Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#define ARCH_HAS_IOREMAP_WC
16
17#include <linux/compiler.h>
18#include <linux/kernel.h>
19#include <linux/types.h>
20#include <linux/irqflags.h>
21
22#include <asm/addrspace.h>
23#include <asm/barrier.h>
24#include <asm/bug.h>
25#include <asm/byteorder.h>
26#include <asm/cpu.h>
27#include <asm/cpu-features.h>
28#include <asm-generic/iomap.h>
29#include <asm/page.h>
30#include <asm/pgtable-bits.h>
31#include <asm/processor.h>
32#include <asm/string.h>
33
34#include <ioremap.h>
35#include <mangle-port.h>
36
37/*
38 * Raw operations are never swapped in software. OTOH values that raw
39 * operations are working on may or may not have been swapped by the bus
40 * hardware. An example use would be for flash memory that's used for
41 * execute in place.
42 */
43# define __raw_ioswabb(a, x) (x)
44# define __raw_ioswabw(a, x) (x)
45# define __raw_ioswabl(a, x) (x)
46# define __raw_ioswabq(a, x) (x)
47# define ____raw_ioswabq(a, x) (x)
48
49# define __relaxed_ioswabb ioswabb
50# define __relaxed_ioswabw ioswabw
51# define __relaxed_ioswabl ioswabl
52# define __relaxed_ioswabq ioswabq
53
54/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
55
56#define IO_SPACE_LIMIT 0xffff
57
58/*
59 * On MIPS I/O ports are memory mapped, so we access them using normal
60 * load/store instructions. mips_io_port_base is the virtual address to
61 * which all ports are being mapped. For sake of efficiency some code
62 * assumes that this is an address that can be loaded with a single lui
63 * instruction, so the lower 16 bits must be zero. Should be true on
64 * on any sane architecture; generic code does not use this assumption.
65 */
66extern unsigned long mips_io_port_base;
67
68static inline void set_io_port_base(unsigned long base)
69{
70 mips_io_port_base = base;
71}
72
73/*
74 * Provide the necessary definitions for generic iomap. We make use of
75 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
76 * use with I/O ports.
77 */
78
79#define HAVE_ARCH_PIO_SIZE
80#define PIO_OFFSET mips_io_port_base
81#define PIO_MASK IO_SPACE_LIMIT
82#define PIO_RESERVED 0x0UL
83
84/*
85 * Enforce in-order execution of data I/O. In the MIPS architecture
86 * these are equivalent to corresponding platform-specific memory
87 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
88 * with sync additionally defined.
89 */
90#define iobarrier_rw() mb()
91#define iobarrier_r() rmb()
92#define iobarrier_w() wmb()
93#define iobarrier_sync() iob()
94
95/*
96 * virt_to_phys - map virtual addresses to physical
97 * @address: address to remap
98 *
99 * The returned physical address is the physical (CPU) mapping for
100 * the memory address given. It is only valid to use this function on
101 * addresses directly mapped or allocated via kmalloc.
102 *
103 * This function does not give bus mappings for DMA transfers. In
104 * almost all conceivable cases a device driver should not be using
105 * this function
106 */
107static inline unsigned long virt_to_phys(volatile const void *address)
108{
109 return __pa(address);
110}
111
112/*
113 * phys_to_virt - map physical address to virtual
114 * @address: address to remap
115 *
116 * The returned virtual address is a current CPU mapping for
117 * the memory address given. It is only valid to use this function on
118 * addresses that have a kernel mapping
119 *
120 * This function does not handle bus mappings for DMA transfers. In
121 * almost all conceivable cases a device driver should not be using
122 * this function
123 */
124static inline void * phys_to_virt(unsigned long address)
125{
126 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
127}
128
129/*
130 * ISA I/O bus memory addresses are 1:1 with the physical address.
131 */
132static inline unsigned long isa_virt_to_bus(volatile void *address)
133{
134 return virt_to_phys(address);
135}
136
137static inline void *isa_bus_to_virt(unsigned long address)
138{
139 return phys_to_virt(address);
140}
141
142/*
143 * However PCI ones are not necessarily 1:1 and therefore these interfaces
144 * are forbidden in portable PCI drivers.
145 *
146 * Allow them for x86 for legacy drivers, though.
147 */
148#define virt_to_bus virt_to_phys
149#define bus_to_virt phys_to_virt
150
151/*
152 * Change "struct page" to physical address.
153 */
154#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
155
156extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
157extern void __iounmap(const volatile void __iomem *addr);
158
159static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
160 unsigned long flags)
161{
162 void __iomem *addr = plat_ioremap(offset, size, flags);
163
164 if (addr)
165 return addr;
166
167#define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
168
169 if (cpu_has_64bit_addresses) {
170 u64 base = UNCAC_BASE;
171
172 /*
173 * R10000 supports a 2 bit uncached attribute therefore
174 * UNCAC_BASE may not equal IO_BASE.
175 */
176 if (flags == _CACHE_UNCACHED)
177 base = (u64) IO_BASE;
178 return (void __iomem *) (unsigned long) (base + offset);
179 } else if (__builtin_constant_p(offset) &&
180 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
181 phys_addr_t phys_addr, last_addr;
182
183 phys_addr = fixup_bigphys_addr(offset, size);
184
185 /* Don't allow wraparound or zero size. */
186 last_addr = phys_addr + size - 1;
187 if (!size || last_addr < phys_addr)
188 return NULL;
189
190 /*
191 * Map uncached objects in the low 512MB of address
192 * space using KSEG1.
193 */
194 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
195 flags == _CACHE_UNCACHED)
196 return (void __iomem *)
197 (unsigned long)CKSEG1ADDR(phys_addr);
198 }
199
200 return __ioremap(offset, size, flags);
201
202#undef __IS_LOW512
203}
204
205/*
206 * ioremap_prot - map bus memory into CPU space
207 * @offset: bus address of the memory
208 * @size: size of the resource to map
209
210 * ioremap_prot gives the caller control over cache coherency attributes (CCA)
211 */
212static inline void __iomem *ioremap_prot(phys_addr_t offset,
213 unsigned long size, unsigned long prot_val) {
214 return __ioremap_mode(offset, size, prot_val & _CACHE_MASK);
215}
216
217/*
218 * ioremap - map bus memory into CPU space
219 * @offset: bus address of the memory
220 * @size: size of the resource to map
221 *
222 * ioremap performs a platform specific sequence of operations to
223 * make bus memory CPU accessible via the readb/readw/readl/writeb/
224 * writew/writel functions and the other mmio helpers. The returned
225 * address is not guaranteed to be usable directly as a virtual
226 * address.
227 */
228#define ioremap(offset, size) \
229 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
230
231/*
232 * ioremap_nocache - map bus memory into CPU space
233 * @offset: bus address of the memory
234 * @size: size of the resource to map
235 *
236 * ioremap_nocache performs a platform specific sequence of operations to
237 * make bus memory CPU accessible via the readb/readw/readl/writeb/
238 * writew/writel functions and the other mmio helpers. The returned
239 * address is not guaranteed to be usable directly as a virtual
240 * address.
241 *
242 * This version of ioremap ensures that the memory is marked uncachable
243 * on the CPU as well as honouring existing caching rules from things like
244 * the PCI bus. Note that there are other caches and buffers on many
245 * busses. In particular driver authors should read up on PCI writes
246 *
247 * It's useful if some control registers are in such an area and
248 * write combining or read caching is not desirable:
249 */
250#define ioremap_nocache(offset, size) \
251 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
252#define ioremap_uc ioremap_nocache
253
254/*
255 * ioremap_cache - map bus memory into CPU space
256 * @offset: bus address of the memory
257 * @size: size of the resource to map
258 *
259 * ioremap_cache performs a platform specific sequence of operations to
260 * make bus memory CPU accessible via the readb/readw/readl/writeb/
261 * writew/writel functions and the other mmio helpers. The returned
262 * address is not guaranteed to be usable directly as a virtual
263 * address.
264 *
265 * This version of ioremap ensures that the memory is marked cachable by
266 * the CPU. Also enables full write-combining. Useful for some
267 * memory-like regions on I/O busses.
268 */
269#define ioremap_cache(offset, size) \
270 __ioremap_mode((offset), (size), _page_cachable_default)
271
272/*
273 * ioremap_wc - map bus memory into CPU space
274 * @offset: bus address of the memory
275 * @size: size of the resource to map
276 *
277 * ioremap_wc performs a platform specific sequence of operations to
278 * make bus memory CPU accessible via the readb/readw/readl/writeb/
279 * writew/writel functions and the other mmio helpers. The returned
280 * address is not guaranteed to be usable directly as a virtual
281 * address.
282 *
283 * This version of ioremap ensures that the memory is marked uncachable
284 * but accelerated by means of write-combining feature. It is specifically
285 * useful for PCIe prefetchable windows, which may vastly improve a
286 * communications performance. If it was determined on boot stage, what
287 * CPU CCA doesn't support UCA, the method shall fall-back to the
288 * _CACHE_UNCACHED option (see cpu_probe() method).
289 */
290#define ioremap_wc(offset, size) \
291 __ioremap_mode((offset), (size), boot_cpu_data.writecombine)
292
293static inline void iounmap(const volatile void __iomem *addr)
294{
295 if (plat_iounmap(addr))
296 return;
297
298#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
299
300 if (cpu_has_64bit_addresses ||
301 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
302 return;
303
304 __iounmap(addr);
305
306#undef __IS_KSEG1
307}
308
309#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON3)
310#define war_io_reorder_wmb() wmb()
311#else
312#define war_io_reorder_wmb() barrier()
313#endif
314
315#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
316 \
317static inline void pfx##write##bwlq(type val, \
318 volatile void __iomem *mem) \
319{ \
320 volatile type *__mem; \
321 type __val; \
322 \
323 if (barrier) \
324 iobarrier_rw(); \
325 else \
326 war_io_reorder_wmb(); \
327 \
328 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
329 \
330 __val = pfx##ioswab##bwlq(__mem, val); \
331 \
332 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
333 *__mem = __val; \
334 else if (cpu_has_64bits) { \
335 unsigned long __flags; \
336 type __tmp; \
337 \
338 if (irq) \
339 local_irq_save(__flags); \
340 __asm__ __volatile__( \
341 ".set push" "\t\t# __writeq""\n\t" \
342 ".set arch=r4000" "\n\t" \
343 "dsll32 %L0, %L0, 0" "\n\t" \
344 "dsrl32 %L0, %L0, 0" "\n\t" \
345 "dsll32 %M0, %M0, 0" "\n\t" \
346 "or %L0, %L0, %M0" "\n\t" \
347 "sd %L0, %2" "\n\t" \
348 ".set pop" "\n" \
349 : "=r" (__tmp) \
350 : "0" (__val), "m" (*__mem)); \
351 if (irq) \
352 local_irq_restore(__flags); \
353 } else \
354 BUG(); \
355} \
356 \
357static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
358{ \
359 volatile type *__mem; \
360 type __val; \
361 \
362 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
363 \
364 if (barrier) \
365 iobarrier_rw(); \
366 \
367 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
368 __val = *__mem; \
369 else if (cpu_has_64bits) { \
370 unsigned long __flags; \
371 \
372 if (irq) \
373 local_irq_save(__flags); \
374 __asm__ __volatile__( \
375 ".set push" "\t\t# __readq" "\n\t" \
376 ".set arch=r4000" "\n\t" \
377 "ld %L0, %1" "\n\t" \
378 "dsra32 %M0, %L0, 0" "\n\t" \
379 "sll %L0, %L0, 0" "\n\t" \
380 ".set pop" "\n" \
381 : "=r" (__val) \
382 : "m" (*__mem)); \
383 if (irq) \
384 local_irq_restore(__flags); \
385 } else { \
386 __val = 0; \
387 BUG(); \
388 } \
389 \
390 /* prevent prefetching of coherent DMA data prematurely */ \
391 if (!relax) \
392 rmb(); \
393 return pfx##ioswab##bwlq(__mem, __val); \
394}
395
396#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \
397 \
398static inline void pfx##out##bwlq##p(type val, unsigned long port) \
399{ \
400 volatile type *__addr; \
401 type __val; \
402 \
403 if (barrier) \
404 iobarrier_rw(); \
405 else \
406 war_io_reorder_wmb(); \
407 \
408 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409 \
410 __val = pfx##ioswab##bwlq(__addr, val); \
411 \
412 /* Really, we want this to be atomic */ \
413 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
414 \
415 *__addr = __val; \
416} \
417 \
418static inline type pfx##in##bwlq##p(unsigned long port) \
419{ \
420 volatile type *__addr; \
421 type __val; \
422 \
423 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
424 \
425 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
426 \
427 if (barrier) \
428 iobarrier_rw(); \
429 \
430 __val = *__addr; \
431 \
432 /* prevent prefetching of coherent DMA data prematurely */ \
433 if (!relax) \
434 rmb(); \
435 return pfx##ioswab##bwlq(__addr, __val); \
436}
437
438#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
439 \
440__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
441
442#define BUILDIO_MEM(bwlq, type) \
443 \
444__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
445__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
446__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
447__BUILD_MEMORY_PFX(, bwlq, type, 0)
448
449BUILDIO_MEM(b, u8)
450BUILDIO_MEM(w, u16)
451BUILDIO_MEM(l, u32)
452#ifdef CONFIG_64BIT
453BUILDIO_MEM(q, u64)
454#else
455__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
456__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
457#endif
458
459#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
460 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \
461 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
462
463#define BUILDIO_IOPORT(bwlq, type) \
464 __BUILD_IOPORT_PFX(, bwlq, type) \
465 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
466
467BUILDIO_IOPORT(b, u8)
468BUILDIO_IOPORT(w, u16)
469BUILDIO_IOPORT(l, u32)
470#ifdef CONFIG_64BIT
471BUILDIO_IOPORT(q, u64)
472#endif
473
474#define __BUILDIO(bwlq, type) \
475 \
476__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
477
478__BUILDIO(q, u64)
479
480#define readb_relaxed __relaxed_readb
481#define readw_relaxed __relaxed_readw
482#define readl_relaxed __relaxed_readl
483#ifdef CONFIG_64BIT
484#define readq_relaxed __relaxed_readq
485#endif
486
487#define writeb_relaxed __relaxed_writeb
488#define writew_relaxed __relaxed_writew
489#define writel_relaxed __relaxed_writel
490#ifdef CONFIG_64BIT
491#define writeq_relaxed __relaxed_writeq
492#endif
493
494#define readb_be(addr) \
495 __raw_readb((__force unsigned *)(addr))
496#define readw_be(addr) \
497 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
498#define readl_be(addr) \
499 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
500#define readq_be(addr) \
501 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
502
503#define writeb_be(val, addr) \
504 __raw_writeb((val), (__force unsigned *)(addr))
505#define writew_be(val, addr) \
506 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
507#define writel_be(val, addr) \
508 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
509#define writeq_be(val, addr) \
510 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
511
512/*
513 * Some code tests for these symbols
514 */
515#ifdef CONFIG_64BIT
516#define readq readq
517#define writeq writeq
518#endif
519
520#define __BUILD_MEMORY_STRING(bwlq, type) \
521 \
522static inline void writes##bwlq(volatile void __iomem *mem, \
523 const void *addr, unsigned int count) \
524{ \
525 const volatile type *__addr = addr; \
526 \
527 while (count--) { \
528 __mem_write##bwlq(*__addr, mem); \
529 __addr++; \
530 } \
531} \
532 \
533static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
534 unsigned int count) \
535{ \
536 volatile type *__addr = addr; \
537 \
538 while (count--) { \
539 *__addr = __mem_read##bwlq(mem); \
540 __addr++; \
541 } \
542}
543
544#define __BUILD_IOPORT_STRING(bwlq, type) \
545 \
546static inline void outs##bwlq(unsigned long port, const void *addr, \
547 unsigned int count) \
548{ \
549 const volatile type *__addr = addr; \
550 \
551 while (count--) { \
552 __mem_out##bwlq(*__addr, port); \
553 __addr++; \
554 } \
555} \
556 \
557static inline void ins##bwlq(unsigned long port, void *addr, \
558 unsigned int count) \
559{ \
560 volatile type *__addr = addr; \
561 \
562 while (count--) { \
563 *__addr = __mem_in##bwlq(port); \
564 __addr++; \
565 } \
566}
567
568#define BUILDSTRING(bwlq, type) \
569 \
570__BUILD_MEMORY_STRING(bwlq, type) \
571__BUILD_IOPORT_STRING(bwlq, type)
572
573BUILDSTRING(b, u8)
574BUILDSTRING(w, u16)
575BUILDSTRING(l, u32)
576#ifdef CONFIG_64BIT
577BUILDSTRING(q, u64)
578#endif
579
580static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
581{
582 memset((void __force *) addr, val, count);
583}
584static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
585{
586 memcpy(dst, (void __force *) src, count);
587}
588static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
589{
590 memcpy((void __force *) dst, src, count);
591}
592
593/*
594 * The caches on some architectures aren't dma-coherent and have need to
595 * handle this in software. There are three types of operations that
596 * can be applied to dma buffers.
597 *
598 * - dma_cache_wback_inv(start, size) makes caches and coherent by
599 * writing the content of the caches back to memory, if necessary.
600 * The function also invalidates the affected part of the caches as
601 * necessary before DMA transfers from outside to memory.
602 * - dma_cache_wback(start, size) makes caches and coherent by
603 * writing the content of the caches back to memory, if necessary.
604 * The function also invalidates the affected part of the caches as
605 * necessary before DMA transfers from outside to memory.
606 * - dma_cache_inv(start, size) invalidates the affected parts of the
607 * caches. Dirty lines of the caches may be written back or simply
608 * be discarded. This operation is necessary before dma operations
609 * to the memory.
610 *
611 * This API used to be exported; it now is for arch code internal use only.
612 */
613#ifdef CONFIG_DMA_NONCOHERENT
614
615extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
616extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
617extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
618
619#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
620#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
621#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
622
623#else /* Sane hardware */
624
625#define dma_cache_wback_inv(start,size) \
626 do { (void) (start); (void) (size); } while (0)
627#define dma_cache_wback(start,size) \
628 do { (void) (start); (void) (size); } while (0)
629#define dma_cache_inv(start,size) \
630 do { (void) (start); (void) (size); } while (0)
631
632#endif /* CONFIG_DMA_NONCOHERENT */
633
634/*
635 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
636 * Avoid interrupt mucking, just adjust the address for 4-byte access.
637 * Assume the addresses are 8-byte aligned.
638 */
639#ifdef __MIPSEB__
640#define __CSR_32_ADJUST 4
641#else
642#define __CSR_32_ADJUST 0
643#endif
644
645#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
646#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
647
648/*
649 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
650 * access
651 */
652#define xlate_dev_mem_ptr(p) __va(p)
653
654/*
655 * Convert a virtual cached pointer to an uncached pointer
656 */
657#define xlate_dev_kmem_ptr(p) p
658
659void __ioread64_copy(void *to, const void __iomem *from, size_t count);
660
661#endif /* _ASM_IO_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#include <linux/compiler.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/irqflags.h>
19
20#include <asm/addrspace.h>
21#include <asm/bug.h>
22#include <asm/byteorder.h>
23#include <asm/cpu.h>
24#include <asm/cpu-features.h>
25#include <asm-generic/iomap.h>
26#include <asm/page.h>
27#include <asm/pgtable-bits.h>
28#include <asm/processor.h>
29#include <asm/string.h>
30
31#include <ioremap.h>
32#include <mangle-port.h>
33
34/*
35 * Slowdown I/O port space accesses for antique hardware.
36 */
37#undef CONF_SLOWDOWN_IO
38
39/*
40 * Raw operations are never swapped in software. OTOH values that raw
41 * operations are working on may or may not have been swapped by the bus
42 * hardware. An example use would be for flash memory that's used for
43 * execute in place.
44 */
45# define __raw_ioswabb(a, x) (x)
46# define __raw_ioswabw(a, x) (x)
47# define __raw_ioswabl(a, x) (x)
48# define __raw_ioswabq(a, x) (x)
49# define ____raw_ioswabq(a, x) (x)
50
51/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
52
53#define IO_SPACE_LIMIT 0xffff
54
55/*
56 * On MIPS I/O ports are memory mapped, so we access them using normal
57 * load/store instructions. mips_io_port_base is the virtual address to
58 * which all ports are being mapped. For sake of efficiency some code
59 * assumes that this is an address that can be loaded with a single lui
60 * instruction, so the lower 16 bits must be zero. Should be true on
61 * on any sane architecture; generic code does not use this assumption.
62 */
63extern const unsigned long mips_io_port_base;
64
65/*
66 * Gcc will generate code to load the value of mips_io_port_base after each
67 * function call which may be fairly wasteful in some cases. So we don't
68 * play quite by the book. We tell gcc mips_io_port_base is a long variable
69 * which solves the code generation issue. Now we need to violate the
70 * aliasing rules a little to make initialization possible and finally we
71 * will need the barrier() to fight side effects of the aliasing chat.
72 * This trickery will eventually collapse under gcc's optimizer. Oh well.
73 */
74static inline void set_io_port_base(unsigned long base)
75{
76 * (unsigned long *) &mips_io_port_base = base;
77 barrier();
78}
79
80/*
81 * Thanks to James van Artsdalen for a better timing-fix than
82 * the two short jumps: using outb's to a nonexistent port seems
83 * to guarantee better timings even on fast machines.
84 *
85 * On the other hand, I'd like to be sure of a non-existent port:
86 * I feel a bit unsafe about using 0x80 (should be safe, though)
87 *
88 * Linus
89 *
90 */
91
92#define __SLOW_DOWN_IO \
93 __asm__ __volatile__( \
94 "sb\t$0,0x80(%0)" \
95 : : "r" (mips_io_port_base));
96
97#ifdef CONF_SLOWDOWN_IO
98#ifdef REALLY_SLOW_IO
99#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
100#else
101#define SLOW_DOWN_IO __SLOW_DOWN_IO
102#endif
103#else
104#define SLOW_DOWN_IO
105#endif
106
107/*
108 * virt_to_phys - map virtual addresses to physical
109 * @address: address to remap
110 *
111 * The returned physical address is the physical (CPU) mapping for
112 * the memory address given. It is only valid to use this function on
113 * addresses directly mapped or allocated via kmalloc.
114 *
115 * This function does not give bus mappings for DMA transfers. In
116 * almost all conceivable cases a device driver should not be using
117 * this function
118 */
119static inline unsigned long virt_to_phys(volatile const void *address)
120{
121 return __pa(address);
122}
123
124/*
125 * phys_to_virt - map physical address to virtual
126 * @address: address to remap
127 *
128 * The returned virtual address is a current CPU mapping for
129 * the memory address given. It is only valid to use this function on
130 * addresses that have a kernel mapping
131 *
132 * This function does not handle bus mappings for DMA transfers. In
133 * almost all conceivable cases a device driver should not be using
134 * this function
135 */
136static inline void * phys_to_virt(unsigned long address)
137{
138 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
139}
140
141/*
142 * ISA I/O bus memory addresses are 1:1 with the physical address.
143 */
144static inline unsigned long isa_virt_to_bus(volatile void * address)
145{
146 return (unsigned long)address - PAGE_OFFSET;
147}
148
149static inline void * isa_bus_to_virt(unsigned long address)
150{
151 return (void *)(address + PAGE_OFFSET);
152}
153
154#define isa_page_to_bus page_to_phys
155
156/*
157 * However PCI ones are not necessarily 1:1 and therefore these interfaces
158 * are forbidden in portable PCI drivers.
159 *
160 * Allow them for x86 for legacy drivers, though.
161 */
162#define virt_to_bus virt_to_phys
163#define bus_to_virt phys_to_virt
164
165/*
166 * Change "struct page" to physical address.
167 */
168#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
169
170extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
171extern void __iounmap(const volatile void __iomem *addr);
172
173#ifndef CONFIG_PCI
174struct pci_dev;
175static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
176#endif
177
178static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
179 unsigned long flags)
180{
181 void __iomem *addr = plat_ioremap(offset, size, flags);
182
183 if (addr)
184 return addr;
185
186#define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
187
188 if (cpu_has_64bit_addresses) {
189 u64 base = UNCAC_BASE;
190
191 /*
192 * R10000 supports a 2 bit uncached attribute therefore
193 * UNCAC_BASE may not equal IO_BASE.
194 */
195 if (flags == _CACHE_UNCACHED)
196 base = (u64) IO_BASE;
197 return (void __iomem *) (unsigned long) (base + offset);
198 } else if (__builtin_constant_p(offset) &&
199 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
200 phys_addr_t phys_addr, last_addr;
201
202 phys_addr = fixup_bigphys_addr(offset, size);
203
204 /* Don't allow wraparound or zero size. */
205 last_addr = phys_addr + size - 1;
206 if (!size || last_addr < phys_addr)
207 return NULL;
208
209 /*
210 * Map uncached objects in the low 512MB of address
211 * space using KSEG1.
212 */
213 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
214 flags == _CACHE_UNCACHED)
215 return (void __iomem *)
216 (unsigned long)CKSEG1ADDR(phys_addr);
217 }
218
219 return __ioremap(offset, size, flags);
220
221#undef __IS_LOW512
222}
223
224/*
225 * ioremap - map bus memory into CPU space
226 * @offset: bus address of the memory
227 * @size: size of the resource to map
228 *
229 * ioremap performs a platform specific sequence of operations to
230 * make bus memory CPU accessible via the readb/readw/readl/writeb/
231 * writew/writel functions and the other mmio helpers. The returned
232 * address is not guaranteed to be usable directly as a virtual
233 * address.
234 */
235#define ioremap(offset, size) \
236 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
237
238/*
239 * ioremap_nocache - map bus memory into CPU space
240 * @offset: bus address of the memory
241 * @size: size of the resource to map
242 *
243 * ioremap_nocache performs a platform specific sequence of operations to
244 * make bus memory CPU accessible via the readb/readw/readl/writeb/
245 * writew/writel functions and the other mmio helpers. The returned
246 * address is not guaranteed to be usable directly as a virtual
247 * address.
248 *
249 * This version of ioremap ensures that the memory is marked uncachable
250 * on the CPU as well as honouring existing caching rules from things like
251 * the PCI bus. Note that there are other caches and buffers on many
252 * busses. In particular driver authors should read up on PCI writes
253 *
254 * It's useful if some control registers are in such an area and
255 * write combining or read caching is not desirable:
256 */
257#define ioremap_nocache(offset, size) \
258 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
259#define ioremap_uc ioremap_nocache
260
261/*
262 * ioremap_cachable - map bus memory into CPU space
263 * @offset: bus address of the memory
264 * @size: size of the resource to map
265 *
266 * ioremap_nocache performs a platform specific sequence of operations to
267 * make bus memory CPU accessible via the readb/readw/readl/writeb/
268 * writew/writel functions and the other mmio helpers. The returned
269 * address is not guaranteed to be usable directly as a virtual
270 * address.
271 *
272 * This version of ioremap ensures that the memory is marked cachable by
273 * the CPU. Also enables full write-combining. Useful for some
274 * memory-like regions on I/O busses.
275 */
276#define ioremap_cachable(offset, size) \
277 __ioremap_mode((offset), (size), _page_cachable_default)
278#define ioremap_cache ioremap_cachable
279
280/*
281 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
282 * requests a cachable mapping, ioremap_uncached_accelerated requests a
283 * mapping using the uncached accelerated mode which isn't supported on
284 * all processors.
285 */
286#define ioremap_cacheable_cow(offset, size) \
287 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
288#define ioremap_uncached_accelerated(offset, size) \
289 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
290
291static inline void iounmap(const volatile void __iomem *addr)
292{
293 if (plat_iounmap(addr))
294 return;
295
296#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
297
298 if (cpu_has_64bit_addresses ||
299 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
300 return;
301
302 __iounmap(addr);
303
304#undef __IS_KSEG1
305}
306
307#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_LOONGSON3_ENHANCEMENT)
308#define war_io_reorder_wmb() wmb()
309#else
310#define war_io_reorder_wmb() barrier()
311#endif
312
313#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
314 \
315static inline void pfx##write##bwlq(type val, \
316 volatile void __iomem *mem) \
317{ \
318 volatile type *__mem; \
319 type __val; \
320 \
321 war_io_reorder_wmb(); \
322 \
323 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
324 \
325 __val = pfx##ioswab##bwlq(__mem, val); \
326 \
327 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
328 *__mem = __val; \
329 else if (cpu_has_64bits) { \
330 unsigned long __flags; \
331 type __tmp; \
332 \
333 if (irq) \
334 local_irq_save(__flags); \
335 __asm__ __volatile__( \
336 ".set arch=r4000" "\t\t# __writeq""\n\t" \
337 "dsll32 %L0, %L0, 0" "\n\t" \
338 "dsrl32 %L0, %L0, 0" "\n\t" \
339 "dsll32 %M0, %M0, 0" "\n\t" \
340 "or %L0, %L0, %M0" "\n\t" \
341 "sd %L0, %2" "\n\t" \
342 ".set mips0" "\n" \
343 : "=r" (__tmp) \
344 : "0" (__val), "m" (*__mem)); \
345 if (irq) \
346 local_irq_restore(__flags); \
347 } else \
348 BUG(); \
349} \
350 \
351static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
352{ \
353 volatile type *__mem; \
354 type __val; \
355 \
356 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
357 \
358 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
359 __val = *__mem; \
360 else if (cpu_has_64bits) { \
361 unsigned long __flags; \
362 \
363 if (irq) \
364 local_irq_save(__flags); \
365 __asm__ __volatile__( \
366 ".set arch=r4000" "\t\t# __readq" "\n\t" \
367 "ld %L0, %1" "\n\t" \
368 "dsra32 %M0, %L0, 0" "\n\t" \
369 "sll %L0, %L0, 0" "\n\t" \
370 ".set mips0" "\n" \
371 : "=r" (__val) \
372 : "m" (*__mem)); \
373 if (irq) \
374 local_irq_restore(__flags); \
375 } else { \
376 __val = 0; \
377 BUG(); \
378 } \
379 \
380 /* prevent prefetching of coherent DMA data prematurely */ \
381 rmb(); \
382 return pfx##ioswab##bwlq(__mem, __val); \
383}
384
385#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
386 \
387static inline void pfx##out##bwlq##p(type val, unsigned long port) \
388{ \
389 volatile type *__addr; \
390 type __val; \
391 \
392 war_io_reorder_wmb(); \
393 \
394 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
395 \
396 __val = pfx##ioswab##bwlq(__addr, val); \
397 \
398 /* Really, we want this to be atomic */ \
399 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
400 \
401 *__addr = __val; \
402 slow; \
403} \
404 \
405static inline type pfx##in##bwlq##p(unsigned long port) \
406{ \
407 volatile type *__addr; \
408 type __val; \
409 \
410 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
411 \
412 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
413 \
414 __val = *__addr; \
415 slow; \
416 \
417 return pfx##ioswab##bwlq(__addr, __val); \
418}
419
420#define __BUILD_MEMORY_PFX(bus, bwlq, type) \
421 \
422__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
423
424#define BUILDIO_MEM(bwlq, type) \
425 \
426__BUILD_MEMORY_PFX(__raw_, bwlq, type) \
427__BUILD_MEMORY_PFX(, bwlq, type) \
428__BUILD_MEMORY_PFX(__mem_, bwlq, type) \
429
430BUILDIO_MEM(b, u8)
431BUILDIO_MEM(w, u16)
432BUILDIO_MEM(l, u32)
433BUILDIO_MEM(q, u64)
434
435#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
436 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
437 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
438
439#define BUILDIO_IOPORT(bwlq, type) \
440 __BUILD_IOPORT_PFX(, bwlq, type) \
441 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
442
443BUILDIO_IOPORT(b, u8)
444BUILDIO_IOPORT(w, u16)
445BUILDIO_IOPORT(l, u32)
446#ifdef CONFIG_64BIT
447BUILDIO_IOPORT(q, u64)
448#endif
449
450#define __BUILDIO(bwlq, type) \
451 \
452__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
453
454__BUILDIO(q, u64)
455
456#define readb_relaxed readb
457#define readw_relaxed readw
458#define readl_relaxed readl
459#define readq_relaxed readq
460
461#define writeb_relaxed writeb
462#define writew_relaxed writew
463#define writel_relaxed writel
464#define writeq_relaxed writeq
465
466#define readb_be(addr) \
467 __raw_readb((__force unsigned *)(addr))
468#define readw_be(addr) \
469 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
470#define readl_be(addr) \
471 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
472#define readq_be(addr) \
473 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
474
475#define writeb_be(val, addr) \
476 __raw_writeb((val), (__force unsigned *)(addr))
477#define writew_be(val, addr) \
478 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
479#define writel_be(val, addr) \
480 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
481#define writeq_be(val, addr) \
482 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
483
484/*
485 * Some code tests for these symbols
486 */
487#define readq readq
488#define writeq writeq
489
490#define __BUILD_MEMORY_STRING(bwlq, type) \
491 \
492static inline void writes##bwlq(volatile void __iomem *mem, \
493 const void *addr, unsigned int count) \
494{ \
495 const volatile type *__addr = addr; \
496 \
497 while (count--) { \
498 __mem_write##bwlq(*__addr, mem); \
499 __addr++; \
500 } \
501} \
502 \
503static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
504 unsigned int count) \
505{ \
506 volatile type *__addr = addr; \
507 \
508 while (count--) { \
509 *__addr = __mem_read##bwlq(mem); \
510 __addr++; \
511 } \
512}
513
514#define __BUILD_IOPORT_STRING(bwlq, type) \
515 \
516static inline void outs##bwlq(unsigned long port, const void *addr, \
517 unsigned int count) \
518{ \
519 const volatile type *__addr = addr; \
520 \
521 while (count--) { \
522 __mem_out##bwlq(*__addr, port); \
523 __addr++; \
524 } \
525} \
526 \
527static inline void ins##bwlq(unsigned long port, void *addr, \
528 unsigned int count) \
529{ \
530 volatile type *__addr = addr; \
531 \
532 while (count--) { \
533 *__addr = __mem_in##bwlq(port); \
534 __addr++; \
535 } \
536}
537
538#define BUILDSTRING(bwlq, type) \
539 \
540__BUILD_MEMORY_STRING(bwlq, type) \
541__BUILD_IOPORT_STRING(bwlq, type)
542
543BUILDSTRING(b, u8)
544BUILDSTRING(w, u16)
545BUILDSTRING(l, u32)
546#ifdef CONFIG_64BIT
547BUILDSTRING(q, u64)
548#endif
549
550
551#ifdef CONFIG_CPU_CAVIUM_OCTEON
552#define mmiowb() wmb()
553#else
554/* Depends on MIPS II instruction set */
555#define mmiowb() asm volatile ("sync" ::: "memory")
556#endif
557
558static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
559{
560 memset((void __force *) addr, val, count);
561}
562static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
563{
564 memcpy(dst, (void __force *) src, count);
565}
566static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
567{
568 memcpy((void __force *) dst, src, count);
569}
570
571/*
572 * The caches on some architectures aren't dma-coherent and have need to
573 * handle this in software. There are three types of operations that
574 * can be applied to dma buffers.
575 *
576 * - dma_cache_wback_inv(start, size) makes caches and coherent by
577 * writing the content of the caches back to memory, if necessary.
578 * The function also invalidates the affected part of the caches as
579 * necessary before DMA transfers from outside to memory.
580 * - dma_cache_wback(start, size) makes caches and coherent by
581 * writing the content of the caches back to memory, if necessary.
582 * The function also invalidates the affected part of the caches as
583 * necessary before DMA transfers from outside to memory.
584 * - dma_cache_inv(start, size) invalidates the affected parts of the
585 * caches. Dirty lines of the caches may be written back or simply
586 * be discarded. This operation is necessary before dma operations
587 * to the memory.
588 *
589 * This API used to be exported; it now is for arch code internal use only.
590 */
591#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
592
593extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
594extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
595extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
596
597#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
598#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
599#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
600
601#else /* Sane hardware */
602
603#define dma_cache_wback_inv(start,size) \
604 do { (void) (start); (void) (size); } while (0)
605#define dma_cache_wback(start,size) \
606 do { (void) (start); (void) (size); } while (0)
607#define dma_cache_inv(start,size) \
608 do { (void) (start); (void) (size); } while (0)
609
610#endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
611
612/*
613 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
614 * Avoid interrupt mucking, just adjust the address for 4-byte access.
615 * Assume the addresses are 8-byte aligned.
616 */
617#ifdef __MIPSEB__
618#define __CSR_32_ADJUST 4
619#else
620#define __CSR_32_ADJUST 0
621#endif
622
623#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
624#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
625
626/*
627 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
628 * access
629 */
630#define xlate_dev_mem_ptr(p) __va(p)
631
632/*
633 * Convert a virtual cached pointer to an uncached pointer
634 */
635#define xlate_dev_kmem_ptr(p) p
636
637void __ioread64_copy(void *to, const void __iomem *from, size_t count);
638
639#endif /* _ASM_IO_H */