Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
 
  23#include <linux/module.h>
  24#include <linux/irq_work.h>
  25#include <linux/posix-timers.h>
  26#include <linux/context_tracking.h>
  27#include <linux/mm.h>
  28
  29#include <asm/irq_regs.h>
  30
  31#include "tick-internal.h"
  32
  33#include <trace/events/timer.h>
  34
  35/*
  36 * Per-CPU nohz control structure
  37 */
  38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  39
  40struct tick_sched *tick_get_tick_sched(int cpu)
  41{
  42	return &per_cpu(tick_cpu_sched, cpu);
  43}
  44
  45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  46/*
  47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 
 
  48 */
  49static ktime_t last_jiffies_update;
  50
  51/*
  52 * Must be called with interrupts disabled !
  53 */
  54static void tick_do_update_jiffies64(ktime_t now)
  55{
  56	unsigned long ticks = 0;
  57	ktime_t delta;
  58
  59	/*
  60	 * Do a quick check without holding jiffies_lock:
 
 
 
 
 
 
  61	 */
  62	delta = ktime_sub(now, last_jiffies_update);
  63	if (delta < tick_period)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64		return;
 
  65
  66	/* Reevaluate with jiffies_lock held */
  67	write_seqlock(&jiffies_lock);
  68
  69	delta = ktime_sub(now, last_jiffies_update);
  70	if (delta >= tick_period) {
 
 
  71
  72		delta = ktime_sub(delta, tick_period);
  73		last_jiffies_update = ktime_add(last_jiffies_update,
  74						tick_period);
  75
  76		/* Slow path for long timeouts */
  77		if (unlikely(delta >= tick_period)) {
  78			s64 incr = ktime_to_ns(tick_period);
 
 
 
  79
  80			ticks = ktime_divns(delta, incr);
 
  81
  82			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  83							   incr * ticks);
  84		}
  85		do_timer(++ticks);
  86
  87		/* Keep the tick_next_period variable up to date */
  88		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 
 
 
 
 
 
  89	} else {
  90		write_sequnlock(&jiffies_lock);
  91		return;
 
 
 
  92	}
  93	write_sequnlock(&jiffies_lock);
 
 
 
 
 
 
 
 
 
 
  94	update_wall_time();
  95}
  96
  97/*
  98 * Initialize and return retrieve the jiffies update.
  99 */
 100static ktime_t tick_init_jiffy_update(void)
 101{
 102	ktime_t period;
 103
 104	write_seqlock(&jiffies_lock);
 
 105	/* Did we start the jiffies update yet ? */
 106	if (last_jiffies_update == 0)
 107		last_jiffies_update = tick_next_period;
 108	period = last_jiffies_update;
 109	write_sequnlock(&jiffies_lock);
 
 110	return period;
 111}
 112
 
 
 113static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 114{
 115	int cpu = smp_processor_id();
 116
 117#ifdef CONFIG_NO_HZ_COMMON
 118	/*
 119	 * Check if the do_timer duty was dropped. We don't care about
 120	 * concurrency: This happens only when the CPU in charge went
 121	 * into a long sleep. If two CPUs happen to assign themselves to
 122	 * this duty, then the jiffies update is still serialized by
 123	 * jiffies_lock.
 124	 *
 125	 * If nohz_full is enabled, this should not happen because the
 126	 * tick_do_timer_cpu never relinquishes.
 127	 */
 128	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 129#ifdef CONFIG_NO_HZ_FULL
 130		WARN_ON(tick_nohz_full_running);
 131#endif
 132		tick_do_timer_cpu = cpu;
 133	}
 134#endif
 135
 136	/* Check, if the jiffies need an update */
 137	if (tick_do_timer_cpu == cpu)
 138		tick_do_update_jiffies64(now);
 139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140	if (ts->inidle)
 141		ts->got_idle_tick = 1;
 142}
 143
 144static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 145{
 146#ifdef CONFIG_NO_HZ_COMMON
 147	/*
 148	 * When we are idle and the tick is stopped, we have to touch
 149	 * the watchdog as we might not schedule for a really long
 150	 * time. This happens on complete idle SMP systems while
 151	 * waiting on the login prompt. We also increment the "start of
 152	 * idle" jiffy stamp so the idle accounting adjustment we do
 153	 * when we go busy again does not account too much ticks.
 154	 */
 155	if (ts->tick_stopped) {
 156		touch_softlockup_watchdog_sched();
 157		if (is_idle_task(current))
 158			ts->idle_jiffies++;
 159		/*
 160		 * In case the current tick fired too early past its expected
 161		 * expiration, make sure we don't bypass the next clock reprogramming
 162		 * to the same deadline.
 163		 */
 164		ts->next_tick = 0;
 165	}
 166#endif
 167	update_process_times(user_mode(regs));
 168	profile_tick(CPU_PROFILING);
 169}
 170#endif
 171
 172#ifdef CONFIG_NO_HZ_FULL
 173cpumask_var_t tick_nohz_full_mask;
 
 174bool tick_nohz_full_running;
 
 175static atomic_t tick_dep_mask;
 176
 177static bool check_tick_dependency(atomic_t *dep)
 178{
 179	int val = atomic_read(dep);
 180
 181	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 182		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 183		return true;
 184	}
 185
 186	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 187		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 188		return true;
 189	}
 190
 191	if (val & TICK_DEP_MASK_SCHED) {
 192		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 193		return true;
 194	}
 195
 196	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 197		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 198		return true;
 199	}
 200
 
 
 
 
 
 201	return false;
 202}
 203
 204static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 205{
 206	lockdep_assert_irqs_disabled();
 207
 208	if (unlikely(!cpu_online(cpu)))
 209		return false;
 210
 211	if (check_tick_dependency(&tick_dep_mask))
 212		return false;
 213
 214	if (check_tick_dependency(&ts->tick_dep_mask))
 215		return false;
 216
 217	if (check_tick_dependency(&current->tick_dep_mask))
 218		return false;
 219
 220	if (check_tick_dependency(&current->signal->tick_dep_mask))
 221		return false;
 222
 223	return true;
 224}
 225
 226static void nohz_full_kick_func(struct irq_work *work)
 227{
 228	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 229}
 230
 231static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 232	.func = nohz_full_kick_func,
 233};
 234
 235/*
 236 * Kick this CPU if it's full dynticks in order to force it to
 237 * re-evaluate its dependency on the tick and restart it if necessary.
 238 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 239 * is NMI safe.
 240 */
 241static void tick_nohz_full_kick(void)
 242{
 243	if (!tick_nohz_full_cpu(smp_processor_id()))
 244		return;
 245
 246	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 247}
 248
 249/*
 250 * Kick the CPU if it's full dynticks in order to force it to
 251 * re-evaluate its dependency on the tick and restart it if necessary.
 252 */
 253void tick_nohz_full_kick_cpu(int cpu)
 254{
 255	if (!tick_nohz_full_cpu(cpu))
 256		return;
 257
 258	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 259}
 260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261/*
 262 * Kick all full dynticks CPUs in order to force these to re-evaluate
 263 * their dependency on the tick and restart it if necessary.
 264 */
 265static void tick_nohz_full_kick_all(void)
 266{
 267	int cpu;
 268
 269	if (!tick_nohz_full_running)
 270		return;
 271
 272	preempt_disable();
 273	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 274		tick_nohz_full_kick_cpu(cpu);
 275	preempt_enable();
 276}
 277
 278static void tick_nohz_dep_set_all(atomic_t *dep,
 279				  enum tick_dep_bits bit)
 280{
 281	int prev;
 282
 283	prev = atomic_fetch_or(BIT(bit), dep);
 284	if (!prev)
 285		tick_nohz_full_kick_all();
 286}
 287
 288/*
 289 * Set a global tick dependency. Used by perf events that rely on freq and
 290 * by unstable clock.
 291 */
 292void tick_nohz_dep_set(enum tick_dep_bits bit)
 293{
 294	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 295}
 296
 297void tick_nohz_dep_clear(enum tick_dep_bits bit)
 298{
 299	atomic_andnot(BIT(bit), &tick_dep_mask);
 300}
 301
 302/*
 303 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 304 * manage events throttling.
 305 */
 306void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 307{
 308	int prev;
 309	struct tick_sched *ts;
 310
 311	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 312
 313	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 314	if (!prev) {
 315		preempt_disable();
 316		/* Perf needs local kick that is NMI safe */
 317		if (cpu == smp_processor_id()) {
 318			tick_nohz_full_kick();
 319		} else {
 320			/* Remote irq work not NMI-safe */
 321			if (!WARN_ON_ONCE(in_nmi()))
 322				tick_nohz_full_kick_cpu(cpu);
 323		}
 324		preempt_enable();
 325	}
 326}
 
 327
 328void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 329{
 330	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 331
 332	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 333}
 
 334
 335/*
 336 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 337 * per task timers.
 338 */
 339void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 340{
 341	/*
 342	 * We could optimize this with just kicking the target running the task
 343	 * if that noise matters for nohz full users.
 344	 */
 345	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 346}
 
 347
 348void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 349{
 350	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 351}
 
 352
 353/*
 354 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 355 * per process timers.
 356 */
 357void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 
 358{
 359	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 
 
 
 
 
 
 
 
 
 
 360}
 361
 362void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 363{
 364	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 365}
 366
 367/*
 368 * Re-evaluate the need for the tick as we switch the current task.
 369 * It might need the tick due to per task/process properties:
 370 * perf events, posix CPU timers, ...
 371 */
 372void __tick_nohz_task_switch(void)
 373{
 374	unsigned long flags;
 375	struct tick_sched *ts;
 376
 377	local_irq_save(flags);
 378
 379	if (!tick_nohz_full_cpu(smp_processor_id()))
 380		goto out;
 381
 382	ts = this_cpu_ptr(&tick_cpu_sched);
 383
 384	if (ts->tick_stopped) {
 385		if (atomic_read(&current->tick_dep_mask) ||
 386		    atomic_read(&current->signal->tick_dep_mask))
 387			tick_nohz_full_kick();
 388	}
 389out:
 390	local_irq_restore(flags);
 391}
 392
 393/* Get the boot-time nohz CPU list from the kernel parameters. */
 394void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 395{
 396	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 397	cpumask_copy(tick_nohz_full_mask, cpumask);
 398	tick_nohz_full_running = true;
 399}
 400
 401static int tick_nohz_cpu_down(unsigned int cpu)
 402{
 403	/*
 404	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 405	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 406	 * CPUs. It must remain online when nohz full is enabled.
 407	 */
 408	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 409		return -EBUSY;
 410	return 0;
 411}
 412
 413void __init tick_nohz_init(void)
 414{
 415	int cpu, ret;
 416
 417	if (!tick_nohz_full_running)
 418		return;
 419
 420	/*
 421	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 422	 * locking contexts. But then we need irq work to raise its own
 423	 * interrupts to avoid circular dependency on the tick
 424	 */
 425	if (!arch_irq_work_has_interrupt()) {
 426		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 427		cpumask_clear(tick_nohz_full_mask);
 428		tick_nohz_full_running = false;
 429		return;
 430	}
 431
 432	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 433			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 434		cpu = smp_processor_id();
 435
 436		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 437			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 438				"for timekeeping\n", cpu);
 439			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 440		}
 441	}
 442
 443	for_each_cpu(cpu, tick_nohz_full_mask)
 444		context_tracking_cpu_set(cpu);
 445
 446	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 447					"kernel/nohz:predown", NULL,
 448					tick_nohz_cpu_down);
 449	WARN_ON(ret < 0);
 450	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 451		cpumask_pr_args(tick_nohz_full_mask));
 452}
 453#endif
 454
 455/*
 456 * NOHZ - aka dynamic tick functionality
 457 */
 458#ifdef CONFIG_NO_HZ_COMMON
 459/*
 460 * NO HZ enabled ?
 461 */
 462bool tick_nohz_enabled __read_mostly  = true;
 463unsigned long tick_nohz_active  __read_mostly;
 464/*
 465 * Enable / Disable tickless mode
 466 */
 467static int __init setup_tick_nohz(char *str)
 468{
 469	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 470}
 471
 472__setup("nohz=", setup_tick_nohz);
 473
 474bool tick_nohz_tick_stopped(void)
 475{
 476	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 477
 478	return ts->tick_stopped;
 479}
 480
 481bool tick_nohz_tick_stopped_cpu(int cpu)
 482{
 483	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 484
 485	return ts->tick_stopped;
 486}
 487
 488/**
 489 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 490 *
 491 * Called from interrupt entry when the CPU was idle
 492 *
 493 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 494 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 495 * value. We do this unconditionally on any CPU, as we don't know whether the
 496 * CPU, which has the update task assigned is in a long sleep.
 497 */
 498static void tick_nohz_update_jiffies(ktime_t now)
 499{
 500	unsigned long flags;
 501
 502	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 503
 504	local_irq_save(flags);
 505	tick_do_update_jiffies64(now);
 506	local_irq_restore(flags);
 507
 508	touch_softlockup_watchdog_sched();
 509}
 510
 511/*
 512 * Updates the per-CPU time idle statistics counters
 513 */
 514static void
 515update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 516{
 517	ktime_t delta;
 518
 519	if (ts->idle_active) {
 520		delta = ktime_sub(now, ts->idle_entrytime);
 521		if (nr_iowait_cpu(cpu) > 0)
 522			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 523		else
 524			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 525		ts->idle_entrytime = now;
 526	}
 527
 528	if (last_update_time)
 529		*last_update_time = ktime_to_us(now);
 530
 531}
 532
 533static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 534{
 535	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 536	ts->idle_active = 0;
 537
 538	sched_clock_idle_wakeup_event();
 539}
 540
 541static void tick_nohz_start_idle(struct tick_sched *ts)
 542{
 543	ts->idle_entrytime = ktime_get();
 544	ts->idle_active = 1;
 545	sched_clock_idle_sleep_event();
 546}
 547
 548/**
 549 * get_cpu_idle_time_us - get the total idle time of a CPU
 550 * @cpu: CPU number to query
 551 * @last_update_time: variable to store update time in. Do not update
 552 * counters if NULL.
 553 *
 554 * Return the cumulative idle time (since boot) for a given
 555 * CPU, in microseconds.
 556 *
 557 * This time is measured via accounting rather than sampling,
 558 * and is as accurate as ktime_get() is.
 559 *
 560 * This function returns -1 if NOHZ is not enabled.
 561 */
 562u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 563{
 564	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 565	ktime_t now, idle;
 566
 567	if (!tick_nohz_active)
 568		return -1;
 569
 570	now = ktime_get();
 571	if (last_update_time) {
 572		update_ts_time_stats(cpu, ts, now, last_update_time);
 573		idle = ts->idle_sleeptime;
 574	} else {
 575		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 576			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 577
 578			idle = ktime_add(ts->idle_sleeptime, delta);
 579		} else {
 580			idle = ts->idle_sleeptime;
 581		}
 582	}
 583
 584	return ktime_to_us(idle);
 585
 586}
 587EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 588
 589/**
 590 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 591 * @cpu: CPU number to query
 592 * @last_update_time: variable to store update time in. Do not update
 593 * counters if NULL.
 594 *
 595 * Return the cumulative iowait time (since boot) for a given
 596 * CPU, in microseconds.
 597 *
 598 * This time is measured via accounting rather than sampling,
 599 * and is as accurate as ktime_get() is.
 600 *
 601 * This function returns -1 if NOHZ is not enabled.
 602 */
 603u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 604{
 605	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 606	ktime_t now, iowait;
 607
 608	if (!tick_nohz_active)
 609		return -1;
 610
 611	now = ktime_get();
 612	if (last_update_time) {
 613		update_ts_time_stats(cpu, ts, now, last_update_time);
 614		iowait = ts->iowait_sleeptime;
 615	} else {
 616		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 617			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 618
 619			iowait = ktime_add(ts->iowait_sleeptime, delta);
 620		} else {
 621			iowait = ts->iowait_sleeptime;
 622		}
 623	}
 624
 625	return ktime_to_us(iowait);
 626}
 627EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 628
 629static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 630{
 631	hrtimer_cancel(&ts->sched_timer);
 632	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 633
 634	/* Forward the time to expire in the future */
 635	hrtimer_forward(&ts->sched_timer, now, tick_period);
 636
 637	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 638		hrtimer_start_expires(&ts->sched_timer,
 639				      HRTIMER_MODE_ABS_PINNED_HARD);
 640	} else {
 641		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 642	}
 643
 644	/*
 645	 * Reset to make sure next tick stop doesn't get fooled by past
 646	 * cached clock deadline.
 647	 */
 648	ts->next_tick = 0;
 649}
 650
 651static inline bool local_timer_softirq_pending(void)
 652{
 653	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 654}
 655
 656static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 657{
 658	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 659	unsigned long basejiff;
 660	unsigned int seq;
 661
 662	/* Read jiffies and the time when jiffies were updated last */
 663	do {
 664		seq = read_seqbegin(&jiffies_lock);
 665		basemono = last_jiffies_update;
 666		basejiff = jiffies;
 667	} while (read_seqretry(&jiffies_lock, seq));
 668	ts->last_jiffies = basejiff;
 669	ts->timer_expires_base = basemono;
 670
 671	/*
 672	 * Keep the periodic tick, when RCU, architecture or irq_work
 673	 * requests it.
 674	 * Aside of that check whether the local timer softirq is
 675	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 676	 * because there is an already expired timer, so it will request
 677	 * immeditate expiry, which rearms the hardware timer with a
 678	 * minimal delta which brings us back to this place
 679	 * immediately. Lather, rinse and repeat...
 680	 */
 681	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 682	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 683		next_tick = basemono + TICK_NSEC;
 684	} else {
 685		/*
 686		 * Get the next pending timer. If high resolution
 687		 * timers are enabled this only takes the timer wheel
 688		 * timers into account. If high resolution timers are
 689		 * disabled this also looks at the next expiring
 690		 * hrtimer.
 691		 */
 692		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 693		ts->next_timer = next_tmr;
 694		/* Take the next rcu event into account */
 695		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 696	}
 697
 698	/*
 699	 * If the tick is due in the next period, keep it ticking or
 700	 * force prod the timer.
 701	 */
 702	delta = next_tick - basemono;
 703	if (delta <= (u64)TICK_NSEC) {
 704		/*
 705		 * Tell the timer code that the base is not idle, i.e. undo
 706		 * the effect of get_next_timer_interrupt():
 707		 */
 708		timer_clear_idle();
 709		/*
 710		 * We've not stopped the tick yet, and there's a timer in the
 711		 * next period, so no point in stopping it either, bail.
 712		 */
 713		if (!ts->tick_stopped) {
 714			ts->timer_expires = 0;
 715			goto out;
 716		}
 717	}
 718
 719	/*
 720	 * If this CPU is the one which had the do_timer() duty last, we limit
 721	 * the sleep time to the timekeeping max_deferment value.
 722	 * Otherwise we can sleep as long as we want.
 723	 */
 724	delta = timekeeping_max_deferment();
 725	if (cpu != tick_do_timer_cpu &&
 726	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 727		delta = KTIME_MAX;
 728
 729	/* Calculate the next expiry time */
 730	if (delta < (KTIME_MAX - basemono))
 731		expires = basemono + delta;
 732	else
 733		expires = KTIME_MAX;
 734
 735	ts->timer_expires = min_t(u64, expires, next_tick);
 736
 737out:
 738	return ts->timer_expires;
 739}
 740
 741static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 742{
 743	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 744	u64 basemono = ts->timer_expires_base;
 745	u64 expires = ts->timer_expires;
 746	ktime_t tick = expires;
 747
 748	/* Make sure we won't be trying to stop it twice in a row. */
 749	ts->timer_expires_base = 0;
 750
 751	/*
 752	 * If this CPU is the one which updates jiffies, then give up
 753	 * the assignment and let it be taken by the CPU which runs
 754	 * the tick timer next, which might be this CPU as well. If we
 755	 * don't drop this here the jiffies might be stale and
 756	 * do_timer() never invoked. Keep track of the fact that it
 757	 * was the one which had the do_timer() duty last.
 758	 */
 759	if (cpu == tick_do_timer_cpu) {
 760		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 761		ts->do_timer_last = 1;
 762	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 763		ts->do_timer_last = 0;
 764	}
 765
 766	/* Skip reprogram of event if its not changed */
 767	if (ts->tick_stopped && (expires == ts->next_tick)) {
 768		/* Sanity check: make sure clockevent is actually programmed */
 769		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 770			return;
 771
 772		WARN_ON_ONCE(1);
 773		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 774			    basemono, ts->next_tick, dev->next_event,
 775			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 776	}
 777
 778	/*
 779	 * nohz_stop_sched_tick can be called several times before
 780	 * the nohz_restart_sched_tick is called. This happens when
 781	 * interrupts arrive which do not cause a reschedule. In the
 782	 * first call we save the current tick time, so we can restart
 783	 * the scheduler tick in nohz_restart_sched_tick.
 784	 */
 785	if (!ts->tick_stopped) {
 786		calc_load_nohz_start();
 787		quiet_vmstat();
 788
 789		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 790		ts->tick_stopped = 1;
 791		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 792	}
 793
 794	ts->next_tick = tick;
 795
 796	/*
 797	 * If the expiration time == KTIME_MAX, then we simply stop
 798	 * the tick timer.
 799	 */
 800	if (unlikely(expires == KTIME_MAX)) {
 801		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 802			hrtimer_cancel(&ts->sched_timer);
 
 
 803		return;
 804	}
 805
 806	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 807		hrtimer_start(&ts->sched_timer, tick,
 808			      HRTIMER_MODE_ABS_PINNED_HARD);
 809	} else {
 810		hrtimer_set_expires(&ts->sched_timer, tick);
 811		tick_program_event(tick, 1);
 812	}
 813}
 814
 815static void tick_nohz_retain_tick(struct tick_sched *ts)
 816{
 817	ts->timer_expires_base = 0;
 818}
 819
 820#ifdef CONFIG_NO_HZ_FULL
 821static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 822{
 823	if (tick_nohz_next_event(ts, cpu))
 824		tick_nohz_stop_tick(ts, cpu);
 825	else
 826		tick_nohz_retain_tick(ts);
 827}
 828#endif /* CONFIG_NO_HZ_FULL */
 829
 830static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 831{
 832	/* Update jiffies first */
 833	tick_do_update_jiffies64(now);
 834
 835	/*
 836	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 837	 * the clock forward checks in the enqueue path:
 838	 */
 839	timer_clear_idle();
 840
 841	calc_load_nohz_stop();
 842	touch_softlockup_watchdog_sched();
 843	/*
 844	 * Cancel the scheduled timer and restore the tick
 845	 */
 846	ts->tick_stopped  = 0;
 847	ts->idle_exittime = now;
 848
 849	tick_nohz_restart(ts, now);
 850}
 851
 852static void tick_nohz_full_update_tick(struct tick_sched *ts)
 
 853{
 854#ifdef CONFIG_NO_HZ_FULL
 855	int cpu = smp_processor_id();
 856
 857	if (!tick_nohz_full_cpu(cpu))
 
 
 
 
 
 
 
 
 
 858		return;
 859
 860	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 861		return;
 862
 863	if (can_stop_full_tick(cpu, ts))
 864		tick_nohz_stop_sched_tick(ts, cpu);
 865	else if (ts->tick_stopped)
 866		tick_nohz_restart_sched_tick(ts, ktime_get());
 867#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 871{
 872	/*
 873	 * If this CPU is offline and it is the one which updates
 874	 * jiffies, then give up the assignment and let it be taken by
 875	 * the CPU which runs the tick timer next. If we don't drop
 876	 * this here the jiffies might be stale and do_timer() never
 877	 * invoked.
 878	 */
 879	if (unlikely(!cpu_online(cpu))) {
 880		if (cpu == tick_do_timer_cpu)
 881			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 882		/*
 883		 * Make sure the CPU doesn't get fooled by obsolete tick
 884		 * deadline if it comes back online later.
 885		 */
 886		ts->next_tick = 0;
 887		return false;
 888	}
 889
 890	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 891		return false;
 892
 893	if (need_resched())
 894		return false;
 895
 896	if (unlikely(local_softirq_pending())) {
 897		static int ratelimit;
 898
 899		if (ratelimit < 10 &&
 900		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 901			pr_warn("NOHZ: local_softirq_pending %02x\n",
 902				(unsigned int) local_softirq_pending());
 903			ratelimit++;
 904		}
 905		return false;
 906	}
 907
 908	if (tick_nohz_full_enabled()) {
 909		/*
 910		 * Keep the tick alive to guarantee timekeeping progression
 911		 * if there are full dynticks CPUs around
 912		 */
 913		if (tick_do_timer_cpu == cpu)
 914			return false;
 915		/*
 916		 * Boot safety: make sure the timekeeping duty has been
 917		 * assigned before entering dyntick-idle mode,
 918		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
 919		 */
 920		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
 921			return false;
 922
 923		/* Should not happen for nohz-full */
 924		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 925			return false;
 926	}
 927
 928	return true;
 929}
 930
 931static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 932{
 933	ktime_t expires;
 934	int cpu = smp_processor_id();
 935
 936	/*
 937	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 938	 * tick timer expiration time is known already.
 939	 */
 940	if (ts->timer_expires_base)
 941		expires = ts->timer_expires;
 942	else if (can_stop_idle_tick(cpu, ts))
 943		expires = tick_nohz_next_event(ts, cpu);
 944	else
 945		return;
 946
 947	ts->idle_calls++;
 948
 949	if (expires > 0LL) {
 950		int was_stopped = ts->tick_stopped;
 951
 952		tick_nohz_stop_tick(ts, cpu);
 953
 954		ts->idle_sleeps++;
 955		ts->idle_expires = expires;
 956
 957		if (!was_stopped && ts->tick_stopped) {
 958			ts->idle_jiffies = ts->last_jiffies;
 959			nohz_balance_enter_idle(cpu);
 960		}
 961	} else {
 962		tick_nohz_retain_tick(ts);
 963	}
 964}
 965
 966/**
 967 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 968 *
 969 * When the next event is more than a tick into the future, stop the idle tick
 970 */
 971void tick_nohz_idle_stop_tick(void)
 972{
 973	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
 974}
 975
 976void tick_nohz_idle_retain_tick(void)
 977{
 978	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 979	/*
 980	 * Undo the effect of get_next_timer_interrupt() called from
 981	 * tick_nohz_next_event().
 982	 */
 983	timer_clear_idle();
 984}
 985
 986/**
 987 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
 988 *
 989 * Called when we start the idle loop.
 990 */
 991void tick_nohz_idle_enter(void)
 992{
 993	struct tick_sched *ts;
 994
 995	lockdep_assert_irqs_enabled();
 996
 997	local_irq_disable();
 998
 999	ts = this_cpu_ptr(&tick_cpu_sched);
1000
1001	WARN_ON_ONCE(ts->timer_expires_base);
1002
1003	ts->inidle = 1;
1004	tick_nohz_start_idle(ts);
1005
1006	local_irq_enable();
1007}
1008
1009/**
1010 * tick_nohz_irq_exit - update next tick event from interrupt exit
1011 *
1012 * When an interrupt fires while we are idle and it doesn't cause
1013 * a reschedule, it may still add, modify or delete a timer, enqueue
1014 * an RCU callback, etc...
1015 * So we need to re-calculate and reprogram the next tick event.
1016 */
1017void tick_nohz_irq_exit(void)
1018{
1019	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020
1021	if (ts->inidle)
1022		tick_nohz_start_idle(ts);
1023	else
1024		tick_nohz_full_update_tick(ts);
1025}
1026
1027/**
1028 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1029 */
1030bool tick_nohz_idle_got_tick(void)
1031{
1032	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1033
1034	if (ts->got_idle_tick) {
1035		ts->got_idle_tick = 0;
1036		return true;
1037	}
1038	return false;
1039}
1040
1041/**
1042 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1043 * or the tick, whatever that expires first. Note that, if the tick has been
1044 * stopped, it returns the next hrtimer.
1045 *
1046 * Called from power state control code with interrupts disabled
1047 */
1048ktime_t tick_nohz_get_next_hrtimer(void)
1049{
1050	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1051}
1052
1053/**
1054 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1055 * @delta_next: duration until the next event if the tick cannot be stopped
1056 *
1057 * Called from power state control code with interrupts disabled
 
 
 
 
1058 */
1059ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1060{
1061	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1062	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1063	int cpu = smp_processor_id();
1064	/*
1065	 * The idle entry time is expected to be a sufficient approximation of
1066	 * the current time at this point.
1067	 */
1068	ktime_t now = ts->idle_entrytime;
1069	ktime_t next_event;
1070
1071	WARN_ON_ONCE(!ts->inidle);
1072
1073	*delta_next = ktime_sub(dev->next_event, now);
1074
1075	if (!can_stop_idle_tick(cpu, ts))
1076		return *delta_next;
1077
1078	next_event = tick_nohz_next_event(ts, cpu);
1079	if (!next_event)
1080		return *delta_next;
1081
1082	/*
1083	 * If the next highres timer to expire is earlier than next_event, the
1084	 * idle governor needs to know that.
1085	 */
1086	next_event = min_t(u64, next_event,
1087			   hrtimer_next_event_without(&ts->sched_timer));
1088
1089	return ktime_sub(next_event, now);
1090}
1091
1092/**
1093 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1094 * for a particular CPU.
1095 *
1096 * Called from the schedutil frequency scaling governor in scheduler context.
1097 */
1098unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1099{
1100	struct tick_sched *ts = tick_get_tick_sched(cpu);
1101
1102	return ts->idle_calls;
1103}
1104
1105/**
1106 * tick_nohz_get_idle_calls - return the current idle calls counter value
1107 *
1108 * Called from the schedutil frequency scaling governor in scheduler context.
1109 */
1110unsigned long tick_nohz_get_idle_calls(void)
1111{
1112	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1113
1114	return ts->idle_calls;
1115}
1116
1117static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 
1118{
1119#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1120	unsigned long ticks;
1121
1122	if (vtime_accounting_cpu_enabled())
 
 
1123		return;
1124	/*
1125	 * We stopped the tick in idle. Update process times would miss the
1126	 * time we slept as update_process_times does only a 1 tick
1127	 * accounting. Enforce that this is accounted to idle !
1128	 */
1129	ticks = jiffies - ts->idle_jiffies;
1130	/*
1131	 * We might be one off. Do not randomly account a huge number of ticks!
1132	 */
1133	if (ticks && ticks < LONG_MAX)
1134		account_idle_ticks(ticks);
1135#endif
1136}
1137
1138static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1139{
1140	tick_nohz_restart_sched_tick(ts, now);
1141	tick_nohz_account_idle_ticks(ts);
 
 
 
 
 
1142}
1143
1144void tick_nohz_idle_restart_tick(void)
1145{
1146	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
1147
1148	if (ts->tick_stopped)
1149		__tick_nohz_idle_restart_tick(ts, ktime_get());
1150}
1151
1152/**
1153 * tick_nohz_idle_exit - restart the idle tick from the idle task
1154 *
1155 * Restart the idle tick when the CPU is woken up from idle
1156 * This also exit the RCU extended quiescent state. The CPU
1157 * can use RCU again after this function is called.
1158 */
1159void tick_nohz_idle_exit(void)
1160{
1161	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162	bool idle_active, tick_stopped;
1163	ktime_t now;
1164
1165	local_irq_disable();
1166
1167	WARN_ON_ONCE(!ts->inidle);
1168	WARN_ON_ONCE(ts->timer_expires_base);
1169
1170	ts->inidle = 0;
1171	idle_active = ts->idle_active;
1172	tick_stopped = ts->tick_stopped;
1173
1174	if (idle_active || tick_stopped)
1175		now = ktime_get();
1176
1177	if (idle_active)
1178		tick_nohz_stop_idle(ts, now);
1179
1180	if (tick_stopped)
1181		__tick_nohz_idle_restart_tick(ts, now);
1182
1183	local_irq_enable();
1184}
1185
1186/*
1187 * The nohz low res interrupt handler
1188 */
1189static void tick_nohz_handler(struct clock_event_device *dev)
1190{
1191	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1192	struct pt_regs *regs = get_irq_regs();
1193	ktime_t now = ktime_get();
1194
1195	dev->next_event = KTIME_MAX;
1196
1197	tick_sched_do_timer(ts, now);
1198	tick_sched_handle(ts, regs);
1199
1200	/* No need to reprogram if we are running tickless  */
1201	if (unlikely(ts->tick_stopped))
 
 
 
 
 
1202		return;
 
1203
1204	hrtimer_forward(&ts->sched_timer, now, tick_period);
1205	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1206}
1207
1208static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1209{
1210	if (!tick_nohz_enabled)
1211		return;
1212	ts->nohz_mode = mode;
1213	/* One update is enough */
1214	if (!test_and_set_bit(0, &tick_nohz_active))
1215		timers_update_nohz();
1216}
1217
1218/**
1219 * tick_nohz_switch_to_nohz - switch to nohz mode
1220 */
1221static void tick_nohz_switch_to_nohz(void)
1222{
1223	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1224	ktime_t next;
1225
1226	if (!tick_nohz_enabled)
1227		return;
1228
1229	if (tick_switch_to_oneshot(tick_nohz_handler))
1230		return;
1231
1232	/*
1233	 * Recycle the hrtimer in ts, so we can share the
1234	 * hrtimer_forward with the highres code.
1235	 */
1236	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1237	/* Get the next period */
1238	next = tick_init_jiffy_update();
1239
1240	hrtimer_set_expires(&ts->sched_timer, next);
1241	hrtimer_forward_now(&ts->sched_timer, tick_period);
1242	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1243	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1244}
1245
1246static inline void tick_nohz_irq_enter(void)
1247{
1248	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1249	ktime_t now;
1250
1251	if (!ts->idle_active && !ts->tick_stopped)
1252		return;
1253	now = ktime_get();
1254	if (ts->idle_active)
1255		tick_nohz_stop_idle(ts, now);
 
 
 
 
 
 
 
1256	if (ts->tick_stopped)
1257		tick_nohz_update_jiffies(now);
1258}
1259
1260#else
1261
1262static inline void tick_nohz_switch_to_nohz(void) { }
1263static inline void tick_nohz_irq_enter(void) { }
1264static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1265
1266#endif /* CONFIG_NO_HZ_COMMON */
1267
1268/*
1269 * Called from irq_enter to notify about the possible interruption of idle()
1270 */
1271void tick_irq_enter(void)
1272{
1273	tick_check_oneshot_broadcast_this_cpu();
1274	tick_nohz_irq_enter();
1275}
1276
1277/*
1278 * High resolution timer specific code
1279 */
1280#ifdef CONFIG_HIGH_RES_TIMERS
1281/*
1282 * We rearm the timer until we get disabled by the idle code.
1283 * Called with interrupts disabled.
1284 */
1285static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1286{
1287	struct tick_sched *ts =
1288		container_of(timer, struct tick_sched, sched_timer);
1289	struct pt_regs *regs = get_irq_regs();
1290	ktime_t now = ktime_get();
1291
1292	tick_sched_do_timer(ts, now);
1293
1294	/*
1295	 * Do not call, when we are not in irq context and have
1296	 * no valid regs pointer
1297	 */
1298	if (regs)
1299		tick_sched_handle(ts, regs);
1300	else
1301		ts->next_tick = 0;
1302
1303	/* No need to reprogram if we are in idle or full dynticks mode */
1304	if (unlikely(ts->tick_stopped))
1305		return HRTIMER_NORESTART;
1306
1307	hrtimer_forward(timer, now, tick_period);
1308
1309	return HRTIMER_RESTART;
1310}
1311
1312static int sched_skew_tick;
1313
1314static int __init skew_tick(char *str)
1315{
1316	get_option(&str, &sched_skew_tick);
1317
1318	return 0;
1319}
1320early_param("skew_tick", skew_tick);
1321
1322/**
1323 * tick_setup_sched_timer - setup the tick emulation timer
1324 */
1325void tick_setup_sched_timer(void)
1326{
1327	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1328	ktime_t now = ktime_get();
1329
1330	/*
1331	 * Emulate tick processing via per-CPU hrtimers:
1332	 */
1333	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1334	ts->sched_timer.function = tick_sched_timer;
1335
1336	/* Get the next period (per-CPU) */
1337	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1338
1339	/* Offset the tick to avert jiffies_lock contention. */
1340	if (sched_skew_tick) {
1341		u64 offset = ktime_to_ns(tick_period) >> 1;
1342		do_div(offset, num_possible_cpus());
1343		offset *= smp_processor_id();
1344		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1345	}
1346
1347	hrtimer_forward(&ts->sched_timer, now, tick_period);
1348	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1349	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1350}
1351#endif /* HIGH_RES_TIMERS */
1352
1353#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1354void tick_cancel_sched_timer(int cpu)
1355{
1356	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1357
1358# ifdef CONFIG_HIGH_RES_TIMERS
1359	if (ts->sched_timer.base)
1360		hrtimer_cancel(&ts->sched_timer);
1361# endif
1362
1363	memset(ts, 0, sizeof(*ts));
1364}
1365#endif
1366
1367/**
1368 * Async notification about clocksource changes
1369 */
1370void tick_clock_notify(void)
1371{
1372	int cpu;
1373
1374	for_each_possible_cpu(cpu)
1375		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1376}
1377
1378/*
1379 * Async notification about clock event changes
1380 */
1381void tick_oneshot_notify(void)
1382{
1383	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1384
1385	set_bit(0, &ts->check_clocks);
1386}
1387
1388/**
1389 * Check, if a change happened, which makes oneshot possible.
1390 *
1391 * Called cyclic from the hrtimer softirq (driven by the timer
1392 * softirq) allow_nohz signals, that we can switch into low-res nohz
1393 * mode, because high resolution timers are disabled (either compile
1394 * or runtime). Called with interrupts disabled.
1395 */
1396int tick_check_oneshot_change(int allow_nohz)
1397{
1398	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1399
1400	if (!test_and_clear_bit(0, &ts->check_clocks))
1401		return 0;
1402
1403	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1404		return 0;
1405
1406	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1407		return 0;
1408
1409	if (!allow_nohz)
1410		return 1;
1411
1412	tick_nohz_switch_to_nohz();
1413	return 0;
1414}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/sched/loadavg.h>
  24#include <linux/module.h>
  25#include <linux/irq_work.h>
  26#include <linux/posix-timers.h>
  27#include <linux/context_tracking.h>
  28#include <linux/mm.h>
  29
  30#include <asm/irq_regs.h>
  31
  32#include "tick-internal.h"
  33
  34#include <trace/events/timer.h>
  35
  36/*
  37 * Per-CPU nohz control structure
  38 */
  39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  40
  41struct tick_sched *tick_get_tick_sched(int cpu)
  42{
  43	return &per_cpu(tick_cpu_sched, cpu);
  44}
  45
  46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  47/*
  48 * The time, when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64bit can do a quick check without holding jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32bit cannot do that because the store of tick_next_period
  68	 * consists of two 32bit stores and the first store could move it
  69	 * to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on jiffies_lock and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Reevaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 101	write_seqcount_begin(&jiffies_seq);
 
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 
 
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the jiffies_seq protected job */
 118	jiffies_64 += ticks;
 119
 120	/*
 121	 * Keep the tick_next_period variable up to date.
 122	 */
 123	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 124
 125	if (IS_ENABLED(CONFIG_64BIT)) {
 126		/*
 127		 * Pairs with smp_load_acquire() in the lockless quick
 128		 * check above and ensures that the update to jiffies_64 is
 129		 * not reordered vs. the store to tick_next_period, neither
 130		 * by the compiler nor by the CPU.
 131		 */
 132		smp_store_release(&tick_next_period, nextp);
 133	} else {
 134		/*
 135		 * A plain store is good enough on 32bit as the quick check
 136		 * above is protected by the sequence count.
 137		 */
 138		tick_next_period = nextp;
 139	}
 140
 141	/*
 142	 * Release the sequence count. calc_global_load() below is not
 143	 * protected by it, but jiffies_lock needs to be held to prevent
 144	 * concurrent invocations.
 145	 */
 146	write_seqcount_end(&jiffies_seq);
 147
 148	calc_global_load();
 149
 150	raw_spin_unlock(&jiffies_lock);
 151	update_wall_time();
 152}
 153
 154/*
 155 * Initialize and return retrieve the jiffies update.
 156 */
 157static ktime_t tick_init_jiffy_update(void)
 158{
 159	ktime_t period;
 160
 161	raw_spin_lock(&jiffies_lock);
 162	write_seqcount_begin(&jiffies_seq);
 163	/* Did we start the jiffies update yet ? */
 164	if (last_jiffies_update == 0)
 165		last_jiffies_update = tick_next_period;
 166	period = last_jiffies_update;
 167	write_seqcount_end(&jiffies_seq);
 168	raw_spin_unlock(&jiffies_lock);
 169	return period;
 170}
 171
 172#define MAX_STALLED_JIFFIES 5
 173
 174static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 175{
 176	int cpu = smp_processor_id();
 177
 178#ifdef CONFIG_NO_HZ_COMMON
 179	/*
 180	 * Check if the do_timer duty was dropped. We don't care about
 181	 * concurrency: This happens only when the CPU in charge went
 182	 * into a long sleep. If two CPUs happen to assign themselves to
 183	 * this duty, then the jiffies update is still serialized by
 184	 * jiffies_lock.
 185	 *
 186	 * If nohz_full is enabled, this should not happen because the
 187	 * tick_do_timer_cpu never relinquishes.
 188	 */
 189	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 190#ifdef CONFIG_NO_HZ_FULL
 191		WARN_ON_ONCE(tick_nohz_full_running);
 192#endif
 193		tick_do_timer_cpu = cpu;
 194	}
 195#endif
 196
 197	/* Check, if the jiffies need an update */
 198	if (tick_do_timer_cpu == cpu)
 199		tick_do_update_jiffies64(now);
 200
 201	/*
 202	 * If jiffies update stalled for too long (timekeeper in stop_machine()
 203	 * or VMEXIT'ed for several msecs), force an update.
 204	 */
 205	if (ts->last_tick_jiffies != jiffies) {
 206		ts->stalled_jiffies = 0;
 207		ts->last_tick_jiffies = READ_ONCE(jiffies);
 208	} else {
 209		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
 210			tick_do_update_jiffies64(now);
 211			ts->stalled_jiffies = 0;
 212			ts->last_tick_jiffies = READ_ONCE(jiffies);
 213		}
 214	}
 215
 216	if (ts->inidle)
 217		ts->got_idle_tick = 1;
 218}
 219
 220static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 221{
 222#ifdef CONFIG_NO_HZ_COMMON
 223	/*
 224	 * When we are idle and the tick is stopped, we have to touch
 225	 * the watchdog as we might not schedule for a really long
 226	 * time. This happens on complete idle SMP systems while
 227	 * waiting on the login prompt. We also increment the "start of
 228	 * idle" jiffy stamp so the idle accounting adjustment we do
 229	 * when we go busy again does not account too much ticks.
 230	 */
 231	if (ts->tick_stopped) {
 232		touch_softlockup_watchdog_sched();
 233		if (is_idle_task(current))
 234			ts->idle_jiffies++;
 235		/*
 236		 * In case the current tick fired too early past its expected
 237		 * expiration, make sure we don't bypass the next clock reprogramming
 238		 * to the same deadline.
 239		 */
 240		ts->next_tick = 0;
 241	}
 242#endif
 243	update_process_times(user_mode(regs));
 244	profile_tick(CPU_PROFILING);
 245}
 246#endif
 247
 248#ifdef CONFIG_NO_HZ_FULL
 249cpumask_var_t tick_nohz_full_mask;
 250EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 251bool tick_nohz_full_running;
 252EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 253static atomic_t tick_dep_mask;
 254
 255static bool check_tick_dependency(atomic_t *dep)
 256{
 257	int val = atomic_read(dep);
 258
 259	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 260		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 261		return true;
 262	}
 263
 264	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 265		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 266		return true;
 267	}
 268
 269	if (val & TICK_DEP_MASK_SCHED) {
 270		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 271		return true;
 272	}
 273
 274	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 275		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 276		return true;
 277	}
 278
 279	if (val & TICK_DEP_MASK_RCU) {
 280		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 281		return true;
 282	}
 283
 284	return false;
 285}
 286
 287static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 288{
 289	lockdep_assert_irqs_disabled();
 290
 291	if (unlikely(!cpu_online(cpu)))
 292		return false;
 293
 294	if (check_tick_dependency(&tick_dep_mask))
 295		return false;
 296
 297	if (check_tick_dependency(&ts->tick_dep_mask))
 298		return false;
 299
 300	if (check_tick_dependency(&current->tick_dep_mask))
 301		return false;
 302
 303	if (check_tick_dependency(&current->signal->tick_dep_mask))
 304		return false;
 305
 306	return true;
 307}
 308
 309static void nohz_full_kick_func(struct irq_work *work)
 310{
 311	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 312}
 313
 314static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 315	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 
 316
 317/*
 318 * Kick this CPU if it's full dynticks in order to force it to
 319 * re-evaluate its dependency on the tick and restart it if necessary.
 320 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 321 * is NMI safe.
 322 */
 323static void tick_nohz_full_kick(void)
 324{
 325	if (!tick_nohz_full_cpu(smp_processor_id()))
 326		return;
 327
 328	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 329}
 330
 331/*
 332 * Kick the CPU if it's full dynticks in order to force it to
 333 * re-evaluate its dependency on the tick and restart it if necessary.
 334 */
 335void tick_nohz_full_kick_cpu(int cpu)
 336{
 337	if (!tick_nohz_full_cpu(cpu))
 338		return;
 339
 340	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 341}
 342
 343static void tick_nohz_kick_task(struct task_struct *tsk)
 344{
 345	int cpu;
 346
 347	/*
 348	 * If the task is not running, run_posix_cpu_timers()
 349	 * has nothing to elapse, IPI can then be spared.
 350	 *
 351	 * activate_task()                      STORE p->tick_dep_mask
 352	 *   STORE p->on_rq
 353	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 354	 *   LOCK rq->lock                      LOAD p->on_rq
 355	 *   smp_mb__after_spin_lock()
 356	 *   tick_nohz_task_switch()
 357	 *     LOAD p->tick_dep_mask
 358	 */
 359	if (!sched_task_on_rq(tsk))
 360		return;
 361
 362	/*
 363	 * If the task concurrently migrates to another CPU,
 364	 * we guarantee it sees the new tick dependency upon
 365	 * schedule.
 366	 *
 367	 * set_task_cpu(p, cpu);
 368	 *   STORE p->cpu = @cpu
 369	 * __schedule() (switch to task 'p')
 370	 *   LOCK rq->lock
 371	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 372	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 373	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 374	 */
 375	cpu = task_cpu(tsk);
 376
 377	preempt_disable();
 378	if (cpu_online(cpu))
 379		tick_nohz_full_kick_cpu(cpu);
 380	preempt_enable();
 381}
 382
 383/*
 384 * Kick all full dynticks CPUs in order to force these to re-evaluate
 385 * their dependency on the tick and restart it if necessary.
 386 */
 387static void tick_nohz_full_kick_all(void)
 388{
 389	int cpu;
 390
 391	if (!tick_nohz_full_running)
 392		return;
 393
 394	preempt_disable();
 395	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 396		tick_nohz_full_kick_cpu(cpu);
 397	preempt_enable();
 398}
 399
 400static void tick_nohz_dep_set_all(atomic_t *dep,
 401				  enum tick_dep_bits bit)
 402{
 403	int prev;
 404
 405	prev = atomic_fetch_or(BIT(bit), dep);
 406	if (!prev)
 407		tick_nohz_full_kick_all();
 408}
 409
 410/*
 411 * Set a global tick dependency. Used by perf events that rely on freq and
 412 * by unstable clock.
 413 */
 414void tick_nohz_dep_set(enum tick_dep_bits bit)
 415{
 416	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 417}
 418
 419void tick_nohz_dep_clear(enum tick_dep_bits bit)
 420{
 421	atomic_andnot(BIT(bit), &tick_dep_mask);
 422}
 423
 424/*
 425 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 426 * manage events throttling.
 427 */
 428void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 429{
 430	int prev;
 431	struct tick_sched *ts;
 432
 433	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 434
 435	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 436	if (!prev) {
 437		preempt_disable();
 438		/* Perf needs local kick that is NMI safe */
 439		if (cpu == smp_processor_id()) {
 440			tick_nohz_full_kick();
 441		} else {
 442			/* Remote irq work not NMI-safe */
 443			if (!WARN_ON_ONCE(in_nmi()))
 444				tick_nohz_full_kick_cpu(cpu);
 445		}
 446		preempt_enable();
 447	}
 448}
 449EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 450
 451void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 452{
 453	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 454
 455	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 456}
 457EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 458
 459/*
 460 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 461 * in order to elapse per task timers.
 462 */
 463void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 464{
 465	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 466		tick_nohz_kick_task(tsk);
 
 
 
 467}
 468EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 469
 470void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 471{
 472	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 473}
 474EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 475
 476/*
 477 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 478 * per process timers.
 479 */
 480void tick_nohz_dep_set_signal(struct task_struct *tsk,
 481			      enum tick_dep_bits bit)
 482{
 483	int prev;
 484	struct signal_struct *sig = tsk->signal;
 485
 486	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 487	if (!prev) {
 488		struct task_struct *t;
 489
 490		lockdep_assert_held(&tsk->sighand->siglock);
 491		__for_each_thread(sig, t)
 492			tick_nohz_kick_task(t);
 493	}
 494}
 495
 496void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 497{
 498	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 499}
 500
 501/*
 502 * Re-evaluate the need for the tick as we switch the current task.
 503 * It might need the tick due to per task/process properties:
 504 * perf events, posix CPU timers, ...
 505 */
 506void __tick_nohz_task_switch(void)
 507{
 
 508	struct tick_sched *ts;
 509
 
 
 510	if (!tick_nohz_full_cpu(smp_processor_id()))
 511		return;
 512
 513	ts = this_cpu_ptr(&tick_cpu_sched);
 514
 515	if (ts->tick_stopped) {
 516		if (atomic_read(&current->tick_dep_mask) ||
 517		    atomic_read(&current->signal->tick_dep_mask))
 518			tick_nohz_full_kick();
 519	}
 
 
 520}
 521
 522/* Get the boot-time nohz CPU list from the kernel parameters. */
 523void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 524{
 525	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 526	cpumask_copy(tick_nohz_full_mask, cpumask);
 527	tick_nohz_full_running = true;
 528}
 529
 530static int tick_nohz_cpu_down(unsigned int cpu)
 531{
 532	/*
 533	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 534	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 535	 * CPUs. It must remain online when nohz full is enabled.
 536	 */
 537	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 538		return -EBUSY;
 539	return 0;
 540}
 541
 542void __init tick_nohz_init(void)
 543{
 544	int cpu, ret;
 545
 546	if (!tick_nohz_full_running)
 547		return;
 548
 549	/*
 550	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 551	 * locking contexts. But then we need irq work to raise its own
 552	 * interrupts to avoid circular dependency on the tick
 553	 */
 554	if (!arch_irq_work_has_interrupt()) {
 555		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 556		cpumask_clear(tick_nohz_full_mask);
 557		tick_nohz_full_running = false;
 558		return;
 559	}
 560
 561	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 562			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 563		cpu = smp_processor_id();
 564
 565		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 566			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 567				"for timekeeping\n", cpu);
 568			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 569		}
 570	}
 571
 572	for_each_cpu(cpu, tick_nohz_full_mask)
 573		ct_cpu_track_user(cpu);
 574
 575	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 576					"kernel/nohz:predown", NULL,
 577					tick_nohz_cpu_down);
 578	WARN_ON(ret < 0);
 579	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 580		cpumask_pr_args(tick_nohz_full_mask));
 581}
 582#endif
 583
 584/*
 585 * NOHZ - aka dynamic tick functionality
 586 */
 587#ifdef CONFIG_NO_HZ_COMMON
 588/*
 589 * NO HZ enabled ?
 590 */
 591bool tick_nohz_enabled __read_mostly  = true;
 592unsigned long tick_nohz_active  __read_mostly;
 593/*
 594 * Enable / Disable tickless mode
 595 */
 596static int __init setup_tick_nohz(char *str)
 597{
 598	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 599}
 600
 601__setup("nohz=", setup_tick_nohz);
 602
 603bool tick_nohz_tick_stopped(void)
 604{
 605	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 606
 607	return ts->tick_stopped;
 608}
 609
 610bool tick_nohz_tick_stopped_cpu(int cpu)
 611{
 612	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 613
 614	return ts->tick_stopped;
 615}
 616
 617/**
 618 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 619 *
 620 * Called from interrupt entry when the CPU was idle
 621 *
 622 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 623 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 624 * value. We do this unconditionally on any CPU, as we don't know whether the
 625 * CPU, which has the update task assigned is in a long sleep.
 626 */
 627static void tick_nohz_update_jiffies(ktime_t now)
 628{
 629	unsigned long flags;
 630
 631	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 632
 633	local_irq_save(flags);
 634	tick_do_update_jiffies64(now);
 635	local_irq_restore(flags);
 636
 637	touch_softlockup_watchdog_sched();
 638}
 639
 640/*
 641 * Updates the per-CPU time idle statistics counters
 642 */
 643static void
 644update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 645{
 646	ktime_t delta;
 647
 648	if (ts->idle_active) {
 649		delta = ktime_sub(now, ts->idle_entrytime);
 650		if (nr_iowait_cpu(cpu) > 0)
 651			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 652		else
 653			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 654		ts->idle_entrytime = now;
 655	}
 656
 657	if (last_update_time)
 658		*last_update_time = ktime_to_us(now);
 659
 660}
 661
 662static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 663{
 664	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 665	ts->idle_active = 0;
 666
 667	sched_clock_idle_wakeup_event();
 668}
 669
 670static void tick_nohz_start_idle(struct tick_sched *ts)
 671{
 672	ts->idle_entrytime = ktime_get();
 673	ts->idle_active = 1;
 674	sched_clock_idle_sleep_event();
 675}
 676
 677/**
 678 * get_cpu_idle_time_us - get the total idle time of a CPU
 679 * @cpu: CPU number to query
 680 * @last_update_time: variable to store update time in. Do not update
 681 * counters if NULL.
 682 *
 683 * Return the cumulative idle time (since boot) for a given
 684 * CPU, in microseconds.
 685 *
 686 * This time is measured via accounting rather than sampling,
 687 * and is as accurate as ktime_get() is.
 688 *
 689 * This function returns -1 if NOHZ is not enabled.
 690 */
 691u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 692{
 693	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 694	ktime_t now, idle;
 695
 696	if (!tick_nohz_active)
 697		return -1;
 698
 699	now = ktime_get();
 700	if (last_update_time) {
 701		update_ts_time_stats(cpu, ts, now, last_update_time);
 702		idle = ts->idle_sleeptime;
 703	} else {
 704		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 705			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 706
 707			idle = ktime_add(ts->idle_sleeptime, delta);
 708		} else {
 709			idle = ts->idle_sleeptime;
 710		}
 711	}
 712
 713	return ktime_to_us(idle);
 714
 715}
 716EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 717
 718/**
 719 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 720 * @cpu: CPU number to query
 721 * @last_update_time: variable to store update time in. Do not update
 722 * counters if NULL.
 723 *
 724 * Return the cumulative iowait time (since boot) for a given
 725 * CPU, in microseconds.
 726 *
 727 * This time is measured via accounting rather than sampling,
 728 * and is as accurate as ktime_get() is.
 729 *
 730 * This function returns -1 if NOHZ is not enabled.
 731 */
 732u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 733{
 734	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 735	ktime_t now, iowait;
 736
 737	if (!tick_nohz_active)
 738		return -1;
 739
 740	now = ktime_get();
 741	if (last_update_time) {
 742		update_ts_time_stats(cpu, ts, now, last_update_time);
 743		iowait = ts->iowait_sleeptime;
 744	} else {
 745		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 746			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 747
 748			iowait = ktime_add(ts->iowait_sleeptime, delta);
 749		} else {
 750			iowait = ts->iowait_sleeptime;
 751		}
 752	}
 753
 754	return ktime_to_us(iowait);
 755}
 756EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 757
 758static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 759{
 760	hrtimer_cancel(&ts->sched_timer);
 761	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 762
 763	/* Forward the time to expire in the future */
 764	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 765
 766	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 767		hrtimer_start_expires(&ts->sched_timer,
 768				      HRTIMER_MODE_ABS_PINNED_HARD);
 769	} else {
 770		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 771	}
 772
 773	/*
 774	 * Reset to make sure next tick stop doesn't get fooled by past
 775	 * cached clock deadline.
 776	 */
 777	ts->next_tick = 0;
 778}
 779
 780static inline bool local_timer_softirq_pending(void)
 781{
 782	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 783}
 784
 785static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 786{
 787	u64 basemono, next_tick, delta, expires;
 788	unsigned long basejiff;
 789	unsigned int seq;
 790
 791	/* Read jiffies and the time when jiffies were updated last */
 792	do {
 793		seq = read_seqcount_begin(&jiffies_seq);
 794		basemono = last_jiffies_update;
 795		basejiff = jiffies;
 796	} while (read_seqcount_retry(&jiffies_seq, seq));
 797	ts->last_jiffies = basejiff;
 798	ts->timer_expires_base = basemono;
 799
 800	/*
 801	 * Keep the periodic tick, when RCU, architecture or irq_work
 802	 * requests it.
 803	 * Aside of that check whether the local timer softirq is
 804	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 805	 * because there is an already expired timer, so it will request
 806	 * immediate expiry, which rearms the hardware timer with a
 807	 * minimal delta which brings us back to this place
 808	 * immediately. Lather, rinse and repeat...
 809	 */
 810	if (rcu_needs_cpu() || arch_needs_cpu() ||
 811	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 812		next_tick = basemono + TICK_NSEC;
 813	} else {
 814		/*
 815		 * Get the next pending timer. If high resolution
 816		 * timers are enabled this only takes the timer wheel
 817		 * timers into account. If high resolution timers are
 818		 * disabled this also looks at the next expiring
 819		 * hrtimer.
 820		 */
 821		next_tick = get_next_timer_interrupt(basejiff, basemono);
 822		ts->next_timer = next_tick;
 
 
 823	}
 824
 825	/*
 826	 * If the tick is due in the next period, keep it ticking or
 827	 * force prod the timer.
 828	 */
 829	delta = next_tick - basemono;
 830	if (delta <= (u64)TICK_NSEC) {
 831		/*
 832		 * Tell the timer code that the base is not idle, i.e. undo
 833		 * the effect of get_next_timer_interrupt():
 834		 */
 835		timer_clear_idle();
 836		/*
 837		 * We've not stopped the tick yet, and there's a timer in the
 838		 * next period, so no point in stopping it either, bail.
 839		 */
 840		if (!ts->tick_stopped) {
 841			ts->timer_expires = 0;
 842			goto out;
 843		}
 844	}
 845
 846	/*
 847	 * If this CPU is the one which had the do_timer() duty last, we limit
 848	 * the sleep time to the timekeeping max_deferment value.
 849	 * Otherwise we can sleep as long as we want.
 850	 */
 851	delta = timekeeping_max_deferment();
 852	if (cpu != tick_do_timer_cpu &&
 853	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 854		delta = KTIME_MAX;
 855
 856	/* Calculate the next expiry time */
 857	if (delta < (KTIME_MAX - basemono))
 858		expires = basemono + delta;
 859	else
 860		expires = KTIME_MAX;
 861
 862	ts->timer_expires = min_t(u64, expires, next_tick);
 863
 864out:
 865	return ts->timer_expires;
 866}
 867
 868static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 869{
 870	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 871	u64 basemono = ts->timer_expires_base;
 872	u64 expires = ts->timer_expires;
 873	ktime_t tick = expires;
 874
 875	/* Make sure we won't be trying to stop it twice in a row. */
 876	ts->timer_expires_base = 0;
 877
 878	/*
 879	 * If this CPU is the one which updates jiffies, then give up
 880	 * the assignment and let it be taken by the CPU which runs
 881	 * the tick timer next, which might be this CPU as well. If we
 882	 * don't drop this here the jiffies might be stale and
 883	 * do_timer() never invoked. Keep track of the fact that it
 884	 * was the one which had the do_timer() duty last.
 885	 */
 886	if (cpu == tick_do_timer_cpu) {
 887		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 888		ts->do_timer_last = 1;
 889	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 890		ts->do_timer_last = 0;
 891	}
 892
 893	/* Skip reprogram of event if its not changed */
 894	if (ts->tick_stopped && (expires == ts->next_tick)) {
 895		/* Sanity check: make sure clockevent is actually programmed */
 896		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 897			return;
 898
 899		WARN_ON_ONCE(1);
 900		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 901			    basemono, ts->next_tick, dev->next_event,
 902			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 903	}
 904
 905	/*
 906	 * nohz_stop_sched_tick can be called several times before
 907	 * the nohz_restart_sched_tick is called. This happens when
 908	 * interrupts arrive which do not cause a reschedule. In the
 909	 * first call we save the current tick time, so we can restart
 910	 * the scheduler tick in nohz_restart_sched_tick.
 911	 */
 912	if (!ts->tick_stopped) {
 913		calc_load_nohz_start();
 914		quiet_vmstat();
 915
 916		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 917		ts->tick_stopped = 1;
 918		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 919	}
 920
 921	ts->next_tick = tick;
 922
 923	/*
 924	 * If the expiration time == KTIME_MAX, then we simply stop
 925	 * the tick timer.
 926	 */
 927	if (unlikely(expires == KTIME_MAX)) {
 928		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 929			hrtimer_cancel(&ts->sched_timer);
 930		else
 931			tick_program_event(KTIME_MAX, 1);
 932		return;
 933	}
 934
 935	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 936		hrtimer_start(&ts->sched_timer, tick,
 937			      HRTIMER_MODE_ABS_PINNED_HARD);
 938	} else {
 939		hrtimer_set_expires(&ts->sched_timer, tick);
 940		tick_program_event(tick, 1);
 941	}
 942}
 943
 944static void tick_nohz_retain_tick(struct tick_sched *ts)
 945{
 946	ts->timer_expires_base = 0;
 947}
 948
 949#ifdef CONFIG_NO_HZ_FULL
 950static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 951{
 952	if (tick_nohz_next_event(ts, cpu))
 953		tick_nohz_stop_tick(ts, cpu);
 954	else
 955		tick_nohz_retain_tick(ts);
 956}
 957#endif /* CONFIG_NO_HZ_FULL */
 958
 959static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 960{
 961	/* Update jiffies first */
 962	tick_do_update_jiffies64(now);
 963
 964	/*
 965	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 966	 * the clock forward checks in the enqueue path:
 967	 */
 968	timer_clear_idle();
 969
 970	calc_load_nohz_stop();
 971	touch_softlockup_watchdog_sched();
 972	/*
 973	 * Cancel the scheduled timer and restore the tick
 974	 */
 975	ts->tick_stopped  = 0;
 
 
 976	tick_nohz_restart(ts, now);
 977}
 978
 979static void __tick_nohz_full_update_tick(struct tick_sched *ts,
 980					 ktime_t now)
 981{
 982#ifdef CONFIG_NO_HZ_FULL
 983	int cpu = smp_processor_id();
 984
 985	if (can_stop_full_tick(cpu, ts))
 986		tick_nohz_stop_sched_tick(ts, cpu);
 987	else if (ts->tick_stopped)
 988		tick_nohz_restart_sched_tick(ts, now);
 989#endif
 990}
 991
 992static void tick_nohz_full_update_tick(struct tick_sched *ts)
 993{
 994	if (!tick_nohz_full_cpu(smp_processor_id()))
 995		return;
 996
 997	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 998		return;
 999
1000	__tick_nohz_full_update_tick(ts, ktime_get());
1001}
1002
1003/*
1004 * A pending softirq outside an IRQ (or softirq disabled section) context
1005 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1006 * reach here due to the need_resched() early check in can_stop_idle_tick().
1007 *
1008 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1009 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1010 * triggering the below since wakep_softirqd() is ignored.
1011 *
1012 */
1013static bool report_idle_softirq(void)
1014{
1015	static int ratelimit;
1016	unsigned int pending = local_softirq_pending();
1017
1018	if (likely(!pending))
1019		return false;
1020
1021	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1022	if (!cpu_active(smp_processor_id())) {
1023		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1024		if (!pending)
1025			return false;
1026	}
1027
1028	if (ratelimit < 10)
1029		return false;
1030
1031	/* On RT, softirqs handling may be waiting on some lock */
1032	if (!local_bh_blocked())
1033		return false;
1034
1035	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1036		pending);
1037	ratelimit++;
1038
1039	return true;
1040}
1041
1042static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1043{
1044	/*
1045	 * If this CPU is offline and it is the one which updates
1046	 * jiffies, then give up the assignment and let it be taken by
1047	 * the CPU which runs the tick timer next. If we don't drop
1048	 * this here the jiffies might be stale and do_timer() never
1049	 * invoked.
1050	 */
1051	if (unlikely(!cpu_online(cpu))) {
1052		if (cpu == tick_do_timer_cpu)
1053			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1054		/*
1055		 * Make sure the CPU doesn't get fooled by obsolete tick
1056		 * deadline if it comes back online later.
1057		 */
1058		ts->next_tick = 0;
1059		return false;
1060	}
1061
1062	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1063		return false;
1064
1065	if (need_resched())
1066		return false;
1067
1068	if (unlikely(report_idle_softirq()))
 
 
 
 
 
 
 
 
1069		return false;
 
1070
1071	if (tick_nohz_full_enabled()) {
1072		/*
1073		 * Keep the tick alive to guarantee timekeeping progression
1074		 * if there are full dynticks CPUs around
1075		 */
1076		if (tick_do_timer_cpu == cpu)
1077			return false;
 
 
 
 
 
 
 
1078
1079		/* Should not happen for nohz-full */
1080		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1081			return false;
1082	}
1083
1084	return true;
1085}
1086
1087static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1088{
1089	ktime_t expires;
1090	int cpu = smp_processor_id();
1091
1092	/*
1093	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1094	 * tick timer expiration time is known already.
1095	 */
1096	if (ts->timer_expires_base)
1097		expires = ts->timer_expires;
1098	else if (can_stop_idle_tick(cpu, ts))
1099		expires = tick_nohz_next_event(ts, cpu);
1100	else
1101		return;
1102
1103	ts->idle_calls++;
1104
1105	if (expires > 0LL) {
1106		int was_stopped = ts->tick_stopped;
1107
1108		tick_nohz_stop_tick(ts, cpu);
1109
1110		ts->idle_sleeps++;
1111		ts->idle_expires = expires;
1112
1113		if (!was_stopped && ts->tick_stopped) {
1114			ts->idle_jiffies = ts->last_jiffies;
1115			nohz_balance_enter_idle(cpu);
1116		}
1117	} else {
1118		tick_nohz_retain_tick(ts);
1119	}
1120}
1121
1122/**
1123 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1124 *
1125 * When the next event is more than a tick into the future, stop the idle tick
1126 */
1127void tick_nohz_idle_stop_tick(void)
1128{
1129	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1130}
1131
1132void tick_nohz_idle_retain_tick(void)
1133{
1134	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1135	/*
1136	 * Undo the effect of get_next_timer_interrupt() called from
1137	 * tick_nohz_next_event().
1138	 */
1139	timer_clear_idle();
1140}
1141
1142/**
1143 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1144 *
1145 * Called when we start the idle loop.
1146 */
1147void tick_nohz_idle_enter(void)
1148{
1149	struct tick_sched *ts;
1150
1151	lockdep_assert_irqs_enabled();
1152
1153	local_irq_disable();
1154
1155	ts = this_cpu_ptr(&tick_cpu_sched);
1156
1157	WARN_ON_ONCE(ts->timer_expires_base);
1158
1159	ts->inidle = 1;
1160	tick_nohz_start_idle(ts);
1161
1162	local_irq_enable();
1163}
1164
1165/**
1166 * tick_nohz_irq_exit - update next tick event from interrupt exit
1167 *
1168 * When an interrupt fires while we are idle and it doesn't cause
1169 * a reschedule, it may still add, modify or delete a timer, enqueue
1170 * an RCU callback, etc...
1171 * So we need to re-calculate and reprogram the next tick event.
1172 */
1173void tick_nohz_irq_exit(void)
1174{
1175	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176
1177	if (ts->inidle)
1178		tick_nohz_start_idle(ts);
1179	else
1180		tick_nohz_full_update_tick(ts);
1181}
1182
1183/**
1184 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1185 */
1186bool tick_nohz_idle_got_tick(void)
1187{
1188	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1189
1190	if (ts->got_idle_tick) {
1191		ts->got_idle_tick = 0;
1192		return true;
1193	}
1194	return false;
1195}
1196
1197/**
1198 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1199 * or the tick, whatever that expires first. Note that, if the tick has been
1200 * stopped, it returns the next hrtimer.
1201 *
1202 * Called from power state control code with interrupts disabled
1203 */
1204ktime_t tick_nohz_get_next_hrtimer(void)
1205{
1206	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1207}
1208
1209/**
1210 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1211 * @delta_next: duration until the next event if the tick cannot be stopped
1212 *
1213 * Called from power state control code with interrupts disabled.
1214 *
1215 * The return value of this function and/or the value returned by it through the
1216 * @delta_next pointer can be negative which must be taken into account by its
1217 * callers.
1218 */
1219ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1220{
1221	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1222	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1223	int cpu = smp_processor_id();
1224	/*
1225	 * The idle entry time is expected to be a sufficient approximation of
1226	 * the current time at this point.
1227	 */
1228	ktime_t now = ts->idle_entrytime;
1229	ktime_t next_event;
1230
1231	WARN_ON_ONCE(!ts->inidle);
1232
1233	*delta_next = ktime_sub(dev->next_event, now);
1234
1235	if (!can_stop_idle_tick(cpu, ts))
1236		return *delta_next;
1237
1238	next_event = tick_nohz_next_event(ts, cpu);
1239	if (!next_event)
1240		return *delta_next;
1241
1242	/*
1243	 * If the next highres timer to expire is earlier than next_event, the
1244	 * idle governor needs to know that.
1245	 */
1246	next_event = min_t(u64, next_event,
1247			   hrtimer_next_event_without(&ts->sched_timer));
1248
1249	return ktime_sub(next_event, now);
1250}
1251
1252/**
1253 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1254 * for a particular CPU.
1255 *
1256 * Called from the schedutil frequency scaling governor in scheduler context.
1257 */
1258unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1259{
1260	struct tick_sched *ts = tick_get_tick_sched(cpu);
1261
1262	return ts->idle_calls;
1263}
1264
1265/**
1266 * tick_nohz_get_idle_calls - return the current idle calls counter value
1267 *
1268 * Called from the schedutil frequency scaling governor in scheduler context.
1269 */
1270unsigned long tick_nohz_get_idle_calls(void)
1271{
1272	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1273
1274	return ts->idle_calls;
1275}
1276
1277static void tick_nohz_account_idle_time(struct tick_sched *ts,
1278					ktime_t now)
1279{
 
1280	unsigned long ticks;
1281
1282	ts->idle_exittime = now;
1283
1284	if (vtime_accounting_enabled_this_cpu())
1285		return;
1286	/*
1287	 * We stopped the tick in idle. Update process times would miss the
1288	 * time we slept as update_process_times does only a 1 tick
1289	 * accounting. Enforce that this is accounted to idle !
1290	 */
1291	ticks = jiffies - ts->idle_jiffies;
1292	/*
1293	 * We might be one off. Do not randomly account a huge number of ticks!
1294	 */
1295	if (ticks && ticks < LONG_MAX)
1296		account_idle_ticks(ticks);
 
1297}
1298
1299void tick_nohz_idle_restart_tick(void)
1300{
1301	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1302
1303	if (ts->tick_stopped) {
1304		ktime_t now = ktime_get();
1305		tick_nohz_restart_sched_tick(ts, now);
1306		tick_nohz_account_idle_time(ts, now);
1307	}
1308}
1309
1310static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1311{
1312	if (tick_nohz_full_cpu(smp_processor_id()))
1313		__tick_nohz_full_update_tick(ts, now);
1314	else
1315		tick_nohz_restart_sched_tick(ts, now);
1316
1317	tick_nohz_account_idle_time(ts, now);
 
1318}
1319
1320/**
1321 * tick_nohz_idle_exit - restart the idle tick from the idle task
1322 *
1323 * Restart the idle tick when the CPU is woken up from idle
1324 * This also exit the RCU extended quiescent state. The CPU
1325 * can use RCU again after this function is called.
1326 */
1327void tick_nohz_idle_exit(void)
1328{
1329	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1330	bool idle_active, tick_stopped;
1331	ktime_t now;
1332
1333	local_irq_disable();
1334
1335	WARN_ON_ONCE(!ts->inidle);
1336	WARN_ON_ONCE(ts->timer_expires_base);
1337
1338	ts->inidle = 0;
1339	idle_active = ts->idle_active;
1340	tick_stopped = ts->tick_stopped;
1341
1342	if (idle_active || tick_stopped)
1343		now = ktime_get();
1344
1345	if (idle_active)
1346		tick_nohz_stop_idle(ts, now);
1347
1348	if (tick_stopped)
1349		tick_nohz_idle_update_tick(ts, now);
1350
1351	local_irq_enable();
1352}
1353
1354/*
1355 * The nohz low res interrupt handler
1356 */
1357static void tick_nohz_handler(struct clock_event_device *dev)
1358{
1359	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1360	struct pt_regs *regs = get_irq_regs();
1361	ktime_t now = ktime_get();
1362
1363	dev->next_event = KTIME_MAX;
1364
1365	tick_sched_do_timer(ts, now);
1366	tick_sched_handle(ts, regs);
1367
1368	if (unlikely(ts->tick_stopped)) {
1369		/*
1370		 * The clockevent device is not reprogrammed, so change the
1371		 * clock event device to ONESHOT_STOPPED to avoid spurious
1372		 * interrupts on devices which might not be truly one shot.
1373		 */
1374		tick_program_event(KTIME_MAX, 1);
1375		return;
1376	}
1377
1378	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1379	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1380}
1381
1382static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1383{
1384	if (!tick_nohz_enabled)
1385		return;
1386	ts->nohz_mode = mode;
1387	/* One update is enough */
1388	if (!test_and_set_bit(0, &tick_nohz_active))
1389		timers_update_nohz();
1390}
1391
1392/**
1393 * tick_nohz_switch_to_nohz - switch to nohz mode
1394 */
1395static void tick_nohz_switch_to_nohz(void)
1396{
1397	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1398	ktime_t next;
1399
1400	if (!tick_nohz_enabled)
1401		return;
1402
1403	if (tick_switch_to_oneshot(tick_nohz_handler))
1404		return;
1405
1406	/*
1407	 * Recycle the hrtimer in ts, so we can share the
1408	 * hrtimer_forward with the highres code.
1409	 */
1410	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1411	/* Get the next period */
1412	next = tick_init_jiffy_update();
1413
1414	hrtimer_set_expires(&ts->sched_timer, next);
1415	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1416	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1417	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1418}
1419
1420static inline void tick_nohz_irq_enter(void)
1421{
1422	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1423	ktime_t now;
1424
1425	if (!ts->idle_active && !ts->tick_stopped)
1426		return;
1427	now = ktime_get();
1428	if (ts->idle_active)
1429		tick_nohz_stop_idle(ts, now);
1430	/*
1431	 * If all CPUs are idle. We may need to update a stale jiffies value.
1432	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1433	 * alive but it might be busy looping with interrupts disabled in some
1434	 * rare case (typically stop machine). So we must make sure we have a
1435	 * last resort.
1436	 */
1437	if (ts->tick_stopped)
1438		tick_nohz_update_jiffies(now);
1439}
1440
1441#else
1442
1443static inline void tick_nohz_switch_to_nohz(void) { }
1444static inline void tick_nohz_irq_enter(void) { }
1445static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1446
1447#endif /* CONFIG_NO_HZ_COMMON */
1448
1449/*
1450 * Called from irq_enter to notify about the possible interruption of idle()
1451 */
1452void tick_irq_enter(void)
1453{
1454	tick_check_oneshot_broadcast_this_cpu();
1455	tick_nohz_irq_enter();
1456}
1457
1458/*
1459 * High resolution timer specific code
1460 */
1461#ifdef CONFIG_HIGH_RES_TIMERS
1462/*
1463 * We rearm the timer until we get disabled by the idle code.
1464 * Called with interrupts disabled.
1465 */
1466static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1467{
1468	struct tick_sched *ts =
1469		container_of(timer, struct tick_sched, sched_timer);
1470	struct pt_regs *regs = get_irq_regs();
1471	ktime_t now = ktime_get();
1472
1473	tick_sched_do_timer(ts, now);
1474
1475	/*
1476	 * Do not call, when we are not in irq context and have
1477	 * no valid regs pointer
1478	 */
1479	if (regs)
1480		tick_sched_handle(ts, regs);
1481	else
1482		ts->next_tick = 0;
1483
1484	/* No need to reprogram if we are in idle or full dynticks mode */
1485	if (unlikely(ts->tick_stopped))
1486		return HRTIMER_NORESTART;
1487
1488	hrtimer_forward(timer, now, TICK_NSEC);
1489
1490	return HRTIMER_RESTART;
1491}
1492
1493static int sched_skew_tick;
1494
1495static int __init skew_tick(char *str)
1496{
1497	get_option(&str, &sched_skew_tick);
1498
1499	return 0;
1500}
1501early_param("skew_tick", skew_tick);
1502
1503/**
1504 * tick_setup_sched_timer - setup the tick emulation timer
1505 */
1506void tick_setup_sched_timer(void)
1507{
1508	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1509	ktime_t now = ktime_get();
1510
1511	/*
1512	 * Emulate tick processing via per-CPU hrtimers:
1513	 */
1514	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1515	ts->sched_timer.function = tick_sched_timer;
1516
1517	/* Get the next period (per-CPU) */
1518	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1519
1520	/* Offset the tick to avert jiffies_lock contention. */
1521	if (sched_skew_tick) {
1522		u64 offset = TICK_NSEC >> 1;
1523		do_div(offset, num_possible_cpus());
1524		offset *= smp_processor_id();
1525		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1526	}
1527
1528	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1529	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1530	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1531}
1532#endif /* HIGH_RES_TIMERS */
1533
1534#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1535void tick_cancel_sched_timer(int cpu)
1536{
1537	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1538
1539# ifdef CONFIG_HIGH_RES_TIMERS
1540	if (ts->sched_timer.base)
1541		hrtimer_cancel(&ts->sched_timer);
1542# endif
1543
1544	memset(ts, 0, sizeof(*ts));
1545}
1546#endif
1547
1548/*
1549 * Async notification about clocksource changes
1550 */
1551void tick_clock_notify(void)
1552{
1553	int cpu;
1554
1555	for_each_possible_cpu(cpu)
1556		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1557}
1558
1559/*
1560 * Async notification about clock event changes
1561 */
1562void tick_oneshot_notify(void)
1563{
1564	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1565
1566	set_bit(0, &ts->check_clocks);
1567}
1568
1569/*
1570 * Check, if a change happened, which makes oneshot possible.
1571 *
1572 * Called cyclic from the hrtimer softirq (driven by the timer
1573 * softirq) allow_nohz signals, that we can switch into low-res nohz
1574 * mode, because high resolution timers are disabled (either compile
1575 * or runtime). Called with interrupts disabled.
1576 */
1577int tick_check_oneshot_change(int allow_nohz)
1578{
1579	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1580
1581	if (!test_and_clear_bit(0, &ts->check_clocks))
1582		return 0;
1583
1584	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1585		return 0;
1586
1587	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1588		return 0;
1589
1590	if (!allow_nohz)
1591		return 1;
1592
1593	tick_nohz_switch_to_nohz();
1594	return 0;
1595}