Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
 
  22#include <linux/mmdebug.h>
  23#include <linux/sched/signal.h>
  24#include <linux/rmap.h>
  25#include <linux/string_helpers.h>
  26#include <linux/swap.h>
  27#include <linux/swapops.h>
  28#include <linux/jhash.h>
  29#include <linux/numa.h>
 
 
 
  30
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/tlb.h>
  34
  35#include <linux/io.h>
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/node.h>
  39#include <linux/userfaultfd_k.h>
  40#include <linux/page_owner.h>
  41#include "internal.h"
 
  42
  43int hugetlb_max_hstate __read_mostly;
  44unsigned int default_hstate_idx;
  45struct hstate hstates[HUGE_MAX_HSTATE];
 
 
 
 
 
 
  46/*
  47 * Minimum page order among possible hugepage sizes, set to a proper value
  48 * at boot time.
  49 */
  50static unsigned int minimum_order __read_mostly = UINT_MAX;
  51
  52__initdata LIST_HEAD(huge_boot_pages);
  53
  54/* for command line parsing */
  55static struct hstate * __initdata parsed_hstate;
  56static unsigned long __initdata default_hstate_max_huge_pages;
  57static unsigned long __initdata default_hstate_size;
  58static bool __initdata parsed_valid_hugepagesz = true;
 
  59
  60/*
  61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  62 * free_huge_pages, and surplus_huge_pages.
  63 */
  64DEFINE_SPINLOCK(hugetlb_lock);
  65
  66/*
  67 * Serializes faults on the same logical page.  This is used to
  68 * prevent spurious OOMs when the hugepage pool is fully utilized.
  69 */
  70static int num_fault_mutexes;
  71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  72
  73/* Forward declaration */
  74static int hugetlb_acct_memory(struct hstate *h, long delta);
  75
  76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  77{
  78	bool free = (spool->count == 0) && (spool->used_hpages == 0);
 
 
 
 
 
  79
  80	spin_unlock(&spool->lock);
 
 
 
 
 
 
  81
  82	/* If no pages are used, and no other handles to the subpool
  83	 * remain, give up any reservations mased on minimum size and
  84	 * free the subpool */
  85	if (free) {
  86		if (spool->min_hpages != -1)
  87			hugetlb_acct_memory(spool->hstate,
  88						-spool->min_hpages);
  89		kfree(spool);
  90	}
  91}
  92
  93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  94						long min_hpages)
  95{
  96	struct hugepage_subpool *spool;
  97
  98	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  99	if (!spool)
 100		return NULL;
 101
 102	spin_lock_init(&spool->lock);
 103	spool->count = 1;
 104	spool->max_hpages = max_hpages;
 105	spool->hstate = h;
 106	spool->min_hpages = min_hpages;
 107
 108	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 109		kfree(spool);
 110		return NULL;
 111	}
 112	spool->rsv_hpages = min_hpages;
 113
 114	return spool;
 115}
 116
 117void hugepage_put_subpool(struct hugepage_subpool *spool)
 118{
 119	spin_lock(&spool->lock);
 
 
 120	BUG_ON(!spool->count);
 121	spool->count--;
 122	unlock_or_release_subpool(spool);
 123}
 124
 125/*
 126 * Subpool accounting for allocating and reserving pages.
 127 * Return -ENOMEM if there are not enough resources to satisfy the
 128 * the request.  Otherwise, return the number of pages by which the
 129 * global pools must be adjusted (upward).  The returned value may
 130 * only be different than the passed value (delta) in the case where
 131 * a subpool minimum size must be manitained.
 132 */
 133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 134				      long delta)
 135{
 136	long ret = delta;
 137
 138	if (!spool)
 139		return ret;
 140
 141	spin_lock(&spool->lock);
 142
 143	if (spool->max_hpages != -1) {		/* maximum size accounting */
 144		if ((spool->used_hpages + delta) <= spool->max_hpages)
 145			spool->used_hpages += delta;
 146		else {
 147			ret = -ENOMEM;
 148			goto unlock_ret;
 149		}
 150	}
 151
 152	/* minimum size accounting */
 153	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 154		if (delta > spool->rsv_hpages) {
 155			/*
 156			 * Asking for more reserves than those already taken on
 157			 * behalf of subpool.  Return difference.
 158			 */
 159			ret = delta - spool->rsv_hpages;
 160			spool->rsv_hpages = 0;
 161		} else {
 162			ret = 0;	/* reserves already accounted for */
 163			spool->rsv_hpages -= delta;
 164		}
 165	}
 166
 167unlock_ret:
 168	spin_unlock(&spool->lock);
 169	return ret;
 170}
 171
 172/*
 173 * Subpool accounting for freeing and unreserving pages.
 174 * Return the number of global page reservations that must be dropped.
 175 * The return value may only be different than the passed value (delta)
 176 * in the case where a subpool minimum size must be maintained.
 177 */
 178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 179				       long delta)
 180{
 181	long ret = delta;
 
 182
 183	if (!spool)
 184		return delta;
 185
 186	spin_lock(&spool->lock);
 187
 188	if (spool->max_hpages != -1)		/* maximum size accounting */
 189		spool->used_hpages -= delta;
 190
 191	 /* minimum size accounting */
 192	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 193		if (spool->rsv_hpages + delta <= spool->min_hpages)
 194			ret = 0;
 195		else
 196			ret = spool->rsv_hpages + delta - spool->min_hpages;
 197
 198		spool->rsv_hpages += delta;
 199		if (spool->rsv_hpages > spool->min_hpages)
 200			spool->rsv_hpages = spool->min_hpages;
 201	}
 202
 203	/*
 204	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 205	 * quota reference, free it now.
 206	 */
 207	unlock_or_release_subpool(spool);
 208
 209	return ret;
 210}
 211
 212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 213{
 214	return HUGETLBFS_SB(inode->i_sb)->spool;
 215}
 216
 217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 218{
 219	return subpool_inode(file_inode(vma->vm_file));
 220}
 221
 222/*
 223 * Region tracking -- allows tracking of reservations and instantiated pages
 224 *                    across the pages in a mapping.
 225 *
 226 * The region data structures are embedded into a resv_map and protected
 227 * by a resv_map's lock.  The set of regions within the resv_map represent
 228 * reservations for huge pages, or huge pages that have already been
 229 * instantiated within the map.  The from and to elements are huge page
 230 * indicies into the associated mapping.  from indicates the starting index
 231 * of the region.  to represents the first index past the end of  the region.
 232 *
 233 * For example, a file region structure with from == 0 and to == 4 represents
 234 * four huge pages in a mapping.  It is important to note that the to element
 235 * represents the first element past the end of the region. This is used in
 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 237 *
 238 * Interval notation of the form [from, to) will be used to indicate that
 239 * the endpoint from is inclusive and to is exclusive.
 240 */
 241struct file_region {
 242	struct list_head link;
 243	long from;
 244	long to;
 245};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246
 247/*
 248 * Add the huge page range represented by [f, t) to the reserve
 249 * map.  In the normal case, existing regions will be expanded
 250 * to accommodate the specified range.  Sufficient regions should
 251 * exist for expansion due to the previous call to region_chg
 252 * with the same range.  However, it is possible that region_del
 253 * could have been called after region_chg and modifed the map
 254 * in such a way that no region exists to be expanded.  In this
 255 * case, pull a region descriptor from the cache associated with
 256 * the map and use that for the new range.
 257 *
 258 * Return the number of new huge pages added to the map.  This
 259 * number is greater than or equal to zero.
 260 */
 261static long region_add(struct resv_map *resv, long f, long t)
 
 
 
 
 262{
 263	struct list_head *head = &resv->regions;
 264	struct file_region *rg, *nrg, *trg;
 265	long add = 0;
 
 
 
 266
 267	spin_lock(&resv->lock);
 268	/* Locate the region we are either in or before. */
 269	list_for_each_entry(rg, head, link)
 270		if (f <= rg->to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271			break;
 272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273	/*
 274	 * If no region exists which can be expanded to include the
 275	 * specified range, the list must have been modified by an
 276	 * interleving call to region_del().  Pull a region descriptor
 277	 * from the cache and use it for this range.
 278	 */
 279	if (&rg->link == head || t < rg->from) {
 280		VM_BUG_ON(resv->region_cache_count <= 0);
 281
 282		resv->region_cache_count--;
 283		nrg = list_first_entry(&resv->region_cache, struct file_region,
 284					link);
 285		list_del(&nrg->link);
 
 
 
 
 
 
 286
 287		nrg->from = f;
 288		nrg->to = t;
 289		list_add(&nrg->link, rg->link.prev);
 
 
 
 
 
 
 290
 291		add += t - f;
 292		goto out_locked;
 293	}
 294
 295	/* Round our left edge to the current segment if it encloses us. */
 296	if (f > rg->from)
 297		f = rg->from;
 298
 299	/* Check for and consume any regions we now overlap with. */
 300	nrg = rg;
 301	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 302		if (&rg->link == head)
 303			break;
 304		if (rg->from > t)
 305			break;
 306
 307		/* If this area reaches higher then extend our area to
 308		 * include it completely.  If this is not the first area
 309		 * which we intend to reuse, free it. */
 310		if (rg->to > t)
 311			t = rg->to;
 312		if (rg != nrg) {
 313			/* Decrement return value by the deleted range.
 314			 * Another range will span this area so that by
 315			 * end of routine add will be >= zero
 316			 */
 317			add -= (rg->to - rg->from);
 318			list_del(&rg->link);
 319			kfree(rg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320		}
 
 
 321	}
 322
 323	add += (nrg->from - f);		/* Added to beginning of region */
 324	nrg->from = f;
 325	add += t - nrg->to;		/* Added to end of region */
 326	nrg->to = t;
 327
 328out_locked:
 329	resv->adds_in_progress--;
 330	spin_unlock(&resv->lock);
 331	VM_BUG_ON(add < 0);
 332	return add;
 333}
 334
 335/*
 336 * Examine the existing reserve map and determine how many
 337 * huge pages in the specified range [f, t) are NOT currently
 338 * represented.  This routine is called before a subsequent
 339 * call to region_add that will actually modify the reserve
 340 * map to add the specified range [f, t).  region_chg does
 341 * not change the number of huge pages represented by the
 342 * map.  However, if the existing regions in the map can not
 343 * be expanded to represent the new range, a new file_region
 344 * structure is added to the map as a placeholder.  This is
 345 * so that the subsequent region_add call will have all the
 346 * regions it needs and will not fail.
 347 *
 348 * Upon entry, region_chg will also examine the cache of region descriptors
 349 * associated with the map.  If there are not enough descriptors cached, one
 350 * will be allocated for the in progress add operation.
 351 *
 352 * Returns the number of huge pages that need to be added to the existing
 353 * reservation map for the range [f, t).  This number is greater or equal to
 354 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 355 * is needed and can not be allocated.
 356 */
 357static long region_chg(struct resv_map *resv, long f, long t)
 
 358{
 359	struct list_head *head = &resv->regions;
 360	struct file_region *rg, *nrg = NULL;
 361	long chg = 0;
 362
 363retry:
 364	spin_lock(&resv->lock);
 365retry_locked:
 366	resv->adds_in_progress++;
 367
 368	/*
 369	 * Check for sufficient descriptors in the cache to accommodate
 370	 * the number of in progress add operations.
 371	 */
 372	if (resv->adds_in_progress > resv->region_cache_count) {
 373		struct file_region *trg;
 374
 375		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 376		/* Must drop lock to allocate a new descriptor. */
 377		resv->adds_in_progress--;
 378		spin_unlock(&resv->lock);
 379
 380		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 381		if (!trg) {
 382			kfree(nrg);
 383			return -ENOMEM;
 384		}
 385
 386		spin_lock(&resv->lock);
 387		list_add(&trg->link, &resv->region_cache);
 388		resv->region_cache_count++;
 389		goto retry_locked;
 390	}
 391
 392	/* Locate the region we are before or in. */
 393	list_for_each_entry(rg, head, link)
 394		if (f <= rg->to)
 395			break;
 396
 397	/* If we are below the current region then a new region is required.
 398	 * Subtle, allocate a new region at the position but make it zero
 399	 * size such that we can guarantee to record the reservation. */
 400	if (&rg->link == head || t < rg->from) {
 401		if (!nrg) {
 402			resv->adds_in_progress--;
 403			spin_unlock(&resv->lock);
 404			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 405			if (!nrg)
 406				return -ENOMEM;
 407
 408			nrg->from = f;
 409			nrg->to   = f;
 410			INIT_LIST_HEAD(&nrg->link);
 411			goto retry;
 412		}
 413
 414		list_add(&nrg->link, rg->link.prev);
 415		chg = t - f;
 416		goto out_nrg;
 417	}
 418
 419	/* Round our left edge to the current segment if it encloses us. */
 420	if (f > rg->from)
 421		f = rg->from;
 422	chg = t - f;
 423
 424	/* Check for and consume any regions we now overlap with. */
 425	list_for_each_entry(rg, rg->link.prev, link) {
 426		if (&rg->link == head)
 427			break;
 428		if (rg->from > t)
 429			goto out;
 430
 431		/* We overlap with this area, if it extends further than
 432		 * us then we must extend ourselves.  Account for its
 433		 * existing reservation. */
 434		if (rg->to > t) {
 435			chg += rg->to - t;
 436			t = rg->to;
 437		}
 438		chg -= rg->to - rg->from;
 439	}
 440
 441out:
 442	spin_unlock(&resv->lock);
 443	/*  We already know we raced and no longer need the new region */
 444	kfree(nrg);
 445	return chg;
 446out_nrg:
 447	spin_unlock(&resv->lock);
 448	return chg;
 449}
 450
 451/*
 452 * Abort the in progress add operation.  The adds_in_progress field
 453 * of the resv_map keeps track of the operations in progress between
 454 * calls to region_chg and region_add.  Operations are sometimes
 455 * aborted after the call to region_chg.  In such cases, region_abort
 456 * is called to decrement the adds_in_progress counter.
 
 
 457 *
 458 * NOTE: The range arguments [f, t) are not needed or used in this
 459 * routine.  They are kept to make reading the calling code easier as
 460 * arguments will match the associated region_chg call.
 461 */
 462static void region_abort(struct resv_map *resv, long f, long t)
 
 463{
 464	spin_lock(&resv->lock);
 465	VM_BUG_ON(!resv->region_cache_count);
 466	resv->adds_in_progress--;
 467	spin_unlock(&resv->lock);
 468}
 469
 470/*
 471 * Delete the specified range [f, t) from the reserve map.  If the
 472 * t parameter is LONG_MAX, this indicates that ALL regions after f
 473 * should be deleted.  Locate the regions which intersect [f, t)
 474 * and either trim, delete or split the existing regions.
 475 *
 476 * Returns the number of huge pages deleted from the reserve map.
 477 * In the normal case, the return value is zero or more.  In the
 478 * case where a region must be split, a new region descriptor must
 479 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 480 * NOTE: If the parameter t == LONG_MAX, then we will never split
 481 * a region and possibly return -ENOMEM.  Callers specifying
 482 * t == LONG_MAX do not need to check for -ENOMEM error.
 483 */
 484static long region_del(struct resv_map *resv, long f, long t)
 485{
 486	struct list_head *head = &resv->regions;
 487	struct file_region *rg, *trg;
 488	struct file_region *nrg = NULL;
 489	long del = 0;
 490
 491retry:
 492	spin_lock(&resv->lock);
 493	list_for_each_entry_safe(rg, trg, head, link) {
 494		/*
 495		 * Skip regions before the range to be deleted.  file_region
 496		 * ranges are normally of the form [from, to).  However, there
 497		 * may be a "placeholder" entry in the map which is of the form
 498		 * (from, to) with from == to.  Check for placeholder entries
 499		 * at the beginning of the range to be deleted.
 500		 */
 501		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 502			continue;
 503
 504		if (rg->from >= t)
 505			break;
 506
 507		if (f > rg->from && t < rg->to) { /* Must split region */
 508			/*
 509			 * Check for an entry in the cache before dropping
 510			 * lock and attempting allocation.
 511			 */
 512			if (!nrg &&
 513			    resv->region_cache_count > resv->adds_in_progress) {
 514				nrg = list_first_entry(&resv->region_cache,
 515							struct file_region,
 516							link);
 517				list_del(&nrg->link);
 518				resv->region_cache_count--;
 519			}
 520
 521			if (!nrg) {
 522				spin_unlock(&resv->lock);
 523				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 524				if (!nrg)
 525					return -ENOMEM;
 526				goto retry;
 527			}
 528
 529			del += t - f;
 
 
 530
 531			/* New entry for end of split region */
 532			nrg->from = t;
 533			nrg->to = rg->to;
 
 
 
 534			INIT_LIST_HEAD(&nrg->link);
 535
 536			/* Original entry is trimmed */
 537			rg->to = f;
 538
 539			list_add(&nrg->link, &rg->link);
 540			nrg = NULL;
 541			break;
 542		}
 543
 544		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 545			del += rg->to - rg->from;
 
 
 546			list_del(&rg->link);
 547			kfree(rg);
 548			continue;
 549		}
 550
 551		if (f <= rg->from) {	/* Trim beginning of region */
 
 
 
 552			del += t - rg->from;
 553			rg->from = t;
 554		} else {		/* Trim end of region */
 
 
 
 555			del += rg->to - f;
 556			rg->to = f;
 557		}
 558	}
 559
 560	spin_unlock(&resv->lock);
 561	kfree(nrg);
 562	return del;
 563}
 564
 565/*
 566 * A rare out of memory error was encountered which prevented removal of
 567 * the reserve map region for a page.  The huge page itself was free'ed
 568 * and removed from the page cache.  This routine will adjust the subpool
 569 * usage count, and the global reserve count if needed.  By incrementing
 570 * these counts, the reserve map entry which could not be deleted will
 571 * appear as a "reserved" entry instead of simply dangling with incorrect
 572 * counts.
 573 */
 574void hugetlb_fix_reserve_counts(struct inode *inode)
 575{
 576	struct hugepage_subpool *spool = subpool_inode(inode);
 577	long rsv_adjust;
 
 578
 579	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 580	if (rsv_adjust) {
 581		struct hstate *h = hstate_inode(inode);
 582
 583		hugetlb_acct_memory(h, 1);
 
 
 
 584	}
 
 
 
 585}
 586
 587/*
 588 * Count and return the number of huge pages in the reserve map
 589 * that intersect with the range [f, t).
 590 */
 591static long region_count(struct resv_map *resv, long f, long t)
 592{
 593	struct list_head *head = &resv->regions;
 594	struct file_region *rg;
 595	long chg = 0;
 596
 597	spin_lock(&resv->lock);
 598	/* Locate each segment we overlap with, and count that overlap. */
 599	list_for_each_entry(rg, head, link) {
 600		long seg_from;
 601		long seg_to;
 602
 603		if (rg->to <= f)
 604			continue;
 605		if (rg->from >= t)
 606			break;
 607
 608		seg_from = max(rg->from, f);
 609		seg_to = min(rg->to, t);
 610
 611		chg += seg_to - seg_from;
 612	}
 613	spin_unlock(&resv->lock);
 614
 615	return chg;
 616}
 617
 618/*
 619 * Convert the address within this vma to the page offset within
 620 * the mapping, in pagecache page units; huge pages here.
 621 */
 622static pgoff_t vma_hugecache_offset(struct hstate *h,
 623			struct vm_area_struct *vma, unsigned long address)
 624{
 625	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 626			(vma->vm_pgoff >> huge_page_order(h));
 627}
 628
 629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 630				     unsigned long address)
 631{
 632	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 633}
 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
 635
 636/*
 637 * Return the size of the pages allocated when backing a VMA. In the majority
 638 * cases this will be same size as used by the page table entries.
 639 */
 640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 641{
 642	if (vma->vm_ops && vma->vm_ops->pagesize)
 643		return vma->vm_ops->pagesize(vma);
 644	return PAGE_SIZE;
 645}
 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 647
 648/*
 649 * Return the page size being used by the MMU to back a VMA. In the majority
 650 * of cases, the page size used by the kernel matches the MMU size. On
 651 * architectures where it differs, an architecture-specific 'strong'
 652 * version of this symbol is required.
 653 */
 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 655{
 656	return vma_kernel_pagesize(vma);
 657}
 658
 659/*
 660 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 661 * bits of the reservation map pointer, which are always clear due to
 662 * alignment.
 663 */
 664#define HPAGE_RESV_OWNER    (1UL << 0)
 665#define HPAGE_RESV_UNMAPPED (1UL << 1)
 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 667
 668/*
 669 * These helpers are used to track how many pages are reserved for
 670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 671 * is guaranteed to have their future faults succeed.
 672 *
 673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 674 * the reserve counters are updated with the hugetlb_lock held. It is safe
 675 * to reset the VMA at fork() time as it is not in use yet and there is no
 676 * chance of the global counters getting corrupted as a result of the values.
 677 *
 678 * The private mapping reservation is represented in a subtly different
 679 * manner to a shared mapping.  A shared mapping has a region map associated
 680 * with the underlying file, this region map represents the backing file
 681 * pages which have ever had a reservation assigned which this persists even
 682 * after the page is instantiated.  A private mapping has a region map
 683 * associated with the original mmap which is attached to all VMAs which
 684 * reference it, this region map represents those offsets which have consumed
 685 * reservation ie. where pages have been instantiated.
 686 */
 687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 688{
 689	return (unsigned long)vma->vm_private_data;
 690}
 691
 692static void set_vma_private_data(struct vm_area_struct *vma,
 693							unsigned long value)
 694{
 695	vma->vm_private_data = (void *)value;
 696}
 697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698struct resv_map *resv_map_alloc(void)
 699{
 700	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 701	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 702
 703	if (!resv_map || !rg) {
 704		kfree(resv_map);
 705		kfree(rg);
 706		return NULL;
 707	}
 708
 709	kref_init(&resv_map->refs);
 710	spin_lock_init(&resv_map->lock);
 711	INIT_LIST_HEAD(&resv_map->regions);
 712
 713	resv_map->adds_in_progress = 0;
 
 
 
 
 
 
 
 714
 715	INIT_LIST_HEAD(&resv_map->region_cache);
 716	list_add(&rg->link, &resv_map->region_cache);
 717	resv_map->region_cache_count = 1;
 718
 719	return resv_map;
 720}
 721
 722void resv_map_release(struct kref *ref)
 723{
 724	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 725	struct list_head *head = &resv_map->region_cache;
 726	struct file_region *rg, *trg;
 727
 728	/* Clear out any active regions before we release the map. */
 729	region_del(resv_map, 0, LONG_MAX);
 730
 731	/* ... and any entries left in the cache */
 732	list_for_each_entry_safe(rg, trg, head, link) {
 733		list_del(&rg->link);
 734		kfree(rg);
 735	}
 736
 737	VM_BUG_ON(resv_map->adds_in_progress);
 738
 739	kfree(resv_map);
 740}
 741
 742static inline struct resv_map *inode_resv_map(struct inode *inode)
 743{
 744	/*
 745	 * At inode evict time, i_mapping may not point to the original
 746	 * address space within the inode.  This original address space
 747	 * contains the pointer to the resv_map.  So, always use the
 748	 * address space embedded within the inode.
 749	 * The VERY common case is inode->mapping == &inode->i_data but,
 750	 * this may not be true for device special inodes.
 751	 */
 752	return (struct resv_map *)(&inode->i_data)->private_data;
 753}
 754
 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 756{
 757	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 758	if (vma->vm_flags & VM_MAYSHARE) {
 759		struct address_space *mapping = vma->vm_file->f_mapping;
 760		struct inode *inode = mapping->host;
 761
 762		return inode_resv_map(inode);
 763
 764	} else {
 765		return (struct resv_map *)(get_vma_private_data(vma) &
 766							~HPAGE_RESV_MASK);
 767	}
 768}
 769
 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 771{
 772	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775	set_vma_private_data(vma, (get_vma_private_data(vma) &
 776				HPAGE_RESV_MASK) | (unsigned long)map);
 777}
 778
 779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 780{
 781	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 782	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 783
 784	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 785}
 786
 787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 788{
 789	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 790
 791	return (get_vma_private_data(vma) & flag) != 0;
 792}
 793
 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 796{
 797	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 798	if (!(vma->vm_flags & VM_MAYSHARE))
 799		vma->vm_private_data = (void *)0;
 800}
 801
 802/* Returns true if the VMA has associated reserve pages */
 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 804{
 805	if (vma->vm_flags & VM_NORESERVE) {
 806		/*
 807		 * This address is already reserved by other process(chg == 0),
 808		 * so, we should decrement reserved count. Without decrementing,
 809		 * reserve count remains after releasing inode, because this
 810		 * allocated page will go into page cache and is regarded as
 811		 * coming from reserved pool in releasing step.  Currently, we
 812		 * don't have any other solution to deal with this situation
 813		 * properly, so add work-around here.
 814		 */
 815		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 816			return true;
 817		else
 818			return false;
 819	}
 820
 821	/* Shared mappings always use reserves */
 822	if (vma->vm_flags & VM_MAYSHARE) {
 823		/*
 824		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 825		 * be a region map for all pages.  The only situation where
 826		 * there is no region map is if a hole was punched via
 827		 * fallocate.  In this case, there really are no reverves to
 828		 * use.  This situation is indicated if chg != 0.
 829		 */
 830		if (chg)
 831			return false;
 832		else
 833			return true;
 834	}
 835
 836	/*
 837	 * Only the process that called mmap() has reserves for
 838	 * private mappings.
 839	 */
 840	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 841		/*
 842		 * Like the shared case above, a hole punch or truncate
 843		 * could have been performed on the private mapping.
 844		 * Examine the value of chg to determine if reserves
 845		 * actually exist or were previously consumed.
 846		 * Very Subtle - The value of chg comes from a previous
 847		 * call to vma_needs_reserves().  The reserve map for
 848		 * private mappings has different (opposite) semantics
 849		 * than that of shared mappings.  vma_needs_reserves()
 850		 * has already taken this difference in semantics into
 851		 * account.  Therefore, the meaning of chg is the same
 852		 * as in the shared case above.  Code could easily be
 853		 * combined, but keeping it separate draws attention to
 854		 * subtle differences.
 855		 */
 856		if (chg)
 857			return false;
 858		else
 859			return true;
 860	}
 861
 862	return false;
 863}
 864
 865static void enqueue_huge_page(struct hstate *h, struct page *page)
 866{
 867	int nid = page_to_nid(page);
 
 
 868	list_move(&page->lru, &h->hugepage_freelists[nid]);
 869	h->free_huge_pages++;
 870	h->free_huge_pages_node[nid]++;
 
 871}
 872
 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 874{
 875	struct page *page;
 
 876
 877	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 878		if (!PageHWPoison(page))
 879			break;
 880	/*
 881	 * if 'non-isolated free hugepage' not found on the list,
 882	 * the allocation fails.
 883	 */
 884	if (&h->hugepage_freelists[nid] == &page->lru)
 885		return NULL;
 886	list_move(&page->lru, &h->hugepage_activelist);
 887	set_page_refcounted(page);
 888	h->free_huge_pages--;
 889	h->free_huge_pages_node[nid]--;
 890	return page;
 
 
 
 891}
 892
 893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 894		nodemask_t *nmask)
 895{
 896	unsigned int cpuset_mems_cookie;
 897	struct zonelist *zonelist;
 898	struct zone *zone;
 899	struct zoneref *z;
 900	int node = NUMA_NO_NODE;
 901
 902	zonelist = node_zonelist(nid, gfp_mask);
 903
 904retry_cpuset:
 905	cpuset_mems_cookie = read_mems_allowed_begin();
 906	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 907		struct page *page;
 908
 909		if (!cpuset_zone_allowed(zone, gfp_mask))
 910			continue;
 911		/*
 912		 * no need to ask again on the same node. Pool is node rather than
 913		 * zone aware
 914		 */
 915		if (zone_to_nid(zone) == node)
 916			continue;
 917		node = zone_to_nid(zone);
 918
 919		page = dequeue_huge_page_node_exact(h, node);
 920		if (page)
 921			return page;
 922	}
 923	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 924		goto retry_cpuset;
 925
 926	return NULL;
 927}
 928
 929/* Movability of hugepages depends on migration support. */
 930static inline gfp_t htlb_alloc_mask(struct hstate *h)
 931{
 932	if (hugepage_movable_supported(h))
 933		return GFP_HIGHUSER_MOVABLE;
 934	else
 935		return GFP_HIGHUSER;
 936}
 937
 938static struct page *dequeue_huge_page_vma(struct hstate *h,
 939				struct vm_area_struct *vma,
 940				unsigned long address, int avoid_reserve,
 941				long chg)
 942{
 943	struct page *page;
 944	struct mempolicy *mpol;
 945	gfp_t gfp_mask;
 946	nodemask_t *nodemask;
 947	int nid;
 948
 949	/*
 950	 * A child process with MAP_PRIVATE mappings created by their parent
 951	 * have no page reserves. This check ensures that reservations are
 952	 * not "stolen". The child may still get SIGKILLed
 953	 */
 954	if (!vma_has_reserves(vma, chg) &&
 955			h->free_huge_pages - h->resv_huge_pages == 0)
 956		goto err;
 957
 958	/* If reserves cannot be used, ensure enough pages are in the pool */
 959	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 960		goto err;
 961
 962	gfp_mask = htlb_alloc_mask(h);
 963	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 964	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 965	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 966		SetPagePrivate(page);
 967		h->resv_huge_pages--;
 968	}
 969
 970	mpol_cond_put(mpol);
 971	return page;
 972
 973err:
 974	return NULL;
 975}
 976
 977/*
 978 * common helper functions for hstate_next_node_to_{alloc|free}.
 979 * We may have allocated or freed a huge page based on a different
 980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 981 * be outside of *nodes_allowed.  Ensure that we use an allowed
 982 * node for alloc or free.
 983 */
 984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 985{
 986	nid = next_node_in(nid, *nodes_allowed);
 987	VM_BUG_ON(nid >= MAX_NUMNODES);
 988
 989	return nid;
 990}
 991
 992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 993{
 994	if (!node_isset(nid, *nodes_allowed))
 995		nid = next_node_allowed(nid, nodes_allowed);
 996	return nid;
 997}
 998
 999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006					nodemask_t *nodes_allowed)
1007{
1008	int nid;
1009
1010	VM_BUG_ON(!nodes_allowed);
1011
1012	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015	return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page.  Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026	int nid;
1027
1028	VM_BUG_ON(!nodes_allowed);
1029
1030	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033	return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1037	for (nr_nodes = nodes_weight(*mask);				\
1038		nr_nodes > 0 &&						\
1039		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1040		nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1043	for (nr_nodes = nodes_weight(*mask);				\
1044		nr_nodes > 0 &&						\
1045		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1046		nr_nodes--)
1047
1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049static void destroy_compound_gigantic_page(struct page *page,
1050					unsigned int order)
1051{
1052	int i;
1053	int nr_pages = 1 << order;
1054	struct page *p = page + 1;
1055
1056	atomic_set(compound_mapcount_ptr(page), 0);
 
 
1057	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058		clear_compound_head(p);
1059		set_page_refcounted(p);
1060	}
1061
1062	set_compound_order(page, 0);
 
1063	__ClearPageHead(page);
1064}
1065
1066static void free_gigantic_page(struct page *page, unsigned int order)
1067{
 
 
 
 
 
 
 
 
 
1068	free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
1071#ifdef CONFIG_CONTIG_ALLOC
1072static int __alloc_gigantic_page(unsigned long start_pfn,
1073				unsigned long nr_pages, gfp_t gfp_mask)
1074{
1075	unsigned long end_pfn = start_pfn + nr_pages;
1076	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077				  gfp_mask);
1078}
1079
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081			unsigned long start_pfn, unsigned long nr_pages)
1082{
1083	unsigned long i, end_pfn = start_pfn + nr_pages;
1084	struct page *page;
1085
1086	for (i = start_pfn; i < end_pfn; i++) {
1087		page = pfn_to_online_page(i);
1088		if (!page)
1089			return false;
1090
1091		if (page_zone(page) != z)
1092			return false;
1093
1094		if (PageReserved(page))
1095			return false;
1096
1097		if (page_count(page) > 0)
1098			return false;
1099
1100		if (PageHuge(page))
1101			return false;
1102	}
1103
1104	return true;
1105}
1106
1107static bool zone_spans_last_pfn(const struct zone *zone,
1108			unsigned long start_pfn, unsigned long nr_pages)
1109{
1110	unsigned long last_pfn = start_pfn + nr_pages - 1;
1111	return zone_spans_pfn(zone, last_pfn);
1112}
1113
1114static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115		int nid, nodemask_t *nodemask)
1116{
1117	unsigned int order = huge_page_order(h);
1118	unsigned long nr_pages = 1 << order;
1119	unsigned long ret, pfn, flags;
1120	struct zonelist *zonelist;
1121	struct zone *zone;
1122	struct zoneref *z;
1123
1124	zonelist = node_zonelist(nid, gfp_mask);
1125	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126		spin_lock_irqsave(&zone->lock, flags);
 
1127
1128		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131				/*
1132				 * We release the zone lock here because
1133				 * alloc_contig_range() will also lock the zone
1134				 * at some point. If there's an allocation
1135				 * spinning on this lock, it may win the race
1136				 * and cause alloc_contig_range() to fail...
1137				 */
1138				spin_unlock_irqrestore(&zone->lock, flags);
1139				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140				if (!ret)
1141					return pfn_to_page(pfn);
1142				spin_lock_irqsave(&zone->lock, flags);
 
1143			}
1144			pfn += nr_pages;
1145		}
1146
1147		spin_unlock_irqrestore(&zone->lock, flags);
1148	}
 
1149
1150	return NULL;
1151}
1152
1153static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155#else /* !CONFIG_CONTIG_ALLOC */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157					int nid, nodemask_t *nodemask)
1158{
1159	return NULL;
1160}
1161#endif /* CONFIG_CONTIG_ALLOC */
1162
1163#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165					int nid, nodemask_t *nodemask)
1166{
1167	return NULL;
1168}
1169static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170static inline void destroy_compound_gigantic_page(struct page *page,
1171						unsigned int order) { }
1172#endif
1173
1174static void update_and_free_page(struct hstate *h, struct page *page)
 
 
 
 
 
 
 
1175{
1176	int i;
1177
 
 
 
 
1178	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179		return;
1180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181	h->nr_huge_pages--;
1182	h->nr_huge_pages_node[page_to_nid(page)]--;
1183	for (i = 0; i < pages_per_huge_page(h); i++) {
1184		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185				1 << PG_referenced | 1 << PG_dirty |
1186				1 << PG_active | 1 << PG_private |
1187				1 << PG_writeback);
1188	}
1189	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1190	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191	set_page_refcounted(page);
1192	if (hstate_is_gigantic(h)) {
1193		destroy_compound_gigantic_page(page, huge_page_order(h));
1194		free_gigantic_page(page, huge_page_order(h));
1195	} else {
1196		__free_pages(page, huge_page_order(h));
1197	}
1198}
1199
1200struct hstate *size_to_hstate(unsigned long size)
1201{
1202	struct hstate *h;
1203
1204	for_each_hstate(h) {
1205		if (huge_page_size(h) == size)
1206			return h;
1207	}
1208	return NULL;
1209}
1210
1211/*
1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213 * to hstate->hugepage_activelist.)
 
 
1214 *
1215 * This function can be called for tail pages, but never returns true for them.
 
 
 
1216 */
1217bool page_huge_active(struct page *page)
1218{
1219	VM_BUG_ON_PAGE(!PageHuge(page), page);
1220	return PageHead(page) && PagePrivate(&page[1]);
1221}
1222
1223/* never called for tail page */
1224static void set_page_huge_active(struct page *page)
1225{
1226	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227	SetPagePrivate(&page[1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228}
 
1229
1230static void clear_page_huge_active(struct page *page)
1231{
1232	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233	ClearPagePrivate(&page[1]);
1234}
1235
1236/*
1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238 * code
1239 */
1240static inline bool PageHugeTemporary(struct page *page)
1241{
1242	if (!PageHuge(page))
1243		return false;
 
 
1244
1245	return (unsigned long)page[2].mapping == -1U;
 
 
 
 
 
 
 
 
1246}
1247
1248static inline void SetPageHugeTemporary(struct page *page)
1249{
1250	page[2].mapping = (void *)-1U;
 
 
 
 
 
1251}
1252
1253static inline void ClearPageHugeTemporary(struct page *page)
1254{
1255	page[2].mapping = NULL;
 
 
 
 
 
 
1256}
1257
1258void free_huge_page(struct page *page)
1259{
1260	/*
1261	 * Can't pass hstate in here because it is called from the
1262	 * compound page destructor.
1263	 */
1264	struct hstate *h = page_hstate(page);
1265	int nid = page_to_nid(page);
1266	struct hugepage_subpool *spool =
1267		(struct hugepage_subpool *)page_private(page);
1268	bool restore_reserve;
 
1269
1270	VM_BUG_ON_PAGE(page_count(page), page);
1271	VM_BUG_ON_PAGE(page_mapcount(page), page);
1272
1273	set_page_private(page, 0);
1274	page->mapping = NULL;
1275	restore_reserve = PagePrivate(page);
1276	ClearPagePrivate(page);
1277
1278	/*
1279	 * If PagePrivate() was set on page, page allocation consumed a
1280	 * reservation.  If the page was associated with a subpool, there
1281	 * would have been a page reserved in the subpool before allocation
1282	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1283	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284	 * remove the reserved page from the subpool.
1285	 */
1286	if (!restore_reserve) {
1287		/*
1288		 * A return code of zero implies that the subpool will be
1289		 * under its minimum size if the reservation is not restored
1290		 * after page is free.  Therefore, force restore_reserve
1291		 * operation.
1292		 */
1293		if (hugepage_subpool_put_pages(spool, 1) == 0)
1294			restore_reserve = true;
1295	}
1296
1297	spin_lock(&hugetlb_lock);
1298	clear_page_huge_active(page);
1299	hugetlb_cgroup_uncharge_page(hstate_index(h),
1300				     pages_per_huge_page(h), page);
 
 
1301	if (restore_reserve)
1302		h->resv_huge_pages++;
1303
1304	if (PageHugeTemporary(page)) {
1305		list_del(&page->lru);
1306		ClearPageHugeTemporary(page);
1307		update_and_free_page(h, page);
1308	} else if (h->surplus_huge_pages_node[nid]) {
1309		/* remove the page from active list */
1310		list_del(&page->lru);
1311		update_and_free_page(h, page);
1312		h->surplus_huge_pages--;
1313		h->surplus_huge_pages_node[nid]--;
1314	} else {
1315		arch_clear_hugepage_flags(page);
1316		enqueue_huge_page(h, page);
 
1317	}
1318	spin_unlock(&hugetlb_lock);
1319}
1320
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 
 
 
1322{
 
 
 
 
 
 
 
 
1323	INIT_LIST_HEAD(&page->lru);
1324	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325	spin_lock(&hugetlb_lock);
1326	set_hugetlb_cgroup(page, NULL);
1327	h->nr_huge_pages++;
1328	h->nr_huge_pages_node[nid]++;
1329	spin_unlock(&hugetlb_lock);
1330}
1331
1332static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1333{
1334	int i;
 
 
 
 
 
 
 
 
1335	int nr_pages = 1 << order;
1336	struct page *p = page + 1;
1337
1338	/* we rely on prep_new_huge_page to set the destructor */
1339	set_compound_order(page, order);
1340	__ClearPageReserved(page);
1341	__SetPageHead(page);
1342	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1343		/*
1344		 * For gigantic hugepages allocated through bootmem at
1345		 * boot, it's safer to be consistent with the not-gigantic
1346		 * hugepages and clear the PG_reserved bit from all tail pages
1347		 * too.  Otherwse drivers using get_user_pages() to access tail
1348		 * pages may get the reference counting wrong if they see
1349		 * PG_reserved set on a tail page (despite the head page not
1350		 * having PG_reserved set).  Enforcing this consistency between
1351		 * head and tail pages allows drivers to optimize away a check
1352		 * on the head page when they need know if put_page() is needed
1353		 * after get_user_pages().
1354		 */
1355		__ClearPageReserved(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356		set_page_count(p, 0);
1357		set_compound_head(p, page);
1358	}
1359	atomic_set(compound_mapcount_ptr(page), -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360}
1361
1362/*
1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364 * transparent huge pages.  See the PageTransHuge() documentation for more
1365 * details.
1366 */
1367int PageHuge(struct page *page)
1368{
1369	if (!PageCompound(page))
1370		return 0;
1371
1372	page = compound_head(page);
1373	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374}
1375EXPORT_SYMBOL_GPL(PageHuge);
1376
1377/*
1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379 * normal or transparent huge pages.
1380 */
1381int PageHeadHuge(struct page *page_head)
1382{
1383	if (!PageHead(page_head))
1384		return 0;
1385
1386	return get_compound_page_dtor(page_head) == free_huge_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387}
1388
1389pgoff_t __basepage_index(struct page *page)
1390{
1391	struct page *page_head = compound_head(page);
1392	pgoff_t index = page_index(page_head);
1393	unsigned long compound_idx;
1394
1395	if (!PageHuge(page_head))
1396		return page_index(page);
1397
1398	if (compound_order(page_head) >= MAX_ORDER)
1399		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400	else
1401		compound_idx = page - page_head;
1402
1403	return (index << compound_order(page_head)) + compound_idx;
1404}
1405
1406static struct page *alloc_buddy_huge_page(struct hstate *h,
1407		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1408		nodemask_t *node_alloc_noretry)
1409{
1410	int order = huge_page_order(h);
1411	struct page *page;
1412	bool alloc_try_hard = true;
1413
1414	/*
1415	 * By default we always try hard to allocate the page with
1416	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1417	 * a loop (to adjust global huge page counts) and previous allocation
1418	 * failed, do not continue to try hard on the same node.  Use the
1419	 * node_alloc_noretry bitmap to manage this state information.
1420	 */
1421	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1422		alloc_try_hard = false;
1423	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1424	if (alloc_try_hard)
1425		gfp_mask |= __GFP_RETRY_MAYFAIL;
1426	if (nid == NUMA_NO_NODE)
1427		nid = numa_mem_id();
1428	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1429	if (page)
1430		__count_vm_event(HTLB_BUDDY_PGALLOC);
1431	else
1432		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1433
1434	/*
1435	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1436	 * indicates an overall state change.  Clear bit so that we resume
1437	 * normal 'try hard' allocations.
1438	 */
1439	if (node_alloc_noretry && page && !alloc_try_hard)
1440		node_clear(nid, *node_alloc_noretry);
1441
1442	/*
1443	 * If we tried hard to get a page but failed, set bit so that
1444	 * subsequent attempts will not try as hard until there is an
1445	 * overall state change.
1446	 */
1447	if (node_alloc_noretry && !page && alloc_try_hard)
1448		node_set(nid, *node_alloc_noretry);
1449
1450	return page;
1451}
1452
1453/*
1454 * Common helper to allocate a fresh hugetlb page. All specific allocators
1455 * should use this function to get new hugetlb pages
1456 */
1457static struct page *alloc_fresh_huge_page(struct hstate *h,
1458		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1459		nodemask_t *node_alloc_noretry)
1460{
1461	struct page *page;
 
1462
 
1463	if (hstate_is_gigantic(h))
1464		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1465	else
1466		page = alloc_buddy_huge_page(h, gfp_mask,
1467				nid, nmask, node_alloc_noretry);
1468	if (!page)
1469		return NULL;
1470
1471	if (hstate_is_gigantic(h))
1472		prep_compound_gigantic_page(page, huge_page_order(h));
 
 
 
 
 
 
 
 
 
 
 
 
 
1473	prep_new_huge_page(h, page, page_to_nid(page));
1474
1475	return page;
1476}
1477
1478/*
1479 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1480 * manner.
1481 */
1482static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1483				nodemask_t *node_alloc_noretry)
1484{
1485	struct page *page;
1486	int nr_nodes, node;
1487	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1488
1489	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1490		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1491						node_alloc_noretry);
1492		if (page)
1493			break;
1494	}
1495
1496	if (!page)
1497		return 0;
1498
1499	put_page(page); /* free it into the hugepage allocator */
1500
1501	return 1;
1502}
1503
1504/*
1505 * Free huge page from pool from next node to free.
1506 * Attempt to keep persistent huge pages more or less
1507 * balanced over allowed nodes.
 
1508 * Called with hugetlb_lock locked.
1509 */
1510static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1511							 bool acct_surplus)
 
1512{
1513	int nr_nodes, node;
1514	int ret = 0;
1515
 
1516	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1517		/*
1518		 * If we're returning unused surplus pages, only examine
1519		 * nodes with surplus pages.
1520		 */
1521		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1522		    !list_empty(&h->hugepage_freelists[node])) {
1523			struct page *page =
1524				list_entry(h->hugepage_freelists[node].next,
1525					  struct page, lru);
1526			list_del(&page->lru);
1527			h->free_huge_pages--;
1528			h->free_huge_pages_node[node]--;
1529			if (acct_surplus) {
1530				h->surplus_huge_pages--;
1531				h->surplus_huge_pages_node[node]--;
1532			}
1533			update_and_free_page(h, page);
1534			ret = 1;
1535			break;
1536		}
1537	}
1538
1539	return ret;
1540}
1541
1542/*
1543 * Dissolve a given free hugepage into free buddy pages. This function does
1544 * nothing for in-use hugepages and non-hugepages.
1545 * This function returns values like below:
1546 *
1547 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1548 *          (allocated or reserved.)
1549 *       0: successfully dissolved free hugepages or the page is not a
1550 *          hugepage (considered as already dissolved)
 
 
 
 
1551 */
1552int dissolve_free_huge_page(struct page *page)
1553{
1554	int rc = -EBUSY;
1555
 
1556	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1557	if (!PageHuge(page))
1558		return 0;
1559
1560	spin_lock(&hugetlb_lock);
1561	if (!PageHuge(page)) {
1562		rc = 0;
1563		goto out;
1564	}
1565
1566	if (!page_count(page)) {
1567		struct page *head = compound_head(page);
1568		struct hstate *h = page_hstate(head);
1569		int nid = page_to_nid(head);
1570		if (h->free_huge_pages - h->resv_huge_pages == 0)
1571			goto out;
 
1572		/*
1573		 * Move PageHWPoison flag from head page to the raw error page,
1574		 * which makes any subpages rather than the error page reusable.
1575		 */
1576		if (PageHWPoison(head) && page != head) {
1577			SetPageHWPoison(page);
1578			ClearPageHWPoison(head);
 
 
 
 
 
 
 
 
 
 
1579		}
1580		list_del(&head->lru);
1581		h->free_huge_pages--;
1582		h->free_huge_pages_node[nid]--;
1583		h->max_huge_pages--;
1584		update_and_free_page(h, head);
1585		rc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586	}
1587out:
1588	spin_unlock(&hugetlb_lock);
1589	return rc;
1590}
1591
1592/*
1593 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1594 * make specified memory blocks removable from the system.
1595 * Note that this will dissolve a free gigantic hugepage completely, if any
1596 * part of it lies within the given range.
1597 * Also note that if dissolve_free_huge_page() returns with an error, all
1598 * free hugepages that were dissolved before that error are lost.
1599 */
1600int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602	unsigned long pfn;
1603	struct page *page;
1604	int rc = 0;
1605
1606	if (!hugepages_supported())
1607		return rc;
1608
1609	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1610		page = pfn_to_page(pfn);
1611		rc = dissolve_free_huge_page(page);
1612		if (rc)
1613			break;
1614	}
1615
1616	return rc;
1617}
1618
1619/*
1620 * Allocates a fresh surplus page from the page allocator.
1621 */
1622static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1623		int nid, nodemask_t *nmask)
1624{
1625	struct page *page = NULL;
1626
1627	if (hstate_is_gigantic(h))
1628		return NULL;
1629
1630	spin_lock(&hugetlb_lock);
1631	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1632		goto out_unlock;
1633	spin_unlock(&hugetlb_lock);
1634
1635	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1636	if (!page)
1637		return NULL;
1638
1639	spin_lock(&hugetlb_lock);
1640	/*
1641	 * We could have raced with the pool size change.
1642	 * Double check that and simply deallocate the new page
1643	 * if we would end up overcommiting the surpluses. Abuse
1644	 * temporary page to workaround the nasty free_huge_page
1645	 * codeflow
1646	 */
1647	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1648		SetPageHugeTemporary(page);
1649		spin_unlock(&hugetlb_lock);
1650		put_page(page);
1651		return NULL;
1652	} else {
1653		h->surplus_huge_pages++;
1654		h->surplus_huge_pages_node[page_to_nid(page)]++;
1655	}
1656
1657out_unlock:
1658	spin_unlock(&hugetlb_lock);
1659
1660	return page;
1661}
1662
1663struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1664				     int nid, nodemask_t *nmask)
1665{
1666	struct page *page;
1667
1668	if (hstate_is_gigantic(h))
1669		return NULL;
1670
1671	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1672	if (!page)
1673		return NULL;
1674
1675	/*
1676	 * We do not account these pages as surplus because they are only
1677	 * temporary and will be released properly on the last reference
1678	 */
1679	SetPageHugeTemporary(page);
1680
1681	return page;
1682}
1683
1684/*
1685 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1686 */
1687static
1688struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1689		struct vm_area_struct *vma, unsigned long addr)
1690{
1691	struct page *page;
1692	struct mempolicy *mpol;
1693	gfp_t gfp_mask = htlb_alloc_mask(h);
1694	int nid;
1695	nodemask_t *nodemask;
1696
1697	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1698	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1699	mpol_cond_put(mpol);
1700
1701	return page;
1702}
1703
1704/* page migration callback function */
1705struct page *alloc_huge_page_node(struct hstate *h, int nid)
1706{
1707	gfp_t gfp_mask = htlb_alloc_mask(h);
1708	struct page *page = NULL;
1709
1710	if (nid != NUMA_NO_NODE)
1711		gfp_mask |= __GFP_THISNODE;
1712
1713	spin_lock(&hugetlb_lock);
1714	if (h->free_huge_pages - h->resv_huge_pages > 0)
1715		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1716	spin_unlock(&hugetlb_lock);
1717
1718	if (!page)
1719		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1720
1721	return page;
1722}
1723
1724/* page migration callback function */
1725struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1726		nodemask_t *nmask)
1727{
1728	gfp_t gfp_mask = htlb_alloc_mask(h);
1729
1730	spin_lock(&hugetlb_lock);
1731	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1732		struct page *page;
1733
1734		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1735		if (page) {
1736			spin_unlock(&hugetlb_lock);
1737			return page;
1738		}
1739	}
1740	spin_unlock(&hugetlb_lock);
1741
1742	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1743}
1744
1745/* mempolicy aware migration callback */
1746struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1747		unsigned long address)
1748{
1749	struct mempolicy *mpol;
1750	nodemask_t *nodemask;
1751	struct page *page;
1752	gfp_t gfp_mask;
1753	int node;
1754
1755	gfp_mask = htlb_alloc_mask(h);
1756	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1757	page = alloc_huge_page_nodemask(h, node, nodemask);
1758	mpol_cond_put(mpol);
1759
1760	return page;
1761}
1762
1763/*
1764 * Increase the hugetlb pool such that it can accommodate a reservation
1765 * of size 'delta'.
1766 */
1767static int gather_surplus_pages(struct hstate *h, int delta)
 
1768{
1769	struct list_head surplus_list;
1770	struct page *page, *tmp;
1771	int ret, i;
1772	int needed, allocated;
 
1773	bool alloc_ok = true;
1774
 
1775	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1776	if (needed <= 0) {
1777		h->resv_huge_pages += delta;
1778		return 0;
1779	}
1780
1781	allocated = 0;
1782	INIT_LIST_HEAD(&surplus_list);
1783
1784	ret = -ENOMEM;
1785retry:
1786	spin_unlock(&hugetlb_lock);
1787	for (i = 0; i < needed; i++) {
1788		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1789				NUMA_NO_NODE, NULL);
1790		if (!page) {
1791			alloc_ok = false;
1792			break;
1793		}
1794		list_add(&page->lru, &surplus_list);
1795		cond_resched();
1796	}
1797	allocated += i;
1798
1799	/*
1800	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1801	 * because either resv_huge_pages or free_huge_pages may have changed.
1802	 */
1803	spin_lock(&hugetlb_lock);
1804	needed = (h->resv_huge_pages + delta) -
1805			(h->free_huge_pages + allocated);
1806	if (needed > 0) {
1807		if (alloc_ok)
1808			goto retry;
1809		/*
1810		 * We were not able to allocate enough pages to
1811		 * satisfy the entire reservation so we free what
1812		 * we've allocated so far.
1813		 */
1814		goto free;
1815	}
1816	/*
1817	 * The surplus_list now contains _at_least_ the number of extra pages
1818	 * needed to accommodate the reservation.  Add the appropriate number
1819	 * of pages to the hugetlb pool and free the extras back to the buddy
1820	 * allocator.  Commit the entire reservation here to prevent another
1821	 * process from stealing the pages as they are added to the pool but
1822	 * before they are reserved.
1823	 */
1824	needed += allocated;
1825	h->resv_huge_pages += delta;
1826	ret = 0;
1827
1828	/* Free the needed pages to the hugetlb pool */
1829	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 
 
1830		if ((--needed) < 0)
1831			break;
1832		/*
1833		 * This page is now managed by the hugetlb allocator and has
1834		 * no users -- drop the buddy allocator's reference.
1835		 */
1836		put_page_testzero(page);
1837		VM_BUG_ON_PAGE(page_count(page), page);
1838		enqueue_huge_page(h, page);
1839	}
1840free:
1841	spin_unlock(&hugetlb_lock);
1842
1843	/* Free unnecessary surplus pages to the buddy allocator */
1844	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1845		put_page(page);
1846	spin_lock(&hugetlb_lock);
1847
1848	return ret;
1849}
1850
1851/*
1852 * This routine has two main purposes:
1853 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1854 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1855 *    to the associated reservation map.
1856 * 2) Free any unused surplus pages that may have been allocated to satisfy
1857 *    the reservation.  As many as unused_resv_pages may be freed.
1858 *
1859 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1860 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1861 * we must make sure nobody else can claim pages we are in the process of
1862 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1863 * number of huge pages we plan to free when dropping the lock.
1864 */
1865static void return_unused_surplus_pages(struct hstate *h,
1866					unsigned long unused_resv_pages)
1867{
1868	unsigned long nr_pages;
 
 
 
 
 
 
1869
1870	/* Cannot return gigantic pages currently */
1871	if (hstate_is_gigantic(h))
1872		goto out;
1873
1874	/*
1875	 * Part (or even all) of the reservation could have been backed
1876	 * by pre-allocated pages. Only free surplus pages.
1877	 */
1878	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1879
1880	/*
1881	 * We want to release as many surplus pages as possible, spread
1882	 * evenly across all nodes with memory. Iterate across these nodes
1883	 * until we can no longer free unreserved surplus pages. This occurs
1884	 * when the nodes with surplus pages have no free pages.
1885	 * free_pool_huge_page() will balance the the freed pages across the
1886	 * on-line nodes with memory and will handle the hstate accounting.
1887	 *
1888	 * Note that we decrement resv_huge_pages as we free the pages.  If
1889	 * we drop the lock, resv_huge_pages will still be sufficiently large
1890	 * to cover subsequent pages we may free.
1891	 */
1892	while (nr_pages--) {
1893		h->resv_huge_pages--;
1894		unused_resv_pages--;
1895		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1896			goto out;
1897		cond_resched_lock(&hugetlb_lock);
 
1898	}
1899
1900out:
1901	/* Fully uncommit the reservation */
1902	h->resv_huge_pages -= unused_resv_pages;
 
1903}
1904
1905
1906/*
1907 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1908 * are used by the huge page allocation routines to manage reservations.
1909 *
1910 * vma_needs_reservation is called to determine if the huge page at addr
1911 * within the vma has an associated reservation.  If a reservation is
1912 * needed, the value 1 is returned.  The caller is then responsible for
1913 * managing the global reservation and subpool usage counts.  After
1914 * the huge page has been allocated, vma_commit_reservation is called
1915 * to add the page to the reservation map.  If the page allocation fails,
1916 * the reservation must be ended instead of committed.  vma_end_reservation
1917 * is called in such cases.
1918 *
1919 * In the normal case, vma_commit_reservation returns the same value
1920 * as the preceding vma_needs_reservation call.  The only time this
1921 * is not the case is if a reserve map was changed between calls.  It
1922 * is the responsibility of the caller to notice the difference and
1923 * take appropriate action.
1924 *
1925 * vma_add_reservation is used in error paths where a reservation must
1926 * be restored when a newly allocated huge page must be freed.  It is
1927 * to be called after calling vma_needs_reservation to determine if a
1928 * reservation exists.
 
 
 
 
 
1929 */
1930enum vma_resv_mode {
1931	VMA_NEEDS_RESV,
1932	VMA_COMMIT_RESV,
1933	VMA_END_RESV,
1934	VMA_ADD_RESV,
 
1935};
1936static long __vma_reservation_common(struct hstate *h,
1937				struct vm_area_struct *vma, unsigned long addr,
1938				enum vma_resv_mode mode)
1939{
1940	struct resv_map *resv;
1941	pgoff_t idx;
1942	long ret;
 
1943
1944	resv = vma_resv_map(vma);
1945	if (!resv)
1946		return 1;
1947
1948	idx = vma_hugecache_offset(h, vma, addr);
1949	switch (mode) {
1950	case VMA_NEEDS_RESV:
1951		ret = region_chg(resv, idx, idx + 1);
 
 
 
 
 
1952		break;
1953	case VMA_COMMIT_RESV:
1954		ret = region_add(resv, idx, idx + 1);
 
 
1955		break;
1956	case VMA_END_RESV:
1957		region_abort(resv, idx, idx + 1);
1958		ret = 0;
1959		break;
1960	case VMA_ADD_RESV:
1961		if (vma->vm_flags & VM_MAYSHARE)
1962			ret = region_add(resv, idx, idx + 1);
1963		else {
1964			region_abort(resv, idx, idx + 1);
 
 
 
 
 
 
 
 
1965			ret = region_del(resv, idx, idx + 1);
 
 
 
 
1966		}
1967		break;
1968	default:
1969		BUG();
1970	}
1971
1972	if (vma->vm_flags & VM_MAYSHARE)
1973		return ret;
1974	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1975		/*
1976		 * In most cases, reserves always exist for private mappings.
1977		 * However, a file associated with mapping could have been
1978		 * hole punched or truncated after reserves were consumed.
1979		 * As subsequent fault on such a range will not use reserves.
1980		 * Subtle - The reserve map for private mappings has the
1981		 * opposite meaning than that of shared mappings.  If NO
1982		 * entry is in the reserve map, it means a reservation exists.
1983		 * If an entry exists in the reserve map, it means the
1984		 * reservation has already been consumed.  As a result, the
1985		 * return value of this routine is the opposite of the
1986		 * value returned from reserve map manipulation routines above.
1987		 */
1988		if (ret)
1989			return 0;
1990		else
1991			return 1;
1992	}
1993	else
1994		return ret < 0 ? ret : 0;
1995}
1996
1997static long vma_needs_reservation(struct hstate *h,
1998			struct vm_area_struct *vma, unsigned long addr)
1999{
2000	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2001}
2002
2003static long vma_commit_reservation(struct hstate *h,
2004			struct vm_area_struct *vma, unsigned long addr)
2005{
2006	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2007}
2008
2009static void vma_end_reservation(struct hstate *h,
2010			struct vm_area_struct *vma, unsigned long addr)
2011{
2012	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2013}
2014
2015static long vma_add_reservation(struct hstate *h,
2016			struct vm_area_struct *vma, unsigned long addr)
2017{
2018	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2019}
2020
 
 
 
 
 
 
2021/*
2022 * This routine is called to restore a reservation on error paths.  In the
2023 * specific error paths, a huge page was allocated (via alloc_huge_page)
2024 * and is about to be freed.  If a reservation for the page existed,
2025 * alloc_huge_page would have consumed the reservation and set PagePrivate
2026 * in the newly allocated page.  When the page is freed via free_huge_page,
2027 * the global reservation count will be incremented if PagePrivate is set.
2028 * However, free_huge_page can not adjust the reserve map.  Adjust the
2029 * reserve map here to be consistent with global reserve count adjustments
2030 * to be made by free_huge_page.
2031 */
2032static void restore_reserve_on_error(struct hstate *h,
2033			struct vm_area_struct *vma, unsigned long address,
2034			struct page *page)
 
 
 
 
 
 
 
 
2035{
2036	if (unlikely(PagePrivate(page))) {
2037		long rc = vma_needs_reservation(h, vma, address);
2038
2039		if (unlikely(rc < 0)) {
 
2040			/*
2041			 * Rare out of memory condition in reserve map
2042			 * manipulation.  Clear PagePrivate so that
2043			 * global reserve count will not be incremented
2044			 * by free_huge_page.  This will make it appear
2045			 * as though the reservation for this page was
2046			 * consumed.  This may prevent the task from
2047			 * faulting in the page at a later time.  This
2048			 * is better than inconsistent global huge page
2049			 * accounting of reserve counts.
2050			 */
2051			ClearPagePrivate(page);
2052		} else if (rc) {
2053			rc = vma_add_reservation(h, vma, address);
2054			if (unlikely(rc < 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2055				/*
2056				 * See above comment about rare out of
2057				 * memory condition.
 
 
 
 
2058				 */
2059				ClearPagePrivate(page);
2060		} else
2061			vma_end_reservation(h, vma, address);
 
 
 
2062	}
2063}
2064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065struct page *alloc_huge_page(struct vm_area_struct *vma,
2066				    unsigned long addr, int avoid_reserve)
2067{
2068	struct hugepage_subpool *spool = subpool_vma(vma);
2069	struct hstate *h = hstate_vma(vma);
2070	struct page *page;
2071	long map_chg, map_commit;
2072	long gbl_chg;
2073	int ret, idx;
2074	struct hugetlb_cgroup *h_cg;
 
2075
2076	idx = hstate_index(h);
2077	/*
2078	 * Examine the region/reserve map to determine if the process
2079	 * has a reservation for the page to be allocated.  A return
2080	 * code of zero indicates a reservation exists (no change).
2081	 */
2082	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2083	if (map_chg < 0)
2084		return ERR_PTR(-ENOMEM);
2085
2086	/*
2087	 * Processes that did not create the mapping will have no
2088	 * reserves as indicated by the region/reserve map. Check
2089	 * that the allocation will not exceed the subpool limit.
2090	 * Allocations for MAP_NORESERVE mappings also need to be
2091	 * checked against any subpool limit.
2092	 */
2093	if (map_chg || avoid_reserve) {
2094		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2095		if (gbl_chg < 0) {
2096			vma_end_reservation(h, vma, addr);
2097			return ERR_PTR(-ENOSPC);
2098		}
2099
2100		/*
2101		 * Even though there was no reservation in the region/reserve
2102		 * map, there could be reservations associated with the
2103		 * subpool that can be used.  This would be indicated if the
2104		 * return value of hugepage_subpool_get_pages() is zero.
2105		 * However, if avoid_reserve is specified we still avoid even
2106		 * the subpool reservations.
2107		 */
2108		if (avoid_reserve)
2109			gbl_chg = 1;
2110	}
2111
 
 
 
 
 
 
 
 
 
 
2112	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2113	if (ret)
2114		goto out_subpool_put;
2115
2116	spin_lock(&hugetlb_lock);
2117	/*
2118	 * glb_chg is passed to indicate whether or not a page must be taken
2119	 * from the global free pool (global change).  gbl_chg == 0 indicates
2120	 * a reservation exists for the allocation.
2121	 */
2122	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2123	if (!page) {
2124		spin_unlock(&hugetlb_lock);
2125		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2126		if (!page)
2127			goto out_uncharge_cgroup;
2128		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2129			SetPagePrivate(page);
2130			h->resv_huge_pages--;
2131		}
2132		spin_lock(&hugetlb_lock);
2133		list_move(&page->lru, &h->hugepage_activelist);
2134		/* Fall through */
2135	}
2136	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2137	spin_unlock(&hugetlb_lock);
 
 
 
 
 
 
2138
2139	set_page_private(page, (unsigned long)spool);
 
 
2140
2141	map_commit = vma_commit_reservation(h, vma, addr);
2142	if (unlikely(map_chg > map_commit)) {
2143		/*
2144		 * The page was added to the reservation map between
2145		 * vma_needs_reservation and vma_commit_reservation.
2146		 * This indicates a race with hugetlb_reserve_pages.
2147		 * Adjust for the subpool count incremented above AND
2148		 * in hugetlb_reserve_pages for the same page.  Also,
2149		 * the reservation count added in hugetlb_reserve_pages
2150		 * no longer applies.
2151		 */
2152		long rsv_adjust;
2153
2154		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2155		hugetlb_acct_memory(h, -rsv_adjust);
 
 
 
2156	}
2157	return page;
2158
2159out_uncharge_cgroup:
2160	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
 
 
 
 
2161out_subpool_put:
2162	if (map_chg || avoid_reserve)
2163		hugepage_subpool_put_pages(spool, 1);
2164	vma_end_reservation(h, vma, addr);
2165	return ERR_PTR(-ENOSPC);
2166}
2167
2168int alloc_bootmem_huge_page(struct hstate *h)
2169	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2170int __alloc_bootmem_huge_page(struct hstate *h)
2171{
2172	struct huge_bootmem_page *m;
2173	int nr_nodes, node;
2174
2175	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2176		void *addr;
2177
2178		addr = memblock_alloc_try_nid_raw(
2179				huge_page_size(h), huge_page_size(h),
2180				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2181		if (addr) {
2182			/*
2183			 * Use the beginning of the huge page to store the
2184			 * huge_bootmem_page struct (until gather_bootmem
2185			 * puts them into the mem_map).
2186			 */
2187			m = addr;
2188			goto found;
2189		}
2190	}
2191	return 0;
2192
2193found:
2194	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2195	/* Put them into a private list first because mem_map is not up yet */
2196	INIT_LIST_HEAD(&m->list);
2197	list_add(&m->list, &huge_boot_pages);
2198	m->hstate = h;
2199	return 1;
2200}
2201
2202static void __init prep_compound_huge_page(struct page *page,
2203		unsigned int order)
2204{
2205	if (unlikely(order > (MAX_ORDER - 1)))
2206		prep_compound_gigantic_page(page, order);
2207	else
2208		prep_compound_page(page, order);
2209}
2210
2211/* Put bootmem huge pages into the standard lists after mem_map is up */
2212static void __init gather_bootmem_prealloc(void)
2213{
2214	struct huge_bootmem_page *m;
2215
2216	list_for_each_entry(m, &huge_boot_pages, list) {
2217		struct page *page = virt_to_page(m);
2218		struct hstate *h = m->hstate;
2219
 
2220		WARN_ON(page_count(page) != 1);
2221		prep_compound_huge_page(page, h->order);
2222		WARN_ON(PageReserved(page));
2223		prep_new_huge_page(h, page, page_to_nid(page));
2224		put_page(page); /* free it into the hugepage allocator */
 
 
 
 
2225
2226		/*
2227		 * If we had gigantic hugepages allocated at boot time, we need
2228		 * to restore the 'stolen' pages to totalram_pages in order to
2229		 * fix confusing memory reports from free(1) and another
2230		 * side-effects, like CommitLimit going negative.
2231		 */
2232		if (hstate_is_gigantic(h))
2233			adjust_managed_page_count(page, 1 << h->order);
2234		cond_resched();
2235	}
2236}
2237
2238static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2239{
2240	unsigned long i;
2241	nodemask_t *node_alloc_noretry;
2242
2243	if (!hstate_is_gigantic(h)) {
2244		/*
2245		 * Bit mask controlling how hard we retry per-node allocations.
2246		 * Ignore errors as lower level routines can deal with
2247		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2248		 * time, we are likely in bigger trouble.
2249		 */
2250		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2251						GFP_KERNEL);
2252	} else {
2253		/* allocations done at boot time */
2254		node_alloc_noretry = NULL;
2255	}
2256
2257	/* bit mask controlling how hard we retry per-node allocations */
2258	if (node_alloc_noretry)
2259		nodes_clear(*node_alloc_noretry);
2260
2261	for (i = 0; i < h->max_huge_pages; ++i) {
2262		if (hstate_is_gigantic(h)) {
 
 
 
 
2263			if (!alloc_bootmem_huge_page(h))
2264				break;
2265		} else if (!alloc_pool_huge_page(h,
2266					 &node_states[N_MEMORY],
2267					 node_alloc_noretry))
2268			break;
2269		cond_resched();
2270	}
2271	if (i < h->max_huge_pages) {
2272		char buf[32];
2273
2274		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2275		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2276			h->max_huge_pages, buf, i);
2277		h->max_huge_pages = i;
2278	}
2279
2280	kfree(node_alloc_noretry);
2281}
2282
2283static void __init hugetlb_init_hstates(void)
2284{
2285	struct hstate *h;
2286
2287	for_each_hstate(h) {
2288		if (minimum_order > huge_page_order(h))
2289			minimum_order = huge_page_order(h);
2290
2291		/* oversize hugepages were init'ed in early boot */
2292		if (!hstate_is_gigantic(h))
2293			hugetlb_hstate_alloc_pages(h);
2294	}
2295	VM_BUG_ON(minimum_order == UINT_MAX);
2296}
2297
2298static void __init report_hugepages(void)
2299{
2300	struct hstate *h;
2301
2302	for_each_hstate(h) {
2303		char buf[32];
2304
2305		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2306		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2307			buf, h->free_huge_pages);
2308	}
2309}
2310
2311#ifdef CONFIG_HIGHMEM
2312static void try_to_free_low(struct hstate *h, unsigned long count,
2313						nodemask_t *nodes_allowed)
2314{
2315	int i;
 
2316
 
2317	if (hstate_is_gigantic(h))
2318		return;
2319
 
 
 
2320	for_each_node_mask(i, *nodes_allowed) {
2321		struct page *page, *next;
2322		struct list_head *freel = &h->hugepage_freelists[i];
2323		list_for_each_entry_safe(page, next, freel, lru) {
2324			if (count >= h->nr_huge_pages)
2325				return;
2326			if (PageHighMem(page))
2327				continue;
2328			list_del(&page->lru);
2329			update_and_free_page(h, page);
2330			h->free_huge_pages--;
2331			h->free_huge_pages_node[page_to_nid(page)]--;
2332		}
2333	}
 
 
 
 
 
2334}
2335#else
2336static inline void try_to_free_low(struct hstate *h, unsigned long count,
2337						nodemask_t *nodes_allowed)
2338{
2339}
2340#endif
2341
2342/*
2343 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2344 * balanced by operating on them in a round-robin fashion.
2345 * Returns 1 if an adjustment was made.
2346 */
2347static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2348				int delta)
2349{
2350	int nr_nodes, node;
2351
 
2352	VM_BUG_ON(delta != -1 && delta != 1);
2353
2354	if (delta < 0) {
2355		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2356			if (h->surplus_huge_pages_node[node])
2357				goto found;
2358		}
2359	} else {
2360		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2361			if (h->surplus_huge_pages_node[node] <
2362					h->nr_huge_pages_node[node])
2363				goto found;
2364		}
2365	}
2366	return 0;
2367
2368found:
2369	h->surplus_huge_pages += delta;
2370	h->surplus_huge_pages_node[node] += delta;
2371	return 1;
2372}
2373
2374#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2375static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2376			      nodemask_t *nodes_allowed)
2377{
2378	unsigned long min_count, ret;
 
 
2379	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2380
2381	/*
2382	 * Bit mask controlling how hard we retry per-node allocations.
2383	 * If we can not allocate the bit mask, do not attempt to allocate
2384	 * the requested huge pages.
2385	 */
2386	if (node_alloc_noretry)
2387		nodes_clear(*node_alloc_noretry);
2388	else
2389		return -ENOMEM;
2390
2391	spin_lock(&hugetlb_lock);
 
 
 
 
 
 
2392
2393	/*
2394	 * Check for a node specific request.
2395	 * Changing node specific huge page count may require a corresponding
2396	 * change to the global count.  In any case, the passed node mask
2397	 * (nodes_allowed) will restrict alloc/free to the specified node.
2398	 */
2399	if (nid != NUMA_NO_NODE) {
2400		unsigned long old_count = count;
2401
2402		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2403		/*
2404		 * User may have specified a large count value which caused the
2405		 * above calculation to overflow.  In this case, they wanted
2406		 * to allocate as many huge pages as possible.  Set count to
2407		 * largest possible value to align with their intention.
2408		 */
2409		if (count < old_count)
2410			count = ULONG_MAX;
2411	}
2412
2413	/*
2414	 * Gigantic pages runtime allocation depend on the capability for large
2415	 * page range allocation.
2416	 * If the system does not provide this feature, return an error when
2417	 * the user tries to allocate gigantic pages but let the user free the
2418	 * boottime allocated gigantic pages.
2419	 */
2420	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2421		if (count > persistent_huge_pages(h)) {
2422			spin_unlock(&hugetlb_lock);
 
2423			NODEMASK_FREE(node_alloc_noretry);
2424			return -EINVAL;
2425		}
2426		/* Fall through to decrease pool */
2427	}
2428
2429	/*
2430	 * Increase the pool size
2431	 * First take pages out of surplus state.  Then make up the
2432	 * remaining difference by allocating fresh huge pages.
2433	 *
2434	 * We might race with alloc_surplus_huge_page() here and be unable
2435	 * to convert a surplus huge page to a normal huge page. That is
2436	 * not critical, though, it just means the overall size of the
2437	 * pool might be one hugepage larger than it needs to be, but
2438	 * within all the constraints specified by the sysctls.
2439	 */
2440	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2441		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2442			break;
2443	}
2444
2445	while (count > persistent_huge_pages(h)) {
2446		/*
2447		 * If this allocation races such that we no longer need the
2448		 * page, free_huge_page will handle it by freeing the page
2449		 * and reducing the surplus.
2450		 */
2451		spin_unlock(&hugetlb_lock);
2452
2453		/* yield cpu to avoid soft lockup */
2454		cond_resched();
2455
2456		ret = alloc_pool_huge_page(h, nodes_allowed,
2457						node_alloc_noretry);
2458		spin_lock(&hugetlb_lock);
2459		if (!ret)
2460			goto out;
2461
2462		/* Bail for signals. Probably ctrl-c from user */
2463		if (signal_pending(current))
2464			goto out;
2465	}
2466
2467	/*
2468	 * Decrease the pool size
2469	 * First return free pages to the buddy allocator (being careful
2470	 * to keep enough around to satisfy reservations).  Then place
2471	 * pages into surplus state as needed so the pool will shrink
2472	 * to the desired size as pages become free.
2473	 *
2474	 * By placing pages into the surplus state independent of the
2475	 * overcommit value, we are allowing the surplus pool size to
2476	 * exceed overcommit. There are few sane options here. Since
2477	 * alloc_surplus_huge_page() is checking the global counter,
2478	 * though, we'll note that we're not allowed to exceed surplus
2479	 * and won't grow the pool anywhere else. Not until one of the
2480	 * sysctls are changed, or the surplus pages go out of use.
2481	 */
2482	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2483	min_count = max(count, min_count);
2484	try_to_free_low(h, min_count, nodes_allowed);
 
 
 
 
2485	while (min_count < persistent_huge_pages(h)) {
2486		if (!free_pool_huge_page(h, nodes_allowed, 0))
 
2487			break;
2488		cond_resched_lock(&hugetlb_lock);
 
2489	}
 
 
 
 
 
 
2490	while (count < persistent_huge_pages(h)) {
2491		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2492			break;
2493	}
2494out:
2495	h->max_huge_pages = persistent_huge_pages(h);
2496	spin_unlock(&hugetlb_lock);
 
2497
2498	NODEMASK_FREE(node_alloc_noretry);
2499
2500	return 0;
2501}
2502
2503#define HSTATE_ATTR_RO(_name) \
2504	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2505
2506#define HSTATE_ATTR(_name) \
2507	static struct kobj_attribute _name##_attr = \
2508		__ATTR(_name, 0644, _name##_show, _name##_store)
2509
2510static struct kobject *hugepages_kobj;
2511static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512
2513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2514
2515static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2516{
2517	int i;
2518
2519	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2520		if (hstate_kobjs[i] == kobj) {
2521			if (nidp)
2522				*nidp = NUMA_NO_NODE;
2523			return &hstates[i];
2524		}
2525
2526	return kobj_to_node_hstate(kobj, nidp);
2527}
2528
2529static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2530					struct kobj_attribute *attr, char *buf)
2531{
2532	struct hstate *h;
2533	unsigned long nr_huge_pages;
2534	int nid;
2535
2536	h = kobj_to_hstate(kobj, &nid);
2537	if (nid == NUMA_NO_NODE)
2538		nr_huge_pages = h->nr_huge_pages;
2539	else
2540		nr_huge_pages = h->nr_huge_pages_node[nid];
2541
2542	return sprintf(buf, "%lu\n", nr_huge_pages);
2543}
2544
2545static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2546					   struct hstate *h, int nid,
2547					   unsigned long count, size_t len)
2548{
2549	int err;
2550	nodemask_t nodes_allowed, *n_mask;
2551
2552	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2553		return -EINVAL;
2554
2555	if (nid == NUMA_NO_NODE) {
2556		/*
2557		 * global hstate attribute
2558		 */
2559		if (!(obey_mempolicy &&
2560				init_nodemask_of_mempolicy(&nodes_allowed)))
2561			n_mask = &node_states[N_MEMORY];
2562		else
2563			n_mask = &nodes_allowed;
2564	} else {
2565		/*
2566		 * Node specific request.  count adjustment happens in
2567		 * set_max_huge_pages() after acquiring hugetlb_lock.
2568		 */
2569		init_nodemask_of_node(&nodes_allowed, nid);
2570		n_mask = &nodes_allowed;
2571	}
2572
2573	err = set_max_huge_pages(h, count, nid, n_mask);
2574
2575	return err ? err : len;
2576}
2577
2578static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2579					 struct kobject *kobj, const char *buf,
2580					 size_t len)
2581{
2582	struct hstate *h;
2583	unsigned long count;
2584	int nid;
2585	int err;
2586
2587	err = kstrtoul(buf, 10, &count);
2588	if (err)
2589		return err;
2590
2591	h = kobj_to_hstate(kobj, &nid);
2592	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2593}
2594
2595static ssize_t nr_hugepages_show(struct kobject *kobj,
2596				       struct kobj_attribute *attr, char *buf)
2597{
2598	return nr_hugepages_show_common(kobj, attr, buf);
2599}
2600
2601static ssize_t nr_hugepages_store(struct kobject *kobj,
2602	       struct kobj_attribute *attr, const char *buf, size_t len)
2603{
2604	return nr_hugepages_store_common(false, kobj, buf, len);
2605}
2606HSTATE_ATTR(nr_hugepages);
2607
2608#ifdef CONFIG_NUMA
2609
2610/*
2611 * hstate attribute for optionally mempolicy-based constraint on persistent
2612 * huge page alloc/free.
2613 */
2614static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2615				       struct kobj_attribute *attr, char *buf)
 
2616{
2617	return nr_hugepages_show_common(kobj, attr, buf);
2618}
2619
2620static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2621	       struct kobj_attribute *attr, const char *buf, size_t len)
2622{
2623	return nr_hugepages_store_common(true, kobj, buf, len);
2624}
2625HSTATE_ATTR(nr_hugepages_mempolicy);
2626#endif
2627
2628
2629static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2630					struct kobj_attribute *attr, char *buf)
2631{
2632	struct hstate *h = kobj_to_hstate(kobj, NULL);
2633	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2634}
2635
2636static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2637		struct kobj_attribute *attr, const char *buf, size_t count)
2638{
2639	int err;
2640	unsigned long input;
2641	struct hstate *h = kobj_to_hstate(kobj, NULL);
2642
2643	if (hstate_is_gigantic(h))
2644		return -EINVAL;
2645
2646	err = kstrtoul(buf, 10, &input);
2647	if (err)
2648		return err;
2649
2650	spin_lock(&hugetlb_lock);
2651	h->nr_overcommit_huge_pages = input;
2652	spin_unlock(&hugetlb_lock);
2653
2654	return count;
2655}
2656HSTATE_ATTR(nr_overcommit_hugepages);
2657
2658static ssize_t free_hugepages_show(struct kobject *kobj,
2659					struct kobj_attribute *attr, char *buf)
2660{
2661	struct hstate *h;
2662	unsigned long free_huge_pages;
2663	int nid;
2664
2665	h = kobj_to_hstate(kobj, &nid);
2666	if (nid == NUMA_NO_NODE)
2667		free_huge_pages = h->free_huge_pages;
2668	else
2669		free_huge_pages = h->free_huge_pages_node[nid];
2670
2671	return sprintf(buf, "%lu\n", free_huge_pages);
2672}
2673HSTATE_ATTR_RO(free_hugepages);
2674
2675static ssize_t resv_hugepages_show(struct kobject *kobj,
2676					struct kobj_attribute *attr, char *buf)
2677{
2678	struct hstate *h = kobj_to_hstate(kobj, NULL);
2679	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2680}
2681HSTATE_ATTR_RO(resv_hugepages);
2682
2683static ssize_t surplus_hugepages_show(struct kobject *kobj,
2684					struct kobj_attribute *attr, char *buf)
2685{
2686	struct hstate *h;
2687	unsigned long surplus_huge_pages;
2688	int nid;
2689
2690	h = kobj_to_hstate(kobj, &nid);
2691	if (nid == NUMA_NO_NODE)
2692		surplus_huge_pages = h->surplus_huge_pages;
2693	else
2694		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2695
2696	return sprintf(buf, "%lu\n", surplus_huge_pages);
2697}
2698HSTATE_ATTR_RO(surplus_hugepages);
2699
2700static struct attribute *hstate_attrs[] = {
2701	&nr_hugepages_attr.attr,
2702	&nr_overcommit_hugepages_attr.attr,
2703	&free_hugepages_attr.attr,
2704	&resv_hugepages_attr.attr,
2705	&surplus_hugepages_attr.attr,
2706#ifdef CONFIG_NUMA
2707	&nr_hugepages_mempolicy_attr.attr,
2708#endif
2709	NULL,
2710};
2711
2712static const struct attribute_group hstate_attr_group = {
2713	.attrs = hstate_attrs,
2714};
2715
2716static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2717				    struct kobject **hstate_kobjs,
2718				    const struct attribute_group *hstate_attr_group)
2719{
2720	int retval;
2721	int hi = hstate_index(h);
2722
2723	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2724	if (!hstate_kobjs[hi])
2725		return -ENOMEM;
2726
2727	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2728	if (retval)
2729		kobject_put(hstate_kobjs[hi]);
 
 
2730
2731	return retval;
2732}
2733
2734static void __init hugetlb_sysfs_init(void)
2735{
2736	struct hstate *h;
2737	int err;
2738
2739	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2740	if (!hugepages_kobj)
2741		return;
2742
2743	for_each_hstate(h) {
2744		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2745					 hstate_kobjs, &hstate_attr_group);
2746		if (err)
2747			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2748	}
2749}
2750
2751#ifdef CONFIG_NUMA
2752
2753/*
2754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2755 * with node devices in node_devices[] using a parallel array.  The array
2756 * index of a node device or _hstate == node id.
2757 * This is here to avoid any static dependency of the node device driver, in
2758 * the base kernel, on the hugetlb module.
2759 */
2760struct node_hstate {
2761	struct kobject		*hugepages_kobj;
2762	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2763};
2764static struct node_hstate node_hstates[MAX_NUMNODES];
2765
2766/*
2767 * A subset of global hstate attributes for node devices
2768 */
2769static struct attribute *per_node_hstate_attrs[] = {
2770	&nr_hugepages_attr.attr,
2771	&free_hugepages_attr.attr,
2772	&surplus_hugepages_attr.attr,
2773	NULL,
2774};
2775
2776static const struct attribute_group per_node_hstate_attr_group = {
2777	.attrs = per_node_hstate_attrs,
2778};
2779
2780/*
2781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2782 * Returns node id via non-NULL nidp.
2783 */
2784static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785{
2786	int nid;
2787
2788	for (nid = 0; nid < nr_node_ids; nid++) {
2789		struct node_hstate *nhs = &node_hstates[nid];
2790		int i;
2791		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2792			if (nhs->hstate_kobjs[i] == kobj) {
2793				if (nidp)
2794					*nidp = nid;
2795				return &hstates[i];
2796			}
2797	}
2798
2799	BUG();
2800	return NULL;
2801}
2802
2803/*
2804 * Unregister hstate attributes from a single node device.
2805 * No-op if no hstate attributes attached.
2806 */
2807static void hugetlb_unregister_node(struct node *node)
2808{
2809	struct hstate *h;
2810	struct node_hstate *nhs = &node_hstates[node->dev.id];
2811
2812	if (!nhs->hugepages_kobj)
2813		return;		/* no hstate attributes */
2814
2815	for_each_hstate(h) {
2816		int idx = hstate_index(h);
2817		if (nhs->hstate_kobjs[idx]) {
2818			kobject_put(nhs->hstate_kobjs[idx]);
2819			nhs->hstate_kobjs[idx] = NULL;
2820		}
2821	}
2822
2823	kobject_put(nhs->hugepages_kobj);
2824	nhs->hugepages_kobj = NULL;
2825}
2826
2827
2828/*
2829 * Register hstate attributes for a single node device.
2830 * No-op if attributes already registered.
2831 */
2832static void hugetlb_register_node(struct node *node)
2833{
2834	struct hstate *h;
2835	struct node_hstate *nhs = &node_hstates[node->dev.id];
2836	int err;
2837
2838	if (nhs->hugepages_kobj)
2839		return;		/* already allocated */
2840
2841	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2842							&node->dev.kobj);
2843	if (!nhs->hugepages_kobj)
2844		return;
2845
2846	for_each_hstate(h) {
2847		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2848						nhs->hstate_kobjs,
2849						&per_node_hstate_attr_group);
2850		if (err) {
2851			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2852				h->name, node->dev.id);
2853			hugetlb_unregister_node(node);
2854			break;
2855		}
2856	}
2857}
2858
2859/*
2860 * hugetlb init time:  register hstate attributes for all registered node
2861 * devices of nodes that have memory.  All on-line nodes should have
2862 * registered their associated device by this time.
2863 */
2864static void __init hugetlb_register_all_nodes(void)
2865{
2866	int nid;
2867
2868	for_each_node_state(nid, N_MEMORY) {
2869		struct node *node = node_devices[nid];
2870		if (node->dev.id == nid)
2871			hugetlb_register_node(node);
2872	}
2873
2874	/*
2875	 * Let the node device driver know we're here so it can
2876	 * [un]register hstate attributes on node hotplug.
2877	 */
2878	register_hugetlbfs_with_node(hugetlb_register_node,
2879				     hugetlb_unregister_node);
2880}
2881#else	/* !CONFIG_NUMA */
2882
2883static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2884{
2885	BUG();
2886	if (nidp)
2887		*nidp = -1;
2888	return NULL;
2889}
2890
2891static void hugetlb_register_all_nodes(void) { }
2892
2893#endif
2894
2895static int __init hugetlb_init(void)
2896{
2897	int i;
2898
2899	if (!hugepages_supported())
 
 
 
 
 
2900		return 0;
 
2901
2902	if (!size_to_hstate(default_hstate_size)) {
2903		if (default_hstate_size != 0) {
2904			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2905			       default_hstate_size, HPAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906		}
2907
2908		default_hstate_size = HPAGE_SIZE;
2909		if (!size_to_hstate(default_hstate_size))
2910			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2911	}
2912	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2913	if (default_hstate_max_huge_pages) {
2914		if (!default_hstate.max_huge_pages)
2915			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2916	}
2917
 
2918	hugetlb_init_hstates();
2919	gather_bootmem_prealloc();
2920	report_hugepages();
2921
2922	hugetlb_sysfs_init();
2923	hugetlb_register_all_nodes();
2924	hugetlb_cgroup_file_init();
2925
2926#ifdef CONFIG_SMP
2927	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2928#else
2929	num_fault_mutexes = 1;
2930#endif
2931	hugetlb_fault_mutex_table =
2932		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2933			      GFP_KERNEL);
2934	BUG_ON(!hugetlb_fault_mutex_table);
2935
2936	for (i = 0; i < num_fault_mutexes; i++)
2937		mutex_init(&hugetlb_fault_mutex_table[i]);
2938	return 0;
2939}
2940subsys_initcall(hugetlb_init);
2941
2942/* Should be called on processing a hugepagesz=... option */
2943void __init hugetlb_bad_size(void)
2944{
2945	parsed_valid_hugepagesz = false;
2946}
2947
2948void __init hugetlb_add_hstate(unsigned int order)
2949{
2950	struct hstate *h;
2951	unsigned long i;
2952
2953	if (size_to_hstate(PAGE_SIZE << order)) {
2954		pr_warn("hugepagesz= specified twice, ignoring\n");
2955		return;
2956	}
2957	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2958	BUG_ON(order == 0);
2959	h = &hstates[hugetlb_max_hstate++];
 
2960	h->order = order;
2961	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2962	h->nr_huge_pages = 0;
2963	h->free_huge_pages = 0;
2964	for (i = 0; i < MAX_NUMNODES; ++i)
2965		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2966	INIT_LIST_HEAD(&h->hugepage_activelist);
2967	h->next_nid_to_alloc = first_memory_node;
2968	h->next_nid_to_free = first_memory_node;
2969	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2970					huge_page_size(h)/1024);
 
2971
2972	parsed_hstate = h;
2973}
2974
2975static int __init hugetlb_nrpages_setup(char *s)
 
 
 
 
 
 
 
2976{
2977	unsigned long *mhp;
2978	static unsigned long *last_mhp;
2979
2980	if (!parsed_valid_hugepagesz) {
2981		pr_warn("hugepages = %s preceded by "
2982			"an unsupported hugepagesz, ignoring\n", s);
2983		parsed_valid_hugepagesz = true;
2984		return 1;
2985	}
 
2986	/*
2987	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2988	 * so this hugepages= parameter goes to the "default hstate".
 
 
2989	 */
2990	else if (!hugetlb_max_hstate)
2991		mhp = &default_hstate_max_huge_pages;
2992	else
2993		mhp = &parsed_hstate->max_huge_pages;
2994
2995	if (mhp == last_mhp) {
2996		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2997		return 1;
2998	}
2999
3000	if (sscanf(s, "%lu", mhp) <= 0)
3001		*mhp = 0;
3002
3003	/*
3004	 * Global state is always initialized later in hugetlb_init.
3005	 * But we need to allocate >= MAX_ORDER hstates here early to still
3006	 * use the bootmem allocator.
3007	 */
3008	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3009		hugetlb_hstate_alloc_pages(parsed_hstate);
3010
3011	last_mhp = mhp;
3012
3013	return 1;
3014}
3015__setup("hugepages=", hugetlb_nrpages_setup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016
3017static int __init hugetlb_default_setup(char *s)
 
 
 
 
3018{
3019	default_hstate_size = memparse(s, &s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3020	return 1;
3021}
3022__setup("default_hugepagesz=", hugetlb_default_setup);
3023
3024static unsigned int cpuset_mems_nr(unsigned int *array)
3025{
3026	int node;
3027	unsigned int nr = 0;
 
 
 
3028
3029	for_each_node_mask(node, cpuset_current_mems_allowed)
3030		nr += array[node];
 
 
 
 
3031
3032	return nr;
3033}
3034
3035#ifdef CONFIG_SYSCTL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3036static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3037			 struct ctl_table *table, int write,
3038			 void __user *buffer, size_t *length, loff_t *ppos)
3039{
3040	struct hstate *h = &default_hstate;
3041	unsigned long tmp = h->max_huge_pages;
3042	int ret;
3043
3044	if (!hugepages_supported())
3045		return -EOPNOTSUPP;
3046
3047	table->data = &tmp;
3048	table->maxlen = sizeof(unsigned long);
3049	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3050	if (ret)
3051		goto out;
3052
3053	if (write)
3054		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3055						  NUMA_NO_NODE, tmp, *length);
3056out:
3057	return ret;
3058}
3059
3060int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3061			  void __user *buffer, size_t *length, loff_t *ppos)
3062{
3063
3064	return hugetlb_sysctl_handler_common(false, table, write,
3065							buffer, length, ppos);
3066}
3067
3068#ifdef CONFIG_NUMA
3069int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3070			  void __user *buffer, size_t *length, loff_t *ppos)
3071{
3072	return hugetlb_sysctl_handler_common(true, table, write,
3073							buffer, length, ppos);
3074}
3075#endif /* CONFIG_NUMA */
3076
3077int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3078			void __user *buffer,
3079			size_t *length, loff_t *ppos)
3080{
3081	struct hstate *h = &default_hstate;
3082	unsigned long tmp;
3083	int ret;
3084
3085	if (!hugepages_supported())
3086		return -EOPNOTSUPP;
3087
3088	tmp = h->nr_overcommit_huge_pages;
3089
3090	if (write && hstate_is_gigantic(h))
3091		return -EINVAL;
3092
3093	table->data = &tmp;
3094	table->maxlen = sizeof(unsigned long);
3095	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3096	if (ret)
3097		goto out;
3098
3099	if (write) {
3100		spin_lock(&hugetlb_lock);
3101		h->nr_overcommit_huge_pages = tmp;
3102		spin_unlock(&hugetlb_lock);
3103	}
3104out:
3105	return ret;
3106}
3107
3108#endif /* CONFIG_SYSCTL */
3109
3110void hugetlb_report_meminfo(struct seq_file *m)
3111{
3112	struct hstate *h;
3113	unsigned long total = 0;
3114
3115	if (!hugepages_supported())
3116		return;
3117
3118	for_each_hstate(h) {
3119		unsigned long count = h->nr_huge_pages;
3120
3121		total += (PAGE_SIZE << huge_page_order(h)) * count;
3122
3123		if (h == &default_hstate)
3124			seq_printf(m,
3125				   "HugePages_Total:   %5lu\n"
3126				   "HugePages_Free:    %5lu\n"
3127				   "HugePages_Rsvd:    %5lu\n"
3128				   "HugePages_Surp:    %5lu\n"
3129				   "Hugepagesize:   %8lu kB\n",
3130				   count,
3131				   h->free_huge_pages,
3132				   h->resv_huge_pages,
3133				   h->surplus_huge_pages,
3134				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3135	}
3136
3137	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3138}
3139
3140int hugetlb_report_node_meminfo(int nid, char *buf)
3141{
3142	struct hstate *h = &default_hstate;
 
3143	if (!hugepages_supported())
3144		return 0;
3145	return sprintf(buf,
3146		"Node %d HugePages_Total: %5u\n"
3147		"Node %d HugePages_Free:  %5u\n"
3148		"Node %d HugePages_Surp:  %5u\n",
3149		nid, h->nr_huge_pages_node[nid],
3150		nid, h->free_huge_pages_node[nid],
3151		nid, h->surplus_huge_pages_node[nid]);
 
3152}
3153
3154void hugetlb_show_meminfo(void)
3155{
3156	struct hstate *h;
3157	int nid;
3158
3159	if (!hugepages_supported())
3160		return;
3161
3162	for_each_node_state(nid, N_MEMORY)
3163		for_each_hstate(h)
3164			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3165				nid,
3166				h->nr_huge_pages_node[nid],
3167				h->free_huge_pages_node[nid],
3168				h->surplus_huge_pages_node[nid],
3169				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3170}
3171
3172void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3173{
3174	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3175		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3176}
3177
3178/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3179unsigned long hugetlb_total_pages(void)
3180{
3181	struct hstate *h;
3182	unsigned long nr_total_pages = 0;
3183
3184	for_each_hstate(h)
3185		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3186	return nr_total_pages;
3187}
3188
3189static int hugetlb_acct_memory(struct hstate *h, long delta)
3190{
3191	int ret = -ENOMEM;
3192
3193	spin_lock(&hugetlb_lock);
 
 
 
3194	/*
3195	 * When cpuset is configured, it breaks the strict hugetlb page
3196	 * reservation as the accounting is done on a global variable. Such
3197	 * reservation is completely rubbish in the presence of cpuset because
3198	 * the reservation is not checked against page availability for the
3199	 * current cpuset. Application can still potentially OOM'ed by kernel
3200	 * with lack of free htlb page in cpuset that the task is in.
3201	 * Attempt to enforce strict accounting with cpuset is almost
3202	 * impossible (or too ugly) because cpuset is too fluid that
3203	 * task or memory node can be dynamically moved between cpusets.
3204	 *
3205	 * The change of semantics for shared hugetlb mapping with cpuset is
3206	 * undesirable. However, in order to preserve some of the semantics,
3207	 * we fall back to check against current free page availability as
3208	 * a best attempt and hopefully to minimize the impact of changing
3209	 * semantics that cpuset has.
 
 
 
 
 
 
3210	 */
3211	if (delta > 0) {
3212		if (gather_surplus_pages(h, delta) < 0)
3213			goto out;
3214
3215		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3216			return_unused_surplus_pages(h, delta);
3217			goto out;
3218		}
3219	}
3220
3221	ret = 0;
3222	if (delta < 0)
3223		return_unused_surplus_pages(h, (unsigned long) -delta);
3224
3225out:
3226	spin_unlock(&hugetlb_lock);
3227	return ret;
3228}
3229
3230static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3231{
3232	struct resv_map *resv = vma_resv_map(vma);
3233
3234	/*
3235	 * This new VMA should share its siblings reservation map if present.
3236	 * The VMA will only ever have a valid reservation map pointer where
3237	 * it is being copied for another still existing VMA.  As that VMA
3238	 * has a reference to the reservation map it cannot disappear until
3239	 * after this open call completes.  It is therefore safe to take a
3240	 * new reference here without additional locking.
3241	 */
3242	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 
3243		kref_get(&resv->refs);
 
3244}
3245
3246static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3247{
3248	struct hstate *h = hstate_vma(vma);
3249	struct resv_map *resv = vma_resv_map(vma);
3250	struct hugepage_subpool *spool = subpool_vma(vma);
3251	unsigned long reserve, start, end;
3252	long gbl_reserve;
3253
3254	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3255		return;
3256
3257	start = vma_hugecache_offset(h, vma, vma->vm_start);
3258	end = vma_hugecache_offset(h, vma, vma->vm_end);
3259
3260	reserve = (end - start) - region_count(resv, start, end);
3261
3262	kref_put(&resv->refs, resv_map_release);
3263
3264	if (reserve) {
3265		/*
3266		 * Decrement reserve counts.  The global reserve count may be
3267		 * adjusted if the subpool has a minimum size.
3268		 */
3269		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3270		hugetlb_acct_memory(h, -gbl_reserve);
3271	}
 
 
3272}
3273
3274static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3275{
3276	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3277		return -EINVAL;
3278	return 0;
3279}
3280
3281static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3282{
3283	struct hstate *hstate = hstate_vma(vma);
3284
3285	return 1UL << huge_page_shift(hstate);
3286}
3287
3288/*
3289 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3290 * handle_mm_fault() to try to instantiate regular-sized pages in the
3291 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3292 * this far.
3293 */
3294static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3295{
3296	BUG();
3297	return 0;
3298}
3299
3300/*
3301 * When a new function is introduced to vm_operations_struct and added
3302 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3303 * This is because under System V memory model, mappings created via
3304 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3305 * their original vm_ops are overwritten with shm_vm_ops.
3306 */
3307const struct vm_operations_struct hugetlb_vm_ops = {
3308	.fault = hugetlb_vm_op_fault,
3309	.open = hugetlb_vm_op_open,
3310	.close = hugetlb_vm_op_close,
3311	.split = hugetlb_vm_op_split,
3312	.pagesize = hugetlb_vm_op_pagesize,
3313};
3314
3315static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3316				int writable)
3317{
3318	pte_t entry;
 
3319
3320	if (writable) {
3321		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3322					 vma->vm_page_prot)));
3323	} else {
3324		entry = huge_pte_wrprotect(mk_huge_pte(page,
3325					   vma->vm_page_prot));
3326	}
3327	entry = pte_mkyoung(entry);
3328	entry = pte_mkhuge(entry);
3329	entry = arch_make_huge_pte(entry, vma, page, writable);
3330
3331	return entry;
3332}
3333
3334static void set_huge_ptep_writable(struct vm_area_struct *vma,
3335				   unsigned long address, pte_t *ptep)
3336{
3337	pte_t entry;
3338
3339	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3340	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3341		update_mmu_cache(vma, address, ptep);
3342}
3343
3344bool is_hugetlb_entry_migration(pte_t pte)
3345{
3346	swp_entry_t swp;
3347
3348	if (huge_pte_none(pte) || pte_present(pte))
3349		return false;
3350	swp = pte_to_swp_entry(pte);
3351	if (non_swap_entry(swp) && is_migration_entry(swp))
3352		return true;
3353	else
3354		return false;
3355}
3356
3357static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3358{
3359	swp_entry_t swp;
3360
3361	if (huge_pte_none(pte) || pte_present(pte))
3362		return 0;
3363	swp = pte_to_swp_entry(pte);
3364	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3365		return 1;
3366	else
3367		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3368}
3369
3370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3371			    struct vm_area_struct *vma)
3372{
3373	pte_t *src_pte, *dst_pte, entry, dst_entry;
3374	struct page *ptepage;
3375	unsigned long addr;
3376	int cow;
3377	struct hstate *h = hstate_vma(vma);
3378	unsigned long sz = huge_page_size(h);
 
 
3379	struct mmu_notifier_range range;
3380	int ret = 0;
3381
3382	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3383
3384	if (cow) {
3385		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3386					vma->vm_start,
3387					vma->vm_end);
3388		mmu_notifier_invalidate_range_start(&range);
 
 
 
 
 
 
 
 
3389	}
3390
3391	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3392		spinlock_t *src_ptl, *dst_ptl;
3393		src_pte = huge_pte_offset(src, addr, sz);
3394		if (!src_pte)
3395			continue;
3396		dst_pte = huge_pte_alloc(dst, addr, sz);
3397		if (!dst_pte) {
3398			ret = -ENOMEM;
3399			break;
3400		}
3401
3402		/*
3403		 * If the pagetables are shared don't copy or take references.
3404		 * dst_pte == src_pte is the common case of src/dest sharing.
3405		 *
3406		 * However, src could have 'unshared' and dst shares with
3407		 * another vma.  If dst_pte !none, this implies sharing.
3408		 * Check here before taking page table lock, and once again
3409		 * after taking the lock below.
3410		 */
3411		dst_entry = huge_ptep_get(dst_pte);
3412		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3413			continue;
3414
3415		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3416		src_ptl = huge_pte_lockptr(h, src, src_pte);
3417		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3418		entry = huge_ptep_get(src_pte);
3419		dst_entry = huge_ptep_get(dst_pte);
 
3420		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3421			/*
3422			 * Skip if src entry none.  Also, skip in the
3423			 * unlikely case dst entry !none as this implies
3424			 * sharing with another vma.
3425			 */
3426			;
3427		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3428				    is_hugetlb_entry_hwpoisoned(entry))) {
3429			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3430
3431			if (is_write_migration_entry(swp_entry) && cow) {
3432				/*
3433				 * COW mappings require pages in both
3434				 * parent and child to be set to read.
3435				 */
3436				make_migration_entry_read(&swp_entry);
 
3437				entry = swp_entry_to_pte(swp_entry);
3438				set_huge_swap_pte_at(src, addr, src_pte,
3439						     entry, sz);
3440			}
3441			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3442		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3443			if (cow) {
3444				/*
3445				 * No need to notify as we are downgrading page
3446				 * table protection not changing it to point
3447				 * to a new page.
3448				 *
3449				 * See Documentation/vm/mmu_notifier.rst
3450				 */
3451				huge_ptep_set_wrprotect(src, addr, src_pte);
 
3452			}
3453			entry = huge_ptep_get(src_pte);
3454			ptepage = pte_page(entry);
3455			get_page(ptepage);
3456			page_dup_rmap(ptepage, true);
3457			set_huge_pte_at(dst, addr, dst_pte, entry);
3458			hugetlb_count_add(pages_per_huge_page(h), dst);
3459		}
3460		spin_unlock(src_ptl);
3461		spin_unlock(dst_ptl);
3462	}
3463
3464	if (cow)
3465		mmu_notifier_invalidate_range_end(&range);
 
 
3466
3467	return ret;
3468}
3469
3470void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3471			    unsigned long start, unsigned long end,
3472			    struct page *ref_page)
3473{
3474	struct mm_struct *mm = vma->vm_mm;
3475	unsigned long address;
3476	pte_t *ptep;
3477	pte_t pte;
3478	spinlock_t *ptl;
3479	struct page *page;
3480	struct hstate *h = hstate_vma(vma);
3481	unsigned long sz = huge_page_size(h);
3482	struct mmu_notifier_range range;
3483
3484	WARN_ON(!is_vm_hugetlb_page(vma));
3485	BUG_ON(start & ~huge_page_mask(h));
3486	BUG_ON(end & ~huge_page_mask(h));
3487
3488	/*
3489	 * This is a hugetlb vma, all the pte entries should point
3490	 * to huge page.
3491	 */
3492	tlb_change_page_size(tlb, sz);
3493	tlb_start_vma(tlb, vma);
3494
3495	/*
3496	 * If sharing possible, alert mmu notifiers of worst case.
3497	 */
3498	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3499				end);
3500	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3501	mmu_notifier_invalidate_range_start(&range);
3502	address = start;
3503	for (; address < end; address += sz) {
3504		ptep = huge_pte_offset(mm, address, sz);
3505		if (!ptep)
3506			continue;
3507
3508		ptl = huge_pte_lock(h, mm, ptep);
3509		if (huge_pmd_unshare(mm, &address, ptep)) {
3510			spin_unlock(ptl);
3511			/*
3512			 * We just unmapped a page of PMDs by clearing a PUD.
3513			 * The caller's TLB flush range should cover this area.
3514			 */
3515			continue;
3516		}
3517
3518		pte = huge_ptep_get(ptep);
3519		if (huge_pte_none(pte)) {
3520			spin_unlock(ptl);
3521			continue;
3522		}
3523
3524		/*
3525		 * Migrating hugepage or HWPoisoned hugepage is already
3526		 * unmapped and its refcount is dropped, so just clear pte here.
3527		 */
3528		if (unlikely(!pte_present(pte))) {
3529			huge_pte_clear(mm, address, ptep, sz);
3530			spin_unlock(ptl);
3531			continue;
3532		}
3533
3534		page = pte_page(pte);
3535		/*
3536		 * If a reference page is supplied, it is because a specific
3537		 * page is being unmapped, not a range. Ensure the page we
3538		 * are about to unmap is the actual page of interest.
3539		 */
3540		if (ref_page) {
3541			if (page != ref_page) {
3542				spin_unlock(ptl);
3543				continue;
3544			}
3545			/*
3546			 * Mark the VMA as having unmapped its page so that
3547			 * future faults in this VMA will fail rather than
3548			 * looking like data was lost
3549			 */
3550			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3551		}
3552
3553		pte = huge_ptep_get_and_clear(mm, address, ptep);
3554		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3555		if (huge_pte_dirty(pte))
3556			set_page_dirty(page);
3557
3558		hugetlb_count_sub(pages_per_huge_page(h), mm);
3559		page_remove_rmap(page, true);
3560
3561		spin_unlock(ptl);
3562		tlb_remove_page_size(tlb, page, huge_page_size(h));
3563		/*
3564		 * Bail out after unmapping reference page if supplied
3565		 */
3566		if (ref_page)
3567			break;
3568	}
3569	mmu_notifier_invalidate_range_end(&range);
3570	tlb_end_vma(tlb, vma);
3571}
3572
3573void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3574			  struct vm_area_struct *vma, unsigned long start,
3575			  unsigned long end, struct page *ref_page)
3576{
3577	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3578
3579	/*
3580	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3581	 * test will fail on a vma being torn down, and not grab a page table
3582	 * on its way out.  We're lucky that the flag has such an appropriate
3583	 * name, and can in fact be safely cleared here. We could clear it
3584	 * before the __unmap_hugepage_range above, but all that's necessary
3585	 * is to clear it before releasing the i_mmap_rwsem. This works
3586	 * because in the context this is called, the VMA is about to be
3587	 * destroyed and the i_mmap_rwsem is held.
3588	 */
3589	vma->vm_flags &= ~VM_MAYSHARE;
3590}
3591
3592void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3593			  unsigned long end, struct page *ref_page)
3594{
3595	struct mm_struct *mm;
3596	struct mmu_gather tlb;
3597	unsigned long tlb_start = start;
3598	unsigned long tlb_end = end;
3599
3600	/*
3601	 * If shared PMDs were possibly used within this vma range, adjust
3602	 * start/end for worst case tlb flushing.
3603	 * Note that we can not be sure if PMDs are shared until we try to
3604	 * unmap pages.  However, we want to make sure TLB flushing covers
3605	 * the largest possible range.
3606	 */
3607	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3608
3609	mm = vma->vm_mm;
3610
3611	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3612	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3613	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3614}
3615
3616/*
3617 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3618 * mappping it owns the reserve page for. The intention is to unmap the page
3619 * from other VMAs and let the children be SIGKILLed if they are faulting the
3620 * same region.
3621 */
3622static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3623			      struct page *page, unsigned long address)
3624{
3625	struct hstate *h = hstate_vma(vma);
3626	struct vm_area_struct *iter_vma;
3627	struct address_space *mapping;
3628	pgoff_t pgoff;
3629
3630	/*
3631	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3632	 * from page cache lookup which is in HPAGE_SIZE units.
3633	 */
3634	address = address & huge_page_mask(h);
3635	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3636			vma->vm_pgoff;
3637	mapping = vma->vm_file->f_mapping;
3638
3639	/*
3640	 * Take the mapping lock for the duration of the table walk. As
3641	 * this mapping should be shared between all the VMAs,
3642	 * __unmap_hugepage_range() is called as the lock is already held
3643	 */
3644	i_mmap_lock_write(mapping);
3645	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3646		/* Do not unmap the current VMA */
3647		if (iter_vma == vma)
3648			continue;
3649
3650		/*
3651		 * Shared VMAs have their own reserves and do not affect
3652		 * MAP_PRIVATE accounting but it is possible that a shared
3653		 * VMA is using the same page so check and skip such VMAs.
3654		 */
3655		if (iter_vma->vm_flags & VM_MAYSHARE)
3656			continue;
3657
3658		/*
3659		 * Unmap the page from other VMAs without their own reserves.
3660		 * They get marked to be SIGKILLed if they fault in these
3661		 * areas. This is because a future no-page fault on this VMA
3662		 * could insert a zeroed page instead of the data existing
3663		 * from the time of fork. This would look like data corruption
3664		 */
3665		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3666			unmap_hugepage_range(iter_vma, address,
3667					     address + huge_page_size(h), page);
3668	}
3669	i_mmap_unlock_write(mapping);
3670}
3671
3672/*
3673 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3674 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3675 * cannot race with other handlers or page migration.
3676 * Keep the pte_same checks anyway to make transition from the mutex easier.
3677 */
3678static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3679		       unsigned long address, pte_t *ptep,
3680		       struct page *pagecache_page, spinlock_t *ptl)
3681{
3682	pte_t pte;
3683	struct hstate *h = hstate_vma(vma);
3684	struct page *old_page, *new_page;
3685	int outside_reserve = 0;
3686	vm_fault_t ret = 0;
3687	unsigned long haddr = address & huge_page_mask(h);
3688	struct mmu_notifier_range range;
3689
3690	pte = huge_ptep_get(ptep);
3691	old_page = pte_page(pte);
3692
3693retry_avoidcopy:
3694	/* If no-one else is actually using this page, avoid the copy
3695	 * and just make the page writable */
3696	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3697		page_move_anon_rmap(old_page, vma);
3698		set_huge_ptep_writable(vma, haddr, ptep);
3699		return 0;
3700	}
3701
3702	/*
3703	 * If the process that created a MAP_PRIVATE mapping is about to
3704	 * perform a COW due to a shared page count, attempt to satisfy
3705	 * the allocation without using the existing reserves. The pagecache
3706	 * page is used to determine if the reserve at this address was
3707	 * consumed or not. If reserves were used, a partial faulted mapping
3708	 * at the time of fork() could consume its reserves on COW instead
3709	 * of the full address range.
3710	 */
3711	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3712			old_page != pagecache_page)
3713		outside_reserve = 1;
3714
3715	get_page(old_page);
3716
3717	/*
3718	 * Drop page table lock as buddy allocator may be called. It will
3719	 * be acquired again before returning to the caller, as expected.
3720	 */
3721	spin_unlock(ptl);
3722	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3723
3724	if (IS_ERR(new_page)) {
3725		/*
3726		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3727		 * it is due to references held by a child and an insufficient
3728		 * huge page pool. To guarantee the original mappers
3729		 * reliability, unmap the page from child processes. The child
3730		 * may get SIGKILLed if it later faults.
3731		 */
3732		if (outside_reserve) {
 
 
 
 
3733			put_page(old_page);
3734			BUG_ON(huge_pte_none(pte));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3735			unmap_ref_private(mm, vma, old_page, haddr);
3736			BUG_ON(huge_pte_none(pte));
 
 
3737			spin_lock(ptl);
3738			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3739			if (likely(ptep &&
3740				   pte_same(huge_ptep_get(ptep), pte)))
3741				goto retry_avoidcopy;
3742			/*
3743			 * race occurs while re-acquiring page table
3744			 * lock, and our job is done.
3745			 */
3746			return 0;
3747		}
3748
3749		ret = vmf_error(PTR_ERR(new_page));
3750		goto out_release_old;
3751	}
3752
3753	/*
3754	 * When the original hugepage is shared one, it does not have
3755	 * anon_vma prepared.
3756	 */
3757	if (unlikely(anon_vma_prepare(vma))) {
3758		ret = VM_FAULT_OOM;
3759		goto out_release_all;
3760	}
3761
3762	copy_user_huge_page(new_page, old_page, address, vma,
3763			    pages_per_huge_page(h));
3764	__SetPageUptodate(new_page);
3765
3766	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3767				haddr + huge_page_size(h));
3768	mmu_notifier_invalidate_range_start(&range);
3769
3770	/*
3771	 * Retake the page table lock to check for racing updates
3772	 * before the page tables are altered
3773	 */
3774	spin_lock(ptl);
3775	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3776	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3777		ClearPagePrivate(new_page);
3778
3779		/* Break COW */
3780		huge_ptep_clear_flush(vma, haddr, ptep);
3781		mmu_notifier_invalidate_range(mm, range.start, range.end);
3782		set_huge_pte_at(mm, haddr, ptep,
3783				make_huge_pte(vma, new_page, 1));
3784		page_remove_rmap(old_page, true);
3785		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3786		set_page_huge_active(new_page);
3787		/* Make the old page be freed below */
3788		new_page = old_page;
3789	}
3790	spin_unlock(ptl);
3791	mmu_notifier_invalidate_range_end(&range);
3792out_release_all:
3793	restore_reserve_on_error(h, vma, haddr, new_page);
 
 
3794	put_page(new_page);
3795out_release_old:
3796	put_page(old_page);
3797
3798	spin_lock(ptl); /* Caller expects lock to be held */
3799	return ret;
3800}
3801
3802/* Return the pagecache page at a given address within a VMA */
3803static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3804			struct vm_area_struct *vma, unsigned long address)
3805{
3806	struct address_space *mapping;
3807	pgoff_t idx;
3808
3809	mapping = vma->vm_file->f_mapping;
3810	idx = vma_hugecache_offset(h, vma, address);
3811
3812	return find_lock_page(mapping, idx);
3813}
3814
3815/*
3816 * Return whether there is a pagecache page to back given address within VMA.
3817 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3818 */
3819static bool hugetlbfs_pagecache_present(struct hstate *h,
3820			struct vm_area_struct *vma, unsigned long address)
3821{
3822	struct address_space *mapping;
3823	pgoff_t idx;
3824	struct page *page;
3825
3826	mapping = vma->vm_file->f_mapping;
3827	idx = vma_hugecache_offset(h, vma, address);
3828
3829	page = find_get_page(mapping, idx);
3830	if (page)
3831		put_page(page);
3832	return page != NULL;
3833}
3834
3835int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3836			   pgoff_t idx)
3837{
3838	struct inode *inode = mapping->host;
3839	struct hstate *h = hstate_inode(inode);
3840	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3841
3842	if (err)
3843		return err;
3844	ClearPagePrivate(page);
3845
3846	/*
3847	 * set page dirty so that it will not be removed from cache/file
3848	 * by non-hugetlbfs specific code paths.
3849	 */
3850	set_page_dirty(page);
3851
3852	spin_lock(&inode->i_lock);
3853	inode->i_blocks += blocks_per_huge_page(h);
3854	spin_unlock(&inode->i_lock);
3855	return 0;
3856}
3857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3858static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3859			struct vm_area_struct *vma,
3860			struct address_space *mapping, pgoff_t idx,
3861			unsigned long address, pte_t *ptep, unsigned int flags)
3862{
3863	struct hstate *h = hstate_vma(vma);
3864	vm_fault_t ret = VM_FAULT_SIGBUS;
3865	int anon_rmap = 0;
3866	unsigned long size;
3867	struct page *page;
3868	pte_t new_pte;
3869	spinlock_t *ptl;
3870	unsigned long haddr = address & huge_page_mask(h);
3871	bool new_page = false;
3872
3873	/*
3874	 * Currently, we are forced to kill the process in the event the
3875	 * original mapper has unmapped pages from the child due to a failed
3876	 * COW. Warn that such a situation has occurred as it may not be obvious
3877	 */
3878	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3879		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3880			   current->pid);
3881		return ret;
3882	}
3883
3884	/*
3885	 * Use page lock to guard against racing truncation
3886	 * before we get page_table_lock.
 
3887	 */
 
 
 
 
3888retry:
 
3889	page = find_lock_page(mapping, idx);
3890	if (!page) {
3891		size = i_size_read(mapping->host) >> huge_page_shift(h);
3892		if (idx >= size)
3893			goto out;
3894
3895		/*
3896		 * Check for page in userfault range
3897		 */
3898		if (userfaultfd_missing(vma)) {
3899			u32 hash;
3900			struct vm_fault vmf = {
3901				.vma = vma,
3902				.address = haddr,
3903				.flags = flags,
3904				/*
3905				 * Hard to debug if it ends up being
3906				 * used by a callee that assumes
3907				 * something about the other
3908				 * uninitialized fields... same as in
3909				 * memory.c
3910				 */
3911			};
3912
3913			/*
3914			 * hugetlb_fault_mutex must be dropped before
3915			 * handling userfault.  Reacquire after handling
3916			 * fault to make calling code simpler.
3917			 */
3918			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3919			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3920			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3921			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922			goto out;
3923		}
3924
3925		page = alloc_huge_page(vma, haddr, 0);
3926		if (IS_ERR(page)) {
3927			/*
3928			 * Returning error will result in faulting task being
3929			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3930			 * tasks from racing to fault in the same page which
3931			 * could result in false unable to allocate errors.
3932			 * Page migration does not take the fault mutex, but
3933			 * does a clear then write of pte's under page table
3934			 * lock.  Page fault code could race with migration,
3935			 * notice the clear pte and try to allocate a page
3936			 * here.  Before returning error, get ptl and make
3937			 * sure there really is no pte entry.
3938			 */
3939			ptl = huge_pte_lock(h, mm, ptep);
3940			if (!huge_pte_none(huge_ptep_get(ptep))) {
3941				ret = 0;
3942				spin_unlock(ptl);
3943				goto out;
3944			}
3945			spin_unlock(ptl);
3946			ret = vmf_error(PTR_ERR(page));
3947			goto out;
3948		}
3949		clear_huge_page(page, address, pages_per_huge_page(h));
3950		__SetPageUptodate(page);
3951		new_page = true;
3952
3953		if (vma->vm_flags & VM_MAYSHARE) {
3954			int err = huge_add_to_page_cache(page, mapping, idx);
3955			if (err) {
3956				put_page(page);
3957				if (err == -EEXIST)
3958					goto retry;
3959				goto out;
3960			}
 
3961		} else {
3962			lock_page(page);
3963			if (unlikely(anon_vma_prepare(vma))) {
3964				ret = VM_FAULT_OOM;
3965				goto backout_unlocked;
3966			}
3967			anon_rmap = 1;
3968		}
3969	} else {
3970		/*
3971		 * If memory error occurs between mmap() and fault, some process
3972		 * don't have hwpoisoned swap entry for errored virtual address.
3973		 * So we need to block hugepage fault by PG_hwpoison bit check.
3974		 */
3975		if (unlikely(PageHWPoison(page))) {
3976			ret = VM_FAULT_HWPOISON |
3977				VM_FAULT_SET_HINDEX(hstate_index(h));
3978			goto backout_unlocked;
3979		}
 
 
 
 
 
 
 
 
 
 
3980	}
3981
3982	/*
3983	 * If we are going to COW a private mapping later, we examine the
3984	 * pending reservations for this page now. This will ensure that
3985	 * any allocations necessary to record that reservation occur outside
3986	 * the spinlock.
3987	 */
3988	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3989		if (vma_needs_reservation(h, vma, haddr) < 0) {
3990			ret = VM_FAULT_OOM;
3991			goto backout_unlocked;
3992		}
3993		/* Just decrements count, does not deallocate */
3994		vma_end_reservation(h, vma, haddr);
3995	}
3996
3997	ptl = huge_pte_lock(h, mm, ptep);
3998	size = i_size_read(mapping->host) >> huge_page_shift(h);
3999	if (idx >= size)
4000		goto backout;
4001
4002	ret = 0;
4003	if (!huge_pte_none(huge_ptep_get(ptep)))
4004		goto backout;
4005
4006	if (anon_rmap) {
4007		ClearPagePrivate(page);
4008		hugepage_add_new_anon_rmap(page, vma, haddr);
4009	} else
4010		page_dup_rmap(page, true);
4011	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4012				&& (vma->vm_flags & VM_SHARED)));
4013	set_huge_pte_at(mm, haddr, ptep, new_pte);
4014
4015	hugetlb_count_add(pages_per_huge_page(h), mm);
4016	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4017		/* Optimization, do the COW without a second fault */
4018		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4019	}
4020
4021	spin_unlock(ptl);
4022
4023	/*
4024	 * Only make newly allocated pages active.  Existing pages found
4025	 * in the pagecache could be !page_huge_active() if they have been
4026	 * isolated for migration.
4027	 */
4028	if (new_page)
4029		set_page_huge_active(page);
4030
4031	unlock_page(page);
4032out:
4033	return ret;
4034
4035backout:
4036	spin_unlock(ptl);
4037backout_unlocked:
4038	unlock_page(page);
4039	restore_reserve_on_error(h, vma, haddr, page);
 
 
4040	put_page(page);
4041	goto out;
4042}
4043
4044#ifdef CONFIG_SMP
4045u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4046			    pgoff_t idx, unsigned long address)
4047{
4048	unsigned long key[2];
4049	u32 hash;
4050
4051	key[0] = (unsigned long) mapping;
4052	key[1] = idx;
4053
4054	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4055
4056	return hash & (num_fault_mutexes - 1);
4057}
4058#else
4059/*
4060 * For uniprocesor systems we always use a single mutex, so just
4061 * return 0 and avoid the hashing overhead.
4062 */
4063u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4064			    pgoff_t idx, unsigned long address)
4065{
4066	return 0;
4067}
4068#endif
4069
4070vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4071			unsigned long address, unsigned int flags)
4072{
4073	pte_t *ptep, entry;
4074	spinlock_t *ptl;
4075	vm_fault_t ret;
4076	u32 hash;
4077	pgoff_t idx;
4078	struct page *page = NULL;
4079	struct page *pagecache_page = NULL;
4080	struct hstate *h = hstate_vma(vma);
4081	struct address_space *mapping;
4082	int need_wait_lock = 0;
4083	unsigned long haddr = address & huge_page_mask(h);
4084
4085	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4086	if (ptep) {
 
 
 
 
 
4087		entry = huge_ptep_get(ptep);
4088		if (unlikely(is_hugetlb_entry_migration(entry))) {
4089			migration_entry_wait_huge(vma, mm, ptep);
4090			return 0;
4091		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4092			return VM_FAULT_HWPOISON_LARGE |
4093				VM_FAULT_SET_HINDEX(hstate_index(h));
4094	} else {
4095		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4096		if (!ptep)
4097			return VM_FAULT_OOM;
4098	}
4099
 
 
 
 
 
 
 
 
 
 
 
4100	mapping = vma->vm_file->f_mapping;
4101	idx = vma_hugecache_offset(h, vma, haddr);
 
 
 
 
 
4102
4103	/*
4104	 * Serialize hugepage allocation and instantiation, so that we don't
4105	 * get spurious allocation failures if two CPUs race to instantiate
4106	 * the same page in the page cache.
4107	 */
4108	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
 
4109	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4110
4111	entry = huge_ptep_get(ptep);
4112	if (huge_pte_none(entry)) {
4113		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4114		goto out_mutex;
4115	}
4116
4117	ret = 0;
4118
4119	/*
4120	 * entry could be a migration/hwpoison entry at this point, so this
4121	 * check prevents the kernel from going below assuming that we have
4122	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4123	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4124	 * handle it.
4125	 */
4126	if (!pte_present(entry))
4127		goto out_mutex;
4128
4129	/*
4130	 * If we are going to COW the mapping later, we examine the pending
4131	 * reservations for this page now. This will ensure that any
4132	 * allocations necessary to record that reservation occur outside the
4133	 * spinlock. For private mappings, we also lookup the pagecache
4134	 * page now as it is used to determine if a reservation has been
4135	 * consumed.
4136	 */
4137	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4138		if (vma_needs_reservation(h, vma, haddr) < 0) {
4139			ret = VM_FAULT_OOM;
4140			goto out_mutex;
4141		}
4142		/* Just decrements count, does not deallocate */
4143		vma_end_reservation(h, vma, haddr);
4144
4145		if (!(vma->vm_flags & VM_MAYSHARE))
4146			pagecache_page = hugetlbfs_pagecache_page(h,
4147								vma, haddr);
4148	}
4149
4150	ptl = huge_pte_lock(h, mm, ptep);
4151
4152	/* Check for a racing update before calling hugetlb_cow */
4153	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4154		goto out_ptl;
4155
4156	/*
4157	 * hugetlb_cow() requires page locks of pte_page(entry) and
4158	 * pagecache_page, so here we need take the former one
4159	 * when page != pagecache_page or !pagecache_page.
4160	 */
4161	page = pte_page(entry);
4162	if (page != pagecache_page)
4163		if (!trylock_page(page)) {
4164			need_wait_lock = 1;
4165			goto out_ptl;
4166		}
4167
4168	get_page(page);
4169
4170	if (flags & FAULT_FLAG_WRITE) {
4171		if (!huge_pte_write(entry)) {
4172			ret = hugetlb_cow(mm, vma, address, ptep,
4173					  pagecache_page, ptl);
4174			goto out_put_page;
4175		}
4176		entry = huge_pte_mkdirty(entry);
4177	}
4178	entry = pte_mkyoung(entry);
4179	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4180						flags & FAULT_FLAG_WRITE))
4181		update_mmu_cache(vma, haddr, ptep);
4182out_put_page:
4183	if (page != pagecache_page)
4184		unlock_page(page);
4185	put_page(page);
4186out_ptl:
4187	spin_unlock(ptl);
4188
4189	if (pagecache_page) {
4190		unlock_page(pagecache_page);
4191		put_page(pagecache_page);
4192	}
4193out_mutex:
4194	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 
4195	/*
4196	 * Generally it's safe to hold refcount during waiting page lock. But
4197	 * here we just wait to defer the next page fault to avoid busy loop and
4198	 * the page is not used after unlocked before returning from the current
4199	 * page fault. So we are safe from accessing freed page, even if we wait
4200	 * here without taking refcount.
4201	 */
4202	if (need_wait_lock)
4203		wait_on_page_locked(page);
4204	return ret;
4205}
4206
 
4207/*
4208 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4209 * modifications for huge pages.
4210 */
4211int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4212			    pte_t *dst_pte,
4213			    struct vm_area_struct *dst_vma,
4214			    unsigned long dst_addr,
4215			    unsigned long src_addr,
 
4216			    struct page **pagep)
4217{
4218	struct address_space *mapping;
4219	pgoff_t idx;
 
 
4220	unsigned long size;
4221	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4222	struct hstate *h = hstate_vma(dst_vma);
4223	pte_t _dst_pte;
4224	spinlock_t *ptl;
4225	int ret;
4226	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4227
4228	if (!*pagep) {
4229		ret = -ENOMEM;
4230		page = alloc_huge_page(dst_vma, dst_addr, 0);
4231		if (IS_ERR(page))
 
4232			goto out;
 
4233
4234		ret = copy_huge_page_from_user(page,
4235						(const void __user *) src_addr,
4236						pages_per_huge_page(h), false);
4237
4238		/* fallback to copy_from_user outside mmap_sem */
4239		if (unlikely(ret)) {
4240			ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4241			*pagep = page;
4242			/* don't free the page */
 
 
 
4243			goto out;
4244		}
4245	} else {
4246		page = *pagep;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4247		*pagep = NULL;
4248	}
4249
4250	/*
4251	 * The memory barrier inside __SetPageUptodate makes sure that
4252	 * preceding stores to the page contents become visible before
4253	 * the set_pte_at() write.
4254	 */
4255	__SetPageUptodate(page);
4256
4257	mapping = dst_vma->vm_file->f_mapping;
4258	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4259
4260	/*
4261	 * If shared, add to page cache
4262	 */
4263	if (vm_shared) {
4264		size = i_size_read(mapping->host) >> huge_page_shift(h);
4265		ret = -EFAULT;
4266		if (idx >= size)
4267			goto out_release_nounlock;
4268
4269		/*
4270		 * Serialization between remove_inode_hugepages() and
4271		 * huge_add_to_page_cache() below happens through the
4272		 * hugetlb_fault_mutex_table that here must be hold by
4273		 * the caller.
4274		 */
4275		ret = huge_add_to_page_cache(page, mapping, idx);
4276		if (ret)
4277			goto out_release_nounlock;
 
4278	}
4279
4280	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4281	spin_lock(ptl);
4282
4283	/*
4284	 * Recheck the i_size after holding PT lock to make sure not
4285	 * to leave any page mapped (as page_mapped()) beyond the end
4286	 * of the i_size (remove_inode_hugepages() is strict about
4287	 * enforcing that). If we bail out here, we'll also leave a
4288	 * page in the radix tree in the vm_shared case beyond the end
4289	 * of the i_size, but remove_inode_hugepages() will take care
4290	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4291	 */
4292	size = i_size_read(mapping->host) >> huge_page_shift(h);
4293	ret = -EFAULT;
4294	if (idx >= size)
4295		goto out_release_unlock;
4296
4297	ret = -EEXIST;
4298	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4299		goto out_release_unlock;
4300
4301	if (vm_shared) {
4302		page_dup_rmap(page, true);
4303	} else {
4304		ClearPagePrivate(page);
4305		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4306	}
4307
4308	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4309	if (dst_vma->vm_flags & VM_WRITE)
 
 
 
 
 
 
4310		_dst_pte = huge_pte_mkdirty(_dst_pte);
4311	_dst_pte = pte_mkyoung(_dst_pte);
4312
4313	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4314
4315	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4316					dst_vma->vm_flags & VM_WRITE);
4317	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4318
4319	/* No need to invalidate - it was non-present before */
4320	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4321
4322	spin_unlock(ptl);
4323	set_page_huge_active(page);
4324	if (vm_shared)
 
4325		unlock_page(page);
4326	ret = 0;
4327out:
4328	return ret;
4329out_release_unlock:
4330	spin_unlock(ptl);
4331	if (vm_shared)
4332		unlock_page(page);
4333out_release_nounlock:
 
 
4334	put_page(page);
4335	goto out;
4336}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4337
4338long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4339			 struct page **pages, struct vm_area_struct **vmas,
4340			 unsigned long *position, unsigned long *nr_pages,
4341			 long i, unsigned int flags, int *nonblocking)
4342{
4343	unsigned long pfn_offset;
4344	unsigned long vaddr = *position;
4345	unsigned long remainder = *nr_pages;
4346	struct hstate *h = hstate_vma(vma);
4347	int err = -EFAULT;
4348
4349	while (vaddr < vma->vm_end && remainder) {
4350		pte_t *pte;
4351		spinlock_t *ptl = NULL;
4352		int absent;
4353		struct page *page;
4354
4355		/*
4356		 * If we have a pending SIGKILL, don't keep faulting pages and
4357		 * potentially allocating memory.
4358		 */
4359		if (fatal_signal_pending(current)) {
4360			remainder = 0;
4361			break;
4362		}
4363
4364		/*
4365		 * Some archs (sparc64, sh*) have multiple pte_ts to
4366		 * each hugepage.  We have to make sure we get the
4367		 * first, for the page indexing below to work.
4368		 *
4369		 * Note that page table lock is not held when pte is null.
4370		 */
4371		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4372				      huge_page_size(h));
4373		if (pte)
4374			ptl = huge_pte_lock(h, mm, pte);
4375		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4376
4377		/*
4378		 * When coredumping, it suits get_dump_page if we just return
4379		 * an error where there's an empty slot with no huge pagecache
4380		 * to back it.  This way, we avoid allocating a hugepage, and
4381		 * the sparse dumpfile avoids allocating disk blocks, but its
4382		 * huge holes still show up with zeroes where they need to be.
4383		 */
4384		if (absent && (flags & FOLL_DUMP) &&
4385		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4386			if (pte)
4387				spin_unlock(ptl);
4388			remainder = 0;
4389			break;
4390		}
4391
4392		/*
4393		 * We need call hugetlb_fault for both hugepages under migration
4394		 * (in which case hugetlb_fault waits for the migration,) and
4395		 * hwpoisoned hugepages (in which case we need to prevent the
4396		 * caller from accessing to them.) In order to do this, we use
4397		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4398		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4399		 * both cases, and because we can't follow correct pages
4400		 * directly from any kind of swap entries.
4401		 */
4402		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4403		    ((flags & FOLL_WRITE) &&
4404		      !huge_pte_write(huge_ptep_get(pte)))) {
4405			vm_fault_t ret;
4406			unsigned int fault_flags = 0;
4407
4408			if (pte)
4409				spin_unlock(ptl);
4410			if (flags & FOLL_WRITE)
4411				fault_flags |= FAULT_FLAG_WRITE;
4412			if (nonblocking)
4413				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 
4414			if (flags & FOLL_NOWAIT)
4415				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4416					FAULT_FLAG_RETRY_NOWAIT;
4417			if (flags & FOLL_TRIED) {
4418				VM_WARN_ON_ONCE(fault_flags &
4419						FAULT_FLAG_ALLOW_RETRY);
 
 
4420				fault_flags |= FAULT_FLAG_TRIED;
4421			}
4422			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4423			if (ret & VM_FAULT_ERROR) {
4424				err = vm_fault_to_errno(ret, flags);
4425				remainder = 0;
4426				break;
4427			}
4428			if (ret & VM_FAULT_RETRY) {
4429				if (nonblocking &&
4430				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4431					*nonblocking = 0;
4432				*nr_pages = 0;
4433				/*
4434				 * VM_FAULT_RETRY must not return an
4435				 * error, it will return zero
4436				 * instead.
4437				 *
4438				 * No need to update "position" as the
4439				 * caller will not check it after
4440				 * *nr_pages is set to 0.
4441				 */
4442				return i;
4443			}
4444			continue;
4445		}
4446
4447		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4448		page = pte_page(huge_ptep_get(pte));
4449
4450		/*
4451		 * Instead of doing 'try_get_page()' below in the same_page
4452		 * loop, just check the count once here.
4453		 */
4454		if (unlikely(page_count(page) <= 0)) {
4455			if (pages) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4456				spin_unlock(ptl);
4457				remainder = 0;
4458				err = -ENOMEM;
4459				break;
4460			}
4461		}
4462same_page:
4463		if (pages) {
4464			pages[i] = mem_map_offset(page, pfn_offset);
4465			get_page(pages[i]);
4466		}
4467
4468		if (vmas)
4469			vmas[i] = vma;
 
4470
4471		vaddr += PAGE_SIZE;
4472		++pfn_offset;
4473		--remainder;
4474		++i;
4475		if (vaddr < vma->vm_end && remainder &&
4476				pfn_offset < pages_per_huge_page(h)) {
4477			/*
4478			 * We use pfn_offset to avoid touching the pageframes
4479			 * of this compound page.
4480			 */
4481			goto same_page;
4482		}
4483		spin_unlock(ptl);
4484	}
4485	*nr_pages = remainder;
4486	/*
4487	 * setting position is actually required only if remainder is
4488	 * not zero but it's faster not to add a "if (remainder)"
4489	 * branch.
4490	 */
4491	*position = vaddr;
4492
4493	return i ? i : err;
4494}
4495
4496#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4497/*
4498 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4499 * implement this.
4500 */
4501#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4502#endif
4503
4504unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4505		unsigned long address, unsigned long end, pgprot_t newprot)
4506{
4507	struct mm_struct *mm = vma->vm_mm;
4508	unsigned long start = address;
4509	pte_t *ptep;
4510	pte_t pte;
4511	struct hstate *h = hstate_vma(vma);
4512	unsigned long pages = 0;
4513	bool shared_pmd = false;
4514	struct mmu_notifier_range range;
4515
4516	/*
4517	 * In the case of shared PMDs, the area to flush could be beyond
4518	 * start/end.  Set range.start/range.end to cover the maximum possible
4519	 * range if PMD sharing is possible.
4520	 */
4521	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4522				0, vma, mm, start, end);
4523	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4524
4525	BUG_ON(address >= end);
4526	flush_cache_range(vma, range.start, range.end);
4527
4528	mmu_notifier_invalidate_range_start(&range);
4529	i_mmap_lock_write(vma->vm_file->f_mapping);
4530	for (; address < end; address += huge_page_size(h)) {
4531		spinlock_t *ptl;
4532		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4533		if (!ptep)
4534			continue;
4535		ptl = huge_pte_lock(h, mm, ptep);
4536		if (huge_pmd_unshare(mm, &address, ptep)) {
4537			pages++;
4538			spin_unlock(ptl);
4539			shared_pmd = true;
4540			continue;
4541		}
4542		pte = huge_ptep_get(ptep);
4543		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4544			spin_unlock(ptl);
4545			continue;
4546		}
4547		if (unlikely(is_hugetlb_entry_migration(pte))) {
4548			swp_entry_t entry = pte_to_swp_entry(pte);
4549
4550			if (is_write_migration_entry(entry)) {
4551				pte_t newpte;
4552
4553				make_migration_entry_read(&entry);
 
4554				newpte = swp_entry_to_pte(entry);
4555				set_huge_swap_pte_at(mm, address, ptep,
4556						     newpte, huge_page_size(h));
4557				pages++;
4558			}
4559			spin_unlock(ptl);
4560			continue;
4561		}
4562		if (!huge_pte_none(pte)) {
4563			pte_t old_pte;
 
4564
4565			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4566			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4567			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4568			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4569			pages++;
4570		}
4571		spin_unlock(ptl);
4572	}
4573	/*
4574	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4575	 * may have cleared our pud entry and done put_page on the page table:
4576	 * once we release i_mmap_rwsem, another task can do the final put_page
4577	 * and that page table be reused and filled with junk.  If we actually
4578	 * did unshare a page of pmds, flush the range corresponding to the pud.
4579	 */
4580	if (shared_pmd)
4581		flush_hugetlb_tlb_range(vma, range.start, range.end);
4582	else
4583		flush_hugetlb_tlb_range(vma, start, end);
4584	/*
4585	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4586	 * page table protection not changing it to point to a new page.
4587	 *
4588	 * See Documentation/vm/mmu_notifier.rst
4589	 */
4590	i_mmap_unlock_write(vma->vm_file->f_mapping);
4591	mmu_notifier_invalidate_range_end(&range);
4592
4593	return pages << h->order;
4594}
4595
4596int hugetlb_reserve_pages(struct inode *inode,
 
4597					long from, long to,
4598					struct vm_area_struct *vma,
4599					vm_flags_t vm_flags)
4600{
4601	long ret, chg;
4602	struct hstate *h = hstate_inode(inode);
4603	struct hugepage_subpool *spool = subpool_inode(inode);
4604	struct resv_map *resv_map;
4605	long gbl_reserve;
 
4606
4607	/* This should never happen */
4608	if (from > to) {
4609		VM_WARN(1, "%s called with a negative range\n", __func__);
4610		return -EINVAL;
4611	}
4612
4613	/*
4614	 * Only apply hugepage reservation if asked. At fault time, an
4615	 * attempt will be made for VM_NORESERVE to allocate a page
4616	 * without using reserves
4617	 */
4618	if (vm_flags & VM_NORESERVE)
4619		return 0;
4620
4621	/*
4622	 * Shared mappings base their reservation on the number of pages that
4623	 * are already allocated on behalf of the file. Private mappings need
4624	 * to reserve the full area even if read-only as mprotect() may be
4625	 * called to make the mapping read-write. Assume !vma is a shm mapping
4626	 */
4627	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4628		/*
4629		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4630		 * called for inodes for which resv_maps were created (see
4631		 * hugetlbfs_get_inode).
4632		 */
4633		resv_map = inode_resv_map(inode);
4634
4635		chg = region_chg(resv_map, from, to);
4636
4637	} else {
 
4638		resv_map = resv_map_alloc();
4639		if (!resv_map)
4640			return -ENOMEM;
4641
4642		chg = to - from;
4643
4644		set_vma_resv_map(vma, resv_map);
4645		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4646	}
4647
4648	if (chg < 0) {
4649		ret = chg;
4650		goto out_err;
 
 
 
 
 
 
 
 
 
 
4651	}
4652
4653	/*
4654	 * There must be enough pages in the subpool for the mapping. If
4655	 * the subpool has a minimum size, there may be some global
4656	 * reservations already in place (gbl_reserve).
4657	 */
4658	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4659	if (gbl_reserve < 0) {
4660		ret = -ENOSPC;
4661		goto out_err;
4662	}
4663
4664	/*
4665	 * Check enough hugepages are available for the reservation.
4666	 * Hand the pages back to the subpool if there are not
4667	 */
4668	ret = hugetlb_acct_memory(h, gbl_reserve);
4669	if (ret < 0) {
4670		/* put back original number of pages, chg */
4671		(void)hugepage_subpool_put_pages(spool, chg);
4672		goto out_err;
4673	}
4674
4675	/*
4676	 * Account for the reservations made. Shared mappings record regions
4677	 * that have reservations as they are shared by multiple VMAs.
4678	 * When the last VMA disappears, the region map says how much
4679	 * the reservation was and the page cache tells how much of
4680	 * the reservation was consumed. Private mappings are per-VMA and
4681	 * only the consumed reservations are tracked. When the VMA
4682	 * disappears, the original reservation is the VMA size and the
4683	 * consumed reservations are stored in the map. Hence, nothing
4684	 * else has to be done for private mappings here
4685	 */
4686	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4687		long add = region_add(resv_map, from, to);
4688
4689		if (unlikely(chg > add)) {
 
 
 
4690			/*
4691			 * pages in this range were added to the reserve
4692			 * map between region_chg and region_add.  This
4693			 * indicates a race with alloc_huge_page.  Adjust
4694			 * the subpool and reserve counts modified above
4695			 * based on the difference.
4696			 */
4697			long rsv_adjust;
4698
 
 
 
 
 
 
 
 
4699			rsv_adjust = hugepage_subpool_put_pages(spool,
4700								chg - add);
4701			hugetlb_acct_memory(h, -rsv_adjust);
 
 
 
 
 
 
 
 
4702		}
4703	}
4704	return 0;
 
 
 
 
 
 
 
4705out_err:
4706	if (!vma || vma->vm_flags & VM_MAYSHARE)
4707		/* Don't call region_abort if region_chg failed */
4708		if (chg >= 0)
4709			region_abort(resv_map, from, to);
 
 
4710	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4711		kref_put(&resv_map->refs, resv_map_release);
4712	return ret;
4713}
4714
4715long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4716								long freed)
4717{
4718	struct hstate *h = hstate_inode(inode);
4719	struct resv_map *resv_map = inode_resv_map(inode);
4720	long chg = 0;
4721	struct hugepage_subpool *spool = subpool_inode(inode);
4722	long gbl_reserve;
4723
4724	/*
4725	 * Since this routine can be called in the evict inode path for all
4726	 * hugetlbfs inodes, resv_map could be NULL.
4727	 */
4728	if (resv_map) {
4729		chg = region_del(resv_map, start, end);
4730		/*
4731		 * region_del() can fail in the rare case where a region
4732		 * must be split and another region descriptor can not be
4733		 * allocated.  If end == LONG_MAX, it will not fail.
4734		 */
4735		if (chg < 0)
4736			return chg;
4737	}
4738
4739	spin_lock(&inode->i_lock);
4740	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4741	spin_unlock(&inode->i_lock);
4742
4743	/*
4744	 * If the subpool has a minimum size, the number of global
4745	 * reservations to be released may be adjusted.
 
 
 
4746	 */
4747	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4748	hugetlb_acct_memory(h, -gbl_reserve);
4749
4750	return 0;
4751}
4752
4753#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4754static unsigned long page_table_shareable(struct vm_area_struct *svma,
4755				struct vm_area_struct *vma,
4756				unsigned long addr, pgoff_t idx)
4757{
4758	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4759				svma->vm_start;
4760	unsigned long sbase = saddr & PUD_MASK;
4761	unsigned long s_end = sbase + PUD_SIZE;
4762
4763	/* Allow segments to share if only one is marked locked */
4764	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4765	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766
4767	/*
4768	 * match the virtual addresses, permission and the alignment of the
4769	 * page table page.
4770	 */
4771	if (pmd_index(addr) != pmd_index(saddr) ||
4772	    vm_flags != svm_flags ||
4773	    sbase < svma->vm_start || svma->vm_end < s_end)
4774		return 0;
4775
4776	return saddr;
4777}
4778
4779static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4780{
4781	unsigned long base = addr & PUD_MASK;
4782	unsigned long end = base + PUD_SIZE;
4783
4784	/*
4785	 * check on proper vm_flags and page table alignment
4786	 */
4787	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4788		return true;
4789	return false;
4790}
4791
 
 
 
 
 
 
 
 
 
4792/*
4793 * Determine if start,end range within vma could be mapped by shared pmd.
4794 * If yes, adjust start and end to cover range associated with possible
4795 * shared pmd mappings.
4796 */
4797void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4798				unsigned long *start, unsigned long *end)
4799{
4800	unsigned long check_addr = *start;
 
4801
4802	if (!(vma->vm_flags & VM_MAYSHARE))
 
 
 
 
 
4803		return;
4804
4805	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4806		unsigned long a_start = check_addr & PUD_MASK;
4807		unsigned long a_end = a_start + PUD_SIZE;
4808
4809		/*
4810		 * If sharing is possible, adjust start/end if necessary.
4811		 */
4812		if (range_in_vma(vma, a_start, a_end)) {
4813			if (a_start < *start)
4814				*start = a_start;
4815			if (a_end > *end)
4816				*end = a_end;
4817		}
4818	}
4819}
4820
4821/*
4822 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4823 * and returns the corresponding pte. While this is not necessary for the
4824 * !shared pmd case because we can allocate the pmd later as well, it makes the
4825 * code much cleaner. pmd allocation is essential for the shared case because
4826 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4827 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4828 * bad pmd for sharing.
 
 
 
 
 
 
 
 
4829 */
4830pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 
4831{
4832	struct vm_area_struct *vma = find_vma(mm, addr);
4833	struct address_space *mapping = vma->vm_file->f_mapping;
4834	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4835			vma->vm_pgoff;
4836	struct vm_area_struct *svma;
4837	unsigned long saddr;
4838	pte_t *spte = NULL;
4839	pte_t *pte;
4840	spinlock_t *ptl;
4841
4842	if (!vma_shareable(vma, addr))
4843		return (pte_t *)pmd_alloc(mm, pud, addr);
4844
4845	i_mmap_lock_write(mapping);
4846	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4847		if (svma == vma)
4848			continue;
4849
4850		saddr = page_table_shareable(svma, vma, addr, idx);
4851		if (saddr) {
4852			spte = huge_pte_offset(svma->vm_mm, saddr,
4853					       vma_mmu_pagesize(svma));
4854			if (spte) {
4855				get_page(virt_to_page(spte));
4856				break;
4857			}
4858		}
4859	}
4860
4861	if (!spte)
4862		goto out;
4863
4864	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4865	if (pud_none(*pud)) {
4866		pud_populate(mm, pud,
4867				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4868		mm_inc_nr_pmds(mm);
4869	} else {
4870		put_page(virt_to_page(spte));
4871	}
4872	spin_unlock(ptl);
4873out:
4874	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4875	i_mmap_unlock_write(mapping);
4876	return pte;
4877}
4878
4879/*
4880 * unmap huge page backed by shared pte.
4881 *
4882 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4883 * indicated by page_count > 1, unmap is achieved by clearing pud and
4884 * decrementing the ref count. If count == 1, the pte page is not shared.
4885 *
4886 * called with page table lock held.
4887 *
4888 * returns: 1 successfully unmapped a shared pte page
4889 *	    0 the underlying pte page is not shared, or it is the last user
4890 */
4891int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 
4892{
4893	pgd_t *pgd = pgd_offset(mm, *addr);
4894	p4d_t *p4d = p4d_offset(pgd, *addr);
4895	pud_t *pud = pud_offset(p4d, *addr);
4896
 
4897	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4898	if (page_count(virt_to_page(ptep)) == 1)
4899		return 0;
4900
4901	pud_clear(pud);
4902	put_page(virt_to_page(ptep));
4903	mm_dec_nr_pmds(mm);
4904	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4905	return 1;
4906}
4907#define want_pmd_share()	(1)
4908#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4909pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 
4910{
4911	return NULL;
4912}
4913
4914int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 
4915{
4916	return 0;
4917}
4918
4919void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920				unsigned long *start, unsigned long *end)
4921{
4922}
4923#define want_pmd_share()	(0)
 
 
 
 
4924#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4925
4926#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4927pte_t *huge_pte_alloc(struct mm_struct *mm,
4928			unsigned long addr, unsigned long sz)
4929{
4930	pgd_t *pgd;
4931	p4d_t *p4d;
4932	pud_t *pud;
4933	pte_t *pte = NULL;
4934
4935	pgd = pgd_offset(mm, addr);
4936	p4d = p4d_alloc(mm, pgd, addr);
4937	if (!p4d)
4938		return NULL;
4939	pud = pud_alloc(mm, p4d, addr);
4940	if (pud) {
4941		if (sz == PUD_SIZE) {
4942			pte = (pte_t *)pud;
4943		} else {
4944			BUG_ON(sz != PMD_SIZE);
4945			if (want_pmd_share() && pud_none(*pud))
4946				pte = huge_pmd_share(mm, addr, pud);
4947			else
4948				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4949		}
4950	}
4951	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4952
4953	return pte;
4954}
4955
4956/*
4957 * huge_pte_offset() - Walk the page table to resolve the hugepage
4958 * entry at address @addr
4959 *
4960 * Return: Pointer to page table or swap entry (PUD or PMD) for
4961 * address @addr, or NULL if a p*d_none() entry is encountered and the
4962 * size @sz doesn't match the hugepage size at this level of the page
4963 * table.
4964 */
4965pte_t *huge_pte_offset(struct mm_struct *mm,
4966		       unsigned long addr, unsigned long sz)
4967{
4968	pgd_t *pgd;
4969	p4d_t *p4d;
4970	pud_t *pud;
4971	pmd_t *pmd;
4972
4973	pgd = pgd_offset(mm, addr);
4974	if (!pgd_present(*pgd))
4975		return NULL;
4976	p4d = p4d_offset(pgd, addr);
4977	if (!p4d_present(*p4d))
4978		return NULL;
4979
4980	pud = pud_offset(p4d, addr);
4981	if (sz != PUD_SIZE && pud_none(*pud))
4982		return NULL;
4983	/* hugepage or swap? */
4984	if (pud_huge(*pud) || !pud_present(*pud))
4985		return (pte_t *)pud;
4986
4987	pmd = pmd_offset(pud, addr);
4988	if (sz != PMD_SIZE && pmd_none(*pmd))
4989		return NULL;
4990	/* hugepage or swap? */
4991	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4992		return (pte_t *)pmd;
4993
4994	return NULL;
 
 
4995}
4996
4997#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4998
4999/*
5000 * These functions are overwritable if your architecture needs its own
5001 * behavior.
5002 */
5003struct page * __weak
5004follow_huge_addr(struct mm_struct *mm, unsigned long address,
5005			      int write)
5006{
5007	return ERR_PTR(-EINVAL);
5008}
5009
5010struct page * __weak
5011follow_huge_pd(struct vm_area_struct *vma,
5012	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5013{
5014	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5015	return NULL;
5016}
5017
5018struct page * __weak
5019follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5020		pmd_t *pmd, int flags)
5021{
5022	struct page *page = NULL;
5023	spinlock_t *ptl;
5024	pte_t pte;
 
 
 
 
 
 
5025retry:
5026	ptl = pmd_lockptr(mm, pmd);
5027	spin_lock(ptl);
5028	/*
5029	 * make sure that the address range covered by this pmd is not
5030	 * unmapped from other threads.
5031	 */
5032	if (!pmd_huge(*pmd))
5033		goto out;
5034	pte = huge_ptep_get((pte_t *)pmd);
5035	if (pte_present(pte)) {
5036		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5037		if (flags & FOLL_GET)
5038			get_page(page);
 
 
 
 
 
 
 
 
 
 
5039	} else {
5040		if (is_hugetlb_entry_migration(pte)) {
5041			spin_unlock(ptl);
5042			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5043			goto retry;
5044		}
5045		/*
5046		 * hwpoisoned entry is treated as no_page_table in
5047		 * follow_page_mask().
5048		 */
5049	}
5050out:
5051	spin_unlock(ptl);
5052	return page;
5053}
5054
5055struct page * __weak
5056follow_huge_pud(struct mm_struct *mm, unsigned long address,
5057		pud_t *pud, int flags)
5058{
5059	if (flags & FOLL_GET)
5060		return NULL;
5061
5062	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5063}
5064
5065struct page * __weak
5066follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5067{
5068	if (flags & FOLL_GET)
5069		return NULL;
5070
5071	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5072}
5073
5074bool isolate_huge_page(struct page *page, struct list_head *list)
5075{
5076	bool ret = true;
5077
5078	VM_BUG_ON_PAGE(!PageHead(page), page);
5079	spin_lock(&hugetlb_lock);
5080	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
 
5081		ret = false;
5082		goto unlock;
5083	}
5084	clear_page_huge_active(page);
5085	list_move_tail(&page->lru, list);
5086unlock:
5087	spin_unlock(&hugetlb_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5088	return ret;
5089}
5090
5091void putback_active_hugepage(struct page *page)
5092{
5093	VM_BUG_ON_PAGE(!PageHead(page), page);
5094	spin_lock(&hugetlb_lock);
5095	set_page_huge_active(page);
5096	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5097	spin_unlock(&hugetlb_lock);
5098	put_page(page);
5099}
5100
5101void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5102{
5103	struct hstate *h = page_hstate(oldpage);
5104
5105	hugetlb_cgroup_migrate(oldpage, newpage);
5106	set_page_owner_migrate_reason(newpage, reason);
5107
5108	/*
5109	 * transfer temporary state of the new huge page. This is
5110	 * reverse to other transitions because the newpage is going to
5111	 * be final while the old one will be freed so it takes over
5112	 * the temporary status.
5113	 *
5114	 * Also note that we have to transfer the per-node surplus state
5115	 * here as well otherwise the global surplus count will not match
5116	 * the per-node's.
5117	 */
5118	if (PageHugeTemporary(newpage)) {
5119		int old_nid = page_to_nid(oldpage);
5120		int new_nid = page_to_nid(newpage);
5121
5122		SetPageHugeTemporary(oldpage);
5123		ClearPageHugeTemporary(newpage);
5124
5125		spin_lock(&hugetlb_lock);
 
 
 
 
 
 
5126		if (h->surplus_huge_pages_node[old_nid]) {
5127			h->surplus_huge_pages_node[old_nid]--;
5128			h->surplus_huge_pages_node[new_nid]++;
5129		}
5130		spin_unlock(&hugetlb_lock);
5131	}
5132}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
  33#include <linux/migrate.h>
  34
  35#include <asm/page.h>
  36#include <asm/pgalloc.h>
  37#include <asm/tlb.h>
  38
  39#include <linux/io.h>
  40#include <linux/hugetlb.h>
  41#include <linux/hugetlb_cgroup.h>
  42#include <linux/node.h>
 
  43#include <linux/page_owner.h>
  44#include "internal.h"
  45#include "hugetlb_vmemmap.h"
  46
  47int hugetlb_max_hstate __read_mostly;
  48unsigned int default_hstate_idx;
  49struct hstate hstates[HUGE_MAX_HSTATE];
  50
  51#ifdef CONFIG_CMA
  52static struct cma *hugetlb_cma[MAX_NUMNODES];
  53#endif
  54static unsigned long hugetlb_cma_size __initdata;
  55
  56/*
  57 * Minimum page order among possible hugepage sizes, set to a proper value
  58 * at boot time.
  59 */
  60static unsigned int minimum_order __read_mostly = UINT_MAX;
  61
  62__initdata LIST_HEAD(huge_boot_pages);
  63
  64/* for command line parsing */
  65static struct hstate * __initdata parsed_hstate;
  66static unsigned long __initdata default_hstate_max_huge_pages;
 
  67static bool __initdata parsed_valid_hugepagesz = true;
  68static bool __initdata parsed_default_hugepagesz;
  69
  70/*
  71 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  72 * free_huge_pages, and surplus_huge_pages.
  73 */
  74DEFINE_SPINLOCK(hugetlb_lock);
  75
  76/*
  77 * Serializes faults on the same logical page.  This is used to
  78 * prevent spurious OOMs when the hugepage pool is fully utilized.
  79 */
  80static int num_fault_mutexes;
  81struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  82
  83/* Forward declaration */
  84static int hugetlb_acct_memory(struct hstate *h, long delta);
  85
  86static inline bool subpool_is_free(struct hugepage_subpool *spool)
  87{
  88	if (spool->count)
  89		return false;
  90	if (spool->max_hpages != -1)
  91		return spool->used_hpages == 0;
  92	if (spool->min_hpages != -1)
  93		return spool->rsv_hpages == spool->min_hpages;
  94
  95	return true;
  96}
  97
  98static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
  99						unsigned long irq_flags)
 100{
 101	spin_unlock_irqrestore(&spool->lock, irq_flags);
 102
 103	/* If no pages are used, and no other handles to the subpool
 104	 * remain, give up any reservations based on minimum size and
 105	 * free the subpool */
 106	if (subpool_is_free(spool)) {
 107		if (spool->min_hpages != -1)
 108			hugetlb_acct_memory(spool->hstate,
 109						-spool->min_hpages);
 110		kfree(spool);
 111	}
 112}
 113
 114struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 115						long min_hpages)
 116{
 117	struct hugepage_subpool *spool;
 118
 119	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 120	if (!spool)
 121		return NULL;
 122
 123	spin_lock_init(&spool->lock);
 124	spool->count = 1;
 125	spool->max_hpages = max_hpages;
 126	spool->hstate = h;
 127	spool->min_hpages = min_hpages;
 128
 129	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 130		kfree(spool);
 131		return NULL;
 132	}
 133	spool->rsv_hpages = min_hpages;
 134
 135	return spool;
 136}
 137
 138void hugepage_put_subpool(struct hugepage_subpool *spool)
 139{
 140	unsigned long flags;
 141
 142	spin_lock_irqsave(&spool->lock, flags);
 143	BUG_ON(!spool->count);
 144	spool->count--;
 145	unlock_or_release_subpool(spool, flags);
 146}
 147
 148/*
 149 * Subpool accounting for allocating and reserving pages.
 150 * Return -ENOMEM if there are not enough resources to satisfy the
 151 * request.  Otherwise, return the number of pages by which the
 152 * global pools must be adjusted (upward).  The returned value may
 153 * only be different than the passed value (delta) in the case where
 154 * a subpool minimum size must be maintained.
 155 */
 156static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 157				      long delta)
 158{
 159	long ret = delta;
 160
 161	if (!spool)
 162		return ret;
 163
 164	spin_lock_irq(&spool->lock);
 165
 166	if (spool->max_hpages != -1) {		/* maximum size accounting */
 167		if ((spool->used_hpages + delta) <= spool->max_hpages)
 168			spool->used_hpages += delta;
 169		else {
 170			ret = -ENOMEM;
 171			goto unlock_ret;
 172		}
 173	}
 174
 175	/* minimum size accounting */
 176	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 177		if (delta > spool->rsv_hpages) {
 178			/*
 179			 * Asking for more reserves than those already taken on
 180			 * behalf of subpool.  Return difference.
 181			 */
 182			ret = delta - spool->rsv_hpages;
 183			spool->rsv_hpages = 0;
 184		} else {
 185			ret = 0;	/* reserves already accounted for */
 186			spool->rsv_hpages -= delta;
 187		}
 188	}
 189
 190unlock_ret:
 191	spin_unlock_irq(&spool->lock);
 192	return ret;
 193}
 194
 195/*
 196 * Subpool accounting for freeing and unreserving pages.
 197 * Return the number of global page reservations that must be dropped.
 198 * The return value may only be different than the passed value (delta)
 199 * in the case where a subpool minimum size must be maintained.
 200 */
 201static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 202				       long delta)
 203{
 204	long ret = delta;
 205	unsigned long flags;
 206
 207	if (!spool)
 208		return delta;
 209
 210	spin_lock_irqsave(&spool->lock, flags);
 211
 212	if (spool->max_hpages != -1)		/* maximum size accounting */
 213		spool->used_hpages -= delta;
 214
 215	 /* minimum size accounting */
 216	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 217		if (spool->rsv_hpages + delta <= spool->min_hpages)
 218			ret = 0;
 219		else
 220			ret = spool->rsv_hpages + delta - spool->min_hpages;
 221
 222		spool->rsv_hpages += delta;
 223		if (spool->rsv_hpages > spool->min_hpages)
 224			spool->rsv_hpages = spool->min_hpages;
 225	}
 226
 227	/*
 228	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 229	 * quota reference, free it now.
 230	 */
 231	unlock_or_release_subpool(spool, flags);
 232
 233	return ret;
 234}
 235
 236static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 237{
 238	return HUGETLBFS_SB(inode->i_sb)->spool;
 239}
 240
 241static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 242{
 243	return subpool_inode(file_inode(vma->vm_file));
 244}
 245
 246/* Helper that removes a struct file_region from the resv_map cache and returns
 247 * it for use.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248 */
 249static struct file_region *
 250get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 251{
 252	struct file_region *nrg = NULL;
 253
 254	VM_BUG_ON(resv->region_cache_count <= 0);
 255
 256	resv->region_cache_count--;
 257	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 258	list_del(&nrg->link);
 259
 260	nrg->from = from;
 261	nrg->to = to;
 262
 263	return nrg;
 264}
 265
 266static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 267					      struct file_region *rg)
 268{
 269#ifdef CONFIG_CGROUP_HUGETLB
 270	nrg->reservation_counter = rg->reservation_counter;
 271	nrg->css = rg->css;
 272	if (rg->css)
 273		css_get(rg->css);
 274#endif
 275}
 276
 277/* Helper that records hugetlb_cgroup uncharge info. */
 278static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 279						struct hstate *h,
 280						struct resv_map *resv,
 281						struct file_region *nrg)
 282{
 283#ifdef CONFIG_CGROUP_HUGETLB
 284	if (h_cg) {
 285		nrg->reservation_counter =
 286			&h_cg->rsvd_hugepage[hstate_index(h)];
 287		nrg->css = &h_cg->css;
 288		/*
 289		 * The caller will hold exactly one h_cg->css reference for the
 290		 * whole contiguous reservation region. But this area might be
 291		 * scattered when there are already some file_regions reside in
 292		 * it. As a result, many file_regions may share only one css
 293		 * reference. In order to ensure that one file_region must hold
 294		 * exactly one h_cg->css reference, we should do css_get for
 295		 * each file_region and leave the reference held by caller
 296		 * untouched.
 297		 */
 298		css_get(&h_cg->css);
 299		if (!resv->pages_per_hpage)
 300			resv->pages_per_hpage = pages_per_huge_page(h);
 301		/* pages_per_hpage should be the same for all entries in
 302		 * a resv_map.
 303		 */
 304		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 305	} else {
 306		nrg->reservation_counter = NULL;
 307		nrg->css = NULL;
 308	}
 309#endif
 310}
 311
 312static void put_uncharge_info(struct file_region *rg)
 313{
 314#ifdef CONFIG_CGROUP_HUGETLB
 315	if (rg->css)
 316		css_put(rg->css);
 317#endif
 318}
 319
 320static bool has_same_uncharge_info(struct file_region *rg,
 321				   struct file_region *org)
 322{
 323#ifdef CONFIG_CGROUP_HUGETLB
 324	return rg && org &&
 325	       rg->reservation_counter == org->reservation_counter &&
 326	       rg->css == org->css;
 327
 328#else
 329	return true;
 330#endif
 331}
 332
 333static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 334{
 335	struct file_region *nrg = NULL, *prg = NULL;
 336
 337	prg = list_prev_entry(rg, link);
 338	if (&prg->link != &resv->regions && prg->to == rg->from &&
 339	    has_same_uncharge_info(prg, rg)) {
 340		prg->to = rg->to;
 341
 342		list_del(&rg->link);
 343		put_uncharge_info(rg);
 344		kfree(rg);
 345
 346		rg = prg;
 347	}
 348
 349	nrg = list_next_entry(rg, link);
 350	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 351	    has_same_uncharge_info(nrg, rg)) {
 352		nrg->from = rg->from;
 353
 354		list_del(&rg->link);
 355		put_uncharge_info(rg);
 356		kfree(rg);
 357	}
 358}
 359
 360static inline long
 361hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
 362		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
 363		     long *regions_needed)
 364{
 365	struct file_region *nrg;
 366
 367	if (!regions_needed) {
 368		nrg = get_file_region_entry_from_cache(map, from, to);
 369		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
 370		list_add(&nrg->link, rg->link.prev);
 371		coalesce_file_region(map, nrg);
 372	} else
 373		*regions_needed += 1;
 374
 375	return to - from;
 376}
 377
 378/*
 379 * Must be called with resv->lock held.
 
 
 
 
 
 
 
 
 380 *
 381 * Calling this with regions_needed != NULL will count the number of pages
 382 * to be added but will not modify the linked list. And regions_needed will
 383 * indicate the number of file_regions needed in the cache to carry out to add
 384 * the regions for this range.
 385 */
 386static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 387				     struct hugetlb_cgroup *h_cg,
 388				     struct hstate *h, long *regions_needed)
 389{
 
 
 390	long add = 0;
 391	struct list_head *head = &resv->regions;
 392	long last_accounted_offset = f;
 393	struct file_region *rg = NULL, *trg = NULL;
 394
 395	if (regions_needed)
 396		*regions_needed = 0;
 397
 398	/* In this loop, we essentially handle an entry for the range
 399	 * [last_accounted_offset, rg->from), at every iteration, with some
 400	 * bounds checking.
 401	 */
 402	list_for_each_entry_safe(rg, trg, head, link) {
 403		/* Skip irrelevant regions that start before our range. */
 404		if (rg->from < f) {
 405			/* If this region ends after the last accounted offset,
 406			 * then we need to update last_accounted_offset.
 407			 */
 408			if (rg->to > last_accounted_offset)
 409				last_accounted_offset = rg->to;
 410			continue;
 411		}
 412
 413		/* When we find a region that starts beyond our range, we've
 414		 * finished.
 415		 */
 416		if (rg->from >= t)
 417			break;
 418
 419		/* Add an entry for last_accounted_offset -> rg->from, and
 420		 * update last_accounted_offset.
 421		 */
 422		if (rg->from > last_accounted_offset)
 423			add += hugetlb_resv_map_add(resv, rg,
 424						    last_accounted_offset,
 425						    rg->from, h, h_cg,
 426						    regions_needed);
 427
 428		last_accounted_offset = rg->to;
 429	}
 430
 431	/* Handle the case where our range extends beyond
 432	 * last_accounted_offset.
 433	 */
 434	if (last_accounted_offset < t)
 435		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
 436					    t, h, h_cg, regions_needed);
 437
 438	VM_BUG_ON(add < 0);
 439	return add;
 440}
 441
 442/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 443 */
 444static int allocate_file_region_entries(struct resv_map *resv,
 445					int regions_needed)
 446	__must_hold(&resv->lock)
 447{
 448	struct list_head allocated_regions;
 449	int to_allocate = 0, i = 0;
 450	struct file_region *trg = NULL, *rg = NULL;
 451
 452	VM_BUG_ON(regions_needed < 0);
 453
 454	INIT_LIST_HEAD(&allocated_regions);
 455
 456	/*
 457	 * Check for sufficient descriptors in the cache to accommodate
 458	 * the number of in progress add operations plus regions_needed.
 459	 *
 460	 * This is a while loop because when we drop the lock, some other call
 461	 * to region_add or region_del may have consumed some region_entries,
 462	 * so we keep looping here until we finally have enough entries for
 463	 * (adds_in_progress + regions_needed).
 464	 */
 465	while (resv->region_cache_count <
 466	       (resv->adds_in_progress + regions_needed)) {
 467		to_allocate = resv->adds_in_progress + regions_needed -
 468			      resv->region_cache_count;
 469
 470		/* At this point, we should have enough entries in the cache
 471		 * for all the existing adds_in_progress. We should only be
 472		 * needing to allocate for regions_needed.
 473		 */
 474		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 475
 476		spin_unlock(&resv->lock);
 477		for (i = 0; i < to_allocate; i++) {
 478			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 479			if (!trg)
 480				goto out_of_memory;
 481			list_add(&trg->link, &allocated_regions);
 482		}
 483
 484		spin_lock(&resv->lock);
 485
 486		list_splice(&allocated_regions, &resv->region_cache);
 487		resv->region_cache_count += to_allocate;
 488	}
 489
 490	return 0;
 
 
 
 
 
 
 
 
 
 
 491
 492out_of_memory:
 493	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 494		list_del(&rg->link);
 495		kfree(rg);
 496	}
 497	return -ENOMEM;
 498}
 499
 500/*
 501 * Add the huge page range represented by [f, t) to the reserve
 502 * map.  Regions will be taken from the cache to fill in this range.
 503 * Sufficient regions should exist in the cache due to the previous
 504 * call to region_chg with the same range, but in some cases the cache will not
 505 * have sufficient entries due to races with other code doing region_add or
 506 * region_del.  The extra needed entries will be allocated.
 507 *
 508 * regions_needed is the out value provided by a previous call to region_chg.
 509 *
 510 * Return the number of new huge pages added to the map.  This number is greater
 511 * than or equal to zero.  If file_region entries needed to be allocated for
 512 * this operation and we were not able to allocate, it returns -ENOMEM.
 513 * region_add of regions of length 1 never allocate file_regions and cannot
 514 * fail; region_chg will always allocate at least 1 entry and a region_add for
 515 * 1 page will only require at most 1 entry.
 516 */
 517static long region_add(struct resv_map *resv, long f, long t,
 518		       long in_regions_needed, struct hstate *h,
 519		       struct hugetlb_cgroup *h_cg)
 520{
 521	long add = 0, actual_regions_needed = 0;
 522
 523	spin_lock(&resv->lock);
 524retry:
 525
 526	/* Count how many regions are actually needed to execute this add. */
 527	add_reservation_in_range(resv, f, t, NULL, NULL,
 528				 &actual_regions_needed);
 529
 530	/*
 531	 * Check for sufficient descriptors in the cache to accommodate
 532	 * this add operation. Note that actual_regions_needed may be greater
 533	 * than in_regions_needed, as the resv_map may have been modified since
 534	 * the region_chg call. In this case, we need to make sure that we
 535	 * allocate extra entries, such that we have enough for all the
 536	 * existing adds_in_progress, plus the excess needed for this
 537	 * operation.
 538	 */
 539	if (actual_regions_needed > in_regions_needed &&
 540	    resv->region_cache_count <
 541		    resv->adds_in_progress +
 542			    (actual_regions_needed - in_regions_needed)) {
 543		/* region_add operation of range 1 should never need to
 544		 * allocate file_region entries.
 545		 */
 546		VM_BUG_ON(t - f <= 1);
 547
 548		if (allocate_file_region_entries(
 549			    resv, actual_regions_needed - in_regions_needed)) {
 550			return -ENOMEM;
 551		}
 552
 553		goto retry;
 554	}
 555
 556	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 557
 558	resv->adds_in_progress -= in_regions_needed;
 
 559
 
 
 560	spin_unlock(&resv->lock);
 
 561	return add;
 562}
 563
 564/*
 565 * Examine the existing reserve map and determine how many
 566 * huge pages in the specified range [f, t) are NOT currently
 567 * represented.  This routine is called before a subsequent
 568 * call to region_add that will actually modify the reserve
 569 * map to add the specified range [f, t).  region_chg does
 570 * not change the number of huge pages represented by the
 571 * map.  A number of new file_region structures is added to the cache as a
 572 * placeholder, for the subsequent region_add call to use. At least 1
 573 * file_region structure is added.
 
 
 574 *
 575 * out_regions_needed is the number of regions added to the
 576 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 577 * to region_add or region_abort for proper accounting.
 578 *
 579 * Returns the number of huge pages that need to be added to the existing
 580 * reservation map for the range [f, t).  This number is greater or equal to
 581 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 582 * is needed and can not be allocated.
 583 */
 584static long region_chg(struct resv_map *resv, long f, long t,
 585		       long *out_regions_needed)
 586{
 
 
 587	long chg = 0;
 588
 
 589	spin_lock(&resv->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 590
 591	/* Count how many hugepages in this range are NOT represented. */
 592	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 593				       out_regions_needed);
 
 
 594
 595	if (*out_regions_needed == 0)
 596		*out_regions_needed = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597
 598	if (allocate_file_region_entries(resv, *out_regions_needed))
 599		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601	resv->adds_in_progress += *out_regions_needed;
 
 
 
 
 
 
 
 
 602
 
 
 
 
 
 
 603	spin_unlock(&resv->lock);
 604	return chg;
 605}
 606
 607/*
 608 * Abort the in progress add operation.  The adds_in_progress field
 609 * of the resv_map keeps track of the operations in progress between
 610 * calls to region_chg and region_add.  Operations are sometimes
 611 * aborted after the call to region_chg.  In such cases, region_abort
 612 * is called to decrement the adds_in_progress counter. regions_needed
 613 * is the value returned by the region_chg call, it is used to decrement
 614 * the adds_in_progress counter.
 615 *
 616 * NOTE: The range arguments [f, t) are not needed or used in this
 617 * routine.  They are kept to make reading the calling code easier as
 618 * arguments will match the associated region_chg call.
 619 */
 620static void region_abort(struct resv_map *resv, long f, long t,
 621			 long regions_needed)
 622{
 623	spin_lock(&resv->lock);
 624	VM_BUG_ON(!resv->region_cache_count);
 625	resv->adds_in_progress -= regions_needed;
 626	spin_unlock(&resv->lock);
 627}
 628
 629/*
 630 * Delete the specified range [f, t) from the reserve map.  If the
 631 * t parameter is LONG_MAX, this indicates that ALL regions after f
 632 * should be deleted.  Locate the regions which intersect [f, t)
 633 * and either trim, delete or split the existing regions.
 634 *
 635 * Returns the number of huge pages deleted from the reserve map.
 636 * In the normal case, the return value is zero or more.  In the
 637 * case where a region must be split, a new region descriptor must
 638 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 639 * NOTE: If the parameter t == LONG_MAX, then we will never split
 640 * a region and possibly return -ENOMEM.  Callers specifying
 641 * t == LONG_MAX do not need to check for -ENOMEM error.
 642 */
 643static long region_del(struct resv_map *resv, long f, long t)
 644{
 645	struct list_head *head = &resv->regions;
 646	struct file_region *rg, *trg;
 647	struct file_region *nrg = NULL;
 648	long del = 0;
 649
 650retry:
 651	spin_lock(&resv->lock);
 652	list_for_each_entry_safe(rg, trg, head, link) {
 653		/*
 654		 * Skip regions before the range to be deleted.  file_region
 655		 * ranges are normally of the form [from, to).  However, there
 656		 * may be a "placeholder" entry in the map which is of the form
 657		 * (from, to) with from == to.  Check for placeholder entries
 658		 * at the beginning of the range to be deleted.
 659		 */
 660		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 661			continue;
 662
 663		if (rg->from >= t)
 664			break;
 665
 666		if (f > rg->from && t < rg->to) { /* Must split region */
 667			/*
 668			 * Check for an entry in the cache before dropping
 669			 * lock and attempting allocation.
 670			 */
 671			if (!nrg &&
 672			    resv->region_cache_count > resv->adds_in_progress) {
 673				nrg = list_first_entry(&resv->region_cache,
 674							struct file_region,
 675							link);
 676				list_del(&nrg->link);
 677				resv->region_cache_count--;
 678			}
 679
 680			if (!nrg) {
 681				spin_unlock(&resv->lock);
 682				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 683				if (!nrg)
 684					return -ENOMEM;
 685				goto retry;
 686			}
 687
 688			del += t - f;
 689			hugetlb_cgroup_uncharge_file_region(
 690				resv, rg, t - f, false);
 691
 692			/* New entry for end of split region */
 693			nrg->from = t;
 694			nrg->to = rg->to;
 695
 696			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 697
 698			INIT_LIST_HEAD(&nrg->link);
 699
 700			/* Original entry is trimmed */
 701			rg->to = f;
 702
 703			list_add(&nrg->link, &rg->link);
 704			nrg = NULL;
 705			break;
 706		}
 707
 708		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 709			del += rg->to - rg->from;
 710			hugetlb_cgroup_uncharge_file_region(resv, rg,
 711							    rg->to - rg->from, true);
 712			list_del(&rg->link);
 713			kfree(rg);
 714			continue;
 715		}
 716
 717		if (f <= rg->from) {	/* Trim beginning of region */
 718			hugetlb_cgroup_uncharge_file_region(resv, rg,
 719							    t - rg->from, false);
 720
 721			del += t - rg->from;
 722			rg->from = t;
 723		} else {		/* Trim end of region */
 724			hugetlb_cgroup_uncharge_file_region(resv, rg,
 725							    rg->to - f, false);
 726
 727			del += rg->to - f;
 728			rg->to = f;
 729		}
 730	}
 731
 732	spin_unlock(&resv->lock);
 733	kfree(nrg);
 734	return del;
 735}
 736
 737/*
 738 * A rare out of memory error was encountered which prevented removal of
 739 * the reserve map region for a page.  The huge page itself was free'ed
 740 * and removed from the page cache.  This routine will adjust the subpool
 741 * usage count, and the global reserve count if needed.  By incrementing
 742 * these counts, the reserve map entry which could not be deleted will
 743 * appear as a "reserved" entry instead of simply dangling with incorrect
 744 * counts.
 745 */
 746void hugetlb_fix_reserve_counts(struct inode *inode)
 747{
 748	struct hugepage_subpool *spool = subpool_inode(inode);
 749	long rsv_adjust;
 750	bool reserved = false;
 751
 752	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 753	if (rsv_adjust > 0) {
 754		struct hstate *h = hstate_inode(inode);
 755
 756		if (!hugetlb_acct_memory(h, 1))
 757			reserved = true;
 758	} else if (!rsv_adjust) {
 759		reserved = true;
 760	}
 761
 762	if (!reserved)
 763		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
 764}
 765
 766/*
 767 * Count and return the number of huge pages in the reserve map
 768 * that intersect with the range [f, t).
 769 */
 770static long region_count(struct resv_map *resv, long f, long t)
 771{
 772	struct list_head *head = &resv->regions;
 773	struct file_region *rg;
 774	long chg = 0;
 775
 776	spin_lock(&resv->lock);
 777	/* Locate each segment we overlap with, and count that overlap. */
 778	list_for_each_entry(rg, head, link) {
 779		long seg_from;
 780		long seg_to;
 781
 782		if (rg->to <= f)
 783			continue;
 784		if (rg->from >= t)
 785			break;
 786
 787		seg_from = max(rg->from, f);
 788		seg_to = min(rg->to, t);
 789
 790		chg += seg_to - seg_from;
 791	}
 792	spin_unlock(&resv->lock);
 793
 794	return chg;
 795}
 796
 797/*
 798 * Convert the address within this vma to the page offset within
 799 * the mapping, in pagecache page units; huge pages here.
 800 */
 801static pgoff_t vma_hugecache_offset(struct hstate *h,
 802			struct vm_area_struct *vma, unsigned long address)
 803{
 804	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 805			(vma->vm_pgoff >> huge_page_order(h));
 806}
 807
 808pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 809				     unsigned long address)
 810{
 811	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 812}
 813EXPORT_SYMBOL_GPL(linear_hugepage_index);
 814
 815/*
 816 * Return the size of the pages allocated when backing a VMA. In the majority
 817 * cases this will be same size as used by the page table entries.
 818 */
 819unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 820{
 821	if (vma->vm_ops && vma->vm_ops->pagesize)
 822		return vma->vm_ops->pagesize(vma);
 823	return PAGE_SIZE;
 824}
 825EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 826
 827/*
 828 * Return the page size being used by the MMU to back a VMA. In the majority
 829 * of cases, the page size used by the kernel matches the MMU size. On
 830 * architectures where it differs, an architecture-specific 'strong'
 831 * version of this symbol is required.
 832 */
 833__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 834{
 835	return vma_kernel_pagesize(vma);
 836}
 837
 838/*
 839 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 840 * bits of the reservation map pointer, which are always clear due to
 841 * alignment.
 842 */
 843#define HPAGE_RESV_OWNER    (1UL << 0)
 844#define HPAGE_RESV_UNMAPPED (1UL << 1)
 845#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 846
 847/*
 848 * These helpers are used to track how many pages are reserved for
 849 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 850 * is guaranteed to have their future faults succeed.
 851 *
 852 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 853 * the reserve counters are updated with the hugetlb_lock held. It is safe
 854 * to reset the VMA at fork() time as it is not in use yet and there is no
 855 * chance of the global counters getting corrupted as a result of the values.
 856 *
 857 * The private mapping reservation is represented in a subtly different
 858 * manner to a shared mapping.  A shared mapping has a region map associated
 859 * with the underlying file, this region map represents the backing file
 860 * pages which have ever had a reservation assigned which this persists even
 861 * after the page is instantiated.  A private mapping has a region map
 862 * associated with the original mmap which is attached to all VMAs which
 863 * reference it, this region map represents those offsets which have consumed
 864 * reservation ie. where pages have been instantiated.
 865 */
 866static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 867{
 868	return (unsigned long)vma->vm_private_data;
 869}
 870
 871static void set_vma_private_data(struct vm_area_struct *vma,
 872							unsigned long value)
 873{
 874	vma->vm_private_data = (void *)value;
 875}
 876
 877static void
 878resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 879					  struct hugetlb_cgroup *h_cg,
 880					  struct hstate *h)
 881{
 882#ifdef CONFIG_CGROUP_HUGETLB
 883	if (!h_cg || !h) {
 884		resv_map->reservation_counter = NULL;
 885		resv_map->pages_per_hpage = 0;
 886		resv_map->css = NULL;
 887	} else {
 888		resv_map->reservation_counter =
 889			&h_cg->rsvd_hugepage[hstate_index(h)];
 890		resv_map->pages_per_hpage = pages_per_huge_page(h);
 891		resv_map->css = &h_cg->css;
 892	}
 893#endif
 894}
 895
 896struct resv_map *resv_map_alloc(void)
 897{
 898	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 899	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 900
 901	if (!resv_map || !rg) {
 902		kfree(resv_map);
 903		kfree(rg);
 904		return NULL;
 905	}
 906
 907	kref_init(&resv_map->refs);
 908	spin_lock_init(&resv_map->lock);
 909	INIT_LIST_HEAD(&resv_map->regions);
 910
 911	resv_map->adds_in_progress = 0;
 912	/*
 913	 * Initialize these to 0. On shared mappings, 0's here indicate these
 914	 * fields don't do cgroup accounting. On private mappings, these will be
 915	 * re-initialized to the proper values, to indicate that hugetlb cgroup
 916	 * reservations are to be un-charged from here.
 917	 */
 918	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 919
 920	INIT_LIST_HEAD(&resv_map->region_cache);
 921	list_add(&rg->link, &resv_map->region_cache);
 922	resv_map->region_cache_count = 1;
 923
 924	return resv_map;
 925}
 926
 927void resv_map_release(struct kref *ref)
 928{
 929	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 930	struct list_head *head = &resv_map->region_cache;
 931	struct file_region *rg, *trg;
 932
 933	/* Clear out any active regions before we release the map. */
 934	region_del(resv_map, 0, LONG_MAX);
 935
 936	/* ... and any entries left in the cache */
 937	list_for_each_entry_safe(rg, trg, head, link) {
 938		list_del(&rg->link);
 939		kfree(rg);
 940	}
 941
 942	VM_BUG_ON(resv_map->adds_in_progress);
 943
 944	kfree(resv_map);
 945}
 946
 947static inline struct resv_map *inode_resv_map(struct inode *inode)
 948{
 949	/*
 950	 * At inode evict time, i_mapping may not point to the original
 951	 * address space within the inode.  This original address space
 952	 * contains the pointer to the resv_map.  So, always use the
 953	 * address space embedded within the inode.
 954	 * The VERY common case is inode->mapping == &inode->i_data but,
 955	 * this may not be true for device special inodes.
 956	 */
 957	return (struct resv_map *)(&inode->i_data)->private_data;
 958}
 959
 960static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 961{
 962	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 963	if (vma->vm_flags & VM_MAYSHARE) {
 964		struct address_space *mapping = vma->vm_file->f_mapping;
 965		struct inode *inode = mapping->host;
 966
 967		return inode_resv_map(inode);
 968
 969	} else {
 970		return (struct resv_map *)(get_vma_private_data(vma) &
 971							~HPAGE_RESV_MASK);
 972	}
 973}
 974
 975static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 976{
 977	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 978	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 979
 980	set_vma_private_data(vma, (get_vma_private_data(vma) &
 981				HPAGE_RESV_MASK) | (unsigned long)map);
 982}
 983
 984static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 985{
 986	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 987	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 988
 989	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 990}
 991
 992static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 993{
 994	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 995
 996	return (get_vma_private_data(vma) & flag) != 0;
 997}
 998
 999/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001{
1002	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003	if (!(vma->vm_flags & VM_MAYSHARE))
1004		vma->vm_private_data = (void *)0;
1005}
1006
1007/* Returns true if the VMA has associated reserve pages */
1008static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009{
1010	if (vma->vm_flags & VM_NORESERVE) {
1011		/*
1012		 * This address is already reserved by other process(chg == 0),
1013		 * so, we should decrement reserved count. Without decrementing,
1014		 * reserve count remains after releasing inode, because this
1015		 * allocated page will go into page cache and is regarded as
1016		 * coming from reserved pool in releasing step.  Currently, we
1017		 * don't have any other solution to deal with this situation
1018		 * properly, so add work-around here.
1019		 */
1020		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021			return true;
1022		else
1023			return false;
1024	}
1025
1026	/* Shared mappings always use reserves */
1027	if (vma->vm_flags & VM_MAYSHARE) {
1028		/*
1029		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1030		 * be a region map for all pages.  The only situation where
1031		 * there is no region map is if a hole was punched via
1032		 * fallocate.  In this case, there really are no reserves to
1033		 * use.  This situation is indicated if chg != 0.
1034		 */
1035		if (chg)
1036			return false;
1037		else
1038			return true;
1039	}
1040
1041	/*
1042	 * Only the process that called mmap() has reserves for
1043	 * private mappings.
1044	 */
1045	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046		/*
1047		 * Like the shared case above, a hole punch or truncate
1048		 * could have been performed on the private mapping.
1049		 * Examine the value of chg to determine if reserves
1050		 * actually exist or were previously consumed.
1051		 * Very Subtle - The value of chg comes from a previous
1052		 * call to vma_needs_reserves().  The reserve map for
1053		 * private mappings has different (opposite) semantics
1054		 * than that of shared mappings.  vma_needs_reserves()
1055		 * has already taken this difference in semantics into
1056		 * account.  Therefore, the meaning of chg is the same
1057		 * as in the shared case above.  Code could easily be
1058		 * combined, but keeping it separate draws attention to
1059		 * subtle differences.
1060		 */
1061		if (chg)
1062			return false;
1063		else
1064			return true;
1065	}
1066
1067	return false;
1068}
1069
1070static void enqueue_huge_page(struct hstate *h, struct page *page)
1071{
1072	int nid = page_to_nid(page);
1073
1074	lockdep_assert_held(&hugetlb_lock);
1075	list_move(&page->lru, &h->hugepage_freelists[nid]);
1076	h->free_huge_pages++;
1077	h->free_huge_pages_node[nid]++;
1078	SetHPageFreed(page);
1079}
1080
1081static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1082{
1083	struct page *page;
1084	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1085
1086	lockdep_assert_held(&hugetlb_lock);
1087	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1088		if (pin && !is_pinnable_page(page))
1089			continue;
1090
1091		if (PageHWPoison(page))
1092			continue;
1093
1094		list_move(&page->lru, &h->hugepage_activelist);
1095		set_page_refcounted(page);
1096		ClearHPageFreed(page);
1097		h->free_huge_pages--;
1098		h->free_huge_pages_node[nid]--;
1099		return page;
1100	}
1101
1102	return NULL;
1103}
1104
1105static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1106		nodemask_t *nmask)
1107{
1108	unsigned int cpuset_mems_cookie;
1109	struct zonelist *zonelist;
1110	struct zone *zone;
1111	struct zoneref *z;
1112	int node = NUMA_NO_NODE;
1113
1114	zonelist = node_zonelist(nid, gfp_mask);
1115
1116retry_cpuset:
1117	cpuset_mems_cookie = read_mems_allowed_begin();
1118	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1119		struct page *page;
1120
1121		if (!cpuset_zone_allowed(zone, gfp_mask))
1122			continue;
1123		/*
1124		 * no need to ask again on the same node. Pool is node rather than
1125		 * zone aware
1126		 */
1127		if (zone_to_nid(zone) == node)
1128			continue;
1129		node = zone_to_nid(zone);
1130
1131		page = dequeue_huge_page_node_exact(h, node);
1132		if (page)
1133			return page;
1134	}
1135	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1136		goto retry_cpuset;
1137
1138	return NULL;
1139}
1140
 
 
 
 
 
 
 
 
 
1141static struct page *dequeue_huge_page_vma(struct hstate *h,
1142				struct vm_area_struct *vma,
1143				unsigned long address, int avoid_reserve,
1144				long chg)
1145{
1146	struct page *page;
1147	struct mempolicy *mpol;
1148	gfp_t gfp_mask;
1149	nodemask_t *nodemask;
1150	int nid;
1151
1152	/*
1153	 * A child process with MAP_PRIVATE mappings created by their parent
1154	 * have no page reserves. This check ensures that reservations are
1155	 * not "stolen". The child may still get SIGKILLed
1156	 */
1157	if (!vma_has_reserves(vma, chg) &&
1158			h->free_huge_pages - h->resv_huge_pages == 0)
1159		goto err;
1160
1161	/* If reserves cannot be used, ensure enough pages are in the pool */
1162	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1163		goto err;
1164
1165	gfp_mask = htlb_alloc_mask(h);
1166	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1167	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1168	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1169		SetHPageRestoreReserve(page);
1170		h->resv_huge_pages--;
1171	}
1172
1173	mpol_cond_put(mpol);
1174	return page;
1175
1176err:
1177	return NULL;
1178}
1179
1180/*
1181 * common helper functions for hstate_next_node_to_{alloc|free}.
1182 * We may have allocated or freed a huge page based on a different
1183 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1184 * be outside of *nodes_allowed.  Ensure that we use an allowed
1185 * node for alloc or free.
1186 */
1187static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1188{
1189	nid = next_node_in(nid, *nodes_allowed);
1190	VM_BUG_ON(nid >= MAX_NUMNODES);
1191
1192	return nid;
1193}
1194
1195static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1196{
1197	if (!node_isset(nid, *nodes_allowed))
1198		nid = next_node_allowed(nid, nodes_allowed);
1199	return nid;
1200}
1201
1202/*
1203 * returns the previously saved node ["this node"] from which to
1204 * allocate a persistent huge page for the pool and advance the
1205 * next node from which to allocate, handling wrap at end of node
1206 * mask.
1207 */
1208static int hstate_next_node_to_alloc(struct hstate *h,
1209					nodemask_t *nodes_allowed)
1210{
1211	int nid;
1212
1213	VM_BUG_ON(!nodes_allowed);
1214
1215	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1216	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1217
1218	return nid;
1219}
1220
1221/*
1222 * helper for remove_pool_huge_page() - return the previously saved
1223 * node ["this node"] from which to free a huge page.  Advance the
1224 * next node id whether or not we find a free huge page to free so
1225 * that the next attempt to free addresses the next node.
1226 */
1227static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1228{
1229	int nid;
1230
1231	VM_BUG_ON(!nodes_allowed);
1232
1233	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1234	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1235
1236	return nid;
1237}
1238
1239#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1240	for (nr_nodes = nodes_weight(*mask);				\
1241		nr_nodes > 0 &&						\
1242		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1243		nr_nodes--)
1244
1245#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1246	for (nr_nodes = nodes_weight(*mask);				\
1247		nr_nodes > 0 &&						\
1248		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1249		nr_nodes--)
1250
1251#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1252static void destroy_compound_gigantic_page(struct page *page,
1253					unsigned int order)
1254{
1255	int i;
1256	int nr_pages = 1 << order;
1257	struct page *p = page + 1;
1258
1259	atomic_set(compound_mapcount_ptr(page), 0);
1260	atomic_set(compound_pincount_ptr(page), 0);
1261
1262	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1263		clear_compound_head(p);
1264		set_page_refcounted(p);
1265	}
1266
1267	set_compound_order(page, 0);
1268	page[1].compound_nr = 0;
1269	__ClearPageHead(page);
1270}
1271
1272static void free_gigantic_page(struct page *page, unsigned int order)
1273{
1274	/*
1275	 * If the page isn't allocated using the cma allocator,
1276	 * cma_release() returns false.
1277	 */
1278#ifdef CONFIG_CMA
1279	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1280		return;
1281#endif
1282
1283	free_contig_range(page_to_pfn(page), 1 << order);
1284}
1285
1286#ifdef CONFIG_CONTIG_ALLOC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1287static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1288		int nid, nodemask_t *nodemask)
1289{
1290	unsigned long nr_pages = pages_per_huge_page(h);
1291	if (nid == NUMA_NO_NODE)
1292		nid = numa_mem_id();
 
 
 
1293
1294#ifdef CONFIG_CMA
1295	{
1296		struct page *page;
1297		int node;
1298
1299		if (hugetlb_cma[nid]) {
1300			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1301					huge_page_order(h), true);
1302			if (page)
1303				return page;
1304		}
1305
1306		if (!(gfp_mask & __GFP_THISNODE)) {
1307			for_each_node_mask(node, *nodemask) {
1308				if (node == nid || !hugetlb_cma[node])
1309					continue;
1310
1311				page = cma_alloc(hugetlb_cma[node], nr_pages,
1312						huge_page_order(h), true);
1313				if (page)
1314					return page;
1315			}
 
1316		}
 
 
1317	}
1318#endif
1319
1320	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1321}
1322
 
 
1323#else /* !CONFIG_CONTIG_ALLOC */
1324static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325					int nid, nodemask_t *nodemask)
1326{
1327	return NULL;
1328}
1329#endif /* CONFIG_CONTIG_ALLOC */
1330
1331#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1332static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1333					int nid, nodemask_t *nodemask)
1334{
1335	return NULL;
1336}
1337static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1338static inline void destroy_compound_gigantic_page(struct page *page,
1339						unsigned int order) { }
1340#endif
1341
1342/*
1343 * Remove hugetlb page from lists, and update dtor so that page appears
1344 * as just a compound page.  A reference is held on the page.
1345 *
1346 * Must be called with hugetlb lock held.
1347 */
1348static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349							bool adjust_surplus)
1350{
1351	int nid = page_to_nid(page);
1352
1353	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355
1356	lockdep_assert_held(&hugetlb_lock);
1357	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358		return;
1359
1360	list_del(&page->lru);
1361
1362	if (HPageFreed(page)) {
1363		h->free_huge_pages--;
1364		h->free_huge_pages_node[nid]--;
1365	}
1366	if (adjust_surplus) {
1367		h->surplus_huge_pages--;
1368		h->surplus_huge_pages_node[nid]--;
1369	}
1370
1371	set_page_refcounted(page);
1372	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373
1374	h->nr_huge_pages--;
1375	h->nr_huge_pages_node[nid]--;
1376}
1377
1378static void add_hugetlb_page(struct hstate *h, struct page *page,
1379			     bool adjust_surplus)
1380{
1381	int zeroed;
1382	int nid = page_to_nid(page);
1383
1384	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1385
1386	lockdep_assert_held(&hugetlb_lock);
1387
1388	INIT_LIST_HEAD(&page->lru);
1389	h->nr_huge_pages++;
1390	h->nr_huge_pages_node[nid]++;
1391
1392	if (adjust_surplus) {
1393		h->surplus_huge_pages++;
1394		h->surplus_huge_pages_node[nid]++;
1395	}
1396
1397	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1398	set_page_private(page, 0);
1399	SetHPageVmemmapOptimized(page);
1400
1401	/*
1402	 * This page is now managed by the hugetlb allocator and has
1403	 * no users -- drop the last reference.
1404	 */
1405	zeroed = put_page_testzero(page);
1406	VM_BUG_ON_PAGE(!zeroed, page);
1407	arch_clear_hugepage_flags(page);
1408	enqueue_huge_page(h, page);
1409}
1410
1411static void __update_and_free_page(struct hstate *h, struct page *page)
1412{
1413	int i;
1414	struct page *subpage = page;
1415
1416	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1417		return;
1418
1419	if (alloc_huge_page_vmemmap(h, page)) {
1420		spin_lock_irq(&hugetlb_lock);
1421		/*
1422		 * If we cannot allocate vmemmap pages, just refuse to free the
1423		 * page and put the page back on the hugetlb free list and treat
1424		 * as a surplus page.
1425		 */
1426		add_hugetlb_page(h, page, true);
1427		spin_unlock_irq(&hugetlb_lock);
1428		return;
1429	}
1430
1431	for (i = 0; i < pages_per_huge_page(h);
1432	     i++, subpage = mem_map_next(subpage, page, i)) {
1433		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1434				1 << PG_referenced | 1 << PG_dirty |
1435				1 << PG_active | 1 << PG_private |
1436				1 << PG_writeback);
1437	}
 
 
 
1438	if (hstate_is_gigantic(h)) {
1439		destroy_compound_gigantic_page(page, huge_page_order(h));
1440		free_gigantic_page(page, huge_page_order(h));
1441	} else {
1442		__free_pages(page, huge_page_order(h));
1443	}
1444}
1445
 
 
 
 
 
 
 
 
 
 
 
1446/*
1447 * As update_and_free_page() can be called under any context, so we cannot
1448 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1449 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1450 * the vmemmap pages.
1451 *
1452 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1453 * freed and frees them one-by-one. As the page->mapping pointer is going
1454 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1455 * structure of a lockless linked list of huge pages to be freed.
1456 */
1457static LLIST_HEAD(hpage_freelist);
 
 
 
 
1458
1459static void free_hpage_workfn(struct work_struct *work)
 
1460{
1461	struct llist_node *node;
1462
1463	node = llist_del_all(&hpage_freelist);
1464
1465	while (node) {
1466		struct page *page;
1467		struct hstate *h;
1468
1469		page = container_of((struct address_space **)node,
1470				     struct page, mapping);
1471		node = node->next;
1472		page->mapping = NULL;
1473		/*
1474		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1475		 * is going to trigger because a previous call to
1476		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1477		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1478		 */
1479		h = size_to_hstate(page_size(page));
1480
1481		__update_and_free_page(h, page);
1482
1483		cond_resched();
1484	}
1485}
1486static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1487
1488static inline void flush_free_hpage_work(struct hstate *h)
1489{
1490	if (free_vmemmap_pages_per_hpage(h))
1491		flush_work(&free_hpage_work);
1492}
1493
1494static void update_and_free_page(struct hstate *h, struct page *page,
1495				 bool atomic)
 
 
 
1496{
1497	if (!HPageVmemmapOptimized(page) || !atomic) {
1498		__update_and_free_page(h, page);
1499		return;
1500	}
1501
1502	/*
1503	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1504	 *
1505	 * Only call schedule_work() if hpage_freelist is previously
1506	 * empty. Otherwise, schedule_work() had been called but the workfn
1507	 * hasn't retrieved the list yet.
1508	 */
1509	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1510		schedule_work(&free_hpage_work);
1511}
1512
1513static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1514{
1515	struct page *page, *t_page;
1516
1517	list_for_each_entry_safe(page, t_page, list, lru) {
1518		update_and_free_page(h, page, false);
1519		cond_resched();
1520	}
1521}
1522
1523struct hstate *size_to_hstate(unsigned long size)
1524{
1525	struct hstate *h;
1526
1527	for_each_hstate(h) {
1528		if (huge_page_size(h) == size)
1529			return h;
1530	}
1531	return NULL;
1532}
1533
1534void free_huge_page(struct page *page)
1535{
1536	/*
1537	 * Can't pass hstate in here because it is called from the
1538	 * compound page destructor.
1539	 */
1540	struct hstate *h = page_hstate(page);
1541	int nid = page_to_nid(page);
1542	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
 
1543	bool restore_reserve;
1544	unsigned long flags;
1545
1546	VM_BUG_ON_PAGE(page_count(page), page);
1547	VM_BUG_ON_PAGE(page_mapcount(page), page);
1548
1549	hugetlb_set_page_subpool(page, NULL);
1550	page->mapping = NULL;
1551	restore_reserve = HPageRestoreReserve(page);
1552	ClearHPageRestoreReserve(page);
1553
1554	/*
1555	 * If HPageRestoreReserve was set on page, page allocation consumed a
1556	 * reservation.  If the page was associated with a subpool, there
1557	 * would have been a page reserved in the subpool before allocation
1558	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1559	 * reservation, do not call hugepage_subpool_put_pages() as this will
1560	 * remove the reserved page from the subpool.
1561	 */
1562	if (!restore_reserve) {
1563		/*
1564		 * A return code of zero implies that the subpool will be
1565		 * under its minimum size if the reservation is not restored
1566		 * after page is free.  Therefore, force restore_reserve
1567		 * operation.
1568		 */
1569		if (hugepage_subpool_put_pages(spool, 1) == 0)
1570			restore_reserve = true;
1571	}
1572
1573	spin_lock_irqsave(&hugetlb_lock, flags);
1574	ClearHPageMigratable(page);
1575	hugetlb_cgroup_uncharge_page(hstate_index(h),
1576				     pages_per_huge_page(h), page);
1577	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1578					  pages_per_huge_page(h), page);
1579	if (restore_reserve)
1580		h->resv_huge_pages++;
1581
1582	if (HPageTemporary(page)) {
1583		remove_hugetlb_page(h, page, false);
1584		spin_unlock_irqrestore(&hugetlb_lock, flags);
1585		update_and_free_page(h, page, true);
1586	} else if (h->surplus_huge_pages_node[nid]) {
1587		/* remove the page from active list */
1588		remove_hugetlb_page(h, page, true);
1589		spin_unlock_irqrestore(&hugetlb_lock, flags);
1590		update_and_free_page(h, page, true);
 
1591	} else {
1592		arch_clear_hugepage_flags(page);
1593		enqueue_huge_page(h, page);
1594		spin_unlock_irqrestore(&hugetlb_lock, flags);
1595	}
 
1596}
1597
1598/*
1599 * Must be called with the hugetlb lock held
1600 */
1601static void __prep_account_new_huge_page(struct hstate *h, int nid)
1602{
1603	lockdep_assert_held(&hugetlb_lock);
1604	h->nr_huge_pages++;
1605	h->nr_huge_pages_node[nid]++;
1606}
1607
1608static void __prep_new_huge_page(struct hstate *h, struct page *page)
1609{
1610	free_huge_page_vmemmap(h, page);
1611	INIT_LIST_HEAD(&page->lru);
1612	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1613	hugetlb_set_page_subpool(page, NULL);
1614	set_hugetlb_cgroup(page, NULL);
1615	set_hugetlb_cgroup_rsvd(page, NULL);
 
 
1616}
1617
1618static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1619{
1620	__prep_new_huge_page(h, page);
1621	spin_lock_irq(&hugetlb_lock);
1622	__prep_account_new_huge_page(h, nid);
1623	spin_unlock_irq(&hugetlb_lock);
1624}
1625
1626static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1627{
1628	int i, j;
1629	int nr_pages = 1 << order;
1630	struct page *p = page + 1;
1631
1632	/* we rely on prep_new_huge_page to set the destructor */
1633	set_compound_order(page, order);
1634	__ClearPageReserved(page);
1635	__SetPageHead(page);
1636	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1637		/*
1638		 * For gigantic hugepages allocated through bootmem at
1639		 * boot, it's safer to be consistent with the not-gigantic
1640		 * hugepages and clear the PG_reserved bit from all tail pages
1641		 * too.  Otherwise drivers using get_user_pages() to access tail
1642		 * pages may get the reference counting wrong if they see
1643		 * PG_reserved set on a tail page (despite the head page not
1644		 * having PG_reserved set).  Enforcing this consistency between
1645		 * head and tail pages allows drivers to optimize away a check
1646		 * on the head page when they need know if put_page() is needed
1647		 * after get_user_pages().
1648		 */
1649		__ClearPageReserved(p);
1650		/*
1651		 * Subtle and very unlikely
1652		 *
1653		 * Gigantic 'page allocators' such as memblock or cma will
1654		 * return a set of pages with each page ref counted.  We need
1655		 * to turn this set of pages into a compound page with tail
1656		 * page ref counts set to zero.  Code such as speculative page
1657		 * cache adding could take a ref on a 'to be' tail page.
1658		 * We need to respect any increased ref count, and only set
1659		 * the ref count to zero if count is currently 1.  If count
1660		 * is not 1, we call synchronize_rcu in the hope that a rcu
1661		 * grace period will cause ref count to drop and then retry.
1662		 * If count is still inflated on retry we return an error and
1663		 * must discard the pages.
1664		 */
1665		if (!page_ref_freeze(p, 1)) {
1666			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
1667			synchronize_rcu();
1668			if (!page_ref_freeze(p, 1))
1669				goto out_error;
1670		}
1671		set_page_count(p, 0);
1672		set_compound_head(p, page);
1673	}
1674	atomic_set(compound_mapcount_ptr(page), -1);
1675	atomic_set(compound_pincount_ptr(page), 0);
1676	return true;
1677
1678out_error:
1679	/* undo tail page modifications made above */
1680	p = page + 1;
1681	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1682		clear_compound_head(p);
1683		set_page_refcounted(p);
1684	}
1685	/* need to clear PG_reserved on remaining tail pages  */
1686	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1687		__ClearPageReserved(p);
1688	set_compound_order(page, 0);
1689	page[1].compound_nr = 0;
1690	__ClearPageHead(page);
1691	return false;
1692}
1693
1694/*
1695 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1696 * transparent huge pages.  See the PageTransHuge() documentation for more
1697 * details.
1698 */
1699int PageHuge(struct page *page)
1700{
1701	if (!PageCompound(page))
1702		return 0;
1703
1704	page = compound_head(page);
1705	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1706}
1707EXPORT_SYMBOL_GPL(PageHuge);
1708
1709/*
1710 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1711 * normal or transparent huge pages.
1712 */
1713int PageHeadHuge(struct page *page_head)
1714{
1715	if (!PageHead(page_head))
1716		return 0;
1717
1718	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1719}
1720
1721/*
1722 * Find and lock address space (mapping) in write mode.
1723 *
1724 * Upon entry, the page is locked which means that page_mapping() is
1725 * stable.  Due to locking order, we can only trylock_write.  If we can
1726 * not get the lock, simply return NULL to caller.
1727 */
1728struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1729{
1730	struct address_space *mapping = page_mapping(hpage);
1731
1732	if (!mapping)
1733		return mapping;
1734
1735	if (i_mmap_trylock_write(mapping))
1736		return mapping;
1737
1738	return NULL;
1739}
1740
1741pgoff_t hugetlb_basepage_index(struct page *page)
1742{
1743	struct page *page_head = compound_head(page);
1744	pgoff_t index = page_index(page_head);
1745	unsigned long compound_idx;
1746
 
 
 
1747	if (compound_order(page_head) >= MAX_ORDER)
1748		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1749	else
1750		compound_idx = page - page_head;
1751
1752	return (index << compound_order(page_head)) + compound_idx;
1753}
1754
1755static struct page *alloc_buddy_huge_page(struct hstate *h,
1756		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1757		nodemask_t *node_alloc_noretry)
1758{
1759	int order = huge_page_order(h);
1760	struct page *page;
1761	bool alloc_try_hard = true;
1762
1763	/*
1764	 * By default we always try hard to allocate the page with
1765	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1766	 * a loop (to adjust global huge page counts) and previous allocation
1767	 * failed, do not continue to try hard on the same node.  Use the
1768	 * node_alloc_noretry bitmap to manage this state information.
1769	 */
1770	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1771		alloc_try_hard = false;
1772	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1773	if (alloc_try_hard)
1774		gfp_mask |= __GFP_RETRY_MAYFAIL;
1775	if (nid == NUMA_NO_NODE)
1776		nid = numa_mem_id();
1777	page = __alloc_pages(gfp_mask, order, nid, nmask);
1778	if (page)
1779		__count_vm_event(HTLB_BUDDY_PGALLOC);
1780	else
1781		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1782
1783	/*
1784	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1785	 * indicates an overall state change.  Clear bit so that we resume
1786	 * normal 'try hard' allocations.
1787	 */
1788	if (node_alloc_noretry && page && !alloc_try_hard)
1789		node_clear(nid, *node_alloc_noretry);
1790
1791	/*
1792	 * If we tried hard to get a page but failed, set bit so that
1793	 * subsequent attempts will not try as hard until there is an
1794	 * overall state change.
1795	 */
1796	if (node_alloc_noretry && !page && alloc_try_hard)
1797		node_set(nid, *node_alloc_noretry);
1798
1799	return page;
1800}
1801
1802/*
1803 * Common helper to allocate a fresh hugetlb page. All specific allocators
1804 * should use this function to get new hugetlb pages
1805 */
1806static struct page *alloc_fresh_huge_page(struct hstate *h,
1807		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1808		nodemask_t *node_alloc_noretry)
1809{
1810	struct page *page;
1811	bool retry = false;
1812
1813retry:
1814	if (hstate_is_gigantic(h))
1815		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1816	else
1817		page = alloc_buddy_huge_page(h, gfp_mask,
1818				nid, nmask, node_alloc_noretry);
1819	if (!page)
1820		return NULL;
1821
1822	if (hstate_is_gigantic(h)) {
1823		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1824			/*
1825			 * Rare failure to convert pages to compound page.
1826			 * Free pages and try again - ONCE!
1827			 */
1828			free_gigantic_page(page, huge_page_order(h));
1829			if (!retry) {
1830				retry = true;
1831				goto retry;
1832			}
1833			pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1834			return NULL;
1835		}
1836	}
1837	prep_new_huge_page(h, page, page_to_nid(page));
1838
1839	return page;
1840}
1841
1842/*
1843 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1844 * manner.
1845 */
1846static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1847				nodemask_t *node_alloc_noretry)
1848{
1849	struct page *page;
1850	int nr_nodes, node;
1851	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1852
1853	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1854		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1855						node_alloc_noretry);
1856		if (page)
1857			break;
1858	}
1859
1860	if (!page)
1861		return 0;
1862
1863	put_page(page); /* free it into the hugepage allocator */
1864
1865	return 1;
1866}
1867
1868/*
1869 * Remove huge page from pool from next node to free.  Attempt to keep
1870 * persistent huge pages more or less balanced over allowed nodes.
1871 * This routine only 'removes' the hugetlb page.  The caller must make
1872 * an additional call to free the page to low level allocators.
1873 * Called with hugetlb_lock locked.
1874 */
1875static struct page *remove_pool_huge_page(struct hstate *h,
1876						nodemask_t *nodes_allowed,
1877						 bool acct_surplus)
1878{
1879	int nr_nodes, node;
1880	struct page *page = NULL;
1881
1882	lockdep_assert_held(&hugetlb_lock);
1883	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1884		/*
1885		 * If we're returning unused surplus pages, only examine
1886		 * nodes with surplus pages.
1887		 */
1888		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1889		    !list_empty(&h->hugepage_freelists[node])) {
1890			page = list_entry(h->hugepage_freelists[node].next,
 
1891					  struct page, lru);
1892			remove_hugetlb_page(h, page, acct_surplus);
 
 
 
 
 
 
 
 
1893			break;
1894		}
1895	}
1896
1897	return page;
1898}
1899
1900/*
1901 * Dissolve a given free hugepage into free buddy pages. This function does
1902 * nothing for in-use hugepages and non-hugepages.
1903 * This function returns values like below:
1904 *
1905 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1906 *           when the system is under memory pressure and the feature of
1907 *           freeing unused vmemmap pages associated with each hugetlb page
1908 *           is enabled.
1909 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1910 *           (allocated or reserved.)
1911 *       0:  successfully dissolved free hugepages or the page is not a
1912 *           hugepage (considered as already dissolved)
1913 */
1914int dissolve_free_huge_page(struct page *page)
1915{
1916	int rc = -EBUSY;
1917
1918retry:
1919	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1920	if (!PageHuge(page))
1921		return 0;
1922
1923	spin_lock_irq(&hugetlb_lock);
1924	if (!PageHuge(page)) {
1925		rc = 0;
1926		goto out;
1927	}
1928
1929	if (!page_count(page)) {
1930		struct page *head = compound_head(page);
1931		struct hstate *h = page_hstate(head);
 
1932		if (h->free_huge_pages - h->resv_huge_pages == 0)
1933			goto out;
1934
1935		/*
1936		 * We should make sure that the page is already on the free list
1937		 * when it is dissolved.
1938		 */
1939		if (unlikely(!HPageFreed(head))) {
1940			spin_unlock_irq(&hugetlb_lock);
1941			cond_resched();
1942
1943			/*
1944			 * Theoretically, we should return -EBUSY when we
1945			 * encounter this race. In fact, we have a chance
1946			 * to successfully dissolve the page if we do a
1947			 * retry. Because the race window is quite small.
1948			 * If we seize this opportunity, it is an optimization
1949			 * for increasing the success rate of dissolving page.
1950			 */
1951			goto retry;
1952		}
1953
1954		remove_hugetlb_page(h, head, false);
 
1955		h->max_huge_pages--;
1956		spin_unlock_irq(&hugetlb_lock);
1957
1958		/*
1959		 * Normally update_and_free_page will allocate required vmemmmap
1960		 * before freeing the page.  update_and_free_page will fail to
1961		 * free the page if it can not allocate required vmemmap.  We
1962		 * need to adjust max_huge_pages if the page is not freed.
1963		 * Attempt to allocate vmemmmap here so that we can take
1964		 * appropriate action on failure.
1965		 */
1966		rc = alloc_huge_page_vmemmap(h, head);
1967		if (!rc) {
1968			/*
1969			 * Move PageHWPoison flag from head page to the raw
1970			 * error page, which makes any subpages rather than
1971			 * the error page reusable.
1972			 */
1973			if (PageHWPoison(head) && page != head) {
1974				SetPageHWPoison(page);
1975				ClearPageHWPoison(head);
1976			}
1977			update_and_free_page(h, head, false);
1978		} else {
1979			spin_lock_irq(&hugetlb_lock);
1980			add_hugetlb_page(h, head, false);
1981			h->max_huge_pages++;
1982			spin_unlock_irq(&hugetlb_lock);
1983		}
1984
1985		return rc;
1986	}
1987out:
1988	spin_unlock_irq(&hugetlb_lock);
1989	return rc;
1990}
1991
1992/*
1993 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1994 * make specified memory blocks removable from the system.
1995 * Note that this will dissolve a free gigantic hugepage completely, if any
1996 * part of it lies within the given range.
1997 * Also note that if dissolve_free_huge_page() returns with an error, all
1998 * free hugepages that were dissolved before that error are lost.
1999 */
2000int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2001{
2002	unsigned long pfn;
2003	struct page *page;
2004	int rc = 0;
2005
2006	if (!hugepages_supported())
2007		return rc;
2008
2009	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2010		page = pfn_to_page(pfn);
2011		rc = dissolve_free_huge_page(page);
2012		if (rc)
2013			break;
2014	}
2015
2016	return rc;
2017}
2018
2019/*
2020 * Allocates a fresh surplus page from the page allocator.
2021 */
2022static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2023		int nid, nodemask_t *nmask)
2024{
2025	struct page *page = NULL;
2026
2027	if (hstate_is_gigantic(h))
2028		return NULL;
2029
2030	spin_lock_irq(&hugetlb_lock);
2031	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2032		goto out_unlock;
2033	spin_unlock_irq(&hugetlb_lock);
2034
2035	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2036	if (!page)
2037		return NULL;
2038
2039	spin_lock_irq(&hugetlb_lock);
2040	/*
2041	 * We could have raced with the pool size change.
2042	 * Double check that and simply deallocate the new page
2043	 * if we would end up overcommiting the surpluses. Abuse
2044	 * temporary page to workaround the nasty free_huge_page
2045	 * codeflow
2046	 */
2047	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2048		SetHPageTemporary(page);
2049		spin_unlock_irq(&hugetlb_lock);
2050		put_page(page);
2051		return NULL;
2052	} else {
2053		h->surplus_huge_pages++;
2054		h->surplus_huge_pages_node[page_to_nid(page)]++;
2055	}
2056
2057out_unlock:
2058	spin_unlock_irq(&hugetlb_lock);
2059
2060	return page;
2061}
2062
2063static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2064				     int nid, nodemask_t *nmask)
2065{
2066	struct page *page;
2067
2068	if (hstate_is_gigantic(h))
2069		return NULL;
2070
2071	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2072	if (!page)
2073		return NULL;
2074
2075	/*
2076	 * We do not account these pages as surplus because they are only
2077	 * temporary and will be released properly on the last reference
2078	 */
2079	SetHPageTemporary(page);
2080
2081	return page;
2082}
2083
2084/*
2085 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2086 */
2087static
2088struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2089		struct vm_area_struct *vma, unsigned long addr)
2090{
2091	struct page *page;
2092	struct mempolicy *mpol;
2093	gfp_t gfp_mask = htlb_alloc_mask(h);
2094	int nid;
2095	nodemask_t *nodemask;
2096
2097	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2098	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2099	mpol_cond_put(mpol);
2100
2101	return page;
2102}
2103
2104/* page migration callback function */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2106		nodemask_t *nmask, gfp_t gfp_mask)
2107{
2108	spin_lock_irq(&hugetlb_lock);
 
 
2109	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2110		struct page *page;
2111
2112		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2113		if (page) {
2114			spin_unlock_irq(&hugetlb_lock);
2115			return page;
2116		}
2117	}
2118	spin_unlock_irq(&hugetlb_lock);
2119
2120	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2121}
2122
2123/* mempolicy aware migration callback */
2124struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2125		unsigned long address)
2126{
2127	struct mempolicy *mpol;
2128	nodemask_t *nodemask;
2129	struct page *page;
2130	gfp_t gfp_mask;
2131	int node;
2132
2133	gfp_mask = htlb_alloc_mask(h);
2134	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2135	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2136	mpol_cond_put(mpol);
2137
2138	return page;
2139}
2140
2141/*
2142 * Increase the hugetlb pool such that it can accommodate a reservation
2143 * of size 'delta'.
2144 */
2145static int gather_surplus_pages(struct hstate *h, long delta)
2146	__must_hold(&hugetlb_lock)
2147{
2148	struct list_head surplus_list;
2149	struct page *page, *tmp;
2150	int ret;
2151	long i;
2152	long needed, allocated;
2153	bool alloc_ok = true;
2154
2155	lockdep_assert_held(&hugetlb_lock);
2156	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2157	if (needed <= 0) {
2158		h->resv_huge_pages += delta;
2159		return 0;
2160	}
2161
2162	allocated = 0;
2163	INIT_LIST_HEAD(&surplus_list);
2164
2165	ret = -ENOMEM;
2166retry:
2167	spin_unlock_irq(&hugetlb_lock);
2168	for (i = 0; i < needed; i++) {
2169		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2170				NUMA_NO_NODE, NULL);
2171		if (!page) {
2172			alloc_ok = false;
2173			break;
2174		}
2175		list_add(&page->lru, &surplus_list);
2176		cond_resched();
2177	}
2178	allocated += i;
2179
2180	/*
2181	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2182	 * because either resv_huge_pages or free_huge_pages may have changed.
2183	 */
2184	spin_lock_irq(&hugetlb_lock);
2185	needed = (h->resv_huge_pages + delta) -
2186			(h->free_huge_pages + allocated);
2187	if (needed > 0) {
2188		if (alloc_ok)
2189			goto retry;
2190		/*
2191		 * We were not able to allocate enough pages to
2192		 * satisfy the entire reservation so we free what
2193		 * we've allocated so far.
2194		 */
2195		goto free;
2196	}
2197	/*
2198	 * The surplus_list now contains _at_least_ the number of extra pages
2199	 * needed to accommodate the reservation.  Add the appropriate number
2200	 * of pages to the hugetlb pool and free the extras back to the buddy
2201	 * allocator.  Commit the entire reservation here to prevent another
2202	 * process from stealing the pages as they are added to the pool but
2203	 * before they are reserved.
2204	 */
2205	needed += allocated;
2206	h->resv_huge_pages += delta;
2207	ret = 0;
2208
2209	/* Free the needed pages to the hugetlb pool */
2210	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2211		int zeroed;
2212
2213		if ((--needed) < 0)
2214			break;
2215		/*
2216		 * This page is now managed by the hugetlb allocator and has
2217		 * no users -- drop the buddy allocator's reference.
2218		 */
2219		zeroed = put_page_testzero(page);
2220		VM_BUG_ON_PAGE(!zeroed, page);
2221		enqueue_huge_page(h, page);
2222	}
2223free:
2224	spin_unlock_irq(&hugetlb_lock);
2225
2226	/* Free unnecessary surplus pages to the buddy allocator */
2227	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2228		put_page(page);
2229	spin_lock_irq(&hugetlb_lock);
2230
2231	return ret;
2232}
2233
2234/*
2235 * This routine has two main purposes:
2236 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2237 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2238 *    to the associated reservation map.
2239 * 2) Free any unused surplus pages that may have been allocated to satisfy
2240 *    the reservation.  As many as unused_resv_pages may be freed.
 
 
 
 
 
 
2241 */
2242static void return_unused_surplus_pages(struct hstate *h,
2243					unsigned long unused_resv_pages)
2244{
2245	unsigned long nr_pages;
2246	struct page *page;
2247	LIST_HEAD(page_list);
2248
2249	lockdep_assert_held(&hugetlb_lock);
2250	/* Uncommit the reservation */
2251	h->resv_huge_pages -= unused_resv_pages;
2252
2253	/* Cannot return gigantic pages currently */
2254	if (hstate_is_gigantic(h))
2255		goto out;
2256
2257	/*
2258	 * Part (or even all) of the reservation could have been backed
2259	 * by pre-allocated pages. Only free surplus pages.
2260	 */
2261	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2262
2263	/*
2264	 * We want to release as many surplus pages as possible, spread
2265	 * evenly across all nodes with memory. Iterate across these nodes
2266	 * until we can no longer free unreserved surplus pages. This occurs
2267	 * when the nodes with surplus pages have no free pages.
2268	 * remove_pool_huge_page() will balance the freed pages across the
2269	 * on-line nodes with memory and will handle the hstate accounting.
 
 
 
 
2270	 */
2271	while (nr_pages--) {
2272		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2273		if (!page)
 
2274			goto out;
2275
2276		list_add(&page->lru, &page_list);
2277	}
2278
2279out:
2280	spin_unlock_irq(&hugetlb_lock);
2281	update_and_free_pages_bulk(h, &page_list);
2282	spin_lock_irq(&hugetlb_lock);
2283}
2284
2285
2286/*
2287 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2288 * are used by the huge page allocation routines to manage reservations.
2289 *
2290 * vma_needs_reservation is called to determine if the huge page at addr
2291 * within the vma has an associated reservation.  If a reservation is
2292 * needed, the value 1 is returned.  The caller is then responsible for
2293 * managing the global reservation and subpool usage counts.  After
2294 * the huge page has been allocated, vma_commit_reservation is called
2295 * to add the page to the reservation map.  If the page allocation fails,
2296 * the reservation must be ended instead of committed.  vma_end_reservation
2297 * is called in such cases.
2298 *
2299 * In the normal case, vma_commit_reservation returns the same value
2300 * as the preceding vma_needs_reservation call.  The only time this
2301 * is not the case is if a reserve map was changed between calls.  It
2302 * is the responsibility of the caller to notice the difference and
2303 * take appropriate action.
2304 *
2305 * vma_add_reservation is used in error paths where a reservation must
2306 * be restored when a newly allocated huge page must be freed.  It is
2307 * to be called after calling vma_needs_reservation to determine if a
2308 * reservation exists.
2309 *
2310 * vma_del_reservation is used in error paths where an entry in the reserve
2311 * map was created during huge page allocation and must be removed.  It is to
2312 * be called after calling vma_needs_reservation to determine if a reservation
2313 * exists.
2314 */
2315enum vma_resv_mode {
2316	VMA_NEEDS_RESV,
2317	VMA_COMMIT_RESV,
2318	VMA_END_RESV,
2319	VMA_ADD_RESV,
2320	VMA_DEL_RESV,
2321};
2322static long __vma_reservation_common(struct hstate *h,
2323				struct vm_area_struct *vma, unsigned long addr,
2324				enum vma_resv_mode mode)
2325{
2326	struct resv_map *resv;
2327	pgoff_t idx;
2328	long ret;
2329	long dummy_out_regions_needed;
2330
2331	resv = vma_resv_map(vma);
2332	if (!resv)
2333		return 1;
2334
2335	idx = vma_hugecache_offset(h, vma, addr);
2336	switch (mode) {
2337	case VMA_NEEDS_RESV:
2338		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2339		/* We assume that vma_reservation_* routines always operate on
2340		 * 1 page, and that adding to resv map a 1 page entry can only
2341		 * ever require 1 region.
2342		 */
2343		VM_BUG_ON(dummy_out_regions_needed != 1);
2344		break;
2345	case VMA_COMMIT_RESV:
2346		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2347		/* region_add calls of range 1 should never fail. */
2348		VM_BUG_ON(ret < 0);
2349		break;
2350	case VMA_END_RESV:
2351		region_abort(resv, idx, idx + 1, 1);
2352		ret = 0;
2353		break;
2354	case VMA_ADD_RESV:
2355		if (vma->vm_flags & VM_MAYSHARE) {
2356			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2357			/* region_add calls of range 1 should never fail. */
2358			VM_BUG_ON(ret < 0);
2359		} else {
2360			region_abort(resv, idx, idx + 1, 1);
2361			ret = region_del(resv, idx, idx + 1);
2362		}
2363		break;
2364	case VMA_DEL_RESV:
2365		if (vma->vm_flags & VM_MAYSHARE) {
2366			region_abort(resv, idx, idx + 1, 1);
2367			ret = region_del(resv, idx, idx + 1);
2368		} else {
2369			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2370			/* region_add calls of range 1 should never fail. */
2371			VM_BUG_ON(ret < 0);
2372		}
2373		break;
2374	default:
2375		BUG();
2376	}
2377
2378	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2379		return ret;
2380	/*
2381	 * We know private mapping must have HPAGE_RESV_OWNER set.
2382	 *
2383	 * In most cases, reserves always exist for private mappings.
2384	 * However, a file associated with mapping could have been
2385	 * hole punched or truncated after reserves were consumed.
2386	 * As subsequent fault on such a range will not use reserves.
2387	 * Subtle - The reserve map for private mappings has the
2388	 * opposite meaning than that of shared mappings.  If NO
2389	 * entry is in the reserve map, it means a reservation exists.
2390	 * If an entry exists in the reserve map, it means the
2391	 * reservation has already been consumed.  As a result, the
2392	 * return value of this routine is the opposite of the
2393	 * value returned from reserve map manipulation routines above.
2394	 */
2395	if (ret > 0)
2396		return 0;
2397	if (ret == 0)
2398		return 1;
2399	return ret;
 
2400}
2401
2402static long vma_needs_reservation(struct hstate *h,
2403			struct vm_area_struct *vma, unsigned long addr)
2404{
2405	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2406}
2407
2408static long vma_commit_reservation(struct hstate *h,
2409			struct vm_area_struct *vma, unsigned long addr)
2410{
2411	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2412}
2413
2414static void vma_end_reservation(struct hstate *h,
2415			struct vm_area_struct *vma, unsigned long addr)
2416{
2417	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2418}
2419
2420static long vma_add_reservation(struct hstate *h,
2421			struct vm_area_struct *vma, unsigned long addr)
2422{
2423	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2424}
2425
2426static long vma_del_reservation(struct hstate *h,
2427			struct vm_area_struct *vma, unsigned long addr)
2428{
2429	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2430}
2431
2432/*
2433 * This routine is called to restore reservation information on error paths.
2434 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2435 * the hugetlb mutex should remain held when calling this routine.
2436 *
2437 * It handles two specific cases:
2438 * 1) A reservation was in place and the page consumed the reservation.
2439 *    HPageRestoreReserve is set in the page.
2440 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2441 *    not set.  However, alloc_huge_page always updates the reserve map.
2442 *
2443 * In case 1, free_huge_page later in the error path will increment the
2444 * global reserve count.  But, free_huge_page does not have enough context
2445 * to adjust the reservation map.  This case deals primarily with private
2446 * mappings.  Adjust the reserve map here to be consistent with global
2447 * reserve count adjustments to be made by free_huge_page.  Make sure the
2448 * reserve map indicates there is a reservation present.
2449 *
2450 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2451 */
2452void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2453			unsigned long address, struct page *page)
2454{
2455	long rc = vma_needs_reservation(h, vma, address);
 
2456
2457	if (HPageRestoreReserve(page)) {
2458		if (unlikely(rc < 0))
2459			/*
2460			 * Rare out of memory condition in reserve map
2461			 * manipulation.  Clear HPageRestoreReserve so that
2462			 * global reserve count will not be incremented
2463			 * by free_huge_page.  This will make it appear
2464			 * as though the reservation for this page was
2465			 * consumed.  This may prevent the task from
2466			 * faulting in the page at a later time.  This
2467			 * is better than inconsistent global huge page
2468			 * accounting of reserve counts.
2469			 */
2470			ClearHPageRestoreReserve(page);
2471		else if (rc)
2472			(void)vma_add_reservation(h, vma, address);
2473		else
2474			vma_end_reservation(h, vma, address);
2475	} else {
2476		if (!rc) {
2477			/*
2478			 * This indicates there is an entry in the reserve map
2479			 * not added by alloc_huge_page.  We know it was added
2480			 * before the alloc_huge_page call, otherwise
2481			 * HPageRestoreReserve would be set on the page.
2482			 * Remove the entry so that a subsequent allocation
2483			 * does not consume a reservation.
2484			 */
2485			rc = vma_del_reservation(h, vma, address);
2486			if (rc < 0)
2487				/*
2488				 * VERY rare out of memory condition.  Since
2489				 * we can not delete the entry, set
2490				 * HPageRestoreReserve so that the reserve
2491				 * count will be incremented when the page
2492				 * is freed.  This reserve will be consumed
2493				 * on a subsequent allocation.
2494				 */
2495				SetHPageRestoreReserve(page);
2496		} else if (rc < 0) {
2497			/*
2498			 * Rare out of memory condition from
2499			 * vma_needs_reservation call.  Memory allocation is
2500			 * only attempted if a new entry is needed.  Therefore,
2501			 * this implies there is not an entry in the
2502			 * reserve map.
2503			 *
2504			 * For shared mappings, no entry in the map indicates
2505			 * no reservation.  We are done.
2506			 */
2507			if (!(vma->vm_flags & VM_MAYSHARE))
2508				/*
2509				 * For private mappings, no entry indicates
2510				 * a reservation is present.  Since we can
2511				 * not add an entry, set SetHPageRestoreReserve
2512				 * on the page so reserve count will be
2513				 * incremented when freed.  This reserve will
2514				 * be consumed on a subsequent allocation.
2515				 */
2516				SetHPageRestoreReserve(page);
2517		} else
2518			/*
2519			 * No reservation present, do nothing
2520			 */
2521			 vma_end_reservation(h, vma, address);
2522	}
2523}
2524
2525/*
2526 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2527 * @h: struct hstate old page belongs to
2528 * @old_page: Old page to dissolve
2529 * @list: List to isolate the page in case we need to
2530 * Returns 0 on success, otherwise negated error.
2531 */
2532static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2533					struct list_head *list)
2534{
2535	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2536	int nid = page_to_nid(old_page);
2537	struct page *new_page;
2538	int ret = 0;
2539
2540	/*
2541	 * Before dissolving the page, we need to allocate a new one for the
2542	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2543	 * by doing everything but actually updating counters and adding to
2544	 * the pool.  This simplifies and let us do most of the processing
2545	 * under the lock.
2546	 */
2547	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2548	if (!new_page)
2549		return -ENOMEM;
2550	__prep_new_huge_page(h, new_page);
2551
2552retry:
2553	spin_lock_irq(&hugetlb_lock);
2554	if (!PageHuge(old_page)) {
2555		/*
2556		 * Freed from under us. Drop new_page too.
2557		 */
2558		goto free_new;
2559	} else if (page_count(old_page)) {
2560		/*
2561		 * Someone has grabbed the page, try to isolate it here.
2562		 * Fail with -EBUSY if not possible.
2563		 */
2564		spin_unlock_irq(&hugetlb_lock);
2565		if (!isolate_huge_page(old_page, list))
2566			ret = -EBUSY;
2567		spin_lock_irq(&hugetlb_lock);
2568		goto free_new;
2569	} else if (!HPageFreed(old_page)) {
2570		/*
2571		 * Page's refcount is 0 but it has not been enqueued in the
2572		 * freelist yet. Race window is small, so we can succeed here if
2573		 * we retry.
2574		 */
2575		spin_unlock_irq(&hugetlb_lock);
2576		cond_resched();
2577		goto retry;
2578	} else {
2579		/*
2580		 * Ok, old_page is still a genuine free hugepage. Remove it from
2581		 * the freelist and decrease the counters. These will be
2582		 * incremented again when calling __prep_account_new_huge_page()
2583		 * and enqueue_huge_page() for new_page. The counters will remain
2584		 * stable since this happens under the lock.
2585		 */
2586		remove_hugetlb_page(h, old_page, false);
2587
2588		/*
2589		 * Reference count trick is needed because allocator gives us
2590		 * referenced page but the pool requires pages with 0 refcount.
2591		 */
2592		__prep_account_new_huge_page(h, nid);
2593		page_ref_dec(new_page);
2594		enqueue_huge_page(h, new_page);
2595
2596		/*
2597		 * Pages have been replaced, we can safely free the old one.
2598		 */
2599		spin_unlock_irq(&hugetlb_lock);
2600		update_and_free_page(h, old_page, false);
2601	}
2602
2603	return ret;
2604
2605free_new:
2606	spin_unlock_irq(&hugetlb_lock);
2607	update_and_free_page(h, new_page, false);
2608
2609	return ret;
2610}
2611
2612int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2613{
2614	struct hstate *h;
2615	struct page *head;
2616	int ret = -EBUSY;
2617
2618	/*
2619	 * The page might have been dissolved from under our feet, so make sure
2620	 * to carefully check the state under the lock.
2621	 * Return success when racing as if we dissolved the page ourselves.
2622	 */
2623	spin_lock_irq(&hugetlb_lock);
2624	if (PageHuge(page)) {
2625		head = compound_head(page);
2626		h = page_hstate(head);
2627	} else {
2628		spin_unlock_irq(&hugetlb_lock);
2629		return 0;
2630	}
2631	spin_unlock_irq(&hugetlb_lock);
2632
2633	/*
2634	 * Fence off gigantic pages as there is a cyclic dependency between
2635	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2636	 * of bailing out right away without further retrying.
2637	 */
2638	if (hstate_is_gigantic(h))
2639		return -ENOMEM;
2640
2641	if (page_count(head) && isolate_huge_page(head, list))
2642		ret = 0;
2643	else if (!page_count(head))
2644		ret = alloc_and_dissolve_huge_page(h, head, list);
2645
2646	return ret;
2647}
2648
2649struct page *alloc_huge_page(struct vm_area_struct *vma,
2650				    unsigned long addr, int avoid_reserve)
2651{
2652	struct hugepage_subpool *spool = subpool_vma(vma);
2653	struct hstate *h = hstate_vma(vma);
2654	struct page *page;
2655	long map_chg, map_commit;
2656	long gbl_chg;
2657	int ret, idx;
2658	struct hugetlb_cgroup *h_cg;
2659	bool deferred_reserve;
2660
2661	idx = hstate_index(h);
2662	/*
2663	 * Examine the region/reserve map to determine if the process
2664	 * has a reservation for the page to be allocated.  A return
2665	 * code of zero indicates a reservation exists (no change).
2666	 */
2667	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2668	if (map_chg < 0)
2669		return ERR_PTR(-ENOMEM);
2670
2671	/*
2672	 * Processes that did not create the mapping will have no
2673	 * reserves as indicated by the region/reserve map. Check
2674	 * that the allocation will not exceed the subpool limit.
2675	 * Allocations for MAP_NORESERVE mappings also need to be
2676	 * checked against any subpool limit.
2677	 */
2678	if (map_chg || avoid_reserve) {
2679		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2680		if (gbl_chg < 0) {
2681			vma_end_reservation(h, vma, addr);
2682			return ERR_PTR(-ENOSPC);
2683		}
2684
2685		/*
2686		 * Even though there was no reservation in the region/reserve
2687		 * map, there could be reservations associated with the
2688		 * subpool that can be used.  This would be indicated if the
2689		 * return value of hugepage_subpool_get_pages() is zero.
2690		 * However, if avoid_reserve is specified we still avoid even
2691		 * the subpool reservations.
2692		 */
2693		if (avoid_reserve)
2694			gbl_chg = 1;
2695	}
2696
2697	/* If this allocation is not consuming a reservation, charge it now.
2698	 */
2699	deferred_reserve = map_chg || avoid_reserve;
2700	if (deferred_reserve) {
2701		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2702			idx, pages_per_huge_page(h), &h_cg);
2703		if (ret)
2704			goto out_subpool_put;
2705	}
2706
2707	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2708	if (ret)
2709		goto out_uncharge_cgroup_reservation;
2710
2711	spin_lock_irq(&hugetlb_lock);
2712	/*
2713	 * glb_chg is passed to indicate whether or not a page must be taken
2714	 * from the global free pool (global change).  gbl_chg == 0 indicates
2715	 * a reservation exists for the allocation.
2716	 */
2717	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2718	if (!page) {
2719		spin_unlock_irq(&hugetlb_lock);
2720		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2721		if (!page)
2722			goto out_uncharge_cgroup;
2723		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2724			SetHPageRestoreReserve(page);
2725			h->resv_huge_pages--;
2726		}
2727		spin_lock_irq(&hugetlb_lock);
2728		list_add(&page->lru, &h->hugepage_activelist);
2729		/* Fall through */
2730	}
2731	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2732	/* If allocation is not consuming a reservation, also store the
2733	 * hugetlb_cgroup pointer on the page.
2734	 */
2735	if (deferred_reserve) {
2736		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2737						  h_cg, page);
2738	}
2739
2740	spin_unlock_irq(&hugetlb_lock);
2741
2742	hugetlb_set_page_subpool(page, spool);
2743
2744	map_commit = vma_commit_reservation(h, vma, addr);
2745	if (unlikely(map_chg > map_commit)) {
2746		/*
2747		 * The page was added to the reservation map between
2748		 * vma_needs_reservation and vma_commit_reservation.
2749		 * This indicates a race with hugetlb_reserve_pages.
2750		 * Adjust for the subpool count incremented above AND
2751		 * in hugetlb_reserve_pages for the same page.  Also,
2752		 * the reservation count added in hugetlb_reserve_pages
2753		 * no longer applies.
2754		 */
2755		long rsv_adjust;
2756
2757		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2758		hugetlb_acct_memory(h, -rsv_adjust);
2759		if (deferred_reserve)
2760			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2761					pages_per_huge_page(h), page);
2762	}
2763	return page;
2764
2765out_uncharge_cgroup:
2766	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2767out_uncharge_cgroup_reservation:
2768	if (deferred_reserve)
2769		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2770						    h_cg);
2771out_subpool_put:
2772	if (map_chg || avoid_reserve)
2773		hugepage_subpool_put_pages(spool, 1);
2774	vma_end_reservation(h, vma, addr);
2775	return ERR_PTR(-ENOSPC);
2776}
2777
2778int alloc_bootmem_huge_page(struct hstate *h)
2779	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2780int __alloc_bootmem_huge_page(struct hstate *h)
2781{
2782	struct huge_bootmem_page *m;
2783	int nr_nodes, node;
2784
2785	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2786		void *addr;
2787
2788		addr = memblock_alloc_try_nid_raw(
2789				huge_page_size(h), huge_page_size(h),
2790				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2791		if (addr) {
2792			/*
2793			 * Use the beginning of the huge page to store the
2794			 * huge_bootmem_page struct (until gather_bootmem
2795			 * puts them into the mem_map).
2796			 */
2797			m = addr;
2798			goto found;
2799		}
2800	}
2801	return 0;
2802
2803found:
2804	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2805	/* Put them into a private list first because mem_map is not up yet */
2806	INIT_LIST_HEAD(&m->list);
2807	list_add(&m->list, &huge_boot_pages);
2808	m->hstate = h;
2809	return 1;
2810}
2811
2812/*
2813 * Put bootmem huge pages into the standard lists after mem_map is up.
2814 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2815 */
 
 
 
 
 
 
2816static void __init gather_bootmem_prealloc(void)
2817{
2818	struct huge_bootmem_page *m;
2819
2820	list_for_each_entry(m, &huge_boot_pages, list) {
2821		struct page *page = virt_to_page(m);
2822		struct hstate *h = m->hstate;
2823
2824		VM_BUG_ON(!hstate_is_gigantic(h));
2825		WARN_ON(page_count(page) != 1);
2826		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2827			WARN_ON(PageReserved(page));
2828			prep_new_huge_page(h, page, page_to_nid(page));
2829			put_page(page); /* add to the hugepage allocator */
2830		} else {
2831			free_gigantic_page(page, huge_page_order(h));
2832			pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2833		}
2834
2835		/*
2836		 * We need to restore the 'stolen' pages to totalram_pages
2837		 * in order to fix confusing memory reports from free(1) and
2838		 * other side-effects, like CommitLimit going negative.
 
2839		 */
2840		adjust_managed_page_count(page, pages_per_huge_page(h));
 
2841		cond_resched();
2842	}
2843}
2844
2845static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2846{
2847	unsigned long i;
2848	nodemask_t *node_alloc_noretry;
2849
2850	if (!hstate_is_gigantic(h)) {
2851		/*
2852		 * Bit mask controlling how hard we retry per-node allocations.
2853		 * Ignore errors as lower level routines can deal with
2854		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2855		 * time, we are likely in bigger trouble.
2856		 */
2857		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2858						GFP_KERNEL);
2859	} else {
2860		/* allocations done at boot time */
2861		node_alloc_noretry = NULL;
2862	}
2863
2864	/* bit mask controlling how hard we retry per-node allocations */
2865	if (node_alloc_noretry)
2866		nodes_clear(*node_alloc_noretry);
2867
2868	for (i = 0; i < h->max_huge_pages; ++i) {
2869		if (hstate_is_gigantic(h)) {
2870			if (hugetlb_cma_size) {
2871				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2872				goto free;
2873			}
2874			if (!alloc_bootmem_huge_page(h))
2875				break;
2876		} else if (!alloc_pool_huge_page(h,
2877					 &node_states[N_MEMORY],
2878					 node_alloc_noretry))
2879			break;
2880		cond_resched();
2881	}
2882	if (i < h->max_huge_pages) {
2883		char buf[32];
2884
2885		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2886		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2887			h->max_huge_pages, buf, i);
2888		h->max_huge_pages = i;
2889	}
2890free:
2891	kfree(node_alloc_noretry);
2892}
2893
2894static void __init hugetlb_init_hstates(void)
2895{
2896	struct hstate *h;
2897
2898	for_each_hstate(h) {
2899		if (minimum_order > huge_page_order(h))
2900			minimum_order = huge_page_order(h);
2901
2902		/* oversize hugepages were init'ed in early boot */
2903		if (!hstate_is_gigantic(h))
2904			hugetlb_hstate_alloc_pages(h);
2905	}
2906	VM_BUG_ON(minimum_order == UINT_MAX);
2907}
2908
2909static void __init report_hugepages(void)
2910{
2911	struct hstate *h;
2912
2913	for_each_hstate(h) {
2914		char buf[32];
2915
2916		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2917		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2918			buf, h->free_huge_pages);
2919	}
2920}
2921
2922#ifdef CONFIG_HIGHMEM
2923static void try_to_free_low(struct hstate *h, unsigned long count,
2924						nodemask_t *nodes_allowed)
2925{
2926	int i;
2927	LIST_HEAD(page_list);
2928
2929	lockdep_assert_held(&hugetlb_lock);
2930	if (hstate_is_gigantic(h))
2931		return;
2932
2933	/*
2934	 * Collect pages to be freed on a list, and free after dropping lock
2935	 */
2936	for_each_node_mask(i, *nodes_allowed) {
2937		struct page *page, *next;
2938		struct list_head *freel = &h->hugepage_freelists[i];
2939		list_for_each_entry_safe(page, next, freel, lru) {
2940			if (count >= h->nr_huge_pages)
2941				goto out;
2942			if (PageHighMem(page))
2943				continue;
2944			remove_hugetlb_page(h, page, false);
2945			list_add(&page->lru, &page_list);
 
 
2946		}
2947	}
2948
2949out:
2950	spin_unlock_irq(&hugetlb_lock);
2951	update_and_free_pages_bulk(h, &page_list);
2952	spin_lock_irq(&hugetlb_lock);
2953}
2954#else
2955static inline void try_to_free_low(struct hstate *h, unsigned long count,
2956						nodemask_t *nodes_allowed)
2957{
2958}
2959#endif
2960
2961/*
2962 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2963 * balanced by operating on them in a round-robin fashion.
2964 * Returns 1 if an adjustment was made.
2965 */
2966static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2967				int delta)
2968{
2969	int nr_nodes, node;
2970
2971	lockdep_assert_held(&hugetlb_lock);
2972	VM_BUG_ON(delta != -1 && delta != 1);
2973
2974	if (delta < 0) {
2975		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2976			if (h->surplus_huge_pages_node[node])
2977				goto found;
2978		}
2979	} else {
2980		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2981			if (h->surplus_huge_pages_node[node] <
2982					h->nr_huge_pages_node[node])
2983				goto found;
2984		}
2985	}
2986	return 0;
2987
2988found:
2989	h->surplus_huge_pages += delta;
2990	h->surplus_huge_pages_node[node] += delta;
2991	return 1;
2992}
2993
2994#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2995static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2996			      nodemask_t *nodes_allowed)
2997{
2998	unsigned long min_count, ret;
2999	struct page *page;
3000	LIST_HEAD(page_list);
3001	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3002
3003	/*
3004	 * Bit mask controlling how hard we retry per-node allocations.
3005	 * If we can not allocate the bit mask, do not attempt to allocate
3006	 * the requested huge pages.
3007	 */
3008	if (node_alloc_noretry)
3009		nodes_clear(*node_alloc_noretry);
3010	else
3011		return -ENOMEM;
3012
3013	/*
3014	 * resize_lock mutex prevents concurrent adjustments to number of
3015	 * pages in hstate via the proc/sysfs interfaces.
3016	 */
3017	mutex_lock(&h->resize_lock);
3018	flush_free_hpage_work(h);
3019	spin_lock_irq(&hugetlb_lock);
3020
3021	/*
3022	 * Check for a node specific request.
3023	 * Changing node specific huge page count may require a corresponding
3024	 * change to the global count.  In any case, the passed node mask
3025	 * (nodes_allowed) will restrict alloc/free to the specified node.
3026	 */
3027	if (nid != NUMA_NO_NODE) {
3028		unsigned long old_count = count;
3029
3030		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3031		/*
3032		 * User may have specified a large count value which caused the
3033		 * above calculation to overflow.  In this case, they wanted
3034		 * to allocate as many huge pages as possible.  Set count to
3035		 * largest possible value to align with their intention.
3036		 */
3037		if (count < old_count)
3038			count = ULONG_MAX;
3039	}
3040
3041	/*
3042	 * Gigantic pages runtime allocation depend on the capability for large
3043	 * page range allocation.
3044	 * If the system does not provide this feature, return an error when
3045	 * the user tries to allocate gigantic pages but let the user free the
3046	 * boottime allocated gigantic pages.
3047	 */
3048	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3049		if (count > persistent_huge_pages(h)) {
3050			spin_unlock_irq(&hugetlb_lock);
3051			mutex_unlock(&h->resize_lock);
3052			NODEMASK_FREE(node_alloc_noretry);
3053			return -EINVAL;
3054		}
3055		/* Fall through to decrease pool */
3056	}
3057
3058	/*
3059	 * Increase the pool size
3060	 * First take pages out of surplus state.  Then make up the
3061	 * remaining difference by allocating fresh huge pages.
3062	 *
3063	 * We might race with alloc_surplus_huge_page() here and be unable
3064	 * to convert a surplus huge page to a normal huge page. That is
3065	 * not critical, though, it just means the overall size of the
3066	 * pool might be one hugepage larger than it needs to be, but
3067	 * within all the constraints specified by the sysctls.
3068	 */
3069	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3070		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3071			break;
3072	}
3073
3074	while (count > persistent_huge_pages(h)) {
3075		/*
3076		 * If this allocation races such that we no longer need the
3077		 * page, free_huge_page will handle it by freeing the page
3078		 * and reducing the surplus.
3079		 */
3080		spin_unlock_irq(&hugetlb_lock);
3081
3082		/* yield cpu to avoid soft lockup */
3083		cond_resched();
3084
3085		ret = alloc_pool_huge_page(h, nodes_allowed,
3086						node_alloc_noretry);
3087		spin_lock_irq(&hugetlb_lock);
3088		if (!ret)
3089			goto out;
3090
3091		/* Bail for signals. Probably ctrl-c from user */
3092		if (signal_pending(current))
3093			goto out;
3094	}
3095
3096	/*
3097	 * Decrease the pool size
3098	 * First return free pages to the buddy allocator (being careful
3099	 * to keep enough around to satisfy reservations).  Then place
3100	 * pages into surplus state as needed so the pool will shrink
3101	 * to the desired size as pages become free.
3102	 *
3103	 * By placing pages into the surplus state independent of the
3104	 * overcommit value, we are allowing the surplus pool size to
3105	 * exceed overcommit. There are few sane options here. Since
3106	 * alloc_surplus_huge_page() is checking the global counter,
3107	 * though, we'll note that we're not allowed to exceed surplus
3108	 * and won't grow the pool anywhere else. Not until one of the
3109	 * sysctls are changed, or the surplus pages go out of use.
3110	 */
3111	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3112	min_count = max(count, min_count);
3113	try_to_free_low(h, min_count, nodes_allowed);
3114
3115	/*
3116	 * Collect pages to be removed on list without dropping lock
3117	 */
3118	while (min_count < persistent_huge_pages(h)) {
3119		page = remove_pool_huge_page(h, nodes_allowed, 0);
3120		if (!page)
3121			break;
3122
3123		list_add(&page->lru, &page_list);
3124	}
3125	/* free the pages after dropping lock */
3126	spin_unlock_irq(&hugetlb_lock);
3127	update_and_free_pages_bulk(h, &page_list);
3128	flush_free_hpage_work(h);
3129	spin_lock_irq(&hugetlb_lock);
3130
3131	while (count < persistent_huge_pages(h)) {
3132		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3133			break;
3134	}
3135out:
3136	h->max_huge_pages = persistent_huge_pages(h);
3137	spin_unlock_irq(&hugetlb_lock);
3138	mutex_unlock(&h->resize_lock);
3139
3140	NODEMASK_FREE(node_alloc_noretry);
3141
3142	return 0;
3143}
3144
3145#define HSTATE_ATTR_RO(_name) \
3146	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3147
3148#define HSTATE_ATTR(_name) \
3149	static struct kobj_attribute _name##_attr = \
3150		__ATTR(_name, 0644, _name##_show, _name##_store)
3151
3152static struct kobject *hugepages_kobj;
3153static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3154
3155static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3156
3157static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3158{
3159	int i;
3160
3161	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3162		if (hstate_kobjs[i] == kobj) {
3163			if (nidp)
3164				*nidp = NUMA_NO_NODE;
3165			return &hstates[i];
3166		}
3167
3168	return kobj_to_node_hstate(kobj, nidp);
3169}
3170
3171static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3172					struct kobj_attribute *attr, char *buf)
3173{
3174	struct hstate *h;
3175	unsigned long nr_huge_pages;
3176	int nid;
3177
3178	h = kobj_to_hstate(kobj, &nid);
3179	if (nid == NUMA_NO_NODE)
3180		nr_huge_pages = h->nr_huge_pages;
3181	else
3182		nr_huge_pages = h->nr_huge_pages_node[nid];
3183
3184	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3185}
3186
3187static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3188					   struct hstate *h, int nid,
3189					   unsigned long count, size_t len)
3190{
3191	int err;
3192	nodemask_t nodes_allowed, *n_mask;
3193
3194	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3195		return -EINVAL;
3196
3197	if (nid == NUMA_NO_NODE) {
3198		/*
3199		 * global hstate attribute
3200		 */
3201		if (!(obey_mempolicy &&
3202				init_nodemask_of_mempolicy(&nodes_allowed)))
3203			n_mask = &node_states[N_MEMORY];
3204		else
3205			n_mask = &nodes_allowed;
3206	} else {
3207		/*
3208		 * Node specific request.  count adjustment happens in
3209		 * set_max_huge_pages() after acquiring hugetlb_lock.
3210		 */
3211		init_nodemask_of_node(&nodes_allowed, nid);
3212		n_mask = &nodes_allowed;
3213	}
3214
3215	err = set_max_huge_pages(h, count, nid, n_mask);
3216
3217	return err ? err : len;
3218}
3219
3220static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3221					 struct kobject *kobj, const char *buf,
3222					 size_t len)
3223{
3224	struct hstate *h;
3225	unsigned long count;
3226	int nid;
3227	int err;
3228
3229	err = kstrtoul(buf, 10, &count);
3230	if (err)
3231		return err;
3232
3233	h = kobj_to_hstate(kobj, &nid);
3234	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3235}
3236
3237static ssize_t nr_hugepages_show(struct kobject *kobj,
3238				       struct kobj_attribute *attr, char *buf)
3239{
3240	return nr_hugepages_show_common(kobj, attr, buf);
3241}
3242
3243static ssize_t nr_hugepages_store(struct kobject *kobj,
3244	       struct kobj_attribute *attr, const char *buf, size_t len)
3245{
3246	return nr_hugepages_store_common(false, kobj, buf, len);
3247}
3248HSTATE_ATTR(nr_hugepages);
3249
3250#ifdef CONFIG_NUMA
3251
3252/*
3253 * hstate attribute for optionally mempolicy-based constraint on persistent
3254 * huge page alloc/free.
3255 */
3256static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3257					   struct kobj_attribute *attr,
3258					   char *buf)
3259{
3260	return nr_hugepages_show_common(kobj, attr, buf);
3261}
3262
3263static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3264	       struct kobj_attribute *attr, const char *buf, size_t len)
3265{
3266	return nr_hugepages_store_common(true, kobj, buf, len);
3267}
3268HSTATE_ATTR(nr_hugepages_mempolicy);
3269#endif
3270
3271
3272static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3273					struct kobj_attribute *attr, char *buf)
3274{
3275	struct hstate *h = kobj_to_hstate(kobj, NULL);
3276	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3277}
3278
3279static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3280		struct kobj_attribute *attr, const char *buf, size_t count)
3281{
3282	int err;
3283	unsigned long input;
3284	struct hstate *h = kobj_to_hstate(kobj, NULL);
3285
3286	if (hstate_is_gigantic(h))
3287		return -EINVAL;
3288
3289	err = kstrtoul(buf, 10, &input);
3290	if (err)
3291		return err;
3292
3293	spin_lock_irq(&hugetlb_lock);
3294	h->nr_overcommit_huge_pages = input;
3295	spin_unlock_irq(&hugetlb_lock);
3296
3297	return count;
3298}
3299HSTATE_ATTR(nr_overcommit_hugepages);
3300
3301static ssize_t free_hugepages_show(struct kobject *kobj,
3302					struct kobj_attribute *attr, char *buf)
3303{
3304	struct hstate *h;
3305	unsigned long free_huge_pages;
3306	int nid;
3307
3308	h = kobj_to_hstate(kobj, &nid);
3309	if (nid == NUMA_NO_NODE)
3310		free_huge_pages = h->free_huge_pages;
3311	else
3312		free_huge_pages = h->free_huge_pages_node[nid];
3313
3314	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3315}
3316HSTATE_ATTR_RO(free_hugepages);
3317
3318static ssize_t resv_hugepages_show(struct kobject *kobj,
3319					struct kobj_attribute *attr, char *buf)
3320{
3321	struct hstate *h = kobj_to_hstate(kobj, NULL);
3322	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3323}
3324HSTATE_ATTR_RO(resv_hugepages);
3325
3326static ssize_t surplus_hugepages_show(struct kobject *kobj,
3327					struct kobj_attribute *attr, char *buf)
3328{
3329	struct hstate *h;
3330	unsigned long surplus_huge_pages;
3331	int nid;
3332
3333	h = kobj_to_hstate(kobj, &nid);
3334	if (nid == NUMA_NO_NODE)
3335		surplus_huge_pages = h->surplus_huge_pages;
3336	else
3337		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3338
3339	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3340}
3341HSTATE_ATTR_RO(surplus_hugepages);
3342
3343static struct attribute *hstate_attrs[] = {
3344	&nr_hugepages_attr.attr,
3345	&nr_overcommit_hugepages_attr.attr,
3346	&free_hugepages_attr.attr,
3347	&resv_hugepages_attr.attr,
3348	&surplus_hugepages_attr.attr,
3349#ifdef CONFIG_NUMA
3350	&nr_hugepages_mempolicy_attr.attr,
3351#endif
3352	NULL,
3353};
3354
3355static const struct attribute_group hstate_attr_group = {
3356	.attrs = hstate_attrs,
3357};
3358
3359static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3360				    struct kobject **hstate_kobjs,
3361				    const struct attribute_group *hstate_attr_group)
3362{
3363	int retval;
3364	int hi = hstate_index(h);
3365
3366	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3367	if (!hstate_kobjs[hi])
3368		return -ENOMEM;
3369
3370	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3371	if (retval) {
3372		kobject_put(hstate_kobjs[hi]);
3373		hstate_kobjs[hi] = NULL;
3374	}
3375
3376	return retval;
3377}
3378
3379static void __init hugetlb_sysfs_init(void)
3380{
3381	struct hstate *h;
3382	int err;
3383
3384	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3385	if (!hugepages_kobj)
3386		return;
3387
3388	for_each_hstate(h) {
3389		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3390					 hstate_kobjs, &hstate_attr_group);
3391		if (err)
3392			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3393	}
3394}
3395
3396#ifdef CONFIG_NUMA
3397
3398/*
3399 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3400 * with node devices in node_devices[] using a parallel array.  The array
3401 * index of a node device or _hstate == node id.
3402 * This is here to avoid any static dependency of the node device driver, in
3403 * the base kernel, on the hugetlb module.
3404 */
3405struct node_hstate {
3406	struct kobject		*hugepages_kobj;
3407	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3408};
3409static struct node_hstate node_hstates[MAX_NUMNODES];
3410
3411/*
3412 * A subset of global hstate attributes for node devices
3413 */
3414static struct attribute *per_node_hstate_attrs[] = {
3415	&nr_hugepages_attr.attr,
3416	&free_hugepages_attr.attr,
3417	&surplus_hugepages_attr.attr,
3418	NULL,
3419};
3420
3421static const struct attribute_group per_node_hstate_attr_group = {
3422	.attrs = per_node_hstate_attrs,
3423};
3424
3425/*
3426 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3427 * Returns node id via non-NULL nidp.
3428 */
3429static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3430{
3431	int nid;
3432
3433	for (nid = 0; nid < nr_node_ids; nid++) {
3434		struct node_hstate *nhs = &node_hstates[nid];
3435		int i;
3436		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3437			if (nhs->hstate_kobjs[i] == kobj) {
3438				if (nidp)
3439					*nidp = nid;
3440				return &hstates[i];
3441			}
3442	}
3443
3444	BUG();
3445	return NULL;
3446}
3447
3448/*
3449 * Unregister hstate attributes from a single node device.
3450 * No-op if no hstate attributes attached.
3451 */
3452static void hugetlb_unregister_node(struct node *node)
3453{
3454	struct hstate *h;
3455	struct node_hstate *nhs = &node_hstates[node->dev.id];
3456
3457	if (!nhs->hugepages_kobj)
3458		return;		/* no hstate attributes */
3459
3460	for_each_hstate(h) {
3461		int idx = hstate_index(h);
3462		if (nhs->hstate_kobjs[idx]) {
3463			kobject_put(nhs->hstate_kobjs[idx]);
3464			nhs->hstate_kobjs[idx] = NULL;
3465		}
3466	}
3467
3468	kobject_put(nhs->hugepages_kobj);
3469	nhs->hugepages_kobj = NULL;
3470}
3471
3472
3473/*
3474 * Register hstate attributes for a single node device.
3475 * No-op if attributes already registered.
3476 */
3477static void hugetlb_register_node(struct node *node)
3478{
3479	struct hstate *h;
3480	struct node_hstate *nhs = &node_hstates[node->dev.id];
3481	int err;
3482
3483	if (nhs->hugepages_kobj)
3484		return;		/* already allocated */
3485
3486	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3487							&node->dev.kobj);
3488	if (!nhs->hugepages_kobj)
3489		return;
3490
3491	for_each_hstate(h) {
3492		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3493						nhs->hstate_kobjs,
3494						&per_node_hstate_attr_group);
3495		if (err) {
3496			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3497				h->name, node->dev.id);
3498			hugetlb_unregister_node(node);
3499			break;
3500		}
3501	}
3502}
3503
3504/*
3505 * hugetlb init time:  register hstate attributes for all registered node
3506 * devices of nodes that have memory.  All on-line nodes should have
3507 * registered their associated device by this time.
3508 */
3509static void __init hugetlb_register_all_nodes(void)
3510{
3511	int nid;
3512
3513	for_each_node_state(nid, N_MEMORY) {
3514		struct node *node = node_devices[nid];
3515		if (node->dev.id == nid)
3516			hugetlb_register_node(node);
3517	}
3518
3519	/*
3520	 * Let the node device driver know we're here so it can
3521	 * [un]register hstate attributes on node hotplug.
3522	 */
3523	register_hugetlbfs_with_node(hugetlb_register_node,
3524				     hugetlb_unregister_node);
3525}
3526#else	/* !CONFIG_NUMA */
3527
3528static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3529{
3530	BUG();
3531	if (nidp)
3532		*nidp = -1;
3533	return NULL;
3534}
3535
3536static void hugetlb_register_all_nodes(void) { }
3537
3538#endif
3539
3540static int __init hugetlb_init(void)
3541{
3542	int i;
3543
3544	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3545			__NR_HPAGEFLAGS);
3546
3547	if (!hugepages_supported()) {
3548		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3549			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3550		return 0;
3551	}
3552
3553	/*
3554	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3555	 * architectures depend on setup being done here.
3556	 */
3557	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3558	if (!parsed_default_hugepagesz) {
3559		/*
3560		 * If we did not parse a default huge page size, set
3561		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3562		 * number of huge pages for this default size was implicitly
3563		 * specified, set that here as well.
3564		 * Note that the implicit setting will overwrite an explicit
3565		 * setting.  A warning will be printed in this case.
3566		 */
3567		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3568		if (default_hstate_max_huge_pages) {
3569			if (default_hstate.max_huge_pages) {
3570				char buf[32];
3571
3572				string_get_size(huge_page_size(&default_hstate),
3573					1, STRING_UNITS_2, buf, 32);
3574				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3575					default_hstate.max_huge_pages, buf);
3576				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3577					default_hstate_max_huge_pages);
3578			}
3579			default_hstate.max_huge_pages =
3580				default_hstate_max_huge_pages;
3581		}
 
 
 
 
 
 
 
 
 
3582	}
3583
3584	hugetlb_cma_check();
3585	hugetlb_init_hstates();
3586	gather_bootmem_prealloc();
3587	report_hugepages();
3588
3589	hugetlb_sysfs_init();
3590	hugetlb_register_all_nodes();
3591	hugetlb_cgroup_file_init();
3592
3593#ifdef CONFIG_SMP
3594	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3595#else
3596	num_fault_mutexes = 1;
3597#endif
3598	hugetlb_fault_mutex_table =
3599		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3600			      GFP_KERNEL);
3601	BUG_ON(!hugetlb_fault_mutex_table);
3602
3603	for (i = 0; i < num_fault_mutexes; i++)
3604		mutex_init(&hugetlb_fault_mutex_table[i]);
3605	return 0;
3606}
3607subsys_initcall(hugetlb_init);
3608
3609/* Overwritten by architectures with more huge page sizes */
3610bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3611{
3612	return size == HPAGE_SIZE;
3613}
3614
3615void __init hugetlb_add_hstate(unsigned int order)
3616{
3617	struct hstate *h;
3618	unsigned long i;
3619
3620	if (size_to_hstate(PAGE_SIZE << order)) {
 
3621		return;
3622	}
3623	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3624	BUG_ON(order == 0);
3625	h = &hstates[hugetlb_max_hstate++];
3626	mutex_init(&h->resize_lock);
3627	h->order = order;
3628	h->mask = ~(huge_page_size(h) - 1);
 
 
3629	for (i = 0; i < MAX_NUMNODES; ++i)
3630		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3631	INIT_LIST_HEAD(&h->hugepage_activelist);
3632	h->next_nid_to_alloc = first_memory_node;
3633	h->next_nid_to_free = first_memory_node;
3634	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3635					huge_page_size(h)/1024);
3636	hugetlb_vmemmap_init(h);
3637
3638	parsed_hstate = h;
3639}
3640
3641/*
3642 * hugepages command line processing
3643 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3644 * specification.  If not, ignore the hugepages value.  hugepages can also
3645 * be the first huge page command line  option in which case it implicitly
3646 * specifies the number of huge pages for the default size.
3647 */
3648static int __init hugepages_setup(char *s)
3649{
3650	unsigned long *mhp;
3651	static unsigned long *last_mhp;
3652
3653	if (!parsed_valid_hugepagesz) {
3654		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
 
3655		parsed_valid_hugepagesz = true;
3656		return 0;
3657	}
3658
3659	/*
3660	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3661	 * yet, so this hugepages= parameter goes to the "default hstate".
3662	 * Otherwise, it goes with the previously parsed hugepagesz or
3663	 * default_hugepagesz.
3664	 */
3665	else if (!hugetlb_max_hstate)
3666		mhp = &default_hstate_max_huge_pages;
3667	else
3668		mhp = &parsed_hstate->max_huge_pages;
3669
3670	if (mhp == last_mhp) {
3671		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3672		return 0;
3673	}
3674
3675	if (sscanf(s, "%lu", mhp) <= 0)
3676		*mhp = 0;
3677
3678	/*
3679	 * Global state is always initialized later in hugetlb_init.
3680	 * But we need to allocate gigantic hstates here early to still
3681	 * use the bootmem allocator.
3682	 */
3683	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3684		hugetlb_hstate_alloc_pages(parsed_hstate);
3685
3686	last_mhp = mhp;
3687
3688	return 1;
3689}
3690__setup("hugepages=", hugepages_setup);
3691
3692/*
3693 * hugepagesz command line processing
3694 * A specific huge page size can only be specified once with hugepagesz.
3695 * hugepagesz is followed by hugepages on the command line.  The global
3696 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3697 * hugepagesz argument was valid.
3698 */
3699static int __init hugepagesz_setup(char *s)
3700{
3701	unsigned long size;
3702	struct hstate *h;
3703
3704	parsed_valid_hugepagesz = false;
3705	size = (unsigned long)memparse(s, NULL);
3706
3707	if (!arch_hugetlb_valid_size(size)) {
3708		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3709		return 0;
3710	}
3711
3712	h = size_to_hstate(size);
3713	if (h) {
3714		/*
3715		 * hstate for this size already exists.  This is normally
3716		 * an error, but is allowed if the existing hstate is the
3717		 * default hstate.  More specifically, it is only allowed if
3718		 * the number of huge pages for the default hstate was not
3719		 * previously specified.
3720		 */
3721		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3722		    default_hstate.max_huge_pages) {
3723			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3724			return 0;
3725		}
3726
3727		/*
3728		 * No need to call hugetlb_add_hstate() as hstate already
3729		 * exists.  But, do set parsed_hstate so that a following
3730		 * hugepages= parameter will be applied to this hstate.
3731		 */
3732		parsed_hstate = h;
3733		parsed_valid_hugepagesz = true;
3734		return 1;
3735	}
3736
3737	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3738	parsed_valid_hugepagesz = true;
3739	return 1;
3740}
3741__setup("hugepagesz=", hugepagesz_setup);
3742
3743/*
3744 * default_hugepagesz command line input
3745 * Only one instance of default_hugepagesz allowed on command line.
3746 */
3747static int __init default_hugepagesz_setup(char *s)
3748{
3749	unsigned long size;
3750
3751	parsed_valid_hugepagesz = false;
3752	if (parsed_default_hugepagesz) {
3753		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3754		return 0;
3755	}
3756
3757	size = (unsigned long)memparse(s, NULL);
3758
3759	if (!arch_hugetlb_valid_size(size)) {
3760		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3761		return 0;
3762	}
3763
3764	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3765	parsed_valid_hugepagesz = true;
3766	parsed_default_hugepagesz = true;
3767	default_hstate_idx = hstate_index(size_to_hstate(size));
3768
3769	/*
3770	 * The number of default huge pages (for this size) could have been
3771	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3772	 * then default_hstate_max_huge_pages is set.  If the default huge
3773	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3774	 * allocated here from bootmem allocator.
3775	 */
3776	if (default_hstate_max_huge_pages) {
3777		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3778		if (hstate_is_gigantic(&default_hstate))
3779			hugetlb_hstate_alloc_pages(&default_hstate);
3780		default_hstate_max_huge_pages = 0;
3781	}
3782
3783	return 1;
3784}
3785__setup("default_hugepagesz=", default_hugepagesz_setup);
3786
3787static unsigned int allowed_mems_nr(struct hstate *h)
3788{
3789	int node;
3790	unsigned int nr = 0;
3791	nodemask_t *mpol_allowed;
3792	unsigned int *array = h->free_huge_pages_node;
3793	gfp_t gfp_mask = htlb_alloc_mask(h);
3794
3795	mpol_allowed = policy_nodemask_current(gfp_mask);
3796
3797	for_each_node_mask(node, cpuset_current_mems_allowed) {
3798		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3799			nr += array[node];
3800	}
3801
3802	return nr;
3803}
3804
3805#ifdef CONFIG_SYSCTL
3806static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3807					  void *buffer, size_t *length,
3808					  loff_t *ppos, unsigned long *out)
3809{
3810	struct ctl_table dup_table;
3811
3812	/*
3813	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3814	 * can duplicate the @table and alter the duplicate of it.
3815	 */
3816	dup_table = *table;
3817	dup_table.data = out;
3818
3819	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3820}
3821
3822static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3823			 struct ctl_table *table, int write,
3824			 void *buffer, size_t *length, loff_t *ppos)
3825{
3826	struct hstate *h = &default_hstate;
3827	unsigned long tmp = h->max_huge_pages;
3828	int ret;
3829
3830	if (!hugepages_supported())
3831		return -EOPNOTSUPP;
3832
3833	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3834					     &tmp);
 
3835	if (ret)
3836		goto out;
3837
3838	if (write)
3839		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3840						  NUMA_NO_NODE, tmp, *length);
3841out:
3842	return ret;
3843}
3844
3845int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3846			  void *buffer, size_t *length, loff_t *ppos)
3847{
3848
3849	return hugetlb_sysctl_handler_common(false, table, write,
3850							buffer, length, ppos);
3851}
3852
3853#ifdef CONFIG_NUMA
3854int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3855			  void *buffer, size_t *length, loff_t *ppos)
3856{
3857	return hugetlb_sysctl_handler_common(true, table, write,
3858							buffer, length, ppos);
3859}
3860#endif /* CONFIG_NUMA */
3861
3862int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3863		void *buffer, size_t *length, loff_t *ppos)
 
3864{
3865	struct hstate *h = &default_hstate;
3866	unsigned long tmp;
3867	int ret;
3868
3869	if (!hugepages_supported())
3870		return -EOPNOTSUPP;
3871
3872	tmp = h->nr_overcommit_huge_pages;
3873
3874	if (write && hstate_is_gigantic(h))
3875		return -EINVAL;
3876
3877	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3878					     &tmp);
 
3879	if (ret)
3880		goto out;
3881
3882	if (write) {
3883		spin_lock_irq(&hugetlb_lock);
3884		h->nr_overcommit_huge_pages = tmp;
3885		spin_unlock_irq(&hugetlb_lock);
3886	}
3887out:
3888	return ret;
3889}
3890
3891#endif /* CONFIG_SYSCTL */
3892
3893void hugetlb_report_meminfo(struct seq_file *m)
3894{
3895	struct hstate *h;
3896	unsigned long total = 0;
3897
3898	if (!hugepages_supported())
3899		return;
3900
3901	for_each_hstate(h) {
3902		unsigned long count = h->nr_huge_pages;
3903
3904		total += huge_page_size(h) * count;
3905
3906		if (h == &default_hstate)
3907			seq_printf(m,
3908				   "HugePages_Total:   %5lu\n"
3909				   "HugePages_Free:    %5lu\n"
3910				   "HugePages_Rsvd:    %5lu\n"
3911				   "HugePages_Surp:    %5lu\n"
3912				   "Hugepagesize:   %8lu kB\n",
3913				   count,
3914				   h->free_huge_pages,
3915				   h->resv_huge_pages,
3916				   h->surplus_huge_pages,
3917				   huge_page_size(h) / SZ_1K);
3918	}
3919
3920	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3921}
3922
3923int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3924{
3925	struct hstate *h = &default_hstate;
3926
3927	if (!hugepages_supported())
3928		return 0;
3929
3930	return sysfs_emit_at(buf, len,
3931			     "Node %d HugePages_Total: %5u\n"
3932			     "Node %d HugePages_Free:  %5u\n"
3933			     "Node %d HugePages_Surp:  %5u\n",
3934			     nid, h->nr_huge_pages_node[nid],
3935			     nid, h->free_huge_pages_node[nid],
3936			     nid, h->surplus_huge_pages_node[nid]);
3937}
3938
3939void hugetlb_show_meminfo(void)
3940{
3941	struct hstate *h;
3942	int nid;
3943
3944	if (!hugepages_supported())
3945		return;
3946
3947	for_each_node_state(nid, N_MEMORY)
3948		for_each_hstate(h)
3949			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3950				nid,
3951				h->nr_huge_pages_node[nid],
3952				h->free_huge_pages_node[nid],
3953				h->surplus_huge_pages_node[nid],
3954				huge_page_size(h) / SZ_1K);
3955}
3956
3957void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3958{
3959	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3960		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3961}
3962
3963/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3964unsigned long hugetlb_total_pages(void)
3965{
3966	struct hstate *h;
3967	unsigned long nr_total_pages = 0;
3968
3969	for_each_hstate(h)
3970		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3971	return nr_total_pages;
3972}
3973
3974static int hugetlb_acct_memory(struct hstate *h, long delta)
3975{
3976	int ret = -ENOMEM;
3977
3978	if (!delta)
3979		return 0;
3980
3981	spin_lock_irq(&hugetlb_lock);
3982	/*
3983	 * When cpuset is configured, it breaks the strict hugetlb page
3984	 * reservation as the accounting is done on a global variable. Such
3985	 * reservation is completely rubbish in the presence of cpuset because
3986	 * the reservation is not checked against page availability for the
3987	 * current cpuset. Application can still potentially OOM'ed by kernel
3988	 * with lack of free htlb page in cpuset that the task is in.
3989	 * Attempt to enforce strict accounting with cpuset is almost
3990	 * impossible (or too ugly) because cpuset is too fluid that
3991	 * task or memory node can be dynamically moved between cpusets.
3992	 *
3993	 * The change of semantics for shared hugetlb mapping with cpuset is
3994	 * undesirable. However, in order to preserve some of the semantics,
3995	 * we fall back to check against current free page availability as
3996	 * a best attempt and hopefully to minimize the impact of changing
3997	 * semantics that cpuset has.
3998	 *
3999	 * Apart from cpuset, we also have memory policy mechanism that
4000	 * also determines from which node the kernel will allocate memory
4001	 * in a NUMA system. So similar to cpuset, we also should consider
4002	 * the memory policy of the current task. Similar to the description
4003	 * above.
4004	 */
4005	if (delta > 0) {
4006		if (gather_surplus_pages(h, delta) < 0)
4007			goto out;
4008
4009		if (delta > allowed_mems_nr(h)) {
4010			return_unused_surplus_pages(h, delta);
4011			goto out;
4012		}
4013	}
4014
4015	ret = 0;
4016	if (delta < 0)
4017		return_unused_surplus_pages(h, (unsigned long) -delta);
4018
4019out:
4020	spin_unlock_irq(&hugetlb_lock);
4021	return ret;
4022}
4023
4024static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4025{
4026	struct resv_map *resv = vma_resv_map(vma);
4027
4028	/*
4029	 * This new VMA should share its siblings reservation map if present.
4030	 * The VMA will only ever have a valid reservation map pointer where
4031	 * it is being copied for another still existing VMA.  As that VMA
4032	 * has a reference to the reservation map it cannot disappear until
4033	 * after this open call completes.  It is therefore safe to take a
4034	 * new reference here without additional locking.
4035	 */
4036	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4037		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4038		kref_get(&resv->refs);
4039	}
4040}
4041
4042static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4043{
4044	struct hstate *h = hstate_vma(vma);
4045	struct resv_map *resv = vma_resv_map(vma);
4046	struct hugepage_subpool *spool = subpool_vma(vma);
4047	unsigned long reserve, start, end;
4048	long gbl_reserve;
4049
4050	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4051		return;
4052
4053	start = vma_hugecache_offset(h, vma, vma->vm_start);
4054	end = vma_hugecache_offset(h, vma, vma->vm_end);
4055
4056	reserve = (end - start) - region_count(resv, start, end);
4057	hugetlb_cgroup_uncharge_counter(resv, start, end);
 
 
4058	if (reserve) {
4059		/*
4060		 * Decrement reserve counts.  The global reserve count may be
4061		 * adjusted if the subpool has a minimum size.
4062		 */
4063		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4064		hugetlb_acct_memory(h, -gbl_reserve);
4065	}
4066
4067	kref_put(&resv->refs, resv_map_release);
4068}
4069
4070static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4071{
4072	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4073		return -EINVAL;
4074	return 0;
4075}
4076
4077static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4078{
4079	return huge_page_size(hstate_vma(vma));
 
 
4080}
4081
4082/*
4083 * We cannot handle pagefaults against hugetlb pages at all.  They cause
4084 * handle_mm_fault() to try to instantiate regular-sized pages in the
4085 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4086 * this far.
4087 */
4088static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4089{
4090	BUG();
4091	return 0;
4092}
4093
4094/*
4095 * When a new function is introduced to vm_operations_struct and added
4096 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4097 * This is because under System V memory model, mappings created via
4098 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4099 * their original vm_ops are overwritten with shm_vm_ops.
4100 */
4101const struct vm_operations_struct hugetlb_vm_ops = {
4102	.fault = hugetlb_vm_op_fault,
4103	.open = hugetlb_vm_op_open,
4104	.close = hugetlb_vm_op_close,
4105	.may_split = hugetlb_vm_op_split,
4106	.pagesize = hugetlb_vm_op_pagesize,
4107};
4108
4109static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4110				int writable)
4111{
4112	pte_t entry;
4113	unsigned int shift = huge_page_shift(hstate_vma(vma));
4114
4115	if (writable) {
4116		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4117					 vma->vm_page_prot)));
4118	} else {
4119		entry = huge_pte_wrprotect(mk_huge_pte(page,
4120					   vma->vm_page_prot));
4121	}
4122	entry = pte_mkyoung(entry);
4123	entry = pte_mkhuge(entry);
4124	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4125
4126	return entry;
4127}
4128
4129static void set_huge_ptep_writable(struct vm_area_struct *vma,
4130				   unsigned long address, pte_t *ptep)
4131{
4132	pte_t entry;
4133
4134	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4135	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4136		update_mmu_cache(vma, address, ptep);
4137}
4138
4139bool is_hugetlb_entry_migration(pte_t pte)
4140{
4141	swp_entry_t swp;
4142
4143	if (huge_pte_none(pte) || pte_present(pte))
4144		return false;
4145	swp = pte_to_swp_entry(pte);
4146	if (is_migration_entry(swp))
4147		return true;
4148	else
4149		return false;
4150}
4151
4152static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4153{
4154	swp_entry_t swp;
4155
4156	if (huge_pte_none(pte) || pte_present(pte))
4157		return false;
4158	swp = pte_to_swp_entry(pte);
4159	if (is_hwpoison_entry(swp))
4160		return true;
4161	else
4162		return false;
4163}
4164
4165static void
4166hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4167		     struct page *new_page)
4168{
4169	__SetPageUptodate(new_page);
4170	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4171	hugepage_add_new_anon_rmap(new_page, vma, addr);
4172	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4173	ClearHPageRestoreReserve(new_page);
4174	SetHPageMigratable(new_page);
4175}
4176
4177int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4178			    struct vm_area_struct *vma)
4179{
4180	pte_t *src_pte, *dst_pte, entry, dst_entry;
4181	struct page *ptepage;
4182	unsigned long addr;
4183	bool cow = is_cow_mapping(vma->vm_flags);
4184	struct hstate *h = hstate_vma(vma);
4185	unsigned long sz = huge_page_size(h);
4186	unsigned long npages = pages_per_huge_page(h);
4187	struct address_space *mapping = vma->vm_file->f_mapping;
4188	struct mmu_notifier_range range;
4189	int ret = 0;
4190
 
 
4191	if (cow) {
4192		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4193					vma->vm_start,
4194					vma->vm_end);
4195		mmu_notifier_invalidate_range_start(&range);
4196	} else {
4197		/*
4198		 * For shared mappings i_mmap_rwsem must be held to call
4199		 * huge_pte_alloc, otherwise the returned ptep could go
4200		 * away if part of a shared pmd and another thread calls
4201		 * huge_pmd_unshare.
4202		 */
4203		i_mmap_lock_read(mapping);
4204	}
4205
4206	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4207		spinlock_t *src_ptl, *dst_ptl;
4208		src_pte = huge_pte_offset(src, addr, sz);
4209		if (!src_pte)
4210			continue;
4211		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4212		if (!dst_pte) {
4213			ret = -ENOMEM;
4214			break;
4215		}
4216
4217		/*
4218		 * If the pagetables are shared don't copy or take references.
4219		 * dst_pte == src_pte is the common case of src/dest sharing.
4220		 *
4221		 * However, src could have 'unshared' and dst shares with
4222		 * another vma.  If dst_pte !none, this implies sharing.
4223		 * Check here before taking page table lock, and once again
4224		 * after taking the lock below.
4225		 */
4226		dst_entry = huge_ptep_get(dst_pte);
4227		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4228			continue;
4229
4230		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4231		src_ptl = huge_pte_lockptr(h, src, src_pte);
4232		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4233		entry = huge_ptep_get(src_pte);
4234		dst_entry = huge_ptep_get(dst_pte);
4235again:
4236		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4237			/*
4238			 * Skip if src entry none.  Also, skip in the
4239			 * unlikely case dst entry !none as this implies
4240			 * sharing with another vma.
4241			 */
4242			;
4243		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4244				    is_hugetlb_entry_hwpoisoned(entry))) {
4245			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4246
4247			if (is_writable_migration_entry(swp_entry) && cow) {
4248				/*
4249				 * COW mappings require pages in both
4250				 * parent and child to be set to read.
4251				 */
4252				swp_entry = make_readable_migration_entry(
4253							swp_offset(swp_entry));
4254				entry = swp_entry_to_pte(swp_entry);
4255				set_huge_swap_pte_at(src, addr, src_pte,
4256						     entry, sz);
4257			}
4258			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4259		} else {
4260			entry = huge_ptep_get(src_pte);
4261			ptepage = pte_page(entry);
4262			get_page(ptepage);
4263
4264			/*
4265			 * This is a rare case where we see pinned hugetlb
4266			 * pages while they're prone to COW.  We need to do the
4267			 * COW earlier during fork.
4268			 *
4269			 * When pre-allocating the page or copying data, we
4270			 * need to be without the pgtable locks since we could
4271			 * sleep during the process.
4272			 */
4273			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4274				pte_t src_pte_old = entry;
4275				struct page *new;
4276
4277				spin_unlock(src_ptl);
4278				spin_unlock(dst_ptl);
4279				/* Do not use reserve as it's private owned */
4280				new = alloc_huge_page(vma, addr, 1);
4281				if (IS_ERR(new)) {
4282					put_page(ptepage);
4283					ret = PTR_ERR(new);
4284					break;
4285				}
4286				copy_user_huge_page(new, ptepage, addr, vma,
4287						    npages);
4288				put_page(ptepage);
4289
4290				/* Install the new huge page if src pte stable */
4291				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4292				src_ptl = huge_pte_lockptr(h, src, src_pte);
4293				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4294				entry = huge_ptep_get(src_pte);
4295				if (!pte_same(src_pte_old, entry)) {
4296					restore_reserve_on_error(h, vma, addr,
4297								new);
4298					put_page(new);
4299					/* dst_entry won't change as in child */
4300					goto again;
4301				}
4302				hugetlb_install_page(vma, dst_pte, addr, new);
4303				spin_unlock(src_ptl);
4304				spin_unlock(dst_ptl);
4305				continue;
4306			}
4307
4308			if (cow) {
4309				/*
4310				 * No need to notify as we are downgrading page
4311				 * table protection not changing it to point
4312				 * to a new page.
4313				 *
4314				 * See Documentation/vm/mmu_notifier.rst
4315				 */
4316				huge_ptep_set_wrprotect(src, addr, src_pte);
4317				entry = huge_pte_wrprotect(entry);
4318			}
4319
 
 
4320			page_dup_rmap(ptepage, true);
4321			set_huge_pte_at(dst, addr, dst_pte, entry);
4322			hugetlb_count_add(npages, dst);
4323		}
4324		spin_unlock(src_ptl);
4325		spin_unlock(dst_ptl);
4326	}
4327
4328	if (cow)
4329		mmu_notifier_invalidate_range_end(&range);
4330	else
4331		i_mmap_unlock_read(mapping);
4332
4333	return ret;
4334}
4335
4336void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4337			    unsigned long start, unsigned long end,
4338			    struct page *ref_page)
4339{
4340	struct mm_struct *mm = vma->vm_mm;
4341	unsigned long address;
4342	pte_t *ptep;
4343	pte_t pte;
4344	spinlock_t *ptl;
4345	struct page *page;
4346	struct hstate *h = hstate_vma(vma);
4347	unsigned long sz = huge_page_size(h);
4348	struct mmu_notifier_range range;
4349
4350	WARN_ON(!is_vm_hugetlb_page(vma));
4351	BUG_ON(start & ~huge_page_mask(h));
4352	BUG_ON(end & ~huge_page_mask(h));
4353
4354	/*
4355	 * This is a hugetlb vma, all the pte entries should point
4356	 * to huge page.
4357	 */
4358	tlb_change_page_size(tlb, sz);
4359	tlb_start_vma(tlb, vma);
4360
4361	/*
4362	 * If sharing possible, alert mmu notifiers of worst case.
4363	 */
4364	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4365				end);
4366	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4367	mmu_notifier_invalidate_range_start(&range);
4368	address = start;
4369	for (; address < end; address += sz) {
4370		ptep = huge_pte_offset(mm, address, sz);
4371		if (!ptep)
4372			continue;
4373
4374		ptl = huge_pte_lock(h, mm, ptep);
4375		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4376			spin_unlock(ptl);
4377			/*
4378			 * We just unmapped a page of PMDs by clearing a PUD.
4379			 * The caller's TLB flush range should cover this area.
4380			 */
4381			continue;
4382		}
4383
4384		pte = huge_ptep_get(ptep);
4385		if (huge_pte_none(pte)) {
4386			spin_unlock(ptl);
4387			continue;
4388		}
4389
4390		/*
4391		 * Migrating hugepage or HWPoisoned hugepage is already
4392		 * unmapped and its refcount is dropped, so just clear pte here.
4393		 */
4394		if (unlikely(!pte_present(pte))) {
4395			huge_pte_clear(mm, address, ptep, sz);
4396			spin_unlock(ptl);
4397			continue;
4398		}
4399
4400		page = pte_page(pte);
4401		/*
4402		 * If a reference page is supplied, it is because a specific
4403		 * page is being unmapped, not a range. Ensure the page we
4404		 * are about to unmap is the actual page of interest.
4405		 */
4406		if (ref_page) {
4407			if (page != ref_page) {
4408				spin_unlock(ptl);
4409				continue;
4410			}
4411			/*
4412			 * Mark the VMA as having unmapped its page so that
4413			 * future faults in this VMA will fail rather than
4414			 * looking like data was lost
4415			 */
4416			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4417		}
4418
4419		pte = huge_ptep_get_and_clear(mm, address, ptep);
4420		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4421		if (huge_pte_dirty(pte))
4422			set_page_dirty(page);
4423
4424		hugetlb_count_sub(pages_per_huge_page(h), mm);
4425		page_remove_rmap(page, true);
4426
4427		spin_unlock(ptl);
4428		tlb_remove_page_size(tlb, page, huge_page_size(h));
4429		/*
4430		 * Bail out after unmapping reference page if supplied
4431		 */
4432		if (ref_page)
4433			break;
4434	}
4435	mmu_notifier_invalidate_range_end(&range);
4436	tlb_end_vma(tlb, vma);
4437}
4438
4439void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4440			  struct vm_area_struct *vma, unsigned long start,
4441			  unsigned long end, struct page *ref_page)
4442{
4443	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4444
4445	/*
4446	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4447	 * test will fail on a vma being torn down, and not grab a page table
4448	 * on its way out.  We're lucky that the flag has such an appropriate
4449	 * name, and can in fact be safely cleared here. We could clear it
4450	 * before the __unmap_hugepage_range above, but all that's necessary
4451	 * is to clear it before releasing the i_mmap_rwsem. This works
4452	 * because in the context this is called, the VMA is about to be
4453	 * destroyed and the i_mmap_rwsem is held.
4454	 */
4455	vma->vm_flags &= ~VM_MAYSHARE;
4456}
4457
4458void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4459			  unsigned long end, struct page *ref_page)
4460{
 
4461	struct mmu_gather tlb;
 
 
4462
4463	tlb_gather_mmu(&tlb, vma->vm_mm);
 
 
 
 
 
 
 
 
 
 
 
4464	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4465	tlb_finish_mmu(&tlb);
4466}
4467
4468/*
4469 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4470 * mapping it owns the reserve page for. The intention is to unmap the page
4471 * from other VMAs and let the children be SIGKILLed if they are faulting the
4472 * same region.
4473 */
4474static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4475			      struct page *page, unsigned long address)
4476{
4477	struct hstate *h = hstate_vma(vma);
4478	struct vm_area_struct *iter_vma;
4479	struct address_space *mapping;
4480	pgoff_t pgoff;
4481
4482	/*
4483	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4484	 * from page cache lookup which is in HPAGE_SIZE units.
4485	 */
4486	address = address & huge_page_mask(h);
4487	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4488			vma->vm_pgoff;
4489	mapping = vma->vm_file->f_mapping;
4490
4491	/*
4492	 * Take the mapping lock for the duration of the table walk. As
4493	 * this mapping should be shared between all the VMAs,
4494	 * __unmap_hugepage_range() is called as the lock is already held
4495	 */
4496	i_mmap_lock_write(mapping);
4497	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4498		/* Do not unmap the current VMA */
4499		if (iter_vma == vma)
4500			continue;
4501
4502		/*
4503		 * Shared VMAs have their own reserves and do not affect
4504		 * MAP_PRIVATE accounting but it is possible that a shared
4505		 * VMA is using the same page so check and skip such VMAs.
4506		 */
4507		if (iter_vma->vm_flags & VM_MAYSHARE)
4508			continue;
4509
4510		/*
4511		 * Unmap the page from other VMAs without their own reserves.
4512		 * They get marked to be SIGKILLed if they fault in these
4513		 * areas. This is because a future no-page fault on this VMA
4514		 * could insert a zeroed page instead of the data existing
4515		 * from the time of fork. This would look like data corruption
4516		 */
4517		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4518			unmap_hugepage_range(iter_vma, address,
4519					     address + huge_page_size(h), page);
4520	}
4521	i_mmap_unlock_write(mapping);
4522}
4523
4524/*
4525 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4526 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4527 * cannot race with other handlers or page migration.
4528 * Keep the pte_same checks anyway to make transition from the mutex easier.
4529 */
4530static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4531		       unsigned long address, pte_t *ptep,
4532		       struct page *pagecache_page, spinlock_t *ptl)
4533{
4534	pte_t pte;
4535	struct hstate *h = hstate_vma(vma);
4536	struct page *old_page, *new_page;
4537	int outside_reserve = 0;
4538	vm_fault_t ret = 0;
4539	unsigned long haddr = address & huge_page_mask(h);
4540	struct mmu_notifier_range range;
4541
4542	pte = huge_ptep_get(ptep);
4543	old_page = pte_page(pte);
4544
4545retry_avoidcopy:
4546	/* If no-one else is actually using this page, avoid the copy
4547	 * and just make the page writable */
4548	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4549		page_move_anon_rmap(old_page, vma);
4550		set_huge_ptep_writable(vma, haddr, ptep);
4551		return 0;
4552	}
4553
4554	/*
4555	 * If the process that created a MAP_PRIVATE mapping is about to
4556	 * perform a COW due to a shared page count, attempt to satisfy
4557	 * the allocation without using the existing reserves. The pagecache
4558	 * page is used to determine if the reserve at this address was
4559	 * consumed or not. If reserves were used, a partial faulted mapping
4560	 * at the time of fork() could consume its reserves on COW instead
4561	 * of the full address range.
4562	 */
4563	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4564			old_page != pagecache_page)
4565		outside_reserve = 1;
4566
4567	get_page(old_page);
4568
4569	/*
4570	 * Drop page table lock as buddy allocator may be called. It will
4571	 * be acquired again before returning to the caller, as expected.
4572	 */
4573	spin_unlock(ptl);
4574	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4575
4576	if (IS_ERR(new_page)) {
4577		/*
4578		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4579		 * it is due to references held by a child and an insufficient
4580		 * huge page pool. To guarantee the original mappers
4581		 * reliability, unmap the page from child processes. The child
4582		 * may get SIGKILLed if it later faults.
4583		 */
4584		if (outside_reserve) {
4585			struct address_space *mapping = vma->vm_file->f_mapping;
4586			pgoff_t idx;
4587			u32 hash;
4588
4589			put_page(old_page);
4590			BUG_ON(huge_pte_none(pte));
4591			/*
4592			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4593			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4594			 * in write mode.  Dropping i_mmap_rwsem in read mode
4595			 * here is OK as COW mappings do not interact with
4596			 * PMD sharing.
4597			 *
4598			 * Reacquire both after unmap operation.
4599			 */
4600			idx = vma_hugecache_offset(h, vma, haddr);
4601			hash = hugetlb_fault_mutex_hash(mapping, idx);
4602			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4603			i_mmap_unlock_read(mapping);
4604
4605			unmap_ref_private(mm, vma, old_page, haddr);
4606
4607			i_mmap_lock_read(mapping);
4608			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4609			spin_lock(ptl);
4610			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4611			if (likely(ptep &&
4612				   pte_same(huge_ptep_get(ptep), pte)))
4613				goto retry_avoidcopy;
4614			/*
4615			 * race occurs while re-acquiring page table
4616			 * lock, and our job is done.
4617			 */
4618			return 0;
4619		}
4620
4621		ret = vmf_error(PTR_ERR(new_page));
4622		goto out_release_old;
4623	}
4624
4625	/*
4626	 * When the original hugepage is shared one, it does not have
4627	 * anon_vma prepared.
4628	 */
4629	if (unlikely(anon_vma_prepare(vma))) {
4630		ret = VM_FAULT_OOM;
4631		goto out_release_all;
4632	}
4633
4634	copy_user_huge_page(new_page, old_page, address, vma,
4635			    pages_per_huge_page(h));
4636	__SetPageUptodate(new_page);
4637
4638	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4639				haddr + huge_page_size(h));
4640	mmu_notifier_invalidate_range_start(&range);
4641
4642	/*
4643	 * Retake the page table lock to check for racing updates
4644	 * before the page tables are altered
4645	 */
4646	spin_lock(ptl);
4647	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4648	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4649		ClearHPageRestoreReserve(new_page);
4650
4651		/* Break COW */
4652		huge_ptep_clear_flush(vma, haddr, ptep);
4653		mmu_notifier_invalidate_range(mm, range.start, range.end);
4654		set_huge_pte_at(mm, haddr, ptep,
4655				make_huge_pte(vma, new_page, 1));
4656		page_remove_rmap(old_page, true);
4657		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4658		SetHPageMigratable(new_page);
4659		/* Make the old page be freed below */
4660		new_page = old_page;
4661	}
4662	spin_unlock(ptl);
4663	mmu_notifier_invalidate_range_end(&range);
4664out_release_all:
4665	/* No restore in case of successful pagetable update (Break COW) */
4666	if (new_page != old_page)
4667		restore_reserve_on_error(h, vma, haddr, new_page);
4668	put_page(new_page);
4669out_release_old:
4670	put_page(old_page);
4671
4672	spin_lock(ptl); /* Caller expects lock to be held */
4673	return ret;
4674}
4675
4676/* Return the pagecache page at a given address within a VMA */
4677static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4678			struct vm_area_struct *vma, unsigned long address)
4679{
4680	struct address_space *mapping;
4681	pgoff_t idx;
4682
4683	mapping = vma->vm_file->f_mapping;
4684	idx = vma_hugecache_offset(h, vma, address);
4685
4686	return find_lock_page(mapping, idx);
4687}
4688
4689/*
4690 * Return whether there is a pagecache page to back given address within VMA.
4691 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4692 */
4693static bool hugetlbfs_pagecache_present(struct hstate *h,
4694			struct vm_area_struct *vma, unsigned long address)
4695{
4696	struct address_space *mapping;
4697	pgoff_t idx;
4698	struct page *page;
4699
4700	mapping = vma->vm_file->f_mapping;
4701	idx = vma_hugecache_offset(h, vma, address);
4702
4703	page = find_get_page(mapping, idx);
4704	if (page)
4705		put_page(page);
4706	return page != NULL;
4707}
4708
4709int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4710			   pgoff_t idx)
4711{
4712	struct inode *inode = mapping->host;
4713	struct hstate *h = hstate_inode(inode);
4714	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4715
4716	if (err)
4717		return err;
4718	ClearHPageRestoreReserve(page);
4719
4720	/*
4721	 * set page dirty so that it will not be removed from cache/file
4722	 * by non-hugetlbfs specific code paths.
4723	 */
4724	set_page_dirty(page);
4725
4726	spin_lock(&inode->i_lock);
4727	inode->i_blocks += blocks_per_huge_page(h);
4728	spin_unlock(&inode->i_lock);
4729	return 0;
4730}
4731
4732static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4733						  struct address_space *mapping,
4734						  pgoff_t idx,
4735						  unsigned int flags,
4736						  unsigned long haddr,
4737						  unsigned long reason)
4738{
4739	vm_fault_t ret;
4740	u32 hash;
4741	struct vm_fault vmf = {
4742		.vma = vma,
4743		.address = haddr,
4744		.flags = flags,
4745
4746		/*
4747		 * Hard to debug if it ends up being
4748		 * used by a callee that assumes
4749		 * something about the other
4750		 * uninitialized fields... same as in
4751		 * memory.c
4752		 */
4753	};
4754
4755	/*
4756	 * hugetlb_fault_mutex and i_mmap_rwsem must be
4757	 * dropped before handling userfault.  Reacquire
4758	 * after handling fault to make calling code simpler.
4759	 */
4760	hash = hugetlb_fault_mutex_hash(mapping, idx);
4761	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4762	i_mmap_unlock_read(mapping);
4763	ret = handle_userfault(&vmf, reason);
4764	i_mmap_lock_read(mapping);
4765	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4766
4767	return ret;
4768}
4769
4770static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4771			struct vm_area_struct *vma,
4772			struct address_space *mapping, pgoff_t idx,
4773			unsigned long address, pte_t *ptep, unsigned int flags)
4774{
4775	struct hstate *h = hstate_vma(vma);
4776	vm_fault_t ret = VM_FAULT_SIGBUS;
4777	int anon_rmap = 0;
4778	unsigned long size;
4779	struct page *page;
4780	pte_t new_pte;
4781	spinlock_t *ptl;
4782	unsigned long haddr = address & huge_page_mask(h);
4783	bool new_page, new_pagecache_page = false;
4784
4785	/*
4786	 * Currently, we are forced to kill the process in the event the
4787	 * original mapper has unmapped pages from the child due to a failed
4788	 * COW. Warn that such a situation has occurred as it may not be obvious
4789	 */
4790	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4791		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4792			   current->pid);
4793		return ret;
4794	}
4795
4796	/*
4797	 * We can not race with truncation due to holding i_mmap_rwsem.
4798	 * i_size is modified when holding i_mmap_rwsem, so check here
4799	 * once for faults beyond end of file.
4800	 */
4801	size = i_size_read(mapping->host) >> huge_page_shift(h);
4802	if (idx >= size)
4803		goto out;
4804
4805retry:
4806	new_page = false;
4807	page = find_lock_page(mapping, idx);
4808	if (!page) {
4809		/* Check for page in userfault range */
 
 
 
 
 
 
4810		if (userfaultfd_missing(vma)) {
4811			ret = hugetlb_handle_userfault(vma, mapping, idx,
4812						       flags, haddr,
4813						       VM_UFFD_MISSING);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4814			goto out;
4815		}
4816
4817		page = alloc_huge_page(vma, haddr, 0);
4818		if (IS_ERR(page)) {
4819			/*
4820			 * Returning error will result in faulting task being
4821			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4822			 * tasks from racing to fault in the same page which
4823			 * could result in false unable to allocate errors.
4824			 * Page migration does not take the fault mutex, but
4825			 * does a clear then write of pte's under page table
4826			 * lock.  Page fault code could race with migration,
4827			 * notice the clear pte and try to allocate a page
4828			 * here.  Before returning error, get ptl and make
4829			 * sure there really is no pte entry.
4830			 */
4831			ptl = huge_pte_lock(h, mm, ptep);
4832			ret = 0;
4833			if (huge_pte_none(huge_ptep_get(ptep)))
4834				ret = vmf_error(PTR_ERR(page));
 
 
4835			spin_unlock(ptl);
 
4836			goto out;
4837		}
4838		clear_huge_page(page, address, pages_per_huge_page(h));
4839		__SetPageUptodate(page);
4840		new_page = true;
4841
4842		if (vma->vm_flags & VM_MAYSHARE) {
4843			int err = huge_add_to_page_cache(page, mapping, idx);
4844			if (err) {
4845				put_page(page);
4846				if (err == -EEXIST)
4847					goto retry;
4848				goto out;
4849			}
4850			new_pagecache_page = true;
4851		} else {
4852			lock_page(page);
4853			if (unlikely(anon_vma_prepare(vma))) {
4854				ret = VM_FAULT_OOM;
4855				goto backout_unlocked;
4856			}
4857			anon_rmap = 1;
4858		}
4859	} else {
4860		/*
4861		 * If memory error occurs between mmap() and fault, some process
4862		 * don't have hwpoisoned swap entry for errored virtual address.
4863		 * So we need to block hugepage fault by PG_hwpoison bit check.
4864		 */
4865		if (unlikely(PageHWPoison(page))) {
4866			ret = VM_FAULT_HWPOISON_LARGE |
4867				VM_FAULT_SET_HINDEX(hstate_index(h));
4868			goto backout_unlocked;
4869		}
4870
4871		/* Check for page in userfault range. */
4872		if (userfaultfd_minor(vma)) {
4873			unlock_page(page);
4874			put_page(page);
4875			ret = hugetlb_handle_userfault(vma, mapping, idx,
4876						       flags, haddr,
4877						       VM_UFFD_MINOR);
4878			goto out;
4879		}
4880	}
4881
4882	/*
4883	 * If we are going to COW a private mapping later, we examine the
4884	 * pending reservations for this page now. This will ensure that
4885	 * any allocations necessary to record that reservation occur outside
4886	 * the spinlock.
4887	 */
4888	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4889		if (vma_needs_reservation(h, vma, haddr) < 0) {
4890			ret = VM_FAULT_OOM;
4891			goto backout_unlocked;
4892		}
4893		/* Just decrements count, does not deallocate */
4894		vma_end_reservation(h, vma, haddr);
4895	}
4896
4897	ptl = huge_pte_lock(h, mm, ptep);
 
 
 
 
4898	ret = 0;
4899	if (!huge_pte_none(huge_ptep_get(ptep)))
4900		goto backout;
4901
4902	if (anon_rmap) {
4903		ClearHPageRestoreReserve(page);
4904		hugepage_add_new_anon_rmap(page, vma, haddr);
4905	} else
4906		page_dup_rmap(page, true);
4907	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4908				&& (vma->vm_flags & VM_SHARED)));
4909	set_huge_pte_at(mm, haddr, ptep, new_pte);
4910
4911	hugetlb_count_add(pages_per_huge_page(h), mm);
4912	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4913		/* Optimization, do the COW without a second fault */
4914		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4915	}
4916
4917	spin_unlock(ptl);
4918
4919	/*
4920	 * Only set HPageMigratable in newly allocated pages.  Existing pages
4921	 * found in the pagecache may not have HPageMigratableset if they have
4922	 * been isolated for migration.
4923	 */
4924	if (new_page)
4925		SetHPageMigratable(page);
4926
4927	unlock_page(page);
4928out:
4929	return ret;
4930
4931backout:
4932	spin_unlock(ptl);
4933backout_unlocked:
4934	unlock_page(page);
4935	/* restore reserve for newly allocated pages not in page cache */
4936	if (new_page && !new_pagecache_page)
4937		restore_reserve_on_error(h, vma, haddr, page);
4938	put_page(page);
4939	goto out;
4940}
4941
4942#ifdef CONFIG_SMP
4943u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 
4944{
4945	unsigned long key[2];
4946	u32 hash;
4947
4948	key[0] = (unsigned long) mapping;
4949	key[1] = idx;
4950
4951	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4952
4953	return hash & (num_fault_mutexes - 1);
4954}
4955#else
4956/*
4957 * For uniprocessor systems we always use a single mutex, so just
4958 * return 0 and avoid the hashing overhead.
4959 */
4960u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 
4961{
4962	return 0;
4963}
4964#endif
4965
4966vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4967			unsigned long address, unsigned int flags)
4968{
4969	pte_t *ptep, entry;
4970	spinlock_t *ptl;
4971	vm_fault_t ret;
4972	u32 hash;
4973	pgoff_t idx;
4974	struct page *page = NULL;
4975	struct page *pagecache_page = NULL;
4976	struct hstate *h = hstate_vma(vma);
4977	struct address_space *mapping;
4978	int need_wait_lock = 0;
4979	unsigned long haddr = address & huge_page_mask(h);
4980
4981	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4982	if (ptep) {
4983		/*
4984		 * Since we hold no locks, ptep could be stale.  That is
4985		 * OK as we are only making decisions based on content and
4986		 * not actually modifying content here.
4987		 */
4988		entry = huge_ptep_get(ptep);
4989		if (unlikely(is_hugetlb_entry_migration(entry))) {
4990			migration_entry_wait_huge(vma, mm, ptep);
4991			return 0;
4992		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4993			return VM_FAULT_HWPOISON_LARGE |
4994				VM_FAULT_SET_HINDEX(hstate_index(h));
 
 
 
 
4995	}
4996
4997	/*
4998	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4999	 * until finished with ptep.  This serves two purposes:
5000	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5001	 *    and making the ptep no longer valid.
5002	 * 2) It synchronizes us with i_size modifications during truncation.
5003	 *
5004	 * ptep could have already be assigned via huge_pte_offset.  That
5005	 * is OK, as huge_pte_alloc will return the same value unless
5006	 * something has changed.
5007	 */
5008	mapping = vma->vm_file->f_mapping;
5009	i_mmap_lock_read(mapping);
5010	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5011	if (!ptep) {
5012		i_mmap_unlock_read(mapping);
5013		return VM_FAULT_OOM;
5014	}
5015
5016	/*
5017	 * Serialize hugepage allocation and instantiation, so that we don't
5018	 * get spurious allocation failures if two CPUs race to instantiate
5019	 * the same page in the page cache.
5020	 */
5021	idx = vma_hugecache_offset(h, vma, haddr);
5022	hash = hugetlb_fault_mutex_hash(mapping, idx);
5023	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5024
5025	entry = huge_ptep_get(ptep);
5026	if (huge_pte_none(entry)) {
5027		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5028		goto out_mutex;
5029	}
5030
5031	ret = 0;
5032
5033	/*
5034	 * entry could be a migration/hwpoison entry at this point, so this
5035	 * check prevents the kernel from going below assuming that we have
5036	 * an active hugepage in pagecache. This goto expects the 2nd page
5037	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5038	 * properly handle it.
5039	 */
5040	if (!pte_present(entry))
5041		goto out_mutex;
5042
5043	/*
5044	 * If we are going to COW the mapping later, we examine the pending
5045	 * reservations for this page now. This will ensure that any
5046	 * allocations necessary to record that reservation occur outside the
5047	 * spinlock. For private mappings, we also lookup the pagecache
5048	 * page now as it is used to determine if a reservation has been
5049	 * consumed.
5050	 */
5051	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5052		if (vma_needs_reservation(h, vma, haddr) < 0) {
5053			ret = VM_FAULT_OOM;
5054			goto out_mutex;
5055		}
5056		/* Just decrements count, does not deallocate */
5057		vma_end_reservation(h, vma, haddr);
5058
5059		if (!(vma->vm_flags & VM_MAYSHARE))
5060			pagecache_page = hugetlbfs_pagecache_page(h,
5061								vma, haddr);
5062	}
5063
5064	ptl = huge_pte_lock(h, mm, ptep);
5065
5066	/* Check for a racing update before calling hugetlb_cow */
5067	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5068		goto out_ptl;
5069
5070	/*
5071	 * hugetlb_cow() requires page locks of pte_page(entry) and
5072	 * pagecache_page, so here we need take the former one
5073	 * when page != pagecache_page or !pagecache_page.
5074	 */
5075	page = pte_page(entry);
5076	if (page != pagecache_page)
5077		if (!trylock_page(page)) {
5078			need_wait_lock = 1;
5079			goto out_ptl;
5080		}
5081
5082	get_page(page);
5083
5084	if (flags & FAULT_FLAG_WRITE) {
5085		if (!huge_pte_write(entry)) {
5086			ret = hugetlb_cow(mm, vma, address, ptep,
5087					  pagecache_page, ptl);
5088			goto out_put_page;
5089		}
5090		entry = huge_pte_mkdirty(entry);
5091	}
5092	entry = pte_mkyoung(entry);
5093	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5094						flags & FAULT_FLAG_WRITE))
5095		update_mmu_cache(vma, haddr, ptep);
5096out_put_page:
5097	if (page != pagecache_page)
5098		unlock_page(page);
5099	put_page(page);
5100out_ptl:
5101	spin_unlock(ptl);
5102
5103	if (pagecache_page) {
5104		unlock_page(pagecache_page);
5105		put_page(pagecache_page);
5106	}
5107out_mutex:
5108	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5109	i_mmap_unlock_read(mapping);
5110	/*
5111	 * Generally it's safe to hold refcount during waiting page lock. But
5112	 * here we just wait to defer the next page fault to avoid busy loop and
5113	 * the page is not used after unlocked before returning from the current
5114	 * page fault. So we are safe from accessing freed page, even if we wait
5115	 * here without taking refcount.
5116	 */
5117	if (need_wait_lock)
5118		wait_on_page_locked(page);
5119	return ret;
5120}
5121
5122#ifdef CONFIG_USERFAULTFD
5123/*
5124 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5125 * modifications for huge pages.
5126 */
5127int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5128			    pte_t *dst_pte,
5129			    struct vm_area_struct *dst_vma,
5130			    unsigned long dst_addr,
5131			    unsigned long src_addr,
5132			    enum mcopy_atomic_mode mode,
5133			    struct page **pagep)
5134{
5135	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5136	struct hstate *h = hstate_vma(dst_vma);
5137	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5138	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5139	unsigned long size;
5140	int vm_shared = dst_vma->vm_flags & VM_SHARED;
 
5141	pte_t _dst_pte;
5142	spinlock_t *ptl;
5143	int ret = -ENOMEM;
5144	struct page *page;
5145	int writable;
5146	bool new_pagecache_page = false;
5147
5148	if (is_continue) {
5149		ret = -EFAULT;
5150		page = find_lock_page(mapping, idx);
5151		if (!page)
5152			goto out;
5153	} else if (!*pagep) {
5154		/* If a page already exists, then it's UFFDIO_COPY for
5155		 * a non-missing case. Return -EEXIST.
5156		 */
5157		if (vm_shared &&
5158		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5159			ret = -EEXIST;
5160			goto out;
5161		}
5162
 
 
5163		page = alloc_huge_page(dst_vma, dst_addr, 0);
5164		if (IS_ERR(page)) {
5165			ret = -ENOMEM;
5166			goto out;
5167		}
5168
5169		ret = copy_huge_page_from_user(page,
5170						(const void __user *) src_addr,
5171						pages_per_huge_page(h), false);
5172
5173		/* fallback to copy_from_user outside mmap_lock */
5174		if (unlikely(ret)) {
5175			ret = -ENOENT;
5176			/* Free the allocated page which may have
5177			 * consumed a reservation.
5178			 */
5179			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5180			put_page(page);
5181
5182			/* Allocate a temporary page to hold the copied
5183			 * contents.
5184			 */
5185			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5186			if (!page) {
5187				ret = -ENOMEM;
5188				goto out;
5189			}
5190			*pagep = page;
5191			/* Set the outparam pagep and return to the caller to
5192			 * copy the contents outside the lock. Don't free the
5193			 * page.
5194			 */
5195			goto out;
5196		}
5197	} else {
5198		if (vm_shared &&
5199		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5200			put_page(*pagep);
5201			ret = -EEXIST;
5202			*pagep = NULL;
5203			goto out;
5204		}
5205
5206		page = alloc_huge_page(dst_vma, dst_addr, 0);
5207		if (IS_ERR(page)) {
5208			ret = -ENOMEM;
5209			*pagep = NULL;
5210			goto out;
5211		}
5212		copy_huge_page(page, *pagep);
5213		put_page(*pagep);
5214		*pagep = NULL;
5215	}
5216
5217	/*
5218	 * The memory barrier inside __SetPageUptodate makes sure that
5219	 * preceding stores to the page contents become visible before
5220	 * the set_pte_at() write.
5221	 */
5222	__SetPageUptodate(page);
5223
5224	/* Add shared, newly allocated pages to the page cache. */
5225	if (vm_shared && !is_continue) {
 
 
 
 
 
5226		size = i_size_read(mapping->host) >> huge_page_shift(h);
5227		ret = -EFAULT;
5228		if (idx >= size)
5229			goto out_release_nounlock;
5230
5231		/*
5232		 * Serialization between remove_inode_hugepages() and
5233		 * huge_add_to_page_cache() below happens through the
5234		 * hugetlb_fault_mutex_table that here must be hold by
5235		 * the caller.
5236		 */
5237		ret = huge_add_to_page_cache(page, mapping, idx);
5238		if (ret)
5239			goto out_release_nounlock;
5240		new_pagecache_page = true;
5241	}
5242
5243	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5244	spin_lock(ptl);
5245
5246	/*
5247	 * Recheck the i_size after holding PT lock to make sure not
5248	 * to leave any page mapped (as page_mapped()) beyond the end
5249	 * of the i_size (remove_inode_hugepages() is strict about
5250	 * enforcing that). If we bail out here, we'll also leave a
5251	 * page in the radix tree in the vm_shared case beyond the end
5252	 * of the i_size, but remove_inode_hugepages() will take care
5253	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5254	 */
5255	size = i_size_read(mapping->host) >> huge_page_shift(h);
5256	ret = -EFAULT;
5257	if (idx >= size)
5258		goto out_release_unlock;
5259
5260	ret = -EEXIST;
5261	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5262		goto out_release_unlock;
5263
5264	if (vm_shared) {
5265		page_dup_rmap(page, true);
5266	} else {
5267		ClearHPageRestoreReserve(page);
5268		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5269	}
5270
5271	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5272	if (is_continue && !vm_shared)
5273		writable = 0;
5274	else
5275		writable = dst_vma->vm_flags & VM_WRITE;
5276
5277	_dst_pte = make_huge_pte(dst_vma, page, writable);
5278	if (writable)
5279		_dst_pte = huge_pte_mkdirty(_dst_pte);
5280	_dst_pte = pte_mkyoung(_dst_pte);
5281
5282	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5283
5284	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5285					dst_vma->vm_flags & VM_WRITE);
5286	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5287
5288	/* No need to invalidate - it was non-present before */
5289	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5290
5291	spin_unlock(ptl);
5292	if (!is_continue)
5293		SetHPageMigratable(page);
5294	if (vm_shared || is_continue)
5295		unlock_page(page);
5296	ret = 0;
5297out:
5298	return ret;
5299out_release_unlock:
5300	spin_unlock(ptl);
5301	if (vm_shared || is_continue)
5302		unlock_page(page);
5303out_release_nounlock:
5304	if (!new_pagecache_page)
5305		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5306	put_page(page);
5307	goto out;
5308}
5309#endif /* CONFIG_USERFAULTFD */
5310
5311static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5312				 int refs, struct page **pages,
5313				 struct vm_area_struct **vmas)
5314{
5315	int nr;
5316
5317	for (nr = 0; nr < refs; nr++) {
5318		if (likely(pages))
5319			pages[nr] = mem_map_offset(page, nr);
5320		if (vmas)
5321			vmas[nr] = vma;
5322	}
5323}
5324
5325long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5326			 struct page **pages, struct vm_area_struct **vmas,
5327			 unsigned long *position, unsigned long *nr_pages,
5328			 long i, unsigned int flags, int *locked)
5329{
5330	unsigned long pfn_offset;
5331	unsigned long vaddr = *position;
5332	unsigned long remainder = *nr_pages;
5333	struct hstate *h = hstate_vma(vma);
5334	int err = -EFAULT, refs;
5335
5336	while (vaddr < vma->vm_end && remainder) {
5337		pte_t *pte;
5338		spinlock_t *ptl = NULL;
5339		int absent;
5340		struct page *page;
5341
5342		/*
5343		 * If we have a pending SIGKILL, don't keep faulting pages and
5344		 * potentially allocating memory.
5345		 */
5346		if (fatal_signal_pending(current)) {
5347			remainder = 0;
5348			break;
5349		}
5350
5351		/*
5352		 * Some archs (sparc64, sh*) have multiple pte_ts to
5353		 * each hugepage.  We have to make sure we get the
5354		 * first, for the page indexing below to work.
5355		 *
5356		 * Note that page table lock is not held when pte is null.
5357		 */
5358		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5359				      huge_page_size(h));
5360		if (pte)
5361			ptl = huge_pte_lock(h, mm, pte);
5362		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5363
5364		/*
5365		 * When coredumping, it suits get_dump_page if we just return
5366		 * an error where there's an empty slot with no huge pagecache
5367		 * to back it.  This way, we avoid allocating a hugepage, and
5368		 * the sparse dumpfile avoids allocating disk blocks, but its
5369		 * huge holes still show up with zeroes where they need to be.
5370		 */
5371		if (absent && (flags & FOLL_DUMP) &&
5372		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5373			if (pte)
5374				spin_unlock(ptl);
5375			remainder = 0;
5376			break;
5377		}
5378
5379		/*
5380		 * We need call hugetlb_fault for both hugepages under migration
5381		 * (in which case hugetlb_fault waits for the migration,) and
5382		 * hwpoisoned hugepages (in which case we need to prevent the
5383		 * caller from accessing to them.) In order to do this, we use
5384		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5385		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5386		 * both cases, and because we can't follow correct pages
5387		 * directly from any kind of swap entries.
5388		 */
5389		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5390		    ((flags & FOLL_WRITE) &&
5391		      !huge_pte_write(huge_ptep_get(pte)))) {
5392			vm_fault_t ret;
5393			unsigned int fault_flags = 0;
5394
5395			if (pte)
5396				spin_unlock(ptl);
5397			if (flags & FOLL_WRITE)
5398				fault_flags |= FAULT_FLAG_WRITE;
5399			if (locked)
5400				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5401					FAULT_FLAG_KILLABLE;
5402			if (flags & FOLL_NOWAIT)
5403				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5404					FAULT_FLAG_RETRY_NOWAIT;
5405			if (flags & FOLL_TRIED) {
5406				/*
5407				 * Note: FAULT_FLAG_ALLOW_RETRY and
5408				 * FAULT_FLAG_TRIED can co-exist
5409				 */
5410				fault_flags |= FAULT_FLAG_TRIED;
5411			}
5412			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5413			if (ret & VM_FAULT_ERROR) {
5414				err = vm_fault_to_errno(ret, flags);
5415				remainder = 0;
5416				break;
5417			}
5418			if (ret & VM_FAULT_RETRY) {
5419				if (locked &&
5420				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5421					*locked = 0;
5422				*nr_pages = 0;
5423				/*
5424				 * VM_FAULT_RETRY must not return an
5425				 * error, it will return zero
5426				 * instead.
5427				 *
5428				 * No need to update "position" as the
5429				 * caller will not check it after
5430				 * *nr_pages is set to 0.
5431				 */
5432				return i;
5433			}
5434			continue;
5435		}
5436
5437		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5438		page = pte_page(huge_ptep_get(pte));
5439
5440		/*
5441		 * If subpage information not requested, update counters
5442		 * and skip the same_page loop below.
5443		 */
5444		if (!pages && !vmas && !pfn_offset &&
5445		    (vaddr + huge_page_size(h) < vma->vm_end) &&
5446		    (remainder >= pages_per_huge_page(h))) {
5447			vaddr += huge_page_size(h);
5448			remainder -= pages_per_huge_page(h);
5449			i += pages_per_huge_page(h);
5450			spin_unlock(ptl);
5451			continue;
5452		}
5453
5454		/* vaddr may not be aligned to PAGE_SIZE */
5455		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5456		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5457
5458		if (pages || vmas)
5459			record_subpages_vmas(mem_map_offset(page, pfn_offset),
5460					     vma, refs,
5461					     likely(pages) ? pages + i : NULL,
5462					     vmas ? vmas + i : NULL);
5463
5464		if (pages) {
5465			/*
5466			 * try_grab_compound_head() should always succeed here,
5467			 * because: a) we hold the ptl lock, and b) we've just
5468			 * checked that the huge page is present in the page
5469			 * tables. If the huge page is present, then the tail
5470			 * pages must also be present. The ptl prevents the
5471			 * head page and tail pages from being rearranged in
5472			 * any way. So this page must be available at this
5473			 * point, unless the page refcount overflowed:
5474			 */
5475			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5476								 refs,
5477								 flags))) {
5478				spin_unlock(ptl);
5479				remainder = 0;
5480				err = -ENOMEM;
5481				break;
5482			}
5483		}
 
 
 
 
 
5484
5485		vaddr += (refs << PAGE_SHIFT);
5486		remainder -= refs;
5487		i += refs;
5488
 
 
 
 
 
 
 
 
 
 
 
 
5489		spin_unlock(ptl);
5490	}
5491	*nr_pages = remainder;
5492	/*
5493	 * setting position is actually required only if remainder is
5494	 * not zero but it's faster not to add a "if (remainder)"
5495	 * branch.
5496	 */
5497	*position = vaddr;
5498
5499	return i ? i : err;
5500}
5501
 
 
 
 
 
 
 
 
5502unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5503		unsigned long address, unsigned long end, pgprot_t newprot)
5504{
5505	struct mm_struct *mm = vma->vm_mm;
5506	unsigned long start = address;
5507	pte_t *ptep;
5508	pte_t pte;
5509	struct hstate *h = hstate_vma(vma);
5510	unsigned long pages = 0;
5511	bool shared_pmd = false;
5512	struct mmu_notifier_range range;
5513
5514	/*
5515	 * In the case of shared PMDs, the area to flush could be beyond
5516	 * start/end.  Set range.start/range.end to cover the maximum possible
5517	 * range if PMD sharing is possible.
5518	 */
5519	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5520				0, vma, mm, start, end);
5521	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5522
5523	BUG_ON(address >= end);
5524	flush_cache_range(vma, range.start, range.end);
5525
5526	mmu_notifier_invalidate_range_start(&range);
5527	i_mmap_lock_write(vma->vm_file->f_mapping);
5528	for (; address < end; address += huge_page_size(h)) {
5529		spinlock_t *ptl;
5530		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5531		if (!ptep)
5532			continue;
5533		ptl = huge_pte_lock(h, mm, ptep);
5534		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5535			pages++;
5536			spin_unlock(ptl);
5537			shared_pmd = true;
5538			continue;
5539		}
5540		pte = huge_ptep_get(ptep);
5541		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5542			spin_unlock(ptl);
5543			continue;
5544		}
5545		if (unlikely(is_hugetlb_entry_migration(pte))) {
5546			swp_entry_t entry = pte_to_swp_entry(pte);
5547
5548			if (is_writable_migration_entry(entry)) {
5549				pte_t newpte;
5550
5551				entry = make_readable_migration_entry(
5552							swp_offset(entry));
5553				newpte = swp_entry_to_pte(entry);
5554				set_huge_swap_pte_at(mm, address, ptep,
5555						     newpte, huge_page_size(h));
5556				pages++;
5557			}
5558			spin_unlock(ptl);
5559			continue;
5560		}
5561		if (!huge_pte_none(pte)) {
5562			pte_t old_pte;
5563			unsigned int shift = huge_page_shift(hstate_vma(vma));
5564
5565			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5566			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5567			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5568			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5569			pages++;
5570		}
5571		spin_unlock(ptl);
5572	}
5573	/*
5574	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5575	 * may have cleared our pud entry and done put_page on the page table:
5576	 * once we release i_mmap_rwsem, another task can do the final put_page
5577	 * and that page table be reused and filled with junk.  If we actually
5578	 * did unshare a page of pmds, flush the range corresponding to the pud.
5579	 */
5580	if (shared_pmd)
5581		flush_hugetlb_tlb_range(vma, range.start, range.end);
5582	else
5583		flush_hugetlb_tlb_range(vma, start, end);
5584	/*
5585	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5586	 * page table protection not changing it to point to a new page.
5587	 *
5588	 * See Documentation/vm/mmu_notifier.rst
5589	 */
5590	i_mmap_unlock_write(vma->vm_file->f_mapping);
5591	mmu_notifier_invalidate_range_end(&range);
5592
5593	return pages << h->order;
5594}
5595
5596/* Return true if reservation was successful, false otherwise.  */
5597bool hugetlb_reserve_pages(struct inode *inode,
5598					long from, long to,
5599					struct vm_area_struct *vma,
5600					vm_flags_t vm_flags)
5601{
5602	long chg, add = -1;
5603	struct hstate *h = hstate_inode(inode);
5604	struct hugepage_subpool *spool = subpool_inode(inode);
5605	struct resv_map *resv_map;
5606	struct hugetlb_cgroup *h_cg = NULL;
5607	long gbl_reserve, regions_needed = 0;
5608
5609	/* This should never happen */
5610	if (from > to) {
5611		VM_WARN(1, "%s called with a negative range\n", __func__);
5612		return false;
5613	}
5614
5615	/*
5616	 * Only apply hugepage reservation if asked. At fault time, an
5617	 * attempt will be made for VM_NORESERVE to allocate a page
5618	 * without using reserves
5619	 */
5620	if (vm_flags & VM_NORESERVE)
5621		return true;
5622
5623	/*
5624	 * Shared mappings base their reservation on the number of pages that
5625	 * are already allocated on behalf of the file. Private mappings need
5626	 * to reserve the full area even if read-only as mprotect() may be
5627	 * called to make the mapping read-write. Assume !vma is a shm mapping
5628	 */
5629	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5630		/*
5631		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5632		 * called for inodes for which resv_maps were created (see
5633		 * hugetlbfs_get_inode).
5634		 */
5635		resv_map = inode_resv_map(inode);
5636
5637		chg = region_chg(resv_map, from, to, &regions_needed);
5638
5639	} else {
5640		/* Private mapping. */
5641		resv_map = resv_map_alloc();
5642		if (!resv_map)
5643			return false;
5644
5645		chg = to - from;
5646
5647		set_vma_resv_map(vma, resv_map);
5648		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5649	}
5650
5651	if (chg < 0)
 
5652		goto out_err;
5653
5654	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5655				chg * pages_per_huge_page(h), &h_cg) < 0)
5656		goto out_err;
5657
5658	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5659		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5660		 * of the resv_map.
5661		 */
5662		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5663	}
5664
5665	/*
5666	 * There must be enough pages in the subpool for the mapping. If
5667	 * the subpool has a minimum size, there may be some global
5668	 * reservations already in place (gbl_reserve).
5669	 */
5670	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5671	if (gbl_reserve < 0)
5672		goto out_uncharge_cgroup;
 
 
5673
5674	/*
5675	 * Check enough hugepages are available for the reservation.
5676	 * Hand the pages back to the subpool if there are not
5677	 */
5678	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5679		goto out_put_pages;
 
 
 
 
5680
5681	/*
5682	 * Account for the reservations made. Shared mappings record regions
5683	 * that have reservations as they are shared by multiple VMAs.
5684	 * When the last VMA disappears, the region map says how much
5685	 * the reservation was and the page cache tells how much of
5686	 * the reservation was consumed. Private mappings are per-VMA and
5687	 * only the consumed reservations are tracked. When the VMA
5688	 * disappears, the original reservation is the VMA size and the
5689	 * consumed reservations are stored in the map. Hence, nothing
5690	 * else has to be done for private mappings here
5691	 */
5692	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5693		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5694
5695		if (unlikely(add < 0)) {
5696			hugetlb_acct_memory(h, -gbl_reserve);
5697			goto out_put_pages;
5698		} else if (unlikely(chg > add)) {
5699			/*
5700			 * pages in this range were added to the reserve
5701			 * map between region_chg and region_add.  This
5702			 * indicates a race with alloc_huge_page.  Adjust
5703			 * the subpool and reserve counts modified above
5704			 * based on the difference.
5705			 */
5706			long rsv_adjust;
5707
5708			/*
5709			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5710			 * reference to h_cg->css. See comment below for detail.
5711			 */
5712			hugetlb_cgroup_uncharge_cgroup_rsvd(
5713				hstate_index(h),
5714				(chg - add) * pages_per_huge_page(h), h_cg);
5715
5716			rsv_adjust = hugepage_subpool_put_pages(spool,
5717								chg - add);
5718			hugetlb_acct_memory(h, -rsv_adjust);
5719		} else if (h_cg) {
5720			/*
5721			 * The file_regions will hold their own reference to
5722			 * h_cg->css. So we should release the reference held
5723			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5724			 * done.
5725			 */
5726			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5727		}
5728	}
5729	return true;
5730
5731out_put_pages:
5732	/* put back original number of pages, chg */
5733	(void)hugepage_subpool_put_pages(spool, chg);
5734out_uncharge_cgroup:
5735	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5736					    chg * pages_per_huge_page(h), h_cg);
5737out_err:
5738	if (!vma || vma->vm_flags & VM_MAYSHARE)
5739		/* Only call region_abort if the region_chg succeeded but the
5740		 * region_add failed or didn't run.
5741		 */
5742		if (chg >= 0 && add < 0)
5743			region_abort(resv_map, from, to, regions_needed);
5744	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5745		kref_put(&resv_map->refs, resv_map_release);
5746	return false;
5747}
5748
5749long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5750								long freed)
5751{
5752	struct hstate *h = hstate_inode(inode);
5753	struct resv_map *resv_map = inode_resv_map(inode);
5754	long chg = 0;
5755	struct hugepage_subpool *spool = subpool_inode(inode);
5756	long gbl_reserve;
5757
5758	/*
5759	 * Since this routine can be called in the evict inode path for all
5760	 * hugetlbfs inodes, resv_map could be NULL.
5761	 */
5762	if (resv_map) {
5763		chg = region_del(resv_map, start, end);
5764		/*
5765		 * region_del() can fail in the rare case where a region
5766		 * must be split and another region descriptor can not be
5767		 * allocated.  If end == LONG_MAX, it will not fail.
5768		 */
5769		if (chg < 0)
5770			return chg;
5771	}
5772
5773	spin_lock(&inode->i_lock);
5774	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5775	spin_unlock(&inode->i_lock);
5776
5777	/*
5778	 * If the subpool has a minimum size, the number of global
5779	 * reservations to be released may be adjusted.
5780	 *
5781	 * Note that !resv_map implies freed == 0. So (chg - freed)
5782	 * won't go negative.
5783	 */
5784	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5785	hugetlb_acct_memory(h, -gbl_reserve);
5786
5787	return 0;
5788}
5789
5790#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5791static unsigned long page_table_shareable(struct vm_area_struct *svma,
5792				struct vm_area_struct *vma,
5793				unsigned long addr, pgoff_t idx)
5794{
5795	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5796				svma->vm_start;
5797	unsigned long sbase = saddr & PUD_MASK;
5798	unsigned long s_end = sbase + PUD_SIZE;
5799
5800	/* Allow segments to share if only one is marked locked */
5801	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5802	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5803
5804	/*
5805	 * match the virtual addresses, permission and the alignment of the
5806	 * page table page.
5807	 */
5808	if (pmd_index(addr) != pmd_index(saddr) ||
5809	    vm_flags != svm_flags ||
5810	    !range_in_vma(svma, sbase, s_end))
5811		return 0;
5812
5813	return saddr;
5814}
5815
5816static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5817{
5818	unsigned long base = addr & PUD_MASK;
5819	unsigned long end = base + PUD_SIZE;
5820
5821	/*
5822	 * check on proper vm_flags and page table alignment
5823	 */
5824	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5825		return true;
5826	return false;
5827}
5828
5829bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5830{
5831#ifdef CONFIG_USERFAULTFD
5832	if (uffd_disable_huge_pmd_share(vma))
5833		return false;
5834#endif
5835	return vma_shareable(vma, addr);
5836}
5837
5838/*
5839 * Determine if start,end range within vma could be mapped by shared pmd.
5840 * If yes, adjust start and end to cover range associated with possible
5841 * shared pmd mappings.
5842 */
5843void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5844				unsigned long *start, unsigned long *end)
5845{
5846	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5847		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5848
5849	/*
5850	 * vma needs to span at least one aligned PUD size, and the range
5851	 * must be at least partially within in.
5852	 */
5853	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5854		(*end <= v_start) || (*start >= v_end))
5855		return;
5856
5857	/* Extend the range to be PUD aligned for a worst case scenario */
5858	if (*start > v_start)
5859		*start = ALIGN_DOWN(*start, PUD_SIZE);
5860
5861	if (*end < v_end)
5862		*end = ALIGN(*end, PUD_SIZE);
 
 
 
 
 
 
 
 
5863}
5864
5865/*
5866 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5867 * and returns the corresponding pte. While this is not necessary for the
5868 * !shared pmd case because we can allocate the pmd later as well, it makes the
5869 * code much cleaner.
5870 *
5871 * This routine must be called with i_mmap_rwsem held in at least read mode if
5872 * sharing is possible.  For hugetlbfs, this prevents removal of any page
5873 * table entries associated with the address space.  This is important as we
5874 * are setting up sharing based on existing page table entries (mappings).
5875 *
5876 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5877 * huge_pte_alloc know that sharing is not possible and do not take
5878 * i_mmap_rwsem as a performance optimization.  This is handled by the
5879 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5880 * only required for subsequent processing.
5881 */
5882pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5883		      unsigned long addr, pud_t *pud)
5884{
 
5885	struct address_space *mapping = vma->vm_file->f_mapping;
5886	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5887			vma->vm_pgoff;
5888	struct vm_area_struct *svma;
5889	unsigned long saddr;
5890	pte_t *spte = NULL;
5891	pte_t *pte;
5892	spinlock_t *ptl;
5893
5894	i_mmap_assert_locked(mapping);
 
 
 
5895	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5896		if (svma == vma)
5897			continue;
5898
5899		saddr = page_table_shareable(svma, vma, addr, idx);
5900		if (saddr) {
5901			spte = huge_pte_offset(svma->vm_mm, saddr,
5902					       vma_mmu_pagesize(svma));
5903			if (spte) {
5904				get_page(virt_to_page(spte));
5905				break;
5906			}
5907		}
5908	}
5909
5910	if (!spte)
5911		goto out;
5912
5913	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5914	if (pud_none(*pud)) {
5915		pud_populate(mm, pud,
5916				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5917		mm_inc_nr_pmds(mm);
5918	} else {
5919		put_page(virt_to_page(spte));
5920	}
5921	spin_unlock(ptl);
5922out:
5923	pte = (pte_t *)pmd_alloc(mm, pud, addr);
 
5924	return pte;
5925}
5926
5927/*
5928 * unmap huge page backed by shared pte.
5929 *
5930 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5931 * indicated by page_count > 1, unmap is achieved by clearing pud and
5932 * decrementing the ref count. If count == 1, the pte page is not shared.
5933 *
5934 * Called with page table lock held and i_mmap_rwsem held in write mode.
5935 *
5936 * returns: 1 successfully unmapped a shared pte page
5937 *	    0 the underlying pte page is not shared, or it is the last user
5938 */
5939int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5940					unsigned long *addr, pte_t *ptep)
5941{
5942	pgd_t *pgd = pgd_offset(mm, *addr);
5943	p4d_t *p4d = p4d_offset(pgd, *addr);
5944	pud_t *pud = pud_offset(p4d, *addr);
5945
5946	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5947	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5948	if (page_count(virt_to_page(ptep)) == 1)
5949		return 0;
5950
5951	pud_clear(pud);
5952	put_page(virt_to_page(ptep));
5953	mm_dec_nr_pmds(mm);
5954	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5955	return 1;
5956}
5957
5958#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5959pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5960		      unsigned long addr, pud_t *pud)
5961{
5962	return NULL;
5963}
5964
5965int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5966				unsigned long *addr, pte_t *ptep)
5967{
5968	return 0;
5969}
5970
5971void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5972				unsigned long *start, unsigned long *end)
5973{
5974}
5975
5976bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5977{
5978	return false;
5979}
5980#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5981
5982#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5983pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5984			unsigned long addr, unsigned long sz)
5985{
5986	pgd_t *pgd;
5987	p4d_t *p4d;
5988	pud_t *pud;
5989	pte_t *pte = NULL;
5990
5991	pgd = pgd_offset(mm, addr);
5992	p4d = p4d_alloc(mm, pgd, addr);
5993	if (!p4d)
5994		return NULL;
5995	pud = pud_alloc(mm, p4d, addr);
5996	if (pud) {
5997		if (sz == PUD_SIZE) {
5998			pte = (pte_t *)pud;
5999		} else {
6000			BUG_ON(sz != PMD_SIZE);
6001			if (want_pmd_share(vma, addr) && pud_none(*pud))
6002				pte = huge_pmd_share(mm, vma, addr, pud);
6003			else
6004				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6005		}
6006	}
6007	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6008
6009	return pte;
6010}
6011
6012/*
6013 * huge_pte_offset() - Walk the page table to resolve the hugepage
6014 * entry at address @addr
6015 *
6016 * Return: Pointer to page table entry (PUD or PMD) for
6017 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6018 * size @sz doesn't match the hugepage size at this level of the page
6019 * table.
6020 */
6021pte_t *huge_pte_offset(struct mm_struct *mm,
6022		       unsigned long addr, unsigned long sz)
6023{
6024	pgd_t *pgd;
6025	p4d_t *p4d;
6026	pud_t *pud;
6027	pmd_t *pmd;
6028
6029	pgd = pgd_offset(mm, addr);
6030	if (!pgd_present(*pgd))
6031		return NULL;
6032	p4d = p4d_offset(pgd, addr);
6033	if (!p4d_present(*p4d))
6034		return NULL;
6035
6036	pud = pud_offset(p4d, addr);
6037	if (sz == PUD_SIZE)
6038		/* must be pud huge, non-present or none */
 
 
6039		return (pte_t *)pud;
6040	if (!pud_present(*pud))
 
 
6041		return NULL;
6042	/* must have a valid entry and size to go further */
 
 
6043
6044	pmd = pmd_offset(pud, addr);
6045	/* must be pmd huge, non-present or none */
6046	return (pte_t *)pmd;
6047}
6048
6049#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6050
6051/*
6052 * These functions are overwritable if your architecture needs its own
6053 * behavior.
6054 */
6055struct page * __weak
6056follow_huge_addr(struct mm_struct *mm, unsigned long address,
6057			      int write)
6058{
6059	return ERR_PTR(-EINVAL);
6060}
6061
6062struct page * __weak
6063follow_huge_pd(struct vm_area_struct *vma,
6064	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6065{
6066	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6067	return NULL;
6068}
6069
6070struct page * __weak
6071follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6072		pmd_t *pmd, int flags)
6073{
6074	struct page *page = NULL;
6075	spinlock_t *ptl;
6076	pte_t pte;
6077
6078	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
6079	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6080			 (FOLL_PIN | FOLL_GET)))
6081		return NULL;
6082
6083retry:
6084	ptl = pmd_lockptr(mm, pmd);
6085	spin_lock(ptl);
6086	/*
6087	 * make sure that the address range covered by this pmd is not
6088	 * unmapped from other threads.
6089	 */
6090	if (!pmd_huge(*pmd))
6091		goto out;
6092	pte = huge_ptep_get((pte_t *)pmd);
6093	if (pte_present(pte)) {
6094		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6095		/*
6096		 * try_grab_page() should always succeed here, because: a) we
6097		 * hold the pmd (ptl) lock, and b) we've just checked that the
6098		 * huge pmd (head) page is present in the page tables. The ptl
6099		 * prevents the head page and tail pages from being rearranged
6100		 * in any way. So this page must be available at this point,
6101		 * unless the page refcount overflowed:
6102		 */
6103		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6104			page = NULL;
6105			goto out;
6106		}
6107	} else {
6108		if (is_hugetlb_entry_migration(pte)) {
6109			spin_unlock(ptl);
6110			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
6111			goto retry;
6112		}
6113		/*
6114		 * hwpoisoned entry is treated as no_page_table in
6115		 * follow_page_mask().
6116		 */
6117	}
6118out:
6119	spin_unlock(ptl);
6120	return page;
6121}
6122
6123struct page * __weak
6124follow_huge_pud(struct mm_struct *mm, unsigned long address,
6125		pud_t *pud, int flags)
6126{
6127	if (flags & (FOLL_GET | FOLL_PIN))
6128		return NULL;
6129
6130	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6131}
6132
6133struct page * __weak
6134follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6135{
6136	if (flags & (FOLL_GET | FOLL_PIN))
6137		return NULL;
6138
6139	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6140}
6141
6142bool isolate_huge_page(struct page *page, struct list_head *list)
6143{
6144	bool ret = true;
6145
6146	spin_lock_irq(&hugetlb_lock);
6147	if (!PageHeadHuge(page) ||
6148	    !HPageMigratable(page) ||
6149	    !get_page_unless_zero(page)) {
6150		ret = false;
6151		goto unlock;
6152	}
6153	ClearHPageMigratable(page);
6154	list_move_tail(&page->lru, list);
6155unlock:
6156	spin_unlock_irq(&hugetlb_lock);
6157	return ret;
6158}
6159
6160int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6161{
6162	int ret = 0;
6163
6164	*hugetlb = false;
6165	spin_lock_irq(&hugetlb_lock);
6166	if (PageHeadHuge(page)) {
6167		*hugetlb = true;
6168		if (HPageFreed(page) || HPageMigratable(page))
6169			ret = get_page_unless_zero(page);
6170		else
6171			ret = -EBUSY;
6172	}
6173	spin_unlock_irq(&hugetlb_lock);
6174	return ret;
6175}
6176
6177void putback_active_hugepage(struct page *page)
6178{
6179	spin_lock_irq(&hugetlb_lock);
6180	SetHPageMigratable(page);
 
6181	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6182	spin_unlock_irq(&hugetlb_lock);
6183	put_page(page);
6184}
6185
6186void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6187{
6188	struct hstate *h = page_hstate(oldpage);
6189
6190	hugetlb_cgroup_migrate(oldpage, newpage);
6191	set_page_owner_migrate_reason(newpage, reason);
6192
6193	/*
6194	 * transfer temporary state of the new huge page. This is
6195	 * reverse to other transitions because the newpage is going to
6196	 * be final while the old one will be freed so it takes over
6197	 * the temporary status.
6198	 *
6199	 * Also note that we have to transfer the per-node surplus state
6200	 * here as well otherwise the global surplus count will not match
6201	 * the per-node's.
6202	 */
6203	if (HPageTemporary(newpage)) {
6204		int old_nid = page_to_nid(oldpage);
6205		int new_nid = page_to_nid(newpage);
6206
6207		SetHPageTemporary(oldpage);
6208		ClearHPageTemporary(newpage);
6209
6210		/*
6211		 * There is no need to transfer the per-node surplus state
6212		 * when we do not cross the node.
6213		 */
6214		if (new_nid == old_nid)
6215			return;
6216		spin_lock_irq(&hugetlb_lock);
6217		if (h->surplus_huge_pages_node[old_nid]) {
6218			h->surplus_huge_pages_node[old_nid]--;
6219			h->surplus_huge_pages_node[new_nid]++;
6220		}
6221		spin_unlock_irq(&hugetlb_lock);
6222	}
6223}
6224
6225/*
6226 * This function will unconditionally remove all the shared pmd pgtable entries
6227 * within the specific vma for a hugetlbfs memory range.
6228 */
6229void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6230{
6231	struct hstate *h = hstate_vma(vma);
6232	unsigned long sz = huge_page_size(h);
6233	struct mm_struct *mm = vma->vm_mm;
6234	struct mmu_notifier_range range;
6235	unsigned long address, start, end;
6236	spinlock_t *ptl;
6237	pte_t *ptep;
6238
6239	if (!(vma->vm_flags & VM_MAYSHARE))
6240		return;
6241
6242	start = ALIGN(vma->vm_start, PUD_SIZE);
6243	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6244
6245	if (start >= end)
6246		return;
6247
6248	/*
6249	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6250	 * we have already done the PUD_SIZE alignment.
6251	 */
6252	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6253				start, end);
6254	mmu_notifier_invalidate_range_start(&range);
6255	i_mmap_lock_write(vma->vm_file->f_mapping);
6256	for (address = start; address < end; address += PUD_SIZE) {
6257		unsigned long tmp = address;
6258
6259		ptep = huge_pte_offset(mm, address, sz);
6260		if (!ptep)
6261			continue;
6262		ptl = huge_pte_lock(h, mm, ptep);
6263		/* We don't want 'address' to be changed */
6264		huge_pmd_unshare(mm, vma, &tmp, ptep);
6265		spin_unlock(ptl);
6266	}
6267	flush_hugetlb_tlb_range(vma, start, end);
6268	i_mmap_unlock_write(vma->vm_file->f_mapping);
6269	/*
6270	 * No need to call mmu_notifier_invalidate_range(), see
6271	 * Documentation/vm/mmu_notifier.rst.
6272	 */
6273	mmu_notifier_invalidate_range_end(&range);
6274}
6275
6276#ifdef CONFIG_CMA
6277static bool cma_reserve_called __initdata;
6278
6279static int __init cmdline_parse_hugetlb_cma(char *p)
6280{
6281	hugetlb_cma_size = memparse(p, &p);
6282	return 0;
6283}
6284
6285early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6286
6287void __init hugetlb_cma_reserve(int order)
6288{
6289	unsigned long size, reserved, per_node;
6290	int nid;
6291
6292	cma_reserve_called = true;
6293
6294	if (!hugetlb_cma_size)
6295		return;
6296
6297	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6298		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6299			(PAGE_SIZE << order) / SZ_1M);
6300		return;
6301	}
6302
6303	/*
6304	 * If 3 GB area is requested on a machine with 4 numa nodes,
6305	 * let's allocate 1 GB on first three nodes and ignore the last one.
6306	 */
6307	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6308	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6309		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6310
6311	reserved = 0;
6312	for_each_node_state(nid, N_ONLINE) {
6313		int res;
6314		char name[CMA_MAX_NAME];
6315
6316		size = min(per_node, hugetlb_cma_size - reserved);
6317		size = round_up(size, PAGE_SIZE << order);
6318
6319		snprintf(name, sizeof(name), "hugetlb%d", nid);
6320		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6321						 0, false, name,
6322						 &hugetlb_cma[nid], nid);
6323		if (res) {
6324			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6325				res, nid);
6326			continue;
6327		}
6328
6329		reserved += size;
6330		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6331			size / SZ_1M, nid);
6332
6333		if (reserved >= hugetlb_cma_size)
6334			break;
6335	}
6336}
6337
6338void __init hugetlb_cma_check(void)
6339{
6340	if (!hugetlb_cma_size || cma_reserve_called)
6341		return;
6342
6343	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6344}
6345
6346#endif /* CONFIG_CMA */