Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 
 15#include <crypto/hash.h>
 
 16
 17#define CONST_STRLEN(str)	(sizeof(str) - 1)
 18
 19#define FS_KEY_DERIVATION_NONCE_SIZE	16
 20
 21#define FSCRYPT_MIN_KEY_SIZE		16
 
 
 
 
 
 22
 23#define FSCRYPT_CONTEXT_V1	1
 24#define FSCRYPT_CONTEXT_V2	2
 25
 
 
 
 26struct fscrypt_context_v1 {
 27	u8 version; /* FSCRYPT_CONTEXT_V1 */
 28	u8 contents_encryption_mode;
 29	u8 filenames_encryption_mode;
 30	u8 flags;
 31	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 32	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 33};
 34
 35struct fscrypt_context_v2 {
 36	u8 version; /* FSCRYPT_CONTEXT_V2 */
 37	u8 contents_encryption_mode;
 38	u8 filenames_encryption_mode;
 39	u8 flags;
 40	u8 __reserved[4];
 41	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 42	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 43};
 44
 45/**
 46 * fscrypt_context - the encryption context of an inode
 47 *
 48 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 49 * encrypted file usually in a hidden extended attribute.  It contains the
 50 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 51 * and key with which the file is encrypted.  It also contains a nonce that was
 52 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 53 * to cause different files to be encrypted differently.
 54 */
 55union fscrypt_context {
 56	u8 version;
 57	struct fscrypt_context_v1 v1;
 58	struct fscrypt_context_v2 v2;
 59};
 60
 61/*
 62 * Return the size expected for the given fscrypt_context based on its version
 63 * number, or 0 if the context version is unrecognized.
 64 */
 65static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 66{
 67	switch (ctx->version) {
 68	case FSCRYPT_CONTEXT_V1:
 69		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 70		return sizeof(ctx->v1);
 71	case FSCRYPT_CONTEXT_V2:
 72		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 73		return sizeof(ctx->v2);
 74	}
 75	return 0;
 76}
 77
 78#undef fscrypt_policy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79union fscrypt_policy {
 80	u8 version;
 81	struct fscrypt_policy_v1 v1;
 82	struct fscrypt_policy_v2 v2;
 83};
 84
 85/*
 86 * Return the size expected for the given fscrypt_policy based on its version
 87 * number, or 0 if the policy version is unrecognized.
 88 */
 89static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
 90{
 91	switch (policy->version) {
 92	case FSCRYPT_POLICY_V1:
 93		return sizeof(policy->v1);
 94	case FSCRYPT_POLICY_V2:
 95		return sizeof(policy->v2);
 96	}
 97	return 0;
 98}
 99
100/* Return the contents encryption mode of a valid encryption policy */
101static inline u8
102fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
103{
104	switch (policy->version) {
105	case FSCRYPT_POLICY_V1:
106		return policy->v1.contents_encryption_mode;
107	case FSCRYPT_POLICY_V2:
108		return policy->v2.contents_encryption_mode;
109	}
110	BUG();
111}
112
113/* Return the filenames encryption mode of a valid encryption policy */
114static inline u8
115fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
116{
117	switch (policy->version) {
118	case FSCRYPT_POLICY_V1:
119		return policy->v1.filenames_encryption_mode;
120	case FSCRYPT_POLICY_V2:
121		return policy->v2.filenames_encryption_mode;
122	}
123	BUG();
124}
125
126/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
127static inline u8
128fscrypt_policy_flags(const union fscrypt_policy *policy)
129{
130	switch (policy->version) {
131	case FSCRYPT_POLICY_V1:
132		return policy->v1.flags;
133	case FSCRYPT_POLICY_V2:
134		return policy->v2.flags;
135	}
136	BUG();
137}
138
139static inline bool
140fscrypt_is_direct_key_policy(const union fscrypt_policy *policy)
141{
142	return fscrypt_policy_flags(policy) & FSCRYPT_POLICY_FLAG_DIRECT_KEY;
143}
144
145/**
146 * For encrypted symlinks, the ciphertext length is stored at the beginning
147 * of the string in little-endian format.
148 */
149struct fscrypt_symlink_data {
150	__le16 len;
151	char encrypted_path[1];
152} __packed;
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154/*
155 * fscrypt_info - the "encryption key" for an inode
156 *
157 * When an encrypted file's key is made available, an instance of this struct is
158 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
159 * inode is evicted.
160 */
161struct fscrypt_info {
162
163	/* The actual crypto transform used for encryption and decryption */
164	struct crypto_skcipher *ci_ctfm;
 
 
 
165
 
166	/*
167	 * Cipher for ESSIV IV generation.  Only set for CBC contents
168	 * encryption, otherwise is NULL.
169	 */
170	struct crypto_cipher *ci_essiv_tfm;
 
171
172	/*
173	 * Encryption mode used for this inode.  It corresponds to either the
174	 * contents or filenames encryption mode, depending on the inode type.
175	 */
176	struct fscrypt_mode *ci_mode;
177
178	/* Back-pointer to the inode */
179	struct inode *ci_inode;
180
181	/*
182	 * The master key with which this inode was unlocked (decrypted).  This
183	 * will be NULL if the master key was found in a process-subscribed
184	 * keyring rather than in the filesystem-level keyring.
185	 */
186	struct key *ci_master_key;
187
188	/*
189	 * Link in list of inodes that were unlocked with the master key.
190	 * Only used when ->ci_master_key is set.
191	 */
192	struct list_head ci_master_key_link;
193
194	/*
195	 * If non-NULL, then encryption is done using the master key directly
196	 * and ci_ctfm will equal ci_direct_key->dk_ctfm.
197	 */
198	struct fscrypt_direct_key *ci_direct_key;
199
 
 
 
 
 
 
 
 
200	/* The encryption policy used by this inode */
201	union fscrypt_policy ci_policy;
202
203	/* This inode's nonce, copied from the fscrypt_context */
204	u8 ci_nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 
 
 
205};
206
207typedef enum {
208	FS_DECRYPT = 0,
209	FS_ENCRYPT,
210} fscrypt_direction_t;
211
212#define FS_CTX_REQUIRES_FREE_ENCRYPT_FL		0x00000001
213
214static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
215					   u32 filenames_mode)
216{
217	if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
218	    filenames_mode == FSCRYPT_MODE_AES_128_CTS)
219		return true;
220
221	if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
222	    filenames_mode == FSCRYPT_MODE_AES_256_CTS)
223		return true;
224
225	if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
226	    filenames_mode == FSCRYPT_MODE_ADIANTUM)
227		return true;
228
229	return false;
230}
231
232/* crypto.c */
233extern struct kmem_cache *fscrypt_info_cachep;
234extern int fscrypt_initialize(unsigned int cop_flags);
235extern int fscrypt_crypt_block(const struct inode *inode,
236			       fscrypt_direction_t rw, u64 lblk_num,
237			       struct page *src_page, struct page *dest_page,
238			       unsigned int len, unsigned int offs,
239			       gfp_t gfp_flags);
240extern struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
241extern const struct dentry_operations fscrypt_d_ops;
242
243extern void __printf(3, 4) __cold
244fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
245
246#define fscrypt_warn(inode, fmt, ...)		\
247	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
248#define fscrypt_err(inode, fmt, ...)		\
249	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
250
251#define FSCRYPT_MAX_IV_SIZE	32
252
253union fscrypt_iv {
254	struct {
255		/* logical block number within the file */
256		__le64 lblk_num;
257
258		/* per-file nonce; only set in DIRECT_KEY mode */
259		u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
260	};
261	u8 raw[FSCRYPT_MAX_IV_SIZE];
 
262};
263
264void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
265			 const struct fscrypt_info *ci);
266
267/* fname.c */
268extern int fname_encrypt(struct inode *inode, const struct qstr *iname,
269			 u8 *out, unsigned int olen);
270extern bool fscrypt_fname_encrypted_size(const struct inode *inode,
271					 u32 orig_len, u32 max_len,
272					 u32 *encrypted_len_ret);
273
274/* hkdf.c */
275
276struct fscrypt_hkdf {
277	struct crypto_shash *hmac_tfm;
278};
279
280extern int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
281			     unsigned int master_key_size);
282
283/*
284 * The list of contexts in which fscrypt uses HKDF.  These values are used as
285 * the first byte of the HKDF application-specific info string to guarantee that
286 * info strings are never repeated between contexts.  This ensures that all HKDF
287 * outputs are unique and cryptographically isolated, i.e. knowledge of one
288 * output doesn't reveal another.
289 */
290#define HKDF_CONTEXT_KEY_IDENTIFIER	1
291#define HKDF_CONTEXT_PER_FILE_KEY	2
292#define HKDF_CONTEXT_PER_MODE_KEY	3
293
294extern int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context,
295			       const u8 *info, unsigned int infolen,
296			       u8 *okm, unsigned int okmlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
298extern void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
300/* keyring.c */
301
302/*
303 * fscrypt_master_key_secret - secret key material of an in-use master key
304 */
305struct fscrypt_master_key_secret {
306
307	/*
308	 * For v2 policy keys: HKDF context keyed by this master key.
309	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
310	 */
311	struct fscrypt_hkdf	hkdf;
312
313	/* Size of the raw key in bytes.  Set even if ->raw isn't set. */
 
 
 
 
314	u32			size;
315
316	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
317	u8			raw[FSCRYPT_MAX_KEY_SIZE];
318
319} __randomize_layout;
320
321/*
322 * fscrypt_master_key - an in-use master key
323 *
324 * This represents a master encryption key which has been added to the
325 * filesystem and can be used to "unlock" the encrypted files which were
326 * encrypted with it.
327 */
328struct fscrypt_master_key {
329
330	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
332	 * executed, this is wiped and no new inodes can be unlocked with this
333	 * key; however, there may still be inodes in ->mk_decrypted_inodes
334	 * which could not be evicted.  As long as some inodes still remain,
335	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
336	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
337	 *
338	 * Locking: protected by key->sem (outer) and mk_secret_sem (inner).
339	 * The reason for two locks is that key->sem also protects modifying
340	 * mk_users, which ranks it above the semaphore for the keyring key
341	 * type, which is in turn above page faults (via keyring_read).  But
342	 * sometimes filesystems call fscrypt_get_encryption_info() from within
343	 * a transaction, which ranks it below page faults.  So we need a
344	 * separate lock which protects mk_secret but not also mk_users.
345	 */
346	struct fscrypt_master_key_secret	mk_secret;
347	struct rw_semaphore			mk_secret_sem;
348
349	/*
350	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
351	 * userspace (->descriptor).
352	 *
353	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
354	 */
355	struct fscrypt_key_specifier		mk_spec;
356
357	/*
358	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
359	 * user who has added this key.  Normally each key will be added by just
360	 * one user, but it's possible that multiple users share a key, and in
361	 * that case we need to keep track of those users so that one user can't
362	 * remove the key before the others want it removed too.
363	 *
364	 * This is NULL for v1 policy keys; those can only be added by root.
365	 *
366	 * Locking: in addition to this keyrings own semaphore, this is
367	 * protected by the master key's key->sem, so we can do atomic
368	 * search+insert.  It can also be searched without taking any locks, but
369	 * in that case the returned key may have already been removed.
370	 */
371	struct key		*mk_users;
372
373	/*
374	 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
375	 * Once this goes to 0, the master key is removed from ->s_master_keys.
376	 * The 'struct fscrypt_master_key' will continue to live as long as the
377	 * 'struct key' whose payload it is, but we won't let this reference
378	 * count rise again.
379	 */
380	refcount_t		mk_refcount;
381
382	/*
383	 * List of inodes that were unlocked using this key.  This allows the
384	 * inodes to be evicted efficiently if the key is removed.
385	 */
386	struct list_head	mk_decrypted_inodes;
387	spinlock_t		mk_decrypted_inodes_lock;
388
389	/* Per-mode tfms for DIRECT_KEY policies, allocated on-demand */
390	struct crypto_skcipher	*mk_mode_keys[__FSCRYPT_MODE_MAX + 1];
 
 
 
 
 
 
 
 
 
391
392} __randomize_layout;
393
394static inline bool
395is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
396{
397	/*
398	 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and
399	 * fscrypt_key_describe().  These run in atomic context, so they can't
400	 * take ->mk_secret_sem and thus 'secret' can change concurrently which
401	 * would be a data race.  But they only need to know whether the secret
402	 * *was* present at the time of check, so READ_ONCE() suffices.
403	 */
404	return READ_ONCE(secret->size) != 0;
405}
406
407static inline const char *master_key_spec_type(
408				const struct fscrypt_key_specifier *spec)
409{
410	switch (spec->type) {
411	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
412		return "descriptor";
413	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
414		return "identifier";
415	}
416	return "[unknown]";
417}
418
419static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
420{
421	switch (spec->type) {
422	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
423		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
424	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
425		return FSCRYPT_KEY_IDENTIFIER_SIZE;
426	}
427	return 0;
428}
429
430extern struct key *
 
 
 
 
 
431fscrypt_find_master_key(struct super_block *sb,
432			const struct fscrypt_key_specifier *mk_spec);
433
434extern int fscrypt_verify_key_added(struct super_block *sb,
435				    const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
436
437extern int __init fscrypt_init_keyring(void);
 
 
 
438
439/* keysetup.c */
440
441struct fscrypt_mode {
442	const char *friendly_name;
443	const char *cipher_str;
444	int keysize;
445	int ivsize;
446	bool logged_impl_name;
447	bool needs_essiv;
 
 
 
448};
449
450static inline bool
451fscrypt_mode_supports_direct_key(const struct fscrypt_mode *mode)
452{
453	return mode->ivsize >= offsetofend(union fscrypt_iv, nonce);
454}
 
 
 
 
455
456extern struct crypto_skcipher *
457fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
458			  const struct inode *inode);
459
460extern int fscrypt_set_derived_key(struct fscrypt_info *ci,
461				   const u8 *derived_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462
463/* keysetup_v1.c */
464
465extern void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
 
 
 
466
467extern int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
468				     const u8 *raw_master_key);
469
470extern int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
471					struct fscrypt_info *ci);
472/* policy.c */
473
474extern bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
475				   const union fscrypt_policy *policy2);
476extern bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
477				     const struct inode *inode);
478extern int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
479				       const union fscrypt_context *ctx_u,
480				       int ctx_size);
 
 
 
481
482#endif /* _FSCRYPT_PRIVATE_H */
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 15#include <linux/siphash.h>
 16#include <crypto/hash.h>
 17#include <linux/blk-crypto.h>
 18
 19#define CONST_STRLEN(str)	(sizeof(str) - 1)
 20
 21#define FSCRYPT_FILE_NONCE_SIZE	16
 22
 23/*
 24 * Minimum size of an fscrypt master key.  Note: a longer key will be required
 25 * if ciphers with a 256-bit security strength are used.  This is just the
 26 * absolute minimum, which applies when only 128-bit encryption is used.
 27 */
 28#define FSCRYPT_MIN_KEY_SIZE	16
 29
 30#define FSCRYPT_CONTEXT_V1	1
 31#define FSCRYPT_CONTEXT_V2	2
 32
 33/* Keep this in sync with include/uapi/linux/fscrypt.h */
 34#define FSCRYPT_MODE_MAX	FSCRYPT_MODE_AES_256_HCTR2
 35
 36struct fscrypt_context_v1 {
 37	u8 version; /* FSCRYPT_CONTEXT_V1 */
 38	u8 contents_encryption_mode;
 39	u8 filenames_encryption_mode;
 40	u8 flags;
 41	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 42	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 43};
 44
 45struct fscrypt_context_v2 {
 46	u8 version; /* FSCRYPT_CONTEXT_V2 */
 47	u8 contents_encryption_mode;
 48	u8 filenames_encryption_mode;
 49	u8 flags;
 50	u8 __reserved[4];
 51	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 52	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 53};
 54
 55/*
 56 * fscrypt_context - the encryption context of an inode
 57 *
 58 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 59 * encrypted file usually in a hidden extended attribute.  It contains the
 60 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 61 * and key with which the file is encrypted.  It also contains a nonce that was
 62 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 63 * to cause different files to be encrypted differently.
 64 */
 65union fscrypt_context {
 66	u8 version;
 67	struct fscrypt_context_v1 v1;
 68	struct fscrypt_context_v2 v2;
 69};
 70
 71/*
 72 * Return the size expected for the given fscrypt_context based on its version
 73 * number, or 0 if the context version is unrecognized.
 74 */
 75static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 76{
 77	switch (ctx->version) {
 78	case FSCRYPT_CONTEXT_V1:
 79		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 80		return sizeof(ctx->v1);
 81	case FSCRYPT_CONTEXT_V2:
 82		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 83		return sizeof(ctx->v2);
 84	}
 85	return 0;
 86}
 87
 88/* Check whether an fscrypt_context has a recognized version number and size */
 89static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
 90					    int ctx_size)
 91{
 92	return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
 93}
 94
 95/* Retrieve the context's nonce, assuming the context was already validated */
 96static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
 97{
 98	switch (ctx->version) {
 99	case FSCRYPT_CONTEXT_V1:
100		return ctx->v1.nonce;
101	case FSCRYPT_CONTEXT_V2:
102		return ctx->v2.nonce;
103	}
104	WARN_ON(1);
105	return NULL;
106}
107
108union fscrypt_policy {
109	u8 version;
110	struct fscrypt_policy_v1 v1;
111	struct fscrypt_policy_v2 v2;
112};
113
114/*
115 * Return the size expected for the given fscrypt_policy based on its version
116 * number, or 0 if the policy version is unrecognized.
117 */
118static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
119{
120	switch (policy->version) {
121	case FSCRYPT_POLICY_V1:
122		return sizeof(policy->v1);
123	case FSCRYPT_POLICY_V2:
124		return sizeof(policy->v2);
125	}
126	return 0;
127}
128
129/* Return the contents encryption mode of a valid encryption policy */
130static inline u8
131fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
132{
133	switch (policy->version) {
134	case FSCRYPT_POLICY_V1:
135		return policy->v1.contents_encryption_mode;
136	case FSCRYPT_POLICY_V2:
137		return policy->v2.contents_encryption_mode;
138	}
139	BUG();
140}
141
142/* Return the filenames encryption mode of a valid encryption policy */
143static inline u8
144fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
145{
146	switch (policy->version) {
147	case FSCRYPT_POLICY_V1:
148		return policy->v1.filenames_encryption_mode;
149	case FSCRYPT_POLICY_V2:
150		return policy->v2.filenames_encryption_mode;
151	}
152	BUG();
153}
154
155/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
156static inline u8
157fscrypt_policy_flags(const union fscrypt_policy *policy)
158{
159	switch (policy->version) {
160	case FSCRYPT_POLICY_V1:
161		return policy->v1.flags;
162	case FSCRYPT_POLICY_V2:
163		return policy->v2.flags;
164	}
165	BUG();
166}
167
168/*
 
 
 
 
 
 
169 * For encrypted symlinks, the ciphertext length is stored at the beginning
170 * of the string in little-endian format.
171 */
172struct fscrypt_symlink_data {
173	__le16 len;
174	char encrypted_path[1];
175} __packed;
176
177/**
178 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
179 * @tfm: crypto API transform object
180 * @blk_key: key for blk-crypto
181 *
182 * Normally only one of the fields will be non-NULL.
183 */
184struct fscrypt_prepared_key {
185	struct crypto_skcipher *tfm;
186#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
187	struct blk_crypto_key *blk_key;
188#endif
189};
190
191/*
192 * fscrypt_info - the "encryption key" for an inode
193 *
194 * When an encrypted file's key is made available, an instance of this struct is
195 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
196 * inode is evicted.
197 */
198struct fscrypt_info {
199
200	/* The key in a form prepared for actual encryption/decryption */
201	struct fscrypt_prepared_key ci_enc_key;
202
203	/* True if ci_enc_key should be freed when this fscrypt_info is freed */
204	bool ci_owns_key;
205
206#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
207	/*
208	 * True if this inode will use inline encryption (blk-crypto) instead of
209	 * the traditional filesystem-layer encryption.
210	 */
211	bool ci_inlinecrypt;
212#endif
213
214	/*
215	 * Encryption mode used for this inode.  It corresponds to either the
216	 * contents or filenames encryption mode, depending on the inode type.
217	 */
218	struct fscrypt_mode *ci_mode;
219
220	/* Back-pointer to the inode */
221	struct inode *ci_inode;
222
223	/*
224	 * The master key with which this inode was unlocked (decrypted).  This
225	 * will be NULL if the master key was found in a process-subscribed
226	 * keyring rather than in the filesystem-level keyring.
227	 */
228	struct fscrypt_master_key *ci_master_key;
229
230	/*
231	 * Link in list of inodes that were unlocked with the master key.
232	 * Only used when ->ci_master_key is set.
233	 */
234	struct list_head ci_master_key_link;
235
236	/*
237	 * If non-NULL, then encryption is done using the master key directly
238	 * and ci_enc_key will equal ci_direct_key->dk_key.
239	 */
240	struct fscrypt_direct_key *ci_direct_key;
241
242	/*
243	 * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4
244	 * key.  This is only set for directories that use a keyed dirhash over
245	 * the plaintext filenames -- currently just casefolded directories.
246	 */
247	siphash_key_t ci_dirhash_key;
248	bool ci_dirhash_key_initialized;
249
250	/* The encryption policy used by this inode */
251	union fscrypt_policy ci_policy;
252
253	/* This inode's nonce, copied from the fscrypt_context */
254	u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
255
256	/* Hashed inode number.  Only set for IV_INO_LBLK_32 */
257	u32 ci_hashed_ino;
258};
259
260typedef enum {
261	FS_DECRYPT = 0,
262	FS_ENCRYPT,
263} fscrypt_direction_t;
264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265/* crypto.c */
266extern struct kmem_cache *fscrypt_info_cachep;
267int fscrypt_initialize(unsigned int cop_flags);
268int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
269			u64 lblk_num, struct page *src_page,
270			struct page *dest_page, unsigned int len,
271			unsigned int offs, gfp_t gfp_flags);
272struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
 
 
273
274void __printf(3, 4) __cold
275fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
276
277#define fscrypt_warn(inode, fmt, ...)		\
278	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
279#define fscrypt_err(inode, fmt, ...)		\
280	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
281
282#define FSCRYPT_MAX_IV_SIZE	32
283
284union fscrypt_iv {
285	struct {
286		/* logical block number within the file */
287		__le64 lblk_num;
288
289		/* per-file nonce; only set in DIRECT_KEY mode */
290		u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
291	};
292	u8 raw[FSCRYPT_MAX_IV_SIZE];
293	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
294};
295
296void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
297			 const struct fscrypt_info *ci);
298
299/* fname.c */
300bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
301				    u32 orig_len, u32 max_len,
302				    u32 *encrypted_len_ret);
 
 
303
304/* hkdf.c */
 
305struct fscrypt_hkdf {
306	struct crypto_shash *hmac_tfm;
307};
308
309int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
310		      unsigned int master_key_size);
311
312/*
313 * The list of contexts in which fscrypt uses HKDF.  These values are used as
314 * the first byte of the HKDF application-specific info string to guarantee that
315 * info strings are never repeated between contexts.  This ensures that all HKDF
316 * outputs are unique and cryptographically isolated, i.e. knowledge of one
317 * output doesn't reveal another.
318 */
319#define HKDF_CONTEXT_KEY_IDENTIFIER	1 /* info=<empty>		*/
320#define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/
321#define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/
322#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/
323#define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/
324#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/
325#define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/
326
327int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
328			const u8 *info, unsigned int infolen,
329			u8 *okm, unsigned int okmlen);
330
331void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
332
333/* inline_crypt.c */
334#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
335int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
336
337static inline bool
338fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
339{
340	return ci->ci_inlinecrypt;
341}
342
343int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
344				     const u8 *raw_key,
345				     const struct fscrypt_info *ci);
346
347void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
348				      struct fscrypt_prepared_key *prep_key);
349
350/*
351 * Check whether the crypto transform or blk-crypto key has been allocated in
352 * @prep_key, depending on which encryption implementation the file will use.
353 */
354static inline bool
355fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
356			const struct fscrypt_info *ci)
357{
358	/*
359	 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
360	 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
361	 * I.e., in some cases (namely, if this prep_key is a per-mode
362	 * encryption key) another task can publish blk_key or tfm concurrently,
363	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
364	 * to safely ACQUIRE the memory the other task published.
365	 */
366	if (fscrypt_using_inline_encryption(ci))
367		return smp_load_acquire(&prep_key->blk_key) != NULL;
368	return smp_load_acquire(&prep_key->tfm) != NULL;
369}
370
371#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
372
373static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
374{
375	return 0;
376}
377
378static inline bool
379fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
380{
381	return false;
382}
383
384static inline int
385fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
386				 const u8 *raw_key,
387				 const struct fscrypt_info *ci)
388{
389	WARN_ON(1);
390	return -EOPNOTSUPP;
391}
392
393static inline void
394fscrypt_destroy_inline_crypt_key(struct super_block *sb,
395				 struct fscrypt_prepared_key *prep_key)
396{
397}
398
399static inline bool
400fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
401			const struct fscrypt_info *ci)
402{
403	return smp_load_acquire(&prep_key->tfm) != NULL;
404}
405#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
406
407/* keyring.c */
408
409/*
410 * fscrypt_master_key_secret - secret key material of an in-use master key
411 */
412struct fscrypt_master_key_secret {
413
414	/*
415	 * For v2 policy keys: HKDF context keyed by this master key.
416	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
417	 */
418	struct fscrypt_hkdf	hkdf;
419
420	/*
421	 * Size of the raw key in bytes.  This remains set even if ->raw was
422	 * zeroized due to no longer being needed.  I.e. we still remember the
423	 * size of the key even if we don't need to remember the key itself.
424	 */
425	u32			size;
426
427	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
428	u8			raw[FSCRYPT_MAX_KEY_SIZE];
429
430} __randomize_layout;
431
432/*
433 * fscrypt_master_key - an in-use master key
434 *
435 * This represents a master encryption key which has been added to the
436 * filesystem and can be used to "unlock" the encrypted files which were
437 * encrypted with it.
438 */
439struct fscrypt_master_key {
440
441	/*
442	 * Link in ->s_master_keys->key_hashtable.
443	 * Only valid if ->mk_active_refs > 0.
444	 */
445	struct hlist_node			mk_node;
446
447	/* Semaphore that protects ->mk_secret and ->mk_users */
448	struct rw_semaphore			mk_sem;
449
450	/*
451	 * Active and structural reference counts.  An active ref guarantees
452	 * that the struct continues to exist, continues to be in the keyring
453	 * ->s_master_keys, and that any embedded subkeys (e.g.
454	 * ->mk_direct_keys) that have been prepared continue to exist.
455	 * A structural ref only guarantees that the struct continues to exist.
456	 *
457	 * There is one active ref associated with ->mk_secret being present,
458	 * and one active ref for each inode in ->mk_decrypted_inodes.
459	 *
460	 * There is one structural ref associated with the active refcount being
461	 * nonzero.  Finding a key in the keyring also takes a structural ref,
462	 * which is then held temporarily while the key is operated on.
463	 */
464	refcount_t				mk_active_refs;
465	refcount_t				mk_struct_refs;
466
467	struct rcu_head				mk_rcu_head;
468
469	/*
470	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
471	 * executed, this is wiped and no new inodes can be unlocked with this
472	 * key; however, there may still be inodes in ->mk_decrypted_inodes
473	 * which could not be evicted.  As long as some inodes still remain,
474	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
475	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
476	 *
477	 * While ->mk_secret is present, one ref in ->mk_active_refs is held.
478	 *
479	 * Locking: protected by ->mk_sem.  The manipulation of ->mk_active_refs
480	 *	    associated with this field is protected by ->mk_sem as well.
 
 
 
481	 */
482	struct fscrypt_master_key_secret	mk_secret;
 
483
484	/*
485	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
486	 * userspace (->descriptor).
487	 *
488	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
489	 */
490	struct fscrypt_key_specifier		mk_spec;
491
492	/*
493	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
494	 * user who has added this key.  Normally each key will be added by just
495	 * one user, but it's possible that multiple users share a key, and in
496	 * that case we need to keep track of those users so that one user can't
497	 * remove the key before the others want it removed too.
498	 *
499	 * This is NULL for v1 policy keys; those can only be added by root.
500	 *
501	 * Locking: protected by ->mk_sem.  (We don't just rely on the keyrings
502	 * subsystem semaphore ->mk_users->sem, as we need support for atomic
503	 * search+insert along with proper synchronization with ->mk_secret.)
 
504	 */
505	struct key		*mk_users;
506
507	/*
 
 
 
 
 
 
 
 
 
508	 * List of inodes that were unlocked using this key.  This allows the
509	 * inodes to be evicted efficiently if the key is removed.
510	 */
511	struct list_head	mk_decrypted_inodes;
512	spinlock_t		mk_decrypted_inodes_lock;
513
514	/*
515	 * Per-mode encryption keys for the various types of encryption policies
516	 * that use them.  Allocated and derived on-demand.
517	 */
518	struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
519	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
520	struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
521
522	/* Hash key for inode numbers.  Initialized only when needed. */
523	siphash_key_t		mk_ino_hash_key;
524	bool			mk_ino_hash_key_initialized;
525
526} __randomize_layout;
527
528static inline bool
529is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
530{
531	/*
532	 * The READ_ONCE() is only necessary for fscrypt_drop_inode().
533	 * fscrypt_drop_inode() runs in atomic context, so it can't take the key
534	 * semaphore and thus 'secret' can change concurrently which would be a
535	 * data race.  But fscrypt_drop_inode() only need to know whether the
536	 * secret *was* present at the time of check, so READ_ONCE() suffices.
537	 */
538	return READ_ONCE(secret->size) != 0;
539}
540
541static inline const char *master_key_spec_type(
542				const struct fscrypt_key_specifier *spec)
543{
544	switch (spec->type) {
545	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
546		return "descriptor";
547	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
548		return "identifier";
549	}
550	return "[unknown]";
551}
552
553static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
554{
555	switch (spec->type) {
556	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
557		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
558	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
559		return FSCRYPT_KEY_IDENTIFIER_SIZE;
560	}
561	return 0;
562}
563
564void fscrypt_put_master_key(struct fscrypt_master_key *mk);
565
566void fscrypt_put_master_key_activeref(struct super_block *sb,
567				      struct fscrypt_master_key *mk);
568
569struct fscrypt_master_key *
570fscrypt_find_master_key(struct super_block *sb,
571			const struct fscrypt_key_specifier *mk_spec);
572
573int fscrypt_get_test_dummy_key_identifier(
574			  u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
575
576int fscrypt_verify_key_added(struct super_block *sb,
577			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
578
579int __init fscrypt_init_keyring(void);
580
581/* keysetup.c */
582
583struct fscrypt_mode {
584	const char *friendly_name;
585	const char *cipher_str;
586	int keysize;		/* key size in bytes */
587	int security_strength;	/* security strength in bytes */
588	int ivsize;		/* IV size in bytes */
589	int logged_cryptoapi_impl;
590	int logged_blk_crypto_native;
591	int logged_blk_crypto_fallback;
592	enum blk_crypto_mode_num blk_crypto_mode;
593};
594
595extern struct fscrypt_mode fscrypt_modes[];
596
597int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
598			const u8 *raw_key, const struct fscrypt_info *ci);
599
600void fscrypt_destroy_prepared_key(struct super_block *sb,
601				  struct fscrypt_prepared_key *prep_key);
602
603int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
604
605int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
606			       const struct fscrypt_master_key *mk);
 
607
608void fscrypt_hash_inode_number(struct fscrypt_info *ci,
609			       const struct fscrypt_master_key *mk);
610
611int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
612
613/**
614 * fscrypt_require_key() - require an inode's encryption key
615 * @inode: the inode we need the key for
616 *
617 * If the inode is encrypted, set up its encryption key if not already done.
618 * Then require that the key be present and return -ENOKEY otherwise.
619 *
620 * No locks are needed, and the key will live as long as the struct inode --- so
621 * it won't go away from under you.
622 *
623 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
624 * if a problem occurred while setting up the encryption key.
625 */
626static inline int fscrypt_require_key(struct inode *inode)
627{
628	if (IS_ENCRYPTED(inode)) {
629		int err = fscrypt_get_encryption_info(inode, false);
630
631		if (err)
632			return err;
633		if (!fscrypt_has_encryption_key(inode))
634			return -ENOKEY;
635	}
636	return 0;
637}
638
639/* keysetup_v1.c */
640
641void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
642
643int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
644			      const u8 *raw_master_key);
645
646int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
 
647
 
 
648/* policy.c */
649
650bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
651			    const union fscrypt_policy *policy2);
652int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
653			       struct fscrypt_key_specifier *key_spec);
654bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
655			      const struct inode *inode);
656int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
657				const union fscrypt_context *ctx_u,
658				int ctx_size);
659const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
660
661#endif /* _FSCRYPT_PRIVATE_H */