Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/backing-dev.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "trace.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		return -EFSCORRUPTED;
  40	}
  41	return 0;
  42}
  43
  44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  45{
  46	struct f2fs_nm_info *nm_i = NM_I(sbi);
  47	struct sysinfo val;
  48	unsigned long avail_ram;
  49	unsigned long mem_size = 0;
  50	bool res = false;
  51
  52	si_meminfo(&val);
  53
  54	/* only uses low memory */
  55	avail_ram = val.totalram - val.totalhigh;
  56
  57	/*
  58	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  59	 */
  60	if (type == FREE_NIDS) {
  61		mem_size = (nm_i->nid_cnt[FREE_NID] *
  62				sizeof(struct free_nid)) >> PAGE_SHIFT;
  63		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  64	} else if (type == NAT_ENTRIES) {
  65		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  66							PAGE_SHIFT;
  67		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  68		if (excess_cached_nats(sbi))
  69			res = false;
  70	} else if (type == DIRTY_DENTS) {
  71		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  72			return false;
  73		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  74		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75	} else if (type == INO_ENTRIES) {
  76		int i;
  77
  78		for (i = 0; i < MAX_INO_ENTRY; i++)
  79			mem_size += sbi->im[i].ino_num *
  80						sizeof(struct ino_entry);
  81		mem_size >>= PAGE_SHIFT;
  82		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  83	} else if (type == EXTENT_CACHE) {
  84		mem_size = (atomic_read(&sbi->total_ext_tree) *
  85				sizeof(struct extent_tree) +
  86				atomic_read(&sbi->total_ext_node) *
  87				sizeof(struct extent_node)) >> PAGE_SHIFT;
  88		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  89	} else if (type == INMEM_PAGES) {
  90		/* it allows 20% / total_ram for inmemory pages */
  91		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  92		res = mem_size < (val.totalram / 5);
  93	} else {
  94		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  95			return true;
  96	}
  97	return res;
  98}
  99
 100static void clear_node_page_dirty(struct page *page)
 101{
 
 
 
 102	if (PageDirty(page)) {
 103		f2fs_clear_page_cache_dirty_tag(page);
 
 
 
 
 
 104		clear_page_dirty_for_io(page);
 105		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 106	}
 107	ClearPageUptodate(page);
 108}
 109
 110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 111{
 112	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
 
 113}
 114
 115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 116{
 117	struct page *src_page;
 118	struct page *dst_page;
 
 119	pgoff_t dst_off;
 120	void *src_addr;
 121	void *dst_addr;
 122	struct f2fs_nm_info *nm_i = NM_I(sbi);
 123
 124	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 
 125
 126	/* get current nat block page with lock */
 127	src_page = get_current_nat_page(sbi, nid);
 128	if (IS_ERR(src_page))
 129		return src_page;
 130	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 131	f2fs_bug_on(sbi, PageDirty(src_page));
 132
 133	src_addr = page_address(src_page);
 134	dst_addr = page_address(dst_page);
 135	memcpy(dst_addr, src_addr, PAGE_SIZE);
 136	set_page_dirty(dst_page);
 137	f2fs_put_page(src_page, 1);
 138
 139	set_to_next_nat(nm_i, nid);
 140
 141	return dst_page;
 142}
 143
 144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 145{
 146	struct nat_entry *new;
 147
 148	if (no_fail)
 149		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 150	else
 151		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 152	if (new) {
 153		nat_set_nid(new, nid);
 154		nat_reset_flag(new);
 155	}
 156	return new;
 157}
 158
 159static void __free_nat_entry(struct nat_entry *e)
 160{
 161	kmem_cache_free(nat_entry_slab, e);
 162}
 163
 164/* must be locked by nat_tree_lock */
 165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 166	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 167{
 168	if (no_fail)
 169		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 170	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 171		return NULL;
 172
 173	if (raw_ne)
 174		node_info_from_raw_nat(&ne->ni, raw_ne);
 175
 176	spin_lock(&nm_i->nat_list_lock);
 177	list_add_tail(&ne->list, &nm_i->nat_entries);
 178	spin_unlock(&nm_i->nat_list_lock);
 179
 180	nm_i->nat_cnt++;
 181	return ne;
 182}
 183
 184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 185{
 186	struct nat_entry *ne;
 187
 188	ne = radix_tree_lookup(&nm_i->nat_root, n);
 189
 190	/* for recent accessed nat entry, move it to tail of lru list */
 191	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 192		spin_lock(&nm_i->nat_list_lock);
 193		if (!list_empty(&ne->list))
 194			list_move_tail(&ne->list, &nm_i->nat_entries);
 195		spin_unlock(&nm_i->nat_list_lock);
 196	}
 197
 198	return ne;
 199}
 200
 201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 202		nid_t start, unsigned int nr, struct nat_entry **ep)
 203{
 204	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 205}
 206
 207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 208{
 
 209	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 210	nm_i->nat_cnt--;
 211	__free_nat_entry(e);
 212}
 213
 214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 215							struct nat_entry *ne)
 216{
 217	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 218	struct nat_entry_set *head;
 219
 
 
 
 220	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 221	if (!head) {
 222		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 223
 224		INIT_LIST_HEAD(&head->entry_list);
 225		INIT_LIST_HEAD(&head->set_list);
 226		head->set = set;
 227		head->entry_cnt = 0;
 228		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 229	}
 230	return head;
 231}
 232
 233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 234						struct nat_entry *ne)
 235{
 236	struct nat_entry_set *head;
 237	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 238
 239	if (!new_ne)
 240		head = __grab_nat_entry_set(nm_i, ne);
 241
 242	/*
 243	 * update entry_cnt in below condition:
 244	 * 1. update NEW_ADDR to valid block address;
 245	 * 2. update old block address to new one;
 246	 */
 247	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 248				!get_nat_flag(ne, IS_DIRTY)))
 249		head->entry_cnt++;
 250
 251	set_nat_flag(ne, IS_PREALLOC, new_ne);
 252
 253	if (get_nat_flag(ne, IS_DIRTY))
 254		goto refresh_list;
 255
 256	nm_i->dirty_nat_cnt++;
 
 257	set_nat_flag(ne, IS_DIRTY, true);
 258refresh_list:
 259	spin_lock(&nm_i->nat_list_lock);
 260	if (new_ne)
 261		list_del_init(&ne->list);
 262	else
 263		list_move_tail(&ne->list, &head->entry_list);
 264	spin_unlock(&nm_i->nat_list_lock);
 265}
 266
 267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 268		struct nat_entry_set *set, struct nat_entry *ne)
 269{
 270	spin_lock(&nm_i->nat_list_lock);
 271	list_move_tail(&ne->list, &nm_i->nat_entries);
 272	spin_unlock(&nm_i->nat_list_lock);
 273
 274	set_nat_flag(ne, IS_DIRTY, false);
 275	set->entry_cnt--;
 276	nm_i->dirty_nat_cnt--;
 
 
 
 277}
 278
 279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 280		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 281{
 282	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 283							start, nr);
 284}
 285
 286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 287{
 288	return NODE_MAPPING(sbi) == page->mapping &&
 289			IS_DNODE(page) && is_cold_node(page);
 290}
 291
 292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 293{
 294	spin_lock_init(&sbi->fsync_node_lock);
 295	INIT_LIST_HEAD(&sbi->fsync_node_list);
 296	sbi->fsync_seg_id = 0;
 297	sbi->fsync_node_num = 0;
 298}
 299
 300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 301							struct page *page)
 302{
 303	struct fsync_node_entry *fn;
 304	unsigned long flags;
 305	unsigned int seq_id;
 306
 307	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
 308
 309	get_page(page);
 310	fn->page = page;
 311	INIT_LIST_HEAD(&fn->list);
 312
 313	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 314	list_add_tail(&fn->list, &sbi->fsync_node_list);
 315	fn->seq_id = sbi->fsync_seg_id++;
 316	seq_id = fn->seq_id;
 317	sbi->fsync_node_num++;
 318	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 319
 320	return seq_id;
 321}
 322
 323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 324{
 325	struct fsync_node_entry *fn;
 326	unsigned long flags;
 327
 328	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 329	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 330		if (fn->page == page) {
 331			list_del(&fn->list);
 332			sbi->fsync_node_num--;
 333			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 334			kmem_cache_free(fsync_node_entry_slab, fn);
 335			put_page(page);
 336			return;
 337		}
 338	}
 339	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 340	f2fs_bug_on(sbi, 1);
 341}
 342
 343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 344{
 345	unsigned long flags;
 346
 347	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 348	sbi->fsync_seg_id = 0;
 349	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 350}
 351
 352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 353{
 354	struct f2fs_nm_info *nm_i = NM_I(sbi);
 355	struct nat_entry *e;
 356	bool need = false;
 357
 358	down_read(&nm_i->nat_tree_lock);
 359	e = __lookup_nat_cache(nm_i, nid);
 360	if (e) {
 361		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 362				!get_nat_flag(e, HAS_FSYNCED_INODE))
 363			need = true;
 364	}
 365	up_read(&nm_i->nat_tree_lock);
 366	return need;
 367}
 368
 369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 370{
 371	struct f2fs_nm_info *nm_i = NM_I(sbi);
 372	struct nat_entry *e;
 373	bool is_cp = true;
 374
 375	down_read(&nm_i->nat_tree_lock);
 376	e = __lookup_nat_cache(nm_i, nid);
 377	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 378		is_cp = false;
 379	up_read(&nm_i->nat_tree_lock);
 380	return is_cp;
 381}
 382
 383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 384{
 385	struct f2fs_nm_info *nm_i = NM_I(sbi);
 386	struct nat_entry *e;
 387	bool need_update = true;
 388
 389	down_read(&nm_i->nat_tree_lock);
 390	e = __lookup_nat_cache(nm_i, ino);
 391	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 392			(get_nat_flag(e, IS_CHECKPOINTED) ||
 393			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 394		need_update = false;
 395	up_read(&nm_i->nat_tree_lock);
 396	return need_update;
 397}
 398
 399/* must be locked by nat_tree_lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 401						struct f2fs_nat_entry *ne)
 402{
 403	struct f2fs_nm_info *nm_i = NM_I(sbi);
 404	struct nat_entry *new, *e;
 405
 406	new = __alloc_nat_entry(nid, false);
 407	if (!new)
 408		return;
 409
 410	down_write(&nm_i->nat_tree_lock);
 411	e = __lookup_nat_cache(nm_i, nid);
 412	if (!e)
 413		e = __init_nat_entry(nm_i, new, ne, false);
 414	else
 415		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 416				nat_get_blkaddr(e) !=
 417					le32_to_cpu(ne->block_addr) ||
 418				nat_get_version(e) != ne->version);
 419	up_write(&nm_i->nat_tree_lock);
 420	if (e != new)
 421		__free_nat_entry(new);
 422}
 423
 424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 425			block_t new_blkaddr, bool fsync_done)
 426{
 427	struct f2fs_nm_info *nm_i = NM_I(sbi);
 428	struct nat_entry *e;
 429	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 430
 431	down_write(&nm_i->nat_tree_lock);
 432	e = __lookup_nat_cache(nm_i, ni->nid);
 433	if (!e) {
 434		e = __init_nat_entry(nm_i, new, NULL, true);
 435		copy_node_info(&e->ni, ni);
 436		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 437	} else if (new_blkaddr == NEW_ADDR) {
 438		/*
 439		 * when nid is reallocated,
 440		 * previous nat entry can be remained in nat cache.
 441		 * So, reinitialize it with new information.
 442		 */
 443		copy_node_info(&e->ni, ni);
 444		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 445	}
 446	/* let's free early to reduce memory consumption */
 447	if (e != new)
 448		__free_nat_entry(new);
 449
 450	/* sanity check */
 451	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 452	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 453			new_blkaddr == NULL_ADDR);
 454	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 455			new_blkaddr == NEW_ADDR);
 456	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 
 457			new_blkaddr == NEW_ADDR);
 458
 459	/* increment version no as node is removed */
 460	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 461		unsigned char version = nat_get_version(e);
 462		nat_set_version(e, inc_node_version(version));
 
 
 
 
 463	}
 464
 465	/* change address */
 466	nat_set_blkaddr(e, new_blkaddr);
 467	if (!__is_valid_data_blkaddr(new_blkaddr))
 468		set_nat_flag(e, IS_CHECKPOINTED, false);
 469	__set_nat_cache_dirty(nm_i, e);
 470
 471	/* update fsync_mark if its inode nat entry is still alive */
 472	if (ni->nid != ni->ino)
 473		e = __lookup_nat_cache(nm_i, ni->ino);
 474	if (e) {
 475		if (fsync_done && ni->nid == ni->ino)
 476			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 477		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 478	}
 479	up_write(&nm_i->nat_tree_lock);
 480}
 481
 482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 483{
 484	struct f2fs_nm_info *nm_i = NM_I(sbi);
 485	int nr = nr_shrink;
 486
 487	if (!down_write_trylock(&nm_i->nat_tree_lock))
 488		return 0;
 489
 490	spin_lock(&nm_i->nat_list_lock);
 491	while (nr_shrink) {
 492		struct nat_entry *ne;
 493
 494		if (list_empty(&nm_i->nat_entries))
 495			break;
 496
 497		ne = list_first_entry(&nm_i->nat_entries,
 498					struct nat_entry, list);
 499		list_del(&ne->list);
 500		spin_unlock(&nm_i->nat_list_lock);
 501
 502		__del_from_nat_cache(nm_i, ne);
 503		nr_shrink--;
 504
 505		spin_lock(&nm_i->nat_list_lock);
 506	}
 507	spin_unlock(&nm_i->nat_list_lock);
 508
 509	up_write(&nm_i->nat_tree_lock);
 510	return nr - nr_shrink;
 511}
 512
 513/*
 514 * This function always returns success
 515 */
 516int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 517						struct node_info *ni)
 518{
 519	struct f2fs_nm_info *nm_i = NM_I(sbi);
 520	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 521	struct f2fs_journal *journal = curseg->journal;
 522	nid_t start_nid = START_NID(nid);
 523	struct f2fs_nat_block *nat_blk;
 524	struct page *page = NULL;
 525	struct f2fs_nat_entry ne;
 526	struct nat_entry *e;
 527	pgoff_t index;
 528	block_t blkaddr;
 529	int i;
 530
 531	ni->nid = nid;
 532
 533	/* Check nat cache */
 534	down_read(&nm_i->nat_tree_lock);
 535	e = __lookup_nat_cache(nm_i, nid);
 536	if (e) {
 537		ni->ino = nat_get_ino(e);
 538		ni->blk_addr = nat_get_blkaddr(e);
 539		ni->version = nat_get_version(e);
 540		up_read(&nm_i->nat_tree_lock);
 541		return 0;
 542	}
 543
 544	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 545
 546	/* Check current segment summary */
 547	down_read(&curseg->journal_rwsem);
 548	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 549	if (i >= 0) {
 550		ne = nat_in_journal(journal, i);
 551		node_info_from_raw_nat(ni, &ne);
 552	}
 553	up_read(&curseg->journal_rwsem);
 554	if (i >= 0) {
 555		up_read(&nm_i->nat_tree_lock);
 556		goto cache;
 557	}
 558
 559	/* Fill node_info from nat page */
 560	index = current_nat_addr(sbi, nid);
 561	up_read(&nm_i->nat_tree_lock);
 562
 563	page = f2fs_get_meta_page(sbi, index);
 564	if (IS_ERR(page))
 565		return PTR_ERR(page);
 566
 567	nat_blk = (struct f2fs_nat_block *)page_address(page);
 568	ne = nat_blk->entries[nid - start_nid];
 569	node_info_from_raw_nat(ni, &ne);
 570	f2fs_put_page(page, 1);
 571cache:
 572	blkaddr = le32_to_cpu(ne.block_addr);
 573	if (__is_valid_data_blkaddr(blkaddr) &&
 574		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 575		return -EFAULT;
 576
 577	/* cache nat entry */
 
 578	cache_nat_entry(sbi, nid, &ne);
 579	return 0;
 580}
 581
 582/*
 583 * readahead MAX_RA_NODE number of node pages.
 584 */
 585static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 586{
 587	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 588	struct blk_plug plug;
 589	int i, end;
 590	nid_t nid;
 591
 592	blk_start_plug(&plug);
 593
 594	/* Then, try readahead for siblings of the desired node */
 595	end = start + n;
 596	end = min(end, NIDS_PER_BLOCK);
 597	for (i = start; i < end; i++) {
 598		nid = get_nid(parent, i, false);
 599		f2fs_ra_node_page(sbi, nid);
 600	}
 601
 602	blk_finish_plug(&plug);
 603}
 604
 605pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 606{
 607	const long direct_index = ADDRS_PER_INODE(dn->inode);
 608	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 609	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 610	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 611	int cur_level = dn->cur_level;
 612	int max_level = dn->max_level;
 613	pgoff_t base = 0;
 614
 615	if (!dn->max_level)
 616		return pgofs + 1;
 617
 618	while (max_level-- > cur_level)
 619		skipped_unit *= NIDS_PER_BLOCK;
 620
 621	switch (dn->max_level) {
 622	case 3:
 623		base += 2 * indirect_blks;
 624		/* fall through */
 625	case 2:
 626		base += 2 * direct_blks;
 627		/* fall through */
 628	case 1:
 629		base += direct_index;
 630		break;
 631	default:
 632		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 633	}
 634
 635	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 636}
 637
 638/*
 639 * The maximum depth is four.
 640 * Offset[0] will have raw inode offset.
 641 */
 642static int get_node_path(struct inode *inode, long block,
 643				int offset[4], unsigned int noffset[4])
 644{
 645	const long direct_index = ADDRS_PER_INODE(inode);
 646	const long direct_blks = ADDRS_PER_BLOCK(inode);
 647	const long dptrs_per_blk = NIDS_PER_BLOCK;
 648	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 649	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 650	int n = 0;
 651	int level = 0;
 652
 653	noffset[0] = 0;
 654
 655	if (block < direct_index) {
 656		offset[n] = block;
 657		goto got;
 658	}
 659	block -= direct_index;
 660	if (block < direct_blks) {
 661		offset[n++] = NODE_DIR1_BLOCK;
 662		noffset[n] = 1;
 663		offset[n] = block;
 664		level = 1;
 665		goto got;
 666	}
 667	block -= direct_blks;
 668	if (block < direct_blks) {
 669		offset[n++] = NODE_DIR2_BLOCK;
 670		noffset[n] = 2;
 671		offset[n] = block;
 672		level = 1;
 673		goto got;
 674	}
 675	block -= direct_blks;
 676	if (block < indirect_blks) {
 677		offset[n++] = NODE_IND1_BLOCK;
 678		noffset[n] = 3;
 679		offset[n++] = block / direct_blks;
 680		noffset[n] = 4 + offset[n - 1];
 681		offset[n] = block % direct_blks;
 682		level = 2;
 683		goto got;
 684	}
 685	block -= indirect_blks;
 686	if (block < indirect_blks) {
 687		offset[n++] = NODE_IND2_BLOCK;
 688		noffset[n] = 4 + dptrs_per_blk;
 689		offset[n++] = block / direct_blks;
 690		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 691		offset[n] = block % direct_blks;
 692		level = 2;
 693		goto got;
 694	}
 695	block -= indirect_blks;
 696	if (block < dindirect_blks) {
 697		offset[n++] = NODE_DIND_BLOCK;
 698		noffset[n] = 5 + (dptrs_per_blk * 2);
 699		offset[n++] = block / indirect_blks;
 700		noffset[n] = 6 + (dptrs_per_blk * 2) +
 701			      offset[n - 1] * (dptrs_per_blk + 1);
 702		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 703		noffset[n] = 7 + (dptrs_per_blk * 2) +
 704			      offset[n - 2] * (dptrs_per_blk + 1) +
 705			      offset[n - 1];
 706		offset[n] = block % direct_blks;
 707		level = 3;
 708		goto got;
 709	} else {
 710		return -E2BIG;
 711	}
 712got:
 713	return level;
 714}
 715
 716/*
 717 * Caller should call f2fs_put_dnode(dn).
 718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 719 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 720 * In the case of RDONLY_NODE, we don't need to care about mutex.
 721 */
 722int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 723{
 724	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 725	struct page *npage[4];
 726	struct page *parent = NULL;
 727	int offset[4];
 728	unsigned int noffset[4];
 729	nid_t nids[4];
 730	int level, i = 0;
 731	int err = 0;
 732
 733	level = get_node_path(dn->inode, index, offset, noffset);
 734	if (level < 0)
 735		return level;
 736
 737	nids[0] = dn->inode->i_ino;
 738	npage[0] = dn->inode_page;
 739
 740	if (!npage[0]) {
 741		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 742		if (IS_ERR(npage[0]))
 743			return PTR_ERR(npage[0]);
 744	}
 745
 746	/* if inline_data is set, should not report any block indices */
 747	if (f2fs_has_inline_data(dn->inode) && index) {
 748		err = -ENOENT;
 749		f2fs_put_page(npage[0], 1);
 750		goto release_out;
 751	}
 752
 753	parent = npage[0];
 754	if (level != 0)
 755		nids[1] = get_nid(parent, offset[0], true);
 756	dn->inode_page = npage[0];
 757	dn->inode_page_locked = true;
 758
 759	/* get indirect or direct nodes */
 760	for (i = 1; i <= level; i++) {
 761		bool done = false;
 762
 763		if (!nids[i] && mode == ALLOC_NODE) {
 764			/* alloc new node */
 765			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 766				err = -ENOSPC;
 767				goto release_pages;
 768			}
 769
 770			dn->nid = nids[i];
 771			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 772			if (IS_ERR(npage[i])) {
 773				f2fs_alloc_nid_failed(sbi, nids[i]);
 774				err = PTR_ERR(npage[i]);
 775				goto release_pages;
 776			}
 777
 778			set_nid(parent, offset[i - 1], nids[i], i == 1);
 779			f2fs_alloc_nid_done(sbi, nids[i]);
 780			done = true;
 781		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 782			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 783			if (IS_ERR(npage[i])) {
 784				err = PTR_ERR(npage[i]);
 785				goto release_pages;
 786			}
 787			done = true;
 788		}
 789		if (i == 1) {
 790			dn->inode_page_locked = false;
 791			unlock_page(parent);
 792		} else {
 793			f2fs_put_page(parent, 1);
 794		}
 795
 796		if (!done) {
 797			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 798			if (IS_ERR(npage[i])) {
 799				err = PTR_ERR(npage[i]);
 800				f2fs_put_page(npage[0], 0);
 801				goto release_out;
 802			}
 803		}
 804		if (i < level) {
 805			parent = npage[i];
 806			nids[i + 1] = get_nid(parent, offset[i], false);
 807		}
 808	}
 809	dn->nid = nids[level];
 810	dn->ofs_in_node = offset[level];
 811	dn->node_page = npage[level];
 812	dn->data_blkaddr = datablock_addr(dn->inode,
 813				dn->node_page, dn->ofs_in_node);
 814	return 0;
 815
 816release_pages:
 817	f2fs_put_page(parent, 1);
 818	if (i > 1)
 819		f2fs_put_page(npage[0], 0);
 820release_out:
 821	dn->inode_page = NULL;
 822	dn->node_page = NULL;
 823	if (err == -ENOENT) {
 824		dn->cur_level = i;
 825		dn->max_level = level;
 826		dn->ofs_in_node = offset[level];
 827	}
 828	return err;
 829}
 830
 831static int truncate_node(struct dnode_of_data *dn)
 832{
 833	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 834	struct node_info ni;
 835	int err;
 836	pgoff_t index;
 837
 838	err = f2fs_get_node_info(sbi, dn->nid, &ni);
 839	if (err)
 840		return err;
 
 
 
 841
 842	/* Deallocate node address */
 843	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 844	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 845	set_node_addr(sbi, &ni, NULL_ADDR, false);
 846
 847	if (dn->nid == dn->inode->i_ino) {
 848		f2fs_remove_orphan_inode(sbi, dn->nid);
 849		dec_valid_inode_count(sbi);
 850		f2fs_inode_synced(dn->inode);
 
 851	}
 852
 853	clear_node_page_dirty(dn->node_page);
 854	set_sbi_flag(sbi, SBI_IS_DIRTY);
 855
 856	index = dn->node_page->index;
 857	f2fs_put_page(dn->node_page, 1);
 858
 859	invalidate_mapping_pages(NODE_MAPPING(sbi),
 860			index, index);
 861
 862	dn->node_page = NULL;
 863	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 864
 865	return 0;
 866}
 867
 868static int truncate_dnode(struct dnode_of_data *dn)
 869{
 870	struct page *page;
 871	int err;
 872
 873	if (dn->nid == 0)
 874		return 1;
 875
 876	/* get direct node */
 877	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 878	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 879		return 1;
 880	else if (IS_ERR(page))
 881		return PTR_ERR(page);
 882
 883	/* Make dnode_of_data for parameter */
 884	dn->node_page = page;
 885	dn->ofs_in_node = 0;
 886	f2fs_truncate_data_blocks(dn);
 887	err = truncate_node(dn);
 888	if (err)
 889		return err;
 890
 891	return 1;
 892}
 893
 894static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 895						int ofs, int depth)
 896{
 897	struct dnode_of_data rdn = *dn;
 898	struct page *page;
 899	struct f2fs_node *rn;
 900	nid_t child_nid;
 901	unsigned int child_nofs;
 902	int freed = 0;
 903	int i, ret;
 904
 905	if (dn->nid == 0)
 906		return NIDS_PER_BLOCK + 1;
 907
 908	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 909
 910	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 911	if (IS_ERR(page)) {
 912		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 913		return PTR_ERR(page);
 914	}
 915
 916	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 917
 918	rn = F2FS_NODE(page);
 919	if (depth < 3) {
 920		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 921			child_nid = le32_to_cpu(rn->in.nid[i]);
 922			if (child_nid == 0)
 923				continue;
 924			rdn.nid = child_nid;
 925			ret = truncate_dnode(&rdn);
 926			if (ret < 0)
 927				goto out_err;
 928			if (set_nid(page, i, 0, false))
 929				dn->node_changed = true;
 930		}
 931	} else {
 932		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 933		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 934			child_nid = le32_to_cpu(rn->in.nid[i]);
 935			if (child_nid == 0) {
 936				child_nofs += NIDS_PER_BLOCK + 1;
 937				continue;
 938			}
 939			rdn.nid = child_nid;
 940			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 941			if (ret == (NIDS_PER_BLOCK + 1)) {
 942				if (set_nid(page, i, 0, false))
 943					dn->node_changed = true;
 944				child_nofs += ret;
 945			} else if (ret < 0 && ret != -ENOENT) {
 946				goto out_err;
 947			}
 948		}
 949		freed = child_nofs;
 950	}
 951
 952	if (!ofs) {
 953		/* remove current indirect node */
 954		dn->node_page = page;
 955		ret = truncate_node(dn);
 956		if (ret)
 957			goto out_err;
 958		freed++;
 959	} else {
 960		f2fs_put_page(page, 1);
 961	}
 962	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 963	return freed;
 964
 965out_err:
 966	f2fs_put_page(page, 1);
 967	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 968	return ret;
 969}
 970
 971static int truncate_partial_nodes(struct dnode_of_data *dn,
 972			struct f2fs_inode *ri, int *offset, int depth)
 973{
 974	struct page *pages[2];
 975	nid_t nid[3];
 976	nid_t child_nid;
 977	int err = 0;
 978	int i;
 979	int idx = depth - 2;
 980
 981	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 982	if (!nid[0])
 983		return 0;
 984
 985	/* get indirect nodes in the path */
 986	for (i = 0; i < idx + 1; i++) {
 987		/* reference count'll be increased */
 988		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 989		if (IS_ERR(pages[i])) {
 990			err = PTR_ERR(pages[i]);
 991			idx = i - 1;
 992			goto fail;
 993		}
 994		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 995	}
 996
 997	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 998
 999	/* free direct nodes linked to a partial indirect node */
1000	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001		child_nid = get_nid(pages[idx], i, false);
1002		if (!child_nid)
1003			continue;
1004		dn->nid = child_nid;
1005		err = truncate_dnode(dn);
1006		if (err < 0)
1007			goto fail;
1008		if (set_nid(pages[idx], i, 0, false))
1009			dn->node_changed = true;
1010	}
1011
1012	if (offset[idx + 1] == 0) {
1013		dn->node_page = pages[idx];
1014		dn->nid = nid[idx];
1015		err = truncate_node(dn);
1016		if (err)
1017			goto fail;
1018	} else {
1019		f2fs_put_page(pages[idx], 1);
1020	}
1021	offset[idx]++;
1022	offset[idx + 1] = 0;
1023	idx--;
1024fail:
1025	for (i = idx; i >= 0; i--)
1026		f2fs_put_page(pages[i], 1);
1027
1028	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029
1030	return err;
1031}
1032
1033/*
1034 * All the block addresses of data and nodes should be nullified.
1035 */
1036int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037{
1038	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039	int err = 0, cont = 1;
1040	int level, offset[4], noffset[4];
1041	unsigned int nofs = 0;
1042	struct f2fs_inode *ri;
1043	struct dnode_of_data dn;
1044	struct page *page;
1045
1046	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047
1048	level = get_node_path(inode, from, offset, noffset);
1049	if (level < 0)
1050		return level;
1051
1052	page = f2fs_get_node_page(sbi, inode->i_ino);
1053	if (IS_ERR(page)) {
1054		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055		return PTR_ERR(page);
1056	}
1057
1058	set_new_dnode(&dn, inode, page, NULL, 0);
1059	unlock_page(page);
1060
1061	ri = F2FS_INODE(page);
1062	switch (level) {
1063	case 0:
1064	case 1:
1065		nofs = noffset[1];
1066		break;
1067	case 2:
1068		nofs = noffset[1];
1069		if (!offset[level - 1])
1070			goto skip_partial;
1071		err = truncate_partial_nodes(&dn, ri, offset, level);
1072		if (err < 0 && err != -ENOENT)
1073			goto fail;
1074		nofs += 1 + NIDS_PER_BLOCK;
1075		break;
1076	case 3:
1077		nofs = 5 + 2 * NIDS_PER_BLOCK;
1078		if (!offset[level - 1])
1079			goto skip_partial;
1080		err = truncate_partial_nodes(&dn, ri, offset, level);
1081		if (err < 0 && err != -ENOENT)
1082			goto fail;
1083		break;
1084	default:
1085		BUG();
1086	}
1087
1088skip_partial:
1089	while (cont) {
1090		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091		switch (offset[0]) {
1092		case NODE_DIR1_BLOCK:
1093		case NODE_DIR2_BLOCK:
1094			err = truncate_dnode(&dn);
1095			break;
1096
1097		case NODE_IND1_BLOCK:
1098		case NODE_IND2_BLOCK:
1099			err = truncate_nodes(&dn, nofs, offset[1], 2);
1100			break;
1101
1102		case NODE_DIND_BLOCK:
1103			err = truncate_nodes(&dn, nofs, offset[1], 3);
1104			cont = 0;
1105			break;
1106
1107		default:
1108			BUG();
1109		}
1110		if (err < 0 && err != -ENOENT)
1111			goto fail;
1112		if (offset[1] == 0 &&
1113				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114			lock_page(page);
1115			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116			f2fs_wait_on_page_writeback(page, NODE, true, true);
 
 
 
1117			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118			set_page_dirty(page);
1119			unlock_page(page);
1120		}
1121		offset[1] = 0;
1122		offset[0]++;
1123		nofs += err;
1124	}
1125fail:
1126	f2fs_put_page(page, 0);
1127	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128	return err > 0 ? 0 : err;
1129}
1130
1131/* caller must lock inode page */
1132int f2fs_truncate_xattr_node(struct inode *inode)
1133{
1134	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136	struct dnode_of_data dn;
1137	struct page *npage;
1138	int err;
1139
1140	if (!nid)
1141		return 0;
1142
1143	npage = f2fs_get_node_page(sbi, nid);
1144	if (IS_ERR(npage))
1145		return PTR_ERR(npage);
1146
1147	set_new_dnode(&dn, inode, NULL, npage, nid);
1148	err = truncate_node(&dn);
1149	if (err) {
1150		f2fs_put_page(npage, 1);
1151		return err;
1152	}
1153
1154	f2fs_i_xnid_write(inode, 0);
 
1155
 
 
 
 
 
1156	return 0;
1157}
1158
1159/*
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161 * f2fs_unlock_op().
1162 */
1163int f2fs_remove_inode_page(struct inode *inode)
1164{
1165	struct dnode_of_data dn;
1166	int err;
1167
1168	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170	if (err)
1171		return err;
1172
1173	err = f2fs_truncate_xattr_node(inode);
1174	if (err) {
1175		f2fs_put_dnode(&dn);
1176		return err;
1177	}
1178
1179	/* remove potential inline_data blocks */
1180	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181				S_ISLNK(inode->i_mode))
1182		f2fs_truncate_data_blocks_range(&dn, 1);
1183
1184	/* 0 is possible, after f2fs_new_inode() has failed */
1185	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186		f2fs_put_dnode(&dn);
1187		return -EIO;
1188	}
1189
1190	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191		f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192			  inode->i_ino, (unsigned long long)inode->i_blocks);
1193		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194	}
1195
1196	/* will put inode & node pages */
1197	err = truncate_node(&dn);
1198	if (err) {
1199		f2fs_put_dnode(&dn);
1200		return err;
1201	}
1202	return 0;
1203}
1204
1205struct page *f2fs_new_inode_page(struct inode *inode)
1206{
1207	struct dnode_of_data dn;
1208
1209	/* allocate inode page for new inode */
1210	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211
1212	/* caller should f2fs_put_page(page, 1); */
1213	return f2fs_new_node_page(&dn, 0);
1214}
1215
1216struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
 
1217{
1218	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219	struct node_info new_ni;
1220	struct page *page;
1221	int err;
1222
1223	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224		return ERR_PTR(-EPERM);
1225
1226	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227	if (!page)
1228		return ERR_PTR(-ENOMEM);
1229
1230	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231		goto fail;
1232
1233#ifdef CONFIG_F2FS_CHECK_FS
1234	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235	if (err) {
1236		dec_valid_node_count(sbi, dn->inode, !ofs);
1237		goto fail;
1238	}
1239	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240#endif
1241	new_ni.nid = dn->nid;
 
 
 
1242	new_ni.ino = dn->inode->i_ino;
1243	new_ni.blk_addr = NULL_ADDR;
1244	new_ni.flag = 0;
1245	new_ni.version = 0;
1246	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247
1248	f2fs_wait_on_page_writeback(page, NODE, true, true);
1249	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251	if (!PageUptodate(page))
1252		SetPageUptodate(page);
1253	if (set_page_dirty(page))
1254		dn->node_changed = true;
1255
1256	if (f2fs_has_xattr_block(ofs))
1257		f2fs_i_xnid_write(dn->inode, dn->nid);
1258
 
 
 
 
 
1259	if (ofs == 0)
1260		inc_valid_inode_count(sbi);
 
1261	return page;
1262
1263fail:
1264	clear_node_page_dirty(page);
1265	f2fs_put_page(page, 1);
1266	return ERR_PTR(err);
1267}
1268
1269/*
1270 * Caller should do after getting the following values.
1271 * 0: f2fs_put_page(page, 0)
1272 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1273 */
1274static int read_node_page(struct page *page, int op_flags)
1275{
1276	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277	struct node_info ni;
1278	struct f2fs_io_info fio = {
1279		.sbi = sbi,
1280		.type = NODE,
1281		.op = REQ_OP_READ,
1282		.op_flags = op_flags,
1283		.page = page,
1284		.encrypted_page = NULL,
1285	};
1286	int err;
1287
1288	if (PageUptodate(page)) {
1289		if (!f2fs_inode_chksum_verify(sbi, page)) {
1290			ClearPageUptodate(page);
1291			return -EFSBADCRC;
1292		}
1293		return LOCKED_PAGE;
1294	}
1295
1296	err = f2fs_get_node_info(sbi, page->index, &ni);
1297	if (err)
1298		return err;
1299
1300	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302		ClearPageUptodate(page);
1303		return -ENOENT;
1304	}
1305
 
 
 
1306	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307	return f2fs_submit_page_bio(&fio);
1308}
1309
1310/*
1311 * Readahead a node page
1312 */
1313void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314{
1315	struct page *apage;
1316	int err;
1317
1318	if (!nid)
1319		return;
1320	if (f2fs_check_nid_range(sbi, nid))
1321		return;
1322
1323	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
 
 
1324	if (apage)
1325		return;
1326
1327	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328	if (!apage)
1329		return;
1330
1331	err = read_node_page(apage, REQ_RAHEAD);
1332	f2fs_put_page(apage, err ? 1 : 0);
1333}
1334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336					struct page *parent, int start)
1337{
1338	struct page *page;
1339	int err;
1340
1341	if (!nid)
1342		return ERR_PTR(-ENOENT);
1343	if (f2fs_check_nid_range(sbi, nid))
1344		return ERR_PTR(-EINVAL);
1345repeat:
1346	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347	if (!page)
1348		return ERR_PTR(-ENOMEM);
1349
1350	err = read_node_page(page, 0);
1351	if (err < 0) {
1352		f2fs_put_page(page, 1);
1353		return ERR_PTR(err);
1354	} else if (err == LOCKED_PAGE) {
1355		err = 0;
1356		goto page_hit;
1357	}
1358
1359	if (parent)
1360		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361
1362	lock_page(page);
1363
 
 
 
 
1364	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365		f2fs_put_page(page, 1);
1366		goto repeat;
1367	}
1368
1369	if (unlikely(!PageUptodate(page))) {
1370		err = -EIO;
1371		goto out_err;
1372	}
1373
1374	if (!f2fs_inode_chksum_verify(sbi, page)) {
1375		err = -EFSBADCRC;
1376		goto out_err;
1377	}
1378page_hit:
1379	if(unlikely(nid != nid_of_node(page))) {
1380		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381			  nid, nid_of_node(page), ino_of_node(page),
1382			  ofs_of_node(page), cpver_of_node(page),
1383			  next_blkaddr_of_node(page));
1384		err = -EINVAL;
1385out_err:
1386		ClearPageUptodate(page);
1387		f2fs_put_page(page, 1);
1388		return ERR_PTR(err);
1389	}
1390	return page;
1391}
1392
1393struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394{
1395	return __get_node_page(sbi, nid, NULL, 0);
1396}
1397
1398struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399{
1400	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401	nid_t nid = get_nid(parent, start, false);
1402
1403	return __get_node_page(sbi, nid, parent, start);
1404}
1405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407{
1408	struct inode *inode;
1409	struct page *page;
1410	int ret;
1411
1412	/* should flush inline_data before evict_inode */
1413	inode = ilookup(sbi->sb, ino);
1414	if (!inode)
1415		return;
1416
1417	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418					FGP_LOCK|FGP_NOWAIT, 0);
1419	if (!page)
1420		goto iput_out;
1421
 
 
 
1422	if (!PageUptodate(page))
1423		goto page_out;
1424
1425	if (!PageDirty(page))
1426		goto page_out;
1427
1428	if (!clear_page_dirty_for_io(page))
1429		goto page_out;
1430
1431	ret = f2fs_write_inline_data(inode, page);
1432	inode_dec_dirty_pages(inode);
1433	f2fs_remove_dirty_inode(inode);
1434	if (ret)
1435		set_page_dirty(page);
1436page_out:
1437	f2fs_put_page(page, 1);
 
 
1438iput_out:
1439	iput(inode);
1440}
1441
1442static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
 
1443{
1444	pgoff_t index;
1445	struct pagevec pvec;
1446	struct page *last_page = NULL;
1447	int nr_pages;
1448
1449	pagevec_init(&pvec);
 
 
1450	index = 0;
 
1451
1452	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453				PAGECACHE_TAG_DIRTY))) {
1454		int i;
 
 
 
 
1455
1456		for (i = 0; i < nr_pages; i++) {
1457			struct page *page = pvec.pages[i];
1458
1459			if (unlikely(f2fs_cp_error(sbi))) {
1460				f2fs_put_page(last_page, 0);
1461				pagevec_release(&pvec);
1462				return ERR_PTR(-EIO);
1463			}
1464
1465			if (!IS_DNODE(page) || !is_cold_node(page))
 
 
 
 
 
 
1466				continue;
1467			if (ino_of_node(page) != ino)
 
 
 
 
1468				continue;
1469
1470			lock_page(page);
 
 
 
 
 
 
 
 
1471
1472			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473continue_unlock:
1474				unlock_page(page);
1475				continue;
1476			}
1477			if (ino_of_node(page) != ino)
1478				goto continue_unlock;
1479
1480			if (!PageDirty(page)) {
1481				/* someone wrote it for us */
1482				goto continue_unlock;
1483			}
1484
1485			if (last_page)
1486				f2fs_put_page(last_page, 0);
 
 
 
 
 
1487
1488			get_page(page);
1489			last_page = page;
1490			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491		}
1492		pagevec_release(&pvec);
1493		cond_resched();
1494	}
1495	return last_page;
 
 
 
 
 
 
 
1496}
1497
1498static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499				struct writeback_control *wbc, bool do_balance,
1500				enum iostat_type io_type, unsigned int *seq_id)
1501{
1502	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503	nid_t nid;
1504	struct node_info ni;
1505	struct f2fs_io_info fio = {
1506		.sbi = sbi,
1507		.ino = ino_of_node(page),
1508		.type = NODE,
1509		.op = REQ_OP_WRITE,
1510		.op_flags = wbc_to_write_flags(wbc),
1511		.page = page,
1512		.encrypted_page = NULL,
1513		.submitted = false,
1514		.io_type = io_type,
1515		.io_wbc = wbc,
1516	};
1517	unsigned int seq;
1518
1519	trace_f2fs_writepage(page, NODE);
1520
1521	if (unlikely(f2fs_cp_error(sbi)))
1522		goto redirty_out;
1523
1524	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525		goto redirty_out;
1526
1527	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528			wbc->sync_mode == WB_SYNC_NONE &&
1529			IS_DNODE(page) && is_cold_node(page))
1530		goto redirty_out;
1531
1532	/* get old block addr of this node page */
1533	nid = nid_of_node(page);
1534	f2fs_bug_on(sbi, page->index != nid);
1535
1536	if (f2fs_get_node_info(sbi, nid, &ni))
1537		goto redirty_out;
1538
1539	if (wbc->for_reclaim) {
1540		if (!down_read_trylock(&sbi->node_write))
1541			goto redirty_out;
1542	} else {
1543		down_read(&sbi->node_write);
1544	}
1545
 
 
1546	/* This page is already truncated */
1547	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548		ClearPageUptodate(page);
1549		dec_page_count(sbi, F2FS_DIRTY_NODES);
1550		up_read(&sbi->node_write);
1551		unlock_page(page);
1552		return 0;
1553	}
1554
1555	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557					DATA_GENERIC_ENHANCE)) {
1558		up_read(&sbi->node_write);
1559		goto redirty_out;
1560	}
1561
1562	if (atomic && !test_opt(sbi, NOBARRIER))
1563		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1564
1565	set_page_writeback(page);
1566	ClearPageError(page);
1567
1568	if (f2fs_in_warm_node_list(sbi, page)) {
1569		seq = f2fs_add_fsync_node_entry(sbi, page);
1570		if (seq_id)
1571			*seq_id = seq;
1572	}
1573
1574	fio.old_blkaddr = ni.blk_addr;
1575	f2fs_do_write_node_page(nid, &fio);
1576	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1577	dec_page_count(sbi, F2FS_DIRTY_NODES);
1578	up_read(&sbi->node_write);
1579
1580	if (wbc->for_reclaim) {
1581		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1582		submitted = NULL;
1583	}
1584
1585	unlock_page(page);
1586
1587	if (unlikely(f2fs_cp_error(sbi))) {
1588		f2fs_submit_merged_write(sbi, NODE);
1589		submitted = NULL;
1590	}
1591	if (submitted)
1592		*submitted = fio.submitted;
1593
1594	if (do_balance)
1595		f2fs_balance_fs(sbi, false);
1596	return 0;
1597
1598redirty_out:
1599	redirty_page_for_writepage(wbc, page);
1600	return AOP_WRITEPAGE_ACTIVATE;
1601}
1602
1603int f2fs_move_node_page(struct page *node_page, int gc_type)
1604{
1605	int err = 0;
1606
1607	if (gc_type == FG_GC) {
1608		struct writeback_control wbc = {
1609			.sync_mode = WB_SYNC_ALL,
1610			.nr_to_write = 1,
1611			.for_reclaim = 0,
1612		};
1613
1614		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1615
1616		set_page_dirty(node_page);
1617
1618		if (!clear_page_dirty_for_io(node_page)) {
1619			err = -EAGAIN;
1620			goto out_page;
1621		}
1622
1623		if (__write_node_page(node_page, false, NULL,
1624					&wbc, false, FS_GC_NODE_IO, NULL)) {
1625			err = -EAGAIN;
1626			unlock_page(node_page);
1627		}
1628		goto release_page;
1629	} else {
1630		/* set page dirty and write it */
1631		if (!PageWriteback(node_page))
1632			set_page_dirty(node_page);
1633	}
1634out_page:
1635	unlock_page(node_page);
1636release_page:
1637	f2fs_put_page(node_page, 0);
1638	return err;
1639}
1640
1641static int f2fs_write_node_page(struct page *page,
1642				struct writeback_control *wbc)
1643{
1644	return __write_node_page(page, false, NULL, wbc, false,
1645						FS_NODE_IO, NULL);
1646}
1647
1648int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1649			struct writeback_control *wbc, bool atomic,
1650			unsigned int *seq_id)
1651{
1652	pgoff_t index;
1653	struct pagevec pvec;
1654	int ret = 0;
1655	struct page *last_page = NULL;
1656	bool marked = false;
1657	nid_t ino = inode->i_ino;
1658	int nr_pages;
1659	int nwritten = 0;
1660
1661	if (atomic) {
1662		last_page = last_fsync_dnode(sbi, ino);
1663		if (IS_ERR_OR_NULL(last_page))
1664			return PTR_ERR_OR_ZERO(last_page);
1665	}
1666retry:
1667	pagevec_init(&pvec);
1668	index = 0;
1669
1670	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1671				PAGECACHE_TAG_DIRTY))) {
1672		int i;
1673
1674		for (i = 0; i < nr_pages; i++) {
1675			struct page *page = pvec.pages[i];
1676			bool submitted = false;
1677
1678			if (unlikely(f2fs_cp_error(sbi))) {
1679				f2fs_put_page(last_page, 0);
1680				pagevec_release(&pvec);
1681				ret = -EIO;
1682				goto out;
1683			}
1684
1685			if (!IS_DNODE(page) || !is_cold_node(page))
1686				continue;
1687			if (ino_of_node(page) != ino)
1688				continue;
1689
1690			lock_page(page);
1691
1692			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1693continue_unlock:
1694				unlock_page(page);
1695				continue;
1696			}
1697			if (ino_of_node(page) != ino)
1698				goto continue_unlock;
1699
1700			if (!PageDirty(page) && page != last_page) {
1701				/* someone wrote it for us */
1702				goto continue_unlock;
1703			}
1704
1705			f2fs_wait_on_page_writeback(page, NODE, true, true);
1706
1707			set_fsync_mark(page, 0);
1708			set_dentry_mark(page, 0);
1709
1710			if (!atomic || page == last_page) {
1711				set_fsync_mark(page, 1);
1712				if (IS_INODE(page)) {
1713					if (is_inode_flag_set(inode,
1714								FI_DIRTY_INODE))
1715						f2fs_update_inode(inode, page);
1716					set_dentry_mark(page,
1717						f2fs_need_dentry_mark(sbi, ino));
1718				}
1719				/*  may be written by other thread */
1720				if (!PageDirty(page))
1721					set_page_dirty(page);
1722			}
1723
1724			if (!clear_page_dirty_for_io(page))
1725				goto continue_unlock;
1726
1727			ret = __write_node_page(page, atomic &&
1728						page == last_page,
1729						&submitted, wbc, true,
1730						FS_NODE_IO, seq_id);
1731			if (ret) {
1732				unlock_page(page);
1733				f2fs_put_page(last_page, 0);
1734				break;
1735			} else if (submitted) {
1736				nwritten++;
1737			}
1738
1739			if (page == last_page) {
1740				f2fs_put_page(page, 0);
1741				marked = true;
1742				break;
1743			}
1744		}
1745		pagevec_release(&pvec);
1746		cond_resched();
1747
1748		if (ret || marked)
1749			break;
1750	}
1751	if (!ret && atomic && !marked) {
1752		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1753			   ino, last_page->index);
1754		lock_page(last_page);
1755		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1756		set_page_dirty(last_page);
1757		unlock_page(last_page);
1758		goto retry;
1759	}
1760out:
1761	if (nwritten)
1762		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1763	return ret ? -EIO: 0;
1764}
1765
1766static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1767{
1768	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769	bool clean;
1770
1771	if (inode->i_ino != ino)
1772		return 0;
1773
1774	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1775		return 0;
1776
1777	spin_lock(&sbi->inode_lock[DIRTY_META]);
1778	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1779	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1780
1781	if (clean)
1782		return 0;
1783
1784	inode = igrab(inode);
1785	if (!inode)
1786		return 0;
1787	return 1;
1788}
1789
1790static bool flush_dirty_inode(struct page *page)
1791{
1792	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1793	struct inode *inode;
1794	nid_t ino = ino_of_node(page);
1795
1796	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1797	if (!inode)
1798		return false;
1799
1800	f2fs_update_inode(inode, page);
1801	unlock_page(page);
1802
1803	iput(inode);
1804	return true;
1805}
1806
1807int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1808				struct writeback_control *wbc,
1809				bool do_balance, enum iostat_type io_type)
1810{
1811	pgoff_t index;
1812	struct pagevec pvec;
1813	int step = 0;
1814	int nwritten = 0;
1815	int ret = 0;
1816	int nr_pages, done = 0;
1817
1818	pagevec_init(&pvec);
1819
1820next_step:
1821	index = 0;
1822
1823	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1824			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1825		int i;
1826
1827		for (i = 0; i < nr_pages; i++) {
1828			struct page *page = pvec.pages[i];
1829			bool submitted = false;
1830			bool may_dirty = true;
1831
1832			/* give a priority to WB_SYNC threads */
1833			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1834					wbc->sync_mode == WB_SYNC_NONE) {
1835				done = 1;
1836				break;
1837			}
1838
1839			/*
1840			 * flushing sequence with step:
1841			 * 0. indirect nodes
1842			 * 1. dentry dnodes
1843			 * 2. file dnodes
1844			 */
1845			if (step == 0 && IS_DNODE(page))
1846				continue;
1847			if (step == 1 && (!IS_DNODE(page) ||
1848						is_cold_node(page)))
1849				continue;
1850			if (step == 2 && (!IS_DNODE(page) ||
1851						!is_cold_node(page)))
1852				continue;
1853lock_node:
1854			if (wbc->sync_mode == WB_SYNC_ALL)
1855				lock_page(page);
1856			else if (!trylock_page(page))
1857				continue;
1858
1859			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860continue_unlock:
1861				unlock_page(page);
1862				continue;
1863			}
1864
1865			if (!PageDirty(page)) {
1866				/* someone wrote it for us */
1867				goto continue_unlock;
1868			}
1869
1870			/* flush inline_data */
1871			if (is_inline_node(page)) {
1872				clear_inline_node(page);
1873				unlock_page(page);
1874				flush_inline_data(sbi, ino_of_node(page));
1875				goto lock_node;
1876			}
1877
1878			/* flush dirty inode */
1879			if (IS_INODE(page) && may_dirty) {
1880				may_dirty = false;
1881				if (flush_dirty_inode(page))
1882					goto lock_node;
1883			}
1884
1885			f2fs_wait_on_page_writeback(page, NODE, true, true);
1886
1887			if (!clear_page_dirty_for_io(page))
1888				goto continue_unlock;
1889
1890			set_fsync_mark(page, 0);
1891			set_dentry_mark(page, 0);
1892
1893			ret = __write_node_page(page, false, &submitted,
1894						wbc, do_balance, io_type, NULL);
1895			if (ret)
1896				unlock_page(page);
1897			else if (submitted)
1898				nwritten++;
1899
1900			if (--wbc->nr_to_write == 0)
1901				break;
1902		}
1903		pagevec_release(&pvec);
1904		cond_resched();
1905
1906		if (wbc->nr_to_write == 0) {
1907			step = 2;
1908			break;
1909		}
1910	}
1911
1912	if (step < 2) {
1913		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1915			goto out;
1916		step++;
1917		goto next_step;
1918	}
1919out:
1920	if (nwritten)
1921		f2fs_submit_merged_write(sbi, NODE);
1922
1923	if (unlikely(f2fs_cp_error(sbi)))
1924		return -EIO;
1925	return ret;
1926}
1927
1928int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1929						unsigned int seq_id)
1930{
1931	struct fsync_node_entry *fn;
1932	struct page *page;
1933	struct list_head *head = &sbi->fsync_node_list;
1934	unsigned long flags;
1935	unsigned int cur_seq_id = 0;
1936	int ret2, ret = 0;
1937
1938	while (seq_id && cur_seq_id < seq_id) {
1939		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1940		if (list_empty(head)) {
1941			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1942			break;
1943		}
1944		fn = list_first_entry(head, struct fsync_node_entry, list);
1945		if (fn->seq_id > seq_id) {
1946			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1947			break;
1948		}
1949		cur_seq_id = fn->seq_id;
1950		page = fn->page;
1951		get_page(page);
1952		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1953
1954		f2fs_wait_on_page_writeback(page, NODE, true, false);
1955		if (TestClearPageError(page))
1956			ret = -EIO;
1957
1958		put_page(page);
1959
1960		if (ret)
1961			break;
1962	}
1963
1964	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1965	if (!ret)
1966		ret = ret2;
1967
1968	return ret;
1969}
1970
1971static int f2fs_write_node_pages(struct address_space *mapping,
1972			    struct writeback_control *wbc)
1973{
1974	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1975	struct blk_plug plug;
1976	long diff;
1977
1978	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1979		goto skip_write;
1980
1981	/* balancing f2fs's metadata in background */
1982	f2fs_balance_fs_bg(sbi);
1983
1984	/* collect a number of dirty node pages and write together */
1985	if (wbc->sync_mode != WB_SYNC_ALL &&
1986			get_pages(sbi, F2FS_DIRTY_NODES) <
1987					nr_pages_to_skip(sbi, NODE))
1988		goto skip_write;
1989
1990	if (wbc->sync_mode == WB_SYNC_ALL)
1991		atomic_inc(&sbi->wb_sync_req[NODE]);
1992	else if (atomic_read(&sbi->wb_sync_req[NODE]))
1993		goto skip_write;
1994
1995	trace_f2fs_writepages(mapping->host, wbc, NODE);
1996
1997	diff = nr_pages_to_write(sbi, NODE, wbc);
1998	blk_start_plug(&plug);
1999	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2000	blk_finish_plug(&plug);
2001	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2002
2003	if (wbc->sync_mode == WB_SYNC_ALL)
2004		atomic_dec(&sbi->wb_sync_req[NODE]);
2005	return 0;
2006
2007skip_write:
2008	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2009	trace_f2fs_writepages(mapping->host, wbc, NODE);
2010	return 0;
2011}
2012
2013static int f2fs_set_node_page_dirty(struct page *page)
2014{
2015	trace_f2fs_set_page_dirty(page, NODE);
2016
2017	if (!PageUptodate(page))
2018		SetPageUptodate(page);
2019#ifdef CONFIG_F2FS_CHECK_FS
2020	if (IS_INODE(page))
2021		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2022#endif
2023	if (!PageDirty(page)) {
2024		__set_page_dirty_nobuffers(page);
2025		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2026		f2fs_set_page_private(page, 0);
2027		f2fs_trace_pid(page);
2028		return 1;
2029	}
2030	return 0;
2031}
2032
2033/*
2034 * Structure of the f2fs node operations
2035 */
2036const struct address_space_operations f2fs_node_aops = {
2037	.writepage	= f2fs_write_node_page,
2038	.writepages	= f2fs_write_node_pages,
2039	.set_page_dirty	= f2fs_set_node_page_dirty,
2040	.invalidatepage	= f2fs_invalidate_page,
2041	.releasepage	= f2fs_release_page,
2042#ifdef CONFIG_MIGRATION
2043	.migratepage    = f2fs_migrate_page,
2044#endif
2045};
2046
2047static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2048						nid_t n)
2049{
2050	return radix_tree_lookup(&nm_i->free_nid_root, n);
2051}
2052
2053static int __insert_free_nid(struct f2fs_sb_info *sbi,
2054			struct free_nid *i, enum nid_state state)
2055{
2056	struct f2fs_nm_info *nm_i = NM_I(sbi);
2057
2058	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2059	if (err)
2060		return err;
2061
2062	f2fs_bug_on(sbi, state != i->state);
2063	nm_i->nid_cnt[state]++;
2064	if (state == FREE_NID)
2065		list_add_tail(&i->list, &nm_i->free_nid_list);
2066	return 0;
2067}
2068
2069static void __remove_free_nid(struct f2fs_sb_info *sbi,
2070			struct free_nid *i, enum nid_state state)
2071{
2072	struct f2fs_nm_info *nm_i = NM_I(sbi);
2073
2074	f2fs_bug_on(sbi, state != i->state);
2075	nm_i->nid_cnt[state]--;
2076	if (state == FREE_NID)
2077		list_del(&i->list);
2078	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2079}
2080
2081static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2082			enum nid_state org_state, enum nid_state dst_state)
2083{
2084	struct f2fs_nm_info *nm_i = NM_I(sbi);
2085
2086	f2fs_bug_on(sbi, org_state != i->state);
2087	i->state = dst_state;
2088	nm_i->nid_cnt[org_state]--;
2089	nm_i->nid_cnt[dst_state]++;
2090
2091	switch (dst_state) {
2092	case PREALLOC_NID:
2093		list_del(&i->list);
2094		break;
2095	case FREE_NID:
2096		list_add_tail(&i->list, &nm_i->free_nid_list);
2097		break;
2098	default:
2099		BUG_ON(1);
2100	}
2101}
2102
2103static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2104							bool set, bool build)
2105{
2106	struct f2fs_nm_info *nm_i = NM_I(sbi);
2107	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2108	unsigned int nid_ofs = nid - START_NID(nid);
2109
2110	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2111		return;
2112
2113	if (set) {
2114		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2115			return;
2116		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2117		nm_i->free_nid_count[nat_ofs]++;
2118	} else {
2119		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2120			return;
2121		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2122		if (!build)
2123			nm_i->free_nid_count[nat_ofs]--;
2124	}
2125}
2126
2127/* return if the nid is recognized as free */
2128static bool add_free_nid(struct f2fs_sb_info *sbi,
2129				nid_t nid, bool build, bool update)
2130{
2131	struct f2fs_nm_info *nm_i = NM_I(sbi);
2132	struct free_nid *i, *e;
2133	struct nat_entry *ne;
2134	int err = -EINVAL;
2135	bool ret = false;
 
 
2136
2137	/* 0 nid should not be used */
2138	if (unlikely(nid == 0))
2139		return false;
2140
2141	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2142		return false;
2143
2144	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2145	i->nid = nid;
2146	i->state = FREE_NID;
2147
2148	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2149
2150	spin_lock(&nm_i->nid_list_lock);
2151
2152	if (build) {
2153		/*
2154		 *   Thread A             Thread B
2155		 *  - f2fs_create
2156		 *   - f2fs_new_inode
2157		 *    - f2fs_alloc_nid
2158		 *     - __insert_nid_to_list(PREALLOC_NID)
2159		 *                     - f2fs_balance_fs_bg
2160		 *                      - f2fs_build_free_nids
2161		 *                       - __f2fs_build_free_nids
2162		 *                        - scan_nat_page
2163		 *                         - add_free_nid
2164		 *                          - __lookup_nat_cache
2165		 *  - f2fs_add_link
2166		 *   - f2fs_init_inode_metadata
2167		 *    - f2fs_new_inode_page
2168		 *     - f2fs_new_node_page
2169		 *      - set_node_addr
2170		 *  - f2fs_alloc_nid_done
2171		 *   - __remove_nid_from_list(PREALLOC_NID)
2172		 *                         - __insert_nid_to_list(FREE_NID)
2173		 */
2174		ne = __lookup_nat_cache(nm_i, nid);
2175		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2176				nat_get_blkaddr(ne) != NULL_ADDR))
2177			goto err_out;
2178
2179		e = __lookup_free_nid_list(nm_i, nid);
2180		if (e) {
2181			if (e->state == FREE_NID)
2182				ret = true;
2183			goto err_out;
2184		}
2185	}
2186	ret = true;
2187	err = __insert_free_nid(sbi, i, FREE_NID);
2188err_out:
2189	if (update) {
2190		update_free_nid_bitmap(sbi, nid, ret, build);
2191		if (!build)
2192			nm_i->available_nids++;
 
2193	}
2194	spin_unlock(&nm_i->nid_list_lock);
2195	radix_tree_preload_end();
2196
2197	if (err)
 
 
 
2198		kmem_cache_free(free_nid_slab, i);
2199	return ret;
 
 
 
 
 
 
2200}
2201
2202static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2203{
2204	struct f2fs_nm_info *nm_i = NM_I(sbi);
2205	struct free_nid *i;
2206	bool need_free = false;
2207
2208	spin_lock(&nm_i->nid_list_lock);
2209	i = __lookup_free_nid_list(nm_i, nid);
2210	if (i && i->state == FREE_NID) {
2211		__remove_free_nid(sbi, i, FREE_NID);
 
2212		need_free = true;
2213	}
2214	spin_unlock(&nm_i->nid_list_lock);
2215
2216	if (need_free)
2217		kmem_cache_free(free_nid_slab, i);
2218}
2219
2220static int scan_nat_page(struct f2fs_sb_info *sbi,
2221			struct page *nat_page, nid_t start_nid)
2222{
2223	struct f2fs_nm_info *nm_i = NM_I(sbi);
2224	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2225	block_t blk_addr;
2226	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2227	int i;
2228
2229	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2230
2231	i = start_nid % NAT_ENTRY_PER_BLOCK;
2232
2233	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
 
2234		if (unlikely(start_nid >= nm_i->max_nid))
2235			break;
2236
2237		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2238
2239		if (blk_addr == NEW_ADDR)
2240			return -EINVAL;
2241
2242		if (blk_addr == NULL_ADDR) {
2243			add_free_nid(sbi, start_nid, true, true);
2244		} else {
2245			spin_lock(&NM_I(sbi)->nid_list_lock);
2246			update_free_nid_bitmap(sbi, start_nid, false, true);
2247			spin_unlock(&NM_I(sbi)->nid_list_lock);
2248		}
2249	}
2250
2251	return 0;
2252}
2253
2254static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2255{
2256	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2257	struct f2fs_journal *journal = curseg->journal;
2258	int i;
2259
2260	down_read(&curseg->journal_rwsem);
2261	for (i = 0; i < nats_in_cursum(journal); i++) {
2262		block_t addr;
2263		nid_t nid;
2264
2265		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2266		nid = le32_to_cpu(nid_in_journal(journal, i));
2267		if (addr == NULL_ADDR)
2268			add_free_nid(sbi, nid, true, false);
2269		else
2270			remove_free_nid(sbi, nid);
2271	}
2272	up_read(&curseg->journal_rwsem);
2273}
2274
2275static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2276{
2277	struct f2fs_nm_info *nm_i = NM_I(sbi);
2278	unsigned int i, idx;
2279	nid_t nid;
2280
2281	down_read(&nm_i->nat_tree_lock);
2282
2283	for (i = 0; i < nm_i->nat_blocks; i++) {
2284		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2285			continue;
2286		if (!nm_i->free_nid_count[i])
2287			continue;
2288		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2289			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2290						NAT_ENTRY_PER_BLOCK, idx);
2291			if (idx >= NAT_ENTRY_PER_BLOCK)
2292				break;
2293
2294			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2295			add_free_nid(sbi, nid, true, false);
2296
2297			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2298				goto out;
2299		}
2300	}
2301out:
2302	scan_curseg_cache(sbi);
2303
2304	up_read(&nm_i->nat_tree_lock);
2305}
2306
2307static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2308						bool sync, bool mount)
2309{
2310	struct f2fs_nm_info *nm_i = NM_I(sbi);
2311	int i = 0, ret;
 
 
2312	nid_t nid = nm_i->next_scan_nid;
2313
2314	if (unlikely(nid >= nm_i->max_nid))
2315		nid = 0;
2316
2317	/* Enough entries */
2318	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2319		return 0;
2320
2321	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2322		return 0;
2323
2324	if (!mount) {
2325		/* try to find free nids in free_nid_bitmap */
2326		scan_free_nid_bits(sbi);
2327
2328		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2329			return 0;
2330	}
2331
2332	/* readahead nat pages to be scanned */
2333	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2334							META_NAT, true);
2335
2336	down_read(&nm_i->nat_tree_lock);
2337
2338	while (1) {
2339		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2340						nm_i->nat_block_bitmap)) {
2341			struct page *page = get_current_nat_page(sbi, nid);
2342
2343			if (IS_ERR(page)) {
2344				ret = PTR_ERR(page);
2345			} else {
2346				ret = scan_nat_page(sbi, page, nid);
2347				f2fs_put_page(page, 1);
2348			}
2349
2350			if (ret) {
2351				up_read(&nm_i->nat_tree_lock);
2352				f2fs_bug_on(sbi, !mount);
2353				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2354				return ret;
2355			}
2356		}
2357
2358		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2359		if (unlikely(nid >= nm_i->max_nid))
2360			nid = 0;
2361
2362		if (++i >= FREE_NID_PAGES)
2363			break;
2364	}
2365
2366	/* go to the next free nat pages to find free nids abundantly */
2367	nm_i->next_scan_nid = nid;
2368
2369	/* find free nids from current sum_pages */
2370	scan_curseg_cache(sbi);
 
 
2371
 
 
 
 
 
 
 
 
2372	up_read(&nm_i->nat_tree_lock);
2373
2374	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2375					nm_i->ra_nid_pages, META_NAT, false);
2376
2377	return 0;
2378}
2379
2380int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2381{
2382	int ret;
2383
2384	mutex_lock(&NM_I(sbi)->build_lock);
2385	ret = __f2fs_build_free_nids(sbi, sync, mount);
2386	mutex_unlock(&NM_I(sbi)->build_lock);
2387
2388	return ret;
2389}
2390
2391/*
2392 * If this function returns success, caller can obtain a new nid
2393 * from second parameter of this function.
2394 * The returned nid could be used ino as well as nid when inode is created.
2395 */
2396bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2397{
2398	struct f2fs_nm_info *nm_i = NM_I(sbi);
2399	struct free_nid *i = NULL;
2400retry:
2401	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2402		f2fs_show_injection_info(FAULT_ALLOC_NID);
2403		return false;
2404	}
2405
2406	spin_lock(&nm_i->nid_list_lock);
2407
2408	if (unlikely(nm_i->available_nids == 0)) {
2409		spin_unlock(&nm_i->nid_list_lock);
2410		return false;
2411	}
2412
2413	/* We should not use stale free nids created by f2fs_build_free_nids */
2414	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2415		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2416		i = list_first_entry(&nm_i->free_nid_list,
2417					struct free_nid, list);
2418		*nid = i->nid;
2419
2420		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2421		nm_i->available_nids--;
2422
2423		update_free_nid_bitmap(sbi, *nid, false, false);
2424
2425		spin_unlock(&nm_i->nid_list_lock);
 
 
 
 
2426		return true;
2427	}
2428	spin_unlock(&nm_i->nid_list_lock);
2429
2430	/* Let's scan nat pages and its caches to get free nids */
2431	if (!f2fs_build_free_nids(sbi, true, false))
2432		goto retry;
2433	return false;
 
2434}
2435
2436/*
2437 * f2fs_alloc_nid() should be called prior to this function.
2438 */
2439void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2440{
2441	struct f2fs_nm_info *nm_i = NM_I(sbi);
2442	struct free_nid *i;
2443
2444	spin_lock(&nm_i->nid_list_lock);
2445	i = __lookup_free_nid_list(nm_i, nid);
2446	f2fs_bug_on(sbi, !i);
2447	__remove_free_nid(sbi, i, PREALLOC_NID);
2448	spin_unlock(&nm_i->nid_list_lock);
2449
2450	kmem_cache_free(free_nid_slab, i);
2451}
2452
2453/*
2454 * f2fs_alloc_nid() should be called prior to this function.
2455 */
2456void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2457{
2458	struct f2fs_nm_info *nm_i = NM_I(sbi);
2459	struct free_nid *i;
2460	bool need_free = false;
2461
2462	if (!nid)
2463		return;
2464
2465	spin_lock(&nm_i->nid_list_lock);
2466	i = __lookup_free_nid_list(nm_i, nid);
2467	f2fs_bug_on(sbi, !i);
2468
2469	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2470		__remove_free_nid(sbi, i, PREALLOC_NID);
2471		need_free = true;
2472	} else {
2473		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
 
2474	}
2475
2476	nm_i->available_nids++;
2477
2478	update_free_nid_bitmap(sbi, nid, true, false);
2479
2480	spin_unlock(&nm_i->nid_list_lock);
2481
2482	if (need_free)
2483		kmem_cache_free(free_nid_slab, i);
2484}
2485
2486int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2487{
2488	struct f2fs_nm_info *nm_i = NM_I(sbi);
2489	struct free_nid *i, *next;
2490	int nr = nr_shrink;
2491
2492	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2493		return 0;
2494
2495	if (!mutex_trylock(&nm_i->build_lock))
2496		return 0;
2497
2498	spin_lock(&nm_i->nid_list_lock);
2499	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2500		if (nr_shrink <= 0 ||
2501				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2502			break;
2503
2504		__remove_free_nid(sbi, i, FREE_NID);
 
2505		kmem_cache_free(free_nid_slab, i);
 
2506		nr_shrink--;
2507	}
2508	spin_unlock(&nm_i->nid_list_lock);
2509	mutex_unlock(&nm_i->build_lock);
2510
2511	return nr - nr_shrink;
2512}
2513
2514void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2515{
2516	void *src_addr, *dst_addr;
2517	size_t inline_size;
2518	struct page *ipage;
2519	struct f2fs_inode *ri;
2520
2521	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2522	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2523
2524	ri = F2FS_INODE(page);
2525	if (ri->i_inline & F2FS_INLINE_XATTR) {
2526		set_inode_flag(inode, FI_INLINE_XATTR);
2527	} else {
2528		clear_inode_flag(inode, FI_INLINE_XATTR);
2529		goto update_inode;
2530	}
2531
2532	dst_addr = inline_xattr_addr(inode, ipage);
2533	src_addr = inline_xattr_addr(inode, page);
2534	inline_size = inline_xattr_size(inode);
2535
2536	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2537	memcpy(dst_addr, src_addr, inline_size);
2538update_inode:
2539	f2fs_update_inode(inode, ipage);
2540	f2fs_put_page(ipage, 1);
2541}
2542
2543int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2544{
2545	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2546	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2547	nid_t new_xnid;
2548	struct dnode_of_data dn;
2549	struct node_info ni;
2550	struct page *xpage;
2551	int err;
2552
 
2553	if (!prev_xnid)
2554		goto recover_xnid;
2555
2556	/* 1: invalidate the previous xattr nid */
2557	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2558	if (err)
2559		return err;
2560
2561	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2562	dec_valid_node_count(sbi, inode, false);
2563	set_node_addr(sbi, &ni, NULL_ADDR, false);
2564
2565recover_xnid:
2566	/* 2: update xattr nid in inode */
2567	if (!f2fs_alloc_nid(sbi, &new_xnid))
2568		return -ENOSPC;
2569
2570	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2571	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2572	if (IS_ERR(xpage)) {
2573		f2fs_alloc_nid_failed(sbi, new_xnid);
2574		return PTR_ERR(xpage);
2575	}
2576
2577	f2fs_alloc_nid_done(sbi, new_xnid);
2578	f2fs_update_inode_page(inode);
2579
2580	/* 3: update and set xattr node page dirty */
2581	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
 
 
 
2582
2583	set_page_dirty(xpage);
2584	f2fs_put_page(xpage, 1);
 
2585
2586	return 0;
2587}
2588
2589int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2590{
2591	struct f2fs_inode *src, *dst;
2592	nid_t ino = ino_of_node(page);
2593	struct node_info old_ni, new_ni;
2594	struct page *ipage;
2595	int err;
2596
2597	err = f2fs_get_node_info(sbi, ino, &old_ni);
2598	if (err)
2599		return err;
2600
2601	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2602		return -EINVAL;
2603retry:
2604	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2605	if (!ipage) {
2606		congestion_wait(BLK_RW_ASYNC, HZ/50);
2607		goto retry;
2608	}
2609
2610	/* Should not use this inode from free nid list */
2611	remove_free_nid(sbi, ino);
2612
2613	if (!PageUptodate(ipage))
2614		SetPageUptodate(ipage);
2615	fill_node_footer(ipage, ino, ino, 0, true);
2616	set_cold_node(ipage, false);
2617
2618	src = F2FS_INODE(page);
2619	dst = F2FS_INODE(ipage);
2620
2621	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2622	dst->i_size = 0;
2623	dst->i_blocks = cpu_to_le64(1);
2624	dst->i_links = cpu_to_le32(1);
2625	dst->i_xattr_nid = 0;
2626	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2627	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2628		dst->i_extra_isize = src->i_extra_isize;
2629
2630		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2631			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2632							i_inline_xattr_size))
2633			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2634
2635		if (f2fs_sb_has_project_quota(sbi) &&
2636			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2637								i_projid))
2638			dst->i_projid = src->i_projid;
2639
2640		if (f2fs_sb_has_inode_crtime(sbi) &&
2641			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2642							i_crtime_nsec)) {
2643			dst->i_crtime = src->i_crtime;
2644			dst->i_crtime_nsec = src->i_crtime_nsec;
2645		}
2646	}
2647
2648	new_ni = old_ni;
2649	new_ni.ino = ino;
2650
2651	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2652		WARN_ON(1);
2653	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2654	inc_valid_inode_count(sbi);
2655	set_page_dirty(ipage);
2656	f2fs_put_page(ipage, 1);
2657	return 0;
2658}
2659
2660int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2661			unsigned int segno, struct f2fs_summary_block *sum)
2662{
2663	struct f2fs_node *rn;
2664	struct f2fs_summary *sum_entry;
2665	block_t addr;
 
2666	int i, idx, last_offset, nrpages;
2667
2668	/* scan the node segment */
2669	last_offset = sbi->blocks_per_seg;
2670	addr = START_BLOCK(sbi, segno);
2671	sum_entry = &sum->entries[0];
2672
2673	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2674		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2675
2676		/* readahead node pages */
2677		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2678
2679		for (idx = addr; idx < addr + nrpages; idx++) {
2680			struct page *page = f2fs_get_tmp_page(sbi, idx);
2681
2682			if (IS_ERR(page))
2683				return PTR_ERR(page);
2684
2685			rn = F2FS_NODE(page);
2686			sum_entry->nid = rn->footer.nid;
2687			sum_entry->version = 0;
2688			sum_entry->ofs_in_node = 0;
2689			sum_entry++;
2690			f2fs_put_page(page, 1);
2691		}
2692
2693		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2694							addr + nrpages);
2695	}
2696	return 0;
2697}
2698
2699static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2700{
2701	struct f2fs_nm_info *nm_i = NM_I(sbi);
2702	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2703	struct f2fs_journal *journal = curseg->journal;
2704	int i;
2705
2706	down_write(&curseg->journal_rwsem);
2707	for (i = 0; i < nats_in_cursum(journal); i++) {
2708		struct nat_entry *ne;
2709		struct f2fs_nat_entry raw_ne;
2710		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2711
2712		raw_ne = nat_in_journal(journal, i);
2713
2714		ne = __lookup_nat_cache(nm_i, nid);
2715		if (!ne) {
2716			ne = __alloc_nat_entry(nid, true);
2717			__init_nat_entry(nm_i, ne, &raw_ne, true);
2718		}
2719
2720		/*
2721		 * if a free nat in journal has not been used after last
2722		 * checkpoint, we should remove it from available nids,
2723		 * since later we will add it again.
2724		 */
2725		if (!get_nat_flag(ne, IS_DIRTY) &&
2726				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2727			spin_lock(&nm_i->nid_list_lock);
2728			nm_i->available_nids--;
2729			spin_unlock(&nm_i->nid_list_lock);
2730		}
2731
2732		__set_nat_cache_dirty(nm_i, ne);
2733	}
2734	update_nats_in_cursum(journal, -i);
2735	up_write(&curseg->journal_rwsem);
2736}
2737
2738static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2739						struct list_head *head, int max)
2740{
2741	struct nat_entry_set *cur;
2742
2743	if (nes->entry_cnt >= max)
2744		goto add_out;
2745
2746	list_for_each_entry(cur, head, set_list) {
2747		if (cur->entry_cnt >= nes->entry_cnt) {
2748			list_add(&nes->set_list, cur->set_list.prev);
2749			return;
2750		}
2751	}
2752add_out:
2753	list_add_tail(&nes->set_list, head);
2754}
2755
2756static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2757						struct page *page)
2758{
2759	struct f2fs_nm_info *nm_i = NM_I(sbi);
2760	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2761	struct f2fs_nat_block *nat_blk = page_address(page);
2762	int valid = 0;
2763	int i = 0;
2764
2765	if (!enabled_nat_bits(sbi, NULL))
2766		return;
2767
2768	if (nat_index == 0) {
2769		valid = 1;
2770		i = 1;
2771	}
2772	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2773		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2774			valid++;
2775	}
2776	if (valid == 0) {
2777		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2778		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2779		return;
2780	}
2781
2782	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2783	if (valid == NAT_ENTRY_PER_BLOCK)
2784		__set_bit_le(nat_index, nm_i->full_nat_bits);
2785	else
2786		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2787}
2788
2789static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2790		struct nat_entry_set *set, struct cp_control *cpc)
2791{
2792	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2793	struct f2fs_journal *journal = curseg->journal;
2794	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2795	bool to_journal = true;
2796	struct f2fs_nat_block *nat_blk;
2797	struct nat_entry *ne, *cur;
2798	struct page *page = NULL;
2799
2800	/*
2801	 * there are two steps to flush nat entries:
2802	 * #1, flush nat entries to journal in current hot data summary block.
2803	 * #2, flush nat entries to nat page.
2804	 */
2805	if (enabled_nat_bits(sbi, cpc) ||
2806		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2807		to_journal = false;
2808
2809	if (to_journal) {
2810		down_write(&curseg->journal_rwsem);
2811	} else {
2812		page = get_next_nat_page(sbi, start_nid);
2813		if (IS_ERR(page))
2814			return PTR_ERR(page);
2815
2816		nat_blk = page_address(page);
2817		f2fs_bug_on(sbi, !nat_blk);
2818	}
2819
2820	/* flush dirty nats in nat entry set */
2821	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2822		struct f2fs_nat_entry *raw_ne;
2823		nid_t nid = nat_get_nid(ne);
2824		int offset;
2825
2826		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
 
2827
2828		if (to_journal) {
2829			offset = f2fs_lookup_journal_in_cursum(journal,
2830							NAT_JOURNAL, nid, 1);
2831			f2fs_bug_on(sbi, offset < 0);
2832			raw_ne = &nat_in_journal(journal, offset);
2833			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2834		} else {
2835			raw_ne = &nat_blk->entries[nid - start_nid];
2836		}
2837		raw_nat_from_node_info(raw_ne, &ne->ni);
2838		nat_reset_flag(ne);
2839		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2840		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2841			add_free_nid(sbi, nid, false, true);
2842		} else {
2843			spin_lock(&NM_I(sbi)->nid_list_lock);
2844			update_free_nid_bitmap(sbi, nid, false, false);
2845			spin_unlock(&NM_I(sbi)->nid_list_lock);
2846		}
2847	}
2848
2849	if (to_journal) {
2850		up_write(&curseg->journal_rwsem);
2851	} else {
2852		__update_nat_bits(sbi, start_nid, page);
2853		f2fs_put_page(page, 1);
2854	}
2855
2856	/* Allow dirty nats by node block allocation in write_begin */
2857	if (!set->entry_cnt) {
2858		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2859		kmem_cache_free(nat_entry_set_slab, set);
2860	}
2861	return 0;
2862}
2863
2864/*
2865 * This function is called during the checkpointing process.
2866 */
2867int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2868{
2869	struct f2fs_nm_info *nm_i = NM_I(sbi);
2870	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2871	struct f2fs_journal *journal = curseg->journal;
2872	struct nat_entry_set *setvec[SETVEC_SIZE];
2873	struct nat_entry_set *set, *tmp;
2874	unsigned int found;
2875	nid_t set_idx = 0;
2876	LIST_HEAD(sets);
2877	int err = 0;
2878
2879	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2880	if (enabled_nat_bits(sbi, cpc)) {
2881		down_write(&nm_i->nat_tree_lock);
2882		remove_nats_in_journal(sbi);
2883		up_write(&nm_i->nat_tree_lock);
2884	}
2885
2886	if (!nm_i->dirty_nat_cnt)
2887		return 0;
2888
2889	down_write(&nm_i->nat_tree_lock);
2890
2891	/*
2892	 * if there are no enough space in journal to store dirty nat
2893	 * entries, remove all entries from journal and merge them
2894	 * into nat entry set.
2895	 */
2896	if (enabled_nat_bits(sbi, cpc) ||
2897		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2898		remove_nats_in_journal(sbi);
2899
2900	while ((found = __gang_lookup_nat_set(nm_i,
2901					set_idx, SETVEC_SIZE, setvec))) {
2902		unsigned idx;
2903		set_idx = setvec[found - 1]->set + 1;
2904		for (idx = 0; idx < found; idx++)
2905			__adjust_nat_entry_set(setvec[idx], &sets,
2906						MAX_NAT_JENTRIES(journal));
2907	}
2908
2909	/* flush dirty nats in nat entry set */
2910	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2911		err = __flush_nat_entry_set(sbi, set, cpc);
2912		if (err)
2913			break;
2914	}
2915
2916	up_write(&nm_i->nat_tree_lock);
2917	/* Allow dirty nats by node block allocation in write_begin */
2918
2919	return err;
2920}
2921
2922static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2923{
2924	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2925	struct f2fs_nm_info *nm_i = NM_I(sbi);
2926	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2927	unsigned int i;
2928	__u64 cp_ver = cur_cp_version(ckpt);
2929	block_t nat_bits_addr;
2930
2931	if (!enabled_nat_bits(sbi, NULL))
2932		return 0;
2933
2934	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2935	nm_i->nat_bits = f2fs_kzalloc(sbi,
2936			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2937	if (!nm_i->nat_bits)
2938		return -ENOMEM;
2939
2940	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2941						nm_i->nat_bits_blocks;
2942	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2943		struct page *page;
2944
2945		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2946		if (IS_ERR(page))
2947			return PTR_ERR(page);
2948
2949		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2950					page_address(page), F2FS_BLKSIZE);
2951		f2fs_put_page(page, 1);
2952	}
2953
2954	cp_ver |= (cur_cp_crc(ckpt) << 32);
2955	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2956		disable_nat_bits(sbi, true);
2957		return 0;
2958	}
2959
2960	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2961	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2962
2963	f2fs_notice(sbi, "Found nat_bits in checkpoint");
2964	return 0;
2965}
2966
2967static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2968{
2969	struct f2fs_nm_info *nm_i = NM_I(sbi);
2970	unsigned int i = 0;
2971	nid_t nid, last_nid;
2972
2973	if (!enabled_nat_bits(sbi, NULL))
2974		return;
2975
2976	for (i = 0; i < nm_i->nat_blocks; i++) {
2977		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2978		if (i >= nm_i->nat_blocks)
2979			break;
2980
2981		__set_bit_le(i, nm_i->nat_block_bitmap);
2982
2983		nid = i * NAT_ENTRY_PER_BLOCK;
2984		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2985
2986		spin_lock(&NM_I(sbi)->nid_list_lock);
2987		for (; nid < last_nid; nid++)
2988			update_free_nid_bitmap(sbi, nid, true, true);
2989		spin_unlock(&NM_I(sbi)->nid_list_lock);
2990	}
2991
2992	for (i = 0; i < nm_i->nat_blocks; i++) {
2993		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2994		if (i >= nm_i->nat_blocks)
2995			break;
2996
2997		__set_bit_le(i, nm_i->nat_block_bitmap);
2998	}
2999}
3000
3001static int init_node_manager(struct f2fs_sb_info *sbi)
3002{
3003	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3004	struct f2fs_nm_info *nm_i = NM_I(sbi);
3005	unsigned char *version_bitmap;
3006	unsigned int nat_segs;
3007	int err;
3008
3009	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3010
3011	/* segment_count_nat includes pair segment so divide to 2. */
3012	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3013	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3014	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
 
3015
3016	/* not used nids: 0, node, meta, (and root counted as valid node) */
3017	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3018						F2FS_RESERVED_NODE_NUM;
3019	nm_i->nid_cnt[FREE_NID] = 0;
3020	nm_i->nid_cnt[PREALLOC_NID] = 0;
3021	nm_i->nat_cnt = 0;
3022	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3023	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3024	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3025
3026	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3027	INIT_LIST_HEAD(&nm_i->free_nid_list);
3028	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3029	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3030	INIT_LIST_HEAD(&nm_i->nat_entries);
3031	spin_lock_init(&nm_i->nat_list_lock);
3032
3033	mutex_init(&nm_i->build_lock);
3034	spin_lock_init(&nm_i->nid_list_lock);
3035	init_rwsem(&nm_i->nat_tree_lock);
3036
3037	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3038	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3039	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3040	if (!version_bitmap)
3041		return -EFAULT;
3042
3043	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3044					GFP_KERNEL);
3045	if (!nm_i->nat_bitmap)
3046		return -ENOMEM;
3047
3048	err = __get_nat_bitmaps(sbi);
3049	if (err)
3050		return err;
3051
3052#ifdef CONFIG_F2FS_CHECK_FS
3053	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3054					GFP_KERNEL);
3055	if (!nm_i->nat_bitmap_mir)
3056		return -ENOMEM;
3057#endif
3058
3059	return 0;
3060}
3061
3062static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3063{
3064	struct f2fs_nm_info *nm_i = NM_I(sbi);
3065	int i;
3066
3067	nm_i->free_nid_bitmap =
3068		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3069					     nm_i->nat_blocks),
3070			     GFP_KERNEL);
3071	if (!nm_i->free_nid_bitmap)
3072		return -ENOMEM;
3073
3074	for (i = 0; i < nm_i->nat_blocks; i++) {
3075		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3076			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3077		if (!nm_i->free_nid_bitmap[i])
3078			return -ENOMEM;
3079	}
3080
3081	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3082								GFP_KERNEL);
3083	if (!nm_i->nat_block_bitmap)
3084		return -ENOMEM;
3085
3086	nm_i->free_nid_count =
3087		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3088					      nm_i->nat_blocks),
3089			      GFP_KERNEL);
3090	if (!nm_i->free_nid_count)
3091		return -ENOMEM;
3092	return 0;
3093}
3094
3095int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3096{
3097	int err;
3098
3099	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3100							GFP_KERNEL);
3101	if (!sbi->nm_info)
3102		return -ENOMEM;
3103
3104	err = init_node_manager(sbi);
3105	if (err)
3106		return err;
3107
3108	err = init_free_nid_cache(sbi);
3109	if (err)
3110		return err;
3111
3112	/* load free nid status from nat_bits table */
3113	load_free_nid_bitmap(sbi);
3114
3115	return f2fs_build_free_nids(sbi, true, true);
3116}
3117
3118void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3119{
3120	struct f2fs_nm_info *nm_i = NM_I(sbi);
3121	struct free_nid *i, *next_i;
3122	struct nat_entry *natvec[NATVEC_SIZE];
3123	struct nat_entry_set *setvec[SETVEC_SIZE];
3124	nid_t nid = 0;
3125	unsigned int found;
3126
3127	if (!nm_i)
3128		return;
3129
3130	/* destroy free nid list */
3131	spin_lock(&nm_i->nid_list_lock);
3132	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3133		__remove_free_nid(sbi, i, FREE_NID);
3134		spin_unlock(&nm_i->nid_list_lock);
 
 
3135		kmem_cache_free(free_nid_slab, i);
3136		spin_lock(&nm_i->nid_list_lock);
3137	}
3138	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3139	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3140	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3141	spin_unlock(&nm_i->nid_list_lock);
3142
3143	/* destroy nat cache */
3144	down_write(&nm_i->nat_tree_lock);
3145	while ((found = __gang_lookup_nat_cache(nm_i,
3146					nid, NATVEC_SIZE, natvec))) {
3147		unsigned idx;
3148
3149		nid = nat_get_nid(natvec[found - 1]) + 1;
3150		for (idx = 0; idx < found; idx++) {
3151			spin_lock(&nm_i->nat_list_lock);
3152			list_del(&natvec[idx]->list);
3153			spin_unlock(&nm_i->nat_list_lock);
3154
3155			__del_from_nat_cache(nm_i, natvec[idx]);
3156		}
3157	}
3158	f2fs_bug_on(sbi, nm_i->nat_cnt);
3159
3160	/* destroy nat set cache */
3161	nid = 0;
3162	while ((found = __gang_lookup_nat_set(nm_i,
3163					nid, SETVEC_SIZE, setvec))) {
3164		unsigned idx;
3165
3166		nid = setvec[found - 1]->set + 1;
3167		for (idx = 0; idx < found; idx++) {
3168			/* entry_cnt is not zero, when cp_error was occurred */
3169			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3170			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3171			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3172		}
3173	}
3174	up_write(&nm_i->nat_tree_lock);
3175
3176	kvfree(nm_i->nat_block_bitmap);
3177	if (nm_i->free_nid_bitmap) {
3178		int i;
3179
3180		for (i = 0; i < nm_i->nat_blocks; i++)
3181			kvfree(nm_i->free_nid_bitmap[i]);
3182		kvfree(nm_i->free_nid_bitmap);
3183	}
3184	kvfree(nm_i->free_nid_count);
3185
3186	kvfree(nm_i->nat_bitmap);
3187	kvfree(nm_i->nat_bits);
3188#ifdef CONFIG_F2FS_CHECK_FS
3189	kvfree(nm_i->nat_bitmap_mir);
3190#endif
3191	sbi->nm_info = NULL;
3192	kvfree(nm_i);
3193}
3194
3195int __init f2fs_create_node_manager_caches(void)
3196{
3197	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3198			sizeof(struct nat_entry));
3199	if (!nat_entry_slab)
3200		goto fail;
3201
3202	free_nid_slab = f2fs_kmem_cache_create("free_nid",
3203			sizeof(struct free_nid));
3204	if (!free_nid_slab)
3205		goto destroy_nat_entry;
3206
3207	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3208			sizeof(struct nat_entry_set));
3209	if (!nat_entry_set_slab)
3210		goto destroy_free_nid;
3211
3212	fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3213			sizeof(struct fsync_node_entry));
3214	if (!fsync_node_entry_slab)
3215		goto destroy_nat_entry_set;
3216	return 0;
3217
3218destroy_nat_entry_set:
3219	kmem_cache_destroy(nat_entry_set_slab);
3220destroy_free_nid:
3221	kmem_cache_destroy(free_nid_slab);
3222destroy_nat_entry:
3223	kmem_cache_destroy(nat_entry_slab);
3224fail:
3225	return -ENOMEM;
3226}
3227
3228void f2fs_destroy_node_manager_caches(void)
3229{
3230	kmem_cache_destroy(fsync_node_entry_slab);
3231	kmem_cache_destroy(nat_entry_set_slab);
3232	kmem_cache_destroy(free_nid_slab);
3233	kmem_cache_destroy(nat_entry_slab);
3234}
v4.6
 
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
 
  22#include "trace.h"
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33	struct f2fs_nm_info *nm_i = NM_I(sbi);
  34	struct sysinfo val;
  35	unsigned long avail_ram;
  36	unsigned long mem_size = 0;
  37	bool res = false;
  38
  39	si_meminfo(&val);
  40
  41	/* only uses low memory */
  42	avail_ram = val.totalram - val.totalhigh;
  43
  44	/*
  45	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46	 */
  47	if (type == FREE_NIDS) {
  48		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  49							PAGE_SHIFT;
  50		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51	} else if (type == NAT_ENTRIES) {
  52		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53							PAGE_SHIFT;
  54		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 
 
  55	} else if (type == DIRTY_DENTS) {
  56		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  57			return false;
  58		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  59		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  60	} else if (type == INO_ENTRIES) {
  61		int i;
  62
  63		for (i = 0; i <= UPDATE_INO; i++)
  64			mem_size += (sbi->im[i].ino_num *
  65				sizeof(struct ino_entry)) >> PAGE_SHIFT;
 
  66		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  67	} else if (type == EXTENT_CACHE) {
  68		mem_size = (atomic_read(&sbi->total_ext_tree) *
  69				sizeof(struct extent_tree) +
  70				atomic_read(&sbi->total_ext_node) *
  71				sizeof(struct extent_node)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 
 
 
 
  73	} else {
  74		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  75			return true;
  76	}
  77	return res;
  78}
  79
  80static void clear_node_page_dirty(struct page *page)
  81{
  82	struct address_space *mapping = page->mapping;
  83	unsigned int long flags;
  84
  85	if (PageDirty(page)) {
  86		spin_lock_irqsave(&mapping->tree_lock, flags);
  87		radix_tree_tag_clear(&mapping->page_tree,
  88				page_index(page),
  89				PAGECACHE_TAG_DIRTY);
  90		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  91
  92		clear_page_dirty_for_io(page);
  93		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  94	}
  95	ClearPageUptodate(page);
  96}
  97
  98static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  99{
 100	pgoff_t index = current_nat_addr(sbi, nid);
 101	return get_meta_page(sbi, index);
 102}
 103
 104static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 105{
 106	struct page *src_page;
 107	struct page *dst_page;
 108	pgoff_t src_off;
 109	pgoff_t dst_off;
 110	void *src_addr;
 111	void *dst_addr;
 112	struct f2fs_nm_info *nm_i = NM_I(sbi);
 113
 114	src_off = current_nat_addr(sbi, nid);
 115	dst_off = next_nat_addr(sbi, src_off);
 116
 117	/* get current nat block page with lock */
 118	src_page = get_meta_page(sbi, src_off);
 119	dst_page = grab_meta_page(sbi, dst_off);
 
 
 120	f2fs_bug_on(sbi, PageDirty(src_page));
 121
 122	src_addr = page_address(src_page);
 123	dst_addr = page_address(dst_page);
 124	memcpy(dst_addr, src_addr, PAGE_SIZE);
 125	set_page_dirty(dst_page);
 126	f2fs_put_page(src_page, 1);
 127
 128	set_to_next_nat(nm_i, nid);
 129
 130	return dst_page;
 131}
 132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 134{
 135	return radix_tree_lookup(&nm_i->nat_root, n);
 
 
 
 
 
 
 
 
 
 
 
 
 136}
 137
 138static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 139		nid_t start, unsigned int nr, struct nat_entry **ep)
 140{
 141	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 142}
 143
 144static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 145{
 146	list_del(&e->list);
 147	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 148	nm_i->nat_cnt--;
 149	kmem_cache_free(nat_entry_slab, e);
 150}
 151
 152static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 153						struct nat_entry *ne)
 154{
 155	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 156	struct nat_entry_set *head;
 157
 158	if (get_nat_flag(ne, IS_DIRTY))
 159		return;
 160
 161	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 162	if (!head) {
 163		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 164
 165		INIT_LIST_HEAD(&head->entry_list);
 166		INIT_LIST_HEAD(&head->set_list);
 167		head->set = set;
 168		head->entry_cnt = 0;
 169		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 170	}
 171	list_move_tail(&ne->list, &head->entry_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172	nm_i->dirty_nat_cnt++;
 173	head->entry_cnt++;
 174	set_nat_flag(ne, IS_DIRTY, true);
 
 
 
 
 
 
 
 175}
 176
 177static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 178						struct nat_entry *ne)
 179{
 180	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 181	struct nat_entry_set *head;
 182
 183	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 184	if (head) {
 185		list_move_tail(&ne->list, &nm_i->nat_entries);
 186		set_nat_flag(ne, IS_DIRTY, false);
 187		head->entry_cnt--;
 188		nm_i->dirty_nat_cnt--;
 189	}
 190}
 191
 192static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 193		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 194{
 195	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 196							start, nr);
 197}
 198
 199int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200{
 201	struct f2fs_nm_info *nm_i = NM_I(sbi);
 202	struct nat_entry *e;
 203	bool need = false;
 204
 205	down_read(&nm_i->nat_tree_lock);
 206	e = __lookup_nat_cache(nm_i, nid);
 207	if (e) {
 208		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 209				!get_nat_flag(e, HAS_FSYNCED_INODE))
 210			need = true;
 211	}
 212	up_read(&nm_i->nat_tree_lock);
 213	return need;
 214}
 215
 216bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 217{
 218	struct f2fs_nm_info *nm_i = NM_I(sbi);
 219	struct nat_entry *e;
 220	bool is_cp = true;
 221
 222	down_read(&nm_i->nat_tree_lock);
 223	e = __lookup_nat_cache(nm_i, nid);
 224	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 225		is_cp = false;
 226	up_read(&nm_i->nat_tree_lock);
 227	return is_cp;
 228}
 229
 230bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 231{
 232	struct f2fs_nm_info *nm_i = NM_I(sbi);
 233	struct nat_entry *e;
 234	bool need_update = true;
 235
 236	down_read(&nm_i->nat_tree_lock);
 237	e = __lookup_nat_cache(nm_i, ino);
 238	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 239			(get_nat_flag(e, IS_CHECKPOINTED) ||
 240			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 241		need_update = false;
 242	up_read(&nm_i->nat_tree_lock);
 243	return need_update;
 244}
 245
 246static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 247{
 248	struct nat_entry *new;
 249
 250	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 251	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 252	memset(new, 0, sizeof(struct nat_entry));
 253	nat_set_nid(new, nid);
 254	nat_reset_flag(new);
 255	list_add_tail(&new->list, &nm_i->nat_entries);
 256	nm_i->nat_cnt++;
 257	return new;
 258}
 259
 260static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 261						struct f2fs_nat_entry *ne)
 262{
 263	struct f2fs_nm_info *nm_i = NM_I(sbi);
 264	struct nat_entry *e;
 
 
 
 
 265
 
 266	e = __lookup_nat_cache(nm_i, nid);
 267	if (!e) {
 268		e = grab_nat_entry(nm_i, nid);
 269		node_info_from_raw_nat(&e->ni, ne);
 270	} else {
 271		f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
 272				nat_get_blkaddr(e) != ne->block_addr ||
 273				nat_get_version(e) != ne->version);
 274	}
 
 
 275}
 276
 277static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 278			block_t new_blkaddr, bool fsync_done)
 279{
 280	struct f2fs_nm_info *nm_i = NM_I(sbi);
 281	struct nat_entry *e;
 
 282
 283	down_write(&nm_i->nat_tree_lock);
 284	e = __lookup_nat_cache(nm_i, ni->nid);
 285	if (!e) {
 286		e = grab_nat_entry(nm_i, ni->nid);
 287		copy_node_info(&e->ni, ni);
 288		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 289	} else if (new_blkaddr == NEW_ADDR) {
 290		/*
 291		 * when nid is reallocated,
 292		 * previous nat entry can be remained in nat cache.
 293		 * So, reinitialize it with new information.
 294		 */
 295		copy_node_info(&e->ni, ni);
 296		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 297	}
 
 
 
 298
 299	/* sanity check */
 300	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 301	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 302			new_blkaddr == NULL_ADDR);
 303	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 304			new_blkaddr == NEW_ADDR);
 305	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 306			nat_get_blkaddr(e) != NULL_ADDR &&
 307			new_blkaddr == NEW_ADDR);
 308
 309	/* increment version no as node is removed */
 310	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 311		unsigned char version = nat_get_version(e);
 312		nat_set_version(e, inc_node_version(version));
 313
 314		/* in order to reuse the nid */
 315		if (nm_i->next_scan_nid > ni->nid)
 316			nm_i->next_scan_nid = ni->nid;
 317	}
 318
 319	/* change address */
 320	nat_set_blkaddr(e, new_blkaddr);
 321	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 322		set_nat_flag(e, IS_CHECKPOINTED, false);
 323	__set_nat_cache_dirty(nm_i, e);
 324
 325	/* update fsync_mark if its inode nat entry is still alive */
 326	if (ni->nid != ni->ino)
 327		e = __lookup_nat_cache(nm_i, ni->ino);
 328	if (e) {
 329		if (fsync_done && ni->nid == ni->ino)
 330			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 331		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 332	}
 333	up_write(&nm_i->nat_tree_lock);
 334}
 335
 336int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 337{
 338	struct f2fs_nm_info *nm_i = NM_I(sbi);
 339	int nr = nr_shrink;
 340
 341	if (!down_write_trylock(&nm_i->nat_tree_lock))
 342		return 0;
 343
 344	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 
 345		struct nat_entry *ne;
 
 
 
 
 346		ne = list_first_entry(&nm_i->nat_entries,
 347					struct nat_entry, list);
 
 
 
 348		__del_from_nat_cache(nm_i, ne);
 349		nr_shrink--;
 
 
 350	}
 
 
 351	up_write(&nm_i->nat_tree_lock);
 352	return nr - nr_shrink;
 353}
 354
 355/*
 356 * This function always returns success
 357 */
 358void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 
 359{
 360	struct f2fs_nm_info *nm_i = NM_I(sbi);
 361	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 362	struct f2fs_journal *journal = curseg->journal;
 363	nid_t start_nid = START_NID(nid);
 364	struct f2fs_nat_block *nat_blk;
 365	struct page *page = NULL;
 366	struct f2fs_nat_entry ne;
 367	struct nat_entry *e;
 
 
 368	int i;
 369
 370	ni->nid = nid;
 371
 372	/* Check nat cache */
 373	down_read(&nm_i->nat_tree_lock);
 374	e = __lookup_nat_cache(nm_i, nid);
 375	if (e) {
 376		ni->ino = nat_get_ino(e);
 377		ni->blk_addr = nat_get_blkaddr(e);
 378		ni->version = nat_get_version(e);
 379		up_read(&nm_i->nat_tree_lock);
 380		return;
 381	}
 382
 383	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 384
 385	/* Check current segment summary */
 386	down_read(&curseg->journal_rwsem);
 387	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 388	if (i >= 0) {
 389		ne = nat_in_journal(journal, i);
 390		node_info_from_raw_nat(ni, &ne);
 391	}
 392	up_read(&curseg->journal_rwsem);
 393	if (i >= 0)
 
 394		goto cache;
 
 395
 396	/* Fill node_info from nat page */
 397	page = get_current_nat_page(sbi, start_nid);
 
 
 
 
 
 
 398	nat_blk = (struct f2fs_nat_block *)page_address(page);
 399	ne = nat_blk->entries[nid - start_nid];
 400	node_info_from_raw_nat(ni, &ne);
 401	f2fs_put_page(page, 1);
 402cache:
 403	up_read(&nm_i->nat_tree_lock);
 
 
 
 
 404	/* cache nat entry */
 405	down_write(&nm_i->nat_tree_lock);
 406	cache_nat_entry(sbi, nid, &ne);
 407	up_write(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 411{
 412	const long direct_index = ADDRS_PER_INODE(dn->inode);
 413	const long direct_blks = ADDRS_PER_BLOCK;
 414	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 415	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 416	int cur_level = dn->cur_level;
 417	int max_level = dn->max_level;
 418	pgoff_t base = 0;
 419
 420	if (!dn->max_level)
 421		return pgofs + 1;
 422
 423	while (max_level-- > cur_level)
 424		skipped_unit *= NIDS_PER_BLOCK;
 425
 426	switch (dn->max_level) {
 427	case 3:
 428		base += 2 * indirect_blks;
 
 429	case 2:
 430		base += 2 * direct_blks;
 
 431	case 1:
 432		base += direct_index;
 433		break;
 434	default:
 435		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 436	}
 437
 438	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 439}
 440
 441/*
 442 * The maximum depth is four.
 443 * Offset[0] will have raw inode offset.
 444 */
 445static int get_node_path(struct inode *inode, long block,
 446				int offset[4], unsigned int noffset[4])
 447{
 448	const long direct_index = ADDRS_PER_INODE(inode);
 449	const long direct_blks = ADDRS_PER_BLOCK;
 450	const long dptrs_per_blk = NIDS_PER_BLOCK;
 451	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 452	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 453	int n = 0;
 454	int level = 0;
 455
 456	noffset[0] = 0;
 457
 458	if (block < direct_index) {
 459		offset[n] = block;
 460		goto got;
 461	}
 462	block -= direct_index;
 463	if (block < direct_blks) {
 464		offset[n++] = NODE_DIR1_BLOCK;
 465		noffset[n] = 1;
 466		offset[n] = block;
 467		level = 1;
 468		goto got;
 469	}
 470	block -= direct_blks;
 471	if (block < direct_blks) {
 472		offset[n++] = NODE_DIR2_BLOCK;
 473		noffset[n] = 2;
 474		offset[n] = block;
 475		level = 1;
 476		goto got;
 477	}
 478	block -= direct_blks;
 479	if (block < indirect_blks) {
 480		offset[n++] = NODE_IND1_BLOCK;
 481		noffset[n] = 3;
 482		offset[n++] = block / direct_blks;
 483		noffset[n] = 4 + offset[n - 1];
 484		offset[n] = block % direct_blks;
 485		level = 2;
 486		goto got;
 487	}
 488	block -= indirect_blks;
 489	if (block < indirect_blks) {
 490		offset[n++] = NODE_IND2_BLOCK;
 491		noffset[n] = 4 + dptrs_per_blk;
 492		offset[n++] = block / direct_blks;
 493		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 494		offset[n] = block % direct_blks;
 495		level = 2;
 496		goto got;
 497	}
 498	block -= indirect_blks;
 499	if (block < dindirect_blks) {
 500		offset[n++] = NODE_DIND_BLOCK;
 501		noffset[n] = 5 + (dptrs_per_blk * 2);
 502		offset[n++] = block / indirect_blks;
 503		noffset[n] = 6 + (dptrs_per_blk * 2) +
 504			      offset[n - 1] * (dptrs_per_blk + 1);
 505		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 506		noffset[n] = 7 + (dptrs_per_blk * 2) +
 507			      offset[n - 2] * (dptrs_per_blk + 1) +
 508			      offset[n - 1];
 509		offset[n] = block % direct_blks;
 510		level = 3;
 511		goto got;
 512	} else {
 513		BUG();
 514	}
 515got:
 516	return level;
 517}
 518
 519/*
 520 * Caller should call f2fs_put_dnode(dn).
 521 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 522 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 523 * In the case of RDONLY_NODE, we don't need to care about mutex.
 524 */
 525int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 526{
 527	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 528	struct page *npage[4];
 529	struct page *parent = NULL;
 530	int offset[4];
 531	unsigned int noffset[4];
 532	nid_t nids[4];
 533	int level, i = 0;
 534	int err = 0;
 535
 536	level = get_node_path(dn->inode, index, offset, noffset);
 
 
 537
 538	nids[0] = dn->inode->i_ino;
 539	npage[0] = dn->inode_page;
 540
 541	if (!npage[0]) {
 542		npage[0] = get_node_page(sbi, nids[0]);
 543		if (IS_ERR(npage[0]))
 544			return PTR_ERR(npage[0]);
 545	}
 546
 547	/* if inline_data is set, should not report any block indices */
 548	if (f2fs_has_inline_data(dn->inode) && index) {
 549		err = -ENOENT;
 550		f2fs_put_page(npage[0], 1);
 551		goto release_out;
 552	}
 553
 554	parent = npage[0];
 555	if (level != 0)
 556		nids[1] = get_nid(parent, offset[0], true);
 557	dn->inode_page = npage[0];
 558	dn->inode_page_locked = true;
 559
 560	/* get indirect or direct nodes */
 561	for (i = 1; i <= level; i++) {
 562		bool done = false;
 563
 564		if (!nids[i] && mode == ALLOC_NODE) {
 565			/* alloc new node */
 566			if (!alloc_nid(sbi, &(nids[i]))) {
 567				err = -ENOSPC;
 568				goto release_pages;
 569			}
 570
 571			dn->nid = nids[i];
 572			npage[i] = new_node_page(dn, noffset[i], NULL);
 573			if (IS_ERR(npage[i])) {
 574				alloc_nid_failed(sbi, nids[i]);
 575				err = PTR_ERR(npage[i]);
 576				goto release_pages;
 577			}
 578
 579			set_nid(parent, offset[i - 1], nids[i], i == 1);
 580			alloc_nid_done(sbi, nids[i]);
 581			done = true;
 582		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 583			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 584			if (IS_ERR(npage[i])) {
 585				err = PTR_ERR(npage[i]);
 586				goto release_pages;
 587			}
 588			done = true;
 589		}
 590		if (i == 1) {
 591			dn->inode_page_locked = false;
 592			unlock_page(parent);
 593		} else {
 594			f2fs_put_page(parent, 1);
 595		}
 596
 597		if (!done) {
 598			npage[i] = get_node_page(sbi, nids[i]);
 599			if (IS_ERR(npage[i])) {
 600				err = PTR_ERR(npage[i]);
 601				f2fs_put_page(npage[0], 0);
 602				goto release_out;
 603			}
 604		}
 605		if (i < level) {
 606			parent = npage[i];
 607			nids[i + 1] = get_nid(parent, offset[i], false);
 608		}
 609	}
 610	dn->nid = nids[level];
 611	dn->ofs_in_node = offset[level];
 612	dn->node_page = npage[level];
 613	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 
 614	return 0;
 615
 616release_pages:
 617	f2fs_put_page(parent, 1);
 618	if (i > 1)
 619		f2fs_put_page(npage[0], 0);
 620release_out:
 621	dn->inode_page = NULL;
 622	dn->node_page = NULL;
 623	if (err == -ENOENT) {
 624		dn->cur_level = i;
 625		dn->max_level = level;
 
 626	}
 627	return err;
 628}
 629
 630static void truncate_node(struct dnode_of_data *dn)
 631{
 632	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 633	struct node_info ni;
 
 
 634
 635	get_node_info(sbi, dn->nid, &ni);
 636	if (dn->inode->i_blocks == 0) {
 637		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 638		goto invalidate;
 639	}
 640	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 641
 642	/* Deallocate node address */
 643	invalidate_blocks(sbi, ni.blk_addr);
 644	dec_valid_node_count(sbi, dn->inode);
 645	set_node_addr(sbi, &ni, NULL_ADDR, false);
 646
 647	if (dn->nid == dn->inode->i_ino) {
 648		remove_orphan_inode(sbi, dn->nid);
 649		dec_valid_inode_count(sbi);
 650	} else {
 651		sync_inode_page(dn);
 652	}
 653invalidate:
 654	clear_node_page_dirty(dn->node_page);
 655	set_sbi_flag(sbi, SBI_IS_DIRTY);
 656
 
 657	f2fs_put_page(dn->node_page, 1);
 658
 659	invalidate_mapping_pages(NODE_MAPPING(sbi),
 660			dn->node_page->index, dn->node_page->index);
 661
 662	dn->node_page = NULL;
 663	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 
 
 664}
 665
 666static int truncate_dnode(struct dnode_of_data *dn)
 667{
 668	struct page *page;
 
 669
 670	if (dn->nid == 0)
 671		return 1;
 672
 673	/* get direct node */
 674	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 675	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 676		return 1;
 677	else if (IS_ERR(page))
 678		return PTR_ERR(page);
 679
 680	/* Make dnode_of_data for parameter */
 681	dn->node_page = page;
 682	dn->ofs_in_node = 0;
 683	truncate_data_blocks(dn);
 684	truncate_node(dn);
 
 
 
 685	return 1;
 686}
 687
 688static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 689						int ofs, int depth)
 690{
 691	struct dnode_of_data rdn = *dn;
 692	struct page *page;
 693	struct f2fs_node *rn;
 694	nid_t child_nid;
 695	unsigned int child_nofs;
 696	int freed = 0;
 697	int i, ret;
 698
 699	if (dn->nid == 0)
 700		return NIDS_PER_BLOCK + 1;
 701
 702	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 703
 704	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 705	if (IS_ERR(page)) {
 706		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 707		return PTR_ERR(page);
 708	}
 709
 
 
 710	rn = F2FS_NODE(page);
 711	if (depth < 3) {
 712		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 713			child_nid = le32_to_cpu(rn->in.nid[i]);
 714			if (child_nid == 0)
 715				continue;
 716			rdn.nid = child_nid;
 717			ret = truncate_dnode(&rdn);
 718			if (ret < 0)
 719				goto out_err;
 720			if (set_nid(page, i, 0, false))
 721				dn->node_changed = true;
 722		}
 723	} else {
 724		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 725		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 726			child_nid = le32_to_cpu(rn->in.nid[i]);
 727			if (child_nid == 0) {
 728				child_nofs += NIDS_PER_BLOCK + 1;
 729				continue;
 730			}
 731			rdn.nid = child_nid;
 732			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 733			if (ret == (NIDS_PER_BLOCK + 1)) {
 734				if (set_nid(page, i, 0, false))
 735					dn->node_changed = true;
 736				child_nofs += ret;
 737			} else if (ret < 0 && ret != -ENOENT) {
 738				goto out_err;
 739			}
 740		}
 741		freed = child_nofs;
 742	}
 743
 744	if (!ofs) {
 745		/* remove current indirect node */
 746		dn->node_page = page;
 747		truncate_node(dn);
 
 
 748		freed++;
 749	} else {
 750		f2fs_put_page(page, 1);
 751	}
 752	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 753	return freed;
 754
 755out_err:
 756	f2fs_put_page(page, 1);
 757	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 758	return ret;
 759}
 760
 761static int truncate_partial_nodes(struct dnode_of_data *dn,
 762			struct f2fs_inode *ri, int *offset, int depth)
 763{
 764	struct page *pages[2];
 765	nid_t nid[3];
 766	nid_t child_nid;
 767	int err = 0;
 768	int i;
 769	int idx = depth - 2;
 770
 771	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 772	if (!nid[0])
 773		return 0;
 774
 775	/* get indirect nodes in the path */
 776	for (i = 0; i < idx + 1; i++) {
 777		/* reference count'll be increased */
 778		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 779		if (IS_ERR(pages[i])) {
 780			err = PTR_ERR(pages[i]);
 781			idx = i - 1;
 782			goto fail;
 783		}
 784		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 785	}
 786
 
 
 787	/* free direct nodes linked to a partial indirect node */
 788	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 789		child_nid = get_nid(pages[idx], i, false);
 790		if (!child_nid)
 791			continue;
 792		dn->nid = child_nid;
 793		err = truncate_dnode(dn);
 794		if (err < 0)
 795			goto fail;
 796		if (set_nid(pages[idx], i, 0, false))
 797			dn->node_changed = true;
 798	}
 799
 800	if (offset[idx + 1] == 0) {
 801		dn->node_page = pages[idx];
 802		dn->nid = nid[idx];
 803		truncate_node(dn);
 
 
 804	} else {
 805		f2fs_put_page(pages[idx], 1);
 806	}
 807	offset[idx]++;
 808	offset[idx + 1] = 0;
 809	idx--;
 810fail:
 811	for (i = idx; i >= 0; i--)
 812		f2fs_put_page(pages[i], 1);
 813
 814	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 815
 816	return err;
 817}
 818
 819/*
 820 * All the block addresses of data and nodes should be nullified.
 821 */
 822int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 823{
 824	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 825	int err = 0, cont = 1;
 826	int level, offset[4], noffset[4];
 827	unsigned int nofs = 0;
 828	struct f2fs_inode *ri;
 829	struct dnode_of_data dn;
 830	struct page *page;
 831
 832	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 833
 834	level = get_node_path(inode, from, offset, noffset);
 835restart:
 836	page = get_node_page(sbi, inode->i_ino);
 
 
 837	if (IS_ERR(page)) {
 838		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 839		return PTR_ERR(page);
 840	}
 841
 842	set_new_dnode(&dn, inode, page, NULL, 0);
 843	unlock_page(page);
 844
 845	ri = F2FS_INODE(page);
 846	switch (level) {
 847	case 0:
 848	case 1:
 849		nofs = noffset[1];
 850		break;
 851	case 2:
 852		nofs = noffset[1];
 853		if (!offset[level - 1])
 854			goto skip_partial;
 855		err = truncate_partial_nodes(&dn, ri, offset, level);
 856		if (err < 0 && err != -ENOENT)
 857			goto fail;
 858		nofs += 1 + NIDS_PER_BLOCK;
 859		break;
 860	case 3:
 861		nofs = 5 + 2 * NIDS_PER_BLOCK;
 862		if (!offset[level - 1])
 863			goto skip_partial;
 864		err = truncate_partial_nodes(&dn, ri, offset, level);
 865		if (err < 0 && err != -ENOENT)
 866			goto fail;
 867		break;
 868	default:
 869		BUG();
 870	}
 871
 872skip_partial:
 873	while (cont) {
 874		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 875		switch (offset[0]) {
 876		case NODE_DIR1_BLOCK:
 877		case NODE_DIR2_BLOCK:
 878			err = truncate_dnode(&dn);
 879			break;
 880
 881		case NODE_IND1_BLOCK:
 882		case NODE_IND2_BLOCK:
 883			err = truncate_nodes(&dn, nofs, offset[1], 2);
 884			break;
 885
 886		case NODE_DIND_BLOCK:
 887			err = truncate_nodes(&dn, nofs, offset[1], 3);
 888			cont = 0;
 889			break;
 890
 891		default:
 892			BUG();
 893		}
 894		if (err < 0 && err != -ENOENT)
 895			goto fail;
 896		if (offset[1] == 0 &&
 897				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 898			lock_page(page);
 899			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 900				f2fs_put_page(page, 1);
 901				goto restart;
 902			}
 903			f2fs_wait_on_page_writeback(page, NODE, true);
 904			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 905			set_page_dirty(page);
 906			unlock_page(page);
 907		}
 908		offset[1] = 0;
 909		offset[0]++;
 910		nofs += err;
 911	}
 912fail:
 913	f2fs_put_page(page, 0);
 914	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 915	return err > 0 ? 0 : err;
 916}
 917
 918int truncate_xattr_node(struct inode *inode, struct page *page)
 
 919{
 920	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 921	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 922	struct dnode_of_data dn;
 923	struct page *npage;
 
 924
 925	if (!nid)
 926		return 0;
 927
 928	npage = get_node_page(sbi, nid);
 929	if (IS_ERR(npage))
 930		return PTR_ERR(npage);
 931
 932	F2FS_I(inode)->i_xattr_nid = 0;
 
 
 
 
 
 933
 934	/* need to do checkpoint during fsync */
 935	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 936
 937	set_new_dnode(&dn, inode, page, npage, nid);
 938
 939	if (page)
 940		dn.inode_page_locked = true;
 941	truncate_node(&dn);
 942	return 0;
 943}
 944
 945/*
 946 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 947 * f2fs_unlock_op().
 948 */
 949int remove_inode_page(struct inode *inode)
 950{
 951	struct dnode_of_data dn;
 952	int err;
 953
 954	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 955	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 956	if (err)
 957		return err;
 958
 959	err = truncate_xattr_node(inode, dn.inode_page);
 960	if (err) {
 961		f2fs_put_dnode(&dn);
 962		return err;
 963	}
 964
 965	/* remove potential inline_data blocks */
 966	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 967				S_ISLNK(inode->i_mode))
 968		truncate_data_blocks_range(&dn, 1);
 969
 970	/* 0 is possible, after f2fs_new_inode() has failed */
 971	f2fs_bug_on(F2FS_I_SB(inode),
 972			inode->i_blocks != 0 && inode->i_blocks != 1);
 
 
 
 
 
 
 
 
 973
 974	/* will put inode & node pages */
 975	truncate_node(&dn);
 
 
 
 
 976	return 0;
 977}
 978
 979struct page *new_inode_page(struct inode *inode)
 980{
 981	struct dnode_of_data dn;
 982
 983	/* allocate inode page for new inode */
 984	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 985
 986	/* caller should f2fs_put_page(page, 1); */
 987	return new_node_page(&dn, 0, NULL);
 988}
 989
 990struct page *new_node_page(struct dnode_of_data *dn,
 991				unsigned int ofs, struct page *ipage)
 992{
 993	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 994	struct node_info old_ni, new_ni;
 995	struct page *page;
 996	int err;
 997
 998	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 999		return ERR_PTR(-EPERM);
1000
1001	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
1002	if (!page)
1003		return ERR_PTR(-ENOMEM);
1004
1005	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1006		err = -ENOSPC;
 
 
 
 
 
1007		goto fail;
1008	}
1009
1010	get_node_info(sbi, dn->nid, &old_ni);
1011
1012	/* Reinitialize old_ni with new node page */
1013	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1014	new_ni = old_ni;
1015	new_ni.ino = dn->inode->i_ino;
 
 
 
1016	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1017
1018	f2fs_wait_on_page_writeback(page, NODE, true);
1019	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1020	set_cold_node(dn->inode, page);
1021	SetPageUptodate(page);
 
1022	if (set_page_dirty(page))
1023		dn->node_changed = true;
1024
1025	if (f2fs_has_xattr_block(ofs))
1026		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1027
1028	dn->node_page = page;
1029	if (ipage)
1030		update_inode(dn->inode, ipage);
1031	else
1032		sync_inode_page(dn);
1033	if (ofs == 0)
1034		inc_valid_inode_count(sbi);
1035
1036	return page;
1037
1038fail:
1039	clear_node_page_dirty(page);
1040	f2fs_put_page(page, 1);
1041	return ERR_PTR(err);
1042}
1043
1044/*
1045 * Caller should do after getting the following values.
1046 * 0: f2fs_put_page(page, 0)
1047 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1048 */
1049static int read_node_page(struct page *page, int rw)
1050{
1051	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1052	struct node_info ni;
1053	struct f2fs_io_info fio = {
1054		.sbi = sbi,
1055		.type = NODE,
1056		.rw = rw,
 
1057		.page = page,
1058		.encrypted_page = NULL,
1059	};
 
1060
1061	get_node_info(sbi, page->index, &ni);
 
 
 
 
 
 
1062
1063	if (unlikely(ni.blk_addr == NULL_ADDR)) {
 
 
 
 
 
1064		ClearPageUptodate(page);
1065		return -ENOENT;
1066	}
1067
1068	if (PageUptodate(page))
1069		return LOCKED_PAGE;
1070
1071	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1072	return f2fs_submit_page_bio(&fio);
1073}
1074
1075/*
1076 * Readahead a node page
1077 */
1078void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1079{
1080	struct page *apage;
1081	int err;
1082
1083	if (!nid)
1084		return;
1085	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1086
1087	rcu_read_lock();
1088	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1089	rcu_read_unlock();
1090	if (apage)
1091		return;
1092
1093	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1094	if (!apage)
1095		return;
1096
1097	err = read_node_page(apage, READA);
1098	f2fs_put_page(apage, err ? 1 : 0);
1099}
1100
1101/*
1102 * readahead MAX_RA_NODE number of node pages.
1103 */
1104static void ra_node_pages(struct page *parent, int start)
1105{
1106	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1107	struct blk_plug plug;
1108	int i, end;
1109	nid_t nid;
1110
1111	blk_start_plug(&plug);
1112
1113	/* Then, try readahead for siblings of the desired node */
1114	end = start + MAX_RA_NODE;
1115	end = min(end, NIDS_PER_BLOCK);
1116	for (i = start; i < end; i++) {
1117		nid = get_nid(parent, i, false);
1118		ra_node_page(sbi, nid);
1119	}
1120
1121	blk_finish_plug(&plug);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125					struct page *parent, int start)
1126{
1127	struct page *page;
1128	int err;
1129
1130	if (!nid)
1131		return ERR_PTR(-ENOENT);
1132	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1133repeat:
1134	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1135	if (!page)
1136		return ERR_PTR(-ENOMEM);
1137
1138	err = read_node_page(page, READ_SYNC);
1139	if (err < 0) {
1140		f2fs_put_page(page, 1);
1141		return ERR_PTR(err);
1142	} else if (err == LOCKED_PAGE) {
 
1143		goto page_hit;
1144	}
1145
1146	if (parent)
1147		ra_node_pages(parent, start + 1);
1148
1149	lock_page(page);
1150
1151	if (unlikely(!PageUptodate(page))) {
1152		f2fs_put_page(page, 1);
1153		return ERR_PTR(-EIO);
1154	}
1155	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1156		f2fs_put_page(page, 1);
1157		goto repeat;
1158	}
 
 
 
 
 
 
 
 
 
 
1159page_hit:
1160	f2fs_bug_on(sbi, nid != nid_of_node(page));
 
 
 
 
 
 
 
 
 
 
1161	return page;
1162}
1163
1164struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1165{
1166	return __get_node_page(sbi, nid, NULL, 0);
1167}
1168
1169struct page *get_node_page_ra(struct page *parent, int start)
1170{
1171	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1172	nid_t nid = get_nid(parent, start, false);
1173
1174	return __get_node_page(sbi, nid, parent, start);
1175}
1176
1177void sync_inode_page(struct dnode_of_data *dn)
1178{
1179	int ret = 0;
1180
1181	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1182		ret = update_inode(dn->inode, dn->node_page);
1183	} else if (dn->inode_page) {
1184		if (!dn->inode_page_locked)
1185			lock_page(dn->inode_page);
1186		ret = update_inode(dn->inode, dn->inode_page);
1187		if (!dn->inode_page_locked)
1188			unlock_page(dn->inode_page);
1189	} else {
1190		ret = update_inode_page(dn->inode);
1191	}
1192	dn->node_changed = ret ? true: false;
1193}
1194
1195static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1196{
1197	struct inode *inode;
1198	struct page *page;
 
1199
1200	/* should flush inline_data before evict_inode */
1201	inode = ilookup(sbi->sb, ino);
1202	if (!inode)
1203		return;
1204
1205	page = pagecache_get_page(inode->i_mapping, 0, FGP_NOWAIT, 0);
 
1206	if (!page)
1207		goto iput_out;
1208
1209	if (!trylock_page(page))
1210		goto release_out;
1211
1212	if (!PageUptodate(page))
1213		goto page_out;
1214
1215	if (!PageDirty(page))
1216		goto page_out;
1217
1218	if (!clear_page_dirty_for_io(page))
1219		goto page_out;
1220
1221	if (!f2fs_write_inline_data(inode, page))
1222		inode_dec_dirty_pages(inode);
1223	else
 
1224		set_page_dirty(page);
1225page_out:
1226	unlock_page(page);
1227release_out:
1228	f2fs_put_page(page, 0);
1229iput_out:
1230	iput(inode);
1231}
1232
1233int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1234					struct writeback_control *wbc)
1235{
1236	pgoff_t index, end;
1237	struct pagevec pvec;
1238	int step = ino ? 2 : 0;
1239	int nwritten = 0;
1240
1241	pagevec_init(&pvec, 0);
1242
1243next_step:
1244	index = 0;
1245	end = ULONG_MAX;
1246
1247	while (index <= end) {
1248		int i, nr_pages;
1249		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1250				PAGECACHE_TAG_DIRTY,
1251				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1252		if (nr_pages == 0)
1253			break;
1254
1255		for (i = 0; i < nr_pages; i++) {
1256			struct page *page = pvec.pages[i];
1257
1258			if (unlikely(f2fs_cp_error(sbi))) {
 
1259				pagevec_release(&pvec);
1260				return -EIO;
1261			}
1262
1263			/*
1264			 * flushing sequence with step:
1265			 * 0. indirect nodes
1266			 * 1. dentry dnodes
1267			 * 2. file dnodes
1268			 */
1269			if (step == 0 && IS_DNODE(page))
1270				continue;
1271			if (step == 1 && (!IS_DNODE(page) ||
1272						is_cold_node(page)))
1273				continue;
1274			if (step == 2 && (!IS_DNODE(page) ||
1275						!is_cold_node(page)))
1276				continue;
1277
1278			/*
1279			 * If an fsync mode,
1280			 * we should not skip writing node pages.
1281			 */
1282lock_node:
1283			if (ino && ino_of_node(page) == ino)
1284				lock_page(page);
1285			else if (!trylock_page(page))
1286				continue;
1287
1288			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1289continue_unlock:
1290				unlock_page(page);
1291				continue;
1292			}
1293			if (ino && ino_of_node(page) != ino)
1294				goto continue_unlock;
1295
1296			if (!PageDirty(page)) {
1297				/* someone wrote it for us */
1298				goto continue_unlock;
1299			}
1300
1301			/* flush inline_data */
1302			if (!ino && is_inline_node(page)) {
1303				clear_inline_node(page);
1304				unlock_page(page);
1305				flush_inline_data(sbi, ino_of_node(page));
1306				goto lock_node;
1307			}
1308
1309			f2fs_wait_on_page_writeback(page, NODE, true);
1310
1311			BUG_ON(PageWriteback(page));
1312			if (!clear_page_dirty_for_io(page))
1313				goto continue_unlock;
1314
1315			/* called by fsync() */
1316			if (ino && IS_DNODE(page)) {
1317				set_fsync_mark(page, 1);
1318				if (IS_INODE(page))
1319					set_dentry_mark(page,
1320						need_dentry_mark(sbi, ino));
1321				nwritten++;
1322			} else {
1323				set_fsync_mark(page, 0);
1324				set_dentry_mark(page, 0);
1325			}
1326
1327			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1328				unlock_page(page);
1329
1330			if (--wbc->nr_to_write == 0)
1331				break;
1332		}
1333		pagevec_release(&pvec);
1334		cond_resched();
1335
1336		if (wbc->nr_to_write == 0) {
1337			step = 2;
1338			break;
1339		}
1340	}
1341
1342	if (step < 2) {
1343		step++;
1344		goto next_step;
1345	}
1346	return nwritten;
1347}
1348
1349int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1350{
1351	pgoff_t index = 0, end = ULONG_MAX;
1352	struct pagevec pvec;
1353	int ret2 = 0, ret = 0;
1354
1355	pagevec_init(&pvec, 0);
1356
1357	while (index <= end) {
1358		int i, nr_pages;
1359		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1360				PAGECACHE_TAG_WRITEBACK,
1361				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1362		if (nr_pages == 0)
1363			break;
1364
1365		for (i = 0; i < nr_pages; i++) {
1366			struct page *page = pvec.pages[i];
1367
1368			/* until radix tree lookup accepts end_index */
1369			if (unlikely(page->index > end))
1370				continue;
1371
1372			if (ino && ino_of_node(page) == ino) {
1373				f2fs_wait_on_page_writeback(page, NODE, true);
1374				if (TestClearPageError(page))
1375					ret = -EIO;
1376			}
1377		}
1378		pagevec_release(&pvec);
1379		cond_resched();
1380	}
1381
1382	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1383		ret2 = -ENOSPC;
1384	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1385		ret2 = -EIO;
1386	if (!ret)
1387		ret = ret2;
1388	return ret;
1389}
1390
1391static int f2fs_write_node_page(struct page *page,
1392				struct writeback_control *wbc)
 
1393{
1394	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395	nid_t nid;
1396	struct node_info ni;
1397	struct f2fs_io_info fio = {
1398		.sbi = sbi,
 
1399		.type = NODE,
1400		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
 
1401		.page = page,
1402		.encrypted_page = NULL,
 
 
 
1403	};
 
1404
1405	trace_f2fs_writepage(page, NODE);
1406
 
 
 
1407	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1408		goto redirty_out;
1409	if (unlikely(f2fs_cp_error(sbi)))
 
 
 
1410		goto redirty_out;
1411
1412	/* get old block addr of this node page */
1413	nid = nid_of_node(page);
1414	f2fs_bug_on(sbi, page->index != nid);
1415
 
 
 
1416	if (wbc->for_reclaim) {
1417		if (!down_read_trylock(&sbi->node_write))
1418			goto redirty_out;
1419	} else {
1420		down_read(&sbi->node_write);
1421	}
1422
1423	get_node_info(sbi, nid, &ni);
1424
1425	/* This page is already truncated */
1426	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1427		ClearPageUptodate(page);
1428		dec_page_count(sbi, F2FS_DIRTY_NODES);
1429		up_read(&sbi->node_write);
1430		unlock_page(page);
1431		return 0;
1432	}
1433
 
 
 
 
 
 
 
 
 
 
1434	set_page_writeback(page);
 
 
 
 
 
 
 
 
1435	fio.old_blkaddr = ni.blk_addr;
1436	write_node_page(nid, &fio);
1437	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1438	dec_page_count(sbi, F2FS_DIRTY_NODES);
1439	up_read(&sbi->node_write);
1440
1441	if (wbc->for_reclaim)
1442		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
 
 
1443
1444	unlock_page(page);
1445
1446	if (unlikely(f2fs_cp_error(sbi)))
1447		f2fs_submit_merged_bio(sbi, NODE, WRITE);
 
 
 
 
1448
 
 
1449	return 0;
1450
1451redirty_out:
1452	redirty_page_for_writepage(wbc, page);
1453	return AOP_WRITEPAGE_ACTIVATE;
1454}
1455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456static int f2fs_write_node_pages(struct address_space *mapping,
1457			    struct writeback_control *wbc)
1458{
1459	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 
1460	long diff;
1461
 
 
 
1462	/* balancing f2fs's metadata in background */
1463	f2fs_balance_fs_bg(sbi);
1464
1465	/* collect a number of dirty node pages and write together */
1466	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 
 
 
 
 
 
 
1467		goto skip_write;
1468
1469	trace_f2fs_writepages(mapping->host, wbc, NODE);
1470
1471	diff = nr_pages_to_write(sbi, NODE, wbc);
1472	wbc->sync_mode = WB_SYNC_NONE;
1473	sync_node_pages(sbi, 0, wbc);
 
1474	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 
 
 
1475	return 0;
1476
1477skip_write:
1478	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1479	trace_f2fs_writepages(mapping->host, wbc, NODE);
1480	return 0;
1481}
1482
1483static int f2fs_set_node_page_dirty(struct page *page)
1484{
1485	trace_f2fs_set_page_dirty(page, NODE);
1486
1487	SetPageUptodate(page);
 
 
 
 
 
1488	if (!PageDirty(page)) {
1489		__set_page_dirty_nobuffers(page);
1490		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1491		SetPagePrivate(page);
1492		f2fs_trace_pid(page);
1493		return 1;
1494	}
1495	return 0;
1496}
1497
1498/*
1499 * Structure of the f2fs node operations
1500 */
1501const struct address_space_operations f2fs_node_aops = {
1502	.writepage	= f2fs_write_node_page,
1503	.writepages	= f2fs_write_node_pages,
1504	.set_page_dirty	= f2fs_set_node_page_dirty,
1505	.invalidatepage	= f2fs_invalidate_page,
1506	.releasepage	= f2fs_release_page,
 
 
 
1507};
1508
1509static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1510						nid_t n)
1511{
1512	return radix_tree_lookup(&nm_i->free_nid_root, n);
1513}
1514
1515static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1516						struct free_nid *i)
1517{
1518	list_del(&i->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1520}
1521
1522static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
 
1523{
1524	struct f2fs_nm_info *nm_i = NM_I(sbi);
1525	struct free_nid *i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526	struct nat_entry *ne;
1527	bool allocated = false;
1528
1529	if (!available_free_memory(sbi, FREE_NIDS))
1530		return -1;
1531
1532	/* 0 nid should not be used */
1533	if (unlikely(nid == 0))
1534		return 0;
 
 
 
 
 
 
 
 
 
 
 
1535
1536	if (build) {
1537		/* do not add allocated nids */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538		ne = __lookup_nat_cache(nm_i, nid);
1539		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1540				nat_get_blkaddr(ne) != NULL_ADDR))
1541			allocated = true;
1542		if (allocated)
1543			return 0;
 
 
 
 
 
1544	}
1545
1546	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1547	i->nid = nid;
1548	i->state = NID_NEW;
1549
1550	if (radix_tree_preload(GFP_NOFS)) {
1551		kmem_cache_free(free_nid_slab, i);
1552		return 0;
1553	}
 
 
1554
1555	spin_lock(&nm_i->free_nid_list_lock);
1556	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1557		spin_unlock(&nm_i->free_nid_list_lock);
1558		radix_tree_preload_end();
1559		kmem_cache_free(free_nid_slab, i);
1560		return 0;
1561	}
1562	list_add_tail(&i->list, &nm_i->free_nid_list);
1563	nm_i->fcnt++;
1564	spin_unlock(&nm_i->free_nid_list_lock);
1565	radix_tree_preload_end();
1566	return 1;
1567}
1568
1569static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1570{
 
1571	struct free_nid *i;
1572	bool need_free = false;
1573
1574	spin_lock(&nm_i->free_nid_list_lock);
1575	i = __lookup_free_nid_list(nm_i, nid);
1576	if (i && i->state == NID_NEW) {
1577		__del_from_free_nid_list(nm_i, i);
1578		nm_i->fcnt--;
1579		need_free = true;
1580	}
1581	spin_unlock(&nm_i->free_nid_list_lock);
1582
1583	if (need_free)
1584		kmem_cache_free(free_nid_slab, i);
1585}
1586
1587static void scan_nat_page(struct f2fs_sb_info *sbi,
1588			struct page *nat_page, nid_t start_nid)
1589{
1590	struct f2fs_nm_info *nm_i = NM_I(sbi);
1591	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1592	block_t blk_addr;
 
1593	int i;
1594
 
 
1595	i = start_nid % NAT_ENTRY_PER_BLOCK;
1596
1597	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1598
1599		if (unlikely(start_nid >= nm_i->max_nid))
1600			break;
1601
1602		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1603		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
 
 
 
1604		if (blk_addr == NULL_ADDR) {
1605			if (add_free_nid(sbi, start_nid, true) < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1606				break;
 
 
 
 
 
 
1607		}
1608	}
 
 
 
 
1609}
1610
1611static void build_free_nids(struct f2fs_sb_info *sbi)
 
1612{
1613	struct f2fs_nm_info *nm_i = NM_I(sbi);
1614	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1615	struct f2fs_journal *journal = curseg->journal;
1616	int i = 0;
1617	nid_t nid = nm_i->next_scan_nid;
1618
 
 
 
1619	/* Enough entries */
1620	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1621		return;
 
 
 
 
 
 
 
 
 
 
 
1622
1623	/* readahead nat pages to be scanned */
1624	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1625							META_NAT, true);
1626
1627	down_read(&nm_i->nat_tree_lock);
1628
1629	while (1) {
1630		struct page *page = get_current_nat_page(sbi, nid);
 
 
 
 
 
 
 
 
 
1631
1632		scan_nat_page(sbi, page, nid);
1633		f2fs_put_page(page, 1);
 
 
 
 
 
1634
1635		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1636		if (unlikely(nid >= nm_i->max_nid))
1637			nid = 0;
1638
1639		if (++i >= FREE_NID_PAGES)
1640			break;
1641	}
1642
1643	/* go to the next free nat pages to find free nids abundantly */
1644	nm_i->next_scan_nid = nid;
1645
1646	/* find free nids from current sum_pages */
1647	down_read(&curseg->journal_rwsem);
1648	for (i = 0; i < nats_in_cursum(journal); i++) {
1649		block_t addr;
1650
1651		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1652		nid = le32_to_cpu(nid_in_journal(journal, i));
1653		if (addr == NULL_ADDR)
1654			add_free_nid(sbi, nid, true);
1655		else
1656			remove_free_nid(nm_i, nid);
1657	}
1658	up_read(&curseg->journal_rwsem);
1659	up_read(&nm_i->nat_tree_lock);
1660
1661	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1662					nm_i->ra_nid_pages, META_NAT, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
1663}
1664
1665/*
1666 * If this function returns success, caller can obtain a new nid
1667 * from second parameter of this function.
1668 * The returned nid could be used ino as well as nid when inode is created.
1669 */
1670bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1671{
1672	struct f2fs_nm_info *nm_i = NM_I(sbi);
1673	struct free_nid *i = NULL;
1674retry:
1675	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
 
1676		return false;
 
1677
1678	spin_lock(&nm_i->free_nid_list_lock);
 
 
 
 
 
1679
1680	/* We should not use stale free nids created by build_free_nids */
1681	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1682		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1683		list_for_each_entry(i, &nm_i->free_nid_list, list)
1684			if (i->state == NID_NEW)
1685				break;
 
 
 
 
 
1686
1687		f2fs_bug_on(sbi, i->state != NID_NEW);
1688		*nid = i->nid;
1689		i->state = NID_ALLOC;
1690		nm_i->fcnt--;
1691		spin_unlock(&nm_i->free_nid_list_lock);
1692		return true;
1693	}
1694	spin_unlock(&nm_i->free_nid_list_lock);
1695
1696	/* Let's scan nat pages and its caches to get free nids */
1697	mutex_lock(&nm_i->build_lock);
1698	build_free_nids(sbi);
1699	mutex_unlock(&nm_i->build_lock);
1700	goto retry;
1701}
1702
1703/*
1704 * alloc_nid() should be called prior to this function.
1705 */
1706void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1707{
1708	struct f2fs_nm_info *nm_i = NM_I(sbi);
1709	struct free_nid *i;
1710
1711	spin_lock(&nm_i->free_nid_list_lock);
1712	i = __lookup_free_nid_list(nm_i, nid);
1713	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1714	__del_from_free_nid_list(nm_i, i);
1715	spin_unlock(&nm_i->free_nid_list_lock);
1716
1717	kmem_cache_free(free_nid_slab, i);
1718}
1719
1720/*
1721 * alloc_nid() should be called prior to this function.
1722 */
1723void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1724{
1725	struct f2fs_nm_info *nm_i = NM_I(sbi);
1726	struct free_nid *i;
1727	bool need_free = false;
1728
1729	if (!nid)
1730		return;
1731
1732	spin_lock(&nm_i->free_nid_list_lock);
1733	i = __lookup_free_nid_list(nm_i, nid);
1734	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1735	if (!available_free_memory(sbi, FREE_NIDS)) {
1736		__del_from_free_nid_list(nm_i, i);
 
1737		need_free = true;
1738	} else {
1739		i->state = NID_NEW;
1740		nm_i->fcnt++;
1741	}
1742	spin_unlock(&nm_i->free_nid_list_lock);
 
 
 
 
 
1743
1744	if (need_free)
1745		kmem_cache_free(free_nid_slab, i);
1746}
1747
1748int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1749{
1750	struct f2fs_nm_info *nm_i = NM_I(sbi);
1751	struct free_nid *i, *next;
1752	int nr = nr_shrink;
1753
 
 
 
1754	if (!mutex_trylock(&nm_i->build_lock))
1755		return 0;
1756
1757	spin_lock(&nm_i->free_nid_list_lock);
1758	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1759		if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
 
1760			break;
1761		if (i->state == NID_ALLOC)
1762			continue;
1763		__del_from_free_nid_list(nm_i, i);
1764		kmem_cache_free(free_nid_slab, i);
1765		nm_i->fcnt--;
1766		nr_shrink--;
1767	}
1768	spin_unlock(&nm_i->free_nid_list_lock);
1769	mutex_unlock(&nm_i->build_lock);
1770
1771	return nr - nr_shrink;
1772}
1773
1774void recover_inline_xattr(struct inode *inode, struct page *page)
1775{
1776	void *src_addr, *dst_addr;
1777	size_t inline_size;
1778	struct page *ipage;
1779	struct f2fs_inode *ri;
1780
1781	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1782	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1783
1784	ri = F2FS_INODE(page);
1785	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1786		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
 
 
1787		goto update_inode;
1788	}
1789
1790	dst_addr = inline_xattr_addr(ipage);
1791	src_addr = inline_xattr_addr(page);
1792	inline_size = inline_xattr_size(inode);
1793
1794	f2fs_wait_on_page_writeback(ipage, NODE, true);
1795	memcpy(dst_addr, src_addr, inline_size);
1796update_inode:
1797	update_inode(inode, ipage);
1798	f2fs_put_page(ipage, 1);
1799}
1800
1801void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1802{
1803	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1804	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1805	nid_t new_xnid = nid_of_node(page);
 
1806	struct node_info ni;
 
 
1807
1808	/* 1: invalidate the previous xattr nid */
1809	if (!prev_xnid)
1810		goto recover_xnid;
1811
1812	/* Deallocate node address */
1813	get_node_info(sbi, prev_xnid, &ni);
1814	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1815	invalidate_blocks(sbi, ni.blk_addr);
1816	dec_valid_node_count(sbi, inode);
 
 
1817	set_node_addr(sbi, &ni, NULL_ADDR, false);
1818
1819recover_xnid:
1820	/* 2: allocate new xattr nid */
1821	if (unlikely(!inc_valid_node_count(sbi, inode)))
1822		f2fs_bug_on(sbi, 1);
 
 
 
 
 
 
 
 
 
 
1823
1824	remove_free_nid(NM_I(sbi), new_xnid);
1825	get_node_info(sbi, new_xnid, &ni);
1826	ni.ino = inode->i_ino;
1827	set_node_addr(sbi, &ni, NEW_ADDR, false);
1828	F2FS_I(inode)->i_xattr_nid = new_xnid;
1829
1830	/* 3: update xattr blkaddr */
1831	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1832	set_node_addr(sbi, &ni, blkaddr, false);
1833
1834	update_inode_page(inode);
1835}
1836
1837int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1838{
1839	struct f2fs_inode *src, *dst;
1840	nid_t ino = ino_of_node(page);
1841	struct node_info old_ni, new_ni;
1842	struct page *ipage;
 
1843
1844	get_node_info(sbi, ino, &old_ni);
 
 
1845
1846	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1847		return -EINVAL;
1848
1849	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1850	if (!ipage)
1851		return -ENOMEM;
 
 
1852
1853	/* Should not use this inode from free nid list */
1854	remove_free_nid(NM_I(sbi), ino);
1855
1856	SetPageUptodate(ipage);
 
1857	fill_node_footer(ipage, ino, ino, 0, true);
 
1858
1859	src = F2FS_INODE(page);
1860	dst = F2FS_INODE(ipage);
1861
1862	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1863	dst->i_size = 0;
1864	dst->i_blocks = cpu_to_le64(1);
1865	dst->i_links = cpu_to_le32(1);
1866	dst->i_xattr_nid = 0;
1867	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868
1869	new_ni = old_ni;
1870	new_ni.ino = ino;
1871
1872	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1873		WARN_ON(1);
1874	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1875	inc_valid_inode_count(sbi);
1876	set_page_dirty(ipage);
1877	f2fs_put_page(ipage, 1);
1878	return 0;
1879}
1880
1881int restore_node_summary(struct f2fs_sb_info *sbi,
1882			unsigned int segno, struct f2fs_summary_block *sum)
1883{
1884	struct f2fs_node *rn;
1885	struct f2fs_summary *sum_entry;
1886	block_t addr;
1887	int bio_blocks = MAX_BIO_BLOCKS(sbi);
1888	int i, idx, last_offset, nrpages;
1889
1890	/* scan the node segment */
1891	last_offset = sbi->blocks_per_seg;
1892	addr = START_BLOCK(sbi, segno);
1893	sum_entry = &sum->entries[0];
1894
1895	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1896		nrpages = min(last_offset - i, bio_blocks);
1897
1898		/* readahead node pages */
1899		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1900
1901		for (idx = addr; idx < addr + nrpages; idx++) {
1902			struct page *page = get_tmp_page(sbi, idx);
 
 
 
1903
1904			rn = F2FS_NODE(page);
1905			sum_entry->nid = rn->footer.nid;
1906			sum_entry->version = 0;
1907			sum_entry->ofs_in_node = 0;
1908			sum_entry++;
1909			f2fs_put_page(page, 1);
1910		}
1911
1912		invalidate_mapping_pages(META_MAPPING(sbi), addr,
1913							addr + nrpages);
1914	}
1915	return 0;
1916}
1917
1918static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1919{
1920	struct f2fs_nm_info *nm_i = NM_I(sbi);
1921	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1922	struct f2fs_journal *journal = curseg->journal;
1923	int i;
1924
1925	down_write(&curseg->journal_rwsem);
1926	for (i = 0; i < nats_in_cursum(journal); i++) {
1927		struct nat_entry *ne;
1928		struct f2fs_nat_entry raw_ne;
1929		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
1930
1931		raw_ne = nat_in_journal(journal, i);
1932
1933		ne = __lookup_nat_cache(nm_i, nid);
1934		if (!ne) {
1935			ne = grab_nat_entry(nm_i, nid);
1936			node_info_from_raw_nat(&ne->ni, &raw_ne);
1937		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1938		__set_nat_cache_dirty(nm_i, ne);
1939	}
1940	update_nats_in_cursum(journal, -i);
1941	up_write(&curseg->journal_rwsem);
1942}
1943
1944static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1945						struct list_head *head, int max)
1946{
1947	struct nat_entry_set *cur;
1948
1949	if (nes->entry_cnt >= max)
1950		goto add_out;
1951
1952	list_for_each_entry(cur, head, set_list) {
1953		if (cur->entry_cnt >= nes->entry_cnt) {
1954			list_add(&nes->set_list, cur->set_list.prev);
1955			return;
1956		}
1957	}
1958add_out:
1959	list_add_tail(&nes->set_list, head);
1960}
1961
1962static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1963					struct nat_entry_set *set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964{
1965	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1966	struct f2fs_journal *journal = curseg->journal;
1967	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1968	bool to_journal = true;
1969	struct f2fs_nat_block *nat_blk;
1970	struct nat_entry *ne, *cur;
1971	struct page *page = NULL;
1972
1973	/*
1974	 * there are two steps to flush nat entries:
1975	 * #1, flush nat entries to journal in current hot data summary block.
1976	 * #2, flush nat entries to nat page.
1977	 */
1978	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
 
1979		to_journal = false;
1980
1981	if (to_journal) {
1982		down_write(&curseg->journal_rwsem);
1983	} else {
1984		page = get_next_nat_page(sbi, start_nid);
 
 
 
1985		nat_blk = page_address(page);
1986		f2fs_bug_on(sbi, !nat_blk);
1987	}
1988
1989	/* flush dirty nats in nat entry set */
1990	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1991		struct f2fs_nat_entry *raw_ne;
1992		nid_t nid = nat_get_nid(ne);
1993		int offset;
1994
1995		if (nat_get_blkaddr(ne) == NEW_ADDR)
1996			continue;
1997
1998		if (to_journal) {
1999			offset = lookup_journal_in_cursum(journal,
2000							NAT_JOURNAL, nid, 1);
2001			f2fs_bug_on(sbi, offset < 0);
2002			raw_ne = &nat_in_journal(journal, offset);
2003			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2004		} else {
2005			raw_ne = &nat_blk->entries[nid - start_nid];
2006		}
2007		raw_nat_from_node_info(raw_ne, &ne->ni);
2008		nat_reset_flag(ne);
2009		__clear_nat_cache_dirty(NM_I(sbi), ne);
2010		if (nat_get_blkaddr(ne) == NULL_ADDR)
2011			add_free_nid(sbi, nid, false);
 
 
 
 
 
2012	}
2013
2014	if (to_journal)
2015		up_write(&curseg->journal_rwsem);
2016	else
 
2017		f2fs_put_page(page, 1);
 
2018
2019	f2fs_bug_on(sbi, set->entry_cnt);
2020
2021	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2022	kmem_cache_free(nat_entry_set_slab, set);
 
 
2023}
2024
2025/*
2026 * This function is called during the checkpointing process.
2027 */
2028void flush_nat_entries(struct f2fs_sb_info *sbi)
2029{
2030	struct f2fs_nm_info *nm_i = NM_I(sbi);
2031	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2032	struct f2fs_journal *journal = curseg->journal;
2033	struct nat_entry_set *setvec[SETVEC_SIZE];
2034	struct nat_entry_set *set, *tmp;
2035	unsigned int found;
2036	nid_t set_idx = 0;
2037	LIST_HEAD(sets);
 
 
 
 
 
 
 
 
2038
2039	if (!nm_i->dirty_nat_cnt)
2040		return;
2041
2042	down_write(&nm_i->nat_tree_lock);
2043
2044	/*
2045	 * if there are no enough space in journal to store dirty nat
2046	 * entries, remove all entries from journal and merge them
2047	 * into nat entry set.
2048	 */
2049	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
 
2050		remove_nats_in_journal(sbi);
2051
2052	while ((found = __gang_lookup_nat_set(nm_i,
2053					set_idx, SETVEC_SIZE, setvec))) {
2054		unsigned idx;
2055		set_idx = setvec[found - 1]->set + 1;
2056		for (idx = 0; idx < found; idx++)
2057			__adjust_nat_entry_set(setvec[idx], &sets,
2058						MAX_NAT_JENTRIES(journal));
2059	}
2060
2061	/* flush dirty nats in nat entry set */
2062	list_for_each_entry_safe(set, tmp, &sets, set_list)
2063		__flush_nat_entry_set(sbi, set);
 
 
 
2064
2065	up_write(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068}
2069
2070static int init_node_manager(struct f2fs_sb_info *sbi)
2071{
2072	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2073	struct f2fs_nm_info *nm_i = NM_I(sbi);
2074	unsigned char *version_bitmap;
2075	unsigned int nat_segs, nat_blocks;
 
2076
2077	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2078
2079	/* segment_count_nat includes pair segment so divide to 2. */
2080	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2081	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2082
2083	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2084
2085	/* not used nids: 0, node, meta, (and root counted as valid node) */
2086	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2087	nm_i->fcnt = 0;
 
 
2088	nm_i->nat_cnt = 0;
2089	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2090	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2091	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2092
2093	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2094	INIT_LIST_HEAD(&nm_i->free_nid_list);
2095	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2096	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2097	INIT_LIST_HEAD(&nm_i->nat_entries);
 
2098
2099	mutex_init(&nm_i->build_lock);
2100	spin_lock_init(&nm_i->free_nid_list_lock);
2101	init_rwsem(&nm_i->nat_tree_lock);
2102
2103	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2104	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2105	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2106	if (!version_bitmap)
2107		return -EFAULT;
2108
2109	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2110					GFP_KERNEL);
2111	if (!nm_i->nat_bitmap)
2112		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113	return 0;
2114}
2115
2116int build_node_manager(struct f2fs_sb_info *sbi)
2117{
2118	int err;
2119
2120	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
 
2121	if (!sbi->nm_info)
2122		return -ENOMEM;
2123
2124	err = init_node_manager(sbi);
2125	if (err)
2126		return err;
2127
2128	build_free_nids(sbi);
2129	return 0;
 
 
 
 
 
 
2130}
2131
2132void destroy_node_manager(struct f2fs_sb_info *sbi)
2133{
2134	struct f2fs_nm_info *nm_i = NM_I(sbi);
2135	struct free_nid *i, *next_i;
2136	struct nat_entry *natvec[NATVEC_SIZE];
2137	struct nat_entry_set *setvec[SETVEC_SIZE];
2138	nid_t nid = 0;
2139	unsigned int found;
2140
2141	if (!nm_i)
2142		return;
2143
2144	/* destroy free nid list */
2145	spin_lock(&nm_i->free_nid_list_lock);
2146	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2147		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2148		__del_from_free_nid_list(nm_i, i);
2149		nm_i->fcnt--;
2150		spin_unlock(&nm_i->free_nid_list_lock);
2151		kmem_cache_free(free_nid_slab, i);
2152		spin_lock(&nm_i->free_nid_list_lock);
2153	}
2154	f2fs_bug_on(sbi, nm_i->fcnt);
2155	spin_unlock(&nm_i->free_nid_list_lock);
 
 
2156
2157	/* destroy nat cache */
2158	down_write(&nm_i->nat_tree_lock);
2159	while ((found = __gang_lookup_nat_cache(nm_i,
2160					nid, NATVEC_SIZE, natvec))) {
2161		unsigned idx;
2162
2163		nid = nat_get_nid(natvec[found - 1]) + 1;
2164		for (idx = 0; idx < found; idx++)
 
 
 
 
2165			__del_from_nat_cache(nm_i, natvec[idx]);
 
2166	}
2167	f2fs_bug_on(sbi, nm_i->nat_cnt);
2168
2169	/* destroy nat set cache */
2170	nid = 0;
2171	while ((found = __gang_lookup_nat_set(nm_i,
2172					nid, SETVEC_SIZE, setvec))) {
2173		unsigned idx;
2174
2175		nid = setvec[found - 1]->set + 1;
2176		for (idx = 0; idx < found; idx++) {
2177			/* entry_cnt is not zero, when cp_error was occurred */
2178			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2179			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2180			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2181		}
2182	}
2183	up_write(&nm_i->nat_tree_lock);
2184
2185	kfree(nm_i->nat_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	sbi->nm_info = NULL;
2187	kfree(nm_i);
2188}
2189
2190int __init create_node_manager_caches(void)
2191{
2192	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2193			sizeof(struct nat_entry));
2194	if (!nat_entry_slab)
2195		goto fail;
2196
2197	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2198			sizeof(struct free_nid));
2199	if (!free_nid_slab)
2200		goto destroy_nat_entry;
2201
2202	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2203			sizeof(struct nat_entry_set));
2204	if (!nat_entry_set_slab)
2205		goto destroy_free_nid;
 
 
 
 
 
2206	return 0;
2207
 
 
2208destroy_free_nid:
2209	kmem_cache_destroy(free_nid_slab);
2210destroy_nat_entry:
2211	kmem_cache_destroy(nat_entry_slab);
2212fail:
2213	return -ENOMEM;
2214}
2215
2216void destroy_node_manager_caches(void)
2217{
 
2218	kmem_cache_destroy(nat_entry_set_slab);
2219	kmem_cache_destroy(free_nid_slab);
2220	kmem_cache_destroy(nat_entry_slab);
2221}