Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
 
 
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/module.h>
  24#include <linux/irq_work.h>
  25#include <linux/posix-timers.h>
  26#include <linux/context_tracking.h>
  27#include <linux/mm.h>
  28
  29#include <asm/irq_regs.h>
  30
  31#include "tick-internal.h"
  32
  33#include <trace/events/timer.h>
  34
  35/*
  36 * Per-CPU nohz control structure
  37 */
  38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  39
  40struct tick_sched *tick_get_tick_sched(int cpu)
  41{
  42	return &per_cpu(tick_cpu_sched, cpu);
  43}
  44
  45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  46/*
  47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  48 */
  49static ktime_t last_jiffies_update;
  50
  51/*
  52 * Must be called with interrupts disabled !
  53 */
  54static void tick_do_update_jiffies64(ktime_t now)
  55{
  56	unsigned long ticks = 0;
  57	ktime_t delta;
  58
  59	/*
  60	 * Do a quick check without holding jiffies_lock:
  61	 */
  62	delta = ktime_sub(now, last_jiffies_update);
  63	if (delta < tick_period)
  64		return;
  65
  66	/* Reevaluate with jiffies_lock held */
  67	write_seqlock(&jiffies_lock);
  68
  69	delta = ktime_sub(now, last_jiffies_update);
  70	if (delta >= tick_period) {
  71
  72		delta = ktime_sub(delta, tick_period);
  73		last_jiffies_update = ktime_add(last_jiffies_update,
  74						tick_period);
  75
  76		/* Slow path for long timeouts */
  77		if (unlikely(delta >= tick_period)) {
  78			s64 incr = ktime_to_ns(tick_period);
  79
  80			ticks = ktime_divns(delta, incr);
  81
  82			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  83							   incr * ticks);
  84		}
  85		do_timer(++ticks);
  86
  87		/* Keep the tick_next_period variable up to date */
  88		tick_next_period = ktime_add(last_jiffies_update, tick_period);
  89	} else {
  90		write_sequnlock(&jiffies_lock);
  91		return;
  92	}
  93	write_sequnlock(&jiffies_lock);
  94	update_wall_time();
  95}
  96
  97/*
  98 * Initialize and return retrieve the jiffies update.
  99 */
 100static ktime_t tick_init_jiffy_update(void)
 101{
 102	ktime_t period;
 103
 104	write_seqlock(&jiffies_lock);
 105	/* Did we start the jiffies update yet ? */
 106	if (last_jiffies_update == 0)
 107		last_jiffies_update = tick_next_period;
 108	period = last_jiffies_update;
 109	write_sequnlock(&jiffies_lock);
 110	return period;
 111}
 112
 113static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 
 114{
 115	int cpu = smp_processor_id();
 116
 117#ifdef CONFIG_NO_HZ_COMMON
 118	/*
 119	 * Check if the do_timer duty was dropped. We don't care about
 120	 * concurrency: This happens only when the CPU in charge went
 121	 * into a long sleep. If two CPUs happen to assign themselves to
 122	 * this duty, then the jiffies update is still serialized by
 123	 * jiffies_lock.
 124	 *
 125	 * If nohz_full is enabled, this should not happen because the
 126	 * tick_do_timer_cpu never relinquishes.
 127	 */
 128	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 129#ifdef CONFIG_NO_HZ_FULL
 130		WARN_ON(tick_nohz_full_running);
 131#endif
 132		tick_do_timer_cpu = cpu;
 133	}
 134#endif
 135
 136	/* Check, if the jiffies need an update */
 137	if (tick_do_timer_cpu == cpu)
 138		tick_do_update_jiffies64(now);
 139
 140	if (ts->inidle)
 141		ts->got_idle_tick = 1;
 142}
 143
 144static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 145{
 146#ifdef CONFIG_NO_HZ_COMMON
 147	/*
 148	 * When we are idle and the tick is stopped, we have to touch
 149	 * the watchdog as we might not schedule for a really long
 150	 * time. This happens on complete idle SMP systems while
 151	 * waiting on the login prompt. We also increment the "start of
 152	 * idle" jiffy stamp so the idle accounting adjustment we do
 153	 * when we go busy again does not account too much ticks.
 154	 */
 155	if (ts->tick_stopped) {
 156		touch_softlockup_watchdog_sched();
 157		if (is_idle_task(current))
 158			ts->idle_jiffies++;
 159		/*
 160		 * In case the current tick fired too early past its expected
 161		 * expiration, make sure we don't bypass the next clock reprogramming
 162		 * to the same deadline.
 163		 */
 164		ts->next_tick = 0;
 165	}
 166#endif
 167	update_process_times(user_mode(regs));
 168	profile_tick(CPU_PROFILING);
 169}
 170#endif
 171
 172#ifdef CONFIG_NO_HZ_FULL
 173cpumask_var_t tick_nohz_full_mask;
 
 174bool tick_nohz_full_running;
 175static atomic_t tick_dep_mask;
 176
 177static bool check_tick_dependency(atomic_t *dep)
 178{
 179	int val = atomic_read(dep);
 180
 181	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 182		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 183		return true;
 184	}
 185
 186	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 187		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 188		return true;
 189	}
 190
 191	if (val & TICK_DEP_MASK_SCHED) {
 192		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 193		return true;
 194	}
 195
 196	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 197		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 198		return true;
 199	}
 200
 201	return false;
 202}
 203
 204static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 205{
 206	lockdep_assert_irqs_disabled();
 207
 208	if (unlikely(!cpu_online(cpu)))
 209		return false;
 210
 211	if (check_tick_dependency(&tick_dep_mask))
 212		return false;
 213
 214	if (check_tick_dependency(&ts->tick_dep_mask))
 215		return false;
 216
 217	if (check_tick_dependency(&current->tick_dep_mask))
 218		return false;
 219
 220	if (check_tick_dependency(&current->signal->tick_dep_mask))
 221		return false;
 222
 223	return true;
 224}
 225
 226static void nohz_full_kick_func(struct irq_work *work)
 227{
 228	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 229}
 230
 231static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 232	.func = nohz_full_kick_func,
 233};
 234
 235/*
 236 * Kick this CPU if it's full dynticks in order to force it to
 237 * re-evaluate its dependency on the tick and restart it if necessary.
 238 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 239 * is NMI safe.
 240 */
 241static void tick_nohz_full_kick(void)
 242{
 243	if (!tick_nohz_full_cpu(smp_processor_id()))
 244		return;
 245
 246	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 247}
 248
 249/*
 250 * Kick the CPU if it's full dynticks in order to force it to
 251 * re-evaluate its dependency on the tick and restart it if necessary.
 252 */
 253void tick_nohz_full_kick_cpu(int cpu)
 254{
 255	if (!tick_nohz_full_cpu(cpu))
 256		return;
 257
 258	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 259}
 260
 261/*
 262 * Kick all full dynticks CPUs in order to force these to re-evaluate
 263 * their dependency on the tick and restart it if necessary.
 264 */
 265static void tick_nohz_full_kick_all(void)
 266{
 267	int cpu;
 268
 269	if (!tick_nohz_full_running)
 270		return;
 271
 272	preempt_disable();
 273	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 274		tick_nohz_full_kick_cpu(cpu);
 275	preempt_enable();
 276}
 277
 278static void tick_nohz_dep_set_all(atomic_t *dep,
 279				  enum tick_dep_bits bit)
 280{
 281	int prev;
 282
 283	prev = atomic_fetch_or(BIT(bit), dep);
 284	if (!prev)
 285		tick_nohz_full_kick_all();
 286}
 287
 288/*
 289 * Set a global tick dependency. Used by perf events that rely on freq and
 290 * by unstable clock.
 291 */
 292void tick_nohz_dep_set(enum tick_dep_bits bit)
 293{
 294	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 295}
 296
 297void tick_nohz_dep_clear(enum tick_dep_bits bit)
 298{
 299	atomic_andnot(BIT(bit), &tick_dep_mask);
 300}
 301
 302/*
 303 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 304 * manage events throttling.
 305 */
 306void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 307{
 308	int prev;
 309	struct tick_sched *ts;
 310
 311	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 312
 313	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 314	if (!prev) {
 315		preempt_disable();
 316		/* Perf needs local kick that is NMI safe */
 317		if (cpu == smp_processor_id()) {
 318			tick_nohz_full_kick();
 319		} else {
 320			/* Remote irq work not NMI-safe */
 321			if (!WARN_ON_ONCE(in_nmi()))
 322				tick_nohz_full_kick_cpu(cpu);
 323		}
 324		preempt_enable();
 325	}
 326}
 327
 328void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 329{
 330	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 331
 332	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 333}
 334
 335/*
 336 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 337 * per task timers.
 338 */
 339void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 340{
 341	/*
 342	 * We could optimize this with just kicking the target running the task
 343	 * if that noise matters for nohz full users.
 344	 */
 345	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 346}
 347
 348void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 349{
 350	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 351}
 352
 353/*
 354 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 355 * per process timers.
 356 */
 357void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 358{
 359	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 360}
 361
 362void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 363{
 364	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 365}
 366
 367/*
 368 * Re-evaluate the need for the tick as we switch the current task.
 369 * It might need the tick due to per task/process properties:
 370 * perf events, posix CPU timers, ...
 371 */
 372void __tick_nohz_task_switch(void)
 373{
 374	unsigned long flags;
 375	struct tick_sched *ts;
 376
 377	local_irq_save(flags);
 378
 379	if (!tick_nohz_full_cpu(smp_processor_id()))
 380		goto out;
 381
 382	ts = this_cpu_ptr(&tick_cpu_sched);
 383
 384	if (ts->tick_stopped) {
 385		if (atomic_read(&current->tick_dep_mask) ||
 386		    atomic_read(&current->signal->tick_dep_mask))
 387			tick_nohz_full_kick();
 388	}
 389out:
 390	local_irq_restore(flags);
 391}
 392
 393/* Get the boot-time nohz CPU list from the kernel parameters. */
 394void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 395{
 396	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 397	cpumask_copy(tick_nohz_full_mask, cpumask);
 
 
 
 
 398	tick_nohz_full_running = true;
 
 
 399}
 
 400
 401static int tick_nohz_cpu_down(unsigned int cpu)
 402{
 403	/*
 404	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 405	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 406	 * CPUs. It must remain online when nohz full is enabled.
 407	 */
 408	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 409		return -EBUSY;
 410	return 0;
 411}
 412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413void __init tick_nohz_init(void)
 414{
 415	int cpu, ret;
 416
 417	if (!tick_nohz_full_running)
 
 
 
 
 
 
 
 
 418		return;
 
 419
 420	/*
 421	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 422	 * locking contexts. But then we need irq work to raise its own
 423	 * interrupts to avoid circular dependency on the tick
 424	 */
 425	if (!arch_irq_work_has_interrupt()) {
 426		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 427		cpumask_clear(tick_nohz_full_mask);
 
 428		tick_nohz_full_running = false;
 429		return;
 430	}
 431
 432	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 433			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 434		cpu = smp_processor_id();
 435
 436		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 437			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 438				"for timekeeping\n", cpu);
 439			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 440		}
 441	}
 442
 
 
 
 443	for_each_cpu(cpu, tick_nohz_full_mask)
 444		context_tracking_cpu_set(cpu);
 445
 446	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 447					"kernel/nohz:predown", NULL,
 448					tick_nohz_cpu_down);
 449	WARN_ON(ret < 0);
 450	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 451		cpumask_pr_args(tick_nohz_full_mask));
 
 
 
 
 
 
 452}
 453#endif
 454
 455/*
 456 * NOHZ - aka dynamic tick functionality
 457 */
 458#ifdef CONFIG_NO_HZ_COMMON
 459/*
 460 * NO HZ enabled ?
 461 */
 462bool tick_nohz_enabled __read_mostly  = true;
 463unsigned long tick_nohz_active  __read_mostly;
 464/*
 465 * Enable / Disable tickless mode
 466 */
 467static int __init setup_tick_nohz(char *str)
 468{
 469	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 470}
 471
 472__setup("nohz=", setup_tick_nohz);
 473
 474bool tick_nohz_tick_stopped(void)
 475{
 476	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 477
 478	return ts->tick_stopped;
 479}
 480
 481bool tick_nohz_tick_stopped_cpu(int cpu)
 482{
 483	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 484
 485	return ts->tick_stopped;
 486}
 487
 488/**
 489 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 490 *
 491 * Called from interrupt entry when the CPU was idle
 492 *
 493 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 494 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 495 * value. We do this unconditionally on any CPU, as we don't know whether the
 496 * CPU, which has the update task assigned is in a long sleep.
 497 */
 498static void tick_nohz_update_jiffies(ktime_t now)
 499{
 500	unsigned long flags;
 501
 502	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 503
 504	local_irq_save(flags);
 505	tick_do_update_jiffies64(now);
 506	local_irq_restore(flags);
 507
 508	touch_softlockup_watchdog_sched();
 509}
 510
 511/*
 512 * Updates the per-CPU time idle statistics counters
 513 */
 514static void
 515update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 516{
 517	ktime_t delta;
 518
 519	if (ts->idle_active) {
 520		delta = ktime_sub(now, ts->idle_entrytime);
 521		if (nr_iowait_cpu(cpu) > 0)
 522			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 523		else
 524			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 525		ts->idle_entrytime = now;
 526	}
 527
 528	if (last_update_time)
 529		*last_update_time = ktime_to_us(now);
 530
 531}
 532
 533static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 534{
 535	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 536	ts->idle_active = 0;
 537
 538	sched_clock_idle_wakeup_event();
 539}
 540
 541static void tick_nohz_start_idle(struct tick_sched *ts)
 542{
 543	ts->idle_entrytime = ktime_get();
 
 
 544	ts->idle_active = 1;
 545	sched_clock_idle_sleep_event();
 
 546}
 547
 548/**
 549 * get_cpu_idle_time_us - get the total idle time of a CPU
 550 * @cpu: CPU number to query
 551 * @last_update_time: variable to store update time in. Do not update
 552 * counters if NULL.
 553 *
 554 * Return the cumulative idle time (since boot) for a given
 555 * CPU, in microseconds.
 556 *
 557 * This time is measured via accounting rather than sampling,
 558 * and is as accurate as ktime_get() is.
 559 *
 560 * This function returns -1 if NOHZ is not enabled.
 561 */
 562u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 563{
 564	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 565	ktime_t now, idle;
 566
 567	if (!tick_nohz_active)
 568		return -1;
 569
 570	now = ktime_get();
 571	if (last_update_time) {
 572		update_ts_time_stats(cpu, ts, now, last_update_time);
 573		idle = ts->idle_sleeptime;
 574	} else {
 575		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 576			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 577
 578			idle = ktime_add(ts->idle_sleeptime, delta);
 579		} else {
 580			idle = ts->idle_sleeptime;
 581		}
 582	}
 583
 584	return ktime_to_us(idle);
 585
 586}
 587EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 588
 589/**
 590 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 591 * @cpu: CPU number to query
 592 * @last_update_time: variable to store update time in. Do not update
 593 * counters if NULL.
 594 *
 595 * Return the cumulative iowait time (since boot) for a given
 596 * CPU, in microseconds.
 597 *
 598 * This time is measured via accounting rather than sampling,
 599 * and is as accurate as ktime_get() is.
 600 *
 601 * This function returns -1 if NOHZ is not enabled.
 602 */
 603u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 604{
 605	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 606	ktime_t now, iowait;
 607
 608	if (!tick_nohz_active)
 609		return -1;
 610
 611	now = ktime_get();
 612	if (last_update_time) {
 613		update_ts_time_stats(cpu, ts, now, last_update_time);
 614		iowait = ts->iowait_sleeptime;
 615	} else {
 616		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 617			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 618
 619			iowait = ktime_add(ts->iowait_sleeptime, delta);
 620		} else {
 621			iowait = ts->iowait_sleeptime;
 622		}
 623	}
 624
 625	return ktime_to_us(iowait);
 626}
 627EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 628
 629static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 630{
 631	hrtimer_cancel(&ts->sched_timer);
 632	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 633
 634	/* Forward the time to expire in the future */
 635	hrtimer_forward(&ts->sched_timer, now, tick_period);
 636
 637	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 638		hrtimer_start_expires(&ts->sched_timer,
 639				      HRTIMER_MODE_ABS_PINNED_HARD);
 640	} else {
 641		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 642	}
 643
 644	/*
 645	 * Reset to make sure next tick stop doesn't get fooled by past
 646	 * cached clock deadline.
 647	 */
 648	ts->next_tick = 0;
 649}
 650
 651static inline bool local_timer_softirq_pending(void)
 652{
 653	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 654}
 655
 656static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 
 657{
 
 658	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 659	unsigned long basejiff;
 660	unsigned int seq;
 661
 662	/* Read jiffies and the time when jiffies were updated last */
 663	do {
 664		seq = read_seqbegin(&jiffies_lock);
 665		basemono = last_jiffies_update;
 666		basejiff = jiffies;
 667	} while (read_seqretry(&jiffies_lock, seq));
 668	ts->last_jiffies = basejiff;
 669	ts->timer_expires_base = basemono;
 670
 671	/*
 672	 * Keep the periodic tick, when RCU, architecture or irq_work
 673	 * requests it.
 674	 * Aside of that check whether the local timer softirq is
 675	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 676	 * because there is an already expired timer, so it will request
 677	 * immeditate expiry, which rearms the hardware timer with a
 678	 * minimal delta which brings us back to this place
 679	 * immediately. Lather, rinse and repeat...
 680	 */
 681	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 682	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 683		next_tick = basemono + TICK_NSEC;
 684	} else {
 685		/*
 686		 * Get the next pending timer. If high resolution
 687		 * timers are enabled this only takes the timer wheel
 688		 * timers into account. If high resolution timers are
 689		 * disabled this also looks at the next expiring
 690		 * hrtimer.
 691		 */
 692		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 693		ts->next_timer = next_tmr;
 694		/* Take the next rcu event into account */
 695		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 696	}
 697
 698	/*
 699	 * If the tick is due in the next period, keep it ticking or
 700	 * force prod the timer.
 701	 */
 702	delta = next_tick - basemono;
 703	if (delta <= (u64)TICK_NSEC) {
 
 
 704		/*
 705		 * Tell the timer code that the base is not idle, i.e. undo
 706		 * the effect of get_next_timer_interrupt():
 707		 */
 708		timer_clear_idle();
 709		/*
 710		 * We've not stopped the tick yet, and there's a timer in the
 711		 * next period, so no point in stopping it either, bail.
 712		 */
 713		if (!ts->tick_stopped) {
 714			ts->timer_expires = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715			goto out;
 716		}
 717	}
 718
 719	/*
 720	 * If this CPU is the one which had the do_timer() duty last, we limit
 721	 * the sleep time to the timekeeping max_deferment value.
 722	 * Otherwise we can sleep as long as we want.
 723	 */
 724	delta = timekeeping_max_deferment();
 725	if (cpu != tick_do_timer_cpu &&
 726	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 727		delta = KTIME_MAX;
 728
 729	/* Calculate the next expiry time */
 730	if (delta < (KTIME_MAX - basemono))
 731		expires = basemono + delta;
 732	else
 733		expires = KTIME_MAX;
 734
 735	ts->timer_expires = min_t(u64, expires, next_tick);
 736
 737out:
 738	return ts->timer_expires;
 739}
 740
 741static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 742{
 743	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 744	u64 basemono = ts->timer_expires_base;
 745	u64 expires = ts->timer_expires;
 746	ktime_t tick = expires;
 747
 748	/* Make sure we won't be trying to stop it twice in a row. */
 749	ts->timer_expires_base = 0;
 750
 751	/*
 752	 * If this CPU is the one which updates jiffies, then give up
 753	 * the assignment and let it be taken by the CPU which runs
 754	 * the tick timer next, which might be this CPU as well. If we
 755	 * don't drop this here the jiffies might be stale and
 756	 * do_timer() never invoked. Keep track of the fact that it
 757	 * was the one which had the do_timer() duty last.
 
 
 
 758	 */
 
 759	if (cpu == tick_do_timer_cpu) {
 760		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 761		ts->do_timer_last = 1;
 762	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 
 763		ts->do_timer_last = 0;
 
 
 764	}
 765
 766	/* Skip reprogram of event if its not changed */
 767	if (ts->tick_stopped && (expires == ts->next_tick)) {
 768		/* Sanity check: make sure clockevent is actually programmed */
 769		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 770			return;
 771
 772		WARN_ON_ONCE(1);
 773		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 774			    basemono, ts->next_tick, dev->next_event,
 775			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 776	}
 
 
 
 
 
 
 
 777
 778	/*
 779	 * nohz_stop_sched_tick can be called several times before
 780	 * the nohz_restart_sched_tick is called. This happens when
 781	 * interrupts arrive which do not cause a reschedule. In the
 782	 * first call we save the current tick time, so we can restart
 783	 * the scheduler tick in nohz_restart_sched_tick.
 784	 */
 785	if (!ts->tick_stopped) {
 786		calc_load_nohz_start();
 787		quiet_vmstat();
 
 788
 789		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 790		ts->tick_stopped = 1;
 791		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 792	}
 793
 794	ts->next_tick = tick;
 795
 796	/*
 797	 * If the expiration time == KTIME_MAX, then we simply stop
 798	 * the tick timer.
 799	 */
 800	if (unlikely(expires == KTIME_MAX)) {
 801		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 802			hrtimer_cancel(&ts->sched_timer);
 803		return;
 804	}
 805
 806	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 807		hrtimer_start(&ts->sched_timer, tick,
 808			      HRTIMER_MODE_ABS_PINNED_HARD);
 809	} else {
 810		hrtimer_set_expires(&ts->sched_timer, tick);
 811		tick_program_event(tick, 1);
 812	}
 813}
 814
 815static void tick_nohz_retain_tick(struct tick_sched *ts)
 816{
 817	ts->timer_expires_base = 0;
 818}
 819
 820#ifdef CONFIG_NO_HZ_FULL
 821static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 822{
 823	if (tick_nohz_next_event(ts, cpu))
 824		tick_nohz_stop_tick(ts, cpu);
 825	else
 826		tick_nohz_retain_tick(ts);
 
 
 
 
 827}
 828#endif /* CONFIG_NO_HZ_FULL */
 829
 830static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 831{
 832	/* Update jiffies first */
 833	tick_do_update_jiffies64(now);
 
 834
 835	/*
 836	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 837	 * the clock forward checks in the enqueue path:
 838	 */
 839	timer_clear_idle();
 840
 841	calc_load_nohz_stop();
 842	touch_softlockup_watchdog_sched();
 843	/*
 844	 * Cancel the scheduled timer and restore the tick
 845	 */
 846	ts->tick_stopped  = 0;
 847	ts->idle_exittime = now;
 848
 849	tick_nohz_restart(ts, now);
 850}
 851
 852static void tick_nohz_full_update_tick(struct tick_sched *ts)
 853{
 854#ifdef CONFIG_NO_HZ_FULL
 855	int cpu = smp_processor_id();
 856
 857	if (!tick_nohz_full_cpu(cpu))
 858		return;
 859
 860	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 861		return;
 862
 863	if (can_stop_full_tick(cpu, ts))
 864		tick_nohz_stop_sched_tick(ts, cpu);
 865	else if (ts->tick_stopped)
 866		tick_nohz_restart_sched_tick(ts, ktime_get());
 867#endif
 868}
 869
 870static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 871{
 872	/*
 873	 * If this CPU is offline and it is the one which updates
 874	 * jiffies, then give up the assignment and let it be taken by
 875	 * the CPU which runs the tick timer next. If we don't drop
 876	 * this here the jiffies might be stale and do_timer() never
 877	 * invoked.
 878	 */
 879	if (unlikely(!cpu_online(cpu))) {
 880		if (cpu == tick_do_timer_cpu)
 881			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 882		/*
 883		 * Make sure the CPU doesn't get fooled by obsolete tick
 884		 * deadline if it comes back online later.
 885		 */
 886		ts->next_tick = 0;
 887		return false;
 888	}
 889
 890	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 
 891		return false;
 
 892
 893	if (need_resched())
 894		return false;
 895
 896	if (unlikely(local_softirq_pending())) {
 897		static int ratelimit;
 898
 899		if (ratelimit < 10 &&
 900		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 901			pr_warn("NOHZ: local_softirq_pending %02x\n",
 902				(unsigned int) local_softirq_pending());
 903			ratelimit++;
 904		}
 905		return false;
 906	}
 907
 908	if (tick_nohz_full_enabled()) {
 909		/*
 910		 * Keep the tick alive to guarantee timekeeping progression
 911		 * if there are full dynticks CPUs around
 912		 */
 913		if (tick_do_timer_cpu == cpu)
 914			return false;
 915		/*
 916		 * Boot safety: make sure the timekeeping duty has been
 917		 * assigned before entering dyntick-idle mode,
 918		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
 919		 */
 920		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
 921			return false;
 922
 923		/* Should not happen for nohz-full */
 924		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 925			return false;
 926	}
 927
 928	return true;
 929}
 930
 931static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 932{
 933	ktime_t expires;
 934	int cpu = smp_processor_id();
 935
 936	/*
 937	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 938	 * tick timer expiration time is known already.
 939	 */
 940	if (ts->timer_expires_base)
 941		expires = ts->timer_expires;
 942	else if (can_stop_idle_tick(cpu, ts))
 943		expires = tick_nohz_next_event(ts, cpu);
 944	else
 945		return;
 946
 947	ts->idle_calls++;
 948
 949	if (expires > 0LL) {
 950		int was_stopped = ts->tick_stopped;
 951
 952		tick_nohz_stop_tick(ts, cpu);
 953
 954		ts->idle_sleeps++;
 955		ts->idle_expires = expires;
 
 
 
 956
 957		if (!was_stopped && ts->tick_stopped) {
 958			ts->idle_jiffies = ts->last_jiffies;
 959			nohz_balance_enter_idle(cpu);
 960		}
 961	} else {
 962		tick_nohz_retain_tick(ts);
 963	}
 964}
 965
 966/**
 967 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 968 *
 969 * When the next event is more than a tick into the future, stop the idle tick
 970 */
 971void tick_nohz_idle_stop_tick(void)
 972{
 973	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
 974}
 975
 976void tick_nohz_idle_retain_tick(void)
 977{
 978	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 979	/*
 980	 * Undo the effect of get_next_timer_interrupt() called from
 981	 * tick_nohz_next_event().
 982	 */
 983	timer_clear_idle();
 984}
 985
 986/**
 987 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
 988 *
 989 * Called when we start the idle loop.
 
 
 
 
 
 
 990 */
 991void tick_nohz_idle_enter(void)
 992{
 993	struct tick_sched *ts;
 994
 995	lockdep_assert_irqs_enabled();
 
 
 
 
 
 
 
 
 996
 997	local_irq_disable();
 998
 999	ts = this_cpu_ptr(&tick_cpu_sched);
1000
1001	WARN_ON_ONCE(ts->timer_expires_base);
1002
1003	ts->inidle = 1;
1004	tick_nohz_start_idle(ts);
1005
1006	local_irq_enable();
1007}
1008
1009/**
1010 * tick_nohz_irq_exit - update next tick event from interrupt exit
1011 *
1012 * When an interrupt fires while we are idle and it doesn't cause
1013 * a reschedule, it may still add, modify or delete a timer, enqueue
1014 * an RCU callback, etc...
1015 * So we need to re-calculate and reprogram the next tick event.
1016 */
1017void tick_nohz_irq_exit(void)
1018{
1019	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020
1021	if (ts->inidle)
1022		tick_nohz_start_idle(ts);
1023	else
1024		tick_nohz_full_update_tick(ts);
1025}
1026
1027/**
1028 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1029 */
1030bool tick_nohz_idle_got_tick(void)
1031{
1032	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1033
1034	if (ts->got_idle_tick) {
1035		ts->got_idle_tick = 0;
1036		return true;
1037	}
1038	return false;
1039}
1040
1041/**
1042 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1043 * or the tick, whatever that expires first. Note that, if the tick has been
1044 * stopped, it returns the next hrtimer.
1045 *
1046 * Called from power state control code with interrupts disabled
1047 */
1048ktime_t tick_nohz_get_next_hrtimer(void)
1049{
1050	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1051}
1052
1053/**
1054 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1055 * @delta_next: duration until the next event if the tick cannot be stopped
1056 *
1057 * Called from power state control code with interrupts disabled
1058 */
1059ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1060{
1061	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1062	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1063	int cpu = smp_processor_id();
1064	/*
1065	 * The idle entry time is expected to be a sufficient approximation of
1066	 * the current time at this point.
1067	 */
1068	ktime_t now = ts->idle_entrytime;
1069	ktime_t next_event;
1070
1071	WARN_ON_ONCE(!ts->inidle);
1072
1073	*delta_next = ktime_sub(dev->next_event, now);
1074
1075	if (!can_stop_idle_tick(cpu, ts))
1076		return *delta_next;
1077
1078	next_event = tick_nohz_next_event(ts, cpu);
1079	if (!next_event)
1080		return *delta_next;
1081
1082	/*
1083	 * If the next highres timer to expire is earlier than next_event, the
1084	 * idle governor needs to know that.
1085	 */
1086	next_event = min_t(u64, next_event,
1087			   hrtimer_next_event_without(&ts->sched_timer));
1088
1089	return ktime_sub(next_event, now);
1090}
1091
1092/**
1093 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1094 * for a particular CPU.
1095 *
1096 * Called from the schedutil frequency scaling governor in scheduler context.
1097 */
1098unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1099{
1100	struct tick_sched *ts = tick_get_tick_sched(cpu);
1101
1102	return ts->idle_calls;
1103}
1104
1105/**
1106 * tick_nohz_get_idle_calls - return the current idle calls counter value
1107 *
1108 * Called from the schedutil frequency scaling governor in scheduler context.
1109 */
1110unsigned long tick_nohz_get_idle_calls(void)
1111{
1112	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1113
1114	return ts->idle_calls;
1115}
1116
1117static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1118{
1119#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1120	unsigned long ticks;
1121
1122	if (vtime_accounting_cpu_enabled())
1123		return;
1124	/*
1125	 * We stopped the tick in idle. Update process times would miss the
1126	 * time we slept as update_process_times does only a 1 tick
1127	 * accounting. Enforce that this is accounted to idle !
1128	 */
1129	ticks = jiffies - ts->idle_jiffies;
1130	/*
1131	 * We might be one off. Do not randomly account a huge number of ticks!
1132	 */
1133	if (ticks && ticks < LONG_MAX)
1134		account_idle_ticks(ticks);
1135#endif
1136}
1137
1138static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1139{
1140	tick_nohz_restart_sched_tick(ts, now);
1141	tick_nohz_account_idle_ticks(ts);
1142}
1143
1144void tick_nohz_idle_restart_tick(void)
1145{
1146	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1147
1148	if (ts->tick_stopped)
1149		__tick_nohz_idle_restart_tick(ts, ktime_get());
1150}
1151
1152/**
1153 * tick_nohz_idle_exit - restart the idle tick from the idle task
1154 *
1155 * Restart the idle tick when the CPU is woken up from idle
1156 * This also exit the RCU extended quiescent state. The CPU
1157 * can use RCU again after this function is called.
1158 */
1159void tick_nohz_idle_exit(void)
1160{
1161	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162	bool idle_active, tick_stopped;
1163	ktime_t now;
1164
1165	local_irq_disable();
1166
1167	WARN_ON_ONCE(!ts->inidle);
1168	WARN_ON_ONCE(ts->timer_expires_base);
1169
1170	ts->inidle = 0;
1171	idle_active = ts->idle_active;
1172	tick_stopped = ts->tick_stopped;
1173
1174	if (idle_active || tick_stopped)
1175		now = ktime_get();
1176
1177	if (idle_active)
1178		tick_nohz_stop_idle(ts, now);
1179
1180	if (tick_stopped)
1181		__tick_nohz_idle_restart_tick(ts, now);
 
 
1182
1183	local_irq_enable();
1184}
1185
1186/*
1187 * The nohz low res interrupt handler
1188 */
1189static void tick_nohz_handler(struct clock_event_device *dev)
1190{
1191	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1192	struct pt_regs *regs = get_irq_regs();
1193	ktime_t now = ktime_get();
1194
1195	dev->next_event = KTIME_MAX;
1196
1197	tick_sched_do_timer(ts, now);
1198	tick_sched_handle(ts, regs);
1199
1200	/* No need to reprogram if we are running tickless  */
1201	if (unlikely(ts->tick_stopped))
1202		return;
1203
1204	hrtimer_forward(&ts->sched_timer, now, tick_period);
1205	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1206}
1207
1208static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1209{
1210	if (!tick_nohz_enabled)
1211		return;
1212	ts->nohz_mode = mode;
1213	/* One update is enough */
1214	if (!test_and_set_bit(0, &tick_nohz_active))
1215		timers_update_nohz();
1216}
1217
1218/**
1219 * tick_nohz_switch_to_nohz - switch to nohz mode
1220 */
1221static void tick_nohz_switch_to_nohz(void)
1222{
1223	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1224	ktime_t next;
1225
1226	if (!tick_nohz_enabled)
1227		return;
1228
1229	if (tick_switch_to_oneshot(tick_nohz_handler))
1230		return;
1231
1232	/*
1233	 * Recycle the hrtimer in ts, so we can share the
1234	 * hrtimer_forward with the highres code.
1235	 */
1236	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1237	/* Get the next period */
1238	next = tick_init_jiffy_update();
1239
1240	hrtimer_set_expires(&ts->sched_timer, next);
1241	hrtimer_forward_now(&ts->sched_timer, tick_period);
1242	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1243	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1244}
1245
1246static inline void tick_nohz_irq_enter(void)
1247{
1248	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1249	ktime_t now;
1250
1251	if (!ts->idle_active && !ts->tick_stopped)
1252		return;
1253	now = ktime_get();
1254	if (ts->idle_active)
1255		tick_nohz_stop_idle(ts, now);
1256	if (ts->tick_stopped)
1257		tick_nohz_update_jiffies(now);
1258}
1259
1260#else
1261
1262static inline void tick_nohz_switch_to_nohz(void) { }
1263static inline void tick_nohz_irq_enter(void) { }
1264static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1265
1266#endif /* CONFIG_NO_HZ_COMMON */
1267
1268/*
1269 * Called from irq_enter to notify about the possible interruption of idle()
1270 */
1271void tick_irq_enter(void)
1272{
1273	tick_check_oneshot_broadcast_this_cpu();
1274	tick_nohz_irq_enter();
1275}
1276
1277/*
1278 * High resolution timer specific code
1279 */
1280#ifdef CONFIG_HIGH_RES_TIMERS
1281/*
1282 * We rearm the timer until we get disabled by the idle code.
1283 * Called with interrupts disabled.
1284 */
1285static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1286{
1287	struct tick_sched *ts =
1288		container_of(timer, struct tick_sched, sched_timer);
1289	struct pt_regs *regs = get_irq_regs();
1290	ktime_t now = ktime_get();
1291
1292	tick_sched_do_timer(ts, now);
1293
1294	/*
1295	 * Do not call, when we are not in irq context and have
1296	 * no valid regs pointer
1297	 */
1298	if (regs)
1299		tick_sched_handle(ts, regs);
1300	else
1301		ts->next_tick = 0;
1302
1303	/* No need to reprogram if we are in idle or full dynticks mode */
1304	if (unlikely(ts->tick_stopped))
1305		return HRTIMER_NORESTART;
1306
1307	hrtimer_forward(timer, now, tick_period);
1308
1309	return HRTIMER_RESTART;
1310}
1311
1312static int sched_skew_tick;
1313
1314static int __init skew_tick(char *str)
1315{
1316	get_option(&str, &sched_skew_tick);
1317
1318	return 0;
1319}
1320early_param("skew_tick", skew_tick);
1321
1322/**
1323 * tick_setup_sched_timer - setup the tick emulation timer
1324 */
1325void tick_setup_sched_timer(void)
1326{
1327	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1328	ktime_t now = ktime_get();
1329
1330	/*
1331	 * Emulate tick processing via per-CPU hrtimers:
1332	 */
1333	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1334	ts->sched_timer.function = tick_sched_timer;
1335
1336	/* Get the next period (per-CPU) */
1337	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1338
1339	/* Offset the tick to avert jiffies_lock contention. */
1340	if (sched_skew_tick) {
1341		u64 offset = ktime_to_ns(tick_period) >> 1;
1342		do_div(offset, num_possible_cpus());
1343		offset *= smp_processor_id();
1344		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1345	}
1346
1347	hrtimer_forward(&ts->sched_timer, now, tick_period);
1348	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1349	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1350}
1351#endif /* HIGH_RES_TIMERS */
1352
1353#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1354void tick_cancel_sched_timer(int cpu)
1355{
1356	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1357
1358# ifdef CONFIG_HIGH_RES_TIMERS
1359	if (ts->sched_timer.base)
1360		hrtimer_cancel(&ts->sched_timer);
1361# endif
1362
1363	memset(ts, 0, sizeof(*ts));
1364}
1365#endif
1366
1367/**
1368 * Async notification about clocksource changes
1369 */
1370void tick_clock_notify(void)
1371{
1372	int cpu;
1373
1374	for_each_possible_cpu(cpu)
1375		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1376}
1377
1378/*
1379 * Async notification about clock event changes
1380 */
1381void tick_oneshot_notify(void)
1382{
1383	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1384
1385	set_bit(0, &ts->check_clocks);
1386}
1387
1388/**
1389 * Check, if a change happened, which makes oneshot possible.
1390 *
1391 * Called cyclic from the hrtimer softirq (driven by the timer
1392 * softirq) allow_nohz signals, that we can switch into low-res nohz
1393 * mode, because high resolution timers are disabled (either compile
1394 * or runtime). Called with interrupts disabled.
1395 */
1396int tick_check_oneshot_change(int allow_nohz)
1397{
1398	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1399
1400	if (!test_and_clear_bit(0, &ts->check_clocks))
1401		return 0;
1402
1403	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1404		return 0;
1405
1406	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1407		return 0;
1408
1409	if (!allow_nohz)
1410		return 1;
1411
1412	tick_nohz_switch_to_nohz();
1413	return 0;
1414}
v4.10.11
 
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
 
  20#include <linux/profile.h>
  21#include <linux/sched.h>
 
 
 
  22#include <linux/module.h>
  23#include <linux/irq_work.h>
  24#include <linux/posix-timers.h>
  25#include <linux/context_tracking.h>
 
  26
  27#include <asm/irq_regs.h>
  28
  29#include "tick-internal.h"
  30
  31#include <trace/events/timer.h>
  32
  33/*
  34 * Per-CPU nohz control structure
  35 */
  36static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  37
  38struct tick_sched *tick_get_tick_sched(int cpu)
  39{
  40	return &per_cpu(tick_cpu_sched, cpu);
  41}
  42
  43#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  44/*
  45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  46 */
  47static ktime_t last_jiffies_update;
  48
  49/*
  50 * Must be called with interrupts disabled !
  51 */
  52static void tick_do_update_jiffies64(ktime_t now)
  53{
  54	unsigned long ticks = 0;
  55	ktime_t delta;
  56
  57	/*
  58	 * Do a quick check without holding jiffies_lock:
  59	 */
  60	delta = ktime_sub(now, last_jiffies_update);
  61	if (delta < tick_period)
  62		return;
  63
  64	/* Reevaluate with jiffies_lock held */
  65	write_seqlock(&jiffies_lock);
  66
  67	delta = ktime_sub(now, last_jiffies_update);
  68	if (delta >= tick_period) {
  69
  70		delta = ktime_sub(delta, tick_period);
  71		last_jiffies_update = ktime_add(last_jiffies_update,
  72						tick_period);
  73
  74		/* Slow path for long timeouts */
  75		if (unlikely(delta >= tick_period)) {
  76			s64 incr = ktime_to_ns(tick_period);
  77
  78			ticks = ktime_divns(delta, incr);
  79
  80			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  81							   incr * ticks);
  82		}
  83		do_timer(++ticks);
  84
  85		/* Keep the tick_next_period variable up to date */
  86		tick_next_period = ktime_add(last_jiffies_update, tick_period);
  87	} else {
  88		write_sequnlock(&jiffies_lock);
  89		return;
  90	}
  91	write_sequnlock(&jiffies_lock);
  92	update_wall_time();
  93}
  94
  95/*
  96 * Initialize and return retrieve the jiffies update.
  97 */
  98static ktime_t tick_init_jiffy_update(void)
  99{
 100	ktime_t period;
 101
 102	write_seqlock(&jiffies_lock);
 103	/* Did we start the jiffies update yet ? */
 104	if (last_jiffies_update == 0)
 105		last_jiffies_update = tick_next_period;
 106	period = last_jiffies_update;
 107	write_sequnlock(&jiffies_lock);
 108	return period;
 109}
 110
 111
 112static void tick_sched_do_timer(ktime_t now)
 113{
 114	int cpu = smp_processor_id();
 115
 116#ifdef CONFIG_NO_HZ_COMMON
 117	/*
 118	 * Check if the do_timer duty was dropped. We don't care about
 119	 * concurrency: This happens only when the CPU in charge went
 120	 * into a long sleep. If two CPUs happen to assign themselves to
 121	 * this duty, then the jiffies update is still serialized by
 122	 * jiffies_lock.
 
 
 
 123	 */
 124	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 125	    && !tick_nohz_full_cpu(cpu))
 
 
 126		tick_do_timer_cpu = cpu;
 
 127#endif
 128
 129	/* Check, if the jiffies need an update */
 130	if (tick_do_timer_cpu == cpu)
 131		tick_do_update_jiffies64(now);
 
 
 
 132}
 133
 134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 135{
 136#ifdef CONFIG_NO_HZ_COMMON
 137	/*
 138	 * When we are idle and the tick is stopped, we have to touch
 139	 * the watchdog as we might not schedule for a really long
 140	 * time. This happens on complete idle SMP systems while
 141	 * waiting on the login prompt. We also increment the "start of
 142	 * idle" jiffy stamp so the idle accounting adjustment we do
 143	 * when we go busy again does not account too much ticks.
 144	 */
 145	if (ts->tick_stopped) {
 146		touch_softlockup_watchdog_sched();
 147		if (is_idle_task(current))
 148			ts->idle_jiffies++;
 
 
 
 
 
 
 149	}
 150#endif
 151	update_process_times(user_mode(regs));
 152	profile_tick(CPU_PROFILING);
 153}
 154#endif
 155
 156#ifdef CONFIG_NO_HZ_FULL
 157cpumask_var_t tick_nohz_full_mask;
 158cpumask_var_t housekeeping_mask;
 159bool tick_nohz_full_running;
 160static atomic_t tick_dep_mask;
 161
 162static bool check_tick_dependency(atomic_t *dep)
 163{
 164	int val = atomic_read(dep);
 165
 166	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 167		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 168		return true;
 169	}
 170
 171	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 172		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 173		return true;
 174	}
 175
 176	if (val & TICK_DEP_MASK_SCHED) {
 177		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 178		return true;
 179	}
 180
 181	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 182		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 183		return true;
 184	}
 185
 186	return false;
 187}
 188
 189static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 190{
 191	WARN_ON_ONCE(!irqs_disabled());
 192
 193	if (unlikely(!cpu_online(cpu)))
 194		return false;
 195
 196	if (check_tick_dependency(&tick_dep_mask))
 197		return false;
 198
 199	if (check_tick_dependency(&ts->tick_dep_mask))
 200		return false;
 201
 202	if (check_tick_dependency(&current->tick_dep_mask))
 203		return false;
 204
 205	if (check_tick_dependency(&current->signal->tick_dep_mask))
 206		return false;
 207
 208	return true;
 209}
 210
 211static void nohz_full_kick_func(struct irq_work *work)
 212{
 213	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 214}
 215
 216static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 217	.func = nohz_full_kick_func,
 218};
 219
 220/*
 221 * Kick this CPU if it's full dynticks in order to force it to
 222 * re-evaluate its dependency on the tick and restart it if necessary.
 223 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 224 * is NMI safe.
 225 */
 226static void tick_nohz_full_kick(void)
 227{
 228	if (!tick_nohz_full_cpu(smp_processor_id()))
 229		return;
 230
 231	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 232}
 233
 234/*
 235 * Kick the CPU if it's full dynticks in order to force it to
 236 * re-evaluate its dependency on the tick and restart it if necessary.
 237 */
 238void tick_nohz_full_kick_cpu(int cpu)
 239{
 240	if (!tick_nohz_full_cpu(cpu))
 241		return;
 242
 243	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 244}
 245
 246/*
 247 * Kick all full dynticks CPUs in order to force these to re-evaluate
 248 * their dependency on the tick and restart it if necessary.
 249 */
 250static void tick_nohz_full_kick_all(void)
 251{
 252	int cpu;
 253
 254	if (!tick_nohz_full_running)
 255		return;
 256
 257	preempt_disable();
 258	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 259		tick_nohz_full_kick_cpu(cpu);
 260	preempt_enable();
 261}
 262
 263static void tick_nohz_dep_set_all(atomic_t *dep,
 264				  enum tick_dep_bits bit)
 265{
 266	int prev;
 267
 268	prev = atomic_fetch_or(BIT(bit), dep);
 269	if (!prev)
 270		tick_nohz_full_kick_all();
 271}
 272
 273/*
 274 * Set a global tick dependency. Used by perf events that rely on freq and
 275 * by unstable clock.
 276 */
 277void tick_nohz_dep_set(enum tick_dep_bits bit)
 278{
 279	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 280}
 281
 282void tick_nohz_dep_clear(enum tick_dep_bits bit)
 283{
 284	atomic_andnot(BIT(bit), &tick_dep_mask);
 285}
 286
 287/*
 288 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 289 * manage events throttling.
 290 */
 291void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 292{
 293	int prev;
 294	struct tick_sched *ts;
 295
 296	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 297
 298	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 299	if (!prev) {
 300		preempt_disable();
 301		/* Perf needs local kick that is NMI safe */
 302		if (cpu == smp_processor_id()) {
 303			tick_nohz_full_kick();
 304		} else {
 305			/* Remote irq work not NMI-safe */
 306			if (!WARN_ON_ONCE(in_nmi()))
 307				tick_nohz_full_kick_cpu(cpu);
 308		}
 309		preempt_enable();
 310	}
 311}
 312
 313void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 314{
 315	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 316
 317	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 318}
 319
 320/*
 321 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 322 * per task timers.
 323 */
 324void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 325{
 326	/*
 327	 * We could optimize this with just kicking the target running the task
 328	 * if that noise matters for nohz full users.
 329	 */
 330	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 331}
 332
 333void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 334{
 335	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 336}
 337
 338/*
 339 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 340 * per process timers.
 341 */
 342void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 343{
 344	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 345}
 346
 347void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 348{
 349	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 350}
 351
 352/*
 353 * Re-evaluate the need for the tick as we switch the current task.
 354 * It might need the tick due to per task/process properties:
 355 * perf events, posix CPU timers, ...
 356 */
 357void __tick_nohz_task_switch(void)
 358{
 359	unsigned long flags;
 360	struct tick_sched *ts;
 361
 362	local_irq_save(flags);
 363
 364	if (!tick_nohz_full_cpu(smp_processor_id()))
 365		goto out;
 366
 367	ts = this_cpu_ptr(&tick_cpu_sched);
 368
 369	if (ts->tick_stopped) {
 370		if (atomic_read(&current->tick_dep_mask) ||
 371		    atomic_read(&current->signal->tick_dep_mask))
 372			tick_nohz_full_kick();
 373	}
 374out:
 375	local_irq_restore(flags);
 376}
 377
 378/* Parse the boot-time nohz CPU list from the kernel parameters. */
 379static int __init tick_nohz_full_setup(char *str)
 380{
 381	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 382	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
 383		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
 384		free_bootmem_cpumask_var(tick_nohz_full_mask);
 385		return 1;
 386	}
 387	tick_nohz_full_running = true;
 388
 389	return 1;
 390}
 391__setup("nohz_full=", tick_nohz_full_setup);
 392
 393static int tick_nohz_cpu_down(unsigned int cpu)
 394{
 395	/*
 396	 * The boot CPU handles housekeeping duty (unbound timers,
 397	 * workqueues, timekeeping, ...) on behalf of full dynticks
 398	 * CPUs. It must remain online when nohz full is enabled.
 399	 */
 400	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 401		return -EBUSY;
 402	return 0;
 403}
 404
 405static int tick_nohz_init_all(void)
 406{
 407	int err = -1;
 408
 409#ifdef CONFIG_NO_HZ_FULL_ALL
 410	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
 411		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
 412		return err;
 413	}
 414	err = 0;
 415	cpumask_setall(tick_nohz_full_mask);
 416	tick_nohz_full_running = true;
 417#endif
 418	return err;
 419}
 420
 421void __init tick_nohz_init(void)
 422{
 423	int cpu, ret;
 424
 425	if (!tick_nohz_full_running) {
 426		if (tick_nohz_init_all() < 0)
 427			return;
 428	}
 429
 430	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
 431		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
 432		cpumask_clear(tick_nohz_full_mask);
 433		tick_nohz_full_running = false;
 434		return;
 435	}
 436
 437	/*
 438	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 439	 * locking contexts. But then we need irq work to raise its own
 440	 * interrupts to avoid circular dependency on the tick
 441	 */
 442	if (!arch_irq_work_has_interrupt()) {
 443		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 444		cpumask_clear(tick_nohz_full_mask);
 445		cpumask_copy(housekeeping_mask, cpu_possible_mask);
 446		tick_nohz_full_running = false;
 447		return;
 448	}
 449
 450	cpu = smp_processor_id();
 451
 452	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 453		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
 454			cpu);
 455		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 
 
 
 456	}
 457
 458	cpumask_andnot(housekeeping_mask,
 459		       cpu_possible_mask, tick_nohz_full_mask);
 460
 461	for_each_cpu(cpu, tick_nohz_full_mask)
 462		context_tracking_cpu_set(cpu);
 463
 464	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 465					"kernel/nohz:predown", NULL,
 466					tick_nohz_cpu_down);
 467	WARN_ON(ret < 0);
 468	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 469		cpumask_pr_args(tick_nohz_full_mask));
 470
 471	/*
 472	 * We need at least one CPU to handle housekeeping work such
 473	 * as timekeeping, unbound timers, workqueues, ...
 474	 */
 475	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
 476}
 477#endif
 478
 479/*
 480 * NOHZ - aka dynamic tick functionality
 481 */
 482#ifdef CONFIG_NO_HZ_COMMON
 483/*
 484 * NO HZ enabled ?
 485 */
 486bool tick_nohz_enabled __read_mostly  = true;
 487unsigned long tick_nohz_active  __read_mostly;
 488/*
 489 * Enable / Disable tickless mode
 490 */
 491static int __init setup_tick_nohz(char *str)
 492{
 493	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 494}
 495
 496__setup("nohz=", setup_tick_nohz);
 497
 498int tick_nohz_tick_stopped(void)
 499{
 500	return __this_cpu_read(tick_cpu_sched.tick_stopped);
 
 
 
 
 
 
 
 
 
 501}
 502
 503/**
 504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 505 *
 506 * Called from interrupt entry when the CPU was idle
 507 *
 508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 509 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 510 * value. We do this unconditionally on any CPU, as we don't know whether the
 511 * CPU, which has the update task assigned is in a long sleep.
 512 */
 513static void tick_nohz_update_jiffies(ktime_t now)
 514{
 515	unsigned long flags;
 516
 517	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 518
 519	local_irq_save(flags);
 520	tick_do_update_jiffies64(now);
 521	local_irq_restore(flags);
 522
 523	touch_softlockup_watchdog_sched();
 524}
 525
 526/*
 527 * Updates the per-CPU time idle statistics counters
 528 */
 529static void
 530update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 531{
 532	ktime_t delta;
 533
 534	if (ts->idle_active) {
 535		delta = ktime_sub(now, ts->idle_entrytime);
 536		if (nr_iowait_cpu(cpu) > 0)
 537			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 538		else
 539			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 540		ts->idle_entrytime = now;
 541	}
 542
 543	if (last_update_time)
 544		*last_update_time = ktime_to_us(now);
 545
 546}
 547
 548static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 549{
 550	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 551	ts->idle_active = 0;
 552
 553	sched_clock_idle_wakeup_event(0);
 554}
 555
 556static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
 557{
 558	ktime_t now = ktime_get();
 559
 560	ts->idle_entrytime = now;
 561	ts->idle_active = 1;
 562	sched_clock_idle_sleep_event();
 563	return now;
 564}
 565
 566/**
 567 * get_cpu_idle_time_us - get the total idle time of a CPU
 568 * @cpu: CPU number to query
 569 * @last_update_time: variable to store update time in. Do not update
 570 * counters if NULL.
 571 *
 572 * Return the cumulative idle time (since boot) for a given
 573 * CPU, in microseconds.
 574 *
 575 * This time is measured via accounting rather than sampling,
 576 * and is as accurate as ktime_get() is.
 577 *
 578 * This function returns -1 if NOHZ is not enabled.
 579 */
 580u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 581{
 582	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 583	ktime_t now, idle;
 584
 585	if (!tick_nohz_active)
 586		return -1;
 587
 588	now = ktime_get();
 589	if (last_update_time) {
 590		update_ts_time_stats(cpu, ts, now, last_update_time);
 591		idle = ts->idle_sleeptime;
 592	} else {
 593		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 594			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 595
 596			idle = ktime_add(ts->idle_sleeptime, delta);
 597		} else {
 598			idle = ts->idle_sleeptime;
 599		}
 600	}
 601
 602	return ktime_to_us(idle);
 603
 604}
 605EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 606
 607/**
 608 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 609 * @cpu: CPU number to query
 610 * @last_update_time: variable to store update time in. Do not update
 611 * counters if NULL.
 612 *
 613 * Return the cumulative iowait time (since boot) for a given
 614 * CPU, in microseconds.
 615 *
 616 * This time is measured via accounting rather than sampling,
 617 * and is as accurate as ktime_get() is.
 618 *
 619 * This function returns -1 if NOHZ is not enabled.
 620 */
 621u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 622{
 623	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 624	ktime_t now, iowait;
 625
 626	if (!tick_nohz_active)
 627		return -1;
 628
 629	now = ktime_get();
 630	if (last_update_time) {
 631		update_ts_time_stats(cpu, ts, now, last_update_time);
 632		iowait = ts->iowait_sleeptime;
 633	} else {
 634		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 635			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 636
 637			iowait = ktime_add(ts->iowait_sleeptime, delta);
 638		} else {
 639			iowait = ts->iowait_sleeptime;
 640		}
 641	}
 642
 643	return ktime_to_us(iowait);
 644}
 645EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 646
 647static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 648{
 649	hrtimer_cancel(&ts->sched_timer);
 650	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 651
 652	/* Forward the time to expire in the future */
 653	hrtimer_forward(&ts->sched_timer, now, tick_period);
 654
 655	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 656		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 657	else
 
 658		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 
 
 
 
 
 
 
 
 
 
 
 
 659}
 660
 661static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
 662					 ktime_t now, int cpu)
 663{
 664	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 665	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 666	unsigned long seq, basejiff;
 667	ktime_t	tick;
 668
 669	/* Read jiffies and the time when jiffies were updated last */
 670	do {
 671		seq = read_seqbegin(&jiffies_lock);
 672		basemono = last_jiffies_update;
 673		basejiff = jiffies;
 674	} while (read_seqretry(&jiffies_lock, seq));
 675	ts->last_jiffies = basejiff;
 
 676
 677	if (rcu_needs_cpu(basemono, &next_rcu) ||
 678	    arch_needs_cpu() || irq_work_needs_cpu()) {
 
 
 
 
 
 
 
 
 
 
 679		next_tick = basemono + TICK_NSEC;
 680	} else {
 681		/*
 682		 * Get the next pending timer. If high resolution
 683		 * timers are enabled this only takes the timer wheel
 684		 * timers into account. If high resolution timers are
 685		 * disabled this also looks at the next expiring
 686		 * hrtimer.
 687		 */
 688		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 689		ts->next_timer = next_tmr;
 690		/* Take the next rcu event into account */
 691		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 692	}
 693
 694	/*
 695	 * If the tick is due in the next period, keep it ticking or
 696	 * force prod the timer.
 697	 */
 698	delta = next_tick - basemono;
 699	if (delta <= (u64)TICK_NSEC) {
 700		tick = 0;
 701
 702		/*
 703		 * Tell the timer code that the base is not idle, i.e. undo
 704		 * the effect of get_next_timer_interrupt():
 705		 */
 706		timer_clear_idle();
 707		/*
 708		 * We've not stopped the tick yet, and there's a timer in the
 709		 * next period, so no point in stopping it either, bail.
 710		 */
 711		if (!ts->tick_stopped)
 712			goto out;
 713
 714		/*
 715		 * If, OTOH, we did stop it, but there's a pending (expired)
 716		 * timer reprogram the timer hardware to fire now.
 717		 *
 718		 * We will not restart the tick proper, just prod the timer
 719		 * hardware into firing an interrupt to process the pending
 720		 * timers. Just like tick_irq_exit() will not restart the tick
 721		 * for 'normal' interrupts.
 722		 *
 723		 * Only once we exit the idle loop will we re-enable the tick,
 724		 * see tick_nohz_idle_exit().
 725		 */
 726		if (delta == 0) {
 727			tick_nohz_restart(ts, now);
 728			goto out;
 729		}
 730	}
 731
 732	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733	 * If this CPU is the one which updates jiffies, then give up
 734	 * the assignment and let it be taken by the CPU which runs
 735	 * the tick timer next, which might be this CPU as well. If we
 736	 * don't drop this here the jiffies might be stale and
 737	 * do_timer() never invoked. Keep track of the fact that it
 738	 * was the one which had the do_timer() duty last. If this CPU
 739	 * is the one which had the do_timer() duty last, we limit the
 740	 * sleep time to the timekeeping max_deferment value.
 741	 * Otherwise we can sleep as long as we want.
 742	 */
 743	delta = timekeeping_max_deferment();
 744	if (cpu == tick_do_timer_cpu) {
 745		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 746		ts->do_timer_last = 1;
 747	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 748		delta = KTIME_MAX;
 749		ts->do_timer_last = 0;
 750	} else if (!ts->do_timer_last) {
 751		delta = KTIME_MAX;
 752	}
 753
 754#ifdef CONFIG_NO_HZ_FULL
 755	/* Limit the tick delta to the maximum scheduler deferment */
 756	if (!ts->inidle)
 757		delta = min(delta, scheduler_tick_max_deferment());
 758#endif
 759
 760	/* Calculate the next expiry time */
 761	if (delta < (KTIME_MAX - basemono))
 762		expires = basemono + delta;
 763	else
 764		expires = KTIME_MAX;
 765
 766	expires = min_t(u64, expires, next_tick);
 767	tick = expires;
 768
 769	/* Skip reprogram of event if its not changed */
 770	if (ts->tick_stopped && (expires == dev->next_event))
 771		goto out;
 772
 773	/*
 774	 * nohz_stop_sched_tick can be called several times before
 775	 * the nohz_restart_sched_tick is called. This happens when
 776	 * interrupts arrive which do not cause a reschedule. In the
 777	 * first call we save the current tick time, so we can restart
 778	 * the scheduler tick in nohz_restart_sched_tick.
 779	 */
 780	if (!ts->tick_stopped) {
 781		nohz_balance_enter_idle(cpu);
 782		calc_load_enter_idle();
 783		cpu_load_update_nohz_start();
 784
 785		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 786		ts->tick_stopped = 1;
 787		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 788	}
 789
 
 
 790	/*
 791	 * If the expiration time == KTIME_MAX, then we simply stop
 792	 * the tick timer.
 793	 */
 794	if (unlikely(expires == KTIME_MAX)) {
 795		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 796			hrtimer_cancel(&ts->sched_timer);
 797		goto out;
 
 
 
 
 
 
 
 
 798	}
 
 
 
 
 
 
 799
 800	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 801		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
 
 
 
 802	else
 803		tick_program_event(tick, 1);
 804out:
 805	/* Update the estimated sleep length */
 806	ts->sleep_length = ktime_sub(dev->next_event, now);
 807	return tick;
 808}
 
 809
 810static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 811{
 812	/* Update jiffies first */
 813	tick_do_update_jiffies64(now);
 814	cpu_load_update_nohz_stop();
 815
 816	/*
 817	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 818	 * the clock forward checks in the enqueue path:
 819	 */
 820	timer_clear_idle();
 821
 822	calc_load_exit_idle();
 823	touch_softlockup_watchdog_sched();
 824	/*
 825	 * Cancel the scheduled timer and restore the tick
 826	 */
 827	ts->tick_stopped  = 0;
 828	ts->idle_exittime = now;
 829
 830	tick_nohz_restart(ts, now);
 831}
 832
 833static void tick_nohz_full_update_tick(struct tick_sched *ts)
 834{
 835#ifdef CONFIG_NO_HZ_FULL
 836	int cpu = smp_processor_id();
 837
 838	if (!tick_nohz_full_cpu(cpu))
 839		return;
 840
 841	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 842		return;
 843
 844	if (can_stop_full_tick(cpu, ts))
 845		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
 846	else if (ts->tick_stopped)
 847		tick_nohz_restart_sched_tick(ts, ktime_get());
 848#endif
 849}
 850
 851static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 852{
 853	/*
 854	 * If this CPU is offline and it is the one which updates
 855	 * jiffies, then give up the assignment and let it be taken by
 856	 * the CPU which runs the tick timer next. If we don't drop
 857	 * this here the jiffies might be stale and do_timer() never
 858	 * invoked.
 859	 */
 860	if (unlikely(!cpu_online(cpu))) {
 861		if (cpu == tick_do_timer_cpu)
 862			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 
 
 
 
 
 863		return false;
 864	}
 865
 866	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
 867		ts->sleep_length = NSEC_PER_SEC / HZ;
 868		return false;
 869	}
 870
 871	if (need_resched())
 872		return false;
 873
 874	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 875		static int ratelimit;
 876
 877		if (ratelimit < 10 &&
 878		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 879			pr_warn("NOHZ: local_softirq_pending %02x\n",
 880				(unsigned int) local_softirq_pending());
 881			ratelimit++;
 882		}
 883		return false;
 884	}
 885
 886	if (tick_nohz_full_enabled()) {
 887		/*
 888		 * Keep the tick alive to guarantee timekeeping progression
 889		 * if there are full dynticks CPUs around
 890		 */
 891		if (tick_do_timer_cpu == cpu)
 892			return false;
 893		/*
 894		 * Boot safety: make sure the timekeeping duty has been
 895		 * assigned before entering dyntick-idle mode,
 
 896		 */
 897		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 
 
 
 
 898			return false;
 899	}
 900
 901	return true;
 902}
 903
 904static void __tick_nohz_idle_enter(struct tick_sched *ts)
 905{
 906	ktime_t now, expires;
 907	int cpu = smp_processor_id();
 908
 909	now = tick_nohz_start_idle(ts);
 
 
 
 
 
 
 
 
 
 
 
 910
 911	if (can_stop_idle_tick(cpu, ts)) {
 912		int was_stopped = ts->tick_stopped;
 913
 914		ts->idle_calls++;
 915
 916		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
 917		if (expires > 0LL) {
 918			ts->idle_sleeps++;
 919			ts->idle_expires = expires;
 920		}
 921
 922		if (!was_stopped && ts->tick_stopped)
 923			ts->idle_jiffies = ts->last_jiffies;
 
 
 
 
 924	}
 925}
 926
 927/**
 928 * tick_nohz_idle_enter - stop the idle tick from the idle task
 929 *
 930 * When the next event is more than a tick into the future, stop the idle tick
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931 * Called when we start the idle loop.
 932 *
 933 * The arch is responsible of calling:
 934 *
 935 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 936 *  to sleep.
 937 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 938 */
 939void tick_nohz_idle_enter(void)
 940{
 941	struct tick_sched *ts;
 942
 943	WARN_ON_ONCE(irqs_disabled());
 944
 945	/*
 946	 * Update the idle state in the scheduler domain hierarchy
 947	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 948	 * State will be updated to busy during the first busy tick after
 949	 * exiting idle.
 950	 */
 951	set_cpu_sd_state_idle();
 952
 953	local_irq_disable();
 954
 955	ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
 956	ts->inidle = 1;
 957	__tick_nohz_idle_enter(ts);
 958
 959	local_irq_enable();
 960}
 961
 962/**
 963 * tick_nohz_irq_exit - update next tick event from interrupt exit
 964 *
 965 * When an interrupt fires while we are idle and it doesn't cause
 966 * a reschedule, it may still add, modify or delete a timer, enqueue
 967 * an RCU callback, etc...
 968 * So we need to re-calculate and reprogram the next tick event.
 969 */
 970void tick_nohz_irq_exit(void)
 971{
 972	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 973
 974	if (ts->inidle)
 975		__tick_nohz_idle_enter(ts);
 976	else
 977		tick_nohz_full_update_tick(ts);
 978}
 979
 980/**
 981 * tick_nohz_get_sleep_length - return the length of the current sleep
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982 *
 983 * Called from power state control code with interrupts disabled
 984 */
 985ktime_t tick_nohz_get_sleep_length(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986{
 987	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 988
 989	return ts->sleep_length;
 990}
 991
 992static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 993{
 994#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 995	unsigned long ticks;
 996
 997	if (vtime_accounting_cpu_enabled())
 998		return;
 999	/*
1000	 * We stopped the tick in idle. Update process times would miss the
1001	 * time we slept as update_process_times does only a 1 tick
1002	 * accounting. Enforce that this is accounted to idle !
1003	 */
1004	ticks = jiffies - ts->idle_jiffies;
1005	/*
1006	 * We might be one off. Do not randomly account a huge number of ticks!
1007	 */
1008	if (ticks && ticks < LONG_MAX)
1009		account_idle_ticks(ticks);
1010#endif
1011}
1012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1013/**
1014 * tick_nohz_idle_exit - restart the idle tick from the idle task
1015 *
1016 * Restart the idle tick when the CPU is woken up from idle
1017 * This also exit the RCU extended quiescent state. The CPU
1018 * can use RCU again after this function is called.
1019 */
1020void tick_nohz_idle_exit(void)
1021{
1022	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
1023	ktime_t now;
1024
1025	local_irq_disable();
1026
1027	WARN_ON_ONCE(!ts->inidle);
 
1028
1029	ts->inidle = 0;
 
 
1030
1031	if (ts->idle_active || ts->tick_stopped)
1032		now = ktime_get();
1033
1034	if (ts->idle_active)
1035		tick_nohz_stop_idle(ts, now);
1036
1037	if (ts->tick_stopped) {
1038		tick_nohz_restart_sched_tick(ts, now);
1039		tick_nohz_account_idle_ticks(ts);
1040	}
1041
1042	local_irq_enable();
1043}
1044
1045/*
1046 * The nohz low res interrupt handler
1047 */
1048static void tick_nohz_handler(struct clock_event_device *dev)
1049{
1050	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1051	struct pt_regs *regs = get_irq_regs();
1052	ktime_t now = ktime_get();
1053
1054	dev->next_event = KTIME_MAX;
1055
1056	tick_sched_do_timer(now);
1057	tick_sched_handle(ts, regs);
1058
1059	/* No need to reprogram if we are running tickless  */
1060	if (unlikely(ts->tick_stopped))
1061		return;
1062
1063	hrtimer_forward(&ts->sched_timer, now, tick_period);
1064	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1065}
1066
1067static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1068{
1069	if (!tick_nohz_enabled)
1070		return;
1071	ts->nohz_mode = mode;
1072	/* One update is enough */
1073	if (!test_and_set_bit(0, &tick_nohz_active))
1074		timers_update_migration(true);
1075}
1076
1077/**
1078 * tick_nohz_switch_to_nohz - switch to nohz mode
1079 */
1080static void tick_nohz_switch_to_nohz(void)
1081{
1082	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1083	ktime_t next;
1084
1085	if (!tick_nohz_enabled)
1086		return;
1087
1088	if (tick_switch_to_oneshot(tick_nohz_handler))
1089		return;
1090
1091	/*
1092	 * Recycle the hrtimer in ts, so we can share the
1093	 * hrtimer_forward with the highres code.
1094	 */
1095	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1096	/* Get the next period */
1097	next = tick_init_jiffy_update();
1098
1099	hrtimer_set_expires(&ts->sched_timer, next);
1100	hrtimer_forward_now(&ts->sched_timer, tick_period);
1101	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1102	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1103}
1104
1105static inline void tick_nohz_irq_enter(void)
1106{
1107	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1108	ktime_t now;
1109
1110	if (!ts->idle_active && !ts->tick_stopped)
1111		return;
1112	now = ktime_get();
1113	if (ts->idle_active)
1114		tick_nohz_stop_idle(ts, now);
1115	if (ts->tick_stopped)
1116		tick_nohz_update_jiffies(now);
1117}
1118
1119#else
1120
1121static inline void tick_nohz_switch_to_nohz(void) { }
1122static inline void tick_nohz_irq_enter(void) { }
1123static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1124
1125#endif /* CONFIG_NO_HZ_COMMON */
1126
1127/*
1128 * Called from irq_enter to notify about the possible interruption of idle()
1129 */
1130void tick_irq_enter(void)
1131{
1132	tick_check_oneshot_broadcast_this_cpu();
1133	tick_nohz_irq_enter();
1134}
1135
1136/*
1137 * High resolution timer specific code
1138 */
1139#ifdef CONFIG_HIGH_RES_TIMERS
1140/*
1141 * We rearm the timer until we get disabled by the idle code.
1142 * Called with interrupts disabled.
1143 */
1144static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1145{
1146	struct tick_sched *ts =
1147		container_of(timer, struct tick_sched, sched_timer);
1148	struct pt_regs *regs = get_irq_regs();
1149	ktime_t now = ktime_get();
1150
1151	tick_sched_do_timer(now);
1152
1153	/*
1154	 * Do not call, when we are not in irq context and have
1155	 * no valid regs pointer
1156	 */
1157	if (regs)
1158		tick_sched_handle(ts, regs);
 
 
1159
1160	/* No need to reprogram if we are in idle or full dynticks mode */
1161	if (unlikely(ts->tick_stopped))
1162		return HRTIMER_NORESTART;
1163
1164	hrtimer_forward(timer, now, tick_period);
1165
1166	return HRTIMER_RESTART;
1167}
1168
1169static int sched_skew_tick;
1170
1171static int __init skew_tick(char *str)
1172{
1173	get_option(&str, &sched_skew_tick);
1174
1175	return 0;
1176}
1177early_param("skew_tick", skew_tick);
1178
1179/**
1180 * tick_setup_sched_timer - setup the tick emulation timer
1181 */
1182void tick_setup_sched_timer(void)
1183{
1184	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1185	ktime_t now = ktime_get();
1186
1187	/*
1188	 * Emulate tick processing via per-CPU hrtimers:
1189	 */
1190	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1191	ts->sched_timer.function = tick_sched_timer;
1192
1193	/* Get the next period (per-CPU) */
1194	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1195
1196	/* Offset the tick to avert jiffies_lock contention. */
1197	if (sched_skew_tick) {
1198		u64 offset = ktime_to_ns(tick_period) >> 1;
1199		do_div(offset, num_possible_cpus());
1200		offset *= smp_processor_id();
1201		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1202	}
1203
1204	hrtimer_forward(&ts->sched_timer, now, tick_period);
1205	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1206	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1207}
1208#endif /* HIGH_RES_TIMERS */
1209
1210#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1211void tick_cancel_sched_timer(int cpu)
1212{
1213	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1214
1215# ifdef CONFIG_HIGH_RES_TIMERS
1216	if (ts->sched_timer.base)
1217		hrtimer_cancel(&ts->sched_timer);
1218# endif
1219
1220	memset(ts, 0, sizeof(*ts));
1221}
1222#endif
1223
1224/**
1225 * Async notification about clocksource changes
1226 */
1227void tick_clock_notify(void)
1228{
1229	int cpu;
1230
1231	for_each_possible_cpu(cpu)
1232		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1233}
1234
1235/*
1236 * Async notification about clock event changes
1237 */
1238void tick_oneshot_notify(void)
1239{
1240	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1241
1242	set_bit(0, &ts->check_clocks);
1243}
1244
1245/**
1246 * Check, if a change happened, which makes oneshot possible.
1247 *
1248 * Called cyclic from the hrtimer softirq (driven by the timer
1249 * softirq) allow_nohz signals, that we can switch into low-res nohz
1250 * mode, because high resolution timers are disabled (either compile
1251 * or runtime). Called with interrupts disabled.
1252 */
1253int tick_check_oneshot_change(int allow_nohz)
1254{
1255	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1256
1257	if (!test_and_clear_bit(0, &ts->check_clocks))
1258		return 0;
1259
1260	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1261		return 0;
1262
1263	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1264		return 0;
1265
1266	if (!allow_nohz)
1267		return 1;
1268
1269	tick_nohz_switch_to_nohz();
1270	return 0;
1271}