Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
 
  22#include <linux/mmdebug.h>
  23#include <linux/sched/signal.h>
  24#include <linux/rmap.h>
  25#include <linux/string_helpers.h>
  26#include <linux/swap.h>
  27#include <linux/swapops.h>
  28#include <linux/jhash.h>
  29#include <linux/numa.h>
 
 
 
 
 
 
 
 
  30
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/tlb.h>
  34
  35#include <linux/io.h>
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/node.h>
  39#include <linux/userfaultfd_k.h>
  40#include <linux/page_owner.h>
  41#include "internal.h"
 
  42
  43int hugetlb_max_hstate __read_mostly;
  44unsigned int default_hstate_idx;
  45struct hstate hstates[HUGE_MAX_HSTATE];
  46/*
  47 * Minimum page order among possible hugepage sizes, set to a proper value
  48 * at boot time.
  49 */
  50static unsigned int minimum_order __read_mostly = UINT_MAX;
  51
  52__initdata LIST_HEAD(huge_boot_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54/* for command line parsing */
  55static struct hstate * __initdata parsed_hstate;
  56static unsigned long __initdata default_hstate_max_huge_pages;
  57static unsigned long __initdata default_hstate_size;
  58static bool __initdata parsed_valid_hugepagesz = true;
 
 
  59
  60/*
  61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  62 * free_huge_pages, and surplus_huge_pages.
  63 */
  64DEFINE_SPINLOCK(hugetlb_lock);
  65
  66/*
  67 * Serializes faults on the same logical page.  This is used to
  68 * prevent spurious OOMs when the hugepage pool is fully utilized.
  69 */
  70static int num_fault_mutexes;
  71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  72
  73/* Forward declaration */
  74static int hugetlb_acct_memory(struct hstate *h, long delta);
 
 
 
 
 
 
  75
  76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  77{
  78	bool free = (spool->count == 0) && (spool->used_hpages == 0);
 
 
 
 
 
  79
  80	spin_unlock(&spool->lock);
 
 
 
 
 
 
  81
  82	/* If no pages are used, and no other handles to the subpool
  83	 * remain, give up any reservations mased on minimum size and
  84	 * free the subpool */
  85	if (free) {
  86		if (spool->min_hpages != -1)
  87			hugetlb_acct_memory(spool->hstate,
  88						-spool->min_hpages);
  89		kfree(spool);
  90	}
  91}
  92
  93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  94						long min_hpages)
  95{
  96	struct hugepage_subpool *spool;
  97
  98	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  99	if (!spool)
 100		return NULL;
 101
 102	spin_lock_init(&spool->lock);
 103	spool->count = 1;
 104	spool->max_hpages = max_hpages;
 105	spool->hstate = h;
 106	spool->min_hpages = min_hpages;
 107
 108	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 109		kfree(spool);
 110		return NULL;
 111	}
 112	spool->rsv_hpages = min_hpages;
 113
 114	return spool;
 115}
 116
 117void hugepage_put_subpool(struct hugepage_subpool *spool)
 118{
 119	spin_lock(&spool->lock);
 
 
 120	BUG_ON(!spool->count);
 121	spool->count--;
 122	unlock_or_release_subpool(spool);
 123}
 124
 125/*
 126 * Subpool accounting for allocating and reserving pages.
 127 * Return -ENOMEM if there are not enough resources to satisfy the
 128 * the request.  Otherwise, return the number of pages by which the
 129 * global pools must be adjusted (upward).  The returned value may
 130 * only be different than the passed value (delta) in the case where
 131 * a subpool minimum size must be manitained.
 132 */
 133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 134				      long delta)
 135{
 136	long ret = delta;
 137
 138	if (!spool)
 139		return ret;
 140
 141	spin_lock(&spool->lock);
 142
 143	if (spool->max_hpages != -1) {		/* maximum size accounting */
 144		if ((spool->used_hpages + delta) <= spool->max_hpages)
 145			spool->used_hpages += delta;
 146		else {
 147			ret = -ENOMEM;
 148			goto unlock_ret;
 149		}
 150	}
 151
 152	/* minimum size accounting */
 153	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 154		if (delta > spool->rsv_hpages) {
 155			/*
 156			 * Asking for more reserves than those already taken on
 157			 * behalf of subpool.  Return difference.
 158			 */
 159			ret = delta - spool->rsv_hpages;
 160			spool->rsv_hpages = 0;
 161		} else {
 162			ret = 0;	/* reserves already accounted for */
 163			spool->rsv_hpages -= delta;
 164		}
 165	}
 166
 167unlock_ret:
 168	spin_unlock(&spool->lock);
 169	return ret;
 170}
 171
 172/*
 173 * Subpool accounting for freeing and unreserving pages.
 174 * Return the number of global page reservations that must be dropped.
 175 * The return value may only be different than the passed value (delta)
 176 * in the case where a subpool minimum size must be maintained.
 177 */
 178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 179				       long delta)
 180{
 181	long ret = delta;
 
 182
 183	if (!spool)
 184		return delta;
 185
 186	spin_lock(&spool->lock);
 187
 188	if (spool->max_hpages != -1)		/* maximum size accounting */
 189		spool->used_hpages -= delta;
 190
 191	 /* minimum size accounting */
 192	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 193		if (spool->rsv_hpages + delta <= spool->min_hpages)
 194			ret = 0;
 195		else
 196			ret = spool->rsv_hpages + delta - spool->min_hpages;
 197
 198		spool->rsv_hpages += delta;
 199		if (spool->rsv_hpages > spool->min_hpages)
 200			spool->rsv_hpages = spool->min_hpages;
 201	}
 202
 203	/*
 204	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 205	 * quota reference, free it now.
 206	 */
 207	unlock_or_release_subpool(spool);
 208
 209	return ret;
 210}
 211
 212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 213{
 214	return HUGETLBFS_SB(inode->i_sb)->spool;
 215}
 216
 217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 218{
 219	return subpool_inode(file_inode(vma->vm_file));
 220}
 221
 222/*
 223 * Region tracking -- allows tracking of reservations and instantiated pages
 224 *                    across the pages in a mapping.
 225 *
 226 * The region data structures are embedded into a resv_map and protected
 227 * by a resv_map's lock.  The set of regions within the resv_map represent
 228 * reservations for huge pages, or huge pages that have already been
 229 * instantiated within the map.  The from and to elements are huge page
 230 * indicies into the associated mapping.  from indicates the starting index
 231 * of the region.  to represents the first index past the end of  the region.
 232 *
 233 * For example, a file region structure with from == 0 and to == 4 represents
 234 * four huge pages in a mapping.  It is important to note that the to element
 235 * represents the first element past the end of the region. This is used in
 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237 *
 238 * Interval notation of the form [from, to) will be used to indicate that
 239 * the endpoint from is inclusive and to is exclusive.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240 */
 241struct file_region {
 242	struct list_head link;
 243	long from;
 244	long to;
 245};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246
 247/*
 248 * Add the huge page range represented by [f, t) to the reserve
 249 * map.  In the normal case, existing regions will be expanded
 250 * to accommodate the specified range.  Sufficient regions should
 251 * exist for expansion due to the previous call to region_chg
 252 * with the same range.  However, it is possible that region_del
 253 * could have been called after region_chg and modifed the map
 254 * in such a way that no region exists to be expanded.  In this
 255 * case, pull a region descriptor from the cache associated with
 256 * the map and use that for the new range.
 257 *
 258 * Return the number of new huge pages added to the map.  This
 259 * number is greater than or equal to zero.
 260 */
 261static long region_add(struct resv_map *resv, long f, long t)
 
 
 
 
 
 
 
 
 262{
 263	struct list_head *head = &resv->regions;
 264	struct file_region *rg, *nrg, *trg;
 265	long add = 0;
 266
 267	spin_lock(&resv->lock);
 268	/* Locate the region we are either in or before. */
 269	list_for_each_entry(rg, head, link)
 270		if (f <= rg->to)
 271			break;
 
 272
 273	/*
 274	 * If no region exists which can be expanded to include the
 275	 * specified range, the list must have been modified by an
 276	 * interleving call to region_del().  Pull a region descriptor
 277	 * from the cache and use it for this range.
 278	 */
 279	if (&rg->link == head || t < rg->from) {
 280		VM_BUG_ON(resv->region_cache_count <= 0);
 281
 282		resv->region_cache_count--;
 283		nrg = list_first_entry(&resv->region_cache, struct file_region,
 284					link);
 285		list_del(&nrg->link);
 286
 287		nrg->from = f;
 288		nrg->to = t;
 289		list_add(&nrg->link, rg->link.prev);
 290
 291		add += t - f;
 292		goto out_locked;
 293	}
 294
 295	/* Round our left edge to the current segment if it encloses us. */
 296	if (f > rg->from)
 297		f = rg->from;
 298
 299	/* Check for and consume any regions we now overlap with. */
 300	nrg = rg;
 301	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 302		if (&rg->link == head)
 303			break;
 304		if (rg->from > t)
 305			break;
 306
 307		/* If this area reaches higher then extend our area to
 308		 * include it completely.  If this is not the first area
 309		 * which we intend to reuse, free it. */
 310		if (rg->to > t)
 311			t = rg->to;
 312		if (rg != nrg) {
 313			/* Decrement return value by the deleted range.
 314			 * Another range will span this area so that by
 315			 * end of routine add will be >= zero
 316			 */
 317			add -= (rg->to - rg->from);
 318			list_del(&rg->link);
 319			kfree(rg);
 320		}
 
 
 321	}
 322
 323	add += (nrg->from - f);		/* Added to beginning of region */
 324	nrg->from = f;
 325	add += t - nrg->to;		/* Added to end of region */
 326	nrg->to = t;
 327
 328out_locked:
 329	resv->adds_in_progress--;
 330	spin_unlock(&resv->lock);
 331	VM_BUG_ON(add < 0);
 332	return add;
 333}
 334
 335/*
 336 * Examine the existing reserve map and determine how many
 337 * huge pages in the specified range [f, t) are NOT currently
 338 * represented.  This routine is called before a subsequent
 339 * call to region_add that will actually modify the reserve
 340 * map to add the specified range [f, t).  region_chg does
 341 * not change the number of huge pages represented by the
 342 * map.  However, if the existing regions in the map can not
 343 * be expanded to represent the new range, a new file_region
 344 * structure is added to the map as a placeholder.  This is
 345 * so that the subsequent region_add call will have all the
 346 * regions it needs and will not fail.
 347 *
 348 * Upon entry, region_chg will also examine the cache of region descriptors
 349 * associated with the map.  If there are not enough descriptors cached, one
 350 * will be allocated for the in progress add operation.
 351 *
 352 * Returns the number of huge pages that need to be added to the existing
 353 * reservation map for the range [f, t).  This number is greater or equal to
 354 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 355 * is needed and can not be allocated.
 356 */
 357static long region_chg(struct resv_map *resv, long f, long t)
 
 358{
 359	struct list_head *head = &resv->regions;
 360	struct file_region *rg, *nrg = NULL;
 361	long chg = 0;
 362
 363retry:
 364	spin_lock(&resv->lock);
 365retry_locked:
 366	resv->adds_in_progress++;
 367
 368	/*
 369	 * Check for sufficient descriptors in the cache to accommodate
 370	 * the number of in progress add operations.
 371	 */
 372	if (resv->adds_in_progress > resv->region_cache_count) {
 373		struct file_region *trg;
 374
 375		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 376		/* Must drop lock to allocate a new descriptor. */
 377		resv->adds_in_progress--;
 378		spin_unlock(&resv->lock);
 379
 380		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 381		if (!trg) {
 382			kfree(nrg);
 383			return -ENOMEM;
 384		}
 385
 386		spin_lock(&resv->lock);
 387		list_add(&trg->link, &resv->region_cache);
 388		resv->region_cache_count++;
 389		goto retry_locked;
 390	}
 391
 392	/* Locate the region we are before or in. */
 393	list_for_each_entry(rg, head, link)
 394		if (f <= rg->to)
 395			break;
 396
 397	/* If we are below the current region then a new region is required.
 398	 * Subtle, allocate a new region at the position but make it zero
 399	 * size such that we can guarantee to record the reservation. */
 400	if (&rg->link == head || t < rg->from) {
 401		if (!nrg) {
 402			resv->adds_in_progress--;
 403			spin_unlock(&resv->lock);
 404			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 405			if (!nrg)
 406				return -ENOMEM;
 407
 408			nrg->from = f;
 409			nrg->to   = f;
 410			INIT_LIST_HEAD(&nrg->link);
 411			goto retry;
 412		}
 413
 414		list_add(&nrg->link, rg->link.prev);
 415		chg = t - f;
 416		goto out_nrg;
 417	}
 418
 419	/* Round our left edge to the current segment if it encloses us. */
 420	if (f > rg->from)
 421		f = rg->from;
 422	chg = t - f;
 423
 424	/* Check for and consume any regions we now overlap with. */
 425	list_for_each_entry(rg, rg->link.prev, link) {
 426		if (&rg->link == head)
 427			break;
 428		if (rg->from > t)
 429			goto out;
 430
 431		/* We overlap with this area, if it extends further than
 432		 * us then we must extend ourselves.  Account for its
 433		 * existing reservation. */
 434		if (rg->to > t) {
 435			chg += rg->to - t;
 436			t = rg->to;
 437		}
 438		chg -= rg->to - rg->from;
 439	}
 440
 441out:
 442	spin_unlock(&resv->lock);
 443	/*  We already know we raced and no longer need the new region */
 444	kfree(nrg);
 445	return chg;
 446out_nrg:
 447	spin_unlock(&resv->lock);
 448	return chg;
 449}
 450
 451/*
 452 * Abort the in progress add operation.  The adds_in_progress field
 453 * of the resv_map keeps track of the operations in progress between
 454 * calls to region_chg and region_add.  Operations are sometimes
 455 * aborted after the call to region_chg.  In such cases, region_abort
 456 * is called to decrement the adds_in_progress counter.
 
 
 457 *
 458 * NOTE: The range arguments [f, t) are not needed or used in this
 459 * routine.  They are kept to make reading the calling code easier as
 460 * arguments will match the associated region_chg call.
 461 */
 462static void region_abort(struct resv_map *resv, long f, long t)
 
 463{
 464	spin_lock(&resv->lock);
 465	VM_BUG_ON(!resv->region_cache_count);
 466	resv->adds_in_progress--;
 467	spin_unlock(&resv->lock);
 468}
 469
 470/*
 471 * Delete the specified range [f, t) from the reserve map.  If the
 472 * t parameter is LONG_MAX, this indicates that ALL regions after f
 473 * should be deleted.  Locate the regions which intersect [f, t)
 474 * and either trim, delete or split the existing regions.
 475 *
 476 * Returns the number of huge pages deleted from the reserve map.
 477 * In the normal case, the return value is zero or more.  In the
 478 * case where a region must be split, a new region descriptor must
 479 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 480 * NOTE: If the parameter t == LONG_MAX, then we will never split
 481 * a region and possibly return -ENOMEM.  Callers specifying
 482 * t == LONG_MAX do not need to check for -ENOMEM error.
 483 */
 484static long region_del(struct resv_map *resv, long f, long t)
 485{
 486	struct list_head *head = &resv->regions;
 487	struct file_region *rg, *trg;
 488	struct file_region *nrg = NULL;
 489	long del = 0;
 490
 491retry:
 492	spin_lock(&resv->lock);
 493	list_for_each_entry_safe(rg, trg, head, link) {
 494		/*
 495		 * Skip regions before the range to be deleted.  file_region
 496		 * ranges are normally of the form [from, to).  However, there
 497		 * may be a "placeholder" entry in the map which is of the form
 498		 * (from, to) with from == to.  Check for placeholder entries
 499		 * at the beginning of the range to be deleted.
 500		 */
 501		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 502			continue;
 503
 504		if (rg->from >= t)
 505			break;
 506
 507		if (f > rg->from && t < rg->to) { /* Must split region */
 508			/*
 509			 * Check for an entry in the cache before dropping
 510			 * lock and attempting allocation.
 511			 */
 512			if (!nrg &&
 513			    resv->region_cache_count > resv->adds_in_progress) {
 514				nrg = list_first_entry(&resv->region_cache,
 515							struct file_region,
 516							link);
 517				list_del(&nrg->link);
 518				resv->region_cache_count--;
 519			}
 520
 521			if (!nrg) {
 522				spin_unlock(&resv->lock);
 523				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 524				if (!nrg)
 525					return -ENOMEM;
 526				goto retry;
 527			}
 528
 529			del += t - f;
 
 
 530
 531			/* New entry for end of split region */
 532			nrg->from = t;
 533			nrg->to = rg->to;
 
 
 
 534			INIT_LIST_HEAD(&nrg->link);
 535
 536			/* Original entry is trimmed */
 537			rg->to = f;
 538
 539			list_add(&nrg->link, &rg->link);
 540			nrg = NULL;
 541			break;
 542		}
 543
 544		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 545			del += rg->to - rg->from;
 
 
 546			list_del(&rg->link);
 547			kfree(rg);
 548			continue;
 549		}
 550
 551		if (f <= rg->from) {	/* Trim beginning of region */
 
 
 
 552			del += t - rg->from;
 553			rg->from = t;
 554		} else {		/* Trim end of region */
 
 
 
 555			del += rg->to - f;
 556			rg->to = f;
 557		}
 558	}
 559
 560	spin_unlock(&resv->lock);
 561	kfree(nrg);
 562	return del;
 563}
 564
 565/*
 566 * A rare out of memory error was encountered which prevented removal of
 567 * the reserve map region for a page.  The huge page itself was free'ed
 568 * and removed from the page cache.  This routine will adjust the subpool
 569 * usage count, and the global reserve count if needed.  By incrementing
 570 * these counts, the reserve map entry which could not be deleted will
 571 * appear as a "reserved" entry instead of simply dangling with incorrect
 572 * counts.
 573 */
 574void hugetlb_fix_reserve_counts(struct inode *inode)
 575{
 576	struct hugepage_subpool *spool = subpool_inode(inode);
 577	long rsv_adjust;
 
 578
 579	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 580	if (rsv_adjust) {
 581		struct hstate *h = hstate_inode(inode);
 582
 583		hugetlb_acct_memory(h, 1);
 
 
 
 584	}
 
 
 
 585}
 586
 587/*
 588 * Count and return the number of huge pages in the reserve map
 589 * that intersect with the range [f, t).
 590 */
 591static long region_count(struct resv_map *resv, long f, long t)
 592{
 593	struct list_head *head = &resv->regions;
 594	struct file_region *rg;
 595	long chg = 0;
 596
 597	spin_lock(&resv->lock);
 598	/* Locate each segment we overlap with, and count that overlap. */
 599	list_for_each_entry(rg, head, link) {
 600		long seg_from;
 601		long seg_to;
 602
 603		if (rg->to <= f)
 604			continue;
 605		if (rg->from >= t)
 606			break;
 607
 608		seg_from = max(rg->from, f);
 609		seg_to = min(rg->to, t);
 610
 611		chg += seg_to - seg_from;
 612	}
 613	spin_unlock(&resv->lock);
 614
 615	return chg;
 616}
 617
 618/*
 619 * Convert the address within this vma to the page offset within
 620 * the mapping, in pagecache page units; huge pages here.
 621 */
 622static pgoff_t vma_hugecache_offset(struct hstate *h,
 623			struct vm_area_struct *vma, unsigned long address)
 624{
 625	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 626			(vma->vm_pgoff >> huge_page_order(h));
 627}
 628
 629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 630				     unsigned long address)
 631{
 632	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 633}
 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
 635
 636/*
 637 * Return the size of the pages allocated when backing a VMA. In the majority
 638 * cases this will be same size as used by the page table entries.
 639 */
 640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 641{
 642	if (vma->vm_ops && vma->vm_ops->pagesize)
 643		return vma->vm_ops->pagesize(vma);
 644	return PAGE_SIZE;
 645}
 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 647
 648/*
 649 * Return the page size being used by the MMU to back a VMA. In the majority
 650 * of cases, the page size used by the kernel matches the MMU size. On
 651 * architectures where it differs, an architecture-specific 'strong'
 652 * version of this symbol is required.
 653 */
 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 655{
 656	return vma_kernel_pagesize(vma);
 657}
 658
 659/*
 660 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 661 * bits of the reservation map pointer, which are always clear due to
 662 * alignment.
 663 */
 664#define HPAGE_RESV_OWNER    (1UL << 0)
 665#define HPAGE_RESV_UNMAPPED (1UL << 1)
 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 667
 668/*
 669 * These helpers are used to track how many pages are reserved for
 670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 671 * is guaranteed to have their future faults succeed.
 672 *
 673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 674 * the reserve counters are updated with the hugetlb_lock held. It is safe
 675 * to reset the VMA at fork() time as it is not in use yet and there is no
 676 * chance of the global counters getting corrupted as a result of the values.
 677 *
 678 * The private mapping reservation is represented in a subtly different
 679 * manner to a shared mapping.  A shared mapping has a region map associated
 680 * with the underlying file, this region map represents the backing file
 681 * pages which have ever had a reservation assigned which this persists even
 682 * after the page is instantiated.  A private mapping has a region map
 683 * associated with the original mmap which is attached to all VMAs which
 684 * reference it, this region map represents those offsets which have consumed
 685 * reservation ie. where pages have been instantiated.
 686 */
 687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 688{
 689	return (unsigned long)vma->vm_private_data;
 690}
 691
 692static void set_vma_private_data(struct vm_area_struct *vma,
 693							unsigned long value)
 694{
 695	vma->vm_private_data = (void *)value;
 696}
 697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698struct resv_map *resv_map_alloc(void)
 699{
 700	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 701	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 702
 703	if (!resv_map || !rg) {
 704		kfree(resv_map);
 705		kfree(rg);
 706		return NULL;
 707	}
 708
 709	kref_init(&resv_map->refs);
 710	spin_lock_init(&resv_map->lock);
 711	INIT_LIST_HEAD(&resv_map->regions);
 
 712
 713	resv_map->adds_in_progress = 0;
 
 
 
 
 
 
 
 714
 715	INIT_LIST_HEAD(&resv_map->region_cache);
 716	list_add(&rg->link, &resv_map->region_cache);
 717	resv_map->region_cache_count = 1;
 718
 719	return resv_map;
 720}
 721
 722void resv_map_release(struct kref *ref)
 723{
 724	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 725	struct list_head *head = &resv_map->region_cache;
 726	struct file_region *rg, *trg;
 727
 728	/* Clear out any active regions before we release the map. */
 729	region_del(resv_map, 0, LONG_MAX);
 730
 731	/* ... and any entries left in the cache */
 732	list_for_each_entry_safe(rg, trg, head, link) {
 733		list_del(&rg->link);
 734		kfree(rg);
 735	}
 736
 737	VM_BUG_ON(resv_map->adds_in_progress);
 738
 739	kfree(resv_map);
 740}
 741
 742static inline struct resv_map *inode_resv_map(struct inode *inode)
 743{
 744	/*
 745	 * At inode evict time, i_mapping may not point to the original
 746	 * address space within the inode.  This original address space
 747	 * contains the pointer to the resv_map.  So, always use the
 748	 * address space embedded within the inode.
 749	 * The VERY common case is inode->mapping == &inode->i_data but,
 750	 * this may not be true for device special inodes.
 751	 */
 752	return (struct resv_map *)(&inode->i_data)->private_data;
 753}
 754
 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 756{
 757	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 758	if (vma->vm_flags & VM_MAYSHARE) {
 759		struct address_space *mapping = vma->vm_file->f_mapping;
 760		struct inode *inode = mapping->host;
 761
 762		return inode_resv_map(inode);
 763
 764	} else {
 765		return (struct resv_map *)(get_vma_private_data(vma) &
 766							~HPAGE_RESV_MASK);
 767	}
 768}
 769
 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 771{
 772	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775	set_vma_private_data(vma, (get_vma_private_data(vma) &
 776				HPAGE_RESV_MASK) | (unsigned long)map);
 777}
 778
 779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 780{
 781	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 782	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 783
 784	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 785}
 786
 787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 788{
 789	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 790
 791	return (get_vma_private_data(vma) & flag) != 0;
 792}
 793
 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 
 
 
 
 
 
 796{
 797	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 798	if (!(vma->vm_flags & VM_MAYSHARE))
 799		vma->vm_private_data = (void *)0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800}
 801
 802/* Returns true if the VMA has associated reserve pages */
 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 804{
 805	if (vma->vm_flags & VM_NORESERVE) {
 806		/*
 807		 * This address is already reserved by other process(chg == 0),
 808		 * so, we should decrement reserved count. Without decrementing,
 809		 * reserve count remains after releasing inode, because this
 810		 * allocated page will go into page cache and is regarded as
 811		 * coming from reserved pool in releasing step.  Currently, we
 812		 * don't have any other solution to deal with this situation
 813		 * properly, so add work-around here.
 814		 */
 815		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 816			return true;
 817		else
 818			return false;
 819	}
 820
 821	/* Shared mappings always use reserves */
 822	if (vma->vm_flags & VM_MAYSHARE) {
 823		/*
 824		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 825		 * be a region map for all pages.  The only situation where
 826		 * there is no region map is if a hole was punched via
 827		 * fallocate.  In this case, there really are no reverves to
 828		 * use.  This situation is indicated if chg != 0.
 829		 */
 830		if (chg)
 831			return false;
 832		else
 833			return true;
 834	}
 835
 836	/*
 837	 * Only the process that called mmap() has reserves for
 838	 * private mappings.
 839	 */
 840	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 841		/*
 842		 * Like the shared case above, a hole punch or truncate
 843		 * could have been performed on the private mapping.
 844		 * Examine the value of chg to determine if reserves
 845		 * actually exist or were previously consumed.
 846		 * Very Subtle - The value of chg comes from a previous
 847		 * call to vma_needs_reserves().  The reserve map for
 848		 * private mappings has different (opposite) semantics
 849		 * than that of shared mappings.  vma_needs_reserves()
 850		 * has already taken this difference in semantics into
 851		 * account.  Therefore, the meaning of chg is the same
 852		 * as in the shared case above.  Code could easily be
 853		 * combined, but keeping it separate draws attention to
 854		 * subtle differences.
 855		 */
 856		if (chg)
 857			return false;
 858		else
 859			return true;
 860	}
 861
 862	return false;
 863}
 864
 865static void enqueue_huge_page(struct hstate *h, struct page *page)
 866{
 867	int nid = page_to_nid(page);
 868	list_move(&page->lru, &h->hugepage_freelists[nid]);
 
 
 
 
 869	h->free_huge_pages++;
 870	h->free_huge_pages_node[nid]++;
 
 871}
 872
 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 
 874{
 875	struct page *page;
 
 876
 877	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 878		if (!PageHWPoison(page))
 879			break;
 880	/*
 881	 * if 'non-isolated free hugepage' not found on the list,
 882	 * the allocation fails.
 883	 */
 884	if (&h->hugepage_freelists[nid] == &page->lru)
 885		return NULL;
 886	list_move(&page->lru, &h->hugepage_activelist);
 887	set_page_refcounted(page);
 888	h->free_huge_pages--;
 889	h->free_huge_pages_node[nid]--;
 890	return page;
 
 
 
 891}
 892
 893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 894		nodemask_t *nmask)
 895{
 896	unsigned int cpuset_mems_cookie;
 897	struct zonelist *zonelist;
 898	struct zone *zone;
 899	struct zoneref *z;
 900	int node = NUMA_NO_NODE;
 901
 902	zonelist = node_zonelist(nid, gfp_mask);
 903
 904retry_cpuset:
 905	cpuset_mems_cookie = read_mems_allowed_begin();
 906	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 907		struct page *page;
 908
 909		if (!cpuset_zone_allowed(zone, gfp_mask))
 910			continue;
 911		/*
 912		 * no need to ask again on the same node. Pool is node rather than
 913		 * zone aware
 914		 */
 915		if (zone_to_nid(zone) == node)
 916			continue;
 917		node = zone_to_nid(zone);
 918
 919		page = dequeue_huge_page_node_exact(h, node);
 920		if (page)
 921			return page;
 922	}
 923	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 924		goto retry_cpuset;
 925
 926	return NULL;
 927}
 928
 929/* Movability of hugepages depends on migration support. */
 930static inline gfp_t htlb_alloc_mask(struct hstate *h)
 931{
 932	if (hugepage_movable_supported(h))
 933		return GFP_HIGHUSER_MOVABLE;
 934	else
 935		return GFP_HIGHUSER;
 936}
 937
 938static struct page *dequeue_huge_page_vma(struct hstate *h,
 939				struct vm_area_struct *vma,
 940				unsigned long address, int avoid_reserve,
 941				long chg)
 942{
 943	struct page *page;
 944	struct mempolicy *mpol;
 945	gfp_t gfp_mask;
 946	nodemask_t *nodemask;
 947	int nid;
 948
 949	/*
 950	 * A child process with MAP_PRIVATE mappings created by their parent
 951	 * have no page reserves. This check ensures that reservations are
 952	 * not "stolen". The child may still get SIGKILLed
 953	 */
 954	if (!vma_has_reserves(vma, chg) &&
 955			h->free_huge_pages - h->resv_huge_pages == 0)
 956		goto err;
 957
 958	/* If reserves cannot be used, ensure enough pages are in the pool */
 959	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 960		goto err;
 961
 962	gfp_mask = htlb_alloc_mask(h);
 963	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 964	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 965	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 966		SetPagePrivate(page);
 
 
 
 
 
 
 
 
 
 
 
 
 967		h->resv_huge_pages--;
 968	}
 969
 970	mpol_cond_put(mpol);
 971	return page;
 972
 973err:
 974	return NULL;
 975}
 976
 977/*
 978 * common helper functions for hstate_next_node_to_{alloc|free}.
 979 * We may have allocated or freed a huge page based on a different
 980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 981 * be outside of *nodes_allowed.  Ensure that we use an allowed
 982 * node for alloc or free.
 983 */
 984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 985{
 986	nid = next_node_in(nid, *nodes_allowed);
 987	VM_BUG_ON(nid >= MAX_NUMNODES);
 988
 989	return nid;
 990}
 991
 992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 993{
 994	if (!node_isset(nid, *nodes_allowed))
 995		nid = next_node_allowed(nid, nodes_allowed);
 996	return nid;
 997}
 998
 999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006					nodemask_t *nodes_allowed)
1007{
1008	int nid;
1009
1010	VM_BUG_ON(!nodes_allowed);
1011
1012	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015	return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page.  Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026	int nid;
1027
1028	VM_BUG_ON(!nodes_allowed);
1029
1030	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033	return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1037	for (nr_nodes = nodes_weight(*mask);				\
1038		nr_nodes > 0 &&						\
1039		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1040		nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1043	for (nr_nodes = nodes_weight(*mask);				\
1044		nr_nodes > 0 &&						\
1045		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1046		nr_nodes--)
1047
1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049static void destroy_compound_gigantic_page(struct page *page,
1050					unsigned int order)
1051{
1052	int i;
1053	int nr_pages = 1 << order;
1054	struct page *p = page + 1;
1055
1056	atomic_set(compound_mapcount_ptr(page), 0);
1057	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 
 
 
 
 
 
1058		clear_compound_head(p);
1059		set_page_refcounted(p);
 
1060	}
1061
1062	set_compound_order(page, 0);
1063	__ClearPageHead(page);
1064}
1065
1066static void free_gigantic_page(struct page *page, unsigned int order)
 
1067{
1068	free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
1071#ifdef CONFIG_CONTIG_ALLOC
1072static int __alloc_gigantic_page(unsigned long start_pfn,
1073				unsigned long nr_pages, gfp_t gfp_mask)
1074{
1075	unsigned long end_pfn = start_pfn + nr_pages;
1076	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077				  gfp_mask);
1078}
1079
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081			unsigned long start_pfn, unsigned long nr_pages)
1082{
1083	unsigned long i, end_pfn = start_pfn + nr_pages;
1084	struct page *page;
1085
1086	for (i = start_pfn; i < end_pfn; i++) {
1087		page = pfn_to_online_page(i);
1088		if (!page)
1089			return false;
1090
1091		if (page_zone(page) != z)
1092			return false;
1093
1094		if (PageReserved(page))
1095			return false;
1096
1097		if (page_count(page) > 0)
1098			return false;
1099
1100		if (PageHuge(page))
1101			return false;
1102	}
1103
1104	return true;
1105}
 
1106
1107static bool zone_spans_last_pfn(const struct zone *zone,
1108			unsigned long start_pfn, unsigned long nr_pages)
1109{
1110	unsigned long last_pfn = start_pfn + nr_pages - 1;
1111	return zone_spans_pfn(zone, last_pfn);
1112}
1113
1114static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
 
1115		int nid, nodemask_t *nodemask)
1116{
1117	unsigned int order = huge_page_order(h);
1118	unsigned long nr_pages = 1 << order;
1119	unsigned long ret, pfn, flags;
1120	struct zonelist *zonelist;
1121	struct zone *zone;
1122	struct zoneref *z;
1123
1124	zonelist = node_zonelist(nid, gfp_mask);
1125	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126		spin_lock_irqsave(&zone->lock, flags);
1127
1128		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131				/*
1132				 * We release the zone lock here because
1133				 * alloc_contig_range() will also lock the zone
1134				 * at some point. If there's an allocation
1135				 * spinning on this lock, it may win the race
1136				 * and cause alloc_contig_range() to fail...
1137				 */
1138				spin_unlock_irqrestore(&zone->lock, flags);
1139				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140				if (!ret)
1141					return pfn_to_page(pfn);
1142				spin_lock_irqsave(&zone->lock, flags);
 
 
 
 
 
1143			}
1144			pfn += nr_pages;
1145		}
1146
1147		spin_unlock_irqrestore(&zone->lock, flags);
1148	}
 
1149
1150	return NULL;
 
1151}
1152
1153static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155#else /* !CONFIG_CONTIG_ALLOC */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157					int nid, nodemask_t *nodemask)
1158{
1159	return NULL;
1160}
1161#endif /* CONFIG_CONTIG_ALLOC */
1162
1163#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165					int nid, nodemask_t *nodemask)
1166{
1167	return NULL;
1168}
1169static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170static inline void destroy_compound_gigantic_page(struct page *page,
 
1171						unsigned int order) { }
1172#endif
1173
1174static void update_and_free_page(struct hstate *h, struct page *page)
 
1175{
1176	int i;
 
 
 
1177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179		return;
1180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181	h->nr_huge_pages--;
1182	h->nr_huge_pages_node[page_to_nid(page)]--;
1183	for (i = 0; i < pages_per_huge_page(h); i++) {
1184		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185				1 << PG_referenced | 1 << PG_dirty |
1186				1 << PG_active | 1 << PG_private |
1187				1 << PG_writeback);
1188	}
1189	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1190	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191	set_page_refcounted(page);
1192	if (hstate_is_gigantic(h)) {
1193		destroy_compound_gigantic_page(page, huge_page_order(h));
1194		free_gigantic_page(page, huge_page_order(h));
1195	} else {
1196		__free_pages(page, huge_page_order(h));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198}
1199
1200struct hstate *size_to_hstate(unsigned long size)
 
1201{
1202	struct hstate *h;
1203
1204	for_each_hstate(h) {
1205		if (huge_page_size(h) == size)
1206			return h;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207	}
1208	return NULL;
1209}
1210
1211/*
1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213 * to hstate->hugepage_activelist.)
 
 
1214 *
1215 * This function can be called for tail pages, but never returns true for them.
 
 
 
1216 */
1217bool page_huge_active(struct page *page)
 
 
1218{
1219	VM_BUG_ON_PAGE(!PageHuge(page), page);
1220	return PageHead(page) && PagePrivate(&page[1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221}
 
1222
1223/* never called for tail page */
1224static void set_page_huge_active(struct page *page)
1225{
1226	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227	SetPagePrivate(&page[1]);
1228}
1229
1230static void clear_page_huge_active(struct page *page)
 
1231{
1232	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233	ClearPagePrivate(&page[1]);
 
 
 
 
 
 
 
 
 
 
 
 
1234}
1235
1236/*
1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238 * code
1239 */
1240static inline bool PageHugeTemporary(struct page *page)
1241{
1242	if (!PageHuge(page))
1243		return false;
1244
1245	return (unsigned long)page[2].mapping == -1U;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246}
1247
1248static inline void SetPageHugeTemporary(struct page *page)
 
1249{
1250	page[2].mapping = (void *)-1U;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251}
1252
1253static inline void ClearPageHugeTemporary(struct page *page)
1254{
1255	page[2].mapping = NULL;
 
 
 
 
 
 
1256}
1257
1258void free_huge_page(struct page *page)
1259{
1260	/*
1261	 * Can't pass hstate in here because it is called from the
1262	 * compound page destructor.
1263	 */
1264	struct hstate *h = page_hstate(page);
1265	int nid = page_to_nid(page);
1266	struct hugepage_subpool *spool =
1267		(struct hugepage_subpool *)page_private(page);
1268	bool restore_reserve;
 
1269
1270	VM_BUG_ON_PAGE(page_count(page), page);
1271	VM_BUG_ON_PAGE(page_mapcount(page), page);
1272
1273	set_page_private(page, 0);
1274	page->mapping = NULL;
1275	restore_reserve = PagePrivate(page);
1276	ClearPagePrivate(page);
 
 
1277
1278	/*
1279	 * If PagePrivate() was set on page, page allocation consumed a
1280	 * reservation.  If the page was associated with a subpool, there
1281	 * would have been a page reserved in the subpool before allocation
1282	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1283	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284	 * remove the reserved page from the subpool.
1285	 */
1286	if (!restore_reserve) {
1287		/*
1288		 * A return code of zero implies that the subpool will be
1289		 * under its minimum size if the reservation is not restored
1290		 * after page is free.  Therefore, force restore_reserve
1291		 * operation.
1292		 */
1293		if (hugepage_subpool_put_pages(spool, 1) == 0)
1294			restore_reserve = true;
1295	}
1296
1297	spin_lock(&hugetlb_lock);
1298	clear_page_huge_active(page);
1299	hugetlb_cgroup_uncharge_page(hstate_index(h),
1300				     pages_per_huge_page(h), page);
 
 
 
1301	if (restore_reserve)
1302		h->resv_huge_pages++;
1303
1304	if (PageHugeTemporary(page)) {
1305		list_del(&page->lru);
1306		ClearPageHugeTemporary(page);
1307		update_and_free_page(h, page);
1308	} else if (h->surplus_huge_pages_node[nid]) {
1309		/* remove the page from active list */
1310		list_del(&page->lru);
1311		update_and_free_page(h, page);
1312		h->surplus_huge_pages--;
1313		h->surplus_huge_pages_node[nid]--;
1314	} else {
1315		arch_clear_hugepage_flags(page);
1316		enqueue_huge_page(h, page);
 
1317	}
1318	spin_unlock(&hugetlb_lock);
1319}
1320
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 
 
 
1322{
1323	INIT_LIST_HEAD(&page->lru);
1324	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325	spin_lock(&hugetlb_lock);
1326	set_hugetlb_cgroup(page, NULL);
1327	h->nr_huge_pages++;
1328	h->nr_huge_pages_node[nid]++;
1329	spin_unlock(&hugetlb_lock);
1330}
1331
1332static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1333{
1334	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	int nr_pages = 1 << order;
1336	struct page *p = page + 1;
 
 
 
 
1337
1338	/* we rely on prep_new_huge_page to set the destructor */
1339	set_compound_order(page, order);
1340	__ClearPageReserved(page);
1341	__SetPageHead(page);
1342	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1343		/*
1344		 * For gigantic hugepages allocated through bootmem at
1345		 * boot, it's safer to be consistent with the not-gigantic
1346		 * hugepages and clear the PG_reserved bit from all tail pages
1347		 * too.  Otherwse drivers using get_user_pages() to access tail
1348		 * pages may get the reference counting wrong if they see
1349		 * PG_reserved set on a tail page (despite the head page not
1350		 * having PG_reserved set).  Enforcing this consistency between
1351		 * head and tail pages allows drivers to optimize away a check
1352		 * on the head page when they need know if put_page() is needed
1353		 * after get_user_pages().
1354		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355		__ClearPageReserved(p);
1356		set_page_count(p, 0);
1357		set_compound_head(p, page);
1358	}
1359	atomic_set(compound_mapcount_ptr(page), -1);
1360}
1361
1362/*
1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364 * transparent huge pages.  See the PageTransHuge() documentation for more
1365 * details.
1366 */
1367int PageHuge(struct page *page)
1368{
1369	if (!PageCompound(page))
1370		return 0;
1371
1372	page = compound_head(page);
1373	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374}
1375EXPORT_SYMBOL_GPL(PageHuge);
1376
1377/*
1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379 * normal or transparent huge pages.
1380 */
1381int PageHeadHuge(struct page *page_head)
1382{
1383	if (!PageHead(page_head))
1384		return 0;
1385
1386	return get_compound_page_dtor(page_head) == free_huge_page;
1387}
1388
1389pgoff_t __basepage_index(struct page *page)
 
 
 
 
 
 
 
1390{
1391	struct page *page_head = compound_head(page);
1392	pgoff_t index = page_index(page_head);
1393	unsigned long compound_idx;
1394
1395	if (!PageHuge(page_head))
1396		return page_index(page);
1397
1398	if (compound_order(page_head) >= MAX_ORDER)
1399		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400	else
1401		compound_idx = page - page_head;
1402
1403	return (index << compound_order(page_head)) + compound_idx;
1404}
1405
1406static struct page *alloc_buddy_huge_page(struct hstate *h,
1407		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1408		nodemask_t *node_alloc_noretry)
1409{
1410	int order = huge_page_order(h);
1411	struct page *page;
1412	bool alloc_try_hard = true;
 
1413
1414	/*
1415	 * By default we always try hard to allocate the page with
1416	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1417	 * a loop (to adjust global huge page counts) and previous allocation
1418	 * failed, do not continue to try hard on the same node.  Use the
1419	 * node_alloc_noretry bitmap to manage this state information.
1420	 */
1421	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1422		alloc_try_hard = false;
1423	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1424	if (alloc_try_hard)
1425		gfp_mask |= __GFP_RETRY_MAYFAIL;
1426	if (nid == NUMA_NO_NODE)
1427		nid = numa_mem_id();
1428	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1429	if (page)
1430		__count_vm_event(HTLB_BUDDY_PGALLOC);
1431	else
1432		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 
 
 
 
 
 
 
 
 
1433
1434	/*
1435	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1436	 * indicates an overall state change.  Clear bit so that we resume
1437	 * normal 'try hard' allocations.
1438	 */
1439	if (node_alloc_noretry && page && !alloc_try_hard)
1440		node_clear(nid, *node_alloc_noretry);
1441
1442	/*
1443	 * If we tried hard to get a page but failed, set bit so that
1444	 * subsequent attempts will not try as hard until there is an
1445	 * overall state change.
1446	 */
1447	if (node_alloc_noretry && !page && alloc_try_hard)
1448		node_set(nid, *node_alloc_noretry);
1449
1450	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451}
1452
1453/*
1454 * Common helper to allocate a fresh hugetlb page. All specific allocators
1455 * should use this function to get new hugetlb pages
 
 
 
1456 */
1457static struct page *alloc_fresh_huge_page(struct hstate *h,
1458		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1459		nodemask_t *node_alloc_noretry)
1460{
1461	struct page *page;
1462
1463	if (hstate_is_gigantic(h))
1464		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1465	else
1466		page = alloc_buddy_huge_page(h, gfp_mask,
1467				nid, nmask, node_alloc_noretry);
1468	if (!page)
1469		return NULL;
1470
1471	if (hstate_is_gigantic(h))
1472		prep_compound_gigantic_page(page, huge_page_order(h));
1473	prep_new_huge_page(h, page, page_to_nid(page));
1474
1475	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476}
1477
1478/*
1479 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1480 * manner.
1481 */
1482static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1483				nodemask_t *node_alloc_noretry)
 
 
1484{
1485	struct page *page;
1486	int nr_nodes, node;
1487	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
 
1488
1489	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1490		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1491						node_alloc_noretry);
1492		if (page)
1493			break;
1494	}
1495
1496	if (!page)
1497		return 0;
1498
1499	put_page(page); /* free it into the hugepage allocator */
 
1500
1501	return 1;
1502}
1503
1504/*
1505 * Free huge page from pool from next node to free.
1506 * Attempt to keep persistent huge pages more or less
1507 * balanced over allowed nodes.
 
1508 * Called with hugetlb_lock locked.
1509 */
1510static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1511							 bool acct_surplus)
1512{
1513	int nr_nodes, node;
1514	int ret = 0;
1515
 
1516	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1517		/*
1518		 * If we're returning unused surplus pages, only examine
1519		 * nodes with surplus pages.
1520		 */
1521		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1522		    !list_empty(&h->hugepage_freelists[node])) {
1523			struct page *page =
1524				list_entry(h->hugepage_freelists[node].next,
1525					  struct page, lru);
1526			list_del(&page->lru);
1527			h->free_huge_pages--;
1528			h->free_huge_pages_node[node]--;
1529			if (acct_surplus) {
1530				h->surplus_huge_pages--;
1531				h->surplus_huge_pages_node[node]--;
1532			}
1533			update_and_free_page(h, page);
1534			ret = 1;
1535			break;
1536		}
1537	}
1538
1539	return ret;
1540}
1541
1542/*
1543 * Dissolve a given free hugepage into free buddy pages. This function does
1544 * nothing for in-use hugepages and non-hugepages.
1545 * This function returns values like below:
1546 *
1547 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1548 *          (allocated or reserved.)
1549 *       0: successfully dissolved free hugepages or the page is not a
1550 *          hugepage (considered as already dissolved)
 
 
 
 
1551 */
1552int dissolve_free_huge_page(struct page *page)
1553{
1554	int rc = -EBUSY;
 
1555
 
1556	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1557	if (!PageHuge(page))
1558		return 0;
1559
1560	spin_lock(&hugetlb_lock);
1561	if (!PageHuge(page)) {
1562		rc = 0;
1563		goto out;
1564	}
1565
1566	if (!page_count(page)) {
1567		struct page *head = compound_head(page);
1568		struct hstate *h = page_hstate(head);
1569		int nid = page_to_nid(head);
1570		if (h->free_huge_pages - h->resv_huge_pages == 0)
1571			goto out;
 
1572		/*
1573		 * Move PageHWPoison flag from head page to the raw error page,
1574		 * which makes any subpages rather than the error page reusable.
1575		 */
1576		if (PageHWPoison(head) && page != head) {
1577			SetPageHWPoison(page);
1578			ClearPageHWPoison(head);
 
 
 
 
 
 
 
 
 
 
1579		}
1580		list_del(&head->lru);
1581		h->free_huge_pages--;
1582		h->free_huge_pages_node[nid]--;
1583		h->max_huge_pages--;
1584		update_and_free_page(h, head);
1585		rc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586	}
1587out:
1588	spin_unlock(&hugetlb_lock);
1589	return rc;
1590}
1591
1592/*
1593 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1594 * make specified memory blocks removable from the system.
1595 * Note that this will dissolve a free gigantic hugepage completely, if any
1596 * part of it lies within the given range.
1597 * Also note that if dissolve_free_huge_page() returns with an error, all
1598 * free hugepages that were dissolved before that error are lost.
1599 */
1600int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602	unsigned long pfn;
1603	struct page *page;
1604	int rc = 0;
 
 
1605
1606	if (!hugepages_supported())
1607		return rc;
1608
1609	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
 
 
 
 
1610		page = pfn_to_page(pfn);
1611		rc = dissolve_free_huge_page(page);
1612		if (rc)
1613			break;
1614	}
1615
1616	return rc;
1617}
1618
1619/*
1620 * Allocates a fresh surplus page from the page allocator.
1621 */
1622static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1623		int nid, nodemask_t *nmask)
1624{
1625	struct page *page = NULL;
1626
1627	if (hstate_is_gigantic(h))
1628		return NULL;
1629
1630	spin_lock(&hugetlb_lock);
1631	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1632		goto out_unlock;
1633	spin_unlock(&hugetlb_lock);
1634
1635	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1636	if (!page)
1637		return NULL;
1638
1639	spin_lock(&hugetlb_lock);
1640	/*
1641	 * We could have raced with the pool size change.
1642	 * Double check that and simply deallocate the new page
1643	 * if we would end up overcommiting the surpluses. Abuse
1644	 * temporary page to workaround the nasty free_huge_page
1645	 * codeflow
1646	 */
1647	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1648		SetPageHugeTemporary(page);
1649		spin_unlock(&hugetlb_lock);
1650		put_page(page);
1651		return NULL;
1652	} else {
1653		h->surplus_huge_pages++;
1654		h->surplus_huge_pages_node[page_to_nid(page)]++;
1655	}
1656
 
 
 
1657out_unlock:
1658	spin_unlock(&hugetlb_lock);
1659
1660	return page;
1661}
1662
1663struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1664				     int nid, nodemask_t *nmask)
1665{
1666	struct page *page;
1667
1668	if (hstate_is_gigantic(h))
1669		return NULL;
1670
1671	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1672	if (!page)
1673		return NULL;
1674
 
 
1675	/*
1676	 * We do not account these pages as surplus because they are only
1677	 * temporary and will be released properly on the last reference
1678	 */
1679	SetPageHugeTemporary(page);
1680
1681	return page;
1682}
1683
1684/*
1685 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1686 */
1687static
1688struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1689		struct vm_area_struct *vma, unsigned long addr)
1690{
1691	struct page *page;
1692	struct mempolicy *mpol;
1693	gfp_t gfp_mask = htlb_alloc_mask(h);
1694	int nid;
1695	nodemask_t *nodemask;
1696
1697	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1698	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1699	mpol_cond_put(mpol);
1700
1701	return page;
1702}
1703
1704/* page migration callback function */
1705struct page *alloc_huge_page_node(struct hstate *h, int nid)
1706{
1707	gfp_t gfp_mask = htlb_alloc_mask(h);
1708	struct page *page = NULL;
1709
1710	if (nid != NUMA_NO_NODE)
1711		gfp_mask |= __GFP_THISNODE;
1712
1713	spin_lock(&hugetlb_lock);
1714	if (h->free_huge_pages - h->resv_huge_pages > 0)
1715		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1716	spin_unlock(&hugetlb_lock);
1717
1718	if (!page)
1719		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1720
1721	return page;
 
 
 
1722}
1723
1724/* page migration callback function */
1725struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1726		nodemask_t *nmask)
1727{
1728	gfp_t gfp_mask = htlb_alloc_mask(h);
1729
1730	spin_lock(&hugetlb_lock);
1731	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1732		struct page *page;
1733
1734		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1735		if (page) {
1736			spin_unlock(&hugetlb_lock);
1737			return page;
 
1738		}
1739	}
1740	spin_unlock(&hugetlb_lock);
1741
1742	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1743}
1744
1745/* mempolicy aware migration callback */
1746struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1747		unsigned long address)
1748{
1749	struct mempolicy *mpol;
1750	nodemask_t *nodemask;
1751	struct page *page;
1752	gfp_t gfp_mask;
1753	int node;
1754
1755	gfp_mask = htlb_alloc_mask(h);
1756	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1757	page = alloc_huge_page_nodemask(h, node, nodemask);
1758	mpol_cond_put(mpol);
1759
1760	return page;
1761}
1762
1763/*
1764 * Increase the hugetlb pool such that it can accommodate a reservation
1765 * of size 'delta'.
1766 */
1767static int gather_surplus_pages(struct hstate *h, int delta)
 
1768{
1769	struct list_head surplus_list;
1770	struct page *page, *tmp;
1771	int ret, i;
1772	int needed, allocated;
 
1773	bool alloc_ok = true;
1774
 
1775	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1776	if (needed <= 0) {
1777		h->resv_huge_pages += delta;
1778		return 0;
1779	}
1780
1781	allocated = 0;
1782	INIT_LIST_HEAD(&surplus_list);
1783
1784	ret = -ENOMEM;
1785retry:
1786	spin_unlock(&hugetlb_lock);
1787	for (i = 0; i < needed; i++) {
1788		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1789				NUMA_NO_NODE, NULL);
1790		if (!page) {
1791			alloc_ok = false;
1792			break;
1793		}
1794		list_add(&page->lru, &surplus_list);
1795		cond_resched();
1796	}
1797	allocated += i;
1798
1799	/*
1800	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1801	 * because either resv_huge_pages or free_huge_pages may have changed.
1802	 */
1803	spin_lock(&hugetlb_lock);
1804	needed = (h->resv_huge_pages + delta) -
1805			(h->free_huge_pages + allocated);
1806	if (needed > 0) {
1807		if (alloc_ok)
1808			goto retry;
1809		/*
1810		 * We were not able to allocate enough pages to
1811		 * satisfy the entire reservation so we free what
1812		 * we've allocated so far.
1813		 */
1814		goto free;
1815	}
1816	/*
1817	 * The surplus_list now contains _at_least_ the number of extra pages
1818	 * needed to accommodate the reservation.  Add the appropriate number
1819	 * of pages to the hugetlb pool and free the extras back to the buddy
1820	 * allocator.  Commit the entire reservation here to prevent another
1821	 * process from stealing the pages as they are added to the pool but
1822	 * before they are reserved.
1823	 */
1824	needed += allocated;
1825	h->resv_huge_pages += delta;
1826	ret = 0;
1827
1828	/* Free the needed pages to the hugetlb pool */
1829	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1830		if ((--needed) < 0)
1831			break;
1832		/*
1833		 * This page is now managed by the hugetlb allocator and has
1834		 * no users -- drop the buddy allocator's reference.
1835		 */
1836		put_page_testzero(page);
1837		VM_BUG_ON_PAGE(page_count(page), page);
1838		enqueue_huge_page(h, page);
1839	}
1840free:
1841	spin_unlock(&hugetlb_lock);
1842
1843	/* Free unnecessary surplus pages to the buddy allocator */
1844	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1845		put_page(page);
1846	spin_lock(&hugetlb_lock);
 
 
 
1847
1848	return ret;
1849}
1850
1851/*
1852 * This routine has two main purposes:
1853 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1854 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1855 *    to the associated reservation map.
1856 * 2) Free any unused surplus pages that may have been allocated to satisfy
1857 *    the reservation.  As many as unused_resv_pages may be freed.
1858 *
1859 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1860 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1861 * we must make sure nobody else can claim pages we are in the process of
1862 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1863 * number of huge pages we plan to free when dropping the lock.
1864 */
1865static void return_unused_surplus_pages(struct hstate *h,
1866					unsigned long unused_resv_pages)
1867{
1868	unsigned long nr_pages;
 
1869
1870	/* Cannot return gigantic pages currently */
1871	if (hstate_is_gigantic(h))
 
 
 
1872		goto out;
1873
1874	/*
1875	 * Part (or even all) of the reservation could have been backed
1876	 * by pre-allocated pages. Only free surplus pages.
1877	 */
1878	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1879
1880	/*
1881	 * We want to release as many surplus pages as possible, spread
1882	 * evenly across all nodes with memory. Iterate across these nodes
1883	 * until we can no longer free unreserved surplus pages. This occurs
1884	 * when the nodes with surplus pages have no free pages.
1885	 * free_pool_huge_page() will balance the the freed pages across the
1886	 * on-line nodes with memory and will handle the hstate accounting.
1887	 *
1888	 * Note that we decrement resv_huge_pages as we free the pages.  If
1889	 * we drop the lock, resv_huge_pages will still be sufficiently large
1890	 * to cover subsequent pages we may free.
1891	 */
1892	while (nr_pages--) {
1893		h->resv_huge_pages--;
1894		unused_resv_pages--;
1895		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
 
1896			goto out;
1897		cond_resched_lock(&hugetlb_lock);
 
1898	}
1899
1900out:
1901	/* Fully uncommit the reservation */
1902	h->resv_huge_pages -= unused_resv_pages;
 
1903}
1904
1905
1906/*
1907 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1908 * are used by the huge page allocation routines to manage reservations.
1909 *
1910 * vma_needs_reservation is called to determine if the huge page at addr
1911 * within the vma has an associated reservation.  If a reservation is
1912 * needed, the value 1 is returned.  The caller is then responsible for
1913 * managing the global reservation and subpool usage counts.  After
1914 * the huge page has been allocated, vma_commit_reservation is called
1915 * to add the page to the reservation map.  If the page allocation fails,
1916 * the reservation must be ended instead of committed.  vma_end_reservation
1917 * is called in such cases.
1918 *
1919 * In the normal case, vma_commit_reservation returns the same value
1920 * as the preceding vma_needs_reservation call.  The only time this
1921 * is not the case is if a reserve map was changed between calls.  It
1922 * is the responsibility of the caller to notice the difference and
1923 * take appropriate action.
1924 *
1925 * vma_add_reservation is used in error paths where a reservation must
1926 * be restored when a newly allocated huge page must be freed.  It is
1927 * to be called after calling vma_needs_reservation to determine if a
1928 * reservation exists.
 
 
 
 
 
1929 */
1930enum vma_resv_mode {
1931	VMA_NEEDS_RESV,
1932	VMA_COMMIT_RESV,
1933	VMA_END_RESV,
1934	VMA_ADD_RESV,
 
1935};
1936static long __vma_reservation_common(struct hstate *h,
1937				struct vm_area_struct *vma, unsigned long addr,
1938				enum vma_resv_mode mode)
1939{
1940	struct resv_map *resv;
1941	pgoff_t idx;
1942	long ret;
 
1943
1944	resv = vma_resv_map(vma);
1945	if (!resv)
1946		return 1;
1947
1948	idx = vma_hugecache_offset(h, vma, addr);
1949	switch (mode) {
1950	case VMA_NEEDS_RESV:
1951		ret = region_chg(resv, idx, idx + 1);
 
 
 
 
 
1952		break;
1953	case VMA_COMMIT_RESV:
1954		ret = region_add(resv, idx, idx + 1);
 
 
1955		break;
1956	case VMA_END_RESV:
1957		region_abort(resv, idx, idx + 1);
1958		ret = 0;
1959		break;
1960	case VMA_ADD_RESV:
1961		if (vma->vm_flags & VM_MAYSHARE)
1962			ret = region_add(resv, idx, idx + 1);
1963		else {
1964			region_abort(resv, idx, idx + 1);
 
 
1965			ret = region_del(resv, idx, idx + 1);
1966		}
1967		break;
 
 
 
 
 
 
 
 
 
 
1968	default:
1969		BUG();
1970	}
1971
1972	if (vma->vm_flags & VM_MAYSHARE)
1973		return ret;
1974	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1975		/*
1976		 * In most cases, reserves always exist for private mappings.
1977		 * However, a file associated with mapping could have been
1978		 * hole punched or truncated after reserves were consumed.
1979		 * As subsequent fault on such a range will not use reserves.
1980		 * Subtle - The reserve map for private mappings has the
1981		 * opposite meaning than that of shared mappings.  If NO
1982		 * entry is in the reserve map, it means a reservation exists.
1983		 * If an entry exists in the reserve map, it means the
1984		 * reservation has already been consumed.  As a result, the
1985		 * return value of this routine is the opposite of the
1986		 * value returned from reserve map manipulation routines above.
1987		 */
1988		if (ret)
1989			return 0;
1990		else
1991			return 1;
1992	}
1993	else
1994		return ret < 0 ? ret : 0;
1995}
1996
1997static long vma_needs_reservation(struct hstate *h,
1998			struct vm_area_struct *vma, unsigned long addr)
1999{
2000	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2001}
2002
2003static long vma_commit_reservation(struct hstate *h,
2004			struct vm_area_struct *vma, unsigned long addr)
2005{
2006	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2007}
2008
2009static void vma_end_reservation(struct hstate *h,
2010			struct vm_area_struct *vma, unsigned long addr)
2011{
2012	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2013}
2014
2015static long vma_add_reservation(struct hstate *h,
2016			struct vm_area_struct *vma, unsigned long addr)
2017{
2018	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2019}
2020
 
 
 
 
 
 
2021/*
2022 * This routine is called to restore a reservation on error paths.  In the
2023 * specific error paths, a huge page was allocated (via alloc_huge_page)
2024 * and is about to be freed.  If a reservation for the page existed,
2025 * alloc_huge_page would have consumed the reservation and set PagePrivate
2026 * in the newly allocated page.  When the page is freed via free_huge_page,
2027 * the global reservation count will be incremented if PagePrivate is set.
2028 * However, free_huge_page can not adjust the reserve map.  Adjust the
2029 * reserve map here to be consistent with global reserve count adjustments
2030 * to be made by free_huge_page.
2031 */
2032static void restore_reserve_on_error(struct hstate *h,
2033			struct vm_area_struct *vma, unsigned long address,
2034			struct page *page)
 
 
 
 
 
 
 
 
2035{
2036	if (unlikely(PagePrivate(page))) {
2037		long rc = vma_needs_reservation(h, vma, address);
2038
2039		if (unlikely(rc < 0)) {
 
2040			/*
2041			 * Rare out of memory condition in reserve map
2042			 * manipulation.  Clear PagePrivate so that
2043			 * global reserve count will not be incremented
2044			 * by free_huge_page.  This will make it appear
2045			 * as though the reservation for this page was
2046			 * consumed.  This may prevent the task from
2047			 * faulting in the page at a later time.  This
2048			 * is better than inconsistent global huge page
2049			 * accounting of reserve counts.
2050			 */
2051			ClearPagePrivate(page);
2052		} else if (rc) {
2053			rc = vma_add_reservation(h, vma, address);
2054			if (unlikely(rc < 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
2055				/*
2056				 * See above comment about rare out of
2057				 * memory condition.
 
 
 
 
2058				 */
2059				ClearPagePrivate(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2060		} else
2061			vma_end_reservation(h, vma, address);
 
 
 
2062	}
2063}
2064
2065struct page *alloc_huge_page(struct vm_area_struct *vma,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066				    unsigned long addr, int avoid_reserve)
2067{
2068	struct hugepage_subpool *spool = subpool_vma(vma);
2069	struct hstate *h = hstate_vma(vma);
2070	struct page *page;
2071	long map_chg, map_commit;
2072	long gbl_chg;
2073	int ret, idx;
2074	struct hugetlb_cgroup *h_cg;
 
 
 
 
 
 
 
 
 
 
2075
2076	idx = hstate_index(h);
2077	/*
2078	 * Examine the region/reserve map to determine if the process
2079	 * has a reservation for the page to be allocated.  A return
2080	 * code of zero indicates a reservation exists (no change).
2081	 */
2082	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2083	if (map_chg < 0)
 
 
 
2084		return ERR_PTR(-ENOMEM);
 
2085
2086	/*
2087	 * Processes that did not create the mapping will have no
2088	 * reserves as indicated by the region/reserve map. Check
2089	 * that the allocation will not exceed the subpool limit.
2090	 * Allocations for MAP_NORESERVE mappings also need to be
2091	 * checked against any subpool limit.
2092	 */
2093	if (map_chg || avoid_reserve) {
2094		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2095		if (gbl_chg < 0) {
2096			vma_end_reservation(h, vma, addr);
2097			return ERR_PTR(-ENOSPC);
2098		}
2099
2100		/*
2101		 * Even though there was no reservation in the region/reserve
2102		 * map, there could be reservations associated with the
2103		 * subpool that can be used.  This would be indicated if the
2104		 * return value of hugepage_subpool_get_pages() is zero.
2105		 * However, if avoid_reserve is specified we still avoid even
2106		 * the subpool reservations.
2107		 */
2108		if (avoid_reserve)
2109			gbl_chg = 1;
2110	}
2111
 
 
 
 
 
 
 
 
 
 
2112	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2113	if (ret)
2114		goto out_subpool_put;
2115
2116	spin_lock(&hugetlb_lock);
2117	/*
2118	 * glb_chg is passed to indicate whether or not a page must be taken
2119	 * from the global free pool (global change).  gbl_chg == 0 indicates
2120	 * a reservation exists for the allocation.
2121	 */
2122	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2123	if (!page) {
2124		spin_unlock(&hugetlb_lock);
2125		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2126		if (!page)
2127			goto out_uncharge_cgroup;
 
2128		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2129			SetPagePrivate(page);
2130			h->resv_huge_pages--;
2131		}
2132		spin_lock(&hugetlb_lock);
2133		list_move(&page->lru, &h->hugepage_activelist);
2134		/* Fall through */
2135	}
2136	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2137	spin_unlock(&hugetlb_lock);
2138
2139	set_page_private(page, (unsigned long)spool);
 
 
 
 
 
 
 
 
 
 
 
2140
2141	map_commit = vma_commit_reservation(h, vma, addr);
2142	if (unlikely(map_chg > map_commit)) {
2143		/*
2144		 * The page was added to the reservation map between
2145		 * vma_needs_reservation and vma_commit_reservation.
2146		 * This indicates a race with hugetlb_reserve_pages.
2147		 * Adjust for the subpool count incremented above AND
2148		 * in hugetlb_reserve_pages for the same page.  Also,
2149		 * the reservation count added in hugetlb_reserve_pages
2150		 * no longer applies.
2151		 */
2152		long rsv_adjust;
2153
2154		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2155		hugetlb_acct_memory(h, -rsv_adjust);
 
 
 
 
 
 
2156	}
2157	return page;
 
 
 
 
 
2158
2159out_uncharge_cgroup:
2160	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
 
 
 
 
2161out_subpool_put:
2162	if (map_chg || avoid_reserve)
2163		hugepage_subpool_put_pages(spool, 1);
 
2164	vma_end_reservation(h, vma, addr);
 
 
 
2165	return ERR_PTR(-ENOSPC);
2166}
2167
2168int alloc_bootmem_huge_page(struct hstate *h)
2169	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2170int __alloc_bootmem_huge_page(struct hstate *h)
2171{
2172	struct huge_bootmem_page *m;
2173	int nr_nodes, node;
2174
2175	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2176		void *addr;
2177
2178		addr = memblock_alloc_try_nid_raw(
 
 
 
 
 
 
 
 
 
 
2179				huge_page_size(h), huge_page_size(h),
2180				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2181		if (addr) {
2182			/*
2183			 * Use the beginning of the huge page to store the
2184			 * huge_bootmem_page struct (until gather_bootmem
2185			 * puts them into the mem_map).
2186			 */
2187			m = addr;
2188			goto found;
2189		}
2190	}
2191	return 0;
2192
2193found:
2194	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
 
 
 
 
 
 
 
 
 
2195	/* Put them into a private list first because mem_map is not up yet */
2196	INIT_LIST_HEAD(&m->list);
2197	list_add(&m->list, &huge_boot_pages);
2198	m->hstate = h;
2199	return 1;
2200}
2201
2202static void __init prep_compound_huge_page(struct page *page,
2203		unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204{
2205	if (unlikely(order > (MAX_ORDER - 1)))
2206		prep_compound_gigantic_page(page, order);
2207	else
2208		prep_compound_page(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2209}
2210
2211/* Put bootmem huge pages into the standard lists after mem_map is up */
2212static void __init gather_bootmem_prealloc(void)
 
 
 
2213{
 
2214	struct huge_bootmem_page *m;
 
2215
2216	list_for_each_entry(m, &huge_boot_pages, list) {
2217		struct page *page = virt_to_page(m);
2218		struct hstate *h = m->hstate;
2219
2220		WARN_ON(page_count(page) != 1);
2221		prep_compound_huge_page(page, h->order);
2222		WARN_ON(PageReserved(page));
2223		prep_new_huge_page(h, page, page_to_nid(page));
2224		put_page(page); /* free it into the hugepage allocator */
2225
2226		/*
2227		 * If we had gigantic hugepages allocated at boot time, we need
2228		 * to restore the 'stolen' pages to totalram_pages in order to
2229		 * fix confusing memory reports from free(1) and another
2230		 * side-effects, like CommitLimit going negative.
2231		 */
2232		if (hstate_is_gigantic(h))
2233			adjust_managed_page_count(page, 1 << h->order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234		cond_resched();
2235	}
 
 
2236}
2237
2238static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
 
2239{
2240	unsigned long i;
2241	nodemask_t *node_alloc_noretry;
2242
2243	if (!hstate_is_gigantic(h)) {
2244		/*
2245		 * Bit mask controlling how hard we retry per-node allocations.
2246		 * Ignore errors as lower level routines can deal with
2247		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2248		 * time, we are likely in bigger trouble.
2249		 */
2250		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2251						GFP_KERNEL);
2252	} else {
2253		/* allocations done at boot time */
2254		node_alloc_noretry = NULL;
2255	}
2256
2257	/* bit mask controlling how hard we retry per-node allocations */
2258	if (node_alloc_noretry)
2259		nodes_clear(*node_alloc_noretry);
 
 
 
 
 
 
 
 
 
2260
2261	for (i = 0; i < h->max_huge_pages; ++i) {
 
 
 
 
 
 
 
 
2262		if (hstate_is_gigantic(h)) {
2263			if (!alloc_bootmem_huge_page(h))
2264				break;
2265		} else if (!alloc_pool_huge_page(h,
2266					 &node_states[N_MEMORY],
2267					 node_alloc_noretry))
2268			break;
 
 
 
 
 
 
2269		cond_resched();
2270	}
2271	if (i < h->max_huge_pages) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2272		char buf[32];
2273
2274		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2275		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2276			h->max_huge_pages, buf, i);
2277		h->max_huge_pages = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2278	}
2279
2280	kfree(node_alloc_noretry);
 
 
 
 
 
 
 
 
 
 
2281}
2282
2283static void __init hugetlb_init_hstates(void)
2284{
2285	struct hstate *h;
2286
2287	for_each_hstate(h) {
2288		if (minimum_order > huge_page_order(h))
2289			minimum_order = huge_page_order(h);
2290
2291		/* oversize hugepages were init'ed in early boot */
2292		if (!hstate_is_gigantic(h))
2293			hugetlb_hstate_alloc_pages(h);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2294	}
2295	VM_BUG_ON(minimum_order == UINT_MAX);
2296}
2297
2298static void __init report_hugepages(void)
2299{
2300	struct hstate *h;
2301
2302	for_each_hstate(h) {
2303		char buf[32];
2304
2305		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2306		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2307			buf, h->free_huge_pages);
 
 
2308	}
2309}
2310
2311#ifdef CONFIG_HIGHMEM
2312static void try_to_free_low(struct hstate *h, unsigned long count,
2313						nodemask_t *nodes_allowed)
2314{
2315	int i;
 
2316
 
2317	if (hstate_is_gigantic(h))
2318		return;
2319
 
 
 
2320	for_each_node_mask(i, *nodes_allowed) {
2321		struct page *page, *next;
2322		struct list_head *freel = &h->hugepage_freelists[i];
2323		list_for_each_entry_safe(page, next, freel, lru) {
2324			if (count >= h->nr_huge_pages)
2325				return;
2326			if (PageHighMem(page))
2327				continue;
2328			list_del(&page->lru);
2329			update_and_free_page(h, page);
2330			h->free_huge_pages--;
2331			h->free_huge_pages_node[page_to_nid(page)]--;
2332		}
2333	}
 
 
 
 
 
2334}
2335#else
2336static inline void try_to_free_low(struct hstate *h, unsigned long count,
2337						nodemask_t *nodes_allowed)
2338{
2339}
2340#endif
2341
2342/*
2343 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2344 * balanced by operating on them in a round-robin fashion.
2345 * Returns 1 if an adjustment was made.
2346 */
2347static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2348				int delta)
2349{
2350	int nr_nodes, node;
2351
 
2352	VM_BUG_ON(delta != -1 && delta != 1);
2353
2354	if (delta < 0) {
2355		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2356			if (h->surplus_huge_pages_node[node])
2357				goto found;
2358		}
2359	} else {
2360		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2361			if (h->surplus_huge_pages_node[node] <
2362					h->nr_huge_pages_node[node])
2363				goto found;
2364		}
2365	}
2366	return 0;
2367
2368found:
2369	h->surplus_huge_pages += delta;
2370	h->surplus_huge_pages_node[node] += delta;
2371	return 1;
2372}
2373
2374#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2375static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2376			      nodemask_t *nodes_allowed)
2377{
2378	unsigned long min_count, ret;
 
 
 
2379	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2380
2381	/*
2382	 * Bit mask controlling how hard we retry per-node allocations.
2383	 * If we can not allocate the bit mask, do not attempt to allocate
2384	 * the requested huge pages.
2385	 */
2386	if (node_alloc_noretry)
2387		nodes_clear(*node_alloc_noretry);
2388	else
2389		return -ENOMEM;
2390
2391	spin_lock(&hugetlb_lock);
 
 
 
 
 
 
2392
2393	/*
2394	 * Check for a node specific request.
2395	 * Changing node specific huge page count may require a corresponding
2396	 * change to the global count.  In any case, the passed node mask
2397	 * (nodes_allowed) will restrict alloc/free to the specified node.
2398	 */
2399	if (nid != NUMA_NO_NODE) {
2400		unsigned long old_count = count;
2401
2402		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
 
 
2403		/*
2404		 * User may have specified a large count value which caused the
2405		 * above calculation to overflow.  In this case, they wanted
2406		 * to allocate as many huge pages as possible.  Set count to
2407		 * largest possible value to align with their intention.
2408		 */
2409		if (count < old_count)
2410			count = ULONG_MAX;
2411	}
2412
2413	/*
2414	 * Gigantic pages runtime allocation depend on the capability for large
2415	 * page range allocation.
2416	 * If the system does not provide this feature, return an error when
2417	 * the user tries to allocate gigantic pages but let the user free the
2418	 * boottime allocated gigantic pages.
2419	 */
2420	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2421		if (count > persistent_huge_pages(h)) {
2422			spin_unlock(&hugetlb_lock);
 
2423			NODEMASK_FREE(node_alloc_noretry);
2424			return -EINVAL;
2425		}
2426		/* Fall through to decrease pool */
2427	}
2428
2429	/*
2430	 * Increase the pool size
2431	 * First take pages out of surplus state.  Then make up the
2432	 * remaining difference by allocating fresh huge pages.
2433	 *
2434	 * We might race with alloc_surplus_huge_page() here and be unable
2435	 * to convert a surplus huge page to a normal huge page. That is
2436	 * not critical, though, it just means the overall size of the
2437	 * pool might be one hugepage larger than it needs to be, but
2438	 * within all the constraints specified by the sysctls.
2439	 */
2440	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2441		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2442			break;
2443	}
2444
2445	while (count > persistent_huge_pages(h)) {
 
2446		/*
2447		 * If this allocation races such that we no longer need the
2448		 * page, free_huge_page will handle it by freeing the page
2449		 * and reducing the surplus.
2450		 */
2451		spin_unlock(&hugetlb_lock);
2452
2453		/* yield cpu to avoid soft lockup */
2454		cond_resched();
2455
2456		ret = alloc_pool_huge_page(h, nodes_allowed,
2457						node_alloc_noretry);
2458		spin_lock(&hugetlb_lock);
2459		if (!ret)
 
 
2460			goto out;
 
 
 
 
2461
2462		/* Bail for signals. Probably ctrl-c from user */
2463		if (signal_pending(current))
 
 
2464			goto out;
 
 
 
 
 
 
 
 
 
 
2465	}
2466
2467	/*
2468	 * Decrease the pool size
2469	 * First return free pages to the buddy allocator (being careful
2470	 * to keep enough around to satisfy reservations).  Then place
2471	 * pages into surplus state as needed so the pool will shrink
2472	 * to the desired size as pages become free.
2473	 *
2474	 * By placing pages into the surplus state independent of the
2475	 * overcommit value, we are allowing the surplus pool size to
2476	 * exceed overcommit. There are few sane options here. Since
2477	 * alloc_surplus_huge_page() is checking the global counter,
2478	 * though, we'll note that we're not allowed to exceed surplus
2479	 * and won't grow the pool anywhere else. Not until one of the
2480	 * sysctls are changed, or the surplus pages go out of use.
2481	 */
2482	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2483	min_count = max(count, min_count);
2484	try_to_free_low(h, min_count, nodes_allowed);
 
 
 
 
2485	while (min_count < persistent_huge_pages(h)) {
2486		if (!free_pool_huge_page(h, nodes_allowed, 0))
 
2487			break;
2488		cond_resched_lock(&hugetlb_lock);
 
2489	}
 
 
 
 
 
 
2490	while (count < persistent_huge_pages(h)) {
2491		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2492			break;
2493	}
2494out:
2495	h->max_huge_pages = persistent_huge_pages(h);
2496	spin_unlock(&hugetlb_lock);
 
2497
2498	NODEMASK_FREE(node_alloc_noretry);
2499
2500	return 0;
2501}
2502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2503#define HSTATE_ATTR_RO(_name) \
2504	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2505
 
 
 
2506#define HSTATE_ATTR(_name) \
2507	static struct kobj_attribute _name##_attr = \
2508		__ATTR(_name, 0644, _name##_show, _name##_store)
2509
2510static struct kobject *hugepages_kobj;
2511static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512
2513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2514
2515static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2516{
2517	int i;
2518
2519	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2520		if (hstate_kobjs[i] == kobj) {
2521			if (nidp)
2522				*nidp = NUMA_NO_NODE;
2523			return &hstates[i];
2524		}
2525
2526	return kobj_to_node_hstate(kobj, nidp);
2527}
2528
2529static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2530					struct kobj_attribute *attr, char *buf)
2531{
2532	struct hstate *h;
2533	unsigned long nr_huge_pages;
2534	int nid;
2535
2536	h = kobj_to_hstate(kobj, &nid);
2537	if (nid == NUMA_NO_NODE)
2538		nr_huge_pages = h->nr_huge_pages;
2539	else
2540		nr_huge_pages = h->nr_huge_pages_node[nid];
2541
2542	return sprintf(buf, "%lu\n", nr_huge_pages);
2543}
2544
2545static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2546					   struct hstate *h, int nid,
2547					   unsigned long count, size_t len)
2548{
2549	int err;
2550	nodemask_t nodes_allowed, *n_mask;
2551
2552	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2553		return -EINVAL;
2554
2555	if (nid == NUMA_NO_NODE) {
2556		/*
2557		 * global hstate attribute
2558		 */
2559		if (!(obey_mempolicy &&
2560				init_nodemask_of_mempolicy(&nodes_allowed)))
2561			n_mask = &node_states[N_MEMORY];
2562		else
2563			n_mask = &nodes_allowed;
2564	} else {
2565		/*
2566		 * Node specific request.  count adjustment happens in
2567		 * set_max_huge_pages() after acquiring hugetlb_lock.
2568		 */
2569		init_nodemask_of_node(&nodes_allowed, nid);
2570		n_mask = &nodes_allowed;
2571	}
2572
2573	err = set_max_huge_pages(h, count, nid, n_mask);
2574
2575	return err ? err : len;
2576}
2577
2578static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2579					 struct kobject *kobj, const char *buf,
2580					 size_t len)
2581{
2582	struct hstate *h;
2583	unsigned long count;
2584	int nid;
2585	int err;
2586
2587	err = kstrtoul(buf, 10, &count);
2588	if (err)
2589		return err;
2590
2591	h = kobj_to_hstate(kobj, &nid);
2592	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2593}
2594
2595static ssize_t nr_hugepages_show(struct kobject *kobj,
2596				       struct kobj_attribute *attr, char *buf)
2597{
2598	return nr_hugepages_show_common(kobj, attr, buf);
2599}
2600
2601static ssize_t nr_hugepages_store(struct kobject *kobj,
2602	       struct kobj_attribute *attr, const char *buf, size_t len)
2603{
2604	return nr_hugepages_store_common(false, kobj, buf, len);
2605}
2606HSTATE_ATTR(nr_hugepages);
2607
2608#ifdef CONFIG_NUMA
2609
2610/*
2611 * hstate attribute for optionally mempolicy-based constraint on persistent
2612 * huge page alloc/free.
2613 */
2614static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2615				       struct kobj_attribute *attr, char *buf)
 
2616{
2617	return nr_hugepages_show_common(kobj, attr, buf);
2618}
2619
2620static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2621	       struct kobj_attribute *attr, const char *buf, size_t len)
2622{
2623	return nr_hugepages_store_common(true, kobj, buf, len);
2624}
2625HSTATE_ATTR(nr_hugepages_mempolicy);
2626#endif
2627
2628
2629static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2630					struct kobj_attribute *attr, char *buf)
2631{
2632	struct hstate *h = kobj_to_hstate(kobj, NULL);
2633	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2634}
2635
2636static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2637		struct kobj_attribute *attr, const char *buf, size_t count)
2638{
2639	int err;
2640	unsigned long input;
2641	struct hstate *h = kobj_to_hstate(kobj, NULL);
2642
2643	if (hstate_is_gigantic(h))
2644		return -EINVAL;
2645
2646	err = kstrtoul(buf, 10, &input);
2647	if (err)
2648		return err;
2649
2650	spin_lock(&hugetlb_lock);
2651	h->nr_overcommit_huge_pages = input;
2652	spin_unlock(&hugetlb_lock);
2653
2654	return count;
2655}
2656HSTATE_ATTR(nr_overcommit_hugepages);
2657
2658static ssize_t free_hugepages_show(struct kobject *kobj,
2659					struct kobj_attribute *attr, char *buf)
2660{
2661	struct hstate *h;
2662	unsigned long free_huge_pages;
2663	int nid;
2664
2665	h = kobj_to_hstate(kobj, &nid);
2666	if (nid == NUMA_NO_NODE)
2667		free_huge_pages = h->free_huge_pages;
2668	else
2669		free_huge_pages = h->free_huge_pages_node[nid];
2670
2671	return sprintf(buf, "%lu\n", free_huge_pages);
2672}
2673HSTATE_ATTR_RO(free_hugepages);
2674
2675static ssize_t resv_hugepages_show(struct kobject *kobj,
2676					struct kobj_attribute *attr, char *buf)
2677{
2678	struct hstate *h = kobj_to_hstate(kobj, NULL);
2679	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2680}
2681HSTATE_ATTR_RO(resv_hugepages);
2682
2683static ssize_t surplus_hugepages_show(struct kobject *kobj,
2684					struct kobj_attribute *attr, char *buf)
2685{
2686	struct hstate *h;
2687	unsigned long surplus_huge_pages;
2688	int nid;
2689
2690	h = kobj_to_hstate(kobj, &nid);
2691	if (nid == NUMA_NO_NODE)
2692		surplus_huge_pages = h->surplus_huge_pages;
2693	else
2694		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2695
2696	return sprintf(buf, "%lu\n", surplus_huge_pages);
2697}
2698HSTATE_ATTR_RO(surplus_hugepages);
2699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2700static struct attribute *hstate_attrs[] = {
2701	&nr_hugepages_attr.attr,
2702	&nr_overcommit_hugepages_attr.attr,
2703	&free_hugepages_attr.attr,
2704	&resv_hugepages_attr.attr,
2705	&surplus_hugepages_attr.attr,
2706#ifdef CONFIG_NUMA
2707	&nr_hugepages_mempolicy_attr.attr,
2708#endif
2709	NULL,
2710};
2711
2712static const struct attribute_group hstate_attr_group = {
2713	.attrs = hstate_attrs,
2714};
2715
 
 
 
 
 
 
 
 
 
 
2716static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2717				    struct kobject **hstate_kobjs,
2718				    const struct attribute_group *hstate_attr_group)
2719{
2720	int retval;
2721	int hi = hstate_index(h);
2722
2723	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2724	if (!hstate_kobjs[hi])
2725		return -ENOMEM;
2726
2727	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2728	if (retval)
2729		kobject_put(hstate_kobjs[hi]);
 
 
 
2730
2731	return retval;
2732}
2733
2734static void __init hugetlb_sysfs_init(void)
2735{
2736	struct hstate *h;
2737	int err;
2738
2739	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2740	if (!hugepages_kobj)
2741		return;
2742
2743	for_each_hstate(h) {
2744		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2745					 hstate_kobjs, &hstate_attr_group);
2746		if (err)
2747			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2748	}
 
 
2749}
2750
2751#ifdef CONFIG_NUMA
 
2752
2753/*
2754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2755 * with node devices in node_devices[] using a parallel array.  The array
2756 * index of a node device or _hstate == node id.
2757 * This is here to avoid any static dependency of the node device driver, in
2758 * the base kernel, on the hugetlb module.
2759 */
2760struct node_hstate {
2761	struct kobject		*hugepages_kobj;
2762	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2763};
2764static struct node_hstate node_hstates[MAX_NUMNODES];
2765
2766/*
2767 * A subset of global hstate attributes for node devices
2768 */
2769static struct attribute *per_node_hstate_attrs[] = {
2770	&nr_hugepages_attr.attr,
2771	&free_hugepages_attr.attr,
2772	&surplus_hugepages_attr.attr,
2773	NULL,
2774};
2775
2776static const struct attribute_group per_node_hstate_attr_group = {
2777	.attrs = per_node_hstate_attrs,
2778};
2779
2780/*
2781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2782 * Returns node id via non-NULL nidp.
2783 */
2784static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785{
2786	int nid;
2787
2788	for (nid = 0; nid < nr_node_ids; nid++) {
2789		struct node_hstate *nhs = &node_hstates[nid];
2790		int i;
2791		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2792			if (nhs->hstate_kobjs[i] == kobj) {
2793				if (nidp)
2794					*nidp = nid;
2795				return &hstates[i];
2796			}
2797	}
2798
2799	BUG();
2800	return NULL;
2801}
2802
2803/*
2804 * Unregister hstate attributes from a single node device.
2805 * No-op if no hstate attributes attached.
2806 */
2807static void hugetlb_unregister_node(struct node *node)
2808{
2809	struct hstate *h;
2810	struct node_hstate *nhs = &node_hstates[node->dev.id];
2811
2812	if (!nhs->hugepages_kobj)
2813		return;		/* no hstate attributes */
2814
2815	for_each_hstate(h) {
2816		int idx = hstate_index(h);
2817		if (nhs->hstate_kobjs[idx]) {
2818			kobject_put(nhs->hstate_kobjs[idx]);
2819			nhs->hstate_kobjs[idx] = NULL;
2820		}
 
 
 
 
 
2821	}
2822
2823	kobject_put(nhs->hugepages_kobj);
2824	nhs->hugepages_kobj = NULL;
2825}
2826
2827
2828/*
2829 * Register hstate attributes for a single node device.
2830 * No-op if attributes already registered.
2831 */
2832static void hugetlb_register_node(struct node *node)
2833{
2834	struct hstate *h;
2835	struct node_hstate *nhs = &node_hstates[node->dev.id];
2836	int err;
2837
 
 
 
2838	if (nhs->hugepages_kobj)
2839		return;		/* already allocated */
2840
2841	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2842							&node->dev.kobj);
2843	if (!nhs->hugepages_kobj)
2844		return;
2845
2846	for_each_hstate(h) {
2847		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2848						nhs->hstate_kobjs,
2849						&per_node_hstate_attr_group);
2850		if (err) {
2851			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2852				h->name, node->dev.id);
2853			hugetlb_unregister_node(node);
2854			break;
2855		}
2856	}
2857}
2858
2859/*
2860 * hugetlb init time:  register hstate attributes for all registered node
2861 * devices of nodes that have memory.  All on-line nodes should have
2862 * registered their associated device by this time.
2863 */
2864static void __init hugetlb_register_all_nodes(void)
2865{
2866	int nid;
2867
2868	for_each_node_state(nid, N_MEMORY) {
2869		struct node *node = node_devices[nid];
2870		if (node->dev.id == nid)
2871			hugetlb_register_node(node);
2872	}
2873
2874	/*
2875	 * Let the node device driver know we're here so it can
2876	 * [un]register hstate attributes on node hotplug.
2877	 */
2878	register_hugetlbfs_with_node(hugetlb_register_node,
2879				     hugetlb_unregister_node);
2880}
2881#else	/* !CONFIG_NUMA */
2882
2883static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2884{
2885	BUG();
2886	if (nidp)
2887		*nidp = -1;
2888	return NULL;
2889}
2890
2891static void hugetlb_register_all_nodes(void) { }
2892
2893#endif
2894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895static int __init hugetlb_init(void)
2896{
2897	int i;
2898
2899	if (!hugepages_supported())
 
 
 
 
 
2900		return 0;
 
2901
2902	if (!size_to_hstate(default_hstate_size)) {
2903		if (default_hstate_size != 0) {
2904			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2905			       default_hstate_size, HPAGE_SIZE);
2906		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2907
2908		default_hstate_size = HPAGE_SIZE;
2909		if (!size_to_hstate(default_hstate_size))
2910			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2911	}
2912	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2913	if (default_hstate_max_huge_pages) {
2914		if (!default_hstate.max_huge_pages)
2915			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2916	}
2917
 
2918	hugetlb_init_hstates();
2919	gather_bootmem_prealloc();
2920	report_hugepages();
2921
2922	hugetlb_sysfs_init();
2923	hugetlb_register_all_nodes();
2924	hugetlb_cgroup_file_init();
 
2925
2926#ifdef CONFIG_SMP
2927	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2928#else
2929	num_fault_mutexes = 1;
2930#endif
2931	hugetlb_fault_mutex_table =
2932		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2933			      GFP_KERNEL);
2934	BUG_ON(!hugetlb_fault_mutex_table);
2935
2936	for (i = 0; i < num_fault_mutexes; i++)
2937		mutex_init(&hugetlb_fault_mutex_table[i]);
2938	return 0;
2939}
2940subsys_initcall(hugetlb_init);
2941
2942/* Should be called on processing a hugepagesz=... option */
2943void __init hugetlb_bad_size(void)
2944{
2945	parsed_valid_hugepagesz = false;
2946}
2947
2948void __init hugetlb_add_hstate(unsigned int order)
2949{
2950	struct hstate *h;
2951	unsigned long i;
2952
2953	if (size_to_hstate(PAGE_SIZE << order)) {
2954		pr_warn("hugepagesz= specified twice, ignoring\n");
2955		return;
2956	}
2957	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2958	BUG_ON(order == 0);
2959	h = &hstates[hugetlb_max_hstate++];
 
2960	h->order = order;
2961	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2962	h->nr_huge_pages = 0;
2963	h->free_huge_pages = 0;
2964	for (i = 0; i < MAX_NUMNODES; ++i)
2965		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2966	INIT_LIST_HEAD(&h->hugepage_activelist);
2967	h->next_nid_to_alloc = first_memory_node;
2968	h->next_nid_to_free = first_memory_node;
2969	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2970					huge_page_size(h)/1024);
2971
2972	parsed_hstate = h;
2973}
2974
2975static int __init hugetlb_nrpages_setup(char *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2976{
2977	unsigned long *mhp;
2978	static unsigned long *last_mhp;
 
 
 
 
2979
2980	if (!parsed_valid_hugepagesz) {
2981		pr_warn("hugepages = %s preceded by "
2982			"an unsupported hugepagesz, ignoring\n", s);
2983		parsed_valid_hugepagesz = true;
2984		return 1;
2985	}
 
2986	/*
2987	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2988	 * so this hugepages= parameter goes to the "default hstate".
 
 
2989	 */
2990	else if (!hugetlb_max_hstate)
2991		mhp = &default_hstate_max_huge_pages;
2992	else
2993		mhp = &parsed_hstate->max_huge_pages;
2994
2995	if (mhp == last_mhp) {
2996		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2997		return 1;
2998	}
2999
3000	if (sscanf(s, "%lu", mhp) <= 0)
3001		*mhp = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3002
3003	/*
3004	 * Global state is always initialized later in hugetlb_init.
3005	 * But we need to allocate >= MAX_ORDER hstates here early to still
3006	 * use the bootmem allocator.
3007	 */
3008	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3009		hugetlb_hstate_alloc_pages(parsed_hstate);
3010
3011	last_mhp = mhp;
3012
3013	return 1;
 
 
 
 
 
3014}
3015__setup("hugepages=", hugetlb_nrpages_setup);
3016
3017static int __init hugetlb_default_setup(char *s)
 
 
 
 
 
 
 
3018{
3019	default_hstate_size = memparse(s, &s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3020	return 1;
3021}
3022__setup("default_hugepagesz=", hugetlb_default_setup);
3023
3024static unsigned int cpuset_mems_nr(unsigned int *array)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3025{
3026	int node;
3027	unsigned int nr = 0;
 
 
 
3028
3029	for_each_node_mask(node, cpuset_current_mems_allowed)
3030		nr += array[node];
 
 
 
3031
3032	return nr;
3033}
3034
3035#ifdef CONFIG_SYSCTL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3036static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3037			 struct ctl_table *table, int write,
3038			 void __user *buffer, size_t *length, loff_t *ppos)
3039{
3040	struct hstate *h = &default_hstate;
3041	unsigned long tmp = h->max_huge_pages;
3042	int ret;
3043
3044	if (!hugepages_supported())
3045		return -EOPNOTSUPP;
3046
3047	table->data = &tmp;
3048	table->maxlen = sizeof(unsigned long);
3049	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3050	if (ret)
3051		goto out;
3052
3053	if (write)
3054		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3055						  NUMA_NO_NODE, tmp, *length);
3056out:
3057	return ret;
3058}
3059
3060int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3061			  void __user *buffer, size_t *length, loff_t *ppos)
3062{
3063
3064	return hugetlb_sysctl_handler_common(false, table, write,
3065							buffer, length, ppos);
3066}
3067
3068#ifdef CONFIG_NUMA
3069int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3070			  void __user *buffer, size_t *length, loff_t *ppos)
3071{
3072	return hugetlb_sysctl_handler_common(true, table, write,
3073							buffer, length, ppos);
3074}
3075#endif /* CONFIG_NUMA */
3076
3077int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3078			void __user *buffer,
3079			size_t *length, loff_t *ppos)
3080{
3081	struct hstate *h = &default_hstate;
3082	unsigned long tmp;
3083	int ret;
3084
3085	if (!hugepages_supported())
3086		return -EOPNOTSUPP;
3087
3088	tmp = h->nr_overcommit_huge_pages;
3089
3090	if (write && hstate_is_gigantic(h))
3091		return -EINVAL;
3092
3093	table->data = &tmp;
3094	table->maxlen = sizeof(unsigned long);
3095	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3096	if (ret)
3097		goto out;
3098
3099	if (write) {
3100		spin_lock(&hugetlb_lock);
3101		h->nr_overcommit_huge_pages = tmp;
3102		spin_unlock(&hugetlb_lock);
3103	}
3104out:
3105	return ret;
3106}
3107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3108#endif /* CONFIG_SYSCTL */
3109
3110void hugetlb_report_meminfo(struct seq_file *m)
3111{
3112	struct hstate *h;
3113	unsigned long total = 0;
3114
3115	if (!hugepages_supported())
3116		return;
3117
3118	for_each_hstate(h) {
3119		unsigned long count = h->nr_huge_pages;
3120
3121		total += (PAGE_SIZE << huge_page_order(h)) * count;
3122
3123		if (h == &default_hstate)
3124			seq_printf(m,
3125				   "HugePages_Total:   %5lu\n"
3126				   "HugePages_Free:    %5lu\n"
3127				   "HugePages_Rsvd:    %5lu\n"
3128				   "HugePages_Surp:    %5lu\n"
3129				   "Hugepagesize:   %8lu kB\n",
3130				   count,
3131				   h->free_huge_pages,
3132				   h->resv_huge_pages,
3133				   h->surplus_huge_pages,
3134				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3135	}
3136
3137	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3138}
3139
3140int hugetlb_report_node_meminfo(int nid, char *buf)
3141{
3142	struct hstate *h = &default_hstate;
 
3143	if (!hugepages_supported())
3144		return 0;
3145	return sprintf(buf,
3146		"Node %d HugePages_Total: %5u\n"
3147		"Node %d HugePages_Free:  %5u\n"
3148		"Node %d HugePages_Surp:  %5u\n",
3149		nid, h->nr_huge_pages_node[nid],
3150		nid, h->free_huge_pages_node[nid],
3151		nid, h->surplus_huge_pages_node[nid]);
 
3152}
3153
3154void hugetlb_show_meminfo(void)
3155{
3156	struct hstate *h;
3157	int nid;
3158
3159	if (!hugepages_supported())
3160		return;
3161
3162	for_each_node_state(nid, N_MEMORY)
3163		for_each_hstate(h)
3164			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3165				nid,
3166				h->nr_huge_pages_node[nid],
3167				h->free_huge_pages_node[nid],
3168				h->surplus_huge_pages_node[nid],
3169				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3170}
3171
3172void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3173{
3174	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3175		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3176}
3177
3178/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3179unsigned long hugetlb_total_pages(void)
3180{
3181	struct hstate *h;
3182	unsigned long nr_total_pages = 0;
3183
3184	for_each_hstate(h)
3185		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3186	return nr_total_pages;
3187}
3188
3189static int hugetlb_acct_memory(struct hstate *h, long delta)
3190{
3191	int ret = -ENOMEM;
3192
3193	spin_lock(&hugetlb_lock);
 
 
 
3194	/*
3195	 * When cpuset is configured, it breaks the strict hugetlb page
3196	 * reservation as the accounting is done on a global variable. Such
3197	 * reservation is completely rubbish in the presence of cpuset because
3198	 * the reservation is not checked against page availability for the
3199	 * current cpuset. Application can still potentially OOM'ed by kernel
3200	 * with lack of free htlb page in cpuset that the task is in.
3201	 * Attempt to enforce strict accounting with cpuset is almost
3202	 * impossible (or too ugly) because cpuset is too fluid that
3203	 * task or memory node can be dynamically moved between cpusets.
3204	 *
3205	 * The change of semantics for shared hugetlb mapping with cpuset is
3206	 * undesirable. However, in order to preserve some of the semantics,
3207	 * we fall back to check against current free page availability as
3208	 * a best attempt and hopefully to minimize the impact of changing
3209	 * semantics that cpuset has.
 
 
 
 
 
 
3210	 */
3211	if (delta > 0) {
3212		if (gather_surplus_pages(h, delta) < 0)
3213			goto out;
3214
3215		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3216			return_unused_surplus_pages(h, delta);
3217			goto out;
3218		}
3219	}
3220
3221	ret = 0;
3222	if (delta < 0)
3223		return_unused_surplus_pages(h, (unsigned long) -delta);
3224
3225out:
3226	spin_unlock(&hugetlb_lock);
3227	return ret;
3228}
3229
3230static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3231{
3232	struct resv_map *resv = vma_resv_map(vma);
3233
3234	/*
 
3235	 * This new VMA should share its siblings reservation map if present.
3236	 * The VMA will only ever have a valid reservation map pointer where
3237	 * it is being copied for another still existing VMA.  As that VMA
3238	 * has a reference to the reservation map it cannot disappear until
3239	 * after this open call completes.  It is therefore safe to take a
3240	 * new reference here without additional locking.
3241	 */
3242	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 
3243		kref_get(&resv->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3244}
3245
3246static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3247{
3248	struct hstate *h = hstate_vma(vma);
3249	struct resv_map *resv = vma_resv_map(vma);
3250	struct hugepage_subpool *spool = subpool_vma(vma);
3251	unsigned long reserve, start, end;
3252	long gbl_reserve;
3253
 
 
 
3254	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3255		return;
3256
3257	start = vma_hugecache_offset(h, vma, vma->vm_start);
3258	end = vma_hugecache_offset(h, vma, vma->vm_end);
3259
3260	reserve = (end - start) - region_count(resv, start, end);
3261
3262	kref_put(&resv->refs, resv_map_release);
3263
3264	if (reserve) {
3265		/*
3266		 * Decrement reserve counts.  The global reserve count may be
3267		 * adjusted if the subpool has a minimum size.
3268		 */
3269		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3270		hugetlb_acct_memory(h, -gbl_reserve);
3271	}
 
 
3272}
3273
3274static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3275{
3276	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3277		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3278	return 0;
3279}
3280
3281static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3282{
3283	struct hstate *hstate = hstate_vma(vma);
3284
3285	return 1UL << huge_page_shift(hstate);
3286}
3287
3288/*
3289 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3290 * handle_mm_fault() to try to instantiate regular-sized pages in the
3291 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3292 * this far.
3293 */
3294static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3295{
3296	BUG();
3297	return 0;
3298}
3299
3300/*
3301 * When a new function is introduced to vm_operations_struct and added
3302 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3303 * This is because under System V memory model, mappings created via
3304 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3305 * their original vm_ops are overwritten with shm_vm_ops.
3306 */
3307const struct vm_operations_struct hugetlb_vm_ops = {
3308	.fault = hugetlb_vm_op_fault,
3309	.open = hugetlb_vm_op_open,
3310	.close = hugetlb_vm_op_close,
3311	.split = hugetlb_vm_op_split,
3312	.pagesize = hugetlb_vm_op_pagesize,
3313};
3314
3315static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3316				int writable)
3317{
3318	pte_t entry;
 
3319
3320	if (writable) {
3321		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3322					 vma->vm_page_prot)));
3323	} else {
3324		entry = huge_pte_wrprotect(mk_huge_pte(page,
3325					   vma->vm_page_prot));
3326	}
3327	entry = pte_mkyoung(entry);
3328	entry = pte_mkhuge(entry);
3329	entry = arch_make_huge_pte(entry, vma, page, writable);
3330
3331	return entry;
3332}
3333
3334static void set_huge_ptep_writable(struct vm_area_struct *vma,
3335				   unsigned long address, pte_t *ptep)
3336{
3337	pte_t entry;
3338
3339	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3340	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3341		update_mmu_cache(vma, address, ptep);
3342}
3343
3344bool is_hugetlb_entry_migration(pte_t pte)
3345{
3346	swp_entry_t swp;
3347
3348	if (huge_pte_none(pte) || pte_present(pte))
3349		return false;
3350	swp = pte_to_swp_entry(pte);
3351	if (non_swap_entry(swp) && is_migration_entry(swp))
3352		return true;
3353	else
3354		return false;
3355}
3356
3357static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3358{
3359	swp_entry_t swp;
3360
3361	if (huge_pte_none(pte) || pte_present(pte))
3362		return 0;
3363	swp = pte_to_swp_entry(pte);
3364	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3365		return 1;
3366	else
3367		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368}
3369
3370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3371			    struct vm_area_struct *vma)
 
3372{
3373	pte_t *src_pte, *dst_pte, entry, dst_entry;
3374	struct page *ptepage;
3375	unsigned long addr;
3376	int cow;
3377	struct hstate *h = hstate_vma(vma);
3378	unsigned long sz = huge_page_size(h);
 
3379	struct mmu_notifier_range range;
 
3380	int ret = 0;
3381
3382	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3383
3384	if (cow) {
3385		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3386					vma->vm_start,
3387					vma->vm_end);
3388		mmu_notifier_invalidate_range_start(&range);
 
 
 
 
 
 
 
 
 
 
3389	}
3390
3391	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
 
3392		spinlock_t *src_ptl, *dst_ptl;
3393		src_pte = huge_pte_offset(src, addr, sz);
3394		if (!src_pte)
 
3395			continue;
3396		dst_pte = huge_pte_alloc(dst, addr, sz);
 
3397		if (!dst_pte) {
3398			ret = -ENOMEM;
3399			break;
3400		}
3401
3402		/*
3403		 * If the pagetables are shared don't copy or take references.
3404		 * dst_pte == src_pte is the common case of src/dest sharing.
3405		 *
 
3406		 * However, src could have 'unshared' and dst shares with
3407		 * another vma.  If dst_pte !none, this implies sharing.
3408		 * Check here before taking page table lock, and once again
3409		 * after taking the lock below.
3410		 */
3411		dst_entry = huge_ptep_get(dst_pte);
3412		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3413			continue;
 
3414
3415		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3416		src_ptl = huge_pte_lockptr(h, src, src_pte);
3417		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3418		entry = huge_ptep_get(src_pte);
3419		dst_entry = huge_ptep_get(dst_pte);
3420		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3421			/*
3422			 * Skip if src entry none.  Also, skip in the
3423			 * unlikely case dst entry !none as this implies
3424			 * sharing with another vma.
3425			 */
3426			;
3427		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3428				    is_hugetlb_entry_hwpoisoned(entry))) {
 
 
 
3429			swp_entry_t swp_entry = pte_to_swp_entry(entry);
 
3430
3431			if (is_write_migration_entry(swp_entry) && cow) {
3432				/*
3433				 * COW mappings require pages in both
3434				 * parent and child to be set to read.
3435				 */
3436				make_migration_entry_read(&swp_entry);
 
3437				entry = swp_entry_to_pte(swp_entry);
3438				set_huge_swap_pte_at(src, addr, src_pte,
3439						     entry, sz);
 
3440			}
3441			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
 
 
 
 
 
 
 
 
 
3442		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3443			if (cow) {
3444				/*
3445				 * No need to notify as we are downgrading page
3446				 * table protection not changing it to point
3447				 * to a new page.
3448				 *
3449				 * See Documentation/vm/mmu_notifier.rst
3450				 */
3451				huge_ptep_set_wrprotect(src, addr, src_pte);
 
3452			}
3453			entry = huge_ptep_get(src_pte);
3454			ptepage = pte_page(entry);
3455			get_page(ptepage);
3456			page_dup_rmap(ptepage, true);
3457			set_huge_pte_at(dst, addr, dst_pte, entry);
3458			hugetlb_count_add(pages_per_huge_page(h), dst);
3459		}
3460		spin_unlock(src_ptl);
3461		spin_unlock(dst_ptl);
3462	}
3463
3464	if (cow)
 
3465		mmu_notifier_invalidate_range_end(&range);
 
 
 
3466
3467	return ret;
3468}
3469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3470void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3471			    unsigned long start, unsigned long end,
3472			    struct page *ref_page)
3473{
3474	struct mm_struct *mm = vma->vm_mm;
3475	unsigned long address;
3476	pte_t *ptep;
3477	pte_t pte;
3478	spinlock_t *ptl;
3479	struct page *page;
3480	struct hstate *h = hstate_vma(vma);
3481	unsigned long sz = huge_page_size(h);
3482	struct mmu_notifier_range range;
 
 
3483
3484	WARN_ON(!is_vm_hugetlb_page(vma));
3485	BUG_ON(start & ~huge_page_mask(h));
3486	BUG_ON(end & ~huge_page_mask(h));
3487
3488	/*
3489	 * This is a hugetlb vma, all the pte entries should point
3490	 * to huge page.
3491	 */
3492	tlb_change_page_size(tlb, sz);
3493	tlb_start_vma(tlb, vma);
3494
3495	/*
3496	 * If sharing possible, alert mmu notifiers of worst case.
3497	 */
3498	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3499				end);
3500	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3501	mmu_notifier_invalidate_range_start(&range);
3502	address = start;
3503	for (; address < end; address += sz) {
3504		ptep = huge_pte_offset(mm, address, sz);
3505		if (!ptep)
 
3506			continue;
 
3507
3508		ptl = huge_pte_lock(h, mm, ptep);
3509		if (huge_pmd_unshare(mm, &address, ptep)) {
3510			spin_unlock(ptl);
3511			/*
3512			 * We just unmapped a page of PMDs by clearing a PUD.
3513			 * The caller's TLB flush range should cover this area.
3514			 */
3515			continue;
3516		}
3517
3518		pte = huge_ptep_get(ptep);
3519		if (huge_pte_none(pte)) {
3520			spin_unlock(ptl);
3521			continue;
3522		}
3523
3524		/*
3525		 * Migrating hugepage or HWPoisoned hugepage is already
3526		 * unmapped and its refcount is dropped, so just clear pte here.
3527		 */
3528		if (unlikely(!pte_present(pte))) {
3529			huge_pte_clear(mm, address, ptep, sz);
 
 
 
 
 
 
 
 
 
 
 
 
3530			spin_unlock(ptl);
3531			continue;
3532		}
3533
3534		page = pte_page(pte);
3535		/*
3536		 * If a reference page is supplied, it is because a specific
3537		 * page is being unmapped, not a range. Ensure the page we
3538		 * are about to unmap is the actual page of interest.
3539		 */
3540		if (ref_page) {
3541			if (page != ref_page) {
3542				spin_unlock(ptl);
3543				continue;
3544			}
3545			/*
3546			 * Mark the VMA as having unmapped its page so that
3547			 * future faults in this VMA will fail rather than
3548			 * looking like data was lost
3549			 */
3550			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3551		}
3552
3553		pte = huge_ptep_get_and_clear(mm, address, ptep);
3554		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3555		if (huge_pte_dirty(pte))
3556			set_page_dirty(page);
3557
 
 
 
 
 
3558		hugetlb_count_sub(pages_per_huge_page(h), mm);
3559		page_remove_rmap(page, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
3560
3561		spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
3562		tlb_remove_page_size(tlb, page, huge_page_size(h));
3563		/*
3564		 * Bail out after unmapping reference page if supplied
3565		 */
3566		if (ref_page)
3567			break;
3568	}
3569	mmu_notifier_invalidate_range_end(&range);
3570	tlb_end_vma(tlb, vma);
3571}
3572
3573void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3574			  struct vm_area_struct *vma, unsigned long start,
3575			  unsigned long end, struct page *ref_page)
3576{
3577	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3578
3579	/*
3580	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3581	 * test will fail on a vma being torn down, and not grab a page table
3582	 * on its way out.  We're lucky that the flag has such an appropriate
3583	 * name, and can in fact be safely cleared here. We could clear it
3584	 * before the __unmap_hugepage_range above, but all that's necessary
3585	 * is to clear it before releasing the i_mmap_rwsem. This works
3586	 * because in the context this is called, the VMA is about to be
3587	 * destroyed and the i_mmap_rwsem is held.
3588	 */
3589	vma->vm_flags &= ~VM_MAYSHARE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3590}
3591
3592void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3593			  unsigned long end, struct page *ref_page)
 
3594{
3595	struct mm_struct *mm;
3596	struct mmu_gather tlb;
3597	unsigned long tlb_start = start;
3598	unsigned long tlb_end = end;
3599
3600	/*
3601	 * If shared PMDs were possibly used within this vma range, adjust
3602	 * start/end for worst case tlb flushing.
3603	 * Note that we can not be sure if PMDs are shared until we try to
3604	 * unmap pages.  However, we want to make sure TLB flushing covers
3605	 * the largest possible range.
3606	 */
3607	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3608
3609	mm = vma->vm_mm;
3610
3611	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3612	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3613	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3614}
3615
3616/*
3617 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3618 * mappping it owns the reserve page for. The intention is to unmap the page
3619 * from other VMAs and let the children be SIGKILLed if they are faulting the
3620 * same region.
3621 */
3622static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3623			      struct page *page, unsigned long address)
3624{
3625	struct hstate *h = hstate_vma(vma);
3626	struct vm_area_struct *iter_vma;
3627	struct address_space *mapping;
3628	pgoff_t pgoff;
3629
3630	/*
3631	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3632	 * from page cache lookup which is in HPAGE_SIZE units.
3633	 */
3634	address = address & huge_page_mask(h);
3635	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3636			vma->vm_pgoff;
3637	mapping = vma->vm_file->f_mapping;
3638
3639	/*
3640	 * Take the mapping lock for the duration of the table walk. As
3641	 * this mapping should be shared between all the VMAs,
3642	 * __unmap_hugepage_range() is called as the lock is already held
3643	 */
3644	i_mmap_lock_write(mapping);
3645	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3646		/* Do not unmap the current VMA */
3647		if (iter_vma == vma)
3648			continue;
3649
3650		/*
3651		 * Shared VMAs have their own reserves and do not affect
3652		 * MAP_PRIVATE accounting but it is possible that a shared
3653		 * VMA is using the same page so check and skip such VMAs.
3654		 */
3655		if (iter_vma->vm_flags & VM_MAYSHARE)
3656			continue;
3657
3658		/*
3659		 * Unmap the page from other VMAs without their own reserves.
3660		 * They get marked to be SIGKILLed if they fault in these
3661		 * areas. This is because a future no-page fault on this VMA
3662		 * could insert a zeroed page instead of the data existing
3663		 * from the time of fork. This would look like data corruption
3664		 */
3665		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3666			unmap_hugepage_range(iter_vma, address,
3667					     address + huge_page_size(h), page);
3668	}
3669	i_mmap_unlock_write(mapping);
3670}
3671
3672/*
3673 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3674 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3675 * cannot race with other handlers or page migration.
3676 * Keep the pte_same checks anyway to make transition from the mutex easier.
3677 */
3678static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3679		       unsigned long address, pte_t *ptep,
3680		       struct page *pagecache_page, spinlock_t *ptl)
 
3681{
3682	pte_t pte;
 
3683	struct hstate *h = hstate_vma(vma);
3684	struct page *old_page, *new_page;
 
3685	int outside_reserve = 0;
3686	vm_fault_t ret = 0;
3687	unsigned long haddr = address & huge_page_mask(h);
3688	struct mmu_notifier_range range;
3689
3690	pte = huge_ptep_get(ptep);
3691	old_page = pte_page(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692
3693retry_avoidcopy:
3694	/* If no-one else is actually using this page, avoid the copy
3695	 * and just make the page writable */
3696	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3697		page_move_anon_rmap(old_page, vma);
3698		set_huge_ptep_writable(vma, haddr, ptep);
3699		return 0;
3700	}
3701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3702	/*
3703	 * If the process that created a MAP_PRIVATE mapping is about to
3704	 * perform a COW due to a shared page count, attempt to satisfy
3705	 * the allocation without using the existing reserves. The pagecache
3706	 * page is used to determine if the reserve at this address was
3707	 * consumed or not. If reserves were used, a partial faulted mapping
3708	 * at the time of fork() could consume its reserves on COW instead
3709	 * of the full address range.
3710	 */
3711	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3712			old_page != pagecache_page)
3713		outside_reserve = 1;
3714
3715	get_page(old_page);
3716
3717	/*
3718	 * Drop page table lock as buddy allocator may be called. It will
3719	 * be acquired again before returning to the caller, as expected.
3720	 */
3721	spin_unlock(ptl);
3722	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3723
3724	if (IS_ERR(new_page)) {
3725		/*
3726		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3727		 * it is due to references held by a child and an insufficient
3728		 * huge page pool. To guarantee the original mappers
3729		 * reliability, unmap the page from child processes. The child
3730		 * may get SIGKILLed if it later faults.
3731		 */
3732		if (outside_reserve) {
3733			put_page(old_page);
3734			BUG_ON(huge_pte_none(pte));
3735			unmap_ref_private(mm, vma, old_page, haddr);
3736			BUG_ON(huge_pte_none(pte));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737			spin_lock(ptl);
3738			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3739			if (likely(ptep &&
3740				   pte_same(huge_ptep_get(ptep), pte)))
3741				goto retry_avoidcopy;
3742			/*
3743			 * race occurs while re-acquiring page table
3744			 * lock, and our job is done.
3745			 */
 
3746			return 0;
3747		}
3748
3749		ret = vmf_error(PTR_ERR(new_page));
3750		goto out_release_old;
3751	}
3752
3753	/*
3754	 * When the original hugepage is shared one, it does not have
3755	 * anon_vma prepared.
3756	 */
3757	if (unlikely(anon_vma_prepare(vma))) {
3758		ret = VM_FAULT_OOM;
3759		goto out_release_all;
3760	}
3761
3762	copy_user_huge_page(new_page, old_page, address, vma,
3763			    pages_per_huge_page(h));
3764	__SetPageUptodate(new_page);
 
 
3765
3766	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3767				haddr + huge_page_size(h));
3768	mmu_notifier_invalidate_range_start(&range);
3769
3770	/*
3771	 * Retake the page table lock to check for racing updates
3772	 * before the page tables are altered
3773	 */
3774	spin_lock(ptl);
3775	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3776	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3777		ClearPagePrivate(new_page);
3778
3779		/* Break COW */
3780		huge_ptep_clear_flush(vma, haddr, ptep);
3781		mmu_notifier_invalidate_range(mm, range.start, range.end);
3782		set_huge_pte_at(mm, haddr, ptep,
3783				make_huge_pte(vma, new_page, 1));
3784		page_remove_rmap(old_page, true);
3785		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3786		set_page_huge_active(new_page);
3787		/* Make the old page be freed below */
3788		new_page = old_page;
3789	}
3790	spin_unlock(ptl);
3791	mmu_notifier_invalidate_range_end(&range);
3792out_release_all:
3793	restore_reserve_on_error(h, vma, haddr, new_page);
3794	put_page(new_page);
 
 
 
 
 
3795out_release_old:
3796	put_page(old_page);
3797
3798	spin_lock(ptl); /* Caller expects lock to be held */
3799	return ret;
3800}
3801
3802/* Return the pagecache page at a given address within a VMA */
3803static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3804			struct vm_area_struct *vma, unsigned long address)
3805{
3806	struct address_space *mapping;
3807	pgoff_t idx;
3808
3809	mapping = vma->vm_file->f_mapping;
3810	idx = vma_hugecache_offset(h, vma, address);
3811
3812	return find_lock_page(mapping, idx);
 
3813}
3814
3815/*
3816 * Return whether there is a pagecache page to back given address within VMA.
3817 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3818 */
3819static bool hugetlbfs_pagecache_present(struct hstate *h,
3820			struct vm_area_struct *vma, unsigned long address)
3821{
3822	struct address_space *mapping;
3823	pgoff_t idx;
3824	struct page *page;
3825
3826	mapping = vma->vm_file->f_mapping;
3827	idx = vma_hugecache_offset(h, vma, address);
3828
3829	page = find_get_page(mapping, idx);
3830	if (page)
3831		put_page(page);
3832	return page != NULL;
 
3833}
3834
3835int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3836			   pgoff_t idx)
3837{
3838	struct inode *inode = mapping->host;
3839	struct hstate *h = hstate_inode(inode);
3840	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3841
3842	if (err)
 
 
 
 
 
3843		return err;
3844	ClearPagePrivate(page);
 
3845
3846	/*
3847	 * set page dirty so that it will not be removed from cache/file
3848	 * by non-hugetlbfs specific code paths.
3849	 */
3850	set_page_dirty(page);
3851
3852	spin_lock(&inode->i_lock);
3853	inode->i_blocks += blocks_per_huge_page(h);
3854	spin_unlock(&inode->i_lock);
3855	return 0;
3856}
3857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3858static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3859			struct vm_area_struct *vma,
3860			struct address_space *mapping, pgoff_t idx,
3861			unsigned long address, pte_t *ptep, unsigned int flags)
 
 
3862{
3863	struct hstate *h = hstate_vma(vma);
3864	vm_fault_t ret = VM_FAULT_SIGBUS;
3865	int anon_rmap = 0;
3866	unsigned long size;
3867	struct page *page;
3868	pte_t new_pte;
3869	spinlock_t *ptl;
3870	unsigned long haddr = address & huge_page_mask(h);
3871	bool new_page = false;
 
3872
3873	/*
3874	 * Currently, we are forced to kill the process in the event the
3875	 * original mapper has unmapped pages from the child due to a failed
3876	 * COW. Warn that such a situation has occurred as it may not be obvious
 
3877	 */
3878	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3879		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3880			   current->pid);
3881		return ret;
3882	}
3883
3884	/*
3885	 * Use page lock to guard against racing truncation
3886	 * before we get page_table_lock.
3887	 */
3888retry:
3889	page = find_lock_page(mapping, idx);
3890	if (!page) {
3891		size = i_size_read(mapping->host) >> huge_page_shift(h);
3892		if (idx >= size)
3893			goto out;
3894
3895		/*
3896		 * Check for page in userfault range
3897		 */
3898		if (userfaultfd_missing(vma)) {
3899			u32 hash;
3900			struct vm_fault vmf = {
3901				.vma = vma,
3902				.address = haddr,
3903				.flags = flags,
3904				/*
3905				 * Hard to debug if it ends up being
3906				 * used by a callee that assumes
3907				 * something about the other
3908				 * uninitialized fields... same as in
3909				 * memory.c
3910				 */
3911			};
3912
3913			/*
3914			 * hugetlb_fault_mutex must be dropped before
3915			 * handling userfault.  Reacquire after handling
3916			 * fault to make calling code simpler.
 
 
 
 
 
 
 
 
 
 
 
 
3917			 */
3918			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3919			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3920			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3921			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922			goto out;
 
 
 
 
 
 
 
 
3923		}
3924
3925		page = alloc_huge_page(vma, haddr, 0);
3926		if (IS_ERR(page)) {
3927			/*
3928			 * Returning error will result in faulting task being
3929			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3930			 * tasks from racing to fault in the same page which
3931			 * could result in false unable to allocate errors.
3932			 * Page migration does not take the fault mutex, but
3933			 * does a clear then write of pte's under page table
3934			 * lock.  Page fault code could race with migration,
3935			 * notice the clear pte and try to allocate a page
3936			 * here.  Before returning error, get ptl and make
3937			 * sure there really is no pte entry.
3938			 */
3939			ptl = huge_pte_lock(h, mm, ptep);
3940			if (!huge_pte_none(huge_ptep_get(ptep))) {
 
3941				ret = 0;
3942				spin_unlock(ptl);
3943				goto out;
3944			}
3945			spin_unlock(ptl);
3946			ret = vmf_error(PTR_ERR(page));
3947			goto out;
3948		}
3949		clear_huge_page(page, address, pages_per_huge_page(h));
3950		__SetPageUptodate(page);
3951		new_page = true;
3952
3953		if (vma->vm_flags & VM_MAYSHARE) {
3954			int err = huge_add_to_page_cache(page, mapping, idx);
3955			if (err) {
3956				put_page(page);
3957				if (err == -EEXIST)
3958					goto retry;
 
 
 
 
 
 
 
3959				goto out;
3960			}
 
3961		} else {
3962			lock_page(page);
3963			if (unlikely(anon_vma_prepare(vma))) {
3964				ret = VM_FAULT_OOM;
3965				goto backout_unlocked;
3966			}
3967			anon_rmap = 1;
3968		}
3969	} else {
3970		/*
3971		 * If memory error occurs between mmap() and fault, some process
3972		 * don't have hwpoisoned swap entry for errored virtual address.
3973		 * So we need to block hugepage fault by PG_hwpoison bit check.
3974		 */
3975		if (unlikely(PageHWPoison(page))) {
3976			ret = VM_FAULT_HWPOISON |
3977				VM_FAULT_SET_HINDEX(hstate_index(h));
3978			goto backout_unlocked;
3979		}
 
 
 
 
 
 
 
 
 
 
 
 
 
3980	}
3981
3982	/*
3983	 * If we are going to COW a private mapping later, we examine the
3984	 * pending reservations for this page now. This will ensure that
3985	 * any allocations necessary to record that reservation occur outside
3986	 * the spinlock.
3987	 */
3988	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3989		if (vma_needs_reservation(h, vma, haddr) < 0) {
3990			ret = VM_FAULT_OOM;
3991			goto backout_unlocked;
3992		}
3993		/* Just decrements count, does not deallocate */
3994		vma_end_reservation(h, vma, haddr);
3995	}
3996
3997	ptl = huge_pte_lock(h, mm, ptep);
3998	size = i_size_read(mapping->host) >> huge_page_shift(h);
3999	if (idx >= size)
4000		goto backout;
4001
4002	ret = 0;
4003	if (!huge_pte_none(huge_ptep_get(ptep)))
 
4004		goto backout;
4005
4006	if (anon_rmap) {
4007		ClearPagePrivate(page);
4008		hugepage_add_new_anon_rmap(page, vma, haddr);
4009	} else
4010		page_dup_rmap(page, true);
4011	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4012				&& (vma->vm_flags & VM_SHARED)));
4013	set_huge_pte_at(mm, haddr, ptep, new_pte);
 
 
 
 
 
 
4014
4015	hugetlb_count_add(pages_per_huge_page(h), mm);
4016	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4017		/* Optimization, do the COW without a second fault */
4018		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4019	}
4020
4021	spin_unlock(ptl);
4022
4023	/*
4024	 * Only make newly allocated pages active.  Existing pages found
4025	 * in the pagecache could be !page_huge_active() if they have been
4026	 * isolated for migration.
4027	 */
4028	if (new_page)
4029		set_page_huge_active(page);
4030
4031	unlock_page(page);
4032out:
 
 
4033	return ret;
4034
4035backout:
4036	spin_unlock(ptl);
4037backout_unlocked:
4038	unlock_page(page);
4039	restore_reserve_on_error(h, vma, haddr, page);
4040	put_page(page);
 
 
4041	goto out;
4042}
4043
4044#ifdef CONFIG_SMP
4045u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4046			    pgoff_t idx, unsigned long address)
4047{
4048	unsigned long key[2];
4049	u32 hash;
4050
4051	key[0] = (unsigned long) mapping;
4052	key[1] = idx;
4053
4054	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4055
4056	return hash & (num_fault_mutexes - 1);
4057}
4058#else
4059/*
4060 * For uniprocesor systems we always use a single mutex, so just
4061 * return 0 and avoid the hashing overhead.
4062 */
4063u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4064			    pgoff_t idx, unsigned long address)
4065{
4066	return 0;
4067}
4068#endif
4069
4070vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4071			unsigned long address, unsigned int flags)
4072{
4073	pte_t *ptep, entry;
4074	spinlock_t *ptl;
4075	vm_fault_t ret;
4076	u32 hash;
4077	pgoff_t idx;
4078	struct page *page = NULL;
4079	struct page *pagecache_page = NULL;
4080	struct hstate *h = hstate_vma(vma);
4081	struct address_space *mapping;
4082	int need_wait_lock = 0;
4083	unsigned long haddr = address & huge_page_mask(h);
 
 
 
 
 
 
 
4084
4085	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4086	if (ptep) {
4087		entry = huge_ptep_get(ptep);
4088		if (unlikely(is_hugetlb_entry_migration(entry))) {
4089			migration_entry_wait_huge(vma, mm, ptep);
4090			return 0;
4091		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4092			return VM_FAULT_HWPOISON_LARGE |
4093				VM_FAULT_SET_HINDEX(hstate_index(h));
4094	} else {
4095		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4096		if (!ptep)
4097			return VM_FAULT_OOM;
4098	}
4099
4100	mapping = vma->vm_file->f_mapping;
4101	idx = vma_hugecache_offset(h, vma, haddr);
4102
4103	/*
4104	 * Serialize hugepage allocation and instantiation, so that we don't
4105	 * get spurious allocation failures if two CPUs race to instantiate
4106	 * the same page in the page cache.
4107	 */
4108	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
 
4109	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4110
 
 
 
 
 
 
 
 
 
 
 
 
 
4111	entry = huge_ptep_get(ptep);
4112	if (huge_pte_none(entry)) {
4113		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4114		goto out_mutex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4115	}
4116
4117	ret = 0;
4118
4119	/*
4120	 * entry could be a migration/hwpoison entry at this point, so this
4121	 * check prevents the kernel from going below assuming that we have
4122	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4123	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4124	 * handle it.
4125	 */
4126	if (!pte_present(entry))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4127		goto out_mutex;
 
4128
4129	/*
4130	 * If we are going to COW the mapping later, we examine the pending
4131	 * reservations for this page now. This will ensure that any
4132	 * allocations necessary to record that reservation occur outside the
4133	 * spinlock. For private mappings, we also lookup the pagecache
4134	 * page now as it is used to determine if a reservation has been
4135	 * consumed.
4136	 */
4137	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
 
4138		if (vma_needs_reservation(h, vma, haddr) < 0) {
4139			ret = VM_FAULT_OOM;
4140			goto out_mutex;
4141		}
4142		/* Just decrements count, does not deallocate */
4143		vma_end_reservation(h, vma, haddr);
4144
4145		if (!(vma->vm_flags & VM_MAYSHARE))
4146			pagecache_page = hugetlbfs_pagecache_page(h,
4147								vma, haddr);
 
4148	}
4149
4150	ptl = huge_pte_lock(h, mm, ptep);
4151
4152	/* Check for a racing update before calling hugetlb_cow */
4153	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4154		goto out_ptl;
4155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4156	/*
4157	 * hugetlb_cow() requires page locks of pte_page(entry) and
4158	 * pagecache_page, so here we need take the former one
4159	 * when page != pagecache_page or !pagecache_page.
4160	 */
4161	page = pte_page(entry);
4162	if (page != pagecache_page)
4163		if (!trylock_page(page)) {
4164			need_wait_lock = 1;
4165			goto out_ptl;
4166		}
4167
4168	get_page(page);
4169
4170	if (flags & FAULT_FLAG_WRITE) {
4171		if (!huge_pte_write(entry)) {
4172			ret = hugetlb_cow(mm, vma, address, ptep,
4173					  pagecache_page, ptl);
4174			goto out_put_page;
 
 
4175		}
4176		entry = huge_pte_mkdirty(entry);
4177	}
4178	entry = pte_mkyoung(entry);
4179	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4180						flags & FAULT_FLAG_WRITE))
4181		update_mmu_cache(vma, haddr, ptep);
4182out_put_page:
4183	if (page != pagecache_page)
4184		unlock_page(page);
4185	put_page(page);
4186out_ptl:
4187	spin_unlock(ptl);
4188
4189	if (pagecache_page) {
4190		unlock_page(pagecache_page);
4191		put_page(pagecache_page);
4192	}
4193out_mutex:
 
4194	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4195	/*
4196	 * Generally it's safe to hold refcount during waiting page lock. But
4197	 * here we just wait to defer the next page fault to avoid busy loop and
4198	 * the page is not used after unlocked before returning from the current
4199	 * page fault. So we are safe from accessing freed page, even if we wait
4200	 * here without taking refcount.
4201	 */
4202	if (need_wait_lock)
4203		wait_on_page_locked(page);
4204	return ret;
4205}
4206
 
4207/*
4208 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4209 * modifications for huge pages.
4210 */
4211int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4212			    pte_t *dst_pte,
4213			    struct vm_area_struct *dst_vma,
4214			    unsigned long dst_addr,
4215			    unsigned long src_addr,
4216			    struct page **pagep)
4217{
4218	struct address_space *mapping;
4219	pgoff_t idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4220	unsigned long size;
4221	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4222	struct hstate *h = hstate_vma(dst_vma);
4223	pte_t _dst_pte;
4224	spinlock_t *ptl;
4225	int ret;
4226	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4227
4228	if (!*pagep) {
4229		ret = -ENOMEM;
4230		page = alloc_huge_page(dst_vma, dst_addr, 0);
4231		if (IS_ERR(page))
 
 
 
 
 
 
 
 
 
4232			goto out;
 
4233
4234		ret = copy_huge_page_from_user(page,
4235						(const void __user *) src_addr,
4236						pages_per_huge_page(h), false);
 
 
 
 
 
4237
4238		/* fallback to copy_from_user outside mmap_sem */
4239		if (unlikely(ret)) {
4240			ret = -ENOENT;
4241			*pagep = page;
4242			/* don't free the page */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4243			goto out;
4244		}
4245	} else {
4246		page = *pagep;
4247		*pagep = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4248	}
4249
4250	/*
4251	 * The memory barrier inside __SetPageUptodate makes sure that
4252	 * preceding stores to the page contents become visible before
4253	 * the set_pte_at() write.
 
 
 
 
 
 
4254	 */
4255	__SetPageUptodate(page);
4256
4257	mapping = dst_vma->vm_file->f_mapping;
4258	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4259
4260	/*
4261	 * If shared, add to page cache
4262	 */
4263	if (vm_shared) {
4264		size = i_size_read(mapping->host) >> huge_page_shift(h);
4265		ret = -EFAULT;
4266		if (idx >= size)
4267			goto out_release_nounlock;
4268
4269		/*
4270		 * Serialization between remove_inode_hugepages() and
4271		 * huge_add_to_page_cache() below happens through the
4272		 * hugetlb_fault_mutex_table that here must be hold by
4273		 * the caller.
4274		 */
4275		ret = huge_add_to_page_cache(page, mapping, idx);
4276		if (ret)
4277			goto out_release_nounlock;
 
4278	}
4279
4280	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4281	spin_lock(ptl);
4282
4283	/*
4284	 * Recheck the i_size after holding PT lock to make sure not
4285	 * to leave any page mapped (as page_mapped()) beyond the end
4286	 * of the i_size (remove_inode_hugepages() is strict about
4287	 * enforcing that). If we bail out here, we'll also leave a
4288	 * page in the radix tree in the vm_shared case beyond the end
4289	 * of the i_size, but remove_inode_hugepages() will take care
4290	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4291	 */
4292	size = i_size_read(mapping->host) >> huge_page_shift(h);
4293	ret = -EFAULT;
4294	if (idx >= size)
4295		goto out_release_unlock;
4296
 
 
 
 
 
4297	ret = -EEXIST;
4298	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4299		goto out_release_unlock;
4300
4301	if (vm_shared) {
4302		page_dup_rmap(page, true);
4303	} else {
4304		ClearPagePrivate(page);
4305		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4306	}
4307
4308	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4309	if (dst_vma->vm_flags & VM_WRITE)
4310		_dst_pte = huge_pte_mkdirty(_dst_pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4311	_dst_pte = pte_mkyoung(_dst_pte);
4312
4313	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
 
 
 
4314
4315	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4316					dst_vma->vm_flags & VM_WRITE);
4317	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4318
4319	/* No need to invalidate - it was non-present before */
4320	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4321
4322	spin_unlock(ptl);
4323	set_page_huge_active(page);
4324	if (vm_shared)
4325		unlock_page(page);
 
4326	ret = 0;
4327out:
4328	return ret;
4329out_release_unlock:
4330	spin_unlock(ptl);
4331	if (vm_shared)
4332		unlock_page(page);
4333out_release_nounlock:
4334	put_page(page);
 
 
4335	goto out;
4336}
 
4337
4338long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4339			 struct page **pages, struct vm_area_struct **vmas,
4340			 unsigned long *position, unsigned long *nr_pages,
4341			 long i, unsigned int flags, int *nonblocking)
4342{
4343	unsigned long pfn_offset;
4344	unsigned long vaddr = *position;
4345	unsigned long remainder = *nr_pages;
4346	struct hstate *h = hstate_vma(vma);
4347	int err = -EFAULT;
4348
4349	while (vaddr < vma->vm_end && remainder) {
4350		pte_t *pte;
4351		spinlock_t *ptl = NULL;
4352		int absent;
4353		struct page *page;
4354
4355		/*
4356		 * If we have a pending SIGKILL, don't keep faulting pages and
4357		 * potentially allocating memory.
4358		 */
4359		if (fatal_signal_pending(current)) {
4360			remainder = 0;
4361			break;
4362		}
4363
4364		/*
4365		 * Some archs (sparc64, sh*) have multiple pte_ts to
4366		 * each hugepage.  We have to make sure we get the
4367		 * first, for the page indexing below to work.
4368		 *
4369		 * Note that page table lock is not held when pte is null.
4370		 */
4371		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4372				      huge_page_size(h));
4373		if (pte)
4374			ptl = huge_pte_lock(h, mm, pte);
4375		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4376
4377		/*
4378		 * When coredumping, it suits get_dump_page if we just return
4379		 * an error where there's an empty slot with no huge pagecache
4380		 * to back it.  This way, we avoid allocating a hugepage, and
4381		 * the sparse dumpfile avoids allocating disk blocks, but its
4382		 * huge holes still show up with zeroes where they need to be.
4383		 */
4384		if (absent && (flags & FOLL_DUMP) &&
4385		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4386			if (pte)
4387				spin_unlock(ptl);
4388			remainder = 0;
4389			break;
4390		}
4391
4392		/*
4393		 * We need call hugetlb_fault for both hugepages under migration
4394		 * (in which case hugetlb_fault waits for the migration,) and
4395		 * hwpoisoned hugepages (in which case we need to prevent the
4396		 * caller from accessing to them.) In order to do this, we use
4397		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4398		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4399		 * both cases, and because we can't follow correct pages
4400		 * directly from any kind of swap entries.
4401		 */
4402		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4403		    ((flags & FOLL_WRITE) &&
4404		      !huge_pte_write(huge_ptep_get(pte)))) {
4405			vm_fault_t ret;
4406			unsigned int fault_flags = 0;
4407
4408			if (pte)
4409				spin_unlock(ptl);
4410			if (flags & FOLL_WRITE)
4411				fault_flags |= FAULT_FLAG_WRITE;
4412			if (nonblocking)
4413				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4414			if (flags & FOLL_NOWAIT)
4415				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4416					FAULT_FLAG_RETRY_NOWAIT;
4417			if (flags & FOLL_TRIED) {
4418				VM_WARN_ON_ONCE(fault_flags &
4419						FAULT_FLAG_ALLOW_RETRY);
4420				fault_flags |= FAULT_FLAG_TRIED;
4421			}
4422			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4423			if (ret & VM_FAULT_ERROR) {
4424				err = vm_fault_to_errno(ret, flags);
4425				remainder = 0;
4426				break;
4427			}
4428			if (ret & VM_FAULT_RETRY) {
4429				if (nonblocking &&
4430				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4431					*nonblocking = 0;
4432				*nr_pages = 0;
4433				/*
4434				 * VM_FAULT_RETRY must not return an
4435				 * error, it will return zero
4436				 * instead.
4437				 *
4438				 * No need to update "position" as the
4439				 * caller will not check it after
4440				 * *nr_pages is set to 0.
4441				 */
4442				return i;
4443			}
4444			continue;
4445		}
4446
4447		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4448		page = pte_page(huge_ptep_get(pte));
4449
4450		/*
4451		 * Instead of doing 'try_get_page()' below in the same_page
4452		 * loop, just check the count once here.
 
 
 
 
 
4453		 */
4454		if (unlikely(page_count(page) <= 0)) {
4455			if (pages) {
4456				spin_unlock(ptl);
4457				remainder = 0;
4458				err = -ENOMEM;
4459				break;
4460			}
4461		}
4462same_page:
4463		if (pages) {
4464			pages[i] = mem_map_offset(page, pfn_offset);
4465			get_page(pages[i]);
4466		}
4467
4468		if (vmas)
4469			vmas[i] = vma;
4470
4471		vaddr += PAGE_SIZE;
4472		++pfn_offset;
4473		--remainder;
4474		++i;
4475		if (vaddr < vma->vm_end && remainder &&
4476				pfn_offset < pages_per_huge_page(h)) {
4477			/*
4478			 * We use pfn_offset to avoid touching the pageframes
4479			 * of this compound page.
4480			 */
4481			goto same_page;
4482		}
4483		spin_unlock(ptl);
 
4484	}
4485	*nr_pages = remainder;
 
 
 
 
4486	/*
4487	 * setting position is actually required only if remainder is
4488	 * not zero but it's faster not to add a "if (remainder)"
4489	 * branch.
4490	 */
4491	*position = vaddr;
 
 
4492
4493	return i ? i : err;
4494}
4495
4496#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4497/*
4498 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4499 * implement this.
4500 */
4501#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4502#endif
4503
4504unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4505		unsigned long address, unsigned long end, pgprot_t newprot)
4506{
4507	struct mm_struct *mm = vma->vm_mm;
4508	unsigned long start = address;
4509	pte_t *ptep;
4510	pte_t pte;
4511	struct hstate *h = hstate_vma(vma);
4512	unsigned long pages = 0;
4513	bool shared_pmd = false;
4514	struct mmu_notifier_range range;
 
 
 
4515
4516	/*
4517	 * In the case of shared PMDs, the area to flush could be beyond
4518	 * start/end.  Set range.start/range.end to cover the maximum possible
4519	 * range if PMD sharing is possible.
4520	 */
4521	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4522				0, vma, mm, start, end);
4523	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4524
4525	BUG_ON(address >= end);
4526	flush_cache_range(vma, range.start, range.end);
4527
4528	mmu_notifier_invalidate_range_start(&range);
 
4529	i_mmap_lock_write(vma->vm_file->f_mapping);
4530	for (; address < end; address += huge_page_size(h)) {
 
4531		spinlock_t *ptl;
4532		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4533		if (!ptep)
4534			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
4535		ptl = huge_pte_lock(h, mm, ptep);
4536		if (huge_pmd_unshare(mm, &address, ptep)) {
 
 
 
 
 
 
4537			pages++;
4538			spin_unlock(ptl);
4539			shared_pmd = true;
 
4540			continue;
4541		}
4542		pte = huge_ptep_get(ptep);
4543		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4544			spin_unlock(ptl);
4545			continue;
4546		}
4547		if (unlikely(is_hugetlb_entry_migration(pte))) {
4548			swp_entry_t entry = pte_to_swp_entry(pte);
 
 
4549
4550			if (is_write_migration_entry(entry)) {
4551				pte_t newpte;
4552
4553				make_migration_entry_read(&entry);
 
 
 
4554				newpte = swp_entry_to_pte(entry);
4555				set_huge_swap_pte_at(mm, address, ptep,
4556						     newpte, huge_page_size(h));
4557				pages++;
4558			}
4559			spin_unlock(ptl);
4560			continue;
4561		}
4562		if (!huge_pte_none(pte)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4563			pte_t old_pte;
 
4564
4565			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4566			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4567			pte = arch_make_huge_pte(pte, vma, NULL, 0);
 
 
 
 
4568			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4569			pages++;
 
 
 
 
 
 
 
4570		}
4571		spin_unlock(ptl);
4572	}
4573	/*
4574	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4575	 * may have cleared our pud entry and done put_page on the page table:
4576	 * once we release i_mmap_rwsem, another task can do the final put_page
4577	 * and that page table be reused and filled with junk.  If we actually
4578	 * did unshare a page of pmds, flush the range corresponding to the pud.
4579	 */
4580	if (shared_pmd)
4581		flush_hugetlb_tlb_range(vma, range.start, range.end);
4582	else
4583		flush_hugetlb_tlb_range(vma, start, end);
4584	/*
4585	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4586	 * page table protection not changing it to point to a new page.
 
4587	 *
4588	 * See Documentation/vm/mmu_notifier.rst
4589	 */
4590	i_mmap_unlock_write(vma->vm_file->f_mapping);
 
4591	mmu_notifier_invalidate_range_end(&range);
4592
4593	return pages << h->order;
4594}
4595
4596int hugetlb_reserve_pages(struct inode *inode,
 
4597					long from, long to,
4598					struct vm_area_struct *vma,
4599					vm_flags_t vm_flags)
4600{
4601	long ret, chg;
4602	struct hstate *h = hstate_inode(inode);
4603	struct hugepage_subpool *spool = subpool_inode(inode);
4604	struct resv_map *resv_map;
4605	long gbl_reserve;
 
4606
4607	/* This should never happen */
4608	if (from > to) {
4609		VM_WARN(1, "%s called with a negative range\n", __func__);
4610		return -EINVAL;
4611	}
4612
4613	/*
 
 
 
 
 
 
4614	 * Only apply hugepage reservation if asked. At fault time, an
4615	 * attempt will be made for VM_NORESERVE to allocate a page
4616	 * without using reserves
4617	 */
4618	if (vm_flags & VM_NORESERVE)
4619		return 0;
4620
4621	/*
4622	 * Shared mappings base their reservation on the number of pages that
4623	 * are already allocated on behalf of the file. Private mappings need
4624	 * to reserve the full area even if read-only as mprotect() may be
4625	 * called to make the mapping read-write. Assume !vma is a shm mapping
4626	 */
4627	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4628		/*
4629		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4630		 * called for inodes for which resv_maps were created (see
4631		 * hugetlbfs_get_inode).
4632		 */
4633		resv_map = inode_resv_map(inode);
4634
4635		chg = region_chg(resv_map, from, to);
4636
4637	} else {
 
4638		resv_map = resv_map_alloc();
4639		if (!resv_map)
4640			return -ENOMEM;
4641
4642		chg = to - from;
4643
4644		set_vma_resv_map(vma, resv_map);
4645		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4646	}
4647
4648	if (chg < 0) {
4649		ret = chg;
 
 
 
4650		goto out_err;
 
 
 
 
 
 
4651	}
4652
4653	/*
4654	 * There must be enough pages in the subpool for the mapping. If
4655	 * the subpool has a minimum size, there may be some global
4656	 * reservations already in place (gbl_reserve).
4657	 */
4658	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4659	if (gbl_reserve < 0) {
4660		ret = -ENOSPC;
4661		goto out_err;
4662	}
4663
4664	/*
4665	 * Check enough hugepages are available for the reservation.
4666	 * Hand the pages back to the subpool if there are not
4667	 */
4668	ret = hugetlb_acct_memory(h, gbl_reserve);
4669	if (ret < 0) {
4670		/* put back original number of pages, chg */
4671		(void)hugepage_subpool_put_pages(spool, chg);
4672		goto out_err;
4673	}
4674
4675	/*
4676	 * Account for the reservations made. Shared mappings record regions
4677	 * that have reservations as they are shared by multiple VMAs.
4678	 * When the last VMA disappears, the region map says how much
4679	 * the reservation was and the page cache tells how much of
4680	 * the reservation was consumed. Private mappings are per-VMA and
4681	 * only the consumed reservations are tracked. When the VMA
4682	 * disappears, the original reservation is the VMA size and the
4683	 * consumed reservations are stored in the map. Hence, nothing
4684	 * else has to be done for private mappings here
4685	 */
4686	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4687		long add = region_add(resv_map, from, to);
4688
4689		if (unlikely(chg > add)) {
 
 
 
4690			/*
4691			 * pages in this range were added to the reserve
4692			 * map between region_chg and region_add.  This
4693			 * indicates a race with alloc_huge_page.  Adjust
4694			 * the subpool and reserve counts modified above
4695			 * based on the difference.
4696			 */
4697			long rsv_adjust;
4698
 
 
 
 
 
 
 
 
4699			rsv_adjust = hugepage_subpool_put_pages(spool,
4700								chg - add);
4701			hugetlb_acct_memory(h, -rsv_adjust);
 
 
 
 
 
 
 
 
4702		}
4703	}
4704	return 0;
 
 
 
 
 
 
 
4705out_err:
 
4706	if (!vma || vma->vm_flags & VM_MAYSHARE)
4707		/* Don't call region_abort if region_chg failed */
4708		if (chg >= 0)
4709			region_abort(resv_map, from, to);
4710	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 
 
4711		kref_put(&resv_map->refs, resv_map_release);
4712	return ret;
 
 
4713}
4714
4715long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4716								long freed)
4717{
4718	struct hstate *h = hstate_inode(inode);
4719	struct resv_map *resv_map = inode_resv_map(inode);
4720	long chg = 0;
4721	struct hugepage_subpool *spool = subpool_inode(inode);
4722	long gbl_reserve;
4723
4724	/*
4725	 * Since this routine can be called in the evict inode path for all
4726	 * hugetlbfs inodes, resv_map could be NULL.
4727	 */
4728	if (resv_map) {
4729		chg = region_del(resv_map, start, end);
4730		/*
4731		 * region_del() can fail in the rare case where a region
4732		 * must be split and another region descriptor can not be
4733		 * allocated.  If end == LONG_MAX, it will not fail.
4734		 */
4735		if (chg < 0)
4736			return chg;
4737	}
4738
4739	spin_lock(&inode->i_lock);
4740	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4741	spin_unlock(&inode->i_lock);
4742
4743	/*
4744	 * If the subpool has a minimum size, the number of global
4745	 * reservations to be released may be adjusted.
 
 
 
4746	 */
4747	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4748	hugetlb_acct_memory(h, -gbl_reserve);
4749
4750	return 0;
4751}
4752
4753#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4754static unsigned long page_table_shareable(struct vm_area_struct *svma,
4755				struct vm_area_struct *vma,
4756				unsigned long addr, pgoff_t idx)
4757{
4758	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4759				svma->vm_start;
4760	unsigned long sbase = saddr & PUD_MASK;
4761	unsigned long s_end = sbase + PUD_SIZE;
4762
4763	/* Allow segments to share if only one is marked locked */
4764	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4765	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766
4767	/*
4768	 * match the virtual addresses, permission and the alignment of the
4769	 * page table page.
 
 
4770	 */
4771	if (pmd_index(addr) != pmd_index(saddr) ||
4772	    vm_flags != svm_flags ||
4773	    sbase < svma->vm_start || svma->vm_end < s_end)
 
4774		return 0;
4775
4776	return saddr;
4777}
4778
4779static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4780{
4781	unsigned long base = addr & PUD_MASK;
4782	unsigned long end = base + PUD_SIZE;
4783
 
 
 
 
4784	/*
4785	 * check on proper vm_flags and page table alignment
4786	 */
4787	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4788		return true;
4789	return false;
 
 
 
 
4790}
4791
4792/*
4793 * Determine if start,end range within vma could be mapped by shared pmd.
4794 * If yes, adjust start and end to cover range associated with possible
4795 * shared pmd mappings.
4796 */
4797void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4798				unsigned long *start, unsigned long *end)
4799{
4800	unsigned long check_addr = *start;
 
4801
4802	if (!(vma->vm_flags & VM_MAYSHARE))
 
 
 
 
 
4803		return;
4804
4805	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4806		unsigned long a_start = check_addr & PUD_MASK;
4807		unsigned long a_end = a_start + PUD_SIZE;
4808
4809		/*
4810		 * If sharing is possible, adjust start/end if necessary.
4811		 */
4812		if (range_in_vma(vma, a_start, a_end)) {
4813			if (a_start < *start)
4814				*start = a_start;
4815			if (a_end > *end)
4816				*end = a_end;
4817		}
4818	}
4819}
4820
4821/*
4822 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4823 * and returns the corresponding pte. While this is not necessary for the
4824 * !shared pmd case because we can allocate the pmd later as well, it makes the
4825 * code much cleaner. pmd allocation is essential for the shared case because
4826 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4827 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4828 * bad pmd for sharing.
4829 */
4830pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 
4831{
4832	struct vm_area_struct *vma = find_vma(mm, addr);
4833	struct address_space *mapping = vma->vm_file->f_mapping;
4834	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4835			vma->vm_pgoff;
4836	struct vm_area_struct *svma;
4837	unsigned long saddr;
4838	pte_t *spte = NULL;
4839	pte_t *pte;
4840	spinlock_t *ptl;
4841
4842	if (!vma_shareable(vma, addr))
4843		return (pte_t *)pmd_alloc(mm, pud, addr);
4844
4845	i_mmap_lock_write(mapping);
4846	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4847		if (svma == vma)
4848			continue;
4849
4850		saddr = page_table_shareable(svma, vma, addr, idx);
4851		if (saddr) {
4852			spte = huge_pte_offset(svma->vm_mm, saddr,
4853					       vma_mmu_pagesize(svma));
4854			if (spte) {
4855				get_page(virt_to_page(spte));
4856				break;
4857			}
4858		}
4859	}
4860
4861	if (!spte)
4862		goto out;
4863
4864	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4865	if (pud_none(*pud)) {
4866		pud_populate(mm, pud,
4867				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4868		mm_inc_nr_pmds(mm);
4869	} else {
4870		put_page(virt_to_page(spte));
4871	}
4872	spin_unlock(ptl);
4873out:
4874	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4875	i_mmap_unlock_write(mapping);
4876	return pte;
4877}
4878
4879/*
4880 * unmap huge page backed by shared pte.
4881 *
4882 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4883 * indicated by page_count > 1, unmap is achieved by clearing pud and
4884 * decrementing the ref count. If count == 1, the pte page is not shared.
4885 *
4886 * called with page table lock held.
4887 *
4888 * returns: 1 successfully unmapped a shared pte page
4889 *	    0 the underlying pte page is not shared, or it is the last user
4890 */
4891int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 
4892{
4893	pgd_t *pgd = pgd_offset(mm, *addr);
4894	p4d_t *p4d = p4d_offset(pgd, *addr);
4895	pud_t *pud = pud_offset(p4d, *addr);
4896
 
 
4897	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4898	if (page_count(virt_to_page(ptep)) == 1)
4899		return 0;
4900
4901	pud_clear(pud);
4902	put_page(virt_to_page(ptep));
4903	mm_dec_nr_pmds(mm);
4904	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4905	return 1;
4906}
4907#define want_pmd_share()	(1)
4908#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4909pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 
 
4910{
4911	return NULL;
4912}
4913
4914int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 
4915{
4916	return 0;
4917}
4918
4919void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920				unsigned long *start, unsigned long *end)
4921{
4922}
4923#define want_pmd_share()	(0)
 
 
 
 
4924#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4925
4926#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4927pte_t *huge_pte_alloc(struct mm_struct *mm,
4928			unsigned long addr, unsigned long sz)
4929{
4930	pgd_t *pgd;
4931	p4d_t *p4d;
4932	pud_t *pud;
4933	pte_t *pte = NULL;
4934
4935	pgd = pgd_offset(mm, addr);
4936	p4d = p4d_alloc(mm, pgd, addr);
4937	if (!p4d)
4938		return NULL;
4939	pud = pud_alloc(mm, p4d, addr);
4940	if (pud) {
4941		if (sz == PUD_SIZE) {
4942			pte = (pte_t *)pud;
4943		} else {
4944			BUG_ON(sz != PMD_SIZE);
4945			if (want_pmd_share() && pud_none(*pud))
4946				pte = huge_pmd_share(mm, addr, pud);
4947			else
4948				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4949		}
4950	}
4951	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
 
 
 
 
 
4952
4953	return pte;
4954}
4955
4956/*
4957 * huge_pte_offset() - Walk the page table to resolve the hugepage
4958 * entry at address @addr
4959 *
4960 * Return: Pointer to page table or swap entry (PUD or PMD) for
4961 * address @addr, or NULL if a p*d_none() entry is encountered and the
4962 * size @sz doesn't match the hugepage size at this level of the page
4963 * table.
4964 */
4965pte_t *huge_pte_offset(struct mm_struct *mm,
4966		       unsigned long addr, unsigned long sz)
4967{
4968	pgd_t *pgd;
4969	p4d_t *p4d;
4970	pud_t *pud;
4971	pmd_t *pmd;
4972
4973	pgd = pgd_offset(mm, addr);
4974	if (!pgd_present(*pgd))
4975		return NULL;
4976	p4d = p4d_offset(pgd, addr);
4977	if (!p4d_present(*p4d))
4978		return NULL;
4979
4980	pud = pud_offset(p4d, addr);
4981	if (sz != PUD_SIZE && pud_none(*pud))
4982		return NULL;
4983	/* hugepage or swap? */
4984	if (pud_huge(*pud) || !pud_present(*pud))
4985		return (pte_t *)pud;
4986
4987	pmd = pmd_offset(pud, addr);
4988	if (sz != PMD_SIZE && pmd_none(*pmd))
4989		return NULL;
4990	/* hugepage or swap? */
4991	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4992		return (pte_t *)pmd;
4993
4994	return NULL;
 
 
4995}
4996
4997#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4998
4999/*
5000 * These functions are overwritable if your architecture needs its own
5001 * behavior.
 
 
 
5002 */
5003struct page * __weak
5004follow_huge_addr(struct mm_struct *mm, unsigned long address,
5005			      int write)
5006{
5007	return ERR_PTR(-EINVAL);
5008}
5009
5010struct page * __weak
5011follow_huge_pd(struct vm_area_struct *vma,
5012	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5013{
5014	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5015	return NULL;
5016}
5017
5018struct page * __weak
5019follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5020		pmd_t *pmd, int flags)
 
5021{
5022	struct page *page = NULL;
5023	spinlock_t *ptl;
5024	pte_t pte;
5025retry:
5026	ptl = pmd_lockptr(mm, pmd);
5027	spin_lock(ptl);
5028	/*
5029	 * make sure that the address range covered by this pmd is not
5030	 * unmapped from other threads.
5031	 */
5032	if (!pmd_huge(*pmd))
5033		goto out;
5034	pte = huge_ptep_get((pte_t *)pmd);
5035	if (pte_present(pte)) {
5036		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5037		if (flags & FOLL_GET)
5038			get_page(page);
5039	} else {
5040		if (is_hugetlb_entry_migration(pte)) {
5041			spin_unlock(ptl);
5042			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5043			goto retry;
5044		}
5045		/*
5046		 * hwpoisoned entry is treated as no_page_table in
5047		 * follow_page_mask().
5048		 */
5049	}
5050out:
5051	spin_unlock(ptl);
5052	return page;
5053}
5054
5055struct page * __weak
5056follow_huge_pud(struct mm_struct *mm, unsigned long address,
5057		pud_t *pud, int flags)
 
 
 
 
5058{
5059	if (flags & FOLL_GET)
5060		return NULL;
5061
5062	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
5063}
5064
5065struct page * __weak
5066follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5067{
5068	if (flags & FOLL_GET)
5069		return NULL;
5070
5071	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
5072}
5073
5074bool isolate_huge_page(struct page *page, struct list_head *list)
 
5075{
5076	bool ret = true;
5077
5078	VM_BUG_ON_PAGE(!PageHead(page), page);
5079	spin_lock(&hugetlb_lock);
5080	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5081		ret = false;
5082		goto unlock;
5083	}
5084	clear_page_huge_active(page);
5085	list_move_tail(&page->lru, list);
5086unlock:
5087	spin_unlock(&hugetlb_lock);
5088	return ret;
5089}
5090
5091void putback_active_hugepage(struct page *page)
5092{
5093	VM_BUG_ON_PAGE(!PageHead(page), page);
5094	spin_lock(&hugetlb_lock);
5095	set_page_huge_active(page);
5096	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5097	spin_unlock(&hugetlb_lock);
5098	put_page(page);
5099}
5100
5101void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5102{
5103	struct hstate *h = page_hstate(oldpage);
5104
5105	hugetlb_cgroup_migrate(oldpage, newpage);
5106	set_page_owner_migrate_reason(newpage, reason);
5107
5108	/*
5109	 * transfer temporary state of the new huge page. This is
5110	 * reverse to other transitions because the newpage is going to
5111	 * be final while the old one will be freed so it takes over
5112	 * the temporary status.
5113	 *
5114	 * Also note that we have to transfer the per-node surplus state
5115	 * here as well otherwise the global surplus count will not match
5116	 * the per-node's.
5117	 */
5118	if (PageHugeTemporary(newpage)) {
5119		int old_nid = page_to_nid(oldpage);
5120		int new_nid = page_to_nid(newpage);
 
 
 
5121
5122		SetPageHugeTemporary(oldpage);
5123		ClearPageHugeTemporary(newpage);
5124
5125		spin_lock(&hugetlb_lock);
 
 
 
 
 
 
5126		if (h->surplus_huge_pages_node[old_nid]) {
5127			h->surplus_huge_pages_node[old_nid]--;
5128			h->surplus_huge_pages_node[new_nid]++;
5129		}
5130		spin_unlock(&hugetlb_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5131	}
 
 
 
 
 
 
 
5132}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
  33#include <linux/migrate.h>
  34#include <linux/nospec.h>
  35#include <linux/delayacct.h>
  36#include <linux/memory.h>
  37#include <linux/mm_inline.h>
  38#include <linux/padata.h>
  39
  40#include <asm/page.h>
  41#include <asm/pgalloc.h>
  42#include <asm/tlb.h>
  43
  44#include <linux/io.h>
  45#include <linux/hugetlb.h>
  46#include <linux/hugetlb_cgroup.h>
  47#include <linux/node.h>
 
  48#include <linux/page_owner.h>
  49#include "internal.h"
  50#include "hugetlb_vmemmap.h"
  51
  52int hugetlb_max_hstate __read_mostly;
  53unsigned int default_hstate_idx;
  54struct hstate hstates[HUGE_MAX_HSTATE];
 
 
 
 
 
  55
  56#ifdef CONFIG_CMA
  57static struct cma *hugetlb_cma[MAX_NUMNODES];
  58static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
  59static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
  60{
  61	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
  62				1 << order);
  63}
  64#else
  65static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
  66{
  67	return false;
  68}
  69#endif
  70static unsigned long hugetlb_cma_size __initdata;
  71
  72__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
  73
  74/* for command line parsing */
  75static struct hstate * __initdata parsed_hstate;
  76static unsigned long __initdata default_hstate_max_huge_pages;
 
  77static bool __initdata parsed_valid_hugepagesz = true;
  78static bool __initdata parsed_default_hugepagesz;
  79static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
  80
  81/*
  82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  83 * free_huge_pages, and surplus_huge_pages.
  84 */
  85DEFINE_SPINLOCK(hugetlb_lock);
  86
  87/*
  88 * Serializes faults on the same logical page.  This is used to
  89 * prevent spurious OOMs when the hugepage pool is fully utilized.
  90 */
  91static int num_fault_mutexes;
  92struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  93
  94/* Forward declaration */
  95static int hugetlb_acct_memory(struct hstate *h, long delta);
  96static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
  97static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
  98static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
  99static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
 100		unsigned long start, unsigned long end);
 101static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
 102
 103static inline bool subpool_is_free(struct hugepage_subpool *spool)
 104{
 105	if (spool->count)
 106		return false;
 107	if (spool->max_hpages != -1)
 108		return spool->used_hpages == 0;
 109	if (spool->min_hpages != -1)
 110		return spool->rsv_hpages == spool->min_hpages;
 111
 112	return true;
 113}
 114
 115static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
 116						unsigned long irq_flags)
 117{
 118	spin_unlock_irqrestore(&spool->lock, irq_flags);
 119
 120	/* If no pages are used, and no other handles to the subpool
 121	 * remain, give up any reservations based on minimum size and
 122	 * free the subpool */
 123	if (subpool_is_free(spool)) {
 124		if (spool->min_hpages != -1)
 125			hugetlb_acct_memory(spool->hstate,
 126						-spool->min_hpages);
 127		kfree(spool);
 128	}
 129}
 130
 131struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 132						long min_hpages)
 133{
 134	struct hugepage_subpool *spool;
 135
 136	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 137	if (!spool)
 138		return NULL;
 139
 140	spin_lock_init(&spool->lock);
 141	spool->count = 1;
 142	spool->max_hpages = max_hpages;
 143	spool->hstate = h;
 144	spool->min_hpages = min_hpages;
 145
 146	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 147		kfree(spool);
 148		return NULL;
 149	}
 150	spool->rsv_hpages = min_hpages;
 151
 152	return spool;
 153}
 154
 155void hugepage_put_subpool(struct hugepage_subpool *spool)
 156{
 157	unsigned long flags;
 158
 159	spin_lock_irqsave(&spool->lock, flags);
 160	BUG_ON(!spool->count);
 161	spool->count--;
 162	unlock_or_release_subpool(spool, flags);
 163}
 164
 165/*
 166 * Subpool accounting for allocating and reserving pages.
 167 * Return -ENOMEM if there are not enough resources to satisfy the
 168 * request.  Otherwise, return the number of pages by which the
 169 * global pools must be adjusted (upward).  The returned value may
 170 * only be different than the passed value (delta) in the case where
 171 * a subpool minimum size must be maintained.
 172 */
 173static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 174				      long delta)
 175{
 176	long ret = delta;
 177
 178	if (!spool)
 179		return ret;
 180
 181	spin_lock_irq(&spool->lock);
 182
 183	if (spool->max_hpages != -1) {		/* maximum size accounting */
 184		if ((spool->used_hpages + delta) <= spool->max_hpages)
 185			spool->used_hpages += delta;
 186		else {
 187			ret = -ENOMEM;
 188			goto unlock_ret;
 189		}
 190	}
 191
 192	/* minimum size accounting */
 193	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 194		if (delta > spool->rsv_hpages) {
 195			/*
 196			 * Asking for more reserves than those already taken on
 197			 * behalf of subpool.  Return difference.
 198			 */
 199			ret = delta - spool->rsv_hpages;
 200			spool->rsv_hpages = 0;
 201		} else {
 202			ret = 0;	/* reserves already accounted for */
 203			spool->rsv_hpages -= delta;
 204		}
 205	}
 206
 207unlock_ret:
 208	spin_unlock_irq(&spool->lock);
 209	return ret;
 210}
 211
 212/*
 213 * Subpool accounting for freeing and unreserving pages.
 214 * Return the number of global page reservations that must be dropped.
 215 * The return value may only be different than the passed value (delta)
 216 * in the case where a subpool minimum size must be maintained.
 217 */
 218static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 219				       long delta)
 220{
 221	long ret = delta;
 222	unsigned long flags;
 223
 224	if (!spool)
 225		return delta;
 226
 227	spin_lock_irqsave(&spool->lock, flags);
 228
 229	if (spool->max_hpages != -1)		/* maximum size accounting */
 230		spool->used_hpages -= delta;
 231
 232	 /* minimum size accounting */
 233	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 234		if (spool->rsv_hpages + delta <= spool->min_hpages)
 235			ret = 0;
 236		else
 237			ret = spool->rsv_hpages + delta - spool->min_hpages;
 238
 239		spool->rsv_hpages += delta;
 240		if (spool->rsv_hpages > spool->min_hpages)
 241			spool->rsv_hpages = spool->min_hpages;
 242	}
 243
 244	/*
 245	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 246	 * quota reference, free it now.
 247	 */
 248	unlock_or_release_subpool(spool, flags);
 249
 250	return ret;
 251}
 252
 253static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 254{
 255	return HUGETLBFS_SB(inode->i_sb)->spool;
 256}
 257
 258static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 259{
 260	return subpool_inode(file_inode(vma->vm_file));
 261}
 262
 263/*
 264 * hugetlb vma_lock helper routines
 265 */
 266void hugetlb_vma_lock_read(struct vm_area_struct *vma)
 267{
 268	if (__vma_shareable_lock(vma)) {
 269		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 270
 271		down_read(&vma_lock->rw_sema);
 272	} else if (__vma_private_lock(vma)) {
 273		struct resv_map *resv_map = vma_resv_map(vma);
 274
 275		down_read(&resv_map->rw_sema);
 276	}
 277}
 278
 279void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
 280{
 281	if (__vma_shareable_lock(vma)) {
 282		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 283
 284		up_read(&vma_lock->rw_sema);
 285	} else if (__vma_private_lock(vma)) {
 286		struct resv_map *resv_map = vma_resv_map(vma);
 287
 288		up_read(&resv_map->rw_sema);
 289	}
 290}
 291
 292void hugetlb_vma_lock_write(struct vm_area_struct *vma)
 293{
 294	if (__vma_shareable_lock(vma)) {
 295		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 296
 297		down_write(&vma_lock->rw_sema);
 298	} else if (__vma_private_lock(vma)) {
 299		struct resv_map *resv_map = vma_resv_map(vma);
 300
 301		down_write(&resv_map->rw_sema);
 302	}
 303}
 304
 305void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
 306{
 307	if (__vma_shareable_lock(vma)) {
 308		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 309
 310		up_write(&vma_lock->rw_sema);
 311	} else if (__vma_private_lock(vma)) {
 312		struct resv_map *resv_map = vma_resv_map(vma);
 313
 314		up_write(&resv_map->rw_sema);
 315	}
 316}
 317
 318int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
 319{
 320
 321	if (__vma_shareable_lock(vma)) {
 322		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 323
 324		return down_write_trylock(&vma_lock->rw_sema);
 325	} else if (__vma_private_lock(vma)) {
 326		struct resv_map *resv_map = vma_resv_map(vma);
 327
 328		return down_write_trylock(&resv_map->rw_sema);
 329	}
 330
 331	return 1;
 332}
 333
 334void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
 335{
 336	if (__vma_shareable_lock(vma)) {
 337		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 338
 339		lockdep_assert_held(&vma_lock->rw_sema);
 340	} else if (__vma_private_lock(vma)) {
 341		struct resv_map *resv_map = vma_resv_map(vma);
 342
 343		lockdep_assert_held(&resv_map->rw_sema);
 344	}
 345}
 346
 347void hugetlb_vma_lock_release(struct kref *kref)
 348{
 349	struct hugetlb_vma_lock *vma_lock = container_of(kref,
 350			struct hugetlb_vma_lock, refs);
 351
 352	kfree(vma_lock);
 353}
 354
 355static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
 356{
 357	struct vm_area_struct *vma = vma_lock->vma;
 358
 359	/*
 360	 * vma_lock structure may or not be released as a result of put,
 361	 * it certainly will no longer be attached to vma so clear pointer.
 362	 * Semaphore synchronizes access to vma_lock->vma field.
 363	 */
 364	vma_lock->vma = NULL;
 365	vma->vm_private_data = NULL;
 366	up_write(&vma_lock->rw_sema);
 367	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
 368}
 369
 370static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
 371{
 372	if (__vma_shareable_lock(vma)) {
 373		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 374
 375		__hugetlb_vma_unlock_write_put(vma_lock);
 376	} else if (__vma_private_lock(vma)) {
 377		struct resv_map *resv_map = vma_resv_map(vma);
 378
 379		/* no free for anon vmas, but still need to unlock */
 380		up_write(&resv_map->rw_sema);
 381	}
 382}
 383
 384static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
 385{
 386	/*
 387	 * Only present in sharable vmas.
 388	 */
 389	if (!vma || !__vma_shareable_lock(vma))
 390		return;
 391
 392	if (vma->vm_private_data) {
 393		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 394
 395		down_write(&vma_lock->rw_sema);
 396		__hugetlb_vma_unlock_write_put(vma_lock);
 397	}
 398}
 399
 400static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
 401{
 402	struct hugetlb_vma_lock *vma_lock;
 403
 404	/* Only establish in (flags) sharable vmas */
 405	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
 406		return;
 407
 408	/* Should never get here with non-NULL vm_private_data */
 409	if (vma->vm_private_data)
 410		return;
 411
 412	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
 413	if (!vma_lock) {
 414		/*
 415		 * If we can not allocate structure, then vma can not
 416		 * participate in pmd sharing.  This is only a possible
 417		 * performance enhancement and memory saving issue.
 418		 * However, the lock is also used to synchronize page
 419		 * faults with truncation.  If the lock is not present,
 420		 * unlikely races could leave pages in a file past i_size
 421		 * until the file is removed.  Warn in the unlikely case of
 422		 * allocation failure.
 423		 */
 424		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
 425		return;
 426	}
 427
 428	kref_init(&vma_lock->refs);
 429	init_rwsem(&vma_lock->rw_sema);
 430	vma_lock->vma = vma;
 431	vma->vm_private_data = vma_lock;
 432}
 433
 434/* Helper that removes a struct file_region from the resv_map cache and returns
 435 * it for use.
 436 */
 437static struct file_region *
 438get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 439{
 440	struct file_region *nrg;
 441
 442	VM_BUG_ON(resv->region_cache_count <= 0);
 443
 444	resv->region_cache_count--;
 445	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 446	list_del(&nrg->link);
 447
 448	nrg->from = from;
 449	nrg->to = to;
 450
 451	return nrg;
 452}
 453
 454static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 455					      struct file_region *rg)
 456{
 457#ifdef CONFIG_CGROUP_HUGETLB
 458	nrg->reservation_counter = rg->reservation_counter;
 459	nrg->css = rg->css;
 460	if (rg->css)
 461		css_get(rg->css);
 462#endif
 463}
 464
 465/* Helper that records hugetlb_cgroup uncharge info. */
 466static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 467						struct hstate *h,
 468						struct resv_map *resv,
 469						struct file_region *nrg)
 470{
 471#ifdef CONFIG_CGROUP_HUGETLB
 472	if (h_cg) {
 473		nrg->reservation_counter =
 474			&h_cg->rsvd_hugepage[hstate_index(h)];
 475		nrg->css = &h_cg->css;
 476		/*
 477		 * The caller will hold exactly one h_cg->css reference for the
 478		 * whole contiguous reservation region. But this area might be
 479		 * scattered when there are already some file_regions reside in
 480		 * it. As a result, many file_regions may share only one css
 481		 * reference. In order to ensure that one file_region must hold
 482		 * exactly one h_cg->css reference, we should do css_get for
 483		 * each file_region and leave the reference held by caller
 484		 * untouched.
 485		 */
 486		css_get(&h_cg->css);
 487		if (!resv->pages_per_hpage)
 488			resv->pages_per_hpage = pages_per_huge_page(h);
 489		/* pages_per_hpage should be the same for all entries in
 490		 * a resv_map.
 491		 */
 492		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 493	} else {
 494		nrg->reservation_counter = NULL;
 495		nrg->css = NULL;
 496	}
 497#endif
 498}
 499
 500static void put_uncharge_info(struct file_region *rg)
 501{
 502#ifdef CONFIG_CGROUP_HUGETLB
 503	if (rg->css)
 504		css_put(rg->css);
 505#endif
 506}
 507
 508static bool has_same_uncharge_info(struct file_region *rg,
 509				   struct file_region *org)
 510{
 511#ifdef CONFIG_CGROUP_HUGETLB
 512	return rg->reservation_counter == org->reservation_counter &&
 513	       rg->css == org->css;
 514
 515#else
 516	return true;
 517#endif
 518}
 519
 520static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 521{
 522	struct file_region *nrg, *prg;
 523
 524	prg = list_prev_entry(rg, link);
 525	if (&prg->link != &resv->regions && prg->to == rg->from &&
 526	    has_same_uncharge_info(prg, rg)) {
 527		prg->to = rg->to;
 528
 529		list_del(&rg->link);
 530		put_uncharge_info(rg);
 531		kfree(rg);
 532
 533		rg = prg;
 534	}
 535
 536	nrg = list_next_entry(rg, link);
 537	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 538	    has_same_uncharge_info(nrg, rg)) {
 539		nrg->from = rg->from;
 540
 541		list_del(&rg->link);
 542		put_uncharge_info(rg);
 543		kfree(rg);
 544	}
 545}
 546
 547static inline long
 548hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
 549		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
 550		     long *regions_needed)
 551{
 552	struct file_region *nrg;
 553
 554	if (!regions_needed) {
 555		nrg = get_file_region_entry_from_cache(map, from, to);
 556		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
 557		list_add(&nrg->link, rg);
 558		coalesce_file_region(map, nrg);
 559	} else
 560		*regions_needed += 1;
 561
 562	return to - from;
 563}
 564
 565/*
 566 * Must be called with resv->lock held.
 567 *
 568 * Calling this with regions_needed != NULL will count the number of pages
 569 * to be added but will not modify the linked list. And regions_needed will
 570 * indicate the number of file_regions needed in the cache to carry out to add
 571 * the regions for this range.
 572 */
 573static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 574				     struct hugetlb_cgroup *h_cg,
 575				     struct hstate *h, long *regions_needed)
 576{
 577	long add = 0;
 578	struct list_head *head = &resv->regions;
 579	long last_accounted_offset = f;
 580	struct file_region *iter, *trg = NULL;
 581	struct list_head *rg = NULL;
 582
 583	if (regions_needed)
 584		*regions_needed = 0;
 585
 586	/* In this loop, we essentially handle an entry for the range
 587	 * [last_accounted_offset, iter->from), at every iteration, with some
 588	 * bounds checking.
 589	 */
 590	list_for_each_entry_safe(iter, trg, head, link) {
 591		/* Skip irrelevant regions that start before our range. */
 592		if (iter->from < f) {
 593			/* If this region ends after the last accounted offset,
 594			 * then we need to update last_accounted_offset.
 595			 */
 596			if (iter->to > last_accounted_offset)
 597				last_accounted_offset = iter->to;
 598			continue;
 599		}
 600
 601		/* When we find a region that starts beyond our range, we've
 602		 * finished.
 603		 */
 604		if (iter->from >= t) {
 605			rg = iter->link.prev;
 606			break;
 607		}
 608
 609		/* Add an entry for last_accounted_offset -> iter->from, and
 610		 * update last_accounted_offset.
 611		 */
 612		if (iter->from > last_accounted_offset)
 613			add += hugetlb_resv_map_add(resv, iter->link.prev,
 614						    last_accounted_offset,
 615						    iter->from, h, h_cg,
 616						    regions_needed);
 617
 618		last_accounted_offset = iter->to;
 619	}
 620
 621	/* Handle the case where our range extends beyond
 622	 * last_accounted_offset.
 623	 */
 624	if (!rg)
 625		rg = head->prev;
 626	if (last_accounted_offset < t)
 627		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
 628					    t, h, h_cg, regions_needed);
 629
 630	return add;
 631}
 632
 633/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 634 */
 635static int allocate_file_region_entries(struct resv_map *resv,
 636					int regions_needed)
 637	__must_hold(&resv->lock)
 638{
 639	LIST_HEAD(allocated_regions);
 640	int to_allocate = 0, i = 0;
 641	struct file_region *trg = NULL, *rg = NULL;
 642
 643	VM_BUG_ON(regions_needed < 0);
 644
 645	/*
 646	 * Check for sufficient descriptors in the cache to accommodate
 647	 * the number of in progress add operations plus regions_needed.
 648	 *
 649	 * This is a while loop because when we drop the lock, some other call
 650	 * to region_add or region_del may have consumed some region_entries,
 651	 * so we keep looping here until we finally have enough entries for
 652	 * (adds_in_progress + regions_needed).
 653	 */
 654	while (resv->region_cache_count <
 655	       (resv->adds_in_progress + regions_needed)) {
 656		to_allocate = resv->adds_in_progress + regions_needed -
 657			      resv->region_cache_count;
 658
 659		/* At this point, we should have enough entries in the cache
 660		 * for all the existing adds_in_progress. We should only be
 661		 * needing to allocate for regions_needed.
 662		 */
 663		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 664
 665		spin_unlock(&resv->lock);
 666		for (i = 0; i < to_allocate; i++) {
 667			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 668			if (!trg)
 669				goto out_of_memory;
 670			list_add(&trg->link, &allocated_regions);
 671		}
 672
 673		spin_lock(&resv->lock);
 674
 675		list_splice(&allocated_regions, &resv->region_cache);
 676		resv->region_cache_count += to_allocate;
 677	}
 678
 679	return 0;
 680
 681out_of_memory:
 682	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 683		list_del(&rg->link);
 684		kfree(rg);
 685	}
 686	return -ENOMEM;
 687}
 688
 689/*
 690 * Add the huge page range represented by [f, t) to the reserve
 691 * map.  Regions will be taken from the cache to fill in this range.
 692 * Sufficient regions should exist in the cache due to the previous
 693 * call to region_chg with the same range, but in some cases the cache will not
 694 * have sufficient entries due to races with other code doing region_add or
 695 * region_del.  The extra needed entries will be allocated.
 
 
 
 696 *
 697 * regions_needed is the out value provided by a previous call to region_chg.
 698 *
 699 * Return the number of new huge pages added to the map.  This number is greater
 700 * than or equal to zero.  If file_region entries needed to be allocated for
 701 * this operation and we were not able to allocate, it returns -ENOMEM.
 702 * region_add of regions of length 1 never allocate file_regions and cannot
 703 * fail; region_chg will always allocate at least 1 entry and a region_add for
 704 * 1 page will only require at most 1 entry.
 705 */
 706static long region_add(struct resv_map *resv, long f, long t,
 707		       long in_regions_needed, struct hstate *h,
 708		       struct hugetlb_cgroup *h_cg)
 709{
 710	long add = 0, actual_regions_needed = 0;
 
 
 711
 712	spin_lock(&resv->lock);
 713retry:
 714
 715	/* Count how many regions are actually needed to execute this add. */
 716	add_reservation_in_range(resv, f, t, NULL, NULL,
 717				 &actual_regions_needed);
 718
 719	/*
 720	 * Check for sufficient descriptors in the cache to accommodate
 721	 * this add operation. Note that actual_regions_needed may be greater
 722	 * than in_regions_needed, as the resv_map may have been modified since
 723	 * the region_chg call. In this case, we need to make sure that we
 724	 * allocate extra entries, such that we have enough for all the
 725	 * existing adds_in_progress, plus the excess needed for this
 726	 * operation.
 727	 */
 728	if (actual_regions_needed > in_regions_needed &&
 729	    resv->region_cache_count <
 730		    resv->adds_in_progress +
 731			    (actual_regions_needed - in_regions_needed)) {
 732		/* region_add operation of range 1 should never need to
 733		 * allocate file_region entries.
 734		 */
 735		VM_BUG_ON(t - f <= 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736
 737		if (allocate_file_region_entries(
 738			    resv, actual_regions_needed - in_regions_needed)) {
 739			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 740		}
 741
 742		goto retry;
 743	}
 744
 745	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 746
 747	resv->adds_in_progress -= in_regions_needed;
 
 748
 
 
 749	spin_unlock(&resv->lock);
 
 750	return add;
 751}
 752
 753/*
 754 * Examine the existing reserve map and determine how many
 755 * huge pages in the specified range [f, t) are NOT currently
 756 * represented.  This routine is called before a subsequent
 757 * call to region_add that will actually modify the reserve
 758 * map to add the specified range [f, t).  region_chg does
 759 * not change the number of huge pages represented by the
 760 * map.  A number of new file_region structures is added to the cache as a
 761 * placeholder, for the subsequent region_add call to use. At least 1
 762 * file_region structure is added.
 
 
 763 *
 764 * out_regions_needed is the number of regions added to the
 765 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 766 * to region_add or region_abort for proper accounting.
 767 *
 768 * Returns the number of huge pages that need to be added to the existing
 769 * reservation map for the range [f, t).  This number is greater or equal to
 770 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 771 * is needed and can not be allocated.
 772 */
 773static long region_chg(struct resv_map *resv, long f, long t,
 774		       long *out_regions_needed)
 775{
 
 
 776	long chg = 0;
 777
 
 778	spin_lock(&resv->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780	/* Count how many hugepages in this range are NOT represented. */
 781	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 782				       out_regions_needed);
 
 
 783
 784	if (*out_regions_needed == 0)
 785		*out_regions_needed = 1;
 
 
 
 786
 787	if (allocate_file_region_entries(resv, *out_regions_needed))
 788		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789
 790	resv->adds_in_progress += *out_regions_needed;
 
 
 
 
 
 
 
 
 791
 
 
 
 
 
 
 792	spin_unlock(&resv->lock);
 793	return chg;
 794}
 795
 796/*
 797 * Abort the in progress add operation.  The adds_in_progress field
 798 * of the resv_map keeps track of the operations in progress between
 799 * calls to region_chg and region_add.  Operations are sometimes
 800 * aborted after the call to region_chg.  In such cases, region_abort
 801 * is called to decrement the adds_in_progress counter. regions_needed
 802 * is the value returned by the region_chg call, it is used to decrement
 803 * the adds_in_progress counter.
 804 *
 805 * NOTE: The range arguments [f, t) are not needed or used in this
 806 * routine.  They are kept to make reading the calling code easier as
 807 * arguments will match the associated region_chg call.
 808 */
 809static void region_abort(struct resv_map *resv, long f, long t,
 810			 long regions_needed)
 811{
 812	spin_lock(&resv->lock);
 813	VM_BUG_ON(!resv->region_cache_count);
 814	resv->adds_in_progress -= regions_needed;
 815	spin_unlock(&resv->lock);
 816}
 817
 818/*
 819 * Delete the specified range [f, t) from the reserve map.  If the
 820 * t parameter is LONG_MAX, this indicates that ALL regions after f
 821 * should be deleted.  Locate the regions which intersect [f, t)
 822 * and either trim, delete or split the existing regions.
 823 *
 824 * Returns the number of huge pages deleted from the reserve map.
 825 * In the normal case, the return value is zero or more.  In the
 826 * case where a region must be split, a new region descriptor must
 827 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 828 * NOTE: If the parameter t == LONG_MAX, then we will never split
 829 * a region and possibly return -ENOMEM.  Callers specifying
 830 * t == LONG_MAX do not need to check for -ENOMEM error.
 831 */
 832static long region_del(struct resv_map *resv, long f, long t)
 833{
 834	struct list_head *head = &resv->regions;
 835	struct file_region *rg, *trg;
 836	struct file_region *nrg = NULL;
 837	long del = 0;
 838
 839retry:
 840	spin_lock(&resv->lock);
 841	list_for_each_entry_safe(rg, trg, head, link) {
 842		/*
 843		 * Skip regions before the range to be deleted.  file_region
 844		 * ranges are normally of the form [from, to).  However, there
 845		 * may be a "placeholder" entry in the map which is of the form
 846		 * (from, to) with from == to.  Check for placeholder entries
 847		 * at the beginning of the range to be deleted.
 848		 */
 849		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 850			continue;
 851
 852		if (rg->from >= t)
 853			break;
 854
 855		if (f > rg->from && t < rg->to) { /* Must split region */
 856			/*
 857			 * Check for an entry in the cache before dropping
 858			 * lock and attempting allocation.
 859			 */
 860			if (!nrg &&
 861			    resv->region_cache_count > resv->adds_in_progress) {
 862				nrg = list_first_entry(&resv->region_cache,
 863							struct file_region,
 864							link);
 865				list_del(&nrg->link);
 866				resv->region_cache_count--;
 867			}
 868
 869			if (!nrg) {
 870				spin_unlock(&resv->lock);
 871				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 872				if (!nrg)
 873					return -ENOMEM;
 874				goto retry;
 875			}
 876
 877			del += t - f;
 878			hugetlb_cgroup_uncharge_file_region(
 879				resv, rg, t - f, false);
 880
 881			/* New entry for end of split region */
 882			nrg->from = t;
 883			nrg->to = rg->to;
 884
 885			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 886
 887			INIT_LIST_HEAD(&nrg->link);
 888
 889			/* Original entry is trimmed */
 890			rg->to = f;
 891
 892			list_add(&nrg->link, &rg->link);
 893			nrg = NULL;
 894			break;
 895		}
 896
 897		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 898			del += rg->to - rg->from;
 899			hugetlb_cgroup_uncharge_file_region(resv, rg,
 900							    rg->to - rg->from, true);
 901			list_del(&rg->link);
 902			kfree(rg);
 903			continue;
 904		}
 905
 906		if (f <= rg->from) {	/* Trim beginning of region */
 907			hugetlb_cgroup_uncharge_file_region(resv, rg,
 908							    t - rg->from, false);
 909
 910			del += t - rg->from;
 911			rg->from = t;
 912		} else {		/* Trim end of region */
 913			hugetlb_cgroup_uncharge_file_region(resv, rg,
 914							    rg->to - f, false);
 915
 916			del += rg->to - f;
 917			rg->to = f;
 918		}
 919	}
 920
 921	spin_unlock(&resv->lock);
 922	kfree(nrg);
 923	return del;
 924}
 925
 926/*
 927 * A rare out of memory error was encountered which prevented removal of
 928 * the reserve map region for a page.  The huge page itself was free'ed
 929 * and removed from the page cache.  This routine will adjust the subpool
 930 * usage count, and the global reserve count if needed.  By incrementing
 931 * these counts, the reserve map entry which could not be deleted will
 932 * appear as a "reserved" entry instead of simply dangling with incorrect
 933 * counts.
 934 */
 935void hugetlb_fix_reserve_counts(struct inode *inode)
 936{
 937	struct hugepage_subpool *spool = subpool_inode(inode);
 938	long rsv_adjust;
 939	bool reserved = false;
 940
 941	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 942	if (rsv_adjust > 0) {
 943		struct hstate *h = hstate_inode(inode);
 944
 945		if (!hugetlb_acct_memory(h, 1))
 946			reserved = true;
 947	} else if (!rsv_adjust) {
 948		reserved = true;
 949	}
 950
 951	if (!reserved)
 952		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
 953}
 954
 955/*
 956 * Count and return the number of huge pages in the reserve map
 957 * that intersect with the range [f, t).
 958 */
 959static long region_count(struct resv_map *resv, long f, long t)
 960{
 961	struct list_head *head = &resv->regions;
 962	struct file_region *rg;
 963	long chg = 0;
 964
 965	spin_lock(&resv->lock);
 966	/* Locate each segment we overlap with, and count that overlap. */
 967	list_for_each_entry(rg, head, link) {
 968		long seg_from;
 969		long seg_to;
 970
 971		if (rg->to <= f)
 972			continue;
 973		if (rg->from >= t)
 974			break;
 975
 976		seg_from = max(rg->from, f);
 977		seg_to = min(rg->to, t);
 978
 979		chg += seg_to - seg_from;
 980	}
 981	spin_unlock(&resv->lock);
 982
 983	return chg;
 984}
 985
 986/*
 987 * Convert the address within this vma to the page offset within
 988 * the mapping, huge page units here.
 989 */
 990static pgoff_t vma_hugecache_offset(struct hstate *h,
 991			struct vm_area_struct *vma, unsigned long address)
 992{
 993	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 994			(vma->vm_pgoff >> huge_page_order(h));
 995}
 996
 997/**
 998 * vma_kernel_pagesize - Page size granularity for this VMA.
 999 * @vma: The user mapping.
1000 *
1001 * Folios in this VMA will be aligned to, and at least the size of the
1002 * number of bytes returned by this function.
1003 *
1004 * Return: The default size of the folios allocated when backing a VMA.
 
 
1005 */
1006unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007{
1008	if (vma->vm_ops && vma->vm_ops->pagesize)
1009		return vma->vm_ops->pagesize(vma);
1010	return PAGE_SIZE;
1011}
1012EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013
1014/*
1015 * Return the page size being used by the MMU to back a VMA. In the majority
1016 * of cases, the page size used by the kernel matches the MMU size. On
1017 * architectures where it differs, an architecture-specific 'strong'
1018 * version of this symbol is required.
1019 */
1020__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021{
1022	return vma_kernel_pagesize(vma);
1023}
1024
1025/*
1026 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027 * bits of the reservation map pointer, which are always clear due to
1028 * alignment.
1029 */
1030#define HPAGE_RESV_OWNER    (1UL << 0)
1031#define HPAGE_RESV_UNMAPPED (1UL << 1)
1032#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033
1034/*
1035 * These helpers are used to track how many pages are reserved for
1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037 * is guaranteed to have their future faults succeed.
1038 *
1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040 * the reserve counters are updated with the hugetlb_lock held. It is safe
1041 * to reset the VMA at fork() time as it is not in use yet and there is no
1042 * chance of the global counters getting corrupted as a result of the values.
1043 *
1044 * The private mapping reservation is represented in a subtly different
1045 * manner to a shared mapping.  A shared mapping has a region map associated
1046 * with the underlying file, this region map represents the backing file
1047 * pages which have ever had a reservation assigned which this persists even
1048 * after the page is instantiated.  A private mapping has a region map
1049 * associated with the original mmap which is attached to all VMAs which
1050 * reference it, this region map represents those offsets which have consumed
1051 * reservation ie. where pages have been instantiated.
1052 */
1053static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054{
1055	return (unsigned long)vma->vm_private_data;
1056}
1057
1058static void set_vma_private_data(struct vm_area_struct *vma,
1059							unsigned long value)
1060{
1061	vma->vm_private_data = (void *)value;
1062}
1063
1064static void
1065resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066					  struct hugetlb_cgroup *h_cg,
1067					  struct hstate *h)
1068{
1069#ifdef CONFIG_CGROUP_HUGETLB
1070	if (!h_cg || !h) {
1071		resv_map->reservation_counter = NULL;
1072		resv_map->pages_per_hpage = 0;
1073		resv_map->css = NULL;
1074	} else {
1075		resv_map->reservation_counter =
1076			&h_cg->rsvd_hugepage[hstate_index(h)];
1077		resv_map->pages_per_hpage = pages_per_huge_page(h);
1078		resv_map->css = &h_cg->css;
1079	}
1080#endif
1081}
1082
1083struct resv_map *resv_map_alloc(void)
1084{
1085	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088	if (!resv_map || !rg) {
1089		kfree(resv_map);
1090		kfree(rg);
1091		return NULL;
1092	}
1093
1094	kref_init(&resv_map->refs);
1095	spin_lock_init(&resv_map->lock);
1096	INIT_LIST_HEAD(&resv_map->regions);
1097	init_rwsem(&resv_map->rw_sema);
1098
1099	resv_map->adds_in_progress = 0;
1100	/*
1101	 * Initialize these to 0. On shared mappings, 0's here indicate these
1102	 * fields don't do cgroup accounting. On private mappings, these will be
1103	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104	 * reservations are to be un-charged from here.
1105	 */
1106	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107
1108	INIT_LIST_HEAD(&resv_map->region_cache);
1109	list_add(&rg->link, &resv_map->region_cache);
1110	resv_map->region_cache_count = 1;
1111
1112	return resv_map;
1113}
1114
1115void resv_map_release(struct kref *ref)
1116{
1117	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118	struct list_head *head = &resv_map->region_cache;
1119	struct file_region *rg, *trg;
1120
1121	/* Clear out any active regions before we release the map. */
1122	region_del(resv_map, 0, LONG_MAX);
1123
1124	/* ... and any entries left in the cache */
1125	list_for_each_entry_safe(rg, trg, head, link) {
1126		list_del(&rg->link);
1127		kfree(rg);
1128	}
1129
1130	VM_BUG_ON(resv_map->adds_in_progress);
1131
1132	kfree(resv_map);
1133}
1134
1135static inline struct resv_map *inode_resv_map(struct inode *inode)
1136{
1137	/*
1138	 * At inode evict time, i_mapping may not point to the original
1139	 * address space within the inode.  This original address space
1140	 * contains the pointer to the resv_map.  So, always use the
1141	 * address space embedded within the inode.
1142	 * The VERY common case is inode->mapping == &inode->i_data but,
1143	 * this may not be true for device special inodes.
1144	 */
1145	return (struct resv_map *)(&inode->i_data)->i_private_data;
1146}
1147
1148static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149{
1150	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151	if (vma->vm_flags & VM_MAYSHARE) {
1152		struct address_space *mapping = vma->vm_file->f_mapping;
1153		struct inode *inode = mapping->host;
1154
1155		return inode_resv_map(inode);
1156
1157	} else {
1158		return (struct resv_map *)(get_vma_private_data(vma) &
1159							~HPAGE_RESV_MASK);
1160	}
1161}
1162
1163static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164{
1165	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167
1168	set_vma_private_data(vma, (unsigned long)map);
 
1169}
1170
1171static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172{
1173	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175
1176	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177}
1178
1179static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180{
1181	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182
1183	return (get_vma_private_data(vma) & flag) != 0;
1184}
1185
1186bool __vma_private_lock(struct vm_area_struct *vma)
1187{
1188	return !(vma->vm_flags & VM_MAYSHARE) &&
1189		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191}
1192
1193void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194{
1195	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196	/*
1197	 * Clear vm_private_data
1198	 * - For shared mappings this is a per-vma semaphore that may be
1199	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1200	 *   Before clearing, make sure pointer is not associated with vma
1201	 *   as this will leak the structure.  This is the case when called
1202	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203	 *   been called to allocate a new structure.
1204	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205	 *   not apply to children.  Faults generated by the children are
1206	 *   not guaranteed to succeed, even if read-only.
1207	 */
1208	if (vma->vm_flags & VM_MAYSHARE) {
1209		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211		if (vma_lock && vma_lock->vma != vma)
1212			vma->vm_private_data = NULL;
1213	} else
1214		vma->vm_private_data = NULL;
1215}
1216
1217/*
1218 * Reset and decrement one ref on hugepage private reservation.
1219 * Called with mm->mmap_lock writer semaphore held.
1220 * This function should be only used by move_vma() and operate on
1221 * same sized vma. It should never come here with last ref on the
1222 * reservation.
1223 */
1224void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225{
1226	/*
1227	 * Clear the old hugetlb private page reservation.
1228	 * It has already been transferred to new_vma.
1229	 *
1230	 * During a mremap() operation of a hugetlb vma we call move_vma()
1231	 * which copies vma into new_vma and unmaps vma. After the copy
1232	 * operation both new_vma and vma share a reference to the resv_map
1233	 * struct, and at that point vma is about to be unmapped. We don't
1234	 * want to return the reservation to the pool at unmap of vma because
1235	 * the reservation still lives on in new_vma, so simply decrement the
1236	 * ref here and remove the resv_map reference from this vma.
1237	 */
1238	struct resv_map *reservations = vma_resv_map(vma);
1239
1240	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242		kref_put(&reservations->refs, resv_map_release);
1243	}
1244
1245	hugetlb_dup_vma_private(vma);
1246}
1247
1248/* Returns true if the VMA has associated reserve pages */
1249static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250{
1251	if (vma->vm_flags & VM_NORESERVE) {
1252		/*
1253		 * This address is already reserved by other process(chg == 0),
1254		 * so, we should decrement reserved count. Without decrementing,
1255		 * reserve count remains after releasing inode, because this
1256		 * allocated page will go into page cache and is regarded as
1257		 * coming from reserved pool in releasing step.  Currently, we
1258		 * don't have any other solution to deal with this situation
1259		 * properly, so add work-around here.
1260		 */
1261		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262			return true;
1263		else
1264			return false;
1265	}
1266
1267	/* Shared mappings always use reserves */
1268	if (vma->vm_flags & VM_MAYSHARE) {
1269		/*
1270		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271		 * be a region map for all pages.  The only situation where
1272		 * there is no region map is if a hole was punched via
1273		 * fallocate.  In this case, there really are no reserves to
1274		 * use.  This situation is indicated if chg != 0.
1275		 */
1276		if (chg)
1277			return false;
1278		else
1279			return true;
1280	}
1281
1282	/*
1283	 * Only the process that called mmap() has reserves for
1284	 * private mappings.
1285	 */
1286	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287		/*
1288		 * Like the shared case above, a hole punch or truncate
1289		 * could have been performed on the private mapping.
1290		 * Examine the value of chg to determine if reserves
1291		 * actually exist or were previously consumed.
1292		 * Very Subtle - The value of chg comes from a previous
1293		 * call to vma_needs_reserves().  The reserve map for
1294		 * private mappings has different (opposite) semantics
1295		 * than that of shared mappings.  vma_needs_reserves()
1296		 * has already taken this difference in semantics into
1297		 * account.  Therefore, the meaning of chg is the same
1298		 * as in the shared case above.  Code could easily be
1299		 * combined, but keeping it separate draws attention to
1300		 * subtle differences.
1301		 */
1302		if (chg)
1303			return false;
1304		else
1305			return true;
1306	}
1307
1308	return false;
1309}
1310
1311static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312{
1313	int nid = folio_nid(folio);
1314
1315	lockdep_assert_held(&hugetlb_lock);
1316	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317
1318	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319	h->free_huge_pages++;
1320	h->free_huge_pages_node[nid]++;
1321	folio_set_hugetlb_freed(folio);
1322}
1323
1324static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325								int nid)
1326{
1327	struct folio *folio;
1328	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329
1330	lockdep_assert_held(&hugetlb_lock);
1331	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332		if (pin && !folio_is_longterm_pinnable(folio))
1333			continue;
1334
1335		if (folio_test_hwpoison(folio))
1336			continue;
1337
1338		list_move(&folio->lru, &h->hugepage_activelist);
1339		folio_ref_unfreeze(folio, 1);
1340		folio_clear_hugetlb_freed(folio);
1341		h->free_huge_pages--;
1342		h->free_huge_pages_node[nid]--;
1343		return folio;
1344	}
1345
1346	return NULL;
1347}
1348
1349static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350							int nid, nodemask_t *nmask)
1351{
1352	unsigned int cpuset_mems_cookie;
1353	struct zonelist *zonelist;
1354	struct zone *zone;
1355	struct zoneref *z;
1356	int node = NUMA_NO_NODE;
1357
1358	zonelist = node_zonelist(nid, gfp_mask);
1359
1360retry_cpuset:
1361	cpuset_mems_cookie = read_mems_allowed_begin();
1362	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363		struct folio *folio;
1364
1365		if (!cpuset_zone_allowed(zone, gfp_mask))
1366			continue;
1367		/*
1368		 * no need to ask again on the same node. Pool is node rather than
1369		 * zone aware
1370		 */
1371		if (zone_to_nid(zone) == node)
1372			continue;
1373		node = zone_to_nid(zone);
1374
1375		folio = dequeue_hugetlb_folio_node_exact(h, node);
1376		if (folio)
1377			return folio;
1378	}
1379	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380		goto retry_cpuset;
1381
1382	return NULL;
1383}
1384
1385static unsigned long available_huge_pages(struct hstate *h)
 
1386{
1387	return h->free_huge_pages - h->resv_huge_pages;
 
 
 
1388}
1389
1390static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391				struct vm_area_struct *vma,
1392				unsigned long address, int avoid_reserve,
1393				long chg)
1394{
1395	struct folio *folio = NULL;
1396	struct mempolicy *mpol;
1397	gfp_t gfp_mask;
1398	nodemask_t *nodemask;
1399	int nid;
1400
1401	/*
1402	 * A child process with MAP_PRIVATE mappings created by their parent
1403	 * have no page reserves. This check ensures that reservations are
1404	 * not "stolen". The child may still get SIGKILLed
1405	 */
1406	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
 
1407		goto err;
1408
1409	/* If reserves cannot be used, ensure enough pages are in the pool */
1410	if (avoid_reserve && !available_huge_pages(h))
1411		goto err;
1412
1413	gfp_mask = htlb_alloc_mask(h);
1414	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416	if (mpol_is_preferred_many(mpol)) {
1417		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418							nid, nodemask);
1419
1420		/* Fallback to all nodes if page==NULL */
1421		nodemask = NULL;
1422	}
1423
1424	if (!folio)
1425		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426							nid, nodemask);
1427
1428	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429		folio_set_hugetlb_restore_reserve(folio);
1430		h->resv_huge_pages--;
1431	}
1432
1433	mpol_cond_put(mpol);
1434	return folio;
1435
1436err:
1437	return NULL;
1438}
1439
1440/*
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed.  Ensure that we use an allowed
1445 * node for alloc or free.
1446 */
1447static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448{
1449	nid = next_node_in(nid, *nodes_allowed);
1450	VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452	return nid;
1453}
1454
1455static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456{
1457	if (!node_isset(nid, *nodes_allowed))
1458		nid = next_node_allowed(nid, nodes_allowed);
1459	return nid;
1460}
1461
1462/*
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1466 * mask.
1467 */
1468static int hstate_next_node_to_alloc(int *next_node,
1469					nodemask_t *nodes_allowed)
1470{
1471	int nid;
1472
1473	VM_BUG_ON(!nodes_allowed);
1474
1475	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476	*next_node = next_node_allowed(nid, nodes_allowed);
1477
1478	return nid;
1479}
1480
1481/*
1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1483 * node ["this node"] from which to free a huge page.  Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1486 */
1487static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488{
1489	int nid;
1490
1491	VM_BUG_ON(!nodes_allowed);
1492
1493	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496	return nid;
1497}
1498
1499#define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1500	for (nr_nodes = nodes_weight(*mask);				\
1501		nr_nodes > 0 &&						\
1502		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1503		nr_nodes--)
1504
1505#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1506	for (nr_nodes = nodes_weight(*mask);				\
1507		nr_nodes > 0 &&						\
1508		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1509		nr_nodes--)
1510
1511/* used to demote non-gigantic_huge pages as well */
1512static void __destroy_compound_gigantic_folio(struct folio *folio,
1513					unsigned int order, bool demote)
1514{
1515	int i;
1516	int nr_pages = 1 << order;
1517	struct page *p;
1518
1519	atomic_set(&folio->_entire_mapcount, 0);
1520	atomic_set(&folio->_nr_pages_mapped, 0);
1521	atomic_set(&folio->_pincount, 0);
1522
1523	for (i = 1; i < nr_pages; i++) {
1524		p = folio_page(folio, i);
1525		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526		p->mapping = NULL;
1527		clear_compound_head(p);
1528		if (!demote)
1529			set_page_refcounted(p);
1530	}
1531
1532	__folio_clear_head(folio);
 
1533}
1534
1535static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536					unsigned int order)
1537{
1538	__destroy_compound_gigantic_folio(folio, order, true);
1539}
1540
1541#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542static void destroy_compound_gigantic_folio(struct folio *folio,
1543					unsigned int order)
1544{
1545	__destroy_compound_gigantic_folio(folio, order, false);
 
 
1546}
1547
1548static void free_gigantic_folio(struct folio *folio, unsigned int order)
 
1549{
1550	/*
1551	 * If the page isn't allocated using the cma allocator,
1552	 * cma_release() returns false.
1553	 */
1554#ifdef CONFIG_CMA
1555	int nid = folio_nid(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556
1557	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558		return;
1559#endif
1560
1561	free_contig_range(folio_pfn(folio), 1 << order);
 
 
 
 
1562}
1563
1564#ifdef CONFIG_CONTIG_ALLOC
1565static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566		int nid, nodemask_t *nodemask)
1567{
1568	struct page *page;
1569	unsigned long nr_pages = pages_per_huge_page(h);
1570	if (nid == NUMA_NO_NODE)
1571		nid = numa_mem_id();
 
 
 
 
 
 
1572
1573#ifdef CONFIG_CMA
1574	{
1575		int node;
1576
1577		if (hugetlb_cma[nid]) {
1578			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579					huge_page_order(h), true);
1580			if (page)
1581				return page_folio(page);
1582		}
1583
1584		if (!(gfp_mask & __GFP_THISNODE)) {
1585			for_each_node_mask(node, *nodemask) {
1586				if (node == nid || !hugetlb_cma[node])
1587					continue;
1588
1589				page = cma_alloc(hugetlb_cma[node], nr_pages,
1590						huge_page_order(h), true);
1591				if (page)
1592					return page_folio(page);
1593			}
 
1594		}
 
 
1595	}
1596#endif
1597
1598	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599	return page ? page_folio(page) : NULL;
1600}
1601
 
 
1602#else /* !CONFIG_CONTIG_ALLOC */
1603static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604					int nid, nodemask_t *nodemask)
1605{
1606	return NULL;
1607}
1608#endif /* CONFIG_CONTIG_ALLOC */
1609
1610#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612					int nid, nodemask_t *nodemask)
1613{
1614	return NULL;
1615}
1616static inline void free_gigantic_folio(struct folio *folio,
1617						unsigned int order) { }
1618static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619						unsigned int order) { }
1620#endif
1621
1622static inline void __clear_hugetlb_destructor(struct hstate *h,
1623						struct folio *folio)
1624{
1625	lockdep_assert_held(&hugetlb_lock);
1626
1627	__folio_clear_hugetlb(folio);
1628}
1629
1630/*
1631 * Remove hugetlb folio from lists.
1632 * If vmemmap exists for the folio, update dtor so that the folio appears
1633 * as just a compound page.  Otherwise, wait until after allocating vmemmap
1634 * to update dtor.
1635 *
1636 * A reference is held on the folio, except in the case of demote.
1637 *
1638 * Must be called with hugetlb lock held.
1639 */
1640static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1641							bool adjust_surplus,
1642							bool demote)
1643{
1644	int nid = folio_nid(folio);
1645
1646	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1647	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1648
1649	lockdep_assert_held(&hugetlb_lock);
1650	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1651		return;
1652
1653	list_del(&folio->lru);
1654
1655	if (folio_test_hugetlb_freed(folio)) {
1656		h->free_huge_pages--;
1657		h->free_huge_pages_node[nid]--;
1658	}
1659	if (adjust_surplus) {
1660		h->surplus_huge_pages--;
1661		h->surplus_huge_pages_node[nid]--;
1662	}
1663
1664	/*
1665	 * We can only clear the hugetlb destructor after allocating vmemmap
1666	 * pages.  Otherwise, someone (memory error handling) may try to write
1667	 * to tail struct pages.
1668	 */
1669	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1670		__clear_hugetlb_destructor(h, folio);
1671
1672	 /*
1673	  * In the case of demote we do not ref count the page as it will soon
1674	  * be turned into a page of smaller size.
1675	 */
1676	if (!demote)
1677		folio_ref_unfreeze(folio, 1);
1678
1679	h->nr_huge_pages--;
1680	h->nr_huge_pages_node[nid]--;
1681}
1682
1683static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1684							bool adjust_surplus)
1685{
1686	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1687}
1688
1689static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1690							bool adjust_surplus)
1691{
1692	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1693}
1694
1695static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1696			     bool adjust_surplus)
1697{
1698	int zeroed;
1699	int nid = folio_nid(folio);
1700
1701	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1702
1703	lockdep_assert_held(&hugetlb_lock);
1704
1705	INIT_LIST_HEAD(&folio->lru);
1706	h->nr_huge_pages++;
1707	h->nr_huge_pages_node[nid]++;
1708
1709	if (adjust_surplus) {
1710		h->surplus_huge_pages++;
1711		h->surplus_huge_pages_node[nid]++;
1712	}
1713
1714	__folio_set_hugetlb(folio);
1715	folio_change_private(folio, NULL);
1716	/*
1717	 * We have to set hugetlb_vmemmap_optimized again as above
1718	 * folio_change_private(folio, NULL) cleared it.
1719	 */
1720	folio_set_hugetlb_vmemmap_optimized(folio);
1721
1722	/*
1723	 * This folio is about to be managed by the hugetlb allocator and
1724	 * should have no users.  Drop our reference, and check for others
1725	 * just in case.
1726	 */
1727	zeroed = folio_put_testzero(folio);
1728	if (unlikely(!zeroed))
1729		/*
1730		 * It is VERY unlikely soneone else has taken a ref
1731		 * on the folio.  In this case, we simply return as
1732		 * free_huge_folio() will be called when this other ref
1733		 * is dropped.
1734		 */
1735		return;
1736
1737	arch_clear_hugepage_flags(&folio->page);
1738	enqueue_hugetlb_folio(h, folio);
1739}
1740
1741static void __update_and_free_hugetlb_folio(struct hstate *h,
1742						struct folio *folio)
1743{
1744	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1745
1746	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1747		return;
1748
1749	/*
1750	 * If we don't know which subpages are hwpoisoned, we can't free
1751	 * the hugepage, so it's leaked intentionally.
1752	 */
1753	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1754		return;
1755
1756	/*
1757	 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1758	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1759	 * can only be passed hugetlb pages and will BUG otherwise.
1760	 */
1761	if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1762		spin_lock_irq(&hugetlb_lock);
1763		/*
1764		 * If we cannot allocate vmemmap pages, just refuse to free the
1765		 * page and put the page back on the hugetlb free list and treat
1766		 * as a surplus page.
1767		 */
1768		add_hugetlb_folio(h, folio, true);
1769		spin_unlock_irq(&hugetlb_lock);
1770		return;
1771	}
1772
1773	/*
1774	 * Move PageHWPoison flag from head page to the raw error pages,
1775	 * which makes any healthy subpages reusable.
1776	 */
1777	if (unlikely(folio_test_hwpoison(folio)))
1778		folio_clear_hugetlb_hwpoison(folio);
1779
1780	/*
1781	 * If vmemmap pages were allocated above, then we need to clear the
1782	 * hugetlb destructor under the hugetlb lock.
1783	 */
1784	if (folio_test_hugetlb(folio)) {
1785		spin_lock_irq(&hugetlb_lock);
1786		__clear_hugetlb_destructor(h, folio);
1787		spin_unlock_irq(&hugetlb_lock);
1788	}
1789
1790	/*
1791	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1792	 * need to be given back to CMA in free_gigantic_folio.
1793	 */
1794	if (hstate_is_gigantic(h) ||
1795	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1796		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1797		free_gigantic_folio(folio, huge_page_order(h));
1798	} else {
1799		__free_pages(&folio->page, huge_page_order(h));
1800	}
 
1801}
1802
1803/*
1804 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1805 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1806 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1807 * the vmemmap pages.
1808 *
1809 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1810 * freed and frees them one-by-one. As the page->mapping pointer is going
1811 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1812 * structure of a lockless linked list of huge pages to be freed.
1813 */
1814static LLIST_HEAD(hpage_freelist);
1815
1816static void free_hpage_workfn(struct work_struct *work)
1817{
1818	struct llist_node *node;
1819
1820	node = llist_del_all(&hpage_freelist);
1821
1822	while (node) {
1823		struct folio *folio;
1824		struct hstate *h;
1825
1826		folio = container_of((struct address_space **)node,
1827				     struct folio, mapping);
1828		node = node->next;
1829		folio->mapping = NULL;
1830		/*
1831		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1832		 * folio_hstate() is going to trigger because a previous call to
1833		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1834		 * not use folio_hstate() directly.
1835		 */
1836		h = size_to_hstate(folio_size(folio));
1837
1838		__update_and_free_hugetlb_folio(h, folio);
1839
1840		cond_resched();
1841	}
1842}
1843static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1844
1845static inline void flush_free_hpage_work(struct hstate *h)
 
1846{
1847	if (hugetlb_vmemmap_optimizable(h))
1848		flush_work(&free_hpage_work);
1849}
1850
1851static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1852				 bool atomic)
1853{
1854	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1855		__update_and_free_hugetlb_folio(h, folio);
1856		return;
1857	}
1858
1859	/*
1860	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1861	 *
1862	 * Only call schedule_work() if hpage_freelist is previously
1863	 * empty. Otherwise, schedule_work() had been called but the workfn
1864	 * hasn't retrieved the list yet.
1865	 */
1866	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1867		schedule_work(&free_hpage_work);
1868}
1869
1870static void bulk_vmemmap_restore_error(struct hstate *h,
1871					struct list_head *folio_list,
1872					struct list_head *non_hvo_folios)
 
 
1873{
1874	struct folio *folio, *t_folio;
 
1875
1876	if (!list_empty(non_hvo_folios)) {
1877		/*
1878		 * Free any restored hugetlb pages so that restore of the
1879		 * entire list can be retried.
1880		 * The idea is that in the common case of ENOMEM errors freeing
1881		 * hugetlb pages with vmemmap we will free up memory so that we
1882		 * can allocate vmemmap for more hugetlb pages.
1883		 */
1884		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1885			list_del(&folio->lru);
1886			spin_lock_irq(&hugetlb_lock);
1887			__clear_hugetlb_destructor(h, folio);
1888			spin_unlock_irq(&hugetlb_lock);
1889			update_and_free_hugetlb_folio(h, folio, false);
1890			cond_resched();
1891		}
1892	} else {
1893		/*
1894		 * In the case where there are no folios which can be
1895		 * immediately freed, we loop through the list trying to restore
1896		 * vmemmap individually in the hope that someone elsewhere may
1897		 * have done something to cause success (such as freeing some
1898		 * memory).  If unable to restore a hugetlb page, the hugetlb
1899		 * page is made a surplus page and removed from the list.
1900		 * If are able to restore vmemmap and free one hugetlb page, we
1901		 * quit processing the list to retry the bulk operation.
1902		 */
1903		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1904			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1905				list_del(&folio->lru);
1906				spin_lock_irq(&hugetlb_lock);
1907				add_hugetlb_folio(h, folio, true);
1908				spin_unlock_irq(&hugetlb_lock);
1909			} else {
1910				list_del(&folio->lru);
1911				spin_lock_irq(&hugetlb_lock);
1912				__clear_hugetlb_destructor(h, folio);
1913				spin_unlock_irq(&hugetlb_lock);
1914				update_and_free_hugetlb_folio(h, folio, false);
1915				cond_resched();
1916				break;
1917			}
1918	}
1919}
1920
1921static void update_and_free_pages_bulk(struct hstate *h,
1922						struct list_head *folio_list)
1923{
1924	long ret;
1925	struct folio *folio, *t_folio;
1926	LIST_HEAD(non_hvo_folios);
1927
1928	/*
1929	 * First allocate required vmemmmap (if necessary) for all folios.
1930	 * Carefully handle errors and free up any available hugetlb pages
1931	 * in an effort to make forward progress.
1932	 */
1933retry:
1934	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1935	if (ret < 0) {
1936		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1937		goto retry;
1938	}
1939
1940	/*
1941	 * At this point, list should be empty, ret should be >= 0 and there
1942	 * should only be pages on the non_hvo_folios list.
1943	 * Do note that the non_hvo_folios list could be empty.
1944	 * Without HVO enabled, ret will be 0 and there is no need to call
1945	 * __clear_hugetlb_destructor as this was done previously.
1946	 */
1947	VM_WARN_ON(!list_empty(folio_list));
1948	VM_WARN_ON(ret < 0);
1949	if (!list_empty(&non_hvo_folios) && ret) {
1950		spin_lock_irq(&hugetlb_lock);
1951		list_for_each_entry(folio, &non_hvo_folios, lru)
1952			__clear_hugetlb_destructor(h, folio);
1953		spin_unlock_irq(&hugetlb_lock);
1954	}
1955
1956	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1957		update_and_free_hugetlb_folio(h, folio, false);
1958		cond_resched();
1959	}
1960}
1961
1962struct hstate *size_to_hstate(unsigned long size)
1963{
1964	struct hstate *h;
1965
1966	for_each_hstate(h) {
1967		if (huge_page_size(h) == size)
1968			return h;
1969	}
1970	return NULL;
1971}
1972
1973void free_huge_folio(struct folio *folio)
1974{
1975	/*
1976	 * Can't pass hstate in here because it is called from the
1977	 * compound page destructor.
1978	 */
1979	struct hstate *h = folio_hstate(folio);
1980	int nid = folio_nid(folio);
1981	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
 
1982	bool restore_reserve;
1983	unsigned long flags;
1984
1985	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1986	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1987
1988	hugetlb_set_folio_subpool(folio, NULL);
1989	if (folio_test_anon(folio))
1990		__ClearPageAnonExclusive(&folio->page);
1991	folio->mapping = NULL;
1992	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1993	folio_clear_hugetlb_restore_reserve(folio);
1994
1995	/*
1996	 * If HPageRestoreReserve was set on page, page allocation consumed a
1997	 * reservation.  If the page was associated with a subpool, there
1998	 * would have been a page reserved in the subpool before allocation
1999	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
2000	 * reservation, do not call hugepage_subpool_put_pages() as this will
2001	 * remove the reserved page from the subpool.
2002	 */
2003	if (!restore_reserve) {
2004		/*
2005		 * A return code of zero implies that the subpool will be
2006		 * under its minimum size if the reservation is not restored
2007		 * after page is free.  Therefore, force restore_reserve
2008		 * operation.
2009		 */
2010		if (hugepage_subpool_put_pages(spool, 1) == 0)
2011			restore_reserve = true;
2012	}
2013
2014	spin_lock_irqsave(&hugetlb_lock, flags);
2015	folio_clear_hugetlb_migratable(folio);
2016	hugetlb_cgroup_uncharge_folio(hstate_index(h),
2017				     pages_per_huge_page(h), folio);
2018	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2019					  pages_per_huge_page(h), folio);
2020	mem_cgroup_uncharge(folio);
2021	if (restore_reserve)
2022		h->resv_huge_pages++;
2023
2024	if (folio_test_hugetlb_temporary(folio)) {
2025		remove_hugetlb_folio(h, folio, false);
2026		spin_unlock_irqrestore(&hugetlb_lock, flags);
2027		update_and_free_hugetlb_folio(h, folio, true);
2028	} else if (h->surplus_huge_pages_node[nid]) {
2029		/* remove the page from active list */
2030		remove_hugetlb_folio(h, folio, true);
2031		spin_unlock_irqrestore(&hugetlb_lock, flags);
2032		update_and_free_hugetlb_folio(h, folio, true);
 
2033	} else {
2034		arch_clear_hugepage_flags(&folio->page);
2035		enqueue_hugetlb_folio(h, folio);
2036		spin_unlock_irqrestore(&hugetlb_lock, flags);
2037	}
 
2038}
2039
2040/*
2041 * Must be called with the hugetlb lock held
2042 */
2043static void __prep_account_new_huge_page(struct hstate *h, int nid)
2044{
2045	lockdep_assert_held(&hugetlb_lock);
 
 
 
2046	h->nr_huge_pages++;
2047	h->nr_huge_pages_node[nid]++;
 
2048}
2049
2050static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2051{
2052	__folio_set_hugetlb(folio);
2053	INIT_LIST_HEAD(&folio->lru);
2054	hugetlb_set_folio_subpool(folio, NULL);
2055	set_hugetlb_cgroup(folio, NULL);
2056	set_hugetlb_cgroup_rsvd(folio, NULL);
2057}
2058
2059static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2060{
2061	init_new_hugetlb_folio(h, folio);
2062	hugetlb_vmemmap_optimize_folio(h, folio);
2063}
2064
2065static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2066{
2067	__prep_new_hugetlb_folio(h, folio);
2068	spin_lock_irq(&hugetlb_lock);
2069	__prep_account_new_huge_page(h, nid);
2070	spin_unlock_irq(&hugetlb_lock);
2071}
2072
2073static bool __prep_compound_gigantic_folio(struct folio *folio,
2074					unsigned int order, bool demote)
2075{
2076	int i, j;
2077	int nr_pages = 1 << order;
2078	struct page *p;
2079
2080	__folio_clear_reserved(folio);
2081	for (i = 0; i < nr_pages; i++) {
2082		p = folio_page(folio, i);
2083
 
 
 
 
 
2084		/*
2085		 * For gigantic hugepages allocated through bootmem at
2086		 * boot, it's safer to be consistent with the not-gigantic
2087		 * hugepages and clear the PG_reserved bit from all tail pages
2088		 * too.  Otherwise drivers using get_user_pages() to access tail
2089		 * pages may get the reference counting wrong if they see
2090		 * PG_reserved set on a tail page (despite the head page not
2091		 * having PG_reserved set).  Enforcing this consistency between
2092		 * head and tail pages allows drivers to optimize away a check
2093		 * on the head page when they need know if put_page() is needed
2094		 * after get_user_pages().
2095		 */
2096		if (i != 0)	/* head page cleared above */
2097			__ClearPageReserved(p);
2098		/*
2099		 * Subtle and very unlikely
2100		 *
2101		 * Gigantic 'page allocators' such as memblock or cma will
2102		 * return a set of pages with each page ref counted.  We need
2103		 * to turn this set of pages into a compound page with tail
2104		 * page ref counts set to zero.  Code such as speculative page
2105		 * cache adding could take a ref on a 'to be' tail page.
2106		 * We need to respect any increased ref count, and only set
2107		 * the ref count to zero if count is currently 1.  If count
2108		 * is not 1, we return an error.  An error return indicates
2109		 * the set of pages can not be converted to a gigantic page.
2110		 * The caller who allocated the pages should then discard the
2111		 * pages using the appropriate free interface.
2112		 *
2113		 * In the case of demote, the ref count will be zero.
2114		 */
2115		if (!demote) {
2116			if (!page_ref_freeze(p, 1)) {
2117				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2118				goto out_error;
2119			}
2120		} else {
2121			VM_BUG_ON_PAGE(page_count(p), p);
2122		}
2123		if (i != 0)
2124			set_compound_head(p, &folio->page);
2125	}
2126	__folio_set_head(folio);
2127	/* we rely on prep_new_hugetlb_folio to set the destructor */
2128	folio_set_order(folio, order);
2129	atomic_set(&folio->_entire_mapcount, -1);
2130	atomic_set(&folio->_nr_pages_mapped, 0);
2131	atomic_set(&folio->_pincount, 0);
2132	return true;
2133
2134out_error:
2135	/* undo page modifications made above */
2136	for (j = 0; j < i; j++) {
2137		p = folio_page(folio, j);
2138		if (j != 0)
2139			clear_compound_head(p);
2140		set_page_refcounted(p);
2141	}
2142	/* need to clear PG_reserved on remaining tail pages  */
2143	for (; j < nr_pages; j++) {
2144		p = folio_page(folio, j);
2145		__ClearPageReserved(p);
 
 
2146	}
2147	return false;
2148}
2149
2150static bool prep_compound_gigantic_folio(struct folio *folio,
2151							unsigned int order)
 
 
 
 
2152{
2153	return __prep_compound_gigantic_folio(folio, order, false);
 
 
 
 
2154}
 
2155
2156static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2157							unsigned int order)
 
 
 
2158{
2159	return __prep_compound_gigantic_folio(folio, order, true);
 
 
 
2160}
2161
2162/*
2163 * Find and lock address space (mapping) in write mode.
2164 *
2165 * Upon entry, the page is locked which means that page_mapping() is
2166 * stable.  Due to locking order, we can only trylock_write.  If we can
2167 * not get the lock, simply return NULL to caller.
2168 */
2169struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2170{
2171	struct address_space *mapping = page_mapping(hpage);
 
 
2172
2173	if (!mapping)
2174		return mapping;
2175
2176	if (i_mmap_trylock_write(mapping))
2177		return mapping;
 
 
2178
2179	return NULL;
2180}
2181
2182static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2183		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2184		nodemask_t *node_alloc_noretry)
2185{
2186	int order = huge_page_order(h);
2187	struct page *page;
2188	bool alloc_try_hard = true;
2189	bool retry = true;
2190
2191	/*
2192	 * By default we always try hard to allocate the page with
2193	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2194	 * a loop (to adjust global huge page counts) and previous allocation
2195	 * failed, do not continue to try hard on the same node.  Use the
2196	 * node_alloc_noretry bitmap to manage this state information.
2197	 */
2198	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2199		alloc_try_hard = false;
2200	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2201	if (alloc_try_hard)
2202		gfp_mask |= __GFP_RETRY_MAYFAIL;
2203	if (nid == NUMA_NO_NODE)
2204		nid = numa_mem_id();
2205retry:
2206	page = __alloc_pages(gfp_mask, order, nid, nmask);
2207
2208	/* Freeze head page */
2209	if (page && !page_ref_freeze(page, 1)) {
2210		__free_pages(page, order);
2211		if (retry) {	/* retry once */
2212			retry = false;
2213			goto retry;
2214		}
2215		/* WOW!  twice in a row. */
2216		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2217		page = NULL;
2218	}
2219
2220	/*
2221	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2222	 * indicates an overall state change.  Clear bit so that we resume
2223	 * normal 'try hard' allocations.
2224	 */
2225	if (node_alloc_noretry && page && !alloc_try_hard)
2226		node_clear(nid, *node_alloc_noretry);
2227
2228	/*
2229	 * If we tried hard to get a page but failed, set bit so that
2230	 * subsequent attempts will not try as hard until there is an
2231	 * overall state change.
2232	 */
2233	if (node_alloc_noretry && !page && alloc_try_hard)
2234		node_set(nid, *node_alloc_noretry);
2235
2236	if (!page) {
2237		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2238		return NULL;
2239	}
2240
2241	__count_vm_event(HTLB_BUDDY_PGALLOC);
2242	return page_folio(page);
2243}
2244
2245static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2246				gfp_t gfp_mask, int nid, nodemask_t *nmask,
2247				nodemask_t *node_alloc_noretry)
2248{
2249	struct folio *folio;
2250	bool retry = false;
2251
2252retry:
2253	if (hstate_is_gigantic(h))
2254		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2255	else
2256		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2257				nid, nmask, node_alloc_noretry);
2258	if (!folio)
2259		return NULL;
2260
2261	if (hstate_is_gigantic(h)) {
2262		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2263			/*
2264			 * Rare failure to convert pages to compound page.
2265			 * Free pages and try again - ONCE!
2266			 */
2267			free_gigantic_folio(folio, huge_page_order(h));
2268			if (!retry) {
2269				retry = true;
2270				goto retry;
2271			}
2272			return NULL;
2273		}
2274	}
2275
2276	return folio;
2277}
2278
2279static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2280		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2281		nodemask_t *node_alloc_noretry)
2282{
2283	struct folio *folio;
2284
2285	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2286						node_alloc_noretry);
2287	if (folio)
2288		init_new_hugetlb_folio(h, folio);
2289	return folio;
2290}
2291
2292/*
2293 * Common helper to allocate a fresh hugetlb page. All specific allocators
2294 * should use this function to get new hugetlb pages
2295 *
2296 * Note that returned page is 'frozen':  ref count of head page and all tail
2297 * pages is zero.
2298 */
2299static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2300		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2301		nodemask_t *node_alloc_noretry)
2302{
2303	struct folio *folio;
2304
2305	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2306						node_alloc_noretry);
2307	if (!folio)
 
 
 
2308		return NULL;
2309
2310	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2311	return folio;
2312}
2313
2314static void prep_and_add_allocated_folios(struct hstate *h,
2315					struct list_head *folio_list)
2316{
2317	unsigned long flags;
2318	struct folio *folio, *tmp_f;
2319
2320	/* Send list for bulk vmemmap optimization processing */
2321	hugetlb_vmemmap_optimize_folios(h, folio_list);
2322
2323	/* Add all new pool pages to free lists in one lock cycle */
2324	spin_lock_irqsave(&hugetlb_lock, flags);
2325	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2326		__prep_account_new_huge_page(h, folio_nid(folio));
2327		enqueue_hugetlb_folio(h, folio);
2328	}
2329	spin_unlock_irqrestore(&hugetlb_lock, flags);
2330}
2331
2332/*
2333 * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2334 * will later be added to the appropriate hugetlb pool.
2335 */
2336static struct folio *alloc_pool_huge_folio(struct hstate *h,
2337					nodemask_t *nodes_allowed,
2338					nodemask_t *node_alloc_noretry,
2339					int *next_node)
2340{
 
 
2341	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2342	int nr_nodes, node;
2343
2344	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2345		struct folio *folio;
 
 
 
 
2346
2347		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2348					nodes_allowed, node_alloc_noretry);
2349		if (folio)
2350			return folio;
2351	}
2352
2353	return NULL;
2354}
2355
2356/*
2357 * Remove huge page from pool from next node to free.  Attempt to keep
2358 * persistent huge pages more or less balanced over allowed nodes.
2359 * This routine only 'removes' the hugetlb page.  The caller must make
2360 * an additional call to free the page to low level allocators.
2361 * Called with hugetlb_lock locked.
2362 */
2363static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2364		nodemask_t *nodes_allowed, bool acct_surplus)
2365{
2366	int nr_nodes, node;
2367	struct folio *folio = NULL;
2368
2369	lockdep_assert_held(&hugetlb_lock);
2370	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2371		/*
2372		 * If we're returning unused surplus pages, only examine
2373		 * nodes with surplus pages.
2374		 */
2375		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2376		    !list_empty(&h->hugepage_freelists[node])) {
2377			folio = list_entry(h->hugepage_freelists[node].next,
2378					  struct folio, lru);
2379			remove_hugetlb_folio(h, folio, acct_surplus);
 
 
 
 
 
 
 
 
 
2380			break;
2381		}
2382	}
2383
2384	return folio;
2385}
2386
2387/*
2388 * Dissolve a given free hugepage into free buddy pages. This function does
2389 * nothing for in-use hugepages and non-hugepages.
2390 * This function returns values like below:
2391 *
2392 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2393 *           when the system is under memory pressure and the feature of
2394 *           freeing unused vmemmap pages associated with each hugetlb page
2395 *           is enabled.
2396 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2397 *           (allocated or reserved.)
2398 *       0:  successfully dissolved free hugepages or the page is not a
2399 *           hugepage (considered as already dissolved)
2400 */
2401int dissolve_free_huge_page(struct page *page)
2402{
2403	int rc = -EBUSY;
2404	struct folio *folio = page_folio(page);
2405
2406retry:
2407	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2408	if (!folio_test_hugetlb(folio))
2409		return 0;
2410
2411	spin_lock_irq(&hugetlb_lock);
2412	if (!folio_test_hugetlb(folio)) {
2413		rc = 0;
2414		goto out;
2415	}
2416
2417	if (!folio_ref_count(folio)) {
2418		struct hstate *h = folio_hstate(folio);
2419		if (!available_huge_pages(h))
 
 
2420			goto out;
2421
2422		/*
2423		 * We should make sure that the page is already on the free list
2424		 * when it is dissolved.
2425		 */
2426		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2427			spin_unlock_irq(&hugetlb_lock);
2428			cond_resched();
2429
2430			/*
2431			 * Theoretically, we should return -EBUSY when we
2432			 * encounter this race. In fact, we have a chance
2433			 * to successfully dissolve the page if we do a
2434			 * retry. Because the race window is quite small.
2435			 * If we seize this opportunity, it is an optimization
2436			 * for increasing the success rate of dissolving page.
2437			 */
2438			goto retry;
2439		}
2440
2441		remove_hugetlb_folio(h, folio, false);
 
2442		h->max_huge_pages--;
2443		spin_unlock_irq(&hugetlb_lock);
2444
2445		/*
2446		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2447		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2448		 * free the page if it can not allocate required vmemmap.  We
2449		 * need to adjust max_huge_pages if the page is not freed.
2450		 * Attempt to allocate vmemmmap here so that we can take
2451		 * appropriate action on failure.
2452		 *
2453		 * The folio_test_hugetlb check here is because
2454		 * remove_hugetlb_folio will clear hugetlb folio flag for
2455		 * non-vmemmap optimized hugetlb folios.
2456		 */
2457		if (folio_test_hugetlb(folio)) {
2458			rc = hugetlb_vmemmap_restore_folio(h, folio);
2459			if (rc) {
2460				spin_lock_irq(&hugetlb_lock);
2461				add_hugetlb_folio(h, folio, false);
2462				h->max_huge_pages++;
2463				goto out;
2464			}
2465		} else
2466			rc = 0;
2467
2468		update_and_free_hugetlb_folio(h, folio, false);
2469		return rc;
2470	}
2471out:
2472	spin_unlock_irq(&hugetlb_lock);
2473	return rc;
2474}
2475
2476/*
2477 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2478 * make specified memory blocks removable from the system.
2479 * Note that this will dissolve a free gigantic hugepage completely, if any
2480 * part of it lies within the given range.
2481 * Also note that if dissolve_free_huge_page() returns with an error, all
2482 * free hugepages that were dissolved before that error are lost.
2483 */
2484int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2485{
2486	unsigned long pfn;
2487	struct page *page;
2488	int rc = 0;
2489	unsigned int order;
2490	struct hstate *h;
2491
2492	if (!hugepages_supported())
2493		return rc;
2494
2495	order = huge_page_order(&default_hstate);
2496	for_each_hstate(h)
2497		order = min(order, huge_page_order(h));
2498
2499	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2500		page = pfn_to_page(pfn);
2501		rc = dissolve_free_huge_page(page);
2502		if (rc)
2503			break;
2504	}
2505
2506	return rc;
2507}
2508
2509/*
2510 * Allocates a fresh surplus page from the page allocator.
2511 */
2512static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2513				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2514{
2515	struct folio *folio = NULL;
2516
2517	if (hstate_is_gigantic(h))
2518		return NULL;
2519
2520	spin_lock_irq(&hugetlb_lock);
2521	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2522		goto out_unlock;
2523	spin_unlock_irq(&hugetlb_lock);
2524
2525	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2526	if (!folio)
2527		return NULL;
2528
2529	spin_lock_irq(&hugetlb_lock);
2530	/*
2531	 * We could have raced with the pool size change.
2532	 * Double check that and simply deallocate the new page
2533	 * if we would end up overcommiting the surpluses. Abuse
2534	 * temporary page to workaround the nasty free_huge_folio
2535	 * codeflow
2536	 */
2537	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2538		folio_set_hugetlb_temporary(folio);
2539		spin_unlock_irq(&hugetlb_lock);
2540		free_huge_folio(folio);
2541		return NULL;
 
 
 
2542	}
2543
2544	h->surplus_huge_pages++;
2545	h->surplus_huge_pages_node[folio_nid(folio)]++;
2546
2547out_unlock:
2548	spin_unlock_irq(&hugetlb_lock);
2549
2550	return folio;
2551}
2552
2553static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2554				     int nid, nodemask_t *nmask)
2555{
2556	struct folio *folio;
2557
2558	if (hstate_is_gigantic(h))
2559		return NULL;
2560
2561	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2562	if (!folio)
2563		return NULL;
2564
2565	/* fresh huge pages are frozen */
2566	folio_ref_unfreeze(folio, 1);
2567	/*
2568	 * We do not account these pages as surplus because they are only
2569	 * temporary and will be released properly on the last reference
2570	 */
2571	folio_set_hugetlb_temporary(folio);
2572
2573	return folio;
2574}
2575
2576/*
2577 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2578 */
2579static
2580struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2581		struct vm_area_struct *vma, unsigned long addr)
2582{
2583	struct folio *folio = NULL;
2584	struct mempolicy *mpol;
2585	gfp_t gfp_mask = htlb_alloc_mask(h);
2586	int nid;
2587	nodemask_t *nodemask;
2588
2589	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2590	if (mpol_is_preferred_many(mpol)) {
2591		gfp_t gfp = gfp_mask | __GFP_NOWARN;
 
 
 
2592
2593		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2594		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
 
 
 
2595
2596		/* Fallback to all nodes if page==NULL */
2597		nodemask = NULL;
2598	}
 
 
 
 
 
 
 
2599
2600	if (!folio)
2601		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2602	mpol_cond_put(mpol);
2603	return folio;
2604}
2605
2606/* folio migration callback function */
2607struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2608		nodemask_t *nmask, gfp_t gfp_mask)
2609{
2610	spin_lock_irq(&hugetlb_lock);
2611	if (available_huge_pages(h)) {
2612		struct folio *folio;
 
 
2613
2614		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2615						preferred_nid, nmask);
2616		if (folio) {
2617			spin_unlock_irq(&hugetlb_lock);
2618			return folio;
2619		}
2620	}
2621	spin_unlock_irq(&hugetlb_lock);
2622
2623	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624}
2625
2626/*
2627 * Increase the hugetlb pool such that it can accommodate a reservation
2628 * of size 'delta'.
2629 */
2630static int gather_surplus_pages(struct hstate *h, long delta)
2631	__must_hold(&hugetlb_lock)
2632{
2633	LIST_HEAD(surplus_list);
2634	struct folio *folio, *tmp;
2635	int ret;
2636	long i;
2637	long needed, allocated;
2638	bool alloc_ok = true;
2639
2640	lockdep_assert_held(&hugetlb_lock);
2641	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2642	if (needed <= 0) {
2643		h->resv_huge_pages += delta;
2644		return 0;
2645	}
2646
2647	allocated = 0;
 
2648
2649	ret = -ENOMEM;
2650retry:
2651	spin_unlock_irq(&hugetlb_lock);
2652	for (i = 0; i < needed; i++) {
2653		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2654				NUMA_NO_NODE, NULL);
2655		if (!folio) {
2656			alloc_ok = false;
2657			break;
2658		}
2659		list_add(&folio->lru, &surplus_list);
2660		cond_resched();
2661	}
2662	allocated += i;
2663
2664	/*
2665	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2666	 * because either resv_huge_pages or free_huge_pages may have changed.
2667	 */
2668	spin_lock_irq(&hugetlb_lock);
2669	needed = (h->resv_huge_pages + delta) -
2670			(h->free_huge_pages + allocated);
2671	if (needed > 0) {
2672		if (alloc_ok)
2673			goto retry;
2674		/*
2675		 * We were not able to allocate enough pages to
2676		 * satisfy the entire reservation so we free what
2677		 * we've allocated so far.
2678		 */
2679		goto free;
2680	}
2681	/*
2682	 * The surplus_list now contains _at_least_ the number of extra pages
2683	 * needed to accommodate the reservation.  Add the appropriate number
2684	 * of pages to the hugetlb pool and free the extras back to the buddy
2685	 * allocator.  Commit the entire reservation here to prevent another
2686	 * process from stealing the pages as they are added to the pool but
2687	 * before they are reserved.
2688	 */
2689	needed += allocated;
2690	h->resv_huge_pages += delta;
2691	ret = 0;
2692
2693	/* Free the needed pages to the hugetlb pool */
2694	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2695		if ((--needed) < 0)
2696			break;
2697		/* Add the page to the hugetlb allocator */
2698		enqueue_hugetlb_folio(h, folio);
 
 
 
 
 
2699	}
2700free:
2701	spin_unlock_irq(&hugetlb_lock);
2702
2703	/*
2704	 * Free unnecessary surplus pages to the buddy allocator.
2705	 * Pages have no ref count, call free_huge_folio directly.
2706	 */
2707	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2708		free_huge_folio(folio);
2709	spin_lock_irq(&hugetlb_lock);
2710
2711	return ret;
2712}
2713
2714/*
2715 * This routine has two main purposes:
2716 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2717 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2718 *    to the associated reservation map.
2719 * 2) Free any unused surplus pages that may have been allocated to satisfy
2720 *    the reservation.  As many as unused_resv_pages may be freed.
 
 
 
 
 
 
2721 */
2722static void return_unused_surplus_pages(struct hstate *h,
2723					unsigned long unused_resv_pages)
2724{
2725	unsigned long nr_pages;
2726	LIST_HEAD(page_list);
2727
2728	lockdep_assert_held(&hugetlb_lock);
2729	/* Uncommit the reservation */
2730	h->resv_huge_pages -= unused_resv_pages;
2731
2732	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2733		goto out;
2734
2735	/*
2736	 * Part (or even all) of the reservation could have been backed
2737	 * by pre-allocated pages. Only free surplus pages.
2738	 */
2739	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2740
2741	/*
2742	 * We want to release as many surplus pages as possible, spread
2743	 * evenly across all nodes with memory. Iterate across these nodes
2744	 * until we can no longer free unreserved surplus pages. This occurs
2745	 * when the nodes with surplus pages have no free pages.
2746	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2747	 * on-line nodes with memory and will handle the hstate accounting.
 
 
 
 
2748	 */
2749	while (nr_pages--) {
2750		struct folio *folio;
2751
2752		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2753		if (!folio)
2754			goto out;
2755
2756		list_add(&folio->lru, &page_list);
2757	}
2758
2759out:
2760	spin_unlock_irq(&hugetlb_lock);
2761	update_and_free_pages_bulk(h, &page_list);
2762	spin_lock_irq(&hugetlb_lock);
2763}
2764
2765
2766/*
2767 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2768 * are used by the huge page allocation routines to manage reservations.
2769 *
2770 * vma_needs_reservation is called to determine if the huge page at addr
2771 * within the vma has an associated reservation.  If a reservation is
2772 * needed, the value 1 is returned.  The caller is then responsible for
2773 * managing the global reservation and subpool usage counts.  After
2774 * the huge page has been allocated, vma_commit_reservation is called
2775 * to add the page to the reservation map.  If the page allocation fails,
2776 * the reservation must be ended instead of committed.  vma_end_reservation
2777 * is called in such cases.
2778 *
2779 * In the normal case, vma_commit_reservation returns the same value
2780 * as the preceding vma_needs_reservation call.  The only time this
2781 * is not the case is if a reserve map was changed between calls.  It
2782 * is the responsibility of the caller to notice the difference and
2783 * take appropriate action.
2784 *
2785 * vma_add_reservation is used in error paths where a reservation must
2786 * be restored when a newly allocated huge page must be freed.  It is
2787 * to be called after calling vma_needs_reservation to determine if a
2788 * reservation exists.
2789 *
2790 * vma_del_reservation is used in error paths where an entry in the reserve
2791 * map was created during huge page allocation and must be removed.  It is to
2792 * be called after calling vma_needs_reservation to determine if a reservation
2793 * exists.
2794 */
2795enum vma_resv_mode {
2796	VMA_NEEDS_RESV,
2797	VMA_COMMIT_RESV,
2798	VMA_END_RESV,
2799	VMA_ADD_RESV,
2800	VMA_DEL_RESV,
2801};
2802static long __vma_reservation_common(struct hstate *h,
2803				struct vm_area_struct *vma, unsigned long addr,
2804				enum vma_resv_mode mode)
2805{
2806	struct resv_map *resv;
2807	pgoff_t idx;
2808	long ret;
2809	long dummy_out_regions_needed;
2810
2811	resv = vma_resv_map(vma);
2812	if (!resv)
2813		return 1;
2814
2815	idx = vma_hugecache_offset(h, vma, addr);
2816	switch (mode) {
2817	case VMA_NEEDS_RESV:
2818		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2819		/* We assume that vma_reservation_* routines always operate on
2820		 * 1 page, and that adding to resv map a 1 page entry can only
2821		 * ever require 1 region.
2822		 */
2823		VM_BUG_ON(dummy_out_regions_needed != 1);
2824		break;
2825	case VMA_COMMIT_RESV:
2826		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2827		/* region_add calls of range 1 should never fail. */
2828		VM_BUG_ON(ret < 0);
2829		break;
2830	case VMA_END_RESV:
2831		region_abort(resv, idx, idx + 1, 1);
2832		ret = 0;
2833		break;
2834	case VMA_ADD_RESV:
2835		if (vma->vm_flags & VM_MAYSHARE) {
2836			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2837			/* region_add calls of range 1 should never fail. */
2838			VM_BUG_ON(ret < 0);
2839		} else {
2840			region_abort(resv, idx, idx + 1, 1);
2841			ret = region_del(resv, idx, idx + 1);
2842		}
2843		break;
2844	case VMA_DEL_RESV:
2845		if (vma->vm_flags & VM_MAYSHARE) {
2846			region_abort(resv, idx, idx + 1, 1);
2847			ret = region_del(resv, idx, idx + 1);
2848		} else {
2849			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2850			/* region_add calls of range 1 should never fail. */
2851			VM_BUG_ON(ret < 0);
2852		}
2853		break;
2854	default:
2855		BUG();
2856	}
2857
2858	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2859		return ret;
2860	/*
2861	 * We know private mapping must have HPAGE_RESV_OWNER set.
2862	 *
2863	 * In most cases, reserves always exist for private mappings.
2864	 * However, a file associated with mapping could have been
2865	 * hole punched or truncated after reserves were consumed.
2866	 * As subsequent fault on such a range will not use reserves.
2867	 * Subtle - The reserve map for private mappings has the
2868	 * opposite meaning than that of shared mappings.  If NO
2869	 * entry is in the reserve map, it means a reservation exists.
2870	 * If an entry exists in the reserve map, it means the
2871	 * reservation has already been consumed.  As a result, the
2872	 * return value of this routine is the opposite of the
2873	 * value returned from reserve map manipulation routines above.
2874	 */
2875	if (ret > 0)
2876		return 0;
2877	if (ret == 0)
2878		return 1;
2879	return ret;
 
2880}
2881
2882static long vma_needs_reservation(struct hstate *h,
2883			struct vm_area_struct *vma, unsigned long addr)
2884{
2885	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2886}
2887
2888static long vma_commit_reservation(struct hstate *h,
2889			struct vm_area_struct *vma, unsigned long addr)
2890{
2891	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2892}
2893
2894static void vma_end_reservation(struct hstate *h,
2895			struct vm_area_struct *vma, unsigned long addr)
2896{
2897	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2898}
2899
2900static long vma_add_reservation(struct hstate *h,
2901			struct vm_area_struct *vma, unsigned long addr)
2902{
2903	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2904}
2905
2906static long vma_del_reservation(struct hstate *h,
2907			struct vm_area_struct *vma, unsigned long addr)
2908{
2909	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2910}
2911
2912/*
2913 * This routine is called to restore reservation information on error paths.
2914 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2915 * and the hugetlb mutex should remain held when calling this routine.
2916 *
2917 * It handles two specific cases:
2918 * 1) A reservation was in place and the folio consumed the reservation.
2919 *    hugetlb_restore_reserve is set in the folio.
2920 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2921 *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2922 *
2923 * In case 1, free_huge_folio later in the error path will increment the
2924 * global reserve count.  But, free_huge_folio does not have enough context
2925 * to adjust the reservation map.  This case deals primarily with private
2926 * mappings.  Adjust the reserve map here to be consistent with global
2927 * reserve count adjustments to be made by free_huge_folio.  Make sure the
2928 * reserve map indicates there is a reservation present.
2929 *
2930 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2931 */
2932void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2933			unsigned long address, struct folio *folio)
2934{
2935	long rc = vma_needs_reservation(h, vma, address);
 
2936
2937	if (folio_test_hugetlb_restore_reserve(folio)) {
2938		if (unlikely(rc < 0))
2939			/*
2940			 * Rare out of memory condition in reserve map
2941			 * manipulation.  Clear hugetlb_restore_reserve so
2942			 * that global reserve count will not be incremented
2943			 * by free_huge_folio.  This will make it appear
2944			 * as though the reservation for this folio was
2945			 * consumed.  This may prevent the task from
2946			 * faulting in the folio at a later time.  This
2947			 * is better than inconsistent global huge page
2948			 * accounting of reserve counts.
2949			 */
2950			folio_clear_hugetlb_restore_reserve(folio);
2951		else if (rc)
2952			(void)vma_add_reservation(h, vma, address);
2953		else
2954			vma_end_reservation(h, vma, address);
2955	} else {
2956		if (!rc) {
2957			/*
2958			 * This indicates there is an entry in the reserve map
2959			 * not added by alloc_hugetlb_folio.  We know it was added
2960			 * before the alloc_hugetlb_folio call, otherwise
2961			 * hugetlb_restore_reserve would be set on the folio.
2962			 * Remove the entry so that a subsequent allocation
2963			 * does not consume a reservation.
2964			 */
2965			rc = vma_del_reservation(h, vma, address);
2966			if (rc < 0)
2967				/*
2968				 * VERY rare out of memory condition.  Since
2969				 * we can not delete the entry, set
2970				 * hugetlb_restore_reserve so that the reserve
2971				 * count will be incremented when the folio
2972				 * is freed.  This reserve will be consumed
2973				 * on a subsequent allocation.
2974				 */
2975				folio_set_hugetlb_restore_reserve(folio);
2976		} else if (rc < 0) {
2977			/*
2978			 * Rare out of memory condition from
2979			 * vma_needs_reservation call.  Memory allocation is
2980			 * only attempted if a new entry is needed.  Therefore,
2981			 * this implies there is not an entry in the
2982			 * reserve map.
2983			 *
2984			 * For shared mappings, no entry in the map indicates
2985			 * no reservation.  We are done.
2986			 */
2987			if (!(vma->vm_flags & VM_MAYSHARE))
2988				/*
2989				 * For private mappings, no entry indicates
2990				 * a reservation is present.  Since we can
2991				 * not add an entry, set hugetlb_restore_reserve
2992				 * on the folio so reserve count will be
2993				 * incremented when freed.  This reserve will
2994				 * be consumed on a subsequent allocation.
2995				 */
2996				folio_set_hugetlb_restore_reserve(folio);
2997		} else
2998			/*
2999			 * No reservation present, do nothing
3000			 */
3001			 vma_end_reservation(h, vma, address);
3002	}
3003}
3004
3005/*
3006 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3007 * the old one
3008 * @h: struct hstate old page belongs to
3009 * @old_folio: Old folio to dissolve
3010 * @list: List to isolate the page in case we need to
3011 * Returns 0 on success, otherwise negated error.
3012 */
3013static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3014			struct folio *old_folio, struct list_head *list)
3015{
3016	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3017	int nid = folio_nid(old_folio);
3018	struct folio *new_folio = NULL;
3019	int ret = 0;
3020
3021retry:
3022	spin_lock_irq(&hugetlb_lock);
3023	if (!folio_test_hugetlb(old_folio)) {
3024		/*
3025		 * Freed from under us. Drop new_folio too.
3026		 */
3027		goto free_new;
3028	} else if (folio_ref_count(old_folio)) {
3029		bool isolated;
3030
3031		/*
3032		 * Someone has grabbed the folio, try to isolate it here.
3033		 * Fail with -EBUSY if not possible.
3034		 */
3035		spin_unlock_irq(&hugetlb_lock);
3036		isolated = isolate_hugetlb(old_folio, list);
3037		ret = isolated ? 0 : -EBUSY;
3038		spin_lock_irq(&hugetlb_lock);
3039		goto free_new;
3040	} else if (!folio_test_hugetlb_freed(old_folio)) {
3041		/*
3042		 * Folio's refcount is 0 but it has not been enqueued in the
3043		 * freelist yet. Race window is small, so we can succeed here if
3044		 * we retry.
3045		 */
3046		spin_unlock_irq(&hugetlb_lock);
3047		cond_resched();
3048		goto retry;
3049	} else {
3050		if (!new_folio) {
3051			spin_unlock_irq(&hugetlb_lock);
3052			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3053							      NULL, NULL);
3054			if (!new_folio)
3055				return -ENOMEM;
3056			__prep_new_hugetlb_folio(h, new_folio);
3057			goto retry;
3058		}
3059
3060		/*
3061		 * Ok, old_folio is still a genuine free hugepage. Remove it from
3062		 * the freelist and decrease the counters. These will be
3063		 * incremented again when calling __prep_account_new_huge_page()
3064		 * and enqueue_hugetlb_folio() for new_folio. The counters will
3065		 * remain stable since this happens under the lock.
3066		 */
3067		remove_hugetlb_folio(h, old_folio, false);
3068
3069		/*
3070		 * Ref count on new_folio is already zero as it was dropped
3071		 * earlier.  It can be directly added to the pool free list.
3072		 */
3073		__prep_account_new_huge_page(h, nid);
3074		enqueue_hugetlb_folio(h, new_folio);
3075
3076		/*
3077		 * Folio has been replaced, we can safely free the old one.
3078		 */
3079		spin_unlock_irq(&hugetlb_lock);
3080		update_and_free_hugetlb_folio(h, old_folio, false);
3081	}
3082
3083	return ret;
3084
3085free_new:
3086	spin_unlock_irq(&hugetlb_lock);
3087	if (new_folio) {
3088		/* Folio has a zero ref count, but needs a ref to be freed */
3089		folio_ref_unfreeze(new_folio, 1);
3090		update_and_free_hugetlb_folio(h, new_folio, false);
3091	}
3092
3093	return ret;
3094}
3095
3096int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3097{
3098	struct hstate *h;
3099	struct folio *folio = page_folio(page);
3100	int ret = -EBUSY;
3101
3102	/*
3103	 * The page might have been dissolved from under our feet, so make sure
3104	 * to carefully check the state under the lock.
3105	 * Return success when racing as if we dissolved the page ourselves.
3106	 */
3107	spin_lock_irq(&hugetlb_lock);
3108	if (folio_test_hugetlb(folio)) {
3109		h = folio_hstate(folio);
3110	} else {
3111		spin_unlock_irq(&hugetlb_lock);
3112		return 0;
3113	}
3114	spin_unlock_irq(&hugetlb_lock);
3115
3116	/*
3117	 * Fence off gigantic pages as there is a cyclic dependency between
3118	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3119	 * of bailing out right away without further retrying.
3120	 */
3121	if (hstate_is_gigantic(h))
3122		return -ENOMEM;
3123
3124	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3125		ret = 0;
3126	else if (!folio_ref_count(folio))
3127		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3128
3129	return ret;
3130}
3131
3132struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3133				    unsigned long addr, int avoid_reserve)
3134{
3135	struct hugepage_subpool *spool = subpool_vma(vma);
3136	struct hstate *h = hstate_vma(vma);
3137	struct folio *folio;
3138	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3139	long gbl_chg;
3140	int memcg_charge_ret, ret, idx;
3141	struct hugetlb_cgroup *h_cg = NULL;
3142	struct mem_cgroup *memcg;
3143	bool deferred_reserve;
3144	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3145
3146	memcg = get_mem_cgroup_from_current();
3147	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3148	if (memcg_charge_ret == -ENOMEM) {
3149		mem_cgroup_put(memcg);
3150		return ERR_PTR(-ENOMEM);
3151	}
3152
3153	idx = hstate_index(h);
3154	/*
3155	 * Examine the region/reserve map to determine if the process
3156	 * has a reservation for the page to be allocated.  A return
3157	 * code of zero indicates a reservation exists (no change).
3158	 */
3159	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3160	if (map_chg < 0) {
3161		if (!memcg_charge_ret)
3162			mem_cgroup_cancel_charge(memcg, nr_pages);
3163		mem_cgroup_put(memcg);
3164		return ERR_PTR(-ENOMEM);
3165	}
3166
3167	/*
3168	 * Processes that did not create the mapping will have no
3169	 * reserves as indicated by the region/reserve map. Check
3170	 * that the allocation will not exceed the subpool limit.
3171	 * Allocations for MAP_NORESERVE mappings also need to be
3172	 * checked against any subpool limit.
3173	 */
3174	if (map_chg || avoid_reserve) {
3175		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3176		if (gbl_chg < 0)
3177			goto out_end_reservation;
 
 
3178
3179		/*
3180		 * Even though there was no reservation in the region/reserve
3181		 * map, there could be reservations associated with the
3182		 * subpool that can be used.  This would be indicated if the
3183		 * return value of hugepage_subpool_get_pages() is zero.
3184		 * However, if avoid_reserve is specified we still avoid even
3185		 * the subpool reservations.
3186		 */
3187		if (avoid_reserve)
3188			gbl_chg = 1;
3189	}
3190
3191	/* If this allocation is not consuming a reservation, charge it now.
3192	 */
3193	deferred_reserve = map_chg || avoid_reserve;
3194	if (deferred_reserve) {
3195		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3196			idx, pages_per_huge_page(h), &h_cg);
3197		if (ret)
3198			goto out_subpool_put;
3199	}
3200
3201	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3202	if (ret)
3203		goto out_uncharge_cgroup_reservation;
3204
3205	spin_lock_irq(&hugetlb_lock);
3206	/*
3207	 * glb_chg is passed to indicate whether or not a page must be taken
3208	 * from the global free pool (global change).  gbl_chg == 0 indicates
3209	 * a reservation exists for the allocation.
3210	 */
3211	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3212	if (!folio) {
3213		spin_unlock_irq(&hugetlb_lock);
3214		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3215		if (!folio)
3216			goto out_uncharge_cgroup;
3217		spin_lock_irq(&hugetlb_lock);
3218		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3219			folio_set_hugetlb_restore_reserve(folio);
3220			h->resv_huge_pages--;
3221		}
3222		list_add(&folio->lru, &h->hugepage_activelist);
3223		folio_ref_unfreeze(folio, 1);
3224		/* Fall through */
3225	}
 
 
3226
3227	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3228	/* If allocation is not consuming a reservation, also store the
3229	 * hugetlb_cgroup pointer on the page.
3230	 */
3231	if (deferred_reserve) {
3232		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3233						  h_cg, folio);
3234	}
3235
3236	spin_unlock_irq(&hugetlb_lock);
3237
3238	hugetlb_set_folio_subpool(folio, spool);
3239
3240	map_commit = vma_commit_reservation(h, vma, addr);
3241	if (unlikely(map_chg > map_commit)) {
3242		/*
3243		 * The page was added to the reservation map between
3244		 * vma_needs_reservation and vma_commit_reservation.
3245		 * This indicates a race with hugetlb_reserve_pages.
3246		 * Adjust for the subpool count incremented above AND
3247		 * in hugetlb_reserve_pages for the same page.  Also,
3248		 * the reservation count added in hugetlb_reserve_pages
3249		 * no longer applies.
3250		 */
3251		long rsv_adjust;
3252
3253		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3254		hugetlb_acct_memory(h, -rsv_adjust);
3255		if (deferred_reserve) {
3256			spin_lock_irq(&hugetlb_lock);
3257			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3258					pages_per_huge_page(h), folio);
3259			spin_unlock_irq(&hugetlb_lock);
3260		}
3261	}
3262
3263	if (!memcg_charge_ret)
3264		mem_cgroup_commit_charge(folio, memcg);
3265	mem_cgroup_put(memcg);
3266
3267	return folio;
3268
3269out_uncharge_cgroup:
3270	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3271out_uncharge_cgroup_reservation:
3272	if (deferred_reserve)
3273		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3274						    h_cg);
3275out_subpool_put:
3276	if (map_chg || avoid_reserve)
3277		hugepage_subpool_put_pages(spool, 1);
3278out_end_reservation:
3279	vma_end_reservation(h, vma, addr);
3280	if (!memcg_charge_ret)
3281		mem_cgroup_cancel_charge(memcg, nr_pages);
3282	mem_cgroup_put(memcg);
3283	return ERR_PTR(-ENOSPC);
3284}
3285
3286int alloc_bootmem_huge_page(struct hstate *h, int nid)
3287	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3288int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3289{
3290	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3291	int nr_nodes, node = nid;
 
 
 
3292
3293	/* do node specific alloc */
3294	if (nid != NUMA_NO_NODE) {
3295		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3296				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3297		if (!m)
3298			return 0;
3299		goto found;
3300	}
3301	/* allocate from next node when distributing huge pages */
3302	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3303		m = memblock_alloc_try_nid_raw(
3304				huge_page_size(h), huge_page_size(h),
3305				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3306		/*
3307		 * Use the beginning of the huge page to store the
3308		 * huge_bootmem_page struct (until gather_bootmem
3309		 * puts them into the mem_map).
3310		 */
3311		if (!m)
3312			return 0;
3313		goto found;
 
3314	}
 
3315
3316found:
3317
3318	/*
3319	 * Only initialize the head struct page in memmap_init_reserved_pages,
3320	 * rest of the struct pages will be initialized by the HugeTLB
3321	 * subsystem itself.
3322	 * The head struct page is used to get folio information by the HugeTLB
3323	 * subsystem like zone id and node id.
3324	 */
3325	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3326		huge_page_size(h) - PAGE_SIZE);
3327	/* Put them into a private list first because mem_map is not up yet */
3328	INIT_LIST_HEAD(&m->list);
3329	list_add(&m->list, &huge_boot_pages[node]);
3330	m->hstate = h;
3331	return 1;
3332}
3333
3334/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3335static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3336					unsigned long start_page_number,
3337					unsigned long end_page_number)
3338{
3339	enum zone_type zone = zone_idx(folio_zone(folio));
3340	int nid = folio_nid(folio);
3341	unsigned long head_pfn = folio_pfn(folio);
3342	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3343	int ret;
3344
3345	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3346		struct page *page = pfn_to_page(pfn);
3347
3348		__init_single_page(page, pfn, zone, nid);
3349		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3350		ret = page_ref_freeze(page, 1);
3351		VM_BUG_ON(!ret);
3352	}
3353}
3354
3355static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3356					      struct hstate *h,
3357					      unsigned long nr_pages)
3358{
3359	int ret;
3360
3361	/* Prepare folio head */
3362	__folio_clear_reserved(folio);
3363	__folio_set_head(folio);
3364	ret = folio_ref_freeze(folio, 1);
3365	VM_BUG_ON(!ret);
3366	/* Initialize the necessary tail struct pages */
3367	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3368	prep_compound_head((struct page *)folio, huge_page_order(h));
3369}
3370
3371static void __init prep_and_add_bootmem_folios(struct hstate *h,
3372					struct list_head *folio_list)
3373{
3374	unsigned long flags;
3375	struct folio *folio, *tmp_f;
3376
3377	/* Send list for bulk vmemmap optimization processing */
3378	hugetlb_vmemmap_optimize_folios(h, folio_list);
3379
3380	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3381		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3382			/*
3383			 * If HVO fails, initialize all tail struct pages
3384			 * We do not worry about potential long lock hold
3385			 * time as this is early in boot and there should
3386			 * be no contention.
3387			 */
3388			hugetlb_folio_init_tail_vmemmap(folio,
3389					HUGETLB_VMEMMAP_RESERVE_PAGES,
3390					pages_per_huge_page(h));
3391		}
3392		/* Subdivide locks to achieve better parallel performance */
3393		spin_lock_irqsave(&hugetlb_lock, flags);
3394		__prep_account_new_huge_page(h, folio_nid(folio));
3395		enqueue_hugetlb_folio(h, folio);
3396		spin_unlock_irqrestore(&hugetlb_lock, flags);
3397	}
3398}
3399
3400/*
3401 * Put bootmem huge pages into the standard lists after mem_map is up.
3402 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3403 */
3404static void __init gather_bootmem_prealloc_node(unsigned long nid)
3405{
3406	LIST_HEAD(folio_list);
3407	struct huge_bootmem_page *m;
3408	struct hstate *h = NULL, *prev_h = NULL;
3409
3410	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3411		struct page *page = virt_to_page(m);
3412		struct folio *folio = (void *)page;
3413
3414		h = m->hstate;
3415		/*
3416		 * It is possible to have multiple huge page sizes (hstates)
3417		 * in this list.  If so, process each size separately.
 
 
 
 
 
 
 
3418		 */
3419		if (h != prev_h && prev_h != NULL)
3420			prep_and_add_bootmem_folios(prev_h, &folio_list);
3421		prev_h = h;
3422
3423		VM_BUG_ON(!hstate_is_gigantic(h));
3424		WARN_ON(folio_ref_count(folio) != 1);
3425
3426		hugetlb_folio_init_vmemmap(folio, h,
3427					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3428		init_new_hugetlb_folio(h, folio);
3429		list_add(&folio->lru, &folio_list);
3430
3431		/*
3432		 * We need to restore the 'stolen' pages to totalram_pages
3433		 * in order to fix confusing memory reports from free(1) and
3434		 * other side-effects, like CommitLimit going negative.
3435		 */
3436		adjust_managed_page_count(page, pages_per_huge_page(h));
3437		cond_resched();
3438	}
3439
3440	prep_and_add_bootmem_folios(h, &folio_list);
3441}
3442
3443static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3444						    unsigned long end, void *arg)
3445{
3446	int nid;
 
3447
3448	for (nid = start; nid < end; nid++)
3449		gather_bootmem_prealloc_node(nid);
3450}
 
 
 
 
 
 
 
 
 
 
3451
3452static void __init gather_bootmem_prealloc(void)
3453{
3454	struct padata_mt_job job = {
3455		.thread_fn	= gather_bootmem_prealloc_parallel,
3456		.fn_arg		= NULL,
3457		.start		= 0,
3458		.size		= num_node_state(N_MEMORY),
3459		.align		= 1,
3460		.min_chunk	= 1,
3461		.max_threads	= num_node_state(N_MEMORY),
3462		.numa_aware	= true,
3463	};
3464
3465	padata_do_multithreaded(&job);
3466}
3467
3468static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3469{
3470	unsigned long i;
3471	char buf[32];
3472
3473	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3474		if (hstate_is_gigantic(h)) {
3475			if (!alloc_bootmem_huge_page(h, nid))
3476				break;
3477		} else {
3478			struct folio *folio;
3479			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3480
3481			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3482					&node_states[N_MEMORY], NULL);
3483			if (!folio)
3484				break;
3485			free_huge_folio(folio); /* free it into the hugepage allocator */
3486		}
3487		cond_resched();
3488	}
3489	if (i == h->max_huge_pages_node[nid])
3490		return;
3491
3492	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3493	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3494		h->max_huge_pages_node[nid], buf, nid, i);
3495	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3496	h->max_huge_pages_node[nid] = i;
3497}
3498
3499static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3500{
3501	int i;
3502	bool node_specific_alloc = false;
3503
3504	for_each_online_node(i) {
3505		if (h->max_huge_pages_node[i] > 0) {
3506			hugetlb_hstate_alloc_pages_onenode(h, i);
3507			node_specific_alloc = true;
3508		}
3509	}
3510
3511	return node_specific_alloc;
3512}
3513
3514static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3515{
3516	if (allocated < h->max_huge_pages) {
3517		char buf[32];
3518
3519		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3520		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3521			h->max_huge_pages, buf, allocated);
3522		h->max_huge_pages = allocated;
3523	}
3524}
3525
3526static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3527{
3528	struct hstate *h = (struct hstate *)arg;
3529	int i, num = end - start;
3530	nodemask_t node_alloc_noretry;
3531	LIST_HEAD(folio_list);
3532	int next_node = first_online_node;
3533
3534	/* Bit mask controlling how hard we retry per-node allocations.*/
3535	nodes_clear(node_alloc_noretry);
3536
3537	for (i = 0; i < num; ++i) {
3538		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3539						&node_alloc_noretry, &next_node);
3540		if (!folio)
3541			break;
3542
3543		list_move(&folio->lru, &folio_list);
3544		cond_resched();
3545	}
3546
3547	prep_and_add_allocated_folios(h, &folio_list);
3548}
3549
3550static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3551{
3552	unsigned long i;
3553
3554	for (i = 0; i < h->max_huge_pages; ++i) {
3555		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3556			break;
3557		cond_resched();
3558	}
3559
3560	return i;
3561}
3562
3563static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3564{
3565	struct padata_mt_job job = {
3566		.fn_arg		= h,
3567		.align		= 1,
3568		.numa_aware	= true
3569	};
3570
3571	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3572	job.start	= 0;
3573	job.size	= h->max_huge_pages;
3574
3575	/*
3576	 * job.max_threads is twice the num_node_state(N_MEMORY),
3577	 *
3578	 * Tests below indicate that a multiplier of 2 significantly improves
3579	 * performance, and although larger values also provide improvements,
3580	 * the gains are marginal.
3581	 *
3582	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3583	 * enhancing parallel processing capabilities and maintaining efficient
3584	 * resource management.
3585	 *
3586	 * +------------+-------+-------+-------+-------+-------+
3587	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3588	 * +------------+-------+-------+-------+-------+-------+
3589	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3590	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3591	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3592	 * +------------+-------+-------+-------+-------+-------+
3593	 */
3594	job.max_threads	= num_node_state(N_MEMORY) * 2;
3595	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3596	padata_do_multithreaded(&job);
3597
3598	return h->nr_huge_pages;
3599}
3600
3601/*
3602 * NOTE: this routine is called in different contexts for gigantic and
3603 * non-gigantic pages.
3604 * - For gigantic pages, this is called early in the boot process and
3605 *   pages are allocated from memblock allocated or something similar.
3606 *   Gigantic pages are actually added to pools later with the routine
3607 *   gather_bootmem_prealloc.
3608 * - For non-gigantic pages, this is called later in the boot process after
3609 *   all of mm is up and functional.  Pages are allocated from buddy and
3610 *   then added to hugetlb pools.
3611 */
3612static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3613{
3614	unsigned long allocated;
3615	static bool initialized __initdata;
3616
3617	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3618	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3619		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3620		return;
3621	}
3622
3623	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3624	if (!initialized) {
3625		int i = 0;
3626
3627		for (i = 0; i < MAX_NUMNODES; i++)
3628			INIT_LIST_HEAD(&huge_boot_pages[i]);
3629		initialized = true;
3630	}
3631
3632	/* do node specific alloc */
3633	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3634		return;
3635
3636	/* below will do all node balanced alloc */
3637	if (hstate_is_gigantic(h))
3638		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3639	else
3640		allocated = hugetlb_pages_alloc_boot(h);
3641
3642	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3643}
3644
3645static void __init hugetlb_init_hstates(void)
3646{
3647	struct hstate *h, *h2;
3648
3649	for_each_hstate(h) {
 
 
 
3650		/* oversize hugepages were init'ed in early boot */
3651		if (!hstate_is_gigantic(h))
3652			hugetlb_hstate_alloc_pages(h);
3653
3654		/*
3655		 * Set demote order for each hstate.  Note that
3656		 * h->demote_order is initially 0.
3657		 * - We can not demote gigantic pages if runtime freeing
3658		 *   is not supported, so skip this.
3659		 * - If CMA allocation is possible, we can not demote
3660		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3661		 */
3662		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3663			continue;
3664		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3665			continue;
3666		for_each_hstate(h2) {
3667			if (h2 == h)
3668				continue;
3669			if (h2->order < h->order &&
3670			    h2->order > h->demote_order)
3671				h->demote_order = h2->order;
3672		}
3673	}
 
3674}
3675
3676static void __init report_hugepages(void)
3677{
3678	struct hstate *h;
3679
3680	for_each_hstate(h) {
3681		char buf[32];
3682
3683		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3684		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3685			buf, h->free_huge_pages);
3686		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3687			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3688	}
3689}
3690
3691#ifdef CONFIG_HIGHMEM
3692static void try_to_free_low(struct hstate *h, unsigned long count,
3693						nodemask_t *nodes_allowed)
3694{
3695	int i;
3696	LIST_HEAD(page_list);
3697
3698	lockdep_assert_held(&hugetlb_lock);
3699	if (hstate_is_gigantic(h))
3700		return;
3701
3702	/*
3703	 * Collect pages to be freed on a list, and free after dropping lock
3704	 */
3705	for_each_node_mask(i, *nodes_allowed) {
3706		struct folio *folio, *next;
3707		struct list_head *freel = &h->hugepage_freelists[i];
3708		list_for_each_entry_safe(folio, next, freel, lru) {
3709			if (count >= h->nr_huge_pages)
3710				goto out;
3711			if (folio_test_highmem(folio))
3712				continue;
3713			remove_hugetlb_folio(h, folio, false);
3714			list_add(&folio->lru, &page_list);
 
 
3715		}
3716	}
3717
3718out:
3719	spin_unlock_irq(&hugetlb_lock);
3720	update_and_free_pages_bulk(h, &page_list);
3721	spin_lock_irq(&hugetlb_lock);
3722}
3723#else
3724static inline void try_to_free_low(struct hstate *h, unsigned long count,
3725						nodemask_t *nodes_allowed)
3726{
3727}
3728#endif
3729
3730/*
3731 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3732 * balanced by operating on them in a round-robin fashion.
3733 * Returns 1 if an adjustment was made.
3734 */
3735static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3736				int delta)
3737{
3738	int nr_nodes, node;
3739
3740	lockdep_assert_held(&hugetlb_lock);
3741	VM_BUG_ON(delta != -1 && delta != 1);
3742
3743	if (delta < 0) {
3744		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3745			if (h->surplus_huge_pages_node[node])
3746				goto found;
3747		}
3748	} else {
3749		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3750			if (h->surplus_huge_pages_node[node] <
3751					h->nr_huge_pages_node[node])
3752				goto found;
3753		}
3754	}
3755	return 0;
3756
3757found:
3758	h->surplus_huge_pages += delta;
3759	h->surplus_huge_pages_node[node] += delta;
3760	return 1;
3761}
3762
3763#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3764static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3765			      nodemask_t *nodes_allowed)
3766{
3767	unsigned long min_count;
3768	unsigned long allocated;
3769	struct folio *folio;
3770	LIST_HEAD(page_list);
3771	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3772
3773	/*
3774	 * Bit mask controlling how hard we retry per-node allocations.
3775	 * If we can not allocate the bit mask, do not attempt to allocate
3776	 * the requested huge pages.
3777	 */
3778	if (node_alloc_noretry)
3779		nodes_clear(*node_alloc_noretry);
3780	else
3781		return -ENOMEM;
3782
3783	/*
3784	 * resize_lock mutex prevents concurrent adjustments to number of
3785	 * pages in hstate via the proc/sysfs interfaces.
3786	 */
3787	mutex_lock(&h->resize_lock);
3788	flush_free_hpage_work(h);
3789	spin_lock_irq(&hugetlb_lock);
3790
3791	/*
3792	 * Check for a node specific request.
3793	 * Changing node specific huge page count may require a corresponding
3794	 * change to the global count.  In any case, the passed node mask
3795	 * (nodes_allowed) will restrict alloc/free to the specified node.
3796	 */
3797	if (nid != NUMA_NO_NODE) {
3798		unsigned long old_count = count;
3799
3800		count += persistent_huge_pages(h) -
3801			 (h->nr_huge_pages_node[nid] -
3802			  h->surplus_huge_pages_node[nid]);
3803		/*
3804		 * User may have specified a large count value which caused the
3805		 * above calculation to overflow.  In this case, they wanted
3806		 * to allocate as many huge pages as possible.  Set count to
3807		 * largest possible value to align with their intention.
3808		 */
3809		if (count < old_count)
3810			count = ULONG_MAX;
3811	}
3812
3813	/*
3814	 * Gigantic pages runtime allocation depend on the capability for large
3815	 * page range allocation.
3816	 * If the system does not provide this feature, return an error when
3817	 * the user tries to allocate gigantic pages but let the user free the
3818	 * boottime allocated gigantic pages.
3819	 */
3820	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3821		if (count > persistent_huge_pages(h)) {
3822			spin_unlock_irq(&hugetlb_lock);
3823			mutex_unlock(&h->resize_lock);
3824			NODEMASK_FREE(node_alloc_noretry);
3825			return -EINVAL;
3826		}
3827		/* Fall through to decrease pool */
3828	}
3829
3830	/*
3831	 * Increase the pool size
3832	 * First take pages out of surplus state.  Then make up the
3833	 * remaining difference by allocating fresh huge pages.
3834	 *
3835	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3836	 * to convert a surplus huge page to a normal huge page. That is
3837	 * not critical, though, it just means the overall size of the
3838	 * pool might be one hugepage larger than it needs to be, but
3839	 * within all the constraints specified by the sysctls.
3840	 */
3841	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3842		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3843			break;
3844	}
3845
3846	allocated = 0;
3847	while (count > (persistent_huge_pages(h) + allocated)) {
3848		/*
3849		 * If this allocation races such that we no longer need the
3850		 * page, free_huge_folio will handle it by freeing the page
3851		 * and reducing the surplus.
3852		 */
3853		spin_unlock_irq(&hugetlb_lock);
3854
3855		/* yield cpu to avoid soft lockup */
3856		cond_resched();
3857
3858		folio = alloc_pool_huge_folio(h, nodes_allowed,
3859						node_alloc_noretry,
3860						&h->next_nid_to_alloc);
3861		if (!folio) {
3862			prep_and_add_allocated_folios(h, &page_list);
3863			spin_lock_irq(&hugetlb_lock);
3864			goto out;
3865		}
3866
3867		list_add(&folio->lru, &page_list);
3868		allocated++;
3869
3870		/* Bail for signals. Probably ctrl-c from user */
3871		if (signal_pending(current)) {
3872			prep_and_add_allocated_folios(h, &page_list);
3873			spin_lock_irq(&hugetlb_lock);
3874			goto out;
3875		}
3876
3877		spin_lock_irq(&hugetlb_lock);
3878	}
3879
3880	/* Add allocated pages to the pool */
3881	if (!list_empty(&page_list)) {
3882		spin_unlock_irq(&hugetlb_lock);
3883		prep_and_add_allocated_folios(h, &page_list);
3884		spin_lock_irq(&hugetlb_lock);
3885	}
3886
3887	/*
3888	 * Decrease the pool size
3889	 * First return free pages to the buddy allocator (being careful
3890	 * to keep enough around to satisfy reservations).  Then place
3891	 * pages into surplus state as needed so the pool will shrink
3892	 * to the desired size as pages become free.
3893	 *
3894	 * By placing pages into the surplus state independent of the
3895	 * overcommit value, we are allowing the surplus pool size to
3896	 * exceed overcommit. There are few sane options here. Since
3897	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3898	 * though, we'll note that we're not allowed to exceed surplus
3899	 * and won't grow the pool anywhere else. Not until one of the
3900	 * sysctls are changed, or the surplus pages go out of use.
3901	 */
3902	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3903	min_count = max(count, min_count);
3904	try_to_free_low(h, min_count, nodes_allowed);
3905
3906	/*
3907	 * Collect pages to be removed on list without dropping lock
3908	 */
3909	while (min_count < persistent_huge_pages(h)) {
3910		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3911		if (!folio)
3912			break;
3913
3914		list_add(&folio->lru, &page_list);
3915	}
3916	/* free the pages after dropping lock */
3917	spin_unlock_irq(&hugetlb_lock);
3918	update_and_free_pages_bulk(h, &page_list);
3919	flush_free_hpage_work(h);
3920	spin_lock_irq(&hugetlb_lock);
3921
3922	while (count < persistent_huge_pages(h)) {
3923		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3924			break;
3925	}
3926out:
3927	h->max_huge_pages = persistent_huge_pages(h);
3928	spin_unlock_irq(&hugetlb_lock);
3929	mutex_unlock(&h->resize_lock);
3930
3931	NODEMASK_FREE(node_alloc_noretry);
3932
3933	return 0;
3934}
3935
3936static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3937{
3938	int i, nid = folio_nid(folio);
3939	struct hstate *target_hstate;
3940	struct page *subpage;
3941	struct folio *inner_folio;
3942	int rc = 0;
3943
3944	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3945
3946	remove_hugetlb_folio_for_demote(h, folio, false);
3947	spin_unlock_irq(&hugetlb_lock);
3948
3949	/*
3950	 * If vmemmap already existed for folio, the remove routine above would
3951	 * have cleared the hugetlb folio flag.  Hence the folio is technically
3952	 * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3953	 * passed hugetlb folios and will BUG otherwise.
3954	 */
3955	if (folio_test_hugetlb(folio)) {
3956		rc = hugetlb_vmemmap_restore_folio(h, folio);
3957		if (rc) {
3958			/* Allocation of vmemmmap failed, we can not demote folio */
3959			spin_lock_irq(&hugetlb_lock);
3960			folio_ref_unfreeze(folio, 1);
3961			add_hugetlb_folio(h, folio, false);
3962			return rc;
3963		}
3964	}
3965
3966	/*
3967	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3968	 * sizes as it will not ref count folios.
3969	 */
3970	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3971
3972	/*
3973	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3974	 * Without the mutex, pages added to target hstate could be marked
3975	 * as surplus.
3976	 *
3977	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3978	 * use the convention of always taking larger size hstate mutex first.
3979	 */
3980	mutex_lock(&target_hstate->resize_lock);
3981	for (i = 0; i < pages_per_huge_page(h);
3982				i += pages_per_huge_page(target_hstate)) {
3983		subpage = folio_page(folio, i);
3984		inner_folio = page_folio(subpage);
3985		if (hstate_is_gigantic(target_hstate))
3986			prep_compound_gigantic_folio_for_demote(inner_folio,
3987							target_hstate->order);
3988		else
3989			prep_compound_page(subpage, target_hstate->order);
3990		folio_change_private(inner_folio, NULL);
3991		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3992		free_huge_folio(inner_folio);
3993	}
3994	mutex_unlock(&target_hstate->resize_lock);
3995
3996	spin_lock_irq(&hugetlb_lock);
3997
3998	/*
3999	 * Not absolutely necessary, but for consistency update max_huge_pages
4000	 * based on pool changes for the demoted page.
4001	 */
4002	h->max_huge_pages--;
4003	target_hstate->max_huge_pages +=
4004		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4005
4006	return rc;
4007}
4008
4009static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4010	__must_hold(&hugetlb_lock)
4011{
4012	int nr_nodes, node;
4013	struct folio *folio;
4014
4015	lockdep_assert_held(&hugetlb_lock);
4016
4017	/* We should never get here if no demote order */
4018	if (!h->demote_order) {
4019		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4020		return -EINVAL;		/* internal error */
4021	}
4022
4023	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4024		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4025			if (folio_test_hwpoison(folio))
4026				continue;
4027			return demote_free_hugetlb_folio(h, folio);
4028		}
4029	}
4030
4031	/*
4032	 * Only way to get here is if all pages on free lists are poisoned.
4033	 * Return -EBUSY so that caller will not retry.
4034	 */
4035	return -EBUSY;
4036}
4037
4038#define HSTATE_ATTR_RO(_name) \
4039	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4040
4041#define HSTATE_ATTR_WO(_name) \
4042	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4043
4044#define HSTATE_ATTR(_name) \
4045	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
 
4046
4047static struct kobject *hugepages_kobj;
4048static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4049
4050static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4051
4052static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4053{
4054	int i;
4055
4056	for (i = 0; i < HUGE_MAX_HSTATE; i++)
4057		if (hstate_kobjs[i] == kobj) {
4058			if (nidp)
4059				*nidp = NUMA_NO_NODE;
4060			return &hstates[i];
4061		}
4062
4063	return kobj_to_node_hstate(kobj, nidp);
4064}
4065
4066static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4067					struct kobj_attribute *attr, char *buf)
4068{
4069	struct hstate *h;
4070	unsigned long nr_huge_pages;
4071	int nid;
4072
4073	h = kobj_to_hstate(kobj, &nid);
4074	if (nid == NUMA_NO_NODE)
4075		nr_huge_pages = h->nr_huge_pages;
4076	else
4077		nr_huge_pages = h->nr_huge_pages_node[nid];
4078
4079	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4080}
4081
4082static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4083					   struct hstate *h, int nid,
4084					   unsigned long count, size_t len)
4085{
4086	int err;
4087	nodemask_t nodes_allowed, *n_mask;
4088
4089	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4090		return -EINVAL;
4091
4092	if (nid == NUMA_NO_NODE) {
4093		/*
4094		 * global hstate attribute
4095		 */
4096		if (!(obey_mempolicy &&
4097				init_nodemask_of_mempolicy(&nodes_allowed)))
4098			n_mask = &node_states[N_MEMORY];
4099		else
4100			n_mask = &nodes_allowed;
4101	} else {
4102		/*
4103		 * Node specific request.  count adjustment happens in
4104		 * set_max_huge_pages() after acquiring hugetlb_lock.
4105		 */
4106		init_nodemask_of_node(&nodes_allowed, nid);
4107		n_mask = &nodes_allowed;
4108	}
4109
4110	err = set_max_huge_pages(h, count, nid, n_mask);
4111
4112	return err ? err : len;
4113}
4114
4115static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4116					 struct kobject *kobj, const char *buf,
4117					 size_t len)
4118{
4119	struct hstate *h;
4120	unsigned long count;
4121	int nid;
4122	int err;
4123
4124	err = kstrtoul(buf, 10, &count);
4125	if (err)
4126		return err;
4127
4128	h = kobj_to_hstate(kobj, &nid);
4129	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4130}
4131
4132static ssize_t nr_hugepages_show(struct kobject *kobj,
4133				       struct kobj_attribute *attr, char *buf)
4134{
4135	return nr_hugepages_show_common(kobj, attr, buf);
4136}
4137
4138static ssize_t nr_hugepages_store(struct kobject *kobj,
4139	       struct kobj_attribute *attr, const char *buf, size_t len)
4140{
4141	return nr_hugepages_store_common(false, kobj, buf, len);
4142}
4143HSTATE_ATTR(nr_hugepages);
4144
4145#ifdef CONFIG_NUMA
4146
4147/*
4148 * hstate attribute for optionally mempolicy-based constraint on persistent
4149 * huge page alloc/free.
4150 */
4151static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4152					   struct kobj_attribute *attr,
4153					   char *buf)
4154{
4155	return nr_hugepages_show_common(kobj, attr, buf);
4156}
4157
4158static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4159	       struct kobj_attribute *attr, const char *buf, size_t len)
4160{
4161	return nr_hugepages_store_common(true, kobj, buf, len);
4162}
4163HSTATE_ATTR(nr_hugepages_mempolicy);
4164#endif
4165
4166
4167static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4168					struct kobj_attribute *attr, char *buf)
4169{
4170	struct hstate *h = kobj_to_hstate(kobj, NULL);
4171	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4172}
4173
4174static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4175		struct kobj_attribute *attr, const char *buf, size_t count)
4176{
4177	int err;
4178	unsigned long input;
4179	struct hstate *h = kobj_to_hstate(kobj, NULL);
4180
4181	if (hstate_is_gigantic(h))
4182		return -EINVAL;
4183
4184	err = kstrtoul(buf, 10, &input);
4185	if (err)
4186		return err;
4187
4188	spin_lock_irq(&hugetlb_lock);
4189	h->nr_overcommit_huge_pages = input;
4190	spin_unlock_irq(&hugetlb_lock);
4191
4192	return count;
4193}
4194HSTATE_ATTR(nr_overcommit_hugepages);
4195
4196static ssize_t free_hugepages_show(struct kobject *kobj,
4197					struct kobj_attribute *attr, char *buf)
4198{
4199	struct hstate *h;
4200	unsigned long free_huge_pages;
4201	int nid;
4202
4203	h = kobj_to_hstate(kobj, &nid);
4204	if (nid == NUMA_NO_NODE)
4205		free_huge_pages = h->free_huge_pages;
4206	else
4207		free_huge_pages = h->free_huge_pages_node[nid];
4208
4209	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4210}
4211HSTATE_ATTR_RO(free_hugepages);
4212
4213static ssize_t resv_hugepages_show(struct kobject *kobj,
4214					struct kobj_attribute *attr, char *buf)
4215{
4216	struct hstate *h = kobj_to_hstate(kobj, NULL);
4217	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4218}
4219HSTATE_ATTR_RO(resv_hugepages);
4220
4221static ssize_t surplus_hugepages_show(struct kobject *kobj,
4222					struct kobj_attribute *attr, char *buf)
4223{
4224	struct hstate *h;
4225	unsigned long surplus_huge_pages;
4226	int nid;
4227
4228	h = kobj_to_hstate(kobj, &nid);
4229	if (nid == NUMA_NO_NODE)
4230		surplus_huge_pages = h->surplus_huge_pages;
4231	else
4232		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4233
4234	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4235}
4236HSTATE_ATTR_RO(surplus_hugepages);
4237
4238static ssize_t demote_store(struct kobject *kobj,
4239	       struct kobj_attribute *attr, const char *buf, size_t len)
4240{
4241	unsigned long nr_demote;
4242	unsigned long nr_available;
4243	nodemask_t nodes_allowed, *n_mask;
4244	struct hstate *h;
4245	int err;
4246	int nid;
4247
4248	err = kstrtoul(buf, 10, &nr_demote);
4249	if (err)
4250		return err;
4251	h = kobj_to_hstate(kobj, &nid);
4252
4253	if (nid != NUMA_NO_NODE) {
4254		init_nodemask_of_node(&nodes_allowed, nid);
4255		n_mask = &nodes_allowed;
4256	} else {
4257		n_mask = &node_states[N_MEMORY];
4258	}
4259
4260	/* Synchronize with other sysfs operations modifying huge pages */
4261	mutex_lock(&h->resize_lock);
4262	spin_lock_irq(&hugetlb_lock);
4263
4264	while (nr_demote) {
4265		/*
4266		 * Check for available pages to demote each time thorough the
4267		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4268		 */
4269		if (nid != NUMA_NO_NODE)
4270			nr_available = h->free_huge_pages_node[nid];
4271		else
4272			nr_available = h->free_huge_pages;
4273		nr_available -= h->resv_huge_pages;
4274		if (!nr_available)
4275			break;
4276
4277		err = demote_pool_huge_page(h, n_mask);
4278		if (err)
4279			break;
4280
4281		nr_demote--;
4282	}
4283
4284	spin_unlock_irq(&hugetlb_lock);
4285	mutex_unlock(&h->resize_lock);
4286
4287	if (err)
4288		return err;
4289	return len;
4290}
4291HSTATE_ATTR_WO(demote);
4292
4293static ssize_t demote_size_show(struct kobject *kobj,
4294					struct kobj_attribute *attr, char *buf)
4295{
4296	struct hstate *h = kobj_to_hstate(kobj, NULL);
4297	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4298
4299	return sysfs_emit(buf, "%lukB\n", demote_size);
4300}
4301
4302static ssize_t demote_size_store(struct kobject *kobj,
4303					struct kobj_attribute *attr,
4304					const char *buf, size_t count)
4305{
4306	struct hstate *h, *demote_hstate;
4307	unsigned long demote_size;
4308	unsigned int demote_order;
4309
4310	demote_size = (unsigned long)memparse(buf, NULL);
4311
4312	demote_hstate = size_to_hstate(demote_size);
4313	if (!demote_hstate)
4314		return -EINVAL;
4315	demote_order = demote_hstate->order;
4316	if (demote_order < HUGETLB_PAGE_ORDER)
4317		return -EINVAL;
4318
4319	/* demote order must be smaller than hstate order */
4320	h = kobj_to_hstate(kobj, NULL);
4321	if (demote_order >= h->order)
4322		return -EINVAL;
4323
4324	/* resize_lock synchronizes access to demote size and writes */
4325	mutex_lock(&h->resize_lock);
4326	h->demote_order = demote_order;
4327	mutex_unlock(&h->resize_lock);
4328
4329	return count;
4330}
4331HSTATE_ATTR(demote_size);
4332
4333static struct attribute *hstate_attrs[] = {
4334	&nr_hugepages_attr.attr,
4335	&nr_overcommit_hugepages_attr.attr,
4336	&free_hugepages_attr.attr,
4337	&resv_hugepages_attr.attr,
4338	&surplus_hugepages_attr.attr,
4339#ifdef CONFIG_NUMA
4340	&nr_hugepages_mempolicy_attr.attr,
4341#endif
4342	NULL,
4343};
4344
4345static const struct attribute_group hstate_attr_group = {
4346	.attrs = hstate_attrs,
4347};
4348
4349static struct attribute *hstate_demote_attrs[] = {
4350	&demote_size_attr.attr,
4351	&demote_attr.attr,
4352	NULL,
4353};
4354
4355static const struct attribute_group hstate_demote_attr_group = {
4356	.attrs = hstate_demote_attrs,
4357};
4358
4359static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4360				    struct kobject **hstate_kobjs,
4361				    const struct attribute_group *hstate_attr_group)
4362{
4363	int retval;
4364	int hi = hstate_index(h);
4365
4366	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4367	if (!hstate_kobjs[hi])
4368		return -ENOMEM;
4369
4370	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4371	if (retval) {
4372		kobject_put(hstate_kobjs[hi]);
4373		hstate_kobjs[hi] = NULL;
4374		return retval;
4375	}
4376
4377	if (h->demote_order) {
4378		retval = sysfs_create_group(hstate_kobjs[hi],
4379					    &hstate_demote_attr_group);
4380		if (retval) {
4381			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4382			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4383			kobject_put(hstate_kobjs[hi]);
4384			hstate_kobjs[hi] = NULL;
4385			return retval;
4386		}
 
 
 
 
 
 
 
4387	}
4388
4389	return 0;
4390}
4391
4392#ifdef CONFIG_NUMA
4393static bool hugetlb_sysfs_initialized __ro_after_init;
4394
4395/*
4396 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4397 * with node devices in node_devices[] using a parallel array.  The array
4398 * index of a node device or _hstate == node id.
4399 * This is here to avoid any static dependency of the node device driver, in
4400 * the base kernel, on the hugetlb module.
4401 */
4402struct node_hstate {
4403	struct kobject		*hugepages_kobj;
4404	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4405};
4406static struct node_hstate node_hstates[MAX_NUMNODES];
4407
4408/*
4409 * A subset of global hstate attributes for node devices
4410 */
4411static struct attribute *per_node_hstate_attrs[] = {
4412	&nr_hugepages_attr.attr,
4413	&free_hugepages_attr.attr,
4414	&surplus_hugepages_attr.attr,
4415	NULL,
4416};
4417
4418static const struct attribute_group per_node_hstate_attr_group = {
4419	.attrs = per_node_hstate_attrs,
4420};
4421
4422/*
4423 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4424 * Returns node id via non-NULL nidp.
4425 */
4426static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4427{
4428	int nid;
4429
4430	for (nid = 0; nid < nr_node_ids; nid++) {
4431		struct node_hstate *nhs = &node_hstates[nid];
4432		int i;
4433		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4434			if (nhs->hstate_kobjs[i] == kobj) {
4435				if (nidp)
4436					*nidp = nid;
4437				return &hstates[i];
4438			}
4439	}
4440
4441	BUG();
4442	return NULL;
4443}
4444
4445/*
4446 * Unregister hstate attributes from a single node device.
4447 * No-op if no hstate attributes attached.
4448 */
4449void hugetlb_unregister_node(struct node *node)
4450{
4451	struct hstate *h;
4452	struct node_hstate *nhs = &node_hstates[node->dev.id];
4453
4454	if (!nhs->hugepages_kobj)
4455		return;		/* no hstate attributes */
4456
4457	for_each_hstate(h) {
4458		int idx = hstate_index(h);
4459		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4460
4461		if (!hstate_kobj)
4462			continue;
4463		if (h->demote_order)
4464			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4465		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4466		kobject_put(hstate_kobj);
4467		nhs->hstate_kobjs[idx] = NULL;
4468	}
4469
4470	kobject_put(nhs->hugepages_kobj);
4471	nhs->hugepages_kobj = NULL;
4472}
4473
4474
4475/*
4476 * Register hstate attributes for a single node device.
4477 * No-op if attributes already registered.
4478 */
4479void hugetlb_register_node(struct node *node)
4480{
4481	struct hstate *h;
4482	struct node_hstate *nhs = &node_hstates[node->dev.id];
4483	int err;
4484
4485	if (!hugetlb_sysfs_initialized)
4486		return;
4487
4488	if (nhs->hugepages_kobj)
4489		return;		/* already allocated */
4490
4491	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4492							&node->dev.kobj);
4493	if (!nhs->hugepages_kobj)
4494		return;
4495
4496	for_each_hstate(h) {
4497		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4498						nhs->hstate_kobjs,
4499						&per_node_hstate_attr_group);
4500		if (err) {
4501			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4502				h->name, node->dev.id);
4503			hugetlb_unregister_node(node);
4504			break;
4505		}
4506	}
4507}
4508
4509/*
4510 * hugetlb init time:  register hstate attributes for all registered node
4511 * devices of nodes that have memory.  All on-line nodes should have
4512 * registered their associated device by this time.
4513 */
4514static void __init hugetlb_register_all_nodes(void)
4515{
4516	int nid;
4517
4518	for_each_online_node(nid)
4519		hugetlb_register_node(node_devices[nid]);
 
 
 
 
 
 
 
 
 
 
4520}
4521#else	/* !CONFIG_NUMA */
4522
4523static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4524{
4525	BUG();
4526	if (nidp)
4527		*nidp = -1;
4528	return NULL;
4529}
4530
4531static void hugetlb_register_all_nodes(void) { }
4532
4533#endif
4534
4535#ifdef CONFIG_CMA
4536static void __init hugetlb_cma_check(void);
4537#else
4538static inline __init void hugetlb_cma_check(void)
4539{
4540}
4541#endif
4542
4543static void __init hugetlb_sysfs_init(void)
4544{
4545	struct hstate *h;
4546	int err;
4547
4548	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4549	if (!hugepages_kobj)
4550		return;
4551
4552	for_each_hstate(h) {
4553		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4554					 hstate_kobjs, &hstate_attr_group);
4555		if (err)
4556			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4557	}
4558
4559#ifdef CONFIG_NUMA
4560	hugetlb_sysfs_initialized = true;
4561#endif
4562	hugetlb_register_all_nodes();
4563}
4564
4565#ifdef CONFIG_SYSCTL
4566static void hugetlb_sysctl_init(void);
4567#else
4568static inline void hugetlb_sysctl_init(void) { }
4569#endif
4570
4571static int __init hugetlb_init(void)
4572{
4573	int i;
4574
4575	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4576			__NR_HPAGEFLAGS);
4577
4578	if (!hugepages_supported()) {
4579		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4580			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4581		return 0;
4582	}
4583
4584	/*
4585	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4586	 * architectures depend on setup being done here.
4587	 */
4588	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4589	if (!parsed_default_hugepagesz) {
4590		/*
4591		 * If we did not parse a default huge page size, set
4592		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4593		 * number of huge pages for this default size was implicitly
4594		 * specified, set that here as well.
4595		 * Note that the implicit setting will overwrite an explicit
4596		 * setting.  A warning will be printed in this case.
4597		 */
4598		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4599		if (default_hstate_max_huge_pages) {
4600			if (default_hstate.max_huge_pages) {
4601				char buf[32];
4602
4603				string_get_size(huge_page_size(&default_hstate),
4604					1, STRING_UNITS_2, buf, 32);
4605				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4606					default_hstate.max_huge_pages, buf);
4607				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4608					default_hstate_max_huge_pages);
4609			}
4610			default_hstate.max_huge_pages =
4611				default_hstate_max_huge_pages;
4612
4613			for_each_online_node(i)
4614				default_hstate.max_huge_pages_node[i] =
4615					default_hugepages_in_node[i];
4616		}
 
 
 
 
4617	}
4618
4619	hugetlb_cma_check();
4620	hugetlb_init_hstates();
4621	gather_bootmem_prealloc();
4622	report_hugepages();
4623
4624	hugetlb_sysfs_init();
 
4625	hugetlb_cgroup_file_init();
4626	hugetlb_sysctl_init();
4627
4628#ifdef CONFIG_SMP
4629	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4630#else
4631	num_fault_mutexes = 1;
4632#endif
4633	hugetlb_fault_mutex_table =
4634		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4635			      GFP_KERNEL);
4636	BUG_ON(!hugetlb_fault_mutex_table);
4637
4638	for (i = 0; i < num_fault_mutexes; i++)
4639		mutex_init(&hugetlb_fault_mutex_table[i]);
4640	return 0;
4641}
4642subsys_initcall(hugetlb_init);
4643
4644/* Overwritten by architectures with more huge page sizes */
4645bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4646{
4647	return size == HPAGE_SIZE;
4648}
4649
4650void __init hugetlb_add_hstate(unsigned int order)
4651{
4652	struct hstate *h;
4653	unsigned long i;
4654
4655	if (size_to_hstate(PAGE_SIZE << order)) {
 
4656		return;
4657	}
4658	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4659	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4660	h = &hstates[hugetlb_max_hstate++];
4661	mutex_init(&h->resize_lock);
4662	h->order = order;
4663	h->mask = ~(huge_page_size(h) - 1);
 
 
4664	for (i = 0; i < MAX_NUMNODES; ++i)
4665		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4666	INIT_LIST_HEAD(&h->hugepage_activelist);
4667	h->next_nid_to_alloc = first_memory_node;
4668	h->next_nid_to_free = first_memory_node;
4669	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4670					huge_page_size(h)/SZ_1K);
4671
4672	parsed_hstate = h;
4673}
4674
4675bool __init __weak hugetlb_node_alloc_supported(void)
4676{
4677	return true;
4678}
4679
4680static void __init hugepages_clear_pages_in_node(void)
4681{
4682	if (!hugetlb_max_hstate) {
4683		default_hstate_max_huge_pages = 0;
4684		memset(default_hugepages_in_node, 0,
4685			sizeof(default_hugepages_in_node));
4686	} else {
4687		parsed_hstate->max_huge_pages = 0;
4688		memset(parsed_hstate->max_huge_pages_node, 0,
4689			sizeof(parsed_hstate->max_huge_pages_node));
4690	}
4691}
4692
4693/*
4694 * hugepages command line processing
4695 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4696 * specification.  If not, ignore the hugepages value.  hugepages can also
4697 * be the first huge page command line  option in which case it implicitly
4698 * specifies the number of huge pages for the default size.
4699 */
4700static int __init hugepages_setup(char *s)
4701{
4702	unsigned long *mhp;
4703	static unsigned long *last_mhp;
4704	int node = NUMA_NO_NODE;
4705	int count;
4706	unsigned long tmp;
4707	char *p = s;
4708
4709	if (!parsed_valid_hugepagesz) {
4710		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
 
4711		parsed_valid_hugepagesz = true;
4712		return 1;
4713	}
4714
4715	/*
4716	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4717	 * yet, so this hugepages= parameter goes to the "default hstate".
4718	 * Otherwise, it goes with the previously parsed hugepagesz or
4719	 * default_hugepagesz.
4720	 */
4721	else if (!hugetlb_max_hstate)
4722		mhp = &default_hstate_max_huge_pages;
4723	else
4724		mhp = &parsed_hstate->max_huge_pages;
4725
4726	if (mhp == last_mhp) {
4727		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4728		return 1;
4729	}
4730
4731	while (*p) {
4732		count = 0;
4733		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4734			goto invalid;
4735		/* Parameter is node format */
4736		if (p[count] == ':') {
4737			if (!hugetlb_node_alloc_supported()) {
4738				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4739				return 1;
4740			}
4741			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4742				goto invalid;
4743			node = array_index_nospec(tmp, MAX_NUMNODES);
4744			p += count + 1;
4745			/* Parse hugepages */
4746			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4747				goto invalid;
4748			if (!hugetlb_max_hstate)
4749				default_hugepages_in_node[node] = tmp;
4750			else
4751				parsed_hstate->max_huge_pages_node[node] = tmp;
4752			*mhp += tmp;
4753			/* Go to parse next node*/
4754			if (p[count] == ',')
4755				p += count + 1;
4756			else
4757				break;
4758		} else {
4759			if (p != s)
4760				goto invalid;
4761			*mhp = tmp;
4762			break;
4763		}
4764	}
4765
4766	/*
4767	 * Global state is always initialized later in hugetlb_init.
4768	 * But we need to allocate gigantic hstates here early to still
4769	 * use the bootmem allocator.
4770	 */
4771	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4772		hugetlb_hstate_alloc_pages(parsed_hstate);
4773
4774	last_mhp = mhp;
4775
4776	return 1;
4777
4778invalid:
4779	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4780	hugepages_clear_pages_in_node();
4781	return 1;
4782}
4783__setup("hugepages=", hugepages_setup);
4784
4785/*
4786 * hugepagesz command line processing
4787 * A specific huge page size can only be specified once with hugepagesz.
4788 * hugepagesz is followed by hugepages on the command line.  The global
4789 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4790 * hugepagesz argument was valid.
4791 */
4792static int __init hugepagesz_setup(char *s)
4793{
4794	unsigned long size;
4795	struct hstate *h;
4796
4797	parsed_valid_hugepagesz = false;
4798	size = (unsigned long)memparse(s, NULL);
4799
4800	if (!arch_hugetlb_valid_size(size)) {
4801		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4802		return 1;
4803	}
4804
4805	h = size_to_hstate(size);
4806	if (h) {
4807		/*
4808		 * hstate for this size already exists.  This is normally
4809		 * an error, but is allowed if the existing hstate is the
4810		 * default hstate.  More specifically, it is only allowed if
4811		 * the number of huge pages for the default hstate was not
4812		 * previously specified.
4813		 */
4814		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4815		    default_hstate.max_huge_pages) {
4816			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4817			return 1;
4818		}
4819
4820		/*
4821		 * No need to call hugetlb_add_hstate() as hstate already
4822		 * exists.  But, do set parsed_hstate so that a following
4823		 * hugepages= parameter will be applied to this hstate.
4824		 */
4825		parsed_hstate = h;
4826		parsed_valid_hugepagesz = true;
4827		return 1;
4828	}
4829
4830	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4831	parsed_valid_hugepagesz = true;
4832	return 1;
4833}
4834__setup("hugepagesz=", hugepagesz_setup);
4835
4836/*
4837 * default_hugepagesz command line input
4838 * Only one instance of default_hugepagesz allowed on command line.
4839 */
4840static int __init default_hugepagesz_setup(char *s)
4841{
4842	unsigned long size;
4843	int i;
4844
4845	parsed_valid_hugepagesz = false;
4846	if (parsed_default_hugepagesz) {
4847		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4848		return 1;
4849	}
4850
4851	size = (unsigned long)memparse(s, NULL);
4852
4853	if (!arch_hugetlb_valid_size(size)) {
4854		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4855		return 1;
4856	}
4857
4858	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4859	parsed_valid_hugepagesz = true;
4860	parsed_default_hugepagesz = true;
4861	default_hstate_idx = hstate_index(size_to_hstate(size));
4862
4863	/*
4864	 * The number of default huge pages (for this size) could have been
4865	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4866	 * then default_hstate_max_huge_pages is set.  If the default huge
4867	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4868	 * allocated here from bootmem allocator.
4869	 */
4870	if (default_hstate_max_huge_pages) {
4871		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4872		for_each_online_node(i)
4873			default_hstate.max_huge_pages_node[i] =
4874				default_hugepages_in_node[i];
4875		if (hstate_is_gigantic(&default_hstate))
4876			hugetlb_hstate_alloc_pages(&default_hstate);
4877		default_hstate_max_huge_pages = 0;
4878	}
4879
4880	return 1;
4881}
4882__setup("default_hugepagesz=", default_hugepagesz_setup);
4883
4884static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4885{
4886#ifdef CONFIG_NUMA
4887	struct mempolicy *mpol = get_task_policy(current);
4888
4889	/*
4890	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4891	 * (from policy_nodemask) specifically for hugetlb case
4892	 */
4893	if (mpol->mode == MPOL_BIND &&
4894		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4895		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4896		return &mpol->nodes;
4897#endif
4898	return NULL;
4899}
4900
4901static unsigned int allowed_mems_nr(struct hstate *h)
4902{
4903	int node;
4904	unsigned int nr = 0;
4905	nodemask_t *mbind_nodemask;
4906	unsigned int *array = h->free_huge_pages_node;
4907	gfp_t gfp_mask = htlb_alloc_mask(h);
4908
4909	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4910	for_each_node_mask(node, cpuset_current_mems_allowed) {
4911		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4912			nr += array[node];
4913	}
4914
4915	return nr;
4916}
4917
4918#ifdef CONFIG_SYSCTL
4919static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4920					  void *buffer, size_t *length,
4921					  loff_t *ppos, unsigned long *out)
4922{
4923	struct ctl_table dup_table;
4924
4925	/*
4926	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4927	 * can duplicate the @table and alter the duplicate of it.
4928	 */
4929	dup_table = *table;
4930	dup_table.data = out;
4931
4932	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4933}
4934
4935static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4936			 struct ctl_table *table, int write,
4937			 void *buffer, size_t *length, loff_t *ppos)
4938{
4939	struct hstate *h = &default_hstate;
4940	unsigned long tmp = h->max_huge_pages;
4941	int ret;
4942
4943	if (!hugepages_supported())
4944		return -EOPNOTSUPP;
4945
4946	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4947					     &tmp);
 
4948	if (ret)
4949		goto out;
4950
4951	if (write)
4952		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4953						  NUMA_NO_NODE, tmp, *length);
4954out:
4955	return ret;
4956}
4957
4958static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4959			  void *buffer, size_t *length, loff_t *ppos)
4960{
4961
4962	return hugetlb_sysctl_handler_common(false, table, write,
4963							buffer, length, ppos);
4964}
4965
4966#ifdef CONFIG_NUMA
4967static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4968			  void *buffer, size_t *length, loff_t *ppos)
4969{
4970	return hugetlb_sysctl_handler_common(true, table, write,
4971							buffer, length, ppos);
4972}
4973#endif /* CONFIG_NUMA */
4974
4975static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4976		void *buffer, size_t *length, loff_t *ppos)
 
4977{
4978	struct hstate *h = &default_hstate;
4979	unsigned long tmp;
4980	int ret;
4981
4982	if (!hugepages_supported())
4983		return -EOPNOTSUPP;
4984
4985	tmp = h->nr_overcommit_huge_pages;
4986
4987	if (write && hstate_is_gigantic(h))
4988		return -EINVAL;
4989
4990	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4991					     &tmp);
 
4992	if (ret)
4993		goto out;
4994
4995	if (write) {
4996		spin_lock_irq(&hugetlb_lock);
4997		h->nr_overcommit_huge_pages = tmp;
4998		spin_unlock_irq(&hugetlb_lock);
4999	}
5000out:
5001	return ret;
5002}
5003
5004static struct ctl_table hugetlb_table[] = {
5005	{
5006		.procname	= "nr_hugepages",
5007		.data		= NULL,
5008		.maxlen		= sizeof(unsigned long),
5009		.mode		= 0644,
5010		.proc_handler	= hugetlb_sysctl_handler,
5011	},
5012#ifdef CONFIG_NUMA
5013	{
5014		.procname       = "nr_hugepages_mempolicy",
5015		.data           = NULL,
5016		.maxlen         = sizeof(unsigned long),
5017		.mode           = 0644,
5018		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5019	},
5020#endif
5021	{
5022		.procname	= "hugetlb_shm_group",
5023		.data		= &sysctl_hugetlb_shm_group,
5024		.maxlen		= sizeof(gid_t),
5025		.mode		= 0644,
5026		.proc_handler	= proc_dointvec,
5027	},
5028	{
5029		.procname	= "nr_overcommit_hugepages",
5030		.data		= NULL,
5031		.maxlen		= sizeof(unsigned long),
5032		.mode		= 0644,
5033		.proc_handler	= hugetlb_overcommit_handler,
5034	},
5035	{ }
5036};
5037
5038static void hugetlb_sysctl_init(void)
5039{
5040	register_sysctl_init("vm", hugetlb_table);
5041}
5042#endif /* CONFIG_SYSCTL */
5043
5044void hugetlb_report_meminfo(struct seq_file *m)
5045{
5046	struct hstate *h;
5047	unsigned long total = 0;
5048
5049	if (!hugepages_supported())
5050		return;
5051
5052	for_each_hstate(h) {
5053		unsigned long count = h->nr_huge_pages;
5054
5055		total += huge_page_size(h) * count;
5056
5057		if (h == &default_hstate)
5058			seq_printf(m,
5059				   "HugePages_Total:   %5lu\n"
5060				   "HugePages_Free:    %5lu\n"
5061				   "HugePages_Rsvd:    %5lu\n"
5062				   "HugePages_Surp:    %5lu\n"
5063				   "Hugepagesize:   %8lu kB\n",
5064				   count,
5065				   h->free_huge_pages,
5066				   h->resv_huge_pages,
5067				   h->surplus_huge_pages,
5068				   huge_page_size(h) / SZ_1K);
5069	}
5070
5071	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5072}
5073
5074int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5075{
5076	struct hstate *h = &default_hstate;
5077
5078	if (!hugepages_supported())
5079		return 0;
5080
5081	return sysfs_emit_at(buf, len,
5082			     "Node %d HugePages_Total: %5u\n"
5083			     "Node %d HugePages_Free:  %5u\n"
5084			     "Node %d HugePages_Surp:  %5u\n",
5085			     nid, h->nr_huge_pages_node[nid],
5086			     nid, h->free_huge_pages_node[nid],
5087			     nid, h->surplus_huge_pages_node[nid]);
5088}
5089
5090void hugetlb_show_meminfo_node(int nid)
5091{
5092	struct hstate *h;
 
5093
5094	if (!hugepages_supported())
5095		return;
5096
5097	for_each_hstate(h)
5098		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5099			nid,
5100			h->nr_huge_pages_node[nid],
5101			h->free_huge_pages_node[nid],
5102			h->surplus_huge_pages_node[nid],
5103			huge_page_size(h) / SZ_1K);
 
5104}
5105
5106void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5107{
5108	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5109		   K(atomic_long_read(&mm->hugetlb_usage)));
5110}
5111
5112/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5113unsigned long hugetlb_total_pages(void)
5114{
5115	struct hstate *h;
5116	unsigned long nr_total_pages = 0;
5117
5118	for_each_hstate(h)
5119		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5120	return nr_total_pages;
5121}
5122
5123static int hugetlb_acct_memory(struct hstate *h, long delta)
5124{
5125	int ret = -ENOMEM;
5126
5127	if (!delta)
5128		return 0;
5129
5130	spin_lock_irq(&hugetlb_lock);
5131	/*
5132	 * When cpuset is configured, it breaks the strict hugetlb page
5133	 * reservation as the accounting is done on a global variable. Such
5134	 * reservation is completely rubbish in the presence of cpuset because
5135	 * the reservation is not checked against page availability for the
5136	 * current cpuset. Application can still potentially OOM'ed by kernel
5137	 * with lack of free htlb page in cpuset that the task is in.
5138	 * Attempt to enforce strict accounting with cpuset is almost
5139	 * impossible (or too ugly) because cpuset is too fluid that
5140	 * task or memory node can be dynamically moved between cpusets.
5141	 *
5142	 * The change of semantics for shared hugetlb mapping with cpuset is
5143	 * undesirable. However, in order to preserve some of the semantics,
5144	 * we fall back to check against current free page availability as
5145	 * a best attempt and hopefully to minimize the impact of changing
5146	 * semantics that cpuset has.
5147	 *
5148	 * Apart from cpuset, we also have memory policy mechanism that
5149	 * also determines from which node the kernel will allocate memory
5150	 * in a NUMA system. So similar to cpuset, we also should consider
5151	 * the memory policy of the current task. Similar to the description
5152	 * above.
5153	 */
5154	if (delta > 0) {
5155		if (gather_surplus_pages(h, delta) < 0)
5156			goto out;
5157
5158		if (delta > allowed_mems_nr(h)) {
5159			return_unused_surplus_pages(h, delta);
5160			goto out;
5161		}
5162	}
5163
5164	ret = 0;
5165	if (delta < 0)
5166		return_unused_surplus_pages(h, (unsigned long) -delta);
5167
5168out:
5169	spin_unlock_irq(&hugetlb_lock);
5170	return ret;
5171}
5172
5173static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5174{
5175	struct resv_map *resv = vma_resv_map(vma);
5176
5177	/*
5178	 * HPAGE_RESV_OWNER indicates a private mapping.
5179	 * This new VMA should share its siblings reservation map if present.
5180	 * The VMA will only ever have a valid reservation map pointer where
5181	 * it is being copied for another still existing VMA.  As that VMA
5182	 * has a reference to the reservation map it cannot disappear until
5183	 * after this open call completes.  It is therefore safe to take a
5184	 * new reference here without additional locking.
5185	 */
5186	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5187		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5188		kref_get(&resv->refs);
5189	}
5190
5191	/*
5192	 * vma_lock structure for sharable mappings is vma specific.
5193	 * Clear old pointer (if copied via vm_area_dup) and allocate
5194	 * new structure.  Before clearing, make sure vma_lock is not
5195	 * for this vma.
5196	 */
5197	if (vma->vm_flags & VM_MAYSHARE) {
5198		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5199
5200		if (vma_lock) {
5201			if (vma_lock->vma != vma) {
5202				vma->vm_private_data = NULL;
5203				hugetlb_vma_lock_alloc(vma);
5204			} else
5205				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5206		} else
5207			hugetlb_vma_lock_alloc(vma);
5208	}
5209}
5210
5211static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5212{
5213	struct hstate *h = hstate_vma(vma);
5214	struct resv_map *resv;
5215	struct hugepage_subpool *spool = subpool_vma(vma);
5216	unsigned long reserve, start, end;
5217	long gbl_reserve;
5218
5219	hugetlb_vma_lock_free(vma);
5220
5221	resv = vma_resv_map(vma);
5222	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5223		return;
5224
5225	start = vma_hugecache_offset(h, vma, vma->vm_start);
5226	end = vma_hugecache_offset(h, vma, vma->vm_end);
5227
5228	reserve = (end - start) - region_count(resv, start, end);
5229	hugetlb_cgroup_uncharge_counter(resv, start, end);
 
 
5230	if (reserve) {
5231		/*
5232		 * Decrement reserve counts.  The global reserve count may be
5233		 * adjusted if the subpool has a minimum size.
5234		 */
5235		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5236		hugetlb_acct_memory(h, -gbl_reserve);
5237	}
5238
5239	kref_put(&resv->refs, resv_map_release);
5240}
5241
5242static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5243{
5244	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5245		return -EINVAL;
5246
5247	/*
5248	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5249	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5250	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5251	 */
5252	if (addr & ~PUD_MASK) {
5253		/*
5254		 * hugetlb_vm_op_split is called right before we attempt to
5255		 * split the VMA. We will need to unshare PMDs in the old and
5256		 * new VMAs, so let's unshare before we split.
5257		 */
5258		unsigned long floor = addr & PUD_MASK;
5259		unsigned long ceil = floor + PUD_SIZE;
5260
5261		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5262			hugetlb_unshare_pmds(vma, floor, ceil);
5263	}
5264
5265	return 0;
5266}
5267
5268static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5269{
5270	return huge_page_size(hstate_vma(vma));
 
 
5271}
5272
5273/*
5274 * We cannot handle pagefaults against hugetlb pages at all.  They cause
5275 * handle_mm_fault() to try to instantiate regular-sized pages in the
5276 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5277 * this far.
5278 */
5279static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5280{
5281	BUG();
5282	return 0;
5283}
5284
5285/*
5286 * When a new function is introduced to vm_operations_struct and added
5287 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5288 * This is because under System V memory model, mappings created via
5289 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5290 * their original vm_ops are overwritten with shm_vm_ops.
5291 */
5292const struct vm_operations_struct hugetlb_vm_ops = {
5293	.fault = hugetlb_vm_op_fault,
5294	.open = hugetlb_vm_op_open,
5295	.close = hugetlb_vm_op_close,
5296	.may_split = hugetlb_vm_op_split,
5297	.pagesize = hugetlb_vm_op_pagesize,
5298};
5299
5300static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5301				int writable)
5302{
5303	pte_t entry;
5304	unsigned int shift = huge_page_shift(hstate_vma(vma));
5305
5306	if (writable) {
5307		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5308					 vma->vm_page_prot)));
5309	} else {
5310		entry = huge_pte_wrprotect(mk_huge_pte(page,
5311					   vma->vm_page_prot));
5312	}
5313	entry = pte_mkyoung(entry);
5314	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
 
5315
5316	return entry;
5317}
5318
5319static void set_huge_ptep_writable(struct vm_area_struct *vma,
5320				   unsigned long address, pte_t *ptep)
5321{
5322	pte_t entry;
5323
5324	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5325	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5326		update_mmu_cache(vma, address, ptep);
5327}
5328
5329bool is_hugetlb_entry_migration(pte_t pte)
5330{
5331	swp_entry_t swp;
5332
5333	if (huge_pte_none(pte) || pte_present(pte))
5334		return false;
5335	swp = pte_to_swp_entry(pte);
5336	if (is_migration_entry(swp))
5337		return true;
5338	else
5339		return false;
5340}
5341
5342bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5343{
5344	swp_entry_t swp;
5345
5346	if (huge_pte_none(pte) || pte_present(pte))
5347		return false;
5348	swp = pte_to_swp_entry(pte);
5349	if (is_hwpoison_entry(swp))
5350		return true;
5351	else
5352		return false;
5353}
5354
5355static void
5356hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5357		      struct folio *new_folio, pte_t old, unsigned long sz)
5358{
5359	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5360
5361	__folio_mark_uptodate(new_folio);
5362	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5363	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5364		newpte = huge_pte_mkuffd_wp(newpte);
5365	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5366	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5367	folio_set_hugetlb_migratable(new_folio);
5368}
5369
5370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5371			    struct vm_area_struct *dst_vma,
5372			    struct vm_area_struct *src_vma)
5373{
5374	pte_t *src_pte, *dst_pte, entry;
5375	struct folio *pte_folio;
5376	unsigned long addr;
5377	bool cow = is_cow_mapping(src_vma->vm_flags);
5378	struct hstate *h = hstate_vma(src_vma);
5379	unsigned long sz = huge_page_size(h);
5380	unsigned long npages = pages_per_huge_page(h);
5381	struct mmu_notifier_range range;
5382	unsigned long last_addr_mask;
5383	int ret = 0;
5384
 
 
5385	if (cow) {
5386		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5387					src_vma->vm_start,
5388					src_vma->vm_end);
5389		mmu_notifier_invalidate_range_start(&range);
5390		vma_assert_write_locked(src_vma);
5391		raw_write_seqcount_begin(&src->write_protect_seq);
5392	} else {
5393		/*
5394		 * For shared mappings the vma lock must be held before
5395		 * calling hugetlb_walk() in the src vma. Otherwise, the
5396		 * returned ptep could go away if part of a shared pmd and
5397		 * another thread calls huge_pmd_unshare.
5398		 */
5399		hugetlb_vma_lock_read(src_vma);
5400	}
5401
5402	last_addr_mask = hugetlb_mask_last_page(h);
5403	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5404		spinlock_t *src_ptl, *dst_ptl;
5405		src_pte = hugetlb_walk(src_vma, addr, sz);
5406		if (!src_pte) {
5407			addr |= last_addr_mask;
5408			continue;
5409		}
5410		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5411		if (!dst_pte) {
5412			ret = -ENOMEM;
5413			break;
5414		}
5415
5416		/*
5417		 * If the pagetables are shared don't copy or take references.
 
5418		 *
5419		 * dst_pte == src_pte is the common case of src/dest sharing.
5420		 * However, src could have 'unshared' and dst shares with
5421		 * another vma. So page_count of ptep page is checked instead
5422		 * to reliably determine whether pte is shared.
 
5423		 */
5424		if (page_count(virt_to_page(dst_pte)) > 1) {
5425			addr |= last_addr_mask;
5426			continue;
5427		}
5428
5429		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5430		src_ptl = huge_pte_lockptr(h, src, src_pte);
5431		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5432		entry = huge_ptep_get(src_pte);
5433again:
5434		if (huge_pte_none(entry)) {
5435			/*
5436			 * Skip if src entry none.
 
 
5437			 */
5438			;
5439		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5440			if (!userfaultfd_wp(dst_vma))
5441				entry = huge_pte_clear_uffd_wp(entry);
5442			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5443		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5444			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5445			bool uffd_wp = pte_swp_uffd_wp(entry);
5446
5447			if (!is_readable_migration_entry(swp_entry) && cow) {
5448				/*
5449				 * COW mappings require pages in both
5450				 * parent and child to be set to read.
5451				 */
5452				swp_entry = make_readable_migration_entry(
5453							swp_offset(swp_entry));
5454				entry = swp_entry_to_pte(swp_entry);
5455				if (userfaultfd_wp(src_vma) && uffd_wp)
5456					entry = pte_swp_mkuffd_wp(entry);
5457				set_huge_pte_at(src, addr, src_pte, entry, sz);
5458			}
5459			if (!userfaultfd_wp(dst_vma))
5460				entry = huge_pte_clear_uffd_wp(entry);
5461			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5462		} else if (unlikely(is_pte_marker(entry))) {
5463			pte_marker marker = copy_pte_marker(
5464				pte_to_swp_entry(entry), dst_vma);
5465
5466			if (marker)
5467				set_huge_pte_at(dst, addr, dst_pte,
5468						make_pte_marker(marker), sz);
5469		} else {
5470			entry = huge_ptep_get(src_pte);
5471			pte_folio = page_folio(pte_page(entry));
5472			folio_get(pte_folio);
5473
5474			/*
5475			 * Failing to duplicate the anon rmap is a rare case
5476			 * where we see pinned hugetlb pages while they're
5477			 * prone to COW. We need to do the COW earlier during
5478			 * fork.
5479			 *
5480			 * When pre-allocating the page or copying data, we
5481			 * need to be without the pgtable locks since we could
5482			 * sleep during the process.
5483			 */
5484			if (!folio_test_anon(pte_folio)) {
5485				hugetlb_add_file_rmap(pte_folio);
5486			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5487				pte_t src_pte_old = entry;
5488				struct folio *new_folio;
5489
5490				spin_unlock(src_ptl);
5491				spin_unlock(dst_ptl);
5492				/* Do not use reserve as it's private owned */
5493				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5494				if (IS_ERR(new_folio)) {
5495					folio_put(pte_folio);
5496					ret = PTR_ERR(new_folio);
5497					break;
5498				}
5499				ret = copy_user_large_folio(new_folio,
5500							    pte_folio,
5501							    addr, dst_vma);
5502				folio_put(pte_folio);
5503				if (ret) {
5504					folio_put(new_folio);
5505					break;
5506				}
5507
5508				/* Install the new hugetlb folio if src pte stable */
5509				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5510				src_ptl = huge_pte_lockptr(h, src, src_pte);
5511				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5512				entry = huge_ptep_get(src_pte);
5513				if (!pte_same(src_pte_old, entry)) {
5514					restore_reserve_on_error(h, dst_vma, addr,
5515								new_folio);
5516					folio_put(new_folio);
5517					/* huge_ptep of dst_pte won't change as in child */
5518					goto again;
5519				}
5520				hugetlb_install_folio(dst_vma, dst_pte, addr,
5521						      new_folio, src_pte_old, sz);
5522				spin_unlock(src_ptl);
5523				spin_unlock(dst_ptl);
5524				continue;
5525			}
5526
5527			if (cow) {
5528				/*
5529				 * No need to notify as we are downgrading page
5530				 * table protection not changing it to point
5531				 * to a new page.
5532				 *
5533				 * See Documentation/mm/mmu_notifier.rst
5534				 */
5535				huge_ptep_set_wrprotect(src, addr, src_pte);
5536				entry = huge_pte_wrprotect(entry);
5537			}
5538
5539			if (!userfaultfd_wp(dst_vma))
5540				entry = huge_pte_clear_uffd_wp(entry);
5541
5542			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5543			hugetlb_count_add(npages, dst);
5544		}
5545		spin_unlock(src_ptl);
5546		spin_unlock(dst_ptl);
5547	}
5548
5549	if (cow) {
5550		raw_write_seqcount_end(&src->write_protect_seq);
5551		mmu_notifier_invalidate_range_end(&range);
5552	} else {
5553		hugetlb_vma_unlock_read(src_vma);
5554	}
5555
5556	return ret;
5557}
5558
5559static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5560			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5561			  unsigned long sz)
5562{
5563	struct hstate *h = hstate_vma(vma);
5564	struct mm_struct *mm = vma->vm_mm;
5565	spinlock_t *src_ptl, *dst_ptl;
5566	pte_t pte;
5567
5568	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5569	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5570
5571	/*
5572	 * We don't have to worry about the ordering of src and dst ptlocks
5573	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5574	 */
5575	if (src_ptl != dst_ptl)
5576		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5577
5578	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5579	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5580
5581	if (src_ptl != dst_ptl)
5582		spin_unlock(src_ptl);
5583	spin_unlock(dst_ptl);
5584}
5585
5586int move_hugetlb_page_tables(struct vm_area_struct *vma,
5587			     struct vm_area_struct *new_vma,
5588			     unsigned long old_addr, unsigned long new_addr,
5589			     unsigned long len)
5590{
5591	struct hstate *h = hstate_vma(vma);
5592	struct address_space *mapping = vma->vm_file->f_mapping;
5593	unsigned long sz = huge_page_size(h);
5594	struct mm_struct *mm = vma->vm_mm;
5595	unsigned long old_end = old_addr + len;
5596	unsigned long last_addr_mask;
5597	pte_t *src_pte, *dst_pte;
5598	struct mmu_notifier_range range;
5599	bool shared_pmd = false;
5600
5601	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5602				old_end);
5603	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5604	/*
5605	 * In case of shared PMDs, we should cover the maximum possible
5606	 * range.
5607	 */
5608	flush_cache_range(vma, range.start, range.end);
5609
5610	mmu_notifier_invalidate_range_start(&range);
5611	last_addr_mask = hugetlb_mask_last_page(h);
5612	/* Prevent race with file truncation */
5613	hugetlb_vma_lock_write(vma);
5614	i_mmap_lock_write(mapping);
5615	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5616		src_pte = hugetlb_walk(vma, old_addr, sz);
5617		if (!src_pte) {
5618			old_addr |= last_addr_mask;
5619			new_addr |= last_addr_mask;
5620			continue;
5621		}
5622		if (huge_pte_none(huge_ptep_get(src_pte)))
5623			continue;
5624
5625		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5626			shared_pmd = true;
5627			old_addr |= last_addr_mask;
5628			new_addr |= last_addr_mask;
5629			continue;
5630		}
5631
5632		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5633		if (!dst_pte)
5634			break;
5635
5636		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5637	}
5638
5639	if (shared_pmd)
5640		flush_hugetlb_tlb_range(vma, range.start, range.end);
5641	else
5642		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5643	mmu_notifier_invalidate_range_end(&range);
5644	i_mmap_unlock_write(mapping);
5645	hugetlb_vma_unlock_write(vma);
5646
5647	return len + old_addr - old_end;
5648}
5649
5650void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5651			    unsigned long start, unsigned long end,
5652			    struct page *ref_page, zap_flags_t zap_flags)
5653{
5654	struct mm_struct *mm = vma->vm_mm;
5655	unsigned long address;
5656	pte_t *ptep;
5657	pte_t pte;
5658	spinlock_t *ptl;
5659	struct page *page;
5660	struct hstate *h = hstate_vma(vma);
5661	unsigned long sz = huge_page_size(h);
5662	bool adjust_reservation = false;
5663	unsigned long last_addr_mask;
5664	bool force_flush = false;
5665
5666	WARN_ON(!is_vm_hugetlb_page(vma));
5667	BUG_ON(start & ~huge_page_mask(h));
5668	BUG_ON(end & ~huge_page_mask(h));
5669
5670	/*
5671	 * This is a hugetlb vma, all the pte entries should point
5672	 * to huge page.
5673	 */
5674	tlb_change_page_size(tlb, sz);
5675	tlb_start_vma(tlb, vma);
5676
5677	last_addr_mask = hugetlb_mask_last_page(h);
 
 
 
 
 
 
5678	address = start;
5679	for (; address < end; address += sz) {
5680		ptep = hugetlb_walk(vma, address, sz);
5681		if (!ptep) {
5682			address |= last_addr_mask;
5683			continue;
5684		}
5685
5686		ptl = huge_pte_lock(h, mm, ptep);
5687		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5688			spin_unlock(ptl);
5689			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5690			force_flush = true;
5691			address |= last_addr_mask;
 
5692			continue;
5693		}
5694
5695		pte = huge_ptep_get(ptep);
5696		if (huge_pte_none(pte)) {
5697			spin_unlock(ptl);
5698			continue;
5699		}
5700
5701		/*
5702		 * Migrating hugepage or HWPoisoned hugepage is already
5703		 * unmapped and its refcount is dropped, so just clear pte here.
5704		 */
5705		if (unlikely(!pte_present(pte))) {
5706			/*
5707			 * If the pte was wr-protected by uffd-wp in any of the
5708			 * swap forms, meanwhile the caller does not want to
5709			 * drop the uffd-wp bit in this zap, then replace the
5710			 * pte with a marker.
5711			 */
5712			if (pte_swp_uffd_wp_any(pte) &&
5713			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5714				set_huge_pte_at(mm, address, ptep,
5715						make_pte_marker(PTE_MARKER_UFFD_WP),
5716						sz);
5717			else
5718				huge_pte_clear(mm, address, ptep, sz);
5719			spin_unlock(ptl);
5720			continue;
5721		}
5722
5723		page = pte_page(pte);
5724		/*
5725		 * If a reference page is supplied, it is because a specific
5726		 * page is being unmapped, not a range. Ensure the page we
5727		 * are about to unmap is the actual page of interest.
5728		 */
5729		if (ref_page) {
5730			if (page != ref_page) {
5731				spin_unlock(ptl);
5732				continue;
5733			}
5734			/*
5735			 * Mark the VMA as having unmapped its page so that
5736			 * future faults in this VMA will fail rather than
5737			 * looking like data was lost
5738			 */
5739			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5740		}
5741
5742		pte = huge_ptep_get_and_clear(mm, address, ptep);
5743		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5744		if (huge_pte_dirty(pte))
5745			set_page_dirty(page);
5746		/* Leave a uffd-wp pte marker if needed */
5747		if (huge_pte_uffd_wp(pte) &&
5748		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5749			set_huge_pte_at(mm, address, ptep,
5750					make_pte_marker(PTE_MARKER_UFFD_WP),
5751					sz);
5752		hugetlb_count_sub(pages_per_huge_page(h), mm);
5753		hugetlb_remove_rmap(page_folio(page));
5754
5755		/*
5756		 * Restore the reservation for anonymous page, otherwise the
5757		 * backing page could be stolen by someone.
5758		 * If there we are freeing a surplus, do not set the restore
5759		 * reservation bit.
5760		 */
5761		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5762		    folio_test_anon(page_folio(page))) {
5763			folio_set_hugetlb_restore_reserve(page_folio(page));
5764			/* Reservation to be adjusted after the spin lock */
5765			adjust_reservation = true;
5766		}
5767
5768		spin_unlock(ptl);
5769
5770		/*
5771		 * Adjust the reservation for the region that will have the
5772		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5773		 * resv->adds_in_progress if it succeeds. If this is not done,
5774		 * do_exit() will not see it, and will keep the reservation
5775		 * forever.
5776		 */
5777		if (adjust_reservation && vma_needs_reservation(h, vma, address))
5778			vma_add_reservation(h, vma, address);
5779
5780		tlb_remove_page_size(tlb, page, huge_page_size(h));
5781		/*
5782		 * Bail out after unmapping reference page if supplied
5783		 */
5784		if (ref_page)
5785			break;
5786	}
 
5787	tlb_end_vma(tlb, vma);
 
5788
5789	/*
5790	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5791	 * could defer the flush until now, since by holding i_mmap_rwsem we
5792	 * guaranteed that the last refernece would not be dropped. But we must
5793	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5794	 * dropped and the last reference to the shared PMDs page might be
5795	 * dropped as well.
5796	 *
5797	 * In theory we could defer the freeing of the PMD pages as well, but
5798	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5799	 * detect sharing, so we cannot defer the release of the page either.
5800	 * Instead, do flush now.
 
 
 
5801	 */
5802	if (force_flush)
5803		tlb_flush_mmu_tlbonly(tlb);
5804}
5805
5806void __hugetlb_zap_begin(struct vm_area_struct *vma,
5807			 unsigned long *start, unsigned long *end)
5808{
5809	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5810		return;
5811
5812	adjust_range_if_pmd_sharing_possible(vma, start, end);
5813	hugetlb_vma_lock_write(vma);
5814	if (vma->vm_file)
5815		i_mmap_lock_write(vma->vm_file->f_mapping);
5816}
5817
5818void __hugetlb_zap_end(struct vm_area_struct *vma,
5819		       struct zap_details *details)
5820{
5821	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5822
5823	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5824		return;
5825
5826	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5827		/*
5828		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5829		 * When the vma_lock is freed, this makes the vma ineligible
5830		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5831		 * pmd sharing.  This is important as page tables for this
5832		 * unmapped range will be asynchrously deleted.  If the page
5833		 * tables are shared, there will be issues when accessed by
5834		 * someone else.
5835		 */
5836		__hugetlb_vma_unlock_write_free(vma);
5837	} else {
5838		hugetlb_vma_unlock_write(vma);
5839	}
5840
5841	if (vma->vm_file)
5842		i_mmap_unlock_write(vma->vm_file->f_mapping);
5843}
5844
5845void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5846			  unsigned long end, struct page *ref_page,
5847			  zap_flags_t zap_flags)
5848{
5849	struct mmu_notifier_range range;
5850	struct mmu_gather tlb;
 
 
5851
5852	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5853				start, end);
5854	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5855	mmu_notifier_invalidate_range_start(&range);
5856	tlb_gather_mmu(&tlb, vma->vm_mm);
 
 
 
5857
5858	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5859
5860	mmu_notifier_invalidate_range_end(&range);
5861	tlb_finish_mmu(&tlb);
 
5862}
5863
5864/*
5865 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5866 * mapping it owns the reserve page for. The intention is to unmap the page
5867 * from other VMAs and let the children be SIGKILLed if they are faulting the
5868 * same region.
5869 */
5870static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5871			      struct page *page, unsigned long address)
5872{
5873	struct hstate *h = hstate_vma(vma);
5874	struct vm_area_struct *iter_vma;
5875	struct address_space *mapping;
5876	pgoff_t pgoff;
5877
5878	/*
5879	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5880	 * from page cache lookup which is in HPAGE_SIZE units.
5881	 */
5882	address = address & huge_page_mask(h);
5883	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5884			vma->vm_pgoff;
5885	mapping = vma->vm_file->f_mapping;
5886
5887	/*
5888	 * Take the mapping lock for the duration of the table walk. As
5889	 * this mapping should be shared between all the VMAs,
5890	 * __unmap_hugepage_range() is called as the lock is already held
5891	 */
5892	i_mmap_lock_write(mapping);
5893	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5894		/* Do not unmap the current VMA */
5895		if (iter_vma == vma)
5896			continue;
5897
5898		/*
5899		 * Shared VMAs have their own reserves and do not affect
5900		 * MAP_PRIVATE accounting but it is possible that a shared
5901		 * VMA is using the same page so check and skip such VMAs.
5902		 */
5903		if (iter_vma->vm_flags & VM_MAYSHARE)
5904			continue;
5905
5906		/*
5907		 * Unmap the page from other VMAs without their own reserves.
5908		 * They get marked to be SIGKILLed if they fault in these
5909		 * areas. This is because a future no-page fault on this VMA
5910		 * could insert a zeroed page instead of the data existing
5911		 * from the time of fork. This would look like data corruption
5912		 */
5913		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5914			unmap_hugepage_range(iter_vma, address,
5915					     address + huge_page_size(h), page, 0);
5916	}
5917	i_mmap_unlock_write(mapping);
5918}
5919
5920/*
5921 * hugetlb_wp() should be called with page lock of the original hugepage held.
5922 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5923 * cannot race with other handlers or page migration.
5924 * Keep the pte_same checks anyway to make transition from the mutex easier.
5925 */
5926static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5927		       unsigned long address, pte_t *ptep, unsigned int flags,
5928		       struct folio *pagecache_folio, spinlock_t *ptl,
5929		       struct vm_fault *vmf)
5930{
5931	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5932	pte_t pte = huge_ptep_get(ptep);
5933	struct hstate *h = hstate_vma(vma);
5934	struct folio *old_folio;
5935	struct folio *new_folio;
5936	int outside_reserve = 0;
5937	vm_fault_t ret = 0;
5938	unsigned long haddr = address & huge_page_mask(h);
5939	struct mmu_notifier_range range;
5940
5941	/*
5942	 * Never handle CoW for uffd-wp protected pages.  It should be only
5943	 * handled when the uffd-wp protection is removed.
5944	 *
5945	 * Note that only the CoW optimization path (in hugetlb_no_page())
5946	 * can trigger this, because hugetlb_fault() will always resolve
5947	 * uffd-wp bit first.
5948	 */
5949	if (!unshare && huge_pte_uffd_wp(pte))
5950		return 0;
5951
5952	/*
5953	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5954	 * PTE mapped R/O such as maybe_mkwrite() would do.
5955	 */
5956	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5957		return VM_FAULT_SIGSEGV;
5958
5959	/* Let's take out MAP_SHARED mappings first. */
5960	if (vma->vm_flags & VM_MAYSHARE) {
 
 
 
5961		set_huge_ptep_writable(vma, haddr, ptep);
5962		return 0;
5963	}
5964
5965	old_folio = page_folio(pte_page(pte));
5966
5967	delayacct_wpcopy_start();
5968
5969retry_avoidcopy:
5970	/*
5971	 * If no-one else is actually using this page, we're the exclusive
5972	 * owner and can reuse this page.
5973	 */
5974	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5975		if (!PageAnonExclusive(&old_folio->page)) {
5976			folio_move_anon_rmap(old_folio, vma);
5977			SetPageAnonExclusive(&old_folio->page);
5978		}
5979		if (likely(!unshare))
5980			set_huge_ptep_writable(vma, haddr, ptep);
5981
5982		delayacct_wpcopy_end();
5983		return 0;
5984	}
5985	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5986		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5987
5988	/*
5989	 * If the process that created a MAP_PRIVATE mapping is about to
5990	 * perform a COW due to a shared page count, attempt to satisfy
5991	 * the allocation without using the existing reserves. The pagecache
5992	 * page is used to determine if the reserve at this address was
5993	 * consumed or not. If reserves were used, a partial faulted mapping
5994	 * at the time of fork() could consume its reserves on COW instead
5995	 * of the full address range.
5996	 */
5997	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5998			old_folio != pagecache_folio)
5999		outside_reserve = 1;
6000
6001	folio_get(old_folio);
6002
6003	/*
6004	 * Drop page table lock as buddy allocator may be called. It will
6005	 * be acquired again before returning to the caller, as expected.
6006	 */
6007	spin_unlock(ptl);
6008	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
6009
6010	if (IS_ERR(new_folio)) {
6011		/*
6012		 * If a process owning a MAP_PRIVATE mapping fails to COW,
6013		 * it is due to references held by a child and an insufficient
6014		 * huge page pool. To guarantee the original mappers
6015		 * reliability, unmap the page from child processes. The child
6016		 * may get SIGKILLed if it later faults.
6017		 */
6018		if (outside_reserve) {
6019			struct address_space *mapping = vma->vm_file->f_mapping;
6020			pgoff_t idx;
6021			u32 hash;
6022
6023			folio_put(old_folio);
6024			/*
6025			 * Drop hugetlb_fault_mutex and vma_lock before
6026			 * unmapping.  unmapping needs to hold vma_lock
6027			 * in write mode.  Dropping vma_lock in read mode
6028			 * here is OK as COW mappings do not interact with
6029			 * PMD sharing.
6030			 *
6031			 * Reacquire both after unmap operation.
6032			 */
6033			idx = vma_hugecache_offset(h, vma, haddr);
6034			hash = hugetlb_fault_mutex_hash(mapping, idx);
6035			hugetlb_vma_unlock_read(vma);
6036			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6037
6038			unmap_ref_private(mm, vma, &old_folio->page, haddr);
6039
6040			mutex_lock(&hugetlb_fault_mutex_table[hash]);
6041			hugetlb_vma_lock_read(vma);
6042			spin_lock(ptl);
6043			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6044			if (likely(ptep &&
6045				   pte_same(huge_ptep_get(ptep), pte)))
6046				goto retry_avoidcopy;
6047			/*
6048			 * race occurs while re-acquiring page table
6049			 * lock, and our job is done.
6050			 */
6051			delayacct_wpcopy_end();
6052			return 0;
6053		}
6054
6055		ret = vmf_error(PTR_ERR(new_folio));
6056		goto out_release_old;
6057	}
6058
6059	/*
6060	 * When the original hugepage is shared one, it does not have
6061	 * anon_vma prepared.
6062	 */
6063	ret = vmf_anon_prepare(vmf);
6064	if (unlikely(ret))
6065		goto out_release_all;
 
6066
6067	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
6068		ret = VM_FAULT_HWPOISON_LARGE;
6069		goto out_release_all;
6070	}
6071	__folio_mark_uptodate(new_folio);
6072
6073	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
6074				haddr + huge_page_size(h));
6075	mmu_notifier_invalidate_range_start(&range);
6076
6077	/*
6078	 * Retake the page table lock to check for racing updates
6079	 * before the page tables are altered
6080	 */
6081	spin_lock(ptl);
6082	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6083	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
6084		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6085
6086		/* Break COW or unshare */
6087		huge_ptep_clear_flush(vma, haddr, ptep);
6088		hugetlb_remove_rmap(old_folio);
6089		hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
6090		if (huge_pte_uffd_wp(pte))
6091			newpte = huge_pte_mkuffd_wp(newpte);
6092		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
6093		folio_set_hugetlb_migratable(new_folio);
6094		/* Make the old page be freed below */
6095		new_folio = old_folio;
6096	}
6097	spin_unlock(ptl);
6098	mmu_notifier_invalidate_range_end(&range);
6099out_release_all:
6100	/*
6101	 * No restore in case of successful pagetable update (Break COW or
6102	 * unshare)
6103	 */
6104	if (new_folio != old_folio)
6105		restore_reserve_on_error(h, vma, haddr, new_folio);
6106	folio_put(new_folio);
6107out_release_old:
6108	folio_put(old_folio);
6109
6110	spin_lock(ptl); /* Caller expects lock to be held */
 
 
 
 
 
 
 
 
 
 
 
 
6111
6112	delayacct_wpcopy_end();
6113	return ret;
6114}
6115
6116/*
6117 * Return whether there is a pagecache page to back given address within VMA.
 
6118 */
6119static bool hugetlbfs_pagecache_present(struct hstate *h,
6120			struct vm_area_struct *vma, unsigned long address)
6121{
6122	struct address_space *mapping = vma->vm_file->f_mapping;
6123	pgoff_t idx = linear_page_index(vma, address);
6124	struct folio *folio;
 
 
 
6125
6126	folio = filemap_get_folio(mapping, idx);
6127	if (IS_ERR(folio))
6128		return false;
6129	folio_put(folio);
6130	return true;
6131}
6132
6133int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6134			   pgoff_t idx)
6135{
6136	struct inode *inode = mapping->host;
6137	struct hstate *h = hstate_inode(inode);
6138	int err;
6139
6140	idx <<= huge_page_order(h);
6141	__folio_set_locked(folio);
6142	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6143
6144	if (unlikely(err)) {
6145		__folio_clear_locked(folio);
6146		return err;
6147	}
6148	folio_clear_hugetlb_restore_reserve(folio);
6149
6150	/*
6151	 * mark folio dirty so that it will not be removed from cache/file
6152	 * by non-hugetlbfs specific code paths.
6153	 */
6154	folio_mark_dirty(folio);
6155
6156	spin_lock(&inode->i_lock);
6157	inode->i_blocks += blocks_per_huge_page(h);
6158	spin_unlock(&inode->i_lock);
6159	return 0;
6160}
6161
6162static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6163						  struct address_space *mapping,
6164						  unsigned long reason)
6165{
6166	u32 hash;
6167
6168	/*
6169	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6170	 * userfault. Also mmap_lock could be dropped due to handling
6171	 * userfault, any vma operation should be careful from here.
6172	 */
6173	hugetlb_vma_unlock_read(vmf->vma);
6174	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6175	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6176	return handle_userfault(vmf, reason);
6177}
6178
6179/*
6180 * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6181 * false if pte changed or is changing.
6182 */
6183static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6184			       pte_t *ptep, pte_t old_pte)
6185{
6186	spinlock_t *ptl;
6187	bool same;
6188
6189	ptl = huge_pte_lock(h, mm, ptep);
6190	same = pte_same(huge_ptep_get(ptep), old_pte);
6191	spin_unlock(ptl);
6192
6193	return same;
6194}
6195
6196static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6197			struct vm_area_struct *vma,
6198			struct address_space *mapping, pgoff_t idx,
6199			unsigned long address, pte_t *ptep,
6200			pte_t old_pte, unsigned int flags,
6201			struct vm_fault *vmf)
6202{
6203	struct hstate *h = hstate_vma(vma);
6204	vm_fault_t ret = VM_FAULT_SIGBUS;
6205	int anon_rmap = 0;
6206	unsigned long size;
6207	struct folio *folio;
6208	pte_t new_pte;
6209	spinlock_t *ptl;
6210	unsigned long haddr = address & huge_page_mask(h);
6211	bool new_folio, new_pagecache_folio = false;
6212	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6213
6214	/*
6215	 * Currently, we are forced to kill the process in the event the
6216	 * original mapper has unmapped pages from the child due to a failed
6217	 * COW/unsharing. Warn that such a situation has occurred as it may not
6218	 * be obvious.
6219	 */
6220	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6221		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6222			   current->pid);
6223		goto out;
6224	}
6225
6226	/*
6227	 * Use page lock to guard against racing truncation
6228	 * before we get page_table_lock.
6229	 */
6230	new_folio = false;
6231	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6232	if (IS_ERR(folio)) {
6233		size = i_size_read(mapping->host) >> huge_page_shift(h);
6234		if (idx >= size)
6235			goto out;
6236		/* Check for page in userfault range */
 
 
 
6237		if (userfaultfd_missing(vma)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6238			/*
6239			 * Since hugetlb_no_page() was examining pte
6240			 * without pgtable lock, we need to re-test under
6241			 * lock because the pte may not be stable and could
6242			 * have changed from under us.  Try to detect
6243			 * either changed or during-changing ptes and retry
6244			 * properly when needed.
6245			 *
6246			 * Note that userfaultfd is actually fine with
6247			 * false positives (e.g. caused by pte changed),
6248			 * but not wrong logical events (e.g. caused by
6249			 * reading a pte during changing).  The latter can
6250			 * confuse the userspace, so the strictness is very
6251			 * much preferred.  E.g., MISSING event should
6252			 * never happen on the page after UFFDIO_COPY has
6253			 * correctly installed the page and returned.
6254			 */
6255			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6256				ret = 0;
6257				goto out;
6258			}
6259
6260			return hugetlb_handle_userfault(vmf, mapping,
6261							VM_UFFD_MISSING);
6262		}
6263
6264		if (!(vma->vm_flags & VM_MAYSHARE)) {
6265			ret = vmf_anon_prepare(vmf);
6266			if (unlikely(ret))
6267				goto out;
6268		}
6269
6270		folio = alloc_hugetlb_folio(vma, haddr, 0);
6271		if (IS_ERR(folio)) {
6272			/*
6273			 * Returning error will result in faulting task being
6274			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6275			 * tasks from racing to fault in the same page which
6276			 * could result in false unable to allocate errors.
6277			 * Page migration does not take the fault mutex, but
6278			 * does a clear then write of pte's under page table
6279			 * lock.  Page fault code could race with migration,
6280			 * notice the clear pte and try to allocate a page
6281			 * here.  Before returning error, get ptl and make
6282			 * sure there really is no pte entry.
6283			 */
6284			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6285				ret = vmf_error(PTR_ERR(folio));
6286			else
6287				ret = 0;
 
 
 
 
 
6288			goto out;
6289		}
6290		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6291		__folio_mark_uptodate(folio);
6292		new_folio = true;
6293
6294		if (vma->vm_flags & VM_MAYSHARE) {
6295			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6296			if (err) {
6297				/*
6298				 * err can't be -EEXIST which implies someone
6299				 * else consumed the reservation since hugetlb
6300				 * fault mutex is held when add a hugetlb page
6301				 * to the page cache. So it's safe to call
6302				 * restore_reserve_on_error() here.
6303				 */
6304				restore_reserve_on_error(h, vma, haddr, folio);
6305				folio_put(folio);
6306				ret = VM_FAULT_SIGBUS;
6307				goto out;
6308			}
6309			new_pagecache_folio = true;
6310		} else {
6311			folio_lock(folio);
 
 
 
 
6312			anon_rmap = 1;
6313		}
6314	} else {
6315		/*
6316		 * If memory error occurs between mmap() and fault, some process
6317		 * don't have hwpoisoned swap entry for errored virtual address.
6318		 * So we need to block hugepage fault by PG_hwpoison bit check.
6319		 */
6320		if (unlikely(folio_test_hwpoison(folio))) {
6321			ret = VM_FAULT_HWPOISON_LARGE |
6322				VM_FAULT_SET_HINDEX(hstate_index(h));
6323			goto backout_unlocked;
6324		}
6325
6326		/* Check for page in userfault range. */
6327		if (userfaultfd_minor(vma)) {
6328			folio_unlock(folio);
6329			folio_put(folio);
6330			/* See comment in userfaultfd_missing() block above */
6331			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6332				ret = 0;
6333				goto out;
6334			}
6335			return hugetlb_handle_userfault(vmf, mapping,
6336							VM_UFFD_MINOR);
6337		}
6338	}
6339
6340	/*
6341	 * If we are going to COW a private mapping later, we examine the
6342	 * pending reservations for this page now. This will ensure that
6343	 * any allocations necessary to record that reservation occur outside
6344	 * the spinlock.
6345	 */
6346	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6347		if (vma_needs_reservation(h, vma, haddr) < 0) {
6348			ret = VM_FAULT_OOM;
6349			goto backout_unlocked;
6350		}
6351		/* Just decrements count, does not deallocate */
6352		vma_end_reservation(h, vma, haddr);
6353	}
6354
6355	ptl = huge_pte_lock(h, mm, ptep);
 
 
 
 
6356	ret = 0;
6357	/* If pte changed from under us, retry */
6358	if (!pte_same(huge_ptep_get(ptep), old_pte))
6359		goto backout;
6360
6361	if (anon_rmap)
6362		hugetlb_add_new_anon_rmap(folio, vma, haddr);
6363	else
6364		hugetlb_add_file_rmap(folio);
6365	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
 
6366				&& (vma->vm_flags & VM_SHARED)));
6367	/*
6368	 * If this pte was previously wr-protected, keep it wr-protected even
6369	 * if populated.
6370	 */
6371	if (unlikely(pte_marker_uffd_wp(old_pte)))
6372		new_pte = huge_pte_mkuffd_wp(new_pte);
6373	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6374
6375	hugetlb_count_add(pages_per_huge_page(h), mm);
6376	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6377		/* Optimization, do the COW without a second fault */
6378		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf);
6379	}
6380
6381	spin_unlock(ptl);
6382
6383	/*
6384	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6385	 * found in the pagecache may not have hugetlb_migratable if they have
6386	 * been isolated for migration.
6387	 */
6388	if (new_folio)
6389		folio_set_hugetlb_migratable(folio);
6390
6391	folio_unlock(folio);
6392out:
6393	hugetlb_vma_unlock_read(vma);
6394	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6395	return ret;
6396
6397backout:
6398	spin_unlock(ptl);
6399backout_unlocked:
6400	if (new_folio && !new_pagecache_folio)
6401		restore_reserve_on_error(h, vma, haddr, folio);
6402
6403	folio_unlock(folio);
6404	folio_put(folio);
6405	goto out;
6406}
6407
6408#ifdef CONFIG_SMP
6409u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 
6410{
6411	unsigned long key[2];
6412	u32 hash;
6413
6414	key[0] = (unsigned long) mapping;
6415	key[1] = idx;
6416
6417	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6418
6419	return hash & (num_fault_mutexes - 1);
6420}
6421#else
6422/*
6423 * For uniprocessor systems we always use a single mutex, so just
6424 * return 0 and avoid the hashing overhead.
6425 */
6426u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 
6427{
6428	return 0;
6429}
6430#endif
6431
6432vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6433			unsigned long address, unsigned int flags)
6434{
6435	pte_t *ptep, entry;
6436	spinlock_t *ptl;
6437	vm_fault_t ret;
6438	u32 hash;
6439	struct folio *folio = NULL;
6440	struct folio *pagecache_folio = NULL;
 
6441	struct hstate *h = hstate_vma(vma);
6442	struct address_space *mapping;
6443	int need_wait_lock = 0;
6444	unsigned long haddr = address & huge_page_mask(h);
6445	struct vm_fault vmf = {
6446		.vma = vma,
6447		.address = haddr,
6448		.real_address = address,
6449		.flags = flags,
6450		.pgoff = vma_hugecache_offset(h, vma, haddr),
6451		/* TODO: Track hugetlb faults using vm_fault */
6452
6453		/*
6454		 * Some fields may not be initialized, be careful as it may
6455		 * be hard to debug if called functions make assumptions
6456		 */
6457	};
 
 
 
 
 
 
 
 
 
 
 
 
6458
6459	/*
6460	 * Serialize hugepage allocation and instantiation, so that we don't
6461	 * get spurious allocation failures if two CPUs race to instantiate
6462	 * the same page in the page cache.
6463	 */
6464	mapping = vma->vm_file->f_mapping;
6465	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6466	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6467
6468	/*
6469	 * Acquire vma lock before calling huge_pte_alloc and hold
6470	 * until finished with ptep.  This prevents huge_pmd_unshare from
6471	 * being called elsewhere and making the ptep no longer valid.
6472	 */
6473	hugetlb_vma_lock_read(vma);
6474	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6475	if (!ptep) {
6476		hugetlb_vma_unlock_read(vma);
6477		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6478		return VM_FAULT_OOM;
6479	}
6480
6481	entry = huge_ptep_get(ptep);
6482	if (huge_pte_none_mostly(entry)) {
6483		if (is_pte_marker(entry)) {
6484			pte_marker marker =
6485				pte_marker_get(pte_to_swp_entry(entry));
6486
6487			if (marker & PTE_MARKER_POISONED) {
6488				ret = VM_FAULT_HWPOISON_LARGE;
6489				goto out_mutex;
6490			}
6491		}
6492
6493		/*
6494		 * Other PTE markers should be handled the same way as none PTE.
6495		 *
6496		 * hugetlb_no_page will drop vma lock and hugetlb fault
6497		 * mutex internally, which make us return immediately.
6498		 */
6499		return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address,
6500					ptep, entry, flags, &vmf);
6501	}
6502
6503	ret = 0;
6504
6505	/*
6506	 * entry could be a migration/hwpoison entry at this point, so this
6507	 * check prevents the kernel from going below assuming that we have
6508	 * an active hugepage in pagecache. This goto expects the 2nd page
6509	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6510	 * properly handle it.
6511	 */
6512	if (!pte_present(entry)) {
6513		if (unlikely(is_hugetlb_entry_migration(entry))) {
6514			/*
6515			 * Release the hugetlb fault lock now, but retain
6516			 * the vma lock, because it is needed to guard the
6517			 * huge_pte_lockptr() later in
6518			 * migration_entry_wait_huge(). The vma lock will
6519			 * be released there.
6520			 */
6521			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6522			migration_entry_wait_huge(vma, ptep);
6523			return 0;
6524		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6525			ret = VM_FAULT_HWPOISON_LARGE |
6526			    VM_FAULT_SET_HINDEX(hstate_index(h));
6527		goto out_mutex;
6528	}
6529
6530	/*
6531	 * If we are going to COW/unshare the mapping later, we examine the
6532	 * pending reservations for this page now. This will ensure that any
6533	 * allocations necessary to record that reservation occur outside the
6534	 * spinlock. Also lookup the pagecache page now as it is used to
6535	 * determine if a reservation has been consumed.
 
6536	 */
6537	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6538	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6539		if (vma_needs_reservation(h, vma, haddr) < 0) {
6540			ret = VM_FAULT_OOM;
6541			goto out_mutex;
6542		}
6543		/* Just decrements count, does not deallocate */
6544		vma_end_reservation(h, vma, haddr);
6545
6546		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6547							     vmf.pgoff);
6548		if (IS_ERR(pagecache_folio))
6549			pagecache_folio = NULL;
6550	}
6551
6552	ptl = huge_pte_lock(h, mm, ptep);
6553
6554	/* Check for a racing update before calling hugetlb_wp() */
6555	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6556		goto out_ptl;
6557
6558	/* Handle userfault-wp first, before trying to lock more pages */
6559	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6560	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6561		if (!userfaultfd_wp_async(vma)) {
6562			spin_unlock(ptl);
6563			if (pagecache_folio) {
6564				folio_unlock(pagecache_folio);
6565				folio_put(pagecache_folio);
6566			}
6567			hugetlb_vma_unlock_read(vma);
6568			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6569			return handle_userfault(&vmf, VM_UFFD_WP);
6570		}
6571
6572		entry = huge_pte_clear_uffd_wp(entry);
6573		set_huge_pte_at(mm, haddr, ptep, entry,
6574				huge_page_size(hstate_vma(vma)));
6575		/* Fallthrough to CoW */
6576	}
6577
6578	/*
6579	 * hugetlb_wp() requires page locks of pte_page(entry) and
6580	 * pagecache_folio, so here we need take the former one
6581	 * when folio != pagecache_folio or !pagecache_folio.
6582	 */
6583	folio = page_folio(pte_page(entry));
6584	if (folio != pagecache_folio)
6585		if (!folio_trylock(folio)) {
6586			need_wait_lock = 1;
6587			goto out_ptl;
6588		}
6589
6590	folio_get(folio);
6591
6592	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6593		if (!huge_pte_write(entry)) {
6594			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6595					 pagecache_folio, ptl, &vmf);
6596			goto out_put_page;
6597		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6598			entry = huge_pte_mkdirty(entry);
6599		}
 
6600	}
6601	entry = pte_mkyoung(entry);
6602	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6603						flags & FAULT_FLAG_WRITE))
6604		update_mmu_cache(vma, haddr, ptep);
6605out_put_page:
6606	if (folio != pagecache_folio)
6607		folio_unlock(folio);
6608	folio_put(folio);
6609out_ptl:
6610	spin_unlock(ptl);
6611
6612	if (pagecache_folio) {
6613		folio_unlock(pagecache_folio);
6614		folio_put(pagecache_folio);
6615	}
6616out_mutex:
6617	hugetlb_vma_unlock_read(vma);
6618	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6619	/*
6620	 * Generally it's safe to hold refcount during waiting page lock. But
6621	 * here we just wait to defer the next page fault to avoid busy loop and
6622	 * the page is not used after unlocked before returning from the current
6623	 * page fault. So we are safe from accessing freed page, even if we wait
6624	 * here without taking refcount.
6625	 */
6626	if (need_wait_lock)
6627		folio_wait_locked(folio);
6628	return ret;
6629}
6630
6631#ifdef CONFIG_USERFAULTFD
6632/*
6633 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
 
6634 */
6635static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6636		struct vm_area_struct *vma, unsigned long address)
 
 
 
 
6637{
6638	struct mempolicy *mpol;
6639	nodemask_t *nodemask;
6640	struct folio *folio;
6641	gfp_t gfp_mask;
6642	int node;
6643
6644	gfp_mask = htlb_alloc_mask(h);
6645	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6646	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6647	mpol_cond_put(mpol);
6648
6649	return folio;
6650}
6651
6652/*
6653 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6654 * with modifications for hugetlb pages.
6655 */
6656int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6657			     struct vm_area_struct *dst_vma,
6658			     unsigned long dst_addr,
6659			     unsigned long src_addr,
6660			     uffd_flags_t flags,
6661			     struct folio **foliop)
6662{
6663	struct mm_struct *dst_mm = dst_vma->vm_mm;
6664	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6665	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6666	struct hstate *h = hstate_vma(dst_vma);
6667	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6668	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6669	unsigned long size;
6670	int vm_shared = dst_vma->vm_flags & VM_SHARED;
 
6671	pte_t _dst_pte;
6672	spinlock_t *ptl;
6673	int ret = -ENOMEM;
6674	struct folio *folio;
6675	int writable;
6676	bool folio_in_pagecache = false;
6677
6678	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6679		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6680
6681		/* Don't overwrite any existing PTEs (even markers) */
6682		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6683			spin_unlock(ptl);
6684			return -EEXIST;
6685		}
6686
6687		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6688		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6689				huge_page_size(h));
6690
6691		/* No need to invalidate - it was non-present before */
6692		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6693
6694		spin_unlock(ptl);
6695		return 0;
6696	}
6697
6698	if (is_continue) {
6699		ret = -EFAULT;
6700		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6701		if (IS_ERR(folio))
6702			goto out;
6703		folio_in_pagecache = true;
6704	} else if (!*foliop) {
6705		/* If a folio already exists, then it's UFFDIO_COPY for
6706		 * a non-missing case. Return -EEXIST.
6707		 */
6708		if (vm_shared &&
6709		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6710			ret = -EEXIST;
6711			goto out;
6712		}
6713
6714		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6715		if (IS_ERR(folio)) {
6716			ret = -ENOMEM;
6717			goto out;
6718		}
6719
6720		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6721					   false);
6722
6723		/* fallback to copy_from_user outside mmap_lock */
6724		if (unlikely(ret)) {
6725			ret = -ENOENT;
6726			/* Free the allocated folio which may have
6727			 * consumed a reservation.
6728			 */
6729			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6730			folio_put(folio);
6731
6732			/* Allocate a temporary folio to hold the copied
6733			 * contents.
6734			 */
6735			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6736			if (!folio) {
6737				ret = -ENOMEM;
6738				goto out;
6739			}
6740			*foliop = folio;
6741			/* Set the outparam foliop and return to the caller to
6742			 * copy the contents outside the lock. Don't free the
6743			 * folio.
6744			 */
6745			goto out;
6746		}
6747	} else {
6748		if (vm_shared &&
6749		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6750			folio_put(*foliop);
6751			ret = -EEXIST;
6752			*foliop = NULL;
6753			goto out;
6754		}
6755
6756		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6757		if (IS_ERR(folio)) {
6758			folio_put(*foliop);
6759			ret = -ENOMEM;
6760			*foliop = NULL;
6761			goto out;
6762		}
6763		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6764		folio_put(*foliop);
6765		*foliop = NULL;
6766		if (ret) {
6767			folio_put(folio);
6768			goto out;
6769		}
6770	}
6771
6772	/*
6773	 * If we just allocated a new page, we need a memory barrier to ensure
6774	 * that preceding stores to the page become visible before the
6775	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6776	 * is what we need.
6777	 *
6778	 * In the case where we have not allocated a new page (is_continue),
6779	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6780	 * an earlier smp_wmb() to ensure that prior stores will be visible
6781	 * before the set_pte_at() write.
6782	 */
6783	if (!is_continue)
6784		__folio_mark_uptodate(folio);
6785	else
6786		WARN_ON_ONCE(!folio_test_uptodate(folio));
6787
6788	/* Add shared, newly allocated pages to the page cache. */
6789	if (vm_shared && !is_continue) {
 
 
6790		size = i_size_read(mapping->host) >> huge_page_shift(h);
6791		ret = -EFAULT;
6792		if (idx >= size)
6793			goto out_release_nounlock;
6794
6795		/*
6796		 * Serialization between remove_inode_hugepages() and
6797		 * hugetlb_add_to_page_cache() below happens through the
6798		 * hugetlb_fault_mutex_table that here must be hold by
6799		 * the caller.
6800		 */
6801		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6802		if (ret)
6803			goto out_release_nounlock;
6804		folio_in_pagecache = true;
6805	}
6806
6807	ptl = huge_pte_lock(h, dst_mm, dst_pte);
 
6808
6809	ret = -EIO;
6810	if (folio_test_hwpoison(folio))
 
 
 
 
 
 
 
 
 
 
6811		goto out_release_unlock;
6812
6813	/*
6814	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6815	 * registered, we firstly wr-protect a none pte which has no page cache
6816	 * page backing it, then access the page.
6817	 */
6818	ret = -EEXIST;
6819	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6820		goto out_release_unlock;
6821
6822	if (folio_in_pagecache)
6823		hugetlb_add_file_rmap(folio);
6824	else
6825		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
 
 
6826
6827	/*
6828	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6829	 * with wp flag set, don't set pte write bit.
6830	 */
6831	if (wp_enabled || (is_continue && !vm_shared))
6832		writable = 0;
6833	else
6834		writable = dst_vma->vm_flags & VM_WRITE;
6835
6836	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6837	/*
6838	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6839	 * extremely important for hugetlbfs for now since swapping is not
6840	 * supported, but we should still be clear in that this page cannot be
6841	 * thrown away at will, even if write bit not set.
6842	 */
6843	_dst_pte = huge_pte_mkdirty(_dst_pte);
6844	_dst_pte = pte_mkyoung(_dst_pte);
6845
6846	if (wp_enabled)
6847		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6848
6849	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6850
 
 
6851	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6852
6853	/* No need to invalidate - it was non-present before */
6854	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6855
6856	spin_unlock(ptl);
6857	if (!is_continue)
6858		folio_set_hugetlb_migratable(folio);
6859	if (vm_shared || is_continue)
6860		folio_unlock(folio);
6861	ret = 0;
6862out:
6863	return ret;
6864out_release_unlock:
6865	spin_unlock(ptl);
6866	if (vm_shared || is_continue)
6867		folio_unlock(folio);
6868out_release_nounlock:
6869	if (!folio_in_pagecache)
6870		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6871	folio_put(folio);
6872	goto out;
6873}
6874#endif /* CONFIG_USERFAULTFD */
6875
6876struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6877				      unsigned long address, unsigned int flags,
6878				      unsigned int *page_mask)
6879{
 
 
 
 
6880	struct hstate *h = hstate_vma(vma);
6881	struct mm_struct *mm = vma->vm_mm;
6882	unsigned long haddr = address & huge_page_mask(h);
6883	struct page *page = NULL;
6884	spinlock_t *ptl;
6885	pte_t *pte, entry;
6886	int ret;
 
 
 
 
 
 
 
 
 
 
6887
6888	hugetlb_vma_lock_read(vma);
6889	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6890	if (!pte)
6891		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6892
6893	ptl = huge_pte_lock(h, mm, pte);
6894	entry = huge_ptep_get(pte);
6895	if (pte_present(entry)) {
6896		page = pte_page(entry);
 
 
 
 
 
 
 
 
 
 
 
6897
6898		if (!huge_pte_write(entry)) {
6899			if (flags & FOLL_WRITE) {
6900				page = NULL;
6901				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6902			}
6903
6904			if (gup_must_unshare(vma, flags, page)) {
6905				/* Tell the caller to do unsharing */
6906				page = ERR_PTR(-EMLINK);
6907				goto out;
 
 
 
 
 
 
 
 
 
 
6908			}
 
6909		}
6910
6911		page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
 
6912
6913		/*
6914		 * Note that page may be a sub-page, and with vmemmap
6915		 * optimizations the page struct may be read only.
6916		 * try_grab_page() will increase the ref count on the
6917		 * head page, so this will be OK.
6918		 *
6919		 * try_grab_page() should always be able to get the page here,
6920		 * because we hold the ptl lock and have verified pte_present().
6921		 */
6922		ret = try_grab_page(page, flags);
 
 
 
 
 
 
 
 
 
 
 
 
6923
6924		if (WARN_ON_ONCE(ret)) {
6925			page = ERR_PTR(ret);
6926			goto out;
 
 
 
 
 
 
 
 
 
 
 
6927		}
6928
6929		*page_mask = (1U << huge_page_order(h)) - 1;
6930	}
6931out:
6932	spin_unlock(ptl);
6933out_unlock:
6934	hugetlb_vma_unlock_read(vma);
6935
6936	/*
6937	 * Fixup retval for dump requests: if pagecache doesn't exist,
6938	 * don't try to allocate a new page but just skip it.
 
6939	 */
6940	if (!page && (flags & FOLL_DUMP) &&
6941	    !hugetlbfs_pagecache_present(h, vma, address))
6942		page = ERR_PTR(-EFAULT);
6943
6944	return page;
6945}
6946
6947long hugetlb_change_protection(struct vm_area_struct *vma,
6948		unsigned long address, unsigned long end,
6949		pgprot_t newprot, unsigned long cp_flags)
 
 
 
 
 
 
 
6950{
6951	struct mm_struct *mm = vma->vm_mm;
6952	unsigned long start = address;
6953	pte_t *ptep;
6954	pte_t pte;
6955	struct hstate *h = hstate_vma(vma);
6956	long pages = 0, psize = huge_page_size(h);
6957	bool shared_pmd = false;
6958	struct mmu_notifier_range range;
6959	unsigned long last_addr_mask;
6960	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6961	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6962
6963	/*
6964	 * In the case of shared PMDs, the area to flush could be beyond
6965	 * start/end.  Set range.start/range.end to cover the maximum possible
6966	 * range if PMD sharing is possible.
6967	 */
6968	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6969				0, mm, start, end);
6970	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6971
6972	BUG_ON(address >= end);
6973	flush_cache_range(vma, range.start, range.end);
6974
6975	mmu_notifier_invalidate_range_start(&range);
6976	hugetlb_vma_lock_write(vma);
6977	i_mmap_lock_write(vma->vm_file->f_mapping);
6978	last_addr_mask = hugetlb_mask_last_page(h);
6979	for (; address < end; address += psize) {
6980		spinlock_t *ptl;
6981		ptep = hugetlb_walk(vma, address, psize);
6982		if (!ptep) {
6983			if (!uffd_wp) {
6984				address |= last_addr_mask;
6985				continue;
6986			}
6987			/*
6988			 * Userfaultfd wr-protect requires pgtable
6989			 * pre-allocations to install pte markers.
6990			 */
6991			ptep = huge_pte_alloc(mm, vma, address, psize);
6992			if (!ptep) {
6993				pages = -ENOMEM;
6994				break;
6995			}
6996		}
6997		ptl = huge_pte_lock(h, mm, ptep);
6998		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6999			/*
7000			 * When uffd-wp is enabled on the vma, unshare
7001			 * shouldn't happen at all.  Warn about it if it
7002			 * happened due to some reason.
7003			 */
7004			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7005			pages++;
7006			spin_unlock(ptl);
7007			shared_pmd = true;
7008			address |= last_addr_mask;
7009			continue;
7010		}
7011		pte = huge_ptep_get(ptep);
7012		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7013			/* Nothing to do. */
7014		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
 
 
7015			swp_entry_t entry = pte_to_swp_entry(pte);
7016			struct page *page = pfn_swap_entry_to_page(entry);
7017			pte_t newpte = pte;
7018
7019			if (is_writable_migration_entry(entry)) {
7020				if (PageAnon(page))
7021					entry = make_readable_exclusive_migration_entry(
7022								swp_offset(entry));
7023				else
7024					entry = make_readable_migration_entry(
7025								swp_offset(entry));
7026				newpte = swp_entry_to_pte(entry);
 
 
7027				pages++;
7028			}
7029
7030			if (uffd_wp)
7031				newpte = pte_swp_mkuffd_wp(newpte);
7032			else if (uffd_wp_resolve)
7033				newpte = pte_swp_clear_uffd_wp(newpte);
7034			if (!pte_same(pte, newpte))
7035				set_huge_pte_at(mm, address, ptep, newpte, psize);
7036		} else if (unlikely(is_pte_marker(pte))) {
7037			/*
7038			 * Do nothing on a poison marker; page is
7039			 * corrupted, permissons do not apply.  Here
7040			 * pte_marker_uffd_wp()==true implies !poison
7041			 * because they're mutual exclusive.
7042			 */
7043			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7044				/* Safe to modify directly (non-present->none). */
7045				huge_pte_clear(mm, address, ptep, psize);
7046		} else if (!huge_pte_none(pte)) {
7047			pte_t old_pte;
7048			unsigned int shift = huge_page_shift(hstate_vma(vma));
7049
7050			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7051			pte = huge_pte_modify(old_pte, newprot);
7052			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7053			if (uffd_wp)
7054				pte = huge_pte_mkuffd_wp(pte);
7055			else if (uffd_wp_resolve)
7056				pte = huge_pte_clear_uffd_wp(pte);
7057			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7058			pages++;
7059		} else {
7060			/* None pte */
7061			if (unlikely(uffd_wp))
7062				/* Safe to modify directly (none->non-present). */
7063				set_huge_pte_at(mm, address, ptep,
7064						make_pte_marker(PTE_MARKER_UFFD_WP),
7065						psize);
7066		}
7067		spin_unlock(ptl);
7068	}
7069	/*
7070	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7071	 * may have cleared our pud entry and done put_page on the page table:
7072	 * once we release i_mmap_rwsem, another task can do the final put_page
7073	 * and that page table be reused and filled with junk.  If we actually
7074	 * did unshare a page of pmds, flush the range corresponding to the pud.
7075	 */
7076	if (shared_pmd)
7077		flush_hugetlb_tlb_range(vma, range.start, range.end);
7078	else
7079		flush_hugetlb_tlb_range(vma, start, end);
7080	/*
7081	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7082	 * downgrading page table protection not changing it to point to a new
7083	 * page.
7084	 *
7085	 * See Documentation/mm/mmu_notifier.rst
7086	 */
7087	i_mmap_unlock_write(vma->vm_file->f_mapping);
7088	hugetlb_vma_unlock_write(vma);
7089	mmu_notifier_invalidate_range_end(&range);
7090
7091	return pages > 0 ? (pages << h->order) : pages;
7092}
7093
7094/* Return true if reservation was successful, false otherwise.  */
7095bool hugetlb_reserve_pages(struct inode *inode,
7096					long from, long to,
7097					struct vm_area_struct *vma,
7098					vm_flags_t vm_flags)
7099{
7100	long chg = -1, add = -1;
7101	struct hstate *h = hstate_inode(inode);
7102	struct hugepage_subpool *spool = subpool_inode(inode);
7103	struct resv_map *resv_map;
7104	struct hugetlb_cgroup *h_cg = NULL;
7105	long gbl_reserve, regions_needed = 0;
7106
7107	/* This should never happen */
7108	if (from > to) {
7109		VM_WARN(1, "%s called with a negative range\n", __func__);
7110		return false;
7111	}
7112
7113	/*
7114	 * vma specific semaphore used for pmd sharing and fault/truncation
7115	 * synchronization
7116	 */
7117	hugetlb_vma_lock_alloc(vma);
7118
7119	/*
7120	 * Only apply hugepage reservation if asked. At fault time, an
7121	 * attempt will be made for VM_NORESERVE to allocate a page
7122	 * without using reserves
7123	 */
7124	if (vm_flags & VM_NORESERVE)
7125		return true;
7126
7127	/*
7128	 * Shared mappings base their reservation on the number of pages that
7129	 * are already allocated on behalf of the file. Private mappings need
7130	 * to reserve the full area even if read-only as mprotect() may be
7131	 * called to make the mapping read-write. Assume !vma is a shm mapping
7132	 */
7133	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7134		/*
7135		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7136		 * called for inodes for which resv_maps were created (see
7137		 * hugetlbfs_get_inode).
7138		 */
7139		resv_map = inode_resv_map(inode);
7140
7141		chg = region_chg(resv_map, from, to, &regions_needed);
 
7142	} else {
7143		/* Private mapping. */
7144		resv_map = resv_map_alloc();
7145		if (!resv_map)
7146			goto out_err;
7147
7148		chg = to - from;
7149
7150		set_vma_resv_map(vma, resv_map);
7151		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7152	}
7153
7154	if (chg < 0)
7155		goto out_err;
7156
7157	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7158				chg * pages_per_huge_page(h), &h_cg) < 0)
7159		goto out_err;
7160
7161	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7162		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7163		 * of the resv_map.
7164		 */
7165		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7166	}
7167
7168	/*
7169	 * There must be enough pages in the subpool for the mapping. If
7170	 * the subpool has a minimum size, there may be some global
7171	 * reservations already in place (gbl_reserve).
7172	 */
7173	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7174	if (gbl_reserve < 0)
7175		goto out_uncharge_cgroup;
 
 
7176
7177	/*
7178	 * Check enough hugepages are available for the reservation.
7179	 * Hand the pages back to the subpool if there are not
7180	 */
7181	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7182		goto out_put_pages;
 
 
 
 
7183
7184	/*
7185	 * Account for the reservations made. Shared mappings record regions
7186	 * that have reservations as they are shared by multiple VMAs.
7187	 * When the last VMA disappears, the region map says how much
7188	 * the reservation was and the page cache tells how much of
7189	 * the reservation was consumed. Private mappings are per-VMA and
7190	 * only the consumed reservations are tracked. When the VMA
7191	 * disappears, the original reservation is the VMA size and the
7192	 * consumed reservations are stored in the map. Hence, nothing
7193	 * else has to be done for private mappings here
7194	 */
7195	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7196		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7197
7198		if (unlikely(add < 0)) {
7199			hugetlb_acct_memory(h, -gbl_reserve);
7200			goto out_put_pages;
7201		} else if (unlikely(chg > add)) {
7202			/*
7203			 * pages in this range were added to the reserve
7204			 * map between region_chg and region_add.  This
7205			 * indicates a race with alloc_hugetlb_folio.  Adjust
7206			 * the subpool and reserve counts modified above
7207			 * based on the difference.
7208			 */
7209			long rsv_adjust;
7210
7211			/*
7212			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7213			 * reference to h_cg->css. See comment below for detail.
7214			 */
7215			hugetlb_cgroup_uncharge_cgroup_rsvd(
7216				hstate_index(h),
7217				(chg - add) * pages_per_huge_page(h), h_cg);
7218
7219			rsv_adjust = hugepage_subpool_put_pages(spool,
7220								chg - add);
7221			hugetlb_acct_memory(h, -rsv_adjust);
7222		} else if (h_cg) {
7223			/*
7224			 * The file_regions will hold their own reference to
7225			 * h_cg->css. So we should release the reference held
7226			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7227			 * done.
7228			 */
7229			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7230		}
7231	}
7232	return true;
7233
7234out_put_pages:
7235	/* put back original number of pages, chg */
7236	(void)hugepage_subpool_put_pages(spool, chg);
7237out_uncharge_cgroup:
7238	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7239					    chg * pages_per_huge_page(h), h_cg);
7240out_err:
7241	hugetlb_vma_lock_free(vma);
7242	if (!vma || vma->vm_flags & VM_MAYSHARE)
7243		/* Only call region_abort if the region_chg succeeded but the
7244		 * region_add failed or didn't run.
7245		 */
7246		if (chg >= 0 && add < 0)
7247			region_abort(resv_map, from, to, regions_needed);
7248	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7249		kref_put(&resv_map->refs, resv_map_release);
7250		set_vma_resv_map(vma, NULL);
7251	}
7252	return false;
7253}
7254
7255long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7256								long freed)
7257{
7258	struct hstate *h = hstate_inode(inode);
7259	struct resv_map *resv_map = inode_resv_map(inode);
7260	long chg = 0;
7261	struct hugepage_subpool *spool = subpool_inode(inode);
7262	long gbl_reserve;
7263
7264	/*
7265	 * Since this routine can be called in the evict inode path for all
7266	 * hugetlbfs inodes, resv_map could be NULL.
7267	 */
7268	if (resv_map) {
7269		chg = region_del(resv_map, start, end);
7270		/*
7271		 * region_del() can fail in the rare case where a region
7272		 * must be split and another region descriptor can not be
7273		 * allocated.  If end == LONG_MAX, it will not fail.
7274		 */
7275		if (chg < 0)
7276			return chg;
7277	}
7278
7279	spin_lock(&inode->i_lock);
7280	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7281	spin_unlock(&inode->i_lock);
7282
7283	/*
7284	 * If the subpool has a minimum size, the number of global
7285	 * reservations to be released may be adjusted.
7286	 *
7287	 * Note that !resv_map implies freed == 0. So (chg - freed)
7288	 * won't go negative.
7289	 */
7290	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7291	hugetlb_acct_memory(h, -gbl_reserve);
7292
7293	return 0;
7294}
7295
7296#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7297static unsigned long page_table_shareable(struct vm_area_struct *svma,
7298				struct vm_area_struct *vma,
7299				unsigned long addr, pgoff_t idx)
7300{
7301	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7302				svma->vm_start;
7303	unsigned long sbase = saddr & PUD_MASK;
7304	unsigned long s_end = sbase + PUD_SIZE;
7305
7306	/* Allow segments to share if only one is marked locked */
7307	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7308	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7309
7310	/*
7311	 * match the virtual addresses, permission and the alignment of the
7312	 * page table page.
7313	 *
7314	 * Also, vma_lock (vm_private_data) is required for sharing.
7315	 */
7316	if (pmd_index(addr) != pmd_index(saddr) ||
7317	    vm_flags != svm_flags ||
7318	    !range_in_vma(svma, sbase, s_end) ||
7319	    !svma->vm_private_data)
7320		return 0;
7321
7322	return saddr;
7323}
7324
7325bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7326{
7327	unsigned long start = addr & PUD_MASK;
7328	unsigned long end = start + PUD_SIZE;
7329
7330#ifdef CONFIG_USERFAULTFD
7331	if (uffd_disable_huge_pmd_share(vma))
7332		return false;
7333#endif
7334	/*
7335	 * check on proper vm_flags and page table alignment
7336	 */
7337	if (!(vma->vm_flags & VM_MAYSHARE))
7338		return false;
7339	if (!vma->vm_private_data)	/* vma lock required for sharing */
7340		return false;
7341	if (!range_in_vma(vma, start, end))
7342		return false;
7343	return true;
7344}
7345
7346/*
7347 * Determine if start,end range within vma could be mapped by shared pmd.
7348 * If yes, adjust start and end to cover range associated with possible
7349 * shared pmd mappings.
7350 */
7351void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7352				unsigned long *start, unsigned long *end)
7353{
7354	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7355		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7356
7357	/*
7358	 * vma needs to span at least one aligned PUD size, and the range
7359	 * must be at least partially within in.
7360	 */
7361	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7362		(*end <= v_start) || (*start >= v_end))
7363		return;
7364
7365	/* Extend the range to be PUD aligned for a worst case scenario */
7366	if (*start > v_start)
7367		*start = ALIGN_DOWN(*start, PUD_SIZE);
7368
7369	if (*end < v_end)
7370		*end = ALIGN(*end, PUD_SIZE);
 
 
 
 
 
 
 
 
7371}
7372
7373/*
7374 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7375 * and returns the corresponding pte. While this is not necessary for the
7376 * !shared pmd case because we can allocate the pmd later as well, it makes the
7377 * code much cleaner. pmd allocation is essential for the shared case because
7378 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7379 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7380 * bad pmd for sharing.
7381 */
7382pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7383		      unsigned long addr, pud_t *pud)
7384{
 
7385	struct address_space *mapping = vma->vm_file->f_mapping;
7386	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7387			vma->vm_pgoff;
7388	struct vm_area_struct *svma;
7389	unsigned long saddr;
7390	pte_t *spte = NULL;
7391	pte_t *pte;
 
7392
7393	i_mmap_lock_read(mapping);
 
 
 
7394	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7395		if (svma == vma)
7396			continue;
7397
7398		saddr = page_table_shareable(svma, vma, addr, idx);
7399		if (saddr) {
7400			spte = hugetlb_walk(svma, saddr,
7401					    vma_mmu_pagesize(svma));
7402			if (spte) {
7403				get_page(virt_to_page(spte));
7404				break;
7405			}
7406		}
7407	}
7408
7409	if (!spte)
7410		goto out;
7411
7412	spin_lock(&mm->page_table_lock);
7413	if (pud_none(*pud)) {
7414		pud_populate(mm, pud,
7415				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7416		mm_inc_nr_pmds(mm);
7417	} else {
7418		put_page(virt_to_page(spte));
7419	}
7420	spin_unlock(&mm->page_table_lock);
7421out:
7422	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7423	i_mmap_unlock_read(mapping);
7424	return pte;
7425}
7426
7427/*
7428 * unmap huge page backed by shared pte.
7429 *
7430 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7431 * indicated by page_count > 1, unmap is achieved by clearing pud and
7432 * decrementing the ref count. If count == 1, the pte page is not shared.
7433 *
7434 * Called with page table lock held.
7435 *
7436 * returns: 1 successfully unmapped a shared pte page
7437 *	    0 the underlying pte page is not shared, or it is the last user
7438 */
7439int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7440					unsigned long addr, pte_t *ptep)
7441{
7442	pgd_t *pgd = pgd_offset(mm, addr);
7443	p4d_t *p4d = p4d_offset(pgd, addr);
7444	pud_t *pud = pud_offset(p4d, addr);
7445
7446	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7447	hugetlb_vma_assert_locked(vma);
7448	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7449	if (page_count(virt_to_page(ptep)) == 1)
7450		return 0;
7451
7452	pud_clear(pud);
7453	put_page(virt_to_page(ptep));
7454	mm_dec_nr_pmds(mm);
 
7455	return 1;
7456}
7457
7458#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7459
7460pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7461		      unsigned long addr, pud_t *pud)
7462{
7463	return NULL;
7464}
7465
7466int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7467				unsigned long addr, pte_t *ptep)
7468{
7469	return 0;
7470}
7471
7472void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7473				unsigned long *start, unsigned long *end)
7474{
7475}
7476
7477bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7478{
7479	return false;
7480}
7481#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7482
7483#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7484pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7485			unsigned long addr, unsigned long sz)
7486{
7487	pgd_t *pgd;
7488	p4d_t *p4d;
7489	pud_t *pud;
7490	pte_t *pte = NULL;
7491
7492	pgd = pgd_offset(mm, addr);
7493	p4d = p4d_alloc(mm, pgd, addr);
7494	if (!p4d)
7495		return NULL;
7496	pud = pud_alloc(mm, p4d, addr);
7497	if (pud) {
7498		if (sz == PUD_SIZE) {
7499			pte = (pte_t *)pud;
7500		} else {
7501			BUG_ON(sz != PMD_SIZE);
7502			if (want_pmd_share(vma, addr) && pud_none(*pud))
7503				pte = huge_pmd_share(mm, vma, addr, pud);
7504			else
7505				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7506		}
7507	}
7508
7509	if (pte) {
7510		pte_t pteval = ptep_get_lockless(pte);
7511
7512		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7513	}
7514
7515	return pte;
7516}
7517
7518/*
7519 * huge_pte_offset() - Walk the page table to resolve the hugepage
7520 * entry at address @addr
7521 *
7522 * Return: Pointer to page table entry (PUD or PMD) for
7523 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7524 * size @sz doesn't match the hugepage size at this level of the page
7525 * table.
7526 */
7527pte_t *huge_pte_offset(struct mm_struct *mm,
7528		       unsigned long addr, unsigned long sz)
7529{
7530	pgd_t *pgd;
7531	p4d_t *p4d;
7532	pud_t *pud;
7533	pmd_t *pmd;
7534
7535	pgd = pgd_offset(mm, addr);
7536	if (!pgd_present(*pgd))
7537		return NULL;
7538	p4d = p4d_offset(pgd, addr);
7539	if (!p4d_present(*p4d))
7540		return NULL;
7541
7542	pud = pud_offset(p4d, addr);
7543	if (sz == PUD_SIZE)
7544		/* must be pud huge, non-present or none */
 
 
7545		return (pte_t *)pud;
7546	if (!pud_present(*pud))
 
 
7547		return NULL;
7548	/* must have a valid entry and size to go further */
 
 
7549
7550	pmd = pmd_offset(pud, addr);
7551	/* must be pmd huge, non-present or none */
7552	return (pte_t *)pmd;
7553}
7554
 
 
7555/*
7556 * Return a mask that can be used to update an address to the last huge
7557 * page in a page table page mapping size.  Used to skip non-present
7558 * page table entries when linearly scanning address ranges.  Architectures
7559 * with unique huge page to page table relationships can define their own
7560 * version of this routine.
7561 */
7562unsigned long hugetlb_mask_last_page(struct hstate *h)
 
 
7563{
7564	unsigned long hp_size = huge_page_size(h);
 
7565
7566	if (hp_size == PUD_SIZE)
7567		return P4D_SIZE - PUD_SIZE;
7568	else if (hp_size == PMD_SIZE)
7569		return PUD_SIZE - PMD_SIZE;
7570	else
7571		return 0UL;
7572}
7573
7574#else
7575
7576/* See description above.  Architectures can provide their own version. */
7577__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7578{
7579#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7580	if (huge_page_size(h) == PMD_SIZE)
7581		return PUD_SIZE - PMD_SIZE;
7582#endif
7583	return 0UL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7584}
7585
7586#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7587
7588/*
7589 * These functions are overwritable if your architecture needs its own
7590 * behavior.
7591 */
7592bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7593{
7594	bool ret = true;
 
7595
7596	spin_lock_irq(&hugetlb_lock);
7597	if (!folio_test_hugetlb(folio) ||
7598	    !folio_test_hugetlb_migratable(folio) ||
7599	    !folio_try_get(folio)) {
7600		ret = false;
7601		goto unlock;
7602	}
7603	folio_clear_hugetlb_migratable(folio);
7604	list_move_tail(&folio->lru, list);
7605unlock:
7606	spin_unlock_irq(&hugetlb_lock);
7607	return ret;
7608}
7609
7610int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
 
7611{
7612	int ret = 0;
 
7613
7614	*hugetlb = false;
7615	spin_lock_irq(&hugetlb_lock);
7616	if (folio_test_hugetlb(folio)) {
7617		*hugetlb = true;
7618		if (folio_test_hugetlb_freed(folio))
7619			ret = 0;
7620		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7621			ret = folio_try_get(folio);
7622		else
7623			ret = -EBUSY;
7624	}
7625	spin_unlock_irq(&hugetlb_lock);
7626	return ret;
7627}
7628
7629int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7630				bool *migratable_cleared)
7631{
7632	int ret;
7633
7634	spin_lock_irq(&hugetlb_lock);
7635	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7636	spin_unlock_irq(&hugetlb_lock);
 
 
 
 
 
 
 
7637	return ret;
7638}
7639
7640void folio_putback_active_hugetlb(struct folio *folio)
7641{
7642	spin_lock_irq(&hugetlb_lock);
7643	folio_set_hugetlb_migratable(folio);
7644	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7645	spin_unlock_irq(&hugetlb_lock);
7646	folio_put(folio);
 
7647}
7648
7649void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7650{
7651	struct hstate *h = folio_hstate(old_folio);
7652
7653	hugetlb_cgroup_migrate(old_folio, new_folio);
7654	set_page_owner_migrate_reason(&new_folio->page, reason);
7655
7656	/*
7657	 * transfer temporary state of the new hugetlb folio. This is
7658	 * reverse to other transitions because the newpage is going to
7659	 * be final while the old one will be freed so it takes over
7660	 * the temporary status.
7661	 *
7662	 * Also note that we have to transfer the per-node surplus state
7663	 * here as well otherwise the global surplus count will not match
7664	 * the per-node's.
7665	 */
7666	if (folio_test_hugetlb_temporary(new_folio)) {
7667		int old_nid = folio_nid(old_folio);
7668		int new_nid = folio_nid(new_folio);
7669
7670		folio_set_hugetlb_temporary(old_folio);
7671		folio_clear_hugetlb_temporary(new_folio);
7672
 
 
7673
7674		/*
7675		 * There is no need to transfer the per-node surplus state
7676		 * when we do not cross the node.
7677		 */
7678		if (new_nid == old_nid)
7679			return;
7680		spin_lock_irq(&hugetlb_lock);
7681		if (h->surplus_huge_pages_node[old_nid]) {
7682			h->surplus_huge_pages_node[old_nid]--;
7683			h->surplus_huge_pages_node[new_nid]++;
7684		}
7685		spin_unlock_irq(&hugetlb_lock);
7686	}
7687}
7688
7689static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7690				   unsigned long start,
7691				   unsigned long end)
7692{
7693	struct hstate *h = hstate_vma(vma);
7694	unsigned long sz = huge_page_size(h);
7695	struct mm_struct *mm = vma->vm_mm;
7696	struct mmu_notifier_range range;
7697	unsigned long address;
7698	spinlock_t *ptl;
7699	pte_t *ptep;
7700
7701	if (!(vma->vm_flags & VM_MAYSHARE))
7702		return;
7703
7704	if (start >= end)
7705		return;
7706
7707	flush_cache_range(vma, start, end);
7708	/*
7709	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7710	 * we have already done the PUD_SIZE alignment.
7711	 */
7712	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7713				start, end);
7714	mmu_notifier_invalidate_range_start(&range);
7715	hugetlb_vma_lock_write(vma);
7716	i_mmap_lock_write(vma->vm_file->f_mapping);
7717	for (address = start; address < end; address += PUD_SIZE) {
7718		ptep = hugetlb_walk(vma, address, sz);
7719		if (!ptep)
7720			continue;
7721		ptl = huge_pte_lock(h, mm, ptep);
7722		huge_pmd_unshare(mm, vma, address, ptep);
7723		spin_unlock(ptl);
7724	}
7725	flush_hugetlb_tlb_range(vma, start, end);
7726	i_mmap_unlock_write(vma->vm_file->f_mapping);
7727	hugetlb_vma_unlock_write(vma);
7728	/*
7729	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7730	 * Documentation/mm/mmu_notifier.rst.
7731	 */
7732	mmu_notifier_invalidate_range_end(&range);
7733}
7734
7735/*
7736 * This function will unconditionally remove all the shared pmd pgtable entries
7737 * within the specific vma for a hugetlbfs memory range.
7738 */
7739void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7740{
7741	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7742			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7743}
7744
7745#ifdef CONFIG_CMA
7746static bool cma_reserve_called __initdata;
7747
7748static int __init cmdline_parse_hugetlb_cma(char *p)
7749{
7750	int nid, count = 0;
7751	unsigned long tmp;
7752	char *s = p;
7753
7754	while (*s) {
7755		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7756			break;
7757
7758		if (s[count] == ':') {
7759			if (tmp >= MAX_NUMNODES)
7760				break;
7761			nid = array_index_nospec(tmp, MAX_NUMNODES);
7762
7763			s += count + 1;
7764			tmp = memparse(s, &s);
7765			hugetlb_cma_size_in_node[nid] = tmp;
7766			hugetlb_cma_size += tmp;
7767
7768			/*
7769			 * Skip the separator if have one, otherwise
7770			 * break the parsing.
7771			 */
7772			if (*s == ',')
7773				s++;
7774			else
7775				break;
7776		} else {
7777			hugetlb_cma_size = memparse(p, &p);
7778			break;
7779		}
7780	}
7781
7782	return 0;
7783}
7784
7785early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7786
7787void __init hugetlb_cma_reserve(int order)
7788{
7789	unsigned long size, reserved, per_node;
7790	bool node_specific_cma_alloc = false;
7791	int nid;
7792
7793	/*
7794	 * HugeTLB CMA reservation is required for gigantic
7795	 * huge pages which could not be allocated via the
7796	 * page allocator. Just warn if there is any change
7797	 * breaking this assumption.
7798	 */
7799	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7800	cma_reserve_called = true;
7801
7802	if (!hugetlb_cma_size)
7803		return;
7804
7805	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7806		if (hugetlb_cma_size_in_node[nid] == 0)
7807			continue;
7808
7809		if (!node_online(nid)) {
7810			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7811			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7812			hugetlb_cma_size_in_node[nid] = 0;
7813			continue;
7814		}
7815
7816		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7817			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7818				nid, (PAGE_SIZE << order) / SZ_1M);
7819			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7820			hugetlb_cma_size_in_node[nid] = 0;
7821		} else {
7822			node_specific_cma_alloc = true;
7823		}
7824	}
7825
7826	/* Validate the CMA size again in case some invalid nodes specified. */
7827	if (!hugetlb_cma_size)
7828		return;
7829
7830	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7831		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7832			(PAGE_SIZE << order) / SZ_1M);
7833		hugetlb_cma_size = 0;
7834		return;
7835	}
7836
7837	if (!node_specific_cma_alloc) {
7838		/*
7839		 * If 3 GB area is requested on a machine with 4 numa nodes,
7840		 * let's allocate 1 GB on first three nodes and ignore the last one.
7841		 */
7842		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7843		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7844			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7845	}
7846
7847	reserved = 0;
7848	for_each_online_node(nid) {
7849		int res;
7850		char name[CMA_MAX_NAME];
7851
7852		if (node_specific_cma_alloc) {
7853			if (hugetlb_cma_size_in_node[nid] == 0)
7854				continue;
7855
7856			size = hugetlb_cma_size_in_node[nid];
7857		} else {
7858			size = min(per_node, hugetlb_cma_size - reserved);
7859		}
7860
7861		size = round_up(size, PAGE_SIZE << order);
7862
7863		snprintf(name, sizeof(name), "hugetlb%d", nid);
7864		/*
7865		 * Note that 'order per bit' is based on smallest size that
7866		 * may be returned to CMA allocator in the case of
7867		 * huge page demotion.
7868		 */
7869		res = cma_declare_contiguous_nid(0, size, 0,
7870						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7871						 0, false, name,
7872						 &hugetlb_cma[nid], nid);
7873		if (res) {
7874			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7875				res, nid);
7876			continue;
7877		}
7878
7879		reserved += size;
7880		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7881			size / SZ_1M, nid);
7882
7883		if (reserved >= hugetlb_cma_size)
7884			break;
7885	}
7886
7887	if (!reserved)
7888		/*
7889		 * hugetlb_cma_size is used to determine if allocations from
7890		 * cma are possible.  Set to zero if no cma regions are set up.
7891		 */
7892		hugetlb_cma_size = 0;
7893}
7894
7895static void __init hugetlb_cma_check(void)
7896{
7897	if (!hugetlb_cma_size || cma_reserve_called)
7898		return;
7899
7900	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7901}
7902
7903#endif /* CONFIG_CMA */