Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#define ARCH_HAS_IOREMAP_WC
16
17#include <linux/compiler.h>
18#include <linux/kernel.h>
19#include <linux/types.h>
20#include <linux/irqflags.h>
21
22#include <asm/addrspace.h>
23#include <asm/barrier.h>
24#include <asm/bug.h>
25#include <asm/byteorder.h>
26#include <asm/cpu.h>
27#include <asm/cpu-features.h>
28#include <asm-generic/iomap.h>
29#include <asm/page.h>
30#include <asm/pgtable-bits.h>
31#include <asm/processor.h>
32#include <asm/string.h>
33
34#include <ioremap.h>
35#include <mangle-port.h>
36
37/*
38 * Raw operations are never swapped in software. OTOH values that raw
39 * operations are working on may or may not have been swapped by the bus
40 * hardware. An example use would be for flash memory that's used for
41 * execute in place.
42 */
43# define __raw_ioswabb(a, x) (x)
44# define __raw_ioswabw(a, x) (x)
45# define __raw_ioswabl(a, x) (x)
46# define __raw_ioswabq(a, x) (x)
47# define ____raw_ioswabq(a, x) (x)
48
49# define __relaxed_ioswabb ioswabb
50# define __relaxed_ioswabw ioswabw
51# define __relaxed_ioswabl ioswabl
52# define __relaxed_ioswabq ioswabq
53
54/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
55
56#define IO_SPACE_LIMIT 0xffff
57
58/*
59 * On MIPS I/O ports are memory mapped, so we access them using normal
60 * load/store instructions. mips_io_port_base is the virtual address to
61 * which all ports are being mapped. For sake of efficiency some code
62 * assumes that this is an address that can be loaded with a single lui
63 * instruction, so the lower 16 bits must be zero. Should be true on
64 * on any sane architecture; generic code does not use this assumption.
65 */
66extern unsigned long mips_io_port_base;
67
68static inline void set_io_port_base(unsigned long base)
69{
70 mips_io_port_base = base;
71}
72
73/*
74 * Provide the necessary definitions for generic iomap. We make use of
75 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
76 * use with I/O ports.
77 */
78
79#define HAVE_ARCH_PIO_SIZE
80#define PIO_OFFSET mips_io_port_base
81#define PIO_MASK IO_SPACE_LIMIT
82#define PIO_RESERVED 0x0UL
83
84/*
85 * Enforce in-order execution of data I/O. In the MIPS architecture
86 * these are equivalent to corresponding platform-specific memory
87 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
88 * with sync additionally defined.
89 */
90#define iobarrier_rw() mb()
91#define iobarrier_r() rmb()
92#define iobarrier_w() wmb()
93#define iobarrier_sync() iob()
94
95/*
96 * virt_to_phys - map virtual addresses to physical
97 * @address: address to remap
98 *
99 * The returned physical address is the physical (CPU) mapping for
100 * the memory address given. It is only valid to use this function on
101 * addresses directly mapped or allocated via kmalloc.
102 *
103 * This function does not give bus mappings for DMA transfers. In
104 * almost all conceivable cases a device driver should not be using
105 * this function
106 */
107static inline unsigned long virt_to_phys(volatile const void *address)
108{
109 return __pa(address);
110}
111
112/*
113 * phys_to_virt - map physical address to virtual
114 * @address: address to remap
115 *
116 * The returned virtual address is a current CPU mapping for
117 * the memory address given. It is only valid to use this function on
118 * addresses that have a kernel mapping
119 *
120 * This function does not handle bus mappings for DMA transfers. In
121 * almost all conceivable cases a device driver should not be using
122 * this function
123 */
124static inline void * phys_to_virt(unsigned long address)
125{
126 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
127}
128
129/*
130 * ISA I/O bus memory addresses are 1:1 with the physical address.
131 */
132static inline unsigned long isa_virt_to_bus(volatile void *address)
133{
134 return virt_to_phys(address);
135}
136
137static inline void *isa_bus_to_virt(unsigned long address)
138{
139 return phys_to_virt(address);
140}
141
142/*
143 * However PCI ones are not necessarily 1:1 and therefore these interfaces
144 * are forbidden in portable PCI drivers.
145 *
146 * Allow them for x86 for legacy drivers, though.
147 */
148#define virt_to_bus virt_to_phys
149#define bus_to_virt phys_to_virt
150
151/*
152 * Change "struct page" to physical address.
153 */
154#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
155
156extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
157extern void __iounmap(const volatile void __iomem *addr);
158
159static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
160 unsigned long flags)
161{
162 void __iomem *addr = plat_ioremap(offset, size, flags);
163
164 if (addr)
165 return addr;
166
167#define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
168
169 if (cpu_has_64bit_addresses) {
170 u64 base = UNCAC_BASE;
171
172 /*
173 * R10000 supports a 2 bit uncached attribute therefore
174 * UNCAC_BASE may not equal IO_BASE.
175 */
176 if (flags == _CACHE_UNCACHED)
177 base = (u64) IO_BASE;
178 return (void __iomem *) (unsigned long) (base + offset);
179 } else if (__builtin_constant_p(offset) &&
180 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
181 phys_addr_t phys_addr, last_addr;
182
183 phys_addr = fixup_bigphys_addr(offset, size);
184
185 /* Don't allow wraparound or zero size. */
186 last_addr = phys_addr + size - 1;
187 if (!size || last_addr < phys_addr)
188 return NULL;
189
190 /*
191 * Map uncached objects in the low 512MB of address
192 * space using KSEG1.
193 */
194 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
195 flags == _CACHE_UNCACHED)
196 return (void __iomem *)
197 (unsigned long)CKSEG1ADDR(phys_addr);
198 }
199
200 return __ioremap(offset, size, flags);
201
202#undef __IS_LOW512
203}
204
205/*
206 * ioremap_prot - map bus memory into CPU space
207 * @offset: bus address of the memory
208 * @size: size of the resource to map
209
210 * ioremap_prot gives the caller control over cache coherency attributes (CCA)
211 */
212static inline void __iomem *ioremap_prot(phys_addr_t offset,
213 unsigned long size, unsigned long prot_val) {
214 return __ioremap_mode(offset, size, prot_val & _CACHE_MASK);
215}
216
217/*
218 * ioremap - map bus memory into CPU space
219 * @offset: bus address of the memory
220 * @size: size of the resource to map
221 *
222 * ioremap performs a platform specific sequence of operations to
223 * make bus memory CPU accessible via the readb/readw/readl/writeb/
224 * writew/writel functions and the other mmio helpers. The returned
225 * address is not guaranteed to be usable directly as a virtual
226 * address.
227 */
228#define ioremap(offset, size) \
229 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
230
231/*
232 * ioremap_nocache - map bus memory into CPU space
233 * @offset: bus address of the memory
234 * @size: size of the resource to map
235 *
236 * ioremap_nocache performs a platform specific sequence of operations to
237 * make bus memory CPU accessible via the readb/readw/readl/writeb/
238 * writew/writel functions and the other mmio helpers. The returned
239 * address is not guaranteed to be usable directly as a virtual
240 * address.
241 *
242 * This version of ioremap ensures that the memory is marked uncachable
243 * on the CPU as well as honouring existing caching rules from things like
244 * the PCI bus. Note that there are other caches and buffers on many
245 * busses. In particular driver authors should read up on PCI writes
246 *
247 * It's useful if some control registers are in such an area and
248 * write combining or read caching is not desirable:
249 */
250#define ioremap_nocache(offset, size) \
251 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
252#define ioremap_uc ioremap_nocache
253
254/*
255 * ioremap_cache - map bus memory into CPU space
256 * @offset: bus address of the memory
257 * @size: size of the resource to map
258 *
259 * ioremap_cache performs a platform specific sequence of operations to
260 * make bus memory CPU accessible via the readb/readw/readl/writeb/
261 * writew/writel functions and the other mmio helpers. The returned
262 * address is not guaranteed to be usable directly as a virtual
263 * address.
264 *
265 * This version of ioremap ensures that the memory is marked cachable by
266 * the CPU. Also enables full write-combining. Useful for some
267 * memory-like regions on I/O busses.
268 */
269#define ioremap_cache(offset, size) \
270 __ioremap_mode((offset), (size), _page_cachable_default)
271
272/*
273 * ioremap_wc - map bus memory into CPU space
274 * @offset: bus address of the memory
275 * @size: size of the resource to map
276 *
277 * ioremap_wc performs a platform specific sequence of operations to
278 * make bus memory CPU accessible via the readb/readw/readl/writeb/
279 * writew/writel functions and the other mmio helpers. The returned
280 * address is not guaranteed to be usable directly as a virtual
281 * address.
282 *
283 * This version of ioremap ensures that the memory is marked uncachable
284 * but accelerated by means of write-combining feature. It is specifically
285 * useful for PCIe prefetchable windows, which may vastly improve a
286 * communications performance. If it was determined on boot stage, what
287 * CPU CCA doesn't support UCA, the method shall fall-back to the
288 * _CACHE_UNCACHED option (see cpu_probe() method).
289 */
290#define ioremap_wc(offset, size) \
291 __ioremap_mode((offset), (size), boot_cpu_data.writecombine)
292
293static inline void iounmap(const volatile void __iomem *addr)
294{
295 if (plat_iounmap(addr))
296 return;
297
298#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
299
300 if (cpu_has_64bit_addresses ||
301 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
302 return;
303
304 __iounmap(addr);
305
306#undef __IS_KSEG1
307}
308
309#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON3)
310#define war_io_reorder_wmb() wmb()
311#else
312#define war_io_reorder_wmb() barrier()
313#endif
314
315#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
316 \
317static inline void pfx##write##bwlq(type val, \
318 volatile void __iomem *mem) \
319{ \
320 volatile type *__mem; \
321 type __val; \
322 \
323 if (barrier) \
324 iobarrier_rw(); \
325 else \
326 war_io_reorder_wmb(); \
327 \
328 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
329 \
330 __val = pfx##ioswab##bwlq(__mem, val); \
331 \
332 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
333 *__mem = __val; \
334 else if (cpu_has_64bits) { \
335 unsigned long __flags; \
336 type __tmp; \
337 \
338 if (irq) \
339 local_irq_save(__flags); \
340 __asm__ __volatile__( \
341 ".set push" "\t\t# __writeq""\n\t" \
342 ".set arch=r4000" "\n\t" \
343 "dsll32 %L0, %L0, 0" "\n\t" \
344 "dsrl32 %L0, %L0, 0" "\n\t" \
345 "dsll32 %M0, %M0, 0" "\n\t" \
346 "or %L0, %L0, %M0" "\n\t" \
347 "sd %L0, %2" "\n\t" \
348 ".set pop" "\n" \
349 : "=r" (__tmp) \
350 : "0" (__val), "m" (*__mem)); \
351 if (irq) \
352 local_irq_restore(__flags); \
353 } else \
354 BUG(); \
355} \
356 \
357static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
358{ \
359 volatile type *__mem; \
360 type __val; \
361 \
362 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
363 \
364 if (barrier) \
365 iobarrier_rw(); \
366 \
367 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
368 __val = *__mem; \
369 else if (cpu_has_64bits) { \
370 unsigned long __flags; \
371 \
372 if (irq) \
373 local_irq_save(__flags); \
374 __asm__ __volatile__( \
375 ".set push" "\t\t# __readq" "\n\t" \
376 ".set arch=r4000" "\n\t" \
377 "ld %L0, %1" "\n\t" \
378 "dsra32 %M0, %L0, 0" "\n\t" \
379 "sll %L0, %L0, 0" "\n\t" \
380 ".set pop" "\n" \
381 : "=r" (__val) \
382 : "m" (*__mem)); \
383 if (irq) \
384 local_irq_restore(__flags); \
385 } else { \
386 __val = 0; \
387 BUG(); \
388 } \
389 \
390 /* prevent prefetching of coherent DMA data prematurely */ \
391 if (!relax) \
392 rmb(); \
393 return pfx##ioswab##bwlq(__mem, __val); \
394}
395
396#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \
397 \
398static inline void pfx##out##bwlq##p(type val, unsigned long port) \
399{ \
400 volatile type *__addr; \
401 type __val; \
402 \
403 if (barrier) \
404 iobarrier_rw(); \
405 else \
406 war_io_reorder_wmb(); \
407 \
408 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409 \
410 __val = pfx##ioswab##bwlq(__addr, val); \
411 \
412 /* Really, we want this to be atomic */ \
413 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
414 \
415 *__addr = __val; \
416} \
417 \
418static inline type pfx##in##bwlq##p(unsigned long port) \
419{ \
420 volatile type *__addr; \
421 type __val; \
422 \
423 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
424 \
425 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
426 \
427 if (barrier) \
428 iobarrier_rw(); \
429 \
430 __val = *__addr; \
431 \
432 /* prevent prefetching of coherent DMA data prematurely */ \
433 if (!relax) \
434 rmb(); \
435 return pfx##ioswab##bwlq(__addr, __val); \
436}
437
438#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
439 \
440__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
441
442#define BUILDIO_MEM(bwlq, type) \
443 \
444__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
445__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
446__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
447__BUILD_MEMORY_PFX(, bwlq, type, 0)
448
449BUILDIO_MEM(b, u8)
450BUILDIO_MEM(w, u16)
451BUILDIO_MEM(l, u32)
452#ifdef CONFIG_64BIT
453BUILDIO_MEM(q, u64)
454#else
455__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
456__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
457#endif
458
459#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
460 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \
461 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
462
463#define BUILDIO_IOPORT(bwlq, type) \
464 __BUILD_IOPORT_PFX(, bwlq, type) \
465 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
466
467BUILDIO_IOPORT(b, u8)
468BUILDIO_IOPORT(w, u16)
469BUILDIO_IOPORT(l, u32)
470#ifdef CONFIG_64BIT
471BUILDIO_IOPORT(q, u64)
472#endif
473
474#define __BUILDIO(bwlq, type) \
475 \
476__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
477
478__BUILDIO(q, u64)
479
480#define readb_relaxed __relaxed_readb
481#define readw_relaxed __relaxed_readw
482#define readl_relaxed __relaxed_readl
483#ifdef CONFIG_64BIT
484#define readq_relaxed __relaxed_readq
485#endif
486
487#define writeb_relaxed __relaxed_writeb
488#define writew_relaxed __relaxed_writew
489#define writel_relaxed __relaxed_writel
490#ifdef CONFIG_64BIT
491#define writeq_relaxed __relaxed_writeq
492#endif
493
494#define readb_be(addr) \
495 __raw_readb((__force unsigned *)(addr))
496#define readw_be(addr) \
497 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
498#define readl_be(addr) \
499 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
500#define readq_be(addr) \
501 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
502
503#define writeb_be(val, addr) \
504 __raw_writeb((val), (__force unsigned *)(addr))
505#define writew_be(val, addr) \
506 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
507#define writel_be(val, addr) \
508 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
509#define writeq_be(val, addr) \
510 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
511
512/*
513 * Some code tests for these symbols
514 */
515#ifdef CONFIG_64BIT
516#define readq readq
517#define writeq writeq
518#endif
519
520#define __BUILD_MEMORY_STRING(bwlq, type) \
521 \
522static inline void writes##bwlq(volatile void __iomem *mem, \
523 const void *addr, unsigned int count) \
524{ \
525 const volatile type *__addr = addr; \
526 \
527 while (count--) { \
528 __mem_write##bwlq(*__addr, mem); \
529 __addr++; \
530 } \
531} \
532 \
533static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
534 unsigned int count) \
535{ \
536 volatile type *__addr = addr; \
537 \
538 while (count--) { \
539 *__addr = __mem_read##bwlq(mem); \
540 __addr++; \
541 } \
542}
543
544#define __BUILD_IOPORT_STRING(bwlq, type) \
545 \
546static inline void outs##bwlq(unsigned long port, const void *addr, \
547 unsigned int count) \
548{ \
549 const volatile type *__addr = addr; \
550 \
551 while (count--) { \
552 __mem_out##bwlq(*__addr, port); \
553 __addr++; \
554 } \
555} \
556 \
557static inline void ins##bwlq(unsigned long port, void *addr, \
558 unsigned int count) \
559{ \
560 volatile type *__addr = addr; \
561 \
562 while (count--) { \
563 *__addr = __mem_in##bwlq(port); \
564 __addr++; \
565 } \
566}
567
568#define BUILDSTRING(bwlq, type) \
569 \
570__BUILD_MEMORY_STRING(bwlq, type) \
571__BUILD_IOPORT_STRING(bwlq, type)
572
573BUILDSTRING(b, u8)
574BUILDSTRING(w, u16)
575BUILDSTRING(l, u32)
576#ifdef CONFIG_64BIT
577BUILDSTRING(q, u64)
578#endif
579
580static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
581{
582 memset((void __force *) addr, val, count);
583}
584static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
585{
586 memcpy(dst, (void __force *) src, count);
587}
588static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
589{
590 memcpy((void __force *) dst, src, count);
591}
592
593/*
594 * The caches on some architectures aren't dma-coherent and have need to
595 * handle this in software. There are three types of operations that
596 * can be applied to dma buffers.
597 *
598 * - dma_cache_wback_inv(start, size) makes caches and coherent by
599 * writing the content of the caches back to memory, if necessary.
600 * The function also invalidates the affected part of the caches as
601 * necessary before DMA transfers from outside to memory.
602 * - dma_cache_wback(start, size) makes caches and coherent by
603 * writing the content of the caches back to memory, if necessary.
604 * The function also invalidates the affected part of the caches as
605 * necessary before DMA transfers from outside to memory.
606 * - dma_cache_inv(start, size) invalidates the affected parts of the
607 * caches. Dirty lines of the caches may be written back or simply
608 * be discarded. This operation is necessary before dma operations
609 * to the memory.
610 *
611 * This API used to be exported; it now is for arch code internal use only.
612 */
613#ifdef CONFIG_DMA_NONCOHERENT
614
615extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
616extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
617extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
618
619#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
620#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
621#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
622
623#else /* Sane hardware */
624
625#define dma_cache_wback_inv(start,size) \
626 do { (void) (start); (void) (size); } while (0)
627#define dma_cache_wback(start,size) \
628 do { (void) (start); (void) (size); } while (0)
629#define dma_cache_inv(start,size) \
630 do { (void) (start); (void) (size); } while (0)
631
632#endif /* CONFIG_DMA_NONCOHERENT */
633
634/*
635 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
636 * Avoid interrupt mucking, just adjust the address for 4-byte access.
637 * Assume the addresses are 8-byte aligned.
638 */
639#ifdef __MIPSEB__
640#define __CSR_32_ADJUST 4
641#else
642#define __CSR_32_ADJUST 0
643#endif
644
645#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
646#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
647
648/*
649 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
650 * access
651 */
652#define xlate_dev_mem_ptr(p) __va(p)
653
654/*
655 * Convert a virtual cached pointer to an uncached pointer
656 */
657#define xlate_dev_kmem_ptr(p) p
658
659void __ioread64_copy(void *to, const void __iomem *from, size_t count);
660
661#endif /* _ASM_IO_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#define ARCH_HAS_IOREMAP_WC
16
17#include <linux/compiler.h>
18#include <linux/kernel.h>
19#include <linux/types.h>
20#include <linux/irqflags.h>
21
22#include <asm/addrspace.h>
23#include <asm/barrier.h>
24#include <asm/bug.h>
25#include <asm/byteorder.h>
26#include <asm/cpu.h>
27#include <asm/cpu-features.h>
28#include <asm-generic/iomap.h>
29#include <asm/page.h>
30#include <asm/pgtable-bits.h>
31#include <asm/processor.h>
32#include <asm/string.h>
33#include <mangle-port.h>
34
35/*
36 * Raw operations are never swapped in software. OTOH values that raw
37 * operations are working on may or may not have been swapped by the bus
38 * hardware. An example use would be for flash memory that's used for
39 * execute in place.
40 */
41# define __raw_ioswabb(a, x) (x)
42# define __raw_ioswabw(a, x) (x)
43# define __raw_ioswabl(a, x) (x)
44# define __raw_ioswabq(a, x) (x)
45# define ____raw_ioswabq(a, x) (x)
46
47# define __relaxed_ioswabb ioswabb
48# define __relaxed_ioswabw ioswabw
49# define __relaxed_ioswabl ioswabl
50# define __relaxed_ioswabq ioswabq
51
52/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
53
54/*
55 * On MIPS I/O ports are memory mapped, so we access them using normal
56 * load/store instructions. mips_io_port_base is the virtual address to
57 * which all ports are being mapped. For sake of efficiency some code
58 * assumes that this is an address that can be loaded with a single lui
59 * instruction, so the lower 16 bits must be zero. Should be true on
60 * any sane architecture; generic code does not use this assumption.
61 */
62extern unsigned long mips_io_port_base;
63
64static inline void set_io_port_base(unsigned long base)
65{
66 mips_io_port_base = base;
67}
68
69/*
70 * Provide the necessary definitions for generic iomap. We make use of
71 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
72 * use with I/O ports.
73 */
74
75#define HAVE_ARCH_PIO_SIZE
76#define PIO_OFFSET mips_io_port_base
77#define PIO_MASK IO_SPACE_LIMIT
78#define PIO_RESERVED 0x0UL
79
80/*
81 * Enforce in-order execution of data I/O. In the MIPS architecture
82 * these are equivalent to corresponding platform-specific memory
83 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
84 * with sync additionally defined.
85 */
86#define iobarrier_rw() mb()
87#define iobarrier_r() rmb()
88#define iobarrier_w() wmb()
89#define iobarrier_sync() iob()
90
91/*
92 * virt_to_phys - map virtual addresses to physical
93 * @address: address to remap
94 *
95 * The returned physical address is the physical (CPU) mapping for
96 * the memory address given. It is only valid to use this function on
97 * addresses directly mapped or allocated via kmalloc.
98 *
99 * This function does not give bus mappings for DMA transfers. In
100 * almost all conceivable cases a device driver should not be using
101 * this function
102 */
103static inline unsigned long __virt_to_phys_nodebug(volatile const void *address)
104{
105 return __pa(address);
106}
107
108#ifdef CONFIG_DEBUG_VIRTUAL
109extern phys_addr_t __virt_to_phys(volatile const void *x);
110#else
111#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
112#endif
113
114#define virt_to_phys virt_to_phys
115static inline phys_addr_t virt_to_phys(const volatile void *x)
116{
117 return __virt_to_phys(x);
118}
119
120/*
121 * phys_to_virt - map physical address to virtual
122 * @address: address to remap
123 *
124 * The returned virtual address is a current CPU mapping for
125 * the memory address given. It is only valid to use this function on
126 * addresses that have a kernel mapping
127 *
128 * This function does not handle bus mappings for DMA transfers. In
129 * almost all conceivable cases a device driver should not be using
130 * this function
131 */
132static inline void * phys_to_virt(unsigned long address)
133{
134 return __va(address);
135}
136
137/*
138 * ISA I/O bus memory addresses are 1:1 with the physical address.
139 */
140static inline unsigned long isa_virt_to_bus(volatile void *address)
141{
142 return virt_to_phys(address);
143}
144
145static inline void *isa_bus_to_virt(unsigned long address)
146{
147 return phys_to_virt(address);
148}
149
150/*
151 * Change "struct page" to physical address.
152 */
153#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
154
155void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
156 unsigned long prot_val);
157void iounmap(const volatile void __iomem *addr);
158
159/*
160 * ioremap - map bus memory into CPU space
161 * @offset: bus address of the memory
162 * @size: size of the resource to map
163 *
164 * ioremap performs a platform specific sequence of operations to
165 * make bus memory CPU accessible via the readb/readw/readl/writeb/
166 * writew/writel functions and the other mmio helpers. The returned
167 * address is not guaranteed to be usable directly as a virtual
168 * address.
169 */
170#define ioremap(offset, size) \
171 ioremap_prot((offset), (size), _CACHE_UNCACHED)
172#define ioremap_uc ioremap
173
174/*
175 * ioremap_cache - map bus memory into CPU space
176 * @offset: bus address of the memory
177 * @size: size of the resource to map
178 *
179 * ioremap_cache performs a platform specific sequence of operations to
180 * make bus memory CPU accessible via the readb/readw/readl/writeb/
181 * writew/writel functions and the other mmio helpers. The returned
182 * address is not guaranteed to be usable directly as a virtual
183 * address.
184 *
185 * This version of ioremap ensures that the memory is marked cachable by
186 * the CPU. Also enables full write-combining. Useful for some
187 * memory-like regions on I/O busses.
188 */
189#define ioremap_cache(offset, size) \
190 ioremap_prot((offset), (size), _page_cachable_default)
191
192/*
193 * ioremap_wc - map bus memory into CPU space
194 * @offset: bus address of the memory
195 * @size: size of the resource to map
196 *
197 * ioremap_wc performs a platform specific sequence of operations to
198 * make bus memory CPU accessible via the readb/readw/readl/writeb/
199 * writew/writel functions and the other mmio helpers. The returned
200 * address is not guaranteed to be usable directly as a virtual
201 * address.
202 *
203 * This version of ioremap ensures that the memory is marked uncachable
204 * but accelerated by means of write-combining feature. It is specifically
205 * useful for PCIe prefetchable windows, which may vastly improve a
206 * communications performance. If it was determined on boot stage, what
207 * CPU CCA doesn't support UCA, the method shall fall-back to the
208 * _CACHE_UNCACHED option (see cpu_probe() method).
209 */
210#define ioremap_wc(offset, size) \
211 ioremap_prot((offset), (size), boot_cpu_data.writecombine)
212
213#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON64)
214#define war_io_reorder_wmb() wmb()
215#else
216#define war_io_reorder_wmb() barrier()
217#endif
218
219#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
220 \
221static inline void pfx##write##bwlq(type val, \
222 volatile void __iomem *mem) \
223{ \
224 volatile type *__mem; \
225 type __val; \
226 \
227 if (barrier) \
228 iobarrier_rw(); \
229 else \
230 war_io_reorder_wmb(); \
231 \
232 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
233 \
234 __val = pfx##ioswab##bwlq(__mem, val); \
235 \
236 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
237 *__mem = __val; \
238 else if (cpu_has_64bits) { \
239 unsigned long __flags; \
240 type __tmp; \
241 \
242 if (irq) \
243 local_irq_save(__flags); \
244 __asm__ __volatile__( \
245 ".set push" "\t\t# __writeq""\n\t" \
246 ".set arch=r4000" "\n\t" \
247 "dsll32 %L0, %L0, 0" "\n\t" \
248 "dsrl32 %L0, %L0, 0" "\n\t" \
249 "dsll32 %M0, %M0, 0" "\n\t" \
250 "or %L0, %L0, %M0" "\n\t" \
251 "sd %L0, %2" "\n\t" \
252 ".set pop" "\n" \
253 : "=r" (__tmp) \
254 : "0" (__val), "m" (*__mem)); \
255 if (irq) \
256 local_irq_restore(__flags); \
257 } else \
258 BUG(); \
259} \
260 \
261static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
262{ \
263 volatile type *__mem; \
264 type __val; \
265 \
266 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
267 \
268 if (barrier) \
269 iobarrier_rw(); \
270 \
271 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
272 __val = *__mem; \
273 else if (cpu_has_64bits) { \
274 unsigned long __flags; \
275 \
276 if (irq) \
277 local_irq_save(__flags); \
278 __asm__ __volatile__( \
279 ".set push" "\t\t# __readq" "\n\t" \
280 ".set arch=r4000" "\n\t" \
281 "ld %L0, %1" "\n\t" \
282 "dsra32 %M0, %L0, 0" "\n\t" \
283 "sll %L0, %L0, 0" "\n\t" \
284 ".set pop" "\n" \
285 : "=r" (__val) \
286 : "m" (*__mem)); \
287 if (irq) \
288 local_irq_restore(__flags); \
289 } else { \
290 __val = 0; \
291 BUG(); \
292 } \
293 \
294 /* prevent prefetching of coherent DMA data prematurely */ \
295 if (!relax) \
296 rmb(); \
297 return pfx##ioswab##bwlq(__mem, __val); \
298}
299
300#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \
301 \
302static inline void pfx##out##bwlq##p(type val, unsigned long port) \
303{ \
304 volatile type *__addr; \
305 type __val; \
306 \
307 if (barrier) \
308 iobarrier_rw(); \
309 else \
310 war_io_reorder_wmb(); \
311 \
312 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
313 \
314 __val = pfx##ioswab##bwlq(__addr, val); \
315 \
316 /* Really, we want this to be atomic */ \
317 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
318 \
319 *__addr = __val; \
320} \
321 \
322static inline type pfx##in##bwlq##p(unsigned long port) \
323{ \
324 volatile type *__addr; \
325 type __val; \
326 \
327 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
328 \
329 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
330 \
331 if (barrier) \
332 iobarrier_rw(); \
333 \
334 __val = *__addr; \
335 \
336 /* prevent prefetching of coherent DMA data prematurely */ \
337 if (!relax) \
338 rmb(); \
339 return pfx##ioswab##bwlq(__addr, __val); \
340}
341
342#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
343 \
344__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
345
346#define BUILDIO_MEM(bwlq, type) \
347 \
348__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
349__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
350__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
351__BUILD_MEMORY_PFX(, bwlq, type, 0)
352
353BUILDIO_MEM(b, u8)
354BUILDIO_MEM(w, u16)
355BUILDIO_MEM(l, u32)
356#ifdef CONFIG_64BIT
357BUILDIO_MEM(q, u64)
358#else
359__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
360__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
361#endif
362
363#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
364 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \
365 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
366
367#define BUILDIO_IOPORT(bwlq, type) \
368 __BUILD_IOPORT_PFX(, bwlq, type) \
369 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
370
371BUILDIO_IOPORT(b, u8)
372BUILDIO_IOPORT(w, u16)
373BUILDIO_IOPORT(l, u32)
374#ifdef CONFIG_64BIT
375BUILDIO_IOPORT(q, u64)
376#endif
377
378#define __BUILDIO(bwlq, type) \
379 \
380__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
381
382__BUILDIO(q, u64)
383
384#define readb_relaxed __relaxed_readb
385#define readw_relaxed __relaxed_readw
386#define readl_relaxed __relaxed_readl
387#ifdef CONFIG_64BIT
388#define readq_relaxed __relaxed_readq
389#endif
390
391#define writeb_relaxed __relaxed_writeb
392#define writew_relaxed __relaxed_writew
393#define writel_relaxed __relaxed_writel
394#ifdef CONFIG_64BIT
395#define writeq_relaxed __relaxed_writeq
396#endif
397
398#define readb_be(addr) \
399 __raw_readb((__force unsigned *)(addr))
400#define readw_be(addr) \
401 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
402#define readl_be(addr) \
403 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
404#define readq_be(addr) \
405 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
406
407#define writeb_be(val, addr) \
408 __raw_writeb((val), (__force unsigned *)(addr))
409#define writew_be(val, addr) \
410 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
411#define writel_be(val, addr) \
412 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
413#define writeq_be(val, addr) \
414 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
415
416/*
417 * Some code tests for these symbols
418 */
419#ifdef CONFIG_64BIT
420#define readq readq
421#define writeq writeq
422#endif
423
424#define __BUILD_MEMORY_STRING(bwlq, type) \
425 \
426static inline void writes##bwlq(volatile void __iomem *mem, \
427 const void *addr, unsigned int count) \
428{ \
429 const volatile type *__addr = addr; \
430 \
431 while (count--) { \
432 __mem_write##bwlq(*__addr, mem); \
433 __addr++; \
434 } \
435} \
436 \
437static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
438 unsigned int count) \
439{ \
440 volatile type *__addr = addr; \
441 \
442 while (count--) { \
443 *__addr = __mem_read##bwlq(mem); \
444 __addr++; \
445 } \
446}
447
448#define __BUILD_IOPORT_STRING(bwlq, type) \
449 \
450static inline void outs##bwlq(unsigned long port, const void *addr, \
451 unsigned int count) \
452{ \
453 const volatile type *__addr = addr; \
454 \
455 while (count--) { \
456 __mem_out##bwlq(*__addr, port); \
457 __addr++; \
458 } \
459} \
460 \
461static inline void ins##bwlq(unsigned long port, void *addr, \
462 unsigned int count) \
463{ \
464 volatile type *__addr = addr; \
465 \
466 while (count--) { \
467 *__addr = __mem_in##bwlq(port); \
468 __addr++; \
469 } \
470}
471
472#define BUILDSTRING(bwlq, type) \
473 \
474__BUILD_MEMORY_STRING(bwlq, type) \
475__BUILD_IOPORT_STRING(bwlq, type)
476
477BUILDSTRING(b, u8)
478BUILDSTRING(w, u16)
479BUILDSTRING(l, u32)
480#ifdef CONFIG_64BIT
481BUILDSTRING(q, u64)
482#endif
483
484static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
485{
486 memset((void __force *) addr, val, count);
487}
488static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
489{
490 memcpy(dst, (void __force *) src, count);
491}
492static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
493{
494 memcpy((void __force *) dst, src, count);
495}
496
497/*
498 * The caches on some architectures aren't dma-coherent and have need to
499 * handle this in software. There are three types of operations that
500 * can be applied to dma buffers.
501 *
502 * - dma_cache_wback_inv(start, size) makes caches and coherent by
503 * writing the content of the caches back to memory, if necessary.
504 * The function also invalidates the affected part of the caches as
505 * necessary before DMA transfers from outside to memory.
506 * - dma_cache_wback(start, size) makes caches and coherent by
507 * writing the content of the caches back to memory, if necessary.
508 * The function also invalidates the affected part of the caches as
509 * necessary before DMA transfers from outside to memory.
510 * - dma_cache_inv(start, size) invalidates the affected parts of the
511 * caches. Dirty lines of the caches may be written back or simply
512 * be discarded. This operation is necessary before dma operations
513 * to the memory.
514 *
515 * This API used to be exported; it now is for arch code internal use only.
516 */
517#ifdef CONFIG_DMA_NONCOHERENT
518
519extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
520extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
521extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
522
523#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
524#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
525#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
526
527#else /* Sane hardware */
528
529#define dma_cache_wback_inv(start,size) \
530 do { (void) (start); (void) (size); } while (0)
531#define dma_cache_wback(start,size) \
532 do { (void) (start); (void) (size); } while (0)
533#define dma_cache_inv(start,size) \
534 do { (void) (start); (void) (size); } while (0)
535
536#endif /* CONFIG_DMA_NONCOHERENT */
537
538/*
539 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
540 * Avoid interrupt mucking, just adjust the address for 4-byte access.
541 * Assume the addresses are 8-byte aligned.
542 */
543#ifdef __MIPSEB__
544#define __CSR_32_ADJUST 4
545#else
546#define __CSR_32_ADJUST 0
547#endif
548
549#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
550#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
551
552/*
553 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
554 * access
555 */
556#define xlate_dev_mem_ptr(p) __va(p)
557
558void __ioread64_copy(void *to, const void __iomem *from, size_t count);
559
560#endif /* _ASM_IO_H */