Linux Audio

Check our new training course

Loading...
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 1995 Waldorf GmbH
  7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 10 *	Author:	Maciej W. Rozycki <macro@mips.com>
 11 */
 12#ifndef _ASM_IO_H
 13#define _ASM_IO_H
 14
 15#include <linux/compiler.h>
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 18
 19#include <asm/addrspace.h>
 20#include <asm/bug.h>
 21#include <asm/byteorder.h>
 22#include <asm/cpu.h>
 23#include <asm/cpu-features.h>
 24#include <asm-generic/iomap.h>
 25#include <asm/page.h>
 26#include <asm/pgtable-bits.h>
 27#include <asm/processor.h>
 28#include <asm/string.h>
 29
 30#include <ioremap.h>
 31#include <mangle-port.h>
 32
 33/*
 34 * Slowdown I/O port space accesses for antique hardware.
 35 */
 36#undef CONF_SLOWDOWN_IO
 37
 38/*
 39 * Raw operations are never swapped in software.  OTOH values that raw
 40 * operations are working on may or may not have been swapped by the bus
 41 * hardware.  An example use would be for flash memory that's used for
 42 * execute in place.
 43 */
 44# define __raw_ioswabb(a, x)	(x)
 45# define __raw_ioswabw(a, x)	(x)
 46# define __raw_ioswabl(a, x)	(x)
 47# define __raw_ioswabq(a, x)	(x)
 48# define ____raw_ioswabq(a, x)	(x)
 49
 50/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
 51
 52#define IO_SPACE_LIMIT 0xffff
 53
 54/*
 55 * On MIPS I/O ports are memory mapped, so we access them using normal
 56 * load/store instructions. mips_io_port_base is the virtual address to
 57 * which all ports are being mapped.  For sake of efficiency some code
 58 * assumes that this is an address that can be loaded with a single lui
 59 * instruction, so the lower 16 bits must be zero.  Should be true on
 60 * on any sane architecture; generic code does not use this assumption.
 61 */
 62extern const unsigned long mips_io_port_base;
 63
 64/*
 65 * Gcc will generate code to load the value of mips_io_port_base after each
 66 * function call which may be fairly wasteful in some cases.  So we don't
 67 * play quite by the book.  We tell gcc mips_io_port_base is a long variable
 68 * which solves the code generation issue.  Now we need to violate the
 69 * aliasing rules a little to make initialization possible and finally we
 70 * will need the barrier() to fight side effects of the aliasing chat.
 71 * This trickery will eventually collapse under gcc's optimizer.  Oh well.
 72 */
 73static inline void set_io_port_base(unsigned long base)
 74{
 75	* (unsigned long *) &mips_io_port_base = base;
 76	barrier();
 77}
 78
 79/*
 80 * Thanks to James van Artsdalen for a better timing-fix than
 81 * the two short jumps: using outb's to a nonexistent port seems
 82 * to guarantee better timings even on fast machines.
 83 *
 84 * On the other hand, I'd like to be sure of a non-existent port:
 85 * I feel a bit unsafe about using 0x80 (should be safe, though)
 86 *
 87 *		Linus
 88 *
 89 */
 90
 91#define __SLOW_DOWN_IO \
 92	__asm__ __volatile__( \
 93		"sb\t$0,0x80(%0)" \
 94		: : "r" (mips_io_port_base));
 95
 96#ifdef CONF_SLOWDOWN_IO
 97#ifdef REALLY_SLOW_IO
 98#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
 99#else
100#define SLOW_DOWN_IO __SLOW_DOWN_IO
101#endif
102#else
103#define SLOW_DOWN_IO
104#endif
105
106/*
107 *     virt_to_phys    -       map virtual addresses to physical
108 *     @address: address to remap
109 *
110 *     The returned physical address is the physical (CPU) mapping for
111 *     the memory address given. It is only valid to use this function on
112 *     addresses directly mapped or allocated via kmalloc.
113 *
114 *     This function does not give bus mappings for DMA transfers. In
115 *     almost all conceivable cases a device driver should not be using
116 *     this function
117 */
118static inline unsigned long virt_to_phys(volatile const void *address)
119{
120	return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;
121}
122
123/*
124 *     phys_to_virt    -       map physical address to virtual
125 *     @address: address to remap
126 *
127 *     The returned virtual address is a current CPU mapping for
128 *     the memory address given. It is only valid to use this function on
129 *     addresses that have a kernel mapping
130 *
131 *     This function does not handle bus mappings for DMA transfers. In
132 *     almost all conceivable cases a device driver should not be using
133 *     this function
134 */
135static inline void * phys_to_virt(unsigned long address)
136{
137	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
138}
139
140/*
141 * ISA I/O bus memory addresses are 1:1 with the physical address.
142 */
143static inline unsigned long isa_virt_to_bus(volatile void * address)
144{
145	return (unsigned long)address - PAGE_OFFSET;
146}
147
148static inline void * isa_bus_to_virt(unsigned long address)
149{
150	return (void *)(address + PAGE_OFFSET);
151}
152
153#define isa_page_to_bus page_to_phys
154
155/*
156 * However PCI ones are not necessarily 1:1 and therefore these interfaces
157 * are forbidden in portable PCI drivers.
158 *
159 * Allow them for x86 for legacy drivers, though.
160 */
161#define virt_to_bus virt_to_phys
162#define bus_to_virt phys_to_virt
163
164/*
165 * Change "struct page" to physical address.
166 */
167#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
168
169extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
170extern void __iounmap(const volatile void __iomem *addr);
171
172static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
173	unsigned long flags)
174{
175	void __iomem *addr = plat_ioremap(offset, size, flags);
176
177	if (addr)
178		return addr;
179
180#define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
181
182	if (cpu_has_64bit_addresses) {
183		u64 base = UNCAC_BASE;
184
185		/*
186		 * R10000 supports a 2 bit uncached attribute therefore
187		 * UNCAC_BASE may not equal IO_BASE.
188		 */
189		if (flags == _CACHE_UNCACHED)
190			base = (u64) IO_BASE;
191		return (void __iomem *) (unsigned long) (base + offset);
192	} else if (__builtin_constant_p(offset) &&
193		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
194		phys_t phys_addr, last_addr;
195
196		phys_addr = fixup_bigphys_addr(offset, size);
197
198		/* Don't allow wraparound or zero size. */
199		last_addr = phys_addr + size - 1;
200		if (!size || last_addr < phys_addr)
201			return NULL;
202
203		/*
204		 * Map uncached objects in the low 512MB of address
205		 * space using KSEG1.
206		 */
207		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
208		    flags == _CACHE_UNCACHED)
209			return (void __iomem *)
210				(unsigned long)CKSEG1ADDR(phys_addr);
211	}
212
213	return __ioremap(offset, size, flags);
214
215#undef __IS_LOW512
216}
217
218/*
219 * ioremap     -   map bus memory into CPU space
220 * @offset:    bus address of the memory
221 * @size:      size of the resource to map
222 *
223 * ioremap performs a platform specific sequence of operations to
224 * make bus memory CPU accessible via the readb/readw/readl/writeb/
225 * writew/writel functions and the other mmio helpers. The returned
226 * address is not guaranteed to be usable directly as a virtual
227 * address.
228 */
229#define ioremap(offset, size)						\
230	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
231
232/*
233 * ioremap_nocache     -   map bus memory into CPU space
234 * @offset:    bus address of the memory
235 * @size:      size of the resource to map
236 *
237 * ioremap_nocache performs a platform specific sequence of operations to
238 * make bus memory CPU accessible via the readb/readw/readl/writeb/
239 * writew/writel functions and the other mmio helpers. The returned
240 * address is not guaranteed to be usable directly as a virtual
241 * address.
242 *
243 * This version of ioremap ensures that the memory is marked uncachable
244 * on the CPU as well as honouring existing caching rules from things like
245 * the PCI bus. Note that there are other caches and buffers on many
246 * busses. In particular driver authors should read up on PCI writes
247 *
248 * It's useful if some control registers are in such an area and
249 * write combining or read caching is not desirable:
250 */
251#define ioremap_nocache(offset, size)					\
252	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
253
254/*
255 * ioremap_cachable -   map bus memory into CPU space
256 * @offset:         bus address of the memory
257 * @size:           size of the resource to map
258 *
259 * ioremap_nocache performs a platform specific sequence of operations to
260 * make bus memory CPU accessible via the readb/readw/readl/writeb/
261 * writew/writel functions and the other mmio helpers. The returned
262 * address is not guaranteed to be usable directly as a virtual
263 * address.
264 *
265 * This version of ioremap ensures that the memory is marked cachable by
266 * the CPU.  Also enables full write-combining.  Useful for some
267 * memory-like regions on I/O busses.
268 */
269#define ioremap_cachable(offset, size)					\
270	__ioremap_mode((offset), (size), _page_cachable_default)
271
272/*
273 * These two are MIPS specific ioremap variant.  ioremap_cacheable_cow
274 * requests a cachable mapping, ioremap_uncached_accelerated requests a
275 * mapping using the uncached accelerated mode which isn't supported on
276 * all processors.
277 */
278#define ioremap_cacheable_cow(offset, size)				\
279	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
280#define ioremap_uncached_accelerated(offset, size)			\
281	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
282
283static inline void iounmap(const volatile void __iomem *addr)
284{
285	if (plat_iounmap(addr))
286		return;
287
288#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
289
290	if (cpu_has_64bit_addresses ||
291	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
292		return;
293
294	__iounmap(addr);
295
296#undef __IS_KSEG1
297}
298
299#ifdef CONFIG_CPU_CAVIUM_OCTEON
300#define war_octeon_io_reorder_wmb()  		wmb()
301#else
302#define war_octeon_io_reorder_wmb()		do { } while (0)
303#endif
304
305#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
306									\
307static inline void pfx##write##bwlq(type val,				\
308				    volatile void __iomem *mem)		\
309{									\
310	volatile type *__mem;						\
311	type __val;							\
312									\
313	war_octeon_io_reorder_wmb();					\
314									\
315	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
316									\
317	__val = pfx##ioswab##bwlq(__mem, val);				\
318									\
319	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
320		*__mem = __val;						\
321	else if (cpu_has_64bits) {					\
322		unsigned long __flags;					\
323		type __tmp;						\
324									\
325		if (irq)						\
326			local_irq_save(__flags);			\
327		__asm__ __volatile__(					\
328			".set	mips3"		"\t\t# __writeq""\n\t"	\
329			"dsll32	%L0, %L0, 0"			"\n\t"	\
330			"dsrl32	%L0, %L0, 0"			"\n\t"	\
331			"dsll32	%M0, %M0, 0"			"\n\t"	\
332			"or	%L0, %L0, %M0"			"\n\t"	\
333			"sd	%L0, %2"			"\n\t"	\
334			".set	mips0"				"\n"	\
335			: "=r" (__tmp)					\
336			: "0" (__val), "m" (*__mem));			\
337		if (irq)						\
338			local_irq_restore(__flags);			\
339	} else								\
340		BUG();							\
341}									\
342									\
343static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
344{									\
345	volatile type *__mem;						\
346	type __val;							\
347									\
348	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
349									\
350	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
351		__val = *__mem;						\
352	else if (cpu_has_64bits) {					\
353		unsigned long __flags;					\
354									\
355		if (irq)						\
356			local_irq_save(__flags);			\
357		__asm__ __volatile__(					\
358			".set	mips3"		"\t\t# __readq"	"\n\t"	\
359			"ld	%L0, %1"			"\n\t"	\
360			"dsra32	%M0, %L0, 0"			"\n\t"	\
361			"sll	%L0, %L0, 0"			"\n\t"	\
362			".set	mips0"				"\n"	\
363			: "=r" (__val)					\
364			: "m" (*__mem));				\
365		if (irq)						\
366			local_irq_restore(__flags);			\
367	} else {							\
368		__val = 0;						\
369		BUG();							\
370	}								\
371									\
372	return pfx##ioswab##bwlq(__mem, __val);				\
373}
374
375#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
376									\
377static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
378{									\
379	volatile type *__addr;						\
380	type __val;							\
381									\
382	war_octeon_io_reorder_wmb();					\
383									\
384	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
385									\
386	__val = pfx##ioswab##bwlq(__addr, val);				\
387									\
388	/* Really, we want this to be atomic */				\
389	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
390									\
391	*__addr = __val;						\
392	slow;								\
393}									\
394									\
395static inline type pfx##in##bwlq##p(unsigned long port)			\
396{									\
397	volatile type *__addr;						\
398	type __val;							\
399									\
400	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
401									\
402	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
403									\
404	__val = *__addr;						\
405	slow;								\
406									\
407	return pfx##ioswab##bwlq(__addr, __val);			\
408}
409
410#define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
411									\
412__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
413
414#define BUILDIO_MEM(bwlq, type)						\
415									\
416__BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
417__BUILD_MEMORY_PFX(, bwlq, type)					\
418__BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
419
420BUILDIO_MEM(b, u8)
421BUILDIO_MEM(w, u16)
422BUILDIO_MEM(l, u32)
423BUILDIO_MEM(q, u64)
424
425#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
426	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
427	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
428
429#define BUILDIO_IOPORT(bwlq, type)					\
430	__BUILD_IOPORT_PFX(, bwlq, type)				\
431	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
432
433BUILDIO_IOPORT(b, u8)
434BUILDIO_IOPORT(w, u16)
435BUILDIO_IOPORT(l, u32)
436#ifdef CONFIG_64BIT
437BUILDIO_IOPORT(q, u64)
438#endif
439
440#define __BUILDIO(bwlq, type)						\
441									\
442__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
443
444__BUILDIO(q, u64)
445
446#define readb_relaxed			readb
447#define readw_relaxed			readw
448#define readl_relaxed			readl
449#define readq_relaxed			readq
450
451#define readb_be(addr)							\
452	__raw_readb((__force unsigned *)(addr))
453#define readw_be(addr)							\
454	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
455#define readl_be(addr)							\
456	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
457#define readq_be(addr)							\
458	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
459
460#define writeb_be(val, addr)						\
461	__raw_writeb((val), (__force unsigned *)(addr))
462#define writew_be(val, addr)						\
463	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
464#define writel_be(val, addr)						\
465	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
466#define writeq_be(val, addr)						\
467	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
468
469/*
470 * Some code tests for these symbols
471 */
472#define readq				readq
473#define writeq				writeq
474
475#define __BUILD_MEMORY_STRING(bwlq, type)				\
476									\
477static inline void writes##bwlq(volatile void __iomem *mem,		\
478				const void *addr, unsigned int count)	\
479{									\
480	const volatile type *__addr = addr;				\
481									\
482	while (count--) {						\
483		__mem_write##bwlq(*__addr, mem);			\
484		__addr++;						\
485	}								\
486}									\
487									\
488static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
489			       unsigned int count)			\
490{									\
491	volatile type *__addr = addr;					\
492									\
493	while (count--) {						\
494		*__addr = __mem_read##bwlq(mem);			\
495		__addr++;						\
496	}								\
497}
498
499#define __BUILD_IOPORT_STRING(bwlq, type)				\
500									\
501static inline void outs##bwlq(unsigned long port, const void *addr,	\
502			      unsigned int count)			\
503{									\
504	const volatile type *__addr = addr;				\
505									\
506	while (count--) {						\
507		__mem_out##bwlq(*__addr, port);				\
508		__addr++;						\
509	}								\
510}									\
511									\
512static inline void ins##bwlq(unsigned long port, void *addr,		\
513			     unsigned int count)			\
514{									\
515	volatile type *__addr = addr;					\
516									\
517	while (count--) {						\
518		*__addr = __mem_in##bwlq(port);				\
519		__addr++;						\
520	}								\
521}
522
523#define BUILDSTRING(bwlq, type)						\
524									\
525__BUILD_MEMORY_STRING(bwlq, type)					\
526__BUILD_IOPORT_STRING(bwlq, type)
527
528BUILDSTRING(b, u8)
529BUILDSTRING(w, u16)
530BUILDSTRING(l, u32)
531#ifdef CONFIG_64BIT
532BUILDSTRING(q, u64)
533#endif
534
535
536#ifdef CONFIG_CPU_CAVIUM_OCTEON
537#define mmiowb() wmb()
538#else
539/* Depends on MIPS II instruction set */
540#define mmiowb() asm volatile ("sync" ::: "memory")
541#endif
542
543static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
544{
545	memset((void __force *) addr, val, count);
546}
547static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
548{
549	memcpy(dst, (void __force *) src, count);
550}
551static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
552{
553	memcpy((void __force *) dst, src, count);
554}
555
556/*
557 * The caches on some architectures aren't dma-coherent and have need to
558 * handle this in software.  There are three types of operations that
559 * can be applied to dma buffers.
560 *
561 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
562 *    writing the content of the caches back to memory, if necessary.
563 *    The function also invalidates the affected part of the caches as
564 *    necessary before DMA transfers from outside to memory.
565 *  - dma_cache_wback(start, size) makes caches and coherent by
566 *    writing the content of the caches back to memory, if necessary.
567 *    The function also invalidates the affected part of the caches as
568 *    necessary before DMA transfers from outside to memory.
569 *  - dma_cache_inv(start, size) invalidates the affected parts of the
570 *    caches.  Dirty lines of the caches may be written back or simply
571 *    be discarded.  This operation is necessary before dma operations
572 *    to the memory.
573 *
574 * This API used to be exported; it now is for arch code internal use only.
575 */
576#ifdef CONFIG_DMA_NONCOHERENT
577
578extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
579extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
580extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
581
582#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
583#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
584#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
585
586#else /* Sane hardware */
587
588#define dma_cache_wback_inv(start,size)	\
589	do { (void) (start); (void) (size); } while (0)
590#define dma_cache_wback(start,size)	\
591	do { (void) (start); (void) (size); } while (0)
592#define dma_cache_inv(start,size)	\
593	do { (void) (start); (void) (size); } while (0)
594
595#endif /* CONFIG_DMA_NONCOHERENT */
596
597/*
598 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
599 * Avoid interrupt mucking, just adjust the address for 4-byte access.
600 * Assume the addresses are 8-byte aligned.
601 */
602#ifdef __MIPSEB__
603#define __CSR_32_ADJUST 4
604#else
605#define __CSR_32_ADJUST 0
606#endif
607
608#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
609#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
610
611/*
612 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
613 * access
614 */
615#define xlate_dev_mem_ptr(p)	__va(p)
616
617/*
618 * Convert a virtual cached pointer to an uncached pointer
619 */
620#define xlate_dev_kmem_ptr(p)	p
621
622#endif /* _ASM_IO_H */