Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 
 15#include <crypto/hash.h>
 
 16
 17#define CONST_STRLEN(str)	(sizeof(str) - 1)
 18
 19#define FS_KEY_DERIVATION_NONCE_SIZE	16
 20
 21#define FSCRYPT_MIN_KEY_SIZE		16
 22
 23#define FSCRYPT_CONTEXT_V1	1
 24#define FSCRYPT_CONTEXT_V2	2
 25
 
 
 
 26struct fscrypt_context_v1 {
 27	u8 version; /* FSCRYPT_CONTEXT_V1 */
 28	u8 contents_encryption_mode;
 29	u8 filenames_encryption_mode;
 30	u8 flags;
 31	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 32	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 33};
 34
 35struct fscrypt_context_v2 {
 36	u8 version; /* FSCRYPT_CONTEXT_V2 */
 37	u8 contents_encryption_mode;
 38	u8 filenames_encryption_mode;
 39	u8 flags;
 40	u8 __reserved[4];
 41	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 42	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 43};
 44
 45/**
 46 * fscrypt_context - the encryption context of an inode
 47 *
 48 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 49 * encrypted file usually in a hidden extended attribute.  It contains the
 50 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 51 * and key with which the file is encrypted.  It also contains a nonce that was
 52 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 53 * to cause different files to be encrypted differently.
 54 */
 55union fscrypt_context {
 56	u8 version;
 57	struct fscrypt_context_v1 v1;
 58	struct fscrypt_context_v2 v2;
 59};
 60
 61/*
 62 * Return the size expected for the given fscrypt_context based on its version
 63 * number, or 0 if the context version is unrecognized.
 64 */
 65static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 66{
 67	switch (ctx->version) {
 68	case FSCRYPT_CONTEXT_V1:
 69		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 70		return sizeof(ctx->v1);
 71	case FSCRYPT_CONTEXT_V2:
 72		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 73		return sizeof(ctx->v2);
 74	}
 75	return 0;
 76}
 77
 78#undef fscrypt_policy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79union fscrypt_policy {
 80	u8 version;
 81	struct fscrypt_policy_v1 v1;
 82	struct fscrypt_policy_v2 v2;
 83};
 84
 85/*
 86 * Return the size expected for the given fscrypt_policy based on its version
 87 * number, or 0 if the policy version is unrecognized.
 88 */
 89static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
 90{
 91	switch (policy->version) {
 92	case FSCRYPT_POLICY_V1:
 93		return sizeof(policy->v1);
 94	case FSCRYPT_POLICY_V2:
 95		return sizeof(policy->v2);
 96	}
 97	return 0;
 98}
 99
100/* Return the contents encryption mode of a valid encryption policy */
101static inline u8
102fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
103{
104	switch (policy->version) {
105	case FSCRYPT_POLICY_V1:
106		return policy->v1.contents_encryption_mode;
107	case FSCRYPT_POLICY_V2:
108		return policy->v2.contents_encryption_mode;
109	}
110	BUG();
111}
112
113/* Return the filenames encryption mode of a valid encryption policy */
114static inline u8
115fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
116{
117	switch (policy->version) {
118	case FSCRYPT_POLICY_V1:
119		return policy->v1.filenames_encryption_mode;
120	case FSCRYPT_POLICY_V2:
121		return policy->v2.filenames_encryption_mode;
122	}
123	BUG();
124}
125
126/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
127static inline u8
128fscrypt_policy_flags(const union fscrypt_policy *policy)
129{
130	switch (policy->version) {
131	case FSCRYPT_POLICY_V1:
132		return policy->v1.flags;
133	case FSCRYPT_POLICY_V2:
134		return policy->v2.flags;
135	}
136	BUG();
137}
138
139static inline bool
140fscrypt_is_direct_key_policy(const union fscrypt_policy *policy)
141{
142	return fscrypt_policy_flags(policy) & FSCRYPT_POLICY_FLAG_DIRECT_KEY;
143}
144
145/**
146 * For encrypted symlinks, the ciphertext length is stored at the beginning
147 * of the string in little-endian format.
148 */
149struct fscrypt_symlink_data {
150	__le16 len;
151	char encrypted_path[1];
152} __packed;
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154/*
155 * fscrypt_info - the "encryption key" for an inode
156 *
157 * When an encrypted file's key is made available, an instance of this struct is
158 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
159 * inode is evicted.
160 */
161struct fscrypt_info {
162
163	/* The actual crypto transform used for encryption and decryption */
164	struct crypto_skcipher *ci_ctfm;
 
 
 
165
 
166	/*
167	 * Cipher for ESSIV IV generation.  Only set for CBC contents
168	 * encryption, otherwise is NULL.
169	 */
170	struct crypto_cipher *ci_essiv_tfm;
 
171
172	/*
173	 * Encryption mode used for this inode.  It corresponds to either the
174	 * contents or filenames encryption mode, depending on the inode type.
175	 */
176	struct fscrypt_mode *ci_mode;
177
178	/* Back-pointer to the inode */
179	struct inode *ci_inode;
180
181	/*
182	 * The master key with which this inode was unlocked (decrypted).  This
183	 * will be NULL if the master key was found in a process-subscribed
184	 * keyring rather than in the filesystem-level keyring.
185	 */
186	struct key *ci_master_key;
187
188	/*
189	 * Link in list of inodes that were unlocked with the master key.
190	 * Only used when ->ci_master_key is set.
191	 */
192	struct list_head ci_master_key_link;
193
194	/*
195	 * If non-NULL, then encryption is done using the master key directly
196	 * and ci_ctfm will equal ci_direct_key->dk_ctfm.
197	 */
198	struct fscrypt_direct_key *ci_direct_key;
199
 
 
 
 
 
 
 
 
200	/* The encryption policy used by this inode */
201	union fscrypt_policy ci_policy;
202
203	/* This inode's nonce, copied from the fscrypt_context */
204	u8 ci_nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 
 
 
205};
206
207typedef enum {
208	FS_DECRYPT = 0,
209	FS_ENCRYPT,
210} fscrypt_direction_t;
211
212#define FS_CTX_REQUIRES_FREE_ENCRYPT_FL		0x00000001
213
214static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
215					   u32 filenames_mode)
216{
217	if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
218	    filenames_mode == FSCRYPT_MODE_AES_128_CTS)
219		return true;
220
221	if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
222	    filenames_mode == FSCRYPT_MODE_AES_256_CTS)
223		return true;
224
225	if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
226	    filenames_mode == FSCRYPT_MODE_ADIANTUM)
227		return true;
228
229	return false;
230}
231
232/* crypto.c */
233extern struct kmem_cache *fscrypt_info_cachep;
234extern int fscrypt_initialize(unsigned int cop_flags);
235extern int fscrypt_crypt_block(const struct inode *inode,
236			       fscrypt_direction_t rw, u64 lblk_num,
237			       struct page *src_page, struct page *dest_page,
238			       unsigned int len, unsigned int offs,
239			       gfp_t gfp_flags);
240extern struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
241extern const struct dentry_operations fscrypt_d_ops;
242
243extern void __printf(3, 4) __cold
244fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
245
246#define fscrypt_warn(inode, fmt, ...)		\
247	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
248#define fscrypt_err(inode, fmt, ...)		\
249	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
250
251#define FSCRYPT_MAX_IV_SIZE	32
252
253union fscrypt_iv {
254	struct {
255		/* logical block number within the file */
256		__le64 lblk_num;
257
258		/* per-file nonce; only set in DIRECT_KEY mode */
259		u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
260	};
261	u8 raw[FSCRYPT_MAX_IV_SIZE];
 
262};
263
264void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
265			 const struct fscrypt_info *ci);
266
267/* fname.c */
268extern int fname_encrypt(struct inode *inode, const struct qstr *iname,
269			 u8 *out, unsigned int olen);
270extern bool fscrypt_fname_encrypted_size(const struct inode *inode,
271					 u32 orig_len, u32 max_len,
272					 u32 *encrypted_len_ret);
273
274/* hkdf.c */
275
276struct fscrypt_hkdf {
277	struct crypto_shash *hmac_tfm;
278};
279
280extern int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
281			     unsigned int master_key_size);
282
283/*
284 * The list of contexts in which fscrypt uses HKDF.  These values are used as
285 * the first byte of the HKDF application-specific info string to guarantee that
286 * info strings are never repeated between contexts.  This ensures that all HKDF
287 * outputs are unique and cryptographically isolated, i.e. knowledge of one
288 * output doesn't reveal another.
289 */
290#define HKDF_CONTEXT_KEY_IDENTIFIER	1
291#define HKDF_CONTEXT_PER_FILE_KEY	2
292#define HKDF_CONTEXT_PER_MODE_KEY	3
293
294extern int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context,
295			       const u8 *info, unsigned int infolen,
296			       u8 *okm, unsigned int okmlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
298extern void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
300/* keyring.c */
301
302/*
303 * fscrypt_master_key_secret - secret key material of an in-use master key
304 */
305struct fscrypt_master_key_secret {
306
307	/*
308	 * For v2 policy keys: HKDF context keyed by this master key.
309	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
310	 */
311	struct fscrypt_hkdf	hkdf;
312
313	/* Size of the raw key in bytes.  Set even if ->raw isn't set. */
314	u32			size;
315
316	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
317	u8			raw[FSCRYPT_MAX_KEY_SIZE];
318
319} __randomize_layout;
320
321/*
322 * fscrypt_master_key - an in-use master key
323 *
324 * This represents a master encryption key which has been added to the
325 * filesystem and can be used to "unlock" the encrypted files which were
326 * encrypted with it.
327 */
328struct fscrypt_master_key {
329
330	/*
331	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
332	 * executed, this is wiped and no new inodes can be unlocked with this
333	 * key; however, there may still be inodes in ->mk_decrypted_inodes
334	 * which could not be evicted.  As long as some inodes still remain,
335	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
336	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
337	 *
338	 * Locking: protected by key->sem (outer) and mk_secret_sem (inner).
339	 * The reason for two locks is that key->sem also protects modifying
340	 * mk_users, which ranks it above the semaphore for the keyring key
341	 * type, which is in turn above page faults (via keyring_read).  But
342	 * sometimes filesystems call fscrypt_get_encryption_info() from within
343	 * a transaction, which ranks it below page faults.  So we need a
344	 * separate lock which protects mk_secret but not also mk_users.
345	 */
346	struct fscrypt_master_key_secret	mk_secret;
347	struct rw_semaphore			mk_secret_sem;
348
349	/*
350	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
351	 * userspace (->descriptor).
352	 *
353	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
354	 */
355	struct fscrypt_key_specifier		mk_spec;
356
357	/*
358	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
359	 * user who has added this key.  Normally each key will be added by just
360	 * one user, but it's possible that multiple users share a key, and in
361	 * that case we need to keep track of those users so that one user can't
362	 * remove the key before the others want it removed too.
363	 *
364	 * This is NULL for v1 policy keys; those can only be added by root.
365	 *
366	 * Locking: in addition to this keyrings own semaphore, this is
367	 * protected by the master key's key->sem, so we can do atomic
368	 * search+insert.  It can also be searched without taking any locks, but
369	 * in that case the returned key may have already been removed.
370	 */
371	struct key		*mk_users;
372
373	/*
374	 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
375	 * Once this goes to 0, the master key is removed from ->s_master_keys.
376	 * The 'struct fscrypt_master_key' will continue to live as long as the
377	 * 'struct key' whose payload it is, but we won't let this reference
378	 * count rise again.
379	 */
380	refcount_t		mk_refcount;
381
382	/*
383	 * List of inodes that were unlocked using this key.  This allows the
384	 * inodes to be evicted efficiently if the key is removed.
385	 */
386	struct list_head	mk_decrypted_inodes;
387	spinlock_t		mk_decrypted_inodes_lock;
388
389	/* Per-mode tfms for DIRECT_KEY policies, allocated on-demand */
390	struct crypto_skcipher	*mk_mode_keys[__FSCRYPT_MODE_MAX + 1];
 
 
 
 
 
 
 
 
 
391
392} __randomize_layout;
393
394static inline bool
395is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
396{
397	/*
398	 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and
399	 * fscrypt_key_describe().  These run in atomic context, so they can't
400	 * take ->mk_secret_sem and thus 'secret' can change concurrently which
401	 * would be a data race.  But they only need to know whether the secret
402	 * *was* present at the time of check, so READ_ONCE() suffices.
403	 */
404	return READ_ONCE(secret->size) != 0;
405}
406
407static inline const char *master_key_spec_type(
408				const struct fscrypt_key_specifier *spec)
409{
410	switch (spec->type) {
411	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
412		return "descriptor";
413	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
414		return "identifier";
415	}
416	return "[unknown]";
417}
418
419static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
420{
421	switch (spec->type) {
422	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
423		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
424	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
425		return FSCRYPT_KEY_IDENTIFIER_SIZE;
426	}
427	return 0;
428}
429
430extern struct key *
431fscrypt_find_master_key(struct super_block *sb,
432			const struct fscrypt_key_specifier *mk_spec);
433
434extern int fscrypt_verify_key_added(struct super_block *sb,
435				    const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
 
 
 
436
437extern int __init fscrypt_init_keyring(void);
438
439/* keysetup.c */
440
441struct fscrypt_mode {
442	const char *friendly_name;
443	const char *cipher_str;
444	int keysize;
445	int ivsize;
446	bool logged_impl_name;
447	bool needs_essiv;
448};
449
450static inline bool
451fscrypt_mode_supports_direct_key(const struct fscrypt_mode *mode)
452{
453	return mode->ivsize >= offsetofend(union fscrypt_iv, nonce);
454}
 
 
 
 
 
 
 
 
 
455
456extern struct crypto_skcipher *
457fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
458			  const struct inode *inode);
459
460extern int fscrypt_set_derived_key(struct fscrypt_info *ci,
461				   const u8 *derived_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462
463/* keysetup_v1.c */
464
465extern void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
 
 
 
466
467extern int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
468				     const u8 *raw_master_key);
469
470extern int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
471					struct fscrypt_info *ci);
472/* policy.c */
473
474extern bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
475				   const union fscrypt_policy *policy2);
476extern bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
477				     const struct inode *inode);
478extern int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
479				       const union fscrypt_context *ctx_u,
480				       int ctx_size);
 
481
482#endif /* _FSCRYPT_PRIVATE_H */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 15#include <linux/siphash.h>
 16#include <crypto/hash.h>
 17#include <linux/blk-crypto.h>
 18
 19#define CONST_STRLEN(str)	(sizeof(str) - 1)
 20
 21#define FSCRYPT_FILE_NONCE_SIZE	16
 22
 23#define FSCRYPT_MIN_KEY_SIZE	16
 24
 25#define FSCRYPT_CONTEXT_V1	1
 26#define FSCRYPT_CONTEXT_V2	2
 27
 28/* Keep this in sync with include/uapi/linux/fscrypt.h */
 29#define FSCRYPT_MODE_MAX	FSCRYPT_MODE_ADIANTUM
 30
 31struct fscrypt_context_v1 {
 32	u8 version; /* FSCRYPT_CONTEXT_V1 */
 33	u8 contents_encryption_mode;
 34	u8 filenames_encryption_mode;
 35	u8 flags;
 36	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 37	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 38};
 39
 40struct fscrypt_context_v2 {
 41	u8 version; /* FSCRYPT_CONTEXT_V2 */
 42	u8 contents_encryption_mode;
 43	u8 filenames_encryption_mode;
 44	u8 flags;
 45	u8 __reserved[4];
 46	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 47	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 48};
 49
 50/*
 51 * fscrypt_context - the encryption context of an inode
 52 *
 53 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 54 * encrypted file usually in a hidden extended attribute.  It contains the
 55 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 56 * and key with which the file is encrypted.  It also contains a nonce that was
 57 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 58 * to cause different files to be encrypted differently.
 59 */
 60union fscrypt_context {
 61	u8 version;
 62	struct fscrypt_context_v1 v1;
 63	struct fscrypt_context_v2 v2;
 64};
 65
 66/*
 67 * Return the size expected for the given fscrypt_context based on its version
 68 * number, or 0 if the context version is unrecognized.
 69 */
 70static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 71{
 72	switch (ctx->version) {
 73	case FSCRYPT_CONTEXT_V1:
 74		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 75		return sizeof(ctx->v1);
 76	case FSCRYPT_CONTEXT_V2:
 77		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 78		return sizeof(ctx->v2);
 79	}
 80	return 0;
 81}
 82
 83/* Check whether an fscrypt_context has a recognized version number and size */
 84static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
 85					    int ctx_size)
 86{
 87	return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
 88}
 89
 90/* Retrieve the context's nonce, assuming the context was already validated */
 91static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
 92{
 93	switch (ctx->version) {
 94	case FSCRYPT_CONTEXT_V1:
 95		return ctx->v1.nonce;
 96	case FSCRYPT_CONTEXT_V2:
 97		return ctx->v2.nonce;
 98	}
 99	WARN_ON(1);
100	return NULL;
101}
102
103union fscrypt_policy {
104	u8 version;
105	struct fscrypt_policy_v1 v1;
106	struct fscrypt_policy_v2 v2;
107};
108
109/*
110 * Return the size expected for the given fscrypt_policy based on its version
111 * number, or 0 if the policy version is unrecognized.
112 */
113static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
114{
115	switch (policy->version) {
116	case FSCRYPT_POLICY_V1:
117		return sizeof(policy->v1);
118	case FSCRYPT_POLICY_V2:
119		return sizeof(policy->v2);
120	}
121	return 0;
122}
123
124/* Return the contents encryption mode of a valid encryption policy */
125static inline u8
126fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
127{
128	switch (policy->version) {
129	case FSCRYPT_POLICY_V1:
130		return policy->v1.contents_encryption_mode;
131	case FSCRYPT_POLICY_V2:
132		return policy->v2.contents_encryption_mode;
133	}
134	BUG();
135}
136
137/* Return the filenames encryption mode of a valid encryption policy */
138static inline u8
139fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
140{
141	switch (policy->version) {
142	case FSCRYPT_POLICY_V1:
143		return policy->v1.filenames_encryption_mode;
144	case FSCRYPT_POLICY_V2:
145		return policy->v2.filenames_encryption_mode;
146	}
147	BUG();
148}
149
150/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
151static inline u8
152fscrypt_policy_flags(const union fscrypt_policy *policy)
153{
154	switch (policy->version) {
155	case FSCRYPT_POLICY_V1:
156		return policy->v1.flags;
157	case FSCRYPT_POLICY_V2:
158		return policy->v2.flags;
159	}
160	BUG();
161}
162
163/*
 
 
 
 
 
 
164 * For encrypted symlinks, the ciphertext length is stored at the beginning
165 * of the string in little-endian format.
166 */
167struct fscrypt_symlink_data {
168	__le16 len;
169	char encrypted_path[1];
170} __packed;
171
172/**
173 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
174 * @tfm: crypto API transform object
175 * @blk_key: key for blk-crypto
176 *
177 * Normally only one of the fields will be non-NULL.
178 */
179struct fscrypt_prepared_key {
180	struct crypto_skcipher *tfm;
181#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
182	struct fscrypt_blk_crypto_key *blk_key;
183#endif
184};
185
186/*
187 * fscrypt_info - the "encryption key" for an inode
188 *
189 * When an encrypted file's key is made available, an instance of this struct is
190 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
191 * inode is evicted.
192 */
193struct fscrypt_info {
194
195	/* The key in a form prepared for actual encryption/decryption */
196	struct fscrypt_prepared_key ci_enc_key;
197
198	/* True if ci_enc_key should be freed when this fscrypt_info is freed */
199	bool ci_owns_key;
200
201#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
202	/*
203	 * True if this inode will use inline encryption (blk-crypto) instead of
204	 * the traditional filesystem-layer encryption.
205	 */
206	bool ci_inlinecrypt;
207#endif
208
209	/*
210	 * Encryption mode used for this inode.  It corresponds to either the
211	 * contents or filenames encryption mode, depending on the inode type.
212	 */
213	struct fscrypt_mode *ci_mode;
214
215	/* Back-pointer to the inode */
216	struct inode *ci_inode;
217
218	/*
219	 * The master key with which this inode was unlocked (decrypted).  This
220	 * will be NULL if the master key was found in a process-subscribed
221	 * keyring rather than in the filesystem-level keyring.
222	 */
223	struct key *ci_master_key;
224
225	/*
226	 * Link in list of inodes that were unlocked with the master key.
227	 * Only used when ->ci_master_key is set.
228	 */
229	struct list_head ci_master_key_link;
230
231	/*
232	 * If non-NULL, then encryption is done using the master key directly
233	 * and ci_enc_key will equal ci_direct_key->dk_key.
234	 */
235	struct fscrypt_direct_key *ci_direct_key;
236
237	/*
238	 * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4
239	 * key.  This is only set for directories that use a keyed dirhash over
240	 * the plaintext filenames -- currently just casefolded directories.
241	 */
242	siphash_key_t ci_dirhash_key;
243	bool ci_dirhash_key_initialized;
244
245	/* The encryption policy used by this inode */
246	union fscrypt_policy ci_policy;
247
248	/* This inode's nonce, copied from the fscrypt_context */
249	u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
250
251	/* Hashed inode number.  Only set for IV_INO_LBLK_32 */
252	u32 ci_hashed_ino;
253};
254
255typedef enum {
256	FS_DECRYPT = 0,
257	FS_ENCRYPT,
258} fscrypt_direction_t;
259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260/* crypto.c */
261extern struct kmem_cache *fscrypt_info_cachep;
262int fscrypt_initialize(unsigned int cop_flags);
263int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
264			u64 lblk_num, struct page *src_page,
265			struct page *dest_page, unsigned int len,
266			unsigned int offs, gfp_t gfp_flags);
267struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
 
 
268
269void __printf(3, 4) __cold
270fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
271
272#define fscrypt_warn(inode, fmt, ...)		\
273	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
274#define fscrypt_err(inode, fmt, ...)		\
275	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
276
277#define FSCRYPT_MAX_IV_SIZE	32
278
279union fscrypt_iv {
280	struct {
281		/* logical block number within the file */
282		__le64 lblk_num;
283
284		/* per-file nonce; only set in DIRECT_KEY mode */
285		u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
286	};
287	u8 raw[FSCRYPT_MAX_IV_SIZE];
288	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
289};
290
291void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
292			 const struct fscrypt_info *ci);
293
294/* fname.c */
295int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
296			  u8 *out, unsigned int olen);
297bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
298				  u32 orig_len, u32 max_len,
299				  u32 *encrypted_len_ret);
300
301/* hkdf.c */
302
303struct fscrypt_hkdf {
304	struct crypto_shash *hmac_tfm;
305};
306
307int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
308		      unsigned int master_key_size);
309
310/*
311 * The list of contexts in which fscrypt uses HKDF.  These values are used as
312 * the first byte of the HKDF application-specific info string to guarantee that
313 * info strings are never repeated between contexts.  This ensures that all HKDF
314 * outputs are unique and cryptographically isolated, i.e. knowledge of one
315 * output doesn't reveal another.
316 */
317#define HKDF_CONTEXT_KEY_IDENTIFIER	1 /* info=<empty>		*/
318#define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/
319#define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/
320#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/
321#define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/
322#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/
323#define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/
324
325int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
326			const u8 *info, unsigned int infolen,
327			u8 *okm, unsigned int okmlen);
328
329void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
330
331/* inline_crypt.c */
332#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
333int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
334
335static inline bool
336fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
337{
338	return ci->ci_inlinecrypt;
339}
340
341int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
342				     const u8 *raw_key,
343				     const struct fscrypt_info *ci);
344
345void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key);
346
347/*
348 * Check whether the crypto transform or blk-crypto key has been allocated in
349 * @prep_key, depending on which encryption implementation the file will use.
350 */
351static inline bool
352fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
353			const struct fscrypt_info *ci)
354{
355	/*
356	 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
357	 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
358	 * I.e., in some cases (namely, if this prep_key is a per-mode
359	 * encryption key) another task can publish blk_key or tfm concurrently,
360	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
361	 * to safely ACQUIRE the memory the other task published.
362	 */
363	if (fscrypt_using_inline_encryption(ci))
364		return smp_load_acquire(&prep_key->blk_key) != NULL;
365	return smp_load_acquire(&prep_key->tfm) != NULL;
366}
367
368#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
369
370static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
371{
372	return 0;
373}
374
375static inline bool
376fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
377{
378	return false;
379}
380
381static inline int
382fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
383				 const u8 *raw_key,
384				 const struct fscrypt_info *ci)
385{
386	WARN_ON(1);
387	return -EOPNOTSUPP;
388}
389
390static inline void
391fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
392{
393}
394
395static inline bool
396fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
397			const struct fscrypt_info *ci)
398{
399	return smp_load_acquire(&prep_key->tfm) != NULL;
400}
401#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
402
403/* keyring.c */
404
405/*
406 * fscrypt_master_key_secret - secret key material of an in-use master key
407 */
408struct fscrypt_master_key_secret {
409
410	/*
411	 * For v2 policy keys: HKDF context keyed by this master key.
412	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
413	 */
414	struct fscrypt_hkdf	hkdf;
415
416	/* Size of the raw key in bytes.  Set even if ->raw isn't set. */
417	u32			size;
418
419	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
420	u8			raw[FSCRYPT_MAX_KEY_SIZE];
421
422} __randomize_layout;
423
424/*
425 * fscrypt_master_key - an in-use master key
426 *
427 * This represents a master encryption key which has been added to the
428 * filesystem and can be used to "unlock" the encrypted files which were
429 * encrypted with it.
430 */
431struct fscrypt_master_key {
432
433	/*
434	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
435	 * executed, this is wiped and no new inodes can be unlocked with this
436	 * key; however, there may still be inodes in ->mk_decrypted_inodes
437	 * which could not be evicted.  As long as some inodes still remain,
438	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
439	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
440	 *
441	 * Locking: protected by this master key's key->sem.
 
 
 
 
 
 
442	 */
443	struct fscrypt_master_key_secret	mk_secret;
 
444
445	/*
446	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
447	 * userspace (->descriptor).
448	 *
449	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
450	 */
451	struct fscrypt_key_specifier		mk_spec;
452
453	/*
454	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
455	 * user who has added this key.  Normally each key will be added by just
456	 * one user, but it's possible that multiple users share a key, and in
457	 * that case we need to keep track of those users so that one user can't
458	 * remove the key before the others want it removed too.
459	 *
460	 * This is NULL for v1 policy keys; those can only be added by root.
461	 *
462	 * Locking: in addition to this keyring's own semaphore, this is
463	 * protected by this master key's key->sem, so we can do atomic
464	 * search+insert.  It can also be searched without taking any locks, but
465	 * in that case the returned key may have already been removed.
466	 */
467	struct key		*mk_users;
468
469	/*
470	 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
471	 * Once this goes to 0, the master key is removed from ->s_master_keys.
472	 * The 'struct fscrypt_master_key' will continue to live as long as the
473	 * 'struct key' whose payload it is, but we won't let this reference
474	 * count rise again.
475	 */
476	refcount_t		mk_refcount;
477
478	/*
479	 * List of inodes that were unlocked using this key.  This allows the
480	 * inodes to be evicted efficiently if the key is removed.
481	 */
482	struct list_head	mk_decrypted_inodes;
483	spinlock_t		mk_decrypted_inodes_lock;
484
485	/*
486	 * Per-mode encryption keys for the various types of encryption policies
487	 * that use them.  Allocated and derived on-demand.
488	 */
489	struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
490	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
491	struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
492
493	/* Hash key for inode numbers.  Initialized only when needed. */
494	siphash_key_t		mk_ino_hash_key;
495	bool			mk_ino_hash_key_initialized;
496
497} __randomize_layout;
498
499static inline bool
500is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
501{
502	/*
503	 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and
504	 * fscrypt_key_describe().  These run in atomic context, so they can't
505	 * take the key semaphore and thus 'secret' can change concurrently
506	 * which would be a data race.  But they only need to know whether the
507	 * secret *was* present at the time of check, so READ_ONCE() suffices.
508	 */
509	return READ_ONCE(secret->size) != 0;
510}
511
512static inline const char *master_key_spec_type(
513				const struct fscrypt_key_specifier *spec)
514{
515	switch (spec->type) {
516	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
517		return "descriptor";
518	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
519		return "identifier";
520	}
521	return "[unknown]";
522}
523
524static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
525{
526	switch (spec->type) {
527	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
528		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
529	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
530		return FSCRYPT_KEY_IDENTIFIER_SIZE;
531	}
532	return 0;
533}
534
535struct key *
536fscrypt_find_master_key(struct super_block *sb,
537			const struct fscrypt_key_specifier *mk_spec);
538
539int fscrypt_add_test_dummy_key(struct super_block *sb,
540			       struct fscrypt_key_specifier *key_spec);
541
542int fscrypt_verify_key_added(struct super_block *sb,
543			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
544
545int __init fscrypt_init_keyring(void);
546
547/* keysetup.c */
548
549struct fscrypt_mode {
550	const char *friendly_name;
551	const char *cipher_str;
552	int keysize;
553	int ivsize;
554	int logged_impl_name;
555	enum blk_crypto_mode_num blk_crypto_mode;
556};
557
558extern struct fscrypt_mode fscrypt_modes[];
559
560int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
561			const u8 *raw_key, const struct fscrypt_info *ci);
562
563void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key);
564
565int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
566
567int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
568			       const struct fscrypt_master_key *mk);
569
570void fscrypt_hash_inode_number(struct fscrypt_info *ci,
571			       const struct fscrypt_master_key *mk);
572
573int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
 
 
574
575/**
576 * fscrypt_require_key() - require an inode's encryption key
577 * @inode: the inode we need the key for
578 *
579 * If the inode is encrypted, set up its encryption key if not already done.
580 * Then require that the key be present and return -ENOKEY otherwise.
581 *
582 * No locks are needed, and the key will live as long as the struct inode --- so
583 * it won't go away from under you.
584 *
585 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
586 * if a problem occurred while setting up the encryption key.
587 */
588static inline int fscrypt_require_key(struct inode *inode)
589{
590	if (IS_ENCRYPTED(inode)) {
591		int err = fscrypt_get_encryption_info(inode, false);
592
593		if (err)
594			return err;
595		if (!fscrypt_has_encryption_key(inode))
596			return -ENOKEY;
597	}
598	return 0;
599}
600
601/* keysetup_v1.c */
602
603void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
604
605int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
606			      const u8 *raw_master_key);
607
608int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
 
609
 
 
610/* policy.c */
611
612bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
613			    const union fscrypt_policy *policy2);
614bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
615			      const struct inode *inode);
616int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
617				const union fscrypt_context *ctx_u,
618				int ctx_size);
619const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
620
621#endif /* _FSCRYPT_PRIVATE_H */