Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 
 15#include <crypto/hash.h>
 
 16
 17#define CONST_STRLEN(str)	(sizeof(str) - 1)
 18
 19#define FS_KEY_DERIVATION_NONCE_SIZE	16
 20
 21#define FSCRYPT_MIN_KEY_SIZE		16
 22
 23#define FSCRYPT_CONTEXT_V1	1
 24#define FSCRYPT_CONTEXT_V2	2
 25
 26struct fscrypt_context_v1 {
 27	u8 version; /* FSCRYPT_CONTEXT_V1 */
 28	u8 contents_encryption_mode;
 29	u8 filenames_encryption_mode;
 30	u8 flags;
 31	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 32	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 33};
 34
 35struct fscrypt_context_v2 {
 36	u8 version; /* FSCRYPT_CONTEXT_V2 */
 37	u8 contents_encryption_mode;
 38	u8 filenames_encryption_mode;
 39	u8 flags;
 40	u8 __reserved[4];
 41	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 42	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 43};
 44
 45/**
 46 * fscrypt_context - the encryption context of an inode
 47 *
 48 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 49 * encrypted file usually in a hidden extended attribute.  It contains the
 50 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 51 * and key with which the file is encrypted.  It also contains a nonce that was
 52 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 53 * to cause different files to be encrypted differently.
 54 */
 55union fscrypt_context {
 56	u8 version;
 57	struct fscrypt_context_v1 v1;
 58	struct fscrypt_context_v2 v2;
 59};
 60
 61/*
 62 * Return the size expected for the given fscrypt_context based on its version
 63 * number, or 0 if the context version is unrecognized.
 64 */
 65static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 66{
 67	switch (ctx->version) {
 68	case FSCRYPT_CONTEXT_V1:
 69		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 70		return sizeof(ctx->v1);
 71	case FSCRYPT_CONTEXT_V2:
 72		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 73		return sizeof(ctx->v2);
 74	}
 75	return 0;
 76}
 77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78#undef fscrypt_policy
 79union fscrypt_policy {
 80	u8 version;
 81	struct fscrypt_policy_v1 v1;
 82	struct fscrypt_policy_v2 v2;
 83};
 84
 85/*
 86 * Return the size expected for the given fscrypt_policy based on its version
 87 * number, or 0 if the policy version is unrecognized.
 88 */
 89static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
 90{
 91	switch (policy->version) {
 92	case FSCRYPT_POLICY_V1:
 93		return sizeof(policy->v1);
 94	case FSCRYPT_POLICY_V2:
 95		return sizeof(policy->v2);
 96	}
 97	return 0;
 98}
 99
100/* Return the contents encryption mode of a valid encryption policy */
101static inline u8
102fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
103{
104	switch (policy->version) {
105	case FSCRYPT_POLICY_V1:
106		return policy->v1.contents_encryption_mode;
107	case FSCRYPT_POLICY_V2:
108		return policy->v2.contents_encryption_mode;
109	}
110	BUG();
111}
112
113/* Return the filenames encryption mode of a valid encryption policy */
114static inline u8
115fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
116{
117	switch (policy->version) {
118	case FSCRYPT_POLICY_V1:
119		return policy->v1.filenames_encryption_mode;
120	case FSCRYPT_POLICY_V2:
121		return policy->v2.filenames_encryption_mode;
122	}
123	BUG();
124}
125
126/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
127static inline u8
128fscrypt_policy_flags(const union fscrypt_policy *policy)
129{
130	switch (policy->version) {
131	case FSCRYPT_POLICY_V1:
132		return policy->v1.flags;
133	case FSCRYPT_POLICY_V2:
134		return policy->v2.flags;
135	}
136	BUG();
137}
138
139static inline bool
140fscrypt_is_direct_key_policy(const union fscrypt_policy *policy)
141{
142	return fscrypt_policy_flags(policy) & FSCRYPT_POLICY_FLAG_DIRECT_KEY;
143}
144
145/**
146 * For encrypted symlinks, the ciphertext length is stored at the beginning
147 * of the string in little-endian format.
148 */
149struct fscrypt_symlink_data {
150	__le16 len;
151	char encrypted_path[1];
152} __packed;
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154/*
155 * fscrypt_info - the "encryption key" for an inode
156 *
157 * When an encrypted file's key is made available, an instance of this struct is
158 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
159 * inode is evicted.
160 */
161struct fscrypt_info {
162
163	/* The actual crypto transform used for encryption and decryption */
164	struct crypto_skcipher *ci_ctfm;
165
 
 
 
 
166	/*
167	 * Cipher for ESSIV IV generation.  Only set for CBC contents
168	 * encryption, otherwise is NULL.
169	 */
170	struct crypto_cipher *ci_essiv_tfm;
 
171
172	/*
173	 * Encryption mode used for this inode.  It corresponds to either the
174	 * contents or filenames encryption mode, depending on the inode type.
175	 */
176	struct fscrypt_mode *ci_mode;
177
178	/* Back-pointer to the inode */
179	struct inode *ci_inode;
180
181	/*
182	 * The master key with which this inode was unlocked (decrypted).  This
183	 * will be NULL if the master key was found in a process-subscribed
184	 * keyring rather than in the filesystem-level keyring.
185	 */
186	struct key *ci_master_key;
187
188	/*
189	 * Link in list of inodes that were unlocked with the master key.
190	 * Only used when ->ci_master_key is set.
191	 */
192	struct list_head ci_master_key_link;
193
194	/*
195	 * If non-NULL, then encryption is done using the master key directly
196	 * and ci_ctfm will equal ci_direct_key->dk_ctfm.
197	 */
198	struct fscrypt_direct_key *ci_direct_key;
199
 
 
 
 
 
 
 
 
200	/* The encryption policy used by this inode */
201	union fscrypt_policy ci_policy;
202
203	/* This inode's nonce, copied from the fscrypt_context */
204	u8 ci_nonce[FS_KEY_DERIVATION_NONCE_SIZE];
 
 
 
205};
206
207typedef enum {
208	FS_DECRYPT = 0,
209	FS_ENCRYPT,
210} fscrypt_direction_t;
211
212#define FS_CTX_REQUIRES_FREE_ENCRYPT_FL		0x00000001
213
214static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
215					   u32 filenames_mode)
216{
217	if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
218	    filenames_mode == FSCRYPT_MODE_AES_128_CTS)
219		return true;
220
221	if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
222	    filenames_mode == FSCRYPT_MODE_AES_256_CTS)
223		return true;
224
225	if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
226	    filenames_mode == FSCRYPT_MODE_ADIANTUM)
227		return true;
228
229	return false;
230}
231
232/* crypto.c */
233extern struct kmem_cache *fscrypt_info_cachep;
234extern int fscrypt_initialize(unsigned int cop_flags);
235extern int fscrypt_crypt_block(const struct inode *inode,
236			       fscrypt_direction_t rw, u64 lblk_num,
237			       struct page *src_page, struct page *dest_page,
238			       unsigned int len, unsigned int offs,
239			       gfp_t gfp_flags);
240extern struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
241extern const struct dentry_operations fscrypt_d_ops;
242
243extern void __printf(3, 4) __cold
244fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
245
246#define fscrypt_warn(inode, fmt, ...)		\
247	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
248#define fscrypt_err(inode, fmt, ...)		\
249	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
250
251#define FSCRYPT_MAX_IV_SIZE	32
252
253union fscrypt_iv {
254	struct {
255		/* logical block number within the file */
256		__le64 lblk_num;
257
258		/* per-file nonce; only set in DIRECT_KEY mode */
259		u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
260	};
261	u8 raw[FSCRYPT_MAX_IV_SIZE];
 
262};
263
264void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
265			 const struct fscrypt_info *ci);
266
267/* fname.c */
268extern int fname_encrypt(struct inode *inode, const struct qstr *iname,
269			 u8 *out, unsigned int olen);
270extern bool fscrypt_fname_encrypted_size(const struct inode *inode,
271					 u32 orig_len, u32 max_len,
272					 u32 *encrypted_len_ret);
273
274/* hkdf.c */
275
276struct fscrypt_hkdf {
277	struct crypto_shash *hmac_tfm;
278};
279
280extern int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
281			     unsigned int master_key_size);
282
283/*
284 * The list of contexts in which fscrypt uses HKDF.  These values are used as
285 * the first byte of the HKDF application-specific info string to guarantee that
286 * info strings are never repeated between contexts.  This ensures that all HKDF
287 * outputs are unique and cryptographically isolated, i.e. knowledge of one
288 * output doesn't reveal another.
289 */
290#define HKDF_CONTEXT_KEY_IDENTIFIER	1
291#define HKDF_CONTEXT_PER_FILE_KEY	2
292#define HKDF_CONTEXT_PER_MODE_KEY	3
293
294extern int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context,
295			       const u8 *info, unsigned int infolen,
296			       u8 *okm, unsigned int okmlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
298extern void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
300/* keyring.c */
301
302/*
303 * fscrypt_master_key_secret - secret key material of an in-use master key
304 */
305struct fscrypt_master_key_secret {
306
307	/*
308	 * For v2 policy keys: HKDF context keyed by this master key.
309	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
310	 */
311	struct fscrypt_hkdf	hkdf;
312
313	/* Size of the raw key in bytes.  Set even if ->raw isn't set. */
314	u32			size;
315
316	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
317	u8			raw[FSCRYPT_MAX_KEY_SIZE];
318
319} __randomize_layout;
320
321/*
322 * fscrypt_master_key - an in-use master key
323 *
324 * This represents a master encryption key which has been added to the
325 * filesystem and can be used to "unlock" the encrypted files which were
326 * encrypted with it.
327 */
328struct fscrypt_master_key {
329
330	/*
331	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
332	 * executed, this is wiped and no new inodes can be unlocked with this
333	 * key; however, there may still be inodes in ->mk_decrypted_inodes
334	 * which could not be evicted.  As long as some inodes still remain,
335	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
336	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
337	 *
338	 * Locking: protected by key->sem (outer) and mk_secret_sem (inner).
339	 * The reason for two locks is that key->sem also protects modifying
340	 * mk_users, which ranks it above the semaphore for the keyring key
341	 * type, which is in turn above page faults (via keyring_read).  But
342	 * sometimes filesystems call fscrypt_get_encryption_info() from within
343	 * a transaction, which ranks it below page faults.  So we need a
344	 * separate lock which protects mk_secret but not also mk_users.
345	 */
346	struct fscrypt_master_key_secret	mk_secret;
347	struct rw_semaphore			mk_secret_sem;
348
349	/*
350	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
351	 * userspace (->descriptor).
352	 *
353	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
354	 */
355	struct fscrypt_key_specifier		mk_spec;
356
357	/*
358	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
359	 * user who has added this key.  Normally each key will be added by just
360	 * one user, but it's possible that multiple users share a key, and in
361	 * that case we need to keep track of those users so that one user can't
362	 * remove the key before the others want it removed too.
363	 *
364	 * This is NULL for v1 policy keys; those can only be added by root.
365	 *
366	 * Locking: in addition to this keyrings own semaphore, this is
367	 * protected by the master key's key->sem, so we can do atomic
368	 * search+insert.  It can also be searched without taking any locks, but
369	 * in that case the returned key may have already been removed.
370	 */
371	struct key		*mk_users;
372
373	/*
374	 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
375	 * Once this goes to 0, the master key is removed from ->s_master_keys.
376	 * The 'struct fscrypt_master_key' will continue to live as long as the
377	 * 'struct key' whose payload it is, but we won't let this reference
378	 * count rise again.
379	 */
380	refcount_t		mk_refcount;
381
382	/*
383	 * List of inodes that were unlocked using this key.  This allows the
384	 * inodes to be evicted efficiently if the key is removed.
385	 */
386	struct list_head	mk_decrypted_inodes;
387	spinlock_t		mk_decrypted_inodes_lock;
388
389	/* Per-mode tfms for DIRECT_KEY policies, allocated on-demand */
390	struct crypto_skcipher	*mk_mode_keys[__FSCRYPT_MODE_MAX + 1];
 
 
 
 
 
 
 
 
 
391
392} __randomize_layout;
393
394static inline bool
395is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
396{
397	/*
398	 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and
399	 * fscrypt_key_describe().  These run in atomic context, so they can't
400	 * take ->mk_secret_sem and thus 'secret' can change concurrently which
401	 * would be a data race.  But they only need to know whether the secret
402	 * *was* present at the time of check, so READ_ONCE() suffices.
403	 */
404	return READ_ONCE(secret->size) != 0;
405}
406
407static inline const char *master_key_spec_type(
408				const struct fscrypt_key_specifier *spec)
409{
410	switch (spec->type) {
411	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
412		return "descriptor";
413	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
414		return "identifier";
415	}
416	return "[unknown]";
417}
418
419static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
420{
421	switch (spec->type) {
422	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
423		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
424	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
425		return FSCRYPT_KEY_IDENTIFIER_SIZE;
426	}
427	return 0;
428}
429
430extern struct key *
431fscrypt_find_master_key(struct super_block *sb,
432			const struct fscrypt_key_specifier *mk_spec);
433
434extern int fscrypt_verify_key_added(struct super_block *sb,
435				    const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
 
 
 
436
437extern int __init fscrypt_init_keyring(void);
438
439/* keysetup.c */
440
441struct fscrypt_mode {
442	const char *friendly_name;
443	const char *cipher_str;
444	int keysize;
445	int ivsize;
446	bool logged_impl_name;
447	bool needs_essiv;
448};
449
450static inline bool
451fscrypt_mode_supports_direct_key(const struct fscrypt_mode *mode)
452{
453	return mode->ivsize >= offsetofend(union fscrypt_iv, nonce);
454}
455
456extern struct crypto_skcipher *
457fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
458			  const struct inode *inode);
459
460extern int fscrypt_set_derived_key(struct fscrypt_info *ci,
461				   const u8 *derived_key);
 
 
462
463/* keysetup_v1.c */
464
465extern void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
 
 
 
466
467extern int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
468				     const u8 *raw_master_key);
469
470extern int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
471					struct fscrypt_info *ci);
472/* policy.c */
473
474extern bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
475				   const union fscrypt_policy *policy2);
476extern bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
477				     const struct inode *inode);
478extern int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
479				       const union fscrypt_context *ctx_u,
480				       int ctx_size);
481
482#endif /* _FSCRYPT_PRIVATE_H */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 15#include <linux/siphash.h>
 16#include <crypto/hash.h>
 17#include <linux/blk-crypto.h>
 18
 19#define CONST_STRLEN(str)	(sizeof(str) - 1)
 20
 21#define FSCRYPT_FILE_NONCE_SIZE	16
 22
 23#define FSCRYPT_MIN_KEY_SIZE	16
 24
 25#define FSCRYPT_CONTEXT_V1	1
 26#define FSCRYPT_CONTEXT_V2	2
 27
 28struct fscrypt_context_v1 {
 29	u8 version; /* FSCRYPT_CONTEXT_V1 */
 30	u8 contents_encryption_mode;
 31	u8 filenames_encryption_mode;
 32	u8 flags;
 33	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 34	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 35};
 36
 37struct fscrypt_context_v2 {
 38	u8 version; /* FSCRYPT_CONTEXT_V2 */
 39	u8 contents_encryption_mode;
 40	u8 filenames_encryption_mode;
 41	u8 flags;
 42	u8 __reserved[4];
 43	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 44	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 45};
 46
 47/*
 48 * fscrypt_context - the encryption context of an inode
 49 *
 50 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 51 * encrypted file usually in a hidden extended attribute.  It contains the
 52 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 53 * and key with which the file is encrypted.  It also contains a nonce that was
 54 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 55 * to cause different files to be encrypted differently.
 56 */
 57union fscrypt_context {
 58	u8 version;
 59	struct fscrypt_context_v1 v1;
 60	struct fscrypt_context_v2 v2;
 61};
 62
 63/*
 64 * Return the size expected for the given fscrypt_context based on its version
 65 * number, or 0 if the context version is unrecognized.
 66 */
 67static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 68{
 69	switch (ctx->version) {
 70	case FSCRYPT_CONTEXT_V1:
 71		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 72		return sizeof(ctx->v1);
 73	case FSCRYPT_CONTEXT_V2:
 74		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 75		return sizeof(ctx->v2);
 76	}
 77	return 0;
 78}
 79
 80/* Check whether an fscrypt_context has a recognized version number and size */
 81static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
 82					    int ctx_size)
 83{
 84	return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
 85}
 86
 87/* Retrieve the context's nonce, assuming the context was already validated */
 88static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
 89{
 90	switch (ctx->version) {
 91	case FSCRYPT_CONTEXT_V1:
 92		return ctx->v1.nonce;
 93	case FSCRYPT_CONTEXT_V2:
 94		return ctx->v2.nonce;
 95	}
 96	WARN_ON(1);
 97	return NULL;
 98}
 99
100#undef fscrypt_policy
101union fscrypt_policy {
102	u8 version;
103	struct fscrypt_policy_v1 v1;
104	struct fscrypt_policy_v2 v2;
105};
106
107/*
108 * Return the size expected for the given fscrypt_policy based on its version
109 * number, or 0 if the policy version is unrecognized.
110 */
111static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
112{
113	switch (policy->version) {
114	case FSCRYPT_POLICY_V1:
115		return sizeof(policy->v1);
116	case FSCRYPT_POLICY_V2:
117		return sizeof(policy->v2);
118	}
119	return 0;
120}
121
122/* Return the contents encryption mode of a valid encryption policy */
123static inline u8
124fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
125{
126	switch (policy->version) {
127	case FSCRYPT_POLICY_V1:
128		return policy->v1.contents_encryption_mode;
129	case FSCRYPT_POLICY_V2:
130		return policy->v2.contents_encryption_mode;
131	}
132	BUG();
133}
134
135/* Return the filenames encryption mode of a valid encryption policy */
136static inline u8
137fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
138{
139	switch (policy->version) {
140	case FSCRYPT_POLICY_V1:
141		return policy->v1.filenames_encryption_mode;
142	case FSCRYPT_POLICY_V2:
143		return policy->v2.filenames_encryption_mode;
144	}
145	BUG();
146}
147
148/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
149static inline u8
150fscrypt_policy_flags(const union fscrypt_policy *policy)
151{
152	switch (policy->version) {
153	case FSCRYPT_POLICY_V1:
154		return policy->v1.flags;
155	case FSCRYPT_POLICY_V2:
156		return policy->v2.flags;
157	}
158	BUG();
159}
160
161/*
 
 
 
 
 
 
162 * For encrypted symlinks, the ciphertext length is stored at the beginning
163 * of the string in little-endian format.
164 */
165struct fscrypt_symlink_data {
166	__le16 len;
167	char encrypted_path[1];
168} __packed;
169
170/**
171 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
172 * @tfm: crypto API transform object
173 * @blk_key: key for blk-crypto
174 *
175 * Normally only one of the fields will be non-NULL.
176 */
177struct fscrypt_prepared_key {
178	struct crypto_skcipher *tfm;
179#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
180	struct fscrypt_blk_crypto_key *blk_key;
181#endif
182};
183
184/*
185 * fscrypt_info - the "encryption key" for an inode
186 *
187 * When an encrypted file's key is made available, an instance of this struct is
188 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
189 * inode is evicted.
190 */
191struct fscrypt_info {
192
193	/* The key in a form prepared for actual encryption/decryption */
194	struct fscrypt_prepared_key ci_enc_key;
195
196	/* True if ci_enc_key should be freed when this fscrypt_info is freed */
197	bool ci_owns_key;
198
199#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
200	/*
201	 * True if this inode will use inline encryption (blk-crypto) instead of
202	 * the traditional filesystem-layer encryption.
203	 */
204	bool ci_inlinecrypt;
205#endif
206
207	/*
208	 * Encryption mode used for this inode.  It corresponds to either the
209	 * contents or filenames encryption mode, depending on the inode type.
210	 */
211	struct fscrypt_mode *ci_mode;
212
213	/* Back-pointer to the inode */
214	struct inode *ci_inode;
215
216	/*
217	 * The master key with which this inode was unlocked (decrypted).  This
218	 * will be NULL if the master key was found in a process-subscribed
219	 * keyring rather than in the filesystem-level keyring.
220	 */
221	struct key *ci_master_key;
222
223	/*
224	 * Link in list of inodes that were unlocked with the master key.
225	 * Only used when ->ci_master_key is set.
226	 */
227	struct list_head ci_master_key_link;
228
229	/*
230	 * If non-NULL, then encryption is done using the master key directly
231	 * and ci_enc_key will equal ci_direct_key->dk_key.
232	 */
233	struct fscrypt_direct_key *ci_direct_key;
234
235	/*
236	 * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4
237	 * key.  This is only set for directories that use a keyed dirhash over
238	 * the plaintext filenames -- currently just casefolded directories.
239	 */
240	siphash_key_t ci_dirhash_key;
241	bool ci_dirhash_key_initialized;
242
243	/* The encryption policy used by this inode */
244	union fscrypt_policy ci_policy;
245
246	/* This inode's nonce, copied from the fscrypt_context */
247	u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
248
249	/* Hashed inode number.  Only set for IV_INO_LBLK_32 */
250	u32 ci_hashed_ino;
251};
252
253typedef enum {
254	FS_DECRYPT = 0,
255	FS_ENCRYPT,
256} fscrypt_direction_t;
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258/* crypto.c */
259extern struct kmem_cache *fscrypt_info_cachep;
260int fscrypt_initialize(unsigned int cop_flags);
261int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
262			u64 lblk_num, struct page *src_page,
263			struct page *dest_page, unsigned int len,
264			unsigned int offs, gfp_t gfp_flags);
265struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
 
 
266
267void __printf(3, 4) __cold
268fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
269
270#define fscrypt_warn(inode, fmt, ...)		\
271	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
272#define fscrypt_err(inode, fmt, ...)		\
273	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
274
275#define FSCRYPT_MAX_IV_SIZE	32
276
277union fscrypt_iv {
278	struct {
279		/* logical block number within the file */
280		__le64 lblk_num;
281
282		/* per-file nonce; only set in DIRECT_KEY mode */
283		u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
284	};
285	u8 raw[FSCRYPT_MAX_IV_SIZE];
286	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
287};
288
289void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
290			 const struct fscrypt_info *ci);
291
292/* fname.c */
293int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
294			  u8 *out, unsigned int olen);
295bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
296				  u32 max_len, u32 *encrypted_len_ret);
297extern const struct dentry_operations fscrypt_d_ops;
298
299/* hkdf.c */
300
301struct fscrypt_hkdf {
302	struct crypto_shash *hmac_tfm;
303};
304
305int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
306		      unsigned int master_key_size);
307
308/*
309 * The list of contexts in which fscrypt uses HKDF.  These values are used as
310 * the first byte of the HKDF application-specific info string to guarantee that
311 * info strings are never repeated between contexts.  This ensures that all HKDF
312 * outputs are unique and cryptographically isolated, i.e. knowledge of one
313 * output doesn't reveal another.
314 */
315#define HKDF_CONTEXT_KEY_IDENTIFIER	1 /* info=<empty>		*/
316#define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/
317#define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/
318#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/
319#define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/
320#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/
321#define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/
322
323int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
324			const u8 *info, unsigned int infolen,
325			u8 *okm, unsigned int okmlen);
326
327void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
328
329/* inline_crypt.c */
330#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
331int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
332
333static inline bool
334fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
335{
336	return ci->ci_inlinecrypt;
337}
338
339int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
340				     const u8 *raw_key,
341				     const struct fscrypt_info *ci);
342
343void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key);
344
345/*
346 * Check whether the crypto transform or blk-crypto key has been allocated in
347 * @prep_key, depending on which encryption implementation the file will use.
348 */
349static inline bool
350fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
351			const struct fscrypt_info *ci)
352{
353	/*
354	 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
355	 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
356	 * I.e., in some cases (namely, if this prep_key is a per-mode
357	 * encryption key) another task can publish blk_key or tfm concurrently,
358	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
359	 * to safely ACQUIRE the memory the other task published.
360	 */
361	if (fscrypt_using_inline_encryption(ci))
362		return smp_load_acquire(&prep_key->blk_key) != NULL;
363	return smp_load_acquire(&prep_key->tfm) != NULL;
364}
365
366#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
367
368static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
369{
370	return 0;
371}
372
373static inline bool
374fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
375{
376	return false;
377}
378
379static inline int
380fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
381				 const u8 *raw_key,
382				 const struct fscrypt_info *ci)
383{
384	WARN_ON(1);
385	return -EOPNOTSUPP;
386}
387
388static inline void
389fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
390{
391}
392
393static inline bool
394fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
395			const struct fscrypt_info *ci)
396{
397	return smp_load_acquire(&prep_key->tfm) != NULL;
398}
399#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
400
401/* keyring.c */
402
403/*
404 * fscrypt_master_key_secret - secret key material of an in-use master key
405 */
406struct fscrypt_master_key_secret {
407
408	/*
409	 * For v2 policy keys: HKDF context keyed by this master key.
410	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
411	 */
412	struct fscrypt_hkdf	hkdf;
413
414	/* Size of the raw key in bytes.  Set even if ->raw isn't set. */
415	u32			size;
416
417	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
418	u8			raw[FSCRYPT_MAX_KEY_SIZE];
419
420} __randomize_layout;
421
422/*
423 * fscrypt_master_key - an in-use master key
424 *
425 * This represents a master encryption key which has been added to the
426 * filesystem and can be used to "unlock" the encrypted files which were
427 * encrypted with it.
428 */
429struct fscrypt_master_key {
430
431	/*
432	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
433	 * executed, this is wiped and no new inodes can be unlocked with this
434	 * key; however, there may still be inodes in ->mk_decrypted_inodes
435	 * which could not be evicted.  As long as some inodes still remain,
436	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
437	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
438	 *
439	 * Locking: protected by key->sem (outer) and mk_secret_sem (inner).
440	 * The reason for two locks is that key->sem also protects modifying
441	 * mk_users, which ranks it above the semaphore for the keyring key
442	 * type, which is in turn above page faults (via keyring_read).  But
443	 * sometimes filesystems call fscrypt_get_encryption_info() from within
444	 * a transaction, which ranks it below page faults.  So we need a
445	 * separate lock which protects mk_secret but not also mk_users.
446	 */
447	struct fscrypt_master_key_secret	mk_secret;
448	struct rw_semaphore			mk_secret_sem;
449
450	/*
451	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
452	 * userspace (->descriptor).
453	 *
454	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
455	 */
456	struct fscrypt_key_specifier		mk_spec;
457
458	/*
459	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
460	 * user who has added this key.  Normally each key will be added by just
461	 * one user, but it's possible that multiple users share a key, and in
462	 * that case we need to keep track of those users so that one user can't
463	 * remove the key before the others want it removed too.
464	 *
465	 * This is NULL for v1 policy keys; those can only be added by root.
466	 *
467	 * Locking: in addition to this keyrings own semaphore, this is
468	 * protected by the master key's key->sem, so we can do atomic
469	 * search+insert.  It can also be searched without taking any locks, but
470	 * in that case the returned key may have already been removed.
471	 */
472	struct key		*mk_users;
473
474	/*
475	 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
476	 * Once this goes to 0, the master key is removed from ->s_master_keys.
477	 * The 'struct fscrypt_master_key' will continue to live as long as the
478	 * 'struct key' whose payload it is, but we won't let this reference
479	 * count rise again.
480	 */
481	refcount_t		mk_refcount;
482
483	/*
484	 * List of inodes that were unlocked using this key.  This allows the
485	 * inodes to be evicted efficiently if the key is removed.
486	 */
487	struct list_head	mk_decrypted_inodes;
488	spinlock_t		mk_decrypted_inodes_lock;
489
490	/*
491	 * Per-mode encryption keys for the various types of encryption policies
492	 * that use them.  Allocated and derived on-demand.
493	 */
494	struct fscrypt_prepared_key mk_direct_keys[__FSCRYPT_MODE_MAX + 1];
495	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[__FSCRYPT_MODE_MAX + 1];
496	struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[__FSCRYPT_MODE_MAX + 1];
497
498	/* Hash key for inode numbers.  Initialized only when needed. */
499	siphash_key_t		mk_ino_hash_key;
500	bool			mk_ino_hash_key_initialized;
501
502} __randomize_layout;
503
504static inline bool
505is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
506{
507	/*
508	 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and
509	 * fscrypt_key_describe().  These run in atomic context, so they can't
510	 * take ->mk_secret_sem and thus 'secret' can change concurrently which
511	 * would be a data race.  But they only need to know whether the secret
512	 * *was* present at the time of check, so READ_ONCE() suffices.
513	 */
514	return READ_ONCE(secret->size) != 0;
515}
516
517static inline const char *master_key_spec_type(
518				const struct fscrypt_key_specifier *spec)
519{
520	switch (spec->type) {
521	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
522		return "descriptor";
523	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
524		return "identifier";
525	}
526	return "[unknown]";
527}
528
529static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
530{
531	switch (spec->type) {
532	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
533		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
534	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
535		return FSCRYPT_KEY_IDENTIFIER_SIZE;
536	}
537	return 0;
538}
539
540struct key *
541fscrypt_find_master_key(struct super_block *sb,
542			const struct fscrypt_key_specifier *mk_spec);
543
544int fscrypt_add_test_dummy_key(struct super_block *sb,
545			       struct fscrypt_key_specifier *key_spec);
546
547int fscrypt_verify_key_added(struct super_block *sb,
548			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
549
550int __init fscrypt_init_keyring(void);
551
552/* keysetup.c */
553
554struct fscrypt_mode {
555	const char *friendly_name;
556	const char *cipher_str;
557	int keysize;
558	int ivsize;
559	int logged_impl_name;
560	enum blk_crypto_mode_num blk_crypto_mode;
561};
562
563extern struct fscrypt_mode fscrypt_modes[];
564
565int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
566			const u8 *raw_key, const struct fscrypt_info *ci);
 
567
568void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key);
 
 
569
570int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
571
572int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
573			       const struct fscrypt_master_key *mk);
574
575/* keysetup_v1.c */
576
577void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
578
579int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
580			      const u8 *raw_master_key);
581
582int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
 
583
 
 
584/* policy.c */
585
586bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
587			    const union fscrypt_policy *policy2);
588bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
589			      const struct inode *inode);
590int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
591				const union fscrypt_context *ctx_u,
592				int ctx_size);
593
594#endif /* _FSCRYPT_PRIVATE_H */