2194 if (!nat_entry_slab)
2195 goto fail;
2196
2197 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2198 sizeof(struct free_nid));
2199 if (!free_nid_slab)
2200 goto destroy_nat_entry;
2201
2202 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2203 sizeof(struct nat_entry_set));
2204 if (!nat_entry_set_slab)
2205 goto destroy_free_nid;
2206 return 0;
2207
2208destroy_free_nid:
2209 kmem_cache_destroy(free_nid_slab);
2210destroy_nat_entry:
2211 kmem_cache_destroy(nat_entry_slab);
2212fail:
2213 return -ENOMEM;
2214}
2215
2216void destroy_node_manager_caches(void)
2217{
2218 kmem_cache_destroy(nat_entry_set_slab);
2219 kmem_cache_destroy(free_nid_slab);
2220 kmem_cache_destroy(nat_entry_slab);
2221}