Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 
 15#include <crypto/hash.h>
 
 16
 17#define CONST_STRLEN(str)	(sizeof(str) - 1)
 18
 19#define FS_KEY_DERIVATION_NONCE_SIZE	16
 20
 21#define FSCRYPT_MIN_KEY_SIZE		16
 
 
 
 
 
 22
 23#define FSCRYPT_CONTEXT_V1	1
 24#define FSCRYPT_CONTEXT_V2	2
 25
 
 
 
 26struct fscrypt_context_v1 {
 27	u8 version; /* FSCRYPT_CONTEXT_V1 */
 28	u8 contents_encryption_mode;
 29	u8 filenames_encryption_mode;
 30	u8 flags;
 31	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 32	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 33};
 34
 35struct fscrypt_context_v2 {
 36	u8 version; /* FSCRYPT_CONTEXT_V2 */
 37	u8 contents_encryption_mode;
 38	u8 filenames_encryption_mode;
 39	u8 flags;
 40	u8 __reserved[4];
 
 41	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 42	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 43};
 44
 45/**
 46 * fscrypt_context - the encryption context of an inode
 47 *
 48 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 49 * encrypted file usually in a hidden extended attribute.  It contains the
 50 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 51 * and key with which the file is encrypted.  It also contains a nonce that was
 52 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 53 * to cause different files to be encrypted differently.
 54 */
 55union fscrypt_context {
 56	u8 version;
 57	struct fscrypt_context_v1 v1;
 58	struct fscrypt_context_v2 v2;
 59};
 60
 61/*
 62 * Return the size expected for the given fscrypt_context based on its version
 63 * number, or 0 if the context version is unrecognized.
 64 */
 65static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 66{
 67	switch (ctx->version) {
 68	case FSCRYPT_CONTEXT_V1:
 69		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 70		return sizeof(ctx->v1);
 71	case FSCRYPT_CONTEXT_V2:
 72		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 73		return sizeof(ctx->v2);
 74	}
 75	return 0;
 76}
 77
 78#undef fscrypt_policy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79union fscrypt_policy {
 80	u8 version;
 81	struct fscrypt_policy_v1 v1;
 82	struct fscrypt_policy_v2 v2;
 83};
 84
 85/*
 86 * Return the size expected for the given fscrypt_policy based on its version
 87 * number, or 0 if the policy version is unrecognized.
 88 */
 89static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
 90{
 91	switch (policy->version) {
 92	case FSCRYPT_POLICY_V1:
 93		return sizeof(policy->v1);
 94	case FSCRYPT_POLICY_V2:
 95		return sizeof(policy->v2);
 96	}
 97	return 0;
 98}
 99
100/* Return the contents encryption mode of a valid encryption policy */
101static inline u8
102fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
103{
104	switch (policy->version) {
105	case FSCRYPT_POLICY_V1:
106		return policy->v1.contents_encryption_mode;
107	case FSCRYPT_POLICY_V2:
108		return policy->v2.contents_encryption_mode;
109	}
110	BUG();
111}
112
113/* Return the filenames encryption mode of a valid encryption policy */
114static inline u8
115fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
116{
117	switch (policy->version) {
118	case FSCRYPT_POLICY_V1:
119		return policy->v1.filenames_encryption_mode;
120	case FSCRYPT_POLICY_V2:
121		return policy->v2.filenames_encryption_mode;
122	}
123	BUG();
124}
125
126/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
127static inline u8
128fscrypt_policy_flags(const union fscrypt_policy *policy)
129{
130	switch (policy->version) {
131	case FSCRYPT_POLICY_V1:
132		return policy->v1.flags;
133	case FSCRYPT_POLICY_V2:
134		return policy->v2.flags;
135	}
136	BUG();
137}
138
139static inline bool
140fscrypt_is_direct_key_policy(const union fscrypt_policy *policy)
 
141{
142	return fscrypt_policy_flags(policy) & FSCRYPT_POLICY_FLAG_DIRECT_KEY;
143}
144
145/**
 
 
 
 
 
 
 
 
 
 
 
 
 
146 * For encrypted symlinks, the ciphertext length is stored at the beginning
147 * of the string in little-endian format.
148 */
149struct fscrypt_symlink_data {
150	__le16 len;
151	char encrypted_path[1];
152} __packed;
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154/*
155 * fscrypt_info - the "encryption key" for an inode
156 *
157 * When an encrypted file's key is made available, an instance of this struct is
158 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
159 * inode is evicted.
160 */
161struct fscrypt_info {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
163	/* The actual crypto transform used for encryption and decryption */
164	struct crypto_skcipher *ci_ctfm;
165
166	/*
167	 * Cipher for ESSIV IV generation.  Only set for CBC contents
168	 * encryption, otherwise is NULL.
 
169	 */
170	struct crypto_cipher *ci_essiv_tfm;
 
 
 
 
 
 
171
172	/*
173	 * Encryption mode used for this inode.  It corresponds to either the
174	 * contents or filenames encryption mode, depending on the inode type.
175	 */
176	struct fscrypt_mode *ci_mode;
177
178	/* Back-pointer to the inode */
179	struct inode *ci_inode;
180
181	/*
182	 * The master key with which this inode was unlocked (decrypted).  This
183	 * will be NULL if the master key was found in a process-subscribed
184	 * keyring rather than in the filesystem-level keyring.
185	 */
186	struct key *ci_master_key;
187
188	/*
189	 * Link in list of inodes that were unlocked with the master key.
190	 * Only used when ->ci_master_key is set.
191	 */
192	struct list_head ci_master_key_link;
193
194	/*
195	 * If non-NULL, then encryption is done using the master key directly
196	 * and ci_ctfm will equal ci_direct_key->dk_ctfm.
197	 */
198	struct fscrypt_direct_key *ci_direct_key;
199
 
 
 
 
 
 
 
200	/* The encryption policy used by this inode */
201	union fscrypt_policy ci_policy;
202
203	/* This inode's nonce, copied from the fscrypt_context */
204	u8 ci_nonce[FS_KEY_DERIVATION_NONCE_SIZE];
205};
206
207typedef enum {
208	FS_DECRYPT = 0,
209	FS_ENCRYPT,
210} fscrypt_direction_t;
211
212#define FS_CTX_REQUIRES_FREE_ENCRYPT_FL		0x00000001
213
214static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
215					   u32 filenames_mode)
216{
217	if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
218	    filenames_mode == FSCRYPT_MODE_AES_128_CTS)
219		return true;
220
221	if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
222	    filenames_mode == FSCRYPT_MODE_AES_256_CTS)
223		return true;
224
225	if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
226	    filenames_mode == FSCRYPT_MODE_ADIANTUM)
227		return true;
228
229	return false;
230}
231
232/* crypto.c */
233extern struct kmem_cache *fscrypt_info_cachep;
234extern int fscrypt_initialize(unsigned int cop_flags);
235extern int fscrypt_crypt_block(const struct inode *inode,
236			       fscrypt_direction_t rw, u64 lblk_num,
237			       struct page *src_page, struct page *dest_page,
238			       unsigned int len, unsigned int offs,
239			       gfp_t gfp_flags);
240extern struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
241extern const struct dentry_operations fscrypt_d_ops;
242
243extern void __printf(3, 4) __cold
244fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
245
246#define fscrypt_warn(inode, fmt, ...)		\
247	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
248#define fscrypt_err(inode, fmt, ...)		\
249	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
250
251#define FSCRYPT_MAX_IV_SIZE	32
252
253union fscrypt_iv {
254	struct {
255		/* logical block number within the file */
256		__le64 lblk_num;
257
258		/* per-file nonce; only set in DIRECT_KEY mode */
259		u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
260	};
261	u8 raw[FSCRYPT_MAX_IV_SIZE];
 
262};
263
264void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
265			 const struct fscrypt_info *ci);
 
 
 
 
 
 
 
 
 
 
266
267/* fname.c */
268extern int fname_encrypt(struct inode *inode, const struct qstr *iname,
269			 u8 *out, unsigned int olen);
270extern bool fscrypt_fname_encrypted_size(const struct inode *inode,
271					 u32 orig_len, u32 max_len,
272					 u32 *encrypted_len_ret);
273
274/* hkdf.c */
275
276struct fscrypt_hkdf {
277	struct crypto_shash *hmac_tfm;
278};
279
280extern int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
281			     unsigned int master_key_size);
282
283/*
284 * The list of contexts in which fscrypt uses HKDF.  These values are used as
285 * the first byte of the HKDF application-specific info string to guarantee that
286 * info strings are never repeated between contexts.  This ensures that all HKDF
287 * outputs are unique and cryptographically isolated, i.e. knowledge of one
288 * output doesn't reveal another.
289 */
290#define HKDF_CONTEXT_KEY_IDENTIFIER	1
291#define HKDF_CONTEXT_PER_FILE_KEY	2
292#define HKDF_CONTEXT_PER_MODE_KEY	3
293
294extern int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context,
295			       const u8 *info, unsigned int infolen,
296			       u8 *okm, unsigned int okmlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
298extern void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
300/* keyring.c */
301
302/*
303 * fscrypt_master_key_secret - secret key material of an in-use master key
304 */
305struct fscrypt_master_key_secret {
306
307	/*
308	 * For v2 policy keys: HKDF context keyed by this master key.
309	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
310	 */
311	struct fscrypt_hkdf	hkdf;
312
313	/* Size of the raw key in bytes.  Set even if ->raw isn't set. */
 
 
 
 
314	u32			size;
315
316	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
317	u8			raw[FSCRYPT_MAX_KEY_SIZE];
318
319} __randomize_layout;
320
321/*
322 * fscrypt_master_key - an in-use master key
323 *
324 * This represents a master encryption key which has been added to the
325 * filesystem and can be used to "unlock" the encrypted files which were
326 * encrypted with it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327 */
328struct fscrypt_master_key {
329
330	/*
331	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
332	 * executed, this is wiped and no new inodes can be unlocked with this
333	 * key; however, there may still be inodes in ->mk_decrypted_inodes
334	 * which could not be evicted.  As long as some inodes still remain,
335	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
336	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337	 *
338	 * Locking: protected by key->sem (outer) and mk_secret_sem (inner).
339	 * The reason for two locks is that key->sem also protects modifying
340	 * mk_users, which ranks it above the semaphore for the keyring key
341	 * type, which is in turn above page faults (via keyring_read).  But
342	 * sometimes filesystems call fscrypt_get_encryption_info() from within
343	 * a transaction, which ranks it below page faults.  So we need a
344	 * separate lock which protects mk_secret but not also mk_users.
345	 */
346	struct fscrypt_master_key_secret	mk_secret;
347	struct rw_semaphore			mk_secret_sem;
348
349	/*
350	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
351	 * userspace (->descriptor).
352	 *
353	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
354	 */
355	struct fscrypt_key_specifier		mk_spec;
356
357	/*
358	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
359	 * user who has added this key.  Normally each key will be added by just
360	 * one user, but it's possible that multiple users share a key, and in
361	 * that case we need to keep track of those users so that one user can't
362	 * remove the key before the others want it removed too.
363	 *
364	 * This is NULL for v1 policy keys; those can only be added by root.
365	 *
366	 * Locking: in addition to this keyrings own semaphore, this is
367	 * protected by the master key's key->sem, so we can do atomic
368	 * search+insert.  It can also be searched without taking any locks, but
369	 * in that case the returned key may have already been removed.
370	 */
371	struct key		*mk_users;
372
373	/*
374	 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
375	 * Once this goes to 0, the master key is removed from ->s_master_keys.
376	 * The 'struct fscrypt_master_key' will continue to live as long as the
377	 * 'struct key' whose payload it is, but we won't let this reference
378	 * count rise again.
379	 */
380	refcount_t		mk_refcount;
381
382	/*
383	 * List of inodes that were unlocked using this key.  This allows the
384	 * inodes to be evicted efficiently if the key is removed.
385	 */
386	struct list_head	mk_decrypted_inodes;
387	spinlock_t		mk_decrypted_inodes_lock;
388
389	/* Per-mode tfms for DIRECT_KEY policies, allocated on-demand */
390	struct crypto_skcipher	*mk_mode_keys[__FSCRYPT_MODE_MAX + 1];
 
 
 
 
 
391
392} __randomize_layout;
 
 
393
394static inline bool
395is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
396{
397	/*
398	 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and
399	 * fscrypt_key_describe().  These run in atomic context, so they can't
400	 * take ->mk_secret_sem and thus 'secret' can change concurrently which
401	 * would be a data race.  But they only need to know whether the secret
402	 * *was* present at the time of check, so READ_ONCE() suffices.
 
403	 */
404	return READ_ONCE(secret->size) != 0;
405}
 
406
407static inline const char *master_key_spec_type(
408				const struct fscrypt_key_specifier *spec)
409{
410	switch (spec->type) {
411	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
412		return "descriptor";
413	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
414		return "identifier";
415	}
416	return "[unknown]";
417}
418
419static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
420{
421	switch (spec->type) {
422	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
423		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
424	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
425		return FSCRYPT_KEY_IDENTIFIER_SIZE;
426	}
427	return 0;
428}
429
430extern struct key *
 
 
 
 
 
431fscrypt_find_master_key(struct super_block *sb,
432			const struct fscrypt_key_specifier *mk_spec);
433
434extern int fscrypt_verify_key_added(struct super_block *sb,
435				    const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
436
437extern int __init fscrypt_init_keyring(void);
 
 
 
 
 
 
438
439/* keysetup.c */
440
441struct fscrypt_mode {
442	const char *friendly_name;
443	const char *cipher_str;
444	int keysize;
445	int ivsize;
446	bool logged_impl_name;
447	bool needs_essiv;
 
 
 
448};
449
450static inline bool
451fscrypt_mode_supports_direct_key(const struct fscrypt_mode *mode)
452{
453	return mode->ivsize >= offsetofend(union fscrypt_iv, nonce);
454}
 
 
 
 
 
 
 
 
455
456extern struct crypto_skcipher *
457fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
458			  const struct inode *inode);
459
460extern int fscrypt_set_derived_key(struct fscrypt_info *ci,
461				   const u8 *derived_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462
463/* keysetup_v1.c */
464
465extern void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
 
 
 
466
467extern int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
468				     const u8 *raw_master_key);
469
470extern int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
471					struct fscrypt_info *ci);
472/* policy.c */
473
474extern bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
475				   const union fscrypt_policy *policy2);
476extern bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
477				     const struct inode *inode);
478extern int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
479				       const union fscrypt_context *ctx_u,
480				       int ctx_size);
 
 
 
 
481
482#endif /* _FSCRYPT_PRIVATE_H */
v6.9.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 15#include <linux/siphash.h>
 16#include <crypto/hash.h>
 17#include <linux/blk-crypto.h>
 18
 19#define CONST_STRLEN(str)	(sizeof(str) - 1)
 20
 21#define FSCRYPT_FILE_NONCE_SIZE	16
 22
 23/*
 24 * Minimum size of an fscrypt master key.  Note: a longer key will be required
 25 * if ciphers with a 256-bit security strength are used.  This is just the
 26 * absolute minimum, which applies when only 128-bit encryption is used.
 27 */
 28#define FSCRYPT_MIN_KEY_SIZE	16
 29
 30#define FSCRYPT_CONTEXT_V1	1
 31#define FSCRYPT_CONTEXT_V2	2
 32
 33/* Keep this in sync with include/uapi/linux/fscrypt.h */
 34#define FSCRYPT_MODE_MAX	FSCRYPT_MODE_AES_256_HCTR2
 35
 36struct fscrypt_context_v1 {
 37	u8 version; /* FSCRYPT_CONTEXT_V1 */
 38	u8 contents_encryption_mode;
 39	u8 filenames_encryption_mode;
 40	u8 flags;
 41	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 42	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 43};
 44
 45struct fscrypt_context_v2 {
 46	u8 version; /* FSCRYPT_CONTEXT_V2 */
 47	u8 contents_encryption_mode;
 48	u8 filenames_encryption_mode;
 49	u8 flags;
 50	u8 log2_data_unit_size;
 51	u8 __reserved[3];
 52	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 53	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 54};
 55
 56/*
 57 * fscrypt_context - the encryption context of an inode
 58 *
 59 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 60 * encrypted file usually in a hidden extended attribute.  It contains the
 61 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 62 * and key with which the file is encrypted.  It also contains a nonce that was
 63 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 64 * to cause different files to be encrypted differently.
 65 */
 66union fscrypt_context {
 67	u8 version;
 68	struct fscrypt_context_v1 v1;
 69	struct fscrypt_context_v2 v2;
 70};
 71
 72/*
 73 * Return the size expected for the given fscrypt_context based on its version
 74 * number, or 0 if the context version is unrecognized.
 75 */
 76static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 77{
 78	switch (ctx->version) {
 79	case FSCRYPT_CONTEXT_V1:
 80		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 81		return sizeof(ctx->v1);
 82	case FSCRYPT_CONTEXT_V2:
 83		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 84		return sizeof(ctx->v2);
 85	}
 86	return 0;
 87}
 88
 89/* Check whether an fscrypt_context has a recognized version number and size */
 90static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
 91					    int ctx_size)
 92{
 93	return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
 94}
 95
 96/* Retrieve the context's nonce, assuming the context was already validated */
 97static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
 98{
 99	switch (ctx->version) {
100	case FSCRYPT_CONTEXT_V1:
101		return ctx->v1.nonce;
102	case FSCRYPT_CONTEXT_V2:
103		return ctx->v2.nonce;
104	}
105	WARN_ON_ONCE(1);
106	return NULL;
107}
108
109union fscrypt_policy {
110	u8 version;
111	struct fscrypt_policy_v1 v1;
112	struct fscrypt_policy_v2 v2;
113};
114
115/*
116 * Return the size expected for the given fscrypt_policy based on its version
117 * number, or 0 if the policy version is unrecognized.
118 */
119static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
120{
121	switch (policy->version) {
122	case FSCRYPT_POLICY_V1:
123		return sizeof(policy->v1);
124	case FSCRYPT_POLICY_V2:
125		return sizeof(policy->v2);
126	}
127	return 0;
128}
129
130/* Return the contents encryption mode of a valid encryption policy */
131static inline u8
132fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
133{
134	switch (policy->version) {
135	case FSCRYPT_POLICY_V1:
136		return policy->v1.contents_encryption_mode;
137	case FSCRYPT_POLICY_V2:
138		return policy->v2.contents_encryption_mode;
139	}
140	BUG();
141}
142
143/* Return the filenames encryption mode of a valid encryption policy */
144static inline u8
145fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
146{
147	switch (policy->version) {
148	case FSCRYPT_POLICY_V1:
149		return policy->v1.filenames_encryption_mode;
150	case FSCRYPT_POLICY_V2:
151		return policy->v2.filenames_encryption_mode;
152	}
153	BUG();
154}
155
156/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
157static inline u8
158fscrypt_policy_flags(const union fscrypt_policy *policy)
159{
160	switch (policy->version) {
161	case FSCRYPT_POLICY_V1:
162		return policy->v1.flags;
163	case FSCRYPT_POLICY_V2:
164		return policy->v2.flags;
165	}
166	BUG();
167}
168
169static inline int
170fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy,
171			  const struct inode *inode)
172{
173	return policy->log2_data_unit_size ?: inode->i_blkbits;
174}
175
176static inline int
177fscrypt_policy_du_bits(const union fscrypt_policy *policy,
178		       const struct inode *inode)
179{
180	switch (policy->version) {
181	case FSCRYPT_POLICY_V1:
182		return inode->i_blkbits;
183	case FSCRYPT_POLICY_V2:
184		return fscrypt_policy_v2_du_bits(&policy->v2, inode);
185	}
186	BUG();
187}
188
189/*
190 * For encrypted symlinks, the ciphertext length is stored at the beginning
191 * of the string in little-endian format.
192 */
193struct fscrypt_symlink_data {
194	__le16 len;
195	char encrypted_path[];
196} __packed;
197
198/**
199 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
200 * @tfm: crypto API transform object
201 * @blk_key: key for blk-crypto
202 *
203 * Normally only one of the fields will be non-NULL.
204 */
205struct fscrypt_prepared_key {
206	struct crypto_skcipher *tfm;
207#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
208	struct blk_crypto_key *blk_key;
209#endif
210};
211
212/*
213 * fscrypt_inode_info - the "encryption key" for an inode
214 *
215 * When an encrypted file's key is made available, an instance of this struct is
216 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
217 * inode is evicted.
218 */
219struct fscrypt_inode_info {
220
221	/* The key in a form prepared for actual encryption/decryption */
222	struct fscrypt_prepared_key ci_enc_key;
223
224	/* True if ci_enc_key should be freed when this struct is freed */
225	u8 ci_owns_key : 1;
226
227#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
228	/*
229	 * True if this inode will use inline encryption (blk-crypto) instead of
230	 * the traditional filesystem-layer encryption.
231	 */
232	u8 ci_inlinecrypt : 1;
233#endif
234
235	/* True if ci_dirhash_key is initialized */
236	u8 ci_dirhash_key_initialized : 1;
237
238	/*
239	 * log2 of the data unit size (granularity of contents encryption) of
240	 * this file.  This is computable from ci_policy and ci_inode but is
241	 * cached here for efficiency.  Only used for regular files.
242	 */
243	u8 ci_data_unit_bits;
244
245	/* Cached value: log2 of number of data units per FS block */
246	u8 ci_data_units_per_block_bits;
247
248	/* Hashed inode number.  Only set for IV_INO_LBLK_32 */
249	u32 ci_hashed_ino;
250
251	/*
252	 * Encryption mode used for this inode.  It corresponds to either the
253	 * contents or filenames encryption mode, depending on the inode type.
254	 */
255	struct fscrypt_mode *ci_mode;
256
257	/* Back-pointer to the inode */
258	struct inode *ci_inode;
259
260	/*
261	 * The master key with which this inode was unlocked (decrypted).  This
262	 * will be NULL if the master key was found in a process-subscribed
263	 * keyring rather than in the filesystem-level keyring.
264	 */
265	struct fscrypt_master_key *ci_master_key;
266
267	/*
268	 * Link in list of inodes that were unlocked with the master key.
269	 * Only used when ->ci_master_key is set.
270	 */
271	struct list_head ci_master_key_link;
272
273	/*
274	 * If non-NULL, then encryption is done using the master key directly
275	 * and ci_enc_key will equal ci_direct_key->dk_key.
276	 */
277	struct fscrypt_direct_key *ci_direct_key;
278
279	/*
280	 * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4
281	 * key.  This is only set for directories that use a keyed dirhash over
282	 * the plaintext filenames -- currently just casefolded directories.
283	 */
284	siphash_key_t ci_dirhash_key;
285
286	/* The encryption policy used by this inode */
287	union fscrypt_policy ci_policy;
288
289	/* This inode's nonce, copied from the fscrypt_context */
290	u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
291};
292
293typedef enum {
294	FS_DECRYPT = 0,
295	FS_ENCRYPT,
296} fscrypt_direction_t;
297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298/* crypto.c */
299extern struct kmem_cache *fscrypt_inode_info_cachep;
300int fscrypt_initialize(struct super_block *sb);
301int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
302			    fscrypt_direction_t rw, u64 index,
303			    struct page *src_page, struct page *dest_page,
304			    unsigned int len, unsigned int offs,
305			    gfp_t gfp_flags);
306struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
 
307
308void __printf(3, 4) __cold
309fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
310
311#define fscrypt_warn(inode, fmt, ...)		\
312	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
313#define fscrypt_err(inode, fmt, ...)		\
314	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
315
316#define FSCRYPT_MAX_IV_SIZE	32
317
318union fscrypt_iv {
319	struct {
320		/* zero-based index of data unit within the file */
321		__le64 index;
322
323		/* per-file nonce; only set in DIRECT_KEY mode */
324		u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
325	};
326	u8 raw[FSCRYPT_MAX_IV_SIZE];
327	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
328};
329
330void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
331			 const struct fscrypt_inode_info *ci);
332
333/*
334 * Return the number of bits used by the maximum file data unit index that is
335 * possible on the given filesystem, using the given log2 data unit size.
336 */
337static inline int
338fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
339{
340	return fls64(sb->s_maxbytes - 1) - du_bits;
341}
342
343/* fname.c */
344bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
345				    u32 orig_len, u32 max_len,
346				    u32 *encrypted_len_ret);
 
 
347
348/* hkdf.c */
 
349struct fscrypt_hkdf {
350	struct crypto_shash *hmac_tfm;
351};
352
353int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
354		      unsigned int master_key_size);
355
356/*
357 * The list of contexts in which fscrypt uses HKDF.  These values are used as
358 * the first byte of the HKDF application-specific info string to guarantee that
359 * info strings are never repeated between contexts.  This ensures that all HKDF
360 * outputs are unique and cryptographically isolated, i.e. knowledge of one
361 * output doesn't reveal another.
362 */
363#define HKDF_CONTEXT_KEY_IDENTIFIER	1 /* info=<empty>		*/
364#define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/
365#define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/
366#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/
367#define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/
368#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/
369#define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/
370
371int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
372			const u8 *info, unsigned int infolen,
373			u8 *okm, unsigned int okmlen);
374
375void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
376
377/* inline_crypt.c */
378#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
379int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci);
380
381static inline bool
382fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
383{
384	return ci->ci_inlinecrypt;
385}
386
387int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
388				     const u8 *raw_key,
389				     const struct fscrypt_inode_info *ci);
390
391void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
392				      struct fscrypt_prepared_key *prep_key);
393
394/*
395 * Check whether the crypto transform or blk-crypto key has been allocated in
396 * @prep_key, depending on which encryption implementation the file will use.
397 */
398static inline bool
399fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
400			const struct fscrypt_inode_info *ci)
401{
402	/*
403	 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
404	 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
405	 * I.e., in some cases (namely, if this prep_key is a per-mode
406	 * encryption key) another task can publish blk_key or tfm concurrently,
407	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
408	 * to safely ACQUIRE the memory the other task published.
409	 */
410	if (fscrypt_using_inline_encryption(ci))
411		return smp_load_acquire(&prep_key->blk_key) != NULL;
412	return smp_load_acquire(&prep_key->tfm) != NULL;
413}
414
415#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
416
417static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci)
418{
419	return 0;
420}
421
422static inline bool
423fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
424{
425	return false;
426}
427
428static inline int
429fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
430				 const u8 *raw_key,
431				 const struct fscrypt_inode_info *ci)
432{
433	WARN_ON_ONCE(1);
434	return -EOPNOTSUPP;
435}
436
437static inline void
438fscrypt_destroy_inline_crypt_key(struct super_block *sb,
439				 struct fscrypt_prepared_key *prep_key)
440{
441}
442
443static inline bool
444fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
445			const struct fscrypt_inode_info *ci)
446{
447	return smp_load_acquire(&prep_key->tfm) != NULL;
448}
449#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
450
451/* keyring.c */
452
453/*
454 * fscrypt_master_key_secret - secret key material of an in-use master key
455 */
456struct fscrypt_master_key_secret {
457
458	/*
459	 * For v2 policy keys: HKDF context keyed by this master key.
460	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
461	 */
462	struct fscrypt_hkdf	hkdf;
463
464	/*
465	 * Size of the raw key in bytes.  This remains set even if ->raw was
466	 * zeroized due to no longer being needed.  I.e. we still remember the
467	 * size of the key even if we don't need to remember the key itself.
468	 */
469	u32			size;
470
471	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
472	u8			raw[FSCRYPT_MAX_KEY_SIZE];
473
474} __randomize_layout;
475
476/*
477 * fscrypt_master_key - an in-use master key
478 *
479 * This represents a master encryption key which has been added to the
480 * filesystem.  There are three high-level states that a key can be in:
481 *
482 * FSCRYPT_KEY_STATUS_PRESENT
483 *	Key is fully usable; it can be used to unlock inodes that are encrypted
484 *	with it (this includes being able to create new inodes).  ->mk_present
485 *	indicates whether the key is in this state.  ->mk_secret exists, the key
486 *	is in the keyring, and ->mk_active_refs > 0 due to ->mk_present.
487 *
488 * FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED
489 *	Removal of this key has been initiated, but some inodes that were
490 *	unlocked with it are still in-use.  Like ABSENT, ->mk_secret is wiped,
491 *	and the key can no longer be used to unlock inodes.  Unlike ABSENT, the
492 *	key is still in the keyring; ->mk_decrypted_inodes is nonempty; and
493 *	->mk_active_refs > 0, being equal to the size of ->mk_decrypted_inodes.
494 *
495 *	This state transitions to ABSENT if ->mk_decrypted_inodes becomes empty,
496 *	or to PRESENT if FS_IOC_ADD_ENCRYPTION_KEY is called again for this key.
497 *
498 * FSCRYPT_KEY_STATUS_ABSENT
499 *	Key is fully removed.  The key is no longer in the keyring,
500 *	->mk_decrypted_inodes is empty, ->mk_active_refs == 0, ->mk_secret is
501 *	wiped, and the key can no longer be used to unlock inodes.
502 */
503struct fscrypt_master_key {
504
505	/*
506	 * Link in ->s_master_keys->key_hashtable.
507	 * Only valid if ->mk_active_refs > 0.
508	 */
509	struct hlist_node			mk_node;
510
511	/* Semaphore that protects ->mk_secret, ->mk_users, and ->mk_present */
512	struct rw_semaphore			mk_sem;
513
514	/*
515	 * Active and structural reference counts.  An active ref guarantees
516	 * that the struct continues to exist, continues to be in the keyring
517	 * ->s_master_keys, and that any embedded subkeys (e.g.
518	 * ->mk_direct_keys) that have been prepared continue to exist.
519	 * A structural ref only guarantees that the struct continues to exist.
520	 *
521	 * There is one active ref associated with ->mk_present being true, and
522	 * one active ref for each inode in ->mk_decrypted_inodes.
523	 *
524	 * There is one structural ref associated with the active refcount being
525	 * nonzero.  Finding a key in the keyring also takes a structural ref,
526	 * which is then held temporarily while the key is operated on.
527	 */
528	refcount_t				mk_active_refs;
529	refcount_t				mk_struct_refs;
530
531	struct rcu_head				mk_rcu_head;
532
533	/*
534	 * The secret key material.  Wiped as soon as it is no longer needed;
535	 * for details, see the fscrypt_master_key struct comment.
536	 *
537	 * Locking: protected by ->mk_sem.
 
 
 
 
 
 
538	 */
539	struct fscrypt_master_key_secret	mk_secret;
 
540
541	/*
542	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
543	 * userspace (->descriptor).
544	 *
545	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
546	 */
547	struct fscrypt_key_specifier		mk_spec;
548
549	/*
550	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
551	 * user who has added this key.  Normally each key will be added by just
552	 * one user, but it's possible that multiple users share a key, and in
553	 * that case we need to keep track of those users so that one user can't
554	 * remove the key before the others want it removed too.
555	 *
556	 * This is NULL for v1 policy keys; those can only be added by root.
557	 *
558	 * Locking: protected by ->mk_sem.  (We don't just rely on the keyrings
559	 * subsystem semaphore ->mk_users->sem, as we need support for atomic
560	 * search+insert along with proper synchronization with other fields.)
 
561	 */
562	struct key		*mk_users;
563
564	/*
 
 
 
 
 
 
 
 
 
565	 * List of inodes that were unlocked using this key.  This allows the
566	 * inodes to be evicted efficiently if the key is removed.
567	 */
568	struct list_head	mk_decrypted_inodes;
569	spinlock_t		mk_decrypted_inodes_lock;
570
571	/*
572	 * Per-mode encryption keys for the various types of encryption policies
573	 * that use them.  Allocated and derived on-demand.
574	 */
575	struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
576	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
577	struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
578
579	/* Hash key for inode numbers.  Initialized only when needed. */
580	siphash_key_t		mk_ino_hash_key;
581	bool			mk_ino_hash_key_initialized;
582
 
 
 
583	/*
584	 * Whether this key is in the "present" state, i.e. fully usable.  For
585	 * details, see the fscrypt_master_key struct comment.
586	 *
587	 * Locking: protected by ->mk_sem, but can be read locklessly using
588	 * READ_ONCE().  Writers must use WRITE_ONCE() when concurrent readers
589	 * are possible.
590	 */
591	bool			mk_present;
592
593} __randomize_layout;
594
595static inline const char *master_key_spec_type(
596				const struct fscrypt_key_specifier *spec)
597{
598	switch (spec->type) {
599	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
600		return "descriptor";
601	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
602		return "identifier";
603	}
604	return "[unknown]";
605}
606
607static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
608{
609	switch (spec->type) {
610	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
611		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
612	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
613		return FSCRYPT_KEY_IDENTIFIER_SIZE;
614	}
615	return 0;
616}
617
618void fscrypt_put_master_key(struct fscrypt_master_key *mk);
619
620void fscrypt_put_master_key_activeref(struct super_block *sb,
621				      struct fscrypt_master_key *mk);
622
623struct fscrypt_master_key *
624fscrypt_find_master_key(struct super_block *sb,
625			const struct fscrypt_key_specifier *mk_spec);
626
627int fscrypt_get_test_dummy_key_identifier(
628			  u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
629
630int fscrypt_add_test_dummy_key(struct super_block *sb,
631			       struct fscrypt_key_specifier *key_spec);
632
633int fscrypt_verify_key_added(struct super_block *sb,
634			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
635
636int __init fscrypt_init_keyring(void);
637
638/* keysetup.c */
639
640struct fscrypt_mode {
641	const char *friendly_name;
642	const char *cipher_str;
643	int keysize;		/* key size in bytes */
644	int security_strength;	/* security strength in bytes */
645	int ivsize;		/* IV size in bytes */
646	int logged_cryptoapi_impl;
647	int logged_blk_crypto_native;
648	int logged_blk_crypto_fallback;
649	enum blk_crypto_mode_num blk_crypto_mode;
650};
651
652extern struct fscrypt_mode fscrypt_modes[];
653
654int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
655			const u8 *raw_key, const struct fscrypt_inode_info *ci);
656
657void fscrypt_destroy_prepared_key(struct super_block *sb,
658				  struct fscrypt_prepared_key *prep_key);
659
660int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
661				 const u8 *raw_key);
662
663int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
664			       const struct fscrypt_master_key *mk);
665
666void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
667			       const struct fscrypt_master_key *mk);
 
668
669int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
670
671/**
672 * fscrypt_require_key() - require an inode's encryption key
673 * @inode: the inode we need the key for
674 *
675 * If the inode is encrypted, set up its encryption key if not already done.
676 * Then require that the key be present and return -ENOKEY otherwise.
677 *
678 * No locks are needed, and the key will live as long as the struct inode --- so
679 * it won't go away from under you.
680 *
681 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
682 * if a problem occurred while setting up the encryption key.
683 */
684static inline int fscrypt_require_key(struct inode *inode)
685{
686	if (IS_ENCRYPTED(inode)) {
687		int err = fscrypt_get_encryption_info(inode, false);
688
689		if (err)
690			return err;
691		if (!fscrypt_has_encryption_key(inode))
692			return -ENOKEY;
693	}
694	return 0;
695}
696
697/* keysetup_v1.c */
698
699void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
700
701int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci,
702			      const u8 *raw_master_key);
703
704int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
705				struct fscrypt_inode_info *ci);
706
 
 
707/* policy.c */
708
709bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
710			    const union fscrypt_policy *policy2);
711int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
712			       struct fscrypt_key_specifier *key_spec);
713const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb);
714bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
715			      const struct inode *inode);
716int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
717				const union fscrypt_context *ctx_u,
718				int ctx_size);
719const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
720
721#endif /* _FSCRYPT_PRIVATE_H */