Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/module.h>
  24#include <linux/irq_work.h>
  25#include <linux/posix-timers.h>
  26#include <linux/context_tracking.h>
  27#include <linux/mm.h>
  28
  29#include <asm/irq_regs.h>
  30
  31#include "tick-internal.h"
  32
  33#include <trace/events/timer.h>
  34
  35/*
  36 * Per-CPU nohz control structure
  37 */
  38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  39
  40struct tick_sched *tick_get_tick_sched(int cpu)
  41{
  42	return &per_cpu(tick_cpu_sched, cpu);
  43}
  44
  45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  46/*
  47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  48 */
  49static ktime_t last_jiffies_update;
  50
  51/*
  52 * Must be called with interrupts disabled !
  53 */
  54static void tick_do_update_jiffies64(ktime_t now)
  55{
  56	unsigned long ticks = 0;
  57	ktime_t delta;
  58
  59	/*
  60	 * Do a quick check without holding jiffies_lock:
 
  61	 */
  62	delta = ktime_sub(now, last_jiffies_update);
  63	if (delta < tick_period)
  64		return;
  65
  66	/* Reevaluate with jiffies_lock held */
  67	write_seqlock(&jiffies_lock);
 
  68
  69	delta = ktime_sub(now, last_jiffies_update);
  70	if (delta >= tick_period) {
  71
  72		delta = ktime_sub(delta, tick_period);
  73		last_jiffies_update = ktime_add(last_jiffies_update,
  74						tick_period);
 
  75
  76		/* Slow path for long timeouts */
  77		if (unlikely(delta >= tick_period)) {
  78			s64 incr = ktime_to_ns(tick_period);
  79
  80			ticks = ktime_divns(delta, incr);
  81
  82			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  83							   incr * ticks);
 
 
  84		}
  85		do_timer(++ticks);
  86
  87		/* Keep the tick_next_period variable up to date */
  88		tick_next_period = ktime_add(last_jiffies_update, tick_period);
  89	} else {
  90		write_sequnlock(&jiffies_lock);
 
  91		return;
  92	}
  93	write_sequnlock(&jiffies_lock);
 
  94	update_wall_time();
  95}
  96
  97/*
  98 * Initialize and return retrieve the jiffies update.
  99 */
 100static ktime_t tick_init_jiffy_update(void)
 101{
 102	ktime_t period;
 103
 104	write_seqlock(&jiffies_lock);
 
 105	/* Did we start the jiffies update yet ? */
 106	if (last_jiffies_update == 0)
 107		last_jiffies_update = tick_next_period;
 108	period = last_jiffies_update;
 109	write_sequnlock(&jiffies_lock);
 
 110	return period;
 111}
 112
 113static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 114{
 115	int cpu = smp_processor_id();
 116
 117#ifdef CONFIG_NO_HZ_COMMON
 118	/*
 119	 * Check if the do_timer duty was dropped. We don't care about
 120	 * concurrency: This happens only when the CPU in charge went
 121	 * into a long sleep. If two CPUs happen to assign themselves to
 122	 * this duty, then the jiffies update is still serialized by
 123	 * jiffies_lock.
 124	 *
 125	 * If nohz_full is enabled, this should not happen because the
 126	 * tick_do_timer_cpu never relinquishes.
 127	 */
 128	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 129#ifdef CONFIG_NO_HZ_FULL
 130		WARN_ON(tick_nohz_full_running);
 131#endif
 132		tick_do_timer_cpu = cpu;
 133	}
 134#endif
 135
 136	/* Check, if the jiffies need an update */
 137	if (tick_do_timer_cpu == cpu)
 138		tick_do_update_jiffies64(now);
 139
 140	if (ts->inidle)
 141		ts->got_idle_tick = 1;
 142}
 143
 144static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 145{
 146#ifdef CONFIG_NO_HZ_COMMON
 147	/*
 148	 * When we are idle and the tick is stopped, we have to touch
 149	 * the watchdog as we might not schedule for a really long
 150	 * time. This happens on complete idle SMP systems while
 151	 * waiting on the login prompt. We also increment the "start of
 152	 * idle" jiffy stamp so the idle accounting adjustment we do
 153	 * when we go busy again does not account too much ticks.
 154	 */
 155	if (ts->tick_stopped) {
 156		touch_softlockup_watchdog_sched();
 157		if (is_idle_task(current))
 158			ts->idle_jiffies++;
 159		/*
 160		 * In case the current tick fired too early past its expected
 161		 * expiration, make sure we don't bypass the next clock reprogramming
 162		 * to the same deadline.
 163		 */
 164		ts->next_tick = 0;
 165	}
 166#endif
 167	update_process_times(user_mode(regs));
 168	profile_tick(CPU_PROFILING);
 169}
 170#endif
 171
 172#ifdef CONFIG_NO_HZ_FULL
 173cpumask_var_t tick_nohz_full_mask;
 174bool tick_nohz_full_running;
 
 175static atomic_t tick_dep_mask;
 176
 177static bool check_tick_dependency(atomic_t *dep)
 178{
 179	int val = atomic_read(dep);
 180
 181	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 182		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 183		return true;
 184	}
 185
 186	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 187		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 188		return true;
 189	}
 190
 191	if (val & TICK_DEP_MASK_SCHED) {
 192		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 193		return true;
 194	}
 195
 196	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 197		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 198		return true;
 199	}
 200
 
 
 
 
 
 201	return false;
 202}
 203
 204static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 205{
 206	lockdep_assert_irqs_disabled();
 207
 208	if (unlikely(!cpu_online(cpu)))
 209		return false;
 210
 211	if (check_tick_dependency(&tick_dep_mask))
 212		return false;
 213
 214	if (check_tick_dependency(&ts->tick_dep_mask))
 215		return false;
 216
 217	if (check_tick_dependency(&current->tick_dep_mask))
 218		return false;
 219
 220	if (check_tick_dependency(&current->signal->tick_dep_mask))
 221		return false;
 222
 223	return true;
 224}
 225
 226static void nohz_full_kick_func(struct irq_work *work)
 227{
 228	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 229}
 230
 231static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 232	.func = nohz_full_kick_func,
 
 233};
 234
 235/*
 236 * Kick this CPU if it's full dynticks in order to force it to
 237 * re-evaluate its dependency on the tick and restart it if necessary.
 238 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 239 * is NMI safe.
 240 */
 241static void tick_nohz_full_kick(void)
 242{
 243	if (!tick_nohz_full_cpu(smp_processor_id()))
 244		return;
 245
 246	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 247}
 248
 249/*
 250 * Kick the CPU if it's full dynticks in order to force it to
 251 * re-evaluate its dependency on the tick and restart it if necessary.
 252 */
 253void tick_nohz_full_kick_cpu(int cpu)
 254{
 255	if (!tick_nohz_full_cpu(cpu))
 256		return;
 257
 258	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 259}
 260
 261/*
 262 * Kick all full dynticks CPUs in order to force these to re-evaluate
 263 * their dependency on the tick and restart it if necessary.
 264 */
 265static void tick_nohz_full_kick_all(void)
 266{
 267	int cpu;
 268
 269	if (!tick_nohz_full_running)
 270		return;
 271
 272	preempt_disable();
 273	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 274		tick_nohz_full_kick_cpu(cpu);
 275	preempt_enable();
 276}
 277
 278static void tick_nohz_dep_set_all(atomic_t *dep,
 279				  enum tick_dep_bits bit)
 280{
 281	int prev;
 282
 283	prev = atomic_fetch_or(BIT(bit), dep);
 284	if (!prev)
 285		tick_nohz_full_kick_all();
 286}
 287
 288/*
 289 * Set a global tick dependency. Used by perf events that rely on freq and
 290 * by unstable clock.
 291 */
 292void tick_nohz_dep_set(enum tick_dep_bits bit)
 293{
 294	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 295}
 296
 297void tick_nohz_dep_clear(enum tick_dep_bits bit)
 298{
 299	atomic_andnot(BIT(bit), &tick_dep_mask);
 300}
 301
 302/*
 303 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 304 * manage events throttling.
 305 */
 306void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 307{
 308	int prev;
 309	struct tick_sched *ts;
 310
 311	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 312
 313	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 314	if (!prev) {
 315		preempt_disable();
 316		/* Perf needs local kick that is NMI safe */
 317		if (cpu == smp_processor_id()) {
 318			tick_nohz_full_kick();
 319		} else {
 320			/* Remote irq work not NMI-safe */
 321			if (!WARN_ON_ONCE(in_nmi()))
 322				tick_nohz_full_kick_cpu(cpu);
 323		}
 324		preempt_enable();
 325	}
 326}
 
 327
 328void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 329{
 330	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 331
 332	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 333}
 
 334
 335/*
 336 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 337 * per task timers.
 338 */
 339void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 340{
 341	/*
 342	 * We could optimize this with just kicking the target running the task
 343	 * if that noise matters for nohz full users.
 344	 */
 345	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 
 
 
 
 
 
 
 
 346}
 
 347
 348void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 349{
 350	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 351}
 
 352
 353/*
 354 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 355 * per process timers.
 356 */
 357void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 358{
 359	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 360}
 361
 362void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 363{
 364	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 365}
 366
 367/*
 368 * Re-evaluate the need for the tick as we switch the current task.
 369 * It might need the tick due to per task/process properties:
 370 * perf events, posix CPU timers, ...
 371 */
 372void __tick_nohz_task_switch(void)
 373{
 374	unsigned long flags;
 375	struct tick_sched *ts;
 376
 377	local_irq_save(flags);
 378
 379	if (!tick_nohz_full_cpu(smp_processor_id()))
 380		goto out;
 381
 382	ts = this_cpu_ptr(&tick_cpu_sched);
 383
 384	if (ts->tick_stopped) {
 385		if (atomic_read(&current->tick_dep_mask) ||
 386		    atomic_read(&current->signal->tick_dep_mask))
 387			tick_nohz_full_kick();
 388	}
 389out:
 390	local_irq_restore(flags);
 391}
 392
 393/* Get the boot-time nohz CPU list from the kernel parameters. */
 394void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 395{
 396	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 397	cpumask_copy(tick_nohz_full_mask, cpumask);
 398	tick_nohz_full_running = true;
 399}
 
 400
 401static int tick_nohz_cpu_down(unsigned int cpu)
 402{
 403	/*
 404	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 405	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 406	 * CPUs. It must remain online when nohz full is enabled.
 407	 */
 408	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 409		return -EBUSY;
 410	return 0;
 411}
 412
 413void __init tick_nohz_init(void)
 414{
 415	int cpu, ret;
 416
 417	if (!tick_nohz_full_running)
 418		return;
 419
 420	/*
 421	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 422	 * locking contexts. But then we need irq work to raise its own
 423	 * interrupts to avoid circular dependency on the tick
 424	 */
 425	if (!arch_irq_work_has_interrupt()) {
 426		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 427		cpumask_clear(tick_nohz_full_mask);
 428		tick_nohz_full_running = false;
 429		return;
 430	}
 431
 432	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 433			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 434		cpu = smp_processor_id();
 435
 436		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 437			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 438				"for timekeeping\n", cpu);
 439			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 440		}
 441	}
 442
 443	for_each_cpu(cpu, tick_nohz_full_mask)
 444		context_tracking_cpu_set(cpu);
 445
 446	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 447					"kernel/nohz:predown", NULL,
 448					tick_nohz_cpu_down);
 449	WARN_ON(ret < 0);
 450	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 451		cpumask_pr_args(tick_nohz_full_mask));
 452}
 453#endif
 454
 455/*
 456 * NOHZ - aka dynamic tick functionality
 457 */
 458#ifdef CONFIG_NO_HZ_COMMON
 459/*
 460 * NO HZ enabled ?
 461 */
 462bool tick_nohz_enabled __read_mostly  = true;
 463unsigned long tick_nohz_active  __read_mostly;
 464/*
 465 * Enable / Disable tickless mode
 466 */
 467static int __init setup_tick_nohz(char *str)
 468{
 469	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 470}
 471
 472__setup("nohz=", setup_tick_nohz);
 473
 474bool tick_nohz_tick_stopped(void)
 475{
 476	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 477
 478	return ts->tick_stopped;
 479}
 480
 481bool tick_nohz_tick_stopped_cpu(int cpu)
 482{
 483	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 484
 485	return ts->tick_stopped;
 486}
 487
 488/**
 489 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 490 *
 491 * Called from interrupt entry when the CPU was idle
 492 *
 493 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 494 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 495 * value. We do this unconditionally on any CPU, as we don't know whether the
 496 * CPU, which has the update task assigned is in a long sleep.
 497 */
 498static void tick_nohz_update_jiffies(ktime_t now)
 499{
 500	unsigned long flags;
 501
 502	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 503
 504	local_irq_save(flags);
 505	tick_do_update_jiffies64(now);
 506	local_irq_restore(flags);
 507
 508	touch_softlockup_watchdog_sched();
 509}
 510
 511/*
 512 * Updates the per-CPU time idle statistics counters
 513 */
 514static void
 515update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 516{
 517	ktime_t delta;
 518
 519	if (ts->idle_active) {
 520		delta = ktime_sub(now, ts->idle_entrytime);
 521		if (nr_iowait_cpu(cpu) > 0)
 522			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 523		else
 524			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 525		ts->idle_entrytime = now;
 526	}
 527
 528	if (last_update_time)
 529		*last_update_time = ktime_to_us(now);
 530
 531}
 532
 533static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 534{
 535	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 536	ts->idle_active = 0;
 537
 538	sched_clock_idle_wakeup_event();
 539}
 540
 541static void tick_nohz_start_idle(struct tick_sched *ts)
 542{
 543	ts->idle_entrytime = ktime_get();
 544	ts->idle_active = 1;
 545	sched_clock_idle_sleep_event();
 546}
 547
 548/**
 549 * get_cpu_idle_time_us - get the total idle time of a CPU
 550 * @cpu: CPU number to query
 551 * @last_update_time: variable to store update time in. Do not update
 552 * counters if NULL.
 553 *
 554 * Return the cumulative idle time (since boot) for a given
 555 * CPU, in microseconds.
 556 *
 557 * This time is measured via accounting rather than sampling,
 558 * and is as accurate as ktime_get() is.
 559 *
 560 * This function returns -1 if NOHZ is not enabled.
 561 */
 562u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 563{
 564	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 565	ktime_t now, idle;
 566
 567	if (!tick_nohz_active)
 568		return -1;
 569
 570	now = ktime_get();
 571	if (last_update_time) {
 572		update_ts_time_stats(cpu, ts, now, last_update_time);
 573		idle = ts->idle_sleeptime;
 574	} else {
 575		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 576			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 577
 578			idle = ktime_add(ts->idle_sleeptime, delta);
 579		} else {
 580			idle = ts->idle_sleeptime;
 581		}
 582	}
 583
 584	return ktime_to_us(idle);
 585
 586}
 587EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 588
 589/**
 590 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 591 * @cpu: CPU number to query
 592 * @last_update_time: variable to store update time in. Do not update
 593 * counters if NULL.
 594 *
 595 * Return the cumulative iowait time (since boot) for a given
 596 * CPU, in microseconds.
 597 *
 598 * This time is measured via accounting rather than sampling,
 599 * and is as accurate as ktime_get() is.
 600 *
 601 * This function returns -1 if NOHZ is not enabled.
 602 */
 603u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 604{
 605	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 606	ktime_t now, iowait;
 607
 608	if (!tick_nohz_active)
 609		return -1;
 610
 611	now = ktime_get();
 612	if (last_update_time) {
 613		update_ts_time_stats(cpu, ts, now, last_update_time);
 614		iowait = ts->iowait_sleeptime;
 615	} else {
 616		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 617			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 618
 619			iowait = ktime_add(ts->iowait_sleeptime, delta);
 620		} else {
 621			iowait = ts->iowait_sleeptime;
 622		}
 623	}
 624
 625	return ktime_to_us(iowait);
 626}
 627EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 628
 629static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 630{
 631	hrtimer_cancel(&ts->sched_timer);
 632	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 633
 634	/* Forward the time to expire in the future */
 635	hrtimer_forward(&ts->sched_timer, now, tick_period);
 636
 637	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 638		hrtimer_start_expires(&ts->sched_timer,
 639				      HRTIMER_MODE_ABS_PINNED_HARD);
 640	} else {
 641		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 642	}
 643
 644	/*
 645	 * Reset to make sure next tick stop doesn't get fooled by past
 646	 * cached clock deadline.
 647	 */
 648	ts->next_tick = 0;
 649}
 650
 651static inline bool local_timer_softirq_pending(void)
 652{
 653	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 654}
 655
 656static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 657{
 658	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 659	unsigned long basejiff;
 660	unsigned int seq;
 661
 662	/* Read jiffies and the time when jiffies were updated last */
 663	do {
 664		seq = read_seqbegin(&jiffies_lock);
 665		basemono = last_jiffies_update;
 666		basejiff = jiffies;
 667	} while (read_seqretry(&jiffies_lock, seq));
 668	ts->last_jiffies = basejiff;
 669	ts->timer_expires_base = basemono;
 670
 671	/*
 672	 * Keep the periodic tick, when RCU, architecture or irq_work
 673	 * requests it.
 674	 * Aside of that check whether the local timer softirq is
 675	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 676	 * because there is an already expired timer, so it will request
 677	 * immeditate expiry, which rearms the hardware timer with a
 678	 * minimal delta which brings us back to this place
 679	 * immediately. Lather, rinse and repeat...
 680	 */
 681	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 682	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 683		next_tick = basemono + TICK_NSEC;
 684	} else {
 685		/*
 686		 * Get the next pending timer. If high resolution
 687		 * timers are enabled this only takes the timer wheel
 688		 * timers into account. If high resolution timers are
 689		 * disabled this also looks at the next expiring
 690		 * hrtimer.
 691		 */
 692		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 693		ts->next_timer = next_tmr;
 694		/* Take the next rcu event into account */
 695		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 696	}
 697
 698	/*
 699	 * If the tick is due in the next period, keep it ticking or
 700	 * force prod the timer.
 701	 */
 702	delta = next_tick - basemono;
 703	if (delta <= (u64)TICK_NSEC) {
 704		/*
 705		 * Tell the timer code that the base is not idle, i.e. undo
 706		 * the effect of get_next_timer_interrupt():
 707		 */
 708		timer_clear_idle();
 709		/*
 710		 * We've not stopped the tick yet, and there's a timer in the
 711		 * next period, so no point in stopping it either, bail.
 712		 */
 713		if (!ts->tick_stopped) {
 714			ts->timer_expires = 0;
 715			goto out;
 716		}
 717	}
 718
 719	/*
 720	 * If this CPU is the one which had the do_timer() duty last, we limit
 721	 * the sleep time to the timekeeping max_deferment value.
 722	 * Otherwise we can sleep as long as we want.
 723	 */
 724	delta = timekeeping_max_deferment();
 725	if (cpu != tick_do_timer_cpu &&
 726	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 727		delta = KTIME_MAX;
 728
 729	/* Calculate the next expiry time */
 730	if (delta < (KTIME_MAX - basemono))
 731		expires = basemono + delta;
 732	else
 733		expires = KTIME_MAX;
 734
 735	ts->timer_expires = min_t(u64, expires, next_tick);
 736
 737out:
 738	return ts->timer_expires;
 739}
 740
 741static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 742{
 743	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 744	u64 basemono = ts->timer_expires_base;
 745	u64 expires = ts->timer_expires;
 746	ktime_t tick = expires;
 747
 748	/* Make sure we won't be trying to stop it twice in a row. */
 749	ts->timer_expires_base = 0;
 750
 751	/*
 752	 * If this CPU is the one which updates jiffies, then give up
 753	 * the assignment and let it be taken by the CPU which runs
 754	 * the tick timer next, which might be this CPU as well. If we
 755	 * don't drop this here the jiffies might be stale and
 756	 * do_timer() never invoked. Keep track of the fact that it
 757	 * was the one which had the do_timer() duty last.
 758	 */
 759	if (cpu == tick_do_timer_cpu) {
 760		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 761		ts->do_timer_last = 1;
 762	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 763		ts->do_timer_last = 0;
 764	}
 765
 766	/* Skip reprogram of event if its not changed */
 767	if (ts->tick_stopped && (expires == ts->next_tick)) {
 768		/* Sanity check: make sure clockevent is actually programmed */
 769		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 770			return;
 771
 772		WARN_ON_ONCE(1);
 773		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 774			    basemono, ts->next_tick, dev->next_event,
 775			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 776	}
 777
 778	/*
 779	 * nohz_stop_sched_tick can be called several times before
 780	 * the nohz_restart_sched_tick is called. This happens when
 781	 * interrupts arrive which do not cause a reschedule. In the
 782	 * first call we save the current tick time, so we can restart
 783	 * the scheduler tick in nohz_restart_sched_tick.
 784	 */
 785	if (!ts->tick_stopped) {
 786		calc_load_nohz_start();
 787		quiet_vmstat();
 788
 789		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 790		ts->tick_stopped = 1;
 791		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 792	}
 793
 794	ts->next_tick = tick;
 795
 796	/*
 797	 * If the expiration time == KTIME_MAX, then we simply stop
 798	 * the tick timer.
 799	 */
 800	if (unlikely(expires == KTIME_MAX)) {
 801		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 802			hrtimer_cancel(&ts->sched_timer);
 803		return;
 804	}
 805
 806	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 807		hrtimer_start(&ts->sched_timer, tick,
 808			      HRTIMER_MODE_ABS_PINNED_HARD);
 809	} else {
 810		hrtimer_set_expires(&ts->sched_timer, tick);
 811		tick_program_event(tick, 1);
 812	}
 813}
 814
 815static void tick_nohz_retain_tick(struct tick_sched *ts)
 816{
 817	ts->timer_expires_base = 0;
 818}
 819
 820#ifdef CONFIG_NO_HZ_FULL
 821static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 822{
 823	if (tick_nohz_next_event(ts, cpu))
 824		tick_nohz_stop_tick(ts, cpu);
 825	else
 826		tick_nohz_retain_tick(ts);
 827}
 828#endif /* CONFIG_NO_HZ_FULL */
 829
 830static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 831{
 832	/* Update jiffies first */
 833	tick_do_update_jiffies64(now);
 834
 835	/*
 836	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 837	 * the clock forward checks in the enqueue path:
 838	 */
 839	timer_clear_idle();
 840
 841	calc_load_nohz_stop();
 842	touch_softlockup_watchdog_sched();
 843	/*
 844	 * Cancel the scheduled timer and restore the tick
 845	 */
 846	ts->tick_stopped  = 0;
 847	ts->idle_exittime = now;
 848
 849	tick_nohz_restart(ts, now);
 850}
 851
 852static void tick_nohz_full_update_tick(struct tick_sched *ts)
 853{
 854#ifdef CONFIG_NO_HZ_FULL
 855	int cpu = smp_processor_id();
 856
 857	if (!tick_nohz_full_cpu(cpu))
 858		return;
 859
 860	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 861		return;
 862
 863	if (can_stop_full_tick(cpu, ts))
 864		tick_nohz_stop_sched_tick(ts, cpu);
 865	else if (ts->tick_stopped)
 866		tick_nohz_restart_sched_tick(ts, ktime_get());
 867#endif
 868}
 869
 870static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 871{
 872	/*
 873	 * If this CPU is offline and it is the one which updates
 874	 * jiffies, then give up the assignment and let it be taken by
 875	 * the CPU which runs the tick timer next. If we don't drop
 876	 * this here the jiffies might be stale and do_timer() never
 877	 * invoked.
 878	 */
 879	if (unlikely(!cpu_online(cpu))) {
 880		if (cpu == tick_do_timer_cpu)
 881			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 882		/*
 883		 * Make sure the CPU doesn't get fooled by obsolete tick
 884		 * deadline if it comes back online later.
 885		 */
 886		ts->next_tick = 0;
 887		return false;
 888	}
 889
 890	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 891		return false;
 892
 893	if (need_resched())
 894		return false;
 895
 896	if (unlikely(local_softirq_pending())) {
 897		static int ratelimit;
 898
 899		if (ratelimit < 10 &&
 900		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 901			pr_warn("NOHZ: local_softirq_pending %02x\n",
 902				(unsigned int) local_softirq_pending());
 903			ratelimit++;
 904		}
 905		return false;
 906	}
 907
 908	if (tick_nohz_full_enabled()) {
 909		/*
 910		 * Keep the tick alive to guarantee timekeeping progression
 911		 * if there are full dynticks CPUs around
 912		 */
 913		if (tick_do_timer_cpu == cpu)
 914			return false;
 915		/*
 916		 * Boot safety: make sure the timekeeping duty has been
 917		 * assigned before entering dyntick-idle mode,
 918		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
 919		 */
 920		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
 921			return false;
 922
 923		/* Should not happen for nohz-full */
 924		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 925			return false;
 926	}
 927
 928	return true;
 929}
 930
 931static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 932{
 933	ktime_t expires;
 934	int cpu = smp_processor_id();
 935
 936	/*
 937	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 938	 * tick timer expiration time is known already.
 939	 */
 940	if (ts->timer_expires_base)
 941		expires = ts->timer_expires;
 942	else if (can_stop_idle_tick(cpu, ts))
 943		expires = tick_nohz_next_event(ts, cpu);
 944	else
 945		return;
 946
 947	ts->idle_calls++;
 948
 949	if (expires > 0LL) {
 950		int was_stopped = ts->tick_stopped;
 951
 952		tick_nohz_stop_tick(ts, cpu);
 953
 954		ts->idle_sleeps++;
 955		ts->idle_expires = expires;
 956
 957		if (!was_stopped && ts->tick_stopped) {
 958			ts->idle_jiffies = ts->last_jiffies;
 959			nohz_balance_enter_idle(cpu);
 960		}
 961	} else {
 962		tick_nohz_retain_tick(ts);
 963	}
 964}
 965
 966/**
 967 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 968 *
 969 * When the next event is more than a tick into the future, stop the idle tick
 970 */
 971void tick_nohz_idle_stop_tick(void)
 972{
 973	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
 974}
 975
 976void tick_nohz_idle_retain_tick(void)
 977{
 978	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 979	/*
 980	 * Undo the effect of get_next_timer_interrupt() called from
 981	 * tick_nohz_next_event().
 982	 */
 983	timer_clear_idle();
 984}
 985
 986/**
 987 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
 988 *
 989 * Called when we start the idle loop.
 990 */
 991void tick_nohz_idle_enter(void)
 992{
 993	struct tick_sched *ts;
 994
 995	lockdep_assert_irqs_enabled();
 996
 997	local_irq_disable();
 998
 999	ts = this_cpu_ptr(&tick_cpu_sched);
1000
1001	WARN_ON_ONCE(ts->timer_expires_base);
1002
1003	ts->inidle = 1;
1004	tick_nohz_start_idle(ts);
1005
1006	local_irq_enable();
1007}
1008
1009/**
1010 * tick_nohz_irq_exit - update next tick event from interrupt exit
1011 *
1012 * When an interrupt fires while we are idle and it doesn't cause
1013 * a reschedule, it may still add, modify or delete a timer, enqueue
1014 * an RCU callback, etc...
1015 * So we need to re-calculate and reprogram the next tick event.
1016 */
1017void tick_nohz_irq_exit(void)
1018{
1019	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020
1021	if (ts->inidle)
1022		tick_nohz_start_idle(ts);
1023	else
1024		tick_nohz_full_update_tick(ts);
1025}
1026
1027/**
1028 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1029 */
1030bool tick_nohz_idle_got_tick(void)
1031{
1032	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1033
1034	if (ts->got_idle_tick) {
1035		ts->got_idle_tick = 0;
1036		return true;
1037	}
1038	return false;
1039}
1040
1041/**
1042 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1043 * or the tick, whatever that expires first. Note that, if the tick has been
1044 * stopped, it returns the next hrtimer.
1045 *
1046 * Called from power state control code with interrupts disabled
1047 */
1048ktime_t tick_nohz_get_next_hrtimer(void)
1049{
1050	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1051}
1052
1053/**
1054 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1055 * @delta_next: duration until the next event if the tick cannot be stopped
1056 *
1057 * Called from power state control code with interrupts disabled
1058 */
1059ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1060{
1061	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1062	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1063	int cpu = smp_processor_id();
1064	/*
1065	 * The idle entry time is expected to be a sufficient approximation of
1066	 * the current time at this point.
1067	 */
1068	ktime_t now = ts->idle_entrytime;
1069	ktime_t next_event;
1070
1071	WARN_ON_ONCE(!ts->inidle);
1072
1073	*delta_next = ktime_sub(dev->next_event, now);
1074
1075	if (!can_stop_idle_tick(cpu, ts))
1076		return *delta_next;
1077
1078	next_event = tick_nohz_next_event(ts, cpu);
1079	if (!next_event)
1080		return *delta_next;
1081
1082	/*
1083	 * If the next highres timer to expire is earlier than next_event, the
1084	 * idle governor needs to know that.
1085	 */
1086	next_event = min_t(u64, next_event,
1087			   hrtimer_next_event_without(&ts->sched_timer));
1088
1089	return ktime_sub(next_event, now);
1090}
1091
1092/**
1093 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1094 * for a particular CPU.
1095 *
1096 * Called from the schedutil frequency scaling governor in scheduler context.
1097 */
1098unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1099{
1100	struct tick_sched *ts = tick_get_tick_sched(cpu);
1101
1102	return ts->idle_calls;
1103}
1104
1105/**
1106 * tick_nohz_get_idle_calls - return the current idle calls counter value
1107 *
1108 * Called from the schedutil frequency scaling governor in scheduler context.
1109 */
1110unsigned long tick_nohz_get_idle_calls(void)
1111{
1112	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1113
1114	return ts->idle_calls;
1115}
1116
1117static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1118{
1119#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1120	unsigned long ticks;
1121
1122	if (vtime_accounting_cpu_enabled())
1123		return;
1124	/*
1125	 * We stopped the tick in idle. Update process times would miss the
1126	 * time we slept as update_process_times does only a 1 tick
1127	 * accounting. Enforce that this is accounted to idle !
1128	 */
1129	ticks = jiffies - ts->idle_jiffies;
1130	/*
1131	 * We might be one off. Do not randomly account a huge number of ticks!
1132	 */
1133	if (ticks && ticks < LONG_MAX)
1134		account_idle_ticks(ticks);
1135#endif
1136}
1137
1138static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1139{
1140	tick_nohz_restart_sched_tick(ts, now);
1141	tick_nohz_account_idle_ticks(ts);
1142}
1143
1144void tick_nohz_idle_restart_tick(void)
1145{
1146	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1147
1148	if (ts->tick_stopped)
1149		__tick_nohz_idle_restart_tick(ts, ktime_get());
1150}
1151
1152/**
1153 * tick_nohz_idle_exit - restart the idle tick from the idle task
1154 *
1155 * Restart the idle tick when the CPU is woken up from idle
1156 * This also exit the RCU extended quiescent state. The CPU
1157 * can use RCU again after this function is called.
1158 */
1159void tick_nohz_idle_exit(void)
1160{
1161	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162	bool idle_active, tick_stopped;
1163	ktime_t now;
1164
1165	local_irq_disable();
1166
1167	WARN_ON_ONCE(!ts->inidle);
1168	WARN_ON_ONCE(ts->timer_expires_base);
1169
1170	ts->inidle = 0;
1171	idle_active = ts->idle_active;
1172	tick_stopped = ts->tick_stopped;
1173
1174	if (idle_active || tick_stopped)
1175		now = ktime_get();
1176
1177	if (idle_active)
1178		tick_nohz_stop_idle(ts, now);
1179
1180	if (tick_stopped)
1181		__tick_nohz_idle_restart_tick(ts, now);
1182
1183	local_irq_enable();
1184}
1185
1186/*
1187 * The nohz low res interrupt handler
1188 */
1189static void tick_nohz_handler(struct clock_event_device *dev)
1190{
1191	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1192	struct pt_regs *regs = get_irq_regs();
1193	ktime_t now = ktime_get();
1194
1195	dev->next_event = KTIME_MAX;
1196
1197	tick_sched_do_timer(ts, now);
1198	tick_sched_handle(ts, regs);
1199
1200	/* No need to reprogram if we are running tickless  */
1201	if (unlikely(ts->tick_stopped))
1202		return;
1203
1204	hrtimer_forward(&ts->sched_timer, now, tick_period);
1205	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1206}
1207
1208static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1209{
1210	if (!tick_nohz_enabled)
1211		return;
1212	ts->nohz_mode = mode;
1213	/* One update is enough */
1214	if (!test_and_set_bit(0, &tick_nohz_active))
1215		timers_update_nohz();
1216}
1217
1218/**
1219 * tick_nohz_switch_to_nohz - switch to nohz mode
1220 */
1221static void tick_nohz_switch_to_nohz(void)
1222{
1223	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1224	ktime_t next;
1225
1226	if (!tick_nohz_enabled)
1227		return;
1228
1229	if (tick_switch_to_oneshot(tick_nohz_handler))
1230		return;
1231
1232	/*
1233	 * Recycle the hrtimer in ts, so we can share the
1234	 * hrtimer_forward with the highres code.
1235	 */
1236	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1237	/* Get the next period */
1238	next = tick_init_jiffy_update();
1239
1240	hrtimer_set_expires(&ts->sched_timer, next);
1241	hrtimer_forward_now(&ts->sched_timer, tick_period);
1242	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1243	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1244}
1245
1246static inline void tick_nohz_irq_enter(void)
1247{
1248	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1249	ktime_t now;
1250
1251	if (!ts->idle_active && !ts->tick_stopped)
1252		return;
1253	now = ktime_get();
1254	if (ts->idle_active)
1255		tick_nohz_stop_idle(ts, now);
1256	if (ts->tick_stopped)
1257		tick_nohz_update_jiffies(now);
1258}
1259
1260#else
1261
1262static inline void tick_nohz_switch_to_nohz(void) { }
1263static inline void tick_nohz_irq_enter(void) { }
1264static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1265
1266#endif /* CONFIG_NO_HZ_COMMON */
1267
1268/*
1269 * Called from irq_enter to notify about the possible interruption of idle()
1270 */
1271void tick_irq_enter(void)
1272{
1273	tick_check_oneshot_broadcast_this_cpu();
1274	tick_nohz_irq_enter();
1275}
1276
1277/*
1278 * High resolution timer specific code
1279 */
1280#ifdef CONFIG_HIGH_RES_TIMERS
1281/*
1282 * We rearm the timer until we get disabled by the idle code.
1283 * Called with interrupts disabled.
1284 */
1285static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1286{
1287	struct tick_sched *ts =
1288		container_of(timer, struct tick_sched, sched_timer);
1289	struct pt_regs *regs = get_irq_regs();
1290	ktime_t now = ktime_get();
1291
1292	tick_sched_do_timer(ts, now);
1293
1294	/*
1295	 * Do not call, when we are not in irq context and have
1296	 * no valid regs pointer
1297	 */
1298	if (regs)
1299		tick_sched_handle(ts, regs);
1300	else
1301		ts->next_tick = 0;
1302
1303	/* No need to reprogram if we are in idle or full dynticks mode */
1304	if (unlikely(ts->tick_stopped))
1305		return HRTIMER_NORESTART;
1306
1307	hrtimer_forward(timer, now, tick_period);
1308
1309	return HRTIMER_RESTART;
1310}
1311
1312static int sched_skew_tick;
1313
1314static int __init skew_tick(char *str)
1315{
1316	get_option(&str, &sched_skew_tick);
1317
1318	return 0;
1319}
1320early_param("skew_tick", skew_tick);
1321
1322/**
1323 * tick_setup_sched_timer - setup the tick emulation timer
1324 */
1325void tick_setup_sched_timer(void)
1326{
1327	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1328	ktime_t now = ktime_get();
1329
1330	/*
1331	 * Emulate tick processing via per-CPU hrtimers:
1332	 */
1333	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1334	ts->sched_timer.function = tick_sched_timer;
1335
1336	/* Get the next period (per-CPU) */
1337	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1338
1339	/* Offset the tick to avert jiffies_lock contention. */
1340	if (sched_skew_tick) {
1341		u64 offset = ktime_to_ns(tick_period) >> 1;
1342		do_div(offset, num_possible_cpus());
1343		offset *= smp_processor_id();
1344		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1345	}
1346
1347	hrtimer_forward(&ts->sched_timer, now, tick_period);
1348	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1349	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1350}
1351#endif /* HIGH_RES_TIMERS */
1352
1353#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1354void tick_cancel_sched_timer(int cpu)
1355{
1356	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1357
1358# ifdef CONFIG_HIGH_RES_TIMERS
1359	if (ts->sched_timer.base)
1360		hrtimer_cancel(&ts->sched_timer);
1361# endif
1362
1363	memset(ts, 0, sizeof(*ts));
1364}
1365#endif
1366
1367/**
1368 * Async notification about clocksource changes
1369 */
1370void tick_clock_notify(void)
1371{
1372	int cpu;
1373
1374	for_each_possible_cpu(cpu)
1375		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1376}
1377
1378/*
1379 * Async notification about clock event changes
1380 */
1381void tick_oneshot_notify(void)
1382{
1383	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1384
1385	set_bit(0, &ts->check_clocks);
1386}
1387
1388/**
1389 * Check, if a change happened, which makes oneshot possible.
1390 *
1391 * Called cyclic from the hrtimer softirq (driven by the timer
1392 * softirq) allow_nohz signals, that we can switch into low-res nohz
1393 * mode, because high resolution timers are disabled (either compile
1394 * or runtime). Called with interrupts disabled.
1395 */
1396int tick_check_oneshot_change(int allow_nohz)
1397{
1398	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1399
1400	if (!test_and_clear_bit(0, &ts->check_clocks))
1401		return 0;
1402
1403	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1404		return 0;
1405
1406	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1407		return 0;
1408
1409	if (!allow_nohz)
1410		return 1;
1411
1412	tick_nohz_switch_to_nohz();
1413	return 0;
1414}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/module.h>
  24#include <linux/irq_work.h>
  25#include <linux/posix-timers.h>
  26#include <linux/context_tracking.h>
  27#include <linux/mm.h>
  28
  29#include <asm/irq_regs.h>
  30
  31#include "tick-internal.h"
  32
  33#include <trace/events/timer.h>
  34
  35/*
  36 * Per-CPU nohz control structure
  37 */
  38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  39
  40struct tick_sched *tick_get_tick_sched(int cpu)
  41{
  42	return &per_cpu(tick_cpu_sched, cpu);
  43}
  44
  45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  46/*
  47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  48 */
  49static ktime_t last_jiffies_update;
  50
  51/*
  52 * Must be called with interrupts disabled !
  53 */
  54static void tick_do_update_jiffies64(ktime_t now)
  55{
  56	unsigned long ticks = 0;
  57	ktime_t delta;
  58
  59	/*
  60	 * Do a quick check without holding jiffies_lock:
  61	 * The READ_ONCE() pairs with two updates done later in this function.
  62	 */
  63	delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
  64	if (delta < tick_period)
  65		return;
  66
  67	/* Reevaluate with jiffies_lock held */
  68	raw_spin_lock(&jiffies_lock);
  69	write_seqcount_begin(&jiffies_seq);
  70
  71	delta = ktime_sub(now, last_jiffies_update);
  72	if (delta >= tick_period) {
  73
  74		delta = ktime_sub(delta, tick_period);
  75		/* Pairs with the lockless read in this function. */
  76		WRITE_ONCE(last_jiffies_update,
  77			   ktime_add(last_jiffies_update, tick_period));
  78
  79		/* Slow path for long timeouts */
  80		if (unlikely(delta >= tick_period)) {
  81			s64 incr = ktime_to_ns(tick_period);
  82
  83			ticks = ktime_divns(delta, incr);
  84
  85			/* Pairs with the lockless read in this function. */
  86			WRITE_ONCE(last_jiffies_update,
  87				   ktime_add_ns(last_jiffies_update,
  88						incr * ticks));
  89		}
  90		do_timer(++ticks);
  91
  92		/* Keep the tick_next_period variable up to date */
  93		tick_next_period = ktime_add(last_jiffies_update, tick_period);
  94	} else {
  95		write_seqcount_end(&jiffies_seq);
  96		raw_spin_unlock(&jiffies_lock);
  97		return;
  98	}
  99	write_seqcount_end(&jiffies_seq);
 100	raw_spin_unlock(&jiffies_lock);
 101	update_wall_time();
 102}
 103
 104/*
 105 * Initialize and return retrieve the jiffies update.
 106 */
 107static ktime_t tick_init_jiffy_update(void)
 108{
 109	ktime_t period;
 110
 111	raw_spin_lock(&jiffies_lock);
 112	write_seqcount_begin(&jiffies_seq);
 113	/* Did we start the jiffies update yet ? */
 114	if (last_jiffies_update == 0)
 115		last_jiffies_update = tick_next_period;
 116	period = last_jiffies_update;
 117	write_seqcount_end(&jiffies_seq);
 118	raw_spin_unlock(&jiffies_lock);
 119	return period;
 120}
 121
 122static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 123{
 124	int cpu = smp_processor_id();
 125
 126#ifdef CONFIG_NO_HZ_COMMON
 127	/*
 128	 * Check if the do_timer duty was dropped. We don't care about
 129	 * concurrency: This happens only when the CPU in charge went
 130	 * into a long sleep. If two CPUs happen to assign themselves to
 131	 * this duty, then the jiffies update is still serialized by
 132	 * jiffies_lock.
 133	 *
 134	 * If nohz_full is enabled, this should not happen because the
 135	 * tick_do_timer_cpu never relinquishes.
 136	 */
 137	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 138#ifdef CONFIG_NO_HZ_FULL
 139		WARN_ON(tick_nohz_full_running);
 140#endif
 141		tick_do_timer_cpu = cpu;
 142	}
 143#endif
 144
 145	/* Check, if the jiffies need an update */
 146	if (tick_do_timer_cpu == cpu)
 147		tick_do_update_jiffies64(now);
 148
 149	if (ts->inidle)
 150		ts->got_idle_tick = 1;
 151}
 152
 153static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 154{
 155#ifdef CONFIG_NO_HZ_COMMON
 156	/*
 157	 * When we are idle and the tick is stopped, we have to touch
 158	 * the watchdog as we might not schedule for a really long
 159	 * time. This happens on complete idle SMP systems while
 160	 * waiting on the login prompt. We also increment the "start of
 161	 * idle" jiffy stamp so the idle accounting adjustment we do
 162	 * when we go busy again does not account too much ticks.
 163	 */
 164	if (ts->tick_stopped) {
 165		touch_softlockup_watchdog_sched();
 166		if (is_idle_task(current))
 167			ts->idle_jiffies++;
 168		/*
 169		 * In case the current tick fired too early past its expected
 170		 * expiration, make sure we don't bypass the next clock reprogramming
 171		 * to the same deadline.
 172		 */
 173		ts->next_tick = 0;
 174	}
 175#endif
 176	update_process_times(user_mode(regs));
 177	profile_tick(CPU_PROFILING);
 178}
 179#endif
 180
 181#ifdef CONFIG_NO_HZ_FULL
 182cpumask_var_t tick_nohz_full_mask;
 183bool tick_nohz_full_running;
 184EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 185static atomic_t tick_dep_mask;
 186
 187static bool check_tick_dependency(atomic_t *dep)
 188{
 189	int val = atomic_read(dep);
 190
 191	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 192		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 193		return true;
 194	}
 195
 196	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 197		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 198		return true;
 199	}
 200
 201	if (val & TICK_DEP_MASK_SCHED) {
 202		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 203		return true;
 204	}
 205
 206	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 207		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 208		return true;
 209	}
 210
 211	if (val & TICK_DEP_MASK_RCU) {
 212		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 213		return true;
 214	}
 215
 216	return false;
 217}
 218
 219static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 220{
 221	lockdep_assert_irqs_disabled();
 222
 223	if (unlikely(!cpu_online(cpu)))
 224		return false;
 225
 226	if (check_tick_dependency(&tick_dep_mask))
 227		return false;
 228
 229	if (check_tick_dependency(&ts->tick_dep_mask))
 230		return false;
 231
 232	if (check_tick_dependency(&current->tick_dep_mask))
 233		return false;
 234
 235	if (check_tick_dependency(&current->signal->tick_dep_mask))
 236		return false;
 237
 238	return true;
 239}
 240
 241static void nohz_full_kick_func(struct irq_work *work)
 242{
 243	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 244}
 245
 246static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 247	.func = nohz_full_kick_func,
 248	.flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
 249};
 250
 251/*
 252 * Kick this CPU if it's full dynticks in order to force it to
 253 * re-evaluate its dependency on the tick and restart it if necessary.
 254 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 255 * is NMI safe.
 256 */
 257static void tick_nohz_full_kick(void)
 258{
 259	if (!tick_nohz_full_cpu(smp_processor_id()))
 260		return;
 261
 262	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 263}
 264
 265/*
 266 * Kick the CPU if it's full dynticks in order to force it to
 267 * re-evaluate its dependency on the tick and restart it if necessary.
 268 */
 269void tick_nohz_full_kick_cpu(int cpu)
 270{
 271	if (!tick_nohz_full_cpu(cpu))
 272		return;
 273
 274	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 275}
 276
 277/*
 278 * Kick all full dynticks CPUs in order to force these to re-evaluate
 279 * their dependency on the tick and restart it if necessary.
 280 */
 281static void tick_nohz_full_kick_all(void)
 282{
 283	int cpu;
 284
 285	if (!tick_nohz_full_running)
 286		return;
 287
 288	preempt_disable();
 289	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 290		tick_nohz_full_kick_cpu(cpu);
 291	preempt_enable();
 292}
 293
 294static void tick_nohz_dep_set_all(atomic_t *dep,
 295				  enum tick_dep_bits bit)
 296{
 297	int prev;
 298
 299	prev = atomic_fetch_or(BIT(bit), dep);
 300	if (!prev)
 301		tick_nohz_full_kick_all();
 302}
 303
 304/*
 305 * Set a global tick dependency. Used by perf events that rely on freq and
 306 * by unstable clock.
 307 */
 308void tick_nohz_dep_set(enum tick_dep_bits bit)
 309{
 310	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 311}
 312
 313void tick_nohz_dep_clear(enum tick_dep_bits bit)
 314{
 315	atomic_andnot(BIT(bit), &tick_dep_mask);
 316}
 317
 318/*
 319 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 320 * manage events throttling.
 321 */
 322void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 323{
 324	int prev;
 325	struct tick_sched *ts;
 326
 327	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 328
 329	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 330	if (!prev) {
 331		preempt_disable();
 332		/* Perf needs local kick that is NMI safe */
 333		if (cpu == smp_processor_id()) {
 334			tick_nohz_full_kick();
 335		} else {
 336			/* Remote irq work not NMI-safe */
 337			if (!WARN_ON_ONCE(in_nmi()))
 338				tick_nohz_full_kick_cpu(cpu);
 339		}
 340		preempt_enable();
 341	}
 342}
 343EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 344
 345void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 346{
 347	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 348
 349	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 350}
 351EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 352
 353/*
 354 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 355 * in order to elapse per task timers.
 356 */
 357void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 358{
 359	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
 360		if (tsk == current) {
 361			preempt_disable();
 362			tick_nohz_full_kick();
 363			preempt_enable();
 364		} else {
 365			/*
 366			 * Some future tick_nohz_full_kick_task()
 367			 * should optimize this.
 368			 */
 369			tick_nohz_full_kick_all();
 370		}
 371	}
 372}
 373EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 374
 375void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 376{
 377	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 378}
 379EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 380
 381/*
 382 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 383 * per process timers.
 384 */
 385void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 386{
 387	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 388}
 389
 390void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 391{
 392	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 393}
 394
 395/*
 396 * Re-evaluate the need for the tick as we switch the current task.
 397 * It might need the tick due to per task/process properties:
 398 * perf events, posix CPU timers, ...
 399 */
 400void __tick_nohz_task_switch(void)
 401{
 402	unsigned long flags;
 403	struct tick_sched *ts;
 404
 405	local_irq_save(flags);
 406
 407	if (!tick_nohz_full_cpu(smp_processor_id()))
 408		goto out;
 409
 410	ts = this_cpu_ptr(&tick_cpu_sched);
 411
 412	if (ts->tick_stopped) {
 413		if (atomic_read(&current->tick_dep_mask) ||
 414		    atomic_read(&current->signal->tick_dep_mask))
 415			tick_nohz_full_kick();
 416	}
 417out:
 418	local_irq_restore(flags);
 419}
 420
 421/* Get the boot-time nohz CPU list from the kernel parameters. */
 422void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 423{
 424	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 425	cpumask_copy(tick_nohz_full_mask, cpumask);
 426	tick_nohz_full_running = true;
 427}
 428EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
 429
 430static int tick_nohz_cpu_down(unsigned int cpu)
 431{
 432	/*
 433	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 434	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 435	 * CPUs. It must remain online when nohz full is enabled.
 436	 */
 437	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 438		return -EBUSY;
 439	return 0;
 440}
 441
 442void __init tick_nohz_init(void)
 443{
 444	int cpu, ret;
 445
 446	if (!tick_nohz_full_running)
 447		return;
 448
 449	/*
 450	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 451	 * locking contexts. But then we need irq work to raise its own
 452	 * interrupts to avoid circular dependency on the tick
 453	 */
 454	if (!arch_irq_work_has_interrupt()) {
 455		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 456		cpumask_clear(tick_nohz_full_mask);
 457		tick_nohz_full_running = false;
 458		return;
 459	}
 460
 461	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 462			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 463		cpu = smp_processor_id();
 464
 465		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 466			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 467				"for timekeeping\n", cpu);
 468			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 469		}
 470	}
 471
 472	for_each_cpu(cpu, tick_nohz_full_mask)
 473		context_tracking_cpu_set(cpu);
 474
 475	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 476					"kernel/nohz:predown", NULL,
 477					tick_nohz_cpu_down);
 478	WARN_ON(ret < 0);
 479	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 480		cpumask_pr_args(tick_nohz_full_mask));
 481}
 482#endif
 483
 484/*
 485 * NOHZ - aka dynamic tick functionality
 486 */
 487#ifdef CONFIG_NO_HZ_COMMON
 488/*
 489 * NO HZ enabled ?
 490 */
 491bool tick_nohz_enabled __read_mostly  = true;
 492unsigned long tick_nohz_active  __read_mostly;
 493/*
 494 * Enable / Disable tickless mode
 495 */
 496static int __init setup_tick_nohz(char *str)
 497{
 498	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 499}
 500
 501__setup("nohz=", setup_tick_nohz);
 502
 503bool tick_nohz_tick_stopped(void)
 504{
 505	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 506
 507	return ts->tick_stopped;
 508}
 509
 510bool tick_nohz_tick_stopped_cpu(int cpu)
 511{
 512	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 513
 514	return ts->tick_stopped;
 515}
 516
 517/**
 518 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 519 *
 520 * Called from interrupt entry when the CPU was idle
 521 *
 522 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 523 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 524 * value. We do this unconditionally on any CPU, as we don't know whether the
 525 * CPU, which has the update task assigned is in a long sleep.
 526 */
 527static void tick_nohz_update_jiffies(ktime_t now)
 528{
 529	unsigned long flags;
 530
 531	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 532
 533	local_irq_save(flags);
 534	tick_do_update_jiffies64(now);
 535	local_irq_restore(flags);
 536
 537	touch_softlockup_watchdog_sched();
 538}
 539
 540/*
 541 * Updates the per-CPU time idle statistics counters
 542 */
 543static void
 544update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 545{
 546	ktime_t delta;
 547
 548	if (ts->idle_active) {
 549		delta = ktime_sub(now, ts->idle_entrytime);
 550		if (nr_iowait_cpu(cpu) > 0)
 551			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 552		else
 553			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 554		ts->idle_entrytime = now;
 555	}
 556
 557	if (last_update_time)
 558		*last_update_time = ktime_to_us(now);
 559
 560}
 561
 562static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 563{
 564	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 565	ts->idle_active = 0;
 566
 567	sched_clock_idle_wakeup_event();
 568}
 569
 570static void tick_nohz_start_idle(struct tick_sched *ts)
 571{
 572	ts->idle_entrytime = ktime_get();
 573	ts->idle_active = 1;
 574	sched_clock_idle_sleep_event();
 575}
 576
 577/**
 578 * get_cpu_idle_time_us - get the total idle time of a CPU
 579 * @cpu: CPU number to query
 580 * @last_update_time: variable to store update time in. Do not update
 581 * counters if NULL.
 582 *
 583 * Return the cumulative idle time (since boot) for a given
 584 * CPU, in microseconds.
 585 *
 586 * This time is measured via accounting rather than sampling,
 587 * and is as accurate as ktime_get() is.
 588 *
 589 * This function returns -1 if NOHZ is not enabled.
 590 */
 591u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 592{
 593	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 594	ktime_t now, idle;
 595
 596	if (!tick_nohz_active)
 597		return -1;
 598
 599	now = ktime_get();
 600	if (last_update_time) {
 601		update_ts_time_stats(cpu, ts, now, last_update_time);
 602		idle = ts->idle_sleeptime;
 603	} else {
 604		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 605			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 606
 607			idle = ktime_add(ts->idle_sleeptime, delta);
 608		} else {
 609			idle = ts->idle_sleeptime;
 610		}
 611	}
 612
 613	return ktime_to_us(idle);
 614
 615}
 616EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 617
 618/**
 619 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 620 * @cpu: CPU number to query
 621 * @last_update_time: variable to store update time in. Do not update
 622 * counters if NULL.
 623 *
 624 * Return the cumulative iowait time (since boot) for a given
 625 * CPU, in microseconds.
 626 *
 627 * This time is measured via accounting rather than sampling,
 628 * and is as accurate as ktime_get() is.
 629 *
 630 * This function returns -1 if NOHZ is not enabled.
 631 */
 632u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 633{
 634	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 635	ktime_t now, iowait;
 636
 637	if (!tick_nohz_active)
 638		return -1;
 639
 640	now = ktime_get();
 641	if (last_update_time) {
 642		update_ts_time_stats(cpu, ts, now, last_update_time);
 643		iowait = ts->iowait_sleeptime;
 644	} else {
 645		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 646			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 647
 648			iowait = ktime_add(ts->iowait_sleeptime, delta);
 649		} else {
 650			iowait = ts->iowait_sleeptime;
 651		}
 652	}
 653
 654	return ktime_to_us(iowait);
 655}
 656EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 657
 658static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 659{
 660	hrtimer_cancel(&ts->sched_timer);
 661	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 662
 663	/* Forward the time to expire in the future */
 664	hrtimer_forward(&ts->sched_timer, now, tick_period);
 665
 666	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 667		hrtimer_start_expires(&ts->sched_timer,
 668				      HRTIMER_MODE_ABS_PINNED_HARD);
 669	} else {
 670		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 671	}
 672
 673	/*
 674	 * Reset to make sure next tick stop doesn't get fooled by past
 675	 * cached clock deadline.
 676	 */
 677	ts->next_tick = 0;
 678}
 679
 680static inline bool local_timer_softirq_pending(void)
 681{
 682	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 683}
 684
 685static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 686{
 687	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 688	unsigned long basejiff;
 689	unsigned int seq;
 690
 691	/* Read jiffies and the time when jiffies were updated last */
 692	do {
 693		seq = read_seqcount_begin(&jiffies_seq);
 694		basemono = last_jiffies_update;
 695		basejiff = jiffies;
 696	} while (read_seqcount_retry(&jiffies_seq, seq));
 697	ts->last_jiffies = basejiff;
 698	ts->timer_expires_base = basemono;
 699
 700	/*
 701	 * Keep the periodic tick, when RCU, architecture or irq_work
 702	 * requests it.
 703	 * Aside of that check whether the local timer softirq is
 704	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 705	 * because there is an already expired timer, so it will request
 706	 * immeditate expiry, which rearms the hardware timer with a
 707	 * minimal delta which brings us back to this place
 708	 * immediately. Lather, rinse and repeat...
 709	 */
 710	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 711	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 712		next_tick = basemono + TICK_NSEC;
 713	} else {
 714		/*
 715		 * Get the next pending timer. If high resolution
 716		 * timers are enabled this only takes the timer wheel
 717		 * timers into account. If high resolution timers are
 718		 * disabled this also looks at the next expiring
 719		 * hrtimer.
 720		 */
 721		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 722		ts->next_timer = next_tmr;
 723		/* Take the next rcu event into account */
 724		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 725	}
 726
 727	/*
 728	 * If the tick is due in the next period, keep it ticking or
 729	 * force prod the timer.
 730	 */
 731	delta = next_tick - basemono;
 732	if (delta <= (u64)TICK_NSEC) {
 733		/*
 734		 * Tell the timer code that the base is not idle, i.e. undo
 735		 * the effect of get_next_timer_interrupt():
 736		 */
 737		timer_clear_idle();
 738		/*
 739		 * We've not stopped the tick yet, and there's a timer in the
 740		 * next period, so no point in stopping it either, bail.
 741		 */
 742		if (!ts->tick_stopped) {
 743			ts->timer_expires = 0;
 744			goto out;
 745		}
 746	}
 747
 748	/*
 749	 * If this CPU is the one which had the do_timer() duty last, we limit
 750	 * the sleep time to the timekeeping max_deferment value.
 751	 * Otherwise we can sleep as long as we want.
 752	 */
 753	delta = timekeeping_max_deferment();
 754	if (cpu != tick_do_timer_cpu &&
 755	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 756		delta = KTIME_MAX;
 757
 758	/* Calculate the next expiry time */
 759	if (delta < (KTIME_MAX - basemono))
 760		expires = basemono + delta;
 761	else
 762		expires = KTIME_MAX;
 763
 764	ts->timer_expires = min_t(u64, expires, next_tick);
 765
 766out:
 767	return ts->timer_expires;
 768}
 769
 770static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 771{
 772	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 773	u64 basemono = ts->timer_expires_base;
 774	u64 expires = ts->timer_expires;
 775	ktime_t tick = expires;
 776
 777	/* Make sure we won't be trying to stop it twice in a row. */
 778	ts->timer_expires_base = 0;
 779
 780	/*
 781	 * If this CPU is the one which updates jiffies, then give up
 782	 * the assignment and let it be taken by the CPU which runs
 783	 * the tick timer next, which might be this CPU as well. If we
 784	 * don't drop this here the jiffies might be stale and
 785	 * do_timer() never invoked. Keep track of the fact that it
 786	 * was the one which had the do_timer() duty last.
 787	 */
 788	if (cpu == tick_do_timer_cpu) {
 789		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 790		ts->do_timer_last = 1;
 791	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 792		ts->do_timer_last = 0;
 793	}
 794
 795	/* Skip reprogram of event if its not changed */
 796	if (ts->tick_stopped && (expires == ts->next_tick)) {
 797		/* Sanity check: make sure clockevent is actually programmed */
 798		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 799			return;
 800
 801		WARN_ON_ONCE(1);
 802		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 803			    basemono, ts->next_tick, dev->next_event,
 804			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 805	}
 806
 807	/*
 808	 * nohz_stop_sched_tick can be called several times before
 809	 * the nohz_restart_sched_tick is called. This happens when
 810	 * interrupts arrive which do not cause a reschedule. In the
 811	 * first call we save the current tick time, so we can restart
 812	 * the scheduler tick in nohz_restart_sched_tick.
 813	 */
 814	if (!ts->tick_stopped) {
 815		calc_load_nohz_start();
 816		quiet_vmstat();
 817
 818		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 819		ts->tick_stopped = 1;
 820		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 821	}
 822
 823	ts->next_tick = tick;
 824
 825	/*
 826	 * If the expiration time == KTIME_MAX, then we simply stop
 827	 * the tick timer.
 828	 */
 829	if (unlikely(expires == KTIME_MAX)) {
 830		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 831			hrtimer_cancel(&ts->sched_timer);
 832		return;
 833	}
 834
 835	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 836		hrtimer_start(&ts->sched_timer, tick,
 837			      HRTIMER_MODE_ABS_PINNED_HARD);
 838	} else {
 839		hrtimer_set_expires(&ts->sched_timer, tick);
 840		tick_program_event(tick, 1);
 841	}
 842}
 843
 844static void tick_nohz_retain_tick(struct tick_sched *ts)
 845{
 846	ts->timer_expires_base = 0;
 847}
 848
 849#ifdef CONFIG_NO_HZ_FULL
 850static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 851{
 852	if (tick_nohz_next_event(ts, cpu))
 853		tick_nohz_stop_tick(ts, cpu);
 854	else
 855		tick_nohz_retain_tick(ts);
 856}
 857#endif /* CONFIG_NO_HZ_FULL */
 858
 859static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 860{
 861	/* Update jiffies first */
 862	tick_do_update_jiffies64(now);
 863
 864	/*
 865	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 866	 * the clock forward checks in the enqueue path:
 867	 */
 868	timer_clear_idle();
 869
 870	calc_load_nohz_stop();
 871	touch_softlockup_watchdog_sched();
 872	/*
 873	 * Cancel the scheduled timer and restore the tick
 874	 */
 875	ts->tick_stopped  = 0;
 876	ts->idle_exittime = now;
 877
 878	tick_nohz_restart(ts, now);
 879}
 880
 881static void tick_nohz_full_update_tick(struct tick_sched *ts)
 882{
 883#ifdef CONFIG_NO_HZ_FULL
 884	int cpu = smp_processor_id();
 885
 886	if (!tick_nohz_full_cpu(cpu))
 887		return;
 888
 889	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 890		return;
 891
 892	if (can_stop_full_tick(cpu, ts))
 893		tick_nohz_stop_sched_tick(ts, cpu);
 894	else if (ts->tick_stopped)
 895		tick_nohz_restart_sched_tick(ts, ktime_get());
 896#endif
 897}
 898
 899static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 900{
 901	/*
 902	 * If this CPU is offline and it is the one which updates
 903	 * jiffies, then give up the assignment and let it be taken by
 904	 * the CPU which runs the tick timer next. If we don't drop
 905	 * this here the jiffies might be stale and do_timer() never
 906	 * invoked.
 907	 */
 908	if (unlikely(!cpu_online(cpu))) {
 909		if (cpu == tick_do_timer_cpu)
 910			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 911		/*
 912		 * Make sure the CPU doesn't get fooled by obsolete tick
 913		 * deadline if it comes back online later.
 914		 */
 915		ts->next_tick = 0;
 916		return false;
 917	}
 918
 919	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 920		return false;
 921
 922	if (need_resched())
 923		return false;
 924
 925	if (unlikely(local_softirq_pending())) {
 926		static int ratelimit;
 927
 928		if (ratelimit < 10 &&
 929		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 930			pr_warn("NOHZ: local_softirq_pending %02x\n",
 931				(unsigned int) local_softirq_pending());
 932			ratelimit++;
 933		}
 934		return false;
 935	}
 936
 937	if (tick_nohz_full_enabled()) {
 938		/*
 939		 * Keep the tick alive to guarantee timekeeping progression
 940		 * if there are full dynticks CPUs around
 941		 */
 942		if (tick_do_timer_cpu == cpu)
 943			return false;
 944		/*
 945		 * Boot safety: make sure the timekeeping duty has been
 946		 * assigned before entering dyntick-idle mode,
 947		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
 948		 */
 949		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
 950			return false;
 951
 952		/* Should not happen for nohz-full */
 953		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 954			return false;
 955	}
 956
 957	return true;
 958}
 959
 960static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 961{
 962	ktime_t expires;
 963	int cpu = smp_processor_id();
 964
 965	/*
 966	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 967	 * tick timer expiration time is known already.
 968	 */
 969	if (ts->timer_expires_base)
 970		expires = ts->timer_expires;
 971	else if (can_stop_idle_tick(cpu, ts))
 972		expires = tick_nohz_next_event(ts, cpu);
 973	else
 974		return;
 975
 976	ts->idle_calls++;
 977
 978	if (expires > 0LL) {
 979		int was_stopped = ts->tick_stopped;
 980
 981		tick_nohz_stop_tick(ts, cpu);
 982
 983		ts->idle_sleeps++;
 984		ts->idle_expires = expires;
 985
 986		if (!was_stopped && ts->tick_stopped) {
 987			ts->idle_jiffies = ts->last_jiffies;
 988			nohz_balance_enter_idle(cpu);
 989		}
 990	} else {
 991		tick_nohz_retain_tick(ts);
 992	}
 993}
 994
 995/**
 996 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 997 *
 998 * When the next event is more than a tick into the future, stop the idle tick
 999 */
1000void tick_nohz_idle_stop_tick(void)
1001{
1002	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1003}
1004
1005void tick_nohz_idle_retain_tick(void)
1006{
1007	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1008	/*
1009	 * Undo the effect of get_next_timer_interrupt() called from
1010	 * tick_nohz_next_event().
1011	 */
1012	timer_clear_idle();
1013}
1014
1015/**
1016 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1017 *
1018 * Called when we start the idle loop.
1019 */
1020void tick_nohz_idle_enter(void)
1021{
1022	struct tick_sched *ts;
1023
1024	lockdep_assert_irqs_enabled();
1025
1026	local_irq_disable();
1027
1028	ts = this_cpu_ptr(&tick_cpu_sched);
1029
1030	WARN_ON_ONCE(ts->timer_expires_base);
1031
1032	ts->inidle = 1;
1033	tick_nohz_start_idle(ts);
1034
1035	local_irq_enable();
1036}
1037
1038/**
1039 * tick_nohz_irq_exit - update next tick event from interrupt exit
1040 *
1041 * When an interrupt fires while we are idle and it doesn't cause
1042 * a reschedule, it may still add, modify or delete a timer, enqueue
1043 * an RCU callback, etc...
1044 * So we need to re-calculate and reprogram the next tick event.
1045 */
1046void tick_nohz_irq_exit(void)
1047{
1048	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1049
1050	if (ts->inidle)
1051		tick_nohz_start_idle(ts);
1052	else
1053		tick_nohz_full_update_tick(ts);
1054}
1055
1056/**
1057 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1058 */
1059bool tick_nohz_idle_got_tick(void)
1060{
1061	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1062
1063	if (ts->got_idle_tick) {
1064		ts->got_idle_tick = 0;
1065		return true;
1066	}
1067	return false;
1068}
1069
1070/**
1071 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1072 * or the tick, whatever that expires first. Note that, if the tick has been
1073 * stopped, it returns the next hrtimer.
1074 *
1075 * Called from power state control code with interrupts disabled
1076 */
1077ktime_t tick_nohz_get_next_hrtimer(void)
1078{
1079	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1080}
1081
1082/**
1083 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1084 * @delta_next: duration until the next event if the tick cannot be stopped
1085 *
1086 * Called from power state control code with interrupts disabled
1087 */
1088ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1089{
1090	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1091	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1092	int cpu = smp_processor_id();
1093	/*
1094	 * The idle entry time is expected to be a sufficient approximation of
1095	 * the current time at this point.
1096	 */
1097	ktime_t now = ts->idle_entrytime;
1098	ktime_t next_event;
1099
1100	WARN_ON_ONCE(!ts->inidle);
1101
1102	*delta_next = ktime_sub(dev->next_event, now);
1103
1104	if (!can_stop_idle_tick(cpu, ts))
1105		return *delta_next;
1106
1107	next_event = tick_nohz_next_event(ts, cpu);
1108	if (!next_event)
1109		return *delta_next;
1110
1111	/*
1112	 * If the next highres timer to expire is earlier than next_event, the
1113	 * idle governor needs to know that.
1114	 */
1115	next_event = min_t(u64, next_event,
1116			   hrtimer_next_event_without(&ts->sched_timer));
1117
1118	return ktime_sub(next_event, now);
1119}
1120
1121/**
1122 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1123 * for a particular CPU.
1124 *
1125 * Called from the schedutil frequency scaling governor in scheduler context.
1126 */
1127unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1128{
1129	struct tick_sched *ts = tick_get_tick_sched(cpu);
1130
1131	return ts->idle_calls;
1132}
1133
1134/**
1135 * tick_nohz_get_idle_calls - return the current idle calls counter value
1136 *
1137 * Called from the schedutil frequency scaling governor in scheduler context.
1138 */
1139unsigned long tick_nohz_get_idle_calls(void)
1140{
1141	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1142
1143	return ts->idle_calls;
1144}
1145
1146static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1147{
1148#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1149	unsigned long ticks;
1150
1151	if (vtime_accounting_enabled_this_cpu())
1152		return;
1153	/*
1154	 * We stopped the tick in idle. Update process times would miss the
1155	 * time we slept as update_process_times does only a 1 tick
1156	 * accounting. Enforce that this is accounted to idle !
1157	 */
1158	ticks = jiffies - ts->idle_jiffies;
1159	/*
1160	 * We might be one off. Do not randomly account a huge number of ticks!
1161	 */
1162	if (ticks && ticks < LONG_MAX)
1163		account_idle_ticks(ticks);
1164#endif
1165}
1166
1167static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1168{
1169	tick_nohz_restart_sched_tick(ts, now);
1170	tick_nohz_account_idle_ticks(ts);
1171}
1172
1173void tick_nohz_idle_restart_tick(void)
1174{
1175	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176
1177	if (ts->tick_stopped)
1178		__tick_nohz_idle_restart_tick(ts, ktime_get());
1179}
1180
1181/**
1182 * tick_nohz_idle_exit - restart the idle tick from the idle task
1183 *
1184 * Restart the idle tick when the CPU is woken up from idle
1185 * This also exit the RCU extended quiescent state. The CPU
1186 * can use RCU again after this function is called.
1187 */
1188void tick_nohz_idle_exit(void)
1189{
1190	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1191	bool idle_active, tick_stopped;
1192	ktime_t now;
1193
1194	local_irq_disable();
1195
1196	WARN_ON_ONCE(!ts->inidle);
1197	WARN_ON_ONCE(ts->timer_expires_base);
1198
1199	ts->inidle = 0;
1200	idle_active = ts->idle_active;
1201	tick_stopped = ts->tick_stopped;
1202
1203	if (idle_active || tick_stopped)
1204		now = ktime_get();
1205
1206	if (idle_active)
1207		tick_nohz_stop_idle(ts, now);
1208
1209	if (tick_stopped)
1210		__tick_nohz_idle_restart_tick(ts, now);
1211
1212	local_irq_enable();
1213}
1214
1215/*
1216 * The nohz low res interrupt handler
1217 */
1218static void tick_nohz_handler(struct clock_event_device *dev)
1219{
1220	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1221	struct pt_regs *regs = get_irq_regs();
1222	ktime_t now = ktime_get();
1223
1224	dev->next_event = KTIME_MAX;
1225
1226	tick_sched_do_timer(ts, now);
1227	tick_sched_handle(ts, regs);
1228
1229	/* No need to reprogram if we are running tickless  */
1230	if (unlikely(ts->tick_stopped))
1231		return;
1232
1233	hrtimer_forward(&ts->sched_timer, now, tick_period);
1234	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1235}
1236
1237static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1238{
1239	if (!tick_nohz_enabled)
1240		return;
1241	ts->nohz_mode = mode;
1242	/* One update is enough */
1243	if (!test_and_set_bit(0, &tick_nohz_active))
1244		timers_update_nohz();
1245}
1246
1247/**
1248 * tick_nohz_switch_to_nohz - switch to nohz mode
1249 */
1250static void tick_nohz_switch_to_nohz(void)
1251{
1252	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1253	ktime_t next;
1254
1255	if (!tick_nohz_enabled)
1256		return;
1257
1258	if (tick_switch_to_oneshot(tick_nohz_handler))
1259		return;
1260
1261	/*
1262	 * Recycle the hrtimer in ts, so we can share the
1263	 * hrtimer_forward with the highres code.
1264	 */
1265	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1266	/* Get the next period */
1267	next = tick_init_jiffy_update();
1268
1269	hrtimer_set_expires(&ts->sched_timer, next);
1270	hrtimer_forward_now(&ts->sched_timer, tick_period);
1271	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1272	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1273}
1274
1275static inline void tick_nohz_irq_enter(void)
1276{
1277	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1278	ktime_t now;
1279
1280	if (!ts->idle_active && !ts->tick_stopped)
1281		return;
1282	now = ktime_get();
1283	if (ts->idle_active)
1284		tick_nohz_stop_idle(ts, now);
1285	if (ts->tick_stopped)
1286		tick_nohz_update_jiffies(now);
1287}
1288
1289#else
1290
1291static inline void tick_nohz_switch_to_nohz(void) { }
1292static inline void tick_nohz_irq_enter(void) { }
1293static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1294
1295#endif /* CONFIG_NO_HZ_COMMON */
1296
1297/*
1298 * Called from irq_enter to notify about the possible interruption of idle()
1299 */
1300void tick_irq_enter(void)
1301{
1302	tick_check_oneshot_broadcast_this_cpu();
1303	tick_nohz_irq_enter();
1304}
1305
1306/*
1307 * High resolution timer specific code
1308 */
1309#ifdef CONFIG_HIGH_RES_TIMERS
1310/*
1311 * We rearm the timer until we get disabled by the idle code.
1312 * Called with interrupts disabled.
1313 */
1314static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1315{
1316	struct tick_sched *ts =
1317		container_of(timer, struct tick_sched, sched_timer);
1318	struct pt_regs *regs = get_irq_regs();
1319	ktime_t now = ktime_get();
1320
1321	tick_sched_do_timer(ts, now);
1322
1323	/*
1324	 * Do not call, when we are not in irq context and have
1325	 * no valid regs pointer
1326	 */
1327	if (regs)
1328		tick_sched_handle(ts, regs);
1329	else
1330		ts->next_tick = 0;
1331
1332	/* No need to reprogram if we are in idle or full dynticks mode */
1333	if (unlikely(ts->tick_stopped))
1334		return HRTIMER_NORESTART;
1335
1336	hrtimer_forward(timer, now, tick_period);
1337
1338	return HRTIMER_RESTART;
1339}
1340
1341static int sched_skew_tick;
1342
1343static int __init skew_tick(char *str)
1344{
1345	get_option(&str, &sched_skew_tick);
1346
1347	return 0;
1348}
1349early_param("skew_tick", skew_tick);
1350
1351/**
1352 * tick_setup_sched_timer - setup the tick emulation timer
1353 */
1354void tick_setup_sched_timer(void)
1355{
1356	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1357	ktime_t now = ktime_get();
1358
1359	/*
1360	 * Emulate tick processing via per-CPU hrtimers:
1361	 */
1362	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1363	ts->sched_timer.function = tick_sched_timer;
1364
1365	/* Get the next period (per-CPU) */
1366	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1367
1368	/* Offset the tick to avert jiffies_lock contention. */
1369	if (sched_skew_tick) {
1370		u64 offset = ktime_to_ns(tick_period) >> 1;
1371		do_div(offset, num_possible_cpus());
1372		offset *= smp_processor_id();
1373		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1374	}
1375
1376	hrtimer_forward(&ts->sched_timer, now, tick_period);
1377	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1378	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1379}
1380#endif /* HIGH_RES_TIMERS */
1381
1382#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1383void tick_cancel_sched_timer(int cpu)
1384{
1385	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1386
1387# ifdef CONFIG_HIGH_RES_TIMERS
1388	if (ts->sched_timer.base)
1389		hrtimer_cancel(&ts->sched_timer);
1390# endif
1391
1392	memset(ts, 0, sizeof(*ts));
1393}
1394#endif
1395
1396/**
1397 * Async notification about clocksource changes
1398 */
1399void tick_clock_notify(void)
1400{
1401	int cpu;
1402
1403	for_each_possible_cpu(cpu)
1404		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1405}
1406
1407/*
1408 * Async notification about clock event changes
1409 */
1410void tick_oneshot_notify(void)
1411{
1412	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1413
1414	set_bit(0, &ts->check_clocks);
1415}
1416
1417/**
1418 * Check, if a change happened, which makes oneshot possible.
1419 *
1420 * Called cyclic from the hrtimer softirq (driven by the timer
1421 * softirq) allow_nohz signals, that we can switch into low-res nohz
1422 * mode, because high resolution timers are disabled (either compile
1423 * or runtime). Called with interrupts disabled.
1424 */
1425int tick_check_oneshot_change(int allow_nohz)
1426{
1427	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1428
1429	if (!test_and_clear_bit(0, &ts->check_clocks))
1430		return 0;
1431
1432	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1433		return 0;
1434
1435	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1436		return 0;
1437
1438	if (!allow_nohz)
1439		return 1;
1440
1441	tick_nohz_switch_to_nohz();
1442	return 0;
1443}