Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 1995 Waldorf GmbH
  7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 10 *	Author: Maciej W. Rozycki <macro@mips.com>
 11 */
 12#ifndef _ASM_IO_H
 13#define _ASM_IO_H
 14
 15#define ARCH_HAS_IOREMAP_WC
 16
 17#include <linux/compiler.h>
 18#include <linux/kernel.h>
 19#include <linux/types.h>
 20#include <linux/irqflags.h>
 21
 22#include <asm/addrspace.h>
 23#include <asm/barrier.h>
 24#include <asm/bug.h>
 25#include <asm/byteorder.h>
 26#include <asm/cpu.h>
 27#include <asm/cpu-features.h>
 28#include <asm-generic/iomap.h>
 29#include <asm/page.h>
 30#include <asm/pgtable-bits.h>
 31#include <asm/processor.h>
 32#include <asm/string.h>
 33
 34#include <ioremap.h>
 35#include <mangle-port.h>
 36
 37/*
 
 
 
 
 
 38 * Raw operations are never swapped in software.  OTOH values that raw
 39 * operations are working on may or may not have been swapped by the bus
 40 * hardware.  An example use would be for flash memory that's used for
 41 * execute in place.
 42 */
 43# define __raw_ioswabb(a, x)	(x)
 44# define __raw_ioswabw(a, x)	(x)
 45# define __raw_ioswabl(a, x)	(x)
 46# define __raw_ioswabq(a, x)	(x)
 47# define ____raw_ioswabq(a, x)	(x)
 48
 49# define __relaxed_ioswabb ioswabb
 50# define __relaxed_ioswabw ioswabw
 51# define __relaxed_ioswabl ioswabl
 52# define __relaxed_ioswabq ioswabq
 53
 54/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
 55
 56#define IO_SPACE_LIMIT 0xffff
 57
 58/*
 59 * On MIPS I/O ports are memory mapped, so we access them using normal
 60 * load/store instructions. mips_io_port_base is the virtual address to
 61 * which all ports are being mapped.  For sake of efficiency some code
 62 * assumes that this is an address that can be loaded with a single lui
 63 * instruction, so the lower 16 bits must be zero.  Should be true on
 64 * on any sane architecture; generic code does not use this assumption.
 65 */
 66extern unsigned long mips_io_port_base;
 67
 
 
 
 
 
 
 
 
 
 68static inline void set_io_port_base(unsigned long base)
 69{
 70	mips_io_port_base = base;
 
 71}
 72
 73/*
 74 * Provide the necessary definitions for generic iomap. We make use of
 75 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
 76 * use with I/O ports.
 
 
 
 
 
 
 77 */
 78
 79#define HAVE_ARCH_PIO_SIZE
 80#define PIO_OFFSET	mips_io_port_base
 81#define PIO_MASK	IO_SPACE_LIMIT
 82#define PIO_RESERVED	0x0UL
 83
 84/*
 85 * Enforce in-order execution of data I/O.  In the MIPS architecture
 86 * these are equivalent to corresponding platform-specific memory
 87 * barriers defined in <asm/barrier.h>.  API pinched from PowerPC,
 88 * with sync additionally defined.
 89 */
 90#define iobarrier_rw() mb()
 91#define iobarrier_r() rmb()
 92#define iobarrier_w() wmb()
 93#define iobarrier_sync() iob()
 94
 95/*
 96 *     virt_to_phys    -       map virtual addresses to physical
 97 *     @address: address to remap
 98 *
 99 *     The returned physical address is the physical (CPU) mapping for
100 *     the memory address given. It is only valid to use this function on
101 *     addresses directly mapped or allocated via kmalloc.
102 *
103 *     This function does not give bus mappings for DMA transfers. In
104 *     almost all conceivable cases a device driver should not be using
105 *     this function
106 */
107static inline unsigned long virt_to_phys(volatile const void *address)
108{
109	return __pa(address);
110}
111
112/*
113 *     phys_to_virt    -       map physical address to virtual
114 *     @address: address to remap
115 *
116 *     The returned virtual address is a current CPU mapping for
117 *     the memory address given. It is only valid to use this function on
118 *     addresses that have a kernel mapping
119 *
120 *     This function does not handle bus mappings for DMA transfers. In
121 *     almost all conceivable cases a device driver should not be using
122 *     this function
123 */
124static inline void * phys_to_virt(unsigned long address)
125{
126	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
127}
128
129/*
130 * ISA I/O bus memory addresses are 1:1 with the physical address.
131 */
132static inline unsigned long isa_virt_to_bus(volatile void *address)
133{
134	return virt_to_phys(address);
135}
136
137static inline void *isa_bus_to_virt(unsigned long address)
138{
139	return phys_to_virt(address);
140}
141
 
 
142/*
143 * However PCI ones are not necessarily 1:1 and therefore these interfaces
144 * are forbidden in portable PCI drivers.
145 *
146 * Allow them for x86 for legacy drivers, though.
147 */
148#define virt_to_bus virt_to_phys
149#define bus_to_virt phys_to_virt
150
151/*
152 * Change "struct page" to physical address.
153 */
154#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
155
156extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
157extern void __iounmap(const volatile void __iomem *addr);
158
159static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
160	unsigned long flags)
161{
162	void __iomem *addr = plat_ioremap(offset, size, flags);
163
164	if (addr)
165		return addr;
166
167#define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
168
169	if (cpu_has_64bit_addresses) {
170		u64 base = UNCAC_BASE;
171
172		/*
173		 * R10000 supports a 2 bit uncached attribute therefore
174		 * UNCAC_BASE may not equal IO_BASE.
175		 */
176		if (flags == _CACHE_UNCACHED)
177			base = (u64) IO_BASE;
178		return (void __iomem *) (unsigned long) (base + offset);
179	} else if (__builtin_constant_p(offset) &&
180		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
181		phys_addr_t phys_addr, last_addr;
182
183		phys_addr = fixup_bigphys_addr(offset, size);
184
185		/* Don't allow wraparound or zero size. */
186		last_addr = phys_addr + size - 1;
187		if (!size || last_addr < phys_addr)
188			return NULL;
189
190		/*
191		 * Map uncached objects in the low 512MB of address
192		 * space using KSEG1.
193		 */
194		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
195		    flags == _CACHE_UNCACHED)
196			return (void __iomem *)
197				(unsigned long)CKSEG1ADDR(phys_addr);
198	}
199
200	return __ioremap(offset, size, flags);
201
202#undef __IS_LOW512
203}
204
205/*
206 * ioremap_prot     -   map bus memory into CPU space
207 * @offset:    bus address of the memory
208 * @size:      size of the resource to map
209
210 * ioremap_prot gives the caller control over cache coherency attributes (CCA)
211 */
212static inline void __iomem *ioremap_prot(phys_addr_t offset,
213		unsigned long size, unsigned long prot_val) {
214	return __ioremap_mode(offset, size, prot_val & _CACHE_MASK);
215}
216
217/*
218 * ioremap     -   map bus memory into CPU space
219 * @offset:    bus address of the memory
220 * @size:      size of the resource to map
221 *
222 * ioremap performs a platform specific sequence of operations to
223 * make bus memory CPU accessible via the readb/readw/readl/writeb/
224 * writew/writel functions and the other mmio helpers. The returned
225 * address is not guaranteed to be usable directly as a virtual
226 * address.
227 */
228#define ioremap(offset, size)						\
229	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
230
231/*
232 * ioremap_nocache     -   map bus memory into CPU space
233 * @offset:    bus address of the memory
234 * @size:      size of the resource to map
235 *
236 * ioremap_nocache performs a platform specific sequence of operations to
237 * make bus memory CPU accessible via the readb/readw/readl/writeb/
238 * writew/writel functions and the other mmio helpers. The returned
239 * address is not guaranteed to be usable directly as a virtual
240 * address.
241 *
242 * This version of ioremap ensures that the memory is marked uncachable
243 * on the CPU as well as honouring existing caching rules from things like
244 * the PCI bus. Note that there are other caches and buffers on many
245 * busses. In particular driver authors should read up on PCI writes
246 *
247 * It's useful if some control registers are in such an area and
248 * write combining or read caching is not desirable:
249 */
250#define ioremap_nocache(offset, size)					\
251	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
252#define ioremap_uc ioremap_nocache
253
254/*
255 * ioremap_cache -	map bus memory into CPU space
256 * @offset:	    bus address of the memory
257 * @size:	    size of the resource to map
258 *
259 * ioremap_cache performs a platform specific sequence of operations to
260 * make bus memory CPU accessible via the readb/readw/readl/writeb/
261 * writew/writel functions and the other mmio helpers. The returned
262 * address is not guaranteed to be usable directly as a virtual
263 * address.
264 *
265 * This version of ioremap ensures that the memory is marked cachable by
266 * the CPU.  Also enables full write-combining.	 Useful for some
267 * memory-like regions on I/O busses.
268 */
269#define ioremap_cache(offset, size)					\
270	__ioremap_mode((offset), (size), _page_cachable_default)
271
272/*
273 * ioremap_wc     -   map bus memory into CPU space
274 * @offset:    bus address of the memory
275 * @size:      size of the resource to map
276 *
277 * ioremap_wc performs a platform specific sequence of operations to
278 * make bus memory CPU accessible via the readb/readw/readl/writeb/
279 * writew/writel functions and the other mmio helpers. The returned
280 * address is not guaranteed to be usable directly as a virtual
281 * address.
282 *
283 * This version of ioremap ensures that the memory is marked uncachable
284 * but accelerated by means of write-combining feature. It is specifically
285 * useful for PCIe prefetchable windows, which may vastly improve a
286 * communications performance. If it was determined on boot stage, what
287 * CPU CCA doesn't support UCA, the method shall fall-back to the
288 * _CACHE_UNCACHED option (see cpu_probe() method).
289 */
290#define ioremap_wc(offset, size)					\
291	__ioremap_mode((offset), (size), boot_cpu_data.writecombine)
292
293static inline void iounmap(const volatile void __iomem *addr)
294{
295	if (plat_iounmap(addr))
296		return;
297
298#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
299
300	if (cpu_has_64bit_addresses ||
301	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
302		return;
303
304	__iounmap(addr);
305
306#undef __IS_KSEG1
307}
308
309#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON3)
310#define war_io_reorder_wmb()		wmb()
311#else
312#define war_io_reorder_wmb()		barrier()
313#endif
314
315#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq)	\
316									\
317static inline void pfx##write##bwlq(type val,				\
318				    volatile void __iomem *mem)		\
319{									\
320	volatile type *__mem;						\
321	type __val;							\
322									\
323	if (barrier)							\
324		iobarrier_rw();						\
325	else								\
326		war_io_reorder_wmb();					\
327									\
328	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
329									\
330	__val = pfx##ioswab##bwlq(__mem, val);				\
331									\
332	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
333		*__mem = __val;						\
334	else if (cpu_has_64bits) {					\
335		unsigned long __flags;					\
336		type __tmp;						\
337									\
338		if (irq)						\
339			local_irq_save(__flags);			\
340		__asm__ __volatile__(					\
341			".set	push"		"\t\t# __writeq""\n\t"	\
342			".set	arch=r4000"			"\n\t"	\
343			"dsll32 %L0, %L0, 0"			"\n\t"	\
344			"dsrl32 %L0, %L0, 0"			"\n\t"	\
345			"dsll32 %M0, %M0, 0"			"\n\t"	\
346			"or	%L0, %L0, %M0"			"\n\t"	\
 
 
 
347			"sd	%L0, %2"			"\n\t"	\
348			".set	pop"				"\n"	\
 
349			: "=r" (__tmp)					\
350			: "0" (__val), "m" (*__mem));			\
351		if (irq)						\
352			local_irq_restore(__flags);			\
353	} else								\
354		BUG();							\
355}									\
356									\
357static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
358{									\
359	volatile type *__mem;						\
360	type __val;							\
361									\
362	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
363									\
364	if (barrier)							\
365		iobarrier_rw();						\
366									\
367	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
368		__val = *__mem;						\
369	else if (cpu_has_64bits) {					\
370		unsigned long __flags;					\
371									\
372		if (irq)						\
373			local_irq_save(__flags);			\
374		__asm__ __volatile__(					\
375			".set	push"		"\t\t# __readq" "\n\t"	\
376			".set	arch=r4000"			"\n\t"	\
 
 
377			"ld	%L0, %1"			"\n\t"	\
378			"dsra32 %M0, %L0, 0"			"\n\t"	\
 
379			"sll	%L0, %L0, 0"			"\n\t"	\
380			".set	pop"				"\n"	\
381			: "=r" (__val)					\
382			: "m" (*__mem));				\
383		if (irq)						\
384			local_irq_restore(__flags);			\
385	} else {							\
386		__val = 0;						\
387		BUG();							\
388	}								\
389									\
390	/* prevent prefetching of coherent DMA data prematurely */	\
391	if (!relax)							\
392		rmb();							\
393	return pfx##ioswab##bwlq(__mem, __val);				\
394}
395
396#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p)	\
397									\
398static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
399{									\
400	volatile type *__addr;						\
401	type __val;							\
402									\
403	if (barrier)							\
404		iobarrier_rw();						\
405	else								\
406		war_io_reorder_wmb();					\
407									\
408	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409									\
410	__val = pfx##ioswab##bwlq(__addr, val);				\
411									\
412	/* Really, we want this to be atomic */				\
413	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
414									\
415	*__addr = __val;						\
 
416}									\
417									\
418static inline type pfx##in##bwlq##p(unsigned long port)			\
419{									\
420	volatile type *__addr;						\
421	type __val;							\
422									\
423	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
424									\
425	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
426									\
427	if (barrier)							\
428		iobarrier_rw();						\
429									\
430	__val = *__addr;						\
 
431									\
432	/* prevent prefetching of coherent DMA data prematurely */	\
433	if (!relax)							\
434		rmb();							\
435	return pfx##ioswab##bwlq(__addr, __val);			\
436}
437
438#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax)			\
439									\
440__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
441
442#define BUILDIO_MEM(bwlq, type)						\
443									\
444__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0)				\
445__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1)				\
446__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0)				\
447__BUILD_MEMORY_PFX(, bwlq, type, 0)
448
449BUILDIO_MEM(b, u8)
450BUILDIO_MEM(w, u16)
451BUILDIO_MEM(l, u32)
452#ifdef CONFIG_64BIT
453BUILDIO_MEM(q, u64)
454#else
455__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
456__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
457#endif
458
459#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
460	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,)			\
461	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
462
463#define BUILDIO_IOPORT(bwlq, type)					\
464	__BUILD_IOPORT_PFX(, bwlq, type)				\
465	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
466
467BUILDIO_IOPORT(b, u8)
468BUILDIO_IOPORT(w, u16)
469BUILDIO_IOPORT(l, u32)
470#ifdef CONFIG_64BIT
471BUILDIO_IOPORT(q, u64)
472#endif
473
474#define __BUILDIO(bwlq, type)						\
475									\
476__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
477
478__BUILDIO(q, u64)
479
480#define readb_relaxed			__relaxed_readb
481#define readw_relaxed			__relaxed_readw
482#define readl_relaxed			__relaxed_readl
483#ifdef CONFIG_64BIT
484#define readq_relaxed			__relaxed_readq
485#endif
486
487#define writeb_relaxed			__relaxed_writeb
488#define writew_relaxed			__relaxed_writew
489#define writel_relaxed			__relaxed_writel
490#ifdef CONFIG_64BIT
491#define writeq_relaxed			__relaxed_writeq
492#endif
493
494#define readb_be(addr)							\
495	__raw_readb((__force unsigned *)(addr))
496#define readw_be(addr)							\
497	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
498#define readl_be(addr)							\
499	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
500#define readq_be(addr)							\
501	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
502
503#define writeb_be(val, addr)						\
504	__raw_writeb((val), (__force unsigned *)(addr))
505#define writew_be(val, addr)						\
506	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
507#define writel_be(val, addr)						\
508	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
509#define writeq_be(val, addr)						\
510	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
511
512/*
513 * Some code tests for these symbols
514 */
515#ifdef CONFIG_64BIT
516#define readq				readq
517#define writeq				writeq
518#endif
519
520#define __BUILD_MEMORY_STRING(bwlq, type)				\
521									\
522static inline void writes##bwlq(volatile void __iomem *mem,		\
523				const void *addr, unsigned int count)	\
524{									\
525	const volatile type *__addr = addr;				\
526									\
527	while (count--) {						\
528		__mem_write##bwlq(*__addr, mem);			\
529		__addr++;						\
530	}								\
531}									\
532									\
533static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
534			       unsigned int count)			\
535{									\
536	volatile type *__addr = addr;					\
537									\
538	while (count--) {						\
539		*__addr = __mem_read##bwlq(mem);			\
540		__addr++;						\
541	}								\
542}
543
544#define __BUILD_IOPORT_STRING(bwlq, type)				\
545									\
546static inline void outs##bwlq(unsigned long port, const void *addr,	\
547			      unsigned int count)			\
548{									\
549	const volatile type *__addr = addr;				\
550									\
551	while (count--) {						\
552		__mem_out##bwlq(*__addr, port);				\
553		__addr++;						\
554	}								\
555}									\
556									\
557static inline void ins##bwlq(unsigned long port, void *addr,		\
558			     unsigned int count)			\
559{									\
560	volatile type *__addr = addr;					\
561									\
562	while (count--) {						\
563		*__addr = __mem_in##bwlq(port);				\
564		__addr++;						\
565	}								\
566}
567
568#define BUILDSTRING(bwlq, type)						\
569									\
570__BUILD_MEMORY_STRING(bwlq, type)					\
571__BUILD_IOPORT_STRING(bwlq, type)
572
573BUILDSTRING(b, u8)
574BUILDSTRING(w, u16)
575BUILDSTRING(l, u32)
576#ifdef CONFIG_64BIT
577BUILDSTRING(q, u64)
578#endif
579
 
 
 
 
 
 
 
 
580static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
581{
582	memset((void __force *) addr, val, count);
583}
584static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
585{
586	memcpy(dst, (void __force *) src, count);
587}
588static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
589{
590	memcpy((void __force *) dst, src, count);
591}
592
593/*
594 * The caches on some architectures aren't dma-coherent and have need to
595 * handle this in software.  There are three types of operations that
596 * can be applied to dma buffers.
597 *
598 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
599 *    writing the content of the caches back to memory, if necessary.
600 *    The function also invalidates the affected part of the caches as
601 *    necessary before DMA transfers from outside to memory.
602 *  - dma_cache_wback(start, size) makes caches and coherent by
603 *    writing the content of the caches back to memory, if necessary.
604 *    The function also invalidates the affected part of the caches as
605 *    necessary before DMA transfers from outside to memory.
606 *  - dma_cache_inv(start, size) invalidates the affected parts of the
607 *    caches.  Dirty lines of the caches may be written back or simply
608 *    be discarded.  This operation is necessary before dma operations
609 *    to the memory.
610 *
611 * This API used to be exported; it now is for arch code internal use only.
612 */
613#ifdef CONFIG_DMA_NONCOHERENT
614
615extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
616extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
617extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
618
619#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
620#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
621#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
622
623#else /* Sane hardware */
624
625#define dma_cache_wback_inv(start,size) \
626	do { (void) (start); (void) (size); } while (0)
627#define dma_cache_wback(start,size)	\
628	do { (void) (start); (void) (size); } while (0)
629#define dma_cache_inv(start,size)	\
630	do { (void) (start); (void) (size); } while (0)
631
632#endif /* CONFIG_DMA_NONCOHERENT */
633
634/*
635 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
636 * Avoid interrupt mucking, just adjust the address for 4-byte access.
637 * Assume the addresses are 8-byte aligned.
638 */
639#ifdef __MIPSEB__
640#define __CSR_32_ADJUST 4
641#else
642#define __CSR_32_ADJUST 0
643#endif
644
645#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
646#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
647
648/*
649 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
650 * access
651 */
652#define xlate_dev_mem_ptr(p)	__va(p)
653
654/*
655 * Convert a virtual cached pointer to an uncached pointer
656 */
657#define xlate_dev_kmem_ptr(p)	p
658
659void __ioread64_copy(void *to, const void __iomem *from, size_t count);
660
661#endif /* _ASM_IO_H */
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 1995 Waldorf GmbH
  7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 10 *	Author:	Maciej W. Rozycki <macro@mips.com>
 11 */
 12#ifndef _ASM_IO_H
 13#define _ASM_IO_H
 14
 
 
 15#include <linux/compiler.h>
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 
 18
 19#include <asm/addrspace.h>
 
 
 20#include <asm/byteorder.h>
 21#include <asm/cpu.h>
 22#include <asm/cpu-features.h>
 23#include <asm-generic/iomap.h>
 24#include <asm/page.h>
 25#include <asm/pgtable-bits.h>
 26#include <asm/processor.h>
 27#include <asm/string.h>
 28
 29#include <ioremap.h>
 30#include <mangle-port.h>
 31
 32/*
 33 * Slowdown I/O port space accesses for antique hardware.
 34 */
 35#undef CONF_SLOWDOWN_IO
 36
 37/*
 38 * Raw operations are never swapped in software.  OTOH values that raw
 39 * operations are working on may or may not have been swapped by the bus
 40 * hardware.  An example use would be for flash memory that's used for
 41 * execute in place.
 42 */
 43# define __raw_ioswabb(a, x)	(x)
 44# define __raw_ioswabw(a, x)	(x)
 45# define __raw_ioswabl(a, x)	(x)
 46# define __raw_ioswabq(a, x)	(x)
 47# define ____raw_ioswabq(a, x)	(x)
 48
 
 
 
 
 
 49/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
 50
 51#define IO_SPACE_LIMIT 0xffff
 52
 53/*
 54 * On MIPS I/O ports are memory mapped, so we access them using normal
 55 * load/store instructions. mips_io_port_base is the virtual address to
 56 * which all ports are being mapped.  For sake of efficiency some code
 57 * assumes that this is an address that can be loaded with a single lui
 58 * instruction, so the lower 16 bits must be zero.  Should be true on
 59 * on any sane architecture; generic code does not use this assumption.
 60 */
 61extern const unsigned long mips_io_port_base;
 62
 63/*
 64 * Gcc will generate code to load the value of mips_io_port_base after each
 65 * function call which may be fairly wasteful in some cases.  So we don't
 66 * play quite by the book.  We tell gcc mips_io_port_base is a long variable
 67 * which solves the code generation issue.  Now we need to violate the
 68 * aliasing rules a little to make initialization possible and finally we
 69 * will need the barrier() to fight side effects of the aliasing chat.
 70 * This trickery will eventually collapse under gcc's optimizer.  Oh well.
 71 */
 72static inline void set_io_port_base(unsigned long base)
 73{
 74	* (unsigned long *) &mips_io_port_base = base;
 75	barrier();
 76}
 77
 78/*
 79 * Thanks to James van Artsdalen for a better timing-fix than
 80 * the two short jumps: using outb's to a nonexistent port seems
 81 * to guarantee better timings even on fast machines.
 82 *
 83 * On the other hand, I'd like to be sure of a non-existent port:
 84 * I feel a bit unsafe about using 0x80 (should be safe, though)
 85 *
 86 *		Linus
 87 *
 88 */
 89
 90#define __SLOW_DOWN_IO \
 91	__asm__ __volatile__( \
 92		"sb\t$0,0x80(%0)" \
 93		: : "r" (mips_io_port_base));
 94
 95#ifdef CONF_SLOWDOWN_IO
 96#ifdef REALLY_SLOW_IO
 97#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
 98#else
 99#define SLOW_DOWN_IO __SLOW_DOWN_IO
100#endif
101#else
102#define SLOW_DOWN_IO
103#endif
 
104
105/*
106 *     virt_to_phys    -       map virtual addresses to physical
107 *     @address: address to remap
108 *
109 *     The returned physical address is the physical (CPU) mapping for
110 *     the memory address given. It is only valid to use this function on
111 *     addresses directly mapped or allocated via kmalloc.
112 *
113 *     This function does not give bus mappings for DMA transfers. In
114 *     almost all conceivable cases a device driver should not be using
115 *     this function
116 */
117static inline unsigned long virt_to_phys(volatile const void *address)
118{
119	return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;
120}
121
122/*
123 *     phys_to_virt    -       map physical address to virtual
124 *     @address: address to remap
125 *
126 *     The returned virtual address is a current CPU mapping for
127 *     the memory address given. It is only valid to use this function on
128 *     addresses that have a kernel mapping
129 *
130 *     This function does not handle bus mappings for DMA transfers. In
131 *     almost all conceivable cases a device driver should not be using
132 *     this function
133 */
134static inline void * phys_to_virt(unsigned long address)
135{
136	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
137}
138
139/*
140 * ISA I/O bus memory addresses are 1:1 with the physical address.
141 */
142static inline unsigned long isa_virt_to_bus(volatile void * address)
143{
144	return (unsigned long)address - PAGE_OFFSET;
145}
146
147static inline void * isa_bus_to_virt(unsigned long address)
148{
149	return (void *)(address + PAGE_OFFSET);
150}
151
152#define isa_page_to_bus page_to_phys
153
154/*
155 * However PCI ones are not necessarily 1:1 and therefore these interfaces
156 * are forbidden in portable PCI drivers.
157 *
158 * Allow them for x86 for legacy drivers, though.
159 */
160#define virt_to_bus virt_to_phys
161#define bus_to_virt phys_to_virt
162
163/*
164 * Change "struct page" to physical address.
165 */
166#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
167
168extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
169extern void __iounmap(const volatile void __iomem *addr);
170
171static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
172	unsigned long flags)
173{
174	void __iomem *addr = plat_ioremap(offset, size, flags);
175
176	if (addr)
177		return addr;
178
179#define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
180
181	if (cpu_has_64bit_addresses) {
182		u64 base = UNCAC_BASE;
183
184		/*
185		 * R10000 supports a 2 bit uncached attribute therefore
186		 * UNCAC_BASE may not equal IO_BASE.
187		 */
188		if (flags == _CACHE_UNCACHED)
189			base = (u64) IO_BASE;
190		return (void __iomem *) (unsigned long) (base + offset);
191	} else if (__builtin_constant_p(offset) &&
192		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
193		phys_t phys_addr, last_addr;
194
195		phys_addr = fixup_bigphys_addr(offset, size);
196
197		/* Don't allow wraparound or zero size. */
198		last_addr = phys_addr + size - 1;
199		if (!size || last_addr < phys_addr)
200			return NULL;
201
202		/*
203		 * Map uncached objects in the low 512MB of address
204		 * space using KSEG1.
205		 */
206		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
207		    flags == _CACHE_UNCACHED)
208			return (void __iomem *)
209				(unsigned long)CKSEG1ADDR(phys_addr);
210	}
211
212	return __ioremap(offset, size, flags);
213
214#undef __IS_LOW512
215}
216
217/*
 
 
 
 
 
 
 
 
 
 
 
 
218 * ioremap     -   map bus memory into CPU space
219 * @offset:    bus address of the memory
220 * @size:      size of the resource to map
221 *
222 * ioremap performs a platform specific sequence of operations to
223 * make bus memory CPU accessible via the readb/readw/readl/writeb/
224 * writew/writel functions and the other mmio helpers. The returned
225 * address is not guaranteed to be usable directly as a virtual
226 * address.
227 */
228#define ioremap(offset, size)						\
229	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
230
231/*
232 * ioremap_nocache     -   map bus memory into CPU space
233 * @offset:    bus address of the memory
234 * @size:      size of the resource to map
235 *
236 * ioremap_nocache performs a platform specific sequence of operations to
237 * make bus memory CPU accessible via the readb/readw/readl/writeb/
238 * writew/writel functions and the other mmio helpers. The returned
239 * address is not guaranteed to be usable directly as a virtual
240 * address.
241 *
242 * This version of ioremap ensures that the memory is marked uncachable
243 * on the CPU as well as honouring existing caching rules from things like
244 * the PCI bus. Note that there are other caches and buffers on many
245 * busses. In particular driver authors should read up on PCI writes
246 *
247 * It's useful if some control registers are in such an area and
248 * write combining or read caching is not desirable:
249 */
250#define ioremap_nocache(offset, size)					\
251	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
 
252
253/*
254 * ioremap_cachable -   map bus memory into CPU space
255 * @offset:         bus address of the memory
256 * @size:           size of the resource to map
257 *
258 * ioremap_nocache performs a platform specific sequence of operations to
259 * make bus memory CPU accessible via the readb/readw/readl/writeb/
260 * writew/writel functions and the other mmio helpers. The returned
261 * address is not guaranteed to be usable directly as a virtual
262 * address.
263 *
264 * This version of ioremap ensures that the memory is marked cachable by
265 * the CPU.  Also enables full write-combining.  Useful for some
266 * memory-like regions on I/O busses.
267 */
268#define ioremap_cachable(offset, size)					\
269	__ioremap_mode((offset), (size), _page_cachable_default)
270
271/*
272 * These two are MIPS specific ioremap variant.  ioremap_cacheable_cow
273 * requests a cachable mapping, ioremap_uncached_accelerated requests a
274 * mapping using the uncached accelerated mode which isn't supported on
275 * all processors.
276 */
277#define ioremap_cacheable_cow(offset, size)				\
278	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
279#define ioremap_uncached_accelerated(offset, size)			\
280	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
 
 
 
 
 
 
 
 
 
 
281
282static inline void iounmap(const volatile void __iomem *addr)
283{
284	if (plat_iounmap(addr))
285		return;
286
287#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
288
289	if (cpu_has_64bit_addresses ||
290	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
291		return;
292
293	__iounmap(addr);
294
295#undef __IS_KSEG1
296}
297
298#ifdef CONFIG_CPU_CAVIUM_OCTEON
299#define war_octeon_io_reorder_wmb()  		wmb()
300#else
301#define war_octeon_io_reorder_wmb()		do { } while (0)
302#endif
303
304#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
305									\
306static inline void pfx##write##bwlq(type val,				\
307				    volatile void __iomem *mem)		\
308{									\
309	volatile type *__mem;						\
310	type __val;							\
311									\
312	war_octeon_io_reorder_wmb();					\
 
 
 
313									\
314	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
315									\
316	__val = pfx##ioswab##bwlq(__mem, val);				\
317									\
318	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
319		*__mem = __val;						\
320	else if (cpu_has_64bits) {					\
321		unsigned long __flags;					\
322		type __tmp;						\
323									\
324		if (irq)						\
325			local_irq_save(__flags);			\
326		__asm__ __volatile__(					\
327			".set	mips3"		"\t\t# __writeq""\n\t"	\
328			"dsll32	%L0, %L0, 0"			"\n\t"	\
329			"dsrl32	%L0, %L0, 0"			"\n\t"	\
330			"dsll32	%M0, %M0, 0"			"\n\t"	\
 
331			"or	%L0, %L0, %M0"			"\n\t"	\
332			".set	push"				"\n\t"	\
333			".set	noreorder"			"\n\t"	\
334			".set	nomacro"			"\n\t"	\
335			"sd	%L0, %2"			"\n\t"	\
336			".set	pop"				"\n\t"	\
337			".set	mips0"				"\n"	\
338			: "=r" (__tmp)					\
339			: "0" (__val), "R" (*__mem));			\
340		if (irq)						\
341			local_irq_restore(__flags);			\
342	} else								\
343		BUG();							\
344}									\
345									\
346static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
347{									\
348	volatile type *__mem;						\
349	type __val;							\
350									\
351	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
352									\
353	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
 
 
 
354		__val = *__mem;						\
355	else if (cpu_has_64bits) {					\
356		unsigned long __flags;					\
357									\
358		if (irq)						\
359			local_irq_save(__flags);			\
360		__asm__ __volatile__(					\
361			".set	mips3"		"\t\t# __readq"	"\n\t"	\
362			".set	push"				"\n\t"	\
363			".set	noreorder"			"\n\t"	\
364			".set	nomacro"			"\n\t"	\
365			"ld	%L0, %1"			"\n\t"	\
366			".set	pop"				"\n\t"	\
367			"dsra32	%M0, %L0, 0"			"\n\t"	\
368			"sll	%L0, %L0, 0"			"\n\t"	\
369			".set	mips0"				"\n"	\
370			: "=r" (__val)					\
371			: "R" (*__mem));				\
372		if (irq)						\
373			local_irq_restore(__flags);			\
374	} else {							\
375		__val = 0;						\
376		BUG();							\
377	}								\
378									\
 
 
 
379	return pfx##ioswab##bwlq(__mem, __val);				\
380}
381
382#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
383									\
384static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
385{									\
386	volatile type *__addr;						\
387	type __val;							\
388									\
389	war_octeon_io_reorder_wmb();					\
 
 
 
390									\
391	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
392									\
393	__val = pfx##ioswab##bwlq(__addr, val);				\
394									\
395	/* Really, we want this to be atomic */				\
396	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
397									\
398	*__addr = __val;						\
399	slow;								\
400}									\
401									\
402static inline type pfx##in##bwlq##p(unsigned long port)			\
403{									\
404	volatile type *__addr;						\
405	type __val;							\
406									\
407	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
408									\
409	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
410									\
 
 
 
411	__val = *__addr;						\
412	slow;								\
413									\
 
 
 
414	return pfx##ioswab##bwlq(__addr, __val);			\
415}
416
417#define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
418									\
419__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
420
421#define BUILDIO_MEM(bwlq, type)						\
422									\
423__BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
424__BUILD_MEMORY_PFX(, bwlq, type)					\
425__BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
 
426
427BUILDIO_MEM(b, u8)
428BUILDIO_MEM(w, u16)
429BUILDIO_MEM(l, u32)
 
430BUILDIO_MEM(q, u64)
 
 
 
 
431
432#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
433	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
434	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
435
436#define BUILDIO_IOPORT(bwlq, type)					\
437	__BUILD_IOPORT_PFX(, bwlq, type)				\
438	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
439
440BUILDIO_IOPORT(b, u8)
441BUILDIO_IOPORT(w, u16)
442BUILDIO_IOPORT(l, u32)
443#ifdef CONFIG_64BIT
444BUILDIO_IOPORT(q, u64)
445#endif
446
447#define __BUILDIO(bwlq, type)						\
448									\
449__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
450
451__BUILDIO(q, u64)
452
453#define readb_relaxed			readb
454#define readw_relaxed			readw
455#define readl_relaxed			readl
456#define readq_relaxed			readq
 
 
 
 
 
 
 
 
 
457
458#define readb_be(addr)							\
459	__raw_readb((__force unsigned *)(addr))
460#define readw_be(addr)							\
461	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
462#define readl_be(addr)							\
463	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
464#define readq_be(addr)							\
465	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
466
467#define writeb_be(val, addr)						\
468	__raw_writeb((val), (__force unsigned *)(addr))
469#define writew_be(val, addr)						\
470	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
471#define writel_be(val, addr)						\
472	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
473#define writeq_be(val, addr)						\
474	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
475
476/*
477 * Some code tests for these symbols
478 */
 
479#define readq				readq
480#define writeq				writeq
 
481
482#define __BUILD_MEMORY_STRING(bwlq, type)				\
483									\
484static inline void writes##bwlq(volatile void __iomem *mem,		\
485				const void *addr, unsigned int count)	\
486{									\
487	const volatile type *__addr = addr;				\
488									\
489	while (count--) {						\
490		__mem_write##bwlq(*__addr, mem);			\
491		__addr++;						\
492	}								\
493}									\
494									\
495static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
496			       unsigned int count)			\
497{									\
498	volatile type *__addr = addr;					\
499									\
500	while (count--) {						\
501		*__addr = __mem_read##bwlq(mem);			\
502		__addr++;						\
503	}								\
504}
505
506#define __BUILD_IOPORT_STRING(bwlq, type)				\
507									\
508static inline void outs##bwlq(unsigned long port, const void *addr,	\
509			      unsigned int count)			\
510{									\
511	const volatile type *__addr = addr;				\
512									\
513	while (count--) {						\
514		__mem_out##bwlq(*__addr, port);				\
515		__addr++;						\
516	}								\
517}									\
518									\
519static inline void ins##bwlq(unsigned long port, void *addr,		\
520			     unsigned int count)			\
521{									\
522	volatile type *__addr = addr;					\
523									\
524	while (count--) {						\
525		*__addr = __mem_in##bwlq(port);				\
526		__addr++;						\
527	}								\
528}
529
530#define BUILDSTRING(bwlq, type)						\
531									\
532__BUILD_MEMORY_STRING(bwlq, type)					\
533__BUILD_IOPORT_STRING(bwlq, type)
534
535BUILDSTRING(b, u8)
536BUILDSTRING(w, u16)
537BUILDSTRING(l, u32)
538#ifdef CONFIG_64BIT
539BUILDSTRING(q, u64)
540#endif
541
542
543#ifdef CONFIG_CPU_CAVIUM_OCTEON
544#define mmiowb() wmb()
545#else
546/* Depends on MIPS II instruction set */
547#define mmiowb() asm volatile ("sync" ::: "memory")
548#endif
549
550static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
551{
552	memset((void __force *) addr, val, count);
553}
554static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
555{
556	memcpy(dst, (void __force *) src, count);
557}
558static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
559{
560	memcpy((void __force *) dst, src, count);
561}
562
563/*
564 * The caches on some architectures aren't dma-coherent and have need to
565 * handle this in software.  There are three types of operations that
566 * can be applied to dma buffers.
567 *
568 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
569 *    writing the content of the caches back to memory, if necessary.
570 *    The function also invalidates the affected part of the caches as
571 *    necessary before DMA transfers from outside to memory.
572 *  - dma_cache_wback(start, size) makes caches and coherent by
573 *    writing the content of the caches back to memory, if necessary.
574 *    The function also invalidates the affected part of the caches as
575 *    necessary before DMA transfers from outside to memory.
576 *  - dma_cache_inv(start, size) invalidates the affected parts of the
577 *    caches.  Dirty lines of the caches may be written back or simply
578 *    be discarded.  This operation is necessary before dma operations
579 *    to the memory.
580 *
581 * This API used to be exported; it now is for arch code internal use only.
582 */
583#ifdef CONFIG_DMA_NONCOHERENT
584
585extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
586extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
587extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
588
589#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
590#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
591#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
592
593#else /* Sane hardware */
594
595#define dma_cache_wback_inv(start,size)	\
596	do { (void) (start); (void) (size); } while (0)
597#define dma_cache_wback(start,size)	\
598	do { (void) (start); (void) (size); } while (0)
599#define dma_cache_inv(start,size)	\
600	do { (void) (start); (void) (size); } while (0)
601
602#endif /* CONFIG_DMA_NONCOHERENT */
603
604/*
605 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
606 * Avoid interrupt mucking, just adjust the address for 4-byte access.
607 * Assume the addresses are 8-byte aligned.
608 */
609#ifdef __MIPSEB__
610#define __CSR_32_ADJUST 4
611#else
612#define __CSR_32_ADJUST 0
613#endif
614
615#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
616#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
617
618/*
619 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
620 * access
621 */
622#define xlate_dev_mem_ptr(p)	__va(p)
623
624/*
625 * Convert a virtual cached pointer to an uncached pointer
626 */
627#define xlate_dev_kmem_ptr(p)	p
 
 
628
629#endif /* _ASM_IO_H */