Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
 
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/mmdebug.h>
  23#include <linux/sched/signal.h>
  24#include <linux/rmap.h>
  25#include <linux/string_helpers.h>
  26#include <linux/swap.h>
  27#include <linux/swapops.h>
 
  28#include <linux/jhash.h>
  29#include <linux/numa.h>
  30
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/tlb.h>
  34
  35#include <linux/io.h>
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/node.h>
  39#include <linux/userfaultfd_k.h>
  40#include <linux/page_owner.h>
  41#include "internal.h"
  42
 
 
 
  43int hugetlb_max_hstate __read_mostly;
  44unsigned int default_hstate_idx;
  45struct hstate hstates[HUGE_MAX_HSTATE];
  46/*
  47 * Minimum page order among possible hugepage sizes, set to a proper value
  48 * at boot time.
  49 */
  50static unsigned int minimum_order __read_mostly = UINT_MAX;
  51
  52__initdata LIST_HEAD(huge_boot_pages);
  53
  54/* for command line parsing */
  55static struct hstate * __initdata parsed_hstate;
  56static unsigned long __initdata default_hstate_max_huge_pages;
  57static unsigned long __initdata default_hstate_size;
  58static bool __initdata parsed_valid_hugepagesz = true;
  59
  60/*
  61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  62 * free_huge_pages, and surplus_huge_pages.
  63 */
  64DEFINE_SPINLOCK(hugetlb_lock);
  65
  66/*
  67 * Serializes faults on the same logical page.  This is used to
  68 * prevent spurious OOMs when the hugepage pool is fully utilized.
  69 */
  70static int num_fault_mutexes;
  71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  72
  73/* Forward declaration */
  74static int hugetlb_acct_memory(struct hstate *h, long delta);
  75
  76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  77{
  78	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  79
  80	spin_unlock(&spool->lock);
  81
  82	/* If no pages are used, and no other handles to the subpool
  83	 * remain, give up any reservations mased on minimum size and
  84	 * free the subpool */
  85	if (free) {
  86		if (spool->min_hpages != -1)
  87			hugetlb_acct_memory(spool->hstate,
  88						-spool->min_hpages);
  89		kfree(spool);
  90	}
  91}
  92
  93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  94						long min_hpages)
  95{
  96	struct hugepage_subpool *spool;
  97
  98	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  99	if (!spool)
 100		return NULL;
 101
 102	spin_lock_init(&spool->lock);
 103	spool->count = 1;
 104	spool->max_hpages = max_hpages;
 105	spool->hstate = h;
 106	spool->min_hpages = min_hpages;
 107
 108	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 109		kfree(spool);
 110		return NULL;
 111	}
 112	spool->rsv_hpages = min_hpages;
 113
 114	return spool;
 115}
 116
 117void hugepage_put_subpool(struct hugepage_subpool *spool)
 118{
 119	spin_lock(&spool->lock);
 120	BUG_ON(!spool->count);
 121	spool->count--;
 122	unlock_or_release_subpool(spool);
 123}
 124
 125/*
 126 * Subpool accounting for allocating and reserving pages.
 127 * Return -ENOMEM if there are not enough resources to satisfy the
 128 * the request.  Otherwise, return the number of pages by which the
 129 * global pools must be adjusted (upward).  The returned value may
 130 * only be different than the passed value (delta) in the case where
 131 * a subpool minimum size must be manitained.
 132 */
 133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 134				      long delta)
 135{
 136	long ret = delta;
 137
 138	if (!spool)
 139		return ret;
 140
 141	spin_lock(&spool->lock);
 142
 143	if (spool->max_hpages != -1) {		/* maximum size accounting */
 144		if ((spool->used_hpages + delta) <= spool->max_hpages)
 145			spool->used_hpages += delta;
 146		else {
 147			ret = -ENOMEM;
 148			goto unlock_ret;
 149		}
 150	}
 151
 152	/* minimum size accounting */
 153	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 154		if (delta > spool->rsv_hpages) {
 155			/*
 156			 * Asking for more reserves than those already taken on
 157			 * behalf of subpool.  Return difference.
 158			 */
 159			ret = delta - spool->rsv_hpages;
 160			spool->rsv_hpages = 0;
 161		} else {
 162			ret = 0;	/* reserves already accounted for */
 163			spool->rsv_hpages -= delta;
 164		}
 165	}
 166
 167unlock_ret:
 168	spin_unlock(&spool->lock);
 
 169	return ret;
 170}
 171
 172/*
 173 * Subpool accounting for freeing and unreserving pages.
 174 * Return the number of global page reservations that must be dropped.
 175 * The return value may only be different than the passed value (delta)
 176 * in the case where a subpool minimum size must be maintained.
 177 */
 178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 179				       long delta)
 180{
 181	long ret = delta;
 182
 183	if (!spool)
 184		return delta;
 185
 186	spin_lock(&spool->lock);
 187
 188	if (spool->max_hpages != -1)		/* maximum size accounting */
 189		spool->used_hpages -= delta;
 190
 191	 /* minimum size accounting */
 192	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 193		if (spool->rsv_hpages + delta <= spool->min_hpages)
 194			ret = 0;
 195		else
 196			ret = spool->rsv_hpages + delta - spool->min_hpages;
 197
 198		spool->rsv_hpages += delta;
 199		if (spool->rsv_hpages > spool->min_hpages)
 200			spool->rsv_hpages = spool->min_hpages;
 201	}
 202
 203	/*
 204	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 205	 * quota reference, free it now.
 206	 */
 207	unlock_or_release_subpool(spool);
 208
 209	return ret;
 210}
 211
 212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 213{
 214	return HUGETLBFS_SB(inode->i_sb)->spool;
 215}
 216
 217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 218{
 219	return subpool_inode(file_inode(vma->vm_file));
 220}
 221
 222/*
 223 * Region tracking -- allows tracking of reservations and instantiated pages
 224 *                    across the pages in a mapping.
 225 *
 226 * The region data structures are embedded into a resv_map and protected
 227 * by a resv_map's lock.  The set of regions within the resv_map represent
 228 * reservations for huge pages, or huge pages that have already been
 229 * instantiated within the map.  The from and to elements are huge page
 230 * indicies into the associated mapping.  from indicates the starting index
 231 * of the region.  to represents the first index past the end of  the region.
 232 *
 233 * For example, a file region structure with from == 0 and to == 4 represents
 234 * four huge pages in a mapping.  It is important to note that the to element
 235 * represents the first element past the end of the region. This is used in
 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 237 *
 238 * Interval notation of the form [from, to) will be used to indicate that
 239 * the endpoint from is inclusive and to is exclusive.
 240 */
 241struct file_region {
 242	struct list_head link;
 243	long from;
 244	long to;
 245};
 246
 247/*
 248 * Add the huge page range represented by [f, t) to the reserve
 249 * map.  In the normal case, existing regions will be expanded
 250 * to accommodate the specified range.  Sufficient regions should
 251 * exist for expansion due to the previous call to region_chg
 252 * with the same range.  However, it is possible that region_del
 253 * could have been called after region_chg and modifed the map
 254 * in such a way that no region exists to be expanded.  In this
 255 * case, pull a region descriptor from the cache associated with
 256 * the map and use that for the new range.
 257 *
 258 * Return the number of new huge pages added to the map.  This
 259 * number is greater than or equal to zero.
 260 */
 261static long region_add(struct resv_map *resv, long f, long t)
 262{
 263	struct list_head *head = &resv->regions;
 264	struct file_region *rg, *nrg, *trg;
 265	long add = 0;
 266
 267	spin_lock(&resv->lock);
 268	/* Locate the region we are either in or before. */
 269	list_for_each_entry(rg, head, link)
 270		if (f <= rg->to)
 271			break;
 272
 273	/*
 274	 * If no region exists which can be expanded to include the
 275	 * specified range, the list must have been modified by an
 276	 * interleving call to region_del().  Pull a region descriptor
 277	 * from the cache and use it for this range.
 278	 */
 279	if (&rg->link == head || t < rg->from) {
 280		VM_BUG_ON(resv->region_cache_count <= 0);
 281
 282		resv->region_cache_count--;
 283		nrg = list_first_entry(&resv->region_cache, struct file_region,
 284					link);
 285		list_del(&nrg->link);
 286
 287		nrg->from = f;
 288		nrg->to = t;
 289		list_add(&nrg->link, rg->link.prev);
 290
 291		add += t - f;
 292		goto out_locked;
 293	}
 294
 295	/* Round our left edge to the current segment if it encloses us. */
 296	if (f > rg->from)
 297		f = rg->from;
 298
 299	/* Check for and consume any regions we now overlap with. */
 300	nrg = rg;
 301	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 302		if (&rg->link == head)
 303			break;
 304		if (rg->from > t)
 305			break;
 306
 307		/* If this area reaches higher then extend our area to
 308		 * include it completely.  If this is not the first area
 309		 * which we intend to reuse, free it. */
 310		if (rg->to > t)
 311			t = rg->to;
 312		if (rg != nrg) {
 313			/* Decrement return value by the deleted range.
 314			 * Another range will span this area so that by
 315			 * end of routine add will be >= zero
 316			 */
 317			add -= (rg->to - rg->from);
 318			list_del(&rg->link);
 319			kfree(rg);
 320		}
 321	}
 322
 323	add += (nrg->from - f);		/* Added to beginning of region */
 324	nrg->from = f;
 325	add += t - nrg->to;		/* Added to end of region */
 326	nrg->to = t;
 327
 328out_locked:
 329	resv->adds_in_progress--;
 330	spin_unlock(&resv->lock);
 331	VM_BUG_ON(add < 0);
 332	return add;
 333}
 334
 335/*
 336 * Examine the existing reserve map and determine how many
 337 * huge pages in the specified range [f, t) are NOT currently
 338 * represented.  This routine is called before a subsequent
 339 * call to region_add that will actually modify the reserve
 340 * map to add the specified range [f, t).  region_chg does
 341 * not change the number of huge pages represented by the
 342 * map.  However, if the existing regions in the map can not
 343 * be expanded to represent the new range, a new file_region
 344 * structure is added to the map as a placeholder.  This is
 345 * so that the subsequent region_add call will have all the
 346 * regions it needs and will not fail.
 347 *
 348 * Upon entry, region_chg will also examine the cache of region descriptors
 349 * associated with the map.  If there are not enough descriptors cached, one
 350 * will be allocated for the in progress add operation.
 351 *
 352 * Returns the number of huge pages that need to be added to the existing
 353 * reservation map for the range [f, t).  This number is greater or equal to
 354 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 355 * is needed and can not be allocated.
 356 */
 357static long region_chg(struct resv_map *resv, long f, long t)
 358{
 359	struct list_head *head = &resv->regions;
 360	struct file_region *rg, *nrg = NULL;
 361	long chg = 0;
 362
 363retry:
 364	spin_lock(&resv->lock);
 365retry_locked:
 366	resv->adds_in_progress++;
 367
 368	/*
 369	 * Check for sufficient descriptors in the cache to accommodate
 370	 * the number of in progress add operations.
 371	 */
 372	if (resv->adds_in_progress > resv->region_cache_count) {
 373		struct file_region *trg;
 374
 375		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 376		/* Must drop lock to allocate a new descriptor. */
 377		resv->adds_in_progress--;
 378		spin_unlock(&resv->lock);
 379
 380		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 381		if (!trg) {
 382			kfree(nrg);
 383			return -ENOMEM;
 384		}
 385
 386		spin_lock(&resv->lock);
 387		list_add(&trg->link, &resv->region_cache);
 388		resv->region_cache_count++;
 389		goto retry_locked;
 390	}
 391
 392	/* Locate the region we are before or in. */
 393	list_for_each_entry(rg, head, link)
 394		if (f <= rg->to)
 395			break;
 396
 397	/* If we are below the current region then a new region is required.
 398	 * Subtle, allocate a new region at the position but make it zero
 399	 * size such that we can guarantee to record the reservation. */
 400	if (&rg->link == head || t < rg->from) {
 401		if (!nrg) {
 402			resv->adds_in_progress--;
 403			spin_unlock(&resv->lock);
 404			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 405			if (!nrg)
 406				return -ENOMEM;
 407
 408			nrg->from = f;
 409			nrg->to   = f;
 410			INIT_LIST_HEAD(&nrg->link);
 411			goto retry;
 412		}
 413
 414		list_add(&nrg->link, rg->link.prev);
 415		chg = t - f;
 416		goto out_nrg;
 417	}
 418
 419	/* Round our left edge to the current segment if it encloses us. */
 420	if (f > rg->from)
 421		f = rg->from;
 422	chg = t - f;
 423
 424	/* Check for and consume any regions we now overlap with. */
 425	list_for_each_entry(rg, rg->link.prev, link) {
 426		if (&rg->link == head)
 427			break;
 428		if (rg->from > t)
 429			goto out;
 430
 431		/* We overlap with this area, if it extends further than
 432		 * us then we must extend ourselves.  Account for its
 433		 * existing reservation. */
 434		if (rg->to > t) {
 435			chg += rg->to - t;
 436			t = rg->to;
 437		}
 438		chg -= rg->to - rg->from;
 439	}
 440
 441out:
 442	spin_unlock(&resv->lock);
 443	/*  We already know we raced and no longer need the new region */
 444	kfree(nrg);
 445	return chg;
 446out_nrg:
 447	spin_unlock(&resv->lock);
 448	return chg;
 449}
 450
 451/*
 452 * Abort the in progress add operation.  The adds_in_progress field
 453 * of the resv_map keeps track of the operations in progress between
 454 * calls to region_chg and region_add.  Operations are sometimes
 455 * aborted after the call to region_chg.  In such cases, region_abort
 456 * is called to decrement the adds_in_progress counter.
 457 *
 458 * NOTE: The range arguments [f, t) are not needed or used in this
 459 * routine.  They are kept to make reading the calling code easier as
 460 * arguments will match the associated region_chg call.
 461 */
 462static void region_abort(struct resv_map *resv, long f, long t)
 463{
 464	spin_lock(&resv->lock);
 465	VM_BUG_ON(!resv->region_cache_count);
 466	resv->adds_in_progress--;
 467	spin_unlock(&resv->lock);
 468}
 469
 470/*
 471 * Delete the specified range [f, t) from the reserve map.  If the
 472 * t parameter is LONG_MAX, this indicates that ALL regions after f
 473 * should be deleted.  Locate the regions which intersect [f, t)
 474 * and either trim, delete or split the existing regions.
 475 *
 476 * Returns the number of huge pages deleted from the reserve map.
 477 * In the normal case, the return value is zero or more.  In the
 478 * case where a region must be split, a new region descriptor must
 479 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 480 * NOTE: If the parameter t == LONG_MAX, then we will never split
 481 * a region and possibly return -ENOMEM.  Callers specifying
 482 * t == LONG_MAX do not need to check for -ENOMEM error.
 483 */
 484static long region_del(struct resv_map *resv, long f, long t)
 485{
 486	struct list_head *head = &resv->regions;
 487	struct file_region *rg, *trg;
 488	struct file_region *nrg = NULL;
 489	long del = 0;
 490
 491retry:
 492	spin_lock(&resv->lock);
 493	list_for_each_entry_safe(rg, trg, head, link) {
 494		/*
 495		 * Skip regions before the range to be deleted.  file_region
 496		 * ranges are normally of the form [from, to).  However, there
 497		 * may be a "placeholder" entry in the map which is of the form
 498		 * (from, to) with from == to.  Check for placeholder entries
 499		 * at the beginning of the range to be deleted.
 500		 */
 501		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 502			continue;
 503
 504		if (rg->from >= t)
 505			break;
 
 
 506
 507		if (f > rg->from && t < rg->to) { /* Must split region */
 508			/*
 509			 * Check for an entry in the cache before dropping
 510			 * lock and attempting allocation.
 511			 */
 512			if (!nrg &&
 513			    resv->region_cache_count > resv->adds_in_progress) {
 514				nrg = list_first_entry(&resv->region_cache,
 515							struct file_region,
 516							link);
 517				list_del(&nrg->link);
 518				resv->region_cache_count--;
 519			}
 520
 521			if (!nrg) {
 522				spin_unlock(&resv->lock);
 523				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 524				if (!nrg)
 525					return -ENOMEM;
 526				goto retry;
 527			}
 528
 529			del += t - f;
 530
 531			/* New entry for end of split region */
 532			nrg->from = t;
 533			nrg->to = rg->to;
 534			INIT_LIST_HEAD(&nrg->link);
 535
 536			/* Original entry is trimmed */
 537			rg->to = f;
 538
 539			list_add(&nrg->link, &rg->link);
 540			nrg = NULL;
 
 541			break;
 542		}
 543
 544		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 545			del += rg->to - rg->from;
 546			list_del(&rg->link);
 547			kfree(rg);
 548			continue;
 549		}
 550
 551		if (f <= rg->from) {	/* Trim beginning of region */
 552			del += t - rg->from;
 553			rg->from = t;
 554		} else {		/* Trim end of region */
 555			del += rg->to - f;
 556			rg->to = f;
 557		}
 558	}
 559
 
 560	spin_unlock(&resv->lock);
 561	kfree(nrg);
 562	return del;
 563}
 564
 565/*
 566 * A rare out of memory error was encountered which prevented removal of
 567 * the reserve map region for a page.  The huge page itself was free'ed
 568 * and removed from the page cache.  This routine will adjust the subpool
 569 * usage count, and the global reserve count if needed.  By incrementing
 570 * these counts, the reserve map entry which could not be deleted will
 571 * appear as a "reserved" entry instead of simply dangling with incorrect
 572 * counts.
 573 */
 574void hugetlb_fix_reserve_counts(struct inode *inode)
 575{
 576	struct hugepage_subpool *spool = subpool_inode(inode);
 577	long rsv_adjust;
 578
 579	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 580	if (rsv_adjust) {
 581		struct hstate *h = hstate_inode(inode);
 582
 583		hugetlb_acct_memory(h, 1);
 584	}
 585}
 586
 587/*
 588 * Count and return the number of huge pages in the reserve map
 589 * that intersect with the range [f, t).
 590 */
 591static long region_count(struct resv_map *resv, long f, long t)
 592{
 593	struct list_head *head = &resv->regions;
 594	struct file_region *rg;
 595	long chg = 0;
 596
 597	spin_lock(&resv->lock);
 598	/* Locate each segment we overlap with, and count that overlap. */
 599	list_for_each_entry(rg, head, link) {
 600		long seg_from;
 601		long seg_to;
 602
 603		if (rg->to <= f)
 604			continue;
 605		if (rg->from >= t)
 606			break;
 607
 608		seg_from = max(rg->from, f);
 609		seg_to = min(rg->to, t);
 610
 611		chg += seg_to - seg_from;
 612	}
 613	spin_unlock(&resv->lock);
 614
 615	return chg;
 616}
 617
 618/*
 619 * Convert the address within this vma to the page offset within
 620 * the mapping, in pagecache page units; huge pages here.
 621 */
 622static pgoff_t vma_hugecache_offset(struct hstate *h,
 623			struct vm_area_struct *vma, unsigned long address)
 624{
 625	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 626			(vma->vm_pgoff >> huge_page_order(h));
 627}
 628
 629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 630				     unsigned long address)
 631{
 632	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 633}
 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
 635
 636/*
 637 * Return the size of the pages allocated when backing a VMA. In the majority
 638 * cases this will be same size as used by the page table entries.
 639 */
 640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 641{
 642	if (vma->vm_ops && vma->vm_ops->pagesize)
 643		return vma->vm_ops->pagesize(vma);
 644	return PAGE_SIZE;
 
 
 
 
 
 645}
 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 647
 648/*
 649 * Return the page size being used by the MMU to back a VMA. In the majority
 650 * of cases, the page size used by the kernel matches the MMU size. On
 651 * architectures where it differs, an architecture-specific 'strong'
 652 * version of this symbol is required.
 653 */
 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 
 655{
 656	return vma_kernel_pagesize(vma);
 657}
 
 658
 659/*
 660 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 661 * bits of the reservation map pointer, which are always clear due to
 662 * alignment.
 663 */
 664#define HPAGE_RESV_OWNER    (1UL << 0)
 665#define HPAGE_RESV_UNMAPPED (1UL << 1)
 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 667
 668/*
 669 * These helpers are used to track how many pages are reserved for
 670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 671 * is guaranteed to have their future faults succeed.
 672 *
 673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 674 * the reserve counters are updated with the hugetlb_lock held. It is safe
 675 * to reset the VMA at fork() time as it is not in use yet and there is no
 676 * chance of the global counters getting corrupted as a result of the values.
 677 *
 678 * The private mapping reservation is represented in a subtly different
 679 * manner to a shared mapping.  A shared mapping has a region map associated
 680 * with the underlying file, this region map represents the backing file
 681 * pages which have ever had a reservation assigned which this persists even
 682 * after the page is instantiated.  A private mapping has a region map
 683 * associated with the original mmap which is attached to all VMAs which
 684 * reference it, this region map represents those offsets which have consumed
 685 * reservation ie. where pages have been instantiated.
 686 */
 687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 688{
 689	return (unsigned long)vma->vm_private_data;
 690}
 691
 692static void set_vma_private_data(struct vm_area_struct *vma,
 693							unsigned long value)
 694{
 695	vma->vm_private_data = (void *)value;
 696}
 697
 698struct resv_map *resv_map_alloc(void)
 699{
 700	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 701	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 702
 703	if (!resv_map || !rg) {
 704		kfree(resv_map);
 705		kfree(rg);
 706		return NULL;
 707	}
 708
 709	kref_init(&resv_map->refs);
 710	spin_lock_init(&resv_map->lock);
 711	INIT_LIST_HEAD(&resv_map->regions);
 712
 713	resv_map->adds_in_progress = 0;
 714
 715	INIT_LIST_HEAD(&resv_map->region_cache);
 716	list_add(&rg->link, &resv_map->region_cache);
 717	resv_map->region_cache_count = 1;
 718
 719	return resv_map;
 720}
 721
 722void resv_map_release(struct kref *ref)
 723{
 724	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 725	struct list_head *head = &resv_map->region_cache;
 726	struct file_region *rg, *trg;
 727
 728	/* Clear out any active regions before we release the map. */
 729	region_del(resv_map, 0, LONG_MAX);
 730
 731	/* ... and any entries left in the cache */
 732	list_for_each_entry_safe(rg, trg, head, link) {
 733		list_del(&rg->link);
 734		kfree(rg);
 735	}
 736
 737	VM_BUG_ON(resv_map->adds_in_progress);
 738
 739	kfree(resv_map);
 740}
 741
 742static inline struct resv_map *inode_resv_map(struct inode *inode)
 743{
 744	/*
 745	 * At inode evict time, i_mapping may not point to the original
 746	 * address space within the inode.  This original address space
 747	 * contains the pointer to the resv_map.  So, always use the
 748	 * address space embedded within the inode.
 749	 * The VERY common case is inode->mapping == &inode->i_data but,
 750	 * this may not be true for device special inodes.
 751	 */
 752	return (struct resv_map *)(&inode->i_data)->private_data;
 753}
 754
 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 756{
 757	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 758	if (vma->vm_flags & VM_MAYSHARE) {
 759		struct address_space *mapping = vma->vm_file->f_mapping;
 760		struct inode *inode = mapping->host;
 761
 762		return inode_resv_map(inode);
 763
 764	} else {
 765		return (struct resv_map *)(get_vma_private_data(vma) &
 766							~HPAGE_RESV_MASK);
 767	}
 768}
 769
 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 771{
 772	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775	set_vma_private_data(vma, (get_vma_private_data(vma) &
 776				HPAGE_RESV_MASK) | (unsigned long)map);
 777}
 778
 779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 780{
 781	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 782	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 783
 784	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 785}
 786
 787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 788{
 789	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 790
 791	return (get_vma_private_data(vma) & flag) != 0;
 792}
 793
 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 796{
 797	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 798	if (!(vma->vm_flags & VM_MAYSHARE))
 799		vma->vm_private_data = (void *)0;
 800}
 801
 802/* Returns true if the VMA has associated reserve pages */
 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 804{
 805	if (vma->vm_flags & VM_NORESERVE) {
 806		/*
 807		 * This address is already reserved by other process(chg == 0),
 808		 * so, we should decrement reserved count. Without decrementing,
 809		 * reserve count remains after releasing inode, because this
 810		 * allocated page will go into page cache and is regarded as
 811		 * coming from reserved pool in releasing step.  Currently, we
 812		 * don't have any other solution to deal with this situation
 813		 * properly, so add work-around here.
 814		 */
 815		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 816			return true;
 817		else
 818			return false;
 819	}
 820
 821	/* Shared mappings always use reserves */
 822	if (vma->vm_flags & VM_MAYSHARE) {
 823		/*
 824		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 825		 * be a region map for all pages.  The only situation where
 826		 * there is no region map is if a hole was punched via
 827		 * fallocate.  In this case, there really are no reverves to
 828		 * use.  This situation is indicated if chg != 0.
 829		 */
 830		if (chg)
 831			return false;
 832		else
 833			return true;
 834	}
 835
 836	/*
 837	 * Only the process that called mmap() has reserves for
 838	 * private mappings.
 839	 */
 840	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 841		/*
 842		 * Like the shared case above, a hole punch or truncate
 843		 * could have been performed on the private mapping.
 844		 * Examine the value of chg to determine if reserves
 845		 * actually exist or were previously consumed.
 846		 * Very Subtle - The value of chg comes from a previous
 847		 * call to vma_needs_reserves().  The reserve map for
 848		 * private mappings has different (opposite) semantics
 849		 * than that of shared mappings.  vma_needs_reserves()
 850		 * has already taken this difference in semantics into
 851		 * account.  Therefore, the meaning of chg is the same
 852		 * as in the shared case above.  Code could easily be
 853		 * combined, but keeping it separate draws attention to
 854		 * subtle differences.
 855		 */
 856		if (chg)
 857			return false;
 858		else
 859			return true;
 860	}
 861
 862	return false;
 863}
 864
 865static void enqueue_huge_page(struct hstate *h, struct page *page)
 866{
 867	int nid = page_to_nid(page);
 868	list_move(&page->lru, &h->hugepage_freelists[nid]);
 869	h->free_huge_pages++;
 870	h->free_huge_pages_node[nid]++;
 871}
 872
 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 874{
 875	struct page *page;
 876
 877	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 878		if (!PageHWPoison(page))
 879			break;
 880	/*
 881	 * if 'non-isolated free hugepage' not found on the list,
 882	 * the allocation fails.
 883	 */
 884	if (&h->hugepage_freelists[nid] == &page->lru)
 885		return NULL;
 886	list_move(&page->lru, &h->hugepage_activelist);
 887	set_page_refcounted(page);
 888	h->free_huge_pages--;
 889	h->free_huge_pages_node[nid]--;
 890	return page;
 891}
 892
 893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 894		nodemask_t *nmask)
 895{
 896	unsigned int cpuset_mems_cookie;
 897	struct zonelist *zonelist;
 898	struct zone *zone;
 899	struct zoneref *z;
 900	int node = NUMA_NO_NODE;
 901
 902	zonelist = node_zonelist(nid, gfp_mask);
 903
 904retry_cpuset:
 905	cpuset_mems_cookie = read_mems_allowed_begin();
 906	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 907		struct page *page;
 908
 909		if (!cpuset_zone_allowed(zone, gfp_mask))
 910			continue;
 911		/*
 912		 * no need to ask again on the same node. Pool is node rather than
 913		 * zone aware
 914		 */
 915		if (zone_to_nid(zone) == node)
 916			continue;
 917		node = zone_to_nid(zone);
 918
 919		page = dequeue_huge_page_node_exact(h, node);
 920		if (page)
 921			return page;
 922	}
 923	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 924		goto retry_cpuset;
 925
 926	return NULL;
 927}
 928
 929/* Movability of hugepages depends on migration support. */
 930static inline gfp_t htlb_alloc_mask(struct hstate *h)
 931{
 932	if (hugepage_movable_supported(h))
 933		return GFP_HIGHUSER_MOVABLE;
 934	else
 935		return GFP_HIGHUSER;
 936}
 937
 938static struct page *dequeue_huge_page_vma(struct hstate *h,
 939				struct vm_area_struct *vma,
 940				unsigned long address, int avoid_reserve,
 941				long chg)
 942{
 943	struct page *page;
 944	struct mempolicy *mpol;
 945	gfp_t gfp_mask;
 946	nodemask_t *nodemask;
 947	int nid;
 
 
 
 948
 949	/*
 950	 * A child process with MAP_PRIVATE mappings created by their parent
 951	 * have no page reserves. This check ensures that reservations are
 952	 * not "stolen". The child may still get SIGKILLed
 953	 */
 954	if (!vma_has_reserves(vma, chg) &&
 955			h->free_huge_pages - h->resv_huge_pages == 0)
 956		goto err;
 957
 958	/* If reserves cannot be used, ensure enough pages are in the pool */
 959	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 960		goto err;
 961
 962	gfp_mask = htlb_alloc_mask(h);
 963	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 964	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 965	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 966		SetPagePrivate(page);
 967		h->resv_huge_pages--;
 968	}
 969
 970	mpol_cond_put(mpol);
 971	return page;
 972
 973err:
 974	return NULL;
 975}
 976
 977/*
 978 * common helper functions for hstate_next_node_to_{alloc|free}.
 979 * We may have allocated or freed a huge page based on a different
 980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 981 * be outside of *nodes_allowed.  Ensure that we use an allowed
 982 * node for alloc or free.
 983 */
 984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 985{
 986	nid = next_node_in(nid, *nodes_allowed);
 987	VM_BUG_ON(nid >= MAX_NUMNODES);
 988
 989	return nid;
 990}
 991
 992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 993{
 994	if (!node_isset(nid, *nodes_allowed))
 995		nid = next_node_allowed(nid, nodes_allowed);
 996	return nid;
 997}
 998
 999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006					nodemask_t *nodes_allowed)
1007{
1008	int nid;
1009
1010	VM_BUG_ON(!nodes_allowed);
1011
1012	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015	return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page.  Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026	int nid;
1027
1028	VM_BUG_ON(!nodes_allowed);
1029
1030	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033	return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1037	for (nr_nodes = nodes_weight(*mask);				\
1038		nr_nodes > 0 &&						\
1039		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1040		nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1043	for (nr_nodes = nodes_weight(*mask);				\
1044		nr_nodes > 0 &&						\
1045		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1046		nr_nodes--)
1047
1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049static void destroy_compound_gigantic_page(struct page *page,
1050					unsigned int order)
1051{
1052	int i;
1053	int nr_pages = 1 << order;
1054	struct page *p = page + 1;
1055
1056	atomic_set(compound_mapcount_ptr(page), 0);
1057	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058		clear_compound_head(p);
1059		set_page_refcounted(p);
1060	}
1061
1062	set_compound_order(page, 0);
1063	__ClearPageHead(page);
1064}
1065
1066static void free_gigantic_page(struct page *page, unsigned int order)
1067{
1068	free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
1071#ifdef CONFIG_CONTIG_ALLOC
1072static int __alloc_gigantic_page(unsigned long start_pfn,
1073				unsigned long nr_pages, gfp_t gfp_mask)
1074{
1075	unsigned long end_pfn = start_pfn + nr_pages;
1076	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077				  gfp_mask);
1078}
1079
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081			unsigned long start_pfn, unsigned long nr_pages)
1082{
1083	unsigned long i, end_pfn = start_pfn + nr_pages;
1084	struct page *page;
1085
1086	for (i = start_pfn; i < end_pfn; i++) {
1087		page = pfn_to_online_page(i);
1088		if (!page)
1089			return false;
1090
1091		if (page_zone(page) != z)
1092			return false;
1093
1094		if (PageReserved(page))
1095			return false;
1096
1097		if (page_count(page) > 0)
1098			return false;
1099
1100		if (PageHuge(page))
1101			return false;
1102	}
1103
1104	return true;
1105}
1106
1107static bool zone_spans_last_pfn(const struct zone *zone,
1108			unsigned long start_pfn, unsigned long nr_pages)
1109{
1110	unsigned long last_pfn = start_pfn + nr_pages - 1;
1111	return zone_spans_pfn(zone, last_pfn);
1112}
 
 
 
1113
1114static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115		int nid, nodemask_t *nodemask)
1116{
1117	unsigned int order = huge_page_order(h);
1118	unsigned long nr_pages = 1 << order;
1119	unsigned long ret, pfn, flags;
1120	struct zonelist *zonelist;
1121	struct zone *zone;
1122	struct zoneref *z;
1123
1124	zonelist = node_zonelist(nid, gfp_mask);
1125	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126		spin_lock_irqsave(&zone->lock, flags);
1127
1128		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131				/*
1132				 * We release the zone lock here because
1133				 * alloc_contig_range() will also lock the zone
1134				 * at some point. If there's an allocation
1135				 * spinning on this lock, it may win the race
1136				 * and cause alloc_contig_range() to fail...
1137				 */
1138				spin_unlock_irqrestore(&zone->lock, flags);
1139				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140				if (!ret)
1141					return pfn_to_page(pfn);
1142				spin_lock_irqsave(&zone->lock, flags);
1143			}
1144			pfn += nr_pages;
1145		}
1146
1147		spin_unlock_irqrestore(&zone->lock, flags);
1148	}
1149
1150	return NULL;
1151}
1152
1153static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155#else /* !CONFIG_CONTIG_ALLOC */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157					int nid, nodemask_t *nodemask)
1158{
1159	return NULL;
1160}
1161#endif /* CONFIG_CONTIG_ALLOC */
1162
1163#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165					int nid, nodemask_t *nodemask)
1166{
1167	return NULL;
1168}
1169static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170static inline void destroy_compound_gigantic_page(struct page *page,
1171						unsigned int order) { }
1172#endif
1173
1174static void update_and_free_page(struct hstate *h, struct page *page)
1175{
1176	int i;
1177
1178	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179		return;
1180
1181	h->nr_huge_pages--;
1182	h->nr_huge_pages_node[page_to_nid(page)]--;
1183	for (i = 0; i < pages_per_huge_page(h); i++) {
1184		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185				1 << PG_referenced | 1 << PG_dirty |
1186				1 << PG_active | 1 << PG_private |
1187				1 << PG_writeback);
1188	}
1189	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1190	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191	set_page_refcounted(page);
1192	if (hstate_is_gigantic(h)) {
1193		destroy_compound_gigantic_page(page, huge_page_order(h));
1194		free_gigantic_page(page, huge_page_order(h));
1195	} else {
1196		__free_pages(page, huge_page_order(h));
1197	}
1198}
1199
1200struct hstate *size_to_hstate(unsigned long size)
1201{
1202	struct hstate *h;
1203
1204	for_each_hstate(h) {
1205		if (huge_page_size(h) == size)
1206			return h;
1207	}
1208	return NULL;
1209}
1210
1211/*
1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213 * to hstate->hugepage_activelist.)
1214 *
1215 * This function can be called for tail pages, but never returns true for them.
1216 */
1217bool page_huge_active(struct page *page)
1218{
1219	VM_BUG_ON_PAGE(!PageHuge(page), page);
1220	return PageHead(page) && PagePrivate(&page[1]);
1221}
1222
1223/* never called for tail page */
1224static void set_page_huge_active(struct page *page)
1225{
1226	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227	SetPagePrivate(&page[1]);
1228}
1229
1230static void clear_page_huge_active(struct page *page)
1231{
1232	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233	ClearPagePrivate(&page[1]);
1234}
1235
1236/*
1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238 * code
1239 */
1240static inline bool PageHugeTemporary(struct page *page)
1241{
1242	if (!PageHuge(page))
1243		return false;
1244
1245	return (unsigned long)page[2].mapping == -1U;
1246}
1247
1248static inline void SetPageHugeTemporary(struct page *page)
1249{
1250	page[2].mapping = (void *)-1U;
1251}
1252
1253static inline void ClearPageHugeTemporary(struct page *page)
1254{
1255	page[2].mapping = NULL;
1256}
1257
1258void free_huge_page(struct page *page)
1259{
1260	/*
1261	 * Can't pass hstate in here because it is called from the
1262	 * compound page destructor.
1263	 */
1264	struct hstate *h = page_hstate(page);
1265	int nid = page_to_nid(page);
1266	struct hugepage_subpool *spool =
1267		(struct hugepage_subpool *)page_private(page);
1268	bool restore_reserve;
1269
1270	VM_BUG_ON_PAGE(page_count(page), page);
1271	VM_BUG_ON_PAGE(page_mapcount(page), page);
1272
1273	set_page_private(page, 0);
1274	page->mapping = NULL;
 
 
1275	restore_reserve = PagePrivate(page);
1276	ClearPagePrivate(page);
1277
1278	/*
1279	 * If PagePrivate() was set on page, page allocation consumed a
1280	 * reservation.  If the page was associated with a subpool, there
1281	 * would have been a page reserved in the subpool before allocation
1282	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1283	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284	 * remove the reserved page from the subpool.
1285	 */
1286	if (!restore_reserve) {
1287		/*
1288		 * A return code of zero implies that the subpool will be
1289		 * under its minimum size if the reservation is not restored
1290		 * after page is free.  Therefore, force restore_reserve
1291		 * operation.
1292		 */
1293		if (hugepage_subpool_put_pages(spool, 1) == 0)
1294			restore_reserve = true;
1295	}
1296
1297	spin_lock(&hugetlb_lock);
1298	clear_page_huge_active(page);
1299	hugetlb_cgroup_uncharge_page(hstate_index(h),
1300				     pages_per_huge_page(h), page);
1301	if (restore_reserve)
1302		h->resv_huge_pages++;
1303
1304	if (PageHugeTemporary(page)) {
1305		list_del(&page->lru);
1306		ClearPageHugeTemporary(page);
1307		update_and_free_page(h, page);
1308	} else if (h->surplus_huge_pages_node[nid]) {
1309		/* remove the page from active list */
1310		list_del(&page->lru);
1311		update_and_free_page(h, page);
1312		h->surplus_huge_pages--;
1313		h->surplus_huge_pages_node[nid]--;
1314	} else {
1315		arch_clear_hugepage_flags(page);
1316		enqueue_huge_page(h, page);
1317	}
1318	spin_unlock(&hugetlb_lock);
 
1319}
1320
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1322{
1323	INIT_LIST_HEAD(&page->lru);
1324	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325	spin_lock(&hugetlb_lock);
1326	set_hugetlb_cgroup(page, NULL);
1327	h->nr_huge_pages++;
1328	h->nr_huge_pages_node[nid]++;
1329	spin_unlock(&hugetlb_lock);
 
1330}
1331
1332static void prep_compound_gigantic_page(struct page *page, unsigned int order)
 
1333{
1334	int i;
1335	int nr_pages = 1 << order;
1336	struct page *p = page + 1;
1337
1338	/* we rely on prep_new_huge_page to set the destructor */
1339	set_compound_order(page, order);
1340	__ClearPageReserved(page);
1341	__SetPageHead(page);
 
1342	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 
1343		/*
1344		 * For gigantic hugepages allocated through bootmem at
1345		 * boot, it's safer to be consistent with the not-gigantic
1346		 * hugepages and clear the PG_reserved bit from all tail pages
1347		 * too.  Otherwse drivers using get_user_pages() to access tail
1348		 * pages may get the reference counting wrong if they see
1349		 * PG_reserved set on a tail page (despite the head page not
1350		 * having PG_reserved set).  Enforcing this consistency between
1351		 * head and tail pages allows drivers to optimize away a check
1352		 * on the head page when they need know if put_page() is needed
1353		 * after get_user_pages().
1354		 */
1355		__ClearPageReserved(p);
1356		set_page_count(p, 0);
1357		set_compound_head(p, page);
1358	}
1359	atomic_set(compound_mapcount_ptr(page), -1);
1360}
1361
1362/*
1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364 * transparent huge pages.  See the PageTransHuge() documentation for more
1365 * details.
1366 */
1367int PageHuge(struct page *page)
1368{
1369	if (!PageCompound(page))
1370		return 0;
1371
1372	page = compound_head(page);
1373	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374}
1375EXPORT_SYMBOL_GPL(PageHuge);
1376
1377/*
1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379 * normal or transparent huge pages.
1380 */
1381int PageHeadHuge(struct page *page_head)
1382{
1383	if (!PageHead(page_head))
1384		return 0;
1385
1386	return get_compound_page_dtor(page_head) == free_huge_page;
1387}
1388
1389pgoff_t __basepage_index(struct page *page)
1390{
1391	struct page *page_head = compound_head(page);
1392	pgoff_t index = page_index(page_head);
1393	unsigned long compound_idx;
1394
1395	if (!PageHuge(page_head))
1396		return page_index(page);
1397
1398	if (compound_order(page_head) >= MAX_ORDER)
1399		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400	else
1401		compound_idx = page - page_head;
1402
1403	return (index << compound_order(page_head)) + compound_idx;
1404}
1405
1406static struct page *alloc_buddy_huge_page(struct hstate *h,
1407		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1408		nodemask_t *node_alloc_noretry)
1409{
1410	int order = huge_page_order(h);
1411	struct page *page;
1412	bool alloc_try_hard = true;
1413
1414	/*
1415	 * By default we always try hard to allocate the page with
1416	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1417	 * a loop (to adjust global huge page counts) and previous allocation
1418	 * failed, do not continue to try hard on the same node.  Use the
1419	 * node_alloc_noretry bitmap to manage this state information.
1420	 */
1421	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1422		alloc_try_hard = false;
1423	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1424	if (alloc_try_hard)
1425		gfp_mask |= __GFP_RETRY_MAYFAIL;
1426	if (nid == NUMA_NO_NODE)
1427		nid = numa_mem_id();
1428	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1429	if (page)
1430		__count_vm_event(HTLB_BUDDY_PGALLOC);
1431	else
1432		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1433
1434	/*
1435	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1436	 * indicates an overall state change.  Clear bit so that we resume
1437	 * normal 'try hard' allocations.
1438	 */
1439	if (node_alloc_noretry && page && !alloc_try_hard)
1440		node_clear(nid, *node_alloc_noretry);
1441
1442	/*
1443	 * If we tried hard to get a page but failed, set bit so that
1444	 * subsequent attempts will not try as hard until there is an
1445	 * overall state change.
1446	 */
1447	if (node_alloc_noretry && !page && alloc_try_hard)
1448		node_set(nid, *node_alloc_noretry);
 
 
 
 
1449
1450	return page;
1451}
1452
1453/*
1454 * Common helper to allocate a fresh hugetlb page. All specific allocators
1455 * should use this function to get new hugetlb pages
 
 
 
1456 */
1457static struct page *alloc_fresh_huge_page(struct hstate *h,
1458		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1459		nodemask_t *node_alloc_noretry)
1460{
1461	struct page *page;
 
 
 
1462
1463	if (hstate_is_gigantic(h))
1464		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1465	else
1466		page = alloc_buddy_huge_page(h, gfp_mask,
1467				nid, nmask, node_alloc_noretry);
1468	if (!page)
1469		return NULL;
1470
1471	if (hstate_is_gigantic(h))
1472		prep_compound_gigantic_page(page, huge_page_order(h));
1473	prep_new_huge_page(h, page, page_to_nid(page));
 
 
 
1474
1475	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476}
1477
1478/*
1479 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1480 * manner.
 
 
1481 */
1482static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1483				nodemask_t *node_alloc_noretry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1484{
1485	struct page *page;
1486	int nr_nodes, node;
1487	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1488
1489	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1490		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1491						node_alloc_noretry);
1492		if (page)
1493			break;
 
1494	}
1495
1496	if (!page)
1497		return 0;
1498
1499	put_page(page); /* free it into the hugepage allocator */
1500
1501	return 1;
1502}
1503
1504/*
1505 * Free huge page from pool from next node to free.
1506 * Attempt to keep persistent huge pages more or less
1507 * balanced over allowed nodes.
1508 * Called with hugetlb_lock locked.
1509 */
1510static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1511							 bool acct_surplus)
1512{
1513	int nr_nodes, node;
1514	int ret = 0;
1515
1516	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1517		/*
1518		 * If we're returning unused surplus pages, only examine
1519		 * nodes with surplus pages.
1520		 */
1521		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1522		    !list_empty(&h->hugepage_freelists[node])) {
1523			struct page *page =
1524				list_entry(h->hugepage_freelists[node].next,
1525					  struct page, lru);
1526			list_del(&page->lru);
1527			h->free_huge_pages--;
1528			h->free_huge_pages_node[node]--;
1529			if (acct_surplus) {
1530				h->surplus_huge_pages--;
1531				h->surplus_huge_pages_node[node]--;
1532			}
1533			update_and_free_page(h, page);
1534			ret = 1;
1535			break;
1536		}
1537	}
1538
1539	return ret;
1540}
1541
1542/*
1543 * Dissolve a given free hugepage into free buddy pages. This function does
1544 * nothing for in-use hugepages and non-hugepages.
1545 * This function returns values like below:
1546 *
1547 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1548 *          (allocated or reserved.)
1549 *       0: successfully dissolved free hugepages or the page is not a
1550 *          hugepage (considered as already dissolved)
1551 */
1552int dissolve_free_huge_page(struct page *page)
1553{
1554	int rc = -EBUSY;
1555
1556	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1557	if (!PageHuge(page))
1558		return 0;
1559
1560	spin_lock(&hugetlb_lock);
1561	if (!PageHuge(page)) {
1562		rc = 0;
1563		goto out;
1564	}
1565
1566	if (!page_count(page)) {
1567		struct page *head = compound_head(page);
1568		struct hstate *h = page_hstate(head);
1569		int nid = page_to_nid(head);
1570		if (h->free_huge_pages - h->resv_huge_pages == 0)
1571			goto out;
1572		/*
1573		 * Move PageHWPoison flag from head page to the raw error page,
1574		 * which makes any subpages rather than the error page reusable.
1575		 */
1576		if (PageHWPoison(head) && page != head) {
1577			SetPageHWPoison(page);
1578			ClearPageHWPoison(head);
1579		}
1580		list_del(&head->lru);
1581		h->free_huge_pages--;
1582		h->free_huge_pages_node[nid]--;
1583		h->max_huge_pages--;
1584		update_and_free_page(h, head);
1585		rc = 0;
1586	}
1587out:
1588	spin_unlock(&hugetlb_lock);
1589	return rc;
1590}
1591
1592/*
1593 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1594 * make specified memory blocks removable from the system.
1595 * Note that this will dissolve a free gigantic hugepage completely, if any
1596 * part of it lies within the given range.
1597 * Also note that if dissolve_free_huge_page() returns with an error, all
1598 * free hugepages that were dissolved before that error are lost.
1599 */
1600int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1601{
 
1602	unsigned long pfn;
1603	struct page *page;
1604	int rc = 0;
1605
1606	if (!hugepages_supported())
1607		return rc;
1608
1609	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1610		page = pfn_to_page(pfn);
1611		rc = dissolve_free_huge_page(page);
1612		if (rc)
1613			break;
1614	}
1615
1616	return rc;
 
 
 
 
 
 
1617}
1618
1619/*
1620 * Allocates a fresh surplus page from the page allocator.
1621 */
1622static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1623		int nid, nodemask_t *nmask)
1624{
1625	struct page *page = NULL;
 
1626
1627	if (hstate_is_gigantic(h))
1628		return NULL;
1629
1630	spin_lock(&hugetlb_lock);
1631	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1632		goto out_unlock;
1633	spin_unlock(&hugetlb_lock);
1634
1635	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1636	if (!page)
1637		return NULL;
1638
1639	spin_lock(&hugetlb_lock);
1640	/*
1641	 * We could have raced with the pool size change.
1642	 * Double check that and simply deallocate the new page
1643	 * if we would end up overcommiting the surpluses. Abuse
1644	 * temporary page to workaround the nasty free_huge_page
1645	 * codeflow
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1646	 */
 
1647	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1648		SetPageHugeTemporary(page);
1649		spin_unlock(&hugetlb_lock);
1650		put_page(page);
1651		return NULL;
1652	} else {
 
1653		h->surplus_huge_pages++;
1654		h->surplus_huge_pages_node[page_to_nid(page)]++;
1655	}
1656
1657out_unlock:
1658	spin_unlock(&hugetlb_lock);
1659
1660	return page;
1661}
1662
1663struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1664				     int nid, nodemask_t *nmask)
1665{
1666	struct page *page;
1667
1668	if (hstate_is_gigantic(h))
1669		return NULL;
1670
1671	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1672	if (!page)
1673		return NULL;
 
1674
1675	/*
1676	 * We do not account these pages as surplus because they are only
1677	 * temporary and will be released properly on the last reference
1678	 */
1679	SetPageHugeTemporary(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
1680
1681	return page;
1682}
1683
1684/*
1685 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 
 
1686 */
1687static
1688struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1689		struct vm_area_struct *vma, unsigned long addr)
1690{
1691	struct page *page;
1692	struct mempolicy *mpol;
1693	gfp_t gfp_mask = htlb_alloc_mask(h);
1694	int nid;
1695	nodemask_t *nodemask;
1696
1697	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1698	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1699	mpol_cond_put(mpol);
1700
1701	return page;
1702}
1703
1704/* page migration callback function */
1705struct page *alloc_huge_page_node(struct hstate *h, int nid)
1706{
1707	gfp_t gfp_mask = htlb_alloc_mask(h);
1708	struct page *page = NULL;
1709
1710	if (nid != NUMA_NO_NODE)
1711		gfp_mask |= __GFP_THISNODE;
1712
1713	spin_lock(&hugetlb_lock);
1714	if (h->free_huge_pages - h->resv_huge_pages > 0)
1715		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1716	spin_unlock(&hugetlb_lock);
1717
1718	if (!page)
1719		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1720
1721	return page;
1722}
1723
1724/* page migration callback function */
1725struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1726		nodemask_t *nmask)
1727{
1728	gfp_t gfp_mask = htlb_alloc_mask(h);
1729
1730	spin_lock(&hugetlb_lock);
1731	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1732		struct page *page;
1733
1734		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1735		if (page) {
1736			spin_unlock(&hugetlb_lock);
1737			return page;
1738		}
1739	}
1740	spin_unlock(&hugetlb_lock);
1741
1742	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1743}
1744
1745/* mempolicy aware migration callback */
1746struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1747		unsigned long address)
1748{
1749	struct mempolicy *mpol;
1750	nodemask_t *nodemask;
1751	struct page *page;
1752	gfp_t gfp_mask;
1753	int node;
1754
1755	gfp_mask = htlb_alloc_mask(h);
1756	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1757	page = alloc_huge_page_nodemask(h, node, nodemask);
1758	mpol_cond_put(mpol);
1759
1760	return page;
1761}
1762
1763/*
1764 * Increase the hugetlb pool such that it can accommodate a reservation
1765 * of size 'delta'.
1766 */
1767static int gather_surplus_pages(struct hstate *h, int delta)
1768{
1769	struct list_head surplus_list;
1770	struct page *page, *tmp;
1771	int ret, i;
1772	int needed, allocated;
1773	bool alloc_ok = true;
1774
1775	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1776	if (needed <= 0) {
1777		h->resv_huge_pages += delta;
1778		return 0;
1779	}
1780
1781	allocated = 0;
1782	INIT_LIST_HEAD(&surplus_list);
1783
1784	ret = -ENOMEM;
1785retry:
1786	spin_unlock(&hugetlb_lock);
1787	for (i = 0; i < needed; i++) {
1788		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1789				NUMA_NO_NODE, NULL);
1790		if (!page) {
1791			alloc_ok = false;
1792			break;
1793		}
1794		list_add(&page->lru, &surplus_list);
1795		cond_resched();
1796	}
1797	allocated += i;
1798
1799	/*
1800	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1801	 * because either resv_huge_pages or free_huge_pages may have changed.
1802	 */
1803	spin_lock(&hugetlb_lock);
1804	needed = (h->resv_huge_pages + delta) -
1805			(h->free_huge_pages + allocated);
1806	if (needed > 0) {
1807		if (alloc_ok)
1808			goto retry;
1809		/*
1810		 * We were not able to allocate enough pages to
1811		 * satisfy the entire reservation so we free what
1812		 * we've allocated so far.
1813		 */
1814		goto free;
1815	}
1816	/*
1817	 * The surplus_list now contains _at_least_ the number of extra pages
1818	 * needed to accommodate the reservation.  Add the appropriate number
1819	 * of pages to the hugetlb pool and free the extras back to the buddy
1820	 * allocator.  Commit the entire reservation here to prevent another
1821	 * process from stealing the pages as they are added to the pool but
1822	 * before they are reserved.
1823	 */
1824	needed += allocated;
1825	h->resv_huge_pages += delta;
1826	ret = 0;
1827
1828	/* Free the needed pages to the hugetlb pool */
1829	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1830		if ((--needed) < 0)
1831			break;
1832		/*
1833		 * This page is now managed by the hugetlb allocator and has
1834		 * no users -- drop the buddy allocator's reference.
1835		 */
1836		put_page_testzero(page);
1837		VM_BUG_ON_PAGE(page_count(page), page);
1838		enqueue_huge_page(h, page);
1839	}
1840free:
1841	spin_unlock(&hugetlb_lock);
1842
1843	/* Free unnecessary surplus pages to the buddy allocator */
1844	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1845		put_page(page);
1846	spin_lock(&hugetlb_lock);
1847
1848	return ret;
1849}
1850
1851/*
1852 * This routine has two main purposes:
1853 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1854 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1855 *    to the associated reservation map.
1856 * 2) Free any unused surplus pages that may have been allocated to satisfy
1857 *    the reservation.  As many as unused_resv_pages may be freed.
1858 *
1859 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1860 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1861 * we must make sure nobody else can claim pages we are in the process of
1862 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1863 * number of huge pages we plan to free when dropping the lock.
1864 */
1865static void return_unused_surplus_pages(struct hstate *h,
1866					unsigned long unused_resv_pages)
1867{
1868	unsigned long nr_pages;
1869
 
 
 
1870	/* Cannot return gigantic pages currently */
1871	if (hstate_is_gigantic(h))
1872		goto out;
1873
1874	/*
1875	 * Part (or even all) of the reservation could have been backed
1876	 * by pre-allocated pages. Only free surplus pages.
1877	 */
1878	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1879
1880	/*
1881	 * We want to release as many surplus pages as possible, spread
1882	 * evenly across all nodes with memory. Iterate across these nodes
1883	 * until we can no longer free unreserved surplus pages. This occurs
1884	 * when the nodes with surplus pages have no free pages.
1885	 * free_pool_huge_page() will balance the the freed pages across the
1886	 * on-line nodes with memory and will handle the hstate accounting.
1887	 *
1888	 * Note that we decrement resv_huge_pages as we free the pages.  If
1889	 * we drop the lock, resv_huge_pages will still be sufficiently large
1890	 * to cover subsequent pages we may free.
1891	 */
1892	while (nr_pages--) {
1893		h->resv_huge_pages--;
1894		unused_resv_pages--;
1895		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1896			goto out;
1897		cond_resched_lock(&hugetlb_lock);
1898	}
1899
1900out:
1901	/* Fully uncommit the reservation */
1902	h->resv_huge_pages -= unused_resv_pages;
1903}
1904
1905
1906/*
1907 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1908 * are used by the huge page allocation routines to manage reservations.
1909 *
1910 * vma_needs_reservation is called to determine if the huge page at addr
1911 * within the vma has an associated reservation.  If a reservation is
1912 * needed, the value 1 is returned.  The caller is then responsible for
1913 * managing the global reservation and subpool usage counts.  After
1914 * the huge page has been allocated, vma_commit_reservation is called
1915 * to add the page to the reservation map.  If the page allocation fails,
1916 * the reservation must be ended instead of committed.  vma_end_reservation
1917 * is called in such cases.
1918 *
1919 * In the normal case, vma_commit_reservation returns the same value
1920 * as the preceding vma_needs_reservation call.  The only time this
1921 * is not the case is if a reserve map was changed between calls.  It
1922 * is the responsibility of the caller to notice the difference and
1923 * take appropriate action.
1924 *
1925 * vma_add_reservation is used in error paths where a reservation must
1926 * be restored when a newly allocated huge page must be freed.  It is
1927 * to be called after calling vma_needs_reservation to determine if a
1928 * reservation exists.
1929 */
1930enum vma_resv_mode {
1931	VMA_NEEDS_RESV,
1932	VMA_COMMIT_RESV,
1933	VMA_END_RESV,
1934	VMA_ADD_RESV,
1935};
1936static long __vma_reservation_common(struct hstate *h,
1937				struct vm_area_struct *vma, unsigned long addr,
1938				enum vma_resv_mode mode)
1939{
1940	struct resv_map *resv;
1941	pgoff_t idx;
1942	long ret;
1943
1944	resv = vma_resv_map(vma);
1945	if (!resv)
1946		return 1;
1947
1948	idx = vma_hugecache_offset(h, vma, addr);
1949	switch (mode) {
1950	case VMA_NEEDS_RESV:
1951		ret = region_chg(resv, idx, idx + 1);
1952		break;
1953	case VMA_COMMIT_RESV:
1954		ret = region_add(resv, idx, idx + 1);
1955		break;
1956	case VMA_END_RESV:
1957		region_abort(resv, idx, idx + 1);
1958		ret = 0;
1959		break;
1960	case VMA_ADD_RESV:
1961		if (vma->vm_flags & VM_MAYSHARE)
1962			ret = region_add(resv, idx, idx + 1);
1963		else {
1964			region_abort(resv, idx, idx + 1);
1965			ret = region_del(resv, idx, idx + 1);
1966		}
1967		break;
1968	default:
1969		BUG();
1970	}
1971
1972	if (vma->vm_flags & VM_MAYSHARE)
1973		return ret;
1974	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1975		/*
1976		 * In most cases, reserves always exist for private mappings.
1977		 * However, a file associated with mapping could have been
1978		 * hole punched or truncated after reserves were consumed.
1979		 * As subsequent fault on such a range will not use reserves.
1980		 * Subtle - The reserve map for private mappings has the
1981		 * opposite meaning than that of shared mappings.  If NO
1982		 * entry is in the reserve map, it means a reservation exists.
1983		 * If an entry exists in the reserve map, it means the
1984		 * reservation has already been consumed.  As a result, the
1985		 * return value of this routine is the opposite of the
1986		 * value returned from reserve map manipulation routines above.
1987		 */
1988		if (ret)
1989			return 0;
1990		else
1991			return 1;
1992	}
1993	else
1994		return ret < 0 ? ret : 0;
1995}
1996
1997static long vma_needs_reservation(struct hstate *h,
1998			struct vm_area_struct *vma, unsigned long addr)
1999{
2000	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2001}
2002
2003static long vma_commit_reservation(struct hstate *h,
2004			struct vm_area_struct *vma, unsigned long addr)
2005{
2006	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2007}
2008
2009static void vma_end_reservation(struct hstate *h,
2010			struct vm_area_struct *vma, unsigned long addr)
2011{
2012	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2013}
2014
2015static long vma_add_reservation(struct hstate *h,
2016			struct vm_area_struct *vma, unsigned long addr)
2017{
2018	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2019}
2020
2021/*
2022 * This routine is called to restore a reservation on error paths.  In the
2023 * specific error paths, a huge page was allocated (via alloc_huge_page)
2024 * and is about to be freed.  If a reservation for the page existed,
2025 * alloc_huge_page would have consumed the reservation and set PagePrivate
2026 * in the newly allocated page.  When the page is freed via free_huge_page,
2027 * the global reservation count will be incremented if PagePrivate is set.
2028 * However, free_huge_page can not adjust the reserve map.  Adjust the
2029 * reserve map here to be consistent with global reserve count adjustments
2030 * to be made by free_huge_page.
2031 */
2032static void restore_reserve_on_error(struct hstate *h,
2033			struct vm_area_struct *vma, unsigned long address,
2034			struct page *page)
2035{
2036	if (unlikely(PagePrivate(page))) {
2037		long rc = vma_needs_reservation(h, vma, address);
2038
2039		if (unlikely(rc < 0)) {
2040			/*
2041			 * Rare out of memory condition in reserve map
2042			 * manipulation.  Clear PagePrivate so that
2043			 * global reserve count will not be incremented
2044			 * by free_huge_page.  This will make it appear
2045			 * as though the reservation for this page was
2046			 * consumed.  This may prevent the task from
2047			 * faulting in the page at a later time.  This
2048			 * is better than inconsistent global huge page
2049			 * accounting of reserve counts.
2050			 */
2051			ClearPagePrivate(page);
2052		} else if (rc) {
2053			rc = vma_add_reservation(h, vma, address);
2054			if (unlikely(rc < 0))
2055				/*
2056				 * See above comment about rare out of
2057				 * memory condition.
2058				 */
2059				ClearPagePrivate(page);
2060		} else
2061			vma_end_reservation(h, vma, address);
2062	}
2063}
2064
2065struct page *alloc_huge_page(struct vm_area_struct *vma,
2066				    unsigned long addr, int avoid_reserve)
2067{
2068	struct hugepage_subpool *spool = subpool_vma(vma);
2069	struct hstate *h = hstate_vma(vma);
2070	struct page *page;
2071	long map_chg, map_commit;
2072	long gbl_chg;
2073	int ret, idx;
2074	struct hugetlb_cgroup *h_cg;
2075
2076	idx = hstate_index(h);
2077	/*
2078	 * Examine the region/reserve map to determine if the process
2079	 * has a reservation for the page to be allocated.  A return
2080	 * code of zero indicates a reservation exists (no change).
2081	 */
2082	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2083	if (map_chg < 0)
2084		return ERR_PTR(-ENOMEM);
2085
2086	/*
2087	 * Processes that did not create the mapping will have no
2088	 * reserves as indicated by the region/reserve map. Check
2089	 * that the allocation will not exceed the subpool limit.
2090	 * Allocations for MAP_NORESERVE mappings also need to be
2091	 * checked against any subpool limit.
 
2092	 */
2093	if (map_chg || avoid_reserve) {
2094		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2095		if (gbl_chg < 0) {
2096			vma_end_reservation(h, vma, addr);
 
2097			return ERR_PTR(-ENOSPC);
2098		}
2099
2100		/*
2101		 * Even though there was no reservation in the region/reserve
2102		 * map, there could be reservations associated with the
2103		 * subpool that can be used.  This would be indicated if the
2104		 * return value of hugepage_subpool_get_pages() is zero.
2105		 * However, if avoid_reserve is specified we still avoid even
2106		 * the subpool reservations.
2107		 */
2108		if (avoid_reserve)
2109			gbl_chg = 1;
2110	}
2111
2112	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2113	if (ret)
2114		goto out_subpool_put;
2115
 
 
2116	spin_lock(&hugetlb_lock);
2117	/*
2118	 * glb_chg is passed to indicate whether or not a page must be taken
2119	 * from the global free pool (global change).  gbl_chg == 0 indicates
2120	 * a reservation exists for the allocation.
2121	 */
2122	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2123	if (!page) {
2124		spin_unlock(&hugetlb_lock);
2125		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2126		if (!page)
2127			goto out_uncharge_cgroup;
2128		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2129			SetPagePrivate(page);
2130			h->resv_huge_pages--;
 
 
2131		}
2132		spin_lock(&hugetlb_lock);
2133		list_move(&page->lru, &h->hugepage_activelist);
2134		/* Fall through */
2135	}
2136	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2137	spin_unlock(&hugetlb_lock);
2138
2139	set_page_private(page, (unsigned long)spool);
2140
2141	map_commit = vma_commit_reservation(h, vma, addr);
2142	if (unlikely(map_chg > map_commit)) {
2143		/*
2144		 * The page was added to the reservation map between
2145		 * vma_needs_reservation and vma_commit_reservation.
2146		 * This indicates a race with hugetlb_reserve_pages.
2147		 * Adjust for the subpool count incremented above AND
2148		 * in hugetlb_reserve_pages for the same page.  Also,
2149		 * the reservation count added in hugetlb_reserve_pages
2150		 * no longer applies.
2151		 */
2152		long rsv_adjust;
2153
2154		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2155		hugetlb_acct_memory(h, -rsv_adjust);
2156	}
2157	return page;
 
2158
2159out_uncharge_cgroup:
2160	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2161out_subpool_put:
2162	if (map_chg || avoid_reserve)
2163		hugepage_subpool_put_pages(spool, 1);
2164	vma_end_reservation(h, vma, addr);
2165	return ERR_PTR(-ENOSPC);
 
 
 
 
 
2166}
2167
2168int alloc_bootmem_huge_page(struct hstate *h)
2169	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2170int __alloc_bootmem_huge_page(struct hstate *h)
2171{
2172	struct huge_bootmem_page *m;
2173	int nr_nodes, node;
2174
2175	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2176		void *addr;
2177
2178		addr = memblock_alloc_try_nid_raw(
2179				huge_page_size(h), huge_page_size(h),
2180				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2181		if (addr) {
2182			/*
2183			 * Use the beginning of the huge page to store the
2184			 * huge_bootmem_page struct (until gather_bootmem
2185			 * puts them into the mem_map).
2186			 */
2187			m = addr;
2188			goto found;
2189		}
2190	}
2191	return 0;
2192
2193found:
2194	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2195	/* Put them into a private list first because mem_map is not up yet */
2196	INIT_LIST_HEAD(&m->list);
2197	list_add(&m->list, &huge_boot_pages);
2198	m->hstate = h;
2199	return 1;
2200}
2201
2202static void __init prep_compound_huge_page(struct page *page,
2203		unsigned int order)
2204{
2205	if (unlikely(order > (MAX_ORDER - 1)))
2206		prep_compound_gigantic_page(page, order);
2207	else
2208		prep_compound_page(page, order);
2209}
2210
2211/* Put bootmem huge pages into the standard lists after mem_map is up */
2212static void __init gather_bootmem_prealloc(void)
2213{
2214	struct huge_bootmem_page *m;
2215
2216	list_for_each_entry(m, &huge_boot_pages, list) {
2217		struct page *page = virt_to_page(m);
2218		struct hstate *h = m->hstate;
 
2219
 
 
 
 
 
 
 
2220		WARN_ON(page_count(page) != 1);
2221		prep_compound_huge_page(page, h->order);
2222		WARN_ON(PageReserved(page));
2223		prep_new_huge_page(h, page, page_to_nid(page));
2224		put_page(page); /* free it into the hugepage allocator */
2225
2226		/*
2227		 * If we had gigantic hugepages allocated at boot time, we need
2228		 * to restore the 'stolen' pages to totalram_pages in order to
2229		 * fix confusing memory reports from free(1) and another
2230		 * side-effects, like CommitLimit going negative.
2231		 */
2232		if (hstate_is_gigantic(h))
2233			adjust_managed_page_count(page, 1 << h->order);
2234		cond_resched();
2235	}
2236}
2237
2238static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2239{
2240	unsigned long i;
2241	nodemask_t *node_alloc_noretry;
2242
2243	if (!hstate_is_gigantic(h)) {
2244		/*
2245		 * Bit mask controlling how hard we retry per-node allocations.
2246		 * Ignore errors as lower level routines can deal with
2247		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2248		 * time, we are likely in bigger trouble.
2249		 */
2250		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2251						GFP_KERNEL);
2252	} else {
2253		/* allocations done at boot time */
2254		node_alloc_noretry = NULL;
2255	}
2256
2257	/* bit mask controlling how hard we retry per-node allocations */
2258	if (node_alloc_noretry)
2259		nodes_clear(*node_alloc_noretry);
2260
2261	for (i = 0; i < h->max_huge_pages; ++i) {
2262		if (hstate_is_gigantic(h)) {
2263			if (!alloc_bootmem_huge_page(h))
2264				break;
2265		} else if (!alloc_pool_huge_page(h,
2266					 &node_states[N_MEMORY],
2267					 node_alloc_noretry))
2268			break;
2269		cond_resched();
2270	}
2271	if (i < h->max_huge_pages) {
2272		char buf[32];
2273
2274		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2275		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2276			h->max_huge_pages, buf, i);
2277		h->max_huge_pages = i;
2278	}
2279
2280	kfree(node_alloc_noretry);
2281}
2282
2283static void __init hugetlb_init_hstates(void)
2284{
2285	struct hstate *h;
2286
2287	for_each_hstate(h) {
2288		if (minimum_order > huge_page_order(h))
2289			minimum_order = huge_page_order(h);
2290
2291		/* oversize hugepages were init'ed in early boot */
2292		if (!hstate_is_gigantic(h))
2293			hugetlb_hstate_alloc_pages(h);
2294	}
2295	VM_BUG_ON(minimum_order == UINT_MAX);
 
 
 
 
 
 
 
 
 
 
2296}
2297
2298static void __init report_hugepages(void)
2299{
2300	struct hstate *h;
2301
2302	for_each_hstate(h) {
2303		char buf[32];
2304
2305		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2306		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2307			buf, h->free_huge_pages);
 
2308	}
2309}
2310
2311#ifdef CONFIG_HIGHMEM
2312static void try_to_free_low(struct hstate *h, unsigned long count,
2313						nodemask_t *nodes_allowed)
2314{
2315	int i;
2316
2317	if (hstate_is_gigantic(h))
2318		return;
2319
2320	for_each_node_mask(i, *nodes_allowed) {
2321		struct page *page, *next;
2322		struct list_head *freel = &h->hugepage_freelists[i];
2323		list_for_each_entry_safe(page, next, freel, lru) {
2324			if (count >= h->nr_huge_pages)
2325				return;
2326			if (PageHighMem(page))
2327				continue;
2328			list_del(&page->lru);
2329			update_and_free_page(h, page);
2330			h->free_huge_pages--;
2331			h->free_huge_pages_node[page_to_nid(page)]--;
2332		}
2333	}
2334}
2335#else
2336static inline void try_to_free_low(struct hstate *h, unsigned long count,
2337						nodemask_t *nodes_allowed)
2338{
2339}
2340#endif
2341
2342/*
2343 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2344 * balanced by operating on them in a round-robin fashion.
2345 * Returns 1 if an adjustment was made.
2346 */
2347static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2348				int delta)
2349{
2350	int nr_nodes, node;
2351
2352	VM_BUG_ON(delta != -1 && delta != 1);
2353
2354	if (delta < 0) {
2355		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2356			if (h->surplus_huge_pages_node[node])
2357				goto found;
2358		}
2359	} else {
2360		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2361			if (h->surplus_huge_pages_node[node] <
2362					h->nr_huge_pages_node[node])
2363				goto found;
2364		}
2365	}
2366	return 0;
2367
2368found:
2369	h->surplus_huge_pages += delta;
2370	h->surplus_huge_pages_node[node] += delta;
2371	return 1;
2372}
2373
2374#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2375static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2376			      nodemask_t *nodes_allowed)
2377{
2378	unsigned long min_count, ret;
2379	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2380
2381	/*
2382	 * Bit mask controlling how hard we retry per-node allocations.
2383	 * If we can not allocate the bit mask, do not attempt to allocate
2384	 * the requested huge pages.
2385	 */
2386	if (node_alloc_noretry)
2387		nodes_clear(*node_alloc_noretry);
2388	else
2389		return -ENOMEM;
2390
2391	spin_lock(&hugetlb_lock);
2392
2393	/*
2394	 * Check for a node specific request.
2395	 * Changing node specific huge page count may require a corresponding
2396	 * change to the global count.  In any case, the passed node mask
2397	 * (nodes_allowed) will restrict alloc/free to the specified node.
2398	 */
2399	if (nid != NUMA_NO_NODE) {
2400		unsigned long old_count = count;
2401
2402		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2403		/*
2404		 * User may have specified a large count value which caused the
2405		 * above calculation to overflow.  In this case, they wanted
2406		 * to allocate as many huge pages as possible.  Set count to
2407		 * largest possible value to align with their intention.
2408		 */
2409		if (count < old_count)
2410			count = ULONG_MAX;
2411	}
2412
2413	/*
2414	 * Gigantic pages runtime allocation depend on the capability for large
2415	 * page range allocation.
2416	 * If the system does not provide this feature, return an error when
2417	 * the user tries to allocate gigantic pages but let the user free the
2418	 * boottime allocated gigantic pages.
2419	 */
2420	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2421		if (count > persistent_huge_pages(h)) {
2422			spin_unlock(&hugetlb_lock);
2423			NODEMASK_FREE(node_alloc_noretry);
2424			return -EINVAL;
2425		}
2426		/* Fall through to decrease pool */
2427	}
2428
2429	/*
2430	 * Increase the pool size
2431	 * First take pages out of surplus state.  Then make up the
2432	 * remaining difference by allocating fresh huge pages.
2433	 *
2434	 * We might race with alloc_surplus_huge_page() here and be unable
2435	 * to convert a surplus huge page to a normal huge page. That is
2436	 * not critical, though, it just means the overall size of the
2437	 * pool might be one hugepage larger than it needs to be, but
2438	 * within all the constraints specified by the sysctls.
2439	 */
 
2440	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2441		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2442			break;
2443	}
2444
2445	while (count > persistent_huge_pages(h)) {
2446		/*
2447		 * If this allocation races such that we no longer need the
2448		 * page, free_huge_page will handle it by freeing the page
2449		 * and reducing the surplus.
2450		 */
2451		spin_unlock(&hugetlb_lock);
2452
2453		/* yield cpu to avoid soft lockup */
2454		cond_resched();
2455
2456		ret = alloc_pool_huge_page(h, nodes_allowed,
2457						node_alloc_noretry);
2458		spin_lock(&hugetlb_lock);
2459		if (!ret)
2460			goto out;
2461
2462		/* Bail for signals. Probably ctrl-c from user */
2463		if (signal_pending(current))
2464			goto out;
2465	}
2466
2467	/*
2468	 * Decrease the pool size
2469	 * First return free pages to the buddy allocator (being careful
2470	 * to keep enough around to satisfy reservations).  Then place
2471	 * pages into surplus state as needed so the pool will shrink
2472	 * to the desired size as pages become free.
2473	 *
2474	 * By placing pages into the surplus state independent of the
2475	 * overcommit value, we are allowing the surplus pool size to
2476	 * exceed overcommit. There are few sane options here. Since
2477	 * alloc_surplus_huge_page() is checking the global counter,
2478	 * though, we'll note that we're not allowed to exceed surplus
2479	 * and won't grow the pool anywhere else. Not until one of the
2480	 * sysctls are changed, or the surplus pages go out of use.
2481	 */
2482	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2483	min_count = max(count, min_count);
2484	try_to_free_low(h, min_count, nodes_allowed);
2485	while (min_count < persistent_huge_pages(h)) {
2486		if (!free_pool_huge_page(h, nodes_allowed, 0))
2487			break;
2488		cond_resched_lock(&hugetlb_lock);
2489	}
2490	while (count < persistent_huge_pages(h)) {
2491		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2492			break;
2493	}
2494out:
2495	h->max_huge_pages = persistent_huge_pages(h);
2496	spin_unlock(&hugetlb_lock);
2497
2498	NODEMASK_FREE(node_alloc_noretry);
2499
2500	return 0;
2501}
2502
2503#define HSTATE_ATTR_RO(_name) \
2504	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2505
2506#define HSTATE_ATTR(_name) \
2507	static struct kobj_attribute _name##_attr = \
2508		__ATTR(_name, 0644, _name##_show, _name##_store)
2509
2510static struct kobject *hugepages_kobj;
2511static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512
2513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2514
2515static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2516{
2517	int i;
2518
2519	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2520		if (hstate_kobjs[i] == kobj) {
2521			if (nidp)
2522				*nidp = NUMA_NO_NODE;
2523			return &hstates[i];
2524		}
2525
2526	return kobj_to_node_hstate(kobj, nidp);
2527}
2528
2529static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2530					struct kobj_attribute *attr, char *buf)
2531{
2532	struct hstate *h;
2533	unsigned long nr_huge_pages;
2534	int nid;
2535
2536	h = kobj_to_hstate(kobj, &nid);
2537	if (nid == NUMA_NO_NODE)
2538		nr_huge_pages = h->nr_huge_pages;
2539	else
2540		nr_huge_pages = h->nr_huge_pages_node[nid];
2541
2542	return sprintf(buf, "%lu\n", nr_huge_pages);
2543}
2544
2545static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2546					   struct hstate *h, int nid,
2547					   unsigned long count, size_t len)
2548{
2549	int err;
2550	nodemask_t nodes_allowed, *n_mask;
 
 
 
2551
2552	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2553		return -EINVAL;
 
 
 
 
 
 
 
2554
2555	if (nid == NUMA_NO_NODE) {
2556		/*
2557		 * global hstate attribute
2558		 */
2559		if (!(obey_mempolicy &&
2560				init_nodemask_of_mempolicy(&nodes_allowed)))
2561			n_mask = &node_states[N_MEMORY];
2562		else
2563			n_mask = &nodes_allowed;
2564	} else {
2565		/*
2566		 * Node specific request.  count adjustment happens in
2567		 * set_max_huge_pages() after acquiring hugetlb_lock.
2568		 */
2569		init_nodemask_of_node(&nodes_allowed, nid);
2570		n_mask = &nodes_allowed;
2571	}
2572
2573	err = set_max_huge_pages(h, count, nid, n_mask);
2574
2575	return err ? err : len;
2576}
2577
2578static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2579					 struct kobject *kobj, const char *buf,
2580					 size_t len)
2581{
2582	struct hstate *h;
2583	unsigned long count;
2584	int nid;
2585	int err;
2586
2587	err = kstrtoul(buf, 10, &count);
2588	if (err)
2589		return err;
2590
2591	h = kobj_to_hstate(kobj, &nid);
2592	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
 
 
2593}
2594
2595static ssize_t nr_hugepages_show(struct kobject *kobj,
2596				       struct kobj_attribute *attr, char *buf)
2597{
2598	return nr_hugepages_show_common(kobj, attr, buf);
2599}
2600
2601static ssize_t nr_hugepages_store(struct kobject *kobj,
2602	       struct kobj_attribute *attr, const char *buf, size_t len)
2603{
2604	return nr_hugepages_store_common(false, kobj, buf, len);
2605}
2606HSTATE_ATTR(nr_hugepages);
2607
2608#ifdef CONFIG_NUMA
2609
2610/*
2611 * hstate attribute for optionally mempolicy-based constraint on persistent
2612 * huge page alloc/free.
2613 */
2614static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2615				       struct kobj_attribute *attr, char *buf)
2616{
2617	return nr_hugepages_show_common(kobj, attr, buf);
2618}
2619
2620static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2621	       struct kobj_attribute *attr, const char *buf, size_t len)
2622{
2623	return nr_hugepages_store_common(true, kobj, buf, len);
2624}
2625HSTATE_ATTR(nr_hugepages_mempolicy);
2626#endif
2627
2628
2629static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2630					struct kobj_attribute *attr, char *buf)
2631{
2632	struct hstate *h = kobj_to_hstate(kobj, NULL);
2633	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2634}
2635
2636static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2637		struct kobj_attribute *attr, const char *buf, size_t count)
2638{
2639	int err;
2640	unsigned long input;
2641	struct hstate *h = kobj_to_hstate(kobj, NULL);
2642
2643	if (hstate_is_gigantic(h))
2644		return -EINVAL;
2645
2646	err = kstrtoul(buf, 10, &input);
2647	if (err)
2648		return err;
2649
2650	spin_lock(&hugetlb_lock);
2651	h->nr_overcommit_huge_pages = input;
2652	spin_unlock(&hugetlb_lock);
2653
2654	return count;
2655}
2656HSTATE_ATTR(nr_overcommit_hugepages);
2657
2658static ssize_t free_hugepages_show(struct kobject *kobj,
2659					struct kobj_attribute *attr, char *buf)
2660{
2661	struct hstate *h;
2662	unsigned long free_huge_pages;
2663	int nid;
2664
2665	h = kobj_to_hstate(kobj, &nid);
2666	if (nid == NUMA_NO_NODE)
2667		free_huge_pages = h->free_huge_pages;
2668	else
2669		free_huge_pages = h->free_huge_pages_node[nid];
2670
2671	return sprintf(buf, "%lu\n", free_huge_pages);
2672}
2673HSTATE_ATTR_RO(free_hugepages);
2674
2675static ssize_t resv_hugepages_show(struct kobject *kobj,
2676					struct kobj_attribute *attr, char *buf)
2677{
2678	struct hstate *h = kobj_to_hstate(kobj, NULL);
2679	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2680}
2681HSTATE_ATTR_RO(resv_hugepages);
2682
2683static ssize_t surplus_hugepages_show(struct kobject *kobj,
2684					struct kobj_attribute *attr, char *buf)
2685{
2686	struct hstate *h;
2687	unsigned long surplus_huge_pages;
2688	int nid;
2689
2690	h = kobj_to_hstate(kobj, &nid);
2691	if (nid == NUMA_NO_NODE)
2692		surplus_huge_pages = h->surplus_huge_pages;
2693	else
2694		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2695
2696	return sprintf(buf, "%lu\n", surplus_huge_pages);
2697}
2698HSTATE_ATTR_RO(surplus_hugepages);
2699
2700static struct attribute *hstate_attrs[] = {
2701	&nr_hugepages_attr.attr,
2702	&nr_overcommit_hugepages_attr.attr,
2703	&free_hugepages_attr.attr,
2704	&resv_hugepages_attr.attr,
2705	&surplus_hugepages_attr.attr,
2706#ifdef CONFIG_NUMA
2707	&nr_hugepages_mempolicy_attr.attr,
2708#endif
2709	NULL,
2710};
2711
2712static const struct attribute_group hstate_attr_group = {
2713	.attrs = hstate_attrs,
2714};
2715
2716static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2717				    struct kobject **hstate_kobjs,
2718				    const struct attribute_group *hstate_attr_group)
2719{
2720	int retval;
2721	int hi = hstate_index(h);
2722
2723	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2724	if (!hstate_kobjs[hi])
2725		return -ENOMEM;
2726
2727	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2728	if (retval)
2729		kobject_put(hstate_kobjs[hi]);
2730
2731	return retval;
2732}
2733
2734static void __init hugetlb_sysfs_init(void)
2735{
2736	struct hstate *h;
2737	int err;
2738
2739	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2740	if (!hugepages_kobj)
2741		return;
2742
2743	for_each_hstate(h) {
2744		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2745					 hstate_kobjs, &hstate_attr_group);
2746		if (err)
2747			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2748	}
2749}
2750
2751#ifdef CONFIG_NUMA
2752
2753/*
2754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2755 * with node devices in node_devices[] using a parallel array.  The array
2756 * index of a node device or _hstate == node id.
2757 * This is here to avoid any static dependency of the node device driver, in
2758 * the base kernel, on the hugetlb module.
2759 */
2760struct node_hstate {
2761	struct kobject		*hugepages_kobj;
2762	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2763};
2764static struct node_hstate node_hstates[MAX_NUMNODES];
2765
2766/*
2767 * A subset of global hstate attributes for node devices
2768 */
2769static struct attribute *per_node_hstate_attrs[] = {
2770	&nr_hugepages_attr.attr,
2771	&free_hugepages_attr.attr,
2772	&surplus_hugepages_attr.attr,
2773	NULL,
2774};
2775
2776static const struct attribute_group per_node_hstate_attr_group = {
2777	.attrs = per_node_hstate_attrs,
2778};
2779
2780/*
2781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2782 * Returns node id via non-NULL nidp.
2783 */
2784static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785{
2786	int nid;
2787
2788	for (nid = 0; nid < nr_node_ids; nid++) {
2789		struct node_hstate *nhs = &node_hstates[nid];
2790		int i;
2791		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2792			if (nhs->hstate_kobjs[i] == kobj) {
2793				if (nidp)
2794					*nidp = nid;
2795				return &hstates[i];
2796			}
2797	}
2798
2799	BUG();
2800	return NULL;
2801}
2802
2803/*
2804 * Unregister hstate attributes from a single node device.
2805 * No-op if no hstate attributes attached.
2806 */
2807static void hugetlb_unregister_node(struct node *node)
2808{
2809	struct hstate *h;
2810	struct node_hstate *nhs = &node_hstates[node->dev.id];
2811
2812	if (!nhs->hugepages_kobj)
2813		return;		/* no hstate attributes */
2814
2815	for_each_hstate(h) {
2816		int idx = hstate_index(h);
2817		if (nhs->hstate_kobjs[idx]) {
2818			kobject_put(nhs->hstate_kobjs[idx]);
2819			nhs->hstate_kobjs[idx] = NULL;
2820		}
2821	}
2822
2823	kobject_put(nhs->hugepages_kobj);
2824	nhs->hugepages_kobj = NULL;
2825}
2826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2827
2828/*
2829 * Register hstate attributes for a single node device.
2830 * No-op if attributes already registered.
2831 */
2832static void hugetlb_register_node(struct node *node)
2833{
2834	struct hstate *h;
2835	struct node_hstate *nhs = &node_hstates[node->dev.id];
2836	int err;
2837
2838	if (nhs->hugepages_kobj)
2839		return;		/* already allocated */
2840
2841	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2842							&node->dev.kobj);
2843	if (!nhs->hugepages_kobj)
2844		return;
2845
2846	for_each_hstate(h) {
2847		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2848						nhs->hstate_kobjs,
2849						&per_node_hstate_attr_group);
2850		if (err) {
2851			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2852				h->name, node->dev.id);
2853			hugetlb_unregister_node(node);
2854			break;
2855		}
2856	}
2857}
2858
2859/*
2860 * hugetlb init time:  register hstate attributes for all registered node
2861 * devices of nodes that have memory.  All on-line nodes should have
2862 * registered their associated device by this time.
2863 */
2864static void __init hugetlb_register_all_nodes(void)
2865{
2866	int nid;
2867
2868	for_each_node_state(nid, N_MEMORY) {
2869		struct node *node = node_devices[nid];
2870		if (node->dev.id == nid)
2871			hugetlb_register_node(node);
2872	}
2873
2874	/*
2875	 * Let the node device driver know we're here so it can
2876	 * [un]register hstate attributes on node hotplug.
2877	 */
2878	register_hugetlbfs_with_node(hugetlb_register_node,
2879				     hugetlb_unregister_node);
2880}
2881#else	/* !CONFIG_NUMA */
2882
2883static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2884{
2885	BUG();
2886	if (nidp)
2887		*nidp = -1;
2888	return NULL;
2889}
2890
 
 
2891static void hugetlb_register_all_nodes(void) { }
2892
2893#endif
2894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895static int __init hugetlb_init(void)
2896{
2897	int i;
2898
2899	if (!hugepages_supported())
2900		return 0;
2901
2902	if (!size_to_hstate(default_hstate_size)) {
2903		if (default_hstate_size != 0) {
2904			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2905			       default_hstate_size, HPAGE_SIZE);
2906		}
2907
2908		default_hstate_size = HPAGE_SIZE;
2909		if (!size_to_hstate(default_hstate_size))
2910			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2911	}
2912	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2913	if (default_hstate_max_huge_pages) {
2914		if (!default_hstate.max_huge_pages)
2915			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2916	}
2917
2918	hugetlb_init_hstates();
2919	gather_bootmem_prealloc();
2920	report_hugepages();
2921
2922	hugetlb_sysfs_init();
2923	hugetlb_register_all_nodes();
2924	hugetlb_cgroup_file_init();
2925
2926#ifdef CONFIG_SMP
2927	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2928#else
2929	num_fault_mutexes = 1;
2930#endif
2931	hugetlb_fault_mutex_table =
2932		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2933			      GFP_KERNEL);
2934	BUG_ON(!hugetlb_fault_mutex_table);
2935
2936	for (i = 0; i < num_fault_mutexes; i++)
2937		mutex_init(&hugetlb_fault_mutex_table[i]);
2938	return 0;
2939}
2940subsys_initcall(hugetlb_init);
2941
2942/* Should be called on processing a hugepagesz=... option */
2943void __init hugetlb_bad_size(void)
2944{
2945	parsed_valid_hugepagesz = false;
2946}
2947
2948void __init hugetlb_add_hstate(unsigned int order)
2949{
2950	struct hstate *h;
2951	unsigned long i;
2952
2953	if (size_to_hstate(PAGE_SIZE << order)) {
2954		pr_warn("hugepagesz= specified twice, ignoring\n");
2955		return;
2956	}
2957	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2958	BUG_ON(order == 0);
2959	h = &hstates[hugetlb_max_hstate++];
2960	h->order = order;
2961	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2962	h->nr_huge_pages = 0;
2963	h->free_huge_pages = 0;
2964	for (i = 0; i < MAX_NUMNODES; ++i)
2965		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2966	INIT_LIST_HEAD(&h->hugepage_activelist);
2967	h->next_nid_to_alloc = first_memory_node;
2968	h->next_nid_to_free = first_memory_node;
2969	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2970					huge_page_size(h)/1024);
2971
2972	parsed_hstate = h;
2973}
2974
2975static int __init hugetlb_nrpages_setup(char *s)
2976{
2977	unsigned long *mhp;
2978	static unsigned long *last_mhp;
2979
2980	if (!parsed_valid_hugepagesz) {
2981		pr_warn("hugepages = %s preceded by "
2982			"an unsupported hugepagesz, ignoring\n", s);
2983		parsed_valid_hugepagesz = true;
2984		return 1;
2985	}
2986	/*
2987	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2988	 * so this hugepages= parameter goes to the "default hstate".
2989	 */
2990	else if (!hugetlb_max_hstate)
2991		mhp = &default_hstate_max_huge_pages;
2992	else
2993		mhp = &parsed_hstate->max_huge_pages;
2994
2995	if (mhp == last_mhp) {
2996		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
 
2997		return 1;
2998	}
2999
3000	if (sscanf(s, "%lu", mhp) <= 0)
3001		*mhp = 0;
3002
3003	/*
3004	 * Global state is always initialized later in hugetlb_init.
3005	 * But we need to allocate >= MAX_ORDER hstates here early to still
3006	 * use the bootmem allocator.
3007	 */
3008	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3009		hugetlb_hstate_alloc_pages(parsed_hstate);
3010
3011	last_mhp = mhp;
3012
3013	return 1;
3014}
3015__setup("hugepages=", hugetlb_nrpages_setup);
3016
3017static int __init hugetlb_default_setup(char *s)
3018{
3019	default_hstate_size = memparse(s, &s);
3020	return 1;
3021}
3022__setup("default_hugepagesz=", hugetlb_default_setup);
3023
3024static unsigned int cpuset_mems_nr(unsigned int *array)
3025{
3026	int node;
3027	unsigned int nr = 0;
3028
3029	for_each_node_mask(node, cpuset_current_mems_allowed)
3030		nr += array[node];
3031
3032	return nr;
3033}
3034
3035#ifdef CONFIG_SYSCTL
3036static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3037			 struct ctl_table *table, int write,
3038			 void __user *buffer, size_t *length, loff_t *ppos)
3039{
3040	struct hstate *h = &default_hstate;
3041	unsigned long tmp = h->max_huge_pages;
3042	int ret;
3043
3044	if (!hugepages_supported())
3045		return -EOPNOTSUPP;
 
 
 
 
 
3046
3047	table->data = &tmp;
3048	table->maxlen = sizeof(unsigned long);
3049	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3050	if (ret)
3051		goto out;
3052
3053	if (write)
3054		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3055						  NUMA_NO_NODE, tmp, *length);
 
 
 
 
 
 
 
 
 
 
3056out:
3057	return ret;
3058}
3059
3060int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3061			  void __user *buffer, size_t *length, loff_t *ppos)
3062{
3063
3064	return hugetlb_sysctl_handler_common(false, table, write,
3065							buffer, length, ppos);
3066}
3067
3068#ifdef CONFIG_NUMA
3069int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3070			  void __user *buffer, size_t *length, loff_t *ppos)
3071{
3072	return hugetlb_sysctl_handler_common(true, table, write,
3073							buffer, length, ppos);
3074}
3075#endif /* CONFIG_NUMA */
3076
3077int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3078			void __user *buffer,
3079			size_t *length, loff_t *ppos)
3080{
3081	struct hstate *h = &default_hstate;
3082	unsigned long tmp;
3083	int ret;
3084
3085	if (!hugepages_supported())
3086		return -EOPNOTSUPP;
3087
3088	tmp = h->nr_overcommit_huge_pages;
3089
3090	if (write && hstate_is_gigantic(h))
3091		return -EINVAL;
3092
3093	table->data = &tmp;
3094	table->maxlen = sizeof(unsigned long);
3095	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3096	if (ret)
3097		goto out;
3098
3099	if (write) {
3100		spin_lock(&hugetlb_lock);
3101		h->nr_overcommit_huge_pages = tmp;
3102		spin_unlock(&hugetlb_lock);
3103	}
3104out:
3105	return ret;
3106}
3107
3108#endif /* CONFIG_SYSCTL */
3109
3110void hugetlb_report_meminfo(struct seq_file *m)
3111{
3112	struct hstate *h;
3113	unsigned long total = 0;
3114
3115	if (!hugepages_supported())
3116		return;
3117
3118	for_each_hstate(h) {
3119		unsigned long count = h->nr_huge_pages;
3120
3121		total += (PAGE_SIZE << huge_page_order(h)) * count;
3122
3123		if (h == &default_hstate)
3124			seq_printf(m,
3125				   "HugePages_Total:   %5lu\n"
3126				   "HugePages_Free:    %5lu\n"
3127				   "HugePages_Rsvd:    %5lu\n"
3128				   "HugePages_Surp:    %5lu\n"
3129				   "Hugepagesize:   %8lu kB\n",
3130				   count,
3131				   h->free_huge_pages,
3132				   h->resv_huge_pages,
3133				   h->surplus_huge_pages,
3134				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3135	}
3136
3137	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3138}
3139
3140int hugetlb_report_node_meminfo(int nid, char *buf)
3141{
3142	struct hstate *h = &default_hstate;
3143	if (!hugepages_supported())
3144		return 0;
3145	return sprintf(buf,
3146		"Node %d HugePages_Total: %5u\n"
3147		"Node %d HugePages_Free:  %5u\n"
3148		"Node %d HugePages_Surp:  %5u\n",
3149		nid, h->nr_huge_pages_node[nid],
3150		nid, h->free_huge_pages_node[nid],
3151		nid, h->surplus_huge_pages_node[nid]);
3152}
3153
3154void hugetlb_show_meminfo(void)
3155{
3156	struct hstate *h;
3157	int nid;
3158
3159	if (!hugepages_supported())
3160		return;
3161
3162	for_each_node_state(nid, N_MEMORY)
3163		for_each_hstate(h)
3164			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3165				nid,
3166				h->nr_huge_pages_node[nid],
3167				h->free_huge_pages_node[nid],
3168				h->surplus_huge_pages_node[nid],
3169				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3170}
3171
3172void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3173{
3174	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3175		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3176}
3177
3178/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3179unsigned long hugetlb_total_pages(void)
3180{
3181	struct hstate *h;
3182	unsigned long nr_total_pages = 0;
3183
3184	for_each_hstate(h)
3185		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3186	return nr_total_pages;
3187}
3188
3189static int hugetlb_acct_memory(struct hstate *h, long delta)
3190{
3191	int ret = -ENOMEM;
3192
3193	spin_lock(&hugetlb_lock);
3194	/*
3195	 * When cpuset is configured, it breaks the strict hugetlb page
3196	 * reservation as the accounting is done on a global variable. Such
3197	 * reservation is completely rubbish in the presence of cpuset because
3198	 * the reservation is not checked against page availability for the
3199	 * current cpuset. Application can still potentially OOM'ed by kernel
3200	 * with lack of free htlb page in cpuset that the task is in.
3201	 * Attempt to enforce strict accounting with cpuset is almost
3202	 * impossible (or too ugly) because cpuset is too fluid that
3203	 * task or memory node can be dynamically moved between cpusets.
3204	 *
3205	 * The change of semantics for shared hugetlb mapping with cpuset is
3206	 * undesirable. However, in order to preserve some of the semantics,
3207	 * we fall back to check against current free page availability as
3208	 * a best attempt and hopefully to minimize the impact of changing
3209	 * semantics that cpuset has.
3210	 */
3211	if (delta > 0) {
3212		if (gather_surplus_pages(h, delta) < 0)
3213			goto out;
3214
3215		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3216			return_unused_surplus_pages(h, delta);
3217			goto out;
3218		}
3219	}
3220
3221	ret = 0;
3222	if (delta < 0)
3223		return_unused_surplus_pages(h, (unsigned long) -delta);
3224
3225out:
3226	spin_unlock(&hugetlb_lock);
3227	return ret;
3228}
3229
3230static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3231{
3232	struct resv_map *resv = vma_resv_map(vma);
3233
3234	/*
3235	 * This new VMA should share its siblings reservation map if present.
3236	 * The VMA will only ever have a valid reservation map pointer where
3237	 * it is being copied for another still existing VMA.  As that VMA
3238	 * has a reference to the reservation map it cannot disappear until
3239	 * after this open call completes.  It is therefore safe to take a
3240	 * new reference here without additional locking.
3241	 */
3242	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3243		kref_get(&resv->refs);
3244}
3245
3246static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3247{
3248	struct hstate *h = hstate_vma(vma);
3249	struct resv_map *resv = vma_resv_map(vma);
3250	struct hugepage_subpool *spool = subpool_vma(vma);
3251	unsigned long reserve, start, end;
3252	long gbl_reserve;
3253
3254	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3255		return;
3256
3257	start = vma_hugecache_offset(h, vma, vma->vm_start);
3258	end = vma_hugecache_offset(h, vma, vma->vm_end);
3259
3260	reserve = (end - start) - region_count(resv, start, end);
3261
3262	kref_put(&resv->refs, resv_map_release);
3263
3264	if (reserve) {
3265		/*
3266		 * Decrement reserve counts.  The global reserve count may be
3267		 * adjusted if the subpool has a minimum size.
3268		 */
3269		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3270		hugetlb_acct_memory(h, -gbl_reserve);
3271	}
3272}
3273
3274static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3275{
3276	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3277		return -EINVAL;
3278	return 0;
3279}
3280
3281static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3282{
3283	struct hstate *hstate = hstate_vma(vma);
3284
3285	return 1UL << huge_page_shift(hstate);
3286}
3287
3288/*
3289 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3290 * handle_mm_fault() to try to instantiate regular-sized pages in the
3291 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3292 * this far.
3293 */
3294static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3295{
3296	BUG();
3297	return 0;
3298}
3299
3300/*
3301 * When a new function is introduced to vm_operations_struct and added
3302 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3303 * This is because under System V memory model, mappings created via
3304 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3305 * their original vm_ops are overwritten with shm_vm_ops.
3306 */
3307const struct vm_operations_struct hugetlb_vm_ops = {
3308	.fault = hugetlb_vm_op_fault,
3309	.open = hugetlb_vm_op_open,
3310	.close = hugetlb_vm_op_close,
3311	.split = hugetlb_vm_op_split,
3312	.pagesize = hugetlb_vm_op_pagesize,
3313};
3314
3315static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3316				int writable)
3317{
3318	pte_t entry;
3319
3320	if (writable) {
3321		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3322					 vma->vm_page_prot)));
3323	} else {
3324		entry = huge_pte_wrprotect(mk_huge_pte(page,
3325					   vma->vm_page_prot));
3326	}
3327	entry = pte_mkyoung(entry);
3328	entry = pte_mkhuge(entry);
3329	entry = arch_make_huge_pte(entry, vma, page, writable);
3330
3331	return entry;
3332}
3333
3334static void set_huge_ptep_writable(struct vm_area_struct *vma,
3335				   unsigned long address, pte_t *ptep)
3336{
3337	pte_t entry;
3338
3339	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3340	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3341		update_mmu_cache(vma, address, ptep);
3342}
3343
3344bool is_hugetlb_entry_migration(pte_t pte)
3345{
3346	swp_entry_t swp;
3347
3348	if (huge_pte_none(pte) || pte_present(pte))
3349		return false;
3350	swp = pte_to_swp_entry(pte);
3351	if (non_swap_entry(swp) && is_migration_entry(swp))
3352		return true;
3353	else
3354		return false;
3355}
3356
3357static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3358{
3359	swp_entry_t swp;
3360
3361	if (huge_pte_none(pte) || pte_present(pte))
3362		return 0;
3363	swp = pte_to_swp_entry(pte);
3364	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3365		return 1;
3366	else
3367		return 0;
3368}
3369
3370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3371			    struct vm_area_struct *vma)
3372{
3373	pte_t *src_pte, *dst_pte, entry, dst_entry;
3374	struct page *ptepage;
3375	unsigned long addr;
3376	int cow;
3377	struct hstate *h = hstate_vma(vma);
3378	unsigned long sz = huge_page_size(h);
3379	struct mmu_notifier_range range;
 
3380	int ret = 0;
3381
3382	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3383
3384	if (cow) {
3385		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3386					vma->vm_start,
3387					vma->vm_end);
3388		mmu_notifier_invalidate_range_start(&range);
3389	}
3390
3391	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3392		spinlock_t *src_ptl, *dst_ptl;
3393		src_pte = huge_pte_offset(src, addr, sz);
3394		if (!src_pte)
3395			continue;
3396		dst_pte = huge_pte_alloc(dst, addr, sz);
3397		if (!dst_pte) {
3398			ret = -ENOMEM;
3399			break;
3400		}
3401
3402		/*
3403		 * If the pagetables are shared don't copy or take references.
3404		 * dst_pte == src_pte is the common case of src/dest sharing.
3405		 *
3406		 * However, src could have 'unshared' and dst shares with
3407		 * another vma.  If dst_pte !none, this implies sharing.
3408		 * Check here before taking page table lock, and once again
3409		 * after taking the lock below.
3410		 */
3411		dst_entry = huge_ptep_get(dst_pte);
3412		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3413			continue;
3414
3415		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3416		src_ptl = huge_pte_lockptr(h, src, src_pte);
3417		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3418		entry = huge_ptep_get(src_pte);
3419		dst_entry = huge_ptep_get(dst_pte);
3420		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3421			/*
3422			 * Skip if src entry none.  Also, skip in the
3423			 * unlikely case dst entry !none as this implies
3424			 * sharing with another vma.
3425			 */
3426			;
3427		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3428				    is_hugetlb_entry_hwpoisoned(entry))) {
3429			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3430
3431			if (is_write_migration_entry(swp_entry) && cow) {
3432				/*
3433				 * COW mappings require pages in both
3434				 * parent and child to be set to read.
3435				 */
3436				make_migration_entry_read(&swp_entry);
3437				entry = swp_entry_to_pte(swp_entry);
3438				set_huge_swap_pte_at(src, addr, src_pte,
3439						     entry, sz);
3440			}
3441			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3442		} else {
3443			if (cow) {
3444				/*
3445				 * No need to notify as we are downgrading page
3446				 * table protection not changing it to point
3447				 * to a new page.
3448				 *
3449				 * See Documentation/vm/mmu_notifier.rst
3450				 */
3451				huge_ptep_set_wrprotect(src, addr, src_pte);
3452			}
3453			entry = huge_ptep_get(src_pte);
3454			ptepage = pte_page(entry);
3455			get_page(ptepage);
3456			page_dup_rmap(ptepage, true);
3457			set_huge_pte_at(dst, addr, dst_pte, entry);
3458			hugetlb_count_add(pages_per_huge_page(h), dst);
3459		}
3460		spin_unlock(src_ptl);
3461		spin_unlock(dst_ptl);
3462	}
3463
3464	if (cow)
3465		mmu_notifier_invalidate_range_end(&range);
3466
3467	return ret;
3468}
3469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3470void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3471			    unsigned long start, unsigned long end,
3472			    struct page *ref_page)
3473{
 
3474	struct mm_struct *mm = vma->vm_mm;
3475	unsigned long address;
3476	pte_t *ptep;
3477	pte_t pte;
3478	spinlock_t *ptl;
3479	struct page *page;
3480	struct hstate *h = hstate_vma(vma);
3481	unsigned long sz = huge_page_size(h);
3482	struct mmu_notifier_range range;
 
3483
3484	WARN_ON(!is_vm_hugetlb_page(vma));
3485	BUG_ON(start & ~huge_page_mask(h));
3486	BUG_ON(end & ~huge_page_mask(h));
3487
3488	/*
3489	 * This is a hugetlb vma, all the pte entries should point
3490	 * to huge page.
3491	 */
3492	tlb_change_page_size(tlb, sz);
3493	tlb_start_vma(tlb, vma);
3494
3495	/*
3496	 * If sharing possible, alert mmu notifiers of worst case.
3497	 */
3498	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3499				end);
3500	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3501	mmu_notifier_invalidate_range_start(&range);
3502	address = start;
3503	for (; address < end; address += sz) {
3504		ptep = huge_pte_offset(mm, address, sz);
3505		if (!ptep)
3506			continue;
3507
3508		ptl = huge_pte_lock(h, mm, ptep);
3509		if (huge_pmd_unshare(mm, &address, ptep)) {
3510			spin_unlock(ptl);
3511			/*
3512			 * We just unmapped a page of PMDs by clearing a PUD.
3513			 * The caller's TLB flush range should cover this area.
3514			 */
3515			continue;
3516		}
3517
3518		pte = huge_ptep_get(ptep);
3519		if (huge_pte_none(pte)) {
3520			spin_unlock(ptl);
3521			continue;
3522		}
3523
3524		/*
3525		 * Migrating hugepage or HWPoisoned hugepage is already
3526		 * unmapped and its refcount is dropped, so just clear pte here.
3527		 */
3528		if (unlikely(!pte_present(pte))) {
3529			huge_pte_clear(mm, address, ptep, sz);
3530			spin_unlock(ptl);
3531			continue;
3532		}
3533
3534		page = pte_page(pte);
3535		/*
3536		 * If a reference page is supplied, it is because a specific
3537		 * page is being unmapped, not a range. Ensure the page we
3538		 * are about to unmap is the actual page of interest.
3539		 */
3540		if (ref_page) {
3541			if (page != ref_page) {
3542				spin_unlock(ptl);
3543				continue;
3544			}
3545			/*
3546			 * Mark the VMA as having unmapped its page so that
3547			 * future faults in this VMA will fail rather than
3548			 * looking like data was lost
3549			 */
3550			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3551		}
3552
3553		pte = huge_ptep_get_and_clear(mm, address, ptep);
3554		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3555		if (huge_pte_dirty(pte))
3556			set_page_dirty(page);
3557
3558		hugetlb_count_sub(pages_per_huge_page(h), mm);
3559		page_remove_rmap(page, true);
3560
3561		spin_unlock(ptl);
3562		tlb_remove_page_size(tlb, page, huge_page_size(h));
3563		/*
3564		 * Bail out after unmapping reference page if supplied
3565		 */
3566		if (ref_page)
3567			break;
 
 
 
3568	}
3569	mmu_notifier_invalidate_range_end(&range);
 
 
 
 
 
 
 
 
 
 
 
3570	tlb_end_vma(tlb, vma);
3571}
3572
3573void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3574			  struct vm_area_struct *vma, unsigned long start,
3575			  unsigned long end, struct page *ref_page)
3576{
3577	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3578
3579	/*
3580	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3581	 * test will fail on a vma being torn down, and not grab a page table
3582	 * on its way out.  We're lucky that the flag has such an appropriate
3583	 * name, and can in fact be safely cleared here. We could clear it
3584	 * before the __unmap_hugepage_range above, but all that's necessary
3585	 * is to clear it before releasing the i_mmap_rwsem. This works
3586	 * because in the context this is called, the VMA is about to be
3587	 * destroyed and the i_mmap_rwsem is held.
3588	 */
3589	vma->vm_flags &= ~VM_MAYSHARE;
3590}
3591
3592void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3593			  unsigned long end, struct page *ref_page)
3594{
3595	struct mm_struct *mm;
3596	struct mmu_gather tlb;
3597	unsigned long tlb_start = start;
3598	unsigned long tlb_end = end;
3599
3600	/*
3601	 * If shared PMDs were possibly used within this vma range, adjust
3602	 * start/end for worst case tlb flushing.
3603	 * Note that we can not be sure if PMDs are shared until we try to
3604	 * unmap pages.  However, we want to make sure TLB flushing covers
3605	 * the largest possible range.
3606	 */
3607	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3608
3609	mm = vma->vm_mm;
3610
3611	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3612	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3613	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3614}
3615
3616/*
3617 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3618 * mappping it owns the reserve page for. The intention is to unmap the page
3619 * from other VMAs and let the children be SIGKILLed if they are faulting the
3620 * same region.
3621 */
3622static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3623			      struct page *page, unsigned long address)
3624{
3625	struct hstate *h = hstate_vma(vma);
3626	struct vm_area_struct *iter_vma;
3627	struct address_space *mapping;
3628	pgoff_t pgoff;
3629
3630	/*
3631	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3632	 * from page cache lookup which is in HPAGE_SIZE units.
3633	 */
3634	address = address & huge_page_mask(h);
3635	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3636			vma->vm_pgoff;
3637	mapping = vma->vm_file->f_mapping;
3638
3639	/*
3640	 * Take the mapping lock for the duration of the table walk. As
3641	 * this mapping should be shared between all the VMAs,
3642	 * __unmap_hugepage_range() is called as the lock is already held
3643	 */
3644	i_mmap_lock_write(mapping);
3645	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3646		/* Do not unmap the current VMA */
3647		if (iter_vma == vma)
3648			continue;
3649
3650		/*
3651		 * Shared VMAs have their own reserves and do not affect
3652		 * MAP_PRIVATE accounting but it is possible that a shared
3653		 * VMA is using the same page so check and skip such VMAs.
3654		 */
3655		if (iter_vma->vm_flags & VM_MAYSHARE)
3656			continue;
3657
3658		/*
3659		 * Unmap the page from other VMAs without their own reserves.
3660		 * They get marked to be SIGKILLed if they fault in these
3661		 * areas. This is because a future no-page fault on this VMA
3662		 * could insert a zeroed page instead of the data existing
3663		 * from the time of fork. This would look like data corruption
3664		 */
3665		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3666			unmap_hugepage_range(iter_vma, address,
3667					     address + huge_page_size(h), page);
3668	}
3669	i_mmap_unlock_write(mapping);
 
 
3670}
3671
3672/*
3673 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3674 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3675 * cannot race with other handlers or page migration.
3676 * Keep the pte_same checks anyway to make transition from the mutex easier.
3677 */
3678static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3679		       unsigned long address, pte_t *ptep,
3680		       struct page *pagecache_page, spinlock_t *ptl)
3681{
3682	pte_t pte;
3683	struct hstate *h = hstate_vma(vma);
3684	struct page *old_page, *new_page;
3685	int outside_reserve = 0;
3686	vm_fault_t ret = 0;
3687	unsigned long haddr = address & huge_page_mask(h);
3688	struct mmu_notifier_range range;
3689
3690	pte = huge_ptep_get(ptep);
3691	old_page = pte_page(pte);
3692
3693retry_avoidcopy:
3694	/* If no-one else is actually using this page, avoid the copy
3695	 * and just make the page writable */
3696	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3697		page_move_anon_rmap(old_page, vma);
3698		set_huge_ptep_writable(vma, haddr, ptep);
3699		return 0;
3700	}
3701
3702	/*
3703	 * If the process that created a MAP_PRIVATE mapping is about to
3704	 * perform a COW due to a shared page count, attempt to satisfy
3705	 * the allocation without using the existing reserves. The pagecache
3706	 * page is used to determine if the reserve at this address was
3707	 * consumed or not. If reserves were used, a partial faulted mapping
3708	 * at the time of fork() could consume its reserves on COW instead
3709	 * of the full address range.
3710	 */
3711	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3712			old_page != pagecache_page)
3713		outside_reserve = 1;
3714
3715	get_page(old_page);
3716
3717	/*
3718	 * Drop page table lock as buddy allocator may be called. It will
3719	 * be acquired again before returning to the caller, as expected.
3720	 */
3721	spin_unlock(ptl);
3722	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3723
3724	if (IS_ERR(new_page)) {
 
 
 
3725		/*
3726		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3727		 * it is due to references held by a child and an insufficient
3728		 * huge page pool. To guarantee the original mappers
3729		 * reliability, unmap the page from child processes. The child
3730		 * may get SIGKILLed if it later faults.
3731		 */
3732		if (outside_reserve) {
3733			put_page(old_page);
3734			BUG_ON(huge_pte_none(pte));
3735			unmap_ref_private(mm, vma, old_page, haddr);
3736			BUG_ON(huge_pte_none(pte));
3737			spin_lock(ptl);
3738			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3739			if (likely(ptep &&
3740				   pte_same(huge_ptep_get(ptep), pte)))
3741				goto retry_avoidcopy;
3742			/*
3743			 * race occurs while re-acquiring page table
3744			 * lock, and our job is done.
3745			 */
3746			return 0;
 
 
3747		}
3748
3749		ret = vmf_error(PTR_ERR(new_page));
3750		goto out_release_old;
 
 
 
 
3751	}
3752
3753	/*
3754	 * When the original hugepage is shared one, it does not have
3755	 * anon_vma prepared.
3756	 */
3757	if (unlikely(anon_vma_prepare(vma))) {
3758		ret = VM_FAULT_OOM;
3759		goto out_release_all;
 
 
 
3760	}
3761
3762	copy_user_huge_page(new_page, old_page, address, vma,
3763			    pages_per_huge_page(h));
3764	__SetPageUptodate(new_page);
3765
3766	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3767				haddr + huge_page_size(h));
3768	mmu_notifier_invalidate_range_start(&range);
3769
3770	/*
3771	 * Retake the page table lock to check for racing updates
3772	 * before the page tables are altered
3773	 */
3774	spin_lock(ptl);
3775	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3776	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3777		ClearPagePrivate(new_page);
3778
3779		/* Break COW */
3780		huge_ptep_clear_flush(vma, haddr, ptep);
3781		mmu_notifier_invalidate_range(mm, range.start, range.end);
3782		set_huge_pte_at(mm, haddr, ptep,
3783				make_huge_pte(vma, new_page, 1));
3784		page_remove_rmap(old_page, true);
3785		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3786		set_page_huge_active(new_page);
3787		/* Make the old page be freed below */
3788		new_page = old_page;
3789	}
3790	spin_unlock(ptl);
3791	mmu_notifier_invalidate_range_end(&range);
3792out_release_all:
3793	restore_reserve_on_error(h, vma, haddr, new_page);
3794	put_page(new_page);
3795out_release_old:
3796	put_page(old_page);
3797
3798	spin_lock(ptl); /* Caller expects lock to be held */
3799	return ret;
 
3800}
3801
3802/* Return the pagecache page at a given address within a VMA */
3803static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3804			struct vm_area_struct *vma, unsigned long address)
3805{
3806	struct address_space *mapping;
3807	pgoff_t idx;
3808
3809	mapping = vma->vm_file->f_mapping;
3810	idx = vma_hugecache_offset(h, vma, address);
3811
3812	return find_lock_page(mapping, idx);
3813}
3814
3815/*
3816 * Return whether there is a pagecache page to back given address within VMA.
3817 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3818 */
3819static bool hugetlbfs_pagecache_present(struct hstate *h,
3820			struct vm_area_struct *vma, unsigned long address)
3821{
3822	struct address_space *mapping;
3823	pgoff_t idx;
3824	struct page *page;
3825
3826	mapping = vma->vm_file->f_mapping;
3827	idx = vma_hugecache_offset(h, vma, address);
3828
3829	page = find_get_page(mapping, idx);
3830	if (page)
3831		put_page(page);
3832	return page != NULL;
3833}
3834
3835int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3836			   pgoff_t idx)
3837{
3838	struct inode *inode = mapping->host;
3839	struct hstate *h = hstate_inode(inode);
3840	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3841
3842	if (err)
3843		return err;
3844	ClearPagePrivate(page);
3845
3846	/*
3847	 * set page dirty so that it will not be removed from cache/file
3848	 * by non-hugetlbfs specific code paths.
3849	 */
3850	set_page_dirty(page);
3851
3852	spin_lock(&inode->i_lock);
3853	inode->i_blocks += blocks_per_huge_page(h);
3854	spin_unlock(&inode->i_lock);
3855	return 0;
3856}
3857
3858static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3859			struct vm_area_struct *vma,
3860			struct address_space *mapping, pgoff_t idx,
3861			unsigned long address, pte_t *ptep, unsigned int flags)
3862{
3863	struct hstate *h = hstate_vma(vma);
3864	vm_fault_t ret = VM_FAULT_SIGBUS;
3865	int anon_rmap = 0;
3866	unsigned long size;
3867	struct page *page;
3868	pte_t new_pte;
3869	spinlock_t *ptl;
3870	unsigned long haddr = address & huge_page_mask(h);
3871	bool new_page = false;
3872
3873	/*
3874	 * Currently, we are forced to kill the process in the event the
3875	 * original mapper has unmapped pages from the child due to a failed
3876	 * COW. Warn that such a situation has occurred as it may not be obvious
3877	 */
3878	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3879		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3880			   current->pid);
3881		return ret;
3882	}
3883
3884	/*
3885	 * Use page lock to guard against racing truncation
3886	 * before we get page_table_lock.
3887	 */
3888retry:
3889	page = find_lock_page(mapping, idx);
3890	if (!page) {
3891		size = i_size_read(mapping->host) >> huge_page_shift(h);
3892		if (idx >= size)
3893			goto out;
3894
3895		/*
3896		 * Check for page in userfault range
3897		 */
3898		if (userfaultfd_missing(vma)) {
3899			u32 hash;
3900			struct vm_fault vmf = {
3901				.vma = vma,
3902				.address = haddr,
3903				.flags = flags,
3904				/*
3905				 * Hard to debug if it ends up being
3906				 * used by a callee that assumes
3907				 * something about the other
3908				 * uninitialized fields... same as in
3909				 * memory.c
3910				 */
3911			};
3912
3913			/*
3914			 * hugetlb_fault_mutex must be dropped before
3915			 * handling userfault.  Reacquire after handling
3916			 * fault to make calling code simpler.
3917			 */
3918			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3919			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3920			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3921			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922			goto out;
3923		}
3924
3925		page = alloc_huge_page(vma, haddr, 0);
3926		if (IS_ERR(page)) {
3927			/*
3928			 * Returning error will result in faulting task being
3929			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3930			 * tasks from racing to fault in the same page which
3931			 * could result in false unable to allocate errors.
3932			 * Page migration does not take the fault mutex, but
3933			 * does a clear then write of pte's under page table
3934			 * lock.  Page fault code could race with migration,
3935			 * notice the clear pte and try to allocate a page
3936			 * here.  Before returning error, get ptl and make
3937			 * sure there really is no pte entry.
3938			 */
3939			ptl = huge_pte_lock(h, mm, ptep);
3940			if (!huge_pte_none(huge_ptep_get(ptep))) {
3941				ret = 0;
3942				spin_unlock(ptl);
3943				goto out;
3944			}
3945			spin_unlock(ptl);
3946			ret = vmf_error(PTR_ERR(page));
3947			goto out;
3948		}
3949		clear_huge_page(page, address, pages_per_huge_page(h));
3950		__SetPageUptodate(page);
3951		new_page = true;
3952
3953		if (vma->vm_flags & VM_MAYSHARE) {
3954			int err = huge_add_to_page_cache(page, mapping, idx);
 
 
 
3955			if (err) {
3956				put_page(page);
3957				if (err == -EEXIST)
3958					goto retry;
3959				goto out;
3960			}
 
 
 
 
 
3961		} else {
3962			lock_page(page);
3963			if (unlikely(anon_vma_prepare(vma))) {
3964				ret = VM_FAULT_OOM;
3965				goto backout_unlocked;
3966			}
3967			anon_rmap = 1;
3968		}
3969	} else {
3970		/*
3971		 * If memory error occurs between mmap() and fault, some process
3972		 * don't have hwpoisoned swap entry for errored virtual address.
3973		 * So we need to block hugepage fault by PG_hwpoison bit check.
3974		 */
3975		if (unlikely(PageHWPoison(page))) {
3976			ret = VM_FAULT_HWPOISON |
3977				VM_FAULT_SET_HINDEX(hstate_index(h));
3978			goto backout_unlocked;
3979		}
3980	}
3981
3982	/*
3983	 * If we are going to COW a private mapping later, we examine the
3984	 * pending reservations for this page now. This will ensure that
3985	 * any allocations necessary to record that reservation occur outside
3986	 * the spinlock.
3987	 */
3988	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3989		if (vma_needs_reservation(h, vma, haddr) < 0) {
3990			ret = VM_FAULT_OOM;
3991			goto backout_unlocked;
3992		}
3993		/* Just decrements count, does not deallocate */
3994		vma_end_reservation(h, vma, haddr);
3995	}
3996
3997	ptl = huge_pte_lock(h, mm, ptep);
 
3998	size = i_size_read(mapping->host) >> huge_page_shift(h);
3999	if (idx >= size)
4000		goto backout;
4001
4002	ret = 0;
4003	if (!huge_pte_none(huge_ptep_get(ptep)))
4004		goto backout;
4005
4006	if (anon_rmap) {
4007		ClearPagePrivate(page);
4008		hugepage_add_new_anon_rmap(page, vma, haddr);
4009	} else
4010		page_dup_rmap(page, true);
4011	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4012				&& (vma->vm_flags & VM_SHARED)));
4013	set_huge_pte_at(mm, haddr, ptep, new_pte);
4014
4015	hugetlb_count_add(pages_per_huge_page(h), mm);
4016	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4017		/* Optimization, do the COW without a second fault */
4018		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4019	}
4020
4021	spin_unlock(ptl);
4022
4023	/*
4024	 * Only make newly allocated pages active.  Existing pages found
4025	 * in the pagecache could be !page_huge_active() if they have been
4026	 * isolated for migration.
4027	 */
4028	if (new_page)
4029		set_page_huge_active(page);
4030
4031	unlock_page(page);
4032out:
4033	return ret;
4034
4035backout:
4036	spin_unlock(ptl);
4037backout_unlocked:
4038	unlock_page(page);
4039	restore_reserve_on_error(h, vma, haddr, page);
4040	put_page(page);
4041	goto out;
4042}
4043
4044#ifdef CONFIG_SMP
4045u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
 
 
4046			    pgoff_t idx, unsigned long address)
4047{
4048	unsigned long key[2];
4049	u32 hash;
4050
4051	key[0] = (unsigned long) mapping;
4052	key[1] = idx;
 
 
 
 
 
4053
4054	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4055
4056	return hash & (num_fault_mutexes - 1);
4057}
4058#else
4059/*
4060 * For uniprocesor systems we always use a single mutex, so just
4061 * return 0 and avoid the hashing overhead.
4062 */
4063u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
 
 
4064			    pgoff_t idx, unsigned long address)
4065{
4066	return 0;
4067}
4068#endif
4069
4070vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4071			unsigned long address, unsigned int flags)
4072{
4073	pte_t *ptep, entry;
4074	spinlock_t *ptl;
4075	vm_fault_t ret;
4076	u32 hash;
4077	pgoff_t idx;
4078	struct page *page = NULL;
4079	struct page *pagecache_page = NULL;
4080	struct hstate *h = hstate_vma(vma);
4081	struct address_space *mapping;
4082	int need_wait_lock = 0;
4083	unsigned long haddr = address & huge_page_mask(h);
4084
4085	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
 
 
4086	if (ptep) {
4087		entry = huge_ptep_get(ptep);
4088		if (unlikely(is_hugetlb_entry_migration(entry))) {
4089			migration_entry_wait_huge(vma, mm, ptep);
4090			return 0;
4091		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4092			return VM_FAULT_HWPOISON_LARGE |
4093				VM_FAULT_SET_HINDEX(hstate_index(h));
4094	} else {
4095		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4096		if (!ptep)
4097			return VM_FAULT_OOM;
4098	}
4099
 
 
 
 
4100	mapping = vma->vm_file->f_mapping;
4101	idx = vma_hugecache_offset(h, vma, haddr);
4102
4103	/*
4104	 * Serialize hugepage allocation and instantiation, so that we don't
4105	 * get spurious allocation failures if two CPUs race to instantiate
4106	 * the same page in the page cache.
4107	 */
4108	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4109	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4110
4111	entry = huge_ptep_get(ptep);
4112	if (huge_pte_none(entry)) {
4113		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4114		goto out_mutex;
4115	}
4116
4117	ret = 0;
4118
4119	/*
4120	 * entry could be a migration/hwpoison entry at this point, so this
4121	 * check prevents the kernel from going below assuming that we have
4122	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4123	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4124	 * handle it.
4125	 */
4126	if (!pte_present(entry))
4127		goto out_mutex;
4128
4129	/*
4130	 * If we are going to COW the mapping later, we examine the pending
4131	 * reservations for this page now. This will ensure that any
4132	 * allocations necessary to record that reservation occur outside the
4133	 * spinlock. For private mappings, we also lookup the pagecache
4134	 * page now as it is used to determine if a reservation has been
4135	 * consumed.
4136	 */
4137	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4138		if (vma_needs_reservation(h, vma, haddr) < 0) {
4139			ret = VM_FAULT_OOM;
4140			goto out_mutex;
4141		}
4142		/* Just decrements count, does not deallocate */
4143		vma_end_reservation(h, vma, haddr);
4144
4145		if (!(vma->vm_flags & VM_MAYSHARE))
4146			pagecache_page = hugetlbfs_pagecache_page(h,
4147								vma, haddr);
4148	}
4149
4150	ptl = huge_pte_lock(h, mm, ptep);
4151
4152	/* Check for a racing update before calling hugetlb_cow */
4153	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4154		goto out_ptl;
4155
4156	/*
4157	 * hugetlb_cow() requires page locks of pte_page(entry) and
4158	 * pagecache_page, so here we need take the former one
4159	 * when page != pagecache_page or !pagecache_page.
 
 
4160	 */
4161	page = pte_page(entry);
 
4162	if (page != pagecache_page)
4163		if (!trylock_page(page)) {
4164			need_wait_lock = 1;
4165			goto out_ptl;
4166		}
 
 
 
4167
4168	get_page(page);
4169
4170	if (flags & FAULT_FLAG_WRITE) {
4171		if (!huge_pte_write(entry)) {
4172			ret = hugetlb_cow(mm, vma, address, ptep,
4173					  pagecache_page, ptl);
4174			goto out_put_page;
4175		}
4176		entry = huge_pte_mkdirty(entry);
4177	}
4178	entry = pte_mkyoung(entry);
4179	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4180						flags & FAULT_FLAG_WRITE))
4181		update_mmu_cache(vma, haddr, ptep);
4182out_put_page:
4183	if (page != pagecache_page)
4184		unlock_page(page);
4185	put_page(page);
4186out_ptl:
4187	spin_unlock(ptl);
4188
4189	if (pagecache_page) {
4190		unlock_page(pagecache_page);
4191		put_page(pagecache_page);
4192	}
4193out_mutex:
4194	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4195	/*
4196	 * Generally it's safe to hold refcount during waiting page lock. But
4197	 * here we just wait to defer the next page fault to avoid busy loop and
4198	 * the page is not used after unlocked before returning from the current
4199	 * page fault. So we are safe from accessing freed page, even if we wait
4200	 * here without taking refcount.
4201	 */
4202	if (need_wait_lock)
4203		wait_on_page_locked(page);
4204	return ret;
4205}
4206
4207/*
4208 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4209 * modifications for huge pages.
4210 */
4211int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4212			    pte_t *dst_pte,
4213			    struct vm_area_struct *dst_vma,
4214			    unsigned long dst_addr,
4215			    unsigned long src_addr,
4216			    struct page **pagep)
4217{
4218	struct address_space *mapping;
4219	pgoff_t idx;
4220	unsigned long size;
4221	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4222	struct hstate *h = hstate_vma(dst_vma);
4223	pte_t _dst_pte;
4224	spinlock_t *ptl;
4225	int ret;
4226	struct page *page;
4227
4228	if (!*pagep) {
4229		ret = -ENOMEM;
4230		page = alloc_huge_page(dst_vma, dst_addr, 0);
4231		if (IS_ERR(page))
4232			goto out;
4233
4234		ret = copy_huge_page_from_user(page,
4235						(const void __user *) src_addr,
4236						pages_per_huge_page(h), false);
4237
4238		/* fallback to copy_from_user outside mmap_sem */
4239		if (unlikely(ret)) {
4240			ret = -ENOENT;
4241			*pagep = page;
4242			/* don't free the page */
4243			goto out;
4244		}
4245	} else {
4246		page = *pagep;
4247		*pagep = NULL;
4248	}
4249
4250	/*
4251	 * The memory barrier inside __SetPageUptodate makes sure that
4252	 * preceding stores to the page contents become visible before
4253	 * the set_pte_at() write.
4254	 */
4255	__SetPageUptodate(page);
4256
4257	mapping = dst_vma->vm_file->f_mapping;
4258	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4259
4260	/*
4261	 * If shared, add to page cache
4262	 */
4263	if (vm_shared) {
4264		size = i_size_read(mapping->host) >> huge_page_shift(h);
4265		ret = -EFAULT;
4266		if (idx >= size)
4267			goto out_release_nounlock;
4268
4269		/*
4270		 * Serialization between remove_inode_hugepages() and
4271		 * huge_add_to_page_cache() below happens through the
4272		 * hugetlb_fault_mutex_table that here must be hold by
4273		 * the caller.
4274		 */
4275		ret = huge_add_to_page_cache(page, mapping, idx);
4276		if (ret)
4277			goto out_release_nounlock;
4278	}
4279
4280	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4281	spin_lock(ptl);
4282
4283	/*
4284	 * Recheck the i_size after holding PT lock to make sure not
4285	 * to leave any page mapped (as page_mapped()) beyond the end
4286	 * of the i_size (remove_inode_hugepages() is strict about
4287	 * enforcing that). If we bail out here, we'll also leave a
4288	 * page in the radix tree in the vm_shared case beyond the end
4289	 * of the i_size, but remove_inode_hugepages() will take care
4290	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4291	 */
4292	size = i_size_read(mapping->host) >> huge_page_shift(h);
4293	ret = -EFAULT;
4294	if (idx >= size)
4295		goto out_release_unlock;
4296
4297	ret = -EEXIST;
4298	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4299		goto out_release_unlock;
4300
4301	if (vm_shared) {
4302		page_dup_rmap(page, true);
4303	} else {
4304		ClearPagePrivate(page);
4305		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4306	}
4307
4308	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4309	if (dst_vma->vm_flags & VM_WRITE)
4310		_dst_pte = huge_pte_mkdirty(_dst_pte);
4311	_dst_pte = pte_mkyoung(_dst_pte);
4312
4313	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4314
4315	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4316					dst_vma->vm_flags & VM_WRITE);
4317	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4318
4319	/* No need to invalidate - it was non-present before */
4320	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4321
4322	spin_unlock(ptl);
4323	set_page_huge_active(page);
4324	if (vm_shared)
4325		unlock_page(page);
4326	ret = 0;
4327out:
4328	return ret;
4329out_release_unlock:
4330	spin_unlock(ptl);
4331	if (vm_shared)
4332		unlock_page(page);
4333out_release_nounlock:
4334	put_page(page);
4335	goto out;
 
 
 
4336}
4337
4338long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4339			 struct page **pages, struct vm_area_struct **vmas,
4340			 unsigned long *position, unsigned long *nr_pages,
4341			 long i, unsigned int flags, int *nonblocking)
4342{
4343	unsigned long pfn_offset;
4344	unsigned long vaddr = *position;
4345	unsigned long remainder = *nr_pages;
4346	struct hstate *h = hstate_vma(vma);
4347	int err = -EFAULT;
4348
4349	while (vaddr < vma->vm_end && remainder) {
4350		pte_t *pte;
4351		spinlock_t *ptl = NULL;
4352		int absent;
4353		struct page *page;
4354
4355		/*
4356		 * If we have a pending SIGKILL, don't keep faulting pages and
4357		 * potentially allocating memory.
4358		 */
4359		if (fatal_signal_pending(current)) {
4360			remainder = 0;
4361			break;
4362		}
4363
4364		/*
4365		 * Some archs (sparc64, sh*) have multiple pte_ts to
4366		 * each hugepage.  We have to make sure we get the
4367		 * first, for the page indexing below to work.
4368		 *
4369		 * Note that page table lock is not held when pte is null.
4370		 */
4371		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4372				      huge_page_size(h));
4373		if (pte)
4374			ptl = huge_pte_lock(h, mm, pte);
4375		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4376
4377		/*
4378		 * When coredumping, it suits get_dump_page if we just return
4379		 * an error where there's an empty slot with no huge pagecache
4380		 * to back it.  This way, we avoid allocating a hugepage, and
4381		 * the sparse dumpfile avoids allocating disk blocks, but its
4382		 * huge holes still show up with zeroes where they need to be.
4383		 */
4384		if (absent && (flags & FOLL_DUMP) &&
4385		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4386			if (pte)
4387				spin_unlock(ptl);
4388			remainder = 0;
4389			break;
4390		}
4391
4392		/*
4393		 * We need call hugetlb_fault for both hugepages under migration
4394		 * (in which case hugetlb_fault waits for the migration,) and
4395		 * hwpoisoned hugepages (in which case we need to prevent the
4396		 * caller from accessing to them.) In order to do this, we use
4397		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4398		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4399		 * both cases, and because we can't follow correct pages
4400		 * directly from any kind of swap entries.
4401		 */
4402		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4403		    ((flags & FOLL_WRITE) &&
4404		      !huge_pte_write(huge_ptep_get(pte)))) {
4405			vm_fault_t ret;
4406			unsigned int fault_flags = 0;
4407
4408			if (pte)
4409				spin_unlock(ptl);
4410			if (flags & FOLL_WRITE)
4411				fault_flags |= FAULT_FLAG_WRITE;
4412			if (nonblocking)
4413				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4414			if (flags & FOLL_NOWAIT)
4415				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4416					FAULT_FLAG_RETRY_NOWAIT;
4417			if (flags & FOLL_TRIED) {
4418				VM_WARN_ON_ONCE(fault_flags &
4419						FAULT_FLAG_ALLOW_RETRY);
4420				fault_flags |= FAULT_FLAG_TRIED;
4421			}
4422			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4423			if (ret & VM_FAULT_ERROR) {
4424				err = vm_fault_to_errno(ret, flags);
4425				remainder = 0;
4426				break;
4427			}
4428			if (ret & VM_FAULT_RETRY) {
4429				if (nonblocking &&
4430				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4431					*nonblocking = 0;
4432				*nr_pages = 0;
4433				/*
4434				 * VM_FAULT_RETRY must not return an
4435				 * error, it will return zero
4436				 * instead.
4437				 *
4438				 * No need to update "position" as the
4439				 * caller will not check it after
4440				 * *nr_pages is set to 0.
4441				 */
4442				return i;
4443			}
4444			continue;
4445		}
4446
4447		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4448		page = pte_page(huge_ptep_get(pte));
4449
4450		/*
4451		 * Instead of doing 'try_get_page()' below in the same_page
4452		 * loop, just check the count once here.
4453		 */
4454		if (unlikely(page_count(page) <= 0)) {
4455			if (pages) {
4456				spin_unlock(ptl);
4457				remainder = 0;
4458				err = -ENOMEM;
4459				break;
4460			}
4461		}
4462same_page:
4463		if (pages) {
4464			pages[i] = mem_map_offset(page, pfn_offset);
4465			get_page(pages[i]);
4466		}
4467
4468		if (vmas)
4469			vmas[i] = vma;
4470
4471		vaddr += PAGE_SIZE;
4472		++pfn_offset;
4473		--remainder;
4474		++i;
4475		if (vaddr < vma->vm_end && remainder &&
4476				pfn_offset < pages_per_huge_page(h)) {
4477			/*
4478			 * We use pfn_offset to avoid touching the pageframes
4479			 * of this compound page.
4480			 */
4481			goto same_page;
4482		}
4483		spin_unlock(ptl);
4484	}
4485	*nr_pages = remainder;
4486	/*
4487	 * setting position is actually required only if remainder is
4488	 * not zero but it's faster not to add a "if (remainder)"
4489	 * branch.
4490	 */
4491	*position = vaddr;
4492
4493	return i ? i : err;
4494}
4495
4496#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4497/*
4498 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4499 * implement this.
4500 */
4501#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4502#endif
4503
4504unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4505		unsigned long address, unsigned long end, pgprot_t newprot)
4506{
4507	struct mm_struct *mm = vma->vm_mm;
4508	unsigned long start = address;
4509	pte_t *ptep;
4510	pte_t pte;
4511	struct hstate *h = hstate_vma(vma);
4512	unsigned long pages = 0;
4513	bool shared_pmd = false;
4514	struct mmu_notifier_range range;
4515
4516	/*
4517	 * In the case of shared PMDs, the area to flush could be beyond
4518	 * start/end.  Set range.start/range.end to cover the maximum possible
4519	 * range if PMD sharing is possible.
4520	 */
4521	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4522				0, vma, mm, start, end);
4523	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4524
4525	BUG_ON(address >= end);
4526	flush_cache_range(vma, range.start, range.end);
4527
4528	mmu_notifier_invalidate_range_start(&range);
4529	i_mmap_lock_write(vma->vm_file->f_mapping);
4530	for (; address < end; address += huge_page_size(h)) {
4531		spinlock_t *ptl;
4532		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4533		if (!ptep)
4534			continue;
4535		ptl = huge_pte_lock(h, mm, ptep);
4536		if (huge_pmd_unshare(mm, &address, ptep)) {
4537			pages++;
4538			spin_unlock(ptl);
4539			shared_pmd = true;
4540			continue;
4541		}
4542		pte = huge_ptep_get(ptep);
4543		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4544			spin_unlock(ptl);
4545			continue;
4546		}
4547		if (unlikely(is_hugetlb_entry_migration(pte))) {
4548			swp_entry_t entry = pte_to_swp_entry(pte);
4549
4550			if (is_write_migration_entry(entry)) {
4551				pte_t newpte;
4552
4553				make_migration_entry_read(&entry);
4554				newpte = swp_entry_to_pte(entry);
4555				set_huge_swap_pte_at(mm, address, ptep,
4556						     newpte, huge_page_size(h));
4557				pages++;
4558			}
4559			spin_unlock(ptl);
4560			continue;
4561		}
4562		if (!huge_pte_none(pte)) {
4563			pte_t old_pte;
4564
4565			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4566			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4567			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4568			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4569			pages++;
4570		}
4571		spin_unlock(ptl);
4572	}
4573	/*
4574	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4575	 * may have cleared our pud entry and done put_page on the page table:
4576	 * once we release i_mmap_rwsem, another task can do the final put_page
4577	 * and that page table be reused and filled with junk.  If we actually
4578	 * did unshare a page of pmds, flush the range corresponding to the pud.
4579	 */
4580	if (shared_pmd)
4581		flush_hugetlb_tlb_range(vma, range.start, range.end);
4582	else
4583		flush_hugetlb_tlb_range(vma, start, end);
4584	/*
4585	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4586	 * page table protection not changing it to point to a new page.
4587	 *
4588	 * See Documentation/vm/mmu_notifier.rst
4589	 */
4590	i_mmap_unlock_write(vma->vm_file->f_mapping);
4591	mmu_notifier_invalidate_range_end(&range);
 
4592
4593	return pages << h->order;
4594}
4595
4596int hugetlb_reserve_pages(struct inode *inode,
4597					long from, long to,
4598					struct vm_area_struct *vma,
4599					vm_flags_t vm_flags)
4600{
4601	long ret, chg;
4602	struct hstate *h = hstate_inode(inode);
4603	struct hugepage_subpool *spool = subpool_inode(inode);
4604	struct resv_map *resv_map;
4605	long gbl_reserve;
4606
4607	/* This should never happen */
4608	if (from > to) {
4609		VM_WARN(1, "%s called with a negative range\n", __func__);
4610		return -EINVAL;
4611	}
4612
4613	/*
4614	 * Only apply hugepage reservation if asked. At fault time, an
4615	 * attempt will be made for VM_NORESERVE to allocate a page
4616	 * without using reserves
4617	 */
4618	if (vm_flags & VM_NORESERVE)
4619		return 0;
4620
4621	/*
4622	 * Shared mappings base their reservation on the number of pages that
4623	 * are already allocated on behalf of the file. Private mappings need
4624	 * to reserve the full area even if read-only as mprotect() may be
4625	 * called to make the mapping read-write. Assume !vma is a shm mapping
4626	 */
4627	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4628		/*
4629		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4630		 * called for inodes for which resv_maps were created (see
4631		 * hugetlbfs_get_inode).
4632		 */
4633		resv_map = inode_resv_map(inode);
4634
4635		chg = region_chg(resv_map, from, to);
4636
4637	} else {
4638		resv_map = resv_map_alloc();
4639		if (!resv_map)
4640			return -ENOMEM;
4641
4642		chg = to - from;
4643
4644		set_vma_resv_map(vma, resv_map);
4645		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4646	}
4647
4648	if (chg < 0) {
4649		ret = chg;
4650		goto out_err;
4651	}
4652
4653	/*
4654	 * There must be enough pages in the subpool for the mapping. If
4655	 * the subpool has a minimum size, there may be some global
4656	 * reservations already in place (gbl_reserve).
4657	 */
4658	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4659	if (gbl_reserve < 0) {
4660		ret = -ENOSPC;
4661		goto out_err;
4662	}
4663
4664	/*
4665	 * Check enough hugepages are available for the reservation.
4666	 * Hand the pages back to the subpool if there are not
4667	 */
4668	ret = hugetlb_acct_memory(h, gbl_reserve);
4669	if (ret < 0) {
4670		/* put back original number of pages, chg */
4671		(void)hugepage_subpool_put_pages(spool, chg);
4672		goto out_err;
4673	}
4674
4675	/*
4676	 * Account for the reservations made. Shared mappings record regions
4677	 * that have reservations as they are shared by multiple VMAs.
4678	 * When the last VMA disappears, the region map says how much
4679	 * the reservation was and the page cache tells how much of
4680	 * the reservation was consumed. Private mappings are per-VMA and
4681	 * only the consumed reservations are tracked. When the VMA
4682	 * disappears, the original reservation is the VMA size and the
4683	 * consumed reservations are stored in the map. Hence, nothing
4684	 * else has to be done for private mappings here
4685	 */
4686	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4687		long add = region_add(resv_map, from, to);
4688
4689		if (unlikely(chg > add)) {
4690			/*
4691			 * pages in this range were added to the reserve
4692			 * map between region_chg and region_add.  This
4693			 * indicates a race with alloc_huge_page.  Adjust
4694			 * the subpool and reserve counts modified above
4695			 * based on the difference.
4696			 */
4697			long rsv_adjust;
4698
4699			rsv_adjust = hugepage_subpool_put_pages(spool,
4700								chg - add);
4701			hugetlb_acct_memory(h, -rsv_adjust);
4702		}
4703	}
4704	return 0;
4705out_err:
4706	if (!vma || vma->vm_flags & VM_MAYSHARE)
4707		/* Don't call region_abort if region_chg failed */
4708		if (chg >= 0)
4709			region_abort(resv_map, from, to);
4710	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4711		kref_put(&resv_map->refs, resv_map_release);
4712	return ret;
4713}
4714
4715long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4716								long freed)
4717{
4718	struct hstate *h = hstate_inode(inode);
4719	struct resv_map *resv_map = inode_resv_map(inode);
4720	long chg = 0;
4721	struct hugepage_subpool *spool = subpool_inode(inode);
4722	long gbl_reserve;
4723
4724	/*
4725	 * Since this routine can be called in the evict inode path for all
4726	 * hugetlbfs inodes, resv_map could be NULL.
4727	 */
4728	if (resv_map) {
4729		chg = region_del(resv_map, start, end);
4730		/*
4731		 * region_del() can fail in the rare case where a region
4732		 * must be split and another region descriptor can not be
4733		 * allocated.  If end == LONG_MAX, it will not fail.
4734		 */
4735		if (chg < 0)
4736			return chg;
4737	}
4738
 
 
4739	spin_lock(&inode->i_lock);
4740	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4741	spin_unlock(&inode->i_lock);
4742
4743	/*
4744	 * If the subpool has a minimum size, the number of global
4745	 * reservations to be released may be adjusted.
4746	 */
4747	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4748	hugetlb_acct_memory(h, -gbl_reserve);
4749
4750	return 0;
4751}
4752
4753#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4754static unsigned long page_table_shareable(struct vm_area_struct *svma,
4755				struct vm_area_struct *vma,
4756				unsigned long addr, pgoff_t idx)
4757{
4758	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4759				svma->vm_start;
4760	unsigned long sbase = saddr & PUD_MASK;
4761	unsigned long s_end = sbase + PUD_SIZE;
4762
4763	/* Allow segments to share if only one is marked locked */
4764	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4765	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766
4767	/*
4768	 * match the virtual addresses, permission and the alignment of the
4769	 * page table page.
4770	 */
4771	if (pmd_index(addr) != pmd_index(saddr) ||
4772	    vm_flags != svm_flags ||
4773	    sbase < svma->vm_start || svma->vm_end < s_end)
4774		return 0;
4775
4776	return saddr;
4777}
4778
4779static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4780{
4781	unsigned long base = addr & PUD_MASK;
4782	unsigned long end = base + PUD_SIZE;
4783
4784	/*
4785	 * check on proper vm_flags and page table alignment
4786	 */
4787	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4788		return true;
4789	return false;
4790}
4791
4792/*
4793 * Determine if start,end range within vma could be mapped by shared pmd.
4794 * If yes, adjust start and end to cover range associated with possible
4795 * shared pmd mappings.
4796 */
4797void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4798				unsigned long *start, unsigned long *end)
4799{
4800	unsigned long check_addr = *start;
4801
4802	if (!(vma->vm_flags & VM_MAYSHARE))
4803		return;
4804
4805	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4806		unsigned long a_start = check_addr & PUD_MASK;
4807		unsigned long a_end = a_start + PUD_SIZE;
4808
4809		/*
4810		 * If sharing is possible, adjust start/end if necessary.
4811		 */
4812		if (range_in_vma(vma, a_start, a_end)) {
4813			if (a_start < *start)
4814				*start = a_start;
4815			if (a_end > *end)
4816				*end = a_end;
4817		}
4818	}
4819}
4820
4821/*
4822 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4823 * and returns the corresponding pte. While this is not necessary for the
4824 * !shared pmd case because we can allocate the pmd later as well, it makes the
4825 * code much cleaner. pmd allocation is essential for the shared case because
4826 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4827 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4828 * bad pmd for sharing.
4829 */
4830pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4831{
4832	struct vm_area_struct *vma = find_vma(mm, addr);
4833	struct address_space *mapping = vma->vm_file->f_mapping;
4834	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4835			vma->vm_pgoff;
4836	struct vm_area_struct *svma;
4837	unsigned long saddr;
4838	pte_t *spte = NULL;
4839	pte_t *pte;
4840	spinlock_t *ptl;
4841
4842	if (!vma_shareable(vma, addr))
4843		return (pte_t *)pmd_alloc(mm, pud, addr);
4844
4845	i_mmap_lock_write(mapping);
4846	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4847		if (svma == vma)
4848			continue;
4849
4850		saddr = page_table_shareable(svma, vma, addr, idx);
4851		if (saddr) {
4852			spte = huge_pte_offset(svma->vm_mm, saddr,
4853					       vma_mmu_pagesize(svma));
4854			if (spte) {
4855				get_page(virt_to_page(spte));
4856				break;
4857			}
4858		}
4859	}
4860
4861	if (!spte)
4862		goto out;
4863
4864	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4865	if (pud_none(*pud)) {
 
4866		pud_populate(mm, pud,
4867				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4868		mm_inc_nr_pmds(mm);
4869	} else {
4870		put_page(virt_to_page(spte));
4871	}
4872	spin_unlock(ptl);
4873out:
4874	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4875	i_mmap_unlock_write(mapping);
4876	return pte;
4877}
4878
4879/*
4880 * unmap huge page backed by shared pte.
4881 *
4882 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4883 * indicated by page_count > 1, unmap is achieved by clearing pud and
4884 * decrementing the ref count. If count == 1, the pte page is not shared.
4885 *
4886 * called with page table lock held.
4887 *
4888 * returns: 1 successfully unmapped a shared pte page
4889 *	    0 the underlying pte page is not shared, or it is the last user
4890 */
4891int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4892{
4893	pgd_t *pgd = pgd_offset(mm, *addr);
4894	p4d_t *p4d = p4d_offset(pgd, *addr);
4895	pud_t *pud = pud_offset(p4d, *addr);
4896
4897	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4898	if (page_count(virt_to_page(ptep)) == 1)
4899		return 0;
4900
4901	pud_clear(pud);
4902	put_page(virt_to_page(ptep));
4903	mm_dec_nr_pmds(mm);
4904	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4905	return 1;
4906}
4907#define want_pmd_share()	(1)
4908#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4909pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4910{
4911	return NULL;
4912}
4913
4914int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4915{
4916	return 0;
4917}
4918
4919void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920				unsigned long *start, unsigned long *end)
4921{
4922}
4923#define want_pmd_share()	(0)
4924#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4925
4926#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4927pte_t *huge_pte_alloc(struct mm_struct *mm,
4928			unsigned long addr, unsigned long sz)
4929{
4930	pgd_t *pgd;
4931	p4d_t *p4d;
4932	pud_t *pud;
4933	pte_t *pte = NULL;
4934
4935	pgd = pgd_offset(mm, addr);
4936	p4d = p4d_alloc(mm, pgd, addr);
4937	if (!p4d)
4938		return NULL;
4939	pud = pud_alloc(mm, p4d, addr);
4940	if (pud) {
4941		if (sz == PUD_SIZE) {
4942			pte = (pte_t *)pud;
4943		} else {
4944			BUG_ON(sz != PMD_SIZE);
4945			if (want_pmd_share() && pud_none(*pud))
4946				pte = huge_pmd_share(mm, addr, pud);
4947			else
4948				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4949		}
4950	}
4951	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4952
4953	return pte;
4954}
4955
4956/*
4957 * huge_pte_offset() - Walk the page table to resolve the hugepage
4958 * entry at address @addr
4959 *
4960 * Return: Pointer to page table or swap entry (PUD or PMD) for
4961 * address @addr, or NULL if a p*d_none() entry is encountered and the
4962 * size @sz doesn't match the hugepage size at this level of the page
4963 * table.
4964 */
4965pte_t *huge_pte_offset(struct mm_struct *mm,
4966		       unsigned long addr, unsigned long sz)
4967{
4968	pgd_t *pgd;
4969	p4d_t *p4d;
4970	pud_t *pud;
4971	pmd_t *pmd;
4972
4973	pgd = pgd_offset(mm, addr);
4974	if (!pgd_present(*pgd))
4975		return NULL;
4976	p4d = p4d_offset(pgd, addr);
4977	if (!p4d_present(*p4d))
4978		return NULL;
4979
4980	pud = pud_offset(p4d, addr);
4981	if (sz != PUD_SIZE && pud_none(*pud))
4982		return NULL;
4983	/* hugepage or swap? */
4984	if (pud_huge(*pud) || !pud_present(*pud))
4985		return (pte_t *)pud;
4986
4987	pmd = pmd_offset(pud, addr);
4988	if (sz != PMD_SIZE && pmd_none(*pmd))
4989		return NULL;
4990	/* hugepage or swap? */
4991	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4992		return (pte_t *)pmd;
4993
4994	return NULL;
 
 
 
4995}
4996
4997#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4998
4999/*
5000 * These functions are overwritable if your architecture needs its own
5001 * behavior.
5002 */
5003struct page * __weak
5004follow_huge_addr(struct mm_struct *mm, unsigned long address,
5005			      int write)
5006{
5007	return ERR_PTR(-EINVAL);
 
 
 
 
 
5008}
5009
 
 
 
5010struct page * __weak
5011follow_huge_pd(struct vm_area_struct *vma,
5012	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5013{
5014	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5015	return NULL;
5016}
5017
5018struct page * __weak
5019follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5020		pmd_t *pmd, int flags)
5021{
5022	struct page *page = NULL;
5023	spinlock_t *ptl;
5024	pte_t pte;
5025retry:
5026	ptl = pmd_lockptr(mm, pmd);
5027	spin_lock(ptl);
5028	/*
5029	 * make sure that the address range covered by this pmd is not
5030	 * unmapped from other threads.
5031	 */
5032	if (!pmd_huge(*pmd))
5033		goto out;
5034	pte = huge_ptep_get((pte_t *)pmd);
5035	if (pte_present(pte)) {
5036		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5037		if (flags & FOLL_GET)
5038			get_page(page);
5039	} else {
5040		if (is_hugetlb_entry_migration(pte)) {
5041			spin_unlock(ptl);
5042			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5043			goto retry;
5044		}
5045		/*
5046		 * hwpoisoned entry is treated as no_page_table in
5047		 * follow_page_mask().
5048		 */
5049	}
5050out:
5051	spin_unlock(ptl);
5052	return page;
5053}
5054
5055struct page * __weak
5056follow_huge_pud(struct mm_struct *mm, unsigned long address,
5057		pud_t *pud, int flags)
 
5058{
5059	if (flags & FOLL_GET)
5060		return NULL;
 
 
5061
5062	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
 
 
 
5063}
5064
5065struct page * __weak
5066follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
 
 
 
5067{
5068	if (flags & FOLL_GET)
5069		return NULL;
 
5070
5071	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5072}
 
5073
5074bool isolate_huge_page(struct page *page, struct list_head *list)
5075{
5076	bool ret = true;
5077
5078	VM_BUG_ON_PAGE(!PageHead(page), page);
 
 
5079	spin_lock(&hugetlb_lock);
5080	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5081		ret = false;
5082		goto unlock;
5083	}
5084	clear_page_huge_active(page);
5085	list_move_tail(&page->lru, list);
5086unlock:
5087	spin_unlock(&hugetlb_lock);
5088	return ret;
5089}
5090
5091void putback_active_hugepage(struct page *page)
5092{
5093	VM_BUG_ON_PAGE(!PageHead(page), page);
5094	spin_lock(&hugetlb_lock);
5095	set_page_huge_active(page);
5096	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5097	spin_unlock(&hugetlb_lock);
5098	put_page(page);
5099}
5100
5101void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5102{
5103	struct hstate *h = page_hstate(oldpage);
5104
5105	hugetlb_cgroup_migrate(oldpage, newpage);
5106	set_page_owner_migrate_reason(newpage, reason);
5107
5108	/*
5109	 * transfer temporary state of the new huge page. This is
5110	 * reverse to other transitions because the newpage is going to
5111	 * be final while the old one will be freed so it takes over
5112	 * the temporary status.
5113	 *
5114	 * Also note that we have to transfer the per-node surplus state
5115	 * here as well otherwise the global surplus count will not match
5116	 * the per-node's.
5117	 */
5118	if (PageHugeTemporary(newpage)) {
5119		int old_nid = page_to_nid(oldpage);
5120		int new_nid = page_to_nid(newpage);
5121
5122		SetPageHugeTemporary(oldpage);
5123		ClearPageHugeTemporary(newpage);
5124
5125		spin_lock(&hugetlb_lock);
5126		if (h->surplus_huge_pages_node[old_nid]) {
5127			h->surplus_huge_pages_node[old_nid]--;
5128			h->surplus_huge_pages_node[new_nid]++;
5129		}
5130		spin_unlock(&hugetlb_lock);
5131	}
5132}
v3.15
 
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/module.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/bootmem.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
 
 
  22#include <linux/rmap.h>
 
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/page-isolation.h>
  26#include <linux/jhash.h>
 
  27
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/tlb.h>
  31
  32#include <linux/io.h>
  33#include <linux/hugetlb.h>
  34#include <linux/hugetlb_cgroup.h>
  35#include <linux/node.h>
 
 
  36#include "internal.h"
  37
  38const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  39unsigned long hugepages_treat_as_movable;
  40
  41int hugetlb_max_hstate __read_mostly;
  42unsigned int default_hstate_idx;
  43struct hstate hstates[HUGE_MAX_HSTATE];
 
 
 
 
 
  44
  45__initdata LIST_HEAD(huge_boot_pages);
  46
  47/* for command line parsing */
  48static struct hstate * __initdata parsed_hstate;
  49static unsigned long __initdata default_hstate_max_huge_pages;
  50static unsigned long __initdata default_hstate_size;
 
  51
  52/*
  53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  54 * free_huge_pages, and surplus_huge_pages.
  55 */
  56DEFINE_SPINLOCK(hugetlb_lock);
  57
  58/*
  59 * Serializes faults on the same logical page.  This is used to
  60 * prevent spurious OOMs when the hugepage pool is fully utilized.
  61 */
  62static int num_fault_mutexes;
  63static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
 
 
 
  64
  65static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  66{
  67	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  68
  69	spin_unlock(&spool->lock);
  70
  71	/* If no pages are used, and no other handles to the subpool
  72	 * remain, free the subpool the subpool remain */
  73	if (free)
 
 
 
 
  74		kfree(spool);
 
  75}
  76
  77struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
 
  78{
  79	struct hugepage_subpool *spool;
  80
  81	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
  82	if (!spool)
  83		return NULL;
  84
  85	spin_lock_init(&spool->lock);
  86	spool->count = 1;
  87	spool->max_hpages = nr_blocks;
  88	spool->used_hpages = 0;
 
 
 
 
 
 
 
  89
  90	return spool;
  91}
  92
  93void hugepage_put_subpool(struct hugepage_subpool *spool)
  94{
  95	spin_lock(&spool->lock);
  96	BUG_ON(!spool->count);
  97	spool->count--;
  98	unlock_or_release_subpool(spool);
  99}
 100
 101static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 
 
 
 
 
 
 
 
 102				      long delta)
 103{
 104	int ret = 0;
 105
 106	if (!spool)
 107		return 0;
 108
 109	spin_lock(&spool->lock);
 110	if ((spool->used_hpages + delta) <= spool->max_hpages) {
 111		spool->used_hpages += delta;
 112	} else {
 113		ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114	}
 
 
 115	spin_unlock(&spool->lock);
 116
 117	return ret;
 118}
 119
 120static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 
 
 
 
 
 
 121				       long delta)
 122{
 
 
 123	if (!spool)
 124		return;
 125
 126	spin_lock(&spool->lock);
 127	spool->used_hpages -= delta;
 128	/* If hugetlbfs_put_super couldn't free spool due to
 129	* an outstanding quota reference, free it now. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130	unlock_or_release_subpool(spool);
 
 
 131}
 132
 133static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 134{
 135	return HUGETLBFS_SB(inode->i_sb)->spool;
 136}
 137
 138static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 139{
 140	return subpool_inode(file_inode(vma->vm_file));
 141}
 142
 143/*
 144 * Region tracking -- allows tracking of reservations and instantiated pages
 145 *                    across the pages in a mapping.
 146 *
 147 * The region data structures are embedded into a resv_map and
 148 * protected by a resv_map's lock
 
 
 
 
 
 
 
 
 
 
 
 
 149 */
 150struct file_region {
 151	struct list_head link;
 152	long from;
 153	long to;
 154};
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156static long region_add(struct resv_map *resv, long f, long t)
 157{
 158	struct list_head *head = &resv->regions;
 159	struct file_region *rg, *nrg, *trg;
 
 160
 161	spin_lock(&resv->lock);
 162	/* Locate the region we are either in or before. */
 163	list_for_each_entry(rg, head, link)
 164		if (f <= rg->to)
 165			break;
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167	/* Round our left edge to the current segment if it encloses us. */
 168	if (f > rg->from)
 169		f = rg->from;
 170
 171	/* Check for and consume any regions we now overlap with. */
 172	nrg = rg;
 173	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 174		if (&rg->link == head)
 175			break;
 176		if (rg->from > t)
 177			break;
 178
 179		/* If this area reaches higher then extend our area to
 180		 * include it completely.  If this is not the first area
 181		 * which we intend to reuse, free it. */
 182		if (rg->to > t)
 183			t = rg->to;
 184		if (rg != nrg) {
 
 
 
 
 
 185			list_del(&rg->link);
 186			kfree(rg);
 187		}
 188	}
 
 
 189	nrg->from = f;
 
 190	nrg->to = t;
 
 
 
 191	spin_unlock(&resv->lock);
 192	return 0;
 
 193}
 194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195static long region_chg(struct resv_map *resv, long f, long t)
 196{
 197	struct list_head *head = &resv->regions;
 198	struct file_region *rg, *nrg = NULL;
 199	long chg = 0;
 200
 201retry:
 202	spin_lock(&resv->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203	/* Locate the region we are before or in. */
 204	list_for_each_entry(rg, head, link)
 205		if (f <= rg->to)
 206			break;
 207
 208	/* If we are below the current region then a new region is required.
 209	 * Subtle, allocate a new region at the position but make it zero
 210	 * size such that we can guarantee to record the reservation. */
 211	if (&rg->link == head || t < rg->from) {
 212		if (!nrg) {
 
 213			spin_unlock(&resv->lock);
 214			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 215			if (!nrg)
 216				return -ENOMEM;
 217
 218			nrg->from = f;
 219			nrg->to   = f;
 220			INIT_LIST_HEAD(&nrg->link);
 221			goto retry;
 222		}
 223
 224		list_add(&nrg->link, rg->link.prev);
 225		chg = t - f;
 226		goto out_nrg;
 227	}
 228
 229	/* Round our left edge to the current segment if it encloses us. */
 230	if (f > rg->from)
 231		f = rg->from;
 232	chg = t - f;
 233
 234	/* Check for and consume any regions we now overlap with. */
 235	list_for_each_entry(rg, rg->link.prev, link) {
 236		if (&rg->link == head)
 237			break;
 238		if (rg->from > t)
 239			goto out;
 240
 241		/* We overlap with this area, if it extends further than
 242		 * us then we must extend ourselves.  Account for its
 243		 * existing reservation. */
 244		if (rg->to > t) {
 245			chg += rg->to - t;
 246			t = rg->to;
 247		}
 248		chg -= rg->to - rg->from;
 249	}
 250
 251out:
 252	spin_unlock(&resv->lock);
 253	/*  We already know we raced and no longer need the new region */
 254	kfree(nrg);
 255	return chg;
 256out_nrg:
 257	spin_unlock(&resv->lock);
 258	return chg;
 259}
 260
 261static long region_truncate(struct resv_map *resv, long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262{
 263	struct list_head *head = &resv->regions;
 264	struct file_region *rg, *trg;
 265	long chg = 0;
 
 266
 
 267	spin_lock(&resv->lock);
 268	/* Locate the region we are either in or before. */
 269	list_for_each_entry(rg, head, link)
 270		if (end <= rg->to)
 
 
 
 
 
 
 
 
 
 271			break;
 272	if (&rg->link == head)
 273		goto out;
 274
 275	/* If we are in the middle of a region then adjust it. */
 276	if (end > rg->from) {
 277		chg = rg->to - end;
 278		rg->to = end;
 279		rg = list_entry(rg->link.next, typeof(*rg), link);
 280	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281
 282	/* Drop any remaining regions. */
 283	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 284		if (&rg->link == head)
 285			break;
 286		chg += rg->to - rg->from;
 287		list_del(&rg->link);
 288		kfree(rg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 289	}
 290
 291out:
 292	spin_unlock(&resv->lock);
 293	return chg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294}
 295
 
 
 
 
 296static long region_count(struct resv_map *resv, long f, long t)
 297{
 298	struct list_head *head = &resv->regions;
 299	struct file_region *rg;
 300	long chg = 0;
 301
 302	spin_lock(&resv->lock);
 303	/* Locate each segment we overlap with, and count that overlap. */
 304	list_for_each_entry(rg, head, link) {
 305		long seg_from;
 306		long seg_to;
 307
 308		if (rg->to <= f)
 309			continue;
 310		if (rg->from >= t)
 311			break;
 312
 313		seg_from = max(rg->from, f);
 314		seg_to = min(rg->to, t);
 315
 316		chg += seg_to - seg_from;
 317	}
 318	spin_unlock(&resv->lock);
 319
 320	return chg;
 321}
 322
 323/*
 324 * Convert the address within this vma to the page offset within
 325 * the mapping, in pagecache page units; huge pages here.
 326 */
 327static pgoff_t vma_hugecache_offset(struct hstate *h,
 328			struct vm_area_struct *vma, unsigned long address)
 329{
 330	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 331			(vma->vm_pgoff >> huge_page_order(h));
 332}
 333
 334pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 335				     unsigned long address)
 336{
 337	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 338}
 
 339
 340/*
 341 * Return the size of the pages allocated when backing a VMA. In the majority
 342 * cases this will be same size as used by the page table entries.
 343 */
 344unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 345{
 346	struct hstate *hstate;
 347
 348	if (!is_vm_hugetlb_page(vma))
 349		return PAGE_SIZE;
 350
 351	hstate = hstate_vma(vma);
 352
 353	return 1UL << huge_page_shift(hstate);
 354}
 355EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 356
 357/*
 358 * Return the page size being used by the MMU to back a VMA. In the majority
 359 * of cases, the page size used by the kernel matches the MMU size. On
 360 * architectures where it differs, an architecture-specific version of this
 361 * function is required.
 362 */
 363#ifndef vma_mmu_pagesize
 364unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 365{
 366	return vma_kernel_pagesize(vma);
 367}
 368#endif
 369
 370/*
 371 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 372 * bits of the reservation map pointer, which are always clear due to
 373 * alignment.
 374 */
 375#define HPAGE_RESV_OWNER    (1UL << 0)
 376#define HPAGE_RESV_UNMAPPED (1UL << 1)
 377#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 378
 379/*
 380 * These helpers are used to track how many pages are reserved for
 381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 382 * is guaranteed to have their future faults succeed.
 383 *
 384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 385 * the reserve counters are updated with the hugetlb_lock held. It is safe
 386 * to reset the VMA at fork() time as it is not in use yet and there is no
 387 * chance of the global counters getting corrupted as a result of the values.
 388 *
 389 * The private mapping reservation is represented in a subtly different
 390 * manner to a shared mapping.  A shared mapping has a region map associated
 391 * with the underlying file, this region map represents the backing file
 392 * pages which have ever had a reservation assigned which this persists even
 393 * after the page is instantiated.  A private mapping has a region map
 394 * associated with the original mmap which is attached to all VMAs which
 395 * reference it, this region map represents those offsets which have consumed
 396 * reservation ie. where pages have been instantiated.
 397 */
 398static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 399{
 400	return (unsigned long)vma->vm_private_data;
 401}
 402
 403static void set_vma_private_data(struct vm_area_struct *vma,
 404							unsigned long value)
 405{
 406	vma->vm_private_data = (void *)value;
 407}
 408
 409struct resv_map *resv_map_alloc(void)
 410{
 411	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 412	if (!resv_map)
 
 
 
 
 413		return NULL;
 
 414
 415	kref_init(&resv_map->refs);
 416	spin_lock_init(&resv_map->lock);
 417	INIT_LIST_HEAD(&resv_map->regions);
 418
 
 
 
 
 
 
 419	return resv_map;
 420}
 421
 422void resv_map_release(struct kref *ref)
 423{
 424	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 
 
 425
 426	/* Clear out any active regions before we release the map. */
 427	region_truncate(resv_map, 0);
 
 
 
 
 
 
 
 
 
 428	kfree(resv_map);
 429}
 430
 431static inline struct resv_map *inode_resv_map(struct inode *inode)
 432{
 433	return inode->i_mapping->private_data;
 
 
 
 
 
 
 
 
 434}
 435
 436static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 437{
 438	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 439	if (vma->vm_flags & VM_MAYSHARE) {
 440		struct address_space *mapping = vma->vm_file->f_mapping;
 441		struct inode *inode = mapping->host;
 442
 443		return inode_resv_map(inode);
 444
 445	} else {
 446		return (struct resv_map *)(get_vma_private_data(vma) &
 447							~HPAGE_RESV_MASK);
 448	}
 449}
 450
 451static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 452{
 453	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 454	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 455
 456	set_vma_private_data(vma, (get_vma_private_data(vma) &
 457				HPAGE_RESV_MASK) | (unsigned long)map);
 458}
 459
 460static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 461{
 462	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 463	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 464
 465	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 466}
 467
 468static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 469{
 470	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 471
 472	return (get_vma_private_data(vma) & flag) != 0;
 473}
 474
 475/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 476void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 477{
 478	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 479	if (!(vma->vm_flags & VM_MAYSHARE))
 480		vma->vm_private_data = (void *)0;
 481}
 482
 483/* Returns true if the VMA has associated reserve pages */
 484static int vma_has_reserves(struct vm_area_struct *vma, long chg)
 485{
 486	if (vma->vm_flags & VM_NORESERVE) {
 487		/*
 488		 * This address is already reserved by other process(chg == 0),
 489		 * so, we should decrement reserved count. Without decrementing,
 490		 * reserve count remains after releasing inode, because this
 491		 * allocated page will go into page cache and is regarded as
 492		 * coming from reserved pool in releasing step.  Currently, we
 493		 * don't have any other solution to deal with this situation
 494		 * properly, so add work-around here.
 495		 */
 496		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 497			return 1;
 498		else
 499			return 0;
 500	}
 501
 502	/* Shared mappings always use reserves */
 503	if (vma->vm_flags & VM_MAYSHARE)
 504		return 1;
 
 
 
 
 
 
 
 
 
 
 
 505
 506	/*
 507	 * Only the process that called mmap() has reserves for
 508	 * private mappings.
 509	 */
 510	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 511		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512
 513	return 0;
 514}
 515
 516static void enqueue_huge_page(struct hstate *h, struct page *page)
 517{
 518	int nid = page_to_nid(page);
 519	list_move(&page->lru, &h->hugepage_freelists[nid]);
 520	h->free_huge_pages++;
 521	h->free_huge_pages_node[nid]++;
 522}
 523
 524static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 525{
 526	struct page *page;
 527
 528	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 529		if (!is_migrate_isolate_page(page))
 530			break;
 531	/*
 532	 * if 'non-isolated free hugepage' not found on the list,
 533	 * the allocation fails.
 534	 */
 535	if (&h->hugepage_freelists[nid] == &page->lru)
 536		return NULL;
 537	list_move(&page->lru, &h->hugepage_activelist);
 538	set_page_refcounted(page);
 539	h->free_huge_pages--;
 540	h->free_huge_pages_node[nid]--;
 541	return page;
 542}
 543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544/* Movability of hugepages depends on migration support. */
 545static inline gfp_t htlb_alloc_mask(struct hstate *h)
 546{
 547	if (hugepages_treat_as_movable || hugepage_migration_support(h))
 548		return GFP_HIGHUSER_MOVABLE;
 549	else
 550		return GFP_HIGHUSER;
 551}
 552
 553static struct page *dequeue_huge_page_vma(struct hstate *h,
 554				struct vm_area_struct *vma,
 555				unsigned long address, int avoid_reserve,
 556				long chg)
 557{
 558	struct page *page = NULL;
 559	struct mempolicy *mpol;
 
 560	nodemask_t *nodemask;
 561	struct zonelist *zonelist;
 562	struct zone *zone;
 563	struct zoneref *z;
 564	unsigned int cpuset_mems_cookie;
 565
 566	/*
 567	 * A child process with MAP_PRIVATE mappings created by their parent
 568	 * have no page reserves. This check ensures that reservations are
 569	 * not "stolen". The child may still get SIGKILLed
 570	 */
 571	if (!vma_has_reserves(vma, chg) &&
 572			h->free_huge_pages - h->resv_huge_pages == 0)
 573		goto err;
 574
 575	/* If reserves cannot be used, ensure enough pages are in the pool */
 576	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 577		goto err;
 578
 579retry_cpuset:
 580	cpuset_mems_cookie = read_mems_allowed_begin();
 581	zonelist = huge_zonelist(vma, address,
 582					htlb_alloc_mask(h), &mpol, &nodemask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583
 584	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 585						MAX_NR_ZONES - 1, nodemask) {
 586		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
 587			page = dequeue_huge_page_node(h, zone_to_nid(zone));
 588			if (page) {
 589				if (avoid_reserve)
 590					break;
 591				if (!vma_has_reserves(vma, chg))
 592					break;
 593
 594				SetPagePrivate(page);
 595				h->resv_huge_pages--;
 596				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597			}
 
 598		}
 
 
 599	}
 600
 601	mpol_cond_put(mpol);
 602	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 603		goto retry_cpuset;
 604	return page;
 
 
 
 
 
 
 
 
 605
 606err:
 
 
 
 607	return NULL;
 608}
 
 
 
 
 609
 610static void update_and_free_page(struct hstate *h, struct page *page)
 611{
 612	int i;
 613
 614	VM_BUG_ON(h->order >= MAX_ORDER);
 
 615
 616	h->nr_huge_pages--;
 617	h->nr_huge_pages_node[page_to_nid(page)]--;
 618	for (i = 0; i < pages_per_huge_page(h); i++) {
 619		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
 620				1 << PG_referenced | 1 << PG_dirty |
 621				1 << PG_active | 1 << PG_reserved |
 622				1 << PG_private | 1 << PG_writeback);
 623	}
 624	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
 625	set_compound_page_dtor(page, NULL);
 626	set_page_refcounted(page);
 627	arch_release_hugepage(page);
 628	__free_pages(page, huge_page_order(h));
 
 
 
 
 629}
 630
 631struct hstate *size_to_hstate(unsigned long size)
 632{
 633	struct hstate *h;
 634
 635	for_each_hstate(h) {
 636		if (huge_page_size(h) == size)
 637			return h;
 638	}
 639	return NULL;
 640}
 641
 642static void free_huge_page(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643{
 644	/*
 645	 * Can't pass hstate in here because it is called from the
 646	 * compound page destructor.
 647	 */
 648	struct hstate *h = page_hstate(page);
 649	int nid = page_to_nid(page);
 650	struct hugepage_subpool *spool =
 651		(struct hugepage_subpool *)page_private(page);
 652	bool restore_reserve;
 653
 
 
 
 654	set_page_private(page, 0);
 655	page->mapping = NULL;
 656	BUG_ON(page_count(page));
 657	BUG_ON(page_mapcount(page));
 658	restore_reserve = PagePrivate(page);
 659	ClearPagePrivate(page);
 660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661	spin_lock(&hugetlb_lock);
 
 662	hugetlb_cgroup_uncharge_page(hstate_index(h),
 663				     pages_per_huge_page(h), page);
 664	if (restore_reserve)
 665		h->resv_huge_pages++;
 666
 667	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
 
 
 
 
 668		/* remove the page from active list */
 669		list_del(&page->lru);
 670		update_and_free_page(h, page);
 671		h->surplus_huge_pages--;
 672		h->surplus_huge_pages_node[nid]--;
 673	} else {
 674		arch_clear_hugepage_flags(page);
 675		enqueue_huge_page(h, page);
 676	}
 677	spin_unlock(&hugetlb_lock);
 678	hugepage_subpool_put_pages(spool, 1);
 679}
 680
 681static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 682{
 683	INIT_LIST_HEAD(&page->lru);
 684	set_compound_page_dtor(page, free_huge_page);
 685	spin_lock(&hugetlb_lock);
 686	set_hugetlb_cgroup(page, NULL);
 687	h->nr_huge_pages++;
 688	h->nr_huge_pages_node[nid]++;
 689	spin_unlock(&hugetlb_lock);
 690	put_page(page); /* free it into the hugepage allocator */
 691}
 692
 693static void __init prep_compound_gigantic_page(struct page *page,
 694					       unsigned long order)
 695{
 696	int i;
 697	int nr_pages = 1 << order;
 698	struct page *p = page + 1;
 699
 700	/* we rely on prep_new_huge_page to set the destructor */
 701	set_compound_order(page, order);
 
 702	__SetPageHead(page);
 703	__ClearPageReserved(page);
 704	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 705		__SetPageTail(p);
 706		/*
 707		 * For gigantic hugepages allocated through bootmem at
 708		 * boot, it's safer to be consistent with the not-gigantic
 709		 * hugepages and clear the PG_reserved bit from all tail pages
 710		 * too.  Otherwse drivers using get_user_pages() to access tail
 711		 * pages may get the reference counting wrong if they see
 712		 * PG_reserved set on a tail page (despite the head page not
 713		 * having PG_reserved set).  Enforcing this consistency between
 714		 * head and tail pages allows drivers to optimize away a check
 715		 * on the head page when they need know if put_page() is needed
 716		 * after get_user_pages().
 717		 */
 718		__ClearPageReserved(p);
 719		set_page_count(p, 0);
 720		p->first_page = page;
 721	}
 
 722}
 723
 724/*
 725 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 726 * transparent huge pages.  See the PageTransHuge() documentation for more
 727 * details.
 728 */
 729int PageHuge(struct page *page)
 730{
 731	if (!PageCompound(page))
 732		return 0;
 733
 734	page = compound_head(page);
 735	return get_compound_page_dtor(page) == free_huge_page;
 736}
 737EXPORT_SYMBOL_GPL(PageHuge);
 738
 739/*
 740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 741 * normal or transparent huge pages.
 742 */
 743int PageHeadHuge(struct page *page_head)
 744{
 745	if (!PageHead(page_head))
 746		return 0;
 747
 748	return get_compound_page_dtor(page_head) == free_huge_page;
 749}
 750
 751pgoff_t __basepage_index(struct page *page)
 752{
 753	struct page *page_head = compound_head(page);
 754	pgoff_t index = page_index(page_head);
 755	unsigned long compound_idx;
 756
 757	if (!PageHuge(page_head))
 758		return page_index(page);
 759
 760	if (compound_order(page_head) >= MAX_ORDER)
 761		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
 762	else
 763		compound_idx = page - page_head;
 764
 765	return (index << compound_order(page_head)) + compound_idx;
 766}
 767
 768static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
 
 
 769{
 
 770	struct page *page;
 
 771
 772	if (h->order >= MAX_ORDER)
 773		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774
 775	page = alloc_pages_exact_node(nid,
 776		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
 777						__GFP_REPEAT|__GFP_NOWARN,
 778		huge_page_order(h));
 779	if (page) {
 780		if (arch_prepare_hugepage(page)) {
 781			__free_pages(page, huge_page_order(h));
 782			return NULL;
 783		}
 784		prep_new_huge_page(h, page, nid);
 785	}
 786
 787	return page;
 788}
 789
 790/*
 791 * common helper functions for hstate_next_node_to_{alloc|free}.
 792 * We may have allocated or freed a huge page based on a different
 793 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 794 * be outside of *nodes_allowed.  Ensure that we use an allowed
 795 * node for alloc or free.
 796 */
 797static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 
 
 798{
 799	nid = next_node(nid, *nodes_allowed);
 800	if (nid == MAX_NUMNODES)
 801		nid = first_node(*nodes_allowed);
 802	VM_BUG_ON(nid >= MAX_NUMNODES);
 803
 804	return nid;
 805}
 
 
 
 
 
 806
 807static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 808{
 809	if (!node_isset(nid, *nodes_allowed))
 810		nid = next_node_allowed(nid, nodes_allowed);
 811	return nid;
 812}
 813
 814/*
 815 * returns the previously saved node ["this node"] from which to
 816 * allocate a persistent huge page for the pool and advance the
 817 * next node from which to allocate, handling wrap at end of node
 818 * mask.
 819 */
 820static int hstate_next_node_to_alloc(struct hstate *h,
 821					nodemask_t *nodes_allowed)
 822{
 823	int nid;
 824
 825	VM_BUG_ON(!nodes_allowed);
 826
 827	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 828	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 829
 830	return nid;
 831}
 832
 833/*
 834 * helper for free_pool_huge_page() - return the previously saved
 835 * node ["this node"] from which to free a huge page.  Advance the
 836 * next node id whether or not we find a free huge page to free so
 837 * that the next attempt to free addresses the next node.
 838 */
 839static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 840{
 841	int nid;
 842
 843	VM_BUG_ON(!nodes_allowed);
 844
 845	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 846	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 847
 848	return nid;
 849}
 850
 851#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
 852	for (nr_nodes = nodes_weight(*mask);				\
 853		nr_nodes > 0 &&						\
 854		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
 855		nr_nodes--)
 856
 857#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
 858	for (nr_nodes = nodes_weight(*mask);				\
 859		nr_nodes > 0 &&						\
 860		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
 861		nr_nodes--)
 862
 863static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
 864{
 865	struct page *page;
 866	int nr_nodes, node;
 867	int ret = 0;
 868
 869	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 870		page = alloc_fresh_huge_page_node(h, node);
 871		if (page) {
 872			ret = 1;
 873			break;
 874		}
 875	}
 876
 877	if (ret)
 878		count_vm_event(HTLB_BUDDY_PGALLOC);
 879	else
 880		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 881
 882	return ret;
 883}
 884
 885/*
 886 * Free huge page from pool from next node to free.
 887 * Attempt to keep persistent huge pages more or less
 888 * balanced over allowed nodes.
 889 * Called with hugetlb_lock locked.
 890 */
 891static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
 892							 bool acct_surplus)
 893{
 894	int nr_nodes, node;
 895	int ret = 0;
 896
 897	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 898		/*
 899		 * If we're returning unused surplus pages, only examine
 900		 * nodes with surplus pages.
 901		 */
 902		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
 903		    !list_empty(&h->hugepage_freelists[node])) {
 904			struct page *page =
 905				list_entry(h->hugepage_freelists[node].next,
 906					  struct page, lru);
 907			list_del(&page->lru);
 908			h->free_huge_pages--;
 909			h->free_huge_pages_node[node]--;
 910			if (acct_surplus) {
 911				h->surplus_huge_pages--;
 912				h->surplus_huge_pages_node[node]--;
 913			}
 914			update_and_free_page(h, page);
 915			ret = 1;
 916			break;
 917		}
 918	}
 919
 920	return ret;
 921}
 922
 923/*
 924 * Dissolve a given free hugepage into free buddy pages. This function does
 925 * nothing for in-use (including surplus) hugepages.
 
 
 
 
 
 
 926 */
 927static void dissolve_free_huge_page(struct page *page)
 928{
 
 
 
 
 
 
 929	spin_lock(&hugetlb_lock);
 930	if (PageHuge(page) && !page_count(page)) {
 931		struct hstate *h = page_hstate(page);
 932		int nid = page_to_nid(page);
 933		list_del(&page->lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934		h->free_huge_pages--;
 935		h->free_huge_pages_node[nid]--;
 936		update_and_free_page(h, page);
 
 
 937	}
 
 938	spin_unlock(&hugetlb_lock);
 
 939}
 940
 941/*
 942 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 943 * make specified memory blocks removable from the system.
 944 * Note that start_pfn should aligned with (minimum) hugepage size.
 
 
 
 945 */
 946void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
 947{
 948	unsigned int order = 8 * sizeof(void *);
 949	unsigned long pfn;
 950	struct hstate *h;
 
 
 
 
 
 
 
 
 
 
 
 951
 952	/* Set scan step to minimum hugepage size */
 953	for_each_hstate(h)
 954		if (order > huge_page_order(h))
 955			order = huge_page_order(h);
 956	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
 957	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
 958		dissolve_free_huge_page(pfn_to_page(pfn));
 959}
 960
 961static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
 
 
 
 
 962{
 963	struct page *page;
 964	unsigned int r_nid;
 965
 966	if (h->order >= MAX_ORDER)
 967		return NULL;
 968
 
 
 
 
 
 
 
 
 
 
 969	/*
 970	 * Assume we will successfully allocate the surplus page to
 971	 * prevent racing processes from causing the surplus to exceed
 972	 * overcommit
 973	 *
 974	 * This however introduces a different race, where a process B
 975	 * tries to grow the static hugepage pool while alloc_pages() is
 976	 * called by process A. B will only examine the per-node
 977	 * counters in determining if surplus huge pages can be
 978	 * converted to normal huge pages in adjust_pool_surplus(). A
 979	 * won't be able to increment the per-node counter, until the
 980	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
 981	 * no more huge pages can be converted from surplus to normal
 982	 * state (and doesn't try to convert again). Thus, we have a
 983	 * case where a surplus huge page exists, the pool is grown, and
 984	 * the surplus huge page still exists after, even though it
 985	 * should just have been converted to a normal huge page. This
 986	 * does not leak memory, though, as the hugepage will be freed
 987	 * once it is out of use. It also does not allow the counters to
 988	 * go out of whack in adjust_pool_surplus() as we don't modify
 989	 * the node values until we've gotten the hugepage and only the
 990	 * per-node value is checked there.
 991	 */
 992	spin_lock(&hugetlb_lock);
 993	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
 
 994		spin_unlock(&hugetlb_lock);
 
 995		return NULL;
 996	} else {
 997		h->nr_huge_pages++;
 998		h->surplus_huge_pages++;
 
 999	}
 
 
1000	spin_unlock(&hugetlb_lock);
1001
1002	if (nid == NUMA_NO_NODE)
1003		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004				   __GFP_REPEAT|__GFP_NOWARN,
1005				   huge_page_order(h));
1006	else
1007		page = alloc_pages_exact_node(nid,
1008			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
 
 
1010
1011	if (page && arch_prepare_hugepage(page)) {
1012		__free_pages(page, huge_page_order(h));
1013		page = NULL;
1014	}
1015
1016	spin_lock(&hugetlb_lock);
1017	if (page) {
1018		INIT_LIST_HEAD(&page->lru);
1019		r_nid = page_to_nid(page);
1020		set_compound_page_dtor(page, free_huge_page);
1021		set_hugetlb_cgroup(page, NULL);
1022		/*
1023		 * We incremented the global counters already
1024		 */
1025		h->nr_huge_pages_node[r_nid]++;
1026		h->surplus_huge_pages_node[r_nid]++;
1027		__count_vm_event(HTLB_BUDDY_PGALLOC);
1028	} else {
1029		h->nr_huge_pages--;
1030		h->surplus_huge_pages--;
1031		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032	}
1033	spin_unlock(&hugetlb_lock);
1034
1035	return page;
1036}
1037
1038/*
1039 * This allocation function is useful in the context where vma is irrelevant.
1040 * E.g. soft-offlining uses this function because it only cares physical
1041 * address of error page.
1042 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044{
 
1045	struct page *page = NULL;
1046
 
 
 
1047	spin_lock(&hugetlb_lock);
1048	if (h->free_huge_pages - h->resv_huge_pages > 0)
1049		page = dequeue_huge_page_node(h, nid);
1050	spin_unlock(&hugetlb_lock);
1051
1052	if (!page)
1053		page = alloc_buddy_huge_page(h, nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054
1055	return page;
1056}
1057
1058/*
1059 * Increase the hugetlb pool such that it can accommodate a reservation
1060 * of size 'delta'.
1061 */
1062static int gather_surplus_pages(struct hstate *h, int delta)
1063{
1064	struct list_head surplus_list;
1065	struct page *page, *tmp;
1066	int ret, i;
1067	int needed, allocated;
1068	bool alloc_ok = true;
1069
1070	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071	if (needed <= 0) {
1072		h->resv_huge_pages += delta;
1073		return 0;
1074	}
1075
1076	allocated = 0;
1077	INIT_LIST_HEAD(&surplus_list);
1078
1079	ret = -ENOMEM;
1080retry:
1081	spin_unlock(&hugetlb_lock);
1082	for (i = 0; i < needed; i++) {
1083		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
 
1084		if (!page) {
1085			alloc_ok = false;
1086			break;
1087		}
1088		list_add(&page->lru, &surplus_list);
 
1089	}
1090	allocated += i;
1091
1092	/*
1093	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1094	 * because either resv_huge_pages or free_huge_pages may have changed.
1095	 */
1096	spin_lock(&hugetlb_lock);
1097	needed = (h->resv_huge_pages + delta) -
1098			(h->free_huge_pages + allocated);
1099	if (needed > 0) {
1100		if (alloc_ok)
1101			goto retry;
1102		/*
1103		 * We were not able to allocate enough pages to
1104		 * satisfy the entire reservation so we free what
1105		 * we've allocated so far.
1106		 */
1107		goto free;
1108	}
1109	/*
1110	 * The surplus_list now contains _at_least_ the number of extra pages
1111	 * needed to accommodate the reservation.  Add the appropriate number
1112	 * of pages to the hugetlb pool and free the extras back to the buddy
1113	 * allocator.  Commit the entire reservation here to prevent another
1114	 * process from stealing the pages as they are added to the pool but
1115	 * before they are reserved.
1116	 */
1117	needed += allocated;
1118	h->resv_huge_pages += delta;
1119	ret = 0;
1120
1121	/* Free the needed pages to the hugetlb pool */
1122	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123		if ((--needed) < 0)
1124			break;
1125		/*
1126		 * This page is now managed by the hugetlb allocator and has
1127		 * no users -- drop the buddy allocator's reference.
1128		 */
1129		put_page_testzero(page);
1130		VM_BUG_ON_PAGE(page_count(page), page);
1131		enqueue_huge_page(h, page);
1132	}
1133free:
1134	spin_unlock(&hugetlb_lock);
1135
1136	/* Free unnecessary surplus pages to the buddy allocator */
1137	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138		put_page(page);
1139	spin_lock(&hugetlb_lock);
1140
1141	return ret;
1142}
1143
1144/*
1145 * When releasing a hugetlb pool reservation, any surplus pages that were
1146 * allocated to satisfy the reservation must be explicitly freed if they were
1147 * never used.
1148 * Called with hugetlb_lock held.
 
 
 
 
 
 
 
 
1149 */
1150static void return_unused_surplus_pages(struct hstate *h,
1151					unsigned long unused_resv_pages)
1152{
1153	unsigned long nr_pages;
1154
1155	/* Uncommit the reservation */
1156	h->resv_huge_pages -= unused_resv_pages;
1157
1158	/* Cannot return gigantic pages currently */
1159	if (h->order >= MAX_ORDER)
1160		return;
1161
 
 
 
 
1162	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163
1164	/*
1165	 * We want to release as many surplus pages as possible, spread
1166	 * evenly across all nodes with memory. Iterate across these nodes
1167	 * until we can no longer free unreserved surplus pages. This occurs
1168	 * when the nodes with surplus pages have no free pages.
1169	 * free_pool_huge_page() will balance the the freed pages across the
1170	 * on-line nodes with memory and will handle the hstate accounting.
 
 
 
 
1171	 */
1172	while (nr_pages--) {
 
 
1173		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174			break;
1175		cond_resched_lock(&hugetlb_lock);
1176	}
 
 
 
 
1177}
1178
 
1179/*
1180 * Determine if the huge page at addr within the vma has an associated
1181 * reservation.  Where it does not we will need to logically increase
1182 * reservation and actually increase subpool usage before an allocation
1183 * can occur.  Where any new reservation would be required the
1184 * reservation change is prepared, but not committed.  Once the page
1185 * has been allocated from the subpool and instantiated the change should
1186 * be committed via vma_commit_reservation.  No action is required on
1187 * failure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188 */
1189static long vma_needs_reservation(struct hstate *h,
1190			struct vm_area_struct *vma, unsigned long addr)
 
 
 
 
 
 
 
1191{
1192	struct resv_map *resv;
1193	pgoff_t idx;
1194	long chg;
1195
1196	resv = vma_resv_map(vma);
1197	if (!resv)
1198		return 1;
1199
1200	idx = vma_hugecache_offset(h, vma, addr);
1201	chg = region_chg(resv, idx, idx + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202
1203	if (vma->vm_flags & VM_MAYSHARE)
1204		return chg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205	else
1206		return chg < 0 ? chg : 0;
1207}
1208static void vma_commit_reservation(struct hstate *h,
 
1209			struct vm_area_struct *vma, unsigned long addr)
1210{
1211	struct resv_map *resv;
1212	pgoff_t idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213
1214	resv = vma_resv_map(vma);
1215	if (!resv)
1216		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217
1218	idx = vma_hugecache_offset(h, vma, addr);
1219	region_add(resv, idx, idx + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220}
1221
1222static struct page *alloc_huge_page(struct vm_area_struct *vma,
1223				    unsigned long addr, int avoid_reserve)
1224{
1225	struct hugepage_subpool *spool = subpool_vma(vma);
1226	struct hstate *h = hstate_vma(vma);
1227	struct page *page;
1228	long chg;
 
1229	int ret, idx;
1230	struct hugetlb_cgroup *h_cg;
1231
1232	idx = hstate_index(h);
1233	/*
 
 
 
 
 
 
 
 
 
1234	 * Processes that did not create the mapping will have no
1235	 * reserves and will not have accounted against subpool
1236	 * limit. Check that the subpool limit can be made before
1237	 * satisfying the allocation MAP_NORESERVE mappings may also
1238	 * need pages and subpool limit allocated allocated if no reserve
1239	 * mapping overlaps.
1240	 */
1241	chg = vma_needs_reservation(h, vma, addr);
1242	if (chg < 0)
1243		return ERR_PTR(-ENOMEM);
1244	if (chg || avoid_reserve)
1245		if (hugepage_subpool_get_pages(spool, 1))
1246			return ERR_PTR(-ENOSPC);
 
 
 
 
 
 
 
 
 
 
 
 
 
1247
1248	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1249	if (ret) {
1250		if (chg || avoid_reserve)
1251			hugepage_subpool_put_pages(spool, 1);
1252		return ERR_PTR(-ENOSPC);
1253	}
1254	spin_lock(&hugetlb_lock);
1255	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
 
 
 
 
 
1256	if (!page) {
1257		spin_unlock(&hugetlb_lock);
1258		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1259		if (!page) {
1260			hugetlb_cgroup_uncharge_cgroup(idx,
1261						       pages_per_huge_page(h),
1262						       h_cg);
1263			if (chg || avoid_reserve)
1264				hugepage_subpool_put_pages(spool, 1);
1265			return ERR_PTR(-ENOSPC);
1266		}
1267		spin_lock(&hugetlb_lock);
1268		list_move(&page->lru, &h->hugepage_activelist);
1269		/* Fall through */
1270	}
1271	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1272	spin_unlock(&hugetlb_lock);
1273
1274	set_page_private(page, (unsigned long)spool);
1275
1276	vma_commit_reservation(h, vma, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277	return page;
1278}
1279
1280/*
1281 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1282 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1283 * where no ERR_VALUE is expected to be returned.
1284 */
1285struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1286				unsigned long addr, int avoid_reserve)
1287{
1288	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1289	if (IS_ERR(page))
1290		page = NULL;
1291	return page;
1292}
1293
1294int __weak alloc_bootmem_huge_page(struct hstate *h)
 
 
1295{
1296	struct huge_bootmem_page *m;
1297	int nr_nodes, node;
1298
1299	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1300		void *addr;
1301
1302		addr = memblock_virt_alloc_try_nid_nopanic(
1303				huge_page_size(h), huge_page_size(h),
1304				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1305		if (addr) {
1306			/*
1307			 * Use the beginning of the huge page to store the
1308			 * huge_bootmem_page struct (until gather_bootmem
1309			 * puts them into the mem_map).
1310			 */
1311			m = addr;
1312			goto found;
1313		}
1314	}
1315	return 0;
1316
1317found:
1318	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1319	/* Put them into a private list first because mem_map is not up yet */
 
1320	list_add(&m->list, &huge_boot_pages);
1321	m->hstate = h;
1322	return 1;
1323}
1324
1325static void __init prep_compound_huge_page(struct page *page, int order)
 
1326{
1327	if (unlikely(order > (MAX_ORDER - 1)))
1328		prep_compound_gigantic_page(page, order);
1329	else
1330		prep_compound_page(page, order);
1331}
1332
1333/* Put bootmem huge pages into the standard lists after mem_map is up */
1334static void __init gather_bootmem_prealloc(void)
1335{
1336	struct huge_bootmem_page *m;
1337
1338	list_for_each_entry(m, &huge_boot_pages, list) {
 
1339		struct hstate *h = m->hstate;
1340		struct page *page;
1341
1342#ifdef CONFIG_HIGHMEM
1343		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1344		memblock_free_late(__pa(m),
1345				   sizeof(struct huge_bootmem_page));
1346#else
1347		page = virt_to_page(m);
1348#endif
1349		WARN_ON(page_count(page) != 1);
1350		prep_compound_huge_page(page, h->order);
1351		WARN_ON(PageReserved(page));
1352		prep_new_huge_page(h, page, page_to_nid(page));
 
 
1353		/*
1354		 * If we had gigantic hugepages allocated at boot time, we need
1355		 * to restore the 'stolen' pages to totalram_pages in order to
1356		 * fix confusing memory reports from free(1) and another
1357		 * side-effects, like CommitLimit going negative.
1358		 */
1359		if (h->order > (MAX_ORDER - 1))
1360			adjust_managed_page_count(page, 1 << h->order);
 
1361	}
1362}
1363
1364static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1365{
1366	unsigned long i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367
1368	for (i = 0; i < h->max_huge_pages; ++i) {
1369		if (h->order >= MAX_ORDER) {
1370			if (!alloc_bootmem_huge_page(h))
1371				break;
1372		} else if (!alloc_fresh_huge_page(h,
1373					 &node_states[N_MEMORY]))
 
1374			break;
 
 
 
 
 
 
 
 
 
1375	}
1376	h->max_huge_pages = i;
 
1377}
1378
1379static void __init hugetlb_init_hstates(void)
1380{
1381	struct hstate *h;
1382
1383	for_each_hstate(h) {
 
 
 
1384		/* oversize hugepages were init'ed in early boot */
1385		if (h->order < MAX_ORDER)
1386			hugetlb_hstate_alloc_pages(h);
1387	}
1388}
1389
1390static char * __init memfmt(char *buf, unsigned long n)
1391{
1392	if (n >= (1UL << 30))
1393		sprintf(buf, "%lu GB", n >> 30);
1394	else if (n >= (1UL << 20))
1395		sprintf(buf, "%lu MB", n >> 20);
1396	else
1397		sprintf(buf, "%lu KB", n >> 10);
1398	return buf;
1399}
1400
1401static void __init report_hugepages(void)
1402{
1403	struct hstate *h;
1404
1405	for_each_hstate(h) {
1406		char buf[32];
 
 
1407		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1408			memfmt(buf, huge_page_size(h)),
1409			h->free_huge_pages);
1410	}
1411}
1412
1413#ifdef CONFIG_HIGHMEM
1414static void try_to_free_low(struct hstate *h, unsigned long count,
1415						nodemask_t *nodes_allowed)
1416{
1417	int i;
1418
1419	if (h->order >= MAX_ORDER)
1420		return;
1421
1422	for_each_node_mask(i, *nodes_allowed) {
1423		struct page *page, *next;
1424		struct list_head *freel = &h->hugepage_freelists[i];
1425		list_for_each_entry_safe(page, next, freel, lru) {
1426			if (count >= h->nr_huge_pages)
1427				return;
1428			if (PageHighMem(page))
1429				continue;
1430			list_del(&page->lru);
1431			update_and_free_page(h, page);
1432			h->free_huge_pages--;
1433			h->free_huge_pages_node[page_to_nid(page)]--;
1434		}
1435	}
1436}
1437#else
1438static inline void try_to_free_low(struct hstate *h, unsigned long count,
1439						nodemask_t *nodes_allowed)
1440{
1441}
1442#endif
1443
1444/*
1445 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1446 * balanced by operating on them in a round-robin fashion.
1447 * Returns 1 if an adjustment was made.
1448 */
1449static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1450				int delta)
1451{
1452	int nr_nodes, node;
1453
1454	VM_BUG_ON(delta != -1 && delta != 1);
1455
1456	if (delta < 0) {
1457		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1458			if (h->surplus_huge_pages_node[node])
1459				goto found;
1460		}
1461	} else {
1462		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1463			if (h->surplus_huge_pages_node[node] <
1464					h->nr_huge_pages_node[node])
1465				goto found;
1466		}
1467	}
1468	return 0;
1469
1470found:
1471	h->surplus_huge_pages += delta;
1472	h->surplus_huge_pages_node[node] += delta;
1473	return 1;
1474}
1475
1476#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1477static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1478						nodemask_t *nodes_allowed)
1479{
1480	unsigned long min_count, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1481
1482	if (h->order >= MAX_ORDER)
1483		return h->max_huge_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
1484
1485	/*
1486	 * Increase the pool size
1487	 * First take pages out of surplus state.  Then make up the
1488	 * remaining difference by allocating fresh huge pages.
1489	 *
1490	 * We might race with alloc_buddy_huge_page() here and be unable
1491	 * to convert a surplus huge page to a normal huge page. That is
1492	 * not critical, though, it just means the overall size of the
1493	 * pool might be one hugepage larger than it needs to be, but
1494	 * within all the constraints specified by the sysctls.
1495	 */
1496	spin_lock(&hugetlb_lock);
1497	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1498		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1499			break;
1500	}
1501
1502	while (count > persistent_huge_pages(h)) {
1503		/*
1504		 * If this allocation races such that we no longer need the
1505		 * page, free_huge_page will handle it by freeing the page
1506		 * and reducing the surplus.
1507		 */
1508		spin_unlock(&hugetlb_lock);
1509		ret = alloc_fresh_huge_page(h, nodes_allowed);
 
 
 
 
 
1510		spin_lock(&hugetlb_lock);
1511		if (!ret)
1512			goto out;
1513
1514		/* Bail for signals. Probably ctrl-c from user */
1515		if (signal_pending(current))
1516			goto out;
1517	}
1518
1519	/*
1520	 * Decrease the pool size
1521	 * First return free pages to the buddy allocator (being careful
1522	 * to keep enough around to satisfy reservations).  Then place
1523	 * pages into surplus state as needed so the pool will shrink
1524	 * to the desired size as pages become free.
1525	 *
1526	 * By placing pages into the surplus state independent of the
1527	 * overcommit value, we are allowing the surplus pool size to
1528	 * exceed overcommit. There are few sane options here. Since
1529	 * alloc_buddy_huge_page() is checking the global counter,
1530	 * though, we'll note that we're not allowed to exceed surplus
1531	 * and won't grow the pool anywhere else. Not until one of the
1532	 * sysctls are changed, or the surplus pages go out of use.
1533	 */
1534	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1535	min_count = max(count, min_count);
1536	try_to_free_low(h, min_count, nodes_allowed);
1537	while (min_count < persistent_huge_pages(h)) {
1538		if (!free_pool_huge_page(h, nodes_allowed, 0))
1539			break;
1540		cond_resched_lock(&hugetlb_lock);
1541	}
1542	while (count < persistent_huge_pages(h)) {
1543		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1544			break;
1545	}
1546out:
1547	ret = persistent_huge_pages(h);
1548	spin_unlock(&hugetlb_lock);
1549	return ret;
 
 
 
1550}
1551
1552#define HSTATE_ATTR_RO(_name) \
1553	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1554
1555#define HSTATE_ATTR(_name) \
1556	static struct kobj_attribute _name##_attr = \
1557		__ATTR(_name, 0644, _name##_show, _name##_store)
1558
1559static struct kobject *hugepages_kobj;
1560static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1561
1562static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1563
1564static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1565{
1566	int i;
1567
1568	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1569		if (hstate_kobjs[i] == kobj) {
1570			if (nidp)
1571				*nidp = NUMA_NO_NODE;
1572			return &hstates[i];
1573		}
1574
1575	return kobj_to_node_hstate(kobj, nidp);
1576}
1577
1578static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1579					struct kobj_attribute *attr, char *buf)
1580{
1581	struct hstate *h;
1582	unsigned long nr_huge_pages;
1583	int nid;
1584
1585	h = kobj_to_hstate(kobj, &nid);
1586	if (nid == NUMA_NO_NODE)
1587		nr_huge_pages = h->nr_huge_pages;
1588	else
1589		nr_huge_pages = h->nr_huge_pages_node[nid];
1590
1591	return sprintf(buf, "%lu\n", nr_huge_pages);
1592}
1593
1594static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1595			struct kobject *kobj, struct kobj_attribute *attr,
1596			const char *buf, size_t len)
1597{
1598	int err;
1599	int nid;
1600	unsigned long count;
1601	struct hstate *h;
1602	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1603
1604	err = kstrtoul(buf, 10, &count);
1605	if (err)
1606		goto out;
1607
1608	h = kobj_to_hstate(kobj, &nid);
1609	if (h->order >= MAX_ORDER) {
1610		err = -EINVAL;
1611		goto out;
1612	}
1613
1614	if (nid == NUMA_NO_NODE) {
1615		/*
1616		 * global hstate attribute
1617		 */
1618		if (!(obey_mempolicy &&
1619				init_nodemask_of_mempolicy(nodes_allowed))) {
1620			NODEMASK_FREE(nodes_allowed);
1621			nodes_allowed = &node_states[N_MEMORY];
1622		}
1623	} else if (nodes_allowed) {
1624		/*
1625		 * per node hstate attribute: adjust count to global,
1626		 * but restrict alloc/free to the specified node.
1627		 */
1628		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1629		init_nodemask_of_node(nodes_allowed, nid);
1630	} else
1631		nodes_allowed = &node_states[N_MEMORY];
 
 
 
 
1632
1633	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
 
 
 
 
 
 
 
1634
1635	if (nodes_allowed != &node_states[N_MEMORY])
1636		NODEMASK_FREE(nodes_allowed);
 
1637
1638	return len;
1639out:
1640	NODEMASK_FREE(nodes_allowed);
1641	return err;
1642}
1643
1644static ssize_t nr_hugepages_show(struct kobject *kobj,
1645				       struct kobj_attribute *attr, char *buf)
1646{
1647	return nr_hugepages_show_common(kobj, attr, buf);
1648}
1649
1650static ssize_t nr_hugepages_store(struct kobject *kobj,
1651	       struct kobj_attribute *attr, const char *buf, size_t len)
1652{
1653	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1654}
1655HSTATE_ATTR(nr_hugepages);
1656
1657#ifdef CONFIG_NUMA
1658
1659/*
1660 * hstate attribute for optionally mempolicy-based constraint on persistent
1661 * huge page alloc/free.
1662 */
1663static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1664				       struct kobj_attribute *attr, char *buf)
1665{
1666	return nr_hugepages_show_common(kobj, attr, buf);
1667}
1668
1669static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1670	       struct kobj_attribute *attr, const char *buf, size_t len)
1671{
1672	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1673}
1674HSTATE_ATTR(nr_hugepages_mempolicy);
1675#endif
1676
1677
1678static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1679					struct kobj_attribute *attr, char *buf)
1680{
1681	struct hstate *h = kobj_to_hstate(kobj, NULL);
1682	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1683}
1684
1685static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1686		struct kobj_attribute *attr, const char *buf, size_t count)
1687{
1688	int err;
1689	unsigned long input;
1690	struct hstate *h = kobj_to_hstate(kobj, NULL);
1691
1692	if (h->order >= MAX_ORDER)
1693		return -EINVAL;
1694
1695	err = kstrtoul(buf, 10, &input);
1696	if (err)
1697		return err;
1698
1699	spin_lock(&hugetlb_lock);
1700	h->nr_overcommit_huge_pages = input;
1701	spin_unlock(&hugetlb_lock);
1702
1703	return count;
1704}
1705HSTATE_ATTR(nr_overcommit_hugepages);
1706
1707static ssize_t free_hugepages_show(struct kobject *kobj,
1708					struct kobj_attribute *attr, char *buf)
1709{
1710	struct hstate *h;
1711	unsigned long free_huge_pages;
1712	int nid;
1713
1714	h = kobj_to_hstate(kobj, &nid);
1715	if (nid == NUMA_NO_NODE)
1716		free_huge_pages = h->free_huge_pages;
1717	else
1718		free_huge_pages = h->free_huge_pages_node[nid];
1719
1720	return sprintf(buf, "%lu\n", free_huge_pages);
1721}
1722HSTATE_ATTR_RO(free_hugepages);
1723
1724static ssize_t resv_hugepages_show(struct kobject *kobj,
1725					struct kobj_attribute *attr, char *buf)
1726{
1727	struct hstate *h = kobj_to_hstate(kobj, NULL);
1728	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1729}
1730HSTATE_ATTR_RO(resv_hugepages);
1731
1732static ssize_t surplus_hugepages_show(struct kobject *kobj,
1733					struct kobj_attribute *attr, char *buf)
1734{
1735	struct hstate *h;
1736	unsigned long surplus_huge_pages;
1737	int nid;
1738
1739	h = kobj_to_hstate(kobj, &nid);
1740	if (nid == NUMA_NO_NODE)
1741		surplus_huge_pages = h->surplus_huge_pages;
1742	else
1743		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1744
1745	return sprintf(buf, "%lu\n", surplus_huge_pages);
1746}
1747HSTATE_ATTR_RO(surplus_hugepages);
1748
1749static struct attribute *hstate_attrs[] = {
1750	&nr_hugepages_attr.attr,
1751	&nr_overcommit_hugepages_attr.attr,
1752	&free_hugepages_attr.attr,
1753	&resv_hugepages_attr.attr,
1754	&surplus_hugepages_attr.attr,
1755#ifdef CONFIG_NUMA
1756	&nr_hugepages_mempolicy_attr.attr,
1757#endif
1758	NULL,
1759};
1760
1761static struct attribute_group hstate_attr_group = {
1762	.attrs = hstate_attrs,
1763};
1764
1765static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1766				    struct kobject **hstate_kobjs,
1767				    struct attribute_group *hstate_attr_group)
1768{
1769	int retval;
1770	int hi = hstate_index(h);
1771
1772	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1773	if (!hstate_kobjs[hi])
1774		return -ENOMEM;
1775
1776	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1777	if (retval)
1778		kobject_put(hstate_kobjs[hi]);
1779
1780	return retval;
1781}
1782
1783static void __init hugetlb_sysfs_init(void)
1784{
1785	struct hstate *h;
1786	int err;
1787
1788	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1789	if (!hugepages_kobj)
1790		return;
1791
1792	for_each_hstate(h) {
1793		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1794					 hstate_kobjs, &hstate_attr_group);
1795		if (err)
1796			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1797	}
1798}
1799
1800#ifdef CONFIG_NUMA
1801
1802/*
1803 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1804 * with node devices in node_devices[] using a parallel array.  The array
1805 * index of a node device or _hstate == node id.
1806 * This is here to avoid any static dependency of the node device driver, in
1807 * the base kernel, on the hugetlb module.
1808 */
1809struct node_hstate {
1810	struct kobject		*hugepages_kobj;
1811	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1812};
1813struct node_hstate node_hstates[MAX_NUMNODES];
1814
1815/*
1816 * A subset of global hstate attributes for node devices
1817 */
1818static struct attribute *per_node_hstate_attrs[] = {
1819	&nr_hugepages_attr.attr,
1820	&free_hugepages_attr.attr,
1821	&surplus_hugepages_attr.attr,
1822	NULL,
1823};
1824
1825static struct attribute_group per_node_hstate_attr_group = {
1826	.attrs = per_node_hstate_attrs,
1827};
1828
1829/*
1830 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1831 * Returns node id via non-NULL nidp.
1832 */
1833static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1834{
1835	int nid;
1836
1837	for (nid = 0; nid < nr_node_ids; nid++) {
1838		struct node_hstate *nhs = &node_hstates[nid];
1839		int i;
1840		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1841			if (nhs->hstate_kobjs[i] == kobj) {
1842				if (nidp)
1843					*nidp = nid;
1844				return &hstates[i];
1845			}
1846	}
1847
1848	BUG();
1849	return NULL;
1850}
1851
1852/*
1853 * Unregister hstate attributes from a single node device.
1854 * No-op if no hstate attributes attached.
1855 */
1856static void hugetlb_unregister_node(struct node *node)
1857{
1858	struct hstate *h;
1859	struct node_hstate *nhs = &node_hstates[node->dev.id];
1860
1861	if (!nhs->hugepages_kobj)
1862		return;		/* no hstate attributes */
1863
1864	for_each_hstate(h) {
1865		int idx = hstate_index(h);
1866		if (nhs->hstate_kobjs[idx]) {
1867			kobject_put(nhs->hstate_kobjs[idx]);
1868			nhs->hstate_kobjs[idx] = NULL;
1869		}
1870	}
1871
1872	kobject_put(nhs->hugepages_kobj);
1873	nhs->hugepages_kobj = NULL;
1874}
1875
1876/*
1877 * hugetlb module exit:  unregister hstate attributes from node devices
1878 * that have them.
1879 */
1880static void hugetlb_unregister_all_nodes(void)
1881{
1882	int nid;
1883
1884	/*
1885	 * disable node device registrations.
1886	 */
1887	register_hugetlbfs_with_node(NULL, NULL);
1888
1889	/*
1890	 * remove hstate attributes from any nodes that have them.
1891	 */
1892	for (nid = 0; nid < nr_node_ids; nid++)
1893		hugetlb_unregister_node(node_devices[nid]);
1894}
1895
1896/*
1897 * Register hstate attributes for a single node device.
1898 * No-op if attributes already registered.
1899 */
1900static void hugetlb_register_node(struct node *node)
1901{
1902	struct hstate *h;
1903	struct node_hstate *nhs = &node_hstates[node->dev.id];
1904	int err;
1905
1906	if (nhs->hugepages_kobj)
1907		return;		/* already allocated */
1908
1909	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1910							&node->dev.kobj);
1911	if (!nhs->hugepages_kobj)
1912		return;
1913
1914	for_each_hstate(h) {
1915		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1916						nhs->hstate_kobjs,
1917						&per_node_hstate_attr_group);
1918		if (err) {
1919			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1920				h->name, node->dev.id);
1921			hugetlb_unregister_node(node);
1922			break;
1923		}
1924	}
1925}
1926
1927/*
1928 * hugetlb init time:  register hstate attributes for all registered node
1929 * devices of nodes that have memory.  All on-line nodes should have
1930 * registered their associated device by this time.
1931 */
1932static void hugetlb_register_all_nodes(void)
1933{
1934	int nid;
1935
1936	for_each_node_state(nid, N_MEMORY) {
1937		struct node *node = node_devices[nid];
1938		if (node->dev.id == nid)
1939			hugetlb_register_node(node);
1940	}
1941
1942	/*
1943	 * Let the node device driver know we're here so it can
1944	 * [un]register hstate attributes on node hotplug.
1945	 */
1946	register_hugetlbfs_with_node(hugetlb_register_node,
1947				     hugetlb_unregister_node);
1948}
1949#else	/* !CONFIG_NUMA */
1950
1951static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1952{
1953	BUG();
1954	if (nidp)
1955		*nidp = -1;
1956	return NULL;
1957}
1958
1959static void hugetlb_unregister_all_nodes(void) { }
1960
1961static void hugetlb_register_all_nodes(void) { }
1962
1963#endif
1964
1965static void __exit hugetlb_exit(void)
1966{
1967	struct hstate *h;
1968
1969	hugetlb_unregister_all_nodes();
1970
1971	for_each_hstate(h) {
1972		kobject_put(hstate_kobjs[hstate_index(h)]);
1973	}
1974
1975	kobject_put(hugepages_kobj);
1976	kfree(htlb_fault_mutex_table);
1977}
1978module_exit(hugetlb_exit);
1979
1980static int __init hugetlb_init(void)
1981{
1982	int i;
1983
1984	if (!hugepages_supported())
1985		return 0;
1986
1987	if (!size_to_hstate(default_hstate_size)) {
 
 
 
 
 
1988		default_hstate_size = HPAGE_SIZE;
1989		if (!size_to_hstate(default_hstate_size))
1990			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1991	}
1992	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1993	if (default_hstate_max_huge_pages)
1994		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
 
 
1995
1996	hugetlb_init_hstates();
1997	gather_bootmem_prealloc();
1998	report_hugepages();
1999
2000	hugetlb_sysfs_init();
2001	hugetlb_register_all_nodes();
2002	hugetlb_cgroup_file_init();
2003
2004#ifdef CONFIG_SMP
2005	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2006#else
2007	num_fault_mutexes = 1;
2008#endif
2009	htlb_fault_mutex_table =
2010		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2011	BUG_ON(!htlb_fault_mutex_table);
 
2012
2013	for (i = 0; i < num_fault_mutexes; i++)
2014		mutex_init(&htlb_fault_mutex_table[i]);
2015	return 0;
2016}
2017module_init(hugetlb_init);
2018
2019/* Should be called on processing a hugepagesz=... option */
2020void __init hugetlb_add_hstate(unsigned order)
 
 
 
 
 
2021{
2022	struct hstate *h;
2023	unsigned long i;
2024
2025	if (size_to_hstate(PAGE_SIZE << order)) {
2026		pr_warning("hugepagesz= specified twice, ignoring\n");
2027		return;
2028	}
2029	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2030	BUG_ON(order == 0);
2031	h = &hstates[hugetlb_max_hstate++];
2032	h->order = order;
2033	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2034	h->nr_huge_pages = 0;
2035	h->free_huge_pages = 0;
2036	for (i = 0; i < MAX_NUMNODES; ++i)
2037		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2038	INIT_LIST_HEAD(&h->hugepage_activelist);
2039	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2040	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2041	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2042					huge_page_size(h)/1024);
2043
2044	parsed_hstate = h;
2045}
2046
2047static int __init hugetlb_nrpages_setup(char *s)
2048{
2049	unsigned long *mhp;
2050	static unsigned long *last_mhp;
2051
 
 
 
 
 
 
2052	/*
2053	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2054	 * so this hugepages= parameter goes to the "default hstate".
2055	 */
2056	if (!hugetlb_max_hstate)
2057		mhp = &default_hstate_max_huge_pages;
2058	else
2059		mhp = &parsed_hstate->max_huge_pages;
2060
2061	if (mhp == last_mhp) {
2062		pr_warning("hugepages= specified twice without "
2063			   "interleaving hugepagesz=, ignoring\n");
2064		return 1;
2065	}
2066
2067	if (sscanf(s, "%lu", mhp) <= 0)
2068		*mhp = 0;
2069
2070	/*
2071	 * Global state is always initialized later in hugetlb_init.
2072	 * But we need to allocate >= MAX_ORDER hstates here early to still
2073	 * use the bootmem allocator.
2074	 */
2075	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2076		hugetlb_hstate_alloc_pages(parsed_hstate);
2077
2078	last_mhp = mhp;
2079
2080	return 1;
2081}
2082__setup("hugepages=", hugetlb_nrpages_setup);
2083
2084static int __init hugetlb_default_setup(char *s)
2085{
2086	default_hstate_size = memparse(s, &s);
2087	return 1;
2088}
2089__setup("default_hugepagesz=", hugetlb_default_setup);
2090
2091static unsigned int cpuset_mems_nr(unsigned int *array)
2092{
2093	int node;
2094	unsigned int nr = 0;
2095
2096	for_each_node_mask(node, cpuset_current_mems_allowed)
2097		nr += array[node];
2098
2099	return nr;
2100}
2101
2102#ifdef CONFIG_SYSCTL
2103static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2104			 struct ctl_table *table, int write,
2105			 void __user *buffer, size_t *length, loff_t *ppos)
2106{
2107	struct hstate *h = &default_hstate;
2108	unsigned long tmp;
2109	int ret;
2110
2111	if (!hugepages_supported())
2112		return -ENOTSUPP;
2113
2114	tmp = h->max_huge_pages;
2115
2116	if (write && h->order >= MAX_ORDER)
2117		return -EINVAL;
2118
2119	table->data = &tmp;
2120	table->maxlen = sizeof(unsigned long);
2121	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2122	if (ret)
2123		goto out;
2124
2125	if (write) {
2126		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2127						GFP_KERNEL | __GFP_NORETRY);
2128		if (!(obey_mempolicy &&
2129			       init_nodemask_of_mempolicy(nodes_allowed))) {
2130			NODEMASK_FREE(nodes_allowed);
2131			nodes_allowed = &node_states[N_MEMORY];
2132		}
2133		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2134
2135		if (nodes_allowed != &node_states[N_MEMORY])
2136			NODEMASK_FREE(nodes_allowed);
2137	}
2138out:
2139	return ret;
2140}
2141
2142int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2143			  void __user *buffer, size_t *length, loff_t *ppos)
2144{
2145
2146	return hugetlb_sysctl_handler_common(false, table, write,
2147							buffer, length, ppos);
2148}
2149
2150#ifdef CONFIG_NUMA
2151int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2152			  void __user *buffer, size_t *length, loff_t *ppos)
2153{
2154	return hugetlb_sysctl_handler_common(true, table, write,
2155							buffer, length, ppos);
2156}
2157#endif /* CONFIG_NUMA */
2158
2159int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2160			void __user *buffer,
2161			size_t *length, loff_t *ppos)
2162{
2163	struct hstate *h = &default_hstate;
2164	unsigned long tmp;
2165	int ret;
2166
2167	if (!hugepages_supported())
2168		return -ENOTSUPP;
2169
2170	tmp = h->nr_overcommit_huge_pages;
2171
2172	if (write && h->order >= MAX_ORDER)
2173		return -EINVAL;
2174
2175	table->data = &tmp;
2176	table->maxlen = sizeof(unsigned long);
2177	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2178	if (ret)
2179		goto out;
2180
2181	if (write) {
2182		spin_lock(&hugetlb_lock);
2183		h->nr_overcommit_huge_pages = tmp;
2184		spin_unlock(&hugetlb_lock);
2185	}
2186out:
2187	return ret;
2188}
2189
2190#endif /* CONFIG_SYSCTL */
2191
2192void hugetlb_report_meminfo(struct seq_file *m)
2193{
2194	struct hstate *h = &default_hstate;
 
 
2195	if (!hugepages_supported())
2196		return;
2197	seq_printf(m,
2198			"HugePages_Total:   %5lu\n"
2199			"HugePages_Free:    %5lu\n"
2200			"HugePages_Rsvd:    %5lu\n"
2201			"HugePages_Surp:    %5lu\n"
2202			"Hugepagesize:   %8lu kB\n",
2203			h->nr_huge_pages,
2204			h->free_huge_pages,
2205			h->resv_huge_pages,
2206			h->surplus_huge_pages,
2207			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
 
 
 
 
 
 
 
 
 
 
2208}
2209
2210int hugetlb_report_node_meminfo(int nid, char *buf)
2211{
2212	struct hstate *h = &default_hstate;
2213	if (!hugepages_supported())
2214		return 0;
2215	return sprintf(buf,
2216		"Node %d HugePages_Total: %5u\n"
2217		"Node %d HugePages_Free:  %5u\n"
2218		"Node %d HugePages_Surp:  %5u\n",
2219		nid, h->nr_huge_pages_node[nid],
2220		nid, h->free_huge_pages_node[nid],
2221		nid, h->surplus_huge_pages_node[nid]);
2222}
2223
2224void hugetlb_show_meminfo(void)
2225{
2226	struct hstate *h;
2227	int nid;
2228
2229	if (!hugepages_supported())
2230		return;
2231
2232	for_each_node_state(nid, N_MEMORY)
2233		for_each_hstate(h)
2234			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2235				nid,
2236				h->nr_huge_pages_node[nid],
2237				h->free_huge_pages_node[nid],
2238				h->surplus_huge_pages_node[nid],
2239				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2240}
2241
 
 
 
 
 
 
2242/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2243unsigned long hugetlb_total_pages(void)
2244{
2245	struct hstate *h;
2246	unsigned long nr_total_pages = 0;
2247
2248	for_each_hstate(h)
2249		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2250	return nr_total_pages;
2251}
2252
2253static int hugetlb_acct_memory(struct hstate *h, long delta)
2254{
2255	int ret = -ENOMEM;
2256
2257	spin_lock(&hugetlb_lock);
2258	/*
2259	 * When cpuset is configured, it breaks the strict hugetlb page
2260	 * reservation as the accounting is done on a global variable. Such
2261	 * reservation is completely rubbish in the presence of cpuset because
2262	 * the reservation is not checked against page availability for the
2263	 * current cpuset. Application can still potentially OOM'ed by kernel
2264	 * with lack of free htlb page in cpuset that the task is in.
2265	 * Attempt to enforce strict accounting with cpuset is almost
2266	 * impossible (or too ugly) because cpuset is too fluid that
2267	 * task or memory node can be dynamically moved between cpusets.
2268	 *
2269	 * The change of semantics for shared hugetlb mapping with cpuset is
2270	 * undesirable. However, in order to preserve some of the semantics,
2271	 * we fall back to check against current free page availability as
2272	 * a best attempt and hopefully to minimize the impact of changing
2273	 * semantics that cpuset has.
2274	 */
2275	if (delta > 0) {
2276		if (gather_surplus_pages(h, delta) < 0)
2277			goto out;
2278
2279		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2280			return_unused_surplus_pages(h, delta);
2281			goto out;
2282		}
2283	}
2284
2285	ret = 0;
2286	if (delta < 0)
2287		return_unused_surplus_pages(h, (unsigned long) -delta);
2288
2289out:
2290	spin_unlock(&hugetlb_lock);
2291	return ret;
2292}
2293
2294static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2295{
2296	struct resv_map *resv = vma_resv_map(vma);
2297
2298	/*
2299	 * This new VMA should share its siblings reservation map if present.
2300	 * The VMA will only ever have a valid reservation map pointer where
2301	 * it is being copied for another still existing VMA.  As that VMA
2302	 * has a reference to the reservation map it cannot disappear until
2303	 * after this open call completes.  It is therefore safe to take a
2304	 * new reference here without additional locking.
2305	 */
2306	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2307		kref_get(&resv->refs);
2308}
2309
2310static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2311{
2312	struct hstate *h = hstate_vma(vma);
2313	struct resv_map *resv = vma_resv_map(vma);
2314	struct hugepage_subpool *spool = subpool_vma(vma);
2315	unsigned long reserve, start, end;
 
2316
2317	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2318		return;
2319
2320	start = vma_hugecache_offset(h, vma, vma->vm_start);
2321	end = vma_hugecache_offset(h, vma, vma->vm_end);
2322
2323	reserve = (end - start) - region_count(resv, start, end);
2324
2325	kref_put(&resv->refs, resv_map_release);
2326
2327	if (reserve) {
2328		hugetlb_acct_memory(h, -reserve);
2329		hugepage_subpool_put_pages(spool, reserve);
 
 
 
 
2330	}
2331}
2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2333/*
2334 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2335 * handle_mm_fault() to try to instantiate regular-sized pages in the
2336 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2337 * this far.
2338 */
2339static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2340{
2341	BUG();
2342	return 0;
2343}
2344
 
 
 
 
 
 
 
2345const struct vm_operations_struct hugetlb_vm_ops = {
2346	.fault = hugetlb_vm_op_fault,
2347	.open = hugetlb_vm_op_open,
2348	.close = hugetlb_vm_op_close,
 
 
2349};
2350
2351static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2352				int writable)
2353{
2354	pte_t entry;
2355
2356	if (writable) {
2357		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2358					 vma->vm_page_prot)));
2359	} else {
2360		entry = huge_pte_wrprotect(mk_huge_pte(page,
2361					   vma->vm_page_prot));
2362	}
2363	entry = pte_mkyoung(entry);
2364	entry = pte_mkhuge(entry);
2365	entry = arch_make_huge_pte(entry, vma, page, writable);
2366
2367	return entry;
2368}
2369
2370static void set_huge_ptep_writable(struct vm_area_struct *vma,
2371				   unsigned long address, pte_t *ptep)
2372{
2373	pte_t entry;
2374
2375	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2376	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2377		update_mmu_cache(vma, address, ptep);
2378}
2379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380
2381int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2382			    struct vm_area_struct *vma)
2383{
2384	pte_t *src_pte, *dst_pte, entry;
2385	struct page *ptepage;
2386	unsigned long addr;
2387	int cow;
2388	struct hstate *h = hstate_vma(vma);
2389	unsigned long sz = huge_page_size(h);
2390	unsigned long mmun_start;	/* For mmu_notifiers */
2391	unsigned long mmun_end;		/* For mmu_notifiers */
2392	int ret = 0;
2393
2394	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2395
2396	mmun_start = vma->vm_start;
2397	mmun_end = vma->vm_end;
2398	if (cow)
2399		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
 
 
2400
2401	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2402		spinlock_t *src_ptl, *dst_ptl;
2403		src_pte = huge_pte_offset(src, addr);
2404		if (!src_pte)
2405			continue;
2406		dst_pte = huge_pte_alloc(dst, addr, sz);
2407		if (!dst_pte) {
2408			ret = -ENOMEM;
2409			break;
2410		}
2411
2412		/* If the pagetables are shared don't copy or take references */
2413		if (dst_pte == src_pte)
 
 
 
 
 
 
 
 
 
2414			continue;
2415
2416		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2417		src_ptl = huge_pte_lockptr(h, src, src_pte);
2418		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2419		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2420			if (cow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421				huge_ptep_set_wrprotect(src, addr, src_pte);
 
2422			entry = huge_ptep_get(src_pte);
2423			ptepage = pte_page(entry);
2424			get_page(ptepage);
2425			page_dup_rmap(ptepage);
2426			set_huge_pte_at(dst, addr, dst_pte, entry);
 
2427		}
2428		spin_unlock(src_ptl);
2429		spin_unlock(dst_ptl);
2430	}
2431
2432	if (cow)
2433		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2434
2435	return ret;
2436}
2437
2438static int is_hugetlb_entry_migration(pte_t pte)
2439{
2440	swp_entry_t swp;
2441
2442	if (huge_pte_none(pte) || pte_present(pte))
2443		return 0;
2444	swp = pte_to_swp_entry(pte);
2445	if (non_swap_entry(swp) && is_migration_entry(swp))
2446		return 1;
2447	else
2448		return 0;
2449}
2450
2451static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2452{
2453	swp_entry_t swp;
2454
2455	if (huge_pte_none(pte) || pte_present(pte))
2456		return 0;
2457	swp = pte_to_swp_entry(pte);
2458	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2459		return 1;
2460	else
2461		return 0;
2462}
2463
2464void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2465			    unsigned long start, unsigned long end,
2466			    struct page *ref_page)
2467{
2468	int force_flush = 0;
2469	struct mm_struct *mm = vma->vm_mm;
2470	unsigned long address;
2471	pte_t *ptep;
2472	pte_t pte;
2473	spinlock_t *ptl;
2474	struct page *page;
2475	struct hstate *h = hstate_vma(vma);
2476	unsigned long sz = huge_page_size(h);
2477	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2478	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2479
2480	WARN_ON(!is_vm_hugetlb_page(vma));
2481	BUG_ON(start & ~huge_page_mask(h));
2482	BUG_ON(end & ~huge_page_mask(h));
2483
 
 
 
 
 
2484	tlb_start_vma(tlb, vma);
2485	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2486again:
2487	for (address = start; address < end; address += sz) {
2488		ptep = huge_pte_offset(mm, address);
 
 
 
 
 
 
 
2489		if (!ptep)
2490			continue;
2491
2492		ptl = huge_pte_lock(h, mm, ptep);
2493		if (huge_pmd_unshare(mm, &address, ptep))
2494			goto unlock;
 
 
 
 
 
 
2495
2496		pte = huge_ptep_get(ptep);
2497		if (huge_pte_none(pte))
2498			goto unlock;
 
 
2499
2500		/*
2501		 * HWPoisoned hugepage is already unmapped and dropped reference
 
2502		 */
2503		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2504			huge_pte_clear(mm, address, ptep);
2505			goto unlock;
 
2506		}
2507
2508		page = pte_page(pte);
2509		/*
2510		 * If a reference page is supplied, it is because a specific
2511		 * page is being unmapped, not a range. Ensure the page we
2512		 * are about to unmap is the actual page of interest.
2513		 */
2514		if (ref_page) {
2515			if (page != ref_page)
2516				goto unlock;
2517
 
2518			/*
2519			 * Mark the VMA as having unmapped its page so that
2520			 * future faults in this VMA will fail rather than
2521			 * looking like data was lost
2522			 */
2523			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2524		}
2525
2526		pte = huge_ptep_get_and_clear(mm, address, ptep);
2527		tlb_remove_tlb_entry(tlb, ptep, address);
2528		if (huge_pte_dirty(pte))
2529			set_page_dirty(page);
2530
2531		page_remove_rmap(page);
2532		force_flush = !__tlb_remove_page(tlb, page);
2533		if (force_flush) {
2534			spin_unlock(ptl);
2535			break;
2536		}
2537		/* Bail out after unmapping reference page if supplied */
2538		if (ref_page) {
2539			spin_unlock(ptl);
2540			break;
2541		}
2542unlock:
2543		spin_unlock(ptl);
2544	}
2545	/*
2546	 * mmu_gather ran out of room to batch pages, we break out of
2547	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2548	 * and page-free while holding it.
2549	 */
2550	if (force_flush) {
2551		force_flush = 0;
2552		tlb_flush_mmu(tlb);
2553		if (address < end && !ref_page)
2554			goto again;
2555	}
2556	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2557	tlb_end_vma(tlb, vma);
2558}
2559
2560void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2561			  struct vm_area_struct *vma, unsigned long start,
2562			  unsigned long end, struct page *ref_page)
2563{
2564	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2565
2566	/*
2567	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2568	 * test will fail on a vma being torn down, and not grab a page table
2569	 * on its way out.  We're lucky that the flag has such an appropriate
2570	 * name, and can in fact be safely cleared here. We could clear it
2571	 * before the __unmap_hugepage_range above, but all that's necessary
2572	 * is to clear it before releasing the i_mmap_mutex. This works
2573	 * because in the context this is called, the VMA is about to be
2574	 * destroyed and the i_mmap_mutex is held.
2575	 */
2576	vma->vm_flags &= ~VM_MAYSHARE;
2577}
2578
2579void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2580			  unsigned long end, struct page *ref_page)
2581{
2582	struct mm_struct *mm;
2583	struct mmu_gather tlb;
 
 
 
 
 
 
 
 
 
 
 
2584
2585	mm = vma->vm_mm;
2586
2587	tlb_gather_mmu(&tlb, mm, start, end);
2588	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2589	tlb_finish_mmu(&tlb, start, end);
2590}
2591
2592/*
2593 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2594 * mappping it owns the reserve page for. The intention is to unmap the page
2595 * from other VMAs and let the children be SIGKILLed if they are faulting the
2596 * same region.
2597 */
2598static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2599				struct page *page, unsigned long address)
2600{
2601	struct hstate *h = hstate_vma(vma);
2602	struct vm_area_struct *iter_vma;
2603	struct address_space *mapping;
2604	pgoff_t pgoff;
2605
2606	/*
2607	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2608	 * from page cache lookup which is in HPAGE_SIZE units.
2609	 */
2610	address = address & huge_page_mask(h);
2611	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2612			vma->vm_pgoff;
2613	mapping = file_inode(vma->vm_file)->i_mapping;
2614
2615	/*
2616	 * Take the mapping lock for the duration of the table walk. As
2617	 * this mapping should be shared between all the VMAs,
2618	 * __unmap_hugepage_range() is called as the lock is already held
2619	 */
2620	mutex_lock(&mapping->i_mmap_mutex);
2621	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2622		/* Do not unmap the current VMA */
2623		if (iter_vma == vma)
2624			continue;
2625
2626		/*
 
 
 
 
 
 
 
 
2627		 * Unmap the page from other VMAs without their own reserves.
2628		 * They get marked to be SIGKILLed if they fault in these
2629		 * areas. This is because a future no-page fault on this VMA
2630		 * could insert a zeroed page instead of the data existing
2631		 * from the time of fork. This would look like data corruption
2632		 */
2633		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2634			unmap_hugepage_range(iter_vma, address,
2635					     address + huge_page_size(h), page);
2636	}
2637	mutex_unlock(&mapping->i_mmap_mutex);
2638
2639	return 1;
2640}
2641
2642/*
2643 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2644 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2645 * cannot race with other handlers or page migration.
2646 * Keep the pte_same checks anyway to make transition from the mutex easier.
2647 */
2648static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2649			unsigned long address, pte_t *ptep, pte_t pte,
2650			struct page *pagecache_page, spinlock_t *ptl)
2651{
 
2652	struct hstate *h = hstate_vma(vma);
2653	struct page *old_page, *new_page;
2654	int outside_reserve = 0;
2655	unsigned long mmun_start;	/* For mmu_notifiers */
2656	unsigned long mmun_end;		/* For mmu_notifiers */
 
2657
 
2658	old_page = pte_page(pte);
2659
2660retry_avoidcopy:
2661	/* If no-one else is actually using this page, avoid the copy
2662	 * and just make the page writable */
2663	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2664		page_move_anon_rmap(old_page, vma, address);
2665		set_huge_ptep_writable(vma, address, ptep);
2666		return 0;
2667	}
2668
2669	/*
2670	 * If the process that created a MAP_PRIVATE mapping is about to
2671	 * perform a COW due to a shared page count, attempt to satisfy
2672	 * the allocation without using the existing reserves. The pagecache
2673	 * page is used to determine if the reserve at this address was
2674	 * consumed or not. If reserves were used, a partial faulted mapping
2675	 * at the time of fork() could consume its reserves on COW instead
2676	 * of the full address range.
2677	 */
2678	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2679			old_page != pagecache_page)
2680		outside_reserve = 1;
2681
2682	page_cache_get(old_page);
2683
2684	/* Drop page table lock as buddy allocator may be called */
 
 
 
2685	spin_unlock(ptl);
2686	new_page = alloc_huge_page(vma, address, outside_reserve);
2687
2688	if (IS_ERR(new_page)) {
2689		long err = PTR_ERR(new_page);
2690		page_cache_release(old_page);
2691
2692		/*
2693		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2694		 * it is due to references held by a child and an insufficient
2695		 * huge page pool. To guarantee the original mappers
2696		 * reliability, unmap the page from child processes. The child
2697		 * may get SIGKILLed if it later faults.
2698		 */
2699		if (outside_reserve) {
 
2700			BUG_ON(huge_pte_none(pte));
2701			if (unmap_ref_private(mm, vma, old_page, address)) {
2702				BUG_ON(huge_pte_none(pte));
2703				spin_lock(ptl);
2704				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2705				if (likely(ptep &&
2706					   pte_same(huge_ptep_get(ptep), pte)))
2707					goto retry_avoidcopy;
2708				/*
2709				 * race occurs while re-acquiring page table
2710				 * lock, and our job is done.
2711				 */
2712				return 0;
2713			}
2714			WARN_ON_ONCE(1);
2715		}
2716
2717		/* Caller expects lock to be held */
2718		spin_lock(ptl);
2719		if (err == -ENOMEM)
2720			return VM_FAULT_OOM;
2721		else
2722			return VM_FAULT_SIGBUS;
2723	}
2724
2725	/*
2726	 * When the original hugepage is shared one, it does not have
2727	 * anon_vma prepared.
2728	 */
2729	if (unlikely(anon_vma_prepare(vma))) {
2730		page_cache_release(new_page);
2731		page_cache_release(old_page);
2732		/* Caller expects lock to be held */
2733		spin_lock(ptl);
2734		return VM_FAULT_OOM;
2735	}
2736
2737	copy_user_huge_page(new_page, old_page, address, vma,
2738			    pages_per_huge_page(h));
2739	__SetPageUptodate(new_page);
2740
2741	mmun_start = address & huge_page_mask(h);
2742	mmun_end = mmun_start + huge_page_size(h);
2743	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
2744	/*
2745	 * Retake the page table lock to check for racing updates
2746	 * before the page tables are altered
2747	 */
2748	spin_lock(ptl);
2749	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2750	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2751		ClearPagePrivate(new_page);
2752
2753		/* Break COW */
2754		huge_ptep_clear_flush(vma, address, ptep);
2755		set_huge_pte_at(mm, address, ptep,
 
2756				make_huge_pte(vma, new_page, 1));
2757		page_remove_rmap(old_page);
2758		hugepage_add_new_anon_rmap(new_page, vma, address);
 
2759		/* Make the old page be freed below */
2760		new_page = old_page;
2761	}
2762	spin_unlock(ptl);
2763	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2764	page_cache_release(new_page);
2765	page_cache_release(old_page);
 
 
 
2766
2767	/* Caller expects lock to be held */
2768	spin_lock(ptl);
2769	return 0;
2770}
2771
2772/* Return the pagecache page at a given address within a VMA */
2773static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2774			struct vm_area_struct *vma, unsigned long address)
2775{
2776	struct address_space *mapping;
2777	pgoff_t idx;
2778
2779	mapping = vma->vm_file->f_mapping;
2780	idx = vma_hugecache_offset(h, vma, address);
2781
2782	return find_lock_page(mapping, idx);
2783}
2784
2785/*
2786 * Return whether there is a pagecache page to back given address within VMA.
2787 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2788 */
2789static bool hugetlbfs_pagecache_present(struct hstate *h,
2790			struct vm_area_struct *vma, unsigned long address)
2791{
2792	struct address_space *mapping;
2793	pgoff_t idx;
2794	struct page *page;
2795
2796	mapping = vma->vm_file->f_mapping;
2797	idx = vma_hugecache_offset(h, vma, address);
2798
2799	page = find_get_page(mapping, idx);
2800	if (page)
2801		put_page(page);
2802	return page != NULL;
2803}
2804
2805static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2806			   struct address_space *mapping, pgoff_t idx,
2807			   unsigned long address, pte_t *ptep, unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2808{
2809	struct hstate *h = hstate_vma(vma);
2810	int ret = VM_FAULT_SIGBUS;
2811	int anon_rmap = 0;
2812	unsigned long size;
2813	struct page *page;
2814	pte_t new_pte;
2815	spinlock_t *ptl;
 
 
2816
2817	/*
2818	 * Currently, we are forced to kill the process in the event the
2819	 * original mapper has unmapped pages from the child due to a failed
2820	 * COW. Warn that such a situation has occurred as it may not be obvious
2821	 */
2822	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2823		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2824			   current->pid);
2825		return ret;
2826	}
2827
2828	/*
2829	 * Use page lock to guard against racing truncation
2830	 * before we get page_table_lock.
2831	 */
2832retry:
2833	page = find_lock_page(mapping, idx);
2834	if (!page) {
2835		size = i_size_read(mapping->host) >> huge_page_shift(h);
2836		if (idx >= size)
2837			goto out;
2838		page = alloc_huge_page(vma, address, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2839		if (IS_ERR(page)) {
2840			ret = PTR_ERR(page);
2841			if (ret == -ENOMEM)
2842				ret = VM_FAULT_OOM;
2843			else
2844				ret = VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2845			goto out;
2846		}
2847		clear_huge_page(page, address, pages_per_huge_page(h));
2848		__SetPageUptodate(page);
 
2849
2850		if (vma->vm_flags & VM_MAYSHARE) {
2851			int err;
2852			struct inode *inode = mapping->host;
2853
2854			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2855			if (err) {
2856				put_page(page);
2857				if (err == -EEXIST)
2858					goto retry;
2859				goto out;
2860			}
2861			ClearPagePrivate(page);
2862
2863			spin_lock(&inode->i_lock);
2864			inode->i_blocks += blocks_per_huge_page(h);
2865			spin_unlock(&inode->i_lock);
2866		} else {
2867			lock_page(page);
2868			if (unlikely(anon_vma_prepare(vma))) {
2869				ret = VM_FAULT_OOM;
2870				goto backout_unlocked;
2871			}
2872			anon_rmap = 1;
2873		}
2874	} else {
2875		/*
2876		 * If memory error occurs between mmap() and fault, some process
2877		 * don't have hwpoisoned swap entry for errored virtual address.
2878		 * So we need to block hugepage fault by PG_hwpoison bit check.
2879		 */
2880		if (unlikely(PageHWPoison(page))) {
2881			ret = VM_FAULT_HWPOISON |
2882				VM_FAULT_SET_HINDEX(hstate_index(h));
2883			goto backout_unlocked;
2884		}
2885	}
2886
2887	/*
2888	 * If we are going to COW a private mapping later, we examine the
2889	 * pending reservations for this page now. This will ensure that
2890	 * any allocations necessary to record that reservation occur outside
2891	 * the spinlock.
2892	 */
2893	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2894		if (vma_needs_reservation(h, vma, address) < 0) {
2895			ret = VM_FAULT_OOM;
2896			goto backout_unlocked;
2897		}
 
 
 
2898
2899	ptl = huge_pte_lockptr(h, mm, ptep);
2900	spin_lock(ptl);
2901	size = i_size_read(mapping->host) >> huge_page_shift(h);
2902	if (idx >= size)
2903		goto backout;
2904
2905	ret = 0;
2906	if (!huge_pte_none(huge_ptep_get(ptep)))
2907		goto backout;
2908
2909	if (anon_rmap) {
2910		ClearPagePrivate(page);
2911		hugepage_add_new_anon_rmap(page, vma, address);
2912	} else
2913		page_dup_rmap(page);
2914	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2915				&& (vma->vm_flags & VM_SHARED)));
2916	set_huge_pte_at(mm, address, ptep, new_pte);
2917
 
2918	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2919		/* Optimization, do the COW without a second fault */
2920		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2921	}
2922
2923	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
2924	unlock_page(page);
2925out:
2926	return ret;
2927
2928backout:
2929	spin_unlock(ptl);
2930backout_unlocked:
2931	unlock_page(page);
 
2932	put_page(page);
2933	goto out;
2934}
2935
2936#ifdef CONFIG_SMP
2937static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2938			    struct vm_area_struct *vma,
2939			    struct address_space *mapping,
2940			    pgoff_t idx, unsigned long address)
2941{
2942	unsigned long key[2];
2943	u32 hash;
2944
2945	if (vma->vm_flags & VM_SHARED) {
2946		key[0] = (unsigned long) mapping;
2947		key[1] = idx;
2948	} else {
2949		key[0] = (unsigned long) mm;
2950		key[1] = address >> huge_page_shift(h);
2951	}
2952
2953	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2954
2955	return hash & (num_fault_mutexes - 1);
2956}
2957#else
2958/*
2959 * For uniprocesor systems we always use a single mutex, so just
2960 * return 0 and avoid the hashing overhead.
2961 */
2962static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2963			    struct vm_area_struct *vma,
2964			    struct address_space *mapping,
2965			    pgoff_t idx, unsigned long address)
2966{
2967	return 0;
2968}
2969#endif
2970
2971int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2972			unsigned long address, unsigned int flags)
2973{
2974	pte_t *ptep, entry;
2975	spinlock_t *ptl;
2976	int ret;
2977	u32 hash;
2978	pgoff_t idx;
2979	struct page *page = NULL;
2980	struct page *pagecache_page = NULL;
2981	struct hstate *h = hstate_vma(vma);
2982	struct address_space *mapping;
 
 
2983
2984	address &= huge_page_mask(h);
2985
2986	ptep = huge_pte_offset(mm, address);
2987	if (ptep) {
2988		entry = huge_ptep_get(ptep);
2989		if (unlikely(is_hugetlb_entry_migration(entry))) {
2990			migration_entry_wait_huge(vma, mm, ptep);
2991			return 0;
2992		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2993			return VM_FAULT_HWPOISON_LARGE |
2994				VM_FAULT_SET_HINDEX(hstate_index(h));
 
 
 
 
2995	}
2996
2997	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2998	if (!ptep)
2999		return VM_FAULT_OOM;
3000
3001	mapping = vma->vm_file->f_mapping;
3002	idx = vma_hugecache_offset(h, vma, address);
3003
3004	/*
3005	 * Serialize hugepage allocation and instantiation, so that we don't
3006	 * get spurious allocation failures if two CPUs race to instantiate
3007	 * the same page in the page cache.
3008	 */
3009	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3010	mutex_lock(&htlb_fault_mutex_table[hash]);
3011
3012	entry = huge_ptep_get(ptep);
3013	if (huge_pte_none(entry)) {
3014		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3015		goto out_mutex;
3016	}
3017
3018	ret = 0;
3019
3020	/*
 
 
 
 
 
 
 
 
 
 
3021	 * If we are going to COW the mapping later, we examine the pending
3022	 * reservations for this page now. This will ensure that any
3023	 * allocations necessary to record that reservation occur outside the
3024	 * spinlock. For private mappings, we also lookup the pagecache
3025	 * page now as it is used to determine if a reservation has been
3026	 * consumed.
3027	 */
3028	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3029		if (vma_needs_reservation(h, vma, address) < 0) {
3030			ret = VM_FAULT_OOM;
3031			goto out_mutex;
3032		}
 
 
3033
3034		if (!(vma->vm_flags & VM_MAYSHARE))
3035			pagecache_page = hugetlbfs_pagecache_page(h,
3036								vma, address);
3037	}
3038
 
 
 
 
 
 
3039	/*
3040	 * hugetlb_cow() requires page locks of pte_page(entry) and
3041	 * pagecache_page, so here we need take the former one
3042	 * when page != pagecache_page or !pagecache_page.
3043	 * Note that locking order is always pagecache_page -> page,
3044	 * so no worry about deadlock.
3045	 */
3046	page = pte_page(entry);
3047	get_page(page);
3048	if (page != pagecache_page)
3049		lock_page(page);
3050
3051	ptl = huge_pte_lockptr(h, mm, ptep);
3052	spin_lock(ptl);
3053	/* Check for a racing update before calling hugetlb_cow */
3054	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3055		goto out_ptl;
3056
 
3057
3058	if (flags & FAULT_FLAG_WRITE) {
3059		if (!huge_pte_write(entry)) {
3060			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3061					pagecache_page, ptl);
3062			goto out_ptl;
3063		}
3064		entry = huge_pte_mkdirty(entry);
3065	}
3066	entry = pte_mkyoung(entry);
3067	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3068						flags & FAULT_FLAG_WRITE))
3069		update_mmu_cache(vma, address, ptep);
3070
 
 
 
3071out_ptl:
3072	spin_unlock(ptl);
3073
3074	if (pagecache_page) {
3075		unlock_page(pagecache_page);
3076		put_page(pagecache_page);
3077	}
3078	if (page != pagecache_page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079		unlock_page(page);
 
3080	put_page(page);
3081
3082out_mutex:
3083	mutex_unlock(&htlb_fault_mutex_table[hash]);
3084	return ret;
3085}
3086
3087long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3088			 struct page **pages, struct vm_area_struct **vmas,
3089			 unsigned long *position, unsigned long *nr_pages,
3090			 long i, unsigned int flags)
3091{
3092	unsigned long pfn_offset;
3093	unsigned long vaddr = *position;
3094	unsigned long remainder = *nr_pages;
3095	struct hstate *h = hstate_vma(vma);
 
3096
3097	while (vaddr < vma->vm_end && remainder) {
3098		pte_t *pte;
3099		spinlock_t *ptl = NULL;
3100		int absent;
3101		struct page *page;
3102
3103		/*
 
 
 
 
 
 
 
 
 
3104		 * Some archs (sparc64, sh*) have multiple pte_ts to
3105		 * each hugepage.  We have to make sure we get the
3106		 * first, for the page indexing below to work.
3107		 *
3108		 * Note that page table lock is not held when pte is null.
3109		 */
3110		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
 
3111		if (pte)
3112			ptl = huge_pte_lock(h, mm, pte);
3113		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3114
3115		/*
3116		 * When coredumping, it suits get_dump_page if we just return
3117		 * an error where there's an empty slot with no huge pagecache
3118		 * to back it.  This way, we avoid allocating a hugepage, and
3119		 * the sparse dumpfile avoids allocating disk blocks, but its
3120		 * huge holes still show up with zeroes where they need to be.
3121		 */
3122		if (absent && (flags & FOLL_DUMP) &&
3123		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3124			if (pte)
3125				spin_unlock(ptl);
3126			remainder = 0;
3127			break;
3128		}
3129
3130		/*
3131		 * We need call hugetlb_fault for both hugepages under migration
3132		 * (in which case hugetlb_fault waits for the migration,) and
3133		 * hwpoisoned hugepages (in which case we need to prevent the
3134		 * caller from accessing to them.) In order to do this, we use
3135		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3136		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3137		 * both cases, and because we can't follow correct pages
3138		 * directly from any kind of swap entries.
3139		 */
3140		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3141		    ((flags & FOLL_WRITE) &&
3142		      !huge_pte_write(huge_ptep_get(pte)))) {
3143			int ret;
 
3144
3145			if (pte)
3146				spin_unlock(ptl);
3147			ret = hugetlb_fault(mm, vma, vaddr,
3148				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3149			if (!(ret & VM_FAULT_ERROR))
3150				continue;
3151
3152			remainder = 0;
3153			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154		}
3155
3156		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3157		page = pte_page(huge_ptep_get(pte));
 
 
 
 
 
 
 
 
 
 
 
 
 
3158same_page:
3159		if (pages) {
3160			pages[i] = mem_map_offset(page, pfn_offset);
3161			get_page_foll(pages[i]);
3162		}
3163
3164		if (vmas)
3165			vmas[i] = vma;
3166
3167		vaddr += PAGE_SIZE;
3168		++pfn_offset;
3169		--remainder;
3170		++i;
3171		if (vaddr < vma->vm_end && remainder &&
3172				pfn_offset < pages_per_huge_page(h)) {
3173			/*
3174			 * We use pfn_offset to avoid touching the pageframes
3175			 * of this compound page.
3176			 */
3177			goto same_page;
3178		}
3179		spin_unlock(ptl);
3180	}
3181	*nr_pages = remainder;
 
 
 
 
 
3182	*position = vaddr;
3183
3184	return i ? i : -EFAULT;
3185}
3186
 
 
 
 
 
 
 
 
3187unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3188		unsigned long address, unsigned long end, pgprot_t newprot)
3189{
3190	struct mm_struct *mm = vma->vm_mm;
3191	unsigned long start = address;
3192	pte_t *ptep;
3193	pte_t pte;
3194	struct hstate *h = hstate_vma(vma);
3195	unsigned long pages = 0;
 
 
 
 
 
 
 
 
 
 
 
3196
3197	BUG_ON(address >= end);
3198	flush_cache_range(vma, address, end);
3199
3200	mmu_notifier_invalidate_range_start(mm, start, end);
3201	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3202	for (; address < end; address += huge_page_size(h)) {
3203		spinlock_t *ptl;
3204		ptep = huge_pte_offset(mm, address);
3205		if (!ptep)
3206			continue;
3207		ptl = huge_pte_lock(h, mm, ptep);
3208		if (huge_pmd_unshare(mm, &address, ptep)) {
3209			pages++;
3210			spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3211			continue;
3212		}
3213		if (!huge_pte_none(huge_ptep_get(ptep))) {
3214			pte = huge_ptep_get_and_clear(mm, address, ptep);
3215			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
 
 
3216			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3217			set_huge_pte_at(mm, address, ptep, pte);
3218			pages++;
3219		}
3220		spin_unlock(ptl);
3221	}
3222	/*
3223	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3224	 * may have cleared our pud entry and done put_page on the page table:
3225	 * once we release i_mmap_mutex, another task can do the final put_page
3226	 * and that page table be reused and filled with junk.
 
 
 
 
 
 
 
 
 
 
 
3227	 */
3228	flush_tlb_range(vma, start, end);
3229	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3230	mmu_notifier_invalidate_range_end(mm, start, end);
3231
3232	return pages << h->order;
3233}
3234
3235int hugetlb_reserve_pages(struct inode *inode,
3236					long from, long to,
3237					struct vm_area_struct *vma,
3238					vm_flags_t vm_flags)
3239{
3240	long ret, chg;
3241	struct hstate *h = hstate_inode(inode);
3242	struct hugepage_subpool *spool = subpool_inode(inode);
3243	struct resv_map *resv_map;
 
 
 
 
 
 
 
3244
3245	/*
3246	 * Only apply hugepage reservation if asked. At fault time, an
3247	 * attempt will be made for VM_NORESERVE to allocate a page
3248	 * without using reserves
3249	 */
3250	if (vm_flags & VM_NORESERVE)
3251		return 0;
3252
3253	/*
3254	 * Shared mappings base their reservation on the number of pages that
3255	 * are already allocated on behalf of the file. Private mappings need
3256	 * to reserve the full area even if read-only as mprotect() may be
3257	 * called to make the mapping read-write. Assume !vma is a shm mapping
3258	 */
3259	if (!vma || vma->vm_flags & VM_MAYSHARE) {
 
 
 
 
 
3260		resv_map = inode_resv_map(inode);
3261
3262		chg = region_chg(resv_map, from, to);
3263
3264	} else {
3265		resv_map = resv_map_alloc();
3266		if (!resv_map)
3267			return -ENOMEM;
3268
3269		chg = to - from;
3270
3271		set_vma_resv_map(vma, resv_map);
3272		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3273	}
3274
3275	if (chg < 0) {
3276		ret = chg;
3277		goto out_err;
3278	}
3279
3280	/* There must be enough pages in the subpool for the mapping */
3281	if (hugepage_subpool_get_pages(spool, chg)) {
 
 
 
 
 
3282		ret = -ENOSPC;
3283		goto out_err;
3284	}
3285
3286	/*
3287	 * Check enough hugepages are available for the reservation.
3288	 * Hand the pages back to the subpool if there are not
3289	 */
3290	ret = hugetlb_acct_memory(h, chg);
3291	if (ret < 0) {
3292		hugepage_subpool_put_pages(spool, chg);
 
3293		goto out_err;
3294	}
3295
3296	/*
3297	 * Account for the reservations made. Shared mappings record regions
3298	 * that have reservations as they are shared by multiple VMAs.
3299	 * When the last VMA disappears, the region map says how much
3300	 * the reservation was and the page cache tells how much of
3301	 * the reservation was consumed. Private mappings are per-VMA and
3302	 * only the consumed reservations are tracked. When the VMA
3303	 * disappears, the original reservation is the VMA size and the
3304	 * consumed reservations are stored in the map. Hence, nothing
3305	 * else has to be done for private mappings here
3306	 */
3307	if (!vma || vma->vm_flags & VM_MAYSHARE)
3308		region_add(resv_map, from, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3309	return 0;
3310out_err:
 
 
 
 
3311	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3312		kref_put(&resv_map->refs, resv_map_release);
3313	return ret;
3314}
3315
3316void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
 
3317{
3318	struct hstate *h = hstate_inode(inode);
3319	struct resv_map *resv_map = inode_resv_map(inode);
3320	long chg = 0;
3321	struct hugepage_subpool *spool = subpool_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3322
3323	if (resv_map)
3324		chg = region_truncate(resv_map, offset);
3325	spin_lock(&inode->i_lock);
3326	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3327	spin_unlock(&inode->i_lock);
3328
3329	hugepage_subpool_put_pages(spool, (chg - freed));
3330	hugetlb_acct_memory(h, -(chg - freed));
 
 
 
 
 
 
3331}
3332
3333#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3334static unsigned long page_table_shareable(struct vm_area_struct *svma,
3335				struct vm_area_struct *vma,
3336				unsigned long addr, pgoff_t idx)
3337{
3338	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3339				svma->vm_start;
3340	unsigned long sbase = saddr & PUD_MASK;
3341	unsigned long s_end = sbase + PUD_SIZE;
3342
3343	/* Allow segments to share if only one is marked locked */
3344	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3345	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3346
3347	/*
3348	 * match the virtual addresses, permission and the alignment of the
3349	 * page table page.
3350	 */
3351	if (pmd_index(addr) != pmd_index(saddr) ||
3352	    vm_flags != svm_flags ||
3353	    sbase < svma->vm_start || svma->vm_end < s_end)
3354		return 0;
3355
3356	return saddr;
3357}
3358
3359static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3360{
3361	unsigned long base = addr & PUD_MASK;
3362	unsigned long end = base + PUD_SIZE;
3363
3364	/*
3365	 * check on proper vm_flags and page table alignment
3366	 */
3367	if (vma->vm_flags & VM_MAYSHARE &&
3368	    vma->vm_start <= base && end <= vma->vm_end)
3369		return 1;
3370	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371}
3372
3373/*
3374 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3375 * and returns the corresponding pte. While this is not necessary for the
3376 * !shared pmd case because we can allocate the pmd later as well, it makes the
3377 * code much cleaner. pmd allocation is essential for the shared case because
3378 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3379 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3380 * bad pmd for sharing.
3381 */
3382pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3383{
3384	struct vm_area_struct *vma = find_vma(mm, addr);
3385	struct address_space *mapping = vma->vm_file->f_mapping;
3386	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3387			vma->vm_pgoff;
3388	struct vm_area_struct *svma;
3389	unsigned long saddr;
3390	pte_t *spte = NULL;
3391	pte_t *pte;
3392	spinlock_t *ptl;
3393
3394	if (!vma_shareable(vma, addr))
3395		return (pte_t *)pmd_alloc(mm, pud, addr);
3396
3397	mutex_lock(&mapping->i_mmap_mutex);
3398	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3399		if (svma == vma)
3400			continue;
3401
3402		saddr = page_table_shareable(svma, vma, addr, idx);
3403		if (saddr) {
3404			spte = huge_pte_offset(svma->vm_mm, saddr);
 
3405			if (spte) {
3406				get_page(virt_to_page(spte));
3407				break;
3408			}
3409		}
3410	}
3411
3412	if (!spte)
3413		goto out;
3414
3415	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3416	spin_lock(ptl);
3417	if (pud_none(*pud))
3418		pud_populate(mm, pud,
3419				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3420	else
 
3421		put_page(virt_to_page(spte));
 
3422	spin_unlock(ptl);
3423out:
3424	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3425	mutex_unlock(&mapping->i_mmap_mutex);
3426	return pte;
3427}
3428
3429/*
3430 * unmap huge page backed by shared pte.
3431 *
3432 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3433 * indicated by page_count > 1, unmap is achieved by clearing pud and
3434 * decrementing the ref count. If count == 1, the pte page is not shared.
3435 *
3436 * called with page table lock held.
3437 *
3438 * returns: 1 successfully unmapped a shared pte page
3439 *	    0 the underlying pte page is not shared, or it is the last user
3440 */
3441int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3442{
3443	pgd_t *pgd = pgd_offset(mm, *addr);
3444	pud_t *pud = pud_offset(pgd, *addr);
 
3445
3446	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3447	if (page_count(virt_to_page(ptep)) == 1)
3448		return 0;
3449
3450	pud_clear(pud);
3451	put_page(virt_to_page(ptep));
 
3452	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3453	return 1;
3454}
3455#define want_pmd_share()	(1)
3456#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3457pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3458{
3459	return NULL;
3460}
 
 
 
 
 
 
 
 
 
 
3461#define want_pmd_share()	(0)
3462#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3463
3464#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3465pte_t *huge_pte_alloc(struct mm_struct *mm,
3466			unsigned long addr, unsigned long sz)
3467{
3468	pgd_t *pgd;
 
3469	pud_t *pud;
3470	pte_t *pte = NULL;
3471
3472	pgd = pgd_offset(mm, addr);
3473	pud = pud_alloc(mm, pgd, addr);
 
 
 
3474	if (pud) {
3475		if (sz == PUD_SIZE) {
3476			pte = (pte_t *)pud;
3477		} else {
3478			BUG_ON(sz != PMD_SIZE);
3479			if (want_pmd_share() && pud_none(*pud))
3480				pte = huge_pmd_share(mm, addr, pud);
3481			else
3482				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3483		}
3484	}
3485	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3486
3487	return pte;
3488}
3489
3490pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
3491{
3492	pgd_t *pgd;
 
3493	pud_t *pud;
3494	pmd_t *pmd = NULL;
3495
3496	pgd = pgd_offset(mm, addr);
3497	if (pgd_present(*pgd)) {
3498		pud = pud_offset(pgd, addr);
3499		if (pud_present(*pud)) {
3500			if (pud_huge(*pud))
3501				return (pte_t *)pud;
3502			pmd = pmd_offset(pud, addr);
3503		}
3504	}
3505	return (pte_t *) pmd;
3506}
 
 
3507
3508struct page *
3509follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3510		pmd_t *pmd, int write)
3511{
3512	struct page *page;
 
3513
3514	page = pte_page(*(pte_t *)pmd);
3515	if (page)
3516		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3517	return page;
3518}
3519
3520struct page *
3521follow_huge_pud(struct mm_struct *mm, unsigned long address,
3522		pud_t *pud, int write)
 
 
 
 
 
 
3523{
3524	struct page *page;
3525
3526	page = pte_page(*(pte_t *)pud);
3527	if (page)
3528		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3529	return page;
3530}
3531
3532#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3533
3534/* Can be overriden by architectures */
3535struct page * __weak
3536follow_huge_pud(struct mm_struct *mm, unsigned long address,
3537	       pud_t *pud, int write)
3538{
3539	BUG();
3540	return NULL;
3541}
3542
3543#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3544
3545#ifdef CONFIG_MEMORY_FAILURE
3546
3547/* Should be called in hugetlb_lock */
3548static int is_hugepage_on_freelist(struct page *hpage)
3549{
3550	struct page *page;
3551	struct page *tmp;
3552	struct hstate *h = page_hstate(hpage);
3553	int nid = page_to_nid(hpage);
3554
3555	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3556		if (page == hpage)
3557			return 1;
3558	return 0;
3559}
3560
3561/*
3562 * This function is called from memory failure code.
3563 * Assume the caller holds page lock of the head page.
3564 */
3565int dequeue_hwpoisoned_huge_page(struct page *hpage)
3566{
3567	struct hstate *h = page_hstate(hpage);
3568	int nid = page_to_nid(hpage);
3569	int ret = -EBUSY;
3570
3571	spin_lock(&hugetlb_lock);
3572	if (is_hugepage_on_freelist(hpage)) {
3573		/*
3574		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3575		 * but dangling hpage->lru can trigger list-debug warnings
3576		 * (this happens when we call unpoison_memory() on it),
3577		 * so let it point to itself with list_del_init().
3578		 */
3579		list_del_init(&hpage->lru);
3580		set_page_refcounted(hpage);
3581		h->free_huge_pages--;
3582		h->free_huge_pages_node[nid]--;
3583		ret = 0;
3584	}
3585	spin_unlock(&hugetlb_lock);
3586	return ret;
3587}
3588#endif
3589
3590bool isolate_huge_page(struct page *page, struct list_head *list)
3591{
 
 
3592	VM_BUG_ON_PAGE(!PageHead(page), page);
3593	if (!get_page_unless_zero(page))
3594		return false;
3595	spin_lock(&hugetlb_lock);
 
 
 
 
 
3596	list_move_tail(&page->lru, list);
 
3597	spin_unlock(&hugetlb_lock);
3598	return true;
3599}
3600
3601void putback_active_hugepage(struct page *page)
3602{
3603	VM_BUG_ON_PAGE(!PageHead(page), page);
3604	spin_lock(&hugetlb_lock);
 
3605	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3606	spin_unlock(&hugetlb_lock);
3607	put_page(page);
3608}
3609
3610bool is_hugepage_active(struct page *page)
3611{
3612	VM_BUG_ON_PAGE(!PageHuge(page), page);
 
 
 
 
3613	/*
3614	 * This function can be called for a tail page because the caller,
3615	 * scan_movable_pages, scans through a given pfn-range which typically
3616	 * covers one memory block. In systems using gigantic hugepage (1GB
3617	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3618	 * support migrating such large hugepages for now, so return false
3619	 * when called for tail pages.
 
 
3620	 */
3621	if (PageTail(page))
3622		return false;
3623	/*
3624	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3625	 * so we should return false for them.
3626	 */
3627	if (unlikely(PageHWPoison(page)))
3628		return false;
3629	return page_count(page) > 0;
 
 
 
 
 
3630}