Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/mmdebug.h>
23#include <linux/sched/signal.h>
24#include <linux/rmap.h>
25#include <linux/string_helpers.h>
26#include <linux/swap.h>
27#include <linux/swapops.h>
28#include <linux/jhash.h>
29#include <linux/numa.h>
30
31#include <asm/page.h>
32#include <asm/pgtable.h>
33#include <asm/tlb.h>
34
35#include <linux/io.h>
36#include <linux/hugetlb.h>
37#include <linux/hugetlb_cgroup.h>
38#include <linux/node.h>
39#include <linux/userfaultfd_k.h>
40#include <linux/page_owner.h>
41#include "internal.h"
42
43int hugetlb_max_hstate __read_mostly;
44unsigned int default_hstate_idx;
45struct hstate hstates[HUGE_MAX_HSTATE];
46/*
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
49 */
50static unsigned int minimum_order __read_mostly = UINT_MAX;
51
52__initdata LIST_HEAD(huge_boot_pages);
53
54/* for command line parsing */
55static struct hstate * __initdata parsed_hstate;
56static unsigned long __initdata default_hstate_max_huge_pages;
57static unsigned long __initdata default_hstate_size;
58static bool __initdata parsed_valid_hugepagesz = true;
59
60/*
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
63 */
64DEFINE_SPINLOCK(hugetlb_lock);
65
66/*
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 */
70static int num_fault_mutexes;
71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72
73/* Forward declaration */
74static int hugetlb_acct_memory(struct hstate *h, long delta);
75
76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77{
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80 spin_unlock(&spool->lock);
81
82 /* If no pages are used, and no other handles to the subpool
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
89 kfree(spool);
90 }
91}
92
93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
95{
96 struct hugepage_subpool *spool;
97
98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 if (!spool)
100 return NULL;
101
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
107
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
111 }
112 spool->rsv_hpages = min_hpages;
113
114 return spool;
115}
116
117void hugepage_put_subpool(struct hugepage_subpool *spool)
118{
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
123}
124
125/*
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
132 */
133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 long delta)
135{
136 long ret = delta;
137
138 if (!spool)
139 return ret;
140
141 spin_lock(&spool->lock);
142
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
149 }
150 }
151
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 if (delta > spool->rsv_hpages) {
155 /*
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
158 */
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
164 }
165 }
166
167unlock_ret:
168 spin_unlock(&spool->lock);
169 return ret;
170}
171
172/*
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
177 */
178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 long delta)
180{
181 long ret = delta;
182
183 if (!spool)
184 return delta;
185
186 spin_lock(&spool->lock);
187
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
190
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
201 }
202
203 /*
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
206 */
207 unlock_or_release_subpool(spool);
208
209 return ret;
210}
211
212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213{
214 return HUGETLBFS_SB(inode->i_sb)->spool;
215}
216
217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218{
219 return subpool_inode(file_inode(vma->vm_file));
220}
221
222/*
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
225 *
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
232 *
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 *
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
240 */
241struct file_region {
242 struct list_head link;
243 long from;
244 long to;
245};
246
247/*
248 * Add the huge page range represented by [f, t) to the reserve
249 * map. In the normal case, existing regions will be expanded
250 * to accommodate the specified range. Sufficient regions should
251 * exist for expansion due to the previous call to region_chg
252 * with the same range. However, it is possible that region_del
253 * could have been called after region_chg and modifed the map
254 * in such a way that no region exists to be expanded. In this
255 * case, pull a region descriptor from the cache associated with
256 * the map and use that for the new range.
257 *
258 * Return the number of new huge pages added to the map. This
259 * number is greater than or equal to zero.
260 */
261static long region_add(struct resv_map *resv, long f, long t)
262{
263 struct list_head *head = &resv->regions;
264 struct file_region *rg, *nrg, *trg;
265 long add = 0;
266
267 spin_lock(&resv->lock);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (f <= rg->to)
271 break;
272
273 /*
274 * If no region exists which can be expanded to include the
275 * specified range, the list must have been modified by an
276 * interleving call to region_del(). Pull a region descriptor
277 * from the cache and use it for this range.
278 */
279 if (&rg->link == head || t < rg->from) {
280 VM_BUG_ON(resv->region_cache_count <= 0);
281
282 resv->region_cache_count--;
283 nrg = list_first_entry(&resv->region_cache, struct file_region,
284 link);
285 list_del(&nrg->link);
286
287 nrg->from = f;
288 nrg->to = t;
289 list_add(&nrg->link, rg->link.prev);
290
291 add += t - f;
292 goto out_locked;
293 }
294
295 /* Round our left edge to the current segment if it encloses us. */
296 if (f > rg->from)
297 f = rg->from;
298
299 /* Check for and consume any regions we now overlap with. */
300 nrg = rg;
301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 if (&rg->link == head)
303 break;
304 if (rg->from > t)
305 break;
306
307 /* If this area reaches higher then extend our area to
308 * include it completely. If this is not the first area
309 * which we intend to reuse, free it. */
310 if (rg->to > t)
311 t = rg->to;
312 if (rg != nrg) {
313 /* Decrement return value by the deleted range.
314 * Another range will span this area so that by
315 * end of routine add will be >= zero
316 */
317 add -= (rg->to - rg->from);
318 list_del(&rg->link);
319 kfree(rg);
320 }
321 }
322
323 add += (nrg->from - f); /* Added to beginning of region */
324 nrg->from = f;
325 add += t - nrg->to; /* Added to end of region */
326 nrg->to = t;
327
328out_locked:
329 resv->adds_in_progress--;
330 spin_unlock(&resv->lock);
331 VM_BUG_ON(add < 0);
332 return add;
333}
334
335/*
336 * Examine the existing reserve map and determine how many
337 * huge pages in the specified range [f, t) are NOT currently
338 * represented. This routine is called before a subsequent
339 * call to region_add that will actually modify the reserve
340 * map to add the specified range [f, t). region_chg does
341 * not change the number of huge pages represented by the
342 * map. However, if the existing regions in the map can not
343 * be expanded to represent the new range, a new file_region
344 * structure is added to the map as a placeholder. This is
345 * so that the subsequent region_add call will have all the
346 * regions it needs and will not fail.
347 *
348 * Upon entry, region_chg will also examine the cache of region descriptors
349 * associated with the map. If there are not enough descriptors cached, one
350 * will be allocated for the in progress add operation.
351 *
352 * Returns the number of huge pages that need to be added to the existing
353 * reservation map for the range [f, t). This number is greater or equal to
354 * zero. -ENOMEM is returned if a new file_region structure or cache entry
355 * is needed and can not be allocated.
356 */
357static long region_chg(struct resv_map *resv, long f, long t)
358{
359 struct list_head *head = &resv->regions;
360 struct file_region *rg, *nrg = NULL;
361 long chg = 0;
362
363retry:
364 spin_lock(&resv->lock);
365retry_locked:
366 resv->adds_in_progress++;
367
368 /*
369 * Check for sufficient descriptors in the cache to accommodate
370 * the number of in progress add operations.
371 */
372 if (resv->adds_in_progress > resv->region_cache_count) {
373 struct file_region *trg;
374
375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 /* Must drop lock to allocate a new descriptor. */
377 resv->adds_in_progress--;
378 spin_unlock(&resv->lock);
379
380 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
381 if (!trg) {
382 kfree(nrg);
383 return -ENOMEM;
384 }
385
386 spin_lock(&resv->lock);
387 list_add(&trg->link, &resv->region_cache);
388 resv->region_cache_count++;
389 goto retry_locked;
390 }
391
392 /* Locate the region we are before or in. */
393 list_for_each_entry(rg, head, link)
394 if (f <= rg->to)
395 break;
396
397 /* If we are below the current region then a new region is required.
398 * Subtle, allocate a new region at the position but make it zero
399 * size such that we can guarantee to record the reservation. */
400 if (&rg->link == head || t < rg->from) {
401 if (!nrg) {
402 resv->adds_in_progress--;
403 spin_unlock(&resv->lock);
404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 if (!nrg)
406 return -ENOMEM;
407
408 nrg->from = f;
409 nrg->to = f;
410 INIT_LIST_HEAD(&nrg->link);
411 goto retry;
412 }
413
414 list_add(&nrg->link, rg->link.prev);
415 chg = t - f;
416 goto out_nrg;
417 }
418
419 /* Round our left edge to the current segment if it encloses us. */
420 if (f > rg->from)
421 f = rg->from;
422 chg = t - f;
423
424 /* Check for and consume any regions we now overlap with. */
425 list_for_each_entry(rg, rg->link.prev, link) {
426 if (&rg->link == head)
427 break;
428 if (rg->from > t)
429 goto out;
430
431 /* We overlap with this area, if it extends further than
432 * us then we must extend ourselves. Account for its
433 * existing reservation. */
434 if (rg->to > t) {
435 chg += rg->to - t;
436 t = rg->to;
437 }
438 chg -= rg->to - rg->from;
439 }
440
441out:
442 spin_unlock(&resv->lock);
443 /* We already know we raced and no longer need the new region */
444 kfree(nrg);
445 return chg;
446out_nrg:
447 spin_unlock(&resv->lock);
448 return chg;
449}
450
451/*
452 * Abort the in progress add operation. The adds_in_progress field
453 * of the resv_map keeps track of the operations in progress between
454 * calls to region_chg and region_add. Operations are sometimes
455 * aborted after the call to region_chg. In such cases, region_abort
456 * is called to decrement the adds_in_progress counter.
457 *
458 * NOTE: The range arguments [f, t) are not needed or used in this
459 * routine. They are kept to make reading the calling code easier as
460 * arguments will match the associated region_chg call.
461 */
462static void region_abort(struct resv_map *resv, long f, long t)
463{
464 spin_lock(&resv->lock);
465 VM_BUG_ON(!resv->region_cache_count);
466 resv->adds_in_progress--;
467 spin_unlock(&resv->lock);
468}
469
470/*
471 * Delete the specified range [f, t) from the reserve map. If the
472 * t parameter is LONG_MAX, this indicates that ALL regions after f
473 * should be deleted. Locate the regions which intersect [f, t)
474 * and either trim, delete or split the existing regions.
475 *
476 * Returns the number of huge pages deleted from the reserve map.
477 * In the normal case, the return value is zero or more. In the
478 * case where a region must be split, a new region descriptor must
479 * be allocated. If the allocation fails, -ENOMEM will be returned.
480 * NOTE: If the parameter t == LONG_MAX, then we will never split
481 * a region and possibly return -ENOMEM. Callers specifying
482 * t == LONG_MAX do not need to check for -ENOMEM error.
483 */
484static long region_del(struct resv_map *resv, long f, long t)
485{
486 struct list_head *head = &resv->regions;
487 struct file_region *rg, *trg;
488 struct file_region *nrg = NULL;
489 long del = 0;
490
491retry:
492 spin_lock(&resv->lock);
493 list_for_each_entry_safe(rg, trg, head, link) {
494 /*
495 * Skip regions before the range to be deleted. file_region
496 * ranges are normally of the form [from, to). However, there
497 * may be a "placeholder" entry in the map which is of the form
498 * (from, to) with from == to. Check for placeholder entries
499 * at the beginning of the range to be deleted.
500 */
501 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
502 continue;
503
504 if (rg->from >= t)
505 break;
506
507 if (f > rg->from && t < rg->to) { /* Must split region */
508 /*
509 * Check for an entry in the cache before dropping
510 * lock and attempting allocation.
511 */
512 if (!nrg &&
513 resv->region_cache_count > resv->adds_in_progress) {
514 nrg = list_first_entry(&resv->region_cache,
515 struct file_region,
516 link);
517 list_del(&nrg->link);
518 resv->region_cache_count--;
519 }
520
521 if (!nrg) {
522 spin_unlock(&resv->lock);
523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 if (!nrg)
525 return -ENOMEM;
526 goto retry;
527 }
528
529 del += t - f;
530
531 /* New entry for end of split region */
532 nrg->from = t;
533 nrg->to = rg->to;
534 INIT_LIST_HEAD(&nrg->link);
535
536 /* Original entry is trimmed */
537 rg->to = f;
538
539 list_add(&nrg->link, &rg->link);
540 nrg = NULL;
541 break;
542 }
543
544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 del += rg->to - rg->from;
546 list_del(&rg->link);
547 kfree(rg);
548 continue;
549 }
550
551 if (f <= rg->from) { /* Trim beginning of region */
552 del += t - rg->from;
553 rg->from = t;
554 } else { /* Trim end of region */
555 del += rg->to - f;
556 rg->to = f;
557 }
558 }
559
560 spin_unlock(&resv->lock);
561 kfree(nrg);
562 return del;
563}
564
565/*
566 * A rare out of memory error was encountered which prevented removal of
567 * the reserve map region for a page. The huge page itself was free'ed
568 * and removed from the page cache. This routine will adjust the subpool
569 * usage count, and the global reserve count if needed. By incrementing
570 * these counts, the reserve map entry which could not be deleted will
571 * appear as a "reserved" entry instead of simply dangling with incorrect
572 * counts.
573 */
574void hugetlb_fix_reserve_counts(struct inode *inode)
575{
576 struct hugepage_subpool *spool = subpool_inode(inode);
577 long rsv_adjust;
578
579 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
580 if (rsv_adjust) {
581 struct hstate *h = hstate_inode(inode);
582
583 hugetlb_acct_memory(h, 1);
584 }
585}
586
587/*
588 * Count and return the number of huge pages in the reserve map
589 * that intersect with the range [f, t).
590 */
591static long region_count(struct resv_map *resv, long f, long t)
592{
593 struct list_head *head = &resv->regions;
594 struct file_region *rg;
595 long chg = 0;
596
597 spin_lock(&resv->lock);
598 /* Locate each segment we overlap with, and count that overlap. */
599 list_for_each_entry(rg, head, link) {
600 long seg_from;
601 long seg_to;
602
603 if (rg->to <= f)
604 continue;
605 if (rg->from >= t)
606 break;
607
608 seg_from = max(rg->from, f);
609 seg_to = min(rg->to, t);
610
611 chg += seg_to - seg_from;
612 }
613 spin_unlock(&resv->lock);
614
615 return chg;
616}
617
618/*
619 * Convert the address within this vma to the page offset within
620 * the mapping, in pagecache page units; huge pages here.
621 */
622static pgoff_t vma_hugecache_offset(struct hstate *h,
623 struct vm_area_struct *vma, unsigned long address)
624{
625 return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 (vma->vm_pgoff >> huge_page_order(h));
627}
628
629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 unsigned long address)
631{
632 return vma_hugecache_offset(hstate_vma(vma), vma, address);
633}
634EXPORT_SYMBOL_GPL(linear_hugepage_index);
635
636/*
637 * Return the size of the pages allocated when backing a VMA. In the majority
638 * cases this will be same size as used by the page table entries.
639 */
640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641{
642 if (vma->vm_ops && vma->vm_ops->pagesize)
643 return vma->vm_ops->pagesize(vma);
644 return PAGE_SIZE;
645}
646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647
648/*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
651 * architectures where it differs, an architecture-specific 'strong'
652 * version of this symbol is required.
653 */
654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
655{
656 return vma_kernel_pagesize(vma);
657}
658
659/*
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
663 */
664#define HPAGE_RESV_OWNER (1UL << 0)
665#define HPAGE_RESV_UNMAPPED (1UL << 1)
666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668/*
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
672 *
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
677 *
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
686 */
687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688{
689 return (unsigned long)vma->vm_private_data;
690}
691
692static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
694{
695 vma->vm_private_data = (void *)value;
696}
697
698struct resv_map *resv_map_alloc(void)
699{
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
706 return NULL;
707 }
708
709 kref_init(&resv_map->refs);
710 spin_lock_init(&resv_map->lock);
711 INIT_LIST_HEAD(&resv_map->regions);
712
713 resv_map->adds_in_progress = 0;
714
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
718
719 return resv_map;
720}
721
722void resv_map_release(struct kref *ref)
723{
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
727
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map, 0, LONG_MAX);
730
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
735 }
736
737 VM_BUG_ON(resv_map->adds_in_progress);
738
739 kfree(resv_map);
740}
741
742static inline struct resv_map *inode_resv_map(struct inode *inode)
743{
744 /*
745 * At inode evict time, i_mapping may not point to the original
746 * address space within the inode. This original address space
747 * contains the pointer to the resv_map. So, always use the
748 * address space embedded within the inode.
749 * The VERY common case is inode->mapping == &inode->i_data but,
750 * this may not be true for device special inodes.
751 */
752 return (struct resv_map *)(&inode->i_data)->private_data;
753}
754
755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
756{
757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758 if (vma->vm_flags & VM_MAYSHARE) {
759 struct address_space *mapping = vma->vm_file->f_mapping;
760 struct inode *inode = mapping->host;
761
762 return inode_resv_map(inode);
763
764 } else {
765 return (struct resv_map *)(get_vma_private_data(vma) &
766 ~HPAGE_RESV_MASK);
767 }
768}
769
770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
771{
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775 set_vma_private_data(vma, (get_vma_private_data(vma) &
776 HPAGE_RESV_MASK) | (unsigned long)map);
777}
778
779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780{
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
783
784 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
785}
786
787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788{
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790
791 return (get_vma_private_data(vma) & flag) != 0;
792}
793
794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796{
797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798 if (!(vma->vm_flags & VM_MAYSHARE))
799 vma->vm_private_data = (void *)0;
800}
801
802/* Returns true if the VMA has associated reserve pages */
803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
804{
805 if (vma->vm_flags & VM_NORESERVE) {
806 /*
807 * This address is already reserved by other process(chg == 0),
808 * so, we should decrement reserved count. Without decrementing,
809 * reserve count remains after releasing inode, because this
810 * allocated page will go into page cache and is regarded as
811 * coming from reserved pool in releasing step. Currently, we
812 * don't have any other solution to deal with this situation
813 * properly, so add work-around here.
814 */
815 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 return true;
817 else
818 return false;
819 }
820
821 /* Shared mappings always use reserves */
822 if (vma->vm_flags & VM_MAYSHARE) {
823 /*
824 * We know VM_NORESERVE is not set. Therefore, there SHOULD
825 * be a region map for all pages. The only situation where
826 * there is no region map is if a hole was punched via
827 * fallocate. In this case, there really are no reverves to
828 * use. This situation is indicated if chg != 0.
829 */
830 if (chg)
831 return false;
832 else
833 return true;
834 }
835
836 /*
837 * Only the process that called mmap() has reserves for
838 * private mappings.
839 */
840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 /*
842 * Like the shared case above, a hole punch or truncate
843 * could have been performed on the private mapping.
844 * Examine the value of chg to determine if reserves
845 * actually exist or were previously consumed.
846 * Very Subtle - The value of chg comes from a previous
847 * call to vma_needs_reserves(). The reserve map for
848 * private mappings has different (opposite) semantics
849 * than that of shared mappings. vma_needs_reserves()
850 * has already taken this difference in semantics into
851 * account. Therefore, the meaning of chg is the same
852 * as in the shared case above. Code could easily be
853 * combined, but keeping it separate draws attention to
854 * subtle differences.
855 */
856 if (chg)
857 return false;
858 else
859 return true;
860 }
861
862 return false;
863}
864
865static void enqueue_huge_page(struct hstate *h, struct page *page)
866{
867 int nid = page_to_nid(page);
868 list_move(&page->lru, &h->hugepage_freelists[nid]);
869 h->free_huge_pages++;
870 h->free_huge_pages_node[nid]++;
871}
872
873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
874{
875 struct page *page;
876
877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
878 if (!PageHWPoison(page))
879 break;
880 /*
881 * if 'non-isolated free hugepage' not found on the list,
882 * the allocation fails.
883 */
884 if (&h->hugepage_freelists[nid] == &page->lru)
885 return NULL;
886 list_move(&page->lru, &h->hugepage_activelist);
887 set_page_refcounted(page);
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 return page;
891}
892
893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 nodemask_t *nmask)
895{
896 unsigned int cpuset_mems_cookie;
897 struct zonelist *zonelist;
898 struct zone *zone;
899 struct zoneref *z;
900 int node = NUMA_NO_NODE;
901
902 zonelist = node_zonelist(nid, gfp_mask);
903
904retry_cpuset:
905 cpuset_mems_cookie = read_mems_allowed_begin();
906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 struct page *page;
908
909 if (!cpuset_zone_allowed(zone, gfp_mask))
910 continue;
911 /*
912 * no need to ask again on the same node. Pool is node rather than
913 * zone aware
914 */
915 if (zone_to_nid(zone) == node)
916 continue;
917 node = zone_to_nid(zone);
918
919 page = dequeue_huge_page_node_exact(h, node);
920 if (page)
921 return page;
922 }
923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 goto retry_cpuset;
925
926 return NULL;
927}
928
929/* Movability of hugepages depends on migration support. */
930static inline gfp_t htlb_alloc_mask(struct hstate *h)
931{
932 if (hugepage_movable_supported(h))
933 return GFP_HIGHUSER_MOVABLE;
934 else
935 return GFP_HIGHUSER;
936}
937
938static struct page *dequeue_huge_page_vma(struct hstate *h,
939 struct vm_area_struct *vma,
940 unsigned long address, int avoid_reserve,
941 long chg)
942{
943 struct page *page;
944 struct mempolicy *mpol;
945 gfp_t gfp_mask;
946 nodemask_t *nodemask;
947 int nid;
948
949 /*
950 * A child process with MAP_PRIVATE mappings created by their parent
951 * have no page reserves. This check ensures that reservations are
952 * not "stolen". The child may still get SIGKILLed
953 */
954 if (!vma_has_reserves(vma, chg) &&
955 h->free_huge_pages - h->resv_huge_pages == 0)
956 goto err;
957
958 /* If reserves cannot be used, ensure enough pages are in the pool */
959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
960 goto err;
961
962 gfp_mask = htlb_alloc_mask(h);
963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 SetPagePrivate(page);
967 h->resv_huge_pages--;
968 }
969
970 mpol_cond_put(mpol);
971 return page;
972
973err:
974 return NULL;
975}
976
977/*
978 * common helper functions for hstate_next_node_to_{alloc|free}.
979 * We may have allocated or freed a huge page based on a different
980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981 * be outside of *nodes_allowed. Ensure that we use an allowed
982 * node for alloc or free.
983 */
984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985{
986 nid = next_node_in(nid, *nodes_allowed);
987 VM_BUG_ON(nid >= MAX_NUMNODES);
988
989 return nid;
990}
991
992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993{
994 if (!node_isset(nid, *nodes_allowed))
995 nid = next_node_allowed(nid, nodes_allowed);
996 return nid;
997}
998
999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006 nodemask_t *nodes_allowed)
1007{
1008 int nid;
1009
1010 VM_BUG_ON(!nodes_allowed);
1011
1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015 return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page. Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026 int nid;
1027
1028 VM_BUG_ON(!nodes_allowed);
1029
1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033 return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1037 for (nr_nodes = nodes_weight(*mask); \
1038 nr_nodes > 0 && \
1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1040 nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1043 for (nr_nodes = nodes_weight(*mask); \
1044 nr_nodes > 0 && \
1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1046 nr_nodes--)
1047
1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049static void destroy_compound_gigantic_page(struct page *page,
1050 unsigned int order)
1051{
1052 int i;
1053 int nr_pages = 1 << order;
1054 struct page *p = page + 1;
1055
1056 atomic_set(compound_mapcount_ptr(page), 0);
1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058 clear_compound_head(p);
1059 set_page_refcounted(p);
1060 }
1061
1062 set_compound_order(page, 0);
1063 __ClearPageHead(page);
1064}
1065
1066static void free_gigantic_page(struct page *page, unsigned int order)
1067{
1068 free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
1071#ifdef CONFIG_CONTIG_ALLOC
1072static int __alloc_gigantic_page(unsigned long start_pfn,
1073 unsigned long nr_pages, gfp_t gfp_mask)
1074{
1075 unsigned long end_pfn = start_pfn + nr_pages;
1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077 gfp_mask);
1078}
1079
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081 unsigned long start_pfn, unsigned long nr_pages)
1082{
1083 unsigned long i, end_pfn = start_pfn + nr_pages;
1084 struct page *page;
1085
1086 for (i = start_pfn; i < end_pfn; i++) {
1087 page = pfn_to_online_page(i);
1088 if (!page)
1089 return false;
1090
1091 if (page_zone(page) != z)
1092 return false;
1093
1094 if (PageReserved(page))
1095 return false;
1096
1097 if (page_count(page) > 0)
1098 return false;
1099
1100 if (PageHuge(page))
1101 return false;
1102 }
1103
1104 return true;
1105}
1106
1107static bool zone_spans_last_pfn(const struct zone *zone,
1108 unsigned long start_pfn, unsigned long nr_pages)
1109{
1110 unsigned long last_pfn = start_pfn + nr_pages - 1;
1111 return zone_spans_pfn(zone, last_pfn);
1112}
1113
1114static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115 int nid, nodemask_t *nodemask)
1116{
1117 unsigned int order = huge_page_order(h);
1118 unsigned long nr_pages = 1 << order;
1119 unsigned long ret, pfn, flags;
1120 struct zonelist *zonelist;
1121 struct zone *zone;
1122 struct zoneref *z;
1123
1124 zonelist = node_zonelist(nid, gfp_mask);
1125 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126 spin_lock_irqsave(&zone->lock, flags);
1127
1128 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131 /*
1132 * We release the zone lock here because
1133 * alloc_contig_range() will also lock the zone
1134 * at some point. If there's an allocation
1135 * spinning on this lock, it may win the race
1136 * and cause alloc_contig_range() to fail...
1137 */
1138 spin_unlock_irqrestore(&zone->lock, flags);
1139 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140 if (!ret)
1141 return pfn_to_page(pfn);
1142 spin_lock_irqsave(&zone->lock, flags);
1143 }
1144 pfn += nr_pages;
1145 }
1146
1147 spin_unlock_irqrestore(&zone->lock, flags);
1148 }
1149
1150 return NULL;
1151}
1152
1153static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155#else /* !CONFIG_CONTIG_ALLOC */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157 int nid, nodemask_t *nodemask)
1158{
1159 return NULL;
1160}
1161#endif /* CONFIG_CONTIG_ALLOC */
1162
1163#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165 int nid, nodemask_t *nodemask)
1166{
1167 return NULL;
1168}
1169static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170static inline void destroy_compound_gigantic_page(struct page *page,
1171 unsigned int order) { }
1172#endif
1173
1174static void update_and_free_page(struct hstate *h, struct page *page)
1175{
1176 int i;
1177
1178 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179 return;
1180
1181 h->nr_huge_pages--;
1182 h->nr_huge_pages_node[page_to_nid(page)]--;
1183 for (i = 0; i < pages_per_huge_page(h); i++) {
1184 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185 1 << PG_referenced | 1 << PG_dirty |
1186 1 << PG_active | 1 << PG_private |
1187 1 << PG_writeback);
1188 }
1189 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1190 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191 set_page_refcounted(page);
1192 if (hstate_is_gigantic(h)) {
1193 destroy_compound_gigantic_page(page, huge_page_order(h));
1194 free_gigantic_page(page, huge_page_order(h));
1195 } else {
1196 __free_pages(page, huge_page_order(h));
1197 }
1198}
1199
1200struct hstate *size_to_hstate(unsigned long size)
1201{
1202 struct hstate *h;
1203
1204 for_each_hstate(h) {
1205 if (huge_page_size(h) == size)
1206 return h;
1207 }
1208 return NULL;
1209}
1210
1211/*
1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213 * to hstate->hugepage_activelist.)
1214 *
1215 * This function can be called for tail pages, but never returns true for them.
1216 */
1217bool page_huge_active(struct page *page)
1218{
1219 VM_BUG_ON_PAGE(!PageHuge(page), page);
1220 return PageHead(page) && PagePrivate(&page[1]);
1221}
1222
1223/* never called for tail page */
1224static void set_page_huge_active(struct page *page)
1225{
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 SetPagePrivate(&page[1]);
1228}
1229
1230static void clear_page_huge_active(struct page *page)
1231{
1232 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233 ClearPagePrivate(&page[1]);
1234}
1235
1236/*
1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238 * code
1239 */
1240static inline bool PageHugeTemporary(struct page *page)
1241{
1242 if (!PageHuge(page))
1243 return false;
1244
1245 return (unsigned long)page[2].mapping == -1U;
1246}
1247
1248static inline void SetPageHugeTemporary(struct page *page)
1249{
1250 page[2].mapping = (void *)-1U;
1251}
1252
1253static inline void ClearPageHugeTemporary(struct page *page)
1254{
1255 page[2].mapping = NULL;
1256}
1257
1258void free_huge_page(struct page *page)
1259{
1260 /*
1261 * Can't pass hstate in here because it is called from the
1262 * compound page destructor.
1263 */
1264 struct hstate *h = page_hstate(page);
1265 int nid = page_to_nid(page);
1266 struct hugepage_subpool *spool =
1267 (struct hugepage_subpool *)page_private(page);
1268 bool restore_reserve;
1269
1270 VM_BUG_ON_PAGE(page_count(page), page);
1271 VM_BUG_ON_PAGE(page_mapcount(page), page);
1272
1273 set_page_private(page, 0);
1274 page->mapping = NULL;
1275 restore_reserve = PagePrivate(page);
1276 ClearPagePrivate(page);
1277
1278 /*
1279 * If PagePrivate() was set on page, page allocation consumed a
1280 * reservation. If the page was associated with a subpool, there
1281 * would have been a page reserved in the subpool before allocation
1282 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1283 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284 * remove the reserved page from the subpool.
1285 */
1286 if (!restore_reserve) {
1287 /*
1288 * A return code of zero implies that the subpool will be
1289 * under its minimum size if the reservation is not restored
1290 * after page is free. Therefore, force restore_reserve
1291 * operation.
1292 */
1293 if (hugepage_subpool_put_pages(spool, 1) == 0)
1294 restore_reserve = true;
1295 }
1296
1297 spin_lock(&hugetlb_lock);
1298 clear_page_huge_active(page);
1299 hugetlb_cgroup_uncharge_page(hstate_index(h),
1300 pages_per_huge_page(h), page);
1301 if (restore_reserve)
1302 h->resv_huge_pages++;
1303
1304 if (PageHugeTemporary(page)) {
1305 list_del(&page->lru);
1306 ClearPageHugeTemporary(page);
1307 update_and_free_page(h, page);
1308 } else if (h->surplus_huge_pages_node[nid]) {
1309 /* remove the page from active list */
1310 list_del(&page->lru);
1311 update_and_free_page(h, page);
1312 h->surplus_huge_pages--;
1313 h->surplus_huge_pages_node[nid]--;
1314 } else {
1315 arch_clear_hugepage_flags(page);
1316 enqueue_huge_page(h, page);
1317 }
1318 spin_unlock(&hugetlb_lock);
1319}
1320
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1322{
1323 INIT_LIST_HEAD(&page->lru);
1324 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325 spin_lock(&hugetlb_lock);
1326 set_hugetlb_cgroup(page, NULL);
1327 h->nr_huge_pages++;
1328 h->nr_huge_pages_node[nid]++;
1329 spin_unlock(&hugetlb_lock);
1330}
1331
1332static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1333{
1334 int i;
1335 int nr_pages = 1 << order;
1336 struct page *p = page + 1;
1337
1338 /* we rely on prep_new_huge_page to set the destructor */
1339 set_compound_order(page, order);
1340 __ClearPageReserved(page);
1341 __SetPageHead(page);
1342 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1343 /*
1344 * For gigantic hugepages allocated through bootmem at
1345 * boot, it's safer to be consistent with the not-gigantic
1346 * hugepages and clear the PG_reserved bit from all tail pages
1347 * too. Otherwse drivers using get_user_pages() to access tail
1348 * pages may get the reference counting wrong if they see
1349 * PG_reserved set on a tail page (despite the head page not
1350 * having PG_reserved set). Enforcing this consistency between
1351 * head and tail pages allows drivers to optimize away a check
1352 * on the head page when they need know if put_page() is needed
1353 * after get_user_pages().
1354 */
1355 __ClearPageReserved(p);
1356 set_page_count(p, 0);
1357 set_compound_head(p, page);
1358 }
1359 atomic_set(compound_mapcount_ptr(page), -1);
1360}
1361
1362/*
1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364 * transparent huge pages. See the PageTransHuge() documentation for more
1365 * details.
1366 */
1367int PageHuge(struct page *page)
1368{
1369 if (!PageCompound(page))
1370 return 0;
1371
1372 page = compound_head(page);
1373 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374}
1375EXPORT_SYMBOL_GPL(PageHuge);
1376
1377/*
1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379 * normal or transparent huge pages.
1380 */
1381int PageHeadHuge(struct page *page_head)
1382{
1383 if (!PageHead(page_head))
1384 return 0;
1385
1386 return get_compound_page_dtor(page_head) == free_huge_page;
1387}
1388
1389pgoff_t __basepage_index(struct page *page)
1390{
1391 struct page *page_head = compound_head(page);
1392 pgoff_t index = page_index(page_head);
1393 unsigned long compound_idx;
1394
1395 if (!PageHuge(page_head))
1396 return page_index(page);
1397
1398 if (compound_order(page_head) >= MAX_ORDER)
1399 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400 else
1401 compound_idx = page - page_head;
1402
1403 return (index << compound_order(page_head)) + compound_idx;
1404}
1405
1406static struct page *alloc_buddy_huge_page(struct hstate *h,
1407 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1408 nodemask_t *node_alloc_noretry)
1409{
1410 int order = huge_page_order(h);
1411 struct page *page;
1412 bool alloc_try_hard = true;
1413
1414 /*
1415 * By default we always try hard to allocate the page with
1416 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1417 * a loop (to adjust global huge page counts) and previous allocation
1418 * failed, do not continue to try hard on the same node. Use the
1419 * node_alloc_noretry bitmap to manage this state information.
1420 */
1421 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1422 alloc_try_hard = false;
1423 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1424 if (alloc_try_hard)
1425 gfp_mask |= __GFP_RETRY_MAYFAIL;
1426 if (nid == NUMA_NO_NODE)
1427 nid = numa_mem_id();
1428 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1429 if (page)
1430 __count_vm_event(HTLB_BUDDY_PGALLOC);
1431 else
1432 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1433
1434 /*
1435 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1436 * indicates an overall state change. Clear bit so that we resume
1437 * normal 'try hard' allocations.
1438 */
1439 if (node_alloc_noretry && page && !alloc_try_hard)
1440 node_clear(nid, *node_alloc_noretry);
1441
1442 /*
1443 * If we tried hard to get a page but failed, set bit so that
1444 * subsequent attempts will not try as hard until there is an
1445 * overall state change.
1446 */
1447 if (node_alloc_noretry && !page && alloc_try_hard)
1448 node_set(nid, *node_alloc_noretry);
1449
1450 return page;
1451}
1452
1453/*
1454 * Common helper to allocate a fresh hugetlb page. All specific allocators
1455 * should use this function to get new hugetlb pages
1456 */
1457static struct page *alloc_fresh_huge_page(struct hstate *h,
1458 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1459 nodemask_t *node_alloc_noretry)
1460{
1461 struct page *page;
1462
1463 if (hstate_is_gigantic(h))
1464 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1465 else
1466 page = alloc_buddy_huge_page(h, gfp_mask,
1467 nid, nmask, node_alloc_noretry);
1468 if (!page)
1469 return NULL;
1470
1471 if (hstate_is_gigantic(h))
1472 prep_compound_gigantic_page(page, huge_page_order(h));
1473 prep_new_huge_page(h, page, page_to_nid(page));
1474
1475 return page;
1476}
1477
1478/*
1479 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1480 * manner.
1481 */
1482static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1483 nodemask_t *node_alloc_noretry)
1484{
1485 struct page *page;
1486 int nr_nodes, node;
1487 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1488
1489 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1490 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1491 node_alloc_noretry);
1492 if (page)
1493 break;
1494 }
1495
1496 if (!page)
1497 return 0;
1498
1499 put_page(page); /* free it into the hugepage allocator */
1500
1501 return 1;
1502}
1503
1504/*
1505 * Free huge page from pool from next node to free.
1506 * Attempt to keep persistent huge pages more or less
1507 * balanced over allowed nodes.
1508 * Called with hugetlb_lock locked.
1509 */
1510static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1511 bool acct_surplus)
1512{
1513 int nr_nodes, node;
1514 int ret = 0;
1515
1516 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1517 /*
1518 * If we're returning unused surplus pages, only examine
1519 * nodes with surplus pages.
1520 */
1521 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1522 !list_empty(&h->hugepage_freelists[node])) {
1523 struct page *page =
1524 list_entry(h->hugepage_freelists[node].next,
1525 struct page, lru);
1526 list_del(&page->lru);
1527 h->free_huge_pages--;
1528 h->free_huge_pages_node[node]--;
1529 if (acct_surplus) {
1530 h->surplus_huge_pages--;
1531 h->surplus_huge_pages_node[node]--;
1532 }
1533 update_and_free_page(h, page);
1534 ret = 1;
1535 break;
1536 }
1537 }
1538
1539 return ret;
1540}
1541
1542/*
1543 * Dissolve a given free hugepage into free buddy pages. This function does
1544 * nothing for in-use hugepages and non-hugepages.
1545 * This function returns values like below:
1546 *
1547 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1548 * (allocated or reserved.)
1549 * 0: successfully dissolved free hugepages or the page is not a
1550 * hugepage (considered as already dissolved)
1551 */
1552int dissolve_free_huge_page(struct page *page)
1553{
1554 int rc = -EBUSY;
1555
1556 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1557 if (!PageHuge(page))
1558 return 0;
1559
1560 spin_lock(&hugetlb_lock);
1561 if (!PageHuge(page)) {
1562 rc = 0;
1563 goto out;
1564 }
1565
1566 if (!page_count(page)) {
1567 struct page *head = compound_head(page);
1568 struct hstate *h = page_hstate(head);
1569 int nid = page_to_nid(head);
1570 if (h->free_huge_pages - h->resv_huge_pages == 0)
1571 goto out;
1572 /*
1573 * Move PageHWPoison flag from head page to the raw error page,
1574 * which makes any subpages rather than the error page reusable.
1575 */
1576 if (PageHWPoison(head) && page != head) {
1577 SetPageHWPoison(page);
1578 ClearPageHWPoison(head);
1579 }
1580 list_del(&head->lru);
1581 h->free_huge_pages--;
1582 h->free_huge_pages_node[nid]--;
1583 h->max_huge_pages--;
1584 update_and_free_page(h, head);
1585 rc = 0;
1586 }
1587out:
1588 spin_unlock(&hugetlb_lock);
1589 return rc;
1590}
1591
1592/*
1593 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1594 * make specified memory blocks removable from the system.
1595 * Note that this will dissolve a free gigantic hugepage completely, if any
1596 * part of it lies within the given range.
1597 * Also note that if dissolve_free_huge_page() returns with an error, all
1598 * free hugepages that were dissolved before that error are lost.
1599 */
1600int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602 unsigned long pfn;
1603 struct page *page;
1604 int rc = 0;
1605
1606 if (!hugepages_supported())
1607 return rc;
1608
1609 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1610 page = pfn_to_page(pfn);
1611 rc = dissolve_free_huge_page(page);
1612 if (rc)
1613 break;
1614 }
1615
1616 return rc;
1617}
1618
1619/*
1620 * Allocates a fresh surplus page from the page allocator.
1621 */
1622static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1623 int nid, nodemask_t *nmask)
1624{
1625 struct page *page = NULL;
1626
1627 if (hstate_is_gigantic(h))
1628 return NULL;
1629
1630 spin_lock(&hugetlb_lock);
1631 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1632 goto out_unlock;
1633 spin_unlock(&hugetlb_lock);
1634
1635 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1636 if (!page)
1637 return NULL;
1638
1639 spin_lock(&hugetlb_lock);
1640 /*
1641 * We could have raced with the pool size change.
1642 * Double check that and simply deallocate the new page
1643 * if we would end up overcommiting the surpluses. Abuse
1644 * temporary page to workaround the nasty free_huge_page
1645 * codeflow
1646 */
1647 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1648 SetPageHugeTemporary(page);
1649 spin_unlock(&hugetlb_lock);
1650 put_page(page);
1651 return NULL;
1652 } else {
1653 h->surplus_huge_pages++;
1654 h->surplus_huge_pages_node[page_to_nid(page)]++;
1655 }
1656
1657out_unlock:
1658 spin_unlock(&hugetlb_lock);
1659
1660 return page;
1661}
1662
1663struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1664 int nid, nodemask_t *nmask)
1665{
1666 struct page *page;
1667
1668 if (hstate_is_gigantic(h))
1669 return NULL;
1670
1671 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1672 if (!page)
1673 return NULL;
1674
1675 /*
1676 * We do not account these pages as surplus because they are only
1677 * temporary and will be released properly on the last reference
1678 */
1679 SetPageHugeTemporary(page);
1680
1681 return page;
1682}
1683
1684/*
1685 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1686 */
1687static
1688struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1689 struct vm_area_struct *vma, unsigned long addr)
1690{
1691 struct page *page;
1692 struct mempolicy *mpol;
1693 gfp_t gfp_mask = htlb_alloc_mask(h);
1694 int nid;
1695 nodemask_t *nodemask;
1696
1697 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1698 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1699 mpol_cond_put(mpol);
1700
1701 return page;
1702}
1703
1704/* page migration callback function */
1705struct page *alloc_huge_page_node(struct hstate *h, int nid)
1706{
1707 gfp_t gfp_mask = htlb_alloc_mask(h);
1708 struct page *page = NULL;
1709
1710 if (nid != NUMA_NO_NODE)
1711 gfp_mask |= __GFP_THISNODE;
1712
1713 spin_lock(&hugetlb_lock);
1714 if (h->free_huge_pages - h->resv_huge_pages > 0)
1715 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1716 spin_unlock(&hugetlb_lock);
1717
1718 if (!page)
1719 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1720
1721 return page;
1722}
1723
1724/* page migration callback function */
1725struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1726 nodemask_t *nmask)
1727{
1728 gfp_t gfp_mask = htlb_alloc_mask(h);
1729
1730 spin_lock(&hugetlb_lock);
1731 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1732 struct page *page;
1733
1734 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1735 if (page) {
1736 spin_unlock(&hugetlb_lock);
1737 return page;
1738 }
1739 }
1740 spin_unlock(&hugetlb_lock);
1741
1742 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1743}
1744
1745/* mempolicy aware migration callback */
1746struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1747 unsigned long address)
1748{
1749 struct mempolicy *mpol;
1750 nodemask_t *nodemask;
1751 struct page *page;
1752 gfp_t gfp_mask;
1753 int node;
1754
1755 gfp_mask = htlb_alloc_mask(h);
1756 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1757 page = alloc_huge_page_nodemask(h, node, nodemask);
1758 mpol_cond_put(mpol);
1759
1760 return page;
1761}
1762
1763/*
1764 * Increase the hugetlb pool such that it can accommodate a reservation
1765 * of size 'delta'.
1766 */
1767static int gather_surplus_pages(struct hstate *h, int delta)
1768{
1769 struct list_head surplus_list;
1770 struct page *page, *tmp;
1771 int ret, i;
1772 int needed, allocated;
1773 bool alloc_ok = true;
1774
1775 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1776 if (needed <= 0) {
1777 h->resv_huge_pages += delta;
1778 return 0;
1779 }
1780
1781 allocated = 0;
1782 INIT_LIST_HEAD(&surplus_list);
1783
1784 ret = -ENOMEM;
1785retry:
1786 spin_unlock(&hugetlb_lock);
1787 for (i = 0; i < needed; i++) {
1788 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1789 NUMA_NO_NODE, NULL);
1790 if (!page) {
1791 alloc_ok = false;
1792 break;
1793 }
1794 list_add(&page->lru, &surplus_list);
1795 cond_resched();
1796 }
1797 allocated += i;
1798
1799 /*
1800 * After retaking hugetlb_lock, we need to recalculate 'needed'
1801 * because either resv_huge_pages or free_huge_pages may have changed.
1802 */
1803 spin_lock(&hugetlb_lock);
1804 needed = (h->resv_huge_pages + delta) -
1805 (h->free_huge_pages + allocated);
1806 if (needed > 0) {
1807 if (alloc_ok)
1808 goto retry;
1809 /*
1810 * We were not able to allocate enough pages to
1811 * satisfy the entire reservation so we free what
1812 * we've allocated so far.
1813 */
1814 goto free;
1815 }
1816 /*
1817 * The surplus_list now contains _at_least_ the number of extra pages
1818 * needed to accommodate the reservation. Add the appropriate number
1819 * of pages to the hugetlb pool and free the extras back to the buddy
1820 * allocator. Commit the entire reservation here to prevent another
1821 * process from stealing the pages as they are added to the pool but
1822 * before they are reserved.
1823 */
1824 needed += allocated;
1825 h->resv_huge_pages += delta;
1826 ret = 0;
1827
1828 /* Free the needed pages to the hugetlb pool */
1829 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1830 if ((--needed) < 0)
1831 break;
1832 /*
1833 * This page is now managed by the hugetlb allocator and has
1834 * no users -- drop the buddy allocator's reference.
1835 */
1836 put_page_testzero(page);
1837 VM_BUG_ON_PAGE(page_count(page), page);
1838 enqueue_huge_page(h, page);
1839 }
1840free:
1841 spin_unlock(&hugetlb_lock);
1842
1843 /* Free unnecessary surplus pages to the buddy allocator */
1844 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1845 put_page(page);
1846 spin_lock(&hugetlb_lock);
1847
1848 return ret;
1849}
1850
1851/*
1852 * This routine has two main purposes:
1853 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1854 * in unused_resv_pages. This corresponds to the prior adjustments made
1855 * to the associated reservation map.
1856 * 2) Free any unused surplus pages that may have been allocated to satisfy
1857 * the reservation. As many as unused_resv_pages may be freed.
1858 *
1859 * Called with hugetlb_lock held. However, the lock could be dropped (and
1860 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1861 * we must make sure nobody else can claim pages we are in the process of
1862 * freeing. Do this by ensuring resv_huge_page always is greater than the
1863 * number of huge pages we plan to free when dropping the lock.
1864 */
1865static void return_unused_surplus_pages(struct hstate *h,
1866 unsigned long unused_resv_pages)
1867{
1868 unsigned long nr_pages;
1869
1870 /* Cannot return gigantic pages currently */
1871 if (hstate_is_gigantic(h))
1872 goto out;
1873
1874 /*
1875 * Part (or even all) of the reservation could have been backed
1876 * by pre-allocated pages. Only free surplus pages.
1877 */
1878 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1879
1880 /*
1881 * We want to release as many surplus pages as possible, spread
1882 * evenly across all nodes with memory. Iterate across these nodes
1883 * until we can no longer free unreserved surplus pages. This occurs
1884 * when the nodes with surplus pages have no free pages.
1885 * free_pool_huge_page() will balance the the freed pages across the
1886 * on-line nodes with memory and will handle the hstate accounting.
1887 *
1888 * Note that we decrement resv_huge_pages as we free the pages. If
1889 * we drop the lock, resv_huge_pages will still be sufficiently large
1890 * to cover subsequent pages we may free.
1891 */
1892 while (nr_pages--) {
1893 h->resv_huge_pages--;
1894 unused_resv_pages--;
1895 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1896 goto out;
1897 cond_resched_lock(&hugetlb_lock);
1898 }
1899
1900out:
1901 /* Fully uncommit the reservation */
1902 h->resv_huge_pages -= unused_resv_pages;
1903}
1904
1905
1906/*
1907 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1908 * are used by the huge page allocation routines to manage reservations.
1909 *
1910 * vma_needs_reservation is called to determine if the huge page at addr
1911 * within the vma has an associated reservation. If a reservation is
1912 * needed, the value 1 is returned. The caller is then responsible for
1913 * managing the global reservation and subpool usage counts. After
1914 * the huge page has been allocated, vma_commit_reservation is called
1915 * to add the page to the reservation map. If the page allocation fails,
1916 * the reservation must be ended instead of committed. vma_end_reservation
1917 * is called in such cases.
1918 *
1919 * In the normal case, vma_commit_reservation returns the same value
1920 * as the preceding vma_needs_reservation call. The only time this
1921 * is not the case is if a reserve map was changed between calls. It
1922 * is the responsibility of the caller to notice the difference and
1923 * take appropriate action.
1924 *
1925 * vma_add_reservation is used in error paths where a reservation must
1926 * be restored when a newly allocated huge page must be freed. It is
1927 * to be called after calling vma_needs_reservation to determine if a
1928 * reservation exists.
1929 */
1930enum vma_resv_mode {
1931 VMA_NEEDS_RESV,
1932 VMA_COMMIT_RESV,
1933 VMA_END_RESV,
1934 VMA_ADD_RESV,
1935};
1936static long __vma_reservation_common(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long addr,
1938 enum vma_resv_mode mode)
1939{
1940 struct resv_map *resv;
1941 pgoff_t idx;
1942 long ret;
1943
1944 resv = vma_resv_map(vma);
1945 if (!resv)
1946 return 1;
1947
1948 idx = vma_hugecache_offset(h, vma, addr);
1949 switch (mode) {
1950 case VMA_NEEDS_RESV:
1951 ret = region_chg(resv, idx, idx + 1);
1952 break;
1953 case VMA_COMMIT_RESV:
1954 ret = region_add(resv, idx, idx + 1);
1955 break;
1956 case VMA_END_RESV:
1957 region_abort(resv, idx, idx + 1);
1958 ret = 0;
1959 break;
1960 case VMA_ADD_RESV:
1961 if (vma->vm_flags & VM_MAYSHARE)
1962 ret = region_add(resv, idx, idx + 1);
1963 else {
1964 region_abort(resv, idx, idx + 1);
1965 ret = region_del(resv, idx, idx + 1);
1966 }
1967 break;
1968 default:
1969 BUG();
1970 }
1971
1972 if (vma->vm_flags & VM_MAYSHARE)
1973 return ret;
1974 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1975 /*
1976 * In most cases, reserves always exist for private mappings.
1977 * However, a file associated with mapping could have been
1978 * hole punched or truncated after reserves were consumed.
1979 * As subsequent fault on such a range will not use reserves.
1980 * Subtle - The reserve map for private mappings has the
1981 * opposite meaning than that of shared mappings. If NO
1982 * entry is in the reserve map, it means a reservation exists.
1983 * If an entry exists in the reserve map, it means the
1984 * reservation has already been consumed. As a result, the
1985 * return value of this routine is the opposite of the
1986 * value returned from reserve map manipulation routines above.
1987 */
1988 if (ret)
1989 return 0;
1990 else
1991 return 1;
1992 }
1993 else
1994 return ret < 0 ? ret : 0;
1995}
1996
1997static long vma_needs_reservation(struct hstate *h,
1998 struct vm_area_struct *vma, unsigned long addr)
1999{
2000 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2001}
2002
2003static long vma_commit_reservation(struct hstate *h,
2004 struct vm_area_struct *vma, unsigned long addr)
2005{
2006 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2007}
2008
2009static void vma_end_reservation(struct hstate *h,
2010 struct vm_area_struct *vma, unsigned long addr)
2011{
2012 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2013}
2014
2015static long vma_add_reservation(struct hstate *h,
2016 struct vm_area_struct *vma, unsigned long addr)
2017{
2018 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2019}
2020
2021/*
2022 * This routine is called to restore a reservation on error paths. In the
2023 * specific error paths, a huge page was allocated (via alloc_huge_page)
2024 * and is about to be freed. If a reservation for the page existed,
2025 * alloc_huge_page would have consumed the reservation and set PagePrivate
2026 * in the newly allocated page. When the page is freed via free_huge_page,
2027 * the global reservation count will be incremented if PagePrivate is set.
2028 * However, free_huge_page can not adjust the reserve map. Adjust the
2029 * reserve map here to be consistent with global reserve count adjustments
2030 * to be made by free_huge_page.
2031 */
2032static void restore_reserve_on_error(struct hstate *h,
2033 struct vm_area_struct *vma, unsigned long address,
2034 struct page *page)
2035{
2036 if (unlikely(PagePrivate(page))) {
2037 long rc = vma_needs_reservation(h, vma, address);
2038
2039 if (unlikely(rc < 0)) {
2040 /*
2041 * Rare out of memory condition in reserve map
2042 * manipulation. Clear PagePrivate so that
2043 * global reserve count will not be incremented
2044 * by free_huge_page. This will make it appear
2045 * as though the reservation for this page was
2046 * consumed. This may prevent the task from
2047 * faulting in the page at a later time. This
2048 * is better than inconsistent global huge page
2049 * accounting of reserve counts.
2050 */
2051 ClearPagePrivate(page);
2052 } else if (rc) {
2053 rc = vma_add_reservation(h, vma, address);
2054 if (unlikely(rc < 0))
2055 /*
2056 * See above comment about rare out of
2057 * memory condition.
2058 */
2059 ClearPagePrivate(page);
2060 } else
2061 vma_end_reservation(h, vma, address);
2062 }
2063}
2064
2065struct page *alloc_huge_page(struct vm_area_struct *vma,
2066 unsigned long addr, int avoid_reserve)
2067{
2068 struct hugepage_subpool *spool = subpool_vma(vma);
2069 struct hstate *h = hstate_vma(vma);
2070 struct page *page;
2071 long map_chg, map_commit;
2072 long gbl_chg;
2073 int ret, idx;
2074 struct hugetlb_cgroup *h_cg;
2075
2076 idx = hstate_index(h);
2077 /*
2078 * Examine the region/reserve map to determine if the process
2079 * has a reservation for the page to be allocated. A return
2080 * code of zero indicates a reservation exists (no change).
2081 */
2082 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2083 if (map_chg < 0)
2084 return ERR_PTR(-ENOMEM);
2085
2086 /*
2087 * Processes that did not create the mapping will have no
2088 * reserves as indicated by the region/reserve map. Check
2089 * that the allocation will not exceed the subpool limit.
2090 * Allocations for MAP_NORESERVE mappings also need to be
2091 * checked against any subpool limit.
2092 */
2093 if (map_chg || avoid_reserve) {
2094 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2095 if (gbl_chg < 0) {
2096 vma_end_reservation(h, vma, addr);
2097 return ERR_PTR(-ENOSPC);
2098 }
2099
2100 /*
2101 * Even though there was no reservation in the region/reserve
2102 * map, there could be reservations associated with the
2103 * subpool that can be used. This would be indicated if the
2104 * return value of hugepage_subpool_get_pages() is zero.
2105 * However, if avoid_reserve is specified we still avoid even
2106 * the subpool reservations.
2107 */
2108 if (avoid_reserve)
2109 gbl_chg = 1;
2110 }
2111
2112 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2113 if (ret)
2114 goto out_subpool_put;
2115
2116 spin_lock(&hugetlb_lock);
2117 /*
2118 * glb_chg is passed to indicate whether or not a page must be taken
2119 * from the global free pool (global change). gbl_chg == 0 indicates
2120 * a reservation exists for the allocation.
2121 */
2122 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2123 if (!page) {
2124 spin_unlock(&hugetlb_lock);
2125 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2126 if (!page)
2127 goto out_uncharge_cgroup;
2128 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2129 SetPagePrivate(page);
2130 h->resv_huge_pages--;
2131 }
2132 spin_lock(&hugetlb_lock);
2133 list_move(&page->lru, &h->hugepage_activelist);
2134 /* Fall through */
2135 }
2136 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2137 spin_unlock(&hugetlb_lock);
2138
2139 set_page_private(page, (unsigned long)spool);
2140
2141 map_commit = vma_commit_reservation(h, vma, addr);
2142 if (unlikely(map_chg > map_commit)) {
2143 /*
2144 * The page was added to the reservation map between
2145 * vma_needs_reservation and vma_commit_reservation.
2146 * This indicates a race with hugetlb_reserve_pages.
2147 * Adjust for the subpool count incremented above AND
2148 * in hugetlb_reserve_pages for the same page. Also,
2149 * the reservation count added in hugetlb_reserve_pages
2150 * no longer applies.
2151 */
2152 long rsv_adjust;
2153
2154 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2155 hugetlb_acct_memory(h, -rsv_adjust);
2156 }
2157 return page;
2158
2159out_uncharge_cgroup:
2160 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2161out_subpool_put:
2162 if (map_chg || avoid_reserve)
2163 hugepage_subpool_put_pages(spool, 1);
2164 vma_end_reservation(h, vma, addr);
2165 return ERR_PTR(-ENOSPC);
2166}
2167
2168int alloc_bootmem_huge_page(struct hstate *h)
2169 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2170int __alloc_bootmem_huge_page(struct hstate *h)
2171{
2172 struct huge_bootmem_page *m;
2173 int nr_nodes, node;
2174
2175 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2176 void *addr;
2177
2178 addr = memblock_alloc_try_nid_raw(
2179 huge_page_size(h), huge_page_size(h),
2180 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2181 if (addr) {
2182 /*
2183 * Use the beginning of the huge page to store the
2184 * huge_bootmem_page struct (until gather_bootmem
2185 * puts them into the mem_map).
2186 */
2187 m = addr;
2188 goto found;
2189 }
2190 }
2191 return 0;
2192
2193found:
2194 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2195 /* Put them into a private list first because mem_map is not up yet */
2196 INIT_LIST_HEAD(&m->list);
2197 list_add(&m->list, &huge_boot_pages);
2198 m->hstate = h;
2199 return 1;
2200}
2201
2202static void __init prep_compound_huge_page(struct page *page,
2203 unsigned int order)
2204{
2205 if (unlikely(order > (MAX_ORDER - 1)))
2206 prep_compound_gigantic_page(page, order);
2207 else
2208 prep_compound_page(page, order);
2209}
2210
2211/* Put bootmem huge pages into the standard lists after mem_map is up */
2212static void __init gather_bootmem_prealloc(void)
2213{
2214 struct huge_bootmem_page *m;
2215
2216 list_for_each_entry(m, &huge_boot_pages, list) {
2217 struct page *page = virt_to_page(m);
2218 struct hstate *h = m->hstate;
2219
2220 WARN_ON(page_count(page) != 1);
2221 prep_compound_huge_page(page, h->order);
2222 WARN_ON(PageReserved(page));
2223 prep_new_huge_page(h, page, page_to_nid(page));
2224 put_page(page); /* free it into the hugepage allocator */
2225
2226 /*
2227 * If we had gigantic hugepages allocated at boot time, we need
2228 * to restore the 'stolen' pages to totalram_pages in order to
2229 * fix confusing memory reports from free(1) and another
2230 * side-effects, like CommitLimit going negative.
2231 */
2232 if (hstate_is_gigantic(h))
2233 adjust_managed_page_count(page, 1 << h->order);
2234 cond_resched();
2235 }
2236}
2237
2238static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2239{
2240 unsigned long i;
2241 nodemask_t *node_alloc_noretry;
2242
2243 if (!hstate_is_gigantic(h)) {
2244 /*
2245 * Bit mask controlling how hard we retry per-node allocations.
2246 * Ignore errors as lower level routines can deal with
2247 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2248 * time, we are likely in bigger trouble.
2249 */
2250 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2251 GFP_KERNEL);
2252 } else {
2253 /* allocations done at boot time */
2254 node_alloc_noretry = NULL;
2255 }
2256
2257 /* bit mask controlling how hard we retry per-node allocations */
2258 if (node_alloc_noretry)
2259 nodes_clear(*node_alloc_noretry);
2260
2261 for (i = 0; i < h->max_huge_pages; ++i) {
2262 if (hstate_is_gigantic(h)) {
2263 if (!alloc_bootmem_huge_page(h))
2264 break;
2265 } else if (!alloc_pool_huge_page(h,
2266 &node_states[N_MEMORY],
2267 node_alloc_noretry))
2268 break;
2269 cond_resched();
2270 }
2271 if (i < h->max_huge_pages) {
2272 char buf[32];
2273
2274 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2275 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2276 h->max_huge_pages, buf, i);
2277 h->max_huge_pages = i;
2278 }
2279
2280 kfree(node_alloc_noretry);
2281}
2282
2283static void __init hugetlb_init_hstates(void)
2284{
2285 struct hstate *h;
2286
2287 for_each_hstate(h) {
2288 if (minimum_order > huge_page_order(h))
2289 minimum_order = huge_page_order(h);
2290
2291 /* oversize hugepages were init'ed in early boot */
2292 if (!hstate_is_gigantic(h))
2293 hugetlb_hstate_alloc_pages(h);
2294 }
2295 VM_BUG_ON(minimum_order == UINT_MAX);
2296}
2297
2298static void __init report_hugepages(void)
2299{
2300 struct hstate *h;
2301
2302 for_each_hstate(h) {
2303 char buf[32];
2304
2305 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2306 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2307 buf, h->free_huge_pages);
2308 }
2309}
2310
2311#ifdef CONFIG_HIGHMEM
2312static void try_to_free_low(struct hstate *h, unsigned long count,
2313 nodemask_t *nodes_allowed)
2314{
2315 int i;
2316
2317 if (hstate_is_gigantic(h))
2318 return;
2319
2320 for_each_node_mask(i, *nodes_allowed) {
2321 struct page *page, *next;
2322 struct list_head *freel = &h->hugepage_freelists[i];
2323 list_for_each_entry_safe(page, next, freel, lru) {
2324 if (count >= h->nr_huge_pages)
2325 return;
2326 if (PageHighMem(page))
2327 continue;
2328 list_del(&page->lru);
2329 update_and_free_page(h, page);
2330 h->free_huge_pages--;
2331 h->free_huge_pages_node[page_to_nid(page)]--;
2332 }
2333 }
2334}
2335#else
2336static inline void try_to_free_low(struct hstate *h, unsigned long count,
2337 nodemask_t *nodes_allowed)
2338{
2339}
2340#endif
2341
2342/*
2343 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2344 * balanced by operating on them in a round-robin fashion.
2345 * Returns 1 if an adjustment was made.
2346 */
2347static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2348 int delta)
2349{
2350 int nr_nodes, node;
2351
2352 VM_BUG_ON(delta != -1 && delta != 1);
2353
2354 if (delta < 0) {
2355 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2356 if (h->surplus_huge_pages_node[node])
2357 goto found;
2358 }
2359 } else {
2360 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2361 if (h->surplus_huge_pages_node[node] <
2362 h->nr_huge_pages_node[node])
2363 goto found;
2364 }
2365 }
2366 return 0;
2367
2368found:
2369 h->surplus_huge_pages += delta;
2370 h->surplus_huge_pages_node[node] += delta;
2371 return 1;
2372}
2373
2374#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2375static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2376 nodemask_t *nodes_allowed)
2377{
2378 unsigned long min_count, ret;
2379 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2380
2381 /*
2382 * Bit mask controlling how hard we retry per-node allocations.
2383 * If we can not allocate the bit mask, do not attempt to allocate
2384 * the requested huge pages.
2385 */
2386 if (node_alloc_noretry)
2387 nodes_clear(*node_alloc_noretry);
2388 else
2389 return -ENOMEM;
2390
2391 spin_lock(&hugetlb_lock);
2392
2393 /*
2394 * Check for a node specific request.
2395 * Changing node specific huge page count may require a corresponding
2396 * change to the global count. In any case, the passed node mask
2397 * (nodes_allowed) will restrict alloc/free to the specified node.
2398 */
2399 if (nid != NUMA_NO_NODE) {
2400 unsigned long old_count = count;
2401
2402 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2403 /*
2404 * User may have specified a large count value which caused the
2405 * above calculation to overflow. In this case, they wanted
2406 * to allocate as many huge pages as possible. Set count to
2407 * largest possible value to align with their intention.
2408 */
2409 if (count < old_count)
2410 count = ULONG_MAX;
2411 }
2412
2413 /*
2414 * Gigantic pages runtime allocation depend on the capability for large
2415 * page range allocation.
2416 * If the system does not provide this feature, return an error when
2417 * the user tries to allocate gigantic pages but let the user free the
2418 * boottime allocated gigantic pages.
2419 */
2420 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2421 if (count > persistent_huge_pages(h)) {
2422 spin_unlock(&hugetlb_lock);
2423 NODEMASK_FREE(node_alloc_noretry);
2424 return -EINVAL;
2425 }
2426 /* Fall through to decrease pool */
2427 }
2428
2429 /*
2430 * Increase the pool size
2431 * First take pages out of surplus state. Then make up the
2432 * remaining difference by allocating fresh huge pages.
2433 *
2434 * We might race with alloc_surplus_huge_page() here and be unable
2435 * to convert a surplus huge page to a normal huge page. That is
2436 * not critical, though, it just means the overall size of the
2437 * pool might be one hugepage larger than it needs to be, but
2438 * within all the constraints specified by the sysctls.
2439 */
2440 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2441 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2442 break;
2443 }
2444
2445 while (count > persistent_huge_pages(h)) {
2446 /*
2447 * If this allocation races such that we no longer need the
2448 * page, free_huge_page will handle it by freeing the page
2449 * and reducing the surplus.
2450 */
2451 spin_unlock(&hugetlb_lock);
2452
2453 /* yield cpu to avoid soft lockup */
2454 cond_resched();
2455
2456 ret = alloc_pool_huge_page(h, nodes_allowed,
2457 node_alloc_noretry);
2458 spin_lock(&hugetlb_lock);
2459 if (!ret)
2460 goto out;
2461
2462 /* Bail for signals. Probably ctrl-c from user */
2463 if (signal_pending(current))
2464 goto out;
2465 }
2466
2467 /*
2468 * Decrease the pool size
2469 * First return free pages to the buddy allocator (being careful
2470 * to keep enough around to satisfy reservations). Then place
2471 * pages into surplus state as needed so the pool will shrink
2472 * to the desired size as pages become free.
2473 *
2474 * By placing pages into the surplus state independent of the
2475 * overcommit value, we are allowing the surplus pool size to
2476 * exceed overcommit. There are few sane options here. Since
2477 * alloc_surplus_huge_page() is checking the global counter,
2478 * though, we'll note that we're not allowed to exceed surplus
2479 * and won't grow the pool anywhere else. Not until one of the
2480 * sysctls are changed, or the surplus pages go out of use.
2481 */
2482 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2483 min_count = max(count, min_count);
2484 try_to_free_low(h, min_count, nodes_allowed);
2485 while (min_count < persistent_huge_pages(h)) {
2486 if (!free_pool_huge_page(h, nodes_allowed, 0))
2487 break;
2488 cond_resched_lock(&hugetlb_lock);
2489 }
2490 while (count < persistent_huge_pages(h)) {
2491 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2492 break;
2493 }
2494out:
2495 h->max_huge_pages = persistent_huge_pages(h);
2496 spin_unlock(&hugetlb_lock);
2497
2498 NODEMASK_FREE(node_alloc_noretry);
2499
2500 return 0;
2501}
2502
2503#define HSTATE_ATTR_RO(_name) \
2504 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2505
2506#define HSTATE_ATTR(_name) \
2507 static struct kobj_attribute _name##_attr = \
2508 __ATTR(_name, 0644, _name##_show, _name##_store)
2509
2510static struct kobject *hugepages_kobj;
2511static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512
2513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2514
2515static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2516{
2517 int i;
2518
2519 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2520 if (hstate_kobjs[i] == kobj) {
2521 if (nidp)
2522 *nidp = NUMA_NO_NODE;
2523 return &hstates[i];
2524 }
2525
2526 return kobj_to_node_hstate(kobj, nidp);
2527}
2528
2529static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2530 struct kobj_attribute *attr, char *buf)
2531{
2532 struct hstate *h;
2533 unsigned long nr_huge_pages;
2534 int nid;
2535
2536 h = kobj_to_hstate(kobj, &nid);
2537 if (nid == NUMA_NO_NODE)
2538 nr_huge_pages = h->nr_huge_pages;
2539 else
2540 nr_huge_pages = h->nr_huge_pages_node[nid];
2541
2542 return sprintf(buf, "%lu\n", nr_huge_pages);
2543}
2544
2545static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2546 struct hstate *h, int nid,
2547 unsigned long count, size_t len)
2548{
2549 int err;
2550 nodemask_t nodes_allowed, *n_mask;
2551
2552 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2553 return -EINVAL;
2554
2555 if (nid == NUMA_NO_NODE) {
2556 /*
2557 * global hstate attribute
2558 */
2559 if (!(obey_mempolicy &&
2560 init_nodemask_of_mempolicy(&nodes_allowed)))
2561 n_mask = &node_states[N_MEMORY];
2562 else
2563 n_mask = &nodes_allowed;
2564 } else {
2565 /*
2566 * Node specific request. count adjustment happens in
2567 * set_max_huge_pages() after acquiring hugetlb_lock.
2568 */
2569 init_nodemask_of_node(&nodes_allowed, nid);
2570 n_mask = &nodes_allowed;
2571 }
2572
2573 err = set_max_huge_pages(h, count, nid, n_mask);
2574
2575 return err ? err : len;
2576}
2577
2578static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2579 struct kobject *kobj, const char *buf,
2580 size_t len)
2581{
2582 struct hstate *h;
2583 unsigned long count;
2584 int nid;
2585 int err;
2586
2587 err = kstrtoul(buf, 10, &count);
2588 if (err)
2589 return err;
2590
2591 h = kobj_to_hstate(kobj, &nid);
2592 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2593}
2594
2595static ssize_t nr_hugepages_show(struct kobject *kobj,
2596 struct kobj_attribute *attr, char *buf)
2597{
2598 return nr_hugepages_show_common(kobj, attr, buf);
2599}
2600
2601static ssize_t nr_hugepages_store(struct kobject *kobj,
2602 struct kobj_attribute *attr, const char *buf, size_t len)
2603{
2604 return nr_hugepages_store_common(false, kobj, buf, len);
2605}
2606HSTATE_ATTR(nr_hugepages);
2607
2608#ifdef CONFIG_NUMA
2609
2610/*
2611 * hstate attribute for optionally mempolicy-based constraint on persistent
2612 * huge page alloc/free.
2613 */
2614static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2615 struct kobj_attribute *attr, char *buf)
2616{
2617 return nr_hugepages_show_common(kobj, attr, buf);
2618}
2619
2620static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2621 struct kobj_attribute *attr, const char *buf, size_t len)
2622{
2623 return nr_hugepages_store_common(true, kobj, buf, len);
2624}
2625HSTATE_ATTR(nr_hugepages_mempolicy);
2626#endif
2627
2628
2629static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2630 struct kobj_attribute *attr, char *buf)
2631{
2632 struct hstate *h = kobj_to_hstate(kobj, NULL);
2633 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2634}
2635
2636static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2637 struct kobj_attribute *attr, const char *buf, size_t count)
2638{
2639 int err;
2640 unsigned long input;
2641 struct hstate *h = kobj_to_hstate(kobj, NULL);
2642
2643 if (hstate_is_gigantic(h))
2644 return -EINVAL;
2645
2646 err = kstrtoul(buf, 10, &input);
2647 if (err)
2648 return err;
2649
2650 spin_lock(&hugetlb_lock);
2651 h->nr_overcommit_huge_pages = input;
2652 spin_unlock(&hugetlb_lock);
2653
2654 return count;
2655}
2656HSTATE_ATTR(nr_overcommit_hugepages);
2657
2658static ssize_t free_hugepages_show(struct kobject *kobj,
2659 struct kobj_attribute *attr, char *buf)
2660{
2661 struct hstate *h;
2662 unsigned long free_huge_pages;
2663 int nid;
2664
2665 h = kobj_to_hstate(kobj, &nid);
2666 if (nid == NUMA_NO_NODE)
2667 free_huge_pages = h->free_huge_pages;
2668 else
2669 free_huge_pages = h->free_huge_pages_node[nid];
2670
2671 return sprintf(buf, "%lu\n", free_huge_pages);
2672}
2673HSTATE_ATTR_RO(free_hugepages);
2674
2675static ssize_t resv_hugepages_show(struct kobject *kobj,
2676 struct kobj_attribute *attr, char *buf)
2677{
2678 struct hstate *h = kobj_to_hstate(kobj, NULL);
2679 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2680}
2681HSTATE_ATTR_RO(resv_hugepages);
2682
2683static ssize_t surplus_hugepages_show(struct kobject *kobj,
2684 struct kobj_attribute *attr, char *buf)
2685{
2686 struct hstate *h;
2687 unsigned long surplus_huge_pages;
2688 int nid;
2689
2690 h = kobj_to_hstate(kobj, &nid);
2691 if (nid == NUMA_NO_NODE)
2692 surplus_huge_pages = h->surplus_huge_pages;
2693 else
2694 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2695
2696 return sprintf(buf, "%lu\n", surplus_huge_pages);
2697}
2698HSTATE_ATTR_RO(surplus_hugepages);
2699
2700static struct attribute *hstate_attrs[] = {
2701 &nr_hugepages_attr.attr,
2702 &nr_overcommit_hugepages_attr.attr,
2703 &free_hugepages_attr.attr,
2704 &resv_hugepages_attr.attr,
2705 &surplus_hugepages_attr.attr,
2706#ifdef CONFIG_NUMA
2707 &nr_hugepages_mempolicy_attr.attr,
2708#endif
2709 NULL,
2710};
2711
2712static const struct attribute_group hstate_attr_group = {
2713 .attrs = hstate_attrs,
2714};
2715
2716static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2717 struct kobject **hstate_kobjs,
2718 const struct attribute_group *hstate_attr_group)
2719{
2720 int retval;
2721 int hi = hstate_index(h);
2722
2723 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2724 if (!hstate_kobjs[hi])
2725 return -ENOMEM;
2726
2727 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2728 if (retval)
2729 kobject_put(hstate_kobjs[hi]);
2730
2731 return retval;
2732}
2733
2734static void __init hugetlb_sysfs_init(void)
2735{
2736 struct hstate *h;
2737 int err;
2738
2739 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2740 if (!hugepages_kobj)
2741 return;
2742
2743 for_each_hstate(h) {
2744 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2745 hstate_kobjs, &hstate_attr_group);
2746 if (err)
2747 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2748 }
2749}
2750
2751#ifdef CONFIG_NUMA
2752
2753/*
2754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2755 * with node devices in node_devices[] using a parallel array. The array
2756 * index of a node device or _hstate == node id.
2757 * This is here to avoid any static dependency of the node device driver, in
2758 * the base kernel, on the hugetlb module.
2759 */
2760struct node_hstate {
2761 struct kobject *hugepages_kobj;
2762 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2763};
2764static struct node_hstate node_hstates[MAX_NUMNODES];
2765
2766/*
2767 * A subset of global hstate attributes for node devices
2768 */
2769static struct attribute *per_node_hstate_attrs[] = {
2770 &nr_hugepages_attr.attr,
2771 &free_hugepages_attr.attr,
2772 &surplus_hugepages_attr.attr,
2773 NULL,
2774};
2775
2776static const struct attribute_group per_node_hstate_attr_group = {
2777 .attrs = per_node_hstate_attrs,
2778};
2779
2780/*
2781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2782 * Returns node id via non-NULL nidp.
2783 */
2784static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785{
2786 int nid;
2787
2788 for (nid = 0; nid < nr_node_ids; nid++) {
2789 struct node_hstate *nhs = &node_hstates[nid];
2790 int i;
2791 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2792 if (nhs->hstate_kobjs[i] == kobj) {
2793 if (nidp)
2794 *nidp = nid;
2795 return &hstates[i];
2796 }
2797 }
2798
2799 BUG();
2800 return NULL;
2801}
2802
2803/*
2804 * Unregister hstate attributes from a single node device.
2805 * No-op if no hstate attributes attached.
2806 */
2807static void hugetlb_unregister_node(struct node *node)
2808{
2809 struct hstate *h;
2810 struct node_hstate *nhs = &node_hstates[node->dev.id];
2811
2812 if (!nhs->hugepages_kobj)
2813 return; /* no hstate attributes */
2814
2815 for_each_hstate(h) {
2816 int idx = hstate_index(h);
2817 if (nhs->hstate_kobjs[idx]) {
2818 kobject_put(nhs->hstate_kobjs[idx]);
2819 nhs->hstate_kobjs[idx] = NULL;
2820 }
2821 }
2822
2823 kobject_put(nhs->hugepages_kobj);
2824 nhs->hugepages_kobj = NULL;
2825}
2826
2827
2828/*
2829 * Register hstate attributes for a single node device.
2830 * No-op if attributes already registered.
2831 */
2832static void hugetlb_register_node(struct node *node)
2833{
2834 struct hstate *h;
2835 struct node_hstate *nhs = &node_hstates[node->dev.id];
2836 int err;
2837
2838 if (nhs->hugepages_kobj)
2839 return; /* already allocated */
2840
2841 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2842 &node->dev.kobj);
2843 if (!nhs->hugepages_kobj)
2844 return;
2845
2846 for_each_hstate(h) {
2847 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2848 nhs->hstate_kobjs,
2849 &per_node_hstate_attr_group);
2850 if (err) {
2851 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2852 h->name, node->dev.id);
2853 hugetlb_unregister_node(node);
2854 break;
2855 }
2856 }
2857}
2858
2859/*
2860 * hugetlb init time: register hstate attributes for all registered node
2861 * devices of nodes that have memory. All on-line nodes should have
2862 * registered their associated device by this time.
2863 */
2864static void __init hugetlb_register_all_nodes(void)
2865{
2866 int nid;
2867
2868 for_each_node_state(nid, N_MEMORY) {
2869 struct node *node = node_devices[nid];
2870 if (node->dev.id == nid)
2871 hugetlb_register_node(node);
2872 }
2873
2874 /*
2875 * Let the node device driver know we're here so it can
2876 * [un]register hstate attributes on node hotplug.
2877 */
2878 register_hugetlbfs_with_node(hugetlb_register_node,
2879 hugetlb_unregister_node);
2880}
2881#else /* !CONFIG_NUMA */
2882
2883static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2884{
2885 BUG();
2886 if (nidp)
2887 *nidp = -1;
2888 return NULL;
2889}
2890
2891static void hugetlb_register_all_nodes(void) { }
2892
2893#endif
2894
2895static int __init hugetlb_init(void)
2896{
2897 int i;
2898
2899 if (!hugepages_supported())
2900 return 0;
2901
2902 if (!size_to_hstate(default_hstate_size)) {
2903 if (default_hstate_size != 0) {
2904 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2905 default_hstate_size, HPAGE_SIZE);
2906 }
2907
2908 default_hstate_size = HPAGE_SIZE;
2909 if (!size_to_hstate(default_hstate_size))
2910 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2911 }
2912 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2913 if (default_hstate_max_huge_pages) {
2914 if (!default_hstate.max_huge_pages)
2915 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2916 }
2917
2918 hugetlb_init_hstates();
2919 gather_bootmem_prealloc();
2920 report_hugepages();
2921
2922 hugetlb_sysfs_init();
2923 hugetlb_register_all_nodes();
2924 hugetlb_cgroup_file_init();
2925
2926#ifdef CONFIG_SMP
2927 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2928#else
2929 num_fault_mutexes = 1;
2930#endif
2931 hugetlb_fault_mutex_table =
2932 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2933 GFP_KERNEL);
2934 BUG_ON(!hugetlb_fault_mutex_table);
2935
2936 for (i = 0; i < num_fault_mutexes; i++)
2937 mutex_init(&hugetlb_fault_mutex_table[i]);
2938 return 0;
2939}
2940subsys_initcall(hugetlb_init);
2941
2942/* Should be called on processing a hugepagesz=... option */
2943void __init hugetlb_bad_size(void)
2944{
2945 parsed_valid_hugepagesz = false;
2946}
2947
2948void __init hugetlb_add_hstate(unsigned int order)
2949{
2950 struct hstate *h;
2951 unsigned long i;
2952
2953 if (size_to_hstate(PAGE_SIZE << order)) {
2954 pr_warn("hugepagesz= specified twice, ignoring\n");
2955 return;
2956 }
2957 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2958 BUG_ON(order == 0);
2959 h = &hstates[hugetlb_max_hstate++];
2960 h->order = order;
2961 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2962 h->nr_huge_pages = 0;
2963 h->free_huge_pages = 0;
2964 for (i = 0; i < MAX_NUMNODES; ++i)
2965 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2966 INIT_LIST_HEAD(&h->hugepage_activelist);
2967 h->next_nid_to_alloc = first_memory_node;
2968 h->next_nid_to_free = first_memory_node;
2969 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2970 huge_page_size(h)/1024);
2971
2972 parsed_hstate = h;
2973}
2974
2975static int __init hugetlb_nrpages_setup(char *s)
2976{
2977 unsigned long *mhp;
2978 static unsigned long *last_mhp;
2979
2980 if (!parsed_valid_hugepagesz) {
2981 pr_warn("hugepages = %s preceded by "
2982 "an unsupported hugepagesz, ignoring\n", s);
2983 parsed_valid_hugepagesz = true;
2984 return 1;
2985 }
2986 /*
2987 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2988 * so this hugepages= parameter goes to the "default hstate".
2989 */
2990 else if (!hugetlb_max_hstate)
2991 mhp = &default_hstate_max_huge_pages;
2992 else
2993 mhp = &parsed_hstate->max_huge_pages;
2994
2995 if (mhp == last_mhp) {
2996 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2997 return 1;
2998 }
2999
3000 if (sscanf(s, "%lu", mhp) <= 0)
3001 *mhp = 0;
3002
3003 /*
3004 * Global state is always initialized later in hugetlb_init.
3005 * But we need to allocate >= MAX_ORDER hstates here early to still
3006 * use the bootmem allocator.
3007 */
3008 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3009 hugetlb_hstate_alloc_pages(parsed_hstate);
3010
3011 last_mhp = mhp;
3012
3013 return 1;
3014}
3015__setup("hugepages=", hugetlb_nrpages_setup);
3016
3017static int __init hugetlb_default_setup(char *s)
3018{
3019 default_hstate_size = memparse(s, &s);
3020 return 1;
3021}
3022__setup("default_hugepagesz=", hugetlb_default_setup);
3023
3024static unsigned int cpuset_mems_nr(unsigned int *array)
3025{
3026 int node;
3027 unsigned int nr = 0;
3028
3029 for_each_node_mask(node, cpuset_current_mems_allowed)
3030 nr += array[node];
3031
3032 return nr;
3033}
3034
3035#ifdef CONFIG_SYSCTL
3036static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3037 struct ctl_table *table, int write,
3038 void __user *buffer, size_t *length, loff_t *ppos)
3039{
3040 struct hstate *h = &default_hstate;
3041 unsigned long tmp = h->max_huge_pages;
3042 int ret;
3043
3044 if (!hugepages_supported())
3045 return -EOPNOTSUPP;
3046
3047 table->data = &tmp;
3048 table->maxlen = sizeof(unsigned long);
3049 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3050 if (ret)
3051 goto out;
3052
3053 if (write)
3054 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3055 NUMA_NO_NODE, tmp, *length);
3056out:
3057 return ret;
3058}
3059
3060int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3061 void __user *buffer, size_t *length, loff_t *ppos)
3062{
3063
3064 return hugetlb_sysctl_handler_common(false, table, write,
3065 buffer, length, ppos);
3066}
3067
3068#ifdef CONFIG_NUMA
3069int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3070 void __user *buffer, size_t *length, loff_t *ppos)
3071{
3072 return hugetlb_sysctl_handler_common(true, table, write,
3073 buffer, length, ppos);
3074}
3075#endif /* CONFIG_NUMA */
3076
3077int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3078 void __user *buffer,
3079 size_t *length, loff_t *ppos)
3080{
3081 struct hstate *h = &default_hstate;
3082 unsigned long tmp;
3083 int ret;
3084
3085 if (!hugepages_supported())
3086 return -EOPNOTSUPP;
3087
3088 tmp = h->nr_overcommit_huge_pages;
3089
3090 if (write && hstate_is_gigantic(h))
3091 return -EINVAL;
3092
3093 table->data = &tmp;
3094 table->maxlen = sizeof(unsigned long);
3095 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3096 if (ret)
3097 goto out;
3098
3099 if (write) {
3100 spin_lock(&hugetlb_lock);
3101 h->nr_overcommit_huge_pages = tmp;
3102 spin_unlock(&hugetlb_lock);
3103 }
3104out:
3105 return ret;
3106}
3107
3108#endif /* CONFIG_SYSCTL */
3109
3110void hugetlb_report_meminfo(struct seq_file *m)
3111{
3112 struct hstate *h;
3113 unsigned long total = 0;
3114
3115 if (!hugepages_supported())
3116 return;
3117
3118 for_each_hstate(h) {
3119 unsigned long count = h->nr_huge_pages;
3120
3121 total += (PAGE_SIZE << huge_page_order(h)) * count;
3122
3123 if (h == &default_hstate)
3124 seq_printf(m,
3125 "HugePages_Total: %5lu\n"
3126 "HugePages_Free: %5lu\n"
3127 "HugePages_Rsvd: %5lu\n"
3128 "HugePages_Surp: %5lu\n"
3129 "Hugepagesize: %8lu kB\n",
3130 count,
3131 h->free_huge_pages,
3132 h->resv_huge_pages,
3133 h->surplus_huge_pages,
3134 (PAGE_SIZE << huge_page_order(h)) / 1024);
3135 }
3136
3137 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3138}
3139
3140int hugetlb_report_node_meminfo(int nid, char *buf)
3141{
3142 struct hstate *h = &default_hstate;
3143 if (!hugepages_supported())
3144 return 0;
3145 return sprintf(buf,
3146 "Node %d HugePages_Total: %5u\n"
3147 "Node %d HugePages_Free: %5u\n"
3148 "Node %d HugePages_Surp: %5u\n",
3149 nid, h->nr_huge_pages_node[nid],
3150 nid, h->free_huge_pages_node[nid],
3151 nid, h->surplus_huge_pages_node[nid]);
3152}
3153
3154void hugetlb_show_meminfo(void)
3155{
3156 struct hstate *h;
3157 int nid;
3158
3159 if (!hugepages_supported())
3160 return;
3161
3162 for_each_node_state(nid, N_MEMORY)
3163 for_each_hstate(h)
3164 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3165 nid,
3166 h->nr_huge_pages_node[nid],
3167 h->free_huge_pages_node[nid],
3168 h->surplus_huge_pages_node[nid],
3169 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3170}
3171
3172void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3173{
3174 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3175 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3176}
3177
3178/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3179unsigned long hugetlb_total_pages(void)
3180{
3181 struct hstate *h;
3182 unsigned long nr_total_pages = 0;
3183
3184 for_each_hstate(h)
3185 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3186 return nr_total_pages;
3187}
3188
3189static int hugetlb_acct_memory(struct hstate *h, long delta)
3190{
3191 int ret = -ENOMEM;
3192
3193 spin_lock(&hugetlb_lock);
3194 /*
3195 * When cpuset is configured, it breaks the strict hugetlb page
3196 * reservation as the accounting is done on a global variable. Such
3197 * reservation is completely rubbish in the presence of cpuset because
3198 * the reservation is not checked against page availability for the
3199 * current cpuset. Application can still potentially OOM'ed by kernel
3200 * with lack of free htlb page in cpuset that the task is in.
3201 * Attempt to enforce strict accounting with cpuset is almost
3202 * impossible (or too ugly) because cpuset is too fluid that
3203 * task or memory node can be dynamically moved between cpusets.
3204 *
3205 * The change of semantics for shared hugetlb mapping with cpuset is
3206 * undesirable. However, in order to preserve some of the semantics,
3207 * we fall back to check against current free page availability as
3208 * a best attempt and hopefully to minimize the impact of changing
3209 * semantics that cpuset has.
3210 */
3211 if (delta > 0) {
3212 if (gather_surplus_pages(h, delta) < 0)
3213 goto out;
3214
3215 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3216 return_unused_surplus_pages(h, delta);
3217 goto out;
3218 }
3219 }
3220
3221 ret = 0;
3222 if (delta < 0)
3223 return_unused_surplus_pages(h, (unsigned long) -delta);
3224
3225out:
3226 spin_unlock(&hugetlb_lock);
3227 return ret;
3228}
3229
3230static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3231{
3232 struct resv_map *resv = vma_resv_map(vma);
3233
3234 /*
3235 * This new VMA should share its siblings reservation map if present.
3236 * The VMA will only ever have a valid reservation map pointer where
3237 * it is being copied for another still existing VMA. As that VMA
3238 * has a reference to the reservation map it cannot disappear until
3239 * after this open call completes. It is therefore safe to take a
3240 * new reference here without additional locking.
3241 */
3242 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3243 kref_get(&resv->refs);
3244}
3245
3246static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3247{
3248 struct hstate *h = hstate_vma(vma);
3249 struct resv_map *resv = vma_resv_map(vma);
3250 struct hugepage_subpool *spool = subpool_vma(vma);
3251 unsigned long reserve, start, end;
3252 long gbl_reserve;
3253
3254 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3255 return;
3256
3257 start = vma_hugecache_offset(h, vma, vma->vm_start);
3258 end = vma_hugecache_offset(h, vma, vma->vm_end);
3259
3260 reserve = (end - start) - region_count(resv, start, end);
3261
3262 kref_put(&resv->refs, resv_map_release);
3263
3264 if (reserve) {
3265 /*
3266 * Decrement reserve counts. The global reserve count may be
3267 * adjusted if the subpool has a minimum size.
3268 */
3269 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3270 hugetlb_acct_memory(h, -gbl_reserve);
3271 }
3272}
3273
3274static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3275{
3276 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3277 return -EINVAL;
3278 return 0;
3279}
3280
3281static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3282{
3283 struct hstate *hstate = hstate_vma(vma);
3284
3285 return 1UL << huge_page_shift(hstate);
3286}
3287
3288/*
3289 * We cannot handle pagefaults against hugetlb pages at all. They cause
3290 * handle_mm_fault() to try to instantiate regular-sized pages in the
3291 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3292 * this far.
3293 */
3294static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3295{
3296 BUG();
3297 return 0;
3298}
3299
3300/*
3301 * When a new function is introduced to vm_operations_struct and added
3302 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3303 * This is because under System V memory model, mappings created via
3304 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3305 * their original vm_ops are overwritten with shm_vm_ops.
3306 */
3307const struct vm_operations_struct hugetlb_vm_ops = {
3308 .fault = hugetlb_vm_op_fault,
3309 .open = hugetlb_vm_op_open,
3310 .close = hugetlb_vm_op_close,
3311 .split = hugetlb_vm_op_split,
3312 .pagesize = hugetlb_vm_op_pagesize,
3313};
3314
3315static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3316 int writable)
3317{
3318 pte_t entry;
3319
3320 if (writable) {
3321 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3322 vma->vm_page_prot)));
3323 } else {
3324 entry = huge_pte_wrprotect(mk_huge_pte(page,
3325 vma->vm_page_prot));
3326 }
3327 entry = pte_mkyoung(entry);
3328 entry = pte_mkhuge(entry);
3329 entry = arch_make_huge_pte(entry, vma, page, writable);
3330
3331 return entry;
3332}
3333
3334static void set_huge_ptep_writable(struct vm_area_struct *vma,
3335 unsigned long address, pte_t *ptep)
3336{
3337 pte_t entry;
3338
3339 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3340 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3341 update_mmu_cache(vma, address, ptep);
3342}
3343
3344bool is_hugetlb_entry_migration(pte_t pte)
3345{
3346 swp_entry_t swp;
3347
3348 if (huge_pte_none(pte) || pte_present(pte))
3349 return false;
3350 swp = pte_to_swp_entry(pte);
3351 if (non_swap_entry(swp) && is_migration_entry(swp))
3352 return true;
3353 else
3354 return false;
3355}
3356
3357static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3358{
3359 swp_entry_t swp;
3360
3361 if (huge_pte_none(pte) || pte_present(pte))
3362 return 0;
3363 swp = pte_to_swp_entry(pte);
3364 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3365 return 1;
3366 else
3367 return 0;
3368}
3369
3370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3371 struct vm_area_struct *vma)
3372{
3373 pte_t *src_pte, *dst_pte, entry, dst_entry;
3374 struct page *ptepage;
3375 unsigned long addr;
3376 int cow;
3377 struct hstate *h = hstate_vma(vma);
3378 unsigned long sz = huge_page_size(h);
3379 struct mmu_notifier_range range;
3380 int ret = 0;
3381
3382 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3383
3384 if (cow) {
3385 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3386 vma->vm_start,
3387 vma->vm_end);
3388 mmu_notifier_invalidate_range_start(&range);
3389 }
3390
3391 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3392 spinlock_t *src_ptl, *dst_ptl;
3393 src_pte = huge_pte_offset(src, addr, sz);
3394 if (!src_pte)
3395 continue;
3396 dst_pte = huge_pte_alloc(dst, addr, sz);
3397 if (!dst_pte) {
3398 ret = -ENOMEM;
3399 break;
3400 }
3401
3402 /*
3403 * If the pagetables are shared don't copy or take references.
3404 * dst_pte == src_pte is the common case of src/dest sharing.
3405 *
3406 * However, src could have 'unshared' and dst shares with
3407 * another vma. If dst_pte !none, this implies sharing.
3408 * Check here before taking page table lock, and once again
3409 * after taking the lock below.
3410 */
3411 dst_entry = huge_ptep_get(dst_pte);
3412 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3413 continue;
3414
3415 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3416 src_ptl = huge_pte_lockptr(h, src, src_pte);
3417 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3418 entry = huge_ptep_get(src_pte);
3419 dst_entry = huge_ptep_get(dst_pte);
3420 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3421 /*
3422 * Skip if src entry none. Also, skip in the
3423 * unlikely case dst entry !none as this implies
3424 * sharing with another vma.
3425 */
3426 ;
3427 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3428 is_hugetlb_entry_hwpoisoned(entry))) {
3429 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3430
3431 if (is_write_migration_entry(swp_entry) && cow) {
3432 /*
3433 * COW mappings require pages in both
3434 * parent and child to be set to read.
3435 */
3436 make_migration_entry_read(&swp_entry);
3437 entry = swp_entry_to_pte(swp_entry);
3438 set_huge_swap_pte_at(src, addr, src_pte,
3439 entry, sz);
3440 }
3441 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3442 } else {
3443 if (cow) {
3444 /*
3445 * No need to notify as we are downgrading page
3446 * table protection not changing it to point
3447 * to a new page.
3448 *
3449 * See Documentation/vm/mmu_notifier.rst
3450 */
3451 huge_ptep_set_wrprotect(src, addr, src_pte);
3452 }
3453 entry = huge_ptep_get(src_pte);
3454 ptepage = pte_page(entry);
3455 get_page(ptepage);
3456 page_dup_rmap(ptepage, true);
3457 set_huge_pte_at(dst, addr, dst_pte, entry);
3458 hugetlb_count_add(pages_per_huge_page(h), dst);
3459 }
3460 spin_unlock(src_ptl);
3461 spin_unlock(dst_ptl);
3462 }
3463
3464 if (cow)
3465 mmu_notifier_invalidate_range_end(&range);
3466
3467 return ret;
3468}
3469
3470void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3471 unsigned long start, unsigned long end,
3472 struct page *ref_page)
3473{
3474 struct mm_struct *mm = vma->vm_mm;
3475 unsigned long address;
3476 pte_t *ptep;
3477 pte_t pte;
3478 spinlock_t *ptl;
3479 struct page *page;
3480 struct hstate *h = hstate_vma(vma);
3481 unsigned long sz = huge_page_size(h);
3482 struct mmu_notifier_range range;
3483
3484 WARN_ON(!is_vm_hugetlb_page(vma));
3485 BUG_ON(start & ~huge_page_mask(h));
3486 BUG_ON(end & ~huge_page_mask(h));
3487
3488 /*
3489 * This is a hugetlb vma, all the pte entries should point
3490 * to huge page.
3491 */
3492 tlb_change_page_size(tlb, sz);
3493 tlb_start_vma(tlb, vma);
3494
3495 /*
3496 * If sharing possible, alert mmu notifiers of worst case.
3497 */
3498 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3499 end);
3500 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3501 mmu_notifier_invalidate_range_start(&range);
3502 address = start;
3503 for (; address < end; address += sz) {
3504 ptep = huge_pte_offset(mm, address, sz);
3505 if (!ptep)
3506 continue;
3507
3508 ptl = huge_pte_lock(h, mm, ptep);
3509 if (huge_pmd_unshare(mm, &address, ptep)) {
3510 spin_unlock(ptl);
3511 /*
3512 * We just unmapped a page of PMDs by clearing a PUD.
3513 * The caller's TLB flush range should cover this area.
3514 */
3515 continue;
3516 }
3517
3518 pte = huge_ptep_get(ptep);
3519 if (huge_pte_none(pte)) {
3520 spin_unlock(ptl);
3521 continue;
3522 }
3523
3524 /*
3525 * Migrating hugepage or HWPoisoned hugepage is already
3526 * unmapped and its refcount is dropped, so just clear pte here.
3527 */
3528 if (unlikely(!pte_present(pte))) {
3529 huge_pte_clear(mm, address, ptep, sz);
3530 spin_unlock(ptl);
3531 continue;
3532 }
3533
3534 page = pte_page(pte);
3535 /*
3536 * If a reference page is supplied, it is because a specific
3537 * page is being unmapped, not a range. Ensure the page we
3538 * are about to unmap is the actual page of interest.
3539 */
3540 if (ref_page) {
3541 if (page != ref_page) {
3542 spin_unlock(ptl);
3543 continue;
3544 }
3545 /*
3546 * Mark the VMA as having unmapped its page so that
3547 * future faults in this VMA will fail rather than
3548 * looking like data was lost
3549 */
3550 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3551 }
3552
3553 pte = huge_ptep_get_and_clear(mm, address, ptep);
3554 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3555 if (huge_pte_dirty(pte))
3556 set_page_dirty(page);
3557
3558 hugetlb_count_sub(pages_per_huge_page(h), mm);
3559 page_remove_rmap(page, true);
3560
3561 spin_unlock(ptl);
3562 tlb_remove_page_size(tlb, page, huge_page_size(h));
3563 /*
3564 * Bail out after unmapping reference page if supplied
3565 */
3566 if (ref_page)
3567 break;
3568 }
3569 mmu_notifier_invalidate_range_end(&range);
3570 tlb_end_vma(tlb, vma);
3571}
3572
3573void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3574 struct vm_area_struct *vma, unsigned long start,
3575 unsigned long end, struct page *ref_page)
3576{
3577 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3578
3579 /*
3580 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3581 * test will fail on a vma being torn down, and not grab a page table
3582 * on its way out. We're lucky that the flag has such an appropriate
3583 * name, and can in fact be safely cleared here. We could clear it
3584 * before the __unmap_hugepage_range above, but all that's necessary
3585 * is to clear it before releasing the i_mmap_rwsem. This works
3586 * because in the context this is called, the VMA is about to be
3587 * destroyed and the i_mmap_rwsem is held.
3588 */
3589 vma->vm_flags &= ~VM_MAYSHARE;
3590}
3591
3592void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3593 unsigned long end, struct page *ref_page)
3594{
3595 struct mm_struct *mm;
3596 struct mmu_gather tlb;
3597 unsigned long tlb_start = start;
3598 unsigned long tlb_end = end;
3599
3600 /*
3601 * If shared PMDs were possibly used within this vma range, adjust
3602 * start/end for worst case tlb flushing.
3603 * Note that we can not be sure if PMDs are shared until we try to
3604 * unmap pages. However, we want to make sure TLB flushing covers
3605 * the largest possible range.
3606 */
3607 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3608
3609 mm = vma->vm_mm;
3610
3611 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3612 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3613 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3614}
3615
3616/*
3617 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3618 * mappping it owns the reserve page for. The intention is to unmap the page
3619 * from other VMAs and let the children be SIGKILLed if they are faulting the
3620 * same region.
3621 */
3622static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3623 struct page *page, unsigned long address)
3624{
3625 struct hstate *h = hstate_vma(vma);
3626 struct vm_area_struct *iter_vma;
3627 struct address_space *mapping;
3628 pgoff_t pgoff;
3629
3630 /*
3631 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3632 * from page cache lookup which is in HPAGE_SIZE units.
3633 */
3634 address = address & huge_page_mask(h);
3635 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3636 vma->vm_pgoff;
3637 mapping = vma->vm_file->f_mapping;
3638
3639 /*
3640 * Take the mapping lock for the duration of the table walk. As
3641 * this mapping should be shared between all the VMAs,
3642 * __unmap_hugepage_range() is called as the lock is already held
3643 */
3644 i_mmap_lock_write(mapping);
3645 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3646 /* Do not unmap the current VMA */
3647 if (iter_vma == vma)
3648 continue;
3649
3650 /*
3651 * Shared VMAs have their own reserves and do not affect
3652 * MAP_PRIVATE accounting but it is possible that a shared
3653 * VMA is using the same page so check and skip such VMAs.
3654 */
3655 if (iter_vma->vm_flags & VM_MAYSHARE)
3656 continue;
3657
3658 /*
3659 * Unmap the page from other VMAs without their own reserves.
3660 * They get marked to be SIGKILLed if they fault in these
3661 * areas. This is because a future no-page fault on this VMA
3662 * could insert a zeroed page instead of the data existing
3663 * from the time of fork. This would look like data corruption
3664 */
3665 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3666 unmap_hugepage_range(iter_vma, address,
3667 address + huge_page_size(h), page);
3668 }
3669 i_mmap_unlock_write(mapping);
3670}
3671
3672/*
3673 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3674 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3675 * cannot race with other handlers or page migration.
3676 * Keep the pte_same checks anyway to make transition from the mutex easier.
3677 */
3678static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3679 unsigned long address, pte_t *ptep,
3680 struct page *pagecache_page, spinlock_t *ptl)
3681{
3682 pte_t pte;
3683 struct hstate *h = hstate_vma(vma);
3684 struct page *old_page, *new_page;
3685 int outside_reserve = 0;
3686 vm_fault_t ret = 0;
3687 unsigned long haddr = address & huge_page_mask(h);
3688 struct mmu_notifier_range range;
3689
3690 pte = huge_ptep_get(ptep);
3691 old_page = pte_page(pte);
3692
3693retry_avoidcopy:
3694 /* If no-one else is actually using this page, avoid the copy
3695 * and just make the page writable */
3696 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3697 page_move_anon_rmap(old_page, vma);
3698 set_huge_ptep_writable(vma, haddr, ptep);
3699 return 0;
3700 }
3701
3702 /*
3703 * If the process that created a MAP_PRIVATE mapping is about to
3704 * perform a COW due to a shared page count, attempt to satisfy
3705 * the allocation without using the existing reserves. The pagecache
3706 * page is used to determine if the reserve at this address was
3707 * consumed or not. If reserves were used, a partial faulted mapping
3708 * at the time of fork() could consume its reserves on COW instead
3709 * of the full address range.
3710 */
3711 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3712 old_page != pagecache_page)
3713 outside_reserve = 1;
3714
3715 get_page(old_page);
3716
3717 /*
3718 * Drop page table lock as buddy allocator may be called. It will
3719 * be acquired again before returning to the caller, as expected.
3720 */
3721 spin_unlock(ptl);
3722 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3723
3724 if (IS_ERR(new_page)) {
3725 /*
3726 * If a process owning a MAP_PRIVATE mapping fails to COW,
3727 * it is due to references held by a child and an insufficient
3728 * huge page pool. To guarantee the original mappers
3729 * reliability, unmap the page from child processes. The child
3730 * may get SIGKILLed if it later faults.
3731 */
3732 if (outside_reserve) {
3733 put_page(old_page);
3734 BUG_ON(huge_pte_none(pte));
3735 unmap_ref_private(mm, vma, old_page, haddr);
3736 BUG_ON(huge_pte_none(pte));
3737 spin_lock(ptl);
3738 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3739 if (likely(ptep &&
3740 pte_same(huge_ptep_get(ptep), pte)))
3741 goto retry_avoidcopy;
3742 /*
3743 * race occurs while re-acquiring page table
3744 * lock, and our job is done.
3745 */
3746 return 0;
3747 }
3748
3749 ret = vmf_error(PTR_ERR(new_page));
3750 goto out_release_old;
3751 }
3752
3753 /*
3754 * When the original hugepage is shared one, it does not have
3755 * anon_vma prepared.
3756 */
3757 if (unlikely(anon_vma_prepare(vma))) {
3758 ret = VM_FAULT_OOM;
3759 goto out_release_all;
3760 }
3761
3762 copy_user_huge_page(new_page, old_page, address, vma,
3763 pages_per_huge_page(h));
3764 __SetPageUptodate(new_page);
3765
3766 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3767 haddr + huge_page_size(h));
3768 mmu_notifier_invalidate_range_start(&range);
3769
3770 /*
3771 * Retake the page table lock to check for racing updates
3772 * before the page tables are altered
3773 */
3774 spin_lock(ptl);
3775 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3776 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3777 ClearPagePrivate(new_page);
3778
3779 /* Break COW */
3780 huge_ptep_clear_flush(vma, haddr, ptep);
3781 mmu_notifier_invalidate_range(mm, range.start, range.end);
3782 set_huge_pte_at(mm, haddr, ptep,
3783 make_huge_pte(vma, new_page, 1));
3784 page_remove_rmap(old_page, true);
3785 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3786 set_page_huge_active(new_page);
3787 /* Make the old page be freed below */
3788 new_page = old_page;
3789 }
3790 spin_unlock(ptl);
3791 mmu_notifier_invalidate_range_end(&range);
3792out_release_all:
3793 restore_reserve_on_error(h, vma, haddr, new_page);
3794 put_page(new_page);
3795out_release_old:
3796 put_page(old_page);
3797
3798 spin_lock(ptl); /* Caller expects lock to be held */
3799 return ret;
3800}
3801
3802/* Return the pagecache page at a given address within a VMA */
3803static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3804 struct vm_area_struct *vma, unsigned long address)
3805{
3806 struct address_space *mapping;
3807 pgoff_t idx;
3808
3809 mapping = vma->vm_file->f_mapping;
3810 idx = vma_hugecache_offset(h, vma, address);
3811
3812 return find_lock_page(mapping, idx);
3813}
3814
3815/*
3816 * Return whether there is a pagecache page to back given address within VMA.
3817 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3818 */
3819static bool hugetlbfs_pagecache_present(struct hstate *h,
3820 struct vm_area_struct *vma, unsigned long address)
3821{
3822 struct address_space *mapping;
3823 pgoff_t idx;
3824 struct page *page;
3825
3826 mapping = vma->vm_file->f_mapping;
3827 idx = vma_hugecache_offset(h, vma, address);
3828
3829 page = find_get_page(mapping, idx);
3830 if (page)
3831 put_page(page);
3832 return page != NULL;
3833}
3834
3835int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3836 pgoff_t idx)
3837{
3838 struct inode *inode = mapping->host;
3839 struct hstate *h = hstate_inode(inode);
3840 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3841
3842 if (err)
3843 return err;
3844 ClearPagePrivate(page);
3845
3846 /*
3847 * set page dirty so that it will not be removed from cache/file
3848 * by non-hugetlbfs specific code paths.
3849 */
3850 set_page_dirty(page);
3851
3852 spin_lock(&inode->i_lock);
3853 inode->i_blocks += blocks_per_huge_page(h);
3854 spin_unlock(&inode->i_lock);
3855 return 0;
3856}
3857
3858static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3859 struct vm_area_struct *vma,
3860 struct address_space *mapping, pgoff_t idx,
3861 unsigned long address, pte_t *ptep, unsigned int flags)
3862{
3863 struct hstate *h = hstate_vma(vma);
3864 vm_fault_t ret = VM_FAULT_SIGBUS;
3865 int anon_rmap = 0;
3866 unsigned long size;
3867 struct page *page;
3868 pte_t new_pte;
3869 spinlock_t *ptl;
3870 unsigned long haddr = address & huge_page_mask(h);
3871 bool new_page = false;
3872
3873 /*
3874 * Currently, we are forced to kill the process in the event the
3875 * original mapper has unmapped pages from the child due to a failed
3876 * COW. Warn that such a situation has occurred as it may not be obvious
3877 */
3878 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3879 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3880 current->pid);
3881 return ret;
3882 }
3883
3884 /*
3885 * Use page lock to guard against racing truncation
3886 * before we get page_table_lock.
3887 */
3888retry:
3889 page = find_lock_page(mapping, idx);
3890 if (!page) {
3891 size = i_size_read(mapping->host) >> huge_page_shift(h);
3892 if (idx >= size)
3893 goto out;
3894
3895 /*
3896 * Check for page in userfault range
3897 */
3898 if (userfaultfd_missing(vma)) {
3899 u32 hash;
3900 struct vm_fault vmf = {
3901 .vma = vma,
3902 .address = haddr,
3903 .flags = flags,
3904 /*
3905 * Hard to debug if it ends up being
3906 * used by a callee that assumes
3907 * something about the other
3908 * uninitialized fields... same as in
3909 * memory.c
3910 */
3911 };
3912
3913 /*
3914 * hugetlb_fault_mutex must be dropped before
3915 * handling userfault. Reacquire after handling
3916 * fault to make calling code simpler.
3917 */
3918 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3919 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3920 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3921 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922 goto out;
3923 }
3924
3925 page = alloc_huge_page(vma, haddr, 0);
3926 if (IS_ERR(page)) {
3927 /*
3928 * Returning error will result in faulting task being
3929 * sent SIGBUS. The hugetlb fault mutex prevents two
3930 * tasks from racing to fault in the same page which
3931 * could result in false unable to allocate errors.
3932 * Page migration does not take the fault mutex, but
3933 * does a clear then write of pte's under page table
3934 * lock. Page fault code could race with migration,
3935 * notice the clear pte and try to allocate a page
3936 * here. Before returning error, get ptl and make
3937 * sure there really is no pte entry.
3938 */
3939 ptl = huge_pte_lock(h, mm, ptep);
3940 if (!huge_pte_none(huge_ptep_get(ptep))) {
3941 ret = 0;
3942 spin_unlock(ptl);
3943 goto out;
3944 }
3945 spin_unlock(ptl);
3946 ret = vmf_error(PTR_ERR(page));
3947 goto out;
3948 }
3949 clear_huge_page(page, address, pages_per_huge_page(h));
3950 __SetPageUptodate(page);
3951 new_page = true;
3952
3953 if (vma->vm_flags & VM_MAYSHARE) {
3954 int err = huge_add_to_page_cache(page, mapping, idx);
3955 if (err) {
3956 put_page(page);
3957 if (err == -EEXIST)
3958 goto retry;
3959 goto out;
3960 }
3961 } else {
3962 lock_page(page);
3963 if (unlikely(anon_vma_prepare(vma))) {
3964 ret = VM_FAULT_OOM;
3965 goto backout_unlocked;
3966 }
3967 anon_rmap = 1;
3968 }
3969 } else {
3970 /*
3971 * If memory error occurs between mmap() and fault, some process
3972 * don't have hwpoisoned swap entry for errored virtual address.
3973 * So we need to block hugepage fault by PG_hwpoison bit check.
3974 */
3975 if (unlikely(PageHWPoison(page))) {
3976 ret = VM_FAULT_HWPOISON |
3977 VM_FAULT_SET_HINDEX(hstate_index(h));
3978 goto backout_unlocked;
3979 }
3980 }
3981
3982 /*
3983 * If we are going to COW a private mapping later, we examine the
3984 * pending reservations for this page now. This will ensure that
3985 * any allocations necessary to record that reservation occur outside
3986 * the spinlock.
3987 */
3988 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3989 if (vma_needs_reservation(h, vma, haddr) < 0) {
3990 ret = VM_FAULT_OOM;
3991 goto backout_unlocked;
3992 }
3993 /* Just decrements count, does not deallocate */
3994 vma_end_reservation(h, vma, haddr);
3995 }
3996
3997 ptl = huge_pte_lock(h, mm, ptep);
3998 size = i_size_read(mapping->host) >> huge_page_shift(h);
3999 if (idx >= size)
4000 goto backout;
4001
4002 ret = 0;
4003 if (!huge_pte_none(huge_ptep_get(ptep)))
4004 goto backout;
4005
4006 if (anon_rmap) {
4007 ClearPagePrivate(page);
4008 hugepage_add_new_anon_rmap(page, vma, haddr);
4009 } else
4010 page_dup_rmap(page, true);
4011 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4012 && (vma->vm_flags & VM_SHARED)));
4013 set_huge_pte_at(mm, haddr, ptep, new_pte);
4014
4015 hugetlb_count_add(pages_per_huge_page(h), mm);
4016 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4017 /* Optimization, do the COW without a second fault */
4018 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4019 }
4020
4021 spin_unlock(ptl);
4022
4023 /*
4024 * Only make newly allocated pages active. Existing pages found
4025 * in the pagecache could be !page_huge_active() if they have been
4026 * isolated for migration.
4027 */
4028 if (new_page)
4029 set_page_huge_active(page);
4030
4031 unlock_page(page);
4032out:
4033 return ret;
4034
4035backout:
4036 spin_unlock(ptl);
4037backout_unlocked:
4038 unlock_page(page);
4039 restore_reserve_on_error(h, vma, haddr, page);
4040 put_page(page);
4041 goto out;
4042}
4043
4044#ifdef CONFIG_SMP
4045u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4046 pgoff_t idx, unsigned long address)
4047{
4048 unsigned long key[2];
4049 u32 hash;
4050
4051 key[0] = (unsigned long) mapping;
4052 key[1] = idx;
4053
4054 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4055
4056 return hash & (num_fault_mutexes - 1);
4057}
4058#else
4059/*
4060 * For uniprocesor systems we always use a single mutex, so just
4061 * return 0 and avoid the hashing overhead.
4062 */
4063u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4064 pgoff_t idx, unsigned long address)
4065{
4066 return 0;
4067}
4068#endif
4069
4070vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4071 unsigned long address, unsigned int flags)
4072{
4073 pte_t *ptep, entry;
4074 spinlock_t *ptl;
4075 vm_fault_t ret;
4076 u32 hash;
4077 pgoff_t idx;
4078 struct page *page = NULL;
4079 struct page *pagecache_page = NULL;
4080 struct hstate *h = hstate_vma(vma);
4081 struct address_space *mapping;
4082 int need_wait_lock = 0;
4083 unsigned long haddr = address & huge_page_mask(h);
4084
4085 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4086 if (ptep) {
4087 entry = huge_ptep_get(ptep);
4088 if (unlikely(is_hugetlb_entry_migration(entry))) {
4089 migration_entry_wait_huge(vma, mm, ptep);
4090 return 0;
4091 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4092 return VM_FAULT_HWPOISON_LARGE |
4093 VM_FAULT_SET_HINDEX(hstate_index(h));
4094 } else {
4095 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4096 if (!ptep)
4097 return VM_FAULT_OOM;
4098 }
4099
4100 mapping = vma->vm_file->f_mapping;
4101 idx = vma_hugecache_offset(h, vma, haddr);
4102
4103 /*
4104 * Serialize hugepage allocation and instantiation, so that we don't
4105 * get spurious allocation failures if two CPUs race to instantiate
4106 * the same page in the page cache.
4107 */
4108 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4109 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4110
4111 entry = huge_ptep_get(ptep);
4112 if (huge_pte_none(entry)) {
4113 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4114 goto out_mutex;
4115 }
4116
4117 ret = 0;
4118
4119 /*
4120 * entry could be a migration/hwpoison entry at this point, so this
4121 * check prevents the kernel from going below assuming that we have
4122 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4123 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4124 * handle it.
4125 */
4126 if (!pte_present(entry))
4127 goto out_mutex;
4128
4129 /*
4130 * If we are going to COW the mapping later, we examine the pending
4131 * reservations for this page now. This will ensure that any
4132 * allocations necessary to record that reservation occur outside the
4133 * spinlock. For private mappings, we also lookup the pagecache
4134 * page now as it is used to determine if a reservation has been
4135 * consumed.
4136 */
4137 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4138 if (vma_needs_reservation(h, vma, haddr) < 0) {
4139 ret = VM_FAULT_OOM;
4140 goto out_mutex;
4141 }
4142 /* Just decrements count, does not deallocate */
4143 vma_end_reservation(h, vma, haddr);
4144
4145 if (!(vma->vm_flags & VM_MAYSHARE))
4146 pagecache_page = hugetlbfs_pagecache_page(h,
4147 vma, haddr);
4148 }
4149
4150 ptl = huge_pte_lock(h, mm, ptep);
4151
4152 /* Check for a racing update before calling hugetlb_cow */
4153 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4154 goto out_ptl;
4155
4156 /*
4157 * hugetlb_cow() requires page locks of pte_page(entry) and
4158 * pagecache_page, so here we need take the former one
4159 * when page != pagecache_page or !pagecache_page.
4160 */
4161 page = pte_page(entry);
4162 if (page != pagecache_page)
4163 if (!trylock_page(page)) {
4164 need_wait_lock = 1;
4165 goto out_ptl;
4166 }
4167
4168 get_page(page);
4169
4170 if (flags & FAULT_FLAG_WRITE) {
4171 if (!huge_pte_write(entry)) {
4172 ret = hugetlb_cow(mm, vma, address, ptep,
4173 pagecache_page, ptl);
4174 goto out_put_page;
4175 }
4176 entry = huge_pte_mkdirty(entry);
4177 }
4178 entry = pte_mkyoung(entry);
4179 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4180 flags & FAULT_FLAG_WRITE))
4181 update_mmu_cache(vma, haddr, ptep);
4182out_put_page:
4183 if (page != pagecache_page)
4184 unlock_page(page);
4185 put_page(page);
4186out_ptl:
4187 spin_unlock(ptl);
4188
4189 if (pagecache_page) {
4190 unlock_page(pagecache_page);
4191 put_page(pagecache_page);
4192 }
4193out_mutex:
4194 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4195 /*
4196 * Generally it's safe to hold refcount during waiting page lock. But
4197 * here we just wait to defer the next page fault to avoid busy loop and
4198 * the page is not used after unlocked before returning from the current
4199 * page fault. So we are safe from accessing freed page, even if we wait
4200 * here without taking refcount.
4201 */
4202 if (need_wait_lock)
4203 wait_on_page_locked(page);
4204 return ret;
4205}
4206
4207/*
4208 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4209 * modifications for huge pages.
4210 */
4211int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4212 pte_t *dst_pte,
4213 struct vm_area_struct *dst_vma,
4214 unsigned long dst_addr,
4215 unsigned long src_addr,
4216 struct page **pagep)
4217{
4218 struct address_space *mapping;
4219 pgoff_t idx;
4220 unsigned long size;
4221 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4222 struct hstate *h = hstate_vma(dst_vma);
4223 pte_t _dst_pte;
4224 spinlock_t *ptl;
4225 int ret;
4226 struct page *page;
4227
4228 if (!*pagep) {
4229 ret = -ENOMEM;
4230 page = alloc_huge_page(dst_vma, dst_addr, 0);
4231 if (IS_ERR(page))
4232 goto out;
4233
4234 ret = copy_huge_page_from_user(page,
4235 (const void __user *) src_addr,
4236 pages_per_huge_page(h), false);
4237
4238 /* fallback to copy_from_user outside mmap_sem */
4239 if (unlikely(ret)) {
4240 ret = -ENOENT;
4241 *pagep = page;
4242 /* don't free the page */
4243 goto out;
4244 }
4245 } else {
4246 page = *pagep;
4247 *pagep = NULL;
4248 }
4249
4250 /*
4251 * The memory barrier inside __SetPageUptodate makes sure that
4252 * preceding stores to the page contents become visible before
4253 * the set_pte_at() write.
4254 */
4255 __SetPageUptodate(page);
4256
4257 mapping = dst_vma->vm_file->f_mapping;
4258 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4259
4260 /*
4261 * If shared, add to page cache
4262 */
4263 if (vm_shared) {
4264 size = i_size_read(mapping->host) >> huge_page_shift(h);
4265 ret = -EFAULT;
4266 if (idx >= size)
4267 goto out_release_nounlock;
4268
4269 /*
4270 * Serialization between remove_inode_hugepages() and
4271 * huge_add_to_page_cache() below happens through the
4272 * hugetlb_fault_mutex_table that here must be hold by
4273 * the caller.
4274 */
4275 ret = huge_add_to_page_cache(page, mapping, idx);
4276 if (ret)
4277 goto out_release_nounlock;
4278 }
4279
4280 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4281 spin_lock(ptl);
4282
4283 /*
4284 * Recheck the i_size after holding PT lock to make sure not
4285 * to leave any page mapped (as page_mapped()) beyond the end
4286 * of the i_size (remove_inode_hugepages() is strict about
4287 * enforcing that). If we bail out here, we'll also leave a
4288 * page in the radix tree in the vm_shared case beyond the end
4289 * of the i_size, but remove_inode_hugepages() will take care
4290 * of it as soon as we drop the hugetlb_fault_mutex_table.
4291 */
4292 size = i_size_read(mapping->host) >> huge_page_shift(h);
4293 ret = -EFAULT;
4294 if (idx >= size)
4295 goto out_release_unlock;
4296
4297 ret = -EEXIST;
4298 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4299 goto out_release_unlock;
4300
4301 if (vm_shared) {
4302 page_dup_rmap(page, true);
4303 } else {
4304 ClearPagePrivate(page);
4305 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4306 }
4307
4308 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4309 if (dst_vma->vm_flags & VM_WRITE)
4310 _dst_pte = huge_pte_mkdirty(_dst_pte);
4311 _dst_pte = pte_mkyoung(_dst_pte);
4312
4313 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4314
4315 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4316 dst_vma->vm_flags & VM_WRITE);
4317 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4318
4319 /* No need to invalidate - it was non-present before */
4320 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4321
4322 spin_unlock(ptl);
4323 set_page_huge_active(page);
4324 if (vm_shared)
4325 unlock_page(page);
4326 ret = 0;
4327out:
4328 return ret;
4329out_release_unlock:
4330 spin_unlock(ptl);
4331 if (vm_shared)
4332 unlock_page(page);
4333out_release_nounlock:
4334 put_page(page);
4335 goto out;
4336}
4337
4338long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4339 struct page **pages, struct vm_area_struct **vmas,
4340 unsigned long *position, unsigned long *nr_pages,
4341 long i, unsigned int flags, int *nonblocking)
4342{
4343 unsigned long pfn_offset;
4344 unsigned long vaddr = *position;
4345 unsigned long remainder = *nr_pages;
4346 struct hstate *h = hstate_vma(vma);
4347 int err = -EFAULT;
4348
4349 while (vaddr < vma->vm_end && remainder) {
4350 pte_t *pte;
4351 spinlock_t *ptl = NULL;
4352 int absent;
4353 struct page *page;
4354
4355 /*
4356 * If we have a pending SIGKILL, don't keep faulting pages and
4357 * potentially allocating memory.
4358 */
4359 if (fatal_signal_pending(current)) {
4360 remainder = 0;
4361 break;
4362 }
4363
4364 /*
4365 * Some archs (sparc64, sh*) have multiple pte_ts to
4366 * each hugepage. We have to make sure we get the
4367 * first, for the page indexing below to work.
4368 *
4369 * Note that page table lock is not held when pte is null.
4370 */
4371 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4372 huge_page_size(h));
4373 if (pte)
4374 ptl = huge_pte_lock(h, mm, pte);
4375 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4376
4377 /*
4378 * When coredumping, it suits get_dump_page if we just return
4379 * an error where there's an empty slot with no huge pagecache
4380 * to back it. This way, we avoid allocating a hugepage, and
4381 * the sparse dumpfile avoids allocating disk blocks, but its
4382 * huge holes still show up with zeroes where they need to be.
4383 */
4384 if (absent && (flags & FOLL_DUMP) &&
4385 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4386 if (pte)
4387 spin_unlock(ptl);
4388 remainder = 0;
4389 break;
4390 }
4391
4392 /*
4393 * We need call hugetlb_fault for both hugepages under migration
4394 * (in which case hugetlb_fault waits for the migration,) and
4395 * hwpoisoned hugepages (in which case we need to prevent the
4396 * caller from accessing to them.) In order to do this, we use
4397 * here is_swap_pte instead of is_hugetlb_entry_migration and
4398 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4399 * both cases, and because we can't follow correct pages
4400 * directly from any kind of swap entries.
4401 */
4402 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4403 ((flags & FOLL_WRITE) &&
4404 !huge_pte_write(huge_ptep_get(pte)))) {
4405 vm_fault_t ret;
4406 unsigned int fault_flags = 0;
4407
4408 if (pte)
4409 spin_unlock(ptl);
4410 if (flags & FOLL_WRITE)
4411 fault_flags |= FAULT_FLAG_WRITE;
4412 if (nonblocking)
4413 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4414 if (flags & FOLL_NOWAIT)
4415 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4416 FAULT_FLAG_RETRY_NOWAIT;
4417 if (flags & FOLL_TRIED) {
4418 VM_WARN_ON_ONCE(fault_flags &
4419 FAULT_FLAG_ALLOW_RETRY);
4420 fault_flags |= FAULT_FLAG_TRIED;
4421 }
4422 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4423 if (ret & VM_FAULT_ERROR) {
4424 err = vm_fault_to_errno(ret, flags);
4425 remainder = 0;
4426 break;
4427 }
4428 if (ret & VM_FAULT_RETRY) {
4429 if (nonblocking &&
4430 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4431 *nonblocking = 0;
4432 *nr_pages = 0;
4433 /*
4434 * VM_FAULT_RETRY must not return an
4435 * error, it will return zero
4436 * instead.
4437 *
4438 * No need to update "position" as the
4439 * caller will not check it after
4440 * *nr_pages is set to 0.
4441 */
4442 return i;
4443 }
4444 continue;
4445 }
4446
4447 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4448 page = pte_page(huge_ptep_get(pte));
4449
4450 /*
4451 * Instead of doing 'try_get_page()' below in the same_page
4452 * loop, just check the count once here.
4453 */
4454 if (unlikely(page_count(page) <= 0)) {
4455 if (pages) {
4456 spin_unlock(ptl);
4457 remainder = 0;
4458 err = -ENOMEM;
4459 break;
4460 }
4461 }
4462same_page:
4463 if (pages) {
4464 pages[i] = mem_map_offset(page, pfn_offset);
4465 get_page(pages[i]);
4466 }
4467
4468 if (vmas)
4469 vmas[i] = vma;
4470
4471 vaddr += PAGE_SIZE;
4472 ++pfn_offset;
4473 --remainder;
4474 ++i;
4475 if (vaddr < vma->vm_end && remainder &&
4476 pfn_offset < pages_per_huge_page(h)) {
4477 /*
4478 * We use pfn_offset to avoid touching the pageframes
4479 * of this compound page.
4480 */
4481 goto same_page;
4482 }
4483 spin_unlock(ptl);
4484 }
4485 *nr_pages = remainder;
4486 /*
4487 * setting position is actually required only if remainder is
4488 * not zero but it's faster not to add a "if (remainder)"
4489 * branch.
4490 */
4491 *position = vaddr;
4492
4493 return i ? i : err;
4494}
4495
4496#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4497/*
4498 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4499 * implement this.
4500 */
4501#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4502#endif
4503
4504unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4505 unsigned long address, unsigned long end, pgprot_t newprot)
4506{
4507 struct mm_struct *mm = vma->vm_mm;
4508 unsigned long start = address;
4509 pte_t *ptep;
4510 pte_t pte;
4511 struct hstate *h = hstate_vma(vma);
4512 unsigned long pages = 0;
4513 bool shared_pmd = false;
4514 struct mmu_notifier_range range;
4515
4516 /*
4517 * In the case of shared PMDs, the area to flush could be beyond
4518 * start/end. Set range.start/range.end to cover the maximum possible
4519 * range if PMD sharing is possible.
4520 */
4521 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4522 0, vma, mm, start, end);
4523 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4524
4525 BUG_ON(address >= end);
4526 flush_cache_range(vma, range.start, range.end);
4527
4528 mmu_notifier_invalidate_range_start(&range);
4529 i_mmap_lock_write(vma->vm_file->f_mapping);
4530 for (; address < end; address += huge_page_size(h)) {
4531 spinlock_t *ptl;
4532 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4533 if (!ptep)
4534 continue;
4535 ptl = huge_pte_lock(h, mm, ptep);
4536 if (huge_pmd_unshare(mm, &address, ptep)) {
4537 pages++;
4538 spin_unlock(ptl);
4539 shared_pmd = true;
4540 continue;
4541 }
4542 pte = huge_ptep_get(ptep);
4543 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4544 spin_unlock(ptl);
4545 continue;
4546 }
4547 if (unlikely(is_hugetlb_entry_migration(pte))) {
4548 swp_entry_t entry = pte_to_swp_entry(pte);
4549
4550 if (is_write_migration_entry(entry)) {
4551 pte_t newpte;
4552
4553 make_migration_entry_read(&entry);
4554 newpte = swp_entry_to_pte(entry);
4555 set_huge_swap_pte_at(mm, address, ptep,
4556 newpte, huge_page_size(h));
4557 pages++;
4558 }
4559 spin_unlock(ptl);
4560 continue;
4561 }
4562 if (!huge_pte_none(pte)) {
4563 pte_t old_pte;
4564
4565 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4566 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4567 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4568 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4569 pages++;
4570 }
4571 spin_unlock(ptl);
4572 }
4573 /*
4574 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4575 * may have cleared our pud entry and done put_page on the page table:
4576 * once we release i_mmap_rwsem, another task can do the final put_page
4577 * and that page table be reused and filled with junk. If we actually
4578 * did unshare a page of pmds, flush the range corresponding to the pud.
4579 */
4580 if (shared_pmd)
4581 flush_hugetlb_tlb_range(vma, range.start, range.end);
4582 else
4583 flush_hugetlb_tlb_range(vma, start, end);
4584 /*
4585 * No need to call mmu_notifier_invalidate_range() we are downgrading
4586 * page table protection not changing it to point to a new page.
4587 *
4588 * See Documentation/vm/mmu_notifier.rst
4589 */
4590 i_mmap_unlock_write(vma->vm_file->f_mapping);
4591 mmu_notifier_invalidate_range_end(&range);
4592
4593 return pages << h->order;
4594}
4595
4596int hugetlb_reserve_pages(struct inode *inode,
4597 long from, long to,
4598 struct vm_area_struct *vma,
4599 vm_flags_t vm_flags)
4600{
4601 long ret, chg;
4602 struct hstate *h = hstate_inode(inode);
4603 struct hugepage_subpool *spool = subpool_inode(inode);
4604 struct resv_map *resv_map;
4605 long gbl_reserve;
4606
4607 /* This should never happen */
4608 if (from > to) {
4609 VM_WARN(1, "%s called with a negative range\n", __func__);
4610 return -EINVAL;
4611 }
4612
4613 /*
4614 * Only apply hugepage reservation if asked. At fault time, an
4615 * attempt will be made for VM_NORESERVE to allocate a page
4616 * without using reserves
4617 */
4618 if (vm_flags & VM_NORESERVE)
4619 return 0;
4620
4621 /*
4622 * Shared mappings base their reservation on the number of pages that
4623 * are already allocated on behalf of the file. Private mappings need
4624 * to reserve the full area even if read-only as mprotect() may be
4625 * called to make the mapping read-write. Assume !vma is a shm mapping
4626 */
4627 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4628 /*
4629 * resv_map can not be NULL as hugetlb_reserve_pages is only
4630 * called for inodes for which resv_maps were created (see
4631 * hugetlbfs_get_inode).
4632 */
4633 resv_map = inode_resv_map(inode);
4634
4635 chg = region_chg(resv_map, from, to);
4636
4637 } else {
4638 resv_map = resv_map_alloc();
4639 if (!resv_map)
4640 return -ENOMEM;
4641
4642 chg = to - from;
4643
4644 set_vma_resv_map(vma, resv_map);
4645 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4646 }
4647
4648 if (chg < 0) {
4649 ret = chg;
4650 goto out_err;
4651 }
4652
4653 /*
4654 * There must be enough pages in the subpool for the mapping. If
4655 * the subpool has a minimum size, there may be some global
4656 * reservations already in place (gbl_reserve).
4657 */
4658 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4659 if (gbl_reserve < 0) {
4660 ret = -ENOSPC;
4661 goto out_err;
4662 }
4663
4664 /*
4665 * Check enough hugepages are available for the reservation.
4666 * Hand the pages back to the subpool if there are not
4667 */
4668 ret = hugetlb_acct_memory(h, gbl_reserve);
4669 if (ret < 0) {
4670 /* put back original number of pages, chg */
4671 (void)hugepage_subpool_put_pages(spool, chg);
4672 goto out_err;
4673 }
4674
4675 /*
4676 * Account for the reservations made. Shared mappings record regions
4677 * that have reservations as they are shared by multiple VMAs.
4678 * When the last VMA disappears, the region map says how much
4679 * the reservation was and the page cache tells how much of
4680 * the reservation was consumed. Private mappings are per-VMA and
4681 * only the consumed reservations are tracked. When the VMA
4682 * disappears, the original reservation is the VMA size and the
4683 * consumed reservations are stored in the map. Hence, nothing
4684 * else has to be done for private mappings here
4685 */
4686 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4687 long add = region_add(resv_map, from, to);
4688
4689 if (unlikely(chg > add)) {
4690 /*
4691 * pages in this range were added to the reserve
4692 * map between region_chg and region_add. This
4693 * indicates a race with alloc_huge_page. Adjust
4694 * the subpool and reserve counts modified above
4695 * based on the difference.
4696 */
4697 long rsv_adjust;
4698
4699 rsv_adjust = hugepage_subpool_put_pages(spool,
4700 chg - add);
4701 hugetlb_acct_memory(h, -rsv_adjust);
4702 }
4703 }
4704 return 0;
4705out_err:
4706 if (!vma || vma->vm_flags & VM_MAYSHARE)
4707 /* Don't call region_abort if region_chg failed */
4708 if (chg >= 0)
4709 region_abort(resv_map, from, to);
4710 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4711 kref_put(&resv_map->refs, resv_map_release);
4712 return ret;
4713}
4714
4715long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4716 long freed)
4717{
4718 struct hstate *h = hstate_inode(inode);
4719 struct resv_map *resv_map = inode_resv_map(inode);
4720 long chg = 0;
4721 struct hugepage_subpool *spool = subpool_inode(inode);
4722 long gbl_reserve;
4723
4724 /*
4725 * Since this routine can be called in the evict inode path for all
4726 * hugetlbfs inodes, resv_map could be NULL.
4727 */
4728 if (resv_map) {
4729 chg = region_del(resv_map, start, end);
4730 /*
4731 * region_del() can fail in the rare case where a region
4732 * must be split and another region descriptor can not be
4733 * allocated. If end == LONG_MAX, it will not fail.
4734 */
4735 if (chg < 0)
4736 return chg;
4737 }
4738
4739 spin_lock(&inode->i_lock);
4740 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4741 spin_unlock(&inode->i_lock);
4742
4743 /*
4744 * If the subpool has a minimum size, the number of global
4745 * reservations to be released may be adjusted.
4746 */
4747 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4748 hugetlb_acct_memory(h, -gbl_reserve);
4749
4750 return 0;
4751}
4752
4753#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4754static unsigned long page_table_shareable(struct vm_area_struct *svma,
4755 struct vm_area_struct *vma,
4756 unsigned long addr, pgoff_t idx)
4757{
4758 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4759 svma->vm_start;
4760 unsigned long sbase = saddr & PUD_MASK;
4761 unsigned long s_end = sbase + PUD_SIZE;
4762
4763 /* Allow segments to share if only one is marked locked */
4764 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4765 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766
4767 /*
4768 * match the virtual addresses, permission and the alignment of the
4769 * page table page.
4770 */
4771 if (pmd_index(addr) != pmd_index(saddr) ||
4772 vm_flags != svm_flags ||
4773 sbase < svma->vm_start || svma->vm_end < s_end)
4774 return 0;
4775
4776 return saddr;
4777}
4778
4779static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4780{
4781 unsigned long base = addr & PUD_MASK;
4782 unsigned long end = base + PUD_SIZE;
4783
4784 /*
4785 * check on proper vm_flags and page table alignment
4786 */
4787 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4788 return true;
4789 return false;
4790}
4791
4792/*
4793 * Determine if start,end range within vma could be mapped by shared pmd.
4794 * If yes, adjust start and end to cover range associated with possible
4795 * shared pmd mappings.
4796 */
4797void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4798 unsigned long *start, unsigned long *end)
4799{
4800 unsigned long check_addr = *start;
4801
4802 if (!(vma->vm_flags & VM_MAYSHARE))
4803 return;
4804
4805 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4806 unsigned long a_start = check_addr & PUD_MASK;
4807 unsigned long a_end = a_start + PUD_SIZE;
4808
4809 /*
4810 * If sharing is possible, adjust start/end if necessary.
4811 */
4812 if (range_in_vma(vma, a_start, a_end)) {
4813 if (a_start < *start)
4814 *start = a_start;
4815 if (a_end > *end)
4816 *end = a_end;
4817 }
4818 }
4819}
4820
4821/*
4822 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4823 * and returns the corresponding pte. While this is not necessary for the
4824 * !shared pmd case because we can allocate the pmd later as well, it makes the
4825 * code much cleaner. pmd allocation is essential for the shared case because
4826 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4827 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4828 * bad pmd for sharing.
4829 */
4830pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4831{
4832 struct vm_area_struct *vma = find_vma(mm, addr);
4833 struct address_space *mapping = vma->vm_file->f_mapping;
4834 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4835 vma->vm_pgoff;
4836 struct vm_area_struct *svma;
4837 unsigned long saddr;
4838 pte_t *spte = NULL;
4839 pte_t *pte;
4840 spinlock_t *ptl;
4841
4842 if (!vma_shareable(vma, addr))
4843 return (pte_t *)pmd_alloc(mm, pud, addr);
4844
4845 i_mmap_lock_write(mapping);
4846 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4847 if (svma == vma)
4848 continue;
4849
4850 saddr = page_table_shareable(svma, vma, addr, idx);
4851 if (saddr) {
4852 spte = huge_pte_offset(svma->vm_mm, saddr,
4853 vma_mmu_pagesize(svma));
4854 if (spte) {
4855 get_page(virt_to_page(spte));
4856 break;
4857 }
4858 }
4859 }
4860
4861 if (!spte)
4862 goto out;
4863
4864 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4865 if (pud_none(*pud)) {
4866 pud_populate(mm, pud,
4867 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4868 mm_inc_nr_pmds(mm);
4869 } else {
4870 put_page(virt_to_page(spte));
4871 }
4872 spin_unlock(ptl);
4873out:
4874 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4875 i_mmap_unlock_write(mapping);
4876 return pte;
4877}
4878
4879/*
4880 * unmap huge page backed by shared pte.
4881 *
4882 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4883 * indicated by page_count > 1, unmap is achieved by clearing pud and
4884 * decrementing the ref count. If count == 1, the pte page is not shared.
4885 *
4886 * called with page table lock held.
4887 *
4888 * returns: 1 successfully unmapped a shared pte page
4889 * 0 the underlying pte page is not shared, or it is the last user
4890 */
4891int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4892{
4893 pgd_t *pgd = pgd_offset(mm, *addr);
4894 p4d_t *p4d = p4d_offset(pgd, *addr);
4895 pud_t *pud = pud_offset(p4d, *addr);
4896
4897 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4898 if (page_count(virt_to_page(ptep)) == 1)
4899 return 0;
4900
4901 pud_clear(pud);
4902 put_page(virt_to_page(ptep));
4903 mm_dec_nr_pmds(mm);
4904 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4905 return 1;
4906}
4907#define want_pmd_share() (1)
4908#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4909pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4910{
4911 return NULL;
4912}
4913
4914int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4915{
4916 return 0;
4917}
4918
4919void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920 unsigned long *start, unsigned long *end)
4921{
4922}
4923#define want_pmd_share() (0)
4924#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4925
4926#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4927pte_t *huge_pte_alloc(struct mm_struct *mm,
4928 unsigned long addr, unsigned long sz)
4929{
4930 pgd_t *pgd;
4931 p4d_t *p4d;
4932 pud_t *pud;
4933 pte_t *pte = NULL;
4934
4935 pgd = pgd_offset(mm, addr);
4936 p4d = p4d_alloc(mm, pgd, addr);
4937 if (!p4d)
4938 return NULL;
4939 pud = pud_alloc(mm, p4d, addr);
4940 if (pud) {
4941 if (sz == PUD_SIZE) {
4942 pte = (pte_t *)pud;
4943 } else {
4944 BUG_ON(sz != PMD_SIZE);
4945 if (want_pmd_share() && pud_none(*pud))
4946 pte = huge_pmd_share(mm, addr, pud);
4947 else
4948 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4949 }
4950 }
4951 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4952
4953 return pte;
4954}
4955
4956/*
4957 * huge_pte_offset() - Walk the page table to resolve the hugepage
4958 * entry at address @addr
4959 *
4960 * Return: Pointer to page table or swap entry (PUD or PMD) for
4961 * address @addr, or NULL if a p*d_none() entry is encountered and the
4962 * size @sz doesn't match the hugepage size at this level of the page
4963 * table.
4964 */
4965pte_t *huge_pte_offset(struct mm_struct *mm,
4966 unsigned long addr, unsigned long sz)
4967{
4968 pgd_t *pgd;
4969 p4d_t *p4d;
4970 pud_t *pud;
4971 pmd_t *pmd;
4972
4973 pgd = pgd_offset(mm, addr);
4974 if (!pgd_present(*pgd))
4975 return NULL;
4976 p4d = p4d_offset(pgd, addr);
4977 if (!p4d_present(*p4d))
4978 return NULL;
4979
4980 pud = pud_offset(p4d, addr);
4981 if (sz != PUD_SIZE && pud_none(*pud))
4982 return NULL;
4983 /* hugepage or swap? */
4984 if (pud_huge(*pud) || !pud_present(*pud))
4985 return (pte_t *)pud;
4986
4987 pmd = pmd_offset(pud, addr);
4988 if (sz != PMD_SIZE && pmd_none(*pmd))
4989 return NULL;
4990 /* hugepage or swap? */
4991 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4992 return (pte_t *)pmd;
4993
4994 return NULL;
4995}
4996
4997#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4998
4999/*
5000 * These functions are overwritable if your architecture needs its own
5001 * behavior.
5002 */
5003struct page * __weak
5004follow_huge_addr(struct mm_struct *mm, unsigned long address,
5005 int write)
5006{
5007 return ERR_PTR(-EINVAL);
5008}
5009
5010struct page * __weak
5011follow_huge_pd(struct vm_area_struct *vma,
5012 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5013{
5014 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5015 return NULL;
5016}
5017
5018struct page * __weak
5019follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5020 pmd_t *pmd, int flags)
5021{
5022 struct page *page = NULL;
5023 spinlock_t *ptl;
5024 pte_t pte;
5025retry:
5026 ptl = pmd_lockptr(mm, pmd);
5027 spin_lock(ptl);
5028 /*
5029 * make sure that the address range covered by this pmd is not
5030 * unmapped from other threads.
5031 */
5032 if (!pmd_huge(*pmd))
5033 goto out;
5034 pte = huge_ptep_get((pte_t *)pmd);
5035 if (pte_present(pte)) {
5036 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5037 if (flags & FOLL_GET)
5038 get_page(page);
5039 } else {
5040 if (is_hugetlb_entry_migration(pte)) {
5041 spin_unlock(ptl);
5042 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5043 goto retry;
5044 }
5045 /*
5046 * hwpoisoned entry is treated as no_page_table in
5047 * follow_page_mask().
5048 */
5049 }
5050out:
5051 spin_unlock(ptl);
5052 return page;
5053}
5054
5055struct page * __weak
5056follow_huge_pud(struct mm_struct *mm, unsigned long address,
5057 pud_t *pud, int flags)
5058{
5059 if (flags & FOLL_GET)
5060 return NULL;
5061
5062 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5063}
5064
5065struct page * __weak
5066follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5067{
5068 if (flags & FOLL_GET)
5069 return NULL;
5070
5071 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5072}
5073
5074bool isolate_huge_page(struct page *page, struct list_head *list)
5075{
5076 bool ret = true;
5077
5078 VM_BUG_ON_PAGE(!PageHead(page), page);
5079 spin_lock(&hugetlb_lock);
5080 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5081 ret = false;
5082 goto unlock;
5083 }
5084 clear_page_huge_active(page);
5085 list_move_tail(&page->lru, list);
5086unlock:
5087 spin_unlock(&hugetlb_lock);
5088 return ret;
5089}
5090
5091void putback_active_hugepage(struct page *page)
5092{
5093 VM_BUG_ON_PAGE(!PageHead(page), page);
5094 spin_lock(&hugetlb_lock);
5095 set_page_huge_active(page);
5096 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5097 spin_unlock(&hugetlb_lock);
5098 put_page(page);
5099}
5100
5101void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5102{
5103 struct hstate *h = page_hstate(oldpage);
5104
5105 hugetlb_cgroup_migrate(oldpage, newpage);
5106 set_page_owner_migrate_reason(newpage, reason);
5107
5108 /*
5109 * transfer temporary state of the new huge page. This is
5110 * reverse to other transitions because the newpage is going to
5111 * be final while the old one will be freed so it takes over
5112 * the temporary status.
5113 *
5114 * Also note that we have to transfer the per-node surplus state
5115 * here as well otherwise the global surplus count will not match
5116 * the per-node's.
5117 */
5118 if (PageHugeTemporary(newpage)) {
5119 int old_nid = page_to_nid(oldpage);
5120 int new_nid = page_to_nid(newpage);
5121
5122 SetPageHugeTemporary(oldpage);
5123 ClearPageHugeTemporary(newpage);
5124
5125 spin_lock(&hugetlb_lock);
5126 if (h->surplus_huge_pages_node[old_nid]) {
5127 h->surplus_huge_pages_node[old_nid]--;
5128 h->surplus_huge_pages_node[new_nid]++;
5129 }
5130 spin_unlock(&hugetlb_lock);
5131 }
5132}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37
38#include <asm/page.h>
39#include <asm/pgalloc.h>
40#include <asm/tlb.h>
41
42#include <linux/io.h>
43#include <linux/hugetlb.h>
44#include <linux/hugetlb_cgroup.h>
45#include <linux/node.h>
46#include <linux/page_owner.h>
47#include "internal.h"
48#include "hugetlb_vmemmap.h"
49
50int hugetlb_max_hstate __read_mostly;
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
53
54#ifdef CONFIG_CMA
55static struct cma *hugetlb_cma[MAX_NUMNODES];
56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58{
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 1 << order);
61}
62#else
63static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64{
65 return false;
66}
67#endif
68static unsigned long hugetlb_cma_size __initdata;
69
70__initdata LIST_HEAD(huge_boot_pages);
71
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
75static bool __initdata parsed_valid_hugepagesz = true;
76static bool __initdata parsed_default_hugepagesz;
77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79/*
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
82 */
83DEFINE_SPINLOCK(hugetlb_lock);
84
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
99
100static inline bool subpool_is_free(struct hugepage_subpool *spool)
101{
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
111
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
114{
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
123 -spool->min_hpages);
124 kfree(spool);
125 }
126}
127
128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 long min_hpages)
130{
131 struct hugepage_subpool *spool;
132
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 if (!spool)
135 return NULL;
136
137 spin_lock_init(&spool->lock);
138 spool->count = 1;
139 spool->max_hpages = max_hpages;
140 spool->hstate = h;
141 spool->min_hpages = min_hpages;
142
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 kfree(spool);
145 return NULL;
146 }
147 spool->rsv_hpages = min_hpages;
148
149 return spool;
150}
151
152void hugepage_put_subpool(struct hugepage_subpool *spool)
153{
154 unsigned long flags;
155
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
158 spool->count--;
159 unlock_or_release_subpool(spool, flags);
160}
161
162/*
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
169 */
170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 long delta)
172{
173 long ret = delta;
174
175 if (!spool)
176 return ret;
177
178 spin_lock_irq(&spool->lock);
179
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
183 else {
184 ret = -ENOMEM;
185 goto unlock_ret;
186 }
187 }
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
192 /*
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
195 */
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
198 } else {
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
201 }
202 }
203
204unlock_ret:
205 spin_unlock_irq(&spool->lock);
206 return ret;
207}
208
209/*
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
214 */
215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 long delta)
217{
218 long ret = delta;
219 unsigned long flags;
220
221 if (!spool)
222 return delta;
223
224 spin_lock_irqsave(&spool->lock, flags);
225
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
228
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = 0;
233 else
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
239 }
240
241 /*
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
244 */
245 unlock_or_release_subpool(spool, flags);
246
247 return ret;
248}
249
250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251{
252 return HUGETLBFS_SB(inode->i_sb)->spool;
253}
254
255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256{
257 return subpool_inode(file_inode(vma->vm_file));
258}
259
260/*
261 * hugetlb vma_lock helper routines
262 */
263static bool __vma_shareable_lock(struct vm_area_struct *vma)
264{
265 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
266 vma->vm_private_data;
267}
268
269void hugetlb_vma_lock_read(struct vm_area_struct *vma)
270{
271 if (__vma_shareable_lock(vma)) {
272 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
273
274 down_read(&vma_lock->rw_sema);
275 }
276}
277
278void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279{
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283 up_read(&vma_lock->rw_sema);
284 }
285}
286
287void hugetlb_vma_lock_write(struct vm_area_struct *vma)
288{
289 if (__vma_shareable_lock(vma)) {
290 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
291
292 down_write(&vma_lock->rw_sema);
293 }
294}
295
296void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
297{
298 if (__vma_shareable_lock(vma)) {
299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300
301 up_write(&vma_lock->rw_sema);
302 }
303}
304
305int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
306{
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309 if (!__vma_shareable_lock(vma))
310 return 1;
311
312 return down_write_trylock(&vma_lock->rw_sema);
313}
314
315void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
316{
317 if (__vma_shareable_lock(vma)) {
318 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
319
320 lockdep_assert_held(&vma_lock->rw_sema);
321 }
322}
323
324void hugetlb_vma_lock_release(struct kref *kref)
325{
326 struct hugetlb_vma_lock *vma_lock = container_of(kref,
327 struct hugetlb_vma_lock, refs);
328
329 kfree(vma_lock);
330}
331
332static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
333{
334 struct vm_area_struct *vma = vma_lock->vma;
335
336 /*
337 * vma_lock structure may or not be released as a result of put,
338 * it certainly will no longer be attached to vma so clear pointer.
339 * Semaphore synchronizes access to vma_lock->vma field.
340 */
341 vma_lock->vma = NULL;
342 vma->vm_private_data = NULL;
343 up_write(&vma_lock->rw_sema);
344 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
345}
346
347static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
348{
349 if (__vma_shareable_lock(vma)) {
350 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
351
352 __hugetlb_vma_unlock_write_put(vma_lock);
353 }
354}
355
356static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
357{
358 /*
359 * Only present in sharable vmas.
360 */
361 if (!vma || !__vma_shareable_lock(vma))
362 return;
363
364 if (vma->vm_private_data) {
365 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
366
367 down_write(&vma_lock->rw_sema);
368 __hugetlb_vma_unlock_write_put(vma_lock);
369 }
370}
371
372static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
373{
374 struct hugetlb_vma_lock *vma_lock;
375
376 /* Only establish in (flags) sharable vmas */
377 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
378 return;
379
380 /* Should never get here with non-NULL vm_private_data */
381 if (vma->vm_private_data)
382 return;
383
384 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
385 if (!vma_lock) {
386 /*
387 * If we can not allocate structure, then vma can not
388 * participate in pmd sharing. This is only a possible
389 * performance enhancement and memory saving issue.
390 * However, the lock is also used to synchronize page
391 * faults with truncation. If the lock is not present,
392 * unlikely races could leave pages in a file past i_size
393 * until the file is removed. Warn in the unlikely case of
394 * allocation failure.
395 */
396 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
397 return;
398 }
399
400 kref_init(&vma_lock->refs);
401 init_rwsem(&vma_lock->rw_sema);
402 vma_lock->vma = vma;
403 vma->vm_private_data = vma_lock;
404}
405
406/* Helper that removes a struct file_region from the resv_map cache and returns
407 * it for use.
408 */
409static struct file_region *
410get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
411{
412 struct file_region *nrg;
413
414 VM_BUG_ON(resv->region_cache_count <= 0);
415
416 resv->region_cache_count--;
417 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
418 list_del(&nrg->link);
419
420 nrg->from = from;
421 nrg->to = to;
422
423 return nrg;
424}
425
426static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
427 struct file_region *rg)
428{
429#ifdef CONFIG_CGROUP_HUGETLB
430 nrg->reservation_counter = rg->reservation_counter;
431 nrg->css = rg->css;
432 if (rg->css)
433 css_get(rg->css);
434#endif
435}
436
437/* Helper that records hugetlb_cgroup uncharge info. */
438static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
439 struct hstate *h,
440 struct resv_map *resv,
441 struct file_region *nrg)
442{
443#ifdef CONFIG_CGROUP_HUGETLB
444 if (h_cg) {
445 nrg->reservation_counter =
446 &h_cg->rsvd_hugepage[hstate_index(h)];
447 nrg->css = &h_cg->css;
448 /*
449 * The caller will hold exactly one h_cg->css reference for the
450 * whole contiguous reservation region. But this area might be
451 * scattered when there are already some file_regions reside in
452 * it. As a result, many file_regions may share only one css
453 * reference. In order to ensure that one file_region must hold
454 * exactly one h_cg->css reference, we should do css_get for
455 * each file_region and leave the reference held by caller
456 * untouched.
457 */
458 css_get(&h_cg->css);
459 if (!resv->pages_per_hpage)
460 resv->pages_per_hpage = pages_per_huge_page(h);
461 /* pages_per_hpage should be the same for all entries in
462 * a resv_map.
463 */
464 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
465 } else {
466 nrg->reservation_counter = NULL;
467 nrg->css = NULL;
468 }
469#endif
470}
471
472static void put_uncharge_info(struct file_region *rg)
473{
474#ifdef CONFIG_CGROUP_HUGETLB
475 if (rg->css)
476 css_put(rg->css);
477#endif
478}
479
480static bool has_same_uncharge_info(struct file_region *rg,
481 struct file_region *org)
482{
483#ifdef CONFIG_CGROUP_HUGETLB
484 return rg->reservation_counter == org->reservation_counter &&
485 rg->css == org->css;
486
487#else
488 return true;
489#endif
490}
491
492static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
493{
494 struct file_region *nrg, *prg;
495
496 prg = list_prev_entry(rg, link);
497 if (&prg->link != &resv->regions && prg->to == rg->from &&
498 has_same_uncharge_info(prg, rg)) {
499 prg->to = rg->to;
500
501 list_del(&rg->link);
502 put_uncharge_info(rg);
503 kfree(rg);
504
505 rg = prg;
506 }
507
508 nrg = list_next_entry(rg, link);
509 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
510 has_same_uncharge_info(nrg, rg)) {
511 nrg->from = rg->from;
512
513 list_del(&rg->link);
514 put_uncharge_info(rg);
515 kfree(rg);
516 }
517}
518
519static inline long
520hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
521 long to, struct hstate *h, struct hugetlb_cgroup *cg,
522 long *regions_needed)
523{
524 struct file_region *nrg;
525
526 if (!regions_needed) {
527 nrg = get_file_region_entry_from_cache(map, from, to);
528 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
529 list_add(&nrg->link, rg);
530 coalesce_file_region(map, nrg);
531 } else
532 *regions_needed += 1;
533
534 return to - from;
535}
536
537/*
538 * Must be called with resv->lock held.
539 *
540 * Calling this with regions_needed != NULL will count the number of pages
541 * to be added but will not modify the linked list. And regions_needed will
542 * indicate the number of file_regions needed in the cache to carry out to add
543 * the regions for this range.
544 */
545static long add_reservation_in_range(struct resv_map *resv, long f, long t,
546 struct hugetlb_cgroup *h_cg,
547 struct hstate *h, long *regions_needed)
548{
549 long add = 0;
550 struct list_head *head = &resv->regions;
551 long last_accounted_offset = f;
552 struct file_region *iter, *trg = NULL;
553 struct list_head *rg = NULL;
554
555 if (regions_needed)
556 *regions_needed = 0;
557
558 /* In this loop, we essentially handle an entry for the range
559 * [last_accounted_offset, iter->from), at every iteration, with some
560 * bounds checking.
561 */
562 list_for_each_entry_safe(iter, trg, head, link) {
563 /* Skip irrelevant regions that start before our range. */
564 if (iter->from < f) {
565 /* If this region ends after the last accounted offset,
566 * then we need to update last_accounted_offset.
567 */
568 if (iter->to > last_accounted_offset)
569 last_accounted_offset = iter->to;
570 continue;
571 }
572
573 /* When we find a region that starts beyond our range, we've
574 * finished.
575 */
576 if (iter->from >= t) {
577 rg = iter->link.prev;
578 break;
579 }
580
581 /* Add an entry for last_accounted_offset -> iter->from, and
582 * update last_accounted_offset.
583 */
584 if (iter->from > last_accounted_offset)
585 add += hugetlb_resv_map_add(resv, iter->link.prev,
586 last_accounted_offset,
587 iter->from, h, h_cg,
588 regions_needed);
589
590 last_accounted_offset = iter->to;
591 }
592
593 /* Handle the case where our range extends beyond
594 * last_accounted_offset.
595 */
596 if (!rg)
597 rg = head->prev;
598 if (last_accounted_offset < t)
599 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
600 t, h, h_cg, regions_needed);
601
602 return add;
603}
604
605/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
606 */
607static int allocate_file_region_entries(struct resv_map *resv,
608 int regions_needed)
609 __must_hold(&resv->lock)
610{
611 LIST_HEAD(allocated_regions);
612 int to_allocate = 0, i = 0;
613 struct file_region *trg = NULL, *rg = NULL;
614
615 VM_BUG_ON(regions_needed < 0);
616
617 /*
618 * Check for sufficient descriptors in the cache to accommodate
619 * the number of in progress add operations plus regions_needed.
620 *
621 * This is a while loop because when we drop the lock, some other call
622 * to region_add or region_del may have consumed some region_entries,
623 * so we keep looping here until we finally have enough entries for
624 * (adds_in_progress + regions_needed).
625 */
626 while (resv->region_cache_count <
627 (resv->adds_in_progress + regions_needed)) {
628 to_allocate = resv->adds_in_progress + regions_needed -
629 resv->region_cache_count;
630
631 /* At this point, we should have enough entries in the cache
632 * for all the existing adds_in_progress. We should only be
633 * needing to allocate for regions_needed.
634 */
635 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
636
637 spin_unlock(&resv->lock);
638 for (i = 0; i < to_allocate; i++) {
639 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
640 if (!trg)
641 goto out_of_memory;
642 list_add(&trg->link, &allocated_regions);
643 }
644
645 spin_lock(&resv->lock);
646
647 list_splice(&allocated_regions, &resv->region_cache);
648 resv->region_cache_count += to_allocate;
649 }
650
651 return 0;
652
653out_of_memory:
654 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
655 list_del(&rg->link);
656 kfree(rg);
657 }
658 return -ENOMEM;
659}
660
661/*
662 * Add the huge page range represented by [f, t) to the reserve
663 * map. Regions will be taken from the cache to fill in this range.
664 * Sufficient regions should exist in the cache due to the previous
665 * call to region_chg with the same range, but in some cases the cache will not
666 * have sufficient entries due to races with other code doing region_add or
667 * region_del. The extra needed entries will be allocated.
668 *
669 * regions_needed is the out value provided by a previous call to region_chg.
670 *
671 * Return the number of new huge pages added to the map. This number is greater
672 * than or equal to zero. If file_region entries needed to be allocated for
673 * this operation and we were not able to allocate, it returns -ENOMEM.
674 * region_add of regions of length 1 never allocate file_regions and cannot
675 * fail; region_chg will always allocate at least 1 entry and a region_add for
676 * 1 page will only require at most 1 entry.
677 */
678static long region_add(struct resv_map *resv, long f, long t,
679 long in_regions_needed, struct hstate *h,
680 struct hugetlb_cgroup *h_cg)
681{
682 long add = 0, actual_regions_needed = 0;
683
684 spin_lock(&resv->lock);
685retry:
686
687 /* Count how many regions are actually needed to execute this add. */
688 add_reservation_in_range(resv, f, t, NULL, NULL,
689 &actual_regions_needed);
690
691 /*
692 * Check for sufficient descriptors in the cache to accommodate
693 * this add operation. Note that actual_regions_needed may be greater
694 * than in_regions_needed, as the resv_map may have been modified since
695 * the region_chg call. In this case, we need to make sure that we
696 * allocate extra entries, such that we have enough for all the
697 * existing adds_in_progress, plus the excess needed for this
698 * operation.
699 */
700 if (actual_regions_needed > in_regions_needed &&
701 resv->region_cache_count <
702 resv->adds_in_progress +
703 (actual_regions_needed - in_regions_needed)) {
704 /* region_add operation of range 1 should never need to
705 * allocate file_region entries.
706 */
707 VM_BUG_ON(t - f <= 1);
708
709 if (allocate_file_region_entries(
710 resv, actual_regions_needed - in_regions_needed)) {
711 return -ENOMEM;
712 }
713
714 goto retry;
715 }
716
717 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
718
719 resv->adds_in_progress -= in_regions_needed;
720
721 spin_unlock(&resv->lock);
722 return add;
723}
724
725/*
726 * Examine the existing reserve map and determine how many
727 * huge pages in the specified range [f, t) are NOT currently
728 * represented. This routine is called before a subsequent
729 * call to region_add that will actually modify the reserve
730 * map to add the specified range [f, t). region_chg does
731 * not change the number of huge pages represented by the
732 * map. A number of new file_region structures is added to the cache as a
733 * placeholder, for the subsequent region_add call to use. At least 1
734 * file_region structure is added.
735 *
736 * out_regions_needed is the number of regions added to the
737 * resv->adds_in_progress. This value needs to be provided to a follow up call
738 * to region_add or region_abort for proper accounting.
739 *
740 * Returns the number of huge pages that need to be added to the existing
741 * reservation map for the range [f, t). This number is greater or equal to
742 * zero. -ENOMEM is returned if a new file_region structure or cache entry
743 * is needed and can not be allocated.
744 */
745static long region_chg(struct resv_map *resv, long f, long t,
746 long *out_regions_needed)
747{
748 long chg = 0;
749
750 spin_lock(&resv->lock);
751
752 /* Count how many hugepages in this range are NOT represented. */
753 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
754 out_regions_needed);
755
756 if (*out_regions_needed == 0)
757 *out_regions_needed = 1;
758
759 if (allocate_file_region_entries(resv, *out_regions_needed))
760 return -ENOMEM;
761
762 resv->adds_in_progress += *out_regions_needed;
763
764 spin_unlock(&resv->lock);
765 return chg;
766}
767
768/*
769 * Abort the in progress add operation. The adds_in_progress field
770 * of the resv_map keeps track of the operations in progress between
771 * calls to region_chg and region_add. Operations are sometimes
772 * aborted after the call to region_chg. In such cases, region_abort
773 * is called to decrement the adds_in_progress counter. regions_needed
774 * is the value returned by the region_chg call, it is used to decrement
775 * the adds_in_progress counter.
776 *
777 * NOTE: The range arguments [f, t) are not needed or used in this
778 * routine. They are kept to make reading the calling code easier as
779 * arguments will match the associated region_chg call.
780 */
781static void region_abort(struct resv_map *resv, long f, long t,
782 long regions_needed)
783{
784 spin_lock(&resv->lock);
785 VM_BUG_ON(!resv->region_cache_count);
786 resv->adds_in_progress -= regions_needed;
787 spin_unlock(&resv->lock);
788}
789
790/*
791 * Delete the specified range [f, t) from the reserve map. If the
792 * t parameter is LONG_MAX, this indicates that ALL regions after f
793 * should be deleted. Locate the regions which intersect [f, t)
794 * and either trim, delete or split the existing regions.
795 *
796 * Returns the number of huge pages deleted from the reserve map.
797 * In the normal case, the return value is zero or more. In the
798 * case where a region must be split, a new region descriptor must
799 * be allocated. If the allocation fails, -ENOMEM will be returned.
800 * NOTE: If the parameter t == LONG_MAX, then we will never split
801 * a region and possibly return -ENOMEM. Callers specifying
802 * t == LONG_MAX do not need to check for -ENOMEM error.
803 */
804static long region_del(struct resv_map *resv, long f, long t)
805{
806 struct list_head *head = &resv->regions;
807 struct file_region *rg, *trg;
808 struct file_region *nrg = NULL;
809 long del = 0;
810
811retry:
812 spin_lock(&resv->lock);
813 list_for_each_entry_safe(rg, trg, head, link) {
814 /*
815 * Skip regions before the range to be deleted. file_region
816 * ranges are normally of the form [from, to). However, there
817 * may be a "placeholder" entry in the map which is of the form
818 * (from, to) with from == to. Check for placeholder entries
819 * at the beginning of the range to be deleted.
820 */
821 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822 continue;
823
824 if (rg->from >= t)
825 break;
826
827 if (f > rg->from && t < rg->to) { /* Must split region */
828 /*
829 * Check for an entry in the cache before dropping
830 * lock and attempting allocation.
831 */
832 if (!nrg &&
833 resv->region_cache_count > resv->adds_in_progress) {
834 nrg = list_first_entry(&resv->region_cache,
835 struct file_region,
836 link);
837 list_del(&nrg->link);
838 resv->region_cache_count--;
839 }
840
841 if (!nrg) {
842 spin_unlock(&resv->lock);
843 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 if (!nrg)
845 return -ENOMEM;
846 goto retry;
847 }
848
849 del += t - f;
850 hugetlb_cgroup_uncharge_file_region(
851 resv, rg, t - f, false);
852
853 /* New entry for end of split region */
854 nrg->from = t;
855 nrg->to = rg->to;
856
857 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
858
859 INIT_LIST_HEAD(&nrg->link);
860
861 /* Original entry is trimmed */
862 rg->to = f;
863
864 list_add(&nrg->link, &rg->link);
865 nrg = NULL;
866 break;
867 }
868
869 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
870 del += rg->to - rg->from;
871 hugetlb_cgroup_uncharge_file_region(resv, rg,
872 rg->to - rg->from, true);
873 list_del(&rg->link);
874 kfree(rg);
875 continue;
876 }
877
878 if (f <= rg->from) { /* Trim beginning of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
880 t - rg->from, false);
881
882 del += t - rg->from;
883 rg->from = t;
884 } else { /* Trim end of region */
885 hugetlb_cgroup_uncharge_file_region(resv, rg,
886 rg->to - f, false);
887
888 del += rg->to - f;
889 rg->to = f;
890 }
891 }
892
893 spin_unlock(&resv->lock);
894 kfree(nrg);
895 return del;
896}
897
898/*
899 * A rare out of memory error was encountered which prevented removal of
900 * the reserve map region for a page. The huge page itself was free'ed
901 * and removed from the page cache. This routine will adjust the subpool
902 * usage count, and the global reserve count if needed. By incrementing
903 * these counts, the reserve map entry which could not be deleted will
904 * appear as a "reserved" entry instead of simply dangling with incorrect
905 * counts.
906 */
907void hugetlb_fix_reserve_counts(struct inode *inode)
908{
909 struct hugepage_subpool *spool = subpool_inode(inode);
910 long rsv_adjust;
911 bool reserved = false;
912
913 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
914 if (rsv_adjust > 0) {
915 struct hstate *h = hstate_inode(inode);
916
917 if (!hugetlb_acct_memory(h, 1))
918 reserved = true;
919 } else if (!rsv_adjust) {
920 reserved = true;
921 }
922
923 if (!reserved)
924 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
925}
926
927/*
928 * Count and return the number of huge pages in the reserve map
929 * that intersect with the range [f, t).
930 */
931static long region_count(struct resv_map *resv, long f, long t)
932{
933 struct list_head *head = &resv->regions;
934 struct file_region *rg;
935 long chg = 0;
936
937 spin_lock(&resv->lock);
938 /* Locate each segment we overlap with, and count that overlap. */
939 list_for_each_entry(rg, head, link) {
940 long seg_from;
941 long seg_to;
942
943 if (rg->to <= f)
944 continue;
945 if (rg->from >= t)
946 break;
947
948 seg_from = max(rg->from, f);
949 seg_to = min(rg->to, t);
950
951 chg += seg_to - seg_from;
952 }
953 spin_unlock(&resv->lock);
954
955 return chg;
956}
957
958/*
959 * Convert the address within this vma to the page offset within
960 * the mapping, in pagecache page units; huge pages here.
961 */
962static pgoff_t vma_hugecache_offset(struct hstate *h,
963 struct vm_area_struct *vma, unsigned long address)
964{
965 return ((address - vma->vm_start) >> huge_page_shift(h)) +
966 (vma->vm_pgoff >> huge_page_order(h));
967}
968
969pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
970 unsigned long address)
971{
972 return vma_hugecache_offset(hstate_vma(vma), vma, address);
973}
974EXPORT_SYMBOL_GPL(linear_hugepage_index);
975
976/*
977 * Return the size of the pages allocated when backing a VMA. In the majority
978 * cases this will be same size as used by the page table entries.
979 */
980unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
981{
982 if (vma->vm_ops && vma->vm_ops->pagesize)
983 return vma->vm_ops->pagesize(vma);
984 return PAGE_SIZE;
985}
986EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987
988/*
989 * Return the page size being used by the MMU to back a VMA. In the majority
990 * of cases, the page size used by the kernel matches the MMU size. On
991 * architectures where it differs, an architecture-specific 'strong'
992 * version of this symbol is required.
993 */
994__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
995{
996 return vma_kernel_pagesize(vma);
997}
998
999/*
1000 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1001 * bits of the reservation map pointer, which are always clear due to
1002 * alignment.
1003 */
1004#define HPAGE_RESV_OWNER (1UL << 0)
1005#define HPAGE_RESV_UNMAPPED (1UL << 1)
1006#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007
1008/*
1009 * These helpers are used to track how many pages are reserved for
1010 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011 * is guaranteed to have their future faults succeed.
1012 *
1013 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014 * the reserve counters are updated with the hugetlb_lock held. It is safe
1015 * to reset the VMA at fork() time as it is not in use yet and there is no
1016 * chance of the global counters getting corrupted as a result of the values.
1017 *
1018 * The private mapping reservation is represented in a subtly different
1019 * manner to a shared mapping. A shared mapping has a region map associated
1020 * with the underlying file, this region map represents the backing file
1021 * pages which have ever had a reservation assigned which this persists even
1022 * after the page is instantiated. A private mapping has a region map
1023 * associated with the original mmap which is attached to all VMAs which
1024 * reference it, this region map represents those offsets which have consumed
1025 * reservation ie. where pages have been instantiated.
1026 */
1027static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1028{
1029 return (unsigned long)vma->vm_private_data;
1030}
1031
1032static void set_vma_private_data(struct vm_area_struct *vma,
1033 unsigned long value)
1034{
1035 vma->vm_private_data = (void *)value;
1036}
1037
1038static void
1039resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040 struct hugetlb_cgroup *h_cg,
1041 struct hstate *h)
1042{
1043#ifdef CONFIG_CGROUP_HUGETLB
1044 if (!h_cg || !h) {
1045 resv_map->reservation_counter = NULL;
1046 resv_map->pages_per_hpage = 0;
1047 resv_map->css = NULL;
1048 } else {
1049 resv_map->reservation_counter =
1050 &h_cg->rsvd_hugepage[hstate_index(h)];
1051 resv_map->pages_per_hpage = pages_per_huge_page(h);
1052 resv_map->css = &h_cg->css;
1053 }
1054#endif
1055}
1056
1057struct resv_map *resv_map_alloc(void)
1058{
1059 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1061
1062 if (!resv_map || !rg) {
1063 kfree(resv_map);
1064 kfree(rg);
1065 return NULL;
1066 }
1067
1068 kref_init(&resv_map->refs);
1069 spin_lock_init(&resv_map->lock);
1070 INIT_LIST_HEAD(&resv_map->regions);
1071
1072 resv_map->adds_in_progress = 0;
1073 /*
1074 * Initialize these to 0. On shared mappings, 0's here indicate these
1075 * fields don't do cgroup accounting. On private mappings, these will be
1076 * re-initialized to the proper values, to indicate that hugetlb cgroup
1077 * reservations are to be un-charged from here.
1078 */
1079 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1080
1081 INIT_LIST_HEAD(&resv_map->region_cache);
1082 list_add(&rg->link, &resv_map->region_cache);
1083 resv_map->region_cache_count = 1;
1084
1085 return resv_map;
1086}
1087
1088void resv_map_release(struct kref *ref)
1089{
1090 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091 struct list_head *head = &resv_map->region_cache;
1092 struct file_region *rg, *trg;
1093
1094 /* Clear out any active regions before we release the map. */
1095 region_del(resv_map, 0, LONG_MAX);
1096
1097 /* ... and any entries left in the cache */
1098 list_for_each_entry_safe(rg, trg, head, link) {
1099 list_del(&rg->link);
1100 kfree(rg);
1101 }
1102
1103 VM_BUG_ON(resv_map->adds_in_progress);
1104
1105 kfree(resv_map);
1106}
1107
1108static inline struct resv_map *inode_resv_map(struct inode *inode)
1109{
1110 /*
1111 * At inode evict time, i_mapping may not point to the original
1112 * address space within the inode. This original address space
1113 * contains the pointer to the resv_map. So, always use the
1114 * address space embedded within the inode.
1115 * The VERY common case is inode->mapping == &inode->i_data but,
1116 * this may not be true for device special inodes.
1117 */
1118 return (struct resv_map *)(&inode->i_data)->private_data;
1119}
1120
1121static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1122{
1123 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124 if (vma->vm_flags & VM_MAYSHARE) {
1125 struct address_space *mapping = vma->vm_file->f_mapping;
1126 struct inode *inode = mapping->host;
1127
1128 return inode_resv_map(inode);
1129
1130 } else {
1131 return (struct resv_map *)(get_vma_private_data(vma) &
1132 ~HPAGE_RESV_MASK);
1133 }
1134}
1135
1136static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1137{
1138 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1140
1141 set_vma_private_data(vma, (get_vma_private_data(vma) &
1142 HPAGE_RESV_MASK) | (unsigned long)map);
1143}
1144
1145static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1146{
1147 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1149
1150 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151}
1152
1153static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1154{
1155 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1156
1157 return (get_vma_private_data(vma) & flag) != 0;
1158}
1159
1160void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1161{
1162 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1163 /*
1164 * Clear vm_private_data
1165 * - For shared mappings this is a per-vma semaphore that may be
1166 * allocated in a subsequent call to hugetlb_vm_op_open.
1167 * Before clearing, make sure pointer is not associated with vma
1168 * as this will leak the structure. This is the case when called
1169 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170 * been called to allocate a new structure.
1171 * - For MAP_PRIVATE mappings, this is the reserve map which does
1172 * not apply to children. Faults generated by the children are
1173 * not guaranteed to succeed, even if read-only.
1174 */
1175 if (vma->vm_flags & VM_MAYSHARE) {
1176 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1177
1178 if (vma_lock && vma_lock->vma != vma)
1179 vma->vm_private_data = NULL;
1180 } else
1181 vma->vm_private_data = NULL;
1182}
1183
1184/*
1185 * Reset and decrement one ref on hugepage private reservation.
1186 * Called with mm->mmap_lock writer semaphore held.
1187 * This function should be only used by move_vma() and operate on
1188 * same sized vma. It should never come here with last ref on the
1189 * reservation.
1190 */
1191void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192{
1193 /*
1194 * Clear the old hugetlb private page reservation.
1195 * It has already been transferred to new_vma.
1196 *
1197 * During a mremap() operation of a hugetlb vma we call move_vma()
1198 * which copies vma into new_vma and unmaps vma. After the copy
1199 * operation both new_vma and vma share a reference to the resv_map
1200 * struct, and at that point vma is about to be unmapped. We don't
1201 * want to return the reservation to the pool at unmap of vma because
1202 * the reservation still lives on in new_vma, so simply decrement the
1203 * ref here and remove the resv_map reference from this vma.
1204 */
1205 struct resv_map *reservations = vma_resv_map(vma);
1206
1207 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209 kref_put(&reservations->refs, resv_map_release);
1210 }
1211
1212 hugetlb_dup_vma_private(vma);
1213}
1214
1215/* Returns true if the VMA has associated reserve pages */
1216static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1217{
1218 if (vma->vm_flags & VM_NORESERVE) {
1219 /*
1220 * This address is already reserved by other process(chg == 0),
1221 * so, we should decrement reserved count. Without decrementing,
1222 * reserve count remains after releasing inode, because this
1223 * allocated page will go into page cache and is regarded as
1224 * coming from reserved pool in releasing step. Currently, we
1225 * don't have any other solution to deal with this situation
1226 * properly, so add work-around here.
1227 */
1228 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229 return true;
1230 else
1231 return false;
1232 }
1233
1234 /* Shared mappings always use reserves */
1235 if (vma->vm_flags & VM_MAYSHARE) {
1236 /*
1237 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1238 * be a region map for all pages. The only situation where
1239 * there is no region map is if a hole was punched via
1240 * fallocate. In this case, there really are no reserves to
1241 * use. This situation is indicated if chg != 0.
1242 */
1243 if (chg)
1244 return false;
1245 else
1246 return true;
1247 }
1248
1249 /*
1250 * Only the process that called mmap() has reserves for
1251 * private mappings.
1252 */
1253 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1254 /*
1255 * Like the shared case above, a hole punch or truncate
1256 * could have been performed on the private mapping.
1257 * Examine the value of chg to determine if reserves
1258 * actually exist or were previously consumed.
1259 * Very Subtle - The value of chg comes from a previous
1260 * call to vma_needs_reserves(). The reserve map for
1261 * private mappings has different (opposite) semantics
1262 * than that of shared mappings. vma_needs_reserves()
1263 * has already taken this difference in semantics into
1264 * account. Therefore, the meaning of chg is the same
1265 * as in the shared case above. Code could easily be
1266 * combined, but keeping it separate draws attention to
1267 * subtle differences.
1268 */
1269 if (chg)
1270 return false;
1271 else
1272 return true;
1273 }
1274
1275 return false;
1276}
1277
1278static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1279{
1280 int nid = folio_nid(folio);
1281
1282 lockdep_assert_held(&hugetlb_lock);
1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1284
1285 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1286 h->free_huge_pages++;
1287 h->free_huge_pages_node[nid]++;
1288 folio_set_hugetlb_freed(folio);
1289}
1290
1291static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1292{
1293 struct page *page;
1294 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1295
1296 lockdep_assert_held(&hugetlb_lock);
1297 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1298 if (pin && !is_longterm_pinnable_page(page))
1299 continue;
1300
1301 if (PageHWPoison(page))
1302 continue;
1303
1304 list_move(&page->lru, &h->hugepage_activelist);
1305 set_page_refcounted(page);
1306 ClearHPageFreed(page);
1307 h->free_huge_pages--;
1308 h->free_huge_pages_node[nid]--;
1309 return page;
1310 }
1311
1312 return NULL;
1313}
1314
1315static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1316 nodemask_t *nmask)
1317{
1318 unsigned int cpuset_mems_cookie;
1319 struct zonelist *zonelist;
1320 struct zone *zone;
1321 struct zoneref *z;
1322 int node = NUMA_NO_NODE;
1323
1324 zonelist = node_zonelist(nid, gfp_mask);
1325
1326retry_cpuset:
1327 cpuset_mems_cookie = read_mems_allowed_begin();
1328 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1329 struct page *page;
1330
1331 if (!cpuset_zone_allowed(zone, gfp_mask))
1332 continue;
1333 /*
1334 * no need to ask again on the same node. Pool is node rather than
1335 * zone aware
1336 */
1337 if (zone_to_nid(zone) == node)
1338 continue;
1339 node = zone_to_nid(zone);
1340
1341 page = dequeue_huge_page_node_exact(h, node);
1342 if (page)
1343 return page;
1344 }
1345 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346 goto retry_cpuset;
1347
1348 return NULL;
1349}
1350
1351static unsigned long available_huge_pages(struct hstate *h)
1352{
1353 return h->free_huge_pages - h->resv_huge_pages;
1354}
1355
1356static struct page *dequeue_huge_page_vma(struct hstate *h,
1357 struct vm_area_struct *vma,
1358 unsigned long address, int avoid_reserve,
1359 long chg)
1360{
1361 struct page *page = NULL;
1362 struct mempolicy *mpol;
1363 gfp_t gfp_mask;
1364 nodemask_t *nodemask;
1365 int nid;
1366
1367 /*
1368 * A child process with MAP_PRIVATE mappings created by their parent
1369 * have no page reserves. This check ensures that reservations are
1370 * not "stolen". The child may still get SIGKILLed
1371 */
1372 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1373 goto err;
1374
1375 /* If reserves cannot be used, ensure enough pages are in the pool */
1376 if (avoid_reserve && !available_huge_pages(h))
1377 goto err;
1378
1379 gfp_mask = htlb_alloc_mask(h);
1380 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1381
1382 if (mpol_is_preferred_many(mpol)) {
1383 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1384
1385 /* Fallback to all nodes if page==NULL */
1386 nodemask = NULL;
1387 }
1388
1389 if (!page)
1390 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1391
1392 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1393 SetHPageRestoreReserve(page);
1394 h->resv_huge_pages--;
1395 }
1396
1397 mpol_cond_put(mpol);
1398 return page;
1399
1400err:
1401 return NULL;
1402}
1403
1404/*
1405 * common helper functions for hstate_next_node_to_{alloc|free}.
1406 * We may have allocated or freed a huge page based on a different
1407 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1408 * be outside of *nodes_allowed. Ensure that we use an allowed
1409 * node for alloc or free.
1410 */
1411static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1412{
1413 nid = next_node_in(nid, *nodes_allowed);
1414 VM_BUG_ON(nid >= MAX_NUMNODES);
1415
1416 return nid;
1417}
1418
1419static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1420{
1421 if (!node_isset(nid, *nodes_allowed))
1422 nid = next_node_allowed(nid, nodes_allowed);
1423 return nid;
1424}
1425
1426/*
1427 * returns the previously saved node ["this node"] from which to
1428 * allocate a persistent huge page for the pool and advance the
1429 * next node from which to allocate, handling wrap at end of node
1430 * mask.
1431 */
1432static int hstate_next_node_to_alloc(struct hstate *h,
1433 nodemask_t *nodes_allowed)
1434{
1435 int nid;
1436
1437 VM_BUG_ON(!nodes_allowed);
1438
1439 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1440 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1441
1442 return nid;
1443}
1444
1445/*
1446 * helper for remove_pool_huge_page() - return the previously saved
1447 * node ["this node"] from which to free a huge page. Advance the
1448 * next node id whether or not we find a free huge page to free so
1449 * that the next attempt to free addresses the next node.
1450 */
1451static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452{
1453 int nid;
1454
1455 VM_BUG_ON(!nodes_allowed);
1456
1457 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1458 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1459
1460 return nid;
1461}
1462
1463#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1464 for (nr_nodes = nodes_weight(*mask); \
1465 nr_nodes > 0 && \
1466 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1467 nr_nodes--)
1468
1469#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1470 for (nr_nodes = nodes_weight(*mask); \
1471 nr_nodes > 0 && \
1472 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1473 nr_nodes--)
1474
1475/* used to demote non-gigantic_huge pages as well */
1476static void __destroy_compound_gigantic_folio(struct folio *folio,
1477 unsigned int order, bool demote)
1478{
1479 int i;
1480 int nr_pages = 1 << order;
1481 struct page *p;
1482
1483 atomic_set(folio_mapcount_ptr(folio), 0);
1484 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1485 atomic_set(folio_pincount_ptr(folio), 0);
1486
1487 for (i = 1; i < nr_pages; i++) {
1488 p = folio_page(folio, i);
1489 p->mapping = NULL;
1490 clear_compound_head(p);
1491 if (!demote)
1492 set_page_refcounted(p);
1493 }
1494
1495 folio_set_compound_order(folio, 0);
1496 __folio_clear_head(folio);
1497}
1498
1499static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1500 unsigned int order)
1501{
1502 __destroy_compound_gigantic_folio(folio, order, true);
1503}
1504
1505#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1506static void destroy_compound_gigantic_folio(struct folio *folio,
1507 unsigned int order)
1508{
1509 __destroy_compound_gigantic_folio(folio, order, false);
1510}
1511
1512static void free_gigantic_folio(struct folio *folio, unsigned int order)
1513{
1514 /*
1515 * If the page isn't allocated using the cma allocator,
1516 * cma_release() returns false.
1517 */
1518#ifdef CONFIG_CMA
1519 int nid = folio_nid(folio);
1520
1521 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1522 return;
1523#endif
1524
1525 free_contig_range(folio_pfn(folio), 1 << order);
1526}
1527
1528#ifdef CONFIG_CONTIG_ALLOC
1529static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1530 int nid, nodemask_t *nodemask)
1531{
1532 struct page *page;
1533 unsigned long nr_pages = pages_per_huge_page(h);
1534 if (nid == NUMA_NO_NODE)
1535 nid = numa_mem_id();
1536
1537#ifdef CONFIG_CMA
1538 {
1539 int node;
1540
1541 if (hugetlb_cma[nid]) {
1542 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1543 huge_page_order(h), true);
1544 if (page)
1545 return page_folio(page);
1546 }
1547
1548 if (!(gfp_mask & __GFP_THISNODE)) {
1549 for_each_node_mask(node, *nodemask) {
1550 if (node == nid || !hugetlb_cma[node])
1551 continue;
1552
1553 page = cma_alloc(hugetlb_cma[node], nr_pages,
1554 huge_page_order(h), true);
1555 if (page)
1556 return page_folio(page);
1557 }
1558 }
1559 }
1560#endif
1561
1562 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1563 return page ? page_folio(page) : NULL;
1564}
1565
1566#else /* !CONFIG_CONTIG_ALLOC */
1567static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1568 int nid, nodemask_t *nodemask)
1569{
1570 return NULL;
1571}
1572#endif /* CONFIG_CONTIG_ALLOC */
1573
1574#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1575static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1576 int nid, nodemask_t *nodemask)
1577{
1578 return NULL;
1579}
1580static inline void free_gigantic_folio(struct folio *folio,
1581 unsigned int order) { }
1582static inline void destroy_compound_gigantic_folio(struct folio *folio,
1583 unsigned int order) { }
1584#endif
1585
1586/*
1587 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1588 * as just a compound page.
1589 *
1590 * A reference is held on the folio, except in the case of demote.
1591 *
1592 * Must be called with hugetlb lock held.
1593 */
1594static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1595 bool adjust_surplus,
1596 bool demote)
1597{
1598 int nid = folio_nid(folio);
1599
1600 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1601 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1602
1603 lockdep_assert_held(&hugetlb_lock);
1604 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1605 return;
1606
1607 list_del(&folio->lru);
1608
1609 if (folio_test_hugetlb_freed(folio)) {
1610 h->free_huge_pages--;
1611 h->free_huge_pages_node[nid]--;
1612 }
1613 if (adjust_surplus) {
1614 h->surplus_huge_pages--;
1615 h->surplus_huge_pages_node[nid]--;
1616 }
1617
1618 /*
1619 * Very subtle
1620 *
1621 * For non-gigantic pages set the destructor to the normal compound
1622 * page dtor. This is needed in case someone takes an additional
1623 * temporary ref to the page, and freeing is delayed until they drop
1624 * their reference.
1625 *
1626 * For gigantic pages set the destructor to the null dtor. This
1627 * destructor will never be called. Before freeing the gigantic
1628 * page destroy_compound_gigantic_folio will turn the folio into a
1629 * simple group of pages. After this the destructor does not
1630 * apply.
1631 *
1632 * This handles the case where more than one ref is held when and
1633 * after update_and_free_hugetlb_folio is called.
1634 *
1635 * In the case of demote we do not ref count the page as it will soon
1636 * be turned into a page of smaller size.
1637 */
1638 if (!demote)
1639 folio_ref_unfreeze(folio, 1);
1640 if (hstate_is_gigantic(h))
1641 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1642 else
1643 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1644
1645 h->nr_huge_pages--;
1646 h->nr_huge_pages_node[nid]--;
1647}
1648
1649static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1650 bool adjust_surplus)
1651{
1652 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1653}
1654
1655static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1656 bool adjust_surplus)
1657{
1658 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1659}
1660
1661static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1662 bool adjust_surplus)
1663{
1664 int zeroed;
1665 int nid = folio_nid(folio);
1666
1667 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1668
1669 lockdep_assert_held(&hugetlb_lock);
1670
1671 INIT_LIST_HEAD(&folio->lru);
1672 h->nr_huge_pages++;
1673 h->nr_huge_pages_node[nid]++;
1674
1675 if (adjust_surplus) {
1676 h->surplus_huge_pages++;
1677 h->surplus_huge_pages_node[nid]++;
1678 }
1679
1680 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1681 folio_change_private(folio, NULL);
1682 /*
1683 * We have to set hugetlb_vmemmap_optimized again as above
1684 * folio_change_private(folio, NULL) cleared it.
1685 */
1686 folio_set_hugetlb_vmemmap_optimized(folio);
1687
1688 /*
1689 * This folio is about to be managed by the hugetlb allocator and
1690 * should have no users. Drop our reference, and check for others
1691 * just in case.
1692 */
1693 zeroed = folio_put_testzero(folio);
1694 if (unlikely(!zeroed))
1695 /*
1696 * It is VERY unlikely soneone else has taken a ref on
1697 * the page. In this case, we simply return as the
1698 * hugetlb destructor (free_huge_page) will be called
1699 * when this other ref is dropped.
1700 */
1701 return;
1702
1703 arch_clear_hugepage_flags(&folio->page);
1704 enqueue_hugetlb_folio(h, folio);
1705}
1706
1707static void __update_and_free_page(struct hstate *h, struct page *page)
1708{
1709 int i;
1710 struct folio *folio = page_folio(page);
1711 struct page *subpage;
1712
1713 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1714 return;
1715
1716 /*
1717 * If we don't know which subpages are hwpoisoned, we can't free
1718 * the hugepage, so it's leaked intentionally.
1719 */
1720 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1721 return;
1722
1723 if (hugetlb_vmemmap_restore(h, page)) {
1724 spin_lock_irq(&hugetlb_lock);
1725 /*
1726 * If we cannot allocate vmemmap pages, just refuse to free the
1727 * page and put the page back on the hugetlb free list and treat
1728 * as a surplus page.
1729 */
1730 add_hugetlb_folio(h, folio, true);
1731 spin_unlock_irq(&hugetlb_lock);
1732 return;
1733 }
1734
1735 /*
1736 * Move PageHWPoison flag from head page to the raw error pages,
1737 * which makes any healthy subpages reusable.
1738 */
1739 if (unlikely(folio_test_hwpoison(folio)))
1740 hugetlb_clear_page_hwpoison(&folio->page);
1741
1742 for (i = 0; i < pages_per_huge_page(h); i++) {
1743 subpage = folio_page(folio, i);
1744 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1745 1 << PG_referenced | 1 << PG_dirty |
1746 1 << PG_active | 1 << PG_private |
1747 1 << PG_writeback);
1748 }
1749
1750 /*
1751 * Non-gigantic pages demoted from CMA allocated gigantic pages
1752 * need to be given back to CMA in free_gigantic_folio.
1753 */
1754 if (hstate_is_gigantic(h) ||
1755 hugetlb_cma_folio(folio, huge_page_order(h))) {
1756 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1757 free_gigantic_folio(folio, huge_page_order(h));
1758 } else {
1759 __free_pages(page, huge_page_order(h));
1760 }
1761}
1762
1763/*
1764 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1765 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1766 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1767 * the vmemmap pages.
1768 *
1769 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1770 * freed and frees them one-by-one. As the page->mapping pointer is going
1771 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1772 * structure of a lockless linked list of huge pages to be freed.
1773 */
1774static LLIST_HEAD(hpage_freelist);
1775
1776static void free_hpage_workfn(struct work_struct *work)
1777{
1778 struct llist_node *node;
1779
1780 node = llist_del_all(&hpage_freelist);
1781
1782 while (node) {
1783 struct page *page;
1784 struct hstate *h;
1785
1786 page = container_of((struct address_space **)node,
1787 struct page, mapping);
1788 node = node->next;
1789 page->mapping = NULL;
1790 /*
1791 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1792 * is going to trigger because a previous call to
1793 * remove_hugetlb_folio() will call folio_set_compound_dtor
1794 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1795 * directly.
1796 */
1797 h = size_to_hstate(page_size(page));
1798
1799 __update_and_free_page(h, page);
1800
1801 cond_resched();
1802 }
1803}
1804static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1805
1806static inline void flush_free_hpage_work(struct hstate *h)
1807{
1808 if (hugetlb_vmemmap_optimizable(h))
1809 flush_work(&free_hpage_work);
1810}
1811
1812static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1813 bool atomic)
1814{
1815 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1816 __update_and_free_page(h, &folio->page);
1817 return;
1818 }
1819
1820 /*
1821 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1822 *
1823 * Only call schedule_work() if hpage_freelist is previously
1824 * empty. Otherwise, schedule_work() had been called but the workfn
1825 * hasn't retrieved the list yet.
1826 */
1827 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1828 schedule_work(&free_hpage_work);
1829}
1830
1831static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1832{
1833 struct page *page, *t_page;
1834 struct folio *folio;
1835
1836 list_for_each_entry_safe(page, t_page, list, lru) {
1837 folio = page_folio(page);
1838 update_and_free_hugetlb_folio(h, folio, false);
1839 cond_resched();
1840 }
1841}
1842
1843struct hstate *size_to_hstate(unsigned long size)
1844{
1845 struct hstate *h;
1846
1847 for_each_hstate(h) {
1848 if (huge_page_size(h) == size)
1849 return h;
1850 }
1851 return NULL;
1852}
1853
1854void free_huge_page(struct page *page)
1855{
1856 /*
1857 * Can't pass hstate in here because it is called from the
1858 * compound page destructor.
1859 */
1860 struct folio *folio = page_folio(page);
1861 struct hstate *h = folio_hstate(folio);
1862 int nid = folio_nid(folio);
1863 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1864 bool restore_reserve;
1865 unsigned long flags;
1866
1867 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1868 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1869
1870 hugetlb_set_folio_subpool(folio, NULL);
1871 if (folio_test_anon(folio))
1872 __ClearPageAnonExclusive(&folio->page);
1873 folio->mapping = NULL;
1874 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1875 folio_clear_hugetlb_restore_reserve(folio);
1876
1877 /*
1878 * If HPageRestoreReserve was set on page, page allocation consumed a
1879 * reservation. If the page was associated with a subpool, there
1880 * would have been a page reserved in the subpool before allocation
1881 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1882 * reservation, do not call hugepage_subpool_put_pages() as this will
1883 * remove the reserved page from the subpool.
1884 */
1885 if (!restore_reserve) {
1886 /*
1887 * A return code of zero implies that the subpool will be
1888 * under its minimum size if the reservation is not restored
1889 * after page is free. Therefore, force restore_reserve
1890 * operation.
1891 */
1892 if (hugepage_subpool_put_pages(spool, 1) == 0)
1893 restore_reserve = true;
1894 }
1895
1896 spin_lock_irqsave(&hugetlb_lock, flags);
1897 folio_clear_hugetlb_migratable(folio);
1898 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1899 pages_per_huge_page(h), folio);
1900 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1901 pages_per_huge_page(h), folio);
1902 if (restore_reserve)
1903 h->resv_huge_pages++;
1904
1905 if (folio_test_hugetlb_temporary(folio)) {
1906 remove_hugetlb_folio(h, folio, false);
1907 spin_unlock_irqrestore(&hugetlb_lock, flags);
1908 update_and_free_hugetlb_folio(h, folio, true);
1909 } else if (h->surplus_huge_pages_node[nid]) {
1910 /* remove the page from active list */
1911 remove_hugetlb_folio(h, folio, true);
1912 spin_unlock_irqrestore(&hugetlb_lock, flags);
1913 update_and_free_hugetlb_folio(h, folio, true);
1914 } else {
1915 arch_clear_hugepage_flags(page);
1916 enqueue_hugetlb_folio(h, folio);
1917 spin_unlock_irqrestore(&hugetlb_lock, flags);
1918 }
1919}
1920
1921/*
1922 * Must be called with the hugetlb lock held
1923 */
1924static void __prep_account_new_huge_page(struct hstate *h, int nid)
1925{
1926 lockdep_assert_held(&hugetlb_lock);
1927 h->nr_huge_pages++;
1928 h->nr_huge_pages_node[nid]++;
1929}
1930
1931static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1932{
1933 hugetlb_vmemmap_optimize(h, &folio->page);
1934 INIT_LIST_HEAD(&folio->lru);
1935 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1936 hugetlb_set_folio_subpool(folio, NULL);
1937 set_hugetlb_cgroup(folio, NULL);
1938 set_hugetlb_cgroup_rsvd(folio, NULL);
1939}
1940
1941static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1942{
1943 __prep_new_hugetlb_folio(h, folio);
1944 spin_lock_irq(&hugetlb_lock);
1945 __prep_account_new_huge_page(h, nid);
1946 spin_unlock_irq(&hugetlb_lock);
1947}
1948
1949static bool __prep_compound_gigantic_folio(struct folio *folio,
1950 unsigned int order, bool demote)
1951{
1952 int i, j;
1953 int nr_pages = 1 << order;
1954 struct page *p;
1955
1956 __folio_clear_reserved(folio);
1957 __folio_set_head(folio);
1958 /* we rely on prep_new_hugetlb_folio to set the destructor */
1959 folio_set_compound_order(folio, order);
1960 for (i = 0; i < nr_pages; i++) {
1961 p = folio_page(folio, i);
1962
1963 /*
1964 * For gigantic hugepages allocated through bootmem at
1965 * boot, it's safer to be consistent with the not-gigantic
1966 * hugepages and clear the PG_reserved bit from all tail pages
1967 * too. Otherwise drivers using get_user_pages() to access tail
1968 * pages may get the reference counting wrong if they see
1969 * PG_reserved set on a tail page (despite the head page not
1970 * having PG_reserved set). Enforcing this consistency between
1971 * head and tail pages allows drivers to optimize away a check
1972 * on the head page when they need know if put_page() is needed
1973 * after get_user_pages().
1974 */
1975 if (i != 0) /* head page cleared above */
1976 __ClearPageReserved(p);
1977 /*
1978 * Subtle and very unlikely
1979 *
1980 * Gigantic 'page allocators' such as memblock or cma will
1981 * return a set of pages with each page ref counted. We need
1982 * to turn this set of pages into a compound page with tail
1983 * page ref counts set to zero. Code such as speculative page
1984 * cache adding could take a ref on a 'to be' tail page.
1985 * We need to respect any increased ref count, and only set
1986 * the ref count to zero if count is currently 1. If count
1987 * is not 1, we return an error. An error return indicates
1988 * the set of pages can not be converted to a gigantic page.
1989 * The caller who allocated the pages should then discard the
1990 * pages using the appropriate free interface.
1991 *
1992 * In the case of demote, the ref count will be zero.
1993 */
1994 if (!demote) {
1995 if (!page_ref_freeze(p, 1)) {
1996 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1997 goto out_error;
1998 }
1999 } else {
2000 VM_BUG_ON_PAGE(page_count(p), p);
2001 }
2002 if (i != 0)
2003 set_compound_head(p, &folio->page);
2004 }
2005 atomic_set(folio_mapcount_ptr(folio), -1);
2006 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2007 atomic_set(folio_pincount_ptr(folio), 0);
2008 return true;
2009
2010out_error:
2011 /* undo page modifications made above */
2012 for (j = 0; j < i; j++) {
2013 p = folio_page(folio, j);
2014 if (j != 0)
2015 clear_compound_head(p);
2016 set_page_refcounted(p);
2017 }
2018 /* need to clear PG_reserved on remaining tail pages */
2019 for (; j < nr_pages; j++) {
2020 p = folio_page(folio, j);
2021 __ClearPageReserved(p);
2022 }
2023 folio_set_compound_order(folio, 0);
2024 __folio_clear_head(folio);
2025 return false;
2026}
2027
2028static bool prep_compound_gigantic_folio(struct folio *folio,
2029 unsigned int order)
2030{
2031 return __prep_compound_gigantic_folio(folio, order, false);
2032}
2033
2034static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2035 unsigned int order)
2036{
2037 return __prep_compound_gigantic_folio(folio, order, true);
2038}
2039
2040/*
2041 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2042 * transparent huge pages. See the PageTransHuge() documentation for more
2043 * details.
2044 */
2045int PageHuge(struct page *page)
2046{
2047 if (!PageCompound(page))
2048 return 0;
2049
2050 page = compound_head(page);
2051 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2052}
2053EXPORT_SYMBOL_GPL(PageHuge);
2054
2055/*
2056 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2057 * normal or transparent huge pages.
2058 */
2059int PageHeadHuge(struct page *page_head)
2060{
2061 if (!PageHead(page_head))
2062 return 0;
2063
2064 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2065}
2066EXPORT_SYMBOL_GPL(PageHeadHuge);
2067
2068/*
2069 * Find and lock address space (mapping) in write mode.
2070 *
2071 * Upon entry, the page is locked which means that page_mapping() is
2072 * stable. Due to locking order, we can only trylock_write. If we can
2073 * not get the lock, simply return NULL to caller.
2074 */
2075struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2076{
2077 struct address_space *mapping = page_mapping(hpage);
2078
2079 if (!mapping)
2080 return mapping;
2081
2082 if (i_mmap_trylock_write(mapping))
2083 return mapping;
2084
2085 return NULL;
2086}
2087
2088pgoff_t hugetlb_basepage_index(struct page *page)
2089{
2090 struct page *page_head = compound_head(page);
2091 pgoff_t index = page_index(page_head);
2092 unsigned long compound_idx;
2093
2094 if (compound_order(page_head) >= MAX_ORDER)
2095 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2096 else
2097 compound_idx = page - page_head;
2098
2099 return (index << compound_order(page_head)) + compound_idx;
2100}
2101
2102static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2103 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2104 nodemask_t *node_alloc_noretry)
2105{
2106 int order = huge_page_order(h);
2107 struct page *page;
2108 bool alloc_try_hard = true;
2109 bool retry = true;
2110
2111 /*
2112 * By default we always try hard to allocate the page with
2113 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2114 * a loop (to adjust global huge page counts) and previous allocation
2115 * failed, do not continue to try hard on the same node. Use the
2116 * node_alloc_noretry bitmap to manage this state information.
2117 */
2118 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2119 alloc_try_hard = false;
2120 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2121 if (alloc_try_hard)
2122 gfp_mask |= __GFP_RETRY_MAYFAIL;
2123 if (nid == NUMA_NO_NODE)
2124 nid = numa_mem_id();
2125retry:
2126 page = __alloc_pages(gfp_mask, order, nid, nmask);
2127
2128 /* Freeze head page */
2129 if (page && !page_ref_freeze(page, 1)) {
2130 __free_pages(page, order);
2131 if (retry) { /* retry once */
2132 retry = false;
2133 goto retry;
2134 }
2135 /* WOW! twice in a row. */
2136 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2137 page = NULL;
2138 }
2139
2140 /*
2141 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2142 * indicates an overall state change. Clear bit so that we resume
2143 * normal 'try hard' allocations.
2144 */
2145 if (node_alloc_noretry && page && !alloc_try_hard)
2146 node_clear(nid, *node_alloc_noretry);
2147
2148 /*
2149 * If we tried hard to get a page but failed, set bit so that
2150 * subsequent attempts will not try as hard until there is an
2151 * overall state change.
2152 */
2153 if (node_alloc_noretry && !page && alloc_try_hard)
2154 node_set(nid, *node_alloc_noretry);
2155
2156 if (!page) {
2157 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2158 return NULL;
2159 }
2160
2161 __count_vm_event(HTLB_BUDDY_PGALLOC);
2162 return page_folio(page);
2163}
2164
2165/*
2166 * Common helper to allocate a fresh hugetlb page. All specific allocators
2167 * should use this function to get new hugetlb pages
2168 *
2169 * Note that returned page is 'frozen': ref count of head page and all tail
2170 * pages is zero.
2171 */
2172static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2173 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2174 nodemask_t *node_alloc_noretry)
2175{
2176 struct folio *folio;
2177 bool retry = false;
2178
2179retry:
2180 if (hstate_is_gigantic(h))
2181 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2182 else
2183 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2184 nid, nmask, node_alloc_noretry);
2185 if (!folio)
2186 return NULL;
2187 if (hstate_is_gigantic(h)) {
2188 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2189 /*
2190 * Rare failure to convert pages to compound page.
2191 * Free pages and try again - ONCE!
2192 */
2193 free_gigantic_folio(folio, huge_page_order(h));
2194 if (!retry) {
2195 retry = true;
2196 goto retry;
2197 }
2198 return NULL;
2199 }
2200 }
2201 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2202
2203 return folio;
2204}
2205
2206/*
2207 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2208 * manner.
2209 */
2210static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2211 nodemask_t *node_alloc_noretry)
2212{
2213 struct folio *folio;
2214 int nr_nodes, node;
2215 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2216
2217 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2218 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2219 nodes_allowed, node_alloc_noretry);
2220 if (folio) {
2221 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2222 return 1;
2223 }
2224 }
2225
2226 return 0;
2227}
2228
2229/*
2230 * Remove huge page from pool from next node to free. Attempt to keep
2231 * persistent huge pages more or less balanced over allowed nodes.
2232 * This routine only 'removes' the hugetlb page. The caller must make
2233 * an additional call to free the page to low level allocators.
2234 * Called with hugetlb_lock locked.
2235 */
2236static struct page *remove_pool_huge_page(struct hstate *h,
2237 nodemask_t *nodes_allowed,
2238 bool acct_surplus)
2239{
2240 int nr_nodes, node;
2241 struct page *page = NULL;
2242 struct folio *folio;
2243
2244 lockdep_assert_held(&hugetlb_lock);
2245 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2246 /*
2247 * If we're returning unused surplus pages, only examine
2248 * nodes with surplus pages.
2249 */
2250 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2251 !list_empty(&h->hugepage_freelists[node])) {
2252 page = list_entry(h->hugepage_freelists[node].next,
2253 struct page, lru);
2254 folio = page_folio(page);
2255 remove_hugetlb_folio(h, folio, acct_surplus);
2256 break;
2257 }
2258 }
2259
2260 return page;
2261}
2262
2263/*
2264 * Dissolve a given free hugepage into free buddy pages. This function does
2265 * nothing for in-use hugepages and non-hugepages.
2266 * This function returns values like below:
2267 *
2268 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2269 * when the system is under memory pressure and the feature of
2270 * freeing unused vmemmap pages associated with each hugetlb page
2271 * is enabled.
2272 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2273 * (allocated or reserved.)
2274 * 0: successfully dissolved free hugepages or the page is not a
2275 * hugepage (considered as already dissolved)
2276 */
2277int dissolve_free_huge_page(struct page *page)
2278{
2279 int rc = -EBUSY;
2280 struct folio *folio = page_folio(page);
2281
2282retry:
2283 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2284 if (!folio_test_hugetlb(folio))
2285 return 0;
2286
2287 spin_lock_irq(&hugetlb_lock);
2288 if (!folio_test_hugetlb(folio)) {
2289 rc = 0;
2290 goto out;
2291 }
2292
2293 if (!folio_ref_count(folio)) {
2294 struct hstate *h = folio_hstate(folio);
2295 if (!available_huge_pages(h))
2296 goto out;
2297
2298 /*
2299 * We should make sure that the page is already on the free list
2300 * when it is dissolved.
2301 */
2302 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2303 spin_unlock_irq(&hugetlb_lock);
2304 cond_resched();
2305
2306 /*
2307 * Theoretically, we should return -EBUSY when we
2308 * encounter this race. In fact, we have a chance
2309 * to successfully dissolve the page if we do a
2310 * retry. Because the race window is quite small.
2311 * If we seize this opportunity, it is an optimization
2312 * for increasing the success rate of dissolving page.
2313 */
2314 goto retry;
2315 }
2316
2317 remove_hugetlb_folio(h, folio, false);
2318 h->max_huge_pages--;
2319 spin_unlock_irq(&hugetlb_lock);
2320
2321 /*
2322 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2323 * before freeing the page. update_and_free_hugtlb_folio will fail to
2324 * free the page if it can not allocate required vmemmap. We
2325 * need to adjust max_huge_pages if the page is not freed.
2326 * Attempt to allocate vmemmmap here so that we can take
2327 * appropriate action on failure.
2328 */
2329 rc = hugetlb_vmemmap_restore(h, &folio->page);
2330 if (!rc) {
2331 update_and_free_hugetlb_folio(h, folio, false);
2332 } else {
2333 spin_lock_irq(&hugetlb_lock);
2334 add_hugetlb_folio(h, folio, false);
2335 h->max_huge_pages++;
2336 spin_unlock_irq(&hugetlb_lock);
2337 }
2338
2339 return rc;
2340 }
2341out:
2342 spin_unlock_irq(&hugetlb_lock);
2343 return rc;
2344}
2345
2346/*
2347 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2348 * make specified memory blocks removable from the system.
2349 * Note that this will dissolve a free gigantic hugepage completely, if any
2350 * part of it lies within the given range.
2351 * Also note that if dissolve_free_huge_page() returns with an error, all
2352 * free hugepages that were dissolved before that error are lost.
2353 */
2354int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2355{
2356 unsigned long pfn;
2357 struct page *page;
2358 int rc = 0;
2359 unsigned int order;
2360 struct hstate *h;
2361
2362 if (!hugepages_supported())
2363 return rc;
2364
2365 order = huge_page_order(&default_hstate);
2366 for_each_hstate(h)
2367 order = min(order, huge_page_order(h));
2368
2369 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2370 page = pfn_to_page(pfn);
2371 rc = dissolve_free_huge_page(page);
2372 if (rc)
2373 break;
2374 }
2375
2376 return rc;
2377}
2378
2379/*
2380 * Allocates a fresh surplus page from the page allocator.
2381 */
2382static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2383 int nid, nodemask_t *nmask)
2384{
2385 struct folio *folio = NULL;
2386
2387 if (hstate_is_gigantic(h))
2388 return NULL;
2389
2390 spin_lock_irq(&hugetlb_lock);
2391 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2392 goto out_unlock;
2393 spin_unlock_irq(&hugetlb_lock);
2394
2395 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2396 if (!folio)
2397 return NULL;
2398
2399 spin_lock_irq(&hugetlb_lock);
2400 /*
2401 * We could have raced with the pool size change.
2402 * Double check that and simply deallocate the new page
2403 * if we would end up overcommiting the surpluses. Abuse
2404 * temporary page to workaround the nasty free_huge_page
2405 * codeflow
2406 */
2407 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2408 folio_set_hugetlb_temporary(folio);
2409 spin_unlock_irq(&hugetlb_lock);
2410 free_huge_page(&folio->page);
2411 return NULL;
2412 }
2413
2414 h->surplus_huge_pages++;
2415 h->surplus_huge_pages_node[folio_nid(folio)]++;
2416
2417out_unlock:
2418 spin_unlock_irq(&hugetlb_lock);
2419
2420 return &folio->page;
2421}
2422
2423static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2424 int nid, nodemask_t *nmask)
2425{
2426 struct folio *folio;
2427
2428 if (hstate_is_gigantic(h))
2429 return NULL;
2430
2431 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2432 if (!folio)
2433 return NULL;
2434
2435 /* fresh huge pages are frozen */
2436 folio_ref_unfreeze(folio, 1);
2437 /*
2438 * We do not account these pages as surplus because they are only
2439 * temporary and will be released properly on the last reference
2440 */
2441 folio_set_hugetlb_temporary(folio);
2442
2443 return &folio->page;
2444}
2445
2446/*
2447 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2448 */
2449static
2450struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2451 struct vm_area_struct *vma, unsigned long addr)
2452{
2453 struct page *page = NULL;
2454 struct mempolicy *mpol;
2455 gfp_t gfp_mask = htlb_alloc_mask(h);
2456 int nid;
2457 nodemask_t *nodemask;
2458
2459 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2460 if (mpol_is_preferred_many(mpol)) {
2461 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2462
2463 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2464 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2465
2466 /* Fallback to all nodes if page==NULL */
2467 nodemask = NULL;
2468 }
2469
2470 if (!page)
2471 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2472 mpol_cond_put(mpol);
2473 return page;
2474}
2475
2476/* page migration callback function */
2477struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2478 nodemask_t *nmask, gfp_t gfp_mask)
2479{
2480 spin_lock_irq(&hugetlb_lock);
2481 if (available_huge_pages(h)) {
2482 struct page *page;
2483
2484 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2485 if (page) {
2486 spin_unlock_irq(&hugetlb_lock);
2487 return page;
2488 }
2489 }
2490 spin_unlock_irq(&hugetlb_lock);
2491
2492 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2493}
2494
2495/* mempolicy aware migration callback */
2496struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2497 unsigned long address)
2498{
2499 struct mempolicy *mpol;
2500 nodemask_t *nodemask;
2501 struct page *page;
2502 gfp_t gfp_mask;
2503 int node;
2504
2505 gfp_mask = htlb_alloc_mask(h);
2506 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2507 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2508 mpol_cond_put(mpol);
2509
2510 return page;
2511}
2512
2513/*
2514 * Increase the hugetlb pool such that it can accommodate a reservation
2515 * of size 'delta'.
2516 */
2517static int gather_surplus_pages(struct hstate *h, long delta)
2518 __must_hold(&hugetlb_lock)
2519{
2520 LIST_HEAD(surplus_list);
2521 struct page *page, *tmp;
2522 int ret;
2523 long i;
2524 long needed, allocated;
2525 bool alloc_ok = true;
2526
2527 lockdep_assert_held(&hugetlb_lock);
2528 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2529 if (needed <= 0) {
2530 h->resv_huge_pages += delta;
2531 return 0;
2532 }
2533
2534 allocated = 0;
2535
2536 ret = -ENOMEM;
2537retry:
2538 spin_unlock_irq(&hugetlb_lock);
2539 for (i = 0; i < needed; i++) {
2540 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2541 NUMA_NO_NODE, NULL);
2542 if (!page) {
2543 alloc_ok = false;
2544 break;
2545 }
2546 list_add(&page->lru, &surplus_list);
2547 cond_resched();
2548 }
2549 allocated += i;
2550
2551 /*
2552 * After retaking hugetlb_lock, we need to recalculate 'needed'
2553 * because either resv_huge_pages or free_huge_pages may have changed.
2554 */
2555 spin_lock_irq(&hugetlb_lock);
2556 needed = (h->resv_huge_pages + delta) -
2557 (h->free_huge_pages + allocated);
2558 if (needed > 0) {
2559 if (alloc_ok)
2560 goto retry;
2561 /*
2562 * We were not able to allocate enough pages to
2563 * satisfy the entire reservation so we free what
2564 * we've allocated so far.
2565 */
2566 goto free;
2567 }
2568 /*
2569 * The surplus_list now contains _at_least_ the number of extra pages
2570 * needed to accommodate the reservation. Add the appropriate number
2571 * of pages to the hugetlb pool and free the extras back to the buddy
2572 * allocator. Commit the entire reservation here to prevent another
2573 * process from stealing the pages as they are added to the pool but
2574 * before they are reserved.
2575 */
2576 needed += allocated;
2577 h->resv_huge_pages += delta;
2578 ret = 0;
2579
2580 /* Free the needed pages to the hugetlb pool */
2581 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2582 if ((--needed) < 0)
2583 break;
2584 /* Add the page to the hugetlb allocator */
2585 enqueue_hugetlb_folio(h, page_folio(page));
2586 }
2587free:
2588 spin_unlock_irq(&hugetlb_lock);
2589
2590 /*
2591 * Free unnecessary surplus pages to the buddy allocator.
2592 * Pages have no ref count, call free_huge_page directly.
2593 */
2594 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2595 free_huge_page(page);
2596 spin_lock_irq(&hugetlb_lock);
2597
2598 return ret;
2599}
2600
2601/*
2602 * This routine has two main purposes:
2603 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2604 * in unused_resv_pages. This corresponds to the prior adjustments made
2605 * to the associated reservation map.
2606 * 2) Free any unused surplus pages that may have been allocated to satisfy
2607 * the reservation. As many as unused_resv_pages may be freed.
2608 */
2609static void return_unused_surplus_pages(struct hstate *h,
2610 unsigned long unused_resv_pages)
2611{
2612 unsigned long nr_pages;
2613 struct page *page;
2614 LIST_HEAD(page_list);
2615
2616 lockdep_assert_held(&hugetlb_lock);
2617 /* Uncommit the reservation */
2618 h->resv_huge_pages -= unused_resv_pages;
2619
2620 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2621 goto out;
2622
2623 /*
2624 * Part (or even all) of the reservation could have been backed
2625 * by pre-allocated pages. Only free surplus pages.
2626 */
2627 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2628
2629 /*
2630 * We want to release as many surplus pages as possible, spread
2631 * evenly across all nodes with memory. Iterate across these nodes
2632 * until we can no longer free unreserved surplus pages. This occurs
2633 * when the nodes with surplus pages have no free pages.
2634 * remove_pool_huge_page() will balance the freed pages across the
2635 * on-line nodes with memory and will handle the hstate accounting.
2636 */
2637 while (nr_pages--) {
2638 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2639 if (!page)
2640 goto out;
2641
2642 list_add(&page->lru, &page_list);
2643 }
2644
2645out:
2646 spin_unlock_irq(&hugetlb_lock);
2647 update_and_free_pages_bulk(h, &page_list);
2648 spin_lock_irq(&hugetlb_lock);
2649}
2650
2651
2652/*
2653 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2654 * are used by the huge page allocation routines to manage reservations.
2655 *
2656 * vma_needs_reservation is called to determine if the huge page at addr
2657 * within the vma has an associated reservation. If a reservation is
2658 * needed, the value 1 is returned. The caller is then responsible for
2659 * managing the global reservation and subpool usage counts. After
2660 * the huge page has been allocated, vma_commit_reservation is called
2661 * to add the page to the reservation map. If the page allocation fails,
2662 * the reservation must be ended instead of committed. vma_end_reservation
2663 * is called in such cases.
2664 *
2665 * In the normal case, vma_commit_reservation returns the same value
2666 * as the preceding vma_needs_reservation call. The only time this
2667 * is not the case is if a reserve map was changed between calls. It
2668 * is the responsibility of the caller to notice the difference and
2669 * take appropriate action.
2670 *
2671 * vma_add_reservation is used in error paths where a reservation must
2672 * be restored when a newly allocated huge page must be freed. It is
2673 * to be called after calling vma_needs_reservation to determine if a
2674 * reservation exists.
2675 *
2676 * vma_del_reservation is used in error paths where an entry in the reserve
2677 * map was created during huge page allocation and must be removed. It is to
2678 * be called after calling vma_needs_reservation to determine if a reservation
2679 * exists.
2680 */
2681enum vma_resv_mode {
2682 VMA_NEEDS_RESV,
2683 VMA_COMMIT_RESV,
2684 VMA_END_RESV,
2685 VMA_ADD_RESV,
2686 VMA_DEL_RESV,
2687};
2688static long __vma_reservation_common(struct hstate *h,
2689 struct vm_area_struct *vma, unsigned long addr,
2690 enum vma_resv_mode mode)
2691{
2692 struct resv_map *resv;
2693 pgoff_t idx;
2694 long ret;
2695 long dummy_out_regions_needed;
2696
2697 resv = vma_resv_map(vma);
2698 if (!resv)
2699 return 1;
2700
2701 idx = vma_hugecache_offset(h, vma, addr);
2702 switch (mode) {
2703 case VMA_NEEDS_RESV:
2704 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2705 /* We assume that vma_reservation_* routines always operate on
2706 * 1 page, and that adding to resv map a 1 page entry can only
2707 * ever require 1 region.
2708 */
2709 VM_BUG_ON(dummy_out_regions_needed != 1);
2710 break;
2711 case VMA_COMMIT_RESV:
2712 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2713 /* region_add calls of range 1 should never fail. */
2714 VM_BUG_ON(ret < 0);
2715 break;
2716 case VMA_END_RESV:
2717 region_abort(resv, idx, idx + 1, 1);
2718 ret = 0;
2719 break;
2720 case VMA_ADD_RESV:
2721 if (vma->vm_flags & VM_MAYSHARE) {
2722 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2723 /* region_add calls of range 1 should never fail. */
2724 VM_BUG_ON(ret < 0);
2725 } else {
2726 region_abort(resv, idx, idx + 1, 1);
2727 ret = region_del(resv, idx, idx + 1);
2728 }
2729 break;
2730 case VMA_DEL_RESV:
2731 if (vma->vm_flags & VM_MAYSHARE) {
2732 region_abort(resv, idx, idx + 1, 1);
2733 ret = region_del(resv, idx, idx + 1);
2734 } else {
2735 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2736 /* region_add calls of range 1 should never fail. */
2737 VM_BUG_ON(ret < 0);
2738 }
2739 break;
2740 default:
2741 BUG();
2742 }
2743
2744 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2745 return ret;
2746 /*
2747 * We know private mapping must have HPAGE_RESV_OWNER set.
2748 *
2749 * In most cases, reserves always exist for private mappings.
2750 * However, a file associated with mapping could have been
2751 * hole punched or truncated after reserves were consumed.
2752 * As subsequent fault on such a range will not use reserves.
2753 * Subtle - The reserve map for private mappings has the
2754 * opposite meaning than that of shared mappings. If NO
2755 * entry is in the reserve map, it means a reservation exists.
2756 * If an entry exists in the reserve map, it means the
2757 * reservation has already been consumed. As a result, the
2758 * return value of this routine is the opposite of the
2759 * value returned from reserve map manipulation routines above.
2760 */
2761 if (ret > 0)
2762 return 0;
2763 if (ret == 0)
2764 return 1;
2765 return ret;
2766}
2767
2768static long vma_needs_reservation(struct hstate *h,
2769 struct vm_area_struct *vma, unsigned long addr)
2770{
2771 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2772}
2773
2774static long vma_commit_reservation(struct hstate *h,
2775 struct vm_area_struct *vma, unsigned long addr)
2776{
2777 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2778}
2779
2780static void vma_end_reservation(struct hstate *h,
2781 struct vm_area_struct *vma, unsigned long addr)
2782{
2783 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2784}
2785
2786static long vma_add_reservation(struct hstate *h,
2787 struct vm_area_struct *vma, unsigned long addr)
2788{
2789 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2790}
2791
2792static long vma_del_reservation(struct hstate *h,
2793 struct vm_area_struct *vma, unsigned long addr)
2794{
2795 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2796}
2797
2798/*
2799 * This routine is called to restore reservation information on error paths.
2800 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2801 * the hugetlb mutex should remain held when calling this routine.
2802 *
2803 * It handles two specific cases:
2804 * 1) A reservation was in place and the page consumed the reservation.
2805 * HPageRestoreReserve is set in the page.
2806 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2807 * not set. However, alloc_huge_page always updates the reserve map.
2808 *
2809 * In case 1, free_huge_page later in the error path will increment the
2810 * global reserve count. But, free_huge_page does not have enough context
2811 * to adjust the reservation map. This case deals primarily with private
2812 * mappings. Adjust the reserve map here to be consistent with global
2813 * reserve count adjustments to be made by free_huge_page. Make sure the
2814 * reserve map indicates there is a reservation present.
2815 *
2816 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2817 */
2818void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2819 unsigned long address, struct page *page)
2820{
2821 long rc = vma_needs_reservation(h, vma, address);
2822
2823 if (HPageRestoreReserve(page)) {
2824 if (unlikely(rc < 0))
2825 /*
2826 * Rare out of memory condition in reserve map
2827 * manipulation. Clear HPageRestoreReserve so that
2828 * global reserve count will not be incremented
2829 * by free_huge_page. This will make it appear
2830 * as though the reservation for this page was
2831 * consumed. This may prevent the task from
2832 * faulting in the page at a later time. This
2833 * is better than inconsistent global huge page
2834 * accounting of reserve counts.
2835 */
2836 ClearHPageRestoreReserve(page);
2837 else if (rc)
2838 (void)vma_add_reservation(h, vma, address);
2839 else
2840 vma_end_reservation(h, vma, address);
2841 } else {
2842 if (!rc) {
2843 /*
2844 * This indicates there is an entry in the reserve map
2845 * not added by alloc_huge_page. We know it was added
2846 * before the alloc_huge_page call, otherwise
2847 * HPageRestoreReserve would be set on the page.
2848 * Remove the entry so that a subsequent allocation
2849 * does not consume a reservation.
2850 */
2851 rc = vma_del_reservation(h, vma, address);
2852 if (rc < 0)
2853 /*
2854 * VERY rare out of memory condition. Since
2855 * we can not delete the entry, set
2856 * HPageRestoreReserve so that the reserve
2857 * count will be incremented when the page
2858 * is freed. This reserve will be consumed
2859 * on a subsequent allocation.
2860 */
2861 SetHPageRestoreReserve(page);
2862 } else if (rc < 0) {
2863 /*
2864 * Rare out of memory condition from
2865 * vma_needs_reservation call. Memory allocation is
2866 * only attempted if a new entry is needed. Therefore,
2867 * this implies there is not an entry in the
2868 * reserve map.
2869 *
2870 * For shared mappings, no entry in the map indicates
2871 * no reservation. We are done.
2872 */
2873 if (!(vma->vm_flags & VM_MAYSHARE))
2874 /*
2875 * For private mappings, no entry indicates
2876 * a reservation is present. Since we can
2877 * not add an entry, set SetHPageRestoreReserve
2878 * on the page so reserve count will be
2879 * incremented when freed. This reserve will
2880 * be consumed on a subsequent allocation.
2881 */
2882 SetHPageRestoreReserve(page);
2883 } else
2884 /*
2885 * No reservation present, do nothing
2886 */
2887 vma_end_reservation(h, vma, address);
2888 }
2889}
2890
2891/*
2892 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2893 * the old one
2894 * @h: struct hstate old page belongs to
2895 * @old_folio: Old folio to dissolve
2896 * @list: List to isolate the page in case we need to
2897 * Returns 0 on success, otherwise negated error.
2898 */
2899static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2900 struct folio *old_folio, struct list_head *list)
2901{
2902 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2903 int nid = folio_nid(old_folio);
2904 struct folio *new_folio;
2905 int ret = 0;
2906
2907 /*
2908 * Before dissolving the folio, we need to allocate a new one for the
2909 * pool to remain stable. Here, we allocate the folio and 'prep' it
2910 * by doing everything but actually updating counters and adding to
2911 * the pool. This simplifies and let us do most of the processing
2912 * under the lock.
2913 */
2914 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2915 if (!new_folio)
2916 return -ENOMEM;
2917 __prep_new_hugetlb_folio(h, new_folio);
2918
2919retry:
2920 spin_lock_irq(&hugetlb_lock);
2921 if (!folio_test_hugetlb(old_folio)) {
2922 /*
2923 * Freed from under us. Drop new_folio too.
2924 */
2925 goto free_new;
2926 } else if (folio_ref_count(old_folio)) {
2927 /*
2928 * Someone has grabbed the folio, try to isolate it here.
2929 * Fail with -EBUSY if not possible.
2930 */
2931 spin_unlock_irq(&hugetlb_lock);
2932 ret = isolate_hugetlb(&old_folio->page, list);
2933 spin_lock_irq(&hugetlb_lock);
2934 goto free_new;
2935 } else if (!folio_test_hugetlb_freed(old_folio)) {
2936 /*
2937 * Folio's refcount is 0 but it has not been enqueued in the
2938 * freelist yet. Race window is small, so we can succeed here if
2939 * we retry.
2940 */
2941 spin_unlock_irq(&hugetlb_lock);
2942 cond_resched();
2943 goto retry;
2944 } else {
2945 /*
2946 * Ok, old_folio is still a genuine free hugepage. Remove it from
2947 * the freelist and decrease the counters. These will be
2948 * incremented again when calling __prep_account_new_huge_page()
2949 * and enqueue_hugetlb_folio() for new_folio. The counters will
2950 * remain stable since this happens under the lock.
2951 */
2952 remove_hugetlb_folio(h, old_folio, false);
2953
2954 /*
2955 * Ref count on new_folio is already zero as it was dropped
2956 * earlier. It can be directly added to the pool free list.
2957 */
2958 __prep_account_new_huge_page(h, nid);
2959 enqueue_hugetlb_folio(h, new_folio);
2960
2961 /*
2962 * Folio has been replaced, we can safely free the old one.
2963 */
2964 spin_unlock_irq(&hugetlb_lock);
2965 update_and_free_hugetlb_folio(h, old_folio, false);
2966 }
2967
2968 return ret;
2969
2970free_new:
2971 spin_unlock_irq(&hugetlb_lock);
2972 /* Folio has a zero ref count, but needs a ref to be freed */
2973 folio_ref_unfreeze(new_folio, 1);
2974 update_and_free_hugetlb_folio(h, new_folio, false);
2975
2976 return ret;
2977}
2978
2979int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2980{
2981 struct hstate *h;
2982 struct folio *folio = page_folio(page);
2983 int ret = -EBUSY;
2984
2985 /*
2986 * The page might have been dissolved from under our feet, so make sure
2987 * to carefully check the state under the lock.
2988 * Return success when racing as if we dissolved the page ourselves.
2989 */
2990 spin_lock_irq(&hugetlb_lock);
2991 if (folio_test_hugetlb(folio)) {
2992 h = folio_hstate(folio);
2993 } else {
2994 spin_unlock_irq(&hugetlb_lock);
2995 return 0;
2996 }
2997 spin_unlock_irq(&hugetlb_lock);
2998
2999 /*
3000 * Fence off gigantic pages as there is a cyclic dependency between
3001 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3002 * of bailing out right away without further retrying.
3003 */
3004 if (hstate_is_gigantic(h))
3005 return -ENOMEM;
3006
3007 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3008 ret = 0;
3009 else if (!folio_ref_count(folio))
3010 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3011
3012 return ret;
3013}
3014
3015struct page *alloc_huge_page(struct vm_area_struct *vma,
3016 unsigned long addr, int avoid_reserve)
3017{
3018 struct hugepage_subpool *spool = subpool_vma(vma);
3019 struct hstate *h = hstate_vma(vma);
3020 struct page *page;
3021 struct folio *folio;
3022 long map_chg, map_commit;
3023 long gbl_chg;
3024 int ret, idx;
3025 struct hugetlb_cgroup *h_cg;
3026 bool deferred_reserve;
3027
3028 idx = hstate_index(h);
3029 /*
3030 * Examine the region/reserve map to determine if the process
3031 * has a reservation for the page to be allocated. A return
3032 * code of zero indicates a reservation exists (no change).
3033 */
3034 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3035 if (map_chg < 0)
3036 return ERR_PTR(-ENOMEM);
3037
3038 /*
3039 * Processes that did not create the mapping will have no
3040 * reserves as indicated by the region/reserve map. Check
3041 * that the allocation will not exceed the subpool limit.
3042 * Allocations for MAP_NORESERVE mappings also need to be
3043 * checked against any subpool limit.
3044 */
3045 if (map_chg || avoid_reserve) {
3046 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3047 if (gbl_chg < 0) {
3048 vma_end_reservation(h, vma, addr);
3049 return ERR_PTR(-ENOSPC);
3050 }
3051
3052 /*
3053 * Even though there was no reservation in the region/reserve
3054 * map, there could be reservations associated with the
3055 * subpool that can be used. This would be indicated if the
3056 * return value of hugepage_subpool_get_pages() is zero.
3057 * However, if avoid_reserve is specified we still avoid even
3058 * the subpool reservations.
3059 */
3060 if (avoid_reserve)
3061 gbl_chg = 1;
3062 }
3063
3064 /* If this allocation is not consuming a reservation, charge it now.
3065 */
3066 deferred_reserve = map_chg || avoid_reserve;
3067 if (deferred_reserve) {
3068 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3069 idx, pages_per_huge_page(h), &h_cg);
3070 if (ret)
3071 goto out_subpool_put;
3072 }
3073
3074 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3075 if (ret)
3076 goto out_uncharge_cgroup_reservation;
3077
3078 spin_lock_irq(&hugetlb_lock);
3079 /*
3080 * glb_chg is passed to indicate whether or not a page must be taken
3081 * from the global free pool (global change). gbl_chg == 0 indicates
3082 * a reservation exists for the allocation.
3083 */
3084 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3085 if (!page) {
3086 spin_unlock_irq(&hugetlb_lock);
3087 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3088 if (!page)
3089 goto out_uncharge_cgroup;
3090 spin_lock_irq(&hugetlb_lock);
3091 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3092 SetHPageRestoreReserve(page);
3093 h->resv_huge_pages--;
3094 }
3095 list_add(&page->lru, &h->hugepage_activelist);
3096 set_page_refcounted(page);
3097 /* Fall through */
3098 }
3099 folio = page_folio(page);
3100 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3101 /* If allocation is not consuming a reservation, also store the
3102 * hugetlb_cgroup pointer on the page.
3103 */
3104 if (deferred_reserve) {
3105 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3106 h_cg, page);
3107 }
3108
3109 spin_unlock_irq(&hugetlb_lock);
3110
3111 hugetlb_set_page_subpool(page, spool);
3112
3113 map_commit = vma_commit_reservation(h, vma, addr);
3114 if (unlikely(map_chg > map_commit)) {
3115 /*
3116 * The page was added to the reservation map between
3117 * vma_needs_reservation and vma_commit_reservation.
3118 * This indicates a race with hugetlb_reserve_pages.
3119 * Adjust for the subpool count incremented above AND
3120 * in hugetlb_reserve_pages for the same page. Also,
3121 * the reservation count added in hugetlb_reserve_pages
3122 * no longer applies.
3123 */
3124 long rsv_adjust;
3125
3126 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3127 hugetlb_acct_memory(h, -rsv_adjust);
3128 if (deferred_reserve)
3129 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3130 pages_per_huge_page(h), folio);
3131 }
3132 return page;
3133
3134out_uncharge_cgroup:
3135 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3136out_uncharge_cgroup_reservation:
3137 if (deferred_reserve)
3138 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3139 h_cg);
3140out_subpool_put:
3141 if (map_chg || avoid_reserve)
3142 hugepage_subpool_put_pages(spool, 1);
3143 vma_end_reservation(h, vma, addr);
3144 return ERR_PTR(-ENOSPC);
3145}
3146
3147int alloc_bootmem_huge_page(struct hstate *h, int nid)
3148 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3149int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3150{
3151 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3152 int nr_nodes, node;
3153
3154 /* do node specific alloc */
3155 if (nid != NUMA_NO_NODE) {
3156 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3157 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3158 if (!m)
3159 return 0;
3160 goto found;
3161 }
3162 /* allocate from next node when distributing huge pages */
3163 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3164 m = memblock_alloc_try_nid_raw(
3165 huge_page_size(h), huge_page_size(h),
3166 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3167 /*
3168 * Use the beginning of the huge page to store the
3169 * huge_bootmem_page struct (until gather_bootmem
3170 * puts them into the mem_map).
3171 */
3172 if (!m)
3173 return 0;
3174 goto found;
3175 }
3176
3177found:
3178 /* Put them into a private list first because mem_map is not up yet */
3179 INIT_LIST_HEAD(&m->list);
3180 list_add(&m->list, &huge_boot_pages);
3181 m->hstate = h;
3182 return 1;
3183}
3184
3185/*
3186 * Put bootmem huge pages into the standard lists after mem_map is up.
3187 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3188 */
3189static void __init gather_bootmem_prealloc(void)
3190{
3191 struct huge_bootmem_page *m;
3192
3193 list_for_each_entry(m, &huge_boot_pages, list) {
3194 struct page *page = virt_to_page(m);
3195 struct folio *folio = page_folio(page);
3196 struct hstate *h = m->hstate;
3197
3198 VM_BUG_ON(!hstate_is_gigantic(h));
3199 WARN_ON(folio_ref_count(folio) != 1);
3200 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3201 WARN_ON(folio_test_reserved(folio));
3202 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3203 free_huge_page(page); /* add to the hugepage allocator */
3204 } else {
3205 /* VERY unlikely inflated ref count on a tail page */
3206 free_gigantic_folio(folio, huge_page_order(h));
3207 }
3208
3209 /*
3210 * We need to restore the 'stolen' pages to totalram_pages
3211 * in order to fix confusing memory reports from free(1) and
3212 * other side-effects, like CommitLimit going negative.
3213 */
3214 adjust_managed_page_count(page, pages_per_huge_page(h));
3215 cond_resched();
3216 }
3217}
3218static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3219{
3220 unsigned long i;
3221 char buf[32];
3222
3223 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3224 if (hstate_is_gigantic(h)) {
3225 if (!alloc_bootmem_huge_page(h, nid))
3226 break;
3227 } else {
3228 struct folio *folio;
3229 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3230
3231 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3232 &node_states[N_MEMORY], NULL);
3233 if (!folio)
3234 break;
3235 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3236 }
3237 cond_resched();
3238 }
3239 if (i == h->max_huge_pages_node[nid])
3240 return;
3241
3242 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3243 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3244 h->max_huge_pages_node[nid], buf, nid, i);
3245 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3246 h->max_huge_pages_node[nid] = i;
3247}
3248
3249static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3250{
3251 unsigned long i;
3252 nodemask_t *node_alloc_noretry;
3253 bool node_specific_alloc = false;
3254
3255 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3256 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3257 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3258 return;
3259 }
3260
3261 /* do node specific alloc */
3262 for_each_online_node(i) {
3263 if (h->max_huge_pages_node[i] > 0) {
3264 hugetlb_hstate_alloc_pages_onenode(h, i);
3265 node_specific_alloc = true;
3266 }
3267 }
3268
3269 if (node_specific_alloc)
3270 return;
3271
3272 /* below will do all node balanced alloc */
3273 if (!hstate_is_gigantic(h)) {
3274 /*
3275 * Bit mask controlling how hard we retry per-node allocations.
3276 * Ignore errors as lower level routines can deal with
3277 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3278 * time, we are likely in bigger trouble.
3279 */
3280 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3281 GFP_KERNEL);
3282 } else {
3283 /* allocations done at boot time */
3284 node_alloc_noretry = NULL;
3285 }
3286
3287 /* bit mask controlling how hard we retry per-node allocations */
3288 if (node_alloc_noretry)
3289 nodes_clear(*node_alloc_noretry);
3290
3291 for (i = 0; i < h->max_huge_pages; ++i) {
3292 if (hstate_is_gigantic(h)) {
3293 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3294 break;
3295 } else if (!alloc_pool_huge_page(h,
3296 &node_states[N_MEMORY],
3297 node_alloc_noretry))
3298 break;
3299 cond_resched();
3300 }
3301 if (i < h->max_huge_pages) {
3302 char buf[32];
3303
3304 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3305 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3306 h->max_huge_pages, buf, i);
3307 h->max_huge_pages = i;
3308 }
3309 kfree(node_alloc_noretry);
3310}
3311
3312static void __init hugetlb_init_hstates(void)
3313{
3314 struct hstate *h, *h2;
3315
3316 for_each_hstate(h) {
3317 /* oversize hugepages were init'ed in early boot */
3318 if (!hstate_is_gigantic(h))
3319 hugetlb_hstate_alloc_pages(h);
3320
3321 /*
3322 * Set demote order for each hstate. Note that
3323 * h->demote_order is initially 0.
3324 * - We can not demote gigantic pages if runtime freeing
3325 * is not supported, so skip this.
3326 * - If CMA allocation is possible, we can not demote
3327 * HUGETLB_PAGE_ORDER or smaller size pages.
3328 */
3329 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3330 continue;
3331 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3332 continue;
3333 for_each_hstate(h2) {
3334 if (h2 == h)
3335 continue;
3336 if (h2->order < h->order &&
3337 h2->order > h->demote_order)
3338 h->demote_order = h2->order;
3339 }
3340 }
3341}
3342
3343static void __init report_hugepages(void)
3344{
3345 struct hstate *h;
3346
3347 for_each_hstate(h) {
3348 char buf[32];
3349
3350 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3351 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3352 buf, h->free_huge_pages);
3353 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3354 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3355 }
3356}
3357
3358#ifdef CONFIG_HIGHMEM
3359static void try_to_free_low(struct hstate *h, unsigned long count,
3360 nodemask_t *nodes_allowed)
3361{
3362 int i;
3363 LIST_HEAD(page_list);
3364
3365 lockdep_assert_held(&hugetlb_lock);
3366 if (hstate_is_gigantic(h))
3367 return;
3368
3369 /*
3370 * Collect pages to be freed on a list, and free after dropping lock
3371 */
3372 for_each_node_mask(i, *nodes_allowed) {
3373 struct page *page, *next;
3374 struct list_head *freel = &h->hugepage_freelists[i];
3375 list_for_each_entry_safe(page, next, freel, lru) {
3376 if (count >= h->nr_huge_pages)
3377 goto out;
3378 if (PageHighMem(page))
3379 continue;
3380 remove_hugetlb_folio(h, page_folio(page), false);
3381 list_add(&page->lru, &page_list);
3382 }
3383 }
3384
3385out:
3386 spin_unlock_irq(&hugetlb_lock);
3387 update_and_free_pages_bulk(h, &page_list);
3388 spin_lock_irq(&hugetlb_lock);
3389}
3390#else
3391static inline void try_to_free_low(struct hstate *h, unsigned long count,
3392 nodemask_t *nodes_allowed)
3393{
3394}
3395#endif
3396
3397/*
3398 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3399 * balanced by operating on them in a round-robin fashion.
3400 * Returns 1 if an adjustment was made.
3401 */
3402static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3403 int delta)
3404{
3405 int nr_nodes, node;
3406
3407 lockdep_assert_held(&hugetlb_lock);
3408 VM_BUG_ON(delta != -1 && delta != 1);
3409
3410 if (delta < 0) {
3411 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3412 if (h->surplus_huge_pages_node[node])
3413 goto found;
3414 }
3415 } else {
3416 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3417 if (h->surplus_huge_pages_node[node] <
3418 h->nr_huge_pages_node[node])
3419 goto found;
3420 }
3421 }
3422 return 0;
3423
3424found:
3425 h->surplus_huge_pages += delta;
3426 h->surplus_huge_pages_node[node] += delta;
3427 return 1;
3428}
3429
3430#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3431static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3432 nodemask_t *nodes_allowed)
3433{
3434 unsigned long min_count, ret;
3435 struct page *page;
3436 LIST_HEAD(page_list);
3437 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3438
3439 /*
3440 * Bit mask controlling how hard we retry per-node allocations.
3441 * If we can not allocate the bit mask, do not attempt to allocate
3442 * the requested huge pages.
3443 */
3444 if (node_alloc_noretry)
3445 nodes_clear(*node_alloc_noretry);
3446 else
3447 return -ENOMEM;
3448
3449 /*
3450 * resize_lock mutex prevents concurrent adjustments to number of
3451 * pages in hstate via the proc/sysfs interfaces.
3452 */
3453 mutex_lock(&h->resize_lock);
3454 flush_free_hpage_work(h);
3455 spin_lock_irq(&hugetlb_lock);
3456
3457 /*
3458 * Check for a node specific request.
3459 * Changing node specific huge page count may require a corresponding
3460 * change to the global count. In any case, the passed node mask
3461 * (nodes_allowed) will restrict alloc/free to the specified node.
3462 */
3463 if (nid != NUMA_NO_NODE) {
3464 unsigned long old_count = count;
3465
3466 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3467 /*
3468 * User may have specified a large count value which caused the
3469 * above calculation to overflow. In this case, they wanted
3470 * to allocate as many huge pages as possible. Set count to
3471 * largest possible value to align with their intention.
3472 */
3473 if (count < old_count)
3474 count = ULONG_MAX;
3475 }
3476
3477 /*
3478 * Gigantic pages runtime allocation depend on the capability for large
3479 * page range allocation.
3480 * If the system does not provide this feature, return an error when
3481 * the user tries to allocate gigantic pages but let the user free the
3482 * boottime allocated gigantic pages.
3483 */
3484 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3485 if (count > persistent_huge_pages(h)) {
3486 spin_unlock_irq(&hugetlb_lock);
3487 mutex_unlock(&h->resize_lock);
3488 NODEMASK_FREE(node_alloc_noretry);
3489 return -EINVAL;
3490 }
3491 /* Fall through to decrease pool */
3492 }
3493
3494 /*
3495 * Increase the pool size
3496 * First take pages out of surplus state. Then make up the
3497 * remaining difference by allocating fresh huge pages.
3498 *
3499 * We might race with alloc_surplus_huge_page() here and be unable
3500 * to convert a surplus huge page to a normal huge page. That is
3501 * not critical, though, it just means the overall size of the
3502 * pool might be one hugepage larger than it needs to be, but
3503 * within all the constraints specified by the sysctls.
3504 */
3505 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3506 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3507 break;
3508 }
3509
3510 while (count > persistent_huge_pages(h)) {
3511 /*
3512 * If this allocation races such that we no longer need the
3513 * page, free_huge_page will handle it by freeing the page
3514 * and reducing the surplus.
3515 */
3516 spin_unlock_irq(&hugetlb_lock);
3517
3518 /* yield cpu to avoid soft lockup */
3519 cond_resched();
3520
3521 ret = alloc_pool_huge_page(h, nodes_allowed,
3522 node_alloc_noretry);
3523 spin_lock_irq(&hugetlb_lock);
3524 if (!ret)
3525 goto out;
3526
3527 /* Bail for signals. Probably ctrl-c from user */
3528 if (signal_pending(current))
3529 goto out;
3530 }
3531
3532 /*
3533 * Decrease the pool size
3534 * First return free pages to the buddy allocator (being careful
3535 * to keep enough around to satisfy reservations). Then place
3536 * pages into surplus state as needed so the pool will shrink
3537 * to the desired size as pages become free.
3538 *
3539 * By placing pages into the surplus state independent of the
3540 * overcommit value, we are allowing the surplus pool size to
3541 * exceed overcommit. There are few sane options here. Since
3542 * alloc_surplus_huge_page() is checking the global counter,
3543 * though, we'll note that we're not allowed to exceed surplus
3544 * and won't grow the pool anywhere else. Not until one of the
3545 * sysctls are changed, or the surplus pages go out of use.
3546 */
3547 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3548 min_count = max(count, min_count);
3549 try_to_free_low(h, min_count, nodes_allowed);
3550
3551 /*
3552 * Collect pages to be removed on list without dropping lock
3553 */
3554 while (min_count < persistent_huge_pages(h)) {
3555 page = remove_pool_huge_page(h, nodes_allowed, 0);
3556 if (!page)
3557 break;
3558
3559 list_add(&page->lru, &page_list);
3560 }
3561 /* free the pages after dropping lock */
3562 spin_unlock_irq(&hugetlb_lock);
3563 update_and_free_pages_bulk(h, &page_list);
3564 flush_free_hpage_work(h);
3565 spin_lock_irq(&hugetlb_lock);
3566
3567 while (count < persistent_huge_pages(h)) {
3568 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3569 break;
3570 }
3571out:
3572 h->max_huge_pages = persistent_huge_pages(h);
3573 spin_unlock_irq(&hugetlb_lock);
3574 mutex_unlock(&h->resize_lock);
3575
3576 NODEMASK_FREE(node_alloc_noretry);
3577
3578 return 0;
3579}
3580
3581static int demote_free_huge_page(struct hstate *h, struct page *page)
3582{
3583 int i, nid = page_to_nid(page);
3584 struct hstate *target_hstate;
3585 struct folio *folio = page_folio(page);
3586 struct page *subpage;
3587 int rc = 0;
3588
3589 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3590
3591 remove_hugetlb_folio_for_demote(h, folio, false);
3592 spin_unlock_irq(&hugetlb_lock);
3593
3594 rc = hugetlb_vmemmap_restore(h, page);
3595 if (rc) {
3596 /* Allocation of vmemmmap failed, we can not demote page */
3597 spin_lock_irq(&hugetlb_lock);
3598 set_page_refcounted(page);
3599 add_hugetlb_folio(h, page_folio(page), false);
3600 return rc;
3601 }
3602
3603 /*
3604 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3605 * sizes as it will not ref count pages.
3606 */
3607 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3608
3609 /*
3610 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3611 * Without the mutex, pages added to target hstate could be marked
3612 * as surplus.
3613 *
3614 * Note that we already hold h->resize_lock. To prevent deadlock,
3615 * use the convention of always taking larger size hstate mutex first.
3616 */
3617 mutex_lock(&target_hstate->resize_lock);
3618 for (i = 0; i < pages_per_huge_page(h);
3619 i += pages_per_huge_page(target_hstate)) {
3620 subpage = nth_page(page, i);
3621 folio = page_folio(subpage);
3622 if (hstate_is_gigantic(target_hstate))
3623 prep_compound_gigantic_folio_for_demote(folio,
3624 target_hstate->order);
3625 else
3626 prep_compound_page(subpage, target_hstate->order);
3627 set_page_private(subpage, 0);
3628 prep_new_hugetlb_folio(target_hstate, folio, nid);
3629 free_huge_page(subpage);
3630 }
3631 mutex_unlock(&target_hstate->resize_lock);
3632
3633 spin_lock_irq(&hugetlb_lock);
3634
3635 /*
3636 * Not absolutely necessary, but for consistency update max_huge_pages
3637 * based on pool changes for the demoted page.
3638 */
3639 h->max_huge_pages--;
3640 target_hstate->max_huge_pages +=
3641 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3642
3643 return rc;
3644}
3645
3646static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3647 __must_hold(&hugetlb_lock)
3648{
3649 int nr_nodes, node;
3650 struct page *page;
3651
3652 lockdep_assert_held(&hugetlb_lock);
3653
3654 /* We should never get here if no demote order */
3655 if (!h->demote_order) {
3656 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3657 return -EINVAL; /* internal error */
3658 }
3659
3660 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3661 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3662 if (PageHWPoison(page))
3663 continue;
3664
3665 return demote_free_huge_page(h, page);
3666 }
3667 }
3668
3669 /*
3670 * Only way to get here is if all pages on free lists are poisoned.
3671 * Return -EBUSY so that caller will not retry.
3672 */
3673 return -EBUSY;
3674}
3675
3676#define HSTATE_ATTR_RO(_name) \
3677 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3678
3679#define HSTATE_ATTR_WO(_name) \
3680 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3681
3682#define HSTATE_ATTR(_name) \
3683 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3684
3685static struct kobject *hugepages_kobj;
3686static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3687
3688static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3689
3690static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3691{
3692 int i;
3693
3694 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3695 if (hstate_kobjs[i] == kobj) {
3696 if (nidp)
3697 *nidp = NUMA_NO_NODE;
3698 return &hstates[i];
3699 }
3700
3701 return kobj_to_node_hstate(kobj, nidp);
3702}
3703
3704static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3705 struct kobj_attribute *attr, char *buf)
3706{
3707 struct hstate *h;
3708 unsigned long nr_huge_pages;
3709 int nid;
3710
3711 h = kobj_to_hstate(kobj, &nid);
3712 if (nid == NUMA_NO_NODE)
3713 nr_huge_pages = h->nr_huge_pages;
3714 else
3715 nr_huge_pages = h->nr_huge_pages_node[nid];
3716
3717 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3718}
3719
3720static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3721 struct hstate *h, int nid,
3722 unsigned long count, size_t len)
3723{
3724 int err;
3725 nodemask_t nodes_allowed, *n_mask;
3726
3727 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3728 return -EINVAL;
3729
3730 if (nid == NUMA_NO_NODE) {
3731 /*
3732 * global hstate attribute
3733 */
3734 if (!(obey_mempolicy &&
3735 init_nodemask_of_mempolicy(&nodes_allowed)))
3736 n_mask = &node_states[N_MEMORY];
3737 else
3738 n_mask = &nodes_allowed;
3739 } else {
3740 /*
3741 * Node specific request. count adjustment happens in
3742 * set_max_huge_pages() after acquiring hugetlb_lock.
3743 */
3744 init_nodemask_of_node(&nodes_allowed, nid);
3745 n_mask = &nodes_allowed;
3746 }
3747
3748 err = set_max_huge_pages(h, count, nid, n_mask);
3749
3750 return err ? err : len;
3751}
3752
3753static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3754 struct kobject *kobj, const char *buf,
3755 size_t len)
3756{
3757 struct hstate *h;
3758 unsigned long count;
3759 int nid;
3760 int err;
3761
3762 err = kstrtoul(buf, 10, &count);
3763 if (err)
3764 return err;
3765
3766 h = kobj_to_hstate(kobj, &nid);
3767 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3768}
3769
3770static ssize_t nr_hugepages_show(struct kobject *kobj,
3771 struct kobj_attribute *attr, char *buf)
3772{
3773 return nr_hugepages_show_common(kobj, attr, buf);
3774}
3775
3776static ssize_t nr_hugepages_store(struct kobject *kobj,
3777 struct kobj_attribute *attr, const char *buf, size_t len)
3778{
3779 return nr_hugepages_store_common(false, kobj, buf, len);
3780}
3781HSTATE_ATTR(nr_hugepages);
3782
3783#ifdef CONFIG_NUMA
3784
3785/*
3786 * hstate attribute for optionally mempolicy-based constraint on persistent
3787 * huge page alloc/free.
3788 */
3789static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3790 struct kobj_attribute *attr,
3791 char *buf)
3792{
3793 return nr_hugepages_show_common(kobj, attr, buf);
3794}
3795
3796static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3797 struct kobj_attribute *attr, const char *buf, size_t len)
3798{
3799 return nr_hugepages_store_common(true, kobj, buf, len);
3800}
3801HSTATE_ATTR(nr_hugepages_mempolicy);
3802#endif
3803
3804
3805static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3806 struct kobj_attribute *attr, char *buf)
3807{
3808 struct hstate *h = kobj_to_hstate(kobj, NULL);
3809 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3810}
3811
3812static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3813 struct kobj_attribute *attr, const char *buf, size_t count)
3814{
3815 int err;
3816 unsigned long input;
3817 struct hstate *h = kobj_to_hstate(kobj, NULL);
3818
3819 if (hstate_is_gigantic(h))
3820 return -EINVAL;
3821
3822 err = kstrtoul(buf, 10, &input);
3823 if (err)
3824 return err;
3825
3826 spin_lock_irq(&hugetlb_lock);
3827 h->nr_overcommit_huge_pages = input;
3828 spin_unlock_irq(&hugetlb_lock);
3829
3830 return count;
3831}
3832HSTATE_ATTR(nr_overcommit_hugepages);
3833
3834static ssize_t free_hugepages_show(struct kobject *kobj,
3835 struct kobj_attribute *attr, char *buf)
3836{
3837 struct hstate *h;
3838 unsigned long free_huge_pages;
3839 int nid;
3840
3841 h = kobj_to_hstate(kobj, &nid);
3842 if (nid == NUMA_NO_NODE)
3843 free_huge_pages = h->free_huge_pages;
3844 else
3845 free_huge_pages = h->free_huge_pages_node[nid];
3846
3847 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3848}
3849HSTATE_ATTR_RO(free_hugepages);
3850
3851static ssize_t resv_hugepages_show(struct kobject *kobj,
3852 struct kobj_attribute *attr, char *buf)
3853{
3854 struct hstate *h = kobj_to_hstate(kobj, NULL);
3855 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3856}
3857HSTATE_ATTR_RO(resv_hugepages);
3858
3859static ssize_t surplus_hugepages_show(struct kobject *kobj,
3860 struct kobj_attribute *attr, char *buf)
3861{
3862 struct hstate *h;
3863 unsigned long surplus_huge_pages;
3864 int nid;
3865
3866 h = kobj_to_hstate(kobj, &nid);
3867 if (nid == NUMA_NO_NODE)
3868 surplus_huge_pages = h->surplus_huge_pages;
3869 else
3870 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3871
3872 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3873}
3874HSTATE_ATTR_RO(surplus_hugepages);
3875
3876static ssize_t demote_store(struct kobject *kobj,
3877 struct kobj_attribute *attr, const char *buf, size_t len)
3878{
3879 unsigned long nr_demote;
3880 unsigned long nr_available;
3881 nodemask_t nodes_allowed, *n_mask;
3882 struct hstate *h;
3883 int err;
3884 int nid;
3885
3886 err = kstrtoul(buf, 10, &nr_demote);
3887 if (err)
3888 return err;
3889 h = kobj_to_hstate(kobj, &nid);
3890
3891 if (nid != NUMA_NO_NODE) {
3892 init_nodemask_of_node(&nodes_allowed, nid);
3893 n_mask = &nodes_allowed;
3894 } else {
3895 n_mask = &node_states[N_MEMORY];
3896 }
3897
3898 /* Synchronize with other sysfs operations modifying huge pages */
3899 mutex_lock(&h->resize_lock);
3900 spin_lock_irq(&hugetlb_lock);
3901
3902 while (nr_demote) {
3903 /*
3904 * Check for available pages to demote each time thorough the
3905 * loop as demote_pool_huge_page will drop hugetlb_lock.
3906 */
3907 if (nid != NUMA_NO_NODE)
3908 nr_available = h->free_huge_pages_node[nid];
3909 else
3910 nr_available = h->free_huge_pages;
3911 nr_available -= h->resv_huge_pages;
3912 if (!nr_available)
3913 break;
3914
3915 err = demote_pool_huge_page(h, n_mask);
3916 if (err)
3917 break;
3918
3919 nr_demote--;
3920 }
3921
3922 spin_unlock_irq(&hugetlb_lock);
3923 mutex_unlock(&h->resize_lock);
3924
3925 if (err)
3926 return err;
3927 return len;
3928}
3929HSTATE_ATTR_WO(demote);
3930
3931static ssize_t demote_size_show(struct kobject *kobj,
3932 struct kobj_attribute *attr, char *buf)
3933{
3934 struct hstate *h = kobj_to_hstate(kobj, NULL);
3935 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3936
3937 return sysfs_emit(buf, "%lukB\n", demote_size);
3938}
3939
3940static ssize_t demote_size_store(struct kobject *kobj,
3941 struct kobj_attribute *attr,
3942 const char *buf, size_t count)
3943{
3944 struct hstate *h, *demote_hstate;
3945 unsigned long demote_size;
3946 unsigned int demote_order;
3947
3948 demote_size = (unsigned long)memparse(buf, NULL);
3949
3950 demote_hstate = size_to_hstate(demote_size);
3951 if (!demote_hstate)
3952 return -EINVAL;
3953 demote_order = demote_hstate->order;
3954 if (demote_order < HUGETLB_PAGE_ORDER)
3955 return -EINVAL;
3956
3957 /* demote order must be smaller than hstate order */
3958 h = kobj_to_hstate(kobj, NULL);
3959 if (demote_order >= h->order)
3960 return -EINVAL;
3961
3962 /* resize_lock synchronizes access to demote size and writes */
3963 mutex_lock(&h->resize_lock);
3964 h->demote_order = demote_order;
3965 mutex_unlock(&h->resize_lock);
3966
3967 return count;
3968}
3969HSTATE_ATTR(demote_size);
3970
3971static struct attribute *hstate_attrs[] = {
3972 &nr_hugepages_attr.attr,
3973 &nr_overcommit_hugepages_attr.attr,
3974 &free_hugepages_attr.attr,
3975 &resv_hugepages_attr.attr,
3976 &surplus_hugepages_attr.attr,
3977#ifdef CONFIG_NUMA
3978 &nr_hugepages_mempolicy_attr.attr,
3979#endif
3980 NULL,
3981};
3982
3983static const struct attribute_group hstate_attr_group = {
3984 .attrs = hstate_attrs,
3985};
3986
3987static struct attribute *hstate_demote_attrs[] = {
3988 &demote_size_attr.attr,
3989 &demote_attr.attr,
3990 NULL,
3991};
3992
3993static const struct attribute_group hstate_demote_attr_group = {
3994 .attrs = hstate_demote_attrs,
3995};
3996
3997static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3998 struct kobject **hstate_kobjs,
3999 const struct attribute_group *hstate_attr_group)
4000{
4001 int retval;
4002 int hi = hstate_index(h);
4003
4004 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4005 if (!hstate_kobjs[hi])
4006 return -ENOMEM;
4007
4008 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4009 if (retval) {
4010 kobject_put(hstate_kobjs[hi]);
4011 hstate_kobjs[hi] = NULL;
4012 return retval;
4013 }
4014
4015 if (h->demote_order) {
4016 retval = sysfs_create_group(hstate_kobjs[hi],
4017 &hstate_demote_attr_group);
4018 if (retval) {
4019 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4020 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4021 kobject_put(hstate_kobjs[hi]);
4022 hstate_kobjs[hi] = NULL;
4023 return retval;
4024 }
4025 }
4026
4027 return 0;
4028}
4029
4030#ifdef CONFIG_NUMA
4031static bool hugetlb_sysfs_initialized __ro_after_init;
4032
4033/*
4034 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4035 * with node devices in node_devices[] using a parallel array. The array
4036 * index of a node device or _hstate == node id.
4037 * This is here to avoid any static dependency of the node device driver, in
4038 * the base kernel, on the hugetlb module.
4039 */
4040struct node_hstate {
4041 struct kobject *hugepages_kobj;
4042 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4043};
4044static struct node_hstate node_hstates[MAX_NUMNODES];
4045
4046/*
4047 * A subset of global hstate attributes for node devices
4048 */
4049static struct attribute *per_node_hstate_attrs[] = {
4050 &nr_hugepages_attr.attr,
4051 &free_hugepages_attr.attr,
4052 &surplus_hugepages_attr.attr,
4053 NULL,
4054};
4055
4056static const struct attribute_group per_node_hstate_attr_group = {
4057 .attrs = per_node_hstate_attrs,
4058};
4059
4060/*
4061 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4062 * Returns node id via non-NULL nidp.
4063 */
4064static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4065{
4066 int nid;
4067
4068 for (nid = 0; nid < nr_node_ids; nid++) {
4069 struct node_hstate *nhs = &node_hstates[nid];
4070 int i;
4071 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4072 if (nhs->hstate_kobjs[i] == kobj) {
4073 if (nidp)
4074 *nidp = nid;
4075 return &hstates[i];
4076 }
4077 }
4078
4079 BUG();
4080 return NULL;
4081}
4082
4083/*
4084 * Unregister hstate attributes from a single node device.
4085 * No-op if no hstate attributes attached.
4086 */
4087void hugetlb_unregister_node(struct node *node)
4088{
4089 struct hstate *h;
4090 struct node_hstate *nhs = &node_hstates[node->dev.id];
4091
4092 if (!nhs->hugepages_kobj)
4093 return; /* no hstate attributes */
4094
4095 for_each_hstate(h) {
4096 int idx = hstate_index(h);
4097 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4098
4099 if (!hstate_kobj)
4100 continue;
4101 if (h->demote_order)
4102 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4103 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4104 kobject_put(hstate_kobj);
4105 nhs->hstate_kobjs[idx] = NULL;
4106 }
4107
4108 kobject_put(nhs->hugepages_kobj);
4109 nhs->hugepages_kobj = NULL;
4110}
4111
4112
4113/*
4114 * Register hstate attributes for a single node device.
4115 * No-op if attributes already registered.
4116 */
4117void hugetlb_register_node(struct node *node)
4118{
4119 struct hstate *h;
4120 struct node_hstate *nhs = &node_hstates[node->dev.id];
4121 int err;
4122
4123 if (!hugetlb_sysfs_initialized)
4124 return;
4125
4126 if (nhs->hugepages_kobj)
4127 return; /* already allocated */
4128
4129 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4130 &node->dev.kobj);
4131 if (!nhs->hugepages_kobj)
4132 return;
4133
4134 for_each_hstate(h) {
4135 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4136 nhs->hstate_kobjs,
4137 &per_node_hstate_attr_group);
4138 if (err) {
4139 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4140 h->name, node->dev.id);
4141 hugetlb_unregister_node(node);
4142 break;
4143 }
4144 }
4145}
4146
4147/*
4148 * hugetlb init time: register hstate attributes for all registered node
4149 * devices of nodes that have memory. All on-line nodes should have
4150 * registered their associated device by this time.
4151 */
4152static void __init hugetlb_register_all_nodes(void)
4153{
4154 int nid;
4155
4156 for_each_online_node(nid)
4157 hugetlb_register_node(node_devices[nid]);
4158}
4159#else /* !CONFIG_NUMA */
4160
4161static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4162{
4163 BUG();
4164 if (nidp)
4165 *nidp = -1;
4166 return NULL;
4167}
4168
4169static void hugetlb_register_all_nodes(void) { }
4170
4171#endif
4172
4173#ifdef CONFIG_CMA
4174static void __init hugetlb_cma_check(void);
4175#else
4176static inline __init void hugetlb_cma_check(void)
4177{
4178}
4179#endif
4180
4181static void __init hugetlb_sysfs_init(void)
4182{
4183 struct hstate *h;
4184 int err;
4185
4186 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4187 if (!hugepages_kobj)
4188 return;
4189
4190 for_each_hstate(h) {
4191 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4192 hstate_kobjs, &hstate_attr_group);
4193 if (err)
4194 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4195 }
4196
4197#ifdef CONFIG_NUMA
4198 hugetlb_sysfs_initialized = true;
4199#endif
4200 hugetlb_register_all_nodes();
4201}
4202
4203static int __init hugetlb_init(void)
4204{
4205 int i;
4206
4207 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4208 __NR_HPAGEFLAGS);
4209
4210 if (!hugepages_supported()) {
4211 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4212 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4213 return 0;
4214 }
4215
4216 /*
4217 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4218 * architectures depend on setup being done here.
4219 */
4220 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4221 if (!parsed_default_hugepagesz) {
4222 /*
4223 * If we did not parse a default huge page size, set
4224 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4225 * number of huge pages for this default size was implicitly
4226 * specified, set that here as well.
4227 * Note that the implicit setting will overwrite an explicit
4228 * setting. A warning will be printed in this case.
4229 */
4230 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4231 if (default_hstate_max_huge_pages) {
4232 if (default_hstate.max_huge_pages) {
4233 char buf[32];
4234
4235 string_get_size(huge_page_size(&default_hstate),
4236 1, STRING_UNITS_2, buf, 32);
4237 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4238 default_hstate.max_huge_pages, buf);
4239 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4240 default_hstate_max_huge_pages);
4241 }
4242 default_hstate.max_huge_pages =
4243 default_hstate_max_huge_pages;
4244
4245 for_each_online_node(i)
4246 default_hstate.max_huge_pages_node[i] =
4247 default_hugepages_in_node[i];
4248 }
4249 }
4250
4251 hugetlb_cma_check();
4252 hugetlb_init_hstates();
4253 gather_bootmem_prealloc();
4254 report_hugepages();
4255
4256 hugetlb_sysfs_init();
4257 hugetlb_cgroup_file_init();
4258
4259#ifdef CONFIG_SMP
4260 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4261#else
4262 num_fault_mutexes = 1;
4263#endif
4264 hugetlb_fault_mutex_table =
4265 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4266 GFP_KERNEL);
4267 BUG_ON(!hugetlb_fault_mutex_table);
4268
4269 for (i = 0; i < num_fault_mutexes; i++)
4270 mutex_init(&hugetlb_fault_mutex_table[i]);
4271 return 0;
4272}
4273subsys_initcall(hugetlb_init);
4274
4275/* Overwritten by architectures with more huge page sizes */
4276bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4277{
4278 return size == HPAGE_SIZE;
4279}
4280
4281void __init hugetlb_add_hstate(unsigned int order)
4282{
4283 struct hstate *h;
4284 unsigned long i;
4285
4286 if (size_to_hstate(PAGE_SIZE << order)) {
4287 return;
4288 }
4289 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4290 BUG_ON(order == 0);
4291 h = &hstates[hugetlb_max_hstate++];
4292 mutex_init(&h->resize_lock);
4293 h->order = order;
4294 h->mask = ~(huge_page_size(h) - 1);
4295 for (i = 0; i < MAX_NUMNODES; ++i)
4296 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4297 INIT_LIST_HEAD(&h->hugepage_activelist);
4298 h->next_nid_to_alloc = first_memory_node;
4299 h->next_nid_to_free = first_memory_node;
4300 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4301 huge_page_size(h)/SZ_1K);
4302
4303 parsed_hstate = h;
4304}
4305
4306bool __init __weak hugetlb_node_alloc_supported(void)
4307{
4308 return true;
4309}
4310
4311static void __init hugepages_clear_pages_in_node(void)
4312{
4313 if (!hugetlb_max_hstate) {
4314 default_hstate_max_huge_pages = 0;
4315 memset(default_hugepages_in_node, 0,
4316 sizeof(default_hugepages_in_node));
4317 } else {
4318 parsed_hstate->max_huge_pages = 0;
4319 memset(parsed_hstate->max_huge_pages_node, 0,
4320 sizeof(parsed_hstate->max_huge_pages_node));
4321 }
4322}
4323
4324/*
4325 * hugepages command line processing
4326 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4327 * specification. If not, ignore the hugepages value. hugepages can also
4328 * be the first huge page command line option in which case it implicitly
4329 * specifies the number of huge pages for the default size.
4330 */
4331static int __init hugepages_setup(char *s)
4332{
4333 unsigned long *mhp;
4334 static unsigned long *last_mhp;
4335 int node = NUMA_NO_NODE;
4336 int count;
4337 unsigned long tmp;
4338 char *p = s;
4339
4340 if (!parsed_valid_hugepagesz) {
4341 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4342 parsed_valid_hugepagesz = true;
4343 return 1;
4344 }
4345
4346 /*
4347 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4348 * yet, so this hugepages= parameter goes to the "default hstate".
4349 * Otherwise, it goes with the previously parsed hugepagesz or
4350 * default_hugepagesz.
4351 */
4352 else if (!hugetlb_max_hstate)
4353 mhp = &default_hstate_max_huge_pages;
4354 else
4355 mhp = &parsed_hstate->max_huge_pages;
4356
4357 if (mhp == last_mhp) {
4358 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4359 return 1;
4360 }
4361
4362 while (*p) {
4363 count = 0;
4364 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4365 goto invalid;
4366 /* Parameter is node format */
4367 if (p[count] == ':') {
4368 if (!hugetlb_node_alloc_supported()) {
4369 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4370 return 1;
4371 }
4372 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4373 goto invalid;
4374 node = array_index_nospec(tmp, MAX_NUMNODES);
4375 p += count + 1;
4376 /* Parse hugepages */
4377 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4378 goto invalid;
4379 if (!hugetlb_max_hstate)
4380 default_hugepages_in_node[node] = tmp;
4381 else
4382 parsed_hstate->max_huge_pages_node[node] = tmp;
4383 *mhp += tmp;
4384 /* Go to parse next node*/
4385 if (p[count] == ',')
4386 p += count + 1;
4387 else
4388 break;
4389 } else {
4390 if (p != s)
4391 goto invalid;
4392 *mhp = tmp;
4393 break;
4394 }
4395 }
4396
4397 /*
4398 * Global state is always initialized later in hugetlb_init.
4399 * But we need to allocate gigantic hstates here early to still
4400 * use the bootmem allocator.
4401 */
4402 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4403 hugetlb_hstate_alloc_pages(parsed_hstate);
4404
4405 last_mhp = mhp;
4406
4407 return 1;
4408
4409invalid:
4410 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4411 hugepages_clear_pages_in_node();
4412 return 1;
4413}
4414__setup("hugepages=", hugepages_setup);
4415
4416/*
4417 * hugepagesz command line processing
4418 * A specific huge page size can only be specified once with hugepagesz.
4419 * hugepagesz is followed by hugepages on the command line. The global
4420 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4421 * hugepagesz argument was valid.
4422 */
4423static int __init hugepagesz_setup(char *s)
4424{
4425 unsigned long size;
4426 struct hstate *h;
4427
4428 parsed_valid_hugepagesz = false;
4429 size = (unsigned long)memparse(s, NULL);
4430
4431 if (!arch_hugetlb_valid_size(size)) {
4432 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4433 return 1;
4434 }
4435
4436 h = size_to_hstate(size);
4437 if (h) {
4438 /*
4439 * hstate for this size already exists. This is normally
4440 * an error, but is allowed if the existing hstate is the
4441 * default hstate. More specifically, it is only allowed if
4442 * the number of huge pages for the default hstate was not
4443 * previously specified.
4444 */
4445 if (!parsed_default_hugepagesz || h != &default_hstate ||
4446 default_hstate.max_huge_pages) {
4447 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4448 return 1;
4449 }
4450
4451 /*
4452 * No need to call hugetlb_add_hstate() as hstate already
4453 * exists. But, do set parsed_hstate so that a following
4454 * hugepages= parameter will be applied to this hstate.
4455 */
4456 parsed_hstate = h;
4457 parsed_valid_hugepagesz = true;
4458 return 1;
4459 }
4460
4461 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4462 parsed_valid_hugepagesz = true;
4463 return 1;
4464}
4465__setup("hugepagesz=", hugepagesz_setup);
4466
4467/*
4468 * default_hugepagesz command line input
4469 * Only one instance of default_hugepagesz allowed on command line.
4470 */
4471static int __init default_hugepagesz_setup(char *s)
4472{
4473 unsigned long size;
4474 int i;
4475
4476 parsed_valid_hugepagesz = false;
4477 if (parsed_default_hugepagesz) {
4478 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4479 return 1;
4480 }
4481
4482 size = (unsigned long)memparse(s, NULL);
4483
4484 if (!arch_hugetlb_valid_size(size)) {
4485 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4486 return 1;
4487 }
4488
4489 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4490 parsed_valid_hugepagesz = true;
4491 parsed_default_hugepagesz = true;
4492 default_hstate_idx = hstate_index(size_to_hstate(size));
4493
4494 /*
4495 * The number of default huge pages (for this size) could have been
4496 * specified as the first hugetlb parameter: hugepages=X. If so,
4497 * then default_hstate_max_huge_pages is set. If the default huge
4498 * page size is gigantic (>= MAX_ORDER), then the pages must be
4499 * allocated here from bootmem allocator.
4500 */
4501 if (default_hstate_max_huge_pages) {
4502 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4503 for_each_online_node(i)
4504 default_hstate.max_huge_pages_node[i] =
4505 default_hugepages_in_node[i];
4506 if (hstate_is_gigantic(&default_hstate))
4507 hugetlb_hstate_alloc_pages(&default_hstate);
4508 default_hstate_max_huge_pages = 0;
4509 }
4510
4511 return 1;
4512}
4513__setup("default_hugepagesz=", default_hugepagesz_setup);
4514
4515static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4516{
4517#ifdef CONFIG_NUMA
4518 struct mempolicy *mpol = get_task_policy(current);
4519
4520 /*
4521 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4522 * (from policy_nodemask) specifically for hugetlb case
4523 */
4524 if (mpol->mode == MPOL_BIND &&
4525 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4526 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4527 return &mpol->nodes;
4528#endif
4529 return NULL;
4530}
4531
4532static unsigned int allowed_mems_nr(struct hstate *h)
4533{
4534 int node;
4535 unsigned int nr = 0;
4536 nodemask_t *mbind_nodemask;
4537 unsigned int *array = h->free_huge_pages_node;
4538 gfp_t gfp_mask = htlb_alloc_mask(h);
4539
4540 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4541 for_each_node_mask(node, cpuset_current_mems_allowed) {
4542 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4543 nr += array[node];
4544 }
4545
4546 return nr;
4547}
4548
4549#ifdef CONFIG_SYSCTL
4550static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4551 void *buffer, size_t *length,
4552 loff_t *ppos, unsigned long *out)
4553{
4554 struct ctl_table dup_table;
4555
4556 /*
4557 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4558 * can duplicate the @table and alter the duplicate of it.
4559 */
4560 dup_table = *table;
4561 dup_table.data = out;
4562
4563 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4564}
4565
4566static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4567 struct ctl_table *table, int write,
4568 void *buffer, size_t *length, loff_t *ppos)
4569{
4570 struct hstate *h = &default_hstate;
4571 unsigned long tmp = h->max_huge_pages;
4572 int ret;
4573
4574 if (!hugepages_supported())
4575 return -EOPNOTSUPP;
4576
4577 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4578 &tmp);
4579 if (ret)
4580 goto out;
4581
4582 if (write)
4583 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4584 NUMA_NO_NODE, tmp, *length);
4585out:
4586 return ret;
4587}
4588
4589int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4590 void *buffer, size_t *length, loff_t *ppos)
4591{
4592
4593 return hugetlb_sysctl_handler_common(false, table, write,
4594 buffer, length, ppos);
4595}
4596
4597#ifdef CONFIG_NUMA
4598int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4599 void *buffer, size_t *length, loff_t *ppos)
4600{
4601 return hugetlb_sysctl_handler_common(true, table, write,
4602 buffer, length, ppos);
4603}
4604#endif /* CONFIG_NUMA */
4605
4606int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4607 void *buffer, size_t *length, loff_t *ppos)
4608{
4609 struct hstate *h = &default_hstate;
4610 unsigned long tmp;
4611 int ret;
4612
4613 if (!hugepages_supported())
4614 return -EOPNOTSUPP;
4615
4616 tmp = h->nr_overcommit_huge_pages;
4617
4618 if (write && hstate_is_gigantic(h))
4619 return -EINVAL;
4620
4621 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4622 &tmp);
4623 if (ret)
4624 goto out;
4625
4626 if (write) {
4627 spin_lock_irq(&hugetlb_lock);
4628 h->nr_overcommit_huge_pages = tmp;
4629 spin_unlock_irq(&hugetlb_lock);
4630 }
4631out:
4632 return ret;
4633}
4634
4635#endif /* CONFIG_SYSCTL */
4636
4637void hugetlb_report_meminfo(struct seq_file *m)
4638{
4639 struct hstate *h;
4640 unsigned long total = 0;
4641
4642 if (!hugepages_supported())
4643 return;
4644
4645 for_each_hstate(h) {
4646 unsigned long count = h->nr_huge_pages;
4647
4648 total += huge_page_size(h) * count;
4649
4650 if (h == &default_hstate)
4651 seq_printf(m,
4652 "HugePages_Total: %5lu\n"
4653 "HugePages_Free: %5lu\n"
4654 "HugePages_Rsvd: %5lu\n"
4655 "HugePages_Surp: %5lu\n"
4656 "Hugepagesize: %8lu kB\n",
4657 count,
4658 h->free_huge_pages,
4659 h->resv_huge_pages,
4660 h->surplus_huge_pages,
4661 huge_page_size(h) / SZ_1K);
4662 }
4663
4664 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4665}
4666
4667int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4668{
4669 struct hstate *h = &default_hstate;
4670
4671 if (!hugepages_supported())
4672 return 0;
4673
4674 return sysfs_emit_at(buf, len,
4675 "Node %d HugePages_Total: %5u\n"
4676 "Node %d HugePages_Free: %5u\n"
4677 "Node %d HugePages_Surp: %5u\n",
4678 nid, h->nr_huge_pages_node[nid],
4679 nid, h->free_huge_pages_node[nid],
4680 nid, h->surplus_huge_pages_node[nid]);
4681}
4682
4683void hugetlb_show_meminfo_node(int nid)
4684{
4685 struct hstate *h;
4686
4687 if (!hugepages_supported())
4688 return;
4689
4690 for_each_hstate(h)
4691 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4692 nid,
4693 h->nr_huge_pages_node[nid],
4694 h->free_huge_pages_node[nid],
4695 h->surplus_huge_pages_node[nid],
4696 huge_page_size(h) / SZ_1K);
4697}
4698
4699void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4700{
4701 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4702 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4703}
4704
4705/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4706unsigned long hugetlb_total_pages(void)
4707{
4708 struct hstate *h;
4709 unsigned long nr_total_pages = 0;
4710
4711 for_each_hstate(h)
4712 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4713 return nr_total_pages;
4714}
4715
4716static int hugetlb_acct_memory(struct hstate *h, long delta)
4717{
4718 int ret = -ENOMEM;
4719
4720 if (!delta)
4721 return 0;
4722
4723 spin_lock_irq(&hugetlb_lock);
4724 /*
4725 * When cpuset is configured, it breaks the strict hugetlb page
4726 * reservation as the accounting is done on a global variable. Such
4727 * reservation is completely rubbish in the presence of cpuset because
4728 * the reservation is not checked against page availability for the
4729 * current cpuset. Application can still potentially OOM'ed by kernel
4730 * with lack of free htlb page in cpuset that the task is in.
4731 * Attempt to enforce strict accounting with cpuset is almost
4732 * impossible (or too ugly) because cpuset is too fluid that
4733 * task or memory node can be dynamically moved between cpusets.
4734 *
4735 * The change of semantics for shared hugetlb mapping with cpuset is
4736 * undesirable. However, in order to preserve some of the semantics,
4737 * we fall back to check against current free page availability as
4738 * a best attempt and hopefully to minimize the impact of changing
4739 * semantics that cpuset has.
4740 *
4741 * Apart from cpuset, we also have memory policy mechanism that
4742 * also determines from which node the kernel will allocate memory
4743 * in a NUMA system. So similar to cpuset, we also should consider
4744 * the memory policy of the current task. Similar to the description
4745 * above.
4746 */
4747 if (delta > 0) {
4748 if (gather_surplus_pages(h, delta) < 0)
4749 goto out;
4750
4751 if (delta > allowed_mems_nr(h)) {
4752 return_unused_surplus_pages(h, delta);
4753 goto out;
4754 }
4755 }
4756
4757 ret = 0;
4758 if (delta < 0)
4759 return_unused_surplus_pages(h, (unsigned long) -delta);
4760
4761out:
4762 spin_unlock_irq(&hugetlb_lock);
4763 return ret;
4764}
4765
4766static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4767{
4768 struct resv_map *resv = vma_resv_map(vma);
4769
4770 /*
4771 * HPAGE_RESV_OWNER indicates a private mapping.
4772 * This new VMA should share its siblings reservation map if present.
4773 * The VMA will only ever have a valid reservation map pointer where
4774 * it is being copied for another still existing VMA. As that VMA
4775 * has a reference to the reservation map it cannot disappear until
4776 * after this open call completes. It is therefore safe to take a
4777 * new reference here without additional locking.
4778 */
4779 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4780 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4781 kref_get(&resv->refs);
4782 }
4783
4784 /*
4785 * vma_lock structure for sharable mappings is vma specific.
4786 * Clear old pointer (if copied via vm_area_dup) and allocate
4787 * new structure. Before clearing, make sure vma_lock is not
4788 * for this vma.
4789 */
4790 if (vma->vm_flags & VM_MAYSHARE) {
4791 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4792
4793 if (vma_lock) {
4794 if (vma_lock->vma != vma) {
4795 vma->vm_private_data = NULL;
4796 hugetlb_vma_lock_alloc(vma);
4797 } else
4798 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4799 } else
4800 hugetlb_vma_lock_alloc(vma);
4801 }
4802}
4803
4804static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4805{
4806 struct hstate *h = hstate_vma(vma);
4807 struct resv_map *resv;
4808 struct hugepage_subpool *spool = subpool_vma(vma);
4809 unsigned long reserve, start, end;
4810 long gbl_reserve;
4811
4812 hugetlb_vma_lock_free(vma);
4813
4814 resv = vma_resv_map(vma);
4815 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4816 return;
4817
4818 start = vma_hugecache_offset(h, vma, vma->vm_start);
4819 end = vma_hugecache_offset(h, vma, vma->vm_end);
4820
4821 reserve = (end - start) - region_count(resv, start, end);
4822 hugetlb_cgroup_uncharge_counter(resv, start, end);
4823 if (reserve) {
4824 /*
4825 * Decrement reserve counts. The global reserve count may be
4826 * adjusted if the subpool has a minimum size.
4827 */
4828 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4829 hugetlb_acct_memory(h, -gbl_reserve);
4830 }
4831
4832 kref_put(&resv->refs, resv_map_release);
4833}
4834
4835static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4836{
4837 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4838 return -EINVAL;
4839
4840 /*
4841 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4842 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4843 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4844 */
4845 if (addr & ~PUD_MASK) {
4846 /*
4847 * hugetlb_vm_op_split is called right before we attempt to
4848 * split the VMA. We will need to unshare PMDs in the old and
4849 * new VMAs, so let's unshare before we split.
4850 */
4851 unsigned long floor = addr & PUD_MASK;
4852 unsigned long ceil = floor + PUD_SIZE;
4853
4854 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4855 hugetlb_unshare_pmds(vma, floor, ceil);
4856 }
4857
4858 return 0;
4859}
4860
4861static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4862{
4863 return huge_page_size(hstate_vma(vma));
4864}
4865
4866/*
4867 * We cannot handle pagefaults against hugetlb pages at all. They cause
4868 * handle_mm_fault() to try to instantiate regular-sized pages in the
4869 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4870 * this far.
4871 */
4872static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4873{
4874 BUG();
4875 return 0;
4876}
4877
4878/*
4879 * When a new function is introduced to vm_operations_struct and added
4880 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4881 * This is because under System V memory model, mappings created via
4882 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4883 * their original vm_ops are overwritten with shm_vm_ops.
4884 */
4885const struct vm_operations_struct hugetlb_vm_ops = {
4886 .fault = hugetlb_vm_op_fault,
4887 .open = hugetlb_vm_op_open,
4888 .close = hugetlb_vm_op_close,
4889 .may_split = hugetlb_vm_op_split,
4890 .pagesize = hugetlb_vm_op_pagesize,
4891};
4892
4893static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4894 int writable)
4895{
4896 pte_t entry;
4897 unsigned int shift = huge_page_shift(hstate_vma(vma));
4898
4899 if (writable) {
4900 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4901 vma->vm_page_prot)));
4902 } else {
4903 entry = huge_pte_wrprotect(mk_huge_pte(page,
4904 vma->vm_page_prot));
4905 }
4906 entry = pte_mkyoung(entry);
4907 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4908
4909 return entry;
4910}
4911
4912static void set_huge_ptep_writable(struct vm_area_struct *vma,
4913 unsigned long address, pte_t *ptep)
4914{
4915 pte_t entry;
4916
4917 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4918 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4919 update_mmu_cache(vma, address, ptep);
4920}
4921
4922bool is_hugetlb_entry_migration(pte_t pte)
4923{
4924 swp_entry_t swp;
4925
4926 if (huge_pte_none(pte) || pte_present(pte))
4927 return false;
4928 swp = pte_to_swp_entry(pte);
4929 if (is_migration_entry(swp))
4930 return true;
4931 else
4932 return false;
4933}
4934
4935static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4936{
4937 swp_entry_t swp;
4938
4939 if (huge_pte_none(pte) || pte_present(pte))
4940 return false;
4941 swp = pte_to_swp_entry(pte);
4942 if (is_hwpoison_entry(swp))
4943 return true;
4944 else
4945 return false;
4946}
4947
4948static void
4949hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4950 struct page *new_page)
4951{
4952 __SetPageUptodate(new_page);
4953 hugepage_add_new_anon_rmap(new_page, vma, addr);
4954 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4955 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4956 SetHPageMigratable(new_page);
4957}
4958
4959int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4960 struct vm_area_struct *dst_vma,
4961 struct vm_area_struct *src_vma)
4962{
4963 pte_t *src_pte, *dst_pte, entry;
4964 struct page *ptepage;
4965 unsigned long addr;
4966 bool cow = is_cow_mapping(src_vma->vm_flags);
4967 struct hstate *h = hstate_vma(src_vma);
4968 unsigned long sz = huge_page_size(h);
4969 unsigned long npages = pages_per_huge_page(h);
4970 struct mmu_notifier_range range;
4971 unsigned long last_addr_mask;
4972 int ret = 0;
4973
4974 if (cow) {
4975 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4976 src_vma->vm_start,
4977 src_vma->vm_end);
4978 mmu_notifier_invalidate_range_start(&range);
4979 mmap_assert_write_locked(src);
4980 raw_write_seqcount_begin(&src->write_protect_seq);
4981 } else {
4982 /*
4983 * For shared mappings the vma lock must be held before
4984 * calling huge_pte_offset in the src vma. Otherwise, the
4985 * returned ptep could go away if part of a shared pmd and
4986 * another thread calls huge_pmd_unshare.
4987 */
4988 hugetlb_vma_lock_read(src_vma);
4989 }
4990
4991 last_addr_mask = hugetlb_mask_last_page(h);
4992 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4993 spinlock_t *src_ptl, *dst_ptl;
4994 src_pte = huge_pte_offset(src, addr, sz);
4995 if (!src_pte) {
4996 addr |= last_addr_mask;
4997 continue;
4998 }
4999 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5000 if (!dst_pte) {
5001 ret = -ENOMEM;
5002 break;
5003 }
5004
5005 /*
5006 * If the pagetables are shared don't copy or take references.
5007 *
5008 * dst_pte == src_pte is the common case of src/dest sharing.
5009 * However, src could have 'unshared' and dst shares with
5010 * another vma. So page_count of ptep page is checked instead
5011 * to reliably determine whether pte is shared.
5012 */
5013 if (page_count(virt_to_page(dst_pte)) > 1) {
5014 addr |= last_addr_mask;
5015 continue;
5016 }
5017
5018 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5019 src_ptl = huge_pte_lockptr(h, src, src_pte);
5020 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5021 entry = huge_ptep_get(src_pte);
5022again:
5023 if (huge_pte_none(entry)) {
5024 /*
5025 * Skip if src entry none.
5026 */
5027 ;
5028 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5029 bool uffd_wp = huge_pte_uffd_wp(entry);
5030
5031 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5032 entry = huge_pte_clear_uffd_wp(entry);
5033 set_huge_pte_at(dst, addr, dst_pte, entry);
5034 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5035 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5036 bool uffd_wp = huge_pte_uffd_wp(entry);
5037
5038 if (!is_readable_migration_entry(swp_entry) && cow) {
5039 /*
5040 * COW mappings require pages in both
5041 * parent and child to be set to read.
5042 */
5043 swp_entry = make_readable_migration_entry(
5044 swp_offset(swp_entry));
5045 entry = swp_entry_to_pte(swp_entry);
5046 if (userfaultfd_wp(src_vma) && uffd_wp)
5047 entry = huge_pte_mkuffd_wp(entry);
5048 set_huge_pte_at(src, addr, src_pte, entry);
5049 }
5050 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5051 entry = huge_pte_clear_uffd_wp(entry);
5052 set_huge_pte_at(dst, addr, dst_pte, entry);
5053 } else if (unlikely(is_pte_marker(entry))) {
5054 /* No swap on hugetlb */
5055 WARN_ON_ONCE(
5056 is_swapin_error_entry(pte_to_swp_entry(entry)));
5057 /*
5058 * We copy the pte marker only if the dst vma has
5059 * uffd-wp enabled.
5060 */
5061 if (userfaultfd_wp(dst_vma))
5062 set_huge_pte_at(dst, addr, dst_pte, entry);
5063 } else {
5064 entry = huge_ptep_get(src_pte);
5065 ptepage = pte_page(entry);
5066 get_page(ptepage);
5067
5068 /*
5069 * Failing to duplicate the anon rmap is a rare case
5070 * where we see pinned hugetlb pages while they're
5071 * prone to COW. We need to do the COW earlier during
5072 * fork.
5073 *
5074 * When pre-allocating the page or copying data, we
5075 * need to be without the pgtable locks since we could
5076 * sleep during the process.
5077 */
5078 if (!PageAnon(ptepage)) {
5079 page_dup_file_rmap(ptepage, true);
5080 } else if (page_try_dup_anon_rmap(ptepage, true,
5081 src_vma)) {
5082 pte_t src_pte_old = entry;
5083 struct page *new;
5084
5085 spin_unlock(src_ptl);
5086 spin_unlock(dst_ptl);
5087 /* Do not use reserve as it's private owned */
5088 new = alloc_huge_page(dst_vma, addr, 1);
5089 if (IS_ERR(new)) {
5090 put_page(ptepage);
5091 ret = PTR_ERR(new);
5092 break;
5093 }
5094 copy_user_huge_page(new, ptepage, addr, dst_vma,
5095 npages);
5096 put_page(ptepage);
5097
5098 /* Install the new huge page if src pte stable */
5099 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5100 src_ptl = huge_pte_lockptr(h, src, src_pte);
5101 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5102 entry = huge_ptep_get(src_pte);
5103 if (!pte_same(src_pte_old, entry)) {
5104 restore_reserve_on_error(h, dst_vma, addr,
5105 new);
5106 put_page(new);
5107 /* huge_ptep of dst_pte won't change as in child */
5108 goto again;
5109 }
5110 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5111 spin_unlock(src_ptl);
5112 spin_unlock(dst_ptl);
5113 continue;
5114 }
5115
5116 if (cow) {
5117 /*
5118 * No need to notify as we are downgrading page
5119 * table protection not changing it to point
5120 * to a new page.
5121 *
5122 * See Documentation/mm/mmu_notifier.rst
5123 */
5124 huge_ptep_set_wrprotect(src, addr, src_pte);
5125 entry = huge_pte_wrprotect(entry);
5126 }
5127
5128 set_huge_pte_at(dst, addr, dst_pte, entry);
5129 hugetlb_count_add(npages, dst);
5130 }
5131 spin_unlock(src_ptl);
5132 spin_unlock(dst_ptl);
5133 }
5134
5135 if (cow) {
5136 raw_write_seqcount_end(&src->write_protect_seq);
5137 mmu_notifier_invalidate_range_end(&range);
5138 } else {
5139 hugetlb_vma_unlock_read(src_vma);
5140 }
5141
5142 return ret;
5143}
5144
5145static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5146 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5147{
5148 struct hstate *h = hstate_vma(vma);
5149 struct mm_struct *mm = vma->vm_mm;
5150 spinlock_t *src_ptl, *dst_ptl;
5151 pte_t pte;
5152
5153 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5154 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5155
5156 /*
5157 * We don't have to worry about the ordering of src and dst ptlocks
5158 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5159 */
5160 if (src_ptl != dst_ptl)
5161 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5162
5163 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5164 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5165
5166 if (src_ptl != dst_ptl)
5167 spin_unlock(src_ptl);
5168 spin_unlock(dst_ptl);
5169}
5170
5171int move_hugetlb_page_tables(struct vm_area_struct *vma,
5172 struct vm_area_struct *new_vma,
5173 unsigned long old_addr, unsigned long new_addr,
5174 unsigned long len)
5175{
5176 struct hstate *h = hstate_vma(vma);
5177 struct address_space *mapping = vma->vm_file->f_mapping;
5178 unsigned long sz = huge_page_size(h);
5179 struct mm_struct *mm = vma->vm_mm;
5180 unsigned long old_end = old_addr + len;
5181 unsigned long last_addr_mask;
5182 pte_t *src_pte, *dst_pte;
5183 struct mmu_notifier_range range;
5184 bool shared_pmd = false;
5185
5186 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5187 old_end);
5188 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5189 /*
5190 * In case of shared PMDs, we should cover the maximum possible
5191 * range.
5192 */
5193 flush_cache_range(vma, range.start, range.end);
5194
5195 mmu_notifier_invalidate_range_start(&range);
5196 last_addr_mask = hugetlb_mask_last_page(h);
5197 /* Prevent race with file truncation */
5198 hugetlb_vma_lock_write(vma);
5199 i_mmap_lock_write(mapping);
5200 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5201 src_pte = huge_pte_offset(mm, old_addr, sz);
5202 if (!src_pte) {
5203 old_addr |= last_addr_mask;
5204 new_addr |= last_addr_mask;
5205 continue;
5206 }
5207 if (huge_pte_none(huge_ptep_get(src_pte)))
5208 continue;
5209
5210 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5211 shared_pmd = true;
5212 old_addr |= last_addr_mask;
5213 new_addr |= last_addr_mask;
5214 continue;
5215 }
5216
5217 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5218 if (!dst_pte)
5219 break;
5220
5221 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5222 }
5223
5224 if (shared_pmd)
5225 flush_tlb_range(vma, range.start, range.end);
5226 else
5227 flush_tlb_range(vma, old_end - len, old_end);
5228 mmu_notifier_invalidate_range_end(&range);
5229 i_mmap_unlock_write(mapping);
5230 hugetlb_vma_unlock_write(vma);
5231
5232 return len + old_addr - old_end;
5233}
5234
5235static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5236 unsigned long start, unsigned long end,
5237 struct page *ref_page, zap_flags_t zap_flags)
5238{
5239 struct mm_struct *mm = vma->vm_mm;
5240 unsigned long address;
5241 pte_t *ptep;
5242 pte_t pte;
5243 spinlock_t *ptl;
5244 struct page *page;
5245 struct hstate *h = hstate_vma(vma);
5246 unsigned long sz = huge_page_size(h);
5247 unsigned long last_addr_mask;
5248 bool force_flush = false;
5249
5250 WARN_ON(!is_vm_hugetlb_page(vma));
5251 BUG_ON(start & ~huge_page_mask(h));
5252 BUG_ON(end & ~huge_page_mask(h));
5253
5254 /*
5255 * This is a hugetlb vma, all the pte entries should point
5256 * to huge page.
5257 */
5258 tlb_change_page_size(tlb, sz);
5259 tlb_start_vma(tlb, vma);
5260
5261 last_addr_mask = hugetlb_mask_last_page(h);
5262 address = start;
5263 for (; address < end; address += sz) {
5264 ptep = huge_pte_offset(mm, address, sz);
5265 if (!ptep) {
5266 address |= last_addr_mask;
5267 continue;
5268 }
5269
5270 ptl = huge_pte_lock(h, mm, ptep);
5271 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5272 spin_unlock(ptl);
5273 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5274 force_flush = true;
5275 address |= last_addr_mask;
5276 continue;
5277 }
5278
5279 pte = huge_ptep_get(ptep);
5280 if (huge_pte_none(pte)) {
5281 spin_unlock(ptl);
5282 continue;
5283 }
5284
5285 /*
5286 * Migrating hugepage or HWPoisoned hugepage is already
5287 * unmapped and its refcount is dropped, so just clear pte here.
5288 */
5289 if (unlikely(!pte_present(pte))) {
5290 /*
5291 * If the pte was wr-protected by uffd-wp in any of the
5292 * swap forms, meanwhile the caller does not want to
5293 * drop the uffd-wp bit in this zap, then replace the
5294 * pte with a marker.
5295 */
5296 if (pte_swp_uffd_wp_any(pte) &&
5297 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5298 set_huge_pte_at(mm, address, ptep,
5299 make_pte_marker(PTE_MARKER_UFFD_WP));
5300 else
5301 huge_pte_clear(mm, address, ptep, sz);
5302 spin_unlock(ptl);
5303 continue;
5304 }
5305
5306 page = pte_page(pte);
5307 /*
5308 * If a reference page is supplied, it is because a specific
5309 * page is being unmapped, not a range. Ensure the page we
5310 * are about to unmap is the actual page of interest.
5311 */
5312 if (ref_page) {
5313 if (page != ref_page) {
5314 spin_unlock(ptl);
5315 continue;
5316 }
5317 /*
5318 * Mark the VMA as having unmapped its page so that
5319 * future faults in this VMA will fail rather than
5320 * looking like data was lost
5321 */
5322 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5323 }
5324
5325 pte = huge_ptep_get_and_clear(mm, address, ptep);
5326 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5327 if (huge_pte_dirty(pte))
5328 set_page_dirty(page);
5329 /* Leave a uffd-wp pte marker if needed */
5330 if (huge_pte_uffd_wp(pte) &&
5331 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5332 set_huge_pte_at(mm, address, ptep,
5333 make_pte_marker(PTE_MARKER_UFFD_WP));
5334 hugetlb_count_sub(pages_per_huge_page(h), mm);
5335 page_remove_rmap(page, vma, true);
5336
5337 spin_unlock(ptl);
5338 tlb_remove_page_size(tlb, page, huge_page_size(h));
5339 /*
5340 * Bail out after unmapping reference page if supplied
5341 */
5342 if (ref_page)
5343 break;
5344 }
5345 tlb_end_vma(tlb, vma);
5346
5347 /*
5348 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5349 * could defer the flush until now, since by holding i_mmap_rwsem we
5350 * guaranteed that the last refernece would not be dropped. But we must
5351 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5352 * dropped and the last reference to the shared PMDs page might be
5353 * dropped as well.
5354 *
5355 * In theory we could defer the freeing of the PMD pages as well, but
5356 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5357 * detect sharing, so we cannot defer the release of the page either.
5358 * Instead, do flush now.
5359 */
5360 if (force_flush)
5361 tlb_flush_mmu_tlbonly(tlb);
5362}
5363
5364void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5365 struct vm_area_struct *vma, unsigned long start,
5366 unsigned long end, struct page *ref_page,
5367 zap_flags_t zap_flags)
5368{
5369 hugetlb_vma_lock_write(vma);
5370 i_mmap_lock_write(vma->vm_file->f_mapping);
5371
5372 /* mmu notification performed in caller */
5373 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5374
5375 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5376 /*
5377 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5378 * When the vma_lock is freed, this makes the vma ineligible
5379 * for pmd sharing. And, i_mmap_rwsem is required to set up
5380 * pmd sharing. This is important as page tables for this
5381 * unmapped range will be asynchrously deleted. If the page
5382 * tables are shared, there will be issues when accessed by
5383 * someone else.
5384 */
5385 __hugetlb_vma_unlock_write_free(vma);
5386 i_mmap_unlock_write(vma->vm_file->f_mapping);
5387 } else {
5388 i_mmap_unlock_write(vma->vm_file->f_mapping);
5389 hugetlb_vma_unlock_write(vma);
5390 }
5391}
5392
5393void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5394 unsigned long end, struct page *ref_page,
5395 zap_flags_t zap_flags)
5396{
5397 struct mmu_notifier_range range;
5398 struct mmu_gather tlb;
5399
5400 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5401 start, end);
5402 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5403 mmu_notifier_invalidate_range_start(&range);
5404 tlb_gather_mmu(&tlb, vma->vm_mm);
5405
5406 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5407
5408 mmu_notifier_invalidate_range_end(&range);
5409 tlb_finish_mmu(&tlb);
5410}
5411
5412/*
5413 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5414 * mapping it owns the reserve page for. The intention is to unmap the page
5415 * from other VMAs and let the children be SIGKILLed if they are faulting the
5416 * same region.
5417 */
5418static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5419 struct page *page, unsigned long address)
5420{
5421 struct hstate *h = hstate_vma(vma);
5422 struct vm_area_struct *iter_vma;
5423 struct address_space *mapping;
5424 pgoff_t pgoff;
5425
5426 /*
5427 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5428 * from page cache lookup which is in HPAGE_SIZE units.
5429 */
5430 address = address & huge_page_mask(h);
5431 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5432 vma->vm_pgoff;
5433 mapping = vma->vm_file->f_mapping;
5434
5435 /*
5436 * Take the mapping lock for the duration of the table walk. As
5437 * this mapping should be shared between all the VMAs,
5438 * __unmap_hugepage_range() is called as the lock is already held
5439 */
5440 i_mmap_lock_write(mapping);
5441 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5442 /* Do not unmap the current VMA */
5443 if (iter_vma == vma)
5444 continue;
5445
5446 /*
5447 * Shared VMAs have their own reserves and do not affect
5448 * MAP_PRIVATE accounting but it is possible that a shared
5449 * VMA is using the same page so check and skip such VMAs.
5450 */
5451 if (iter_vma->vm_flags & VM_MAYSHARE)
5452 continue;
5453
5454 /*
5455 * Unmap the page from other VMAs without their own reserves.
5456 * They get marked to be SIGKILLed if they fault in these
5457 * areas. This is because a future no-page fault on this VMA
5458 * could insert a zeroed page instead of the data existing
5459 * from the time of fork. This would look like data corruption
5460 */
5461 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5462 unmap_hugepage_range(iter_vma, address,
5463 address + huge_page_size(h), page, 0);
5464 }
5465 i_mmap_unlock_write(mapping);
5466}
5467
5468/*
5469 * hugetlb_wp() should be called with page lock of the original hugepage held.
5470 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5471 * cannot race with other handlers or page migration.
5472 * Keep the pte_same checks anyway to make transition from the mutex easier.
5473 */
5474static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5475 unsigned long address, pte_t *ptep, unsigned int flags,
5476 struct page *pagecache_page, spinlock_t *ptl)
5477{
5478 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5479 pte_t pte;
5480 struct hstate *h = hstate_vma(vma);
5481 struct page *old_page, *new_page;
5482 int outside_reserve = 0;
5483 vm_fault_t ret = 0;
5484 unsigned long haddr = address & huge_page_mask(h);
5485 struct mmu_notifier_range range;
5486
5487 /*
5488 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5489 * PTE mapped R/O such as maybe_mkwrite() would do.
5490 */
5491 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5492 return VM_FAULT_SIGSEGV;
5493
5494 /* Let's take out MAP_SHARED mappings first. */
5495 if (vma->vm_flags & VM_MAYSHARE) {
5496 set_huge_ptep_writable(vma, haddr, ptep);
5497 return 0;
5498 }
5499
5500 pte = huge_ptep_get(ptep);
5501 old_page = pte_page(pte);
5502
5503 delayacct_wpcopy_start();
5504
5505retry_avoidcopy:
5506 /*
5507 * If no-one else is actually using this page, we're the exclusive
5508 * owner and can reuse this page.
5509 */
5510 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5511 if (!PageAnonExclusive(old_page))
5512 page_move_anon_rmap(old_page, vma);
5513 if (likely(!unshare))
5514 set_huge_ptep_writable(vma, haddr, ptep);
5515
5516 delayacct_wpcopy_end();
5517 return 0;
5518 }
5519 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5520 old_page);
5521
5522 /*
5523 * If the process that created a MAP_PRIVATE mapping is about to
5524 * perform a COW due to a shared page count, attempt to satisfy
5525 * the allocation without using the existing reserves. The pagecache
5526 * page is used to determine if the reserve at this address was
5527 * consumed or not. If reserves were used, a partial faulted mapping
5528 * at the time of fork() could consume its reserves on COW instead
5529 * of the full address range.
5530 */
5531 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5532 old_page != pagecache_page)
5533 outside_reserve = 1;
5534
5535 get_page(old_page);
5536
5537 /*
5538 * Drop page table lock as buddy allocator may be called. It will
5539 * be acquired again before returning to the caller, as expected.
5540 */
5541 spin_unlock(ptl);
5542 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5543
5544 if (IS_ERR(new_page)) {
5545 /*
5546 * If a process owning a MAP_PRIVATE mapping fails to COW,
5547 * it is due to references held by a child and an insufficient
5548 * huge page pool. To guarantee the original mappers
5549 * reliability, unmap the page from child processes. The child
5550 * may get SIGKILLed if it later faults.
5551 */
5552 if (outside_reserve) {
5553 struct address_space *mapping = vma->vm_file->f_mapping;
5554 pgoff_t idx;
5555 u32 hash;
5556
5557 put_page(old_page);
5558 /*
5559 * Drop hugetlb_fault_mutex and vma_lock before
5560 * unmapping. unmapping needs to hold vma_lock
5561 * in write mode. Dropping vma_lock in read mode
5562 * here is OK as COW mappings do not interact with
5563 * PMD sharing.
5564 *
5565 * Reacquire both after unmap operation.
5566 */
5567 idx = vma_hugecache_offset(h, vma, haddr);
5568 hash = hugetlb_fault_mutex_hash(mapping, idx);
5569 hugetlb_vma_unlock_read(vma);
5570 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5571
5572 unmap_ref_private(mm, vma, old_page, haddr);
5573
5574 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5575 hugetlb_vma_lock_read(vma);
5576 spin_lock(ptl);
5577 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5578 if (likely(ptep &&
5579 pte_same(huge_ptep_get(ptep), pte)))
5580 goto retry_avoidcopy;
5581 /*
5582 * race occurs while re-acquiring page table
5583 * lock, and our job is done.
5584 */
5585 delayacct_wpcopy_end();
5586 return 0;
5587 }
5588
5589 ret = vmf_error(PTR_ERR(new_page));
5590 goto out_release_old;
5591 }
5592
5593 /*
5594 * When the original hugepage is shared one, it does not have
5595 * anon_vma prepared.
5596 */
5597 if (unlikely(anon_vma_prepare(vma))) {
5598 ret = VM_FAULT_OOM;
5599 goto out_release_all;
5600 }
5601
5602 copy_user_huge_page(new_page, old_page, address, vma,
5603 pages_per_huge_page(h));
5604 __SetPageUptodate(new_page);
5605
5606 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5607 haddr + huge_page_size(h));
5608 mmu_notifier_invalidate_range_start(&range);
5609
5610 /*
5611 * Retake the page table lock to check for racing updates
5612 * before the page tables are altered
5613 */
5614 spin_lock(ptl);
5615 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5616 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5617 /* Break COW or unshare */
5618 huge_ptep_clear_flush(vma, haddr, ptep);
5619 mmu_notifier_invalidate_range(mm, range.start, range.end);
5620 page_remove_rmap(old_page, vma, true);
5621 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5622 set_huge_pte_at(mm, haddr, ptep,
5623 make_huge_pte(vma, new_page, !unshare));
5624 SetHPageMigratable(new_page);
5625 /* Make the old page be freed below */
5626 new_page = old_page;
5627 }
5628 spin_unlock(ptl);
5629 mmu_notifier_invalidate_range_end(&range);
5630out_release_all:
5631 /*
5632 * No restore in case of successful pagetable update (Break COW or
5633 * unshare)
5634 */
5635 if (new_page != old_page)
5636 restore_reserve_on_error(h, vma, haddr, new_page);
5637 put_page(new_page);
5638out_release_old:
5639 put_page(old_page);
5640
5641 spin_lock(ptl); /* Caller expects lock to be held */
5642
5643 delayacct_wpcopy_end();
5644 return ret;
5645}
5646
5647/*
5648 * Return whether there is a pagecache page to back given address within VMA.
5649 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5650 */
5651static bool hugetlbfs_pagecache_present(struct hstate *h,
5652 struct vm_area_struct *vma, unsigned long address)
5653{
5654 struct address_space *mapping;
5655 pgoff_t idx;
5656 struct page *page;
5657
5658 mapping = vma->vm_file->f_mapping;
5659 idx = vma_hugecache_offset(h, vma, address);
5660
5661 page = find_get_page(mapping, idx);
5662 if (page)
5663 put_page(page);
5664 return page != NULL;
5665}
5666
5667int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5668 pgoff_t idx)
5669{
5670 struct folio *folio = page_folio(page);
5671 struct inode *inode = mapping->host;
5672 struct hstate *h = hstate_inode(inode);
5673 int err;
5674
5675 __folio_set_locked(folio);
5676 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5677
5678 if (unlikely(err)) {
5679 __folio_clear_locked(folio);
5680 return err;
5681 }
5682 ClearHPageRestoreReserve(page);
5683
5684 /*
5685 * mark folio dirty so that it will not be removed from cache/file
5686 * by non-hugetlbfs specific code paths.
5687 */
5688 folio_mark_dirty(folio);
5689
5690 spin_lock(&inode->i_lock);
5691 inode->i_blocks += blocks_per_huge_page(h);
5692 spin_unlock(&inode->i_lock);
5693 return 0;
5694}
5695
5696static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5697 struct address_space *mapping,
5698 pgoff_t idx,
5699 unsigned int flags,
5700 unsigned long haddr,
5701 unsigned long addr,
5702 unsigned long reason)
5703{
5704 u32 hash;
5705 struct vm_fault vmf = {
5706 .vma = vma,
5707 .address = haddr,
5708 .real_address = addr,
5709 .flags = flags,
5710
5711 /*
5712 * Hard to debug if it ends up being
5713 * used by a callee that assumes
5714 * something about the other
5715 * uninitialized fields... same as in
5716 * memory.c
5717 */
5718 };
5719
5720 /*
5721 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5722 * userfault. Also mmap_lock could be dropped due to handling
5723 * userfault, any vma operation should be careful from here.
5724 */
5725 hugetlb_vma_unlock_read(vma);
5726 hash = hugetlb_fault_mutex_hash(mapping, idx);
5727 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5728 return handle_userfault(&vmf, reason);
5729}
5730
5731/*
5732 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5733 * false if pte changed or is changing.
5734 */
5735static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5736 pte_t *ptep, pte_t old_pte)
5737{
5738 spinlock_t *ptl;
5739 bool same;
5740
5741 ptl = huge_pte_lock(h, mm, ptep);
5742 same = pte_same(huge_ptep_get(ptep), old_pte);
5743 spin_unlock(ptl);
5744
5745 return same;
5746}
5747
5748static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5749 struct vm_area_struct *vma,
5750 struct address_space *mapping, pgoff_t idx,
5751 unsigned long address, pte_t *ptep,
5752 pte_t old_pte, unsigned int flags)
5753{
5754 struct hstate *h = hstate_vma(vma);
5755 vm_fault_t ret = VM_FAULT_SIGBUS;
5756 int anon_rmap = 0;
5757 unsigned long size;
5758 struct page *page;
5759 pte_t new_pte;
5760 spinlock_t *ptl;
5761 unsigned long haddr = address & huge_page_mask(h);
5762 bool new_page, new_pagecache_page = false;
5763 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5764
5765 /*
5766 * Currently, we are forced to kill the process in the event the
5767 * original mapper has unmapped pages from the child due to a failed
5768 * COW/unsharing. Warn that such a situation has occurred as it may not
5769 * be obvious.
5770 */
5771 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5772 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5773 current->pid);
5774 goto out;
5775 }
5776
5777 /*
5778 * Use page lock to guard against racing truncation
5779 * before we get page_table_lock.
5780 */
5781 new_page = false;
5782 page = find_lock_page(mapping, idx);
5783 if (!page) {
5784 size = i_size_read(mapping->host) >> huge_page_shift(h);
5785 if (idx >= size)
5786 goto out;
5787 /* Check for page in userfault range */
5788 if (userfaultfd_missing(vma)) {
5789 /*
5790 * Since hugetlb_no_page() was examining pte
5791 * without pgtable lock, we need to re-test under
5792 * lock because the pte may not be stable and could
5793 * have changed from under us. Try to detect
5794 * either changed or during-changing ptes and retry
5795 * properly when needed.
5796 *
5797 * Note that userfaultfd is actually fine with
5798 * false positives (e.g. caused by pte changed),
5799 * but not wrong logical events (e.g. caused by
5800 * reading a pte during changing). The latter can
5801 * confuse the userspace, so the strictness is very
5802 * much preferred. E.g., MISSING event should
5803 * never happen on the page after UFFDIO_COPY has
5804 * correctly installed the page and returned.
5805 */
5806 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5807 ret = 0;
5808 goto out;
5809 }
5810
5811 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5812 haddr, address,
5813 VM_UFFD_MISSING);
5814 }
5815
5816 page = alloc_huge_page(vma, haddr, 0);
5817 if (IS_ERR(page)) {
5818 /*
5819 * Returning error will result in faulting task being
5820 * sent SIGBUS. The hugetlb fault mutex prevents two
5821 * tasks from racing to fault in the same page which
5822 * could result in false unable to allocate errors.
5823 * Page migration does not take the fault mutex, but
5824 * does a clear then write of pte's under page table
5825 * lock. Page fault code could race with migration,
5826 * notice the clear pte and try to allocate a page
5827 * here. Before returning error, get ptl and make
5828 * sure there really is no pte entry.
5829 */
5830 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5831 ret = vmf_error(PTR_ERR(page));
5832 else
5833 ret = 0;
5834 goto out;
5835 }
5836 clear_huge_page(page, address, pages_per_huge_page(h));
5837 __SetPageUptodate(page);
5838 new_page = true;
5839
5840 if (vma->vm_flags & VM_MAYSHARE) {
5841 int err = hugetlb_add_to_page_cache(page, mapping, idx);
5842 if (err) {
5843 /*
5844 * err can't be -EEXIST which implies someone
5845 * else consumed the reservation since hugetlb
5846 * fault mutex is held when add a hugetlb page
5847 * to the page cache. So it's safe to call
5848 * restore_reserve_on_error() here.
5849 */
5850 restore_reserve_on_error(h, vma, haddr, page);
5851 put_page(page);
5852 goto out;
5853 }
5854 new_pagecache_page = true;
5855 } else {
5856 lock_page(page);
5857 if (unlikely(anon_vma_prepare(vma))) {
5858 ret = VM_FAULT_OOM;
5859 goto backout_unlocked;
5860 }
5861 anon_rmap = 1;
5862 }
5863 } else {
5864 /*
5865 * If memory error occurs between mmap() and fault, some process
5866 * don't have hwpoisoned swap entry for errored virtual address.
5867 * So we need to block hugepage fault by PG_hwpoison bit check.
5868 */
5869 if (unlikely(PageHWPoison(page))) {
5870 ret = VM_FAULT_HWPOISON_LARGE |
5871 VM_FAULT_SET_HINDEX(hstate_index(h));
5872 goto backout_unlocked;
5873 }
5874
5875 /* Check for page in userfault range. */
5876 if (userfaultfd_minor(vma)) {
5877 unlock_page(page);
5878 put_page(page);
5879 /* See comment in userfaultfd_missing() block above */
5880 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5881 ret = 0;
5882 goto out;
5883 }
5884 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5885 haddr, address,
5886 VM_UFFD_MINOR);
5887 }
5888 }
5889
5890 /*
5891 * If we are going to COW a private mapping later, we examine the
5892 * pending reservations for this page now. This will ensure that
5893 * any allocations necessary to record that reservation occur outside
5894 * the spinlock.
5895 */
5896 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5897 if (vma_needs_reservation(h, vma, haddr) < 0) {
5898 ret = VM_FAULT_OOM;
5899 goto backout_unlocked;
5900 }
5901 /* Just decrements count, does not deallocate */
5902 vma_end_reservation(h, vma, haddr);
5903 }
5904
5905 ptl = huge_pte_lock(h, mm, ptep);
5906 ret = 0;
5907 /* If pte changed from under us, retry */
5908 if (!pte_same(huge_ptep_get(ptep), old_pte))
5909 goto backout;
5910
5911 if (anon_rmap)
5912 hugepage_add_new_anon_rmap(page, vma, haddr);
5913 else
5914 page_dup_file_rmap(page, true);
5915 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5916 && (vma->vm_flags & VM_SHARED)));
5917 /*
5918 * If this pte was previously wr-protected, keep it wr-protected even
5919 * if populated.
5920 */
5921 if (unlikely(pte_marker_uffd_wp(old_pte)))
5922 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5923 set_huge_pte_at(mm, haddr, ptep, new_pte);
5924
5925 hugetlb_count_add(pages_per_huge_page(h), mm);
5926 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5927 /* Optimization, do the COW without a second fault */
5928 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5929 }
5930
5931 spin_unlock(ptl);
5932
5933 /*
5934 * Only set HPageMigratable in newly allocated pages. Existing pages
5935 * found in the pagecache may not have HPageMigratableset if they have
5936 * been isolated for migration.
5937 */
5938 if (new_page)
5939 SetHPageMigratable(page);
5940
5941 unlock_page(page);
5942out:
5943 hugetlb_vma_unlock_read(vma);
5944 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5945 return ret;
5946
5947backout:
5948 spin_unlock(ptl);
5949backout_unlocked:
5950 if (new_page && !new_pagecache_page)
5951 restore_reserve_on_error(h, vma, haddr, page);
5952
5953 unlock_page(page);
5954 put_page(page);
5955 goto out;
5956}
5957
5958#ifdef CONFIG_SMP
5959u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5960{
5961 unsigned long key[2];
5962 u32 hash;
5963
5964 key[0] = (unsigned long) mapping;
5965 key[1] = idx;
5966
5967 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5968
5969 return hash & (num_fault_mutexes - 1);
5970}
5971#else
5972/*
5973 * For uniprocessor systems we always use a single mutex, so just
5974 * return 0 and avoid the hashing overhead.
5975 */
5976u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5977{
5978 return 0;
5979}
5980#endif
5981
5982vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5983 unsigned long address, unsigned int flags)
5984{
5985 pte_t *ptep, entry;
5986 spinlock_t *ptl;
5987 vm_fault_t ret;
5988 u32 hash;
5989 pgoff_t idx;
5990 struct page *page = NULL;
5991 struct page *pagecache_page = NULL;
5992 struct hstate *h = hstate_vma(vma);
5993 struct address_space *mapping;
5994 int need_wait_lock = 0;
5995 unsigned long haddr = address & huge_page_mask(h);
5996
5997 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5998 if (ptep) {
5999 /*
6000 * Since we hold no locks, ptep could be stale. That is
6001 * OK as we are only making decisions based on content and
6002 * not actually modifying content here.
6003 */
6004 entry = huge_ptep_get(ptep);
6005 if (unlikely(is_hugetlb_entry_migration(entry))) {
6006 migration_entry_wait_huge(vma, ptep);
6007 return 0;
6008 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6009 return VM_FAULT_HWPOISON_LARGE |
6010 VM_FAULT_SET_HINDEX(hstate_index(h));
6011 }
6012
6013 /*
6014 * Serialize hugepage allocation and instantiation, so that we don't
6015 * get spurious allocation failures if two CPUs race to instantiate
6016 * the same page in the page cache.
6017 */
6018 mapping = vma->vm_file->f_mapping;
6019 idx = vma_hugecache_offset(h, vma, haddr);
6020 hash = hugetlb_fault_mutex_hash(mapping, idx);
6021 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6022
6023 /*
6024 * Acquire vma lock before calling huge_pte_alloc and hold
6025 * until finished with ptep. This prevents huge_pmd_unshare from
6026 * being called elsewhere and making the ptep no longer valid.
6027 *
6028 * ptep could have already be assigned via huge_pte_offset. That
6029 * is OK, as huge_pte_alloc will return the same value unless
6030 * something has changed.
6031 */
6032 hugetlb_vma_lock_read(vma);
6033 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6034 if (!ptep) {
6035 hugetlb_vma_unlock_read(vma);
6036 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6037 return VM_FAULT_OOM;
6038 }
6039
6040 entry = huge_ptep_get(ptep);
6041 /* PTE markers should be handled the same way as none pte */
6042 if (huge_pte_none_mostly(entry))
6043 /*
6044 * hugetlb_no_page will drop vma lock and hugetlb fault
6045 * mutex internally, which make us return immediately.
6046 */
6047 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6048 entry, flags);
6049
6050 ret = 0;
6051
6052 /*
6053 * entry could be a migration/hwpoison entry at this point, so this
6054 * check prevents the kernel from going below assuming that we have
6055 * an active hugepage in pagecache. This goto expects the 2nd page
6056 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6057 * properly handle it.
6058 */
6059 if (!pte_present(entry))
6060 goto out_mutex;
6061
6062 /*
6063 * If we are going to COW/unshare the mapping later, we examine the
6064 * pending reservations for this page now. This will ensure that any
6065 * allocations necessary to record that reservation occur outside the
6066 * spinlock. Also lookup the pagecache page now as it is used to
6067 * determine if a reservation has been consumed.
6068 */
6069 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6070 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6071 if (vma_needs_reservation(h, vma, haddr) < 0) {
6072 ret = VM_FAULT_OOM;
6073 goto out_mutex;
6074 }
6075 /* Just decrements count, does not deallocate */
6076 vma_end_reservation(h, vma, haddr);
6077
6078 pagecache_page = find_lock_page(mapping, idx);
6079 }
6080
6081 ptl = huge_pte_lock(h, mm, ptep);
6082
6083 /* Check for a racing update before calling hugetlb_wp() */
6084 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6085 goto out_ptl;
6086
6087 /* Handle userfault-wp first, before trying to lock more pages */
6088 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6089 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6090 struct vm_fault vmf = {
6091 .vma = vma,
6092 .address = haddr,
6093 .real_address = address,
6094 .flags = flags,
6095 };
6096
6097 spin_unlock(ptl);
6098 if (pagecache_page) {
6099 unlock_page(pagecache_page);
6100 put_page(pagecache_page);
6101 }
6102 hugetlb_vma_unlock_read(vma);
6103 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6104 return handle_userfault(&vmf, VM_UFFD_WP);
6105 }
6106
6107 /*
6108 * hugetlb_wp() requires page locks of pte_page(entry) and
6109 * pagecache_page, so here we need take the former one
6110 * when page != pagecache_page or !pagecache_page.
6111 */
6112 page = pte_page(entry);
6113 if (page != pagecache_page)
6114 if (!trylock_page(page)) {
6115 need_wait_lock = 1;
6116 goto out_ptl;
6117 }
6118
6119 get_page(page);
6120
6121 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6122 if (!huge_pte_write(entry)) {
6123 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6124 pagecache_page, ptl);
6125 goto out_put_page;
6126 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6127 entry = huge_pte_mkdirty(entry);
6128 }
6129 }
6130 entry = pte_mkyoung(entry);
6131 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6132 flags & FAULT_FLAG_WRITE))
6133 update_mmu_cache(vma, haddr, ptep);
6134out_put_page:
6135 if (page != pagecache_page)
6136 unlock_page(page);
6137 put_page(page);
6138out_ptl:
6139 spin_unlock(ptl);
6140
6141 if (pagecache_page) {
6142 unlock_page(pagecache_page);
6143 put_page(pagecache_page);
6144 }
6145out_mutex:
6146 hugetlb_vma_unlock_read(vma);
6147 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6148 /*
6149 * Generally it's safe to hold refcount during waiting page lock. But
6150 * here we just wait to defer the next page fault to avoid busy loop and
6151 * the page is not used after unlocked before returning from the current
6152 * page fault. So we are safe from accessing freed page, even if we wait
6153 * here without taking refcount.
6154 */
6155 if (need_wait_lock)
6156 wait_on_page_locked(page);
6157 return ret;
6158}
6159
6160#ifdef CONFIG_USERFAULTFD
6161/*
6162 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6163 * modifications for huge pages.
6164 */
6165int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6166 pte_t *dst_pte,
6167 struct vm_area_struct *dst_vma,
6168 unsigned long dst_addr,
6169 unsigned long src_addr,
6170 enum mcopy_atomic_mode mode,
6171 struct page **pagep,
6172 bool wp_copy)
6173{
6174 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6175 struct hstate *h = hstate_vma(dst_vma);
6176 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6177 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6178 unsigned long size;
6179 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6180 pte_t _dst_pte;
6181 spinlock_t *ptl;
6182 int ret = -ENOMEM;
6183 struct page *page;
6184 int writable;
6185 bool page_in_pagecache = false;
6186
6187 if (is_continue) {
6188 ret = -EFAULT;
6189 page = find_lock_page(mapping, idx);
6190 if (!page)
6191 goto out;
6192 page_in_pagecache = true;
6193 } else if (!*pagep) {
6194 /* If a page already exists, then it's UFFDIO_COPY for
6195 * a non-missing case. Return -EEXIST.
6196 */
6197 if (vm_shared &&
6198 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6199 ret = -EEXIST;
6200 goto out;
6201 }
6202
6203 page = alloc_huge_page(dst_vma, dst_addr, 0);
6204 if (IS_ERR(page)) {
6205 ret = -ENOMEM;
6206 goto out;
6207 }
6208
6209 ret = copy_huge_page_from_user(page,
6210 (const void __user *) src_addr,
6211 pages_per_huge_page(h), false);
6212
6213 /* fallback to copy_from_user outside mmap_lock */
6214 if (unlikely(ret)) {
6215 ret = -ENOENT;
6216 /* Free the allocated page which may have
6217 * consumed a reservation.
6218 */
6219 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6220 put_page(page);
6221
6222 /* Allocate a temporary page to hold the copied
6223 * contents.
6224 */
6225 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6226 if (!page) {
6227 ret = -ENOMEM;
6228 goto out;
6229 }
6230 *pagep = page;
6231 /* Set the outparam pagep and return to the caller to
6232 * copy the contents outside the lock. Don't free the
6233 * page.
6234 */
6235 goto out;
6236 }
6237 } else {
6238 if (vm_shared &&
6239 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6240 put_page(*pagep);
6241 ret = -EEXIST;
6242 *pagep = NULL;
6243 goto out;
6244 }
6245
6246 page = alloc_huge_page(dst_vma, dst_addr, 0);
6247 if (IS_ERR(page)) {
6248 put_page(*pagep);
6249 ret = -ENOMEM;
6250 *pagep = NULL;
6251 goto out;
6252 }
6253 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6254 pages_per_huge_page(h));
6255 put_page(*pagep);
6256 *pagep = NULL;
6257 }
6258
6259 /*
6260 * The memory barrier inside __SetPageUptodate makes sure that
6261 * preceding stores to the page contents become visible before
6262 * the set_pte_at() write.
6263 */
6264 __SetPageUptodate(page);
6265
6266 /* Add shared, newly allocated pages to the page cache. */
6267 if (vm_shared && !is_continue) {
6268 size = i_size_read(mapping->host) >> huge_page_shift(h);
6269 ret = -EFAULT;
6270 if (idx >= size)
6271 goto out_release_nounlock;
6272
6273 /*
6274 * Serialization between remove_inode_hugepages() and
6275 * hugetlb_add_to_page_cache() below happens through the
6276 * hugetlb_fault_mutex_table that here must be hold by
6277 * the caller.
6278 */
6279 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6280 if (ret)
6281 goto out_release_nounlock;
6282 page_in_pagecache = true;
6283 }
6284
6285 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6286
6287 ret = -EIO;
6288 if (PageHWPoison(page))
6289 goto out_release_unlock;
6290
6291 /*
6292 * We allow to overwrite a pte marker: consider when both MISSING|WP
6293 * registered, we firstly wr-protect a none pte which has no page cache
6294 * page backing it, then access the page.
6295 */
6296 ret = -EEXIST;
6297 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6298 goto out_release_unlock;
6299
6300 if (page_in_pagecache)
6301 page_dup_file_rmap(page, true);
6302 else
6303 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6304
6305 /*
6306 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6307 * with wp flag set, don't set pte write bit.
6308 */
6309 if (wp_copy || (is_continue && !vm_shared))
6310 writable = 0;
6311 else
6312 writable = dst_vma->vm_flags & VM_WRITE;
6313
6314 _dst_pte = make_huge_pte(dst_vma, page, writable);
6315 /*
6316 * Always mark UFFDIO_COPY page dirty; note that this may not be
6317 * extremely important for hugetlbfs for now since swapping is not
6318 * supported, but we should still be clear in that this page cannot be
6319 * thrown away at will, even if write bit not set.
6320 */
6321 _dst_pte = huge_pte_mkdirty(_dst_pte);
6322 _dst_pte = pte_mkyoung(_dst_pte);
6323
6324 if (wp_copy)
6325 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6326
6327 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6328
6329 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6330
6331 /* No need to invalidate - it was non-present before */
6332 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6333
6334 spin_unlock(ptl);
6335 if (!is_continue)
6336 SetHPageMigratable(page);
6337 if (vm_shared || is_continue)
6338 unlock_page(page);
6339 ret = 0;
6340out:
6341 return ret;
6342out_release_unlock:
6343 spin_unlock(ptl);
6344 if (vm_shared || is_continue)
6345 unlock_page(page);
6346out_release_nounlock:
6347 if (!page_in_pagecache)
6348 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6349 put_page(page);
6350 goto out;
6351}
6352#endif /* CONFIG_USERFAULTFD */
6353
6354static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6355 int refs, struct page **pages,
6356 struct vm_area_struct **vmas)
6357{
6358 int nr;
6359
6360 for (nr = 0; nr < refs; nr++) {
6361 if (likely(pages))
6362 pages[nr] = nth_page(page, nr);
6363 if (vmas)
6364 vmas[nr] = vma;
6365 }
6366}
6367
6368static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6369 unsigned int flags, pte_t *pte,
6370 bool *unshare)
6371{
6372 pte_t pteval = huge_ptep_get(pte);
6373
6374 *unshare = false;
6375 if (is_swap_pte(pteval))
6376 return true;
6377 if (huge_pte_write(pteval))
6378 return false;
6379 if (flags & FOLL_WRITE)
6380 return true;
6381 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6382 *unshare = true;
6383 return true;
6384 }
6385 return false;
6386}
6387
6388struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6389 unsigned long address, unsigned int flags)
6390{
6391 struct hstate *h = hstate_vma(vma);
6392 struct mm_struct *mm = vma->vm_mm;
6393 unsigned long haddr = address & huge_page_mask(h);
6394 struct page *page = NULL;
6395 spinlock_t *ptl;
6396 pte_t *pte, entry;
6397
6398 /*
6399 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6400 * follow_hugetlb_page().
6401 */
6402 if (WARN_ON_ONCE(flags & FOLL_PIN))
6403 return NULL;
6404
6405retry:
6406 pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6407 if (!pte)
6408 return NULL;
6409
6410 ptl = huge_pte_lock(h, mm, pte);
6411 entry = huge_ptep_get(pte);
6412 if (pte_present(entry)) {
6413 page = pte_page(entry) +
6414 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6415 /*
6416 * Note that page may be a sub-page, and with vmemmap
6417 * optimizations the page struct may be read only.
6418 * try_grab_page() will increase the ref count on the
6419 * head page, so this will be OK.
6420 *
6421 * try_grab_page() should always be able to get the page here,
6422 * because we hold the ptl lock and have verified pte_present().
6423 */
6424 if (try_grab_page(page, flags)) {
6425 page = NULL;
6426 goto out;
6427 }
6428 } else {
6429 if (is_hugetlb_entry_migration(entry)) {
6430 spin_unlock(ptl);
6431 __migration_entry_wait_huge(pte, ptl);
6432 goto retry;
6433 }
6434 /*
6435 * hwpoisoned entry is treated as no_page_table in
6436 * follow_page_mask().
6437 */
6438 }
6439out:
6440 spin_unlock(ptl);
6441 return page;
6442}
6443
6444long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6445 struct page **pages, struct vm_area_struct **vmas,
6446 unsigned long *position, unsigned long *nr_pages,
6447 long i, unsigned int flags, int *locked)
6448{
6449 unsigned long pfn_offset;
6450 unsigned long vaddr = *position;
6451 unsigned long remainder = *nr_pages;
6452 struct hstate *h = hstate_vma(vma);
6453 int err = -EFAULT, refs;
6454
6455 while (vaddr < vma->vm_end && remainder) {
6456 pte_t *pte;
6457 spinlock_t *ptl = NULL;
6458 bool unshare = false;
6459 int absent;
6460 struct page *page;
6461
6462 /*
6463 * If we have a pending SIGKILL, don't keep faulting pages and
6464 * potentially allocating memory.
6465 */
6466 if (fatal_signal_pending(current)) {
6467 remainder = 0;
6468 break;
6469 }
6470
6471 /*
6472 * Some archs (sparc64, sh*) have multiple pte_ts to
6473 * each hugepage. We have to make sure we get the
6474 * first, for the page indexing below to work.
6475 *
6476 * Note that page table lock is not held when pte is null.
6477 */
6478 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6479 huge_page_size(h));
6480 if (pte)
6481 ptl = huge_pte_lock(h, mm, pte);
6482 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6483
6484 /*
6485 * When coredumping, it suits get_dump_page if we just return
6486 * an error where there's an empty slot with no huge pagecache
6487 * to back it. This way, we avoid allocating a hugepage, and
6488 * the sparse dumpfile avoids allocating disk blocks, but its
6489 * huge holes still show up with zeroes where they need to be.
6490 */
6491 if (absent && (flags & FOLL_DUMP) &&
6492 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6493 if (pte)
6494 spin_unlock(ptl);
6495 remainder = 0;
6496 break;
6497 }
6498
6499 /*
6500 * We need call hugetlb_fault for both hugepages under migration
6501 * (in which case hugetlb_fault waits for the migration,) and
6502 * hwpoisoned hugepages (in which case we need to prevent the
6503 * caller from accessing to them.) In order to do this, we use
6504 * here is_swap_pte instead of is_hugetlb_entry_migration and
6505 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6506 * both cases, and because we can't follow correct pages
6507 * directly from any kind of swap entries.
6508 */
6509 if (absent ||
6510 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6511 vm_fault_t ret;
6512 unsigned int fault_flags = 0;
6513
6514 if (pte)
6515 spin_unlock(ptl);
6516 if (flags & FOLL_WRITE)
6517 fault_flags |= FAULT_FLAG_WRITE;
6518 else if (unshare)
6519 fault_flags |= FAULT_FLAG_UNSHARE;
6520 if (locked) {
6521 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6522 FAULT_FLAG_KILLABLE;
6523 if (flags & FOLL_INTERRUPTIBLE)
6524 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6525 }
6526 if (flags & FOLL_NOWAIT)
6527 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6528 FAULT_FLAG_RETRY_NOWAIT;
6529 if (flags & FOLL_TRIED) {
6530 /*
6531 * Note: FAULT_FLAG_ALLOW_RETRY and
6532 * FAULT_FLAG_TRIED can co-exist
6533 */
6534 fault_flags |= FAULT_FLAG_TRIED;
6535 }
6536 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6537 if (ret & VM_FAULT_ERROR) {
6538 err = vm_fault_to_errno(ret, flags);
6539 remainder = 0;
6540 break;
6541 }
6542 if (ret & VM_FAULT_RETRY) {
6543 if (locked &&
6544 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6545 *locked = 0;
6546 *nr_pages = 0;
6547 /*
6548 * VM_FAULT_RETRY must not return an
6549 * error, it will return zero
6550 * instead.
6551 *
6552 * No need to update "position" as the
6553 * caller will not check it after
6554 * *nr_pages is set to 0.
6555 */
6556 return i;
6557 }
6558 continue;
6559 }
6560
6561 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6562 page = pte_page(huge_ptep_get(pte));
6563
6564 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6565 !PageAnonExclusive(page), page);
6566
6567 /*
6568 * If subpage information not requested, update counters
6569 * and skip the same_page loop below.
6570 */
6571 if (!pages && !vmas && !pfn_offset &&
6572 (vaddr + huge_page_size(h) < vma->vm_end) &&
6573 (remainder >= pages_per_huge_page(h))) {
6574 vaddr += huge_page_size(h);
6575 remainder -= pages_per_huge_page(h);
6576 i += pages_per_huge_page(h);
6577 spin_unlock(ptl);
6578 continue;
6579 }
6580
6581 /* vaddr may not be aligned to PAGE_SIZE */
6582 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6583 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6584
6585 if (pages || vmas)
6586 record_subpages_vmas(nth_page(page, pfn_offset),
6587 vma, refs,
6588 likely(pages) ? pages + i : NULL,
6589 vmas ? vmas + i : NULL);
6590
6591 if (pages) {
6592 /*
6593 * try_grab_folio() should always succeed here,
6594 * because: a) we hold the ptl lock, and b) we've just
6595 * checked that the huge page is present in the page
6596 * tables. If the huge page is present, then the tail
6597 * pages must also be present. The ptl prevents the
6598 * head page and tail pages from being rearranged in
6599 * any way. As this is hugetlb, the pages will never
6600 * be p2pdma or not longterm pinable. So this page
6601 * must be available at this point, unless the page
6602 * refcount overflowed:
6603 */
6604 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6605 flags))) {
6606 spin_unlock(ptl);
6607 remainder = 0;
6608 err = -ENOMEM;
6609 break;
6610 }
6611 }
6612
6613 vaddr += (refs << PAGE_SHIFT);
6614 remainder -= refs;
6615 i += refs;
6616
6617 spin_unlock(ptl);
6618 }
6619 *nr_pages = remainder;
6620 /*
6621 * setting position is actually required only if remainder is
6622 * not zero but it's faster not to add a "if (remainder)"
6623 * branch.
6624 */
6625 *position = vaddr;
6626
6627 return i ? i : err;
6628}
6629
6630unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6631 unsigned long address, unsigned long end,
6632 pgprot_t newprot, unsigned long cp_flags)
6633{
6634 struct mm_struct *mm = vma->vm_mm;
6635 unsigned long start = address;
6636 pte_t *ptep;
6637 pte_t pte;
6638 struct hstate *h = hstate_vma(vma);
6639 unsigned long pages = 0, psize = huge_page_size(h);
6640 bool shared_pmd = false;
6641 struct mmu_notifier_range range;
6642 unsigned long last_addr_mask;
6643 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6644 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6645
6646 /*
6647 * In the case of shared PMDs, the area to flush could be beyond
6648 * start/end. Set range.start/range.end to cover the maximum possible
6649 * range if PMD sharing is possible.
6650 */
6651 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6652 0, vma, mm, start, end);
6653 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6654
6655 BUG_ON(address >= end);
6656 flush_cache_range(vma, range.start, range.end);
6657
6658 mmu_notifier_invalidate_range_start(&range);
6659 hugetlb_vma_lock_write(vma);
6660 i_mmap_lock_write(vma->vm_file->f_mapping);
6661 last_addr_mask = hugetlb_mask_last_page(h);
6662 for (; address < end; address += psize) {
6663 spinlock_t *ptl;
6664 ptep = huge_pte_offset(mm, address, psize);
6665 if (!ptep) {
6666 if (!uffd_wp) {
6667 address |= last_addr_mask;
6668 continue;
6669 }
6670 /*
6671 * Userfaultfd wr-protect requires pgtable
6672 * pre-allocations to install pte markers.
6673 */
6674 ptep = huge_pte_alloc(mm, vma, address, psize);
6675 if (!ptep)
6676 break;
6677 }
6678 ptl = huge_pte_lock(h, mm, ptep);
6679 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6680 /*
6681 * When uffd-wp is enabled on the vma, unshare
6682 * shouldn't happen at all. Warn about it if it
6683 * happened due to some reason.
6684 */
6685 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6686 pages++;
6687 spin_unlock(ptl);
6688 shared_pmd = true;
6689 address |= last_addr_mask;
6690 continue;
6691 }
6692 pte = huge_ptep_get(ptep);
6693 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6694 /* Nothing to do. */
6695 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6696 swp_entry_t entry = pte_to_swp_entry(pte);
6697 struct page *page = pfn_swap_entry_to_page(entry);
6698 pte_t newpte = pte;
6699
6700 if (is_writable_migration_entry(entry)) {
6701 if (PageAnon(page))
6702 entry = make_readable_exclusive_migration_entry(
6703 swp_offset(entry));
6704 else
6705 entry = make_readable_migration_entry(
6706 swp_offset(entry));
6707 newpte = swp_entry_to_pte(entry);
6708 pages++;
6709 }
6710
6711 if (uffd_wp)
6712 newpte = pte_swp_mkuffd_wp(newpte);
6713 else if (uffd_wp_resolve)
6714 newpte = pte_swp_clear_uffd_wp(newpte);
6715 if (!pte_same(pte, newpte))
6716 set_huge_pte_at(mm, address, ptep, newpte);
6717 } else if (unlikely(is_pte_marker(pte))) {
6718 /* No other markers apply for now. */
6719 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6720 if (uffd_wp_resolve)
6721 /* Safe to modify directly (non-present->none). */
6722 huge_pte_clear(mm, address, ptep, psize);
6723 } else if (!huge_pte_none(pte)) {
6724 pte_t old_pte;
6725 unsigned int shift = huge_page_shift(hstate_vma(vma));
6726
6727 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6728 pte = huge_pte_modify(old_pte, newprot);
6729 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6730 if (uffd_wp)
6731 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6732 else if (uffd_wp_resolve)
6733 pte = huge_pte_clear_uffd_wp(pte);
6734 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6735 pages++;
6736 } else {
6737 /* None pte */
6738 if (unlikely(uffd_wp))
6739 /* Safe to modify directly (none->non-present). */
6740 set_huge_pte_at(mm, address, ptep,
6741 make_pte_marker(PTE_MARKER_UFFD_WP));
6742 }
6743 spin_unlock(ptl);
6744 }
6745 /*
6746 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6747 * may have cleared our pud entry and done put_page on the page table:
6748 * once we release i_mmap_rwsem, another task can do the final put_page
6749 * and that page table be reused and filled with junk. If we actually
6750 * did unshare a page of pmds, flush the range corresponding to the pud.
6751 */
6752 if (shared_pmd)
6753 flush_hugetlb_tlb_range(vma, range.start, range.end);
6754 else
6755 flush_hugetlb_tlb_range(vma, start, end);
6756 /*
6757 * No need to call mmu_notifier_invalidate_range() we are downgrading
6758 * page table protection not changing it to point to a new page.
6759 *
6760 * See Documentation/mm/mmu_notifier.rst
6761 */
6762 i_mmap_unlock_write(vma->vm_file->f_mapping);
6763 hugetlb_vma_unlock_write(vma);
6764 mmu_notifier_invalidate_range_end(&range);
6765
6766 return pages << h->order;
6767}
6768
6769/* Return true if reservation was successful, false otherwise. */
6770bool hugetlb_reserve_pages(struct inode *inode,
6771 long from, long to,
6772 struct vm_area_struct *vma,
6773 vm_flags_t vm_flags)
6774{
6775 long chg, add = -1;
6776 struct hstate *h = hstate_inode(inode);
6777 struct hugepage_subpool *spool = subpool_inode(inode);
6778 struct resv_map *resv_map;
6779 struct hugetlb_cgroup *h_cg = NULL;
6780 long gbl_reserve, regions_needed = 0;
6781
6782 /* This should never happen */
6783 if (from > to) {
6784 VM_WARN(1, "%s called with a negative range\n", __func__);
6785 return false;
6786 }
6787
6788 /*
6789 * vma specific semaphore used for pmd sharing and fault/truncation
6790 * synchronization
6791 */
6792 hugetlb_vma_lock_alloc(vma);
6793
6794 /*
6795 * Only apply hugepage reservation if asked. At fault time, an
6796 * attempt will be made for VM_NORESERVE to allocate a page
6797 * without using reserves
6798 */
6799 if (vm_flags & VM_NORESERVE)
6800 return true;
6801
6802 /*
6803 * Shared mappings base their reservation on the number of pages that
6804 * are already allocated on behalf of the file. Private mappings need
6805 * to reserve the full area even if read-only as mprotect() may be
6806 * called to make the mapping read-write. Assume !vma is a shm mapping
6807 */
6808 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6809 /*
6810 * resv_map can not be NULL as hugetlb_reserve_pages is only
6811 * called for inodes for which resv_maps were created (see
6812 * hugetlbfs_get_inode).
6813 */
6814 resv_map = inode_resv_map(inode);
6815
6816 chg = region_chg(resv_map, from, to, ®ions_needed);
6817 } else {
6818 /* Private mapping. */
6819 resv_map = resv_map_alloc();
6820 if (!resv_map)
6821 goto out_err;
6822
6823 chg = to - from;
6824
6825 set_vma_resv_map(vma, resv_map);
6826 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6827 }
6828
6829 if (chg < 0)
6830 goto out_err;
6831
6832 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6833 chg * pages_per_huge_page(h), &h_cg) < 0)
6834 goto out_err;
6835
6836 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6837 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6838 * of the resv_map.
6839 */
6840 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6841 }
6842
6843 /*
6844 * There must be enough pages in the subpool for the mapping. If
6845 * the subpool has a minimum size, there may be some global
6846 * reservations already in place (gbl_reserve).
6847 */
6848 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6849 if (gbl_reserve < 0)
6850 goto out_uncharge_cgroup;
6851
6852 /*
6853 * Check enough hugepages are available for the reservation.
6854 * Hand the pages back to the subpool if there are not
6855 */
6856 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6857 goto out_put_pages;
6858
6859 /*
6860 * Account for the reservations made. Shared mappings record regions
6861 * that have reservations as they are shared by multiple VMAs.
6862 * When the last VMA disappears, the region map says how much
6863 * the reservation was and the page cache tells how much of
6864 * the reservation was consumed. Private mappings are per-VMA and
6865 * only the consumed reservations are tracked. When the VMA
6866 * disappears, the original reservation is the VMA size and the
6867 * consumed reservations are stored in the map. Hence, nothing
6868 * else has to be done for private mappings here
6869 */
6870 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6871 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6872
6873 if (unlikely(add < 0)) {
6874 hugetlb_acct_memory(h, -gbl_reserve);
6875 goto out_put_pages;
6876 } else if (unlikely(chg > add)) {
6877 /*
6878 * pages in this range were added to the reserve
6879 * map between region_chg and region_add. This
6880 * indicates a race with alloc_huge_page. Adjust
6881 * the subpool and reserve counts modified above
6882 * based on the difference.
6883 */
6884 long rsv_adjust;
6885
6886 /*
6887 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6888 * reference to h_cg->css. See comment below for detail.
6889 */
6890 hugetlb_cgroup_uncharge_cgroup_rsvd(
6891 hstate_index(h),
6892 (chg - add) * pages_per_huge_page(h), h_cg);
6893
6894 rsv_adjust = hugepage_subpool_put_pages(spool,
6895 chg - add);
6896 hugetlb_acct_memory(h, -rsv_adjust);
6897 } else if (h_cg) {
6898 /*
6899 * The file_regions will hold their own reference to
6900 * h_cg->css. So we should release the reference held
6901 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6902 * done.
6903 */
6904 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6905 }
6906 }
6907 return true;
6908
6909out_put_pages:
6910 /* put back original number of pages, chg */
6911 (void)hugepage_subpool_put_pages(spool, chg);
6912out_uncharge_cgroup:
6913 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6914 chg * pages_per_huge_page(h), h_cg);
6915out_err:
6916 hugetlb_vma_lock_free(vma);
6917 if (!vma || vma->vm_flags & VM_MAYSHARE)
6918 /* Only call region_abort if the region_chg succeeded but the
6919 * region_add failed or didn't run.
6920 */
6921 if (chg >= 0 && add < 0)
6922 region_abort(resv_map, from, to, regions_needed);
6923 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6924 kref_put(&resv_map->refs, resv_map_release);
6925 return false;
6926}
6927
6928long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6929 long freed)
6930{
6931 struct hstate *h = hstate_inode(inode);
6932 struct resv_map *resv_map = inode_resv_map(inode);
6933 long chg = 0;
6934 struct hugepage_subpool *spool = subpool_inode(inode);
6935 long gbl_reserve;
6936
6937 /*
6938 * Since this routine can be called in the evict inode path for all
6939 * hugetlbfs inodes, resv_map could be NULL.
6940 */
6941 if (resv_map) {
6942 chg = region_del(resv_map, start, end);
6943 /*
6944 * region_del() can fail in the rare case where a region
6945 * must be split and another region descriptor can not be
6946 * allocated. If end == LONG_MAX, it will not fail.
6947 */
6948 if (chg < 0)
6949 return chg;
6950 }
6951
6952 spin_lock(&inode->i_lock);
6953 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6954 spin_unlock(&inode->i_lock);
6955
6956 /*
6957 * If the subpool has a minimum size, the number of global
6958 * reservations to be released may be adjusted.
6959 *
6960 * Note that !resv_map implies freed == 0. So (chg - freed)
6961 * won't go negative.
6962 */
6963 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6964 hugetlb_acct_memory(h, -gbl_reserve);
6965
6966 return 0;
6967}
6968
6969#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6970static unsigned long page_table_shareable(struct vm_area_struct *svma,
6971 struct vm_area_struct *vma,
6972 unsigned long addr, pgoff_t idx)
6973{
6974 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6975 svma->vm_start;
6976 unsigned long sbase = saddr & PUD_MASK;
6977 unsigned long s_end = sbase + PUD_SIZE;
6978
6979 /* Allow segments to share if only one is marked locked */
6980 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6981 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6982
6983 /*
6984 * match the virtual addresses, permission and the alignment of the
6985 * page table page.
6986 *
6987 * Also, vma_lock (vm_private_data) is required for sharing.
6988 */
6989 if (pmd_index(addr) != pmd_index(saddr) ||
6990 vm_flags != svm_flags ||
6991 !range_in_vma(svma, sbase, s_end) ||
6992 !svma->vm_private_data)
6993 return 0;
6994
6995 return saddr;
6996}
6997
6998bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6999{
7000 unsigned long start = addr & PUD_MASK;
7001 unsigned long end = start + PUD_SIZE;
7002
7003#ifdef CONFIG_USERFAULTFD
7004 if (uffd_disable_huge_pmd_share(vma))
7005 return false;
7006#endif
7007 /*
7008 * check on proper vm_flags and page table alignment
7009 */
7010 if (!(vma->vm_flags & VM_MAYSHARE))
7011 return false;
7012 if (!vma->vm_private_data) /* vma lock required for sharing */
7013 return false;
7014 if (!range_in_vma(vma, start, end))
7015 return false;
7016 return true;
7017}
7018
7019/*
7020 * Determine if start,end range within vma could be mapped by shared pmd.
7021 * If yes, adjust start and end to cover range associated with possible
7022 * shared pmd mappings.
7023 */
7024void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7025 unsigned long *start, unsigned long *end)
7026{
7027 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7028 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7029
7030 /*
7031 * vma needs to span at least one aligned PUD size, and the range
7032 * must be at least partially within in.
7033 */
7034 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7035 (*end <= v_start) || (*start >= v_end))
7036 return;
7037
7038 /* Extend the range to be PUD aligned for a worst case scenario */
7039 if (*start > v_start)
7040 *start = ALIGN_DOWN(*start, PUD_SIZE);
7041
7042 if (*end < v_end)
7043 *end = ALIGN(*end, PUD_SIZE);
7044}
7045
7046/*
7047 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7048 * and returns the corresponding pte. While this is not necessary for the
7049 * !shared pmd case because we can allocate the pmd later as well, it makes the
7050 * code much cleaner. pmd allocation is essential for the shared case because
7051 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7052 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7053 * bad pmd for sharing.
7054 */
7055pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7056 unsigned long addr, pud_t *pud)
7057{
7058 struct address_space *mapping = vma->vm_file->f_mapping;
7059 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7060 vma->vm_pgoff;
7061 struct vm_area_struct *svma;
7062 unsigned long saddr;
7063 pte_t *spte = NULL;
7064 pte_t *pte;
7065 spinlock_t *ptl;
7066
7067 i_mmap_lock_read(mapping);
7068 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7069 if (svma == vma)
7070 continue;
7071
7072 saddr = page_table_shareable(svma, vma, addr, idx);
7073 if (saddr) {
7074 spte = huge_pte_offset(svma->vm_mm, saddr,
7075 vma_mmu_pagesize(svma));
7076 if (spte) {
7077 get_page(virt_to_page(spte));
7078 break;
7079 }
7080 }
7081 }
7082
7083 if (!spte)
7084 goto out;
7085
7086 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7087 if (pud_none(*pud)) {
7088 pud_populate(mm, pud,
7089 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7090 mm_inc_nr_pmds(mm);
7091 } else {
7092 put_page(virt_to_page(spte));
7093 }
7094 spin_unlock(ptl);
7095out:
7096 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7097 i_mmap_unlock_read(mapping);
7098 return pte;
7099}
7100
7101/*
7102 * unmap huge page backed by shared pte.
7103 *
7104 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7105 * indicated by page_count > 1, unmap is achieved by clearing pud and
7106 * decrementing the ref count. If count == 1, the pte page is not shared.
7107 *
7108 * Called with page table lock held.
7109 *
7110 * returns: 1 successfully unmapped a shared pte page
7111 * 0 the underlying pte page is not shared, or it is the last user
7112 */
7113int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7114 unsigned long addr, pte_t *ptep)
7115{
7116 pgd_t *pgd = pgd_offset(mm, addr);
7117 p4d_t *p4d = p4d_offset(pgd, addr);
7118 pud_t *pud = pud_offset(p4d, addr);
7119
7120 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7121 hugetlb_vma_assert_locked(vma);
7122 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7123 if (page_count(virt_to_page(ptep)) == 1)
7124 return 0;
7125
7126 pud_clear(pud);
7127 put_page(virt_to_page(ptep));
7128 mm_dec_nr_pmds(mm);
7129 return 1;
7130}
7131
7132#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7133
7134pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7135 unsigned long addr, pud_t *pud)
7136{
7137 return NULL;
7138}
7139
7140int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7141 unsigned long addr, pte_t *ptep)
7142{
7143 return 0;
7144}
7145
7146void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7147 unsigned long *start, unsigned long *end)
7148{
7149}
7150
7151bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7152{
7153 return false;
7154}
7155#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7156
7157#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7158pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7159 unsigned long addr, unsigned long sz)
7160{
7161 pgd_t *pgd;
7162 p4d_t *p4d;
7163 pud_t *pud;
7164 pte_t *pte = NULL;
7165
7166 pgd = pgd_offset(mm, addr);
7167 p4d = p4d_alloc(mm, pgd, addr);
7168 if (!p4d)
7169 return NULL;
7170 pud = pud_alloc(mm, p4d, addr);
7171 if (pud) {
7172 if (sz == PUD_SIZE) {
7173 pte = (pte_t *)pud;
7174 } else {
7175 BUG_ON(sz != PMD_SIZE);
7176 if (want_pmd_share(vma, addr) && pud_none(*pud))
7177 pte = huge_pmd_share(mm, vma, addr, pud);
7178 else
7179 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7180 }
7181 }
7182 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7183
7184 return pte;
7185}
7186
7187/*
7188 * huge_pte_offset() - Walk the page table to resolve the hugepage
7189 * entry at address @addr
7190 *
7191 * Return: Pointer to page table entry (PUD or PMD) for
7192 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7193 * size @sz doesn't match the hugepage size at this level of the page
7194 * table.
7195 */
7196pte_t *huge_pte_offset(struct mm_struct *mm,
7197 unsigned long addr, unsigned long sz)
7198{
7199 pgd_t *pgd;
7200 p4d_t *p4d;
7201 pud_t *pud;
7202 pmd_t *pmd;
7203
7204 pgd = pgd_offset(mm, addr);
7205 if (!pgd_present(*pgd))
7206 return NULL;
7207 p4d = p4d_offset(pgd, addr);
7208 if (!p4d_present(*p4d))
7209 return NULL;
7210
7211 pud = pud_offset(p4d, addr);
7212 if (sz == PUD_SIZE)
7213 /* must be pud huge, non-present or none */
7214 return (pte_t *)pud;
7215 if (!pud_present(*pud))
7216 return NULL;
7217 /* must have a valid entry and size to go further */
7218
7219 pmd = pmd_offset(pud, addr);
7220 /* must be pmd huge, non-present or none */
7221 return (pte_t *)pmd;
7222}
7223
7224/*
7225 * Return a mask that can be used to update an address to the last huge
7226 * page in a page table page mapping size. Used to skip non-present
7227 * page table entries when linearly scanning address ranges. Architectures
7228 * with unique huge page to page table relationships can define their own
7229 * version of this routine.
7230 */
7231unsigned long hugetlb_mask_last_page(struct hstate *h)
7232{
7233 unsigned long hp_size = huge_page_size(h);
7234
7235 if (hp_size == PUD_SIZE)
7236 return P4D_SIZE - PUD_SIZE;
7237 else if (hp_size == PMD_SIZE)
7238 return PUD_SIZE - PMD_SIZE;
7239 else
7240 return 0UL;
7241}
7242
7243#else
7244
7245/* See description above. Architectures can provide their own version. */
7246__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7247{
7248#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7249 if (huge_page_size(h) == PMD_SIZE)
7250 return PUD_SIZE - PMD_SIZE;
7251#endif
7252 return 0UL;
7253}
7254
7255#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7256
7257/*
7258 * These functions are overwritable if your architecture needs its own
7259 * behavior.
7260 */
7261int isolate_hugetlb(struct page *page, struct list_head *list)
7262{
7263 int ret = 0;
7264
7265 spin_lock_irq(&hugetlb_lock);
7266 if (!PageHeadHuge(page) ||
7267 !HPageMigratable(page) ||
7268 !get_page_unless_zero(page)) {
7269 ret = -EBUSY;
7270 goto unlock;
7271 }
7272 ClearHPageMigratable(page);
7273 list_move_tail(&page->lru, list);
7274unlock:
7275 spin_unlock_irq(&hugetlb_lock);
7276 return ret;
7277}
7278
7279int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7280{
7281 int ret = 0;
7282
7283 *hugetlb = false;
7284 spin_lock_irq(&hugetlb_lock);
7285 if (PageHeadHuge(page)) {
7286 *hugetlb = true;
7287 if (HPageFreed(page))
7288 ret = 0;
7289 else if (HPageMigratable(page) || unpoison)
7290 ret = get_page_unless_zero(page);
7291 else
7292 ret = -EBUSY;
7293 }
7294 spin_unlock_irq(&hugetlb_lock);
7295 return ret;
7296}
7297
7298int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7299 bool *migratable_cleared)
7300{
7301 int ret;
7302
7303 spin_lock_irq(&hugetlb_lock);
7304 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7305 spin_unlock_irq(&hugetlb_lock);
7306 return ret;
7307}
7308
7309void putback_active_hugepage(struct page *page)
7310{
7311 spin_lock_irq(&hugetlb_lock);
7312 SetHPageMigratable(page);
7313 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7314 spin_unlock_irq(&hugetlb_lock);
7315 put_page(page);
7316}
7317
7318void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7319{
7320 struct hstate *h = folio_hstate(old_folio);
7321
7322 hugetlb_cgroup_migrate(old_folio, new_folio);
7323 set_page_owner_migrate_reason(&new_folio->page, reason);
7324
7325 /*
7326 * transfer temporary state of the new hugetlb folio. This is
7327 * reverse to other transitions because the newpage is going to
7328 * be final while the old one will be freed so it takes over
7329 * the temporary status.
7330 *
7331 * Also note that we have to transfer the per-node surplus state
7332 * here as well otherwise the global surplus count will not match
7333 * the per-node's.
7334 */
7335 if (folio_test_hugetlb_temporary(new_folio)) {
7336 int old_nid = folio_nid(old_folio);
7337 int new_nid = folio_nid(new_folio);
7338
7339 folio_set_hugetlb_temporary(old_folio);
7340 folio_clear_hugetlb_temporary(new_folio);
7341
7342
7343 /*
7344 * There is no need to transfer the per-node surplus state
7345 * when we do not cross the node.
7346 */
7347 if (new_nid == old_nid)
7348 return;
7349 spin_lock_irq(&hugetlb_lock);
7350 if (h->surplus_huge_pages_node[old_nid]) {
7351 h->surplus_huge_pages_node[old_nid]--;
7352 h->surplus_huge_pages_node[new_nid]++;
7353 }
7354 spin_unlock_irq(&hugetlb_lock);
7355 }
7356}
7357
7358static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7359 unsigned long start,
7360 unsigned long end)
7361{
7362 struct hstate *h = hstate_vma(vma);
7363 unsigned long sz = huge_page_size(h);
7364 struct mm_struct *mm = vma->vm_mm;
7365 struct mmu_notifier_range range;
7366 unsigned long address;
7367 spinlock_t *ptl;
7368 pte_t *ptep;
7369
7370 if (!(vma->vm_flags & VM_MAYSHARE))
7371 return;
7372
7373 if (start >= end)
7374 return;
7375
7376 flush_cache_range(vma, start, end);
7377 /*
7378 * No need to call adjust_range_if_pmd_sharing_possible(), because
7379 * we have already done the PUD_SIZE alignment.
7380 */
7381 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7382 start, end);
7383 mmu_notifier_invalidate_range_start(&range);
7384 hugetlb_vma_lock_write(vma);
7385 i_mmap_lock_write(vma->vm_file->f_mapping);
7386 for (address = start; address < end; address += PUD_SIZE) {
7387 ptep = huge_pte_offset(mm, address, sz);
7388 if (!ptep)
7389 continue;
7390 ptl = huge_pte_lock(h, mm, ptep);
7391 huge_pmd_unshare(mm, vma, address, ptep);
7392 spin_unlock(ptl);
7393 }
7394 flush_hugetlb_tlb_range(vma, start, end);
7395 i_mmap_unlock_write(vma->vm_file->f_mapping);
7396 hugetlb_vma_unlock_write(vma);
7397 /*
7398 * No need to call mmu_notifier_invalidate_range(), see
7399 * Documentation/mm/mmu_notifier.rst.
7400 */
7401 mmu_notifier_invalidate_range_end(&range);
7402}
7403
7404/*
7405 * This function will unconditionally remove all the shared pmd pgtable entries
7406 * within the specific vma for a hugetlbfs memory range.
7407 */
7408void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7409{
7410 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7411 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7412}
7413
7414#ifdef CONFIG_CMA
7415static bool cma_reserve_called __initdata;
7416
7417static int __init cmdline_parse_hugetlb_cma(char *p)
7418{
7419 int nid, count = 0;
7420 unsigned long tmp;
7421 char *s = p;
7422
7423 while (*s) {
7424 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7425 break;
7426
7427 if (s[count] == ':') {
7428 if (tmp >= MAX_NUMNODES)
7429 break;
7430 nid = array_index_nospec(tmp, MAX_NUMNODES);
7431
7432 s += count + 1;
7433 tmp = memparse(s, &s);
7434 hugetlb_cma_size_in_node[nid] = tmp;
7435 hugetlb_cma_size += tmp;
7436
7437 /*
7438 * Skip the separator if have one, otherwise
7439 * break the parsing.
7440 */
7441 if (*s == ',')
7442 s++;
7443 else
7444 break;
7445 } else {
7446 hugetlb_cma_size = memparse(p, &p);
7447 break;
7448 }
7449 }
7450
7451 return 0;
7452}
7453
7454early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7455
7456void __init hugetlb_cma_reserve(int order)
7457{
7458 unsigned long size, reserved, per_node;
7459 bool node_specific_cma_alloc = false;
7460 int nid;
7461
7462 cma_reserve_called = true;
7463
7464 if (!hugetlb_cma_size)
7465 return;
7466
7467 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7468 if (hugetlb_cma_size_in_node[nid] == 0)
7469 continue;
7470
7471 if (!node_online(nid)) {
7472 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7473 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7474 hugetlb_cma_size_in_node[nid] = 0;
7475 continue;
7476 }
7477
7478 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7479 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7480 nid, (PAGE_SIZE << order) / SZ_1M);
7481 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7482 hugetlb_cma_size_in_node[nid] = 0;
7483 } else {
7484 node_specific_cma_alloc = true;
7485 }
7486 }
7487
7488 /* Validate the CMA size again in case some invalid nodes specified. */
7489 if (!hugetlb_cma_size)
7490 return;
7491
7492 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7493 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7494 (PAGE_SIZE << order) / SZ_1M);
7495 hugetlb_cma_size = 0;
7496 return;
7497 }
7498
7499 if (!node_specific_cma_alloc) {
7500 /*
7501 * If 3 GB area is requested on a machine with 4 numa nodes,
7502 * let's allocate 1 GB on first three nodes and ignore the last one.
7503 */
7504 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7505 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7506 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7507 }
7508
7509 reserved = 0;
7510 for_each_online_node(nid) {
7511 int res;
7512 char name[CMA_MAX_NAME];
7513
7514 if (node_specific_cma_alloc) {
7515 if (hugetlb_cma_size_in_node[nid] == 0)
7516 continue;
7517
7518 size = hugetlb_cma_size_in_node[nid];
7519 } else {
7520 size = min(per_node, hugetlb_cma_size - reserved);
7521 }
7522
7523 size = round_up(size, PAGE_SIZE << order);
7524
7525 snprintf(name, sizeof(name), "hugetlb%d", nid);
7526 /*
7527 * Note that 'order per bit' is based on smallest size that
7528 * may be returned to CMA allocator in the case of
7529 * huge page demotion.
7530 */
7531 res = cma_declare_contiguous_nid(0, size, 0,
7532 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7533 0, false, name,
7534 &hugetlb_cma[nid], nid);
7535 if (res) {
7536 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7537 res, nid);
7538 continue;
7539 }
7540
7541 reserved += size;
7542 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7543 size / SZ_1M, nid);
7544
7545 if (reserved >= hugetlb_cma_size)
7546 break;
7547 }
7548
7549 if (!reserved)
7550 /*
7551 * hugetlb_cma_size is used to determine if allocations from
7552 * cma are possible. Set to zero if no cma regions are set up.
7553 */
7554 hugetlb_cma_size = 0;
7555}
7556
7557static void __init hugetlb_cma_check(void)
7558{
7559 if (!hugetlb_cma_size || cma_reserve_called)
7560 return;
7561
7562 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7563}
7564
7565#endif /* CONFIG_CMA */