Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/mmdebug.h>
23#include <linux/sched/signal.h>
24#include <linux/rmap.h>
25#include <linux/string_helpers.h>
26#include <linux/swap.h>
27#include <linux/swapops.h>
28#include <linux/jhash.h>
29#include <linux/numa.h>
30
31#include <asm/page.h>
32#include <asm/pgtable.h>
33#include <asm/tlb.h>
34
35#include <linux/io.h>
36#include <linux/hugetlb.h>
37#include <linux/hugetlb_cgroup.h>
38#include <linux/node.h>
39#include <linux/userfaultfd_k.h>
40#include <linux/page_owner.h>
41#include "internal.h"
42
43int hugetlb_max_hstate __read_mostly;
44unsigned int default_hstate_idx;
45struct hstate hstates[HUGE_MAX_HSTATE];
46/*
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
49 */
50static unsigned int minimum_order __read_mostly = UINT_MAX;
51
52__initdata LIST_HEAD(huge_boot_pages);
53
54/* for command line parsing */
55static struct hstate * __initdata parsed_hstate;
56static unsigned long __initdata default_hstate_max_huge_pages;
57static unsigned long __initdata default_hstate_size;
58static bool __initdata parsed_valid_hugepagesz = true;
59
60/*
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
63 */
64DEFINE_SPINLOCK(hugetlb_lock);
65
66/*
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 */
70static int num_fault_mutexes;
71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72
73/* Forward declaration */
74static int hugetlb_acct_memory(struct hstate *h, long delta);
75
76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77{
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80 spin_unlock(&spool->lock);
81
82 /* If no pages are used, and no other handles to the subpool
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
89 kfree(spool);
90 }
91}
92
93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
95{
96 struct hugepage_subpool *spool;
97
98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 if (!spool)
100 return NULL;
101
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
107
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
111 }
112 spool->rsv_hpages = min_hpages;
113
114 return spool;
115}
116
117void hugepage_put_subpool(struct hugepage_subpool *spool)
118{
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
123}
124
125/*
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
132 */
133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 long delta)
135{
136 long ret = delta;
137
138 if (!spool)
139 return ret;
140
141 spin_lock(&spool->lock);
142
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
149 }
150 }
151
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 if (delta > spool->rsv_hpages) {
155 /*
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
158 */
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
164 }
165 }
166
167unlock_ret:
168 spin_unlock(&spool->lock);
169 return ret;
170}
171
172/*
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
177 */
178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 long delta)
180{
181 long ret = delta;
182
183 if (!spool)
184 return delta;
185
186 spin_lock(&spool->lock);
187
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
190
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
201 }
202
203 /*
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
206 */
207 unlock_or_release_subpool(spool);
208
209 return ret;
210}
211
212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213{
214 return HUGETLBFS_SB(inode->i_sb)->spool;
215}
216
217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218{
219 return subpool_inode(file_inode(vma->vm_file));
220}
221
222/*
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
225 *
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
232 *
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 *
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
240 */
241struct file_region {
242 struct list_head link;
243 long from;
244 long to;
245};
246
247/*
248 * Add the huge page range represented by [f, t) to the reserve
249 * map. In the normal case, existing regions will be expanded
250 * to accommodate the specified range. Sufficient regions should
251 * exist for expansion due to the previous call to region_chg
252 * with the same range. However, it is possible that region_del
253 * could have been called after region_chg and modifed the map
254 * in such a way that no region exists to be expanded. In this
255 * case, pull a region descriptor from the cache associated with
256 * the map and use that for the new range.
257 *
258 * Return the number of new huge pages added to the map. This
259 * number is greater than or equal to zero.
260 */
261static long region_add(struct resv_map *resv, long f, long t)
262{
263 struct list_head *head = &resv->regions;
264 struct file_region *rg, *nrg, *trg;
265 long add = 0;
266
267 spin_lock(&resv->lock);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (f <= rg->to)
271 break;
272
273 /*
274 * If no region exists which can be expanded to include the
275 * specified range, the list must have been modified by an
276 * interleving call to region_del(). Pull a region descriptor
277 * from the cache and use it for this range.
278 */
279 if (&rg->link == head || t < rg->from) {
280 VM_BUG_ON(resv->region_cache_count <= 0);
281
282 resv->region_cache_count--;
283 nrg = list_first_entry(&resv->region_cache, struct file_region,
284 link);
285 list_del(&nrg->link);
286
287 nrg->from = f;
288 nrg->to = t;
289 list_add(&nrg->link, rg->link.prev);
290
291 add += t - f;
292 goto out_locked;
293 }
294
295 /* Round our left edge to the current segment if it encloses us. */
296 if (f > rg->from)
297 f = rg->from;
298
299 /* Check for and consume any regions we now overlap with. */
300 nrg = rg;
301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 if (&rg->link == head)
303 break;
304 if (rg->from > t)
305 break;
306
307 /* If this area reaches higher then extend our area to
308 * include it completely. If this is not the first area
309 * which we intend to reuse, free it. */
310 if (rg->to > t)
311 t = rg->to;
312 if (rg != nrg) {
313 /* Decrement return value by the deleted range.
314 * Another range will span this area so that by
315 * end of routine add will be >= zero
316 */
317 add -= (rg->to - rg->from);
318 list_del(&rg->link);
319 kfree(rg);
320 }
321 }
322
323 add += (nrg->from - f); /* Added to beginning of region */
324 nrg->from = f;
325 add += t - nrg->to; /* Added to end of region */
326 nrg->to = t;
327
328out_locked:
329 resv->adds_in_progress--;
330 spin_unlock(&resv->lock);
331 VM_BUG_ON(add < 0);
332 return add;
333}
334
335/*
336 * Examine the existing reserve map and determine how many
337 * huge pages in the specified range [f, t) are NOT currently
338 * represented. This routine is called before a subsequent
339 * call to region_add that will actually modify the reserve
340 * map to add the specified range [f, t). region_chg does
341 * not change the number of huge pages represented by the
342 * map. However, if the existing regions in the map can not
343 * be expanded to represent the new range, a new file_region
344 * structure is added to the map as a placeholder. This is
345 * so that the subsequent region_add call will have all the
346 * regions it needs and will not fail.
347 *
348 * Upon entry, region_chg will also examine the cache of region descriptors
349 * associated with the map. If there are not enough descriptors cached, one
350 * will be allocated for the in progress add operation.
351 *
352 * Returns the number of huge pages that need to be added to the existing
353 * reservation map for the range [f, t). This number is greater or equal to
354 * zero. -ENOMEM is returned if a new file_region structure or cache entry
355 * is needed and can not be allocated.
356 */
357static long region_chg(struct resv_map *resv, long f, long t)
358{
359 struct list_head *head = &resv->regions;
360 struct file_region *rg, *nrg = NULL;
361 long chg = 0;
362
363retry:
364 spin_lock(&resv->lock);
365retry_locked:
366 resv->adds_in_progress++;
367
368 /*
369 * Check for sufficient descriptors in the cache to accommodate
370 * the number of in progress add operations.
371 */
372 if (resv->adds_in_progress > resv->region_cache_count) {
373 struct file_region *trg;
374
375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 /* Must drop lock to allocate a new descriptor. */
377 resv->adds_in_progress--;
378 spin_unlock(&resv->lock);
379
380 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
381 if (!trg) {
382 kfree(nrg);
383 return -ENOMEM;
384 }
385
386 spin_lock(&resv->lock);
387 list_add(&trg->link, &resv->region_cache);
388 resv->region_cache_count++;
389 goto retry_locked;
390 }
391
392 /* Locate the region we are before or in. */
393 list_for_each_entry(rg, head, link)
394 if (f <= rg->to)
395 break;
396
397 /* If we are below the current region then a new region is required.
398 * Subtle, allocate a new region at the position but make it zero
399 * size such that we can guarantee to record the reservation. */
400 if (&rg->link == head || t < rg->from) {
401 if (!nrg) {
402 resv->adds_in_progress--;
403 spin_unlock(&resv->lock);
404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 if (!nrg)
406 return -ENOMEM;
407
408 nrg->from = f;
409 nrg->to = f;
410 INIT_LIST_HEAD(&nrg->link);
411 goto retry;
412 }
413
414 list_add(&nrg->link, rg->link.prev);
415 chg = t - f;
416 goto out_nrg;
417 }
418
419 /* Round our left edge to the current segment if it encloses us. */
420 if (f > rg->from)
421 f = rg->from;
422 chg = t - f;
423
424 /* Check for and consume any regions we now overlap with. */
425 list_for_each_entry(rg, rg->link.prev, link) {
426 if (&rg->link == head)
427 break;
428 if (rg->from > t)
429 goto out;
430
431 /* We overlap with this area, if it extends further than
432 * us then we must extend ourselves. Account for its
433 * existing reservation. */
434 if (rg->to > t) {
435 chg += rg->to - t;
436 t = rg->to;
437 }
438 chg -= rg->to - rg->from;
439 }
440
441out:
442 spin_unlock(&resv->lock);
443 /* We already know we raced and no longer need the new region */
444 kfree(nrg);
445 return chg;
446out_nrg:
447 spin_unlock(&resv->lock);
448 return chg;
449}
450
451/*
452 * Abort the in progress add operation. The adds_in_progress field
453 * of the resv_map keeps track of the operations in progress between
454 * calls to region_chg and region_add. Operations are sometimes
455 * aborted after the call to region_chg. In such cases, region_abort
456 * is called to decrement the adds_in_progress counter.
457 *
458 * NOTE: The range arguments [f, t) are not needed or used in this
459 * routine. They are kept to make reading the calling code easier as
460 * arguments will match the associated region_chg call.
461 */
462static void region_abort(struct resv_map *resv, long f, long t)
463{
464 spin_lock(&resv->lock);
465 VM_BUG_ON(!resv->region_cache_count);
466 resv->adds_in_progress--;
467 spin_unlock(&resv->lock);
468}
469
470/*
471 * Delete the specified range [f, t) from the reserve map. If the
472 * t parameter is LONG_MAX, this indicates that ALL regions after f
473 * should be deleted. Locate the regions which intersect [f, t)
474 * and either trim, delete or split the existing regions.
475 *
476 * Returns the number of huge pages deleted from the reserve map.
477 * In the normal case, the return value is zero or more. In the
478 * case where a region must be split, a new region descriptor must
479 * be allocated. If the allocation fails, -ENOMEM will be returned.
480 * NOTE: If the parameter t == LONG_MAX, then we will never split
481 * a region and possibly return -ENOMEM. Callers specifying
482 * t == LONG_MAX do not need to check for -ENOMEM error.
483 */
484static long region_del(struct resv_map *resv, long f, long t)
485{
486 struct list_head *head = &resv->regions;
487 struct file_region *rg, *trg;
488 struct file_region *nrg = NULL;
489 long del = 0;
490
491retry:
492 spin_lock(&resv->lock);
493 list_for_each_entry_safe(rg, trg, head, link) {
494 /*
495 * Skip regions before the range to be deleted. file_region
496 * ranges are normally of the form [from, to). However, there
497 * may be a "placeholder" entry in the map which is of the form
498 * (from, to) with from == to. Check for placeholder entries
499 * at the beginning of the range to be deleted.
500 */
501 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
502 continue;
503
504 if (rg->from >= t)
505 break;
506
507 if (f > rg->from && t < rg->to) { /* Must split region */
508 /*
509 * Check for an entry in the cache before dropping
510 * lock and attempting allocation.
511 */
512 if (!nrg &&
513 resv->region_cache_count > resv->adds_in_progress) {
514 nrg = list_first_entry(&resv->region_cache,
515 struct file_region,
516 link);
517 list_del(&nrg->link);
518 resv->region_cache_count--;
519 }
520
521 if (!nrg) {
522 spin_unlock(&resv->lock);
523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 if (!nrg)
525 return -ENOMEM;
526 goto retry;
527 }
528
529 del += t - f;
530
531 /* New entry for end of split region */
532 nrg->from = t;
533 nrg->to = rg->to;
534 INIT_LIST_HEAD(&nrg->link);
535
536 /* Original entry is trimmed */
537 rg->to = f;
538
539 list_add(&nrg->link, &rg->link);
540 nrg = NULL;
541 break;
542 }
543
544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 del += rg->to - rg->from;
546 list_del(&rg->link);
547 kfree(rg);
548 continue;
549 }
550
551 if (f <= rg->from) { /* Trim beginning of region */
552 del += t - rg->from;
553 rg->from = t;
554 } else { /* Trim end of region */
555 del += rg->to - f;
556 rg->to = f;
557 }
558 }
559
560 spin_unlock(&resv->lock);
561 kfree(nrg);
562 return del;
563}
564
565/*
566 * A rare out of memory error was encountered which prevented removal of
567 * the reserve map region for a page. The huge page itself was free'ed
568 * and removed from the page cache. This routine will adjust the subpool
569 * usage count, and the global reserve count if needed. By incrementing
570 * these counts, the reserve map entry which could not be deleted will
571 * appear as a "reserved" entry instead of simply dangling with incorrect
572 * counts.
573 */
574void hugetlb_fix_reserve_counts(struct inode *inode)
575{
576 struct hugepage_subpool *spool = subpool_inode(inode);
577 long rsv_adjust;
578
579 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
580 if (rsv_adjust) {
581 struct hstate *h = hstate_inode(inode);
582
583 hugetlb_acct_memory(h, 1);
584 }
585}
586
587/*
588 * Count and return the number of huge pages in the reserve map
589 * that intersect with the range [f, t).
590 */
591static long region_count(struct resv_map *resv, long f, long t)
592{
593 struct list_head *head = &resv->regions;
594 struct file_region *rg;
595 long chg = 0;
596
597 spin_lock(&resv->lock);
598 /* Locate each segment we overlap with, and count that overlap. */
599 list_for_each_entry(rg, head, link) {
600 long seg_from;
601 long seg_to;
602
603 if (rg->to <= f)
604 continue;
605 if (rg->from >= t)
606 break;
607
608 seg_from = max(rg->from, f);
609 seg_to = min(rg->to, t);
610
611 chg += seg_to - seg_from;
612 }
613 spin_unlock(&resv->lock);
614
615 return chg;
616}
617
618/*
619 * Convert the address within this vma to the page offset within
620 * the mapping, in pagecache page units; huge pages here.
621 */
622static pgoff_t vma_hugecache_offset(struct hstate *h,
623 struct vm_area_struct *vma, unsigned long address)
624{
625 return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 (vma->vm_pgoff >> huge_page_order(h));
627}
628
629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 unsigned long address)
631{
632 return vma_hugecache_offset(hstate_vma(vma), vma, address);
633}
634EXPORT_SYMBOL_GPL(linear_hugepage_index);
635
636/*
637 * Return the size of the pages allocated when backing a VMA. In the majority
638 * cases this will be same size as used by the page table entries.
639 */
640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641{
642 if (vma->vm_ops && vma->vm_ops->pagesize)
643 return vma->vm_ops->pagesize(vma);
644 return PAGE_SIZE;
645}
646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647
648/*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
651 * architectures where it differs, an architecture-specific 'strong'
652 * version of this symbol is required.
653 */
654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
655{
656 return vma_kernel_pagesize(vma);
657}
658
659/*
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
663 */
664#define HPAGE_RESV_OWNER (1UL << 0)
665#define HPAGE_RESV_UNMAPPED (1UL << 1)
666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668/*
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
672 *
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
677 *
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
686 */
687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688{
689 return (unsigned long)vma->vm_private_data;
690}
691
692static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
694{
695 vma->vm_private_data = (void *)value;
696}
697
698struct resv_map *resv_map_alloc(void)
699{
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
706 return NULL;
707 }
708
709 kref_init(&resv_map->refs);
710 spin_lock_init(&resv_map->lock);
711 INIT_LIST_HEAD(&resv_map->regions);
712
713 resv_map->adds_in_progress = 0;
714
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
718
719 return resv_map;
720}
721
722void resv_map_release(struct kref *ref)
723{
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
727
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map, 0, LONG_MAX);
730
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
735 }
736
737 VM_BUG_ON(resv_map->adds_in_progress);
738
739 kfree(resv_map);
740}
741
742static inline struct resv_map *inode_resv_map(struct inode *inode)
743{
744 /*
745 * At inode evict time, i_mapping may not point to the original
746 * address space within the inode. This original address space
747 * contains the pointer to the resv_map. So, always use the
748 * address space embedded within the inode.
749 * The VERY common case is inode->mapping == &inode->i_data but,
750 * this may not be true for device special inodes.
751 */
752 return (struct resv_map *)(&inode->i_data)->private_data;
753}
754
755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
756{
757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758 if (vma->vm_flags & VM_MAYSHARE) {
759 struct address_space *mapping = vma->vm_file->f_mapping;
760 struct inode *inode = mapping->host;
761
762 return inode_resv_map(inode);
763
764 } else {
765 return (struct resv_map *)(get_vma_private_data(vma) &
766 ~HPAGE_RESV_MASK);
767 }
768}
769
770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
771{
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775 set_vma_private_data(vma, (get_vma_private_data(vma) &
776 HPAGE_RESV_MASK) | (unsigned long)map);
777}
778
779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780{
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
783
784 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
785}
786
787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788{
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790
791 return (get_vma_private_data(vma) & flag) != 0;
792}
793
794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796{
797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798 if (!(vma->vm_flags & VM_MAYSHARE))
799 vma->vm_private_data = (void *)0;
800}
801
802/* Returns true if the VMA has associated reserve pages */
803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
804{
805 if (vma->vm_flags & VM_NORESERVE) {
806 /*
807 * This address is already reserved by other process(chg == 0),
808 * so, we should decrement reserved count. Without decrementing,
809 * reserve count remains after releasing inode, because this
810 * allocated page will go into page cache and is regarded as
811 * coming from reserved pool in releasing step. Currently, we
812 * don't have any other solution to deal with this situation
813 * properly, so add work-around here.
814 */
815 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 return true;
817 else
818 return false;
819 }
820
821 /* Shared mappings always use reserves */
822 if (vma->vm_flags & VM_MAYSHARE) {
823 /*
824 * We know VM_NORESERVE is not set. Therefore, there SHOULD
825 * be a region map for all pages. The only situation where
826 * there is no region map is if a hole was punched via
827 * fallocate. In this case, there really are no reverves to
828 * use. This situation is indicated if chg != 0.
829 */
830 if (chg)
831 return false;
832 else
833 return true;
834 }
835
836 /*
837 * Only the process that called mmap() has reserves for
838 * private mappings.
839 */
840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 /*
842 * Like the shared case above, a hole punch or truncate
843 * could have been performed on the private mapping.
844 * Examine the value of chg to determine if reserves
845 * actually exist or were previously consumed.
846 * Very Subtle - The value of chg comes from a previous
847 * call to vma_needs_reserves(). The reserve map for
848 * private mappings has different (opposite) semantics
849 * than that of shared mappings. vma_needs_reserves()
850 * has already taken this difference in semantics into
851 * account. Therefore, the meaning of chg is the same
852 * as in the shared case above. Code could easily be
853 * combined, but keeping it separate draws attention to
854 * subtle differences.
855 */
856 if (chg)
857 return false;
858 else
859 return true;
860 }
861
862 return false;
863}
864
865static void enqueue_huge_page(struct hstate *h, struct page *page)
866{
867 int nid = page_to_nid(page);
868 list_move(&page->lru, &h->hugepage_freelists[nid]);
869 h->free_huge_pages++;
870 h->free_huge_pages_node[nid]++;
871}
872
873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
874{
875 struct page *page;
876
877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
878 if (!PageHWPoison(page))
879 break;
880 /*
881 * if 'non-isolated free hugepage' not found on the list,
882 * the allocation fails.
883 */
884 if (&h->hugepage_freelists[nid] == &page->lru)
885 return NULL;
886 list_move(&page->lru, &h->hugepage_activelist);
887 set_page_refcounted(page);
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 return page;
891}
892
893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 nodemask_t *nmask)
895{
896 unsigned int cpuset_mems_cookie;
897 struct zonelist *zonelist;
898 struct zone *zone;
899 struct zoneref *z;
900 int node = NUMA_NO_NODE;
901
902 zonelist = node_zonelist(nid, gfp_mask);
903
904retry_cpuset:
905 cpuset_mems_cookie = read_mems_allowed_begin();
906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 struct page *page;
908
909 if (!cpuset_zone_allowed(zone, gfp_mask))
910 continue;
911 /*
912 * no need to ask again on the same node. Pool is node rather than
913 * zone aware
914 */
915 if (zone_to_nid(zone) == node)
916 continue;
917 node = zone_to_nid(zone);
918
919 page = dequeue_huge_page_node_exact(h, node);
920 if (page)
921 return page;
922 }
923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 goto retry_cpuset;
925
926 return NULL;
927}
928
929/* Movability of hugepages depends on migration support. */
930static inline gfp_t htlb_alloc_mask(struct hstate *h)
931{
932 if (hugepage_movable_supported(h))
933 return GFP_HIGHUSER_MOVABLE;
934 else
935 return GFP_HIGHUSER;
936}
937
938static struct page *dequeue_huge_page_vma(struct hstate *h,
939 struct vm_area_struct *vma,
940 unsigned long address, int avoid_reserve,
941 long chg)
942{
943 struct page *page;
944 struct mempolicy *mpol;
945 gfp_t gfp_mask;
946 nodemask_t *nodemask;
947 int nid;
948
949 /*
950 * A child process with MAP_PRIVATE mappings created by their parent
951 * have no page reserves. This check ensures that reservations are
952 * not "stolen". The child may still get SIGKILLed
953 */
954 if (!vma_has_reserves(vma, chg) &&
955 h->free_huge_pages - h->resv_huge_pages == 0)
956 goto err;
957
958 /* If reserves cannot be used, ensure enough pages are in the pool */
959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
960 goto err;
961
962 gfp_mask = htlb_alloc_mask(h);
963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 SetPagePrivate(page);
967 h->resv_huge_pages--;
968 }
969
970 mpol_cond_put(mpol);
971 return page;
972
973err:
974 return NULL;
975}
976
977/*
978 * common helper functions for hstate_next_node_to_{alloc|free}.
979 * We may have allocated or freed a huge page based on a different
980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981 * be outside of *nodes_allowed. Ensure that we use an allowed
982 * node for alloc or free.
983 */
984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985{
986 nid = next_node_in(nid, *nodes_allowed);
987 VM_BUG_ON(nid >= MAX_NUMNODES);
988
989 return nid;
990}
991
992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993{
994 if (!node_isset(nid, *nodes_allowed))
995 nid = next_node_allowed(nid, nodes_allowed);
996 return nid;
997}
998
999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006 nodemask_t *nodes_allowed)
1007{
1008 int nid;
1009
1010 VM_BUG_ON(!nodes_allowed);
1011
1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015 return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page. Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026 int nid;
1027
1028 VM_BUG_ON(!nodes_allowed);
1029
1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033 return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1037 for (nr_nodes = nodes_weight(*mask); \
1038 nr_nodes > 0 && \
1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1040 nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1043 for (nr_nodes = nodes_weight(*mask); \
1044 nr_nodes > 0 && \
1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1046 nr_nodes--)
1047
1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049static void destroy_compound_gigantic_page(struct page *page,
1050 unsigned int order)
1051{
1052 int i;
1053 int nr_pages = 1 << order;
1054 struct page *p = page + 1;
1055
1056 atomic_set(compound_mapcount_ptr(page), 0);
1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058 clear_compound_head(p);
1059 set_page_refcounted(p);
1060 }
1061
1062 set_compound_order(page, 0);
1063 __ClearPageHead(page);
1064}
1065
1066static void free_gigantic_page(struct page *page, unsigned int order)
1067{
1068 free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
1071#ifdef CONFIG_CONTIG_ALLOC
1072static int __alloc_gigantic_page(unsigned long start_pfn,
1073 unsigned long nr_pages, gfp_t gfp_mask)
1074{
1075 unsigned long end_pfn = start_pfn + nr_pages;
1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077 gfp_mask);
1078}
1079
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081 unsigned long start_pfn, unsigned long nr_pages)
1082{
1083 unsigned long i, end_pfn = start_pfn + nr_pages;
1084 struct page *page;
1085
1086 for (i = start_pfn; i < end_pfn; i++) {
1087 page = pfn_to_online_page(i);
1088 if (!page)
1089 return false;
1090
1091 if (page_zone(page) != z)
1092 return false;
1093
1094 if (PageReserved(page))
1095 return false;
1096
1097 if (page_count(page) > 0)
1098 return false;
1099
1100 if (PageHuge(page))
1101 return false;
1102 }
1103
1104 return true;
1105}
1106
1107static bool zone_spans_last_pfn(const struct zone *zone,
1108 unsigned long start_pfn, unsigned long nr_pages)
1109{
1110 unsigned long last_pfn = start_pfn + nr_pages - 1;
1111 return zone_spans_pfn(zone, last_pfn);
1112}
1113
1114static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115 int nid, nodemask_t *nodemask)
1116{
1117 unsigned int order = huge_page_order(h);
1118 unsigned long nr_pages = 1 << order;
1119 unsigned long ret, pfn, flags;
1120 struct zonelist *zonelist;
1121 struct zone *zone;
1122 struct zoneref *z;
1123
1124 zonelist = node_zonelist(nid, gfp_mask);
1125 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126 spin_lock_irqsave(&zone->lock, flags);
1127
1128 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131 /*
1132 * We release the zone lock here because
1133 * alloc_contig_range() will also lock the zone
1134 * at some point. If there's an allocation
1135 * spinning on this lock, it may win the race
1136 * and cause alloc_contig_range() to fail...
1137 */
1138 spin_unlock_irqrestore(&zone->lock, flags);
1139 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140 if (!ret)
1141 return pfn_to_page(pfn);
1142 spin_lock_irqsave(&zone->lock, flags);
1143 }
1144 pfn += nr_pages;
1145 }
1146
1147 spin_unlock_irqrestore(&zone->lock, flags);
1148 }
1149
1150 return NULL;
1151}
1152
1153static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155#else /* !CONFIG_CONTIG_ALLOC */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157 int nid, nodemask_t *nodemask)
1158{
1159 return NULL;
1160}
1161#endif /* CONFIG_CONTIG_ALLOC */
1162
1163#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165 int nid, nodemask_t *nodemask)
1166{
1167 return NULL;
1168}
1169static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170static inline void destroy_compound_gigantic_page(struct page *page,
1171 unsigned int order) { }
1172#endif
1173
1174static void update_and_free_page(struct hstate *h, struct page *page)
1175{
1176 int i;
1177
1178 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179 return;
1180
1181 h->nr_huge_pages--;
1182 h->nr_huge_pages_node[page_to_nid(page)]--;
1183 for (i = 0; i < pages_per_huge_page(h); i++) {
1184 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185 1 << PG_referenced | 1 << PG_dirty |
1186 1 << PG_active | 1 << PG_private |
1187 1 << PG_writeback);
1188 }
1189 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1190 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191 set_page_refcounted(page);
1192 if (hstate_is_gigantic(h)) {
1193 destroy_compound_gigantic_page(page, huge_page_order(h));
1194 free_gigantic_page(page, huge_page_order(h));
1195 } else {
1196 __free_pages(page, huge_page_order(h));
1197 }
1198}
1199
1200struct hstate *size_to_hstate(unsigned long size)
1201{
1202 struct hstate *h;
1203
1204 for_each_hstate(h) {
1205 if (huge_page_size(h) == size)
1206 return h;
1207 }
1208 return NULL;
1209}
1210
1211/*
1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213 * to hstate->hugepage_activelist.)
1214 *
1215 * This function can be called for tail pages, but never returns true for them.
1216 */
1217bool page_huge_active(struct page *page)
1218{
1219 VM_BUG_ON_PAGE(!PageHuge(page), page);
1220 return PageHead(page) && PagePrivate(&page[1]);
1221}
1222
1223/* never called for tail page */
1224static void set_page_huge_active(struct page *page)
1225{
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 SetPagePrivate(&page[1]);
1228}
1229
1230static void clear_page_huge_active(struct page *page)
1231{
1232 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233 ClearPagePrivate(&page[1]);
1234}
1235
1236/*
1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238 * code
1239 */
1240static inline bool PageHugeTemporary(struct page *page)
1241{
1242 if (!PageHuge(page))
1243 return false;
1244
1245 return (unsigned long)page[2].mapping == -1U;
1246}
1247
1248static inline void SetPageHugeTemporary(struct page *page)
1249{
1250 page[2].mapping = (void *)-1U;
1251}
1252
1253static inline void ClearPageHugeTemporary(struct page *page)
1254{
1255 page[2].mapping = NULL;
1256}
1257
1258void free_huge_page(struct page *page)
1259{
1260 /*
1261 * Can't pass hstate in here because it is called from the
1262 * compound page destructor.
1263 */
1264 struct hstate *h = page_hstate(page);
1265 int nid = page_to_nid(page);
1266 struct hugepage_subpool *spool =
1267 (struct hugepage_subpool *)page_private(page);
1268 bool restore_reserve;
1269
1270 VM_BUG_ON_PAGE(page_count(page), page);
1271 VM_BUG_ON_PAGE(page_mapcount(page), page);
1272
1273 set_page_private(page, 0);
1274 page->mapping = NULL;
1275 restore_reserve = PagePrivate(page);
1276 ClearPagePrivate(page);
1277
1278 /*
1279 * If PagePrivate() was set on page, page allocation consumed a
1280 * reservation. If the page was associated with a subpool, there
1281 * would have been a page reserved in the subpool before allocation
1282 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1283 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284 * remove the reserved page from the subpool.
1285 */
1286 if (!restore_reserve) {
1287 /*
1288 * A return code of zero implies that the subpool will be
1289 * under its minimum size if the reservation is not restored
1290 * after page is free. Therefore, force restore_reserve
1291 * operation.
1292 */
1293 if (hugepage_subpool_put_pages(spool, 1) == 0)
1294 restore_reserve = true;
1295 }
1296
1297 spin_lock(&hugetlb_lock);
1298 clear_page_huge_active(page);
1299 hugetlb_cgroup_uncharge_page(hstate_index(h),
1300 pages_per_huge_page(h), page);
1301 if (restore_reserve)
1302 h->resv_huge_pages++;
1303
1304 if (PageHugeTemporary(page)) {
1305 list_del(&page->lru);
1306 ClearPageHugeTemporary(page);
1307 update_and_free_page(h, page);
1308 } else if (h->surplus_huge_pages_node[nid]) {
1309 /* remove the page from active list */
1310 list_del(&page->lru);
1311 update_and_free_page(h, page);
1312 h->surplus_huge_pages--;
1313 h->surplus_huge_pages_node[nid]--;
1314 } else {
1315 arch_clear_hugepage_flags(page);
1316 enqueue_huge_page(h, page);
1317 }
1318 spin_unlock(&hugetlb_lock);
1319}
1320
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1322{
1323 INIT_LIST_HEAD(&page->lru);
1324 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325 spin_lock(&hugetlb_lock);
1326 set_hugetlb_cgroup(page, NULL);
1327 h->nr_huge_pages++;
1328 h->nr_huge_pages_node[nid]++;
1329 spin_unlock(&hugetlb_lock);
1330}
1331
1332static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1333{
1334 int i;
1335 int nr_pages = 1 << order;
1336 struct page *p = page + 1;
1337
1338 /* we rely on prep_new_huge_page to set the destructor */
1339 set_compound_order(page, order);
1340 __ClearPageReserved(page);
1341 __SetPageHead(page);
1342 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1343 /*
1344 * For gigantic hugepages allocated through bootmem at
1345 * boot, it's safer to be consistent with the not-gigantic
1346 * hugepages and clear the PG_reserved bit from all tail pages
1347 * too. Otherwse drivers using get_user_pages() to access tail
1348 * pages may get the reference counting wrong if they see
1349 * PG_reserved set on a tail page (despite the head page not
1350 * having PG_reserved set). Enforcing this consistency between
1351 * head and tail pages allows drivers to optimize away a check
1352 * on the head page when they need know if put_page() is needed
1353 * after get_user_pages().
1354 */
1355 __ClearPageReserved(p);
1356 set_page_count(p, 0);
1357 set_compound_head(p, page);
1358 }
1359 atomic_set(compound_mapcount_ptr(page), -1);
1360}
1361
1362/*
1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364 * transparent huge pages. See the PageTransHuge() documentation for more
1365 * details.
1366 */
1367int PageHuge(struct page *page)
1368{
1369 if (!PageCompound(page))
1370 return 0;
1371
1372 page = compound_head(page);
1373 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374}
1375EXPORT_SYMBOL_GPL(PageHuge);
1376
1377/*
1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379 * normal or transparent huge pages.
1380 */
1381int PageHeadHuge(struct page *page_head)
1382{
1383 if (!PageHead(page_head))
1384 return 0;
1385
1386 return get_compound_page_dtor(page_head) == free_huge_page;
1387}
1388
1389pgoff_t __basepage_index(struct page *page)
1390{
1391 struct page *page_head = compound_head(page);
1392 pgoff_t index = page_index(page_head);
1393 unsigned long compound_idx;
1394
1395 if (!PageHuge(page_head))
1396 return page_index(page);
1397
1398 if (compound_order(page_head) >= MAX_ORDER)
1399 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400 else
1401 compound_idx = page - page_head;
1402
1403 return (index << compound_order(page_head)) + compound_idx;
1404}
1405
1406static struct page *alloc_buddy_huge_page(struct hstate *h,
1407 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1408 nodemask_t *node_alloc_noretry)
1409{
1410 int order = huge_page_order(h);
1411 struct page *page;
1412 bool alloc_try_hard = true;
1413
1414 /*
1415 * By default we always try hard to allocate the page with
1416 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1417 * a loop (to adjust global huge page counts) and previous allocation
1418 * failed, do not continue to try hard on the same node. Use the
1419 * node_alloc_noretry bitmap to manage this state information.
1420 */
1421 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1422 alloc_try_hard = false;
1423 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1424 if (alloc_try_hard)
1425 gfp_mask |= __GFP_RETRY_MAYFAIL;
1426 if (nid == NUMA_NO_NODE)
1427 nid = numa_mem_id();
1428 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1429 if (page)
1430 __count_vm_event(HTLB_BUDDY_PGALLOC);
1431 else
1432 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1433
1434 /*
1435 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1436 * indicates an overall state change. Clear bit so that we resume
1437 * normal 'try hard' allocations.
1438 */
1439 if (node_alloc_noretry && page && !alloc_try_hard)
1440 node_clear(nid, *node_alloc_noretry);
1441
1442 /*
1443 * If we tried hard to get a page but failed, set bit so that
1444 * subsequent attempts will not try as hard until there is an
1445 * overall state change.
1446 */
1447 if (node_alloc_noretry && !page && alloc_try_hard)
1448 node_set(nid, *node_alloc_noretry);
1449
1450 return page;
1451}
1452
1453/*
1454 * Common helper to allocate a fresh hugetlb page. All specific allocators
1455 * should use this function to get new hugetlb pages
1456 */
1457static struct page *alloc_fresh_huge_page(struct hstate *h,
1458 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1459 nodemask_t *node_alloc_noretry)
1460{
1461 struct page *page;
1462
1463 if (hstate_is_gigantic(h))
1464 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1465 else
1466 page = alloc_buddy_huge_page(h, gfp_mask,
1467 nid, nmask, node_alloc_noretry);
1468 if (!page)
1469 return NULL;
1470
1471 if (hstate_is_gigantic(h))
1472 prep_compound_gigantic_page(page, huge_page_order(h));
1473 prep_new_huge_page(h, page, page_to_nid(page));
1474
1475 return page;
1476}
1477
1478/*
1479 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1480 * manner.
1481 */
1482static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1483 nodemask_t *node_alloc_noretry)
1484{
1485 struct page *page;
1486 int nr_nodes, node;
1487 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1488
1489 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1490 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1491 node_alloc_noretry);
1492 if (page)
1493 break;
1494 }
1495
1496 if (!page)
1497 return 0;
1498
1499 put_page(page); /* free it into the hugepage allocator */
1500
1501 return 1;
1502}
1503
1504/*
1505 * Free huge page from pool from next node to free.
1506 * Attempt to keep persistent huge pages more or less
1507 * balanced over allowed nodes.
1508 * Called with hugetlb_lock locked.
1509 */
1510static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1511 bool acct_surplus)
1512{
1513 int nr_nodes, node;
1514 int ret = 0;
1515
1516 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1517 /*
1518 * If we're returning unused surplus pages, only examine
1519 * nodes with surplus pages.
1520 */
1521 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1522 !list_empty(&h->hugepage_freelists[node])) {
1523 struct page *page =
1524 list_entry(h->hugepage_freelists[node].next,
1525 struct page, lru);
1526 list_del(&page->lru);
1527 h->free_huge_pages--;
1528 h->free_huge_pages_node[node]--;
1529 if (acct_surplus) {
1530 h->surplus_huge_pages--;
1531 h->surplus_huge_pages_node[node]--;
1532 }
1533 update_and_free_page(h, page);
1534 ret = 1;
1535 break;
1536 }
1537 }
1538
1539 return ret;
1540}
1541
1542/*
1543 * Dissolve a given free hugepage into free buddy pages. This function does
1544 * nothing for in-use hugepages and non-hugepages.
1545 * This function returns values like below:
1546 *
1547 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1548 * (allocated or reserved.)
1549 * 0: successfully dissolved free hugepages or the page is not a
1550 * hugepage (considered as already dissolved)
1551 */
1552int dissolve_free_huge_page(struct page *page)
1553{
1554 int rc = -EBUSY;
1555
1556 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1557 if (!PageHuge(page))
1558 return 0;
1559
1560 spin_lock(&hugetlb_lock);
1561 if (!PageHuge(page)) {
1562 rc = 0;
1563 goto out;
1564 }
1565
1566 if (!page_count(page)) {
1567 struct page *head = compound_head(page);
1568 struct hstate *h = page_hstate(head);
1569 int nid = page_to_nid(head);
1570 if (h->free_huge_pages - h->resv_huge_pages == 0)
1571 goto out;
1572 /*
1573 * Move PageHWPoison flag from head page to the raw error page,
1574 * which makes any subpages rather than the error page reusable.
1575 */
1576 if (PageHWPoison(head) && page != head) {
1577 SetPageHWPoison(page);
1578 ClearPageHWPoison(head);
1579 }
1580 list_del(&head->lru);
1581 h->free_huge_pages--;
1582 h->free_huge_pages_node[nid]--;
1583 h->max_huge_pages--;
1584 update_and_free_page(h, head);
1585 rc = 0;
1586 }
1587out:
1588 spin_unlock(&hugetlb_lock);
1589 return rc;
1590}
1591
1592/*
1593 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1594 * make specified memory blocks removable from the system.
1595 * Note that this will dissolve a free gigantic hugepage completely, if any
1596 * part of it lies within the given range.
1597 * Also note that if dissolve_free_huge_page() returns with an error, all
1598 * free hugepages that were dissolved before that error are lost.
1599 */
1600int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602 unsigned long pfn;
1603 struct page *page;
1604 int rc = 0;
1605
1606 if (!hugepages_supported())
1607 return rc;
1608
1609 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1610 page = pfn_to_page(pfn);
1611 rc = dissolve_free_huge_page(page);
1612 if (rc)
1613 break;
1614 }
1615
1616 return rc;
1617}
1618
1619/*
1620 * Allocates a fresh surplus page from the page allocator.
1621 */
1622static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1623 int nid, nodemask_t *nmask)
1624{
1625 struct page *page = NULL;
1626
1627 if (hstate_is_gigantic(h))
1628 return NULL;
1629
1630 spin_lock(&hugetlb_lock);
1631 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1632 goto out_unlock;
1633 spin_unlock(&hugetlb_lock);
1634
1635 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1636 if (!page)
1637 return NULL;
1638
1639 spin_lock(&hugetlb_lock);
1640 /*
1641 * We could have raced with the pool size change.
1642 * Double check that and simply deallocate the new page
1643 * if we would end up overcommiting the surpluses. Abuse
1644 * temporary page to workaround the nasty free_huge_page
1645 * codeflow
1646 */
1647 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1648 SetPageHugeTemporary(page);
1649 spin_unlock(&hugetlb_lock);
1650 put_page(page);
1651 return NULL;
1652 } else {
1653 h->surplus_huge_pages++;
1654 h->surplus_huge_pages_node[page_to_nid(page)]++;
1655 }
1656
1657out_unlock:
1658 spin_unlock(&hugetlb_lock);
1659
1660 return page;
1661}
1662
1663struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1664 int nid, nodemask_t *nmask)
1665{
1666 struct page *page;
1667
1668 if (hstate_is_gigantic(h))
1669 return NULL;
1670
1671 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1672 if (!page)
1673 return NULL;
1674
1675 /*
1676 * We do not account these pages as surplus because they are only
1677 * temporary and will be released properly on the last reference
1678 */
1679 SetPageHugeTemporary(page);
1680
1681 return page;
1682}
1683
1684/*
1685 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1686 */
1687static
1688struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1689 struct vm_area_struct *vma, unsigned long addr)
1690{
1691 struct page *page;
1692 struct mempolicy *mpol;
1693 gfp_t gfp_mask = htlb_alloc_mask(h);
1694 int nid;
1695 nodemask_t *nodemask;
1696
1697 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1698 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1699 mpol_cond_put(mpol);
1700
1701 return page;
1702}
1703
1704/* page migration callback function */
1705struct page *alloc_huge_page_node(struct hstate *h, int nid)
1706{
1707 gfp_t gfp_mask = htlb_alloc_mask(h);
1708 struct page *page = NULL;
1709
1710 if (nid != NUMA_NO_NODE)
1711 gfp_mask |= __GFP_THISNODE;
1712
1713 spin_lock(&hugetlb_lock);
1714 if (h->free_huge_pages - h->resv_huge_pages > 0)
1715 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1716 spin_unlock(&hugetlb_lock);
1717
1718 if (!page)
1719 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1720
1721 return page;
1722}
1723
1724/* page migration callback function */
1725struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1726 nodemask_t *nmask)
1727{
1728 gfp_t gfp_mask = htlb_alloc_mask(h);
1729
1730 spin_lock(&hugetlb_lock);
1731 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1732 struct page *page;
1733
1734 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1735 if (page) {
1736 spin_unlock(&hugetlb_lock);
1737 return page;
1738 }
1739 }
1740 spin_unlock(&hugetlb_lock);
1741
1742 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1743}
1744
1745/* mempolicy aware migration callback */
1746struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1747 unsigned long address)
1748{
1749 struct mempolicy *mpol;
1750 nodemask_t *nodemask;
1751 struct page *page;
1752 gfp_t gfp_mask;
1753 int node;
1754
1755 gfp_mask = htlb_alloc_mask(h);
1756 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1757 page = alloc_huge_page_nodemask(h, node, nodemask);
1758 mpol_cond_put(mpol);
1759
1760 return page;
1761}
1762
1763/*
1764 * Increase the hugetlb pool such that it can accommodate a reservation
1765 * of size 'delta'.
1766 */
1767static int gather_surplus_pages(struct hstate *h, int delta)
1768{
1769 struct list_head surplus_list;
1770 struct page *page, *tmp;
1771 int ret, i;
1772 int needed, allocated;
1773 bool alloc_ok = true;
1774
1775 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1776 if (needed <= 0) {
1777 h->resv_huge_pages += delta;
1778 return 0;
1779 }
1780
1781 allocated = 0;
1782 INIT_LIST_HEAD(&surplus_list);
1783
1784 ret = -ENOMEM;
1785retry:
1786 spin_unlock(&hugetlb_lock);
1787 for (i = 0; i < needed; i++) {
1788 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1789 NUMA_NO_NODE, NULL);
1790 if (!page) {
1791 alloc_ok = false;
1792 break;
1793 }
1794 list_add(&page->lru, &surplus_list);
1795 cond_resched();
1796 }
1797 allocated += i;
1798
1799 /*
1800 * After retaking hugetlb_lock, we need to recalculate 'needed'
1801 * because either resv_huge_pages or free_huge_pages may have changed.
1802 */
1803 spin_lock(&hugetlb_lock);
1804 needed = (h->resv_huge_pages + delta) -
1805 (h->free_huge_pages + allocated);
1806 if (needed > 0) {
1807 if (alloc_ok)
1808 goto retry;
1809 /*
1810 * We were not able to allocate enough pages to
1811 * satisfy the entire reservation so we free what
1812 * we've allocated so far.
1813 */
1814 goto free;
1815 }
1816 /*
1817 * The surplus_list now contains _at_least_ the number of extra pages
1818 * needed to accommodate the reservation. Add the appropriate number
1819 * of pages to the hugetlb pool and free the extras back to the buddy
1820 * allocator. Commit the entire reservation here to prevent another
1821 * process from stealing the pages as they are added to the pool but
1822 * before they are reserved.
1823 */
1824 needed += allocated;
1825 h->resv_huge_pages += delta;
1826 ret = 0;
1827
1828 /* Free the needed pages to the hugetlb pool */
1829 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1830 if ((--needed) < 0)
1831 break;
1832 /*
1833 * This page is now managed by the hugetlb allocator and has
1834 * no users -- drop the buddy allocator's reference.
1835 */
1836 put_page_testzero(page);
1837 VM_BUG_ON_PAGE(page_count(page), page);
1838 enqueue_huge_page(h, page);
1839 }
1840free:
1841 spin_unlock(&hugetlb_lock);
1842
1843 /* Free unnecessary surplus pages to the buddy allocator */
1844 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1845 put_page(page);
1846 spin_lock(&hugetlb_lock);
1847
1848 return ret;
1849}
1850
1851/*
1852 * This routine has two main purposes:
1853 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1854 * in unused_resv_pages. This corresponds to the prior adjustments made
1855 * to the associated reservation map.
1856 * 2) Free any unused surplus pages that may have been allocated to satisfy
1857 * the reservation. As many as unused_resv_pages may be freed.
1858 *
1859 * Called with hugetlb_lock held. However, the lock could be dropped (and
1860 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1861 * we must make sure nobody else can claim pages we are in the process of
1862 * freeing. Do this by ensuring resv_huge_page always is greater than the
1863 * number of huge pages we plan to free when dropping the lock.
1864 */
1865static void return_unused_surplus_pages(struct hstate *h,
1866 unsigned long unused_resv_pages)
1867{
1868 unsigned long nr_pages;
1869
1870 /* Cannot return gigantic pages currently */
1871 if (hstate_is_gigantic(h))
1872 goto out;
1873
1874 /*
1875 * Part (or even all) of the reservation could have been backed
1876 * by pre-allocated pages. Only free surplus pages.
1877 */
1878 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1879
1880 /*
1881 * We want to release as many surplus pages as possible, spread
1882 * evenly across all nodes with memory. Iterate across these nodes
1883 * until we can no longer free unreserved surplus pages. This occurs
1884 * when the nodes with surplus pages have no free pages.
1885 * free_pool_huge_page() will balance the the freed pages across the
1886 * on-line nodes with memory and will handle the hstate accounting.
1887 *
1888 * Note that we decrement resv_huge_pages as we free the pages. If
1889 * we drop the lock, resv_huge_pages will still be sufficiently large
1890 * to cover subsequent pages we may free.
1891 */
1892 while (nr_pages--) {
1893 h->resv_huge_pages--;
1894 unused_resv_pages--;
1895 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1896 goto out;
1897 cond_resched_lock(&hugetlb_lock);
1898 }
1899
1900out:
1901 /* Fully uncommit the reservation */
1902 h->resv_huge_pages -= unused_resv_pages;
1903}
1904
1905
1906/*
1907 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1908 * are used by the huge page allocation routines to manage reservations.
1909 *
1910 * vma_needs_reservation is called to determine if the huge page at addr
1911 * within the vma has an associated reservation. If a reservation is
1912 * needed, the value 1 is returned. The caller is then responsible for
1913 * managing the global reservation and subpool usage counts. After
1914 * the huge page has been allocated, vma_commit_reservation is called
1915 * to add the page to the reservation map. If the page allocation fails,
1916 * the reservation must be ended instead of committed. vma_end_reservation
1917 * is called in such cases.
1918 *
1919 * In the normal case, vma_commit_reservation returns the same value
1920 * as the preceding vma_needs_reservation call. The only time this
1921 * is not the case is if a reserve map was changed between calls. It
1922 * is the responsibility of the caller to notice the difference and
1923 * take appropriate action.
1924 *
1925 * vma_add_reservation is used in error paths where a reservation must
1926 * be restored when a newly allocated huge page must be freed. It is
1927 * to be called after calling vma_needs_reservation to determine if a
1928 * reservation exists.
1929 */
1930enum vma_resv_mode {
1931 VMA_NEEDS_RESV,
1932 VMA_COMMIT_RESV,
1933 VMA_END_RESV,
1934 VMA_ADD_RESV,
1935};
1936static long __vma_reservation_common(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long addr,
1938 enum vma_resv_mode mode)
1939{
1940 struct resv_map *resv;
1941 pgoff_t idx;
1942 long ret;
1943
1944 resv = vma_resv_map(vma);
1945 if (!resv)
1946 return 1;
1947
1948 idx = vma_hugecache_offset(h, vma, addr);
1949 switch (mode) {
1950 case VMA_NEEDS_RESV:
1951 ret = region_chg(resv, idx, idx + 1);
1952 break;
1953 case VMA_COMMIT_RESV:
1954 ret = region_add(resv, idx, idx + 1);
1955 break;
1956 case VMA_END_RESV:
1957 region_abort(resv, idx, idx + 1);
1958 ret = 0;
1959 break;
1960 case VMA_ADD_RESV:
1961 if (vma->vm_flags & VM_MAYSHARE)
1962 ret = region_add(resv, idx, idx + 1);
1963 else {
1964 region_abort(resv, idx, idx + 1);
1965 ret = region_del(resv, idx, idx + 1);
1966 }
1967 break;
1968 default:
1969 BUG();
1970 }
1971
1972 if (vma->vm_flags & VM_MAYSHARE)
1973 return ret;
1974 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1975 /*
1976 * In most cases, reserves always exist for private mappings.
1977 * However, a file associated with mapping could have been
1978 * hole punched or truncated after reserves were consumed.
1979 * As subsequent fault on such a range will not use reserves.
1980 * Subtle - The reserve map for private mappings has the
1981 * opposite meaning than that of shared mappings. If NO
1982 * entry is in the reserve map, it means a reservation exists.
1983 * If an entry exists in the reserve map, it means the
1984 * reservation has already been consumed. As a result, the
1985 * return value of this routine is the opposite of the
1986 * value returned from reserve map manipulation routines above.
1987 */
1988 if (ret)
1989 return 0;
1990 else
1991 return 1;
1992 }
1993 else
1994 return ret < 0 ? ret : 0;
1995}
1996
1997static long vma_needs_reservation(struct hstate *h,
1998 struct vm_area_struct *vma, unsigned long addr)
1999{
2000 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2001}
2002
2003static long vma_commit_reservation(struct hstate *h,
2004 struct vm_area_struct *vma, unsigned long addr)
2005{
2006 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2007}
2008
2009static void vma_end_reservation(struct hstate *h,
2010 struct vm_area_struct *vma, unsigned long addr)
2011{
2012 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2013}
2014
2015static long vma_add_reservation(struct hstate *h,
2016 struct vm_area_struct *vma, unsigned long addr)
2017{
2018 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2019}
2020
2021/*
2022 * This routine is called to restore a reservation on error paths. In the
2023 * specific error paths, a huge page was allocated (via alloc_huge_page)
2024 * and is about to be freed. If a reservation for the page existed,
2025 * alloc_huge_page would have consumed the reservation and set PagePrivate
2026 * in the newly allocated page. When the page is freed via free_huge_page,
2027 * the global reservation count will be incremented if PagePrivate is set.
2028 * However, free_huge_page can not adjust the reserve map. Adjust the
2029 * reserve map here to be consistent with global reserve count adjustments
2030 * to be made by free_huge_page.
2031 */
2032static void restore_reserve_on_error(struct hstate *h,
2033 struct vm_area_struct *vma, unsigned long address,
2034 struct page *page)
2035{
2036 if (unlikely(PagePrivate(page))) {
2037 long rc = vma_needs_reservation(h, vma, address);
2038
2039 if (unlikely(rc < 0)) {
2040 /*
2041 * Rare out of memory condition in reserve map
2042 * manipulation. Clear PagePrivate so that
2043 * global reserve count will not be incremented
2044 * by free_huge_page. This will make it appear
2045 * as though the reservation for this page was
2046 * consumed. This may prevent the task from
2047 * faulting in the page at a later time. This
2048 * is better than inconsistent global huge page
2049 * accounting of reserve counts.
2050 */
2051 ClearPagePrivate(page);
2052 } else if (rc) {
2053 rc = vma_add_reservation(h, vma, address);
2054 if (unlikely(rc < 0))
2055 /*
2056 * See above comment about rare out of
2057 * memory condition.
2058 */
2059 ClearPagePrivate(page);
2060 } else
2061 vma_end_reservation(h, vma, address);
2062 }
2063}
2064
2065struct page *alloc_huge_page(struct vm_area_struct *vma,
2066 unsigned long addr, int avoid_reserve)
2067{
2068 struct hugepage_subpool *spool = subpool_vma(vma);
2069 struct hstate *h = hstate_vma(vma);
2070 struct page *page;
2071 long map_chg, map_commit;
2072 long gbl_chg;
2073 int ret, idx;
2074 struct hugetlb_cgroup *h_cg;
2075
2076 idx = hstate_index(h);
2077 /*
2078 * Examine the region/reserve map to determine if the process
2079 * has a reservation for the page to be allocated. A return
2080 * code of zero indicates a reservation exists (no change).
2081 */
2082 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2083 if (map_chg < 0)
2084 return ERR_PTR(-ENOMEM);
2085
2086 /*
2087 * Processes that did not create the mapping will have no
2088 * reserves as indicated by the region/reserve map. Check
2089 * that the allocation will not exceed the subpool limit.
2090 * Allocations for MAP_NORESERVE mappings also need to be
2091 * checked against any subpool limit.
2092 */
2093 if (map_chg || avoid_reserve) {
2094 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2095 if (gbl_chg < 0) {
2096 vma_end_reservation(h, vma, addr);
2097 return ERR_PTR(-ENOSPC);
2098 }
2099
2100 /*
2101 * Even though there was no reservation in the region/reserve
2102 * map, there could be reservations associated with the
2103 * subpool that can be used. This would be indicated if the
2104 * return value of hugepage_subpool_get_pages() is zero.
2105 * However, if avoid_reserve is specified we still avoid even
2106 * the subpool reservations.
2107 */
2108 if (avoid_reserve)
2109 gbl_chg = 1;
2110 }
2111
2112 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2113 if (ret)
2114 goto out_subpool_put;
2115
2116 spin_lock(&hugetlb_lock);
2117 /*
2118 * glb_chg is passed to indicate whether or not a page must be taken
2119 * from the global free pool (global change). gbl_chg == 0 indicates
2120 * a reservation exists for the allocation.
2121 */
2122 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2123 if (!page) {
2124 spin_unlock(&hugetlb_lock);
2125 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2126 if (!page)
2127 goto out_uncharge_cgroup;
2128 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2129 SetPagePrivate(page);
2130 h->resv_huge_pages--;
2131 }
2132 spin_lock(&hugetlb_lock);
2133 list_move(&page->lru, &h->hugepage_activelist);
2134 /* Fall through */
2135 }
2136 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2137 spin_unlock(&hugetlb_lock);
2138
2139 set_page_private(page, (unsigned long)spool);
2140
2141 map_commit = vma_commit_reservation(h, vma, addr);
2142 if (unlikely(map_chg > map_commit)) {
2143 /*
2144 * The page was added to the reservation map between
2145 * vma_needs_reservation and vma_commit_reservation.
2146 * This indicates a race with hugetlb_reserve_pages.
2147 * Adjust for the subpool count incremented above AND
2148 * in hugetlb_reserve_pages for the same page. Also,
2149 * the reservation count added in hugetlb_reserve_pages
2150 * no longer applies.
2151 */
2152 long rsv_adjust;
2153
2154 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2155 hugetlb_acct_memory(h, -rsv_adjust);
2156 }
2157 return page;
2158
2159out_uncharge_cgroup:
2160 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2161out_subpool_put:
2162 if (map_chg || avoid_reserve)
2163 hugepage_subpool_put_pages(spool, 1);
2164 vma_end_reservation(h, vma, addr);
2165 return ERR_PTR(-ENOSPC);
2166}
2167
2168int alloc_bootmem_huge_page(struct hstate *h)
2169 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2170int __alloc_bootmem_huge_page(struct hstate *h)
2171{
2172 struct huge_bootmem_page *m;
2173 int nr_nodes, node;
2174
2175 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2176 void *addr;
2177
2178 addr = memblock_alloc_try_nid_raw(
2179 huge_page_size(h), huge_page_size(h),
2180 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2181 if (addr) {
2182 /*
2183 * Use the beginning of the huge page to store the
2184 * huge_bootmem_page struct (until gather_bootmem
2185 * puts them into the mem_map).
2186 */
2187 m = addr;
2188 goto found;
2189 }
2190 }
2191 return 0;
2192
2193found:
2194 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2195 /* Put them into a private list first because mem_map is not up yet */
2196 INIT_LIST_HEAD(&m->list);
2197 list_add(&m->list, &huge_boot_pages);
2198 m->hstate = h;
2199 return 1;
2200}
2201
2202static void __init prep_compound_huge_page(struct page *page,
2203 unsigned int order)
2204{
2205 if (unlikely(order > (MAX_ORDER - 1)))
2206 prep_compound_gigantic_page(page, order);
2207 else
2208 prep_compound_page(page, order);
2209}
2210
2211/* Put bootmem huge pages into the standard lists after mem_map is up */
2212static void __init gather_bootmem_prealloc(void)
2213{
2214 struct huge_bootmem_page *m;
2215
2216 list_for_each_entry(m, &huge_boot_pages, list) {
2217 struct page *page = virt_to_page(m);
2218 struct hstate *h = m->hstate;
2219
2220 WARN_ON(page_count(page) != 1);
2221 prep_compound_huge_page(page, h->order);
2222 WARN_ON(PageReserved(page));
2223 prep_new_huge_page(h, page, page_to_nid(page));
2224 put_page(page); /* free it into the hugepage allocator */
2225
2226 /*
2227 * If we had gigantic hugepages allocated at boot time, we need
2228 * to restore the 'stolen' pages to totalram_pages in order to
2229 * fix confusing memory reports from free(1) and another
2230 * side-effects, like CommitLimit going negative.
2231 */
2232 if (hstate_is_gigantic(h))
2233 adjust_managed_page_count(page, 1 << h->order);
2234 cond_resched();
2235 }
2236}
2237
2238static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2239{
2240 unsigned long i;
2241 nodemask_t *node_alloc_noretry;
2242
2243 if (!hstate_is_gigantic(h)) {
2244 /*
2245 * Bit mask controlling how hard we retry per-node allocations.
2246 * Ignore errors as lower level routines can deal with
2247 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2248 * time, we are likely in bigger trouble.
2249 */
2250 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2251 GFP_KERNEL);
2252 } else {
2253 /* allocations done at boot time */
2254 node_alloc_noretry = NULL;
2255 }
2256
2257 /* bit mask controlling how hard we retry per-node allocations */
2258 if (node_alloc_noretry)
2259 nodes_clear(*node_alloc_noretry);
2260
2261 for (i = 0; i < h->max_huge_pages; ++i) {
2262 if (hstate_is_gigantic(h)) {
2263 if (!alloc_bootmem_huge_page(h))
2264 break;
2265 } else if (!alloc_pool_huge_page(h,
2266 &node_states[N_MEMORY],
2267 node_alloc_noretry))
2268 break;
2269 cond_resched();
2270 }
2271 if (i < h->max_huge_pages) {
2272 char buf[32];
2273
2274 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2275 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2276 h->max_huge_pages, buf, i);
2277 h->max_huge_pages = i;
2278 }
2279
2280 kfree(node_alloc_noretry);
2281}
2282
2283static void __init hugetlb_init_hstates(void)
2284{
2285 struct hstate *h;
2286
2287 for_each_hstate(h) {
2288 if (minimum_order > huge_page_order(h))
2289 minimum_order = huge_page_order(h);
2290
2291 /* oversize hugepages were init'ed in early boot */
2292 if (!hstate_is_gigantic(h))
2293 hugetlb_hstate_alloc_pages(h);
2294 }
2295 VM_BUG_ON(minimum_order == UINT_MAX);
2296}
2297
2298static void __init report_hugepages(void)
2299{
2300 struct hstate *h;
2301
2302 for_each_hstate(h) {
2303 char buf[32];
2304
2305 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2306 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2307 buf, h->free_huge_pages);
2308 }
2309}
2310
2311#ifdef CONFIG_HIGHMEM
2312static void try_to_free_low(struct hstate *h, unsigned long count,
2313 nodemask_t *nodes_allowed)
2314{
2315 int i;
2316
2317 if (hstate_is_gigantic(h))
2318 return;
2319
2320 for_each_node_mask(i, *nodes_allowed) {
2321 struct page *page, *next;
2322 struct list_head *freel = &h->hugepage_freelists[i];
2323 list_for_each_entry_safe(page, next, freel, lru) {
2324 if (count >= h->nr_huge_pages)
2325 return;
2326 if (PageHighMem(page))
2327 continue;
2328 list_del(&page->lru);
2329 update_and_free_page(h, page);
2330 h->free_huge_pages--;
2331 h->free_huge_pages_node[page_to_nid(page)]--;
2332 }
2333 }
2334}
2335#else
2336static inline void try_to_free_low(struct hstate *h, unsigned long count,
2337 nodemask_t *nodes_allowed)
2338{
2339}
2340#endif
2341
2342/*
2343 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2344 * balanced by operating on them in a round-robin fashion.
2345 * Returns 1 if an adjustment was made.
2346 */
2347static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2348 int delta)
2349{
2350 int nr_nodes, node;
2351
2352 VM_BUG_ON(delta != -1 && delta != 1);
2353
2354 if (delta < 0) {
2355 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2356 if (h->surplus_huge_pages_node[node])
2357 goto found;
2358 }
2359 } else {
2360 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2361 if (h->surplus_huge_pages_node[node] <
2362 h->nr_huge_pages_node[node])
2363 goto found;
2364 }
2365 }
2366 return 0;
2367
2368found:
2369 h->surplus_huge_pages += delta;
2370 h->surplus_huge_pages_node[node] += delta;
2371 return 1;
2372}
2373
2374#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2375static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2376 nodemask_t *nodes_allowed)
2377{
2378 unsigned long min_count, ret;
2379 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2380
2381 /*
2382 * Bit mask controlling how hard we retry per-node allocations.
2383 * If we can not allocate the bit mask, do not attempt to allocate
2384 * the requested huge pages.
2385 */
2386 if (node_alloc_noretry)
2387 nodes_clear(*node_alloc_noretry);
2388 else
2389 return -ENOMEM;
2390
2391 spin_lock(&hugetlb_lock);
2392
2393 /*
2394 * Check for a node specific request.
2395 * Changing node specific huge page count may require a corresponding
2396 * change to the global count. In any case, the passed node mask
2397 * (nodes_allowed) will restrict alloc/free to the specified node.
2398 */
2399 if (nid != NUMA_NO_NODE) {
2400 unsigned long old_count = count;
2401
2402 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2403 /*
2404 * User may have specified a large count value which caused the
2405 * above calculation to overflow. In this case, they wanted
2406 * to allocate as many huge pages as possible. Set count to
2407 * largest possible value to align with their intention.
2408 */
2409 if (count < old_count)
2410 count = ULONG_MAX;
2411 }
2412
2413 /*
2414 * Gigantic pages runtime allocation depend on the capability for large
2415 * page range allocation.
2416 * If the system does not provide this feature, return an error when
2417 * the user tries to allocate gigantic pages but let the user free the
2418 * boottime allocated gigantic pages.
2419 */
2420 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2421 if (count > persistent_huge_pages(h)) {
2422 spin_unlock(&hugetlb_lock);
2423 NODEMASK_FREE(node_alloc_noretry);
2424 return -EINVAL;
2425 }
2426 /* Fall through to decrease pool */
2427 }
2428
2429 /*
2430 * Increase the pool size
2431 * First take pages out of surplus state. Then make up the
2432 * remaining difference by allocating fresh huge pages.
2433 *
2434 * We might race with alloc_surplus_huge_page() here and be unable
2435 * to convert a surplus huge page to a normal huge page. That is
2436 * not critical, though, it just means the overall size of the
2437 * pool might be one hugepage larger than it needs to be, but
2438 * within all the constraints specified by the sysctls.
2439 */
2440 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2441 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2442 break;
2443 }
2444
2445 while (count > persistent_huge_pages(h)) {
2446 /*
2447 * If this allocation races such that we no longer need the
2448 * page, free_huge_page will handle it by freeing the page
2449 * and reducing the surplus.
2450 */
2451 spin_unlock(&hugetlb_lock);
2452
2453 /* yield cpu to avoid soft lockup */
2454 cond_resched();
2455
2456 ret = alloc_pool_huge_page(h, nodes_allowed,
2457 node_alloc_noretry);
2458 spin_lock(&hugetlb_lock);
2459 if (!ret)
2460 goto out;
2461
2462 /* Bail for signals. Probably ctrl-c from user */
2463 if (signal_pending(current))
2464 goto out;
2465 }
2466
2467 /*
2468 * Decrease the pool size
2469 * First return free pages to the buddy allocator (being careful
2470 * to keep enough around to satisfy reservations). Then place
2471 * pages into surplus state as needed so the pool will shrink
2472 * to the desired size as pages become free.
2473 *
2474 * By placing pages into the surplus state independent of the
2475 * overcommit value, we are allowing the surplus pool size to
2476 * exceed overcommit. There are few sane options here. Since
2477 * alloc_surplus_huge_page() is checking the global counter,
2478 * though, we'll note that we're not allowed to exceed surplus
2479 * and won't grow the pool anywhere else. Not until one of the
2480 * sysctls are changed, or the surplus pages go out of use.
2481 */
2482 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2483 min_count = max(count, min_count);
2484 try_to_free_low(h, min_count, nodes_allowed);
2485 while (min_count < persistent_huge_pages(h)) {
2486 if (!free_pool_huge_page(h, nodes_allowed, 0))
2487 break;
2488 cond_resched_lock(&hugetlb_lock);
2489 }
2490 while (count < persistent_huge_pages(h)) {
2491 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2492 break;
2493 }
2494out:
2495 h->max_huge_pages = persistent_huge_pages(h);
2496 spin_unlock(&hugetlb_lock);
2497
2498 NODEMASK_FREE(node_alloc_noretry);
2499
2500 return 0;
2501}
2502
2503#define HSTATE_ATTR_RO(_name) \
2504 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2505
2506#define HSTATE_ATTR(_name) \
2507 static struct kobj_attribute _name##_attr = \
2508 __ATTR(_name, 0644, _name##_show, _name##_store)
2509
2510static struct kobject *hugepages_kobj;
2511static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512
2513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2514
2515static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2516{
2517 int i;
2518
2519 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2520 if (hstate_kobjs[i] == kobj) {
2521 if (nidp)
2522 *nidp = NUMA_NO_NODE;
2523 return &hstates[i];
2524 }
2525
2526 return kobj_to_node_hstate(kobj, nidp);
2527}
2528
2529static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2530 struct kobj_attribute *attr, char *buf)
2531{
2532 struct hstate *h;
2533 unsigned long nr_huge_pages;
2534 int nid;
2535
2536 h = kobj_to_hstate(kobj, &nid);
2537 if (nid == NUMA_NO_NODE)
2538 nr_huge_pages = h->nr_huge_pages;
2539 else
2540 nr_huge_pages = h->nr_huge_pages_node[nid];
2541
2542 return sprintf(buf, "%lu\n", nr_huge_pages);
2543}
2544
2545static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2546 struct hstate *h, int nid,
2547 unsigned long count, size_t len)
2548{
2549 int err;
2550 nodemask_t nodes_allowed, *n_mask;
2551
2552 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2553 return -EINVAL;
2554
2555 if (nid == NUMA_NO_NODE) {
2556 /*
2557 * global hstate attribute
2558 */
2559 if (!(obey_mempolicy &&
2560 init_nodemask_of_mempolicy(&nodes_allowed)))
2561 n_mask = &node_states[N_MEMORY];
2562 else
2563 n_mask = &nodes_allowed;
2564 } else {
2565 /*
2566 * Node specific request. count adjustment happens in
2567 * set_max_huge_pages() after acquiring hugetlb_lock.
2568 */
2569 init_nodemask_of_node(&nodes_allowed, nid);
2570 n_mask = &nodes_allowed;
2571 }
2572
2573 err = set_max_huge_pages(h, count, nid, n_mask);
2574
2575 return err ? err : len;
2576}
2577
2578static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2579 struct kobject *kobj, const char *buf,
2580 size_t len)
2581{
2582 struct hstate *h;
2583 unsigned long count;
2584 int nid;
2585 int err;
2586
2587 err = kstrtoul(buf, 10, &count);
2588 if (err)
2589 return err;
2590
2591 h = kobj_to_hstate(kobj, &nid);
2592 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2593}
2594
2595static ssize_t nr_hugepages_show(struct kobject *kobj,
2596 struct kobj_attribute *attr, char *buf)
2597{
2598 return nr_hugepages_show_common(kobj, attr, buf);
2599}
2600
2601static ssize_t nr_hugepages_store(struct kobject *kobj,
2602 struct kobj_attribute *attr, const char *buf, size_t len)
2603{
2604 return nr_hugepages_store_common(false, kobj, buf, len);
2605}
2606HSTATE_ATTR(nr_hugepages);
2607
2608#ifdef CONFIG_NUMA
2609
2610/*
2611 * hstate attribute for optionally mempolicy-based constraint on persistent
2612 * huge page alloc/free.
2613 */
2614static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2615 struct kobj_attribute *attr, char *buf)
2616{
2617 return nr_hugepages_show_common(kobj, attr, buf);
2618}
2619
2620static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2621 struct kobj_attribute *attr, const char *buf, size_t len)
2622{
2623 return nr_hugepages_store_common(true, kobj, buf, len);
2624}
2625HSTATE_ATTR(nr_hugepages_mempolicy);
2626#endif
2627
2628
2629static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2630 struct kobj_attribute *attr, char *buf)
2631{
2632 struct hstate *h = kobj_to_hstate(kobj, NULL);
2633 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2634}
2635
2636static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2637 struct kobj_attribute *attr, const char *buf, size_t count)
2638{
2639 int err;
2640 unsigned long input;
2641 struct hstate *h = kobj_to_hstate(kobj, NULL);
2642
2643 if (hstate_is_gigantic(h))
2644 return -EINVAL;
2645
2646 err = kstrtoul(buf, 10, &input);
2647 if (err)
2648 return err;
2649
2650 spin_lock(&hugetlb_lock);
2651 h->nr_overcommit_huge_pages = input;
2652 spin_unlock(&hugetlb_lock);
2653
2654 return count;
2655}
2656HSTATE_ATTR(nr_overcommit_hugepages);
2657
2658static ssize_t free_hugepages_show(struct kobject *kobj,
2659 struct kobj_attribute *attr, char *buf)
2660{
2661 struct hstate *h;
2662 unsigned long free_huge_pages;
2663 int nid;
2664
2665 h = kobj_to_hstate(kobj, &nid);
2666 if (nid == NUMA_NO_NODE)
2667 free_huge_pages = h->free_huge_pages;
2668 else
2669 free_huge_pages = h->free_huge_pages_node[nid];
2670
2671 return sprintf(buf, "%lu\n", free_huge_pages);
2672}
2673HSTATE_ATTR_RO(free_hugepages);
2674
2675static ssize_t resv_hugepages_show(struct kobject *kobj,
2676 struct kobj_attribute *attr, char *buf)
2677{
2678 struct hstate *h = kobj_to_hstate(kobj, NULL);
2679 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2680}
2681HSTATE_ATTR_RO(resv_hugepages);
2682
2683static ssize_t surplus_hugepages_show(struct kobject *kobj,
2684 struct kobj_attribute *attr, char *buf)
2685{
2686 struct hstate *h;
2687 unsigned long surplus_huge_pages;
2688 int nid;
2689
2690 h = kobj_to_hstate(kobj, &nid);
2691 if (nid == NUMA_NO_NODE)
2692 surplus_huge_pages = h->surplus_huge_pages;
2693 else
2694 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2695
2696 return sprintf(buf, "%lu\n", surplus_huge_pages);
2697}
2698HSTATE_ATTR_RO(surplus_hugepages);
2699
2700static struct attribute *hstate_attrs[] = {
2701 &nr_hugepages_attr.attr,
2702 &nr_overcommit_hugepages_attr.attr,
2703 &free_hugepages_attr.attr,
2704 &resv_hugepages_attr.attr,
2705 &surplus_hugepages_attr.attr,
2706#ifdef CONFIG_NUMA
2707 &nr_hugepages_mempolicy_attr.attr,
2708#endif
2709 NULL,
2710};
2711
2712static const struct attribute_group hstate_attr_group = {
2713 .attrs = hstate_attrs,
2714};
2715
2716static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2717 struct kobject **hstate_kobjs,
2718 const struct attribute_group *hstate_attr_group)
2719{
2720 int retval;
2721 int hi = hstate_index(h);
2722
2723 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2724 if (!hstate_kobjs[hi])
2725 return -ENOMEM;
2726
2727 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2728 if (retval)
2729 kobject_put(hstate_kobjs[hi]);
2730
2731 return retval;
2732}
2733
2734static void __init hugetlb_sysfs_init(void)
2735{
2736 struct hstate *h;
2737 int err;
2738
2739 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2740 if (!hugepages_kobj)
2741 return;
2742
2743 for_each_hstate(h) {
2744 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2745 hstate_kobjs, &hstate_attr_group);
2746 if (err)
2747 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2748 }
2749}
2750
2751#ifdef CONFIG_NUMA
2752
2753/*
2754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2755 * with node devices in node_devices[] using a parallel array. The array
2756 * index of a node device or _hstate == node id.
2757 * This is here to avoid any static dependency of the node device driver, in
2758 * the base kernel, on the hugetlb module.
2759 */
2760struct node_hstate {
2761 struct kobject *hugepages_kobj;
2762 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2763};
2764static struct node_hstate node_hstates[MAX_NUMNODES];
2765
2766/*
2767 * A subset of global hstate attributes for node devices
2768 */
2769static struct attribute *per_node_hstate_attrs[] = {
2770 &nr_hugepages_attr.attr,
2771 &free_hugepages_attr.attr,
2772 &surplus_hugepages_attr.attr,
2773 NULL,
2774};
2775
2776static const struct attribute_group per_node_hstate_attr_group = {
2777 .attrs = per_node_hstate_attrs,
2778};
2779
2780/*
2781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2782 * Returns node id via non-NULL nidp.
2783 */
2784static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785{
2786 int nid;
2787
2788 for (nid = 0; nid < nr_node_ids; nid++) {
2789 struct node_hstate *nhs = &node_hstates[nid];
2790 int i;
2791 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2792 if (nhs->hstate_kobjs[i] == kobj) {
2793 if (nidp)
2794 *nidp = nid;
2795 return &hstates[i];
2796 }
2797 }
2798
2799 BUG();
2800 return NULL;
2801}
2802
2803/*
2804 * Unregister hstate attributes from a single node device.
2805 * No-op if no hstate attributes attached.
2806 */
2807static void hugetlb_unregister_node(struct node *node)
2808{
2809 struct hstate *h;
2810 struct node_hstate *nhs = &node_hstates[node->dev.id];
2811
2812 if (!nhs->hugepages_kobj)
2813 return; /* no hstate attributes */
2814
2815 for_each_hstate(h) {
2816 int idx = hstate_index(h);
2817 if (nhs->hstate_kobjs[idx]) {
2818 kobject_put(nhs->hstate_kobjs[idx]);
2819 nhs->hstate_kobjs[idx] = NULL;
2820 }
2821 }
2822
2823 kobject_put(nhs->hugepages_kobj);
2824 nhs->hugepages_kobj = NULL;
2825}
2826
2827
2828/*
2829 * Register hstate attributes for a single node device.
2830 * No-op if attributes already registered.
2831 */
2832static void hugetlb_register_node(struct node *node)
2833{
2834 struct hstate *h;
2835 struct node_hstate *nhs = &node_hstates[node->dev.id];
2836 int err;
2837
2838 if (nhs->hugepages_kobj)
2839 return; /* already allocated */
2840
2841 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2842 &node->dev.kobj);
2843 if (!nhs->hugepages_kobj)
2844 return;
2845
2846 for_each_hstate(h) {
2847 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2848 nhs->hstate_kobjs,
2849 &per_node_hstate_attr_group);
2850 if (err) {
2851 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2852 h->name, node->dev.id);
2853 hugetlb_unregister_node(node);
2854 break;
2855 }
2856 }
2857}
2858
2859/*
2860 * hugetlb init time: register hstate attributes for all registered node
2861 * devices of nodes that have memory. All on-line nodes should have
2862 * registered their associated device by this time.
2863 */
2864static void __init hugetlb_register_all_nodes(void)
2865{
2866 int nid;
2867
2868 for_each_node_state(nid, N_MEMORY) {
2869 struct node *node = node_devices[nid];
2870 if (node->dev.id == nid)
2871 hugetlb_register_node(node);
2872 }
2873
2874 /*
2875 * Let the node device driver know we're here so it can
2876 * [un]register hstate attributes on node hotplug.
2877 */
2878 register_hugetlbfs_with_node(hugetlb_register_node,
2879 hugetlb_unregister_node);
2880}
2881#else /* !CONFIG_NUMA */
2882
2883static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2884{
2885 BUG();
2886 if (nidp)
2887 *nidp = -1;
2888 return NULL;
2889}
2890
2891static void hugetlb_register_all_nodes(void) { }
2892
2893#endif
2894
2895static int __init hugetlb_init(void)
2896{
2897 int i;
2898
2899 if (!hugepages_supported())
2900 return 0;
2901
2902 if (!size_to_hstate(default_hstate_size)) {
2903 if (default_hstate_size != 0) {
2904 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2905 default_hstate_size, HPAGE_SIZE);
2906 }
2907
2908 default_hstate_size = HPAGE_SIZE;
2909 if (!size_to_hstate(default_hstate_size))
2910 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2911 }
2912 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2913 if (default_hstate_max_huge_pages) {
2914 if (!default_hstate.max_huge_pages)
2915 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2916 }
2917
2918 hugetlb_init_hstates();
2919 gather_bootmem_prealloc();
2920 report_hugepages();
2921
2922 hugetlb_sysfs_init();
2923 hugetlb_register_all_nodes();
2924 hugetlb_cgroup_file_init();
2925
2926#ifdef CONFIG_SMP
2927 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2928#else
2929 num_fault_mutexes = 1;
2930#endif
2931 hugetlb_fault_mutex_table =
2932 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2933 GFP_KERNEL);
2934 BUG_ON(!hugetlb_fault_mutex_table);
2935
2936 for (i = 0; i < num_fault_mutexes; i++)
2937 mutex_init(&hugetlb_fault_mutex_table[i]);
2938 return 0;
2939}
2940subsys_initcall(hugetlb_init);
2941
2942/* Should be called on processing a hugepagesz=... option */
2943void __init hugetlb_bad_size(void)
2944{
2945 parsed_valid_hugepagesz = false;
2946}
2947
2948void __init hugetlb_add_hstate(unsigned int order)
2949{
2950 struct hstate *h;
2951 unsigned long i;
2952
2953 if (size_to_hstate(PAGE_SIZE << order)) {
2954 pr_warn("hugepagesz= specified twice, ignoring\n");
2955 return;
2956 }
2957 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2958 BUG_ON(order == 0);
2959 h = &hstates[hugetlb_max_hstate++];
2960 h->order = order;
2961 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2962 h->nr_huge_pages = 0;
2963 h->free_huge_pages = 0;
2964 for (i = 0; i < MAX_NUMNODES; ++i)
2965 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2966 INIT_LIST_HEAD(&h->hugepage_activelist);
2967 h->next_nid_to_alloc = first_memory_node;
2968 h->next_nid_to_free = first_memory_node;
2969 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2970 huge_page_size(h)/1024);
2971
2972 parsed_hstate = h;
2973}
2974
2975static int __init hugetlb_nrpages_setup(char *s)
2976{
2977 unsigned long *mhp;
2978 static unsigned long *last_mhp;
2979
2980 if (!parsed_valid_hugepagesz) {
2981 pr_warn("hugepages = %s preceded by "
2982 "an unsupported hugepagesz, ignoring\n", s);
2983 parsed_valid_hugepagesz = true;
2984 return 1;
2985 }
2986 /*
2987 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2988 * so this hugepages= parameter goes to the "default hstate".
2989 */
2990 else if (!hugetlb_max_hstate)
2991 mhp = &default_hstate_max_huge_pages;
2992 else
2993 mhp = &parsed_hstate->max_huge_pages;
2994
2995 if (mhp == last_mhp) {
2996 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2997 return 1;
2998 }
2999
3000 if (sscanf(s, "%lu", mhp) <= 0)
3001 *mhp = 0;
3002
3003 /*
3004 * Global state is always initialized later in hugetlb_init.
3005 * But we need to allocate >= MAX_ORDER hstates here early to still
3006 * use the bootmem allocator.
3007 */
3008 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3009 hugetlb_hstate_alloc_pages(parsed_hstate);
3010
3011 last_mhp = mhp;
3012
3013 return 1;
3014}
3015__setup("hugepages=", hugetlb_nrpages_setup);
3016
3017static int __init hugetlb_default_setup(char *s)
3018{
3019 default_hstate_size = memparse(s, &s);
3020 return 1;
3021}
3022__setup("default_hugepagesz=", hugetlb_default_setup);
3023
3024static unsigned int cpuset_mems_nr(unsigned int *array)
3025{
3026 int node;
3027 unsigned int nr = 0;
3028
3029 for_each_node_mask(node, cpuset_current_mems_allowed)
3030 nr += array[node];
3031
3032 return nr;
3033}
3034
3035#ifdef CONFIG_SYSCTL
3036static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3037 struct ctl_table *table, int write,
3038 void __user *buffer, size_t *length, loff_t *ppos)
3039{
3040 struct hstate *h = &default_hstate;
3041 unsigned long tmp = h->max_huge_pages;
3042 int ret;
3043
3044 if (!hugepages_supported())
3045 return -EOPNOTSUPP;
3046
3047 table->data = &tmp;
3048 table->maxlen = sizeof(unsigned long);
3049 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3050 if (ret)
3051 goto out;
3052
3053 if (write)
3054 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3055 NUMA_NO_NODE, tmp, *length);
3056out:
3057 return ret;
3058}
3059
3060int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3061 void __user *buffer, size_t *length, loff_t *ppos)
3062{
3063
3064 return hugetlb_sysctl_handler_common(false, table, write,
3065 buffer, length, ppos);
3066}
3067
3068#ifdef CONFIG_NUMA
3069int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3070 void __user *buffer, size_t *length, loff_t *ppos)
3071{
3072 return hugetlb_sysctl_handler_common(true, table, write,
3073 buffer, length, ppos);
3074}
3075#endif /* CONFIG_NUMA */
3076
3077int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3078 void __user *buffer,
3079 size_t *length, loff_t *ppos)
3080{
3081 struct hstate *h = &default_hstate;
3082 unsigned long tmp;
3083 int ret;
3084
3085 if (!hugepages_supported())
3086 return -EOPNOTSUPP;
3087
3088 tmp = h->nr_overcommit_huge_pages;
3089
3090 if (write && hstate_is_gigantic(h))
3091 return -EINVAL;
3092
3093 table->data = &tmp;
3094 table->maxlen = sizeof(unsigned long);
3095 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3096 if (ret)
3097 goto out;
3098
3099 if (write) {
3100 spin_lock(&hugetlb_lock);
3101 h->nr_overcommit_huge_pages = tmp;
3102 spin_unlock(&hugetlb_lock);
3103 }
3104out:
3105 return ret;
3106}
3107
3108#endif /* CONFIG_SYSCTL */
3109
3110void hugetlb_report_meminfo(struct seq_file *m)
3111{
3112 struct hstate *h;
3113 unsigned long total = 0;
3114
3115 if (!hugepages_supported())
3116 return;
3117
3118 for_each_hstate(h) {
3119 unsigned long count = h->nr_huge_pages;
3120
3121 total += (PAGE_SIZE << huge_page_order(h)) * count;
3122
3123 if (h == &default_hstate)
3124 seq_printf(m,
3125 "HugePages_Total: %5lu\n"
3126 "HugePages_Free: %5lu\n"
3127 "HugePages_Rsvd: %5lu\n"
3128 "HugePages_Surp: %5lu\n"
3129 "Hugepagesize: %8lu kB\n",
3130 count,
3131 h->free_huge_pages,
3132 h->resv_huge_pages,
3133 h->surplus_huge_pages,
3134 (PAGE_SIZE << huge_page_order(h)) / 1024);
3135 }
3136
3137 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3138}
3139
3140int hugetlb_report_node_meminfo(int nid, char *buf)
3141{
3142 struct hstate *h = &default_hstate;
3143 if (!hugepages_supported())
3144 return 0;
3145 return sprintf(buf,
3146 "Node %d HugePages_Total: %5u\n"
3147 "Node %d HugePages_Free: %5u\n"
3148 "Node %d HugePages_Surp: %5u\n",
3149 nid, h->nr_huge_pages_node[nid],
3150 nid, h->free_huge_pages_node[nid],
3151 nid, h->surplus_huge_pages_node[nid]);
3152}
3153
3154void hugetlb_show_meminfo(void)
3155{
3156 struct hstate *h;
3157 int nid;
3158
3159 if (!hugepages_supported())
3160 return;
3161
3162 for_each_node_state(nid, N_MEMORY)
3163 for_each_hstate(h)
3164 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3165 nid,
3166 h->nr_huge_pages_node[nid],
3167 h->free_huge_pages_node[nid],
3168 h->surplus_huge_pages_node[nid],
3169 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3170}
3171
3172void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3173{
3174 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3175 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3176}
3177
3178/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3179unsigned long hugetlb_total_pages(void)
3180{
3181 struct hstate *h;
3182 unsigned long nr_total_pages = 0;
3183
3184 for_each_hstate(h)
3185 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3186 return nr_total_pages;
3187}
3188
3189static int hugetlb_acct_memory(struct hstate *h, long delta)
3190{
3191 int ret = -ENOMEM;
3192
3193 spin_lock(&hugetlb_lock);
3194 /*
3195 * When cpuset is configured, it breaks the strict hugetlb page
3196 * reservation as the accounting is done on a global variable. Such
3197 * reservation is completely rubbish in the presence of cpuset because
3198 * the reservation is not checked against page availability for the
3199 * current cpuset. Application can still potentially OOM'ed by kernel
3200 * with lack of free htlb page in cpuset that the task is in.
3201 * Attempt to enforce strict accounting with cpuset is almost
3202 * impossible (or too ugly) because cpuset is too fluid that
3203 * task or memory node can be dynamically moved between cpusets.
3204 *
3205 * The change of semantics for shared hugetlb mapping with cpuset is
3206 * undesirable. However, in order to preserve some of the semantics,
3207 * we fall back to check against current free page availability as
3208 * a best attempt and hopefully to minimize the impact of changing
3209 * semantics that cpuset has.
3210 */
3211 if (delta > 0) {
3212 if (gather_surplus_pages(h, delta) < 0)
3213 goto out;
3214
3215 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3216 return_unused_surplus_pages(h, delta);
3217 goto out;
3218 }
3219 }
3220
3221 ret = 0;
3222 if (delta < 0)
3223 return_unused_surplus_pages(h, (unsigned long) -delta);
3224
3225out:
3226 spin_unlock(&hugetlb_lock);
3227 return ret;
3228}
3229
3230static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3231{
3232 struct resv_map *resv = vma_resv_map(vma);
3233
3234 /*
3235 * This new VMA should share its siblings reservation map if present.
3236 * The VMA will only ever have a valid reservation map pointer where
3237 * it is being copied for another still existing VMA. As that VMA
3238 * has a reference to the reservation map it cannot disappear until
3239 * after this open call completes. It is therefore safe to take a
3240 * new reference here without additional locking.
3241 */
3242 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3243 kref_get(&resv->refs);
3244}
3245
3246static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3247{
3248 struct hstate *h = hstate_vma(vma);
3249 struct resv_map *resv = vma_resv_map(vma);
3250 struct hugepage_subpool *spool = subpool_vma(vma);
3251 unsigned long reserve, start, end;
3252 long gbl_reserve;
3253
3254 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3255 return;
3256
3257 start = vma_hugecache_offset(h, vma, vma->vm_start);
3258 end = vma_hugecache_offset(h, vma, vma->vm_end);
3259
3260 reserve = (end - start) - region_count(resv, start, end);
3261
3262 kref_put(&resv->refs, resv_map_release);
3263
3264 if (reserve) {
3265 /*
3266 * Decrement reserve counts. The global reserve count may be
3267 * adjusted if the subpool has a minimum size.
3268 */
3269 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3270 hugetlb_acct_memory(h, -gbl_reserve);
3271 }
3272}
3273
3274static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3275{
3276 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3277 return -EINVAL;
3278 return 0;
3279}
3280
3281static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3282{
3283 struct hstate *hstate = hstate_vma(vma);
3284
3285 return 1UL << huge_page_shift(hstate);
3286}
3287
3288/*
3289 * We cannot handle pagefaults against hugetlb pages at all. They cause
3290 * handle_mm_fault() to try to instantiate regular-sized pages in the
3291 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3292 * this far.
3293 */
3294static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3295{
3296 BUG();
3297 return 0;
3298}
3299
3300/*
3301 * When a new function is introduced to vm_operations_struct and added
3302 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3303 * This is because under System V memory model, mappings created via
3304 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3305 * their original vm_ops are overwritten with shm_vm_ops.
3306 */
3307const struct vm_operations_struct hugetlb_vm_ops = {
3308 .fault = hugetlb_vm_op_fault,
3309 .open = hugetlb_vm_op_open,
3310 .close = hugetlb_vm_op_close,
3311 .split = hugetlb_vm_op_split,
3312 .pagesize = hugetlb_vm_op_pagesize,
3313};
3314
3315static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3316 int writable)
3317{
3318 pte_t entry;
3319
3320 if (writable) {
3321 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3322 vma->vm_page_prot)));
3323 } else {
3324 entry = huge_pte_wrprotect(mk_huge_pte(page,
3325 vma->vm_page_prot));
3326 }
3327 entry = pte_mkyoung(entry);
3328 entry = pte_mkhuge(entry);
3329 entry = arch_make_huge_pte(entry, vma, page, writable);
3330
3331 return entry;
3332}
3333
3334static void set_huge_ptep_writable(struct vm_area_struct *vma,
3335 unsigned long address, pte_t *ptep)
3336{
3337 pte_t entry;
3338
3339 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3340 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3341 update_mmu_cache(vma, address, ptep);
3342}
3343
3344bool is_hugetlb_entry_migration(pte_t pte)
3345{
3346 swp_entry_t swp;
3347
3348 if (huge_pte_none(pte) || pte_present(pte))
3349 return false;
3350 swp = pte_to_swp_entry(pte);
3351 if (non_swap_entry(swp) && is_migration_entry(swp))
3352 return true;
3353 else
3354 return false;
3355}
3356
3357static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3358{
3359 swp_entry_t swp;
3360
3361 if (huge_pte_none(pte) || pte_present(pte))
3362 return 0;
3363 swp = pte_to_swp_entry(pte);
3364 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3365 return 1;
3366 else
3367 return 0;
3368}
3369
3370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3371 struct vm_area_struct *vma)
3372{
3373 pte_t *src_pte, *dst_pte, entry, dst_entry;
3374 struct page *ptepage;
3375 unsigned long addr;
3376 int cow;
3377 struct hstate *h = hstate_vma(vma);
3378 unsigned long sz = huge_page_size(h);
3379 struct mmu_notifier_range range;
3380 int ret = 0;
3381
3382 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3383
3384 if (cow) {
3385 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3386 vma->vm_start,
3387 vma->vm_end);
3388 mmu_notifier_invalidate_range_start(&range);
3389 }
3390
3391 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3392 spinlock_t *src_ptl, *dst_ptl;
3393 src_pte = huge_pte_offset(src, addr, sz);
3394 if (!src_pte)
3395 continue;
3396 dst_pte = huge_pte_alloc(dst, addr, sz);
3397 if (!dst_pte) {
3398 ret = -ENOMEM;
3399 break;
3400 }
3401
3402 /*
3403 * If the pagetables are shared don't copy or take references.
3404 * dst_pte == src_pte is the common case of src/dest sharing.
3405 *
3406 * However, src could have 'unshared' and dst shares with
3407 * another vma. If dst_pte !none, this implies sharing.
3408 * Check here before taking page table lock, and once again
3409 * after taking the lock below.
3410 */
3411 dst_entry = huge_ptep_get(dst_pte);
3412 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3413 continue;
3414
3415 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3416 src_ptl = huge_pte_lockptr(h, src, src_pte);
3417 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3418 entry = huge_ptep_get(src_pte);
3419 dst_entry = huge_ptep_get(dst_pte);
3420 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3421 /*
3422 * Skip if src entry none. Also, skip in the
3423 * unlikely case dst entry !none as this implies
3424 * sharing with another vma.
3425 */
3426 ;
3427 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3428 is_hugetlb_entry_hwpoisoned(entry))) {
3429 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3430
3431 if (is_write_migration_entry(swp_entry) && cow) {
3432 /*
3433 * COW mappings require pages in both
3434 * parent and child to be set to read.
3435 */
3436 make_migration_entry_read(&swp_entry);
3437 entry = swp_entry_to_pte(swp_entry);
3438 set_huge_swap_pte_at(src, addr, src_pte,
3439 entry, sz);
3440 }
3441 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3442 } else {
3443 if (cow) {
3444 /*
3445 * No need to notify as we are downgrading page
3446 * table protection not changing it to point
3447 * to a new page.
3448 *
3449 * See Documentation/vm/mmu_notifier.rst
3450 */
3451 huge_ptep_set_wrprotect(src, addr, src_pte);
3452 }
3453 entry = huge_ptep_get(src_pte);
3454 ptepage = pte_page(entry);
3455 get_page(ptepage);
3456 page_dup_rmap(ptepage, true);
3457 set_huge_pte_at(dst, addr, dst_pte, entry);
3458 hugetlb_count_add(pages_per_huge_page(h), dst);
3459 }
3460 spin_unlock(src_ptl);
3461 spin_unlock(dst_ptl);
3462 }
3463
3464 if (cow)
3465 mmu_notifier_invalidate_range_end(&range);
3466
3467 return ret;
3468}
3469
3470void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3471 unsigned long start, unsigned long end,
3472 struct page *ref_page)
3473{
3474 struct mm_struct *mm = vma->vm_mm;
3475 unsigned long address;
3476 pte_t *ptep;
3477 pte_t pte;
3478 spinlock_t *ptl;
3479 struct page *page;
3480 struct hstate *h = hstate_vma(vma);
3481 unsigned long sz = huge_page_size(h);
3482 struct mmu_notifier_range range;
3483
3484 WARN_ON(!is_vm_hugetlb_page(vma));
3485 BUG_ON(start & ~huge_page_mask(h));
3486 BUG_ON(end & ~huge_page_mask(h));
3487
3488 /*
3489 * This is a hugetlb vma, all the pte entries should point
3490 * to huge page.
3491 */
3492 tlb_change_page_size(tlb, sz);
3493 tlb_start_vma(tlb, vma);
3494
3495 /*
3496 * If sharing possible, alert mmu notifiers of worst case.
3497 */
3498 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3499 end);
3500 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3501 mmu_notifier_invalidate_range_start(&range);
3502 address = start;
3503 for (; address < end; address += sz) {
3504 ptep = huge_pte_offset(mm, address, sz);
3505 if (!ptep)
3506 continue;
3507
3508 ptl = huge_pte_lock(h, mm, ptep);
3509 if (huge_pmd_unshare(mm, &address, ptep)) {
3510 spin_unlock(ptl);
3511 /*
3512 * We just unmapped a page of PMDs by clearing a PUD.
3513 * The caller's TLB flush range should cover this area.
3514 */
3515 continue;
3516 }
3517
3518 pte = huge_ptep_get(ptep);
3519 if (huge_pte_none(pte)) {
3520 spin_unlock(ptl);
3521 continue;
3522 }
3523
3524 /*
3525 * Migrating hugepage or HWPoisoned hugepage is already
3526 * unmapped and its refcount is dropped, so just clear pte here.
3527 */
3528 if (unlikely(!pte_present(pte))) {
3529 huge_pte_clear(mm, address, ptep, sz);
3530 spin_unlock(ptl);
3531 continue;
3532 }
3533
3534 page = pte_page(pte);
3535 /*
3536 * If a reference page is supplied, it is because a specific
3537 * page is being unmapped, not a range. Ensure the page we
3538 * are about to unmap is the actual page of interest.
3539 */
3540 if (ref_page) {
3541 if (page != ref_page) {
3542 spin_unlock(ptl);
3543 continue;
3544 }
3545 /*
3546 * Mark the VMA as having unmapped its page so that
3547 * future faults in this VMA will fail rather than
3548 * looking like data was lost
3549 */
3550 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3551 }
3552
3553 pte = huge_ptep_get_and_clear(mm, address, ptep);
3554 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3555 if (huge_pte_dirty(pte))
3556 set_page_dirty(page);
3557
3558 hugetlb_count_sub(pages_per_huge_page(h), mm);
3559 page_remove_rmap(page, true);
3560
3561 spin_unlock(ptl);
3562 tlb_remove_page_size(tlb, page, huge_page_size(h));
3563 /*
3564 * Bail out after unmapping reference page if supplied
3565 */
3566 if (ref_page)
3567 break;
3568 }
3569 mmu_notifier_invalidate_range_end(&range);
3570 tlb_end_vma(tlb, vma);
3571}
3572
3573void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3574 struct vm_area_struct *vma, unsigned long start,
3575 unsigned long end, struct page *ref_page)
3576{
3577 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3578
3579 /*
3580 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3581 * test will fail on a vma being torn down, and not grab a page table
3582 * on its way out. We're lucky that the flag has such an appropriate
3583 * name, and can in fact be safely cleared here. We could clear it
3584 * before the __unmap_hugepage_range above, but all that's necessary
3585 * is to clear it before releasing the i_mmap_rwsem. This works
3586 * because in the context this is called, the VMA is about to be
3587 * destroyed and the i_mmap_rwsem is held.
3588 */
3589 vma->vm_flags &= ~VM_MAYSHARE;
3590}
3591
3592void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3593 unsigned long end, struct page *ref_page)
3594{
3595 struct mm_struct *mm;
3596 struct mmu_gather tlb;
3597 unsigned long tlb_start = start;
3598 unsigned long tlb_end = end;
3599
3600 /*
3601 * If shared PMDs were possibly used within this vma range, adjust
3602 * start/end for worst case tlb flushing.
3603 * Note that we can not be sure if PMDs are shared until we try to
3604 * unmap pages. However, we want to make sure TLB flushing covers
3605 * the largest possible range.
3606 */
3607 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3608
3609 mm = vma->vm_mm;
3610
3611 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3612 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3613 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3614}
3615
3616/*
3617 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3618 * mappping it owns the reserve page for. The intention is to unmap the page
3619 * from other VMAs and let the children be SIGKILLed if they are faulting the
3620 * same region.
3621 */
3622static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3623 struct page *page, unsigned long address)
3624{
3625 struct hstate *h = hstate_vma(vma);
3626 struct vm_area_struct *iter_vma;
3627 struct address_space *mapping;
3628 pgoff_t pgoff;
3629
3630 /*
3631 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3632 * from page cache lookup which is in HPAGE_SIZE units.
3633 */
3634 address = address & huge_page_mask(h);
3635 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3636 vma->vm_pgoff;
3637 mapping = vma->vm_file->f_mapping;
3638
3639 /*
3640 * Take the mapping lock for the duration of the table walk. As
3641 * this mapping should be shared between all the VMAs,
3642 * __unmap_hugepage_range() is called as the lock is already held
3643 */
3644 i_mmap_lock_write(mapping);
3645 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3646 /* Do not unmap the current VMA */
3647 if (iter_vma == vma)
3648 continue;
3649
3650 /*
3651 * Shared VMAs have their own reserves and do not affect
3652 * MAP_PRIVATE accounting but it is possible that a shared
3653 * VMA is using the same page so check and skip such VMAs.
3654 */
3655 if (iter_vma->vm_flags & VM_MAYSHARE)
3656 continue;
3657
3658 /*
3659 * Unmap the page from other VMAs without their own reserves.
3660 * They get marked to be SIGKILLed if they fault in these
3661 * areas. This is because a future no-page fault on this VMA
3662 * could insert a zeroed page instead of the data existing
3663 * from the time of fork. This would look like data corruption
3664 */
3665 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3666 unmap_hugepage_range(iter_vma, address,
3667 address + huge_page_size(h), page);
3668 }
3669 i_mmap_unlock_write(mapping);
3670}
3671
3672/*
3673 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3674 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3675 * cannot race with other handlers or page migration.
3676 * Keep the pte_same checks anyway to make transition from the mutex easier.
3677 */
3678static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3679 unsigned long address, pte_t *ptep,
3680 struct page *pagecache_page, spinlock_t *ptl)
3681{
3682 pte_t pte;
3683 struct hstate *h = hstate_vma(vma);
3684 struct page *old_page, *new_page;
3685 int outside_reserve = 0;
3686 vm_fault_t ret = 0;
3687 unsigned long haddr = address & huge_page_mask(h);
3688 struct mmu_notifier_range range;
3689
3690 pte = huge_ptep_get(ptep);
3691 old_page = pte_page(pte);
3692
3693retry_avoidcopy:
3694 /* If no-one else is actually using this page, avoid the copy
3695 * and just make the page writable */
3696 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3697 page_move_anon_rmap(old_page, vma);
3698 set_huge_ptep_writable(vma, haddr, ptep);
3699 return 0;
3700 }
3701
3702 /*
3703 * If the process that created a MAP_PRIVATE mapping is about to
3704 * perform a COW due to a shared page count, attempt to satisfy
3705 * the allocation without using the existing reserves. The pagecache
3706 * page is used to determine if the reserve at this address was
3707 * consumed or not. If reserves were used, a partial faulted mapping
3708 * at the time of fork() could consume its reserves on COW instead
3709 * of the full address range.
3710 */
3711 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3712 old_page != pagecache_page)
3713 outside_reserve = 1;
3714
3715 get_page(old_page);
3716
3717 /*
3718 * Drop page table lock as buddy allocator may be called. It will
3719 * be acquired again before returning to the caller, as expected.
3720 */
3721 spin_unlock(ptl);
3722 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3723
3724 if (IS_ERR(new_page)) {
3725 /*
3726 * If a process owning a MAP_PRIVATE mapping fails to COW,
3727 * it is due to references held by a child and an insufficient
3728 * huge page pool. To guarantee the original mappers
3729 * reliability, unmap the page from child processes. The child
3730 * may get SIGKILLed if it later faults.
3731 */
3732 if (outside_reserve) {
3733 put_page(old_page);
3734 BUG_ON(huge_pte_none(pte));
3735 unmap_ref_private(mm, vma, old_page, haddr);
3736 BUG_ON(huge_pte_none(pte));
3737 spin_lock(ptl);
3738 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3739 if (likely(ptep &&
3740 pte_same(huge_ptep_get(ptep), pte)))
3741 goto retry_avoidcopy;
3742 /*
3743 * race occurs while re-acquiring page table
3744 * lock, and our job is done.
3745 */
3746 return 0;
3747 }
3748
3749 ret = vmf_error(PTR_ERR(new_page));
3750 goto out_release_old;
3751 }
3752
3753 /*
3754 * When the original hugepage is shared one, it does not have
3755 * anon_vma prepared.
3756 */
3757 if (unlikely(anon_vma_prepare(vma))) {
3758 ret = VM_FAULT_OOM;
3759 goto out_release_all;
3760 }
3761
3762 copy_user_huge_page(new_page, old_page, address, vma,
3763 pages_per_huge_page(h));
3764 __SetPageUptodate(new_page);
3765
3766 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3767 haddr + huge_page_size(h));
3768 mmu_notifier_invalidate_range_start(&range);
3769
3770 /*
3771 * Retake the page table lock to check for racing updates
3772 * before the page tables are altered
3773 */
3774 spin_lock(ptl);
3775 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3776 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3777 ClearPagePrivate(new_page);
3778
3779 /* Break COW */
3780 huge_ptep_clear_flush(vma, haddr, ptep);
3781 mmu_notifier_invalidate_range(mm, range.start, range.end);
3782 set_huge_pte_at(mm, haddr, ptep,
3783 make_huge_pte(vma, new_page, 1));
3784 page_remove_rmap(old_page, true);
3785 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3786 set_page_huge_active(new_page);
3787 /* Make the old page be freed below */
3788 new_page = old_page;
3789 }
3790 spin_unlock(ptl);
3791 mmu_notifier_invalidate_range_end(&range);
3792out_release_all:
3793 restore_reserve_on_error(h, vma, haddr, new_page);
3794 put_page(new_page);
3795out_release_old:
3796 put_page(old_page);
3797
3798 spin_lock(ptl); /* Caller expects lock to be held */
3799 return ret;
3800}
3801
3802/* Return the pagecache page at a given address within a VMA */
3803static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3804 struct vm_area_struct *vma, unsigned long address)
3805{
3806 struct address_space *mapping;
3807 pgoff_t idx;
3808
3809 mapping = vma->vm_file->f_mapping;
3810 idx = vma_hugecache_offset(h, vma, address);
3811
3812 return find_lock_page(mapping, idx);
3813}
3814
3815/*
3816 * Return whether there is a pagecache page to back given address within VMA.
3817 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3818 */
3819static bool hugetlbfs_pagecache_present(struct hstate *h,
3820 struct vm_area_struct *vma, unsigned long address)
3821{
3822 struct address_space *mapping;
3823 pgoff_t idx;
3824 struct page *page;
3825
3826 mapping = vma->vm_file->f_mapping;
3827 idx = vma_hugecache_offset(h, vma, address);
3828
3829 page = find_get_page(mapping, idx);
3830 if (page)
3831 put_page(page);
3832 return page != NULL;
3833}
3834
3835int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3836 pgoff_t idx)
3837{
3838 struct inode *inode = mapping->host;
3839 struct hstate *h = hstate_inode(inode);
3840 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3841
3842 if (err)
3843 return err;
3844 ClearPagePrivate(page);
3845
3846 /*
3847 * set page dirty so that it will not be removed from cache/file
3848 * by non-hugetlbfs specific code paths.
3849 */
3850 set_page_dirty(page);
3851
3852 spin_lock(&inode->i_lock);
3853 inode->i_blocks += blocks_per_huge_page(h);
3854 spin_unlock(&inode->i_lock);
3855 return 0;
3856}
3857
3858static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3859 struct vm_area_struct *vma,
3860 struct address_space *mapping, pgoff_t idx,
3861 unsigned long address, pte_t *ptep, unsigned int flags)
3862{
3863 struct hstate *h = hstate_vma(vma);
3864 vm_fault_t ret = VM_FAULT_SIGBUS;
3865 int anon_rmap = 0;
3866 unsigned long size;
3867 struct page *page;
3868 pte_t new_pte;
3869 spinlock_t *ptl;
3870 unsigned long haddr = address & huge_page_mask(h);
3871 bool new_page = false;
3872
3873 /*
3874 * Currently, we are forced to kill the process in the event the
3875 * original mapper has unmapped pages from the child due to a failed
3876 * COW. Warn that such a situation has occurred as it may not be obvious
3877 */
3878 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3879 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3880 current->pid);
3881 return ret;
3882 }
3883
3884 /*
3885 * Use page lock to guard against racing truncation
3886 * before we get page_table_lock.
3887 */
3888retry:
3889 page = find_lock_page(mapping, idx);
3890 if (!page) {
3891 size = i_size_read(mapping->host) >> huge_page_shift(h);
3892 if (idx >= size)
3893 goto out;
3894
3895 /*
3896 * Check for page in userfault range
3897 */
3898 if (userfaultfd_missing(vma)) {
3899 u32 hash;
3900 struct vm_fault vmf = {
3901 .vma = vma,
3902 .address = haddr,
3903 .flags = flags,
3904 /*
3905 * Hard to debug if it ends up being
3906 * used by a callee that assumes
3907 * something about the other
3908 * uninitialized fields... same as in
3909 * memory.c
3910 */
3911 };
3912
3913 /*
3914 * hugetlb_fault_mutex must be dropped before
3915 * handling userfault. Reacquire after handling
3916 * fault to make calling code simpler.
3917 */
3918 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3919 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3920 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3921 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922 goto out;
3923 }
3924
3925 page = alloc_huge_page(vma, haddr, 0);
3926 if (IS_ERR(page)) {
3927 /*
3928 * Returning error will result in faulting task being
3929 * sent SIGBUS. The hugetlb fault mutex prevents two
3930 * tasks from racing to fault in the same page which
3931 * could result in false unable to allocate errors.
3932 * Page migration does not take the fault mutex, but
3933 * does a clear then write of pte's under page table
3934 * lock. Page fault code could race with migration,
3935 * notice the clear pte and try to allocate a page
3936 * here. Before returning error, get ptl and make
3937 * sure there really is no pte entry.
3938 */
3939 ptl = huge_pte_lock(h, mm, ptep);
3940 if (!huge_pte_none(huge_ptep_get(ptep))) {
3941 ret = 0;
3942 spin_unlock(ptl);
3943 goto out;
3944 }
3945 spin_unlock(ptl);
3946 ret = vmf_error(PTR_ERR(page));
3947 goto out;
3948 }
3949 clear_huge_page(page, address, pages_per_huge_page(h));
3950 __SetPageUptodate(page);
3951 new_page = true;
3952
3953 if (vma->vm_flags & VM_MAYSHARE) {
3954 int err = huge_add_to_page_cache(page, mapping, idx);
3955 if (err) {
3956 put_page(page);
3957 if (err == -EEXIST)
3958 goto retry;
3959 goto out;
3960 }
3961 } else {
3962 lock_page(page);
3963 if (unlikely(anon_vma_prepare(vma))) {
3964 ret = VM_FAULT_OOM;
3965 goto backout_unlocked;
3966 }
3967 anon_rmap = 1;
3968 }
3969 } else {
3970 /*
3971 * If memory error occurs between mmap() and fault, some process
3972 * don't have hwpoisoned swap entry for errored virtual address.
3973 * So we need to block hugepage fault by PG_hwpoison bit check.
3974 */
3975 if (unlikely(PageHWPoison(page))) {
3976 ret = VM_FAULT_HWPOISON |
3977 VM_FAULT_SET_HINDEX(hstate_index(h));
3978 goto backout_unlocked;
3979 }
3980 }
3981
3982 /*
3983 * If we are going to COW a private mapping later, we examine the
3984 * pending reservations for this page now. This will ensure that
3985 * any allocations necessary to record that reservation occur outside
3986 * the spinlock.
3987 */
3988 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3989 if (vma_needs_reservation(h, vma, haddr) < 0) {
3990 ret = VM_FAULT_OOM;
3991 goto backout_unlocked;
3992 }
3993 /* Just decrements count, does not deallocate */
3994 vma_end_reservation(h, vma, haddr);
3995 }
3996
3997 ptl = huge_pte_lock(h, mm, ptep);
3998 size = i_size_read(mapping->host) >> huge_page_shift(h);
3999 if (idx >= size)
4000 goto backout;
4001
4002 ret = 0;
4003 if (!huge_pte_none(huge_ptep_get(ptep)))
4004 goto backout;
4005
4006 if (anon_rmap) {
4007 ClearPagePrivate(page);
4008 hugepage_add_new_anon_rmap(page, vma, haddr);
4009 } else
4010 page_dup_rmap(page, true);
4011 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4012 && (vma->vm_flags & VM_SHARED)));
4013 set_huge_pte_at(mm, haddr, ptep, new_pte);
4014
4015 hugetlb_count_add(pages_per_huge_page(h), mm);
4016 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4017 /* Optimization, do the COW without a second fault */
4018 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4019 }
4020
4021 spin_unlock(ptl);
4022
4023 /*
4024 * Only make newly allocated pages active. Existing pages found
4025 * in the pagecache could be !page_huge_active() if they have been
4026 * isolated for migration.
4027 */
4028 if (new_page)
4029 set_page_huge_active(page);
4030
4031 unlock_page(page);
4032out:
4033 return ret;
4034
4035backout:
4036 spin_unlock(ptl);
4037backout_unlocked:
4038 unlock_page(page);
4039 restore_reserve_on_error(h, vma, haddr, page);
4040 put_page(page);
4041 goto out;
4042}
4043
4044#ifdef CONFIG_SMP
4045u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4046 pgoff_t idx, unsigned long address)
4047{
4048 unsigned long key[2];
4049 u32 hash;
4050
4051 key[0] = (unsigned long) mapping;
4052 key[1] = idx;
4053
4054 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4055
4056 return hash & (num_fault_mutexes - 1);
4057}
4058#else
4059/*
4060 * For uniprocesor systems we always use a single mutex, so just
4061 * return 0 and avoid the hashing overhead.
4062 */
4063u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4064 pgoff_t idx, unsigned long address)
4065{
4066 return 0;
4067}
4068#endif
4069
4070vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4071 unsigned long address, unsigned int flags)
4072{
4073 pte_t *ptep, entry;
4074 spinlock_t *ptl;
4075 vm_fault_t ret;
4076 u32 hash;
4077 pgoff_t idx;
4078 struct page *page = NULL;
4079 struct page *pagecache_page = NULL;
4080 struct hstate *h = hstate_vma(vma);
4081 struct address_space *mapping;
4082 int need_wait_lock = 0;
4083 unsigned long haddr = address & huge_page_mask(h);
4084
4085 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4086 if (ptep) {
4087 entry = huge_ptep_get(ptep);
4088 if (unlikely(is_hugetlb_entry_migration(entry))) {
4089 migration_entry_wait_huge(vma, mm, ptep);
4090 return 0;
4091 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4092 return VM_FAULT_HWPOISON_LARGE |
4093 VM_FAULT_SET_HINDEX(hstate_index(h));
4094 } else {
4095 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4096 if (!ptep)
4097 return VM_FAULT_OOM;
4098 }
4099
4100 mapping = vma->vm_file->f_mapping;
4101 idx = vma_hugecache_offset(h, vma, haddr);
4102
4103 /*
4104 * Serialize hugepage allocation and instantiation, so that we don't
4105 * get spurious allocation failures if two CPUs race to instantiate
4106 * the same page in the page cache.
4107 */
4108 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4109 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4110
4111 entry = huge_ptep_get(ptep);
4112 if (huge_pte_none(entry)) {
4113 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4114 goto out_mutex;
4115 }
4116
4117 ret = 0;
4118
4119 /*
4120 * entry could be a migration/hwpoison entry at this point, so this
4121 * check prevents the kernel from going below assuming that we have
4122 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4123 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4124 * handle it.
4125 */
4126 if (!pte_present(entry))
4127 goto out_mutex;
4128
4129 /*
4130 * If we are going to COW the mapping later, we examine the pending
4131 * reservations for this page now. This will ensure that any
4132 * allocations necessary to record that reservation occur outside the
4133 * spinlock. For private mappings, we also lookup the pagecache
4134 * page now as it is used to determine if a reservation has been
4135 * consumed.
4136 */
4137 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4138 if (vma_needs_reservation(h, vma, haddr) < 0) {
4139 ret = VM_FAULT_OOM;
4140 goto out_mutex;
4141 }
4142 /* Just decrements count, does not deallocate */
4143 vma_end_reservation(h, vma, haddr);
4144
4145 if (!(vma->vm_flags & VM_MAYSHARE))
4146 pagecache_page = hugetlbfs_pagecache_page(h,
4147 vma, haddr);
4148 }
4149
4150 ptl = huge_pte_lock(h, mm, ptep);
4151
4152 /* Check for a racing update before calling hugetlb_cow */
4153 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4154 goto out_ptl;
4155
4156 /*
4157 * hugetlb_cow() requires page locks of pte_page(entry) and
4158 * pagecache_page, so here we need take the former one
4159 * when page != pagecache_page or !pagecache_page.
4160 */
4161 page = pte_page(entry);
4162 if (page != pagecache_page)
4163 if (!trylock_page(page)) {
4164 need_wait_lock = 1;
4165 goto out_ptl;
4166 }
4167
4168 get_page(page);
4169
4170 if (flags & FAULT_FLAG_WRITE) {
4171 if (!huge_pte_write(entry)) {
4172 ret = hugetlb_cow(mm, vma, address, ptep,
4173 pagecache_page, ptl);
4174 goto out_put_page;
4175 }
4176 entry = huge_pte_mkdirty(entry);
4177 }
4178 entry = pte_mkyoung(entry);
4179 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4180 flags & FAULT_FLAG_WRITE))
4181 update_mmu_cache(vma, haddr, ptep);
4182out_put_page:
4183 if (page != pagecache_page)
4184 unlock_page(page);
4185 put_page(page);
4186out_ptl:
4187 spin_unlock(ptl);
4188
4189 if (pagecache_page) {
4190 unlock_page(pagecache_page);
4191 put_page(pagecache_page);
4192 }
4193out_mutex:
4194 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4195 /*
4196 * Generally it's safe to hold refcount during waiting page lock. But
4197 * here we just wait to defer the next page fault to avoid busy loop and
4198 * the page is not used after unlocked before returning from the current
4199 * page fault. So we are safe from accessing freed page, even if we wait
4200 * here without taking refcount.
4201 */
4202 if (need_wait_lock)
4203 wait_on_page_locked(page);
4204 return ret;
4205}
4206
4207/*
4208 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4209 * modifications for huge pages.
4210 */
4211int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4212 pte_t *dst_pte,
4213 struct vm_area_struct *dst_vma,
4214 unsigned long dst_addr,
4215 unsigned long src_addr,
4216 struct page **pagep)
4217{
4218 struct address_space *mapping;
4219 pgoff_t idx;
4220 unsigned long size;
4221 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4222 struct hstate *h = hstate_vma(dst_vma);
4223 pte_t _dst_pte;
4224 spinlock_t *ptl;
4225 int ret;
4226 struct page *page;
4227
4228 if (!*pagep) {
4229 ret = -ENOMEM;
4230 page = alloc_huge_page(dst_vma, dst_addr, 0);
4231 if (IS_ERR(page))
4232 goto out;
4233
4234 ret = copy_huge_page_from_user(page,
4235 (const void __user *) src_addr,
4236 pages_per_huge_page(h), false);
4237
4238 /* fallback to copy_from_user outside mmap_sem */
4239 if (unlikely(ret)) {
4240 ret = -ENOENT;
4241 *pagep = page;
4242 /* don't free the page */
4243 goto out;
4244 }
4245 } else {
4246 page = *pagep;
4247 *pagep = NULL;
4248 }
4249
4250 /*
4251 * The memory barrier inside __SetPageUptodate makes sure that
4252 * preceding stores to the page contents become visible before
4253 * the set_pte_at() write.
4254 */
4255 __SetPageUptodate(page);
4256
4257 mapping = dst_vma->vm_file->f_mapping;
4258 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4259
4260 /*
4261 * If shared, add to page cache
4262 */
4263 if (vm_shared) {
4264 size = i_size_read(mapping->host) >> huge_page_shift(h);
4265 ret = -EFAULT;
4266 if (idx >= size)
4267 goto out_release_nounlock;
4268
4269 /*
4270 * Serialization between remove_inode_hugepages() and
4271 * huge_add_to_page_cache() below happens through the
4272 * hugetlb_fault_mutex_table that here must be hold by
4273 * the caller.
4274 */
4275 ret = huge_add_to_page_cache(page, mapping, idx);
4276 if (ret)
4277 goto out_release_nounlock;
4278 }
4279
4280 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4281 spin_lock(ptl);
4282
4283 /*
4284 * Recheck the i_size after holding PT lock to make sure not
4285 * to leave any page mapped (as page_mapped()) beyond the end
4286 * of the i_size (remove_inode_hugepages() is strict about
4287 * enforcing that). If we bail out here, we'll also leave a
4288 * page in the radix tree in the vm_shared case beyond the end
4289 * of the i_size, but remove_inode_hugepages() will take care
4290 * of it as soon as we drop the hugetlb_fault_mutex_table.
4291 */
4292 size = i_size_read(mapping->host) >> huge_page_shift(h);
4293 ret = -EFAULT;
4294 if (idx >= size)
4295 goto out_release_unlock;
4296
4297 ret = -EEXIST;
4298 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4299 goto out_release_unlock;
4300
4301 if (vm_shared) {
4302 page_dup_rmap(page, true);
4303 } else {
4304 ClearPagePrivate(page);
4305 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4306 }
4307
4308 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4309 if (dst_vma->vm_flags & VM_WRITE)
4310 _dst_pte = huge_pte_mkdirty(_dst_pte);
4311 _dst_pte = pte_mkyoung(_dst_pte);
4312
4313 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4314
4315 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4316 dst_vma->vm_flags & VM_WRITE);
4317 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4318
4319 /* No need to invalidate - it was non-present before */
4320 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4321
4322 spin_unlock(ptl);
4323 set_page_huge_active(page);
4324 if (vm_shared)
4325 unlock_page(page);
4326 ret = 0;
4327out:
4328 return ret;
4329out_release_unlock:
4330 spin_unlock(ptl);
4331 if (vm_shared)
4332 unlock_page(page);
4333out_release_nounlock:
4334 put_page(page);
4335 goto out;
4336}
4337
4338long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4339 struct page **pages, struct vm_area_struct **vmas,
4340 unsigned long *position, unsigned long *nr_pages,
4341 long i, unsigned int flags, int *nonblocking)
4342{
4343 unsigned long pfn_offset;
4344 unsigned long vaddr = *position;
4345 unsigned long remainder = *nr_pages;
4346 struct hstate *h = hstate_vma(vma);
4347 int err = -EFAULT;
4348
4349 while (vaddr < vma->vm_end && remainder) {
4350 pte_t *pte;
4351 spinlock_t *ptl = NULL;
4352 int absent;
4353 struct page *page;
4354
4355 /*
4356 * If we have a pending SIGKILL, don't keep faulting pages and
4357 * potentially allocating memory.
4358 */
4359 if (fatal_signal_pending(current)) {
4360 remainder = 0;
4361 break;
4362 }
4363
4364 /*
4365 * Some archs (sparc64, sh*) have multiple pte_ts to
4366 * each hugepage. We have to make sure we get the
4367 * first, for the page indexing below to work.
4368 *
4369 * Note that page table lock is not held when pte is null.
4370 */
4371 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4372 huge_page_size(h));
4373 if (pte)
4374 ptl = huge_pte_lock(h, mm, pte);
4375 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4376
4377 /*
4378 * When coredumping, it suits get_dump_page if we just return
4379 * an error where there's an empty slot with no huge pagecache
4380 * to back it. This way, we avoid allocating a hugepage, and
4381 * the sparse dumpfile avoids allocating disk blocks, but its
4382 * huge holes still show up with zeroes where they need to be.
4383 */
4384 if (absent && (flags & FOLL_DUMP) &&
4385 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4386 if (pte)
4387 spin_unlock(ptl);
4388 remainder = 0;
4389 break;
4390 }
4391
4392 /*
4393 * We need call hugetlb_fault for both hugepages under migration
4394 * (in which case hugetlb_fault waits for the migration,) and
4395 * hwpoisoned hugepages (in which case we need to prevent the
4396 * caller from accessing to them.) In order to do this, we use
4397 * here is_swap_pte instead of is_hugetlb_entry_migration and
4398 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4399 * both cases, and because we can't follow correct pages
4400 * directly from any kind of swap entries.
4401 */
4402 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4403 ((flags & FOLL_WRITE) &&
4404 !huge_pte_write(huge_ptep_get(pte)))) {
4405 vm_fault_t ret;
4406 unsigned int fault_flags = 0;
4407
4408 if (pte)
4409 spin_unlock(ptl);
4410 if (flags & FOLL_WRITE)
4411 fault_flags |= FAULT_FLAG_WRITE;
4412 if (nonblocking)
4413 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4414 if (flags & FOLL_NOWAIT)
4415 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4416 FAULT_FLAG_RETRY_NOWAIT;
4417 if (flags & FOLL_TRIED) {
4418 VM_WARN_ON_ONCE(fault_flags &
4419 FAULT_FLAG_ALLOW_RETRY);
4420 fault_flags |= FAULT_FLAG_TRIED;
4421 }
4422 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4423 if (ret & VM_FAULT_ERROR) {
4424 err = vm_fault_to_errno(ret, flags);
4425 remainder = 0;
4426 break;
4427 }
4428 if (ret & VM_FAULT_RETRY) {
4429 if (nonblocking &&
4430 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4431 *nonblocking = 0;
4432 *nr_pages = 0;
4433 /*
4434 * VM_FAULT_RETRY must not return an
4435 * error, it will return zero
4436 * instead.
4437 *
4438 * No need to update "position" as the
4439 * caller will not check it after
4440 * *nr_pages is set to 0.
4441 */
4442 return i;
4443 }
4444 continue;
4445 }
4446
4447 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4448 page = pte_page(huge_ptep_get(pte));
4449
4450 /*
4451 * Instead of doing 'try_get_page()' below in the same_page
4452 * loop, just check the count once here.
4453 */
4454 if (unlikely(page_count(page) <= 0)) {
4455 if (pages) {
4456 spin_unlock(ptl);
4457 remainder = 0;
4458 err = -ENOMEM;
4459 break;
4460 }
4461 }
4462same_page:
4463 if (pages) {
4464 pages[i] = mem_map_offset(page, pfn_offset);
4465 get_page(pages[i]);
4466 }
4467
4468 if (vmas)
4469 vmas[i] = vma;
4470
4471 vaddr += PAGE_SIZE;
4472 ++pfn_offset;
4473 --remainder;
4474 ++i;
4475 if (vaddr < vma->vm_end && remainder &&
4476 pfn_offset < pages_per_huge_page(h)) {
4477 /*
4478 * We use pfn_offset to avoid touching the pageframes
4479 * of this compound page.
4480 */
4481 goto same_page;
4482 }
4483 spin_unlock(ptl);
4484 }
4485 *nr_pages = remainder;
4486 /*
4487 * setting position is actually required only if remainder is
4488 * not zero but it's faster not to add a "if (remainder)"
4489 * branch.
4490 */
4491 *position = vaddr;
4492
4493 return i ? i : err;
4494}
4495
4496#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4497/*
4498 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4499 * implement this.
4500 */
4501#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4502#endif
4503
4504unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4505 unsigned long address, unsigned long end, pgprot_t newprot)
4506{
4507 struct mm_struct *mm = vma->vm_mm;
4508 unsigned long start = address;
4509 pte_t *ptep;
4510 pte_t pte;
4511 struct hstate *h = hstate_vma(vma);
4512 unsigned long pages = 0;
4513 bool shared_pmd = false;
4514 struct mmu_notifier_range range;
4515
4516 /*
4517 * In the case of shared PMDs, the area to flush could be beyond
4518 * start/end. Set range.start/range.end to cover the maximum possible
4519 * range if PMD sharing is possible.
4520 */
4521 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4522 0, vma, mm, start, end);
4523 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4524
4525 BUG_ON(address >= end);
4526 flush_cache_range(vma, range.start, range.end);
4527
4528 mmu_notifier_invalidate_range_start(&range);
4529 i_mmap_lock_write(vma->vm_file->f_mapping);
4530 for (; address < end; address += huge_page_size(h)) {
4531 spinlock_t *ptl;
4532 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4533 if (!ptep)
4534 continue;
4535 ptl = huge_pte_lock(h, mm, ptep);
4536 if (huge_pmd_unshare(mm, &address, ptep)) {
4537 pages++;
4538 spin_unlock(ptl);
4539 shared_pmd = true;
4540 continue;
4541 }
4542 pte = huge_ptep_get(ptep);
4543 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4544 spin_unlock(ptl);
4545 continue;
4546 }
4547 if (unlikely(is_hugetlb_entry_migration(pte))) {
4548 swp_entry_t entry = pte_to_swp_entry(pte);
4549
4550 if (is_write_migration_entry(entry)) {
4551 pte_t newpte;
4552
4553 make_migration_entry_read(&entry);
4554 newpte = swp_entry_to_pte(entry);
4555 set_huge_swap_pte_at(mm, address, ptep,
4556 newpte, huge_page_size(h));
4557 pages++;
4558 }
4559 spin_unlock(ptl);
4560 continue;
4561 }
4562 if (!huge_pte_none(pte)) {
4563 pte_t old_pte;
4564
4565 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4566 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4567 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4568 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4569 pages++;
4570 }
4571 spin_unlock(ptl);
4572 }
4573 /*
4574 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4575 * may have cleared our pud entry and done put_page on the page table:
4576 * once we release i_mmap_rwsem, another task can do the final put_page
4577 * and that page table be reused and filled with junk. If we actually
4578 * did unshare a page of pmds, flush the range corresponding to the pud.
4579 */
4580 if (shared_pmd)
4581 flush_hugetlb_tlb_range(vma, range.start, range.end);
4582 else
4583 flush_hugetlb_tlb_range(vma, start, end);
4584 /*
4585 * No need to call mmu_notifier_invalidate_range() we are downgrading
4586 * page table protection not changing it to point to a new page.
4587 *
4588 * See Documentation/vm/mmu_notifier.rst
4589 */
4590 i_mmap_unlock_write(vma->vm_file->f_mapping);
4591 mmu_notifier_invalidate_range_end(&range);
4592
4593 return pages << h->order;
4594}
4595
4596int hugetlb_reserve_pages(struct inode *inode,
4597 long from, long to,
4598 struct vm_area_struct *vma,
4599 vm_flags_t vm_flags)
4600{
4601 long ret, chg;
4602 struct hstate *h = hstate_inode(inode);
4603 struct hugepage_subpool *spool = subpool_inode(inode);
4604 struct resv_map *resv_map;
4605 long gbl_reserve;
4606
4607 /* This should never happen */
4608 if (from > to) {
4609 VM_WARN(1, "%s called with a negative range\n", __func__);
4610 return -EINVAL;
4611 }
4612
4613 /*
4614 * Only apply hugepage reservation if asked. At fault time, an
4615 * attempt will be made for VM_NORESERVE to allocate a page
4616 * without using reserves
4617 */
4618 if (vm_flags & VM_NORESERVE)
4619 return 0;
4620
4621 /*
4622 * Shared mappings base their reservation on the number of pages that
4623 * are already allocated on behalf of the file. Private mappings need
4624 * to reserve the full area even if read-only as mprotect() may be
4625 * called to make the mapping read-write. Assume !vma is a shm mapping
4626 */
4627 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4628 /*
4629 * resv_map can not be NULL as hugetlb_reserve_pages is only
4630 * called for inodes for which resv_maps were created (see
4631 * hugetlbfs_get_inode).
4632 */
4633 resv_map = inode_resv_map(inode);
4634
4635 chg = region_chg(resv_map, from, to);
4636
4637 } else {
4638 resv_map = resv_map_alloc();
4639 if (!resv_map)
4640 return -ENOMEM;
4641
4642 chg = to - from;
4643
4644 set_vma_resv_map(vma, resv_map);
4645 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4646 }
4647
4648 if (chg < 0) {
4649 ret = chg;
4650 goto out_err;
4651 }
4652
4653 /*
4654 * There must be enough pages in the subpool for the mapping. If
4655 * the subpool has a minimum size, there may be some global
4656 * reservations already in place (gbl_reserve).
4657 */
4658 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4659 if (gbl_reserve < 0) {
4660 ret = -ENOSPC;
4661 goto out_err;
4662 }
4663
4664 /*
4665 * Check enough hugepages are available for the reservation.
4666 * Hand the pages back to the subpool if there are not
4667 */
4668 ret = hugetlb_acct_memory(h, gbl_reserve);
4669 if (ret < 0) {
4670 /* put back original number of pages, chg */
4671 (void)hugepage_subpool_put_pages(spool, chg);
4672 goto out_err;
4673 }
4674
4675 /*
4676 * Account for the reservations made. Shared mappings record regions
4677 * that have reservations as they are shared by multiple VMAs.
4678 * When the last VMA disappears, the region map says how much
4679 * the reservation was and the page cache tells how much of
4680 * the reservation was consumed. Private mappings are per-VMA and
4681 * only the consumed reservations are tracked. When the VMA
4682 * disappears, the original reservation is the VMA size and the
4683 * consumed reservations are stored in the map. Hence, nothing
4684 * else has to be done for private mappings here
4685 */
4686 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4687 long add = region_add(resv_map, from, to);
4688
4689 if (unlikely(chg > add)) {
4690 /*
4691 * pages in this range were added to the reserve
4692 * map between region_chg and region_add. This
4693 * indicates a race with alloc_huge_page. Adjust
4694 * the subpool and reserve counts modified above
4695 * based on the difference.
4696 */
4697 long rsv_adjust;
4698
4699 rsv_adjust = hugepage_subpool_put_pages(spool,
4700 chg - add);
4701 hugetlb_acct_memory(h, -rsv_adjust);
4702 }
4703 }
4704 return 0;
4705out_err:
4706 if (!vma || vma->vm_flags & VM_MAYSHARE)
4707 /* Don't call region_abort if region_chg failed */
4708 if (chg >= 0)
4709 region_abort(resv_map, from, to);
4710 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4711 kref_put(&resv_map->refs, resv_map_release);
4712 return ret;
4713}
4714
4715long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4716 long freed)
4717{
4718 struct hstate *h = hstate_inode(inode);
4719 struct resv_map *resv_map = inode_resv_map(inode);
4720 long chg = 0;
4721 struct hugepage_subpool *spool = subpool_inode(inode);
4722 long gbl_reserve;
4723
4724 /*
4725 * Since this routine can be called in the evict inode path for all
4726 * hugetlbfs inodes, resv_map could be NULL.
4727 */
4728 if (resv_map) {
4729 chg = region_del(resv_map, start, end);
4730 /*
4731 * region_del() can fail in the rare case where a region
4732 * must be split and another region descriptor can not be
4733 * allocated. If end == LONG_MAX, it will not fail.
4734 */
4735 if (chg < 0)
4736 return chg;
4737 }
4738
4739 spin_lock(&inode->i_lock);
4740 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4741 spin_unlock(&inode->i_lock);
4742
4743 /*
4744 * If the subpool has a minimum size, the number of global
4745 * reservations to be released may be adjusted.
4746 */
4747 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4748 hugetlb_acct_memory(h, -gbl_reserve);
4749
4750 return 0;
4751}
4752
4753#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4754static unsigned long page_table_shareable(struct vm_area_struct *svma,
4755 struct vm_area_struct *vma,
4756 unsigned long addr, pgoff_t idx)
4757{
4758 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4759 svma->vm_start;
4760 unsigned long sbase = saddr & PUD_MASK;
4761 unsigned long s_end = sbase + PUD_SIZE;
4762
4763 /* Allow segments to share if only one is marked locked */
4764 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4765 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766
4767 /*
4768 * match the virtual addresses, permission and the alignment of the
4769 * page table page.
4770 */
4771 if (pmd_index(addr) != pmd_index(saddr) ||
4772 vm_flags != svm_flags ||
4773 sbase < svma->vm_start || svma->vm_end < s_end)
4774 return 0;
4775
4776 return saddr;
4777}
4778
4779static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4780{
4781 unsigned long base = addr & PUD_MASK;
4782 unsigned long end = base + PUD_SIZE;
4783
4784 /*
4785 * check on proper vm_flags and page table alignment
4786 */
4787 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4788 return true;
4789 return false;
4790}
4791
4792/*
4793 * Determine if start,end range within vma could be mapped by shared pmd.
4794 * If yes, adjust start and end to cover range associated with possible
4795 * shared pmd mappings.
4796 */
4797void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4798 unsigned long *start, unsigned long *end)
4799{
4800 unsigned long check_addr = *start;
4801
4802 if (!(vma->vm_flags & VM_MAYSHARE))
4803 return;
4804
4805 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4806 unsigned long a_start = check_addr & PUD_MASK;
4807 unsigned long a_end = a_start + PUD_SIZE;
4808
4809 /*
4810 * If sharing is possible, adjust start/end if necessary.
4811 */
4812 if (range_in_vma(vma, a_start, a_end)) {
4813 if (a_start < *start)
4814 *start = a_start;
4815 if (a_end > *end)
4816 *end = a_end;
4817 }
4818 }
4819}
4820
4821/*
4822 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4823 * and returns the corresponding pte. While this is not necessary for the
4824 * !shared pmd case because we can allocate the pmd later as well, it makes the
4825 * code much cleaner. pmd allocation is essential for the shared case because
4826 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4827 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4828 * bad pmd for sharing.
4829 */
4830pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4831{
4832 struct vm_area_struct *vma = find_vma(mm, addr);
4833 struct address_space *mapping = vma->vm_file->f_mapping;
4834 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4835 vma->vm_pgoff;
4836 struct vm_area_struct *svma;
4837 unsigned long saddr;
4838 pte_t *spte = NULL;
4839 pte_t *pte;
4840 spinlock_t *ptl;
4841
4842 if (!vma_shareable(vma, addr))
4843 return (pte_t *)pmd_alloc(mm, pud, addr);
4844
4845 i_mmap_lock_write(mapping);
4846 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4847 if (svma == vma)
4848 continue;
4849
4850 saddr = page_table_shareable(svma, vma, addr, idx);
4851 if (saddr) {
4852 spte = huge_pte_offset(svma->vm_mm, saddr,
4853 vma_mmu_pagesize(svma));
4854 if (spte) {
4855 get_page(virt_to_page(spte));
4856 break;
4857 }
4858 }
4859 }
4860
4861 if (!spte)
4862 goto out;
4863
4864 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4865 if (pud_none(*pud)) {
4866 pud_populate(mm, pud,
4867 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4868 mm_inc_nr_pmds(mm);
4869 } else {
4870 put_page(virt_to_page(spte));
4871 }
4872 spin_unlock(ptl);
4873out:
4874 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4875 i_mmap_unlock_write(mapping);
4876 return pte;
4877}
4878
4879/*
4880 * unmap huge page backed by shared pte.
4881 *
4882 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4883 * indicated by page_count > 1, unmap is achieved by clearing pud and
4884 * decrementing the ref count. If count == 1, the pte page is not shared.
4885 *
4886 * called with page table lock held.
4887 *
4888 * returns: 1 successfully unmapped a shared pte page
4889 * 0 the underlying pte page is not shared, or it is the last user
4890 */
4891int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4892{
4893 pgd_t *pgd = pgd_offset(mm, *addr);
4894 p4d_t *p4d = p4d_offset(pgd, *addr);
4895 pud_t *pud = pud_offset(p4d, *addr);
4896
4897 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4898 if (page_count(virt_to_page(ptep)) == 1)
4899 return 0;
4900
4901 pud_clear(pud);
4902 put_page(virt_to_page(ptep));
4903 mm_dec_nr_pmds(mm);
4904 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4905 return 1;
4906}
4907#define want_pmd_share() (1)
4908#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4909pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4910{
4911 return NULL;
4912}
4913
4914int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4915{
4916 return 0;
4917}
4918
4919void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920 unsigned long *start, unsigned long *end)
4921{
4922}
4923#define want_pmd_share() (0)
4924#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4925
4926#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4927pte_t *huge_pte_alloc(struct mm_struct *mm,
4928 unsigned long addr, unsigned long sz)
4929{
4930 pgd_t *pgd;
4931 p4d_t *p4d;
4932 pud_t *pud;
4933 pte_t *pte = NULL;
4934
4935 pgd = pgd_offset(mm, addr);
4936 p4d = p4d_alloc(mm, pgd, addr);
4937 if (!p4d)
4938 return NULL;
4939 pud = pud_alloc(mm, p4d, addr);
4940 if (pud) {
4941 if (sz == PUD_SIZE) {
4942 pte = (pte_t *)pud;
4943 } else {
4944 BUG_ON(sz != PMD_SIZE);
4945 if (want_pmd_share() && pud_none(*pud))
4946 pte = huge_pmd_share(mm, addr, pud);
4947 else
4948 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4949 }
4950 }
4951 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4952
4953 return pte;
4954}
4955
4956/*
4957 * huge_pte_offset() - Walk the page table to resolve the hugepage
4958 * entry at address @addr
4959 *
4960 * Return: Pointer to page table or swap entry (PUD or PMD) for
4961 * address @addr, or NULL if a p*d_none() entry is encountered and the
4962 * size @sz doesn't match the hugepage size at this level of the page
4963 * table.
4964 */
4965pte_t *huge_pte_offset(struct mm_struct *mm,
4966 unsigned long addr, unsigned long sz)
4967{
4968 pgd_t *pgd;
4969 p4d_t *p4d;
4970 pud_t *pud;
4971 pmd_t *pmd;
4972
4973 pgd = pgd_offset(mm, addr);
4974 if (!pgd_present(*pgd))
4975 return NULL;
4976 p4d = p4d_offset(pgd, addr);
4977 if (!p4d_present(*p4d))
4978 return NULL;
4979
4980 pud = pud_offset(p4d, addr);
4981 if (sz != PUD_SIZE && pud_none(*pud))
4982 return NULL;
4983 /* hugepage or swap? */
4984 if (pud_huge(*pud) || !pud_present(*pud))
4985 return (pte_t *)pud;
4986
4987 pmd = pmd_offset(pud, addr);
4988 if (sz != PMD_SIZE && pmd_none(*pmd))
4989 return NULL;
4990 /* hugepage or swap? */
4991 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4992 return (pte_t *)pmd;
4993
4994 return NULL;
4995}
4996
4997#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4998
4999/*
5000 * These functions are overwritable if your architecture needs its own
5001 * behavior.
5002 */
5003struct page * __weak
5004follow_huge_addr(struct mm_struct *mm, unsigned long address,
5005 int write)
5006{
5007 return ERR_PTR(-EINVAL);
5008}
5009
5010struct page * __weak
5011follow_huge_pd(struct vm_area_struct *vma,
5012 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5013{
5014 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5015 return NULL;
5016}
5017
5018struct page * __weak
5019follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5020 pmd_t *pmd, int flags)
5021{
5022 struct page *page = NULL;
5023 spinlock_t *ptl;
5024 pte_t pte;
5025retry:
5026 ptl = pmd_lockptr(mm, pmd);
5027 spin_lock(ptl);
5028 /*
5029 * make sure that the address range covered by this pmd is not
5030 * unmapped from other threads.
5031 */
5032 if (!pmd_huge(*pmd))
5033 goto out;
5034 pte = huge_ptep_get((pte_t *)pmd);
5035 if (pte_present(pte)) {
5036 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5037 if (flags & FOLL_GET)
5038 get_page(page);
5039 } else {
5040 if (is_hugetlb_entry_migration(pte)) {
5041 spin_unlock(ptl);
5042 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5043 goto retry;
5044 }
5045 /*
5046 * hwpoisoned entry is treated as no_page_table in
5047 * follow_page_mask().
5048 */
5049 }
5050out:
5051 spin_unlock(ptl);
5052 return page;
5053}
5054
5055struct page * __weak
5056follow_huge_pud(struct mm_struct *mm, unsigned long address,
5057 pud_t *pud, int flags)
5058{
5059 if (flags & FOLL_GET)
5060 return NULL;
5061
5062 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5063}
5064
5065struct page * __weak
5066follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5067{
5068 if (flags & FOLL_GET)
5069 return NULL;
5070
5071 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5072}
5073
5074bool isolate_huge_page(struct page *page, struct list_head *list)
5075{
5076 bool ret = true;
5077
5078 VM_BUG_ON_PAGE(!PageHead(page), page);
5079 spin_lock(&hugetlb_lock);
5080 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5081 ret = false;
5082 goto unlock;
5083 }
5084 clear_page_huge_active(page);
5085 list_move_tail(&page->lru, list);
5086unlock:
5087 spin_unlock(&hugetlb_lock);
5088 return ret;
5089}
5090
5091void putback_active_hugepage(struct page *page)
5092{
5093 VM_BUG_ON_PAGE(!PageHead(page), page);
5094 spin_lock(&hugetlb_lock);
5095 set_page_huge_active(page);
5096 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5097 spin_unlock(&hugetlb_lock);
5098 put_page(page);
5099}
5100
5101void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5102{
5103 struct hstate *h = page_hstate(oldpage);
5104
5105 hugetlb_cgroup_migrate(oldpage, newpage);
5106 set_page_owner_migrate_reason(newpage, reason);
5107
5108 /*
5109 * transfer temporary state of the new huge page. This is
5110 * reverse to other transitions because the newpage is going to
5111 * be final while the old one will be freed so it takes over
5112 * the temporary status.
5113 *
5114 * Also note that we have to transfer the per-node surplus state
5115 * here as well otherwise the global surplus count will not match
5116 * the per-node's.
5117 */
5118 if (PageHugeTemporary(newpage)) {
5119 int old_nid = page_to_nid(oldpage);
5120 int new_nid = page_to_nid(newpage);
5121
5122 SetPageHugeTemporary(oldpage);
5123 ClearPageHugeTemporary(newpage);
5124
5125 spin_lock(&hugetlb_lock);
5126 if (h->surplus_huge_pages_node[old_nid]) {
5127 h->surplus_huge_pages_node[old_nid]--;
5128 h->surplus_huge_pages_node[new_nid]++;
5129 }
5130 spin_unlock(&hugetlb_lock);
5131 }
5132}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37#include <linux/mm_inline.h>
38#include <linux/padata.h>
39
40#include <asm/page.h>
41#include <asm/pgalloc.h>
42#include <asm/tlb.h>
43
44#include <linux/io.h>
45#include <linux/hugetlb.h>
46#include <linux/hugetlb_cgroup.h>
47#include <linux/node.h>
48#include <linux/page_owner.h>
49#include "internal.h"
50#include "hugetlb_vmemmap.h"
51
52int hugetlb_max_hstate __read_mostly;
53unsigned int default_hstate_idx;
54struct hstate hstates[HUGE_MAX_HSTATE];
55
56#ifdef CONFIG_CMA
57static struct cma *hugetlb_cma[MAX_NUMNODES];
58static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60{
61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62 1 << order);
63}
64#else
65static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66{
67 return false;
68}
69#endif
70static unsigned long hugetlb_cma_size __initdata;
71
72__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73
74/* for command line parsing */
75static struct hstate * __initdata parsed_hstate;
76static unsigned long __initdata default_hstate_max_huge_pages;
77static bool __initdata parsed_valid_hugepagesz = true;
78static bool __initdata parsed_default_hugepagesz;
79static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80
81/*
82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83 * free_huge_pages, and surplus_huge_pages.
84 */
85DEFINE_SPINLOCK(hugetlb_lock);
86
87/*
88 * Serializes faults on the same logical page. This is used to
89 * prevent spurious OOMs when the hugepage pool is fully utilized.
90 */
91static int num_fault_mutexes;
92struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93
94/* Forward declaration */
95static int hugetlb_acct_memory(struct hstate *h, long delta);
96static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 unsigned long start, unsigned long end);
101static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102
103static inline bool subpool_is_free(struct hugepage_subpool *spool)
104{
105 if (spool->count)
106 return false;
107 if (spool->max_hpages != -1)
108 return spool->used_hpages == 0;
109 if (spool->min_hpages != -1)
110 return spool->rsv_hpages == spool->min_hpages;
111
112 return true;
113}
114
115static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 unsigned long irq_flags)
117{
118 spin_unlock_irqrestore(&spool->lock, irq_flags);
119
120 /* If no pages are used, and no other handles to the subpool
121 * remain, give up any reservations based on minimum size and
122 * free the subpool */
123 if (subpool_is_free(spool)) {
124 if (spool->min_hpages != -1)
125 hugetlb_acct_memory(spool->hstate,
126 -spool->min_hpages);
127 kfree(spool);
128 }
129}
130
131struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132 long min_hpages)
133{
134 struct hugepage_subpool *spool;
135
136 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 if (!spool)
138 return NULL;
139
140 spin_lock_init(&spool->lock);
141 spool->count = 1;
142 spool->max_hpages = max_hpages;
143 spool->hstate = h;
144 spool->min_hpages = min_hpages;
145
146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 kfree(spool);
148 return NULL;
149 }
150 spool->rsv_hpages = min_hpages;
151
152 return spool;
153}
154
155void hugepage_put_subpool(struct hugepage_subpool *spool)
156{
157 unsigned long flags;
158
159 spin_lock_irqsave(&spool->lock, flags);
160 BUG_ON(!spool->count);
161 spool->count--;
162 unlock_or_release_subpool(spool, flags);
163}
164
165/*
166 * Subpool accounting for allocating and reserving pages.
167 * Return -ENOMEM if there are not enough resources to satisfy the
168 * request. Otherwise, return the number of pages by which the
169 * global pools must be adjusted (upward). The returned value may
170 * only be different than the passed value (delta) in the case where
171 * a subpool minimum size must be maintained.
172 */
173static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174 long delta)
175{
176 long ret = delta;
177
178 if (!spool)
179 return ret;
180
181 spin_lock_irq(&spool->lock);
182
183 if (spool->max_hpages != -1) { /* maximum size accounting */
184 if ((spool->used_hpages + delta) <= spool->max_hpages)
185 spool->used_hpages += delta;
186 else {
187 ret = -ENOMEM;
188 goto unlock_ret;
189 }
190 }
191
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->rsv_hpages) {
194 if (delta > spool->rsv_hpages) {
195 /*
196 * Asking for more reserves than those already taken on
197 * behalf of subpool. Return difference.
198 */
199 ret = delta - spool->rsv_hpages;
200 spool->rsv_hpages = 0;
201 } else {
202 ret = 0; /* reserves already accounted for */
203 spool->rsv_hpages -= delta;
204 }
205 }
206
207unlock_ret:
208 spin_unlock_irq(&spool->lock);
209 return ret;
210}
211
212/*
213 * Subpool accounting for freeing and unreserving pages.
214 * Return the number of global page reservations that must be dropped.
215 * The return value may only be different than the passed value (delta)
216 * in the case where a subpool minimum size must be maintained.
217 */
218static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219 long delta)
220{
221 long ret = delta;
222 unsigned long flags;
223
224 if (!spool)
225 return delta;
226
227 spin_lock_irqsave(&spool->lock, flags);
228
229 if (spool->max_hpages != -1) /* maximum size accounting */
230 spool->used_hpages -= delta;
231
232 /* minimum size accounting */
233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234 if (spool->rsv_hpages + delta <= spool->min_hpages)
235 ret = 0;
236 else
237 ret = spool->rsv_hpages + delta - spool->min_hpages;
238
239 spool->rsv_hpages += delta;
240 if (spool->rsv_hpages > spool->min_hpages)
241 spool->rsv_hpages = spool->min_hpages;
242 }
243
244 /*
245 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 * quota reference, free it now.
247 */
248 unlock_or_release_subpool(spool, flags);
249
250 return ret;
251}
252
253static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254{
255 return HUGETLBFS_SB(inode->i_sb)->spool;
256}
257
258static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259{
260 return subpool_inode(file_inode(vma->vm_file));
261}
262
263/*
264 * hugetlb vma_lock helper routines
265 */
266void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267{
268 if (__vma_shareable_lock(vma)) {
269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270
271 down_read(&vma_lock->rw_sema);
272 } else if (__vma_private_lock(vma)) {
273 struct resv_map *resv_map = vma_resv_map(vma);
274
275 down_read(&resv_map->rw_sema);
276 }
277}
278
279void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280{
281 if (__vma_shareable_lock(vma)) {
282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283
284 up_read(&vma_lock->rw_sema);
285 } else if (__vma_private_lock(vma)) {
286 struct resv_map *resv_map = vma_resv_map(vma);
287
288 up_read(&resv_map->rw_sema);
289 }
290}
291
292void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293{
294 if (__vma_shareable_lock(vma)) {
295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296
297 down_write(&vma_lock->rw_sema);
298 } else if (__vma_private_lock(vma)) {
299 struct resv_map *resv_map = vma_resv_map(vma);
300
301 down_write(&resv_map->rw_sema);
302 }
303}
304
305void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306{
307 if (__vma_shareable_lock(vma)) {
308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309
310 up_write(&vma_lock->rw_sema);
311 } else if (__vma_private_lock(vma)) {
312 struct resv_map *resv_map = vma_resv_map(vma);
313
314 up_write(&resv_map->rw_sema);
315 }
316}
317
318int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319{
320
321 if (__vma_shareable_lock(vma)) {
322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323
324 return down_write_trylock(&vma_lock->rw_sema);
325 } else if (__vma_private_lock(vma)) {
326 struct resv_map *resv_map = vma_resv_map(vma);
327
328 return down_write_trylock(&resv_map->rw_sema);
329 }
330
331 return 1;
332}
333
334void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335{
336 if (__vma_shareable_lock(vma)) {
337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338
339 lockdep_assert_held(&vma_lock->rw_sema);
340 } else if (__vma_private_lock(vma)) {
341 struct resv_map *resv_map = vma_resv_map(vma);
342
343 lockdep_assert_held(&resv_map->rw_sema);
344 }
345}
346
347void hugetlb_vma_lock_release(struct kref *kref)
348{
349 struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 struct hugetlb_vma_lock, refs);
351
352 kfree(vma_lock);
353}
354
355static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356{
357 struct vm_area_struct *vma = vma_lock->vma;
358
359 /*
360 * vma_lock structure may or not be released as a result of put,
361 * it certainly will no longer be attached to vma so clear pointer.
362 * Semaphore synchronizes access to vma_lock->vma field.
363 */
364 vma_lock->vma = NULL;
365 vma->vm_private_data = NULL;
366 up_write(&vma_lock->rw_sema);
367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368}
369
370static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371{
372 if (__vma_shareable_lock(vma)) {
373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374
375 __hugetlb_vma_unlock_write_put(vma_lock);
376 } else if (__vma_private_lock(vma)) {
377 struct resv_map *resv_map = vma_resv_map(vma);
378
379 /* no free for anon vmas, but still need to unlock */
380 up_write(&resv_map->rw_sema);
381 }
382}
383
384static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385{
386 /*
387 * Only present in sharable vmas.
388 */
389 if (!vma || !__vma_shareable_lock(vma))
390 return;
391
392 if (vma->vm_private_data) {
393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394
395 down_write(&vma_lock->rw_sema);
396 __hugetlb_vma_unlock_write_put(vma_lock);
397 }
398}
399
400static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401{
402 struct hugetlb_vma_lock *vma_lock;
403
404 /* Only establish in (flags) sharable vmas */
405 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406 return;
407
408 /* Should never get here with non-NULL vm_private_data */
409 if (vma->vm_private_data)
410 return;
411
412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413 if (!vma_lock) {
414 /*
415 * If we can not allocate structure, then vma can not
416 * participate in pmd sharing. This is only a possible
417 * performance enhancement and memory saving issue.
418 * However, the lock is also used to synchronize page
419 * faults with truncation. If the lock is not present,
420 * unlikely races could leave pages in a file past i_size
421 * until the file is removed. Warn in the unlikely case of
422 * allocation failure.
423 */
424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425 return;
426 }
427
428 kref_init(&vma_lock->refs);
429 init_rwsem(&vma_lock->rw_sema);
430 vma_lock->vma = vma;
431 vma->vm_private_data = vma_lock;
432}
433
434/* Helper that removes a struct file_region from the resv_map cache and returns
435 * it for use.
436 */
437static struct file_region *
438get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439{
440 struct file_region *nrg;
441
442 VM_BUG_ON(resv->region_cache_count <= 0);
443
444 resv->region_cache_count--;
445 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446 list_del(&nrg->link);
447
448 nrg->from = from;
449 nrg->to = to;
450
451 return nrg;
452}
453
454static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 struct file_region *rg)
456{
457#ifdef CONFIG_CGROUP_HUGETLB
458 nrg->reservation_counter = rg->reservation_counter;
459 nrg->css = rg->css;
460 if (rg->css)
461 css_get(rg->css);
462#endif
463}
464
465/* Helper that records hugetlb_cgroup uncharge info. */
466static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467 struct hstate *h,
468 struct resv_map *resv,
469 struct file_region *nrg)
470{
471#ifdef CONFIG_CGROUP_HUGETLB
472 if (h_cg) {
473 nrg->reservation_counter =
474 &h_cg->rsvd_hugepage[hstate_index(h)];
475 nrg->css = &h_cg->css;
476 /*
477 * The caller will hold exactly one h_cg->css reference for the
478 * whole contiguous reservation region. But this area might be
479 * scattered when there are already some file_regions reside in
480 * it. As a result, many file_regions may share only one css
481 * reference. In order to ensure that one file_region must hold
482 * exactly one h_cg->css reference, we should do css_get for
483 * each file_region and leave the reference held by caller
484 * untouched.
485 */
486 css_get(&h_cg->css);
487 if (!resv->pages_per_hpage)
488 resv->pages_per_hpage = pages_per_huge_page(h);
489 /* pages_per_hpage should be the same for all entries in
490 * a resv_map.
491 */
492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493 } else {
494 nrg->reservation_counter = NULL;
495 nrg->css = NULL;
496 }
497#endif
498}
499
500static void put_uncharge_info(struct file_region *rg)
501{
502#ifdef CONFIG_CGROUP_HUGETLB
503 if (rg->css)
504 css_put(rg->css);
505#endif
506}
507
508static bool has_same_uncharge_info(struct file_region *rg,
509 struct file_region *org)
510{
511#ifdef CONFIG_CGROUP_HUGETLB
512 return rg->reservation_counter == org->reservation_counter &&
513 rg->css == org->css;
514
515#else
516 return true;
517#endif
518}
519
520static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521{
522 struct file_region *nrg, *prg;
523
524 prg = list_prev_entry(rg, link);
525 if (&prg->link != &resv->regions && prg->to == rg->from &&
526 has_same_uncharge_info(prg, rg)) {
527 prg->to = rg->to;
528
529 list_del(&rg->link);
530 put_uncharge_info(rg);
531 kfree(rg);
532
533 rg = prg;
534 }
535
536 nrg = list_next_entry(rg, link);
537 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 has_same_uncharge_info(nrg, rg)) {
539 nrg->from = rg->from;
540
541 list_del(&rg->link);
542 put_uncharge_info(rg);
543 kfree(rg);
544 }
545}
546
547static inline long
548hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549 long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 long *regions_needed)
551{
552 struct file_region *nrg;
553
554 if (!regions_needed) {
555 nrg = get_file_region_entry_from_cache(map, from, to);
556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557 list_add(&nrg->link, rg);
558 coalesce_file_region(map, nrg);
559 } else
560 *regions_needed += 1;
561
562 return to - from;
563}
564
565/*
566 * Must be called with resv->lock held.
567 *
568 * Calling this with regions_needed != NULL will count the number of pages
569 * to be added but will not modify the linked list. And regions_needed will
570 * indicate the number of file_regions needed in the cache to carry out to add
571 * the regions for this range.
572 */
573static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574 struct hugetlb_cgroup *h_cg,
575 struct hstate *h, long *regions_needed)
576{
577 long add = 0;
578 struct list_head *head = &resv->regions;
579 long last_accounted_offset = f;
580 struct file_region *iter, *trg = NULL;
581 struct list_head *rg = NULL;
582
583 if (regions_needed)
584 *regions_needed = 0;
585
586 /* In this loop, we essentially handle an entry for the range
587 * [last_accounted_offset, iter->from), at every iteration, with some
588 * bounds checking.
589 */
590 list_for_each_entry_safe(iter, trg, head, link) {
591 /* Skip irrelevant regions that start before our range. */
592 if (iter->from < f) {
593 /* If this region ends after the last accounted offset,
594 * then we need to update last_accounted_offset.
595 */
596 if (iter->to > last_accounted_offset)
597 last_accounted_offset = iter->to;
598 continue;
599 }
600
601 /* When we find a region that starts beyond our range, we've
602 * finished.
603 */
604 if (iter->from >= t) {
605 rg = iter->link.prev;
606 break;
607 }
608
609 /* Add an entry for last_accounted_offset -> iter->from, and
610 * update last_accounted_offset.
611 */
612 if (iter->from > last_accounted_offset)
613 add += hugetlb_resv_map_add(resv, iter->link.prev,
614 last_accounted_offset,
615 iter->from, h, h_cg,
616 regions_needed);
617
618 last_accounted_offset = iter->to;
619 }
620
621 /* Handle the case where our range extends beyond
622 * last_accounted_offset.
623 */
624 if (!rg)
625 rg = head->prev;
626 if (last_accounted_offset < t)
627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 t, h, h_cg, regions_needed);
629
630 return add;
631}
632
633/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634 */
635static int allocate_file_region_entries(struct resv_map *resv,
636 int regions_needed)
637 __must_hold(&resv->lock)
638{
639 LIST_HEAD(allocated_regions);
640 int to_allocate = 0, i = 0;
641 struct file_region *trg = NULL, *rg = NULL;
642
643 VM_BUG_ON(regions_needed < 0);
644
645 /*
646 * Check for sufficient descriptors in the cache to accommodate
647 * the number of in progress add operations plus regions_needed.
648 *
649 * This is a while loop because when we drop the lock, some other call
650 * to region_add or region_del may have consumed some region_entries,
651 * so we keep looping here until we finally have enough entries for
652 * (adds_in_progress + regions_needed).
653 */
654 while (resv->region_cache_count <
655 (resv->adds_in_progress + regions_needed)) {
656 to_allocate = resv->adds_in_progress + regions_needed -
657 resv->region_cache_count;
658
659 /* At this point, we should have enough entries in the cache
660 * for all the existing adds_in_progress. We should only be
661 * needing to allocate for regions_needed.
662 */
663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664
665 spin_unlock(&resv->lock);
666 for (i = 0; i < to_allocate; i++) {
667 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668 if (!trg)
669 goto out_of_memory;
670 list_add(&trg->link, &allocated_regions);
671 }
672
673 spin_lock(&resv->lock);
674
675 list_splice(&allocated_regions, &resv->region_cache);
676 resv->region_cache_count += to_allocate;
677 }
678
679 return 0;
680
681out_of_memory:
682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683 list_del(&rg->link);
684 kfree(rg);
685 }
686 return -ENOMEM;
687}
688
689/*
690 * Add the huge page range represented by [f, t) to the reserve
691 * map. Regions will be taken from the cache to fill in this range.
692 * Sufficient regions should exist in the cache due to the previous
693 * call to region_chg with the same range, but in some cases the cache will not
694 * have sufficient entries due to races with other code doing region_add or
695 * region_del. The extra needed entries will be allocated.
696 *
697 * regions_needed is the out value provided by a previous call to region_chg.
698 *
699 * Return the number of new huge pages added to the map. This number is greater
700 * than or equal to zero. If file_region entries needed to be allocated for
701 * this operation and we were not able to allocate, it returns -ENOMEM.
702 * region_add of regions of length 1 never allocate file_regions and cannot
703 * fail; region_chg will always allocate at least 1 entry and a region_add for
704 * 1 page will only require at most 1 entry.
705 */
706static long region_add(struct resv_map *resv, long f, long t,
707 long in_regions_needed, struct hstate *h,
708 struct hugetlb_cgroup *h_cg)
709{
710 long add = 0, actual_regions_needed = 0;
711
712 spin_lock(&resv->lock);
713retry:
714
715 /* Count how many regions are actually needed to execute this add. */
716 add_reservation_in_range(resv, f, t, NULL, NULL,
717 &actual_regions_needed);
718
719 /*
720 * Check for sufficient descriptors in the cache to accommodate
721 * this add operation. Note that actual_regions_needed may be greater
722 * than in_regions_needed, as the resv_map may have been modified since
723 * the region_chg call. In this case, we need to make sure that we
724 * allocate extra entries, such that we have enough for all the
725 * existing adds_in_progress, plus the excess needed for this
726 * operation.
727 */
728 if (actual_regions_needed > in_regions_needed &&
729 resv->region_cache_count <
730 resv->adds_in_progress +
731 (actual_regions_needed - in_regions_needed)) {
732 /* region_add operation of range 1 should never need to
733 * allocate file_region entries.
734 */
735 VM_BUG_ON(t - f <= 1);
736
737 if (allocate_file_region_entries(
738 resv, actual_regions_needed - in_regions_needed)) {
739 return -ENOMEM;
740 }
741
742 goto retry;
743 }
744
745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746
747 resv->adds_in_progress -= in_regions_needed;
748
749 spin_unlock(&resv->lock);
750 return add;
751}
752
753/*
754 * Examine the existing reserve map and determine how many
755 * huge pages in the specified range [f, t) are NOT currently
756 * represented. This routine is called before a subsequent
757 * call to region_add that will actually modify the reserve
758 * map to add the specified range [f, t). region_chg does
759 * not change the number of huge pages represented by the
760 * map. A number of new file_region structures is added to the cache as a
761 * placeholder, for the subsequent region_add call to use. At least 1
762 * file_region structure is added.
763 *
764 * out_regions_needed is the number of regions added to the
765 * resv->adds_in_progress. This value needs to be provided to a follow up call
766 * to region_add or region_abort for proper accounting.
767 *
768 * Returns the number of huge pages that need to be added to the existing
769 * reservation map for the range [f, t). This number is greater or equal to
770 * zero. -ENOMEM is returned if a new file_region structure or cache entry
771 * is needed and can not be allocated.
772 */
773static long region_chg(struct resv_map *resv, long f, long t,
774 long *out_regions_needed)
775{
776 long chg = 0;
777
778 spin_lock(&resv->lock);
779
780 /* Count how many hugepages in this range are NOT represented. */
781 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782 out_regions_needed);
783
784 if (*out_regions_needed == 0)
785 *out_regions_needed = 1;
786
787 if (allocate_file_region_entries(resv, *out_regions_needed))
788 return -ENOMEM;
789
790 resv->adds_in_progress += *out_regions_needed;
791
792 spin_unlock(&resv->lock);
793 return chg;
794}
795
796/*
797 * Abort the in progress add operation. The adds_in_progress field
798 * of the resv_map keeps track of the operations in progress between
799 * calls to region_chg and region_add. Operations are sometimes
800 * aborted after the call to region_chg. In such cases, region_abort
801 * is called to decrement the adds_in_progress counter. regions_needed
802 * is the value returned by the region_chg call, it is used to decrement
803 * the adds_in_progress counter.
804 *
805 * NOTE: The range arguments [f, t) are not needed or used in this
806 * routine. They are kept to make reading the calling code easier as
807 * arguments will match the associated region_chg call.
808 */
809static void region_abort(struct resv_map *resv, long f, long t,
810 long regions_needed)
811{
812 spin_lock(&resv->lock);
813 VM_BUG_ON(!resv->region_cache_count);
814 resv->adds_in_progress -= regions_needed;
815 spin_unlock(&resv->lock);
816}
817
818/*
819 * Delete the specified range [f, t) from the reserve map. If the
820 * t parameter is LONG_MAX, this indicates that ALL regions after f
821 * should be deleted. Locate the regions which intersect [f, t)
822 * and either trim, delete or split the existing regions.
823 *
824 * Returns the number of huge pages deleted from the reserve map.
825 * In the normal case, the return value is zero or more. In the
826 * case where a region must be split, a new region descriptor must
827 * be allocated. If the allocation fails, -ENOMEM will be returned.
828 * NOTE: If the parameter t == LONG_MAX, then we will never split
829 * a region and possibly return -ENOMEM. Callers specifying
830 * t == LONG_MAX do not need to check for -ENOMEM error.
831 */
832static long region_del(struct resv_map *resv, long f, long t)
833{
834 struct list_head *head = &resv->regions;
835 struct file_region *rg, *trg;
836 struct file_region *nrg = NULL;
837 long del = 0;
838
839retry:
840 spin_lock(&resv->lock);
841 list_for_each_entry_safe(rg, trg, head, link) {
842 /*
843 * Skip regions before the range to be deleted. file_region
844 * ranges are normally of the form [from, to). However, there
845 * may be a "placeholder" entry in the map which is of the form
846 * (from, to) with from == to. Check for placeholder entries
847 * at the beginning of the range to be deleted.
848 */
849 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850 continue;
851
852 if (rg->from >= t)
853 break;
854
855 if (f > rg->from && t < rg->to) { /* Must split region */
856 /*
857 * Check for an entry in the cache before dropping
858 * lock and attempting allocation.
859 */
860 if (!nrg &&
861 resv->region_cache_count > resv->adds_in_progress) {
862 nrg = list_first_entry(&resv->region_cache,
863 struct file_region,
864 link);
865 list_del(&nrg->link);
866 resv->region_cache_count--;
867 }
868
869 if (!nrg) {
870 spin_unlock(&resv->lock);
871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872 if (!nrg)
873 return -ENOMEM;
874 goto retry;
875 }
876
877 del += t - f;
878 hugetlb_cgroup_uncharge_file_region(
879 resv, rg, t - f, false);
880
881 /* New entry for end of split region */
882 nrg->from = t;
883 nrg->to = rg->to;
884
885 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886
887 INIT_LIST_HEAD(&nrg->link);
888
889 /* Original entry is trimmed */
890 rg->to = f;
891
892 list_add(&nrg->link, &rg->link);
893 nrg = NULL;
894 break;
895 }
896
897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 del += rg->to - rg->from;
899 hugetlb_cgroup_uncharge_file_region(resv, rg,
900 rg->to - rg->from, true);
901 list_del(&rg->link);
902 kfree(rg);
903 continue;
904 }
905
906 if (f <= rg->from) { /* Trim beginning of region */
907 hugetlb_cgroup_uncharge_file_region(resv, rg,
908 t - rg->from, false);
909
910 del += t - rg->from;
911 rg->from = t;
912 } else { /* Trim end of region */
913 hugetlb_cgroup_uncharge_file_region(resv, rg,
914 rg->to - f, false);
915
916 del += rg->to - f;
917 rg->to = f;
918 }
919 }
920
921 spin_unlock(&resv->lock);
922 kfree(nrg);
923 return del;
924}
925
926/*
927 * A rare out of memory error was encountered which prevented removal of
928 * the reserve map region for a page. The huge page itself was free'ed
929 * and removed from the page cache. This routine will adjust the subpool
930 * usage count, and the global reserve count if needed. By incrementing
931 * these counts, the reserve map entry which could not be deleted will
932 * appear as a "reserved" entry instead of simply dangling with incorrect
933 * counts.
934 */
935void hugetlb_fix_reserve_counts(struct inode *inode)
936{
937 struct hugepage_subpool *spool = subpool_inode(inode);
938 long rsv_adjust;
939 bool reserved = false;
940
941 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942 if (rsv_adjust > 0) {
943 struct hstate *h = hstate_inode(inode);
944
945 if (!hugetlb_acct_memory(h, 1))
946 reserved = true;
947 } else if (!rsv_adjust) {
948 reserved = true;
949 }
950
951 if (!reserved)
952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953}
954
955/*
956 * Count and return the number of huge pages in the reserve map
957 * that intersect with the range [f, t).
958 */
959static long region_count(struct resv_map *resv, long f, long t)
960{
961 struct list_head *head = &resv->regions;
962 struct file_region *rg;
963 long chg = 0;
964
965 spin_lock(&resv->lock);
966 /* Locate each segment we overlap with, and count that overlap. */
967 list_for_each_entry(rg, head, link) {
968 long seg_from;
969 long seg_to;
970
971 if (rg->to <= f)
972 continue;
973 if (rg->from >= t)
974 break;
975
976 seg_from = max(rg->from, f);
977 seg_to = min(rg->to, t);
978
979 chg += seg_to - seg_from;
980 }
981 spin_unlock(&resv->lock);
982
983 return chg;
984}
985
986/*
987 * Convert the address within this vma to the page offset within
988 * the mapping, huge page units here.
989 */
990static pgoff_t vma_hugecache_offset(struct hstate *h,
991 struct vm_area_struct *vma, unsigned long address)
992{
993 return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 (vma->vm_pgoff >> huge_page_order(h));
995}
996
997/**
998 * vma_kernel_pagesize - Page size granularity for this VMA.
999 * @vma: The user mapping.
1000 *
1001 * Folios in this VMA will be aligned to, and at least the size of the
1002 * number of bytes returned by this function.
1003 *
1004 * Return: The default size of the folios allocated when backing a VMA.
1005 */
1006unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007{
1008 if (vma->vm_ops && vma->vm_ops->pagesize)
1009 return vma->vm_ops->pagesize(vma);
1010 return PAGE_SIZE;
1011}
1012EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013
1014/*
1015 * Return the page size being used by the MMU to back a VMA. In the majority
1016 * of cases, the page size used by the kernel matches the MMU size. On
1017 * architectures where it differs, an architecture-specific 'strong'
1018 * version of this symbol is required.
1019 */
1020__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021{
1022 return vma_kernel_pagesize(vma);
1023}
1024
1025/*
1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1027 * bits of the reservation map pointer, which are always clear due to
1028 * alignment.
1029 */
1030#define HPAGE_RESV_OWNER (1UL << 0)
1031#define HPAGE_RESV_UNMAPPED (1UL << 1)
1032#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033
1034/*
1035 * These helpers are used to track how many pages are reserved for
1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037 * is guaranteed to have their future faults succeed.
1038 *
1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040 * the reserve counters are updated with the hugetlb_lock held. It is safe
1041 * to reset the VMA at fork() time as it is not in use yet and there is no
1042 * chance of the global counters getting corrupted as a result of the values.
1043 *
1044 * The private mapping reservation is represented in a subtly different
1045 * manner to a shared mapping. A shared mapping has a region map associated
1046 * with the underlying file, this region map represents the backing file
1047 * pages which have ever had a reservation assigned which this persists even
1048 * after the page is instantiated. A private mapping has a region map
1049 * associated with the original mmap which is attached to all VMAs which
1050 * reference it, this region map represents those offsets which have consumed
1051 * reservation ie. where pages have been instantiated.
1052 */
1053static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054{
1055 return (unsigned long)vma->vm_private_data;
1056}
1057
1058static void set_vma_private_data(struct vm_area_struct *vma,
1059 unsigned long value)
1060{
1061 vma->vm_private_data = (void *)value;
1062}
1063
1064static void
1065resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 struct hugetlb_cgroup *h_cg,
1067 struct hstate *h)
1068{
1069#ifdef CONFIG_CGROUP_HUGETLB
1070 if (!h_cg || !h) {
1071 resv_map->reservation_counter = NULL;
1072 resv_map->pages_per_hpage = 0;
1073 resv_map->css = NULL;
1074 } else {
1075 resv_map->reservation_counter =
1076 &h_cg->rsvd_hugepage[hstate_index(h)];
1077 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 resv_map->css = &h_cg->css;
1079 }
1080#endif
1081}
1082
1083struct resv_map *resv_map_alloc(void)
1084{
1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088 if (!resv_map || !rg) {
1089 kfree(resv_map);
1090 kfree(rg);
1091 return NULL;
1092 }
1093
1094 kref_init(&resv_map->refs);
1095 spin_lock_init(&resv_map->lock);
1096 INIT_LIST_HEAD(&resv_map->regions);
1097 init_rwsem(&resv_map->rw_sema);
1098
1099 resv_map->adds_in_progress = 0;
1100 /*
1101 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 * fields don't do cgroup accounting. On private mappings, these will be
1103 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 * reservations are to be un-charged from here.
1105 */
1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107
1108 INIT_LIST_HEAD(&resv_map->region_cache);
1109 list_add(&rg->link, &resv_map->region_cache);
1110 resv_map->region_cache_count = 1;
1111
1112 return resv_map;
1113}
1114
1115void resv_map_release(struct kref *ref)
1116{
1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118 struct list_head *head = &resv_map->region_cache;
1119 struct file_region *rg, *trg;
1120
1121 /* Clear out any active regions before we release the map. */
1122 region_del(resv_map, 0, LONG_MAX);
1123
1124 /* ... and any entries left in the cache */
1125 list_for_each_entry_safe(rg, trg, head, link) {
1126 list_del(&rg->link);
1127 kfree(rg);
1128 }
1129
1130 VM_BUG_ON(resv_map->adds_in_progress);
1131
1132 kfree(resv_map);
1133}
1134
1135static inline struct resv_map *inode_resv_map(struct inode *inode)
1136{
1137 /*
1138 * At inode evict time, i_mapping may not point to the original
1139 * address space within the inode. This original address space
1140 * contains the pointer to the resv_map. So, always use the
1141 * address space embedded within the inode.
1142 * The VERY common case is inode->mapping == &inode->i_data but,
1143 * this may not be true for device special inodes.
1144 */
1145 return (struct resv_map *)(&inode->i_data)->i_private_data;
1146}
1147
1148static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149{
1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 if (vma->vm_flags & VM_MAYSHARE) {
1152 struct address_space *mapping = vma->vm_file->f_mapping;
1153 struct inode *inode = mapping->host;
1154
1155 return inode_resv_map(inode);
1156
1157 } else {
1158 return (struct resv_map *)(get_vma_private_data(vma) &
1159 ~HPAGE_RESV_MASK);
1160 }
1161}
1162
1163static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164{
1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167
1168 set_vma_private_data(vma, (unsigned long)map);
1169}
1170
1171static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172{
1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175
1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177}
1178
1179static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180{
1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182
1183 return (get_vma_private_data(vma) & flag) != 0;
1184}
1185
1186bool __vma_private_lock(struct vm_area_struct *vma)
1187{
1188 return !(vma->vm_flags & VM_MAYSHARE) &&
1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191}
1192
1193void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194{
1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196 /*
1197 * Clear vm_private_data
1198 * - For shared mappings this is a per-vma semaphore that may be
1199 * allocated in a subsequent call to hugetlb_vm_op_open.
1200 * Before clearing, make sure pointer is not associated with vma
1201 * as this will leak the structure. This is the case when called
1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 * been called to allocate a new structure.
1204 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 * not apply to children. Faults generated by the children are
1206 * not guaranteed to succeed, even if read-only.
1207 */
1208 if (vma->vm_flags & VM_MAYSHARE) {
1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211 if (vma_lock && vma_lock->vma != vma)
1212 vma->vm_private_data = NULL;
1213 } else
1214 vma->vm_private_data = NULL;
1215}
1216
1217/*
1218 * Reset and decrement one ref on hugepage private reservation.
1219 * Called with mm->mmap_lock writer semaphore held.
1220 * This function should be only used by move_vma() and operate on
1221 * same sized vma. It should never come here with last ref on the
1222 * reservation.
1223 */
1224void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225{
1226 /*
1227 * Clear the old hugetlb private page reservation.
1228 * It has already been transferred to new_vma.
1229 *
1230 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 * which copies vma into new_vma and unmaps vma. After the copy
1232 * operation both new_vma and vma share a reference to the resv_map
1233 * struct, and at that point vma is about to be unmapped. We don't
1234 * want to return the reservation to the pool at unmap of vma because
1235 * the reservation still lives on in new_vma, so simply decrement the
1236 * ref here and remove the resv_map reference from this vma.
1237 */
1238 struct resv_map *reservations = vma_resv_map(vma);
1239
1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242 kref_put(&reservations->refs, resv_map_release);
1243 }
1244
1245 hugetlb_dup_vma_private(vma);
1246}
1247
1248/* Returns true if the VMA has associated reserve pages */
1249static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250{
1251 if (vma->vm_flags & VM_NORESERVE) {
1252 /*
1253 * This address is already reserved by other process(chg == 0),
1254 * so, we should decrement reserved count. Without decrementing,
1255 * reserve count remains after releasing inode, because this
1256 * allocated page will go into page cache and is regarded as
1257 * coming from reserved pool in releasing step. Currently, we
1258 * don't have any other solution to deal with this situation
1259 * properly, so add work-around here.
1260 */
1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262 return true;
1263 else
1264 return false;
1265 }
1266
1267 /* Shared mappings always use reserves */
1268 if (vma->vm_flags & VM_MAYSHARE) {
1269 /*
1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1271 * be a region map for all pages. The only situation where
1272 * there is no region map is if a hole was punched via
1273 * fallocate. In this case, there really are no reserves to
1274 * use. This situation is indicated if chg != 0.
1275 */
1276 if (chg)
1277 return false;
1278 else
1279 return true;
1280 }
1281
1282 /*
1283 * Only the process that called mmap() has reserves for
1284 * private mappings.
1285 */
1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287 /*
1288 * Like the shared case above, a hole punch or truncate
1289 * could have been performed on the private mapping.
1290 * Examine the value of chg to determine if reserves
1291 * actually exist or were previously consumed.
1292 * Very Subtle - The value of chg comes from a previous
1293 * call to vma_needs_reserves(). The reserve map for
1294 * private mappings has different (opposite) semantics
1295 * than that of shared mappings. vma_needs_reserves()
1296 * has already taken this difference in semantics into
1297 * account. Therefore, the meaning of chg is the same
1298 * as in the shared case above. Code could easily be
1299 * combined, but keeping it separate draws attention to
1300 * subtle differences.
1301 */
1302 if (chg)
1303 return false;
1304 else
1305 return true;
1306 }
1307
1308 return false;
1309}
1310
1311static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312{
1313 int nid = folio_nid(folio);
1314
1315 lockdep_assert_held(&hugetlb_lock);
1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317
1318 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319 h->free_huge_pages++;
1320 h->free_huge_pages_node[nid]++;
1321 folio_set_hugetlb_freed(folio);
1322}
1323
1324static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325 int nid)
1326{
1327 struct folio *folio;
1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329
1330 lockdep_assert_held(&hugetlb_lock);
1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 if (pin && !folio_is_longterm_pinnable(folio))
1333 continue;
1334
1335 if (folio_test_hwpoison(folio))
1336 continue;
1337
1338 list_move(&folio->lru, &h->hugepage_activelist);
1339 folio_ref_unfreeze(folio, 1);
1340 folio_clear_hugetlb_freed(folio);
1341 h->free_huge_pages--;
1342 h->free_huge_pages_node[nid]--;
1343 return folio;
1344 }
1345
1346 return NULL;
1347}
1348
1349static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 int nid, nodemask_t *nmask)
1351{
1352 unsigned int cpuset_mems_cookie;
1353 struct zonelist *zonelist;
1354 struct zone *zone;
1355 struct zoneref *z;
1356 int node = NUMA_NO_NODE;
1357
1358 zonelist = node_zonelist(nid, gfp_mask);
1359
1360retry_cpuset:
1361 cpuset_mems_cookie = read_mems_allowed_begin();
1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363 struct folio *folio;
1364
1365 if (!cpuset_zone_allowed(zone, gfp_mask))
1366 continue;
1367 /*
1368 * no need to ask again on the same node. Pool is node rather than
1369 * zone aware
1370 */
1371 if (zone_to_nid(zone) == node)
1372 continue;
1373 node = zone_to_nid(zone);
1374
1375 folio = dequeue_hugetlb_folio_node_exact(h, node);
1376 if (folio)
1377 return folio;
1378 }
1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380 goto retry_cpuset;
1381
1382 return NULL;
1383}
1384
1385static unsigned long available_huge_pages(struct hstate *h)
1386{
1387 return h->free_huge_pages - h->resv_huge_pages;
1388}
1389
1390static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391 struct vm_area_struct *vma,
1392 unsigned long address, int avoid_reserve,
1393 long chg)
1394{
1395 struct folio *folio = NULL;
1396 struct mempolicy *mpol;
1397 gfp_t gfp_mask;
1398 nodemask_t *nodemask;
1399 int nid;
1400
1401 /*
1402 * A child process with MAP_PRIVATE mappings created by their parent
1403 * have no page reserves. This check ensures that reservations are
1404 * not "stolen". The child may still get SIGKILLed
1405 */
1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407 goto err;
1408
1409 /* If reserves cannot be used, ensure enough pages are in the pool */
1410 if (avoid_reserve && !available_huge_pages(h))
1411 goto err;
1412
1413 gfp_mask = htlb_alloc_mask(h);
1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416 if (mpol_is_preferred_many(mpol)) {
1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 nid, nodemask);
1419
1420 /* Fallback to all nodes if page==NULL */
1421 nodemask = NULL;
1422 }
1423
1424 if (!folio)
1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 nid, nodemask);
1427
1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429 folio_set_hugetlb_restore_reserve(folio);
1430 h->resv_huge_pages--;
1431 }
1432
1433 mpol_cond_put(mpol);
1434 return folio;
1435
1436err:
1437 return NULL;
1438}
1439
1440/*
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed. Ensure that we use an allowed
1445 * node for alloc or free.
1446 */
1447static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448{
1449 nid = next_node_in(nid, *nodes_allowed);
1450 VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452 return nid;
1453}
1454
1455static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456{
1457 if (!node_isset(nid, *nodes_allowed))
1458 nid = next_node_allowed(nid, nodes_allowed);
1459 return nid;
1460}
1461
1462/*
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1466 * mask.
1467 */
1468static int hstate_next_node_to_alloc(int *next_node,
1469 nodemask_t *nodes_allowed)
1470{
1471 int nid;
1472
1473 VM_BUG_ON(!nodes_allowed);
1474
1475 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 *next_node = next_node_allowed(nid, nodes_allowed);
1477
1478 return nid;
1479}
1480
1481/*
1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1483 * node ["this node"] from which to free a huge page. Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1486 */
1487static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488{
1489 int nid;
1490
1491 VM_BUG_ON(!nodes_allowed);
1492
1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496 return nid;
1497}
1498
1499#define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1500 for (nr_nodes = nodes_weight(*mask); \
1501 nr_nodes > 0 && \
1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1503 nr_nodes--)
1504
1505#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1507 nr_nodes > 0 && \
1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1509 nr_nodes--)
1510
1511/* used to demote non-gigantic_huge pages as well */
1512static void __destroy_compound_gigantic_folio(struct folio *folio,
1513 unsigned int order, bool demote)
1514{
1515 int i;
1516 int nr_pages = 1 << order;
1517 struct page *p;
1518
1519 atomic_set(&folio->_entire_mapcount, 0);
1520 atomic_set(&folio->_nr_pages_mapped, 0);
1521 atomic_set(&folio->_pincount, 0);
1522
1523 for (i = 1; i < nr_pages; i++) {
1524 p = folio_page(folio, i);
1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526 p->mapping = NULL;
1527 clear_compound_head(p);
1528 if (!demote)
1529 set_page_refcounted(p);
1530 }
1531
1532 __folio_clear_head(folio);
1533}
1534
1535static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536 unsigned int order)
1537{
1538 __destroy_compound_gigantic_folio(folio, order, true);
1539}
1540
1541#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542static void destroy_compound_gigantic_folio(struct folio *folio,
1543 unsigned int order)
1544{
1545 __destroy_compound_gigantic_folio(folio, order, false);
1546}
1547
1548static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549{
1550 /*
1551 * If the page isn't allocated using the cma allocator,
1552 * cma_release() returns false.
1553 */
1554#ifdef CONFIG_CMA
1555 int nid = folio_nid(folio);
1556
1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558 return;
1559#endif
1560
1561 free_contig_range(folio_pfn(folio), 1 << order);
1562}
1563
1564#ifdef CONFIG_CONTIG_ALLOC
1565static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 int nid, nodemask_t *nodemask)
1567{
1568 struct page *page;
1569 unsigned long nr_pages = pages_per_huge_page(h);
1570 if (nid == NUMA_NO_NODE)
1571 nid = numa_mem_id();
1572
1573#ifdef CONFIG_CMA
1574 {
1575 int node;
1576
1577 if (hugetlb_cma[nid]) {
1578 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579 huge_page_order(h), true);
1580 if (page)
1581 return page_folio(page);
1582 }
1583
1584 if (!(gfp_mask & __GFP_THISNODE)) {
1585 for_each_node_mask(node, *nodemask) {
1586 if (node == nid || !hugetlb_cma[node])
1587 continue;
1588
1589 page = cma_alloc(hugetlb_cma[node], nr_pages,
1590 huge_page_order(h), true);
1591 if (page)
1592 return page_folio(page);
1593 }
1594 }
1595 }
1596#endif
1597
1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599 return page ? page_folio(page) : NULL;
1600}
1601
1602#else /* !CONFIG_CONTIG_ALLOC */
1603static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604 int nid, nodemask_t *nodemask)
1605{
1606 return NULL;
1607}
1608#endif /* CONFIG_CONTIG_ALLOC */
1609
1610#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612 int nid, nodemask_t *nodemask)
1613{
1614 return NULL;
1615}
1616static inline void free_gigantic_folio(struct folio *folio,
1617 unsigned int order) { }
1618static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619 unsigned int order) { }
1620#endif
1621
1622static inline void __clear_hugetlb_destructor(struct hstate *h,
1623 struct folio *folio)
1624{
1625 lockdep_assert_held(&hugetlb_lock);
1626
1627 __folio_clear_hugetlb(folio);
1628}
1629
1630/*
1631 * Remove hugetlb folio from lists.
1632 * If vmemmap exists for the folio, update dtor so that the folio appears
1633 * as just a compound page. Otherwise, wait until after allocating vmemmap
1634 * to update dtor.
1635 *
1636 * A reference is held on the folio, except in the case of demote.
1637 *
1638 * Must be called with hugetlb lock held.
1639 */
1640static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1641 bool adjust_surplus,
1642 bool demote)
1643{
1644 int nid = folio_nid(folio);
1645
1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1647 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1648
1649 lockdep_assert_held(&hugetlb_lock);
1650 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1651 return;
1652
1653 list_del(&folio->lru);
1654
1655 if (folio_test_hugetlb_freed(folio)) {
1656 h->free_huge_pages--;
1657 h->free_huge_pages_node[nid]--;
1658 }
1659 if (adjust_surplus) {
1660 h->surplus_huge_pages--;
1661 h->surplus_huge_pages_node[nid]--;
1662 }
1663
1664 /*
1665 * We can only clear the hugetlb destructor after allocating vmemmap
1666 * pages. Otherwise, someone (memory error handling) may try to write
1667 * to tail struct pages.
1668 */
1669 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1670 __clear_hugetlb_destructor(h, folio);
1671
1672 /*
1673 * In the case of demote we do not ref count the page as it will soon
1674 * be turned into a page of smaller size.
1675 */
1676 if (!demote)
1677 folio_ref_unfreeze(folio, 1);
1678
1679 h->nr_huge_pages--;
1680 h->nr_huge_pages_node[nid]--;
1681}
1682
1683static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1684 bool adjust_surplus)
1685{
1686 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1687}
1688
1689static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1690 bool adjust_surplus)
1691{
1692 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1693}
1694
1695static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1696 bool adjust_surplus)
1697{
1698 int zeroed;
1699 int nid = folio_nid(folio);
1700
1701 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1702
1703 lockdep_assert_held(&hugetlb_lock);
1704
1705 INIT_LIST_HEAD(&folio->lru);
1706 h->nr_huge_pages++;
1707 h->nr_huge_pages_node[nid]++;
1708
1709 if (adjust_surplus) {
1710 h->surplus_huge_pages++;
1711 h->surplus_huge_pages_node[nid]++;
1712 }
1713
1714 __folio_set_hugetlb(folio);
1715 folio_change_private(folio, NULL);
1716 /*
1717 * We have to set hugetlb_vmemmap_optimized again as above
1718 * folio_change_private(folio, NULL) cleared it.
1719 */
1720 folio_set_hugetlb_vmemmap_optimized(folio);
1721
1722 /*
1723 * This folio is about to be managed by the hugetlb allocator and
1724 * should have no users. Drop our reference, and check for others
1725 * just in case.
1726 */
1727 zeroed = folio_put_testzero(folio);
1728 if (unlikely(!zeroed))
1729 /*
1730 * It is VERY unlikely soneone else has taken a ref
1731 * on the folio. In this case, we simply return as
1732 * free_huge_folio() will be called when this other ref
1733 * is dropped.
1734 */
1735 return;
1736
1737 arch_clear_hugepage_flags(&folio->page);
1738 enqueue_hugetlb_folio(h, folio);
1739}
1740
1741static void __update_and_free_hugetlb_folio(struct hstate *h,
1742 struct folio *folio)
1743{
1744 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1745
1746 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1747 return;
1748
1749 /*
1750 * If we don't know which subpages are hwpoisoned, we can't free
1751 * the hugepage, so it's leaked intentionally.
1752 */
1753 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1754 return;
1755
1756 /*
1757 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1758 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1759 * can only be passed hugetlb pages and will BUG otherwise.
1760 */
1761 if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1762 spin_lock_irq(&hugetlb_lock);
1763 /*
1764 * If we cannot allocate vmemmap pages, just refuse to free the
1765 * page and put the page back on the hugetlb free list and treat
1766 * as a surplus page.
1767 */
1768 add_hugetlb_folio(h, folio, true);
1769 spin_unlock_irq(&hugetlb_lock);
1770 return;
1771 }
1772
1773 /*
1774 * Move PageHWPoison flag from head page to the raw error pages,
1775 * which makes any healthy subpages reusable.
1776 */
1777 if (unlikely(folio_test_hwpoison(folio)))
1778 folio_clear_hugetlb_hwpoison(folio);
1779
1780 /*
1781 * If vmemmap pages were allocated above, then we need to clear the
1782 * hugetlb destructor under the hugetlb lock.
1783 */
1784 if (folio_test_hugetlb(folio)) {
1785 spin_lock_irq(&hugetlb_lock);
1786 __clear_hugetlb_destructor(h, folio);
1787 spin_unlock_irq(&hugetlb_lock);
1788 }
1789
1790 /*
1791 * Non-gigantic pages demoted from CMA allocated gigantic pages
1792 * need to be given back to CMA in free_gigantic_folio.
1793 */
1794 if (hstate_is_gigantic(h) ||
1795 hugetlb_cma_folio(folio, huge_page_order(h))) {
1796 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1797 free_gigantic_folio(folio, huge_page_order(h));
1798 } else {
1799 __free_pages(&folio->page, huge_page_order(h));
1800 }
1801}
1802
1803/*
1804 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1805 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1806 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1807 * the vmemmap pages.
1808 *
1809 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1810 * freed and frees them one-by-one. As the page->mapping pointer is going
1811 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1812 * structure of a lockless linked list of huge pages to be freed.
1813 */
1814static LLIST_HEAD(hpage_freelist);
1815
1816static void free_hpage_workfn(struct work_struct *work)
1817{
1818 struct llist_node *node;
1819
1820 node = llist_del_all(&hpage_freelist);
1821
1822 while (node) {
1823 struct folio *folio;
1824 struct hstate *h;
1825
1826 folio = container_of((struct address_space **)node,
1827 struct folio, mapping);
1828 node = node->next;
1829 folio->mapping = NULL;
1830 /*
1831 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1832 * folio_hstate() is going to trigger because a previous call to
1833 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1834 * not use folio_hstate() directly.
1835 */
1836 h = size_to_hstate(folio_size(folio));
1837
1838 __update_and_free_hugetlb_folio(h, folio);
1839
1840 cond_resched();
1841 }
1842}
1843static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1844
1845static inline void flush_free_hpage_work(struct hstate *h)
1846{
1847 if (hugetlb_vmemmap_optimizable(h))
1848 flush_work(&free_hpage_work);
1849}
1850
1851static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1852 bool atomic)
1853{
1854 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1855 __update_and_free_hugetlb_folio(h, folio);
1856 return;
1857 }
1858
1859 /*
1860 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1861 *
1862 * Only call schedule_work() if hpage_freelist is previously
1863 * empty. Otherwise, schedule_work() had been called but the workfn
1864 * hasn't retrieved the list yet.
1865 */
1866 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1867 schedule_work(&free_hpage_work);
1868}
1869
1870static void bulk_vmemmap_restore_error(struct hstate *h,
1871 struct list_head *folio_list,
1872 struct list_head *non_hvo_folios)
1873{
1874 struct folio *folio, *t_folio;
1875
1876 if (!list_empty(non_hvo_folios)) {
1877 /*
1878 * Free any restored hugetlb pages so that restore of the
1879 * entire list can be retried.
1880 * The idea is that in the common case of ENOMEM errors freeing
1881 * hugetlb pages with vmemmap we will free up memory so that we
1882 * can allocate vmemmap for more hugetlb pages.
1883 */
1884 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1885 list_del(&folio->lru);
1886 spin_lock_irq(&hugetlb_lock);
1887 __clear_hugetlb_destructor(h, folio);
1888 spin_unlock_irq(&hugetlb_lock);
1889 update_and_free_hugetlb_folio(h, folio, false);
1890 cond_resched();
1891 }
1892 } else {
1893 /*
1894 * In the case where there are no folios which can be
1895 * immediately freed, we loop through the list trying to restore
1896 * vmemmap individually in the hope that someone elsewhere may
1897 * have done something to cause success (such as freeing some
1898 * memory). If unable to restore a hugetlb page, the hugetlb
1899 * page is made a surplus page and removed from the list.
1900 * If are able to restore vmemmap and free one hugetlb page, we
1901 * quit processing the list to retry the bulk operation.
1902 */
1903 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1904 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1905 list_del(&folio->lru);
1906 spin_lock_irq(&hugetlb_lock);
1907 add_hugetlb_folio(h, folio, true);
1908 spin_unlock_irq(&hugetlb_lock);
1909 } else {
1910 list_del(&folio->lru);
1911 spin_lock_irq(&hugetlb_lock);
1912 __clear_hugetlb_destructor(h, folio);
1913 spin_unlock_irq(&hugetlb_lock);
1914 update_and_free_hugetlb_folio(h, folio, false);
1915 cond_resched();
1916 break;
1917 }
1918 }
1919}
1920
1921static void update_and_free_pages_bulk(struct hstate *h,
1922 struct list_head *folio_list)
1923{
1924 long ret;
1925 struct folio *folio, *t_folio;
1926 LIST_HEAD(non_hvo_folios);
1927
1928 /*
1929 * First allocate required vmemmmap (if necessary) for all folios.
1930 * Carefully handle errors and free up any available hugetlb pages
1931 * in an effort to make forward progress.
1932 */
1933retry:
1934 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1935 if (ret < 0) {
1936 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1937 goto retry;
1938 }
1939
1940 /*
1941 * At this point, list should be empty, ret should be >= 0 and there
1942 * should only be pages on the non_hvo_folios list.
1943 * Do note that the non_hvo_folios list could be empty.
1944 * Without HVO enabled, ret will be 0 and there is no need to call
1945 * __clear_hugetlb_destructor as this was done previously.
1946 */
1947 VM_WARN_ON(!list_empty(folio_list));
1948 VM_WARN_ON(ret < 0);
1949 if (!list_empty(&non_hvo_folios) && ret) {
1950 spin_lock_irq(&hugetlb_lock);
1951 list_for_each_entry(folio, &non_hvo_folios, lru)
1952 __clear_hugetlb_destructor(h, folio);
1953 spin_unlock_irq(&hugetlb_lock);
1954 }
1955
1956 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1957 update_and_free_hugetlb_folio(h, folio, false);
1958 cond_resched();
1959 }
1960}
1961
1962struct hstate *size_to_hstate(unsigned long size)
1963{
1964 struct hstate *h;
1965
1966 for_each_hstate(h) {
1967 if (huge_page_size(h) == size)
1968 return h;
1969 }
1970 return NULL;
1971}
1972
1973void free_huge_folio(struct folio *folio)
1974{
1975 /*
1976 * Can't pass hstate in here because it is called from the
1977 * compound page destructor.
1978 */
1979 struct hstate *h = folio_hstate(folio);
1980 int nid = folio_nid(folio);
1981 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1982 bool restore_reserve;
1983 unsigned long flags;
1984
1985 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1986 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1987
1988 hugetlb_set_folio_subpool(folio, NULL);
1989 if (folio_test_anon(folio))
1990 __ClearPageAnonExclusive(&folio->page);
1991 folio->mapping = NULL;
1992 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1993 folio_clear_hugetlb_restore_reserve(folio);
1994
1995 /*
1996 * If HPageRestoreReserve was set on page, page allocation consumed a
1997 * reservation. If the page was associated with a subpool, there
1998 * would have been a page reserved in the subpool before allocation
1999 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
2000 * reservation, do not call hugepage_subpool_put_pages() as this will
2001 * remove the reserved page from the subpool.
2002 */
2003 if (!restore_reserve) {
2004 /*
2005 * A return code of zero implies that the subpool will be
2006 * under its minimum size if the reservation is not restored
2007 * after page is free. Therefore, force restore_reserve
2008 * operation.
2009 */
2010 if (hugepage_subpool_put_pages(spool, 1) == 0)
2011 restore_reserve = true;
2012 }
2013
2014 spin_lock_irqsave(&hugetlb_lock, flags);
2015 folio_clear_hugetlb_migratable(folio);
2016 hugetlb_cgroup_uncharge_folio(hstate_index(h),
2017 pages_per_huge_page(h), folio);
2018 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2019 pages_per_huge_page(h), folio);
2020 mem_cgroup_uncharge(folio);
2021 if (restore_reserve)
2022 h->resv_huge_pages++;
2023
2024 if (folio_test_hugetlb_temporary(folio)) {
2025 remove_hugetlb_folio(h, folio, false);
2026 spin_unlock_irqrestore(&hugetlb_lock, flags);
2027 update_and_free_hugetlb_folio(h, folio, true);
2028 } else if (h->surplus_huge_pages_node[nid]) {
2029 /* remove the page from active list */
2030 remove_hugetlb_folio(h, folio, true);
2031 spin_unlock_irqrestore(&hugetlb_lock, flags);
2032 update_and_free_hugetlb_folio(h, folio, true);
2033 } else {
2034 arch_clear_hugepage_flags(&folio->page);
2035 enqueue_hugetlb_folio(h, folio);
2036 spin_unlock_irqrestore(&hugetlb_lock, flags);
2037 }
2038}
2039
2040/*
2041 * Must be called with the hugetlb lock held
2042 */
2043static void __prep_account_new_huge_page(struct hstate *h, int nid)
2044{
2045 lockdep_assert_held(&hugetlb_lock);
2046 h->nr_huge_pages++;
2047 h->nr_huge_pages_node[nid]++;
2048}
2049
2050static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2051{
2052 __folio_set_hugetlb(folio);
2053 INIT_LIST_HEAD(&folio->lru);
2054 hugetlb_set_folio_subpool(folio, NULL);
2055 set_hugetlb_cgroup(folio, NULL);
2056 set_hugetlb_cgroup_rsvd(folio, NULL);
2057}
2058
2059static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2060{
2061 init_new_hugetlb_folio(h, folio);
2062 hugetlb_vmemmap_optimize_folio(h, folio);
2063}
2064
2065static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2066{
2067 __prep_new_hugetlb_folio(h, folio);
2068 spin_lock_irq(&hugetlb_lock);
2069 __prep_account_new_huge_page(h, nid);
2070 spin_unlock_irq(&hugetlb_lock);
2071}
2072
2073static bool __prep_compound_gigantic_folio(struct folio *folio,
2074 unsigned int order, bool demote)
2075{
2076 int i, j;
2077 int nr_pages = 1 << order;
2078 struct page *p;
2079
2080 __folio_clear_reserved(folio);
2081 for (i = 0; i < nr_pages; i++) {
2082 p = folio_page(folio, i);
2083
2084 /*
2085 * For gigantic hugepages allocated through bootmem at
2086 * boot, it's safer to be consistent with the not-gigantic
2087 * hugepages and clear the PG_reserved bit from all tail pages
2088 * too. Otherwise drivers using get_user_pages() to access tail
2089 * pages may get the reference counting wrong if they see
2090 * PG_reserved set on a tail page (despite the head page not
2091 * having PG_reserved set). Enforcing this consistency between
2092 * head and tail pages allows drivers to optimize away a check
2093 * on the head page when they need know if put_page() is needed
2094 * after get_user_pages().
2095 */
2096 if (i != 0) /* head page cleared above */
2097 __ClearPageReserved(p);
2098 /*
2099 * Subtle and very unlikely
2100 *
2101 * Gigantic 'page allocators' such as memblock or cma will
2102 * return a set of pages with each page ref counted. We need
2103 * to turn this set of pages into a compound page with tail
2104 * page ref counts set to zero. Code such as speculative page
2105 * cache adding could take a ref on a 'to be' tail page.
2106 * We need to respect any increased ref count, and only set
2107 * the ref count to zero if count is currently 1. If count
2108 * is not 1, we return an error. An error return indicates
2109 * the set of pages can not be converted to a gigantic page.
2110 * The caller who allocated the pages should then discard the
2111 * pages using the appropriate free interface.
2112 *
2113 * In the case of demote, the ref count will be zero.
2114 */
2115 if (!demote) {
2116 if (!page_ref_freeze(p, 1)) {
2117 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2118 goto out_error;
2119 }
2120 } else {
2121 VM_BUG_ON_PAGE(page_count(p), p);
2122 }
2123 if (i != 0)
2124 set_compound_head(p, &folio->page);
2125 }
2126 __folio_set_head(folio);
2127 /* we rely on prep_new_hugetlb_folio to set the destructor */
2128 folio_set_order(folio, order);
2129 atomic_set(&folio->_entire_mapcount, -1);
2130 atomic_set(&folio->_nr_pages_mapped, 0);
2131 atomic_set(&folio->_pincount, 0);
2132 return true;
2133
2134out_error:
2135 /* undo page modifications made above */
2136 for (j = 0; j < i; j++) {
2137 p = folio_page(folio, j);
2138 if (j != 0)
2139 clear_compound_head(p);
2140 set_page_refcounted(p);
2141 }
2142 /* need to clear PG_reserved on remaining tail pages */
2143 for (; j < nr_pages; j++) {
2144 p = folio_page(folio, j);
2145 __ClearPageReserved(p);
2146 }
2147 return false;
2148}
2149
2150static bool prep_compound_gigantic_folio(struct folio *folio,
2151 unsigned int order)
2152{
2153 return __prep_compound_gigantic_folio(folio, order, false);
2154}
2155
2156static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2157 unsigned int order)
2158{
2159 return __prep_compound_gigantic_folio(folio, order, true);
2160}
2161
2162/*
2163 * Find and lock address space (mapping) in write mode.
2164 *
2165 * Upon entry, the page is locked which means that page_mapping() is
2166 * stable. Due to locking order, we can only trylock_write. If we can
2167 * not get the lock, simply return NULL to caller.
2168 */
2169struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2170{
2171 struct address_space *mapping = page_mapping(hpage);
2172
2173 if (!mapping)
2174 return mapping;
2175
2176 if (i_mmap_trylock_write(mapping))
2177 return mapping;
2178
2179 return NULL;
2180}
2181
2182static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2183 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2184 nodemask_t *node_alloc_noretry)
2185{
2186 int order = huge_page_order(h);
2187 struct page *page;
2188 bool alloc_try_hard = true;
2189 bool retry = true;
2190
2191 /*
2192 * By default we always try hard to allocate the page with
2193 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2194 * a loop (to adjust global huge page counts) and previous allocation
2195 * failed, do not continue to try hard on the same node. Use the
2196 * node_alloc_noretry bitmap to manage this state information.
2197 */
2198 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2199 alloc_try_hard = false;
2200 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2201 if (alloc_try_hard)
2202 gfp_mask |= __GFP_RETRY_MAYFAIL;
2203 if (nid == NUMA_NO_NODE)
2204 nid = numa_mem_id();
2205retry:
2206 page = __alloc_pages(gfp_mask, order, nid, nmask);
2207
2208 /* Freeze head page */
2209 if (page && !page_ref_freeze(page, 1)) {
2210 __free_pages(page, order);
2211 if (retry) { /* retry once */
2212 retry = false;
2213 goto retry;
2214 }
2215 /* WOW! twice in a row. */
2216 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2217 page = NULL;
2218 }
2219
2220 /*
2221 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2222 * indicates an overall state change. Clear bit so that we resume
2223 * normal 'try hard' allocations.
2224 */
2225 if (node_alloc_noretry && page && !alloc_try_hard)
2226 node_clear(nid, *node_alloc_noretry);
2227
2228 /*
2229 * If we tried hard to get a page but failed, set bit so that
2230 * subsequent attempts will not try as hard until there is an
2231 * overall state change.
2232 */
2233 if (node_alloc_noretry && !page && alloc_try_hard)
2234 node_set(nid, *node_alloc_noretry);
2235
2236 if (!page) {
2237 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2238 return NULL;
2239 }
2240
2241 __count_vm_event(HTLB_BUDDY_PGALLOC);
2242 return page_folio(page);
2243}
2244
2245static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2246 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2247 nodemask_t *node_alloc_noretry)
2248{
2249 struct folio *folio;
2250 bool retry = false;
2251
2252retry:
2253 if (hstate_is_gigantic(h))
2254 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2255 else
2256 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2257 nid, nmask, node_alloc_noretry);
2258 if (!folio)
2259 return NULL;
2260
2261 if (hstate_is_gigantic(h)) {
2262 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2263 /*
2264 * Rare failure to convert pages to compound page.
2265 * Free pages and try again - ONCE!
2266 */
2267 free_gigantic_folio(folio, huge_page_order(h));
2268 if (!retry) {
2269 retry = true;
2270 goto retry;
2271 }
2272 return NULL;
2273 }
2274 }
2275
2276 return folio;
2277}
2278
2279static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2280 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2281 nodemask_t *node_alloc_noretry)
2282{
2283 struct folio *folio;
2284
2285 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2286 node_alloc_noretry);
2287 if (folio)
2288 init_new_hugetlb_folio(h, folio);
2289 return folio;
2290}
2291
2292/*
2293 * Common helper to allocate a fresh hugetlb page. All specific allocators
2294 * should use this function to get new hugetlb pages
2295 *
2296 * Note that returned page is 'frozen': ref count of head page and all tail
2297 * pages is zero.
2298 */
2299static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2300 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2301 nodemask_t *node_alloc_noretry)
2302{
2303 struct folio *folio;
2304
2305 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2306 node_alloc_noretry);
2307 if (!folio)
2308 return NULL;
2309
2310 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2311 return folio;
2312}
2313
2314static void prep_and_add_allocated_folios(struct hstate *h,
2315 struct list_head *folio_list)
2316{
2317 unsigned long flags;
2318 struct folio *folio, *tmp_f;
2319
2320 /* Send list for bulk vmemmap optimization processing */
2321 hugetlb_vmemmap_optimize_folios(h, folio_list);
2322
2323 /* Add all new pool pages to free lists in one lock cycle */
2324 spin_lock_irqsave(&hugetlb_lock, flags);
2325 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2326 __prep_account_new_huge_page(h, folio_nid(folio));
2327 enqueue_hugetlb_folio(h, folio);
2328 }
2329 spin_unlock_irqrestore(&hugetlb_lock, flags);
2330}
2331
2332/*
2333 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2334 * will later be added to the appropriate hugetlb pool.
2335 */
2336static struct folio *alloc_pool_huge_folio(struct hstate *h,
2337 nodemask_t *nodes_allowed,
2338 nodemask_t *node_alloc_noretry,
2339 int *next_node)
2340{
2341 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2342 int nr_nodes, node;
2343
2344 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2345 struct folio *folio;
2346
2347 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2348 nodes_allowed, node_alloc_noretry);
2349 if (folio)
2350 return folio;
2351 }
2352
2353 return NULL;
2354}
2355
2356/*
2357 * Remove huge page from pool from next node to free. Attempt to keep
2358 * persistent huge pages more or less balanced over allowed nodes.
2359 * This routine only 'removes' the hugetlb page. The caller must make
2360 * an additional call to free the page to low level allocators.
2361 * Called with hugetlb_lock locked.
2362 */
2363static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2364 nodemask_t *nodes_allowed, bool acct_surplus)
2365{
2366 int nr_nodes, node;
2367 struct folio *folio = NULL;
2368
2369 lockdep_assert_held(&hugetlb_lock);
2370 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2371 /*
2372 * If we're returning unused surplus pages, only examine
2373 * nodes with surplus pages.
2374 */
2375 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2376 !list_empty(&h->hugepage_freelists[node])) {
2377 folio = list_entry(h->hugepage_freelists[node].next,
2378 struct folio, lru);
2379 remove_hugetlb_folio(h, folio, acct_surplus);
2380 break;
2381 }
2382 }
2383
2384 return folio;
2385}
2386
2387/*
2388 * Dissolve a given free hugepage into free buddy pages. This function does
2389 * nothing for in-use hugepages and non-hugepages.
2390 * This function returns values like below:
2391 *
2392 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2393 * when the system is under memory pressure and the feature of
2394 * freeing unused vmemmap pages associated with each hugetlb page
2395 * is enabled.
2396 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2397 * (allocated or reserved.)
2398 * 0: successfully dissolved free hugepages or the page is not a
2399 * hugepage (considered as already dissolved)
2400 */
2401int dissolve_free_huge_page(struct page *page)
2402{
2403 int rc = -EBUSY;
2404 struct folio *folio = page_folio(page);
2405
2406retry:
2407 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2408 if (!folio_test_hugetlb(folio))
2409 return 0;
2410
2411 spin_lock_irq(&hugetlb_lock);
2412 if (!folio_test_hugetlb(folio)) {
2413 rc = 0;
2414 goto out;
2415 }
2416
2417 if (!folio_ref_count(folio)) {
2418 struct hstate *h = folio_hstate(folio);
2419 if (!available_huge_pages(h))
2420 goto out;
2421
2422 /*
2423 * We should make sure that the page is already on the free list
2424 * when it is dissolved.
2425 */
2426 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2427 spin_unlock_irq(&hugetlb_lock);
2428 cond_resched();
2429
2430 /*
2431 * Theoretically, we should return -EBUSY when we
2432 * encounter this race. In fact, we have a chance
2433 * to successfully dissolve the page if we do a
2434 * retry. Because the race window is quite small.
2435 * If we seize this opportunity, it is an optimization
2436 * for increasing the success rate of dissolving page.
2437 */
2438 goto retry;
2439 }
2440
2441 remove_hugetlb_folio(h, folio, false);
2442 h->max_huge_pages--;
2443 spin_unlock_irq(&hugetlb_lock);
2444
2445 /*
2446 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2447 * before freeing the page. update_and_free_hugtlb_folio will fail to
2448 * free the page if it can not allocate required vmemmap. We
2449 * need to adjust max_huge_pages if the page is not freed.
2450 * Attempt to allocate vmemmmap here so that we can take
2451 * appropriate action on failure.
2452 *
2453 * The folio_test_hugetlb check here is because
2454 * remove_hugetlb_folio will clear hugetlb folio flag for
2455 * non-vmemmap optimized hugetlb folios.
2456 */
2457 if (folio_test_hugetlb(folio)) {
2458 rc = hugetlb_vmemmap_restore_folio(h, folio);
2459 if (rc) {
2460 spin_lock_irq(&hugetlb_lock);
2461 add_hugetlb_folio(h, folio, false);
2462 h->max_huge_pages++;
2463 goto out;
2464 }
2465 } else
2466 rc = 0;
2467
2468 update_and_free_hugetlb_folio(h, folio, false);
2469 return rc;
2470 }
2471out:
2472 spin_unlock_irq(&hugetlb_lock);
2473 return rc;
2474}
2475
2476/*
2477 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2478 * make specified memory blocks removable from the system.
2479 * Note that this will dissolve a free gigantic hugepage completely, if any
2480 * part of it lies within the given range.
2481 * Also note that if dissolve_free_huge_page() returns with an error, all
2482 * free hugepages that were dissolved before that error are lost.
2483 */
2484int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2485{
2486 unsigned long pfn;
2487 struct page *page;
2488 int rc = 0;
2489 unsigned int order;
2490 struct hstate *h;
2491
2492 if (!hugepages_supported())
2493 return rc;
2494
2495 order = huge_page_order(&default_hstate);
2496 for_each_hstate(h)
2497 order = min(order, huge_page_order(h));
2498
2499 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2500 page = pfn_to_page(pfn);
2501 rc = dissolve_free_huge_page(page);
2502 if (rc)
2503 break;
2504 }
2505
2506 return rc;
2507}
2508
2509/*
2510 * Allocates a fresh surplus page from the page allocator.
2511 */
2512static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2513 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2514{
2515 struct folio *folio = NULL;
2516
2517 if (hstate_is_gigantic(h))
2518 return NULL;
2519
2520 spin_lock_irq(&hugetlb_lock);
2521 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2522 goto out_unlock;
2523 spin_unlock_irq(&hugetlb_lock);
2524
2525 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2526 if (!folio)
2527 return NULL;
2528
2529 spin_lock_irq(&hugetlb_lock);
2530 /*
2531 * We could have raced with the pool size change.
2532 * Double check that and simply deallocate the new page
2533 * if we would end up overcommiting the surpluses. Abuse
2534 * temporary page to workaround the nasty free_huge_folio
2535 * codeflow
2536 */
2537 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2538 folio_set_hugetlb_temporary(folio);
2539 spin_unlock_irq(&hugetlb_lock);
2540 free_huge_folio(folio);
2541 return NULL;
2542 }
2543
2544 h->surplus_huge_pages++;
2545 h->surplus_huge_pages_node[folio_nid(folio)]++;
2546
2547out_unlock:
2548 spin_unlock_irq(&hugetlb_lock);
2549
2550 return folio;
2551}
2552
2553static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2554 int nid, nodemask_t *nmask)
2555{
2556 struct folio *folio;
2557
2558 if (hstate_is_gigantic(h))
2559 return NULL;
2560
2561 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2562 if (!folio)
2563 return NULL;
2564
2565 /* fresh huge pages are frozen */
2566 folio_ref_unfreeze(folio, 1);
2567 /*
2568 * We do not account these pages as surplus because they are only
2569 * temporary and will be released properly on the last reference
2570 */
2571 folio_set_hugetlb_temporary(folio);
2572
2573 return folio;
2574}
2575
2576/*
2577 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2578 */
2579static
2580struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2581 struct vm_area_struct *vma, unsigned long addr)
2582{
2583 struct folio *folio = NULL;
2584 struct mempolicy *mpol;
2585 gfp_t gfp_mask = htlb_alloc_mask(h);
2586 int nid;
2587 nodemask_t *nodemask;
2588
2589 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2590 if (mpol_is_preferred_many(mpol)) {
2591 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2592
2593 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2594 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2595
2596 /* Fallback to all nodes if page==NULL */
2597 nodemask = NULL;
2598 }
2599
2600 if (!folio)
2601 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2602 mpol_cond_put(mpol);
2603 return folio;
2604}
2605
2606/* folio migration callback function */
2607struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2608 nodemask_t *nmask, gfp_t gfp_mask)
2609{
2610 spin_lock_irq(&hugetlb_lock);
2611 if (available_huge_pages(h)) {
2612 struct folio *folio;
2613
2614 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2615 preferred_nid, nmask);
2616 if (folio) {
2617 spin_unlock_irq(&hugetlb_lock);
2618 return folio;
2619 }
2620 }
2621 spin_unlock_irq(&hugetlb_lock);
2622
2623 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2624}
2625
2626/*
2627 * Increase the hugetlb pool such that it can accommodate a reservation
2628 * of size 'delta'.
2629 */
2630static int gather_surplus_pages(struct hstate *h, long delta)
2631 __must_hold(&hugetlb_lock)
2632{
2633 LIST_HEAD(surplus_list);
2634 struct folio *folio, *tmp;
2635 int ret;
2636 long i;
2637 long needed, allocated;
2638 bool alloc_ok = true;
2639
2640 lockdep_assert_held(&hugetlb_lock);
2641 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2642 if (needed <= 0) {
2643 h->resv_huge_pages += delta;
2644 return 0;
2645 }
2646
2647 allocated = 0;
2648
2649 ret = -ENOMEM;
2650retry:
2651 spin_unlock_irq(&hugetlb_lock);
2652 for (i = 0; i < needed; i++) {
2653 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2654 NUMA_NO_NODE, NULL);
2655 if (!folio) {
2656 alloc_ok = false;
2657 break;
2658 }
2659 list_add(&folio->lru, &surplus_list);
2660 cond_resched();
2661 }
2662 allocated += i;
2663
2664 /*
2665 * After retaking hugetlb_lock, we need to recalculate 'needed'
2666 * because either resv_huge_pages or free_huge_pages may have changed.
2667 */
2668 spin_lock_irq(&hugetlb_lock);
2669 needed = (h->resv_huge_pages + delta) -
2670 (h->free_huge_pages + allocated);
2671 if (needed > 0) {
2672 if (alloc_ok)
2673 goto retry;
2674 /*
2675 * We were not able to allocate enough pages to
2676 * satisfy the entire reservation so we free what
2677 * we've allocated so far.
2678 */
2679 goto free;
2680 }
2681 /*
2682 * The surplus_list now contains _at_least_ the number of extra pages
2683 * needed to accommodate the reservation. Add the appropriate number
2684 * of pages to the hugetlb pool and free the extras back to the buddy
2685 * allocator. Commit the entire reservation here to prevent another
2686 * process from stealing the pages as they are added to the pool but
2687 * before they are reserved.
2688 */
2689 needed += allocated;
2690 h->resv_huge_pages += delta;
2691 ret = 0;
2692
2693 /* Free the needed pages to the hugetlb pool */
2694 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2695 if ((--needed) < 0)
2696 break;
2697 /* Add the page to the hugetlb allocator */
2698 enqueue_hugetlb_folio(h, folio);
2699 }
2700free:
2701 spin_unlock_irq(&hugetlb_lock);
2702
2703 /*
2704 * Free unnecessary surplus pages to the buddy allocator.
2705 * Pages have no ref count, call free_huge_folio directly.
2706 */
2707 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2708 free_huge_folio(folio);
2709 spin_lock_irq(&hugetlb_lock);
2710
2711 return ret;
2712}
2713
2714/*
2715 * This routine has two main purposes:
2716 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2717 * in unused_resv_pages. This corresponds to the prior adjustments made
2718 * to the associated reservation map.
2719 * 2) Free any unused surplus pages that may have been allocated to satisfy
2720 * the reservation. As many as unused_resv_pages may be freed.
2721 */
2722static void return_unused_surplus_pages(struct hstate *h,
2723 unsigned long unused_resv_pages)
2724{
2725 unsigned long nr_pages;
2726 LIST_HEAD(page_list);
2727
2728 lockdep_assert_held(&hugetlb_lock);
2729 /* Uncommit the reservation */
2730 h->resv_huge_pages -= unused_resv_pages;
2731
2732 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2733 goto out;
2734
2735 /*
2736 * Part (or even all) of the reservation could have been backed
2737 * by pre-allocated pages. Only free surplus pages.
2738 */
2739 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2740
2741 /*
2742 * We want to release as many surplus pages as possible, spread
2743 * evenly across all nodes with memory. Iterate across these nodes
2744 * until we can no longer free unreserved surplus pages. This occurs
2745 * when the nodes with surplus pages have no free pages.
2746 * remove_pool_hugetlb_folio() will balance the freed pages across the
2747 * on-line nodes with memory and will handle the hstate accounting.
2748 */
2749 while (nr_pages--) {
2750 struct folio *folio;
2751
2752 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2753 if (!folio)
2754 goto out;
2755
2756 list_add(&folio->lru, &page_list);
2757 }
2758
2759out:
2760 spin_unlock_irq(&hugetlb_lock);
2761 update_and_free_pages_bulk(h, &page_list);
2762 spin_lock_irq(&hugetlb_lock);
2763}
2764
2765
2766/*
2767 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2768 * are used by the huge page allocation routines to manage reservations.
2769 *
2770 * vma_needs_reservation is called to determine if the huge page at addr
2771 * within the vma has an associated reservation. If a reservation is
2772 * needed, the value 1 is returned. The caller is then responsible for
2773 * managing the global reservation and subpool usage counts. After
2774 * the huge page has been allocated, vma_commit_reservation is called
2775 * to add the page to the reservation map. If the page allocation fails,
2776 * the reservation must be ended instead of committed. vma_end_reservation
2777 * is called in such cases.
2778 *
2779 * In the normal case, vma_commit_reservation returns the same value
2780 * as the preceding vma_needs_reservation call. The only time this
2781 * is not the case is if a reserve map was changed between calls. It
2782 * is the responsibility of the caller to notice the difference and
2783 * take appropriate action.
2784 *
2785 * vma_add_reservation is used in error paths where a reservation must
2786 * be restored when a newly allocated huge page must be freed. It is
2787 * to be called after calling vma_needs_reservation to determine if a
2788 * reservation exists.
2789 *
2790 * vma_del_reservation is used in error paths where an entry in the reserve
2791 * map was created during huge page allocation and must be removed. It is to
2792 * be called after calling vma_needs_reservation to determine if a reservation
2793 * exists.
2794 */
2795enum vma_resv_mode {
2796 VMA_NEEDS_RESV,
2797 VMA_COMMIT_RESV,
2798 VMA_END_RESV,
2799 VMA_ADD_RESV,
2800 VMA_DEL_RESV,
2801};
2802static long __vma_reservation_common(struct hstate *h,
2803 struct vm_area_struct *vma, unsigned long addr,
2804 enum vma_resv_mode mode)
2805{
2806 struct resv_map *resv;
2807 pgoff_t idx;
2808 long ret;
2809 long dummy_out_regions_needed;
2810
2811 resv = vma_resv_map(vma);
2812 if (!resv)
2813 return 1;
2814
2815 idx = vma_hugecache_offset(h, vma, addr);
2816 switch (mode) {
2817 case VMA_NEEDS_RESV:
2818 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2819 /* We assume that vma_reservation_* routines always operate on
2820 * 1 page, and that adding to resv map a 1 page entry can only
2821 * ever require 1 region.
2822 */
2823 VM_BUG_ON(dummy_out_regions_needed != 1);
2824 break;
2825 case VMA_COMMIT_RESV:
2826 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2827 /* region_add calls of range 1 should never fail. */
2828 VM_BUG_ON(ret < 0);
2829 break;
2830 case VMA_END_RESV:
2831 region_abort(resv, idx, idx + 1, 1);
2832 ret = 0;
2833 break;
2834 case VMA_ADD_RESV:
2835 if (vma->vm_flags & VM_MAYSHARE) {
2836 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2837 /* region_add calls of range 1 should never fail. */
2838 VM_BUG_ON(ret < 0);
2839 } else {
2840 region_abort(resv, idx, idx + 1, 1);
2841 ret = region_del(resv, idx, idx + 1);
2842 }
2843 break;
2844 case VMA_DEL_RESV:
2845 if (vma->vm_flags & VM_MAYSHARE) {
2846 region_abort(resv, idx, idx + 1, 1);
2847 ret = region_del(resv, idx, idx + 1);
2848 } else {
2849 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2850 /* region_add calls of range 1 should never fail. */
2851 VM_BUG_ON(ret < 0);
2852 }
2853 break;
2854 default:
2855 BUG();
2856 }
2857
2858 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2859 return ret;
2860 /*
2861 * We know private mapping must have HPAGE_RESV_OWNER set.
2862 *
2863 * In most cases, reserves always exist for private mappings.
2864 * However, a file associated with mapping could have been
2865 * hole punched or truncated after reserves were consumed.
2866 * As subsequent fault on such a range will not use reserves.
2867 * Subtle - The reserve map for private mappings has the
2868 * opposite meaning than that of shared mappings. If NO
2869 * entry is in the reserve map, it means a reservation exists.
2870 * If an entry exists in the reserve map, it means the
2871 * reservation has already been consumed. As a result, the
2872 * return value of this routine is the opposite of the
2873 * value returned from reserve map manipulation routines above.
2874 */
2875 if (ret > 0)
2876 return 0;
2877 if (ret == 0)
2878 return 1;
2879 return ret;
2880}
2881
2882static long vma_needs_reservation(struct hstate *h,
2883 struct vm_area_struct *vma, unsigned long addr)
2884{
2885 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2886}
2887
2888static long vma_commit_reservation(struct hstate *h,
2889 struct vm_area_struct *vma, unsigned long addr)
2890{
2891 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2892}
2893
2894static void vma_end_reservation(struct hstate *h,
2895 struct vm_area_struct *vma, unsigned long addr)
2896{
2897 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2898}
2899
2900static long vma_add_reservation(struct hstate *h,
2901 struct vm_area_struct *vma, unsigned long addr)
2902{
2903 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2904}
2905
2906static long vma_del_reservation(struct hstate *h,
2907 struct vm_area_struct *vma, unsigned long addr)
2908{
2909 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2910}
2911
2912/*
2913 * This routine is called to restore reservation information on error paths.
2914 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2915 * and the hugetlb mutex should remain held when calling this routine.
2916 *
2917 * It handles two specific cases:
2918 * 1) A reservation was in place and the folio consumed the reservation.
2919 * hugetlb_restore_reserve is set in the folio.
2920 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2921 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2922 *
2923 * In case 1, free_huge_folio later in the error path will increment the
2924 * global reserve count. But, free_huge_folio does not have enough context
2925 * to adjust the reservation map. This case deals primarily with private
2926 * mappings. Adjust the reserve map here to be consistent with global
2927 * reserve count adjustments to be made by free_huge_folio. Make sure the
2928 * reserve map indicates there is a reservation present.
2929 *
2930 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2931 */
2932void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2933 unsigned long address, struct folio *folio)
2934{
2935 long rc = vma_needs_reservation(h, vma, address);
2936
2937 if (folio_test_hugetlb_restore_reserve(folio)) {
2938 if (unlikely(rc < 0))
2939 /*
2940 * Rare out of memory condition in reserve map
2941 * manipulation. Clear hugetlb_restore_reserve so
2942 * that global reserve count will not be incremented
2943 * by free_huge_folio. This will make it appear
2944 * as though the reservation for this folio was
2945 * consumed. This may prevent the task from
2946 * faulting in the folio at a later time. This
2947 * is better than inconsistent global huge page
2948 * accounting of reserve counts.
2949 */
2950 folio_clear_hugetlb_restore_reserve(folio);
2951 else if (rc)
2952 (void)vma_add_reservation(h, vma, address);
2953 else
2954 vma_end_reservation(h, vma, address);
2955 } else {
2956 if (!rc) {
2957 /*
2958 * This indicates there is an entry in the reserve map
2959 * not added by alloc_hugetlb_folio. We know it was added
2960 * before the alloc_hugetlb_folio call, otherwise
2961 * hugetlb_restore_reserve would be set on the folio.
2962 * Remove the entry so that a subsequent allocation
2963 * does not consume a reservation.
2964 */
2965 rc = vma_del_reservation(h, vma, address);
2966 if (rc < 0)
2967 /*
2968 * VERY rare out of memory condition. Since
2969 * we can not delete the entry, set
2970 * hugetlb_restore_reserve so that the reserve
2971 * count will be incremented when the folio
2972 * is freed. This reserve will be consumed
2973 * on a subsequent allocation.
2974 */
2975 folio_set_hugetlb_restore_reserve(folio);
2976 } else if (rc < 0) {
2977 /*
2978 * Rare out of memory condition from
2979 * vma_needs_reservation call. Memory allocation is
2980 * only attempted if a new entry is needed. Therefore,
2981 * this implies there is not an entry in the
2982 * reserve map.
2983 *
2984 * For shared mappings, no entry in the map indicates
2985 * no reservation. We are done.
2986 */
2987 if (!(vma->vm_flags & VM_MAYSHARE))
2988 /*
2989 * For private mappings, no entry indicates
2990 * a reservation is present. Since we can
2991 * not add an entry, set hugetlb_restore_reserve
2992 * on the folio so reserve count will be
2993 * incremented when freed. This reserve will
2994 * be consumed on a subsequent allocation.
2995 */
2996 folio_set_hugetlb_restore_reserve(folio);
2997 } else
2998 /*
2999 * No reservation present, do nothing
3000 */
3001 vma_end_reservation(h, vma, address);
3002 }
3003}
3004
3005/*
3006 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3007 * the old one
3008 * @h: struct hstate old page belongs to
3009 * @old_folio: Old folio to dissolve
3010 * @list: List to isolate the page in case we need to
3011 * Returns 0 on success, otherwise negated error.
3012 */
3013static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3014 struct folio *old_folio, struct list_head *list)
3015{
3016 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3017 int nid = folio_nid(old_folio);
3018 struct folio *new_folio = NULL;
3019 int ret = 0;
3020
3021retry:
3022 spin_lock_irq(&hugetlb_lock);
3023 if (!folio_test_hugetlb(old_folio)) {
3024 /*
3025 * Freed from under us. Drop new_folio too.
3026 */
3027 goto free_new;
3028 } else if (folio_ref_count(old_folio)) {
3029 bool isolated;
3030
3031 /*
3032 * Someone has grabbed the folio, try to isolate it here.
3033 * Fail with -EBUSY if not possible.
3034 */
3035 spin_unlock_irq(&hugetlb_lock);
3036 isolated = isolate_hugetlb(old_folio, list);
3037 ret = isolated ? 0 : -EBUSY;
3038 spin_lock_irq(&hugetlb_lock);
3039 goto free_new;
3040 } else if (!folio_test_hugetlb_freed(old_folio)) {
3041 /*
3042 * Folio's refcount is 0 but it has not been enqueued in the
3043 * freelist yet. Race window is small, so we can succeed here if
3044 * we retry.
3045 */
3046 spin_unlock_irq(&hugetlb_lock);
3047 cond_resched();
3048 goto retry;
3049 } else {
3050 if (!new_folio) {
3051 spin_unlock_irq(&hugetlb_lock);
3052 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3053 NULL, NULL);
3054 if (!new_folio)
3055 return -ENOMEM;
3056 __prep_new_hugetlb_folio(h, new_folio);
3057 goto retry;
3058 }
3059
3060 /*
3061 * Ok, old_folio is still a genuine free hugepage. Remove it from
3062 * the freelist and decrease the counters. These will be
3063 * incremented again when calling __prep_account_new_huge_page()
3064 * and enqueue_hugetlb_folio() for new_folio. The counters will
3065 * remain stable since this happens under the lock.
3066 */
3067 remove_hugetlb_folio(h, old_folio, false);
3068
3069 /*
3070 * Ref count on new_folio is already zero as it was dropped
3071 * earlier. It can be directly added to the pool free list.
3072 */
3073 __prep_account_new_huge_page(h, nid);
3074 enqueue_hugetlb_folio(h, new_folio);
3075
3076 /*
3077 * Folio has been replaced, we can safely free the old one.
3078 */
3079 spin_unlock_irq(&hugetlb_lock);
3080 update_and_free_hugetlb_folio(h, old_folio, false);
3081 }
3082
3083 return ret;
3084
3085free_new:
3086 spin_unlock_irq(&hugetlb_lock);
3087 if (new_folio) {
3088 /* Folio has a zero ref count, but needs a ref to be freed */
3089 folio_ref_unfreeze(new_folio, 1);
3090 update_and_free_hugetlb_folio(h, new_folio, false);
3091 }
3092
3093 return ret;
3094}
3095
3096int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3097{
3098 struct hstate *h;
3099 struct folio *folio = page_folio(page);
3100 int ret = -EBUSY;
3101
3102 /*
3103 * The page might have been dissolved from under our feet, so make sure
3104 * to carefully check the state under the lock.
3105 * Return success when racing as if we dissolved the page ourselves.
3106 */
3107 spin_lock_irq(&hugetlb_lock);
3108 if (folio_test_hugetlb(folio)) {
3109 h = folio_hstate(folio);
3110 } else {
3111 spin_unlock_irq(&hugetlb_lock);
3112 return 0;
3113 }
3114 spin_unlock_irq(&hugetlb_lock);
3115
3116 /*
3117 * Fence off gigantic pages as there is a cyclic dependency between
3118 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3119 * of bailing out right away without further retrying.
3120 */
3121 if (hstate_is_gigantic(h))
3122 return -ENOMEM;
3123
3124 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3125 ret = 0;
3126 else if (!folio_ref_count(folio))
3127 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3128
3129 return ret;
3130}
3131
3132struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3133 unsigned long addr, int avoid_reserve)
3134{
3135 struct hugepage_subpool *spool = subpool_vma(vma);
3136 struct hstate *h = hstate_vma(vma);
3137 struct folio *folio;
3138 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3139 long gbl_chg;
3140 int memcg_charge_ret, ret, idx;
3141 struct hugetlb_cgroup *h_cg = NULL;
3142 struct mem_cgroup *memcg;
3143 bool deferred_reserve;
3144 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3145
3146 memcg = get_mem_cgroup_from_current();
3147 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3148 if (memcg_charge_ret == -ENOMEM) {
3149 mem_cgroup_put(memcg);
3150 return ERR_PTR(-ENOMEM);
3151 }
3152
3153 idx = hstate_index(h);
3154 /*
3155 * Examine the region/reserve map to determine if the process
3156 * has a reservation for the page to be allocated. A return
3157 * code of zero indicates a reservation exists (no change).
3158 */
3159 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3160 if (map_chg < 0) {
3161 if (!memcg_charge_ret)
3162 mem_cgroup_cancel_charge(memcg, nr_pages);
3163 mem_cgroup_put(memcg);
3164 return ERR_PTR(-ENOMEM);
3165 }
3166
3167 /*
3168 * Processes that did not create the mapping will have no
3169 * reserves as indicated by the region/reserve map. Check
3170 * that the allocation will not exceed the subpool limit.
3171 * Allocations for MAP_NORESERVE mappings also need to be
3172 * checked against any subpool limit.
3173 */
3174 if (map_chg || avoid_reserve) {
3175 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3176 if (gbl_chg < 0)
3177 goto out_end_reservation;
3178
3179 /*
3180 * Even though there was no reservation in the region/reserve
3181 * map, there could be reservations associated with the
3182 * subpool that can be used. This would be indicated if the
3183 * return value of hugepage_subpool_get_pages() is zero.
3184 * However, if avoid_reserve is specified we still avoid even
3185 * the subpool reservations.
3186 */
3187 if (avoid_reserve)
3188 gbl_chg = 1;
3189 }
3190
3191 /* If this allocation is not consuming a reservation, charge it now.
3192 */
3193 deferred_reserve = map_chg || avoid_reserve;
3194 if (deferred_reserve) {
3195 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3196 idx, pages_per_huge_page(h), &h_cg);
3197 if (ret)
3198 goto out_subpool_put;
3199 }
3200
3201 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3202 if (ret)
3203 goto out_uncharge_cgroup_reservation;
3204
3205 spin_lock_irq(&hugetlb_lock);
3206 /*
3207 * glb_chg is passed to indicate whether or not a page must be taken
3208 * from the global free pool (global change). gbl_chg == 0 indicates
3209 * a reservation exists for the allocation.
3210 */
3211 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3212 if (!folio) {
3213 spin_unlock_irq(&hugetlb_lock);
3214 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3215 if (!folio)
3216 goto out_uncharge_cgroup;
3217 spin_lock_irq(&hugetlb_lock);
3218 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3219 folio_set_hugetlb_restore_reserve(folio);
3220 h->resv_huge_pages--;
3221 }
3222 list_add(&folio->lru, &h->hugepage_activelist);
3223 folio_ref_unfreeze(folio, 1);
3224 /* Fall through */
3225 }
3226
3227 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3228 /* If allocation is not consuming a reservation, also store the
3229 * hugetlb_cgroup pointer on the page.
3230 */
3231 if (deferred_reserve) {
3232 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3233 h_cg, folio);
3234 }
3235
3236 spin_unlock_irq(&hugetlb_lock);
3237
3238 hugetlb_set_folio_subpool(folio, spool);
3239
3240 map_commit = vma_commit_reservation(h, vma, addr);
3241 if (unlikely(map_chg > map_commit)) {
3242 /*
3243 * The page was added to the reservation map between
3244 * vma_needs_reservation and vma_commit_reservation.
3245 * This indicates a race with hugetlb_reserve_pages.
3246 * Adjust for the subpool count incremented above AND
3247 * in hugetlb_reserve_pages for the same page. Also,
3248 * the reservation count added in hugetlb_reserve_pages
3249 * no longer applies.
3250 */
3251 long rsv_adjust;
3252
3253 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3254 hugetlb_acct_memory(h, -rsv_adjust);
3255 if (deferred_reserve) {
3256 spin_lock_irq(&hugetlb_lock);
3257 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3258 pages_per_huge_page(h), folio);
3259 spin_unlock_irq(&hugetlb_lock);
3260 }
3261 }
3262
3263 if (!memcg_charge_ret)
3264 mem_cgroup_commit_charge(folio, memcg);
3265 mem_cgroup_put(memcg);
3266
3267 return folio;
3268
3269out_uncharge_cgroup:
3270 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3271out_uncharge_cgroup_reservation:
3272 if (deferred_reserve)
3273 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3274 h_cg);
3275out_subpool_put:
3276 if (map_chg || avoid_reserve)
3277 hugepage_subpool_put_pages(spool, 1);
3278out_end_reservation:
3279 vma_end_reservation(h, vma, addr);
3280 if (!memcg_charge_ret)
3281 mem_cgroup_cancel_charge(memcg, nr_pages);
3282 mem_cgroup_put(memcg);
3283 return ERR_PTR(-ENOSPC);
3284}
3285
3286int alloc_bootmem_huge_page(struct hstate *h, int nid)
3287 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3288int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3289{
3290 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3291 int nr_nodes, node = nid;
3292
3293 /* do node specific alloc */
3294 if (nid != NUMA_NO_NODE) {
3295 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3296 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3297 if (!m)
3298 return 0;
3299 goto found;
3300 }
3301 /* allocate from next node when distributing huge pages */
3302 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3303 m = memblock_alloc_try_nid_raw(
3304 huge_page_size(h), huge_page_size(h),
3305 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3306 /*
3307 * Use the beginning of the huge page to store the
3308 * huge_bootmem_page struct (until gather_bootmem
3309 * puts them into the mem_map).
3310 */
3311 if (!m)
3312 return 0;
3313 goto found;
3314 }
3315
3316found:
3317
3318 /*
3319 * Only initialize the head struct page in memmap_init_reserved_pages,
3320 * rest of the struct pages will be initialized by the HugeTLB
3321 * subsystem itself.
3322 * The head struct page is used to get folio information by the HugeTLB
3323 * subsystem like zone id and node id.
3324 */
3325 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3326 huge_page_size(h) - PAGE_SIZE);
3327 /* Put them into a private list first because mem_map is not up yet */
3328 INIT_LIST_HEAD(&m->list);
3329 list_add(&m->list, &huge_boot_pages[node]);
3330 m->hstate = h;
3331 return 1;
3332}
3333
3334/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3335static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3336 unsigned long start_page_number,
3337 unsigned long end_page_number)
3338{
3339 enum zone_type zone = zone_idx(folio_zone(folio));
3340 int nid = folio_nid(folio);
3341 unsigned long head_pfn = folio_pfn(folio);
3342 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3343 int ret;
3344
3345 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3346 struct page *page = pfn_to_page(pfn);
3347
3348 __init_single_page(page, pfn, zone, nid);
3349 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3350 ret = page_ref_freeze(page, 1);
3351 VM_BUG_ON(!ret);
3352 }
3353}
3354
3355static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3356 struct hstate *h,
3357 unsigned long nr_pages)
3358{
3359 int ret;
3360
3361 /* Prepare folio head */
3362 __folio_clear_reserved(folio);
3363 __folio_set_head(folio);
3364 ret = folio_ref_freeze(folio, 1);
3365 VM_BUG_ON(!ret);
3366 /* Initialize the necessary tail struct pages */
3367 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3368 prep_compound_head((struct page *)folio, huge_page_order(h));
3369}
3370
3371static void __init prep_and_add_bootmem_folios(struct hstate *h,
3372 struct list_head *folio_list)
3373{
3374 unsigned long flags;
3375 struct folio *folio, *tmp_f;
3376
3377 /* Send list for bulk vmemmap optimization processing */
3378 hugetlb_vmemmap_optimize_folios(h, folio_list);
3379
3380 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3381 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3382 /*
3383 * If HVO fails, initialize all tail struct pages
3384 * We do not worry about potential long lock hold
3385 * time as this is early in boot and there should
3386 * be no contention.
3387 */
3388 hugetlb_folio_init_tail_vmemmap(folio,
3389 HUGETLB_VMEMMAP_RESERVE_PAGES,
3390 pages_per_huge_page(h));
3391 }
3392 /* Subdivide locks to achieve better parallel performance */
3393 spin_lock_irqsave(&hugetlb_lock, flags);
3394 __prep_account_new_huge_page(h, folio_nid(folio));
3395 enqueue_hugetlb_folio(h, folio);
3396 spin_unlock_irqrestore(&hugetlb_lock, flags);
3397 }
3398}
3399
3400/*
3401 * Put bootmem huge pages into the standard lists after mem_map is up.
3402 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3403 */
3404static void __init gather_bootmem_prealloc_node(unsigned long nid)
3405{
3406 LIST_HEAD(folio_list);
3407 struct huge_bootmem_page *m;
3408 struct hstate *h = NULL, *prev_h = NULL;
3409
3410 list_for_each_entry(m, &huge_boot_pages[nid], list) {
3411 struct page *page = virt_to_page(m);
3412 struct folio *folio = (void *)page;
3413
3414 h = m->hstate;
3415 /*
3416 * It is possible to have multiple huge page sizes (hstates)
3417 * in this list. If so, process each size separately.
3418 */
3419 if (h != prev_h && prev_h != NULL)
3420 prep_and_add_bootmem_folios(prev_h, &folio_list);
3421 prev_h = h;
3422
3423 VM_BUG_ON(!hstate_is_gigantic(h));
3424 WARN_ON(folio_ref_count(folio) != 1);
3425
3426 hugetlb_folio_init_vmemmap(folio, h,
3427 HUGETLB_VMEMMAP_RESERVE_PAGES);
3428 init_new_hugetlb_folio(h, folio);
3429 list_add(&folio->lru, &folio_list);
3430
3431 /*
3432 * We need to restore the 'stolen' pages to totalram_pages
3433 * in order to fix confusing memory reports from free(1) and
3434 * other side-effects, like CommitLimit going negative.
3435 */
3436 adjust_managed_page_count(page, pages_per_huge_page(h));
3437 cond_resched();
3438 }
3439
3440 prep_and_add_bootmem_folios(h, &folio_list);
3441}
3442
3443static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3444 unsigned long end, void *arg)
3445{
3446 int nid;
3447
3448 for (nid = start; nid < end; nid++)
3449 gather_bootmem_prealloc_node(nid);
3450}
3451
3452static void __init gather_bootmem_prealloc(void)
3453{
3454 struct padata_mt_job job = {
3455 .thread_fn = gather_bootmem_prealloc_parallel,
3456 .fn_arg = NULL,
3457 .start = 0,
3458 .size = num_node_state(N_MEMORY),
3459 .align = 1,
3460 .min_chunk = 1,
3461 .max_threads = num_node_state(N_MEMORY),
3462 .numa_aware = true,
3463 };
3464
3465 padata_do_multithreaded(&job);
3466}
3467
3468static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3469{
3470 unsigned long i;
3471 char buf[32];
3472
3473 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3474 if (hstate_is_gigantic(h)) {
3475 if (!alloc_bootmem_huge_page(h, nid))
3476 break;
3477 } else {
3478 struct folio *folio;
3479 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3480
3481 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3482 &node_states[N_MEMORY], NULL);
3483 if (!folio)
3484 break;
3485 free_huge_folio(folio); /* free it into the hugepage allocator */
3486 }
3487 cond_resched();
3488 }
3489 if (i == h->max_huge_pages_node[nid])
3490 return;
3491
3492 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3493 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3494 h->max_huge_pages_node[nid], buf, nid, i);
3495 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3496 h->max_huge_pages_node[nid] = i;
3497}
3498
3499static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3500{
3501 int i;
3502 bool node_specific_alloc = false;
3503
3504 for_each_online_node(i) {
3505 if (h->max_huge_pages_node[i] > 0) {
3506 hugetlb_hstate_alloc_pages_onenode(h, i);
3507 node_specific_alloc = true;
3508 }
3509 }
3510
3511 return node_specific_alloc;
3512}
3513
3514static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3515{
3516 if (allocated < h->max_huge_pages) {
3517 char buf[32];
3518
3519 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3520 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3521 h->max_huge_pages, buf, allocated);
3522 h->max_huge_pages = allocated;
3523 }
3524}
3525
3526static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3527{
3528 struct hstate *h = (struct hstate *)arg;
3529 int i, num = end - start;
3530 nodemask_t node_alloc_noretry;
3531 LIST_HEAD(folio_list);
3532 int next_node = first_online_node;
3533
3534 /* Bit mask controlling how hard we retry per-node allocations.*/
3535 nodes_clear(node_alloc_noretry);
3536
3537 for (i = 0; i < num; ++i) {
3538 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3539 &node_alloc_noretry, &next_node);
3540 if (!folio)
3541 break;
3542
3543 list_move(&folio->lru, &folio_list);
3544 cond_resched();
3545 }
3546
3547 prep_and_add_allocated_folios(h, &folio_list);
3548}
3549
3550static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3551{
3552 unsigned long i;
3553
3554 for (i = 0; i < h->max_huge_pages; ++i) {
3555 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3556 break;
3557 cond_resched();
3558 }
3559
3560 return i;
3561}
3562
3563static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3564{
3565 struct padata_mt_job job = {
3566 .fn_arg = h,
3567 .align = 1,
3568 .numa_aware = true
3569 };
3570
3571 job.thread_fn = hugetlb_pages_alloc_boot_node;
3572 job.start = 0;
3573 job.size = h->max_huge_pages;
3574
3575 /*
3576 * job.max_threads is twice the num_node_state(N_MEMORY),
3577 *
3578 * Tests below indicate that a multiplier of 2 significantly improves
3579 * performance, and although larger values also provide improvements,
3580 * the gains are marginal.
3581 *
3582 * Therefore, choosing 2 as the multiplier strikes a good balance between
3583 * enhancing parallel processing capabilities and maintaining efficient
3584 * resource management.
3585 *
3586 * +------------+-------+-------+-------+-------+-------+
3587 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3588 * +------------+-------+-------+-------+-------+-------+
3589 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3590 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3591 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3592 * +------------+-------+-------+-------+-------+-------+
3593 */
3594 job.max_threads = num_node_state(N_MEMORY) * 2;
3595 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3596 padata_do_multithreaded(&job);
3597
3598 return h->nr_huge_pages;
3599}
3600
3601/*
3602 * NOTE: this routine is called in different contexts for gigantic and
3603 * non-gigantic pages.
3604 * - For gigantic pages, this is called early in the boot process and
3605 * pages are allocated from memblock allocated or something similar.
3606 * Gigantic pages are actually added to pools later with the routine
3607 * gather_bootmem_prealloc.
3608 * - For non-gigantic pages, this is called later in the boot process after
3609 * all of mm is up and functional. Pages are allocated from buddy and
3610 * then added to hugetlb pools.
3611 */
3612static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3613{
3614 unsigned long allocated;
3615 static bool initialized __initdata;
3616
3617 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3618 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3619 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3620 return;
3621 }
3622
3623 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3624 if (!initialized) {
3625 int i = 0;
3626
3627 for (i = 0; i < MAX_NUMNODES; i++)
3628 INIT_LIST_HEAD(&huge_boot_pages[i]);
3629 initialized = true;
3630 }
3631
3632 /* do node specific alloc */
3633 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3634 return;
3635
3636 /* below will do all node balanced alloc */
3637 if (hstate_is_gigantic(h))
3638 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3639 else
3640 allocated = hugetlb_pages_alloc_boot(h);
3641
3642 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3643}
3644
3645static void __init hugetlb_init_hstates(void)
3646{
3647 struct hstate *h, *h2;
3648
3649 for_each_hstate(h) {
3650 /* oversize hugepages were init'ed in early boot */
3651 if (!hstate_is_gigantic(h))
3652 hugetlb_hstate_alloc_pages(h);
3653
3654 /*
3655 * Set demote order for each hstate. Note that
3656 * h->demote_order is initially 0.
3657 * - We can not demote gigantic pages if runtime freeing
3658 * is not supported, so skip this.
3659 * - If CMA allocation is possible, we can not demote
3660 * HUGETLB_PAGE_ORDER or smaller size pages.
3661 */
3662 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3663 continue;
3664 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3665 continue;
3666 for_each_hstate(h2) {
3667 if (h2 == h)
3668 continue;
3669 if (h2->order < h->order &&
3670 h2->order > h->demote_order)
3671 h->demote_order = h2->order;
3672 }
3673 }
3674}
3675
3676static void __init report_hugepages(void)
3677{
3678 struct hstate *h;
3679
3680 for_each_hstate(h) {
3681 char buf[32];
3682
3683 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3684 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3685 buf, h->free_huge_pages);
3686 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3687 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3688 }
3689}
3690
3691#ifdef CONFIG_HIGHMEM
3692static void try_to_free_low(struct hstate *h, unsigned long count,
3693 nodemask_t *nodes_allowed)
3694{
3695 int i;
3696 LIST_HEAD(page_list);
3697
3698 lockdep_assert_held(&hugetlb_lock);
3699 if (hstate_is_gigantic(h))
3700 return;
3701
3702 /*
3703 * Collect pages to be freed on a list, and free after dropping lock
3704 */
3705 for_each_node_mask(i, *nodes_allowed) {
3706 struct folio *folio, *next;
3707 struct list_head *freel = &h->hugepage_freelists[i];
3708 list_for_each_entry_safe(folio, next, freel, lru) {
3709 if (count >= h->nr_huge_pages)
3710 goto out;
3711 if (folio_test_highmem(folio))
3712 continue;
3713 remove_hugetlb_folio(h, folio, false);
3714 list_add(&folio->lru, &page_list);
3715 }
3716 }
3717
3718out:
3719 spin_unlock_irq(&hugetlb_lock);
3720 update_and_free_pages_bulk(h, &page_list);
3721 spin_lock_irq(&hugetlb_lock);
3722}
3723#else
3724static inline void try_to_free_low(struct hstate *h, unsigned long count,
3725 nodemask_t *nodes_allowed)
3726{
3727}
3728#endif
3729
3730/*
3731 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3732 * balanced by operating on them in a round-robin fashion.
3733 * Returns 1 if an adjustment was made.
3734 */
3735static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3736 int delta)
3737{
3738 int nr_nodes, node;
3739
3740 lockdep_assert_held(&hugetlb_lock);
3741 VM_BUG_ON(delta != -1 && delta != 1);
3742
3743 if (delta < 0) {
3744 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3745 if (h->surplus_huge_pages_node[node])
3746 goto found;
3747 }
3748 } else {
3749 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3750 if (h->surplus_huge_pages_node[node] <
3751 h->nr_huge_pages_node[node])
3752 goto found;
3753 }
3754 }
3755 return 0;
3756
3757found:
3758 h->surplus_huge_pages += delta;
3759 h->surplus_huge_pages_node[node] += delta;
3760 return 1;
3761}
3762
3763#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3764static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3765 nodemask_t *nodes_allowed)
3766{
3767 unsigned long min_count;
3768 unsigned long allocated;
3769 struct folio *folio;
3770 LIST_HEAD(page_list);
3771 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3772
3773 /*
3774 * Bit mask controlling how hard we retry per-node allocations.
3775 * If we can not allocate the bit mask, do not attempt to allocate
3776 * the requested huge pages.
3777 */
3778 if (node_alloc_noretry)
3779 nodes_clear(*node_alloc_noretry);
3780 else
3781 return -ENOMEM;
3782
3783 /*
3784 * resize_lock mutex prevents concurrent adjustments to number of
3785 * pages in hstate via the proc/sysfs interfaces.
3786 */
3787 mutex_lock(&h->resize_lock);
3788 flush_free_hpage_work(h);
3789 spin_lock_irq(&hugetlb_lock);
3790
3791 /*
3792 * Check for a node specific request.
3793 * Changing node specific huge page count may require a corresponding
3794 * change to the global count. In any case, the passed node mask
3795 * (nodes_allowed) will restrict alloc/free to the specified node.
3796 */
3797 if (nid != NUMA_NO_NODE) {
3798 unsigned long old_count = count;
3799
3800 count += persistent_huge_pages(h) -
3801 (h->nr_huge_pages_node[nid] -
3802 h->surplus_huge_pages_node[nid]);
3803 /*
3804 * User may have specified a large count value which caused the
3805 * above calculation to overflow. In this case, they wanted
3806 * to allocate as many huge pages as possible. Set count to
3807 * largest possible value to align with their intention.
3808 */
3809 if (count < old_count)
3810 count = ULONG_MAX;
3811 }
3812
3813 /*
3814 * Gigantic pages runtime allocation depend on the capability for large
3815 * page range allocation.
3816 * If the system does not provide this feature, return an error when
3817 * the user tries to allocate gigantic pages but let the user free the
3818 * boottime allocated gigantic pages.
3819 */
3820 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3821 if (count > persistent_huge_pages(h)) {
3822 spin_unlock_irq(&hugetlb_lock);
3823 mutex_unlock(&h->resize_lock);
3824 NODEMASK_FREE(node_alloc_noretry);
3825 return -EINVAL;
3826 }
3827 /* Fall through to decrease pool */
3828 }
3829
3830 /*
3831 * Increase the pool size
3832 * First take pages out of surplus state. Then make up the
3833 * remaining difference by allocating fresh huge pages.
3834 *
3835 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3836 * to convert a surplus huge page to a normal huge page. That is
3837 * not critical, though, it just means the overall size of the
3838 * pool might be one hugepage larger than it needs to be, but
3839 * within all the constraints specified by the sysctls.
3840 */
3841 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3842 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3843 break;
3844 }
3845
3846 allocated = 0;
3847 while (count > (persistent_huge_pages(h) + allocated)) {
3848 /*
3849 * If this allocation races such that we no longer need the
3850 * page, free_huge_folio will handle it by freeing the page
3851 * and reducing the surplus.
3852 */
3853 spin_unlock_irq(&hugetlb_lock);
3854
3855 /* yield cpu to avoid soft lockup */
3856 cond_resched();
3857
3858 folio = alloc_pool_huge_folio(h, nodes_allowed,
3859 node_alloc_noretry,
3860 &h->next_nid_to_alloc);
3861 if (!folio) {
3862 prep_and_add_allocated_folios(h, &page_list);
3863 spin_lock_irq(&hugetlb_lock);
3864 goto out;
3865 }
3866
3867 list_add(&folio->lru, &page_list);
3868 allocated++;
3869
3870 /* Bail for signals. Probably ctrl-c from user */
3871 if (signal_pending(current)) {
3872 prep_and_add_allocated_folios(h, &page_list);
3873 spin_lock_irq(&hugetlb_lock);
3874 goto out;
3875 }
3876
3877 spin_lock_irq(&hugetlb_lock);
3878 }
3879
3880 /* Add allocated pages to the pool */
3881 if (!list_empty(&page_list)) {
3882 spin_unlock_irq(&hugetlb_lock);
3883 prep_and_add_allocated_folios(h, &page_list);
3884 spin_lock_irq(&hugetlb_lock);
3885 }
3886
3887 /*
3888 * Decrease the pool size
3889 * First return free pages to the buddy allocator (being careful
3890 * to keep enough around to satisfy reservations). Then place
3891 * pages into surplus state as needed so the pool will shrink
3892 * to the desired size as pages become free.
3893 *
3894 * By placing pages into the surplus state independent of the
3895 * overcommit value, we are allowing the surplus pool size to
3896 * exceed overcommit. There are few sane options here. Since
3897 * alloc_surplus_hugetlb_folio() is checking the global counter,
3898 * though, we'll note that we're not allowed to exceed surplus
3899 * and won't grow the pool anywhere else. Not until one of the
3900 * sysctls are changed, or the surplus pages go out of use.
3901 */
3902 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3903 min_count = max(count, min_count);
3904 try_to_free_low(h, min_count, nodes_allowed);
3905
3906 /*
3907 * Collect pages to be removed on list without dropping lock
3908 */
3909 while (min_count < persistent_huge_pages(h)) {
3910 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3911 if (!folio)
3912 break;
3913
3914 list_add(&folio->lru, &page_list);
3915 }
3916 /* free the pages after dropping lock */
3917 spin_unlock_irq(&hugetlb_lock);
3918 update_and_free_pages_bulk(h, &page_list);
3919 flush_free_hpage_work(h);
3920 spin_lock_irq(&hugetlb_lock);
3921
3922 while (count < persistent_huge_pages(h)) {
3923 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3924 break;
3925 }
3926out:
3927 h->max_huge_pages = persistent_huge_pages(h);
3928 spin_unlock_irq(&hugetlb_lock);
3929 mutex_unlock(&h->resize_lock);
3930
3931 NODEMASK_FREE(node_alloc_noretry);
3932
3933 return 0;
3934}
3935
3936static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3937{
3938 int i, nid = folio_nid(folio);
3939 struct hstate *target_hstate;
3940 struct page *subpage;
3941 struct folio *inner_folio;
3942 int rc = 0;
3943
3944 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3945
3946 remove_hugetlb_folio_for_demote(h, folio, false);
3947 spin_unlock_irq(&hugetlb_lock);
3948
3949 /*
3950 * If vmemmap already existed for folio, the remove routine above would
3951 * have cleared the hugetlb folio flag. Hence the folio is technically
3952 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be
3953 * passed hugetlb folios and will BUG otherwise.
3954 */
3955 if (folio_test_hugetlb(folio)) {
3956 rc = hugetlb_vmemmap_restore_folio(h, folio);
3957 if (rc) {
3958 /* Allocation of vmemmmap failed, we can not demote folio */
3959 spin_lock_irq(&hugetlb_lock);
3960 folio_ref_unfreeze(folio, 1);
3961 add_hugetlb_folio(h, folio, false);
3962 return rc;
3963 }
3964 }
3965
3966 /*
3967 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3968 * sizes as it will not ref count folios.
3969 */
3970 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3971
3972 /*
3973 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3974 * Without the mutex, pages added to target hstate could be marked
3975 * as surplus.
3976 *
3977 * Note that we already hold h->resize_lock. To prevent deadlock,
3978 * use the convention of always taking larger size hstate mutex first.
3979 */
3980 mutex_lock(&target_hstate->resize_lock);
3981 for (i = 0; i < pages_per_huge_page(h);
3982 i += pages_per_huge_page(target_hstate)) {
3983 subpage = folio_page(folio, i);
3984 inner_folio = page_folio(subpage);
3985 if (hstate_is_gigantic(target_hstate))
3986 prep_compound_gigantic_folio_for_demote(inner_folio,
3987 target_hstate->order);
3988 else
3989 prep_compound_page(subpage, target_hstate->order);
3990 folio_change_private(inner_folio, NULL);
3991 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3992 free_huge_folio(inner_folio);
3993 }
3994 mutex_unlock(&target_hstate->resize_lock);
3995
3996 spin_lock_irq(&hugetlb_lock);
3997
3998 /*
3999 * Not absolutely necessary, but for consistency update max_huge_pages
4000 * based on pool changes for the demoted page.
4001 */
4002 h->max_huge_pages--;
4003 target_hstate->max_huge_pages +=
4004 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4005
4006 return rc;
4007}
4008
4009static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4010 __must_hold(&hugetlb_lock)
4011{
4012 int nr_nodes, node;
4013 struct folio *folio;
4014
4015 lockdep_assert_held(&hugetlb_lock);
4016
4017 /* We should never get here if no demote order */
4018 if (!h->demote_order) {
4019 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4020 return -EINVAL; /* internal error */
4021 }
4022
4023 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4024 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4025 if (folio_test_hwpoison(folio))
4026 continue;
4027 return demote_free_hugetlb_folio(h, folio);
4028 }
4029 }
4030
4031 /*
4032 * Only way to get here is if all pages on free lists are poisoned.
4033 * Return -EBUSY so that caller will not retry.
4034 */
4035 return -EBUSY;
4036}
4037
4038#define HSTATE_ATTR_RO(_name) \
4039 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4040
4041#define HSTATE_ATTR_WO(_name) \
4042 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4043
4044#define HSTATE_ATTR(_name) \
4045 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4046
4047static struct kobject *hugepages_kobj;
4048static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4049
4050static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4051
4052static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4053{
4054 int i;
4055
4056 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4057 if (hstate_kobjs[i] == kobj) {
4058 if (nidp)
4059 *nidp = NUMA_NO_NODE;
4060 return &hstates[i];
4061 }
4062
4063 return kobj_to_node_hstate(kobj, nidp);
4064}
4065
4066static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4067 struct kobj_attribute *attr, char *buf)
4068{
4069 struct hstate *h;
4070 unsigned long nr_huge_pages;
4071 int nid;
4072
4073 h = kobj_to_hstate(kobj, &nid);
4074 if (nid == NUMA_NO_NODE)
4075 nr_huge_pages = h->nr_huge_pages;
4076 else
4077 nr_huge_pages = h->nr_huge_pages_node[nid];
4078
4079 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4080}
4081
4082static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4083 struct hstate *h, int nid,
4084 unsigned long count, size_t len)
4085{
4086 int err;
4087 nodemask_t nodes_allowed, *n_mask;
4088
4089 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4090 return -EINVAL;
4091
4092 if (nid == NUMA_NO_NODE) {
4093 /*
4094 * global hstate attribute
4095 */
4096 if (!(obey_mempolicy &&
4097 init_nodemask_of_mempolicy(&nodes_allowed)))
4098 n_mask = &node_states[N_MEMORY];
4099 else
4100 n_mask = &nodes_allowed;
4101 } else {
4102 /*
4103 * Node specific request. count adjustment happens in
4104 * set_max_huge_pages() after acquiring hugetlb_lock.
4105 */
4106 init_nodemask_of_node(&nodes_allowed, nid);
4107 n_mask = &nodes_allowed;
4108 }
4109
4110 err = set_max_huge_pages(h, count, nid, n_mask);
4111
4112 return err ? err : len;
4113}
4114
4115static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4116 struct kobject *kobj, const char *buf,
4117 size_t len)
4118{
4119 struct hstate *h;
4120 unsigned long count;
4121 int nid;
4122 int err;
4123
4124 err = kstrtoul(buf, 10, &count);
4125 if (err)
4126 return err;
4127
4128 h = kobj_to_hstate(kobj, &nid);
4129 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4130}
4131
4132static ssize_t nr_hugepages_show(struct kobject *kobj,
4133 struct kobj_attribute *attr, char *buf)
4134{
4135 return nr_hugepages_show_common(kobj, attr, buf);
4136}
4137
4138static ssize_t nr_hugepages_store(struct kobject *kobj,
4139 struct kobj_attribute *attr, const char *buf, size_t len)
4140{
4141 return nr_hugepages_store_common(false, kobj, buf, len);
4142}
4143HSTATE_ATTR(nr_hugepages);
4144
4145#ifdef CONFIG_NUMA
4146
4147/*
4148 * hstate attribute for optionally mempolicy-based constraint on persistent
4149 * huge page alloc/free.
4150 */
4151static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4152 struct kobj_attribute *attr,
4153 char *buf)
4154{
4155 return nr_hugepages_show_common(kobj, attr, buf);
4156}
4157
4158static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4159 struct kobj_attribute *attr, const char *buf, size_t len)
4160{
4161 return nr_hugepages_store_common(true, kobj, buf, len);
4162}
4163HSTATE_ATTR(nr_hugepages_mempolicy);
4164#endif
4165
4166
4167static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4168 struct kobj_attribute *attr, char *buf)
4169{
4170 struct hstate *h = kobj_to_hstate(kobj, NULL);
4171 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4172}
4173
4174static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4175 struct kobj_attribute *attr, const char *buf, size_t count)
4176{
4177 int err;
4178 unsigned long input;
4179 struct hstate *h = kobj_to_hstate(kobj, NULL);
4180
4181 if (hstate_is_gigantic(h))
4182 return -EINVAL;
4183
4184 err = kstrtoul(buf, 10, &input);
4185 if (err)
4186 return err;
4187
4188 spin_lock_irq(&hugetlb_lock);
4189 h->nr_overcommit_huge_pages = input;
4190 spin_unlock_irq(&hugetlb_lock);
4191
4192 return count;
4193}
4194HSTATE_ATTR(nr_overcommit_hugepages);
4195
4196static ssize_t free_hugepages_show(struct kobject *kobj,
4197 struct kobj_attribute *attr, char *buf)
4198{
4199 struct hstate *h;
4200 unsigned long free_huge_pages;
4201 int nid;
4202
4203 h = kobj_to_hstate(kobj, &nid);
4204 if (nid == NUMA_NO_NODE)
4205 free_huge_pages = h->free_huge_pages;
4206 else
4207 free_huge_pages = h->free_huge_pages_node[nid];
4208
4209 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4210}
4211HSTATE_ATTR_RO(free_hugepages);
4212
4213static ssize_t resv_hugepages_show(struct kobject *kobj,
4214 struct kobj_attribute *attr, char *buf)
4215{
4216 struct hstate *h = kobj_to_hstate(kobj, NULL);
4217 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4218}
4219HSTATE_ATTR_RO(resv_hugepages);
4220
4221static ssize_t surplus_hugepages_show(struct kobject *kobj,
4222 struct kobj_attribute *attr, char *buf)
4223{
4224 struct hstate *h;
4225 unsigned long surplus_huge_pages;
4226 int nid;
4227
4228 h = kobj_to_hstate(kobj, &nid);
4229 if (nid == NUMA_NO_NODE)
4230 surplus_huge_pages = h->surplus_huge_pages;
4231 else
4232 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4233
4234 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4235}
4236HSTATE_ATTR_RO(surplus_hugepages);
4237
4238static ssize_t demote_store(struct kobject *kobj,
4239 struct kobj_attribute *attr, const char *buf, size_t len)
4240{
4241 unsigned long nr_demote;
4242 unsigned long nr_available;
4243 nodemask_t nodes_allowed, *n_mask;
4244 struct hstate *h;
4245 int err;
4246 int nid;
4247
4248 err = kstrtoul(buf, 10, &nr_demote);
4249 if (err)
4250 return err;
4251 h = kobj_to_hstate(kobj, &nid);
4252
4253 if (nid != NUMA_NO_NODE) {
4254 init_nodemask_of_node(&nodes_allowed, nid);
4255 n_mask = &nodes_allowed;
4256 } else {
4257 n_mask = &node_states[N_MEMORY];
4258 }
4259
4260 /* Synchronize with other sysfs operations modifying huge pages */
4261 mutex_lock(&h->resize_lock);
4262 spin_lock_irq(&hugetlb_lock);
4263
4264 while (nr_demote) {
4265 /*
4266 * Check for available pages to demote each time thorough the
4267 * loop as demote_pool_huge_page will drop hugetlb_lock.
4268 */
4269 if (nid != NUMA_NO_NODE)
4270 nr_available = h->free_huge_pages_node[nid];
4271 else
4272 nr_available = h->free_huge_pages;
4273 nr_available -= h->resv_huge_pages;
4274 if (!nr_available)
4275 break;
4276
4277 err = demote_pool_huge_page(h, n_mask);
4278 if (err)
4279 break;
4280
4281 nr_demote--;
4282 }
4283
4284 spin_unlock_irq(&hugetlb_lock);
4285 mutex_unlock(&h->resize_lock);
4286
4287 if (err)
4288 return err;
4289 return len;
4290}
4291HSTATE_ATTR_WO(demote);
4292
4293static ssize_t demote_size_show(struct kobject *kobj,
4294 struct kobj_attribute *attr, char *buf)
4295{
4296 struct hstate *h = kobj_to_hstate(kobj, NULL);
4297 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4298
4299 return sysfs_emit(buf, "%lukB\n", demote_size);
4300}
4301
4302static ssize_t demote_size_store(struct kobject *kobj,
4303 struct kobj_attribute *attr,
4304 const char *buf, size_t count)
4305{
4306 struct hstate *h, *demote_hstate;
4307 unsigned long demote_size;
4308 unsigned int demote_order;
4309
4310 demote_size = (unsigned long)memparse(buf, NULL);
4311
4312 demote_hstate = size_to_hstate(demote_size);
4313 if (!demote_hstate)
4314 return -EINVAL;
4315 demote_order = demote_hstate->order;
4316 if (demote_order < HUGETLB_PAGE_ORDER)
4317 return -EINVAL;
4318
4319 /* demote order must be smaller than hstate order */
4320 h = kobj_to_hstate(kobj, NULL);
4321 if (demote_order >= h->order)
4322 return -EINVAL;
4323
4324 /* resize_lock synchronizes access to demote size and writes */
4325 mutex_lock(&h->resize_lock);
4326 h->demote_order = demote_order;
4327 mutex_unlock(&h->resize_lock);
4328
4329 return count;
4330}
4331HSTATE_ATTR(demote_size);
4332
4333static struct attribute *hstate_attrs[] = {
4334 &nr_hugepages_attr.attr,
4335 &nr_overcommit_hugepages_attr.attr,
4336 &free_hugepages_attr.attr,
4337 &resv_hugepages_attr.attr,
4338 &surplus_hugepages_attr.attr,
4339#ifdef CONFIG_NUMA
4340 &nr_hugepages_mempolicy_attr.attr,
4341#endif
4342 NULL,
4343};
4344
4345static const struct attribute_group hstate_attr_group = {
4346 .attrs = hstate_attrs,
4347};
4348
4349static struct attribute *hstate_demote_attrs[] = {
4350 &demote_size_attr.attr,
4351 &demote_attr.attr,
4352 NULL,
4353};
4354
4355static const struct attribute_group hstate_demote_attr_group = {
4356 .attrs = hstate_demote_attrs,
4357};
4358
4359static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4360 struct kobject **hstate_kobjs,
4361 const struct attribute_group *hstate_attr_group)
4362{
4363 int retval;
4364 int hi = hstate_index(h);
4365
4366 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4367 if (!hstate_kobjs[hi])
4368 return -ENOMEM;
4369
4370 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4371 if (retval) {
4372 kobject_put(hstate_kobjs[hi]);
4373 hstate_kobjs[hi] = NULL;
4374 return retval;
4375 }
4376
4377 if (h->demote_order) {
4378 retval = sysfs_create_group(hstate_kobjs[hi],
4379 &hstate_demote_attr_group);
4380 if (retval) {
4381 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4382 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4383 kobject_put(hstate_kobjs[hi]);
4384 hstate_kobjs[hi] = NULL;
4385 return retval;
4386 }
4387 }
4388
4389 return 0;
4390}
4391
4392#ifdef CONFIG_NUMA
4393static bool hugetlb_sysfs_initialized __ro_after_init;
4394
4395/*
4396 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4397 * with node devices in node_devices[] using a parallel array. The array
4398 * index of a node device or _hstate == node id.
4399 * This is here to avoid any static dependency of the node device driver, in
4400 * the base kernel, on the hugetlb module.
4401 */
4402struct node_hstate {
4403 struct kobject *hugepages_kobj;
4404 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4405};
4406static struct node_hstate node_hstates[MAX_NUMNODES];
4407
4408/*
4409 * A subset of global hstate attributes for node devices
4410 */
4411static struct attribute *per_node_hstate_attrs[] = {
4412 &nr_hugepages_attr.attr,
4413 &free_hugepages_attr.attr,
4414 &surplus_hugepages_attr.attr,
4415 NULL,
4416};
4417
4418static const struct attribute_group per_node_hstate_attr_group = {
4419 .attrs = per_node_hstate_attrs,
4420};
4421
4422/*
4423 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4424 * Returns node id via non-NULL nidp.
4425 */
4426static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4427{
4428 int nid;
4429
4430 for (nid = 0; nid < nr_node_ids; nid++) {
4431 struct node_hstate *nhs = &node_hstates[nid];
4432 int i;
4433 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4434 if (nhs->hstate_kobjs[i] == kobj) {
4435 if (nidp)
4436 *nidp = nid;
4437 return &hstates[i];
4438 }
4439 }
4440
4441 BUG();
4442 return NULL;
4443}
4444
4445/*
4446 * Unregister hstate attributes from a single node device.
4447 * No-op if no hstate attributes attached.
4448 */
4449void hugetlb_unregister_node(struct node *node)
4450{
4451 struct hstate *h;
4452 struct node_hstate *nhs = &node_hstates[node->dev.id];
4453
4454 if (!nhs->hugepages_kobj)
4455 return; /* no hstate attributes */
4456
4457 for_each_hstate(h) {
4458 int idx = hstate_index(h);
4459 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4460
4461 if (!hstate_kobj)
4462 continue;
4463 if (h->demote_order)
4464 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4465 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4466 kobject_put(hstate_kobj);
4467 nhs->hstate_kobjs[idx] = NULL;
4468 }
4469
4470 kobject_put(nhs->hugepages_kobj);
4471 nhs->hugepages_kobj = NULL;
4472}
4473
4474
4475/*
4476 * Register hstate attributes for a single node device.
4477 * No-op if attributes already registered.
4478 */
4479void hugetlb_register_node(struct node *node)
4480{
4481 struct hstate *h;
4482 struct node_hstate *nhs = &node_hstates[node->dev.id];
4483 int err;
4484
4485 if (!hugetlb_sysfs_initialized)
4486 return;
4487
4488 if (nhs->hugepages_kobj)
4489 return; /* already allocated */
4490
4491 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4492 &node->dev.kobj);
4493 if (!nhs->hugepages_kobj)
4494 return;
4495
4496 for_each_hstate(h) {
4497 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4498 nhs->hstate_kobjs,
4499 &per_node_hstate_attr_group);
4500 if (err) {
4501 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4502 h->name, node->dev.id);
4503 hugetlb_unregister_node(node);
4504 break;
4505 }
4506 }
4507}
4508
4509/*
4510 * hugetlb init time: register hstate attributes for all registered node
4511 * devices of nodes that have memory. All on-line nodes should have
4512 * registered their associated device by this time.
4513 */
4514static void __init hugetlb_register_all_nodes(void)
4515{
4516 int nid;
4517
4518 for_each_online_node(nid)
4519 hugetlb_register_node(node_devices[nid]);
4520}
4521#else /* !CONFIG_NUMA */
4522
4523static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4524{
4525 BUG();
4526 if (nidp)
4527 *nidp = -1;
4528 return NULL;
4529}
4530
4531static void hugetlb_register_all_nodes(void) { }
4532
4533#endif
4534
4535#ifdef CONFIG_CMA
4536static void __init hugetlb_cma_check(void);
4537#else
4538static inline __init void hugetlb_cma_check(void)
4539{
4540}
4541#endif
4542
4543static void __init hugetlb_sysfs_init(void)
4544{
4545 struct hstate *h;
4546 int err;
4547
4548 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4549 if (!hugepages_kobj)
4550 return;
4551
4552 for_each_hstate(h) {
4553 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4554 hstate_kobjs, &hstate_attr_group);
4555 if (err)
4556 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4557 }
4558
4559#ifdef CONFIG_NUMA
4560 hugetlb_sysfs_initialized = true;
4561#endif
4562 hugetlb_register_all_nodes();
4563}
4564
4565#ifdef CONFIG_SYSCTL
4566static void hugetlb_sysctl_init(void);
4567#else
4568static inline void hugetlb_sysctl_init(void) { }
4569#endif
4570
4571static int __init hugetlb_init(void)
4572{
4573 int i;
4574
4575 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4576 __NR_HPAGEFLAGS);
4577
4578 if (!hugepages_supported()) {
4579 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4580 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4581 return 0;
4582 }
4583
4584 /*
4585 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4586 * architectures depend on setup being done here.
4587 */
4588 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4589 if (!parsed_default_hugepagesz) {
4590 /*
4591 * If we did not parse a default huge page size, set
4592 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4593 * number of huge pages for this default size was implicitly
4594 * specified, set that here as well.
4595 * Note that the implicit setting will overwrite an explicit
4596 * setting. A warning will be printed in this case.
4597 */
4598 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4599 if (default_hstate_max_huge_pages) {
4600 if (default_hstate.max_huge_pages) {
4601 char buf[32];
4602
4603 string_get_size(huge_page_size(&default_hstate),
4604 1, STRING_UNITS_2, buf, 32);
4605 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4606 default_hstate.max_huge_pages, buf);
4607 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4608 default_hstate_max_huge_pages);
4609 }
4610 default_hstate.max_huge_pages =
4611 default_hstate_max_huge_pages;
4612
4613 for_each_online_node(i)
4614 default_hstate.max_huge_pages_node[i] =
4615 default_hugepages_in_node[i];
4616 }
4617 }
4618
4619 hugetlb_cma_check();
4620 hugetlb_init_hstates();
4621 gather_bootmem_prealloc();
4622 report_hugepages();
4623
4624 hugetlb_sysfs_init();
4625 hugetlb_cgroup_file_init();
4626 hugetlb_sysctl_init();
4627
4628#ifdef CONFIG_SMP
4629 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4630#else
4631 num_fault_mutexes = 1;
4632#endif
4633 hugetlb_fault_mutex_table =
4634 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4635 GFP_KERNEL);
4636 BUG_ON(!hugetlb_fault_mutex_table);
4637
4638 for (i = 0; i < num_fault_mutexes; i++)
4639 mutex_init(&hugetlb_fault_mutex_table[i]);
4640 return 0;
4641}
4642subsys_initcall(hugetlb_init);
4643
4644/* Overwritten by architectures with more huge page sizes */
4645bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4646{
4647 return size == HPAGE_SIZE;
4648}
4649
4650void __init hugetlb_add_hstate(unsigned int order)
4651{
4652 struct hstate *h;
4653 unsigned long i;
4654
4655 if (size_to_hstate(PAGE_SIZE << order)) {
4656 return;
4657 }
4658 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4659 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4660 h = &hstates[hugetlb_max_hstate++];
4661 mutex_init(&h->resize_lock);
4662 h->order = order;
4663 h->mask = ~(huge_page_size(h) - 1);
4664 for (i = 0; i < MAX_NUMNODES; ++i)
4665 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4666 INIT_LIST_HEAD(&h->hugepage_activelist);
4667 h->next_nid_to_alloc = first_memory_node;
4668 h->next_nid_to_free = first_memory_node;
4669 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4670 huge_page_size(h)/SZ_1K);
4671
4672 parsed_hstate = h;
4673}
4674
4675bool __init __weak hugetlb_node_alloc_supported(void)
4676{
4677 return true;
4678}
4679
4680static void __init hugepages_clear_pages_in_node(void)
4681{
4682 if (!hugetlb_max_hstate) {
4683 default_hstate_max_huge_pages = 0;
4684 memset(default_hugepages_in_node, 0,
4685 sizeof(default_hugepages_in_node));
4686 } else {
4687 parsed_hstate->max_huge_pages = 0;
4688 memset(parsed_hstate->max_huge_pages_node, 0,
4689 sizeof(parsed_hstate->max_huge_pages_node));
4690 }
4691}
4692
4693/*
4694 * hugepages command line processing
4695 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4696 * specification. If not, ignore the hugepages value. hugepages can also
4697 * be the first huge page command line option in which case it implicitly
4698 * specifies the number of huge pages for the default size.
4699 */
4700static int __init hugepages_setup(char *s)
4701{
4702 unsigned long *mhp;
4703 static unsigned long *last_mhp;
4704 int node = NUMA_NO_NODE;
4705 int count;
4706 unsigned long tmp;
4707 char *p = s;
4708
4709 if (!parsed_valid_hugepagesz) {
4710 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4711 parsed_valid_hugepagesz = true;
4712 return 1;
4713 }
4714
4715 /*
4716 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4717 * yet, so this hugepages= parameter goes to the "default hstate".
4718 * Otherwise, it goes with the previously parsed hugepagesz or
4719 * default_hugepagesz.
4720 */
4721 else if (!hugetlb_max_hstate)
4722 mhp = &default_hstate_max_huge_pages;
4723 else
4724 mhp = &parsed_hstate->max_huge_pages;
4725
4726 if (mhp == last_mhp) {
4727 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4728 return 1;
4729 }
4730
4731 while (*p) {
4732 count = 0;
4733 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4734 goto invalid;
4735 /* Parameter is node format */
4736 if (p[count] == ':') {
4737 if (!hugetlb_node_alloc_supported()) {
4738 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4739 return 1;
4740 }
4741 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4742 goto invalid;
4743 node = array_index_nospec(tmp, MAX_NUMNODES);
4744 p += count + 1;
4745 /* Parse hugepages */
4746 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4747 goto invalid;
4748 if (!hugetlb_max_hstate)
4749 default_hugepages_in_node[node] = tmp;
4750 else
4751 parsed_hstate->max_huge_pages_node[node] = tmp;
4752 *mhp += tmp;
4753 /* Go to parse next node*/
4754 if (p[count] == ',')
4755 p += count + 1;
4756 else
4757 break;
4758 } else {
4759 if (p != s)
4760 goto invalid;
4761 *mhp = tmp;
4762 break;
4763 }
4764 }
4765
4766 /*
4767 * Global state is always initialized later in hugetlb_init.
4768 * But we need to allocate gigantic hstates here early to still
4769 * use the bootmem allocator.
4770 */
4771 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4772 hugetlb_hstate_alloc_pages(parsed_hstate);
4773
4774 last_mhp = mhp;
4775
4776 return 1;
4777
4778invalid:
4779 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4780 hugepages_clear_pages_in_node();
4781 return 1;
4782}
4783__setup("hugepages=", hugepages_setup);
4784
4785/*
4786 * hugepagesz command line processing
4787 * A specific huge page size can only be specified once with hugepagesz.
4788 * hugepagesz is followed by hugepages on the command line. The global
4789 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4790 * hugepagesz argument was valid.
4791 */
4792static int __init hugepagesz_setup(char *s)
4793{
4794 unsigned long size;
4795 struct hstate *h;
4796
4797 parsed_valid_hugepagesz = false;
4798 size = (unsigned long)memparse(s, NULL);
4799
4800 if (!arch_hugetlb_valid_size(size)) {
4801 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4802 return 1;
4803 }
4804
4805 h = size_to_hstate(size);
4806 if (h) {
4807 /*
4808 * hstate for this size already exists. This is normally
4809 * an error, but is allowed if the existing hstate is the
4810 * default hstate. More specifically, it is only allowed if
4811 * the number of huge pages for the default hstate was not
4812 * previously specified.
4813 */
4814 if (!parsed_default_hugepagesz || h != &default_hstate ||
4815 default_hstate.max_huge_pages) {
4816 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4817 return 1;
4818 }
4819
4820 /*
4821 * No need to call hugetlb_add_hstate() as hstate already
4822 * exists. But, do set parsed_hstate so that a following
4823 * hugepages= parameter will be applied to this hstate.
4824 */
4825 parsed_hstate = h;
4826 parsed_valid_hugepagesz = true;
4827 return 1;
4828 }
4829
4830 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4831 parsed_valid_hugepagesz = true;
4832 return 1;
4833}
4834__setup("hugepagesz=", hugepagesz_setup);
4835
4836/*
4837 * default_hugepagesz command line input
4838 * Only one instance of default_hugepagesz allowed on command line.
4839 */
4840static int __init default_hugepagesz_setup(char *s)
4841{
4842 unsigned long size;
4843 int i;
4844
4845 parsed_valid_hugepagesz = false;
4846 if (parsed_default_hugepagesz) {
4847 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4848 return 1;
4849 }
4850
4851 size = (unsigned long)memparse(s, NULL);
4852
4853 if (!arch_hugetlb_valid_size(size)) {
4854 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4855 return 1;
4856 }
4857
4858 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4859 parsed_valid_hugepagesz = true;
4860 parsed_default_hugepagesz = true;
4861 default_hstate_idx = hstate_index(size_to_hstate(size));
4862
4863 /*
4864 * The number of default huge pages (for this size) could have been
4865 * specified as the first hugetlb parameter: hugepages=X. If so,
4866 * then default_hstate_max_huge_pages is set. If the default huge
4867 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4868 * allocated here from bootmem allocator.
4869 */
4870 if (default_hstate_max_huge_pages) {
4871 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4872 for_each_online_node(i)
4873 default_hstate.max_huge_pages_node[i] =
4874 default_hugepages_in_node[i];
4875 if (hstate_is_gigantic(&default_hstate))
4876 hugetlb_hstate_alloc_pages(&default_hstate);
4877 default_hstate_max_huge_pages = 0;
4878 }
4879
4880 return 1;
4881}
4882__setup("default_hugepagesz=", default_hugepagesz_setup);
4883
4884static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4885{
4886#ifdef CONFIG_NUMA
4887 struct mempolicy *mpol = get_task_policy(current);
4888
4889 /*
4890 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4891 * (from policy_nodemask) specifically for hugetlb case
4892 */
4893 if (mpol->mode == MPOL_BIND &&
4894 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4895 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4896 return &mpol->nodes;
4897#endif
4898 return NULL;
4899}
4900
4901static unsigned int allowed_mems_nr(struct hstate *h)
4902{
4903 int node;
4904 unsigned int nr = 0;
4905 nodemask_t *mbind_nodemask;
4906 unsigned int *array = h->free_huge_pages_node;
4907 gfp_t gfp_mask = htlb_alloc_mask(h);
4908
4909 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4910 for_each_node_mask(node, cpuset_current_mems_allowed) {
4911 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4912 nr += array[node];
4913 }
4914
4915 return nr;
4916}
4917
4918#ifdef CONFIG_SYSCTL
4919static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4920 void *buffer, size_t *length,
4921 loff_t *ppos, unsigned long *out)
4922{
4923 struct ctl_table dup_table;
4924
4925 /*
4926 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4927 * can duplicate the @table and alter the duplicate of it.
4928 */
4929 dup_table = *table;
4930 dup_table.data = out;
4931
4932 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4933}
4934
4935static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4936 struct ctl_table *table, int write,
4937 void *buffer, size_t *length, loff_t *ppos)
4938{
4939 struct hstate *h = &default_hstate;
4940 unsigned long tmp = h->max_huge_pages;
4941 int ret;
4942
4943 if (!hugepages_supported())
4944 return -EOPNOTSUPP;
4945
4946 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4947 &tmp);
4948 if (ret)
4949 goto out;
4950
4951 if (write)
4952 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4953 NUMA_NO_NODE, tmp, *length);
4954out:
4955 return ret;
4956}
4957
4958static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4959 void *buffer, size_t *length, loff_t *ppos)
4960{
4961
4962 return hugetlb_sysctl_handler_common(false, table, write,
4963 buffer, length, ppos);
4964}
4965
4966#ifdef CONFIG_NUMA
4967static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4968 void *buffer, size_t *length, loff_t *ppos)
4969{
4970 return hugetlb_sysctl_handler_common(true, table, write,
4971 buffer, length, ppos);
4972}
4973#endif /* CONFIG_NUMA */
4974
4975static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4976 void *buffer, size_t *length, loff_t *ppos)
4977{
4978 struct hstate *h = &default_hstate;
4979 unsigned long tmp;
4980 int ret;
4981
4982 if (!hugepages_supported())
4983 return -EOPNOTSUPP;
4984
4985 tmp = h->nr_overcommit_huge_pages;
4986
4987 if (write && hstate_is_gigantic(h))
4988 return -EINVAL;
4989
4990 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4991 &tmp);
4992 if (ret)
4993 goto out;
4994
4995 if (write) {
4996 spin_lock_irq(&hugetlb_lock);
4997 h->nr_overcommit_huge_pages = tmp;
4998 spin_unlock_irq(&hugetlb_lock);
4999 }
5000out:
5001 return ret;
5002}
5003
5004static struct ctl_table hugetlb_table[] = {
5005 {
5006 .procname = "nr_hugepages",
5007 .data = NULL,
5008 .maxlen = sizeof(unsigned long),
5009 .mode = 0644,
5010 .proc_handler = hugetlb_sysctl_handler,
5011 },
5012#ifdef CONFIG_NUMA
5013 {
5014 .procname = "nr_hugepages_mempolicy",
5015 .data = NULL,
5016 .maxlen = sizeof(unsigned long),
5017 .mode = 0644,
5018 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5019 },
5020#endif
5021 {
5022 .procname = "hugetlb_shm_group",
5023 .data = &sysctl_hugetlb_shm_group,
5024 .maxlen = sizeof(gid_t),
5025 .mode = 0644,
5026 .proc_handler = proc_dointvec,
5027 },
5028 {
5029 .procname = "nr_overcommit_hugepages",
5030 .data = NULL,
5031 .maxlen = sizeof(unsigned long),
5032 .mode = 0644,
5033 .proc_handler = hugetlb_overcommit_handler,
5034 },
5035 { }
5036};
5037
5038static void hugetlb_sysctl_init(void)
5039{
5040 register_sysctl_init("vm", hugetlb_table);
5041}
5042#endif /* CONFIG_SYSCTL */
5043
5044void hugetlb_report_meminfo(struct seq_file *m)
5045{
5046 struct hstate *h;
5047 unsigned long total = 0;
5048
5049 if (!hugepages_supported())
5050 return;
5051
5052 for_each_hstate(h) {
5053 unsigned long count = h->nr_huge_pages;
5054
5055 total += huge_page_size(h) * count;
5056
5057 if (h == &default_hstate)
5058 seq_printf(m,
5059 "HugePages_Total: %5lu\n"
5060 "HugePages_Free: %5lu\n"
5061 "HugePages_Rsvd: %5lu\n"
5062 "HugePages_Surp: %5lu\n"
5063 "Hugepagesize: %8lu kB\n",
5064 count,
5065 h->free_huge_pages,
5066 h->resv_huge_pages,
5067 h->surplus_huge_pages,
5068 huge_page_size(h) / SZ_1K);
5069 }
5070
5071 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5072}
5073
5074int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5075{
5076 struct hstate *h = &default_hstate;
5077
5078 if (!hugepages_supported())
5079 return 0;
5080
5081 return sysfs_emit_at(buf, len,
5082 "Node %d HugePages_Total: %5u\n"
5083 "Node %d HugePages_Free: %5u\n"
5084 "Node %d HugePages_Surp: %5u\n",
5085 nid, h->nr_huge_pages_node[nid],
5086 nid, h->free_huge_pages_node[nid],
5087 nid, h->surplus_huge_pages_node[nid]);
5088}
5089
5090void hugetlb_show_meminfo_node(int nid)
5091{
5092 struct hstate *h;
5093
5094 if (!hugepages_supported())
5095 return;
5096
5097 for_each_hstate(h)
5098 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5099 nid,
5100 h->nr_huge_pages_node[nid],
5101 h->free_huge_pages_node[nid],
5102 h->surplus_huge_pages_node[nid],
5103 huge_page_size(h) / SZ_1K);
5104}
5105
5106void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5107{
5108 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5109 K(atomic_long_read(&mm->hugetlb_usage)));
5110}
5111
5112/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5113unsigned long hugetlb_total_pages(void)
5114{
5115 struct hstate *h;
5116 unsigned long nr_total_pages = 0;
5117
5118 for_each_hstate(h)
5119 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5120 return nr_total_pages;
5121}
5122
5123static int hugetlb_acct_memory(struct hstate *h, long delta)
5124{
5125 int ret = -ENOMEM;
5126
5127 if (!delta)
5128 return 0;
5129
5130 spin_lock_irq(&hugetlb_lock);
5131 /*
5132 * When cpuset is configured, it breaks the strict hugetlb page
5133 * reservation as the accounting is done on a global variable. Such
5134 * reservation is completely rubbish in the presence of cpuset because
5135 * the reservation is not checked against page availability for the
5136 * current cpuset. Application can still potentially OOM'ed by kernel
5137 * with lack of free htlb page in cpuset that the task is in.
5138 * Attempt to enforce strict accounting with cpuset is almost
5139 * impossible (or too ugly) because cpuset is too fluid that
5140 * task or memory node can be dynamically moved between cpusets.
5141 *
5142 * The change of semantics for shared hugetlb mapping with cpuset is
5143 * undesirable. However, in order to preserve some of the semantics,
5144 * we fall back to check against current free page availability as
5145 * a best attempt and hopefully to minimize the impact of changing
5146 * semantics that cpuset has.
5147 *
5148 * Apart from cpuset, we also have memory policy mechanism that
5149 * also determines from which node the kernel will allocate memory
5150 * in a NUMA system. So similar to cpuset, we also should consider
5151 * the memory policy of the current task. Similar to the description
5152 * above.
5153 */
5154 if (delta > 0) {
5155 if (gather_surplus_pages(h, delta) < 0)
5156 goto out;
5157
5158 if (delta > allowed_mems_nr(h)) {
5159 return_unused_surplus_pages(h, delta);
5160 goto out;
5161 }
5162 }
5163
5164 ret = 0;
5165 if (delta < 0)
5166 return_unused_surplus_pages(h, (unsigned long) -delta);
5167
5168out:
5169 spin_unlock_irq(&hugetlb_lock);
5170 return ret;
5171}
5172
5173static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5174{
5175 struct resv_map *resv = vma_resv_map(vma);
5176
5177 /*
5178 * HPAGE_RESV_OWNER indicates a private mapping.
5179 * This new VMA should share its siblings reservation map if present.
5180 * The VMA will only ever have a valid reservation map pointer where
5181 * it is being copied for another still existing VMA. As that VMA
5182 * has a reference to the reservation map it cannot disappear until
5183 * after this open call completes. It is therefore safe to take a
5184 * new reference here without additional locking.
5185 */
5186 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5187 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5188 kref_get(&resv->refs);
5189 }
5190
5191 /*
5192 * vma_lock structure for sharable mappings is vma specific.
5193 * Clear old pointer (if copied via vm_area_dup) and allocate
5194 * new structure. Before clearing, make sure vma_lock is not
5195 * for this vma.
5196 */
5197 if (vma->vm_flags & VM_MAYSHARE) {
5198 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5199
5200 if (vma_lock) {
5201 if (vma_lock->vma != vma) {
5202 vma->vm_private_data = NULL;
5203 hugetlb_vma_lock_alloc(vma);
5204 } else
5205 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5206 } else
5207 hugetlb_vma_lock_alloc(vma);
5208 }
5209}
5210
5211static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5212{
5213 struct hstate *h = hstate_vma(vma);
5214 struct resv_map *resv;
5215 struct hugepage_subpool *spool = subpool_vma(vma);
5216 unsigned long reserve, start, end;
5217 long gbl_reserve;
5218
5219 hugetlb_vma_lock_free(vma);
5220
5221 resv = vma_resv_map(vma);
5222 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5223 return;
5224
5225 start = vma_hugecache_offset(h, vma, vma->vm_start);
5226 end = vma_hugecache_offset(h, vma, vma->vm_end);
5227
5228 reserve = (end - start) - region_count(resv, start, end);
5229 hugetlb_cgroup_uncharge_counter(resv, start, end);
5230 if (reserve) {
5231 /*
5232 * Decrement reserve counts. The global reserve count may be
5233 * adjusted if the subpool has a minimum size.
5234 */
5235 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5236 hugetlb_acct_memory(h, -gbl_reserve);
5237 }
5238
5239 kref_put(&resv->refs, resv_map_release);
5240}
5241
5242static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5243{
5244 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5245 return -EINVAL;
5246
5247 /*
5248 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5249 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5250 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5251 */
5252 if (addr & ~PUD_MASK) {
5253 /*
5254 * hugetlb_vm_op_split is called right before we attempt to
5255 * split the VMA. We will need to unshare PMDs in the old and
5256 * new VMAs, so let's unshare before we split.
5257 */
5258 unsigned long floor = addr & PUD_MASK;
5259 unsigned long ceil = floor + PUD_SIZE;
5260
5261 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5262 hugetlb_unshare_pmds(vma, floor, ceil);
5263 }
5264
5265 return 0;
5266}
5267
5268static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5269{
5270 return huge_page_size(hstate_vma(vma));
5271}
5272
5273/*
5274 * We cannot handle pagefaults against hugetlb pages at all. They cause
5275 * handle_mm_fault() to try to instantiate regular-sized pages in the
5276 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5277 * this far.
5278 */
5279static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5280{
5281 BUG();
5282 return 0;
5283}
5284
5285/*
5286 * When a new function is introduced to vm_operations_struct and added
5287 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5288 * This is because under System V memory model, mappings created via
5289 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5290 * their original vm_ops are overwritten with shm_vm_ops.
5291 */
5292const struct vm_operations_struct hugetlb_vm_ops = {
5293 .fault = hugetlb_vm_op_fault,
5294 .open = hugetlb_vm_op_open,
5295 .close = hugetlb_vm_op_close,
5296 .may_split = hugetlb_vm_op_split,
5297 .pagesize = hugetlb_vm_op_pagesize,
5298};
5299
5300static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5301 int writable)
5302{
5303 pte_t entry;
5304 unsigned int shift = huge_page_shift(hstate_vma(vma));
5305
5306 if (writable) {
5307 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5308 vma->vm_page_prot)));
5309 } else {
5310 entry = huge_pte_wrprotect(mk_huge_pte(page,
5311 vma->vm_page_prot));
5312 }
5313 entry = pte_mkyoung(entry);
5314 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5315
5316 return entry;
5317}
5318
5319static void set_huge_ptep_writable(struct vm_area_struct *vma,
5320 unsigned long address, pte_t *ptep)
5321{
5322 pte_t entry;
5323
5324 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5325 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5326 update_mmu_cache(vma, address, ptep);
5327}
5328
5329bool is_hugetlb_entry_migration(pte_t pte)
5330{
5331 swp_entry_t swp;
5332
5333 if (huge_pte_none(pte) || pte_present(pte))
5334 return false;
5335 swp = pte_to_swp_entry(pte);
5336 if (is_migration_entry(swp))
5337 return true;
5338 else
5339 return false;
5340}
5341
5342bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5343{
5344 swp_entry_t swp;
5345
5346 if (huge_pte_none(pte) || pte_present(pte))
5347 return false;
5348 swp = pte_to_swp_entry(pte);
5349 if (is_hwpoison_entry(swp))
5350 return true;
5351 else
5352 return false;
5353}
5354
5355static void
5356hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5357 struct folio *new_folio, pte_t old, unsigned long sz)
5358{
5359 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5360
5361 __folio_mark_uptodate(new_folio);
5362 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5363 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5364 newpte = huge_pte_mkuffd_wp(newpte);
5365 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5366 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5367 folio_set_hugetlb_migratable(new_folio);
5368}
5369
5370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5371 struct vm_area_struct *dst_vma,
5372 struct vm_area_struct *src_vma)
5373{
5374 pte_t *src_pte, *dst_pte, entry;
5375 struct folio *pte_folio;
5376 unsigned long addr;
5377 bool cow = is_cow_mapping(src_vma->vm_flags);
5378 struct hstate *h = hstate_vma(src_vma);
5379 unsigned long sz = huge_page_size(h);
5380 unsigned long npages = pages_per_huge_page(h);
5381 struct mmu_notifier_range range;
5382 unsigned long last_addr_mask;
5383 int ret = 0;
5384
5385 if (cow) {
5386 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5387 src_vma->vm_start,
5388 src_vma->vm_end);
5389 mmu_notifier_invalidate_range_start(&range);
5390 vma_assert_write_locked(src_vma);
5391 raw_write_seqcount_begin(&src->write_protect_seq);
5392 } else {
5393 /*
5394 * For shared mappings the vma lock must be held before
5395 * calling hugetlb_walk() in the src vma. Otherwise, the
5396 * returned ptep could go away if part of a shared pmd and
5397 * another thread calls huge_pmd_unshare.
5398 */
5399 hugetlb_vma_lock_read(src_vma);
5400 }
5401
5402 last_addr_mask = hugetlb_mask_last_page(h);
5403 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5404 spinlock_t *src_ptl, *dst_ptl;
5405 src_pte = hugetlb_walk(src_vma, addr, sz);
5406 if (!src_pte) {
5407 addr |= last_addr_mask;
5408 continue;
5409 }
5410 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5411 if (!dst_pte) {
5412 ret = -ENOMEM;
5413 break;
5414 }
5415
5416 /*
5417 * If the pagetables are shared don't copy or take references.
5418 *
5419 * dst_pte == src_pte is the common case of src/dest sharing.
5420 * However, src could have 'unshared' and dst shares with
5421 * another vma. So page_count of ptep page is checked instead
5422 * to reliably determine whether pte is shared.
5423 */
5424 if (page_count(virt_to_page(dst_pte)) > 1) {
5425 addr |= last_addr_mask;
5426 continue;
5427 }
5428
5429 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5430 src_ptl = huge_pte_lockptr(h, src, src_pte);
5431 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5432 entry = huge_ptep_get(src_pte);
5433again:
5434 if (huge_pte_none(entry)) {
5435 /*
5436 * Skip if src entry none.
5437 */
5438 ;
5439 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5440 if (!userfaultfd_wp(dst_vma))
5441 entry = huge_pte_clear_uffd_wp(entry);
5442 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5443 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5444 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5445 bool uffd_wp = pte_swp_uffd_wp(entry);
5446
5447 if (!is_readable_migration_entry(swp_entry) && cow) {
5448 /*
5449 * COW mappings require pages in both
5450 * parent and child to be set to read.
5451 */
5452 swp_entry = make_readable_migration_entry(
5453 swp_offset(swp_entry));
5454 entry = swp_entry_to_pte(swp_entry);
5455 if (userfaultfd_wp(src_vma) && uffd_wp)
5456 entry = pte_swp_mkuffd_wp(entry);
5457 set_huge_pte_at(src, addr, src_pte, entry, sz);
5458 }
5459 if (!userfaultfd_wp(dst_vma))
5460 entry = huge_pte_clear_uffd_wp(entry);
5461 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5462 } else if (unlikely(is_pte_marker(entry))) {
5463 pte_marker marker = copy_pte_marker(
5464 pte_to_swp_entry(entry), dst_vma);
5465
5466 if (marker)
5467 set_huge_pte_at(dst, addr, dst_pte,
5468 make_pte_marker(marker), sz);
5469 } else {
5470 entry = huge_ptep_get(src_pte);
5471 pte_folio = page_folio(pte_page(entry));
5472 folio_get(pte_folio);
5473
5474 /*
5475 * Failing to duplicate the anon rmap is a rare case
5476 * where we see pinned hugetlb pages while they're
5477 * prone to COW. We need to do the COW earlier during
5478 * fork.
5479 *
5480 * When pre-allocating the page or copying data, we
5481 * need to be without the pgtable locks since we could
5482 * sleep during the process.
5483 */
5484 if (!folio_test_anon(pte_folio)) {
5485 hugetlb_add_file_rmap(pte_folio);
5486 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5487 pte_t src_pte_old = entry;
5488 struct folio *new_folio;
5489
5490 spin_unlock(src_ptl);
5491 spin_unlock(dst_ptl);
5492 /* Do not use reserve as it's private owned */
5493 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5494 if (IS_ERR(new_folio)) {
5495 folio_put(pte_folio);
5496 ret = PTR_ERR(new_folio);
5497 break;
5498 }
5499 ret = copy_user_large_folio(new_folio,
5500 pte_folio,
5501 addr, dst_vma);
5502 folio_put(pte_folio);
5503 if (ret) {
5504 folio_put(new_folio);
5505 break;
5506 }
5507
5508 /* Install the new hugetlb folio if src pte stable */
5509 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5510 src_ptl = huge_pte_lockptr(h, src, src_pte);
5511 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5512 entry = huge_ptep_get(src_pte);
5513 if (!pte_same(src_pte_old, entry)) {
5514 restore_reserve_on_error(h, dst_vma, addr,
5515 new_folio);
5516 folio_put(new_folio);
5517 /* huge_ptep of dst_pte won't change as in child */
5518 goto again;
5519 }
5520 hugetlb_install_folio(dst_vma, dst_pte, addr,
5521 new_folio, src_pte_old, sz);
5522 spin_unlock(src_ptl);
5523 spin_unlock(dst_ptl);
5524 continue;
5525 }
5526
5527 if (cow) {
5528 /*
5529 * No need to notify as we are downgrading page
5530 * table protection not changing it to point
5531 * to a new page.
5532 *
5533 * See Documentation/mm/mmu_notifier.rst
5534 */
5535 huge_ptep_set_wrprotect(src, addr, src_pte);
5536 entry = huge_pte_wrprotect(entry);
5537 }
5538
5539 if (!userfaultfd_wp(dst_vma))
5540 entry = huge_pte_clear_uffd_wp(entry);
5541
5542 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5543 hugetlb_count_add(npages, dst);
5544 }
5545 spin_unlock(src_ptl);
5546 spin_unlock(dst_ptl);
5547 }
5548
5549 if (cow) {
5550 raw_write_seqcount_end(&src->write_protect_seq);
5551 mmu_notifier_invalidate_range_end(&range);
5552 } else {
5553 hugetlb_vma_unlock_read(src_vma);
5554 }
5555
5556 return ret;
5557}
5558
5559static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5560 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5561 unsigned long sz)
5562{
5563 struct hstate *h = hstate_vma(vma);
5564 struct mm_struct *mm = vma->vm_mm;
5565 spinlock_t *src_ptl, *dst_ptl;
5566 pte_t pte;
5567
5568 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5569 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5570
5571 /*
5572 * We don't have to worry about the ordering of src and dst ptlocks
5573 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5574 */
5575 if (src_ptl != dst_ptl)
5576 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5577
5578 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5579 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5580
5581 if (src_ptl != dst_ptl)
5582 spin_unlock(src_ptl);
5583 spin_unlock(dst_ptl);
5584}
5585
5586int move_hugetlb_page_tables(struct vm_area_struct *vma,
5587 struct vm_area_struct *new_vma,
5588 unsigned long old_addr, unsigned long new_addr,
5589 unsigned long len)
5590{
5591 struct hstate *h = hstate_vma(vma);
5592 struct address_space *mapping = vma->vm_file->f_mapping;
5593 unsigned long sz = huge_page_size(h);
5594 struct mm_struct *mm = vma->vm_mm;
5595 unsigned long old_end = old_addr + len;
5596 unsigned long last_addr_mask;
5597 pte_t *src_pte, *dst_pte;
5598 struct mmu_notifier_range range;
5599 bool shared_pmd = false;
5600
5601 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5602 old_end);
5603 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5604 /*
5605 * In case of shared PMDs, we should cover the maximum possible
5606 * range.
5607 */
5608 flush_cache_range(vma, range.start, range.end);
5609
5610 mmu_notifier_invalidate_range_start(&range);
5611 last_addr_mask = hugetlb_mask_last_page(h);
5612 /* Prevent race with file truncation */
5613 hugetlb_vma_lock_write(vma);
5614 i_mmap_lock_write(mapping);
5615 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5616 src_pte = hugetlb_walk(vma, old_addr, sz);
5617 if (!src_pte) {
5618 old_addr |= last_addr_mask;
5619 new_addr |= last_addr_mask;
5620 continue;
5621 }
5622 if (huge_pte_none(huge_ptep_get(src_pte)))
5623 continue;
5624
5625 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5626 shared_pmd = true;
5627 old_addr |= last_addr_mask;
5628 new_addr |= last_addr_mask;
5629 continue;
5630 }
5631
5632 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5633 if (!dst_pte)
5634 break;
5635
5636 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5637 }
5638
5639 if (shared_pmd)
5640 flush_hugetlb_tlb_range(vma, range.start, range.end);
5641 else
5642 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5643 mmu_notifier_invalidate_range_end(&range);
5644 i_mmap_unlock_write(mapping);
5645 hugetlb_vma_unlock_write(vma);
5646
5647 return len + old_addr - old_end;
5648}
5649
5650void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5651 unsigned long start, unsigned long end,
5652 struct page *ref_page, zap_flags_t zap_flags)
5653{
5654 struct mm_struct *mm = vma->vm_mm;
5655 unsigned long address;
5656 pte_t *ptep;
5657 pte_t pte;
5658 spinlock_t *ptl;
5659 struct page *page;
5660 struct hstate *h = hstate_vma(vma);
5661 unsigned long sz = huge_page_size(h);
5662 bool adjust_reservation = false;
5663 unsigned long last_addr_mask;
5664 bool force_flush = false;
5665
5666 WARN_ON(!is_vm_hugetlb_page(vma));
5667 BUG_ON(start & ~huge_page_mask(h));
5668 BUG_ON(end & ~huge_page_mask(h));
5669
5670 /*
5671 * This is a hugetlb vma, all the pte entries should point
5672 * to huge page.
5673 */
5674 tlb_change_page_size(tlb, sz);
5675 tlb_start_vma(tlb, vma);
5676
5677 last_addr_mask = hugetlb_mask_last_page(h);
5678 address = start;
5679 for (; address < end; address += sz) {
5680 ptep = hugetlb_walk(vma, address, sz);
5681 if (!ptep) {
5682 address |= last_addr_mask;
5683 continue;
5684 }
5685
5686 ptl = huge_pte_lock(h, mm, ptep);
5687 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5688 spin_unlock(ptl);
5689 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5690 force_flush = true;
5691 address |= last_addr_mask;
5692 continue;
5693 }
5694
5695 pte = huge_ptep_get(ptep);
5696 if (huge_pte_none(pte)) {
5697 spin_unlock(ptl);
5698 continue;
5699 }
5700
5701 /*
5702 * Migrating hugepage or HWPoisoned hugepage is already
5703 * unmapped and its refcount is dropped, so just clear pte here.
5704 */
5705 if (unlikely(!pte_present(pte))) {
5706 /*
5707 * If the pte was wr-protected by uffd-wp in any of the
5708 * swap forms, meanwhile the caller does not want to
5709 * drop the uffd-wp bit in this zap, then replace the
5710 * pte with a marker.
5711 */
5712 if (pte_swp_uffd_wp_any(pte) &&
5713 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5714 set_huge_pte_at(mm, address, ptep,
5715 make_pte_marker(PTE_MARKER_UFFD_WP),
5716 sz);
5717 else
5718 huge_pte_clear(mm, address, ptep, sz);
5719 spin_unlock(ptl);
5720 continue;
5721 }
5722
5723 page = pte_page(pte);
5724 /*
5725 * If a reference page is supplied, it is because a specific
5726 * page is being unmapped, not a range. Ensure the page we
5727 * are about to unmap is the actual page of interest.
5728 */
5729 if (ref_page) {
5730 if (page != ref_page) {
5731 spin_unlock(ptl);
5732 continue;
5733 }
5734 /*
5735 * Mark the VMA as having unmapped its page so that
5736 * future faults in this VMA will fail rather than
5737 * looking like data was lost
5738 */
5739 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5740 }
5741
5742 pte = huge_ptep_get_and_clear(mm, address, ptep);
5743 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5744 if (huge_pte_dirty(pte))
5745 set_page_dirty(page);
5746 /* Leave a uffd-wp pte marker if needed */
5747 if (huge_pte_uffd_wp(pte) &&
5748 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5749 set_huge_pte_at(mm, address, ptep,
5750 make_pte_marker(PTE_MARKER_UFFD_WP),
5751 sz);
5752 hugetlb_count_sub(pages_per_huge_page(h), mm);
5753 hugetlb_remove_rmap(page_folio(page));
5754
5755 /*
5756 * Restore the reservation for anonymous page, otherwise the
5757 * backing page could be stolen by someone.
5758 * If there we are freeing a surplus, do not set the restore
5759 * reservation bit.
5760 */
5761 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5762 folio_test_anon(page_folio(page))) {
5763 folio_set_hugetlb_restore_reserve(page_folio(page));
5764 /* Reservation to be adjusted after the spin lock */
5765 adjust_reservation = true;
5766 }
5767
5768 spin_unlock(ptl);
5769
5770 /*
5771 * Adjust the reservation for the region that will have the
5772 * reserve restored. Keep in mind that vma_needs_reservation() changes
5773 * resv->adds_in_progress if it succeeds. If this is not done,
5774 * do_exit() will not see it, and will keep the reservation
5775 * forever.
5776 */
5777 if (adjust_reservation && vma_needs_reservation(h, vma, address))
5778 vma_add_reservation(h, vma, address);
5779
5780 tlb_remove_page_size(tlb, page, huge_page_size(h));
5781 /*
5782 * Bail out after unmapping reference page if supplied
5783 */
5784 if (ref_page)
5785 break;
5786 }
5787 tlb_end_vma(tlb, vma);
5788
5789 /*
5790 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5791 * could defer the flush until now, since by holding i_mmap_rwsem we
5792 * guaranteed that the last refernece would not be dropped. But we must
5793 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5794 * dropped and the last reference to the shared PMDs page might be
5795 * dropped as well.
5796 *
5797 * In theory we could defer the freeing of the PMD pages as well, but
5798 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5799 * detect sharing, so we cannot defer the release of the page either.
5800 * Instead, do flush now.
5801 */
5802 if (force_flush)
5803 tlb_flush_mmu_tlbonly(tlb);
5804}
5805
5806void __hugetlb_zap_begin(struct vm_area_struct *vma,
5807 unsigned long *start, unsigned long *end)
5808{
5809 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5810 return;
5811
5812 adjust_range_if_pmd_sharing_possible(vma, start, end);
5813 hugetlb_vma_lock_write(vma);
5814 if (vma->vm_file)
5815 i_mmap_lock_write(vma->vm_file->f_mapping);
5816}
5817
5818void __hugetlb_zap_end(struct vm_area_struct *vma,
5819 struct zap_details *details)
5820{
5821 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5822
5823 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5824 return;
5825
5826 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5827 /*
5828 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5829 * When the vma_lock is freed, this makes the vma ineligible
5830 * for pmd sharing. And, i_mmap_rwsem is required to set up
5831 * pmd sharing. This is important as page tables for this
5832 * unmapped range will be asynchrously deleted. If the page
5833 * tables are shared, there will be issues when accessed by
5834 * someone else.
5835 */
5836 __hugetlb_vma_unlock_write_free(vma);
5837 } else {
5838 hugetlb_vma_unlock_write(vma);
5839 }
5840
5841 if (vma->vm_file)
5842 i_mmap_unlock_write(vma->vm_file->f_mapping);
5843}
5844
5845void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5846 unsigned long end, struct page *ref_page,
5847 zap_flags_t zap_flags)
5848{
5849 struct mmu_notifier_range range;
5850 struct mmu_gather tlb;
5851
5852 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5853 start, end);
5854 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5855 mmu_notifier_invalidate_range_start(&range);
5856 tlb_gather_mmu(&tlb, vma->vm_mm);
5857
5858 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5859
5860 mmu_notifier_invalidate_range_end(&range);
5861 tlb_finish_mmu(&tlb);
5862}
5863
5864/*
5865 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5866 * mapping it owns the reserve page for. The intention is to unmap the page
5867 * from other VMAs and let the children be SIGKILLed if they are faulting the
5868 * same region.
5869 */
5870static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5871 struct page *page, unsigned long address)
5872{
5873 struct hstate *h = hstate_vma(vma);
5874 struct vm_area_struct *iter_vma;
5875 struct address_space *mapping;
5876 pgoff_t pgoff;
5877
5878 /*
5879 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5880 * from page cache lookup which is in HPAGE_SIZE units.
5881 */
5882 address = address & huge_page_mask(h);
5883 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5884 vma->vm_pgoff;
5885 mapping = vma->vm_file->f_mapping;
5886
5887 /*
5888 * Take the mapping lock for the duration of the table walk. As
5889 * this mapping should be shared between all the VMAs,
5890 * __unmap_hugepage_range() is called as the lock is already held
5891 */
5892 i_mmap_lock_write(mapping);
5893 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5894 /* Do not unmap the current VMA */
5895 if (iter_vma == vma)
5896 continue;
5897
5898 /*
5899 * Shared VMAs have their own reserves and do not affect
5900 * MAP_PRIVATE accounting but it is possible that a shared
5901 * VMA is using the same page so check and skip such VMAs.
5902 */
5903 if (iter_vma->vm_flags & VM_MAYSHARE)
5904 continue;
5905
5906 /*
5907 * Unmap the page from other VMAs without their own reserves.
5908 * They get marked to be SIGKILLed if they fault in these
5909 * areas. This is because a future no-page fault on this VMA
5910 * could insert a zeroed page instead of the data existing
5911 * from the time of fork. This would look like data corruption
5912 */
5913 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5914 unmap_hugepage_range(iter_vma, address,
5915 address + huge_page_size(h), page, 0);
5916 }
5917 i_mmap_unlock_write(mapping);
5918}
5919
5920/*
5921 * hugetlb_wp() should be called with page lock of the original hugepage held.
5922 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5923 * cannot race with other handlers or page migration.
5924 * Keep the pte_same checks anyway to make transition from the mutex easier.
5925 */
5926static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5927 unsigned long address, pte_t *ptep, unsigned int flags,
5928 struct folio *pagecache_folio, spinlock_t *ptl,
5929 struct vm_fault *vmf)
5930{
5931 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5932 pte_t pte = huge_ptep_get(ptep);
5933 struct hstate *h = hstate_vma(vma);
5934 struct folio *old_folio;
5935 struct folio *new_folio;
5936 int outside_reserve = 0;
5937 vm_fault_t ret = 0;
5938 unsigned long haddr = address & huge_page_mask(h);
5939 struct mmu_notifier_range range;
5940
5941 /*
5942 * Never handle CoW for uffd-wp protected pages. It should be only
5943 * handled when the uffd-wp protection is removed.
5944 *
5945 * Note that only the CoW optimization path (in hugetlb_no_page())
5946 * can trigger this, because hugetlb_fault() will always resolve
5947 * uffd-wp bit first.
5948 */
5949 if (!unshare && huge_pte_uffd_wp(pte))
5950 return 0;
5951
5952 /*
5953 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5954 * PTE mapped R/O such as maybe_mkwrite() would do.
5955 */
5956 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5957 return VM_FAULT_SIGSEGV;
5958
5959 /* Let's take out MAP_SHARED mappings first. */
5960 if (vma->vm_flags & VM_MAYSHARE) {
5961 set_huge_ptep_writable(vma, haddr, ptep);
5962 return 0;
5963 }
5964
5965 old_folio = page_folio(pte_page(pte));
5966
5967 delayacct_wpcopy_start();
5968
5969retry_avoidcopy:
5970 /*
5971 * If no-one else is actually using this page, we're the exclusive
5972 * owner and can reuse this page.
5973 */
5974 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5975 if (!PageAnonExclusive(&old_folio->page)) {
5976 folio_move_anon_rmap(old_folio, vma);
5977 SetPageAnonExclusive(&old_folio->page);
5978 }
5979 if (likely(!unshare))
5980 set_huge_ptep_writable(vma, haddr, ptep);
5981
5982 delayacct_wpcopy_end();
5983 return 0;
5984 }
5985 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5986 PageAnonExclusive(&old_folio->page), &old_folio->page);
5987
5988 /*
5989 * If the process that created a MAP_PRIVATE mapping is about to
5990 * perform a COW due to a shared page count, attempt to satisfy
5991 * the allocation without using the existing reserves. The pagecache
5992 * page is used to determine if the reserve at this address was
5993 * consumed or not. If reserves were used, a partial faulted mapping
5994 * at the time of fork() could consume its reserves on COW instead
5995 * of the full address range.
5996 */
5997 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5998 old_folio != pagecache_folio)
5999 outside_reserve = 1;
6000
6001 folio_get(old_folio);
6002
6003 /*
6004 * Drop page table lock as buddy allocator may be called. It will
6005 * be acquired again before returning to the caller, as expected.
6006 */
6007 spin_unlock(ptl);
6008 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
6009
6010 if (IS_ERR(new_folio)) {
6011 /*
6012 * If a process owning a MAP_PRIVATE mapping fails to COW,
6013 * it is due to references held by a child and an insufficient
6014 * huge page pool. To guarantee the original mappers
6015 * reliability, unmap the page from child processes. The child
6016 * may get SIGKILLed if it later faults.
6017 */
6018 if (outside_reserve) {
6019 struct address_space *mapping = vma->vm_file->f_mapping;
6020 pgoff_t idx;
6021 u32 hash;
6022
6023 folio_put(old_folio);
6024 /*
6025 * Drop hugetlb_fault_mutex and vma_lock before
6026 * unmapping. unmapping needs to hold vma_lock
6027 * in write mode. Dropping vma_lock in read mode
6028 * here is OK as COW mappings do not interact with
6029 * PMD sharing.
6030 *
6031 * Reacquire both after unmap operation.
6032 */
6033 idx = vma_hugecache_offset(h, vma, haddr);
6034 hash = hugetlb_fault_mutex_hash(mapping, idx);
6035 hugetlb_vma_unlock_read(vma);
6036 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6037
6038 unmap_ref_private(mm, vma, &old_folio->page, haddr);
6039
6040 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6041 hugetlb_vma_lock_read(vma);
6042 spin_lock(ptl);
6043 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6044 if (likely(ptep &&
6045 pte_same(huge_ptep_get(ptep), pte)))
6046 goto retry_avoidcopy;
6047 /*
6048 * race occurs while re-acquiring page table
6049 * lock, and our job is done.
6050 */
6051 delayacct_wpcopy_end();
6052 return 0;
6053 }
6054
6055 ret = vmf_error(PTR_ERR(new_folio));
6056 goto out_release_old;
6057 }
6058
6059 /*
6060 * When the original hugepage is shared one, it does not have
6061 * anon_vma prepared.
6062 */
6063 ret = vmf_anon_prepare(vmf);
6064 if (unlikely(ret))
6065 goto out_release_all;
6066
6067 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
6068 ret = VM_FAULT_HWPOISON_LARGE;
6069 goto out_release_all;
6070 }
6071 __folio_mark_uptodate(new_folio);
6072
6073 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
6074 haddr + huge_page_size(h));
6075 mmu_notifier_invalidate_range_start(&range);
6076
6077 /*
6078 * Retake the page table lock to check for racing updates
6079 * before the page tables are altered
6080 */
6081 spin_lock(ptl);
6082 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6083 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
6084 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6085
6086 /* Break COW or unshare */
6087 huge_ptep_clear_flush(vma, haddr, ptep);
6088 hugetlb_remove_rmap(old_folio);
6089 hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
6090 if (huge_pte_uffd_wp(pte))
6091 newpte = huge_pte_mkuffd_wp(newpte);
6092 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
6093 folio_set_hugetlb_migratable(new_folio);
6094 /* Make the old page be freed below */
6095 new_folio = old_folio;
6096 }
6097 spin_unlock(ptl);
6098 mmu_notifier_invalidate_range_end(&range);
6099out_release_all:
6100 /*
6101 * No restore in case of successful pagetable update (Break COW or
6102 * unshare)
6103 */
6104 if (new_folio != old_folio)
6105 restore_reserve_on_error(h, vma, haddr, new_folio);
6106 folio_put(new_folio);
6107out_release_old:
6108 folio_put(old_folio);
6109
6110 spin_lock(ptl); /* Caller expects lock to be held */
6111
6112 delayacct_wpcopy_end();
6113 return ret;
6114}
6115
6116/*
6117 * Return whether there is a pagecache page to back given address within VMA.
6118 */
6119static bool hugetlbfs_pagecache_present(struct hstate *h,
6120 struct vm_area_struct *vma, unsigned long address)
6121{
6122 struct address_space *mapping = vma->vm_file->f_mapping;
6123 pgoff_t idx = linear_page_index(vma, address);
6124 struct folio *folio;
6125
6126 folio = filemap_get_folio(mapping, idx);
6127 if (IS_ERR(folio))
6128 return false;
6129 folio_put(folio);
6130 return true;
6131}
6132
6133int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6134 pgoff_t idx)
6135{
6136 struct inode *inode = mapping->host;
6137 struct hstate *h = hstate_inode(inode);
6138 int err;
6139
6140 idx <<= huge_page_order(h);
6141 __folio_set_locked(folio);
6142 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6143
6144 if (unlikely(err)) {
6145 __folio_clear_locked(folio);
6146 return err;
6147 }
6148 folio_clear_hugetlb_restore_reserve(folio);
6149
6150 /*
6151 * mark folio dirty so that it will not be removed from cache/file
6152 * by non-hugetlbfs specific code paths.
6153 */
6154 folio_mark_dirty(folio);
6155
6156 spin_lock(&inode->i_lock);
6157 inode->i_blocks += blocks_per_huge_page(h);
6158 spin_unlock(&inode->i_lock);
6159 return 0;
6160}
6161
6162static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6163 struct address_space *mapping,
6164 unsigned long reason)
6165{
6166 u32 hash;
6167
6168 /*
6169 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6170 * userfault. Also mmap_lock could be dropped due to handling
6171 * userfault, any vma operation should be careful from here.
6172 */
6173 hugetlb_vma_unlock_read(vmf->vma);
6174 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6175 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6176 return handle_userfault(vmf, reason);
6177}
6178
6179/*
6180 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6181 * false if pte changed or is changing.
6182 */
6183static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6184 pte_t *ptep, pte_t old_pte)
6185{
6186 spinlock_t *ptl;
6187 bool same;
6188
6189 ptl = huge_pte_lock(h, mm, ptep);
6190 same = pte_same(huge_ptep_get(ptep), old_pte);
6191 spin_unlock(ptl);
6192
6193 return same;
6194}
6195
6196static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6197 struct vm_area_struct *vma,
6198 struct address_space *mapping, pgoff_t idx,
6199 unsigned long address, pte_t *ptep,
6200 pte_t old_pte, unsigned int flags,
6201 struct vm_fault *vmf)
6202{
6203 struct hstate *h = hstate_vma(vma);
6204 vm_fault_t ret = VM_FAULT_SIGBUS;
6205 int anon_rmap = 0;
6206 unsigned long size;
6207 struct folio *folio;
6208 pte_t new_pte;
6209 spinlock_t *ptl;
6210 unsigned long haddr = address & huge_page_mask(h);
6211 bool new_folio, new_pagecache_folio = false;
6212 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6213
6214 /*
6215 * Currently, we are forced to kill the process in the event the
6216 * original mapper has unmapped pages from the child due to a failed
6217 * COW/unsharing. Warn that such a situation has occurred as it may not
6218 * be obvious.
6219 */
6220 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6221 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6222 current->pid);
6223 goto out;
6224 }
6225
6226 /*
6227 * Use page lock to guard against racing truncation
6228 * before we get page_table_lock.
6229 */
6230 new_folio = false;
6231 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6232 if (IS_ERR(folio)) {
6233 size = i_size_read(mapping->host) >> huge_page_shift(h);
6234 if (idx >= size)
6235 goto out;
6236 /* Check for page in userfault range */
6237 if (userfaultfd_missing(vma)) {
6238 /*
6239 * Since hugetlb_no_page() was examining pte
6240 * without pgtable lock, we need to re-test under
6241 * lock because the pte may not be stable and could
6242 * have changed from under us. Try to detect
6243 * either changed or during-changing ptes and retry
6244 * properly when needed.
6245 *
6246 * Note that userfaultfd is actually fine with
6247 * false positives (e.g. caused by pte changed),
6248 * but not wrong logical events (e.g. caused by
6249 * reading a pte during changing). The latter can
6250 * confuse the userspace, so the strictness is very
6251 * much preferred. E.g., MISSING event should
6252 * never happen on the page after UFFDIO_COPY has
6253 * correctly installed the page and returned.
6254 */
6255 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6256 ret = 0;
6257 goto out;
6258 }
6259
6260 return hugetlb_handle_userfault(vmf, mapping,
6261 VM_UFFD_MISSING);
6262 }
6263
6264 if (!(vma->vm_flags & VM_MAYSHARE)) {
6265 ret = vmf_anon_prepare(vmf);
6266 if (unlikely(ret))
6267 goto out;
6268 }
6269
6270 folio = alloc_hugetlb_folio(vma, haddr, 0);
6271 if (IS_ERR(folio)) {
6272 /*
6273 * Returning error will result in faulting task being
6274 * sent SIGBUS. The hugetlb fault mutex prevents two
6275 * tasks from racing to fault in the same page which
6276 * could result in false unable to allocate errors.
6277 * Page migration does not take the fault mutex, but
6278 * does a clear then write of pte's under page table
6279 * lock. Page fault code could race with migration,
6280 * notice the clear pte and try to allocate a page
6281 * here. Before returning error, get ptl and make
6282 * sure there really is no pte entry.
6283 */
6284 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6285 ret = vmf_error(PTR_ERR(folio));
6286 else
6287 ret = 0;
6288 goto out;
6289 }
6290 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6291 __folio_mark_uptodate(folio);
6292 new_folio = true;
6293
6294 if (vma->vm_flags & VM_MAYSHARE) {
6295 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6296 if (err) {
6297 /*
6298 * err can't be -EEXIST which implies someone
6299 * else consumed the reservation since hugetlb
6300 * fault mutex is held when add a hugetlb page
6301 * to the page cache. So it's safe to call
6302 * restore_reserve_on_error() here.
6303 */
6304 restore_reserve_on_error(h, vma, haddr, folio);
6305 folio_put(folio);
6306 ret = VM_FAULT_SIGBUS;
6307 goto out;
6308 }
6309 new_pagecache_folio = true;
6310 } else {
6311 folio_lock(folio);
6312 anon_rmap = 1;
6313 }
6314 } else {
6315 /*
6316 * If memory error occurs between mmap() and fault, some process
6317 * don't have hwpoisoned swap entry for errored virtual address.
6318 * So we need to block hugepage fault by PG_hwpoison bit check.
6319 */
6320 if (unlikely(folio_test_hwpoison(folio))) {
6321 ret = VM_FAULT_HWPOISON_LARGE |
6322 VM_FAULT_SET_HINDEX(hstate_index(h));
6323 goto backout_unlocked;
6324 }
6325
6326 /* Check for page in userfault range. */
6327 if (userfaultfd_minor(vma)) {
6328 folio_unlock(folio);
6329 folio_put(folio);
6330 /* See comment in userfaultfd_missing() block above */
6331 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6332 ret = 0;
6333 goto out;
6334 }
6335 return hugetlb_handle_userfault(vmf, mapping,
6336 VM_UFFD_MINOR);
6337 }
6338 }
6339
6340 /*
6341 * If we are going to COW a private mapping later, we examine the
6342 * pending reservations for this page now. This will ensure that
6343 * any allocations necessary to record that reservation occur outside
6344 * the spinlock.
6345 */
6346 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6347 if (vma_needs_reservation(h, vma, haddr) < 0) {
6348 ret = VM_FAULT_OOM;
6349 goto backout_unlocked;
6350 }
6351 /* Just decrements count, does not deallocate */
6352 vma_end_reservation(h, vma, haddr);
6353 }
6354
6355 ptl = huge_pte_lock(h, mm, ptep);
6356 ret = 0;
6357 /* If pte changed from under us, retry */
6358 if (!pte_same(huge_ptep_get(ptep), old_pte))
6359 goto backout;
6360
6361 if (anon_rmap)
6362 hugetlb_add_new_anon_rmap(folio, vma, haddr);
6363 else
6364 hugetlb_add_file_rmap(folio);
6365 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6366 && (vma->vm_flags & VM_SHARED)));
6367 /*
6368 * If this pte was previously wr-protected, keep it wr-protected even
6369 * if populated.
6370 */
6371 if (unlikely(pte_marker_uffd_wp(old_pte)))
6372 new_pte = huge_pte_mkuffd_wp(new_pte);
6373 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6374
6375 hugetlb_count_add(pages_per_huge_page(h), mm);
6376 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6377 /* Optimization, do the COW without a second fault */
6378 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf);
6379 }
6380
6381 spin_unlock(ptl);
6382
6383 /*
6384 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6385 * found in the pagecache may not have hugetlb_migratable if they have
6386 * been isolated for migration.
6387 */
6388 if (new_folio)
6389 folio_set_hugetlb_migratable(folio);
6390
6391 folio_unlock(folio);
6392out:
6393 hugetlb_vma_unlock_read(vma);
6394 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6395 return ret;
6396
6397backout:
6398 spin_unlock(ptl);
6399backout_unlocked:
6400 if (new_folio && !new_pagecache_folio)
6401 restore_reserve_on_error(h, vma, haddr, folio);
6402
6403 folio_unlock(folio);
6404 folio_put(folio);
6405 goto out;
6406}
6407
6408#ifdef CONFIG_SMP
6409u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6410{
6411 unsigned long key[2];
6412 u32 hash;
6413
6414 key[0] = (unsigned long) mapping;
6415 key[1] = idx;
6416
6417 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6418
6419 return hash & (num_fault_mutexes - 1);
6420}
6421#else
6422/*
6423 * For uniprocessor systems we always use a single mutex, so just
6424 * return 0 and avoid the hashing overhead.
6425 */
6426u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6427{
6428 return 0;
6429}
6430#endif
6431
6432vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6433 unsigned long address, unsigned int flags)
6434{
6435 pte_t *ptep, entry;
6436 spinlock_t *ptl;
6437 vm_fault_t ret;
6438 u32 hash;
6439 struct folio *folio = NULL;
6440 struct folio *pagecache_folio = NULL;
6441 struct hstate *h = hstate_vma(vma);
6442 struct address_space *mapping;
6443 int need_wait_lock = 0;
6444 unsigned long haddr = address & huge_page_mask(h);
6445 struct vm_fault vmf = {
6446 .vma = vma,
6447 .address = haddr,
6448 .real_address = address,
6449 .flags = flags,
6450 .pgoff = vma_hugecache_offset(h, vma, haddr),
6451 /* TODO: Track hugetlb faults using vm_fault */
6452
6453 /*
6454 * Some fields may not be initialized, be careful as it may
6455 * be hard to debug if called functions make assumptions
6456 */
6457 };
6458
6459 /*
6460 * Serialize hugepage allocation and instantiation, so that we don't
6461 * get spurious allocation failures if two CPUs race to instantiate
6462 * the same page in the page cache.
6463 */
6464 mapping = vma->vm_file->f_mapping;
6465 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6466 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6467
6468 /*
6469 * Acquire vma lock before calling huge_pte_alloc and hold
6470 * until finished with ptep. This prevents huge_pmd_unshare from
6471 * being called elsewhere and making the ptep no longer valid.
6472 */
6473 hugetlb_vma_lock_read(vma);
6474 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6475 if (!ptep) {
6476 hugetlb_vma_unlock_read(vma);
6477 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6478 return VM_FAULT_OOM;
6479 }
6480
6481 entry = huge_ptep_get(ptep);
6482 if (huge_pte_none_mostly(entry)) {
6483 if (is_pte_marker(entry)) {
6484 pte_marker marker =
6485 pte_marker_get(pte_to_swp_entry(entry));
6486
6487 if (marker & PTE_MARKER_POISONED) {
6488 ret = VM_FAULT_HWPOISON_LARGE;
6489 goto out_mutex;
6490 }
6491 }
6492
6493 /*
6494 * Other PTE markers should be handled the same way as none PTE.
6495 *
6496 * hugetlb_no_page will drop vma lock and hugetlb fault
6497 * mutex internally, which make us return immediately.
6498 */
6499 return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address,
6500 ptep, entry, flags, &vmf);
6501 }
6502
6503 ret = 0;
6504
6505 /*
6506 * entry could be a migration/hwpoison entry at this point, so this
6507 * check prevents the kernel from going below assuming that we have
6508 * an active hugepage in pagecache. This goto expects the 2nd page
6509 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6510 * properly handle it.
6511 */
6512 if (!pte_present(entry)) {
6513 if (unlikely(is_hugetlb_entry_migration(entry))) {
6514 /*
6515 * Release the hugetlb fault lock now, but retain
6516 * the vma lock, because it is needed to guard the
6517 * huge_pte_lockptr() later in
6518 * migration_entry_wait_huge(). The vma lock will
6519 * be released there.
6520 */
6521 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6522 migration_entry_wait_huge(vma, ptep);
6523 return 0;
6524 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6525 ret = VM_FAULT_HWPOISON_LARGE |
6526 VM_FAULT_SET_HINDEX(hstate_index(h));
6527 goto out_mutex;
6528 }
6529
6530 /*
6531 * If we are going to COW/unshare the mapping later, we examine the
6532 * pending reservations for this page now. This will ensure that any
6533 * allocations necessary to record that reservation occur outside the
6534 * spinlock. Also lookup the pagecache page now as it is used to
6535 * determine if a reservation has been consumed.
6536 */
6537 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6538 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6539 if (vma_needs_reservation(h, vma, haddr) < 0) {
6540 ret = VM_FAULT_OOM;
6541 goto out_mutex;
6542 }
6543 /* Just decrements count, does not deallocate */
6544 vma_end_reservation(h, vma, haddr);
6545
6546 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6547 vmf.pgoff);
6548 if (IS_ERR(pagecache_folio))
6549 pagecache_folio = NULL;
6550 }
6551
6552 ptl = huge_pte_lock(h, mm, ptep);
6553
6554 /* Check for a racing update before calling hugetlb_wp() */
6555 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6556 goto out_ptl;
6557
6558 /* Handle userfault-wp first, before trying to lock more pages */
6559 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6560 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6561 if (!userfaultfd_wp_async(vma)) {
6562 spin_unlock(ptl);
6563 if (pagecache_folio) {
6564 folio_unlock(pagecache_folio);
6565 folio_put(pagecache_folio);
6566 }
6567 hugetlb_vma_unlock_read(vma);
6568 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6569 return handle_userfault(&vmf, VM_UFFD_WP);
6570 }
6571
6572 entry = huge_pte_clear_uffd_wp(entry);
6573 set_huge_pte_at(mm, haddr, ptep, entry,
6574 huge_page_size(hstate_vma(vma)));
6575 /* Fallthrough to CoW */
6576 }
6577
6578 /*
6579 * hugetlb_wp() requires page locks of pte_page(entry) and
6580 * pagecache_folio, so here we need take the former one
6581 * when folio != pagecache_folio or !pagecache_folio.
6582 */
6583 folio = page_folio(pte_page(entry));
6584 if (folio != pagecache_folio)
6585 if (!folio_trylock(folio)) {
6586 need_wait_lock = 1;
6587 goto out_ptl;
6588 }
6589
6590 folio_get(folio);
6591
6592 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6593 if (!huge_pte_write(entry)) {
6594 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6595 pagecache_folio, ptl, &vmf);
6596 goto out_put_page;
6597 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6598 entry = huge_pte_mkdirty(entry);
6599 }
6600 }
6601 entry = pte_mkyoung(entry);
6602 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6603 flags & FAULT_FLAG_WRITE))
6604 update_mmu_cache(vma, haddr, ptep);
6605out_put_page:
6606 if (folio != pagecache_folio)
6607 folio_unlock(folio);
6608 folio_put(folio);
6609out_ptl:
6610 spin_unlock(ptl);
6611
6612 if (pagecache_folio) {
6613 folio_unlock(pagecache_folio);
6614 folio_put(pagecache_folio);
6615 }
6616out_mutex:
6617 hugetlb_vma_unlock_read(vma);
6618 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6619 /*
6620 * Generally it's safe to hold refcount during waiting page lock. But
6621 * here we just wait to defer the next page fault to avoid busy loop and
6622 * the page is not used after unlocked before returning from the current
6623 * page fault. So we are safe from accessing freed page, even if we wait
6624 * here without taking refcount.
6625 */
6626 if (need_wait_lock)
6627 folio_wait_locked(folio);
6628 return ret;
6629}
6630
6631#ifdef CONFIG_USERFAULTFD
6632/*
6633 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6634 */
6635static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6636 struct vm_area_struct *vma, unsigned long address)
6637{
6638 struct mempolicy *mpol;
6639 nodemask_t *nodemask;
6640 struct folio *folio;
6641 gfp_t gfp_mask;
6642 int node;
6643
6644 gfp_mask = htlb_alloc_mask(h);
6645 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6646 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6647 mpol_cond_put(mpol);
6648
6649 return folio;
6650}
6651
6652/*
6653 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6654 * with modifications for hugetlb pages.
6655 */
6656int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6657 struct vm_area_struct *dst_vma,
6658 unsigned long dst_addr,
6659 unsigned long src_addr,
6660 uffd_flags_t flags,
6661 struct folio **foliop)
6662{
6663 struct mm_struct *dst_mm = dst_vma->vm_mm;
6664 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6665 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6666 struct hstate *h = hstate_vma(dst_vma);
6667 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6668 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6669 unsigned long size;
6670 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6671 pte_t _dst_pte;
6672 spinlock_t *ptl;
6673 int ret = -ENOMEM;
6674 struct folio *folio;
6675 int writable;
6676 bool folio_in_pagecache = false;
6677
6678 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6679 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6680
6681 /* Don't overwrite any existing PTEs (even markers) */
6682 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6683 spin_unlock(ptl);
6684 return -EEXIST;
6685 }
6686
6687 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6688 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6689 huge_page_size(h));
6690
6691 /* No need to invalidate - it was non-present before */
6692 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6693
6694 spin_unlock(ptl);
6695 return 0;
6696 }
6697
6698 if (is_continue) {
6699 ret = -EFAULT;
6700 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6701 if (IS_ERR(folio))
6702 goto out;
6703 folio_in_pagecache = true;
6704 } else if (!*foliop) {
6705 /* If a folio already exists, then it's UFFDIO_COPY for
6706 * a non-missing case. Return -EEXIST.
6707 */
6708 if (vm_shared &&
6709 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6710 ret = -EEXIST;
6711 goto out;
6712 }
6713
6714 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6715 if (IS_ERR(folio)) {
6716 ret = -ENOMEM;
6717 goto out;
6718 }
6719
6720 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6721 false);
6722
6723 /* fallback to copy_from_user outside mmap_lock */
6724 if (unlikely(ret)) {
6725 ret = -ENOENT;
6726 /* Free the allocated folio which may have
6727 * consumed a reservation.
6728 */
6729 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6730 folio_put(folio);
6731
6732 /* Allocate a temporary folio to hold the copied
6733 * contents.
6734 */
6735 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6736 if (!folio) {
6737 ret = -ENOMEM;
6738 goto out;
6739 }
6740 *foliop = folio;
6741 /* Set the outparam foliop and return to the caller to
6742 * copy the contents outside the lock. Don't free the
6743 * folio.
6744 */
6745 goto out;
6746 }
6747 } else {
6748 if (vm_shared &&
6749 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6750 folio_put(*foliop);
6751 ret = -EEXIST;
6752 *foliop = NULL;
6753 goto out;
6754 }
6755
6756 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6757 if (IS_ERR(folio)) {
6758 folio_put(*foliop);
6759 ret = -ENOMEM;
6760 *foliop = NULL;
6761 goto out;
6762 }
6763 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6764 folio_put(*foliop);
6765 *foliop = NULL;
6766 if (ret) {
6767 folio_put(folio);
6768 goto out;
6769 }
6770 }
6771
6772 /*
6773 * If we just allocated a new page, we need a memory barrier to ensure
6774 * that preceding stores to the page become visible before the
6775 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6776 * is what we need.
6777 *
6778 * In the case where we have not allocated a new page (is_continue),
6779 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6780 * an earlier smp_wmb() to ensure that prior stores will be visible
6781 * before the set_pte_at() write.
6782 */
6783 if (!is_continue)
6784 __folio_mark_uptodate(folio);
6785 else
6786 WARN_ON_ONCE(!folio_test_uptodate(folio));
6787
6788 /* Add shared, newly allocated pages to the page cache. */
6789 if (vm_shared && !is_continue) {
6790 size = i_size_read(mapping->host) >> huge_page_shift(h);
6791 ret = -EFAULT;
6792 if (idx >= size)
6793 goto out_release_nounlock;
6794
6795 /*
6796 * Serialization between remove_inode_hugepages() and
6797 * hugetlb_add_to_page_cache() below happens through the
6798 * hugetlb_fault_mutex_table that here must be hold by
6799 * the caller.
6800 */
6801 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6802 if (ret)
6803 goto out_release_nounlock;
6804 folio_in_pagecache = true;
6805 }
6806
6807 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6808
6809 ret = -EIO;
6810 if (folio_test_hwpoison(folio))
6811 goto out_release_unlock;
6812
6813 /*
6814 * We allow to overwrite a pte marker: consider when both MISSING|WP
6815 * registered, we firstly wr-protect a none pte which has no page cache
6816 * page backing it, then access the page.
6817 */
6818 ret = -EEXIST;
6819 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6820 goto out_release_unlock;
6821
6822 if (folio_in_pagecache)
6823 hugetlb_add_file_rmap(folio);
6824 else
6825 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6826
6827 /*
6828 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6829 * with wp flag set, don't set pte write bit.
6830 */
6831 if (wp_enabled || (is_continue && !vm_shared))
6832 writable = 0;
6833 else
6834 writable = dst_vma->vm_flags & VM_WRITE;
6835
6836 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6837 /*
6838 * Always mark UFFDIO_COPY page dirty; note that this may not be
6839 * extremely important for hugetlbfs for now since swapping is not
6840 * supported, but we should still be clear in that this page cannot be
6841 * thrown away at will, even if write bit not set.
6842 */
6843 _dst_pte = huge_pte_mkdirty(_dst_pte);
6844 _dst_pte = pte_mkyoung(_dst_pte);
6845
6846 if (wp_enabled)
6847 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6848
6849 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6850
6851 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6852
6853 /* No need to invalidate - it was non-present before */
6854 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6855
6856 spin_unlock(ptl);
6857 if (!is_continue)
6858 folio_set_hugetlb_migratable(folio);
6859 if (vm_shared || is_continue)
6860 folio_unlock(folio);
6861 ret = 0;
6862out:
6863 return ret;
6864out_release_unlock:
6865 spin_unlock(ptl);
6866 if (vm_shared || is_continue)
6867 folio_unlock(folio);
6868out_release_nounlock:
6869 if (!folio_in_pagecache)
6870 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6871 folio_put(folio);
6872 goto out;
6873}
6874#endif /* CONFIG_USERFAULTFD */
6875
6876struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6877 unsigned long address, unsigned int flags,
6878 unsigned int *page_mask)
6879{
6880 struct hstate *h = hstate_vma(vma);
6881 struct mm_struct *mm = vma->vm_mm;
6882 unsigned long haddr = address & huge_page_mask(h);
6883 struct page *page = NULL;
6884 spinlock_t *ptl;
6885 pte_t *pte, entry;
6886 int ret;
6887
6888 hugetlb_vma_lock_read(vma);
6889 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6890 if (!pte)
6891 goto out_unlock;
6892
6893 ptl = huge_pte_lock(h, mm, pte);
6894 entry = huge_ptep_get(pte);
6895 if (pte_present(entry)) {
6896 page = pte_page(entry);
6897
6898 if (!huge_pte_write(entry)) {
6899 if (flags & FOLL_WRITE) {
6900 page = NULL;
6901 goto out;
6902 }
6903
6904 if (gup_must_unshare(vma, flags, page)) {
6905 /* Tell the caller to do unsharing */
6906 page = ERR_PTR(-EMLINK);
6907 goto out;
6908 }
6909 }
6910
6911 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6912
6913 /*
6914 * Note that page may be a sub-page, and with vmemmap
6915 * optimizations the page struct may be read only.
6916 * try_grab_page() will increase the ref count on the
6917 * head page, so this will be OK.
6918 *
6919 * try_grab_page() should always be able to get the page here,
6920 * because we hold the ptl lock and have verified pte_present().
6921 */
6922 ret = try_grab_page(page, flags);
6923
6924 if (WARN_ON_ONCE(ret)) {
6925 page = ERR_PTR(ret);
6926 goto out;
6927 }
6928
6929 *page_mask = (1U << huge_page_order(h)) - 1;
6930 }
6931out:
6932 spin_unlock(ptl);
6933out_unlock:
6934 hugetlb_vma_unlock_read(vma);
6935
6936 /*
6937 * Fixup retval for dump requests: if pagecache doesn't exist,
6938 * don't try to allocate a new page but just skip it.
6939 */
6940 if (!page && (flags & FOLL_DUMP) &&
6941 !hugetlbfs_pagecache_present(h, vma, address))
6942 page = ERR_PTR(-EFAULT);
6943
6944 return page;
6945}
6946
6947long hugetlb_change_protection(struct vm_area_struct *vma,
6948 unsigned long address, unsigned long end,
6949 pgprot_t newprot, unsigned long cp_flags)
6950{
6951 struct mm_struct *mm = vma->vm_mm;
6952 unsigned long start = address;
6953 pte_t *ptep;
6954 pte_t pte;
6955 struct hstate *h = hstate_vma(vma);
6956 long pages = 0, psize = huge_page_size(h);
6957 bool shared_pmd = false;
6958 struct mmu_notifier_range range;
6959 unsigned long last_addr_mask;
6960 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6961 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6962
6963 /*
6964 * In the case of shared PMDs, the area to flush could be beyond
6965 * start/end. Set range.start/range.end to cover the maximum possible
6966 * range if PMD sharing is possible.
6967 */
6968 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6969 0, mm, start, end);
6970 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6971
6972 BUG_ON(address >= end);
6973 flush_cache_range(vma, range.start, range.end);
6974
6975 mmu_notifier_invalidate_range_start(&range);
6976 hugetlb_vma_lock_write(vma);
6977 i_mmap_lock_write(vma->vm_file->f_mapping);
6978 last_addr_mask = hugetlb_mask_last_page(h);
6979 for (; address < end; address += psize) {
6980 spinlock_t *ptl;
6981 ptep = hugetlb_walk(vma, address, psize);
6982 if (!ptep) {
6983 if (!uffd_wp) {
6984 address |= last_addr_mask;
6985 continue;
6986 }
6987 /*
6988 * Userfaultfd wr-protect requires pgtable
6989 * pre-allocations to install pte markers.
6990 */
6991 ptep = huge_pte_alloc(mm, vma, address, psize);
6992 if (!ptep) {
6993 pages = -ENOMEM;
6994 break;
6995 }
6996 }
6997 ptl = huge_pte_lock(h, mm, ptep);
6998 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6999 /*
7000 * When uffd-wp is enabled on the vma, unshare
7001 * shouldn't happen at all. Warn about it if it
7002 * happened due to some reason.
7003 */
7004 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7005 pages++;
7006 spin_unlock(ptl);
7007 shared_pmd = true;
7008 address |= last_addr_mask;
7009 continue;
7010 }
7011 pte = huge_ptep_get(ptep);
7012 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7013 /* Nothing to do. */
7014 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7015 swp_entry_t entry = pte_to_swp_entry(pte);
7016 struct page *page = pfn_swap_entry_to_page(entry);
7017 pte_t newpte = pte;
7018
7019 if (is_writable_migration_entry(entry)) {
7020 if (PageAnon(page))
7021 entry = make_readable_exclusive_migration_entry(
7022 swp_offset(entry));
7023 else
7024 entry = make_readable_migration_entry(
7025 swp_offset(entry));
7026 newpte = swp_entry_to_pte(entry);
7027 pages++;
7028 }
7029
7030 if (uffd_wp)
7031 newpte = pte_swp_mkuffd_wp(newpte);
7032 else if (uffd_wp_resolve)
7033 newpte = pte_swp_clear_uffd_wp(newpte);
7034 if (!pte_same(pte, newpte))
7035 set_huge_pte_at(mm, address, ptep, newpte, psize);
7036 } else if (unlikely(is_pte_marker(pte))) {
7037 /*
7038 * Do nothing on a poison marker; page is
7039 * corrupted, permissons do not apply. Here
7040 * pte_marker_uffd_wp()==true implies !poison
7041 * because they're mutual exclusive.
7042 */
7043 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7044 /* Safe to modify directly (non-present->none). */
7045 huge_pte_clear(mm, address, ptep, psize);
7046 } else if (!huge_pte_none(pte)) {
7047 pte_t old_pte;
7048 unsigned int shift = huge_page_shift(hstate_vma(vma));
7049
7050 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7051 pte = huge_pte_modify(old_pte, newprot);
7052 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7053 if (uffd_wp)
7054 pte = huge_pte_mkuffd_wp(pte);
7055 else if (uffd_wp_resolve)
7056 pte = huge_pte_clear_uffd_wp(pte);
7057 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7058 pages++;
7059 } else {
7060 /* None pte */
7061 if (unlikely(uffd_wp))
7062 /* Safe to modify directly (none->non-present). */
7063 set_huge_pte_at(mm, address, ptep,
7064 make_pte_marker(PTE_MARKER_UFFD_WP),
7065 psize);
7066 }
7067 spin_unlock(ptl);
7068 }
7069 /*
7070 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7071 * may have cleared our pud entry and done put_page on the page table:
7072 * once we release i_mmap_rwsem, another task can do the final put_page
7073 * and that page table be reused and filled with junk. If we actually
7074 * did unshare a page of pmds, flush the range corresponding to the pud.
7075 */
7076 if (shared_pmd)
7077 flush_hugetlb_tlb_range(vma, range.start, range.end);
7078 else
7079 flush_hugetlb_tlb_range(vma, start, end);
7080 /*
7081 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7082 * downgrading page table protection not changing it to point to a new
7083 * page.
7084 *
7085 * See Documentation/mm/mmu_notifier.rst
7086 */
7087 i_mmap_unlock_write(vma->vm_file->f_mapping);
7088 hugetlb_vma_unlock_write(vma);
7089 mmu_notifier_invalidate_range_end(&range);
7090
7091 return pages > 0 ? (pages << h->order) : pages;
7092}
7093
7094/* Return true if reservation was successful, false otherwise. */
7095bool hugetlb_reserve_pages(struct inode *inode,
7096 long from, long to,
7097 struct vm_area_struct *vma,
7098 vm_flags_t vm_flags)
7099{
7100 long chg = -1, add = -1;
7101 struct hstate *h = hstate_inode(inode);
7102 struct hugepage_subpool *spool = subpool_inode(inode);
7103 struct resv_map *resv_map;
7104 struct hugetlb_cgroup *h_cg = NULL;
7105 long gbl_reserve, regions_needed = 0;
7106
7107 /* This should never happen */
7108 if (from > to) {
7109 VM_WARN(1, "%s called with a negative range\n", __func__);
7110 return false;
7111 }
7112
7113 /*
7114 * vma specific semaphore used for pmd sharing and fault/truncation
7115 * synchronization
7116 */
7117 hugetlb_vma_lock_alloc(vma);
7118
7119 /*
7120 * Only apply hugepage reservation if asked. At fault time, an
7121 * attempt will be made for VM_NORESERVE to allocate a page
7122 * without using reserves
7123 */
7124 if (vm_flags & VM_NORESERVE)
7125 return true;
7126
7127 /*
7128 * Shared mappings base their reservation on the number of pages that
7129 * are already allocated on behalf of the file. Private mappings need
7130 * to reserve the full area even if read-only as mprotect() may be
7131 * called to make the mapping read-write. Assume !vma is a shm mapping
7132 */
7133 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7134 /*
7135 * resv_map can not be NULL as hugetlb_reserve_pages is only
7136 * called for inodes for which resv_maps were created (see
7137 * hugetlbfs_get_inode).
7138 */
7139 resv_map = inode_resv_map(inode);
7140
7141 chg = region_chg(resv_map, from, to, ®ions_needed);
7142 } else {
7143 /* Private mapping. */
7144 resv_map = resv_map_alloc();
7145 if (!resv_map)
7146 goto out_err;
7147
7148 chg = to - from;
7149
7150 set_vma_resv_map(vma, resv_map);
7151 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7152 }
7153
7154 if (chg < 0)
7155 goto out_err;
7156
7157 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7158 chg * pages_per_huge_page(h), &h_cg) < 0)
7159 goto out_err;
7160
7161 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7162 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7163 * of the resv_map.
7164 */
7165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7166 }
7167
7168 /*
7169 * There must be enough pages in the subpool for the mapping. If
7170 * the subpool has a minimum size, there may be some global
7171 * reservations already in place (gbl_reserve).
7172 */
7173 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7174 if (gbl_reserve < 0)
7175 goto out_uncharge_cgroup;
7176
7177 /*
7178 * Check enough hugepages are available for the reservation.
7179 * Hand the pages back to the subpool if there are not
7180 */
7181 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7182 goto out_put_pages;
7183
7184 /*
7185 * Account for the reservations made. Shared mappings record regions
7186 * that have reservations as they are shared by multiple VMAs.
7187 * When the last VMA disappears, the region map says how much
7188 * the reservation was and the page cache tells how much of
7189 * the reservation was consumed. Private mappings are per-VMA and
7190 * only the consumed reservations are tracked. When the VMA
7191 * disappears, the original reservation is the VMA size and the
7192 * consumed reservations are stored in the map. Hence, nothing
7193 * else has to be done for private mappings here
7194 */
7195 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7196 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7197
7198 if (unlikely(add < 0)) {
7199 hugetlb_acct_memory(h, -gbl_reserve);
7200 goto out_put_pages;
7201 } else if (unlikely(chg > add)) {
7202 /*
7203 * pages in this range were added to the reserve
7204 * map between region_chg and region_add. This
7205 * indicates a race with alloc_hugetlb_folio. Adjust
7206 * the subpool and reserve counts modified above
7207 * based on the difference.
7208 */
7209 long rsv_adjust;
7210
7211 /*
7212 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7213 * reference to h_cg->css. See comment below for detail.
7214 */
7215 hugetlb_cgroup_uncharge_cgroup_rsvd(
7216 hstate_index(h),
7217 (chg - add) * pages_per_huge_page(h), h_cg);
7218
7219 rsv_adjust = hugepage_subpool_put_pages(spool,
7220 chg - add);
7221 hugetlb_acct_memory(h, -rsv_adjust);
7222 } else if (h_cg) {
7223 /*
7224 * The file_regions will hold their own reference to
7225 * h_cg->css. So we should release the reference held
7226 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7227 * done.
7228 */
7229 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7230 }
7231 }
7232 return true;
7233
7234out_put_pages:
7235 /* put back original number of pages, chg */
7236 (void)hugepage_subpool_put_pages(spool, chg);
7237out_uncharge_cgroup:
7238 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7239 chg * pages_per_huge_page(h), h_cg);
7240out_err:
7241 hugetlb_vma_lock_free(vma);
7242 if (!vma || vma->vm_flags & VM_MAYSHARE)
7243 /* Only call region_abort if the region_chg succeeded but the
7244 * region_add failed or didn't run.
7245 */
7246 if (chg >= 0 && add < 0)
7247 region_abort(resv_map, from, to, regions_needed);
7248 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7249 kref_put(&resv_map->refs, resv_map_release);
7250 set_vma_resv_map(vma, NULL);
7251 }
7252 return false;
7253}
7254
7255long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7256 long freed)
7257{
7258 struct hstate *h = hstate_inode(inode);
7259 struct resv_map *resv_map = inode_resv_map(inode);
7260 long chg = 0;
7261 struct hugepage_subpool *spool = subpool_inode(inode);
7262 long gbl_reserve;
7263
7264 /*
7265 * Since this routine can be called in the evict inode path for all
7266 * hugetlbfs inodes, resv_map could be NULL.
7267 */
7268 if (resv_map) {
7269 chg = region_del(resv_map, start, end);
7270 /*
7271 * region_del() can fail in the rare case where a region
7272 * must be split and another region descriptor can not be
7273 * allocated. If end == LONG_MAX, it will not fail.
7274 */
7275 if (chg < 0)
7276 return chg;
7277 }
7278
7279 spin_lock(&inode->i_lock);
7280 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7281 spin_unlock(&inode->i_lock);
7282
7283 /*
7284 * If the subpool has a minimum size, the number of global
7285 * reservations to be released may be adjusted.
7286 *
7287 * Note that !resv_map implies freed == 0. So (chg - freed)
7288 * won't go negative.
7289 */
7290 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7291 hugetlb_acct_memory(h, -gbl_reserve);
7292
7293 return 0;
7294}
7295
7296#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7297static unsigned long page_table_shareable(struct vm_area_struct *svma,
7298 struct vm_area_struct *vma,
7299 unsigned long addr, pgoff_t idx)
7300{
7301 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7302 svma->vm_start;
7303 unsigned long sbase = saddr & PUD_MASK;
7304 unsigned long s_end = sbase + PUD_SIZE;
7305
7306 /* Allow segments to share if only one is marked locked */
7307 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7308 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7309
7310 /*
7311 * match the virtual addresses, permission and the alignment of the
7312 * page table page.
7313 *
7314 * Also, vma_lock (vm_private_data) is required for sharing.
7315 */
7316 if (pmd_index(addr) != pmd_index(saddr) ||
7317 vm_flags != svm_flags ||
7318 !range_in_vma(svma, sbase, s_end) ||
7319 !svma->vm_private_data)
7320 return 0;
7321
7322 return saddr;
7323}
7324
7325bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7326{
7327 unsigned long start = addr & PUD_MASK;
7328 unsigned long end = start + PUD_SIZE;
7329
7330#ifdef CONFIG_USERFAULTFD
7331 if (uffd_disable_huge_pmd_share(vma))
7332 return false;
7333#endif
7334 /*
7335 * check on proper vm_flags and page table alignment
7336 */
7337 if (!(vma->vm_flags & VM_MAYSHARE))
7338 return false;
7339 if (!vma->vm_private_data) /* vma lock required for sharing */
7340 return false;
7341 if (!range_in_vma(vma, start, end))
7342 return false;
7343 return true;
7344}
7345
7346/*
7347 * Determine if start,end range within vma could be mapped by shared pmd.
7348 * If yes, adjust start and end to cover range associated with possible
7349 * shared pmd mappings.
7350 */
7351void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7352 unsigned long *start, unsigned long *end)
7353{
7354 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7355 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7356
7357 /*
7358 * vma needs to span at least one aligned PUD size, and the range
7359 * must be at least partially within in.
7360 */
7361 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7362 (*end <= v_start) || (*start >= v_end))
7363 return;
7364
7365 /* Extend the range to be PUD aligned for a worst case scenario */
7366 if (*start > v_start)
7367 *start = ALIGN_DOWN(*start, PUD_SIZE);
7368
7369 if (*end < v_end)
7370 *end = ALIGN(*end, PUD_SIZE);
7371}
7372
7373/*
7374 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7375 * and returns the corresponding pte. While this is not necessary for the
7376 * !shared pmd case because we can allocate the pmd later as well, it makes the
7377 * code much cleaner. pmd allocation is essential for the shared case because
7378 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7379 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7380 * bad pmd for sharing.
7381 */
7382pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7383 unsigned long addr, pud_t *pud)
7384{
7385 struct address_space *mapping = vma->vm_file->f_mapping;
7386 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7387 vma->vm_pgoff;
7388 struct vm_area_struct *svma;
7389 unsigned long saddr;
7390 pte_t *spte = NULL;
7391 pte_t *pte;
7392
7393 i_mmap_lock_read(mapping);
7394 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7395 if (svma == vma)
7396 continue;
7397
7398 saddr = page_table_shareable(svma, vma, addr, idx);
7399 if (saddr) {
7400 spte = hugetlb_walk(svma, saddr,
7401 vma_mmu_pagesize(svma));
7402 if (spte) {
7403 get_page(virt_to_page(spte));
7404 break;
7405 }
7406 }
7407 }
7408
7409 if (!spte)
7410 goto out;
7411
7412 spin_lock(&mm->page_table_lock);
7413 if (pud_none(*pud)) {
7414 pud_populate(mm, pud,
7415 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7416 mm_inc_nr_pmds(mm);
7417 } else {
7418 put_page(virt_to_page(spte));
7419 }
7420 spin_unlock(&mm->page_table_lock);
7421out:
7422 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7423 i_mmap_unlock_read(mapping);
7424 return pte;
7425}
7426
7427/*
7428 * unmap huge page backed by shared pte.
7429 *
7430 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7431 * indicated by page_count > 1, unmap is achieved by clearing pud and
7432 * decrementing the ref count. If count == 1, the pte page is not shared.
7433 *
7434 * Called with page table lock held.
7435 *
7436 * returns: 1 successfully unmapped a shared pte page
7437 * 0 the underlying pte page is not shared, or it is the last user
7438 */
7439int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7440 unsigned long addr, pte_t *ptep)
7441{
7442 pgd_t *pgd = pgd_offset(mm, addr);
7443 p4d_t *p4d = p4d_offset(pgd, addr);
7444 pud_t *pud = pud_offset(p4d, addr);
7445
7446 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7447 hugetlb_vma_assert_locked(vma);
7448 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7449 if (page_count(virt_to_page(ptep)) == 1)
7450 return 0;
7451
7452 pud_clear(pud);
7453 put_page(virt_to_page(ptep));
7454 mm_dec_nr_pmds(mm);
7455 return 1;
7456}
7457
7458#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7459
7460pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7461 unsigned long addr, pud_t *pud)
7462{
7463 return NULL;
7464}
7465
7466int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7467 unsigned long addr, pte_t *ptep)
7468{
7469 return 0;
7470}
7471
7472void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7473 unsigned long *start, unsigned long *end)
7474{
7475}
7476
7477bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7478{
7479 return false;
7480}
7481#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7482
7483#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7484pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7485 unsigned long addr, unsigned long sz)
7486{
7487 pgd_t *pgd;
7488 p4d_t *p4d;
7489 pud_t *pud;
7490 pte_t *pte = NULL;
7491
7492 pgd = pgd_offset(mm, addr);
7493 p4d = p4d_alloc(mm, pgd, addr);
7494 if (!p4d)
7495 return NULL;
7496 pud = pud_alloc(mm, p4d, addr);
7497 if (pud) {
7498 if (sz == PUD_SIZE) {
7499 pte = (pte_t *)pud;
7500 } else {
7501 BUG_ON(sz != PMD_SIZE);
7502 if (want_pmd_share(vma, addr) && pud_none(*pud))
7503 pte = huge_pmd_share(mm, vma, addr, pud);
7504 else
7505 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7506 }
7507 }
7508
7509 if (pte) {
7510 pte_t pteval = ptep_get_lockless(pte);
7511
7512 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7513 }
7514
7515 return pte;
7516}
7517
7518/*
7519 * huge_pte_offset() - Walk the page table to resolve the hugepage
7520 * entry at address @addr
7521 *
7522 * Return: Pointer to page table entry (PUD or PMD) for
7523 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7524 * size @sz doesn't match the hugepage size at this level of the page
7525 * table.
7526 */
7527pte_t *huge_pte_offset(struct mm_struct *mm,
7528 unsigned long addr, unsigned long sz)
7529{
7530 pgd_t *pgd;
7531 p4d_t *p4d;
7532 pud_t *pud;
7533 pmd_t *pmd;
7534
7535 pgd = pgd_offset(mm, addr);
7536 if (!pgd_present(*pgd))
7537 return NULL;
7538 p4d = p4d_offset(pgd, addr);
7539 if (!p4d_present(*p4d))
7540 return NULL;
7541
7542 pud = pud_offset(p4d, addr);
7543 if (sz == PUD_SIZE)
7544 /* must be pud huge, non-present or none */
7545 return (pte_t *)pud;
7546 if (!pud_present(*pud))
7547 return NULL;
7548 /* must have a valid entry and size to go further */
7549
7550 pmd = pmd_offset(pud, addr);
7551 /* must be pmd huge, non-present or none */
7552 return (pte_t *)pmd;
7553}
7554
7555/*
7556 * Return a mask that can be used to update an address to the last huge
7557 * page in a page table page mapping size. Used to skip non-present
7558 * page table entries when linearly scanning address ranges. Architectures
7559 * with unique huge page to page table relationships can define their own
7560 * version of this routine.
7561 */
7562unsigned long hugetlb_mask_last_page(struct hstate *h)
7563{
7564 unsigned long hp_size = huge_page_size(h);
7565
7566 if (hp_size == PUD_SIZE)
7567 return P4D_SIZE - PUD_SIZE;
7568 else if (hp_size == PMD_SIZE)
7569 return PUD_SIZE - PMD_SIZE;
7570 else
7571 return 0UL;
7572}
7573
7574#else
7575
7576/* See description above. Architectures can provide their own version. */
7577__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7578{
7579#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7580 if (huge_page_size(h) == PMD_SIZE)
7581 return PUD_SIZE - PMD_SIZE;
7582#endif
7583 return 0UL;
7584}
7585
7586#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7587
7588/*
7589 * These functions are overwritable if your architecture needs its own
7590 * behavior.
7591 */
7592bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7593{
7594 bool ret = true;
7595
7596 spin_lock_irq(&hugetlb_lock);
7597 if (!folio_test_hugetlb(folio) ||
7598 !folio_test_hugetlb_migratable(folio) ||
7599 !folio_try_get(folio)) {
7600 ret = false;
7601 goto unlock;
7602 }
7603 folio_clear_hugetlb_migratable(folio);
7604 list_move_tail(&folio->lru, list);
7605unlock:
7606 spin_unlock_irq(&hugetlb_lock);
7607 return ret;
7608}
7609
7610int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7611{
7612 int ret = 0;
7613
7614 *hugetlb = false;
7615 spin_lock_irq(&hugetlb_lock);
7616 if (folio_test_hugetlb(folio)) {
7617 *hugetlb = true;
7618 if (folio_test_hugetlb_freed(folio))
7619 ret = 0;
7620 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7621 ret = folio_try_get(folio);
7622 else
7623 ret = -EBUSY;
7624 }
7625 spin_unlock_irq(&hugetlb_lock);
7626 return ret;
7627}
7628
7629int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7630 bool *migratable_cleared)
7631{
7632 int ret;
7633
7634 spin_lock_irq(&hugetlb_lock);
7635 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7636 spin_unlock_irq(&hugetlb_lock);
7637 return ret;
7638}
7639
7640void folio_putback_active_hugetlb(struct folio *folio)
7641{
7642 spin_lock_irq(&hugetlb_lock);
7643 folio_set_hugetlb_migratable(folio);
7644 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7645 spin_unlock_irq(&hugetlb_lock);
7646 folio_put(folio);
7647}
7648
7649void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7650{
7651 struct hstate *h = folio_hstate(old_folio);
7652
7653 hugetlb_cgroup_migrate(old_folio, new_folio);
7654 set_page_owner_migrate_reason(&new_folio->page, reason);
7655
7656 /*
7657 * transfer temporary state of the new hugetlb folio. This is
7658 * reverse to other transitions because the newpage is going to
7659 * be final while the old one will be freed so it takes over
7660 * the temporary status.
7661 *
7662 * Also note that we have to transfer the per-node surplus state
7663 * here as well otherwise the global surplus count will not match
7664 * the per-node's.
7665 */
7666 if (folio_test_hugetlb_temporary(new_folio)) {
7667 int old_nid = folio_nid(old_folio);
7668 int new_nid = folio_nid(new_folio);
7669
7670 folio_set_hugetlb_temporary(old_folio);
7671 folio_clear_hugetlb_temporary(new_folio);
7672
7673
7674 /*
7675 * There is no need to transfer the per-node surplus state
7676 * when we do not cross the node.
7677 */
7678 if (new_nid == old_nid)
7679 return;
7680 spin_lock_irq(&hugetlb_lock);
7681 if (h->surplus_huge_pages_node[old_nid]) {
7682 h->surplus_huge_pages_node[old_nid]--;
7683 h->surplus_huge_pages_node[new_nid]++;
7684 }
7685 spin_unlock_irq(&hugetlb_lock);
7686 }
7687}
7688
7689static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7690 unsigned long start,
7691 unsigned long end)
7692{
7693 struct hstate *h = hstate_vma(vma);
7694 unsigned long sz = huge_page_size(h);
7695 struct mm_struct *mm = vma->vm_mm;
7696 struct mmu_notifier_range range;
7697 unsigned long address;
7698 spinlock_t *ptl;
7699 pte_t *ptep;
7700
7701 if (!(vma->vm_flags & VM_MAYSHARE))
7702 return;
7703
7704 if (start >= end)
7705 return;
7706
7707 flush_cache_range(vma, start, end);
7708 /*
7709 * No need to call adjust_range_if_pmd_sharing_possible(), because
7710 * we have already done the PUD_SIZE alignment.
7711 */
7712 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7713 start, end);
7714 mmu_notifier_invalidate_range_start(&range);
7715 hugetlb_vma_lock_write(vma);
7716 i_mmap_lock_write(vma->vm_file->f_mapping);
7717 for (address = start; address < end; address += PUD_SIZE) {
7718 ptep = hugetlb_walk(vma, address, sz);
7719 if (!ptep)
7720 continue;
7721 ptl = huge_pte_lock(h, mm, ptep);
7722 huge_pmd_unshare(mm, vma, address, ptep);
7723 spin_unlock(ptl);
7724 }
7725 flush_hugetlb_tlb_range(vma, start, end);
7726 i_mmap_unlock_write(vma->vm_file->f_mapping);
7727 hugetlb_vma_unlock_write(vma);
7728 /*
7729 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7730 * Documentation/mm/mmu_notifier.rst.
7731 */
7732 mmu_notifier_invalidate_range_end(&range);
7733}
7734
7735/*
7736 * This function will unconditionally remove all the shared pmd pgtable entries
7737 * within the specific vma for a hugetlbfs memory range.
7738 */
7739void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7740{
7741 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7742 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7743}
7744
7745#ifdef CONFIG_CMA
7746static bool cma_reserve_called __initdata;
7747
7748static int __init cmdline_parse_hugetlb_cma(char *p)
7749{
7750 int nid, count = 0;
7751 unsigned long tmp;
7752 char *s = p;
7753
7754 while (*s) {
7755 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7756 break;
7757
7758 if (s[count] == ':') {
7759 if (tmp >= MAX_NUMNODES)
7760 break;
7761 nid = array_index_nospec(tmp, MAX_NUMNODES);
7762
7763 s += count + 1;
7764 tmp = memparse(s, &s);
7765 hugetlb_cma_size_in_node[nid] = tmp;
7766 hugetlb_cma_size += tmp;
7767
7768 /*
7769 * Skip the separator if have one, otherwise
7770 * break the parsing.
7771 */
7772 if (*s == ',')
7773 s++;
7774 else
7775 break;
7776 } else {
7777 hugetlb_cma_size = memparse(p, &p);
7778 break;
7779 }
7780 }
7781
7782 return 0;
7783}
7784
7785early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7786
7787void __init hugetlb_cma_reserve(int order)
7788{
7789 unsigned long size, reserved, per_node;
7790 bool node_specific_cma_alloc = false;
7791 int nid;
7792
7793 /*
7794 * HugeTLB CMA reservation is required for gigantic
7795 * huge pages which could not be allocated via the
7796 * page allocator. Just warn if there is any change
7797 * breaking this assumption.
7798 */
7799 VM_WARN_ON(order <= MAX_PAGE_ORDER);
7800 cma_reserve_called = true;
7801
7802 if (!hugetlb_cma_size)
7803 return;
7804
7805 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7806 if (hugetlb_cma_size_in_node[nid] == 0)
7807 continue;
7808
7809 if (!node_online(nid)) {
7810 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7811 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7812 hugetlb_cma_size_in_node[nid] = 0;
7813 continue;
7814 }
7815
7816 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7817 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7818 nid, (PAGE_SIZE << order) / SZ_1M);
7819 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7820 hugetlb_cma_size_in_node[nid] = 0;
7821 } else {
7822 node_specific_cma_alloc = true;
7823 }
7824 }
7825
7826 /* Validate the CMA size again in case some invalid nodes specified. */
7827 if (!hugetlb_cma_size)
7828 return;
7829
7830 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7831 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7832 (PAGE_SIZE << order) / SZ_1M);
7833 hugetlb_cma_size = 0;
7834 return;
7835 }
7836
7837 if (!node_specific_cma_alloc) {
7838 /*
7839 * If 3 GB area is requested on a machine with 4 numa nodes,
7840 * let's allocate 1 GB on first three nodes and ignore the last one.
7841 */
7842 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7843 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7844 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7845 }
7846
7847 reserved = 0;
7848 for_each_online_node(nid) {
7849 int res;
7850 char name[CMA_MAX_NAME];
7851
7852 if (node_specific_cma_alloc) {
7853 if (hugetlb_cma_size_in_node[nid] == 0)
7854 continue;
7855
7856 size = hugetlb_cma_size_in_node[nid];
7857 } else {
7858 size = min(per_node, hugetlb_cma_size - reserved);
7859 }
7860
7861 size = round_up(size, PAGE_SIZE << order);
7862
7863 snprintf(name, sizeof(name), "hugetlb%d", nid);
7864 /*
7865 * Note that 'order per bit' is based on smallest size that
7866 * may be returned to CMA allocator in the case of
7867 * huge page demotion.
7868 */
7869 res = cma_declare_contiguous_nid(0, size, 0,
7870 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7871 0, false, name,
7872 &hugetlb_cma[nid], nid);
7873 if (res) {
7874 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7875 res, nid);
7876 continue;
7877 }
7878
7879 reserved += size;
7880 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7881 size / SZ_1M, nid);
7882
7883 if (reserved >= hugetlb_cma_size)
7884 break;
7885 }
7886
7887 if (!reserved)
7888 /*
7889 * hugetlb_cma_size is used to determine if allocations from
7890 * cma are possible. Set to zero if no cma regions are set up.
7891 */
7892 hugetlb_cma_size = 0;
7893}
7894
7895static void __init hugetlb_cma_check(void)
7896{
7897 if (!hugetlb_cma_size || cma_reserve_called)
7898 return;
7899
7900 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7901}
7902
7903#endif /* CONFIG_CMA */