Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
 
 
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/module.h>
  24#include <linux/irq_work.h>
  25#include <linux/posix-timers.h>
  26#include <linux/context_tracking.h>
  27#include <linux/mm.h>
  28
  29#include <asm/irq_regs.h>
  30
  31#include "tick-internal.h"
  32
  33#include <trace/events/timer.h>
  34
  35/*
  36 * Per-CPU nohz control structure
  37 */
  38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  39
  40struct tick_sched *tick_get_tick_sched(int cpu)
  41{
  42	return &per_cpu(tick_cpu_sched, cpu);
  43}
  44
  45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  46/*
  47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  48 */
  49static ktime_t last_jiffies_update;
  50
  51/*
  52 * Must be called with interrupts disabled !
  53 */
  54static void tick_do_update_jiffies64(ktime_t now)
  55{
  56	unsigned long ticks = 0;
  57	ktime_t delta;
  58
  59	/*
  60	 * Do a quick check without holding jiffies_lock:
  61	 */
  62	delta = ktime_sub(now, last_jiffies_update);
  63	if (delta < tick_period)
  64		return;
  65
  66	/* Reevaluate with jiffies_lock held */
  67	write_seqlock(&jiffies_lock);
  68
  69	delta = ktime_sub(now, last_jiffies_update);
  70	if (delta >= tick_period) {
  71
  72		delta = ktime_sub(delta, tick_period);
  73		last_jiffies_update = ktime_add(last_jiffies_update,
  74						tick_period);
  75
  76		/* Slow path for long timeouts */
  77		if (unlikely(delta >= tick_period)) {
  78			s64 incr = ktime_to_ns(tick_period);
  79
  80			ticks = ktime_divns(delta, incr);
  81
  82			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  83							   incr * ticks);
  84		}
  85		do_timer(++ticks);
  86
  87		/* Keep the tick_next_period variable up to date */
  88		tick_next_period = ktime_add(last_jiffies_update, tick_period);
  89	} else {
  90		write_sequnlock(&jiffies_lock);
  91		return;
  92	}
  93	write_sequnlock(&jiffies_lock);
  94	update_wall_time();
  95}
  96
  97/*
  98 * Initialize and return retrieve the jiffies update.
  99 */
 100static ktime_t tick_init_jiffy_update(void)
 101{
 102	ktime_t period;
 103
 104	write_seqlock(&jiffies_lock);
 105	/* Did we start the jiffies update yet ? */
 106	if (last_jiffies_update == 0)
 107		last_jiffies_update = tick_next_period;
 108	period = last_jiffies_update;
 109	write_sequnlock(&jiffies_lock);
 110	return period;
 111}
 112
 113static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 114{
 115	int cpu = smp_processor_id();
 116
 117#ifdef CONFIG_NO_HZ_COMMON
 118	/*
 119	 * Check if the do_timer duty was dropped. We don't care about
 120	 * concurrency: This happens only when the CPU in charge went
 121	 * into a long sleep. If two CPUs happen to assign themselves to
 122	 * this duty, then the jiffies update is still serialized by
 123	 * jiffies_lock.
 124	 *
 125	 * If nohz_full is enabled, this should not happen because the
 126	 * tick_do_timer_cpu never relinquishes.
 127	 */
 128	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 129#ifdef CONFIG_NO_HZ_FULL
 130		WARN_ON(tick_nohz_full_running);
 131#endif
 132		tick_do_timer_cpu = cpu;
 133	}
 134#endif
 135
 136	/* Check, if the jiffies need an update */
 137	if (tick_do_timer_cpu == cpu)
 138		tick_do_update_jiffies64(now);
 139
 140	if (ts->inidle)
 141		ts->got_idle_tick = 1;
 142}
 143
 144static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 145{
 146#ifdef CONFIG_NO_HZ_COMMON
 147	/*
 148	 * When we are idle and the tick is stopped, we have to touch
 149	 * the watchdog as we might not schedule for a really long
 150	 * time. This happens on complete idle SMP systems while
 151	 * waiting on the login prompt. We also increment the "start of
 152	 * idle" jiffy stamp so the idle accounting adjustment we do
 153	 * when we go busy again does not account too much ticks.
 154	 */
 155	if (ts->tick_stopped) {
 156		touch_softlockup_watchdog_sched();
 157		if (is_idle_task(current))
 158			ts->idle_jiffies++;
 159		/*
 160		 * In case the current tick fired too early past its expected
 161		 * expiration, make sure we don't bypass the next clock reprogramming
 162		 * to the same deadline.
 163		 */
 164		ts->next_tick = 0;
 165	}
 166#endif
 167	update_process_times(user_mode(regs));
 168	profile_tick(CPU_PROFILING);
 169}
 170#endif
 171
 172#ifdef CONFIG_NO_HZ_FULL
 173cpumask_var_t tick_nohz_full_mask;
 174bool tick_nohz_full_running;
 175static atomic_t tick_dep_mask;
 176
 177static bool check_tick_dependency(atomic_t *dep)
 178{
 179	int val = atomic_read(dep);
 180
 181	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 182		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 183		return true;
 184	}
 185
 186	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 187		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 188		return true;
 189	}
 190
 191	if (val & TICK_DEP_MASK_SCHED) {
 192		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 193		return true;
 194	}
 195
 196	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 197		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 198		return true;
 199	}
 200
 201	return false;
 202}
 203
 204static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 205{
 206	lockdep_assert_irqs_disabled();
 207
 208	if (unlikely(!cpu_online(cpu)))
 209		return false;
 210
 211	if (check_tick_dependency(&tick_dep_mask))
 212		return false;
 213
 214	if (check_tick_dependency(&ts->tick_dep_mask))
 215		return false;
 216
 217	if (check_tick_dependency(&current->tick_dep_mask))
 218		return false;
 219
 220	if (check_tick_dependency(&current->signal->tick_dep_mask))
 221		return false;
 222
 223	return true;
 224}
 225
 226static void nohz_full_kick_func(struct irq_work *work)
 227{
 228	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 229}
 230
 231static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 232	.func = nohz_full_kick_func,
 233};
 234
 235/*
 236 * Kick this CPU if it's full dynticks in order to force it to
 237 * re-evaluate its dependency on the tick and restart it if necessary.
 238 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 239 * is NMI safe.
 240 */
 241static void tick_nohz_full_kick(void)
 242{
 243	if (!tick_nohz_full_cpu(smp_processor_id()))
 244		return;
 245
 246	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 247}
 248
 249/*
 250 * Kick the CPU if it's full dynticks in order to force it to
 251 * re-evaluate its dependency on the tick and restart it if necessary.
 252 */
 253void tick_nohz_full_kick_cpu(int cpu)
 254{
 255	if (!tick_nohz_full_cpu(cpu))
 256		return;
 257
 258	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 259}
 260
 261/*
 262 * Kick all full dynticks CPUs in order to force these to re-evaluate
 263 * their dependency on the tick and restart it if necessary.
 264 */
 265static void tick_nohz_full_kick_all(void)
 266{
 267	int cpu;
 268
 269	if (!tick_nohz_full_running)
 270		return;
 271
 272	preempt_disable();
 273	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 274		tick_nohz_full_kick_cpu(cpu);
 275	preempt_enable();
 276}
 277
 278static void tick_nohz_dep_set_all(atomic_t *dep,
 279				  enum tick_dep_bits bit)
 280{
 281	int prev;
 282
 283	prev = atomic_fetch_or(BIT(bit), dep);
 284	if (!prev)
 285		tick_nohz_full_kick_all();
 286}
 287
 288/*
 289 * Set a global tick dependency. Used by perf events that rely on freq and
 290 * by unstable clock.
 291 */
 292void tick_nohz_dep_set(enum tick_dep_bits bit)
 293{
 294	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 295}
 296
 297void tick_nohz_dep_clear(enum tick_dep_bits bit)
 298{
 299	atomic_andnot(BIT(bit), &tick_dep_mask);
 300}
 301
 302/*
 303 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 304 * manage events throttling.
 305 */
 306void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 307{
 308	int prev;
 309	struct tick_sched *ts;
 310
 311	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 312
 313	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 314	if (!prev) {
 315		preempt_disable();
 316		/* Perf needs local kick that is NMI safe */
 317		if (cpu == smp_processor_id()) {
 318			tick_nohz_full_kick();
 319		} else {
 320			/* Remote irq work not NMI-safe */
 321			if (!WARN_ON_ONCE(in_nmi()))
 322				tick_nohz_full_kick_cpu(cpu);
 323		}
 324		preempt_enable();
 325	}
 326}
 327
 328void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 329{
 330	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 331
 332	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 333}
 334
 335/*
 336 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 337 * per task timers.
 338 */
 339void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 340{
 341	/*
 342	 * We could optimize this with just kicking the target running the task
 343	 * if that noise matters for nohz full users.
 344	 */
 345	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 346}
 347
 348void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 349{
 350	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 351}
 352
 353/*
 354 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 355 * per process timers.
 356 */
 357void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 358{
 359	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 360}
 361
 362void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 363{
 364	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 365}
 366
 367/*
 368 * Re-evaluate the need for the tick as we switch the current task.
 369 * It might need the tick due to per task/process properties:
 370 * perf events, posix CPU timers, ...
 371 */
 372void __tick_nohz_task_switch(void)
 373{
 374	unsigned long flags;
 375	struct tick_sched *ts;
 376
 377	local_irq_save(flags);
 378
 379	if (!tick_nohz_full_cpu(smp_processor_id()))
 380		goto out;
 381
 382	ts = this_cpu_ptr(&tick_cpu_sched);
 383
 384	if (ts->tick_stopped) {
 385		if (atomic_read(&current->tick_dep_mask) ||
 386		    atomic_read(&current->signal->tick_dep_mask))
 387			tick_nohz_full_kick();
 388	}
 389out:
 390	local_irq_restore(flags);
 391}
 392
 393/* Get the boot-time nohz CPU list from the kernel parameters. */
 394void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 395{
 396	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 397	cpumask_copy(tick_nohz_full_mask, cpumask);
 398	tick_nohz_full_running = true;
 399}
 400
 401static int tick_nohz_cpu_down(unsigned int cpu)
 402{
 403	/*
 404	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 405	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 406	 * CPUs. It must remain online when nohz full is enabled.
 407	 */
 408	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 409		return -EBUSY;
 410	return 0;
 411}
 412
 413void __init tick_nohz_init(void)
 414{
 415	int cpu, ret;
 416
 417	if (!tick_nohz_full_running)
 418		return;
 419
 420	/*
 421	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 422	 * locking contexts. But then we need irq work to raise its own
 423	 * interrupts to avoid circular dependency on the tick
 424	 */
 425	if (!arch_irq_work_has_interrupt()) {
 426		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 427		cpumask_clear(tick_nohz_full_mask);
 428		tick_nohz_full_running = false;
 429		return;
 430	}
 431
 432	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 433			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 434		cpu = smp_processor_id();
 435
 436		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 437			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 438				"for timekeeping\n", cpu);
 439			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 440		}
 441	}
 442
 443	for_each_cpu(cpu, tick_nohz_full_mask)
 444		context_tracking_cpu_set(cpu);
 445
 446	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 447					"kernel/nohz:predown", NULL,
 448					tick_nohz_cpu_down);
 449	WARN_ON(ret < 0);
 450	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 451		cpumask_pr_args(tick_nohz_full_mask));
 452}
 453#endif
 454
 455/*
 456 * NOHZ - aka dynamic tick functionality
 457 */
 458#ifdef CONFIG_NO_HZ_COMMON
 459/*
 460 * NO HZ enabled ?
 461 */
 462bool tick_nohz_enabled __read_mostly  = true;
 463unsigned long tick_nohz_active  __read_mostly;
 464/*
 465 * Enable / Disable tickless mode
 466 */
 467static int __init setup_tick_nohz(char *str)
 468{
 469	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 470}
 471
 472__setup("nohz=", setup_tick_nohz);
 473
 474bool tick_nohz_tick_stopped(void)
 475{
 476	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 477
 478	return ts->tick_stopped;
 479}
 480
 481bool tick_nohz_tick_stopped_cpu(int cpu)
 482{
 483	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 484
 485	return ts->tick_stopped;
 486}
 487
 488/**
 489 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 490 *
 491 * Called from interrupt entry when the CPU was idle
 492 *
 493 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 494 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 495 * value. We do this unconditionally on any CPU, as we don't know whether the
 496 * CPU, which has the update task assigned is in a long sleep.
 497 */
 498static void tick_nohz_update_jiffies(ktime_t now)
 499{
 500	unsigned long flags;
 501
 502	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 503
 504	local_irq_save(flags);
 505	tick_do_update_jiffies64(now);
 506	local_irq_restore(flags);
 507
 508	touch_softlockup_watchdog_sched();
 509}
 510
 511/*
 512 * Updates the per-CPU time idle statistics counters
 513 */
 514static void
 515update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 516{
 517	ktime_t delta;
 518
 519	if (ts->idle_active) {
 520		delta = ktime_sub(now, ts->idle_entrytime);
 521		if (nr_iowait_cpu(cpu) > 0)
 522			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 523		else
 524			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 525		ts->idle_entrytime = now;
 526	}
 527
 528	if (last_update_time)
 529		*last_update_time = ktime_to_us(now);
 530
 531}
 532
 533static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 534{
 535	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 536	ts->idle_active = 0;
 537
 538	sched_clock_idle_wakeup_event();
 539}
 540
 541static void tick_nohz_start_idle(struct tick_sched *ts)
 542{
 543	ts->idle_entrytime = ktime_get();
 544	ts->idle_active = 1;
 545	sched_clock_idle_sleep_event();
 546}
 547
 548/**
 549 * get_cpu_idle_time_us - get the total idle time of a CPU
 550 * @cpu: CPU number to query
 551 * @last_update_time: variable to store update time in. Do not update
 552 * counters if NULL.
 553 *
 554 * Return the cumulative idle time (since boot) for a given
 555 * CPU, in microseconds.
 556 *
 557 * This time is measured via accounting rather than sampling,
 558 * and is as accurate as ktime_get() is.
 559 *
 560 * This function returns -1 if NOHZ is not enabled.
 561 */
 562u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 563{
 564	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 565	ktime_t now, idle;
 566
 567	if (!tick_nohz_active)
 568		return -1;
 569
 570	now = ktime_get();
 571	if (last_update_time) {
 572		update_ts_time_stats(cpu, ts, now, last_update_time);
 573		idle = ts->idle_sleeptime;
 574	} else {
 575		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 576			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 577
 578			idle = ktime_add(ts->idle_sleeptime, delta);
 579		} else {
 580			idle = ts->idle_sleeptime;
 581		}
 582	}
 583
 584	return ktime_to_us(idle);
 585
 586}
 587EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 588
 589/**
 590 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 591 * @cpu: CPU number to query
 592 * @last_update_time: variable to store update time in. Do not update
 593 * counters if NULL.
 594 *
 595 * Return the cumulative iowait time (since boot) for a given
 596 * CPU, in microseconds.
 597 *
 598 * This time is measured via accounting rather than sampling,
 599 * and is as accurate as ktime_get() is.
 600 *
 601 * This function returns -1 if NOHZ is not enabled.
 602 */
 603u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 604{
 605	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 606	ktime_t now, iowait;
 607
 608	if (!tick_nohz_active)
 609		return -1;
 610
 611	now = ktime_get();
 612	if (last_update_time) {
 613		update_ts_time_stats(cpu, ts, now, last_update_time);
 614		iowait = ts->iowait_sleeptime;
 615	} else {
 616		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 617			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 618
 619			iowait = ktime_add(ts->iowait_sleeptime, delta);
 620		} else {
 621			iowait = ts->iowait_sleeptime;
 622		}
 623	}
 624
 625	return ktime_to_us(iowait);
 626}
 627EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 628
 629static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 630{
 631	hrtimer_cancel(&ts->sched_timer);
 632	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 633
 634	/* Forward the time to expire in the future */
 635	hrtimer_forward(&ts->sched_timer, now, tick_period);
 636
 637	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 638		hrtimer_start_expires(&ts->sched_timer,
 639				      HRTIMER_MODE_ABS_PINNED_HARD);
 640	} else {
 641		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 642	}
 643
 644	/*
 645	 * Reset to make sure next tick stop doesn't get fooled by past
 646	 * cached clock deadline.
 647	 */
 648	ts->next_tick = 0;
 649}
 650
 651static inline bool local_timer_softirq_pending(void)
 652{
 653	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 654}
 655
 656static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 657{
 658	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 659	unsigned long basejiff;
 660	unsigned int seq;
 661
 662	/* Read jiffies and the time when jiffies were updated last */
 663	do {
 664		seq = read_seqbegin(&jiffies_lock);
 665		basemono = last_jiffies_update;
 666		basejiff = jiffies;
 667	} while (read_seqretry(&jiffies_lock, seq));
 668	ts->last_jiffies = basejiff;
 669	ts->timer_expires_base = basemono;
 670
 671	/*
 672	 * Keep the periodic tick, when RCU, architecture or irq_work
 673	 * requests it.
 674	 * Aside of that check whether the local timer softirq is
 675	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 676	 * because there is an already expired timer, so it will request
 677	 * immeditate expiry, which rearms the hardware timer with a
 678	 * minimal delta which brings us back to this place
 679	 * immediately. Lather, rinse and repeat...
 680	 */
 681	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 682	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 683		next_tick = basemono + TICK_NSEC;
 684	} else {
 685		/*
 686		 * Get the next pending timer. If high resolution
 687		 * timers are enabled this only takes the timer wheel
 688		 * timers into account. If high resolution timers are
 689		 * disabled this also looks at the next expiring
 690		 * hrtimer.
 691		 */
 692		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 693		ts->next_timer = next_tmr;
 694		/* Take the next rcu event into account */
 695		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 696	}
 697
 698	/*
 699	 * If the tick is due in the next period, keep it ticking or
 700	 * force prod the timer.
 701	 */
 702	delta = next_tick - basemono;
 703	if (delta <= (u64)TICK_NSEC) {
 704		/*
 705		 * Tell the timer code that the base is not idle, i.e. undo
 706		 * the effect of get_next_timer_interrupt():
 707		 */
 708		timer_clear_idle();
 709		/*
 710		 * We've not stopped the tick yet, and there's a timer in the
 711		 * next period, so no point in stopping it either, bail.
 712		 */
 713		if (!ts->tick_stopped) {
 714			ts->timer_expires = 0;
 715			goto out;
 716		}
 717	}
 718
 719	/*
 720	 * If this CPU is the one which had the do_timer() duty last, we limit
 721	 * the sleep time to the timekeeping max_deferment value.
 722	 * Otherwise we can sleep as long as we want.
 723	 */
 724	delta = timekeeping_max_deferment();
 725	if (cpu != tick_do_timer_cpu &&
 726	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 727		delta = KTIME_MAX;
 728
 729	/* Calculate the next expiry time */
 730	if (delta < (KTIME_MAX - basemono))
 731		expires = basemono + delta;
 732	else
 733		expires = KTIME_MAX;
 734
 735	ts->timer_expires = min_t(u64, expires, next_tick);
 736
 737out:
 738	return ts->timer_expires;
 739}
 740
 741static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 742{
 743	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 744	u64 basemono = ts->timer_expires_base;
 745	u64 expires = ts->timer_expires;
 746	ktime_t tick = expires;
 747
 748	/* Make sure we won't be trying to stop it twice in a row. */
 749	ts->timer_expires_base = 0;
 750
 751	/*
 752	 * If this CPU is the one which updates jiffies, then give up
 753	 * the assignment and let it be taken by the CPU which runs
 754	 * the tick timer next, which might be this CPU as well. If we
 755	 * don't drop this here the jiffies might be stale and
 756	 * do_timer() never invoked. Keep track of the fact that it
 757	 * was the one which had the do_timer() duty last.
 758	 */
 759	if (cpu == tick_do_timer_cpu) {
 760		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 761		ts->do_timer_last = 1;
 762	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 763		ts->do_timer_last = 0;
 764	}
 765
 766	/* Skip reprogram of event if its not changed */
 767	if (ts->tick_stopped && (expires == ts->next_tick)) {
 768		/* Sanity check: make sure clockevent is actually programmed */
 769		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 770			return;
 771
 772		WARN_ON_ONCE(1);
 773		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 774			    basemono, ts->next_tick, dev->next_event,
 775			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 776	}
 777
 778	/*
 779	 * nohz_stop_sched_tick can be called several times before
 780	 * the nohz_restart_sched_tick is called. This happens when
 781	 * interrupts arrive which do not cause a reschedule. In the
 782	 * first call we save the current tick time, so we can restart
 783	 * the scheduler tick in nohz_restart_sched_tick.
 784	 */
 785	if (!ts->tick_stopped) {
 786		calc_load_nohz_start();
 
 787		quiet_vmstat();
 788
 789		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 790		ts->tick_stopped = 1;
 791		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 792	}
 793
 794	ts->next_tick = tick;
 795
 796	/*
 797	 * If the expiration time == KTIME_MAX, then we simply stop
 798	 * the tick timer.
 799	 */
 800	if (unlikely(expires == KTIME_MAX)) {
 801		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 802			hrtimer_cancel(&ts->sched_timer);
 803		return;
 804	}
 805
 806	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 807		hrtimer_start(&ts->sched_timer, tick,
 808			      HRTIMER_MODE_ABS_PINNED_HARD);
 809	} else {
 810		hrtimer_set_expires(&ts->sched_timer, tick);
 811		tick_program_event(tick, 1);
 812	}
 813}
 814
 815static void tick_nohz_retain_tick(struct tick_sched *ts)
 816{
 817	ts->timer_expires_base = 0;
 818}
 819
 820#ifdef CONFIG_NO_HZ_FULL
 821static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 822{
 823	if (tick_nohz_next_event(ts, cpu))
 824		tick_nohz_stop_tick(ts, cpu);
 825	else
 826		tick_nohz_retain_tick(ts);
 827}
 828#endif /* CONFIG_NO_HZ_FULL */
 829
 830static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 831{
 832	/* Update jiffies first */
 833	tick_do_update_jiffies64(now);
 
 834
 835	/*
 836	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 837	 * the clock forward checks in the enqueue path:
 838	 */
 839	timer_clear_idle();
 840
 841	calc_load_nohz_stop();
 842	touch_softlockup_watchdog_sched();
 843	/*
 844	 * Cancel the scheduled timer and restore the tick
 845	 */
 846	ts->tick_stopped  = 0;
 847	ts->idle_exittime = now;
 848
 849	tick_nohz_restart(ts, now);
 850}
 851
 852static void tick_nohz_full_update_tick(struct tick_sched *ts)
 853{
 854#ifdef CONFIG_NO_HZ_FULL
 855	int cpu = smp_processor_id();
 856
 857	if (!tick_nohz_full_cpu(cpu))
 858		return;
 859
 860	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 861		return;
 862
 863	if (can_stop_full_tick(cpu, ts))
 864		tick_nohz_stop_sched_tick(ts, cpu);
 865	else if (ts->tick_stopped)
 866		tick_nohz_restart_sched_tick(ts, ktime_get());
 867#endif
 868}
 869
 870static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 871{
 872	/*
 873	 * If this CPU is offline and it is the one which updates
 874	 * jiffies, then give up the assignment and let it be taken by
 875	 * the CPU which runs the tick timer next. If we don't drop
 876	 * this here the jiffies might be stale and do_timer() never
 877	 * invoked.
 878	 */
 879	if (unlikely(!cpu_online(cpu))) {
 880		if (cpu == tick_do_timer_cpu)
 881			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 882		/*
 883		 * Make sure the CPU doesn't get fooled by obsolete tick
 884		 * deadline if it comes back online later.
 885		 */
 886		ts->next_tick = 0;
 887		return false;
 888	}
 889
 890	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 891		return false;
 892
 893	if (need_resched())
 894		return false;
 895
 896	if (unlikely(local_softirq_pending())) {
 897		static int ratelimit;
 898
 899		if (ratelimit < 10 &&
 900		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 901			pr_warn("NOHZ: local_softirq_pending %02x\n",
 902				(unsigned int) local_softirq_pending());
 903			ratelimit++;
 904		}
 905		return false;
 906	}
 907
 908	if (tick_nohz_full_enabled()) {
 909		/*
 910		 * Keep the tick alive to guarantee timekeeping progression
 911		 * if there are full dynticks CPUs around
 912		 */
 913		if (tick_do_timer_cpu == cpu)
 914			return false;
 915		/*
 916		 * Boot safety: make sure the timekeeping duty has been
 917		 * assigned before entering dyntick-idle mode,
 918		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
 919		 */
 920		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
 921			return false;
 922
 923		/* Should not happen for nohz-full */
 924		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 925			return false;
 926	}
 927
 928	return true;
 929}
 930
 931static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 932{
 933	ktime_t expires;
 934	int cpu = smp_processor_id();
 935
 936	/*
 937	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 938	 * tick timer expiration time is known already.
 939	 */
 940	if (ts->timer_expires_base)
 941		expires = ts->timer_expires;
 942	else if (can_stop_idle_tick(cpu, ts))
 943		expires = tick_nohz_next_event(ts, cpu);
 944	else
 945		return;
 946
 947	ts->idle_calls++;
 948
 949	if (expires > 0LL) {
 950		int was_stopped = ts->tick_stopped;
 951
 952		tick_nohz_stop_tick(ts, cpu);
 953
 954		ts->idle_sleeps++;
 955		ts->idle_expires = expires;
 956
 957		if (!was_stopped && ts->tick_stopped) {
 958			ts->idle_jiffies = ts->last_jiffies;
 959			nohz_balance_enter_idle(cpu);
 960		}
 961	} else {
 962		tick_nohz_retain_tick(ts);
 963	}
 964}
 965
 966/**
 967 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 968 *
 969 * When the next event is more than a tick into the future, stop the idle tick
 970 */
 971void tick_nohz_idle_stop_tick(void)
 972{
 973	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
 974}
 975
 976void tick_nohz_idle_retain_tick(void)
 977{
 978	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 979	/*
 980	 * Undo the effect of get_next_timer_interrupt() called from
 981	 * tick_nohz_next_event().
 982	 */
 983	timer_clear_idle();
 984}
 985
 986/**
 987 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
 988 *
 989 * Called when we start the idle loop.
 990 */
 991void tick_nohz_idle_enter(void)
 992{
 993	struct tick_sched *ts;
 994
 995	lockdep_assert_irqs_enabled();
 996
 997	local_irq_disable();
 998
 999	ts = this_cpu_ptr(&tick_cpu_sched);
1000
1001	WARN_ON_ONCE(ts->timer_expires_base);
1002
1003	ts->inidle = 1;
1004	tick_nohz_start_idle(ts);
1005
1006	local_irq_enable();
1007}
1008
1009/**
1010 * tick_nohz_irq_exit - update next tick event from interrupt exit
1011 *
1012 * When an interrupt fires while we are idle and it doesn't cause
1013 * a reschedule, it may still add, modify or delete a timer, enqueue
1014 * an RCU callback, etc...
1015 * So we need to re-calculate and reprogram the next tick event.
1016 */
1017void tick_nohz_irq_exit(void)
1018{
1019	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020
1021	if (ts->inidle)
1022		tick_nohz_start_idle(ts);
1023	else
1024		tick_nohz_full_update_tick(ts);
1025}
1026
1027/**
1028 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1029 */
1030bool tick_nohz_idle_got_tick(void)
1031{
1032	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1033
1034	if (ts->got_idle_tick) {
1035		ts->got_idle_tick = 0;
1036		return true;
1037	}
1038	return false;
1039}
1040
1041/**
1042 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1043 * or the tick, whatever that expires first. Note that, if the tick has been
1044 * stopped, it returns the next hrtimer.
1045 *
1046 * Called from power state control code with interrupts disabled
1047 */
1048ktime_t tick_nohz_get_next_hrtimer(void)
1049{
1050	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1051}
1052
1053/**
1054 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1055 * @delta_next: duration until the next event if the tick cannot be stopped
1056 *
1057 * Called from power state control code with interrupts disabled
1058 */
1059ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1060{
1061	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1062	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1063	int cpu = smp_processor_id();
1064	/*
1065	 * The idle entry time is expected to be a sufficient approximation of
1066	 * the current time at this point.
1067	 */
1068	ktime_t now = ts->idle_entrytime;
1069	ktime_t next_event;
1070
1071	WARN_ON_ONCE(!ts->inidle);
1072
1073	*delta_next = ktime_sub(dev->next_event, now);
1074
1075	if (!can_stop_idle_tick(cpu, ts))
1076		return *delta_next;
1077
1078	next_event = tick_nohz_next_event(ts, cpu);
1079	if (!next_event)
1080		return *delta_next;
1081
1082	/*
1083	 * If the next highres timer to expire is earlier than next_event, the
1084	 * idle governor needs to know that.
1085	 */
1086	next_event = min_t(u64, next_event,
1087			   hrtimer_next_event_without(&ts->sched_timer));
1088
1089	return ktime_sub(next_event, now);
1090}
1091
1092/**
1093 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1094 * for a particular CPU.
1095 *
1096 * Called from the schedutil frequency scaling governor in scheduler context.
1097 */
1098unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1099{
1100	struct tick_sched *ts = tick_get_tick_sched(cpu);
1101
1102	return ts->idle_calls;
1103}
1104
1105/**
1106 * tick_nohz_get_idle_calls - return the current idle calls counter value
1107 *
1108 * Called from the schedutil frequency scaling governor in scheduler context.
1109 */
1110unsigned long tick_nohz_get_idle_calls(void)
1111{
1112	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1113
1114	return ts->idle_calls;
1115}
1116
1117static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1118{
1119#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1120	unsigned long ticks;
1121
1122	if (vtime_accounting_cpu_enabled())
1123		return;
1124	/*
1125	 * We stopped the tick in idle. Update process times would miss the
1126	 * time we slept as update_process_times does only a 1 tick
1127	 * accounting. Enforce that this is accounted to idle !
1128	 */
1129	ticks = jiffies - ts->idle_jiffies;
1130	/*
1131	 * We might be one off. Do not randomly account a huge number of ticks!
1132	 */
1133	if (ticks && ticks < LONG_MAX)
1134		account_idle_ticks(ticks);
1135#endif
1136}
1137
1138static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1139{
1140	tick_nohz_restart_sched_tick(ts, now);
1141	tick_nohz_account_idle_ticks(ts);
1142}
1143
1144void tick_nohz_idle_restart_tick(void)
1145{
1146	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1147
1148	if (ts->tick_stopped)
1149		__tick_nohz_idle_restart_tick(ts, ktime_get());
1150}
1151
1152/**
1153 * tick_nohz_idle_exit - restart the idle tick from the idle task
1154 *
1155 * Restart the idle tick when the CPU is woken up from idle
1156 * This also exit the RCU extended quiescent state. The CPU
1157 * can use RCU again after this function is called.
1158 */
1159void tick_nohz_idle_exit(void)
1160{
1161	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162	bool idle_active, tick_stopped;
1163	ktime_t now;
1164
1165	local_irq_disable();
1166
1167	WARN_ON_ONCE(!ts->inidle);
1168	WARN_ON_ONCE(ts->timer_expires_base);
1169
1170	ts->inidle = 0;
1171	idle_active = ts->idle_active;
1172	tick_stopped = ts->tick_stopped;
1173
1174	if (idle_active || tick_stopped)
1175		now = ktime_get();
1176
1177	if (idle_active)
1178		tick_nohz_stop_idle(ts, now);
1179
1180	if (tick_stopped)
1181		__tick_nohz_idle_restart_tick(ts, now);
1182
1183	local_irq_enable();
1184}
1185
1186/*
1187 * The nohz low res interrupt handler
1188 */
1189static void tick_nohz_handler(struct clock_event_device *dev)
1190{
1191	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1192	struct pt_regs *regs = get_irq_regs();
1193	ktime_t now = ktime_get();
1194
1195	dev->next_event = KTIME_MAX;
1196
1197	tick_sched_do_timer(ts, now);
1198	tick_sched_handle(ts, regs);
1199
1200	/* No need to reprogram if we are running tickless  */
1201	if (unlikely(ts->tick_stopped))
1202		return;
1203
1204	hrtimer_forward(&ts->sched_timer, now, tick_period);
1205	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1206}
1207
1208static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1209{
1210	if (!tick_nohz_enabled)
1211		return;
1212	ts->nohz_mode = mode;
1213	/* One update is enough */
1214	if (!test_and_set_bit(0, &tick_nohz_active))
1215		timers_update_nohz();
1216}
1217
1218/**
1219 * tick_nohz_switch_to_nohz - switch to nohz mode
1220 */
1221static void tick_nohz_switch_to_nohz(void)
1222{
1223	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1224	ktime_t next;
1225
1226	if (!tick_nohz_enabled)
1227		return;
1228
1229	if (tick_switch_to_oneshot(tick_nohz_handler))
1230		return;
1231
1232	/*
1233	 * Recycle the hrtimer in ts, so we can share the
1234	 * hrtimer_forward with the highres code.
1235	 */
1236	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1237	/* Get the next period */
1238	next = tick_init_jiffy_update();
1239
1240	hrtimer_set_expires(&ts->sched_timer, next);
1241	hrtimer_forward_now(&ts->sched_timer, tick_period);
1242	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1243	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1244}
1245
1246static inline void tick_nohz_irq_enter(void)
1247{
1248	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1249	ktime_t now;
1250
1251	if (!ts->idle_active && !ts->tick_stopped)
1252		return;
1253	now = ktime_get();
1254	if (ts->idle_active)
1255		tick_nohz_stop_idle(ts, now);
1256	if (ts->tick_stopped)
1257		tick_nohz_update_jiffies(now);
1258}
1259
1260#else
1261
1262static inline void tick_nohz_switch_to_nohz(void) { }
1263static inline void tick_nohz_irq_enter(void) { }
1264static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1265
1266#endif /* CONFIG_NO_HZ_COMMON */
1267
1268/*
1269 * Called from irq_enter to notify about the possible interruption of idle()
1270 */
1271void tick_irq_enter(void)
1272{
1273	tick_check_oneshot_broadcast_this_cpu();
1274	tick_nohz_irq_enter();
1275}
1276
1277/*
1278 * High resolution timer specific code
1279 */
1280#ifdef CONFIG_HIGH_RES_TIMERS
1281/*
1282 * We rearm the timer until we get disabled by the idle code.
1283 * Called with interrupts disabled.
1284 */
1285static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1286{
1287	struct tick_sched *ts =
1288		container_of(timer, struct tick_sched, sched_timer);
1289	struct pt_regs *regs = get_irq_regs();
1290	ktime_t now = ktime_get();
1291
1292	tick_sched_do_timer(ts, now);
1293
1294	/*
1295	 * Do not call, when we are not in irq context and have
1296	 * no valid regs pointer
1297	 */
1298	if (regs)
1299		tick_sched_handle(ts, regs);
1300	else
1301		ts->next_tick = 0;
1302
1303	/* No need to reprogram if we are in idle or full dynticks mode */
1304	if (unlikely(ts->tick_stopped))
1305		return HRTIMER_NORESTART;
1306
1307	hrtimer_forward(timer, now, tick_period);
1308
1309	return HRTIMER_RESTART;
1310}
1311
1312static int sched_skew_tick;
1313
1314static int __init skew_tick(char *str)
1315{
1316	get_option(&str, &sched_skew_tick);
1317
1318	return 0;
1319}
1320early_param("skew_tick", skew_tick);
1321
1322/**
1323 * tick_setup_sched_timer - setup the tick emulation timer
1324 */
1325void tick_setup_sched_timer(void)
1326{
1327	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1328	ktime_t now = ktime_get();
1329
1330	/*
1331	 * Emulate tick processing via per-CPU hrtimers:
1332	 */
1333	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1334	ts->sched_timer.function = tick_sched_timer;
1335
1336	/* Get the next period (per-CPU) */
1337	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1338
1339	/* Offset the tick to avert jiffies_lock contention. */
1340	if (sched_skew_tick) {
1341		u64 offset = ktime_to_ns(tick_period) >> 1;
1342		do_div(offset, num_possible_cpus());
1343		offset *= smp_processor_id();
1344		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1345	}
1346
1347	hrtimer_forward(&ts->sched_timer, now, tick_period);
1348	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1349	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1350}
1351#endif /* HIGH_RES_TIMERS */
1352
1353#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1354void tick_cancel_sched_timer(int cpu)
1355{
1356	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1357
1358# ifdef CONFIG_HIGH_RES_TIMERS
1359	if (ts->sched_timer.base)
1360		hrtimer_cancel(&ts->sched_timer);
1361# endif
1362
1363	memset(ts, 0, sizeof(*ts));
1364}
1365#endif
1366
1367/**
1368 * Async notification about clocksource changes
1369 */
1370void tick_clock_notify(void)
1371{
1372	int cpu;
1373
1374	for_each_possible_cpu(cpu)
1375		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1376}
1377
1378/*
1379 * Async notification about clock event changes
1380 */
1381void tick_oneshot_notify(void)
1382{
1383	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1384
1385	set_bit(0, &ts->check_clocks);
1386}
1387
1388/**
1389 * Check, if a change happened, which makes oneshot possible.
1390 *
1391 * Called cyclic from the hrtimer softirq (driven by the timer
1392 * softirq) allow_nohz signals, that we can switch into low-res nohz
1393 * mode, because high resolution timers are disabled (either compile
1394 * or runtime). Called with interrupts disabled.
1395 */
1396int tick_check_oneshot_change(int allow_nohz)
1397{
1398	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1399
1400	if (!test_and_clear_bit(0, &ts->check_clocks))
1401		return 0;
1402
1403	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1404		return 0;
1405
1406	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1407		return 0;
1408
1409	if (!allow_nohz)
1410		return 1;
1411
1412	tick_nohz_switch_to_nohz();
1413	return 0;
1414}
v4.17
 
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/nmi.h>
  21#include <linux/profile.h>
  22#include <linux/sched/signal.h>
  23#include <linux/sched/clock.h>
  24#include <linux/sched/stat.h>
  25#include <linux/sched/nohz.h>
  26#include <linux/module.h>
  27#include <linux/irq_work.h>
  28#include <linux/posix-timers.h>
  29#include <linux/context_tracking.h>
  30#include <linux/mm.h>
  31
  32#include <asm/irq_regs.h>
  33
  34#include "tick-internal.h"
  35
  36#include <trace/events/timer.h>
  37
  38/*
  39 * Per-CPU nohz control structure
  40 */
  41static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  42
  43struct tick_sched *tick_get_tick_sched(int cpu)
  44{
  45	return &per_cpu(tick_cpu_sched, cpu);
  46}
  47
  48#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  49/*
  50 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 0;
  60	ktime_t delta;
  61
  62	/*
  63	 * Do a quick check without holding jiffies_lock:
  64	 */
  65	delta = ktime_sub(now, last_jiffies_update);
  66	if (delta < tick_period)
  67		return;
  68
  69	/* Reevaluate with jiffies_lock held */
  70	write_seqlock(&jiffies_lock);
  71
  72	delta = ktime_sub(now, last_jiffies_update);
  73	if (delta >= tick_period) {
  74
  75		delta = ktime_sub(delta, tick_period);
  76		last_jiffies_update = ktime_add(last_jiffies_update,
  77						tick_period);
  78
  79		/* Slow path for long timeouts */
  80		if (unlikely(delta >= tick_period)) {
  81			s64 incr = ktime_to_ns(tick_period);
  82
  83			ticks = ktime_divns(delta, incr);
  84
  85			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  86							   incr * ticks);
  87		}
  88		do_timer(++ticks);
  89
  90		/* Keep the tick_next_period variable up to date */
  91		tick_next_period = ktime_add(last_jiffies_update, tick_period);
  92	} else {
  93		write_sequnlock(&jiffies_lock);
  94		return;
  95	}
  96	write_sequnlock(&jiffies_lock);
  97	update_wall_time();
  98}
  99
 100/*
 101 * Initialize and return retrieve the jiffies update.
 102 */
 103static ktime_t tick_init_jiffy_update(void)
 104{
 105	ktime_t period;
 106
 107	write_seqlock(&jiffies_lock);
 108	/* Did we start the jiffies update yet ? */
 109	if (last_jiffies_update == 0)
 110		last_jiffies_update = tick_next_period;
 111	period = last_jiffies_update;
 112	write_sequnlock(&jiffies_lock);
 113	return period;
 114}
 115
 116static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 117{
 118	int cpu = smp_processor_id();
 119
 120#ifdef CONFIG_NO_HZ_COMMON
 121	/*
 122	 * Check if the do_timer duty was dropped. We don't care about
 123	 * concurrency: This happens only when the CPU in charge went
 124	 * into a long sleep. If two CPUs happen to assign themselves to
 125	 * this duty, then the jiffies update is still serialized by
 126	 * jiffies_lock.
 
 
 
 127	 */
 128	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 129	    && !tick_nohz_full_cpu(cpu))
 
 
 130		tick_do_timer_cpu = cpu;
 
 131#endif
 132
 133	/* Check, if the jiffies need an update */
 134	if (tick_do_timer_cpu == cpu)
 135		tick_do_update_jiffies64(now);
 136
 137	if (ts->inidle)
 138		ts->got_idle_tick = 1;
 139}
 140
 141static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 142{
 143#ifdef CONFIG_NO_HZ_COMMON
 144	/*
 145	 * When we are idle and the tick is stopped, we have to touch
 146	 * the watchdog as we might not schedule for a really long
 147	 * time. This happens on complete idle SMP systems while
 148	 * waiting on the login prompt. We also increment the "start of
 149	 * idle" jiffy stamp so the idle accounting adjustment we do
 150	 * when we go busy again does not account too much ticks.
 151	 */
 152	if (ts->tick_stopped) {
 153		touch_softlockup_watchdog_sched();
 154		if (is_idle_task(current))
 155			ts->idle_jiffies++;
 156		/*
 157		 * In case the current tick fired too early past its expected
 158		 * expiration, make sure we don't bypass the next clock reprogramming
 159		 * to the same deadline.
 160		 */
 161		ts->next_tick = 0;
 162	}
 163#endif
 164	update_process_times(user_mode(regs));
 165	profile_tick(CPU_PROFILING);
 166}
 167#endif
 168
 169#ifdef CONFIG_NO_HZ_FULL
 170cpumask_var_t tick_nohz_full_mask;
 171bool tick_nohz_full_running;
 172static atomic_t tick_dep_mask;
 173
 174static bool check_tick_dependency(atomic_t *dep)
 175{
 176	int val = atomic_read(dep);
 177
 178	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 179		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 180		return true;
 181	}
 182
 183	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 184		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 185		return true;
 186	}
 187
 188	if (val & TICK_DEP_MASK_SCHED) {
 189		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 190		return true;
 191	}
 192
 193	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 194		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 195		return true;
 196	}
 197
 198	return false;
 199}
 200
 201static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 202{
 203	lockdep_assert_irqs_disabled();
 204
 205	if (unlikely(!cpu_online(cpu)))
 206		return false;
 207
 208	if (check_tick_dependency(&tick_dep_mask))
 209		return false;
 210
 211	if (check_tick_dependency(&ts->tick_dep_mask))
 212		return false;
 213
 214	if (check_tick_dependency(&current->tick_dep_mask))
 215		return false;
 216
 217	if (check_tick_dependency(&current->signal->tick_dep_mask))
 218		return false;
 219
 220	return true;
 221}
 222
 223static void nohz_full_kick_func(struct irq_work *work)
 224{
 225	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 226}
 227
 228static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 229	.func = nohz_full_kick_func,
 230};
 231
 232/*
 233 * Kick this CPU if it's full dynticks in order to force it to
 234 * re-evaluate its dependency on the tick and restart it if necessary.
 235 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 236 * is NMI safe.
 237 */
 238static void tick_nohz_full_kick(void)
 239{
 240	if (!tick_nohz_full_cpu(smp_processor_id()))
 241		return;
 242
 243	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 244}
 245
 246/*
 247 * Kick the CPU if it's full dynticks in order to force it to
 248 * re-evaluate its dependency on the tick and restart it if necessary.
 249 */
 250void tick_nohz_full_kick_cpu(int cpu)
 251{
 252	if (!tick_nohz_full_cpu(cpu))
 253		return;
 254
 255	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 256}
 257
 258/*
 259 * Kick all full dynticks CPUs in order to force these to re-evaluate
 260 * their dependency on the tick and restart it if necessary.
 261 */
 262static void tick_nohz_full_kick_all(void)
 263{
 264	int cpu;
 265
 266	if (!tick_nohz_full_running)
 267		return;
 268
 269	preempt_disable();
 270	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 271		tick_nohz_full_kick_cpu(cpu);
 272	preempt_enable();
 273}
 274
 275static void tick_nohz_dep_set_all(atomic_t *dep,
 276				  enum tick_dep_bits bit)
 277{
 278	int prev;
 279
 280	prev = atomic_fetch_or(BIT(bit), dep);
 281	if (!prev)
 282		tick_nohz_full_kick_all();
 283}
 284
 285/*
 286 * Set a global tick dependency. Used by perf events that rely on freq and
 287 * by unstable clock.
 288 */
 289void tick_nohz_dep_set(enum tick_dep_bits bit)
 290{
 291	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 292}
 293
 294void tick_nohz_dep_clear(enum tick_dep_bits bit)
 295{
 296	atomic_andnot(BIT(bit), &tick_dep_mask);
 297}
 298
 299/*
 300 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 301 * manage events throttling.
 302 */
 303void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 304{
 305	int prev;
 306	struct tick_sched *ts;
 307
 308	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 309
 310	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 311	if (!prev) {
 312		preempt_disable();
 313		/* Perf needs local kick that is NMI safe */
 314		if (cpu == smp_processor_id()) {
 315			tick_nohz_full_kick();
 316		} else {
 317			/* Remote irq work not NMI-safe */
 318			if (!WARN_ON_ONCE(in_nmi()))
 319				tick_nohz_full_kick_cpu(cpu);
 320		}
 321		preempt_enable();
 322	}
 323}
 324
 325void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 326{
 327	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 328
 329	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 330}
 331
 332/*
 333 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 334 * per task timers.
 335 */
 336void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 337{
 338	/*
 339	 * We could optimize this with just kicking the target running the task
 340	 * if that noise matters for nohz full users.
 341	 */
 342	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 343}
 344
 345void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 346{
 347	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 348}
 349
 350/*
 351 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 352 * per process timers.
 353 */
 354void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 355{
 356	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 357}
 358
 359void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 360{
 361	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 362}
 363
 364/*
 365 * Re-evaluate the need for the tick as we switch the current task.
 366 * It might need the tick due to per task/process properties:
 367 * perf events, posix CPU timers, ...
 368 */
 369void __tick_nohz_task_switch(void)
 370{
 371	unsigned long flags;
 372	struct tick_sched *ts;
 373
 374	local_irq_save(flags);
 375
 376	if (!tick_nohz_full_cpu(smp_processor_id()))
 377		goto out;
 378
 379	ts = this_cpu_ptr(&tick_cpu_sched);
 380
 381	if (ts->tick_stopped) {
 382		if (atomic_read(&current->tick_dep_mask) ||
 383		    atomic_read(&current->signal->tick_dep_mask))
 384			tick_nohz_full_kick();
 385	}
 386out:
 387	local_irq_restore(flags);
 388}
 389
 390/* Get the boot-time nohz CPU list from the kernel parameters. */
 391void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 392{
 393	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 394	cpumask_copy(tick_nohz_full_mask, cpumask);
 395	tick_nohz_full_running = true;
 396}
 397
 398static int tick_nohz_cpu_down(unsigned int cpu)
 399{
 400	/*
 401	 * The boot CPU handles housekeeping duty (unbound timers,
 402	 * workqueues, timekeeping, ...) on behalf of full dynticks
 403	 * CPUs. It must remain online when nohz full is enabled.
 404	 */
 405	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 406		return -EBUSY;
 407	return 0;
 408}
 409
 410void __init tick_nohz_init(void)
 411{
 412	int cpu, ret;
 413
 414	if (!tick_nohz_full_running)
 415		return;
 416
 417	/*
 418	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 419	 * locking contexts. But then we need irq work to raise its own
 420	 * interrupts to avoid circular dependency on the tick
 421	 */
 422	if (!arch_irq_work_has_interrupt()) {
 423		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 424		cpumask_clear(tick_nohz_full_mask);
 425		tick_nohz_full_running = false;
 426		return;
 427	}
 428
 429	cpu = smp_processor_id();
 430
 431	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 432		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
 433			cpu);
 434		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 
 
 
 435	}
 436
 437	for_each_cpu(cpu, tick_nohz_full_mask)
 438		context_tracking_cpu_set(cpu);
 439
 440	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 441					"kernel/nohz:predown", NULL,
 442					tick_nohz_cpu_down);
 443	WARN_ON(ret < 0);
 444	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 445		cpumask_pr_args(tick_nohz_full_mask));
 446}
 447#endif
 448
 449/*
 450 * NOHZ - aka dynamic tick functionality
 451 */
 452#ifdef CONFIG_NO_HZ_COMMON
 453/*
 454 * NO HZ enabled ?
 455 */
 456bool tick_nohz_enabled __read_mostly  = true;
 457unsigned long tick_nohz_active  __read_mostly;
 458/*
 459 * Enable / Disable tickless mode
 460 */
 461static int __init setup_tick_nohz(char *str)
 462{
 463	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 464}
 465
 466__setup("nohz=", setup_tick_nohz);
 467
 468bool tick_nohz_tick_stopped(void)
 469{
 470	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 471
 472	return ts->tick_stopped;
 473}
 474
 475bool tick_nohz_tick_stopped_cpu(int cpu)
 476{
 477	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 478
 479	return ts->tick_stopped;
 480}
 481
 482/**
 483 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 484 *
 485 * Called from interrupt entry when the CPU was idle
 486 *
 487 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 488 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 489 * value. We do this unconditionally on any CPU, as we don't know whether the
 490 * CPU, which has the update task assigned is in a long sleep.
 491 */
 492static void tick_nohz_update_jiffies(ktime_t now)
 493{
 494	unsigned long flags;
 495
 496	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 497
 498	local_irq_save(flags);
 499	tick_do_update_jiffies64(now);
 500	local_irq_restore(flags);
 501
 502	touch_softlockup_watchdog_sched();
 503}
 504
 505/*
 506 * Updates the per-CPU time idle statistics counters
 507 */
 508static void
 509update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 510{
 511	ktime_t delta;
 512
 513	if (ts->idle_active) {
 514		delta = ktime_sub(now, ts->idle_entrytime);
 515		if (nr_iowait_cpu(cpu) > 0)
 516			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 517		else
 518			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 519		ts->idle_entrytime = now;
 520	}
 521
 522	if (last_update_time)
 523		*last_update_time = ktime_to_us(now);
 524
 525}
 526
 527static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 528{
 529	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 530	ts->idle_active = 0;
 531
 532	sched_clock_idle_wakeup_event();
 533}
 534
 535static void tick_nohz_start_idle(struct tick_sched *ts)
 536{
 537	ts->idle_entrytime = ktime_get();
 538	ts->idle_active = 1;
 539	sched_clock_idle_sleep_event();
 540}
 541
 542/**
 543 * get_cpu_idle_time_us - get the total idle time of a CPU
 544 * @cpu: CPU number to query
 545 * @last_update_time: variable to store update time in. Do not update
 546 * counters if NULL.
 547 *
 548 * Return the cumulative idle time (since boot) for a given
 549 * CPU, in microseconds.
 550 *
 551 * This time is measured via accounting rather than sampling,
 552 * and is as accurate as ktime_get() is.
 553 *
 554 * This function returns -1 if NOHZ is not enabled.
 555 */
 556u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 557{
 558	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 559	ktime_t now, idle;
 560
 561	if (!tick_nohz_active)
 562		return -1;
 563
 564	now = ktime_get();
 565	if (last_update_time) {
 566		update_ts_time_stats(cpu, ts, now, last_update_time);
 567		idle = ts->idle_sleeptime;
 568	} else {
 569		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 570			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 571
 572			idle = ktime_add(ts->idle_sleeptime, delta);
 573		} else {
 574			idle = ts->idle_sleeptime;
 575		}
 576	}
 577
 578	return ktime_to_us(idle);
 579
 580}
 581EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 582
 583/**
 584 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 585 * @cpu: CPU number to query
 586 * @last_update_time: variable to store update time in. Do not update
 587 * counters if NULL.
 588 *
 589 * Return the cumulative iowait time (since boot) for a given
 590 * CPU, in microseconds.
 591 *
 592 * This time is measured via accounting rather than sampling,
 593 * and is as accurate as ktime_get() is.
 594 *
 595 * This function returns -1 if NOHZ is not enabled.
 596 */
 597u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 598{
 599	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 600	ktime_t now, iowait;
 601
 602	if (!tick_nohz_active)
 603		return -1;
 604
 605	now = ktime_get();
 606	if (last_update_time) {
 607		update_ts_time_stats(cpu, ts, now, last_update_time);
 608		iowait = ts->iowait_sleeptime;
 609	} else {
 610		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 611			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 612
 613			iowait = ktime_add(ts->iowait_sleeptime, delta);
 614		} else {
 615			iowait = ts->iowait_sleeptime;
 616		}
 617	}
 618
 619	return ktime_to_us(iowait);
 620}
 621EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 622
 623static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 624{
 625	hrtimer_cancel(&ts->sched_timer);
 626	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 627
 628	/* Forward the time to expire in the future */
 629	hrtimer_forward(&ts->sched_timer, now, tick_period);
 630
 631	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 632		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 633	else
 
 634		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 
 635
 636	/*
 637	 * Reset to make sure next tick stop doesn't get fooled by past
 638	 * cached clock deadline.
 639	 */
 640	ts->next_tick = 0;
 641}
 642
 643static inline bool local_timer_softirq_pending(void)
 644{
 645	return local_softirq_pending() & TIMER_SOFTIRQ;
 646}
 647
 648static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 649{
 650	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 651	unsigned long seq, basejiff;
 
 652
 653	/* Read jiffies and the time when jiffies were updated last */
 654	do {
 655		seq = read_seqbegin(&jiffies_lock);
 656		basemono = last_jiffies_update;
 657		basejiff = jiffies;
 658	} while (read_seqretry(&jiffies_lock, seq));
 659	ts->last_jiffies = basejiff;
 660	ts->timer_expires_base = basemono;
 661
 662	/*
 663	 * Keep the periodic tick, when RCU, architecture or irq_work
 664	 * requests it.
 665	 * Aside of that check whether the local timer softirq is
 666	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 667	 * because there is an already expired timer, so it will request
 668	 * immeditate expiry, which rearms the hardware timer with a
 669	 * minimal delta which brings us back to this place
 670	 * immediately. Lather, rinse and repeat...
 671	 */
 672	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 673	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 674		next_tick = basemono + TICK_NSEC;
 675	} else {
 676		/*
 677		 * Get the next pending timer. If high resolution
 678		 * timers are enabled this only takes the timer wheel
 679		 * timers into account. If high resolution timers are
 680		 * disabled this also looks at the next expiring
 681		 * hrtimer.
 682		 */
 683		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 684		ts->next_timer = next_tmr;
 685		/* Take the next rcu event into account */
 686		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 687	}
 688
 689	/*
 690	 * If the tick is due in the next period, keep it ticking or
 691	 * force prod the timer.
 692	 */
 693	delta = next_tick - basemono;
 694	if (delta <= (u64)TICK_NSEC) {
 695		/*
 696		 * Tell the timer code that the base is not idle, i.e. undo
 697		 * the effect of get_next_timer_interrupt():
 698		 */
 699		timer_clear_idle();
 700		/*
 701		 * We've not stopped the tick yet, and there's a timer in the
 702		 * next period, so no point in stopping it either, bail.
 703		 */
 704		if (!ts->tick_stopped) {
 705			ts->timer_expires = 0;
 706			goto out;
 707		}
 708	}
 709
 710	/*
 711	 * If this CPU is the one which had the do_timer() duty last, we limit
 712	 * the sleep time to the timekeeping max_deferment value.
 713	 * Otherwise we can sleep as long as we want.
 714	 */
 715	delta = timekeeping_max_deferment();
 716	if (cpu != tick_do_timer_cpu &&
 717	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 718		delta = KTIME_MAX;
 719
 720	/* Calculate the next expiry time */
 721	if (delta < (KTIME_MAX - basemono))
 722		expires = basemono + delta;
 723	else
 724		expires = KTIME_MAX;
 725
 726	ts->timer_expires = min_t(u64, expires, next_tick);
 727
 728out:
 729	return ts->timer_expires;
 730}
 731
 732static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 733{
 734	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 735	u64 basemono = ts->timer_expires_base;
 736	u64 expires = ts->timer_expires;
 737	ktime_t tick = expires;
 738
 739	/* Make sure we won't be trying to stop it twice in a row. */
 740	ts->timer_expires_base = 0;
 741
 742	/*
 743	 * If this CPU is the one which updates jiffies, then give up
 744	 * the assignment and let it be taken by the CPU which runs
 745	 * the tick timer next, which might be this CPU as well. If we
 746	 * don't drop this here the jiffies might be stale and
 747	 * do_timer() never invoked. Keep track of the fact that it
 748	 * was the one which had the do_timer() duty last.
 749	 */
 750	if (cpu == tick_do_timer_cpu) {
 751		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 752		ts->do_timer_last = 1;
 753	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 754		ts->do_timer_last = 0;
 755	}
 756
 757	/* Skip reprogram of event if its not changed */
 758	if (ts->tick_stopped && (expires == ts->next_tick)) {
 759		/* Sanity check: make sure clockevent is actually programmed */
 760		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 761			return;
 762
 763		WARN_ON_ONCE(1);
 764		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 765			    basemono, ts->next_tick, dev->next_event,
 766			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 767	}
 768
 769	/*
 770	 * nohz_stop_sched_tick can be called several times before
 771	 * the nohz_restart_sched_tick is called. This happens when
 772	 * interrupts arrive which do not cause a reschedule. In the
 773	 * first call we save the current tick time, so we can restart
 774	 * the scheduler tick in nohz_restart_sched_tick.
 775	 */
 776	if (!ts->tick_stopped) {
 777		calc_load_nohz_start();
 778		cpu_load_update_nohz_start();
 779		quiet_vmstat();
 780
 781		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 782		ts->tick_stopped = 1;
 783		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 784	}
 785
 786	ts->next_tick = tick;
 787
 788	/*
 789	 * If the expiration time == KTIME_MAX, then we simply stop
 790	 * the tick timer.
 791	 */
 792	if (unlikely(expires == KTIME_MAX)) {
 793		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 794			hrtimer_cancel(&ts->sched_timer);
 795		return;
 796	}
 797
 798	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 799		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
 
 800	} else {
 801		hrtimer_set_expires(&ts->sched_timer, tick);
 802		tick_program_event(tick, 1);
 803	}
 804}
 805
 806static void tick_nohz_retain_tick(struct tick_sched *ts)
 807{
 808	ts->timer_expires_base = 0;
 809}
 810
 811#ifdef CONFIG_NO_HZ_FULL
 812static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 813{
 814	if (tick_nohz_next_event(ts, cpu))
 815		tick_nohz_stop_tick(ts, cpu);
 816	else
 817		tick_nohz_retain_tick(ts);
 818}
 819#endif /* CONFIG_NO_HZ_FULL */
 820
 821static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 822{
 823	/* Update jiffies first */
 824	tick_do_update_jiffies64(now);
 825	cpu_load_update_nohz_stop();
 826
 827	/*
 828	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 829	 * the clock forward checks in the enqueue path:
 830	 */
 831	timer_clear_idle();
 832
 833	calc_load_nohz_stop();
 834	touch_softlockup_watchdog_sched();
 835	/*
 836	 * Cancel the scheduled timer and restore the tick
 837	 */
 838	ts->tick_stopped  = 0;
 839	ts->idle_exittime = now;
 840
 841	tick_nohz_restart(ts, now);
 842}
 843
 844static void tick_nohz_full_update_tick(struct tick_sched *ts)
 845{
 846#ifdef CONFIG_NO_HZ_FULL
 847	int cpu = smp_processor_id();
 848
 849	if (!tick_nohz_full_cpu(cpu))
 850		return;
 851
 852	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 853		return;
 854
 855	if (can_stop_full_tick(cpu, ts))
 856		tick_nohz_stop_sched_tick(ts, cpu);
 857	else if (ts->tick_stopped)
 858		tick_nohz_restart_sched_tick(ts, ktime_get());
 859#endif
 860}
 861
 862static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 863{
 864	/*
 865	 * If this CPU is offline and it is the one which updates
 866	 * jiffies, then give up the assignment and let it be taken by
 867	 * the CPU which runs the tick timer next. If we don't drop
 868	 * this here the jiffies might be stale and do_timer() never
 869	 * invoked.
 870	 */
 871	if (unlikely(!cpu_online(cpu))) {
 872		if (cpu == tick_do_timer_cpu)
 873			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 874		/*
 875		 * Make sure the CPU doesn't get fooled by obsolete tick
 876		 * deadline if it comes back online later.
 877		 */
 878		ts->next_tick = 0;
 879		return false;
 880	}
 881
 882	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 883		return false;
 884
 885	if (need_resched())
 886		return false;
 887
 888	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 889		static int ratelimit;
 890
 891		if (ratelimit < 10 &&
 892		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 893			pr_warn("NOHZ: local_softirq_pending %02x\n",
 894				(unsigned int) local_softirq_pending());
 895			ratelimit++;
 896		}
 897		return false;
 898	}
 899
 900	if (tick_nohz_full_enabled()) {
 901		/*
 902		 * Keep the tick alive to guarantee timekeeping progression
 903		 * if there are full dynticks CPUs around
 904		 */
 905		if (tick_do_timer_cpu == cpu)
 906			return false;
 907		/*
 908		 * Boot safety: make sure the timekeeping duty has been
 909		 * assigned before entering dyntick-idle mode,
 
 910		 */
 911		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 
 
 
 
 912			return false;
 913	}
 914
 915	return true;
 916}
 917
 918static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 919{
 920	ktime_t expires;
 921	int cpu = smp_processor_id();
 922
 923	/*
 924	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 925	 * tick timer expiration time is known already.
 926	 */
 927	if (ts->timer_expires_base)
 928		expires = ts->timer_expires;
 929	else if (can_stop_idle_tick(cpu, ts))
 930		expires = tick_nohz_next_event(ts, cpu);
 931	else
 932		return;
 933
 934	ts->idle_calls++;
 935
 936	if (expires > 0LL) {
 937		int was_stopped = ts->tick_stopped;
 938
 939		tick_nohz_stop_tick(ts, cpu);
 940
 941		ts->idle_sleeps++;
 942		ts->idle_expires = expires;
 943
 944		if (!was_stopped && ts->tick_stopped) {
 945			ts->idle_jiffies = ts->last_jiffies;
 946			nohz_balance_enter_idle(cpu);
 947		}
 948	} else {
 949		tick_nohz_retain_tick(ts);
 950	}
 951}
 952
 953/**
 954 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 955 *
 956 * When the next event is more than a tick into the future, stop the idle tick
 957 */
 958void tick_nohz_idle_stop_tick(void)
 959{
 960	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
 961}
 962
 963void tick_nohz_idle_retain_tick(void)
 964{
 965	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 966	/*
 967	 * Undo the effect of get_next_timer_interrupt() called from
 968	 * tick_nohz_next_event().
 969	 */
 970	timer_clear_idle();
 971}
 972
 973/**
 974 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
 975 *
 976 * Called when we start the idle loop.
 977 */
 978void tick_nohz_idle_enter(void)
 979{
 980	struct tick_sched *ts;
 981
 982	lockdep_assert_irqs_enabled();
 983
 984	local_irq_disable();
 985
 986	ts = this_cpu_ptr(&tick_cpu_sched);
 987
 988	WARN_ON_ONCE(ts->timer_expires_base);
 989
 990	ts->inidle = 1;
 991	tick_nohz_start_idle(ts);
 992
 993	local_irq_enable();
 994}
 995
 996/**
 997 * tick_nohz_irq_exit - update next tick event from interrupt exit
 998 *
 999 * When an interrupt fires while we are idle and it doesn't cause
1000 * a reschedule, it may still add, modify or delete a timer, enqueue
1001 * an RCU callback, etc...
1002 * So we need to re-calculate and reprogram the next tick event.
1003 */
1004void tick_nohz_irq_exit(void)
1005{
1006	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1007
1008	if (ts->inidle)
1009		tick_nohz_start_idle(ts);
1010	else
1011		tick_nohz_full_update_tick(ts);
1012}
1013
1014/**
1015 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1016 */
1017bool tick_nohz_idle_got_tick(void)
1018{
1019	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020
1021	if (ts->got_idle_tick) {
1022		ts->got_idle_tick = 0;
1023		return true;
1024	}
1025	return false;
1026}
1027
1028/**
 
 
 
 
 
 
 
 
 
 
 
 
1029 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1030 * @delta_next: duration until the next event if the tick cannot be stopped
1031 *
1032 * Called from power state control code with interrupts disabled
1033 */
1034ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1035{
1036	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1037	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1038	int cpu = smp_processor_id();
1039	/*
1040	 * The idle entry time is expected to be a sufficient approximation of
1041	 * the current time at this point.
1042	 */
1043	ktime_t now = ts->idle_entrytime;
1044	ktime_t next_event;
1045
1046	WARN_ON_ONCE(!ts->inidle);
1047
1048	*delta_next = ktime_sub(dev->next_event, now);
1049
1050	if (!can_stop_idle_tick(cpu, ts))
1051		return *delta_next;
1052
1053	next_event = tick_nohz_next_event(ts, cpu);
1054	if (!next_event)
1055		return *delta_next;
1056
1057	/*
1058	 * If the next highres timer to expire is earlier than next_event, the
1059	 * idle governor needs to know that.
1060	 */
1061	next_event = min_t(u64, next_event,
1062			   hrtimer_next_event_without(&ts->sched_timer));
1063
1064	return ktime_sub(next_event, now);
1065}
1066
1067/**
1068 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1069 * for a particular CPU.
1070 *
1071 * Called from the schedutil frequency scaling governor in scheduler context.
1072 */
1073unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1074{
1075	struct tick_sched *ts = tick_get_tick_sched(cpu);
1076
1077	return ts->idle_calls;
1078}
1079
1080/**
1081 * tick_nohz_get_idle_calls - return the current idle calls counter value
1082 *
1083 * Called from the schedutil frequency scaling governor in scheduler context.
1084 */
1085unsigned long tick_nohz_get_idle_calls(void)
1086{
1087	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1088
1089	return ts->idle_calls;
1090}
1091
1092static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1093{
1094#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1095	unsigned long ticks;
1096
1097	if (vtime_accounting_cpu_enabled())
1098		return;
1099	/*
1100	 * We stopped the tick in idle. Update process times would miss the
1101	 * time we slept as update_process_times does only a 1 tick
1102	 * accounting. Enforce that this is accounted to idle !
1103	 */
1104	ticks = jiffies - ts->idle_jiffies;
1105	/*
1106	 * We might be one off. Do not randomly account a huge number of ticks!
1107	 */
1108	if (ticks && ticks < LONG_MAX)
1109		account_idle_ticks(ticks);
1110#endif
1111}
1112
1113static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1114{
1115	tick_nohz_restart_sched_tick(ts, now);
1116	tick_nohz_account_idle_ticks(ts);
1117}
1118
1119void tick_nohz_idle_restart_tick(void)
1120{
1121	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1122
1123	if (ts->tick_stopped)
1124		__tick_nohz_idle_restart_tick(ts, ktime_get());
1125}
1126
1127/**
1128 * tick_nohz_idle_exit - restart the idle tick from the idle task
1129 *
1130 * Restart the idle tick when the CPU is woken up from idle
1131 * This also exit the RCU extended quiescent state. The CPU
1132 * can use RCU again after this function is called.
1133 */
1134void tick_nohz_idle_exit(void)
1135{
1136	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1137	bool idle_active, tick_stopped;
1138	ktime_t now;
1139
1140	local_irq_disable();
1141
1142	WARN_ON_ONCE(!ts->inidle);
1143	WARN_ON_ONCE(ts->timer_expires_base);
1144
1145	ts->inidle = 0;
1146	idle_active = ts->idle_active;
1147	tick_stopped = ts->tick_stopped;
1148
1149	if (idle_active || tick_stopped)
1150		now = ktime_get();
1151
1152	if (idle_active)
1153		tick_nohz_stop_idle(ts, now);
1154
1155	if (tick_stopped)
1156		__tick_nohz_idle_restart_tick(ts, now);
1157
1158	local_irq_enable();
1159}
1160
1161/*
1162 * The nohz low res interrupt handler
1163 */
1164static void tick_nohz_handler(struct clock_event_device *dev)
1165{
1166	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1167	struct pt_regs *regs = get_irq_regs();
1168	ktime_t now = ktime_get();
1169
1170	dev->next_event = KTIME_MAX;
1171
1172	tick_sched_do_timer(ts, now);
1173	tick_sched_handle(ts, regs);
1174
1175	/* No need to reprogram if we are running tickless  */
1176	if (unlikely(ts->tick_stopped))
1177		return;
1178
1179	hrtimer_forward(&ts->sched_timer, now, tick_period);
1180	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1181}
1182
1183static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1184{
1185	if (!tick_nohz_enabled)
1186		return;
1187	ts->nohz_mode = mode;
1188	/* One update is enough */
1189	if (!test_and_set_bit(0, &tick_nohz_active))
1190		timers_update_nohz();
1191}
1192
1193/**
1194 * tick_nohz_switch_to_nohz - switch to nohz mode
1195 */
1196static void tick_nohz_switch_to_nohz(void)
1197{
1198	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1199	ktime_t next;
1200
1201	if (!tick_nohz_enabled)
1202		return;
1203
1204	if (tick_switch_to_oneshot(tick_nohz_handler))
1205		return;
1206
1207	/*
1208	 * Recycle the hrtimer in ts, so we can share the
1209	 * hrtimer_forward with the highres code.
1210	 */
1211	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1212	/* Get the next period */
1213	next = tick_init_jiffy_update();
1214
1215	hrtimer_set_expires(&ts->sched_timer, next);
1216	hrtimer_forward_now(&ts->sched_timer, tick_period);
1217	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1218	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1219}
1220
1221static inline void tick_nohz_irq_enter(void)
1222{
1223	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1224	ktime_t now;
1225
1226	if (!ts->idle_active && !ts->tick_stopped)
1227		return;
1228	now = ktime_get();
1229	if (ts->idle_active)
1230		tick_nohz_stop_idle(ts, now);
1231	if (ts->tick_stopped)
1232		tick_nohz_update_jiffies(now);
1233}
1234
1235#else
1236
1237static inline void tick_nohz_switch_to_nohz(void) { }
1238static inline void tick_nohz_irq_enter(void) { }
1239static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1240
1241#endif /* CONFIG_NO_HZ_COMMON */
1242
1243/*
1244 * Called from irq_enter to notify about the possible interruption of idle()
1245 */
1246void tick_irq_enter(void)
1247{
1248	tick_check_oneshot_broadcast_this_cpu();
1249	tick_nohz_irq_enter();
1250}
1251
1252/*
1253 * High resolution timer specific code
1254 */
1255#ifdef CONFIG_HIGH_RES_TIMERS
1256/*
1257 * We rearm the timer until we get disabled by the idle code.
1258 * Called with interrupts disabled.
1259 */
1260static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1261{
1262	struct tick_sched *ts =
1263		container_of(timer, struct tick_sched, sched_timer);
1264	struct pt_regs *regs = get_irq_regs();
1265	ktime_t now = ktime_get();
1266
1267	tick_sched_do_timer(ts, now);
1268
1269	/*
1270	 * Do not call, when we are not in irq context and have
1271	 * no valid regs pointer
1272	 */
1273	if (regs)
1274		tick_sched_handle(ts, regs);
1275	else
1276		ts->next_tick = 0;
1277
1278	/* No need to reprogram if we are in idle or full dynticks mode */
1279	if (unlikely(ts->tick_stopped))
1280		return HRTIMER_NORESTART;
1281
1282	hrtimer_forward(timer, now, tick_period);
1283
1284	return HRTIMER_RESTART;
1285}
1286
1287static int sched_skew_tick;
1288
1289static int __init skew_tick(char *str)
1290{
1291	get_option(&str, &sched_skew_tick);
1292
1293	return 0;
1294}
1295early_param("skew_tick", skew_tick);
1296
1297/**
1298 * tick_setup_sched_timer - setup the tick emulation timer
1299 */
1300void tick_setup_sched_timer(void)
1301{
1302	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1303	ktime_t now = ktime_get();
1304
1305	/*
1306	 * Emulate tick processing via per-CPU hrtimers:
1307	 */
1308	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1309	ts->sched_timer.function = tick_sched_timer;
1310
1311	/* Get the next period (per-CPU) */
1312	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1313
1314	/* Offset the tick to avert jiffies_lock contention. */
1315	if (sched_skew_tick) {
1316		u64 offset = ktime_to_ns(tick_period) >> 1;
1317		do_div(offset, num_possible_cpus());
1318		offset *= smp_processor_id();
1319		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1320	}
1321
1322	hrtimer_forward(&ts->sched_timer, now, tick_period);
1323	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1324	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1325}
1326#endif /* HIGH_RES_TIMERS */
1327
1328#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1329void tick_cancel_sched_timer(int cpu)
1330{
1331	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1332
1333# ifdef CONFIG_HIGH_RES_TIMERS
1334	if (ts->sched_timer.base)
1335		hrtimer_cancel(&ts->sched_timer);
1336# endif
1337
1338	memset(ts, 0, sizeof(*ts));
1339}
1340#endif
1341
1342/**
1343 * Async notification about clocksource changes
1344 */
1345void tick_clock_notify(void)
1346{
1347	int cpu;
1348
1349	for_each_possible_cpu(cpu)
1350		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1351}
1352
1353/*
1354 * Async notification about clock event changes
1355 */
1356void tick_oneshot_notify(void)
1357{
1358	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1359
1360	set_bit(0, &ts->check_clocks);
1361}
1362
1363/**
1364 * Check, if a change happened, which makes oneshot possible.
1365 *
1366 * Called cyclic from the hrtimer softirq (driven by the timer
1367 * softirq) allow_nohz signals, that we can switch into low-res nohz
1368 * mode, because high resolution timers are disabled (either compile
1369 * or runtime). Called with interrupts disabled.
1370 */
1371int tick_check_oneshot_change(int allow_nohz)
1372{
1373	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1374
1375	if (!test_and_clear_bit(0, &ts->check_clocks))
1376		return 0;
1377
1378	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1379		return 0;
1380
1381	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1382		return 0;
1383
1384	if (!allow_nohz)
1385		return 1;
1386
1387	tick_nohz_switch_to_nohz();
1388	return 0;
1389}