Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36/*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46{
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
49 int err;
50
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
56 if (n < 0)
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
60 else
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
63 }
64 if (runtime->silence_filled >= runtime->buffer_size)
65 return;
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 return;
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
72 } else {
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
80 runtime->boundary;
81 } else {
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
90 } else {
91 runtime->silence_start = ofs;
92 }
93 }
94 frames = runtime->buffer_size - runtime->silence_filled;
95 }
96 if (snd_BUG_ON(frames > runtime->buffer_size))
97 return;
98 if (frames == 0)
99 return;
100 ofs = runtime->silence_start % runtime->buffer_size;
101 while (frames > 0) {
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 runtime->silence_filled += transfer;
106 frames -= transfer;
107 ofs = 0;
108 }
109}
110
111#ifdef CONFIG_SND_DEBUG
112void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113 char *name, size_t len)
114{
115 snprintf(name, len, "pcmC%dD%d%c:%d",
116 substream->pcm->card->number,
117 substream->pcm->device,
118 substream->stream ? 'c' : 'p',
119 substream->number);
120}
121EXPORT_SYMBOL(snd_pcm_debug_name);
122#endif
123
124#define XRUN_DEBUG_BASIC (1<<0)
125#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
126#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
127
128#ifdef CONFIG_SND_PCM_XRUN_DEBUG
129
130#define xrun_debug(substream, mask) \
131 ((substream)->pstr->xrun_debug & (mask))
132#else
133#define xrun_debug(substream, mask) 0
134#endif
135
136#define dump_stack_on_xrun(substream) do { \
137 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
138 dump_stack(); \
139 } while (0)
140
141/* call with stream lock held */
142void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143{
144 struct snd_pcm_runtime *runtime = substream->runtime;
145
146 trace_xrun(substream);
147 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
148 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
149 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
150 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
151 char name[16];
152 snd_pcm_debug_name(substream, name, sizeof(name));
153 pcm_warn(substream->pcm, "XRUN: %s\n", name);
154 dump_stack_on_xrun(substream);
155 }
156}
157
158#ifdef CONFIG_SND_PCM_XRUN_DEBUG
159#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
160 do { \
161 trace_hw_ptr_error(substream, reason); \
162 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
163 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
164 (in_interrupt) ? 'Q' : 'P', ##args); \
165 dump_stack_on_xrun(substream); \
166 } \
167 } while (0)
168
169#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
170
171#define hw_ptr_error(substream, fmt, args...) do { } while (0)
172
173#endif
174
175int snd_pcm_update_state(struct snd_pcm_substream *substream,
176 struct snd_pcm_runtime *runtime)
177{
178 snd_pcm_uframes_t avail;
179
180 avail = snd_pcm_avail(substream);
181 if (avail > runtime->avail_max)
182 runtime->avail_max = avail;
183 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
184 if (avail >= runtime->buffer_size) {
185 snd_pcm_drain_done(substream);
186 return -EPIPE;
187 }
188 } else {
189 if (avail >= runtime->stop_threshold) {
190 __snd_pcm_xrun(substream);
191 return -EPIPE;
192 }
193 }
194 if (runtime->twake) {
195 if (avail >= runtime->twake)
196 wake_up(&runtime->tsleep);
197 } else if (avail >= runtime->control->avail_min)
198 wake_up(&runtime->sleep);
199 return 0;
200}
201
202static void update_audio_tstamp(struct snd_pcm_substream *substream,
203 struct timespec *curr_tstamp,
204 struct timespec *audio_tstamp)
205{
206 struct snd_pcm_runtime *runtime = substream->runtime;
207 u64 audio_frames, audio_nsecs;
208 struct timespec driver_tstamp;
209
210 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
211 return;
212
213 if (!(substream->ops->get_time_info) ||
214 (runtime->audio_tstamp_report.actual_type ==
215 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
216
217 /*
218 * provide audio timestamp derived from pointer position
219 * add delay only if requested
220 */
221
222 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
223
224 if (runtime->audio_tstamp_config.report_delay) {
225 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
226 audio_frames -= runtime->delay;
227 else
228 audio_frames += runtime->delay;
229 }
230 audio_nsecs = div_u64(audio_frames * 1000000000LL,
231 runtime->rate);
232 *audio_tstamp = ns_to_timespec(audio_nsecs);
233 }
234 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
235 runtime->status->audio_tstamp = *audio_tstamp;
236 runtime->status->tstamp = *curr_tstamp;
237 }
238
239 /*
240 * re-take a driver timestamp to let apps detect if the reference tstamp
241 * read by low-level hardware was provided with a delay
242 */
243 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
244 runtime->driver_tstamp = driver_tstamp;
245}
246
247static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
248 unsigned int in_interrupt)
249{
250 struct snd_pcm_runtime *runtime = substream->runtime;
251 snd_pcm_uframes_t pos;
252 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
253 snd_pcm_sframes_t hdelta, delta;
254 unsigned long jdelta;
255 unsigned long curr_jiffies;
256 struct timespec curr_tstamp;
257 struct timespec audio_tstamp;
258 int crossed_boundary = 0;
259
260 old_hw_ptr = runtime->status->hw_ptr;
261
262 /*
263 * group pointer, time and jiffies reads to allow for more
264 * accurate correlations/corrections.
265 * The values are stored at the end of this routine after
266 * corrections for hw_ptr position
267 */
268 pos = substream->ops->pointer(substream);
269 curr_jiffies = jiffies;
270 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
271 if ((substream->ops->get_time_info) &&
272 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
273 substream->ops->get_time_info(substream, &curr_tstamp,
274 &audio_tstamp,
275 &runtime->audio_tstamp_config,
276 &runtime->audio_tstamp_report);
277
278 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
279 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
280 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
281 } else
282 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
283 }
284
285 if (pos == SNDRV_PCM_POS_XRUN) {
286 __snd_pcm_xrun(substream);
287 return -EPIPE;
288 }
289 if (pos >= runtime->buffer_size) {
290 if (printk_ratelimit()) {
291 char name[16];
292 snd_pcm_debug_name(substream, name, sizeof(name));
293 pcm_err(substream->pcm,
294 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
295 name, pos, runtime->buffer_size,
296 runtime->period_size);
297 }
298 pos = 0;
299 }
300 pos -= pos % runtime->min_align;
301 trace_hwptr(substream, pos, in_interrupt);
302 hw_base = runtime->hw_ptr_base;
303 new_hw_ptr = hw_base + pos;
304 if (in_interrupt) {
305 /* we know that one period was processed */
306 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
307 delta = runtime->hw_ptr_interrupt + runtime->period_size;
308 if (delta > new_hw_ptr) {
309 /* check for double acknowledged interrupts */
310 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
311 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
312 hw_base += runtime->buffer_size;
313 if (hw_base >= runtime->boundary) {
314 hw_base = 0;
315 crossed_boundary++;
316 }
317 new_hw_ptr = hw_base + pos;
318 goto __delta;
319 }
320 }
321 }
322 /* new_hw_ptr might be lower than old_hw_ptr in case when */
323 /* pointer crosses the end of the ring buffer */
324 if (new_hw_ptr < old_hw_ptr) {
325 hw_base += runtime->buffer_size;
326 if (hw_base >= runtime->boundary) {
327 hw_base = 0;
328 crossed_boundary++;
329 }
330 new_hw_ptr = hw_base + pos;
331 }
332 __delta:
333 delta = new_hw_ptr - old_hw_ptr;
334 if (delta < 0)
335 delta += runtime->boundary;
336
337 if (runtime->no_period_wakeup) {
338 snd_pcm_sframes_t xrun_threshold;
339 /*
340 * Without regular period interrupts, we have to check
341 * the elapsed time to detect xruns.
342 */
343 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
344 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
345 goto no_delta_check;
346 hdelta = jdelta - delta * HZ / runtime->rate;
347 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
348 while (hdelta > xrun_threshold) {
349 delta += runtime->buffer_size;
350 hw_base += runtime->buffer_size;
351 if (hw_base >= runtime->boundary) {
352 hw_base = 0;
353 crossed_boundary++;
354 }
355 new_hw_ptr = hw_base + pos;
356 hdelta -= runtime->hw_ptr_buffer_jiffies;
357 }
358 goto no_delta_check;
359 }
360
361 /* something must be really wrong */
362 if (delta >= runtime->buffer_size + runtime->period_size) {
363 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
364 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
365 substream->stream, (long)pos,
366 (long)new_hw_ptr, (long)old_hw_ptr);
367 return 0;
368 }
369
370 /* Do jiffies check only in xrun_debug mode */
371 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
372 goto no_jiffies_check;
373
374 /* Skip the jiffies check for hardwares with BATCH flag.
375 * Such hardware usually just increases the position at each IRQ,
376 * thus it can't give any strange position.
377 */
378 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
379 goto no_jiffies_check;
380 hdelta = delta;
381 if (hdelta < runtime->delay)
382 goto no_jiffies_check;
383 hdelta -= runtime->delay;
384 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
385 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
386 delta = jdelta /
387 (((runtime->period_size * HZ) / runtime->rate)
388 + HZ/100);
389 /* move new_hw_ptr according jiffies not pos variable */
390 new_hw_ptr = old_hw_ptr;
391 hw_base = delta;
392 /* use loop to avoid checks for delta overflows */
393 /* the delta value is small or zero in most cases */
394 while (delta > 0) {
395 new_hw_ptr += runtime->period_size;
396 if (new_hw_ptr >= runtime->boundary) {
397 new_hw_ptr -= runtime->boundary;
398 crossed_boundary--;
399 }
400 delta--;
401 }
402 /* align hw_base to buffer_size */
403 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
404 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
405 (long)pos, (long)hdelta,
406 (long)runtime->period_size, jdelta,
407 ((hdelta * HZ) / runtime->rate), hw_base,
408 (unsigned long)old_hw_ptr,
409 (unsigned long)new_hw_ptr);
410 /* reset values to proper state */
411 delta = 0;
412 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
413 }
414 no_jiffies_check:
415 if (delta > runtime->period_size + runtime->period_size / 2) {
416 hw_ptr_error(substream, in_interrupt,
417 "Lost interrupts?",
418 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
419 substream->stream, (long)delta,
420 (long)new_hw_ptr,
421 (long)old_hw_ptr);
422 }
423
424 no_delta_check:
425 if (runtime->status->hw_ptr == new_hw_ptr) {
426 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
427 return 0;
428 }
429
430 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
431 runtime->silence_size > 0)
432 snd_pcm_playback_silence(substream, new_hw_ptr);
433
434 if (in_interrupt) {
435 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
436 if (delta < 0)
437 delta += runtime->boundary;
438 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
439 runtime->hw_ptr_interrupt += delta;
440 if (runtime->hw_ptr_interrupt >= runtime->boundary)
441 runtime->hw_ptr_interrupt -= runtime->boundary;
442 }
443 runtime->hw_ptr_base = hw_base;
444 runtime->status->hw_ptr = new_hw_ptr;
445 runtime->hw_ptr_jiffies = curr_jiffies;
446 if (crossed_boundary) {
447 snd_BUG_ON(crossed_boundary != 1);
448 runtime->hw_ptr_wrap += runtime->boundary;
449 }
450
451 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
452
453 return snd_pcm_update_state(substream, runtime);
454}
455
456/* CAUTION: call it with irq disabled */
457int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
458{
459 return snd_pcm_update_hw_ptr0(substream, 0);
460}
461
462/**
463 * snd_pcm_set_ops - set the PCM operators
464 * @pcm: the pcm instance
465 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
466 * @ops: the operator table
467 *
468 * Sets the given PCM operators to the pcm instance.
469 */
470void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
471 const struct snd_pcm_ops *ops)
472{
473 struct snd_pcm_str *stream = &pcm->streams[direction];
474 struct snd_pcm_substream *substream;
475
476 for (substream = stream->substream; substream != NULL; substream = substream->next)
477 substream->ops = ops;
478}
479EXPORT_SYMBOL(snd_pcm_set_ops);
480
481/**
482 * snd_pcm_sync - set the PCM sync id
483 * @substream: the pcm substream
484 *
485 * Sets the PCM sync identifier for the card.
486 */
487void snd_pcm_set_sync(struct snd_pcm_substream *substream)
488{
489 struct snd_pcm_runtime *runtime = substream->runtime;
490
491 runtime->sync.id32[0] = substream->pcm->card->number;
492 runtime->sync.id32[1] = -1;
493 runtime->sync.id32[2] = -1;
494 runtime->sync.id32[3] = -1;
495}
496EXPORT_SYMBOL(snd_pcm_set_sync);
497
498/*
499 * Standard ioctl routine
500 */
501
502static inline unsigned int div32(unsigned int a, unsigned int b,
503 unsigned int *r)
504{
505 if (b == 0) {
506 *r = 0;
507 return UINT_MAX;
508 }
509 *r = a % b;
510 return a / b;
511}
512
513static inline unsigned int div_down(unsigned int a, unsigned int b)
514{
515 if (b == 0)
516 return UINT_MAX;
517 return a / b;
518}
519
520static inline unsigned int div_up(unsigned int a, unsigned int b)
521{
522 unsigned int r;
523 unsigned int q;
524 if (b == 0)
525 return UINT_MAX;
526 q = div32(a, b, &r);
527 if (r)
528 ++q;
529 return q;
530}
531
532static inline unsigned int mul(unsigned int a, unsigned int b)
533{
534 if (a == 0)
535 return 0;
536 if (div_down(UINT_MAX, a) < b)
537 return UINT_MAX;
538 return a * b;
539}
540
541static inline unsigned int muldiv32(unsigned int a, unsigned int b,
542 unsigned int c, unsigned int *r)
543{
544 u_int64_t n = (u_int64_t) a * b;
545 if (c == 0) {
546 *r = 0;
547 return UINT_MAX;
548 }
549 n = div_u64_rem(n, c, r);
550 if (n >= UINT_MAX) {
551 *r = 0;
552 return UINT_MAX;
553 }
554 return n;
555}
556
557/**
558 * snd_interval_refine - refine the interval value of configurator
559 * @i: the interval value to refine
560 * @v: the interval value to refer to
561 *
562 * Refines the interval value with the reference value.
563 * The interval is changed to the range satisfying both intervals.
564 * The interval status (min, max, integer, etc.) are evaluated.
565 *
566 * Return: Positive if the value is changed, zero if it's not changed, or a
567 * negative error code.
568 */
569int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
570{
571 int changed = 0;
572 if (snd_BUG_ON(snd_interval_empty(i)))
573 return -EINVAL;
574 if (i->min < v->min) {
575 i->min = v->min;
576 i->openmin = v->openmin;
577 changed = 1;
578 } else if (i->min == v->min && !i->openmin && v->openmin) {
579 i->openmin = 1;
580 changed = 1;
581 }
582 if (i->max > v->max) {
583 i->max = v->max;
584 i->openmax = v->openmax;
585 changed = 1;
586 } else if (i->max == v->max && !i->openmax && v->openmax) {
587 i->openmax = 1;
588 changed = 1;
589 }
590 if (!i->integer && v->integer) {
591 i->integer = 1;
592 changed = 1;
593 }
594 if (i->integer) {
595 if (i->openmin) {
596 i->min++;
597 i->openmin = 0;
598 }
599 if (i->openmax) {
600 i->max--;
601 i->openmax = 0;
602 }
603 } else if (!i->openmin && !i->openmax && i->min == i->max)
604 i->integer = 1;
605 if (snd_interval_checkempty(i)) {
606 snd_interval_none(i);
607 return -EINVAL;
608 }
609 return changed;
610}
611EXPORT_SYMBOL(snd_interval_refine);
612
613static int snd_interval_refine_first(struct snd_interval *i)
614{
615 const unsigned int last_max = i->max;
616
617 if (snd_BUG_ON(snd_interval_empty(i)))
618 return -EINVAL;
619 if (snd_interval_single(i))
620 return 0;
621 i->max = i->min;
622 if (i->openmin)
623 i->max++;
624 /* only exclude max value if also excluded before refine */
625 i->openmax = (i->openmax && i->max >= last_max);
626 return 1;
627}
628
629static int snd_interval_refine_last(struct snd_interval *i)
630{
631 const unsigned int last_min = i->min;
632
633 if (snd_BUG_ON(snd_interval_empty(i)))
634 return -EINVAL;
635 if (snd_interval_single(i))
636 return 0;
637 i->min = i->max;
638 if (i->openmax)
639 i->min--;
640 /* only exclude min value if also excluded before refine */
641 i->openmin = (i->openmin && i->min <= last_min);
642 return 1;
643}
644
645void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
646{
647 if (a->empty || b->empty) {
648 snd_interval_none(c);
649 return;
650 }
651 c->empty = 0;
652 c->min = mul(a->min, b->min);
653 c->openmin = (a->openmin || b->openmin);
654 c->max = mul(a->max, b->max);
655 c->openmax = (a->openmax || b->openmax);
656 c->integer = (a->integer && b->integer);
657}
658
659/**
660 * snd_interval_div - refine the interval value with division
661 * @a: dividend
662 * @b: divisor
663 * @c: quotient
664 *
665 * c = a / b
666 *
667 * Returns non-zero if the value is changed, zero if not changed.
668 */
669void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
670{
671 unsigned int r;
672 if (a->empty || b->empty) {
673 snd_interval_none(c);
674 return;
675 }
676 c->empty = 0;
677 c->min = div32(a->min, b->max, &r);
678 c->openmin = (r || a->openmin || b->openmax);
679 if (b->min > 0) {
680 c->max = div32(a->max, b->min, &r);
681 if (r) {
682 c->max++;
683 c->openmax = 1;
684 } else
685 c->openmax = (a->openmax || b->openmin);
686 } else {
687 c->max = UINT_MAX;
688 c->openmax = 0;
689 }
690 c->integer = 0;
691}
692
693/**
694 * snd_interval_muldivk - refine the interval value
695 * @a: dividend 1
696 * @b: dividend 2
697 * @k: divisor (as integer)
698 * @c: result
699 *
700 * c = a * b / k
701 *
702 * Returns non-zero if the value is changed, zero if not changed.
703 */
704void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
705 unsigned int k, struct snd_interval *c)
706{
707 unsigned int r;
708 if (a->empty || b->empty) {
709 snd_interval_none(c);
710 return;
711 }
712 c->empty = 0;
713 c->min = muldiv32(a->min, b->min, k, &r);
714 c->openmin = (r || a->openmin || b->openmin);
715 c->max = muldiv32(a->max, b->max, k, &r);
716 if (r) {
717 c->max++;
718 c->openmax = 1;
719 } else
720 c->openmax = (a->openmax || b->openmax);
721 c->integer = 0;
722}
723
724/**
725 * snd_interval_mulkdiv - refine the interval value
726 * @a: dividend 1
727 * @k: dividend 2 (as integer)
728 * @b: divisor
729 * @c: result
730 *
731 * c = a * k / b
732 *
733 * Returns non-zero if the value is changed, zero if not changed.
734 */
735void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
736 const struct snd_interval *b, struct snd_interval *c)
737{
738 unsigned int r;
739 if (a->empty || b->empty) {
740 snd_interval_none(c);
741 return;
742 }
743 c->empty = 0;
744 c->min = muldiv32(a->min, k, b->max, &r);
745 c->openmin = (r || a->openmin || b->openmax);
746 if (b->min > 0) {
747 c->max = muldiv32(a->max, k, b->min, &r);
748 if (r) {
749 c->max++;
750 c->openmax = 1;
751 } else
752 c->openmax = (a->openmax || b->openmin);
753 } else {
754 c->max = UINT_MAX;
755 c->openmax = 0;
756 }
757 c->integer = 0;
758}
759
760/* ---- */
761
762
763/**
764 * snd_interval_ratnum - refine the interval value
765 * @i: interval to refine
766 * @rats_count: number of ratnum_t
767 * @rats: ratnum_t array
768 * @nump: pointer to store the resultant numerator
769 * @denp: pointer to store the resultant denominator
770 *
771 * Return: Positive if the value is changed, zero if it's not changed, or a
772 * negative error code.
773 */
774int snd_interval_ratnum(struct snd_interval *i,
775 unsigned int rats_count, const struct snd_ratnum *rats,
776 unsigned int *nump, unsigned int *denp)
777{
778 unsigned int best_num, best_den;
779 int best_diff;
780 unsigned int k;
781 struct snd_interval t;
782 int err;
783 unsigned int result_num, result_den;
784 int result_diff;
785
786 best_num = best_den = best_diff = 0;
787 for (k = 0; k < rats_count; ++k) {
788 unsigned int num = rats[k].num;
789 unsigned int den;
790 unsigned int q = i->min;
791 int diff;
792 if (q == 0)
793 q = 1;
794 den = div_up(num, q);
795 if (den < rats[k].den_min)
796 continue;
797 if (den > rats[k].den_max)
798 den = rats[k].den_max;
799 else {
800 unsigned int r;
801 r = (den - rats[k].den_min) % rats[k].den_step;
802 if (r != 0)
803 den -= r;
804 }
805 diff = num - q * den;
806 if (diff < 0)
807 diff = -diff;
808 if (best_num == 0 ||
809 diff * best_den < best_diff * den) {
810 best_diff = diff;
811 best_den = den;
812 best_num = num;
813 }
814 }
815 if (best_den == 0) {
816 i->empty = 1;
817 return -EINVAL;
818 }
819 t.min = div_down(best_num, best_den);
820 t.openmin = !!(best_num % best_den);
821
822 result_num = best_num;
823 result_diff = best_diff;
824 result_den = best_den;
825 best_num = best_den = best_diff = 0;
826 for (k = 0; k < rats_count; ++k) {
827 unsigned int num = rats[k].num;
828 unsigned int den;
829 unsigned int q = i->max;
830 int diff;
831 if (q == 0) {
832 i->empty = 1;
833 return -EINVAL;
834 }
835 den = div_down(num, q);
836 if (den > rats[k].den_max)
837 continue;
838 if (den < rats[k].den_min)
839 den = rats[k].den_min;
840 else {
841 unsigned int r;
842 r = (den - rats[k].den_min) % rats[k].den_step;
843 if (r != 0)
844 den += rats[k].den_step - r;
845 }
846 diff = q * den - num;
847 if (diff < 0)
848 diff = -diff;
849 if (best_num == 0 ||
850 diff * best_den < best_diff * den) {
851 best_diff = diff;
852 best_den = den;
853 best_num = num;
854 }
855 }
856 if (best_den == 0) {
857 i->empty = 1;
858 return -EINVAL;
859 }
860 t.max = div_up(best_num, best_den);
861 t.openmax = !!(best_num % best_den);
862 t.integer = 0;
863 err = snd_interval_refine(i, &t);
864 if (err < 0)
865 return err;
866
867 if (snd_interval_single(i)) {
868 if (best_diff * result_den < result_diff * best_den) {
869 result_num = best_num;
870 result_den = best_den;
871 }
872 if (nump)
873 *nump = result_num;
874 if (denp)
875 *denp = result_den;
876 }
877 return err;
878}
879EXPORT_SYMBOL(snd_interval_ratnum);
880
881/**
882 * snd_interval_ratden - refine the interval value
883 * @i: interval to refine
884 * @rats_count: number of struct ratden
885 * @rats: struct ratden array
886 * @nump: pointer to store the resultant numerator
887 * @denp: pointer to store the resultant denominator
888 *
889 * Return: Positive if the value is changed, zero if it's not changed, or a
890 * negative error code.
891 */
892static int snd_interval_ratden(struct snd_interval *i,
893 unsigned int rats_count,
894 const struct snd_ratden *rats,
895 unsigned int *nump, unsigned int *denp)
896{
897 unsigned int best_num, best_diff, best_den;
898 unsigned int k;
899 struct snd_interval t;
900 int err;
901
902 best_num = best_den = best_diff = 0;
903 for (k = 0; k < rats_count; ++k) {
904 unsigned int num;
905 unsigned int den = rats[k].den;
906 unsigned int q = i->min;
907 int diff;
908 num = mul(q, den);
909 if (num > rats[k].num_max)
910 continue;
911 if (num < rats[k].num_min)
912 num = rats[k].num_max;
913 else {
914 unsigned int r;
915 r = (num - rats[k].num_min) % rats[k].num_step;
916 if (r != 0)
917 num += rats[k].num_step - r;
918 }
919 diff = num - q * den;
920 if (best_num == 0 ||
921 diff * best_den < best_diff * den) {
922 best_diff = diff;
923 best_den = den;
924 best_num = num;
925 }
926 }
927 if (best_den == 0) {
928 i->empty = 1;
929 return -EINVAL;
930 }
931 t.min = div_down(best_num, best_den);
932 t.openmin = !!(best_num % best_den);
933
934 best_num = best_den = best_diff = 0;
935 for (k = 0; k < rats_count; ++k) {
936 unsigned int num;
937 unsigned int den = rats[k].den;
938 unsigned int q = i->max;
939 int diff;
940 num = mul(q, den);
941 if (num < rats[k].num_min)
942 continue;
943 if (num > rats[k].num_max)
944 num = rats[k].num_max;
945 else {
946 unsigned int r;
947 r = (num - rats[k].num_min) % rats[k].num_step;
948 if (r != 0)
949 num -= r;
950 }
951 diff = q * den - num;
952 if (best_num == 0 ||
953 diff * best_den < best_diff * den) {
954 best_diff = diff;
955 best_den = den;
956 best_num = num;
957 }
958 }
959 if (best_den == 0) {
960 i->empty = 1;
961 return -EINVAL;
962 }
963 t.max = div_up(best_num, best_den);
964 t.openmax = !!(best_num % best_den);
965 t.integer = 0;
966 err = snd_interval_refine(i, &t);
967 if (err < 0)
968 return err;
969
970 if (snd_interval_single(i)) {
971 if (nump)
972 *nump = best_num;
973 if (denp)
974 *denp = best_den;
975 }
976 return err;
977}
978
979/**
980 * snd_interval_list - refine the interval value from the list
981 * @i: the interval value to refine
982 * @count: the number of elements in the list
983 * @list: the value list
984 * @mask: the bit-mask to evaluate
985 *
986 * Refines the interval value from the list.
987 * When mask is non-zero, only the elements corresponding to bit 1 are
988 * evaluated.
989 *
990 * Return: Positive if the value is changed, zero if it's not changed, or a
991 * negative error code.
992 */
993int snd_interval_list(struct snd_interval *i, unsigned int count,
994 const unsigned int *list, unsigned int mask)
995{
996 unsigned int k;
997 struct snd_interval list_range;
998
999 if (!count) {
1000 i->empty = 1;
1001 return -EINVAL;
1002 }
1003 snd_interval_any(&list_range);
1004 list_range.min = UINT_MAX;
1005 list_range.max = 0;
1006 for (k = 0; k < count; k++) {
1007 if (mask && !(mask & (1 << k)))
1008 continue;
1009 if (!snd_interval_test(i, list[k]))
1010 continue;
1011 list_range.min = min(list_range.min, list[k]);
1012 list_range.max = max(list_range.max, list[k]);
1013 }
1014 return snd_interval_refine(i, &list_range);
1015}
1016EXPORT_SYMBOL(snd_interval_list);
1017
1018/**
1019 * snd_interval_ranges - refine the interval value from the list of ranges
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list of ranges
1022 * @ranges: the ranges list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list of ranges.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Return: Positive if the value is changed, zero if it's not changed, or a
1030 * negative error code.
1031 */
1032int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1033 const struct snd_interval *ranges, unsigned int mask)
1034{
1035 unsigned int k;
1036 struct snd_interval range_union;
1037 struct snd_interval range;
1038
1039 if (!count) {
1040 snd_interval_none(i);
1041 return -EINVAL;
1042 }
1043 snd_interval_any(&range_union);
1044 range_union.min = UINT_MAX;
1045 range_union.max = 0;
1046 for (k = 0; k < count; k++) {
1047 if (mask && !(mask & (1 << k)))
1048 continue;
1049 snd_interval_copy(&range, &ranges[k]);
1050 if (snd_interval_refine(&range, i) < 0)
1051 continue;
1052 if (snd_interval_empty(&range))
1053 continue;
1054
1055 if (range.min < range_union.min) {
1056 range_union.min = range.min;
1057 range_union.openmin = 1;
1058 }
1059 if (range.min == range_union.min && !range.openmin)
1060 range_union.openmin = 0;
1061 if (range.max > range_union.max) {
1062 range_union.max = range.max;
1063 range_union.openmax = 1;
1064 }
1065 if (range.max == range_union.max && !range.openmax)
1066 range_union.openmax = 0;
1067 }
1068 return snd_interval_refine(i, &range_union);
1069}
1070EXPORT_SYMBOL(snd_interval_ranges);
1071
1072static int snd_interval_step(struct snd_interval *i, unsigned int step)
1073{
1074 unsigned int n;
1075 int changed = 0;
1076 n = i->min % step;
1077 if (n != 0 || i->openmin) {
1078 i->min += step - n;
1079 i->openmin = 0;
1080 changed = 1;
1081 }
1082 n = i->max % step;
1083 if (n != 0 || i->openmax) {
1084 i->max -= n;
1085 i->openmax = 0;
1086 changed = 1;
1087 }
1088 if (snd_interval_checkempty(i)) {
1089 i->empty = 1;
1090 return -EINVAL;
1091 }
1092 return changed;
1093}
1094
1095/* Info constraints helpers */
1096
1097/**
1098 * snd_pcm_hw_rule_add - add the hw-constraint rule
1099 * @runtime: the pcm runtime instance
1100 * @cond: condition bits
1101 * @var: the variable to evaluate
1102 * @func: the evaluation function
1103 * @private: the private data pointer passed to function
1104 * @dep: the dependent variables
1105 *
1106 * Return: Zero if successful, or a negative error code on failure.
1107 */
1108int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1109 int var,
1110 snd_pcm_hw_rule_func_t func, void *private,
1111 int dep, ...)
1112{
1113 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1114 struct snd_pcm_hw_rule *c;
1115 unsigned int k;
1116 va_list args;
1117 va_start(args, dep);
1118 if (constrs->rules_num >= constrs->rules_all) {
1119 struct snd_pcm_hw_rule *new;
1120 unsigned int new_rules = constrs->rules_all + 16;
1121 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1122 GFP_KERNEL);
1123 if (!new) {
1124 va_end(args);
1125 return -ENOMEM;
1126 }
1127 constrs->rules = new;
1128 constrs->rules_all = new_rules;
1129 }
1130 c = &constrs->rules[constrs->rules_num];
1131 c->cond = cond;
1132 c->func = func;
1133 c->var = var;
1134 c->private = private;
1135 k = 0;
1136 while (1) {
1137 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1138 va_end(args);
1139 return -EINVAL;
1140 }
1141 c->deps[k++] = dep;
1142 if (dep < 0)
1143 break;
1144 dep = va_arg(args, int);
1145 }
1146 constrs->rules_num++;
1147 va_end(args);
1148 return 0;
1149}
1150EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1151
1152/**
1153 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1154 * @runtime: PCM runtime instance
1155 * @var: hw_params variable to apply the mask
1156 * @mask: the bitmap mask
1157 *
1158 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1159 *
1160 * Return: Zero if successful, or a negative error code on failure.
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 u_int32_t mask)
1164{
1165 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 struct snd_mask *maskp = constrs_mask(constrs, var);
1167 *maskp->bits &= mask;
1168 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 if (*maskp->bits == 0)
1170 return -EINVAL;
1171 return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 *
1182 * Return: Zero if successful, or a negative error code on failure.
1183 */
1184int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1185 u_int64_t mask)
1186{
1187 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1188 struct snd_mask *maskp = constrs_mask(constrs, var);
1189 maskp->bits[0] &= (u_int32_t)mask;
1190 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1191 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1192 if (! maskp->bits[0] && ! maskp->bits[1])
1193 return -EINVAL;
1194 return 0;
1195}
1196EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1197
1198/**
1199 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1200 * @runtime: PCM runtime instance
1201 * @var: hw_params variable to apply the integer constraint
1202 *
1203 * Apply the constraint of integer to an interval parameter.
1204 *
1205 * Return: Positive if the value is changed, zero if it's not changed, or a
1206 * negative error code.
1207 */
1208int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1209{
1210 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1211 return snd_interval_setinteger(constrs_interval(constrs, var));
1212}
1213EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1214
1215/**
1216 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1217 * @runtime: PCM runtime instance
1218 * @var: hw_params variable to apply the range
1219 * @min: the minimal value
1220 * @max: the maximal value
1221 *
1222 * Apply the min/max range constraint to an interval parameter.
1223 *
1224 * Return: Positive if the value is changed, zero if it's not changed, or a
1225 * negative error code.
1226 */
1227int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1228 unsigned int min, unsigned int max)
1229{
1230 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1231 struct snd_interval t;
1232 t.min = min;
1233 t.max = max;
1234 t.openmin = t.openmax = 0;
1235 t.integer = 0;
1236 return snd_interval_refine(constrs_interval(constrs, var), &t);
1237}
1238EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1239
1240static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1241 struct snd_pcm_hw_rule *rule)
1242{
1243 struct snd_pcm_hw_constraint_list *list = rule->private;
1244 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1245}
1246
1247
1248/**
1249 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1250 * @runtime: PCM runtime instance
1251 * @cond: condition bits
1252 * @var: hw_params variable to apply the list constraint
1253 * @l: list
1254 *
1255 * Apply the list of constraints to an interval parameter.
1256 *
1257 * Return: Zero if successful, or a negative error code on failure.
1258 */
1259int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1260 unsigned int cond,
1261 snd_pcm_hw_param_t var,
1262 const struct snd_pcm_hw_constraint_list *l)
1263{
1264 return snd_pcm_hw_rule_add(runtime, cond, var,
1265 snd_pcm_hw_rule_list, (void *)l,
1266 var, -1);
1267}
1268EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1269
1270static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1271 struct snd_pcm_hw_rule *rule)
1272{
1273 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1274 return snd_interval_ranges(hw_param_interval(params, rule->var),
1275 r->count, r->ranges, r->mask);
1276}
1277
1278
1279/**
1280 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1281 * @runtime: PCM runtime instance
1282 * @cond: condition bits
1283 * @var: hw_params variable to apply the list of range constraints
1284 * @r: ranges
1285 *
1286 * Apply the list of range constraints to an interval parameter.
1287 *
1288 * Return: Zero if successful, or a negative error code on failure.
1289 */
1290int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1291 unsigned int cond,
1292 snd_pcm_hw_param_t var,
1293 const struct snd_pcm_hw_constraint_ranges *r)
1294{
1295 return snd_pcm_hw_rule_add(runtime, cond, var,
1296 snd_pcm_hw_rule_ranges, (void *)r,
1297 var, -1);
1298}
1299EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1300
1301static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1302 struct snd_pcm_hw_rule *rule)
1303{
1304 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1305 unsigned int num = 0, den = 0;
1306 int err;
1307 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1308 r->nrats, r->rats, &num, &den);
1309 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1310 params->rate_num = num;
1311 params->rate_den = den;
1312 }
1313 return err;
1314}
1315
1316/**
1317 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the ratnums constraint
1321 * @r: struct snd_ratnums constriants
1322 *
1323 * Return: Zero if successful, or a negative error code on failure.
1324 */
1325int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1326 unsigned int cond,
1327 snd_pcm_hw_param_t var,
1328 const struct snd_pcm_hw_constraint_ratnums *r)
1329{
1330 return snd_pcm_hw_rule_add(runtime, cond, var,
1331 snd_pcm_hw_rule_ratnums, (void *)r,
1332 var, -1);
1333}
1334EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1335
1336static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1337 struct snd_pcm_hw_rule *rule)
1338{
1339 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1340 unsigned int num = 0, den = 0;
1341 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1342 r->nrats, r->rats, &num, &den);
1343 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1344 params->rate_num = num;
1345 params->rate_den = den;
1346 }
1347 return err;
1348}
1349
1350/**
1351 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1352 * @runtime: PCM runtime instance
1353 * @cond: condition bits
1354 * @var: hw_params variable to apply the ratdens constraint
1355 * @r: struct snd_ratdens constriants
1356 *
1357 * Return: Zero if successful, or a negative error code on failure.
1358 */
1359int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1360 unsigned int cond,
1361 snd_pcm_hw_param_t var,
1362 const struct snd_pcm_hw_constraint_ratdens *r)
1363{
1364 return snd_pcm_hw_rule_add(runtime, cond, var,
1365 snd_pcm_hw_rule_ratdens, (void *)r,
1366 var, -1);
1367}
1368EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1369
1370static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1371 struct snd_pcm_hw_rule *rule)
1372{
1373 unsigned int l = (unsigned long) rule->private;
1374 int width = l & 0xffff;
1375 unsigned int msbits = l >> 16;
1376 const struct snd_interval *i =
1377 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1378
1379 if (!snd_interval_single(i))
1380 return 0;
1381
1382 if ((snd_interval_value(i) == width) ||
1383 (width == 0 && snd_interval_value(i) > msbits))
1384 params->msbits = min_not_zero(params->msbits, msbits);
1385
1386 return 0;
1387}
1388
1389/**
1390 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1391 * @runtime: PCM runtime instance
1392 * @cond: condition bits
1393 * @width: sample bits width
1394 * @msbits: msbits width
1395 *
1396 * This constraint will set the number of most significant bits (msbits) if a
1397 * sample format with the specified width has been select. If width is set to 0
1398 * the msbits will be set for any sample format with a width larger than the
1399 * specified msbits.
1400 *
1401 * Return: Zero if successful, or a negative error code on failure.
1402 */
1403int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1404 unsigned int cond,
1405 unsigned int width,
1406 unsigned int msbits)
1407{
1408 unsigned long l = (msbits << 16) | width;
1409 return snd_pcm_hw_rule_add(runtime, cond, -1,
1410 snd_pcm_hw_rule_msbits,
1411 (void*) l,
1412 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1413}
1414EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1415
1416static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1417 struct snd_pcm_hw_rule *rule)
1418{
1419 unsigned long step = (unsigned long) rule->private;
1420 return snd_interval_step(hw_param_interval(params, rule->var), step);
1421}
1422
1423/**
1424 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1425 * @runtime: PCM runtime instance
1426 * @cond: condition bits
1427 * @var: hw_params variable to apply the step constraint
1428 * @step: step size
1429 *
1430 * Return: Zero if successful, or a negative error code on failure.
1431 */
1432int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1433 unsigned int cond,
1434 snd_pcm_hw_param_t var,
1435 unsigned long step)
1436{
1437 return snd_pcm_hw_rule_add(runtime, cond, var,
1438 snd_pcm_hw_rule_step, (void *) step,
1439 var, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1442
1443static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1444{
1445 static unsigned int pow2_sizes[] = {
1446 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1447 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1448 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1449 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1450 };
1451 return snd_interval_list(hw_param_interval(params, rule->var),
1452 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1453}
1454
1455/**
1456 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1457 * @runtime: PCM runtime instance
1458 * @cond: condition bits
1459 * @var: hw_params variable to apply the power-of-2 constraint
1460 *
1461 * Return: Zero if successful, or a negative error code on failure.
1462 */
1463int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1464 unsigned int cond,
1465 snd_pcm_hw_param_t var)
1466{
1467 return snd_pcm_hw_rule_add(runtime, cond, var,
1468 snd_pcm_hw_rule_pow2, NULL,
1469 var, -1);
1470}
1471EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1472
1473static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1474 struct snd_pcm_hw_rule *rule)
1475{
1476 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1477 struct snd_interval *rate;
1478
1479 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1480 return snd_interval_list(rate, 1, &base_rate, 0);
1481}
1482
1483/**
1484 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1485 * @runtime: PCM runtime instance
1486 * @base_rate: the rate at which the hardware does not resample
1487 *
1488 * Return: Zero if successful, or a negative error code on failure.
1489 */
1490int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1491 unsigned int base_rate)
1492{
1493 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1494 SNDRV_PCM_HW_PARAM_RATE,
1495 snd_pcm_hw_rule_noresample_func,
1496 (void *)(uintptr_t)base_rate,
1497 SNDRV_PCM_HW_PARAM_RATE, -1);
1498}
1499EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1500
1501static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1502 snd_pcm_hw_param_t var)
1503{
1504 if (hw_is_mask(var)) {
1505 snd_mask_any(hw_param_mask(params, var));
1506 params->cmask |= 1 << var;
1507 params->rmask |= 1 << var;
1508 return;
1509 }
1510 if (hw_is_interval(var)) {
1511 snd_interval_any(hw_param_interval(params, var));
1512 params->cmask |= 1 << var;
1513 params->rmask |= 1 << var;
1514 return;
1515 }
1516 snd_BUG();
1517}
1518
1519void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1520{
1521 unsigned int k;
1522 memset(params, 0, sizeof(*params));
1523 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1524 _snd_pcm_hw_param_any(params, k);
1525 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1526 _snd_pcm_hw_param_any(params, k);
1527 params->info = ~0U;
1528}
1529EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1530
1531/**
1532 * snd_pcm_hw_param_value - return @params field @var value
1533 * @params: the hw_params instance
1534 * @var: parameter to retrieve
1535 * @dir: pointer to the direction (-1,0,1) or %NULL
1536 *
1537 * Return: The value for field @var if it's fixed in configuration space
1538 * defined by @params. -%EINVAL otherwise.
1539 */
1540int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1541 snd_pcm_hw_param_t var, int *dir)
1542{
1543 if (hw_is_mask(var)) {
1544 const struct snd_mask *mask = hw_param_mask_c(params, var);
1545 if (!snd_mask_single(mask))
1546 return -EINVAL;
1547 if (dir)
1548 *dir = 0;
1549 return snd_mask_value(mask);
1550 }
1551 if (hw_is_interval(var)) {
1552 const struct snd_interval *i = hw_param_interval_c(params, var);
1553 if (!snd_interval_single(i))
1554 return -EINVAL;
1555 if (dir)
1556 *dir = i->openmin;
1557 return snd_interval_value(i);
1558 }
1559 return -EINVAL;
1560}
1561EXPORT_SYMBOL(snd_pcm_hw_param_value);
1562
1563void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1564 snd_pcm_hw_param_t var)
1565{
1566 if (hw_is_mask(var)) {
1567 snd_mask_none(hw_param_mask(params, var));
1568 params->cmask |= 1 << var;
1569 params->rmask |= 1 << var;
1570 } else if (hw_is_interval(var)) {
1571 snd_interval_none(hw_param_interval(params, var));
1572 params->cmask |= 1 << var;
1573 params->rmask |= 1 << var;
1574 } else {
1575 snd_BUG();
1576 }
1577}
1578EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1579
1580static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1581 snd_pcm_hw_param_t var)
1582{
1583 int changed;
1584 if (hw_is_mask(var))
1585 changed = snd_mask_refine_first(hw_param_mask(params, var));
1586 else if (hw_is_interval(var))
1587 changed = snd_interval_refine_first(hw_param_interval(params, var));
1588 else
1589 return -EINVAL;
1590 if (changed > 0) {
1591 params->cmask |= 1 << var;
1592 params->rmask |= 1 << var;
1593 }
1594 return changed;
1595}
1596
1597
1598/**
1599 * snd_pcm_hw_param_first - refine config space and return minimum value
1600 * @pcm: PCM instance
1601 * @params: the hw_params instance
1602 * @var: parameter to retrieve
1603 * @dir: pointer to the direction (-1,0,1) or %NULL
1604 *
1605 * Inside configuration space defined by @params remove from @var all
1606 * values > minimum. Reduce configuration space accordingly.
1607 *
1608 * Return: The minimum, or a negative error code on failure.
1609 */
1610int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1611 struct snd_pcm_hw_params *params,
1612 snd_pcm_hw_param_t var, int *dir)
1613{
1614 int changed = _snd_pcm_hw_param_first(params, var);
1615 if (changed < 0)
1616 return changed;
1617 if (params->rmask) {
1618 int err = snd_pcm_hw_refine(pcm, params);
1619 if (err < 0)
1620 return err;
1621 }
1622 return snd_pcm_hw_param_value(params, var, dir);
1623}
1624EXPORT_SYMBOL(snd_pcm_hw_param_first);
1625
1626static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var)
1628{
1629 int changed;
1630 if (hw_is_mask(var))
1631 changed = snd_mask_refine_last(hw_param_mask(params, var));
1632 else if (hw_is_interval(var))
1633 changed = snd_interval_refine_last(hw_param_interval(params, var));
1634 else
1635 return -EINVAL;
1636 if (changed > 0) {
1637 params->cmask |= 1 << var;
1638 params->rmask |= 1 << var;
1639 }
1640 return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_last - refine config space and return maximum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values < maximum. Reduce configuration space accordingly.
1653 *
1654 * Return: The maximum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1657 struct snd_pcm_hw_params *params,
1658 snd_pcm_hw_param_t var, int *dir)
1659{
1660 int changed = _snd_pcm_hw_param_last(params, var);
1661 if (changed < 0)
1662 return changed;
1663 if (params->rmask) {
1664 int err = snd_pcm_hw_refine(pcm, params);
1665 if (err < 0)
1666 return err;
1667 }
1668 return snd_pcm_hw_param_value(params, var, dir);
1669}
1670EXPORT_SYMBOL(snd_pcm_hw_param_last);
1671
1672static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1673 void *arg)
1674{
1675 struct snd_pcm_runtime *runtime = substream->runtime;
1676 unsigned long flags;
1677 snd_pcm_stream_lock_irqsave(substream, flags);
1678 if (snd_pcm_running(substream) &&
1679 snd_pcm_update_hw_ptr(substream) >= 0)
1680 runtime->status->hw_ptr %= runtime->buffer_size;
1681 else {
1682 runtime->status->hw_ptr = 0;
1683 runtime->hw_ptr_wrap = 0;
1684 }
1685 snd_pcm_stream_unlock_irqrestore(substream, flags);
1686 return 0;
1687}
1688
1689static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1690 void *arg)
1691{
1692 struct snd_pcm_channel_info *info = arg;
1693 struct snd_pcm_runtime *runtime = substream->runtime;
1694 int width;
1695 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1696 info->offset = -1;
1697 return 0;
1698 }
1699 width = snd_pcm_format_physical_width(runtime->format);
1700 if (width < 0)
1701 return width;
1702 info->offset = 0;
1703 switch (runtime->access) {
1704 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1705 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1706 info->first = info->channel * width;
1707 info->step = runtime->channels * width;
1708 break;
1709 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1710 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1711 {
1712 size_t size = runtime->dma_bytes / runtime->channels;
1713 info->first = info->channel * size * 8;
1714 info->step = width;
1715 break;
1716 }
1717 default:
1718 snd_BUG();
1719 break;
1720 }
1721 return 0;
1722}
1723
1724static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1725 void *arg)
1726{
1727 struct snd_pcm_hw_params *params = arg;
1728 snd_pcm_format_t format;
1729 int channels;
1730 ssize_t frame_size;
1731
1732 params->fifo_size = substream->runtime->hw.fifo_size;
1733 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1734 format = params_format(params);
1735 channels = params_channels(params);
1736 frame_size = snd_pcm_format_size(format, channels);
1737 if (frame_size > 0)
1738 params->fifo_size /= (unsigned)frame_size;
1739 }
1740 return 0;
1741}
1742
1743/**
1744 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1745 * @substream: the pcm substream instance
1746 * @cmd: ioctl command
1747 * @arg: ioctl argument
1748 *
1749 * Processes the generic ioctl commands for PCM.
1750 * Can be passed as the ioctl callback for PCM ops.
1751 *
1752 * Return: Zero if successful, or a negative error code on failure.
1753 */
1754int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1755 unsigned int cmd, void *arg)
1756{
1757 switch (cmd) {
1758 case SNDRV_PCM_IOCTL1_RESET:
1759 return snd_pcm_lib_ioctl_reset(substream, arg);
1760 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1761 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1762 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1763 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1764 }
1765 return -ENXIO;
1766}
1767EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1768
1769/**
1770 * snd_pcm_period_elapsed - update the pcm status for the next period
1771 * @substream: the pcm substream instance
1772 *
1773 * This function is called from the interrupt handler when the
1774 * PCM has processed the period size. It will update the current
1775 * pointer, wake up sleepers, etc.
1776 *
1777 * Even if more than one periods have elapsed since the last call, you
1778 * have to call this only once.
1779 */
1780void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1781{
1782 struct snd_pcm_runtime *runtime;
1783 unsigned long flags;
1784
1785 if (snd_BUG_ON(!substream))
1786 return;
1787
1788 snd_pcm_stream_lock_irqsave(substream, flags);
1789 if (PCM_RUNTIME_CHECK(substream))
1790 goto _unlock;
1791 runtime = substream->runtime;
1792
1793 if (!snd_pcm_running(substream) ||
1794 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1795 goto _end;
1796
1797#ifdef CONFIG_SND_PCM_TIMER
1798 if (substream->timer_running)
1799 snd_timer_interrupt(substream->timer, 1);
1800#endif
1801 _end:
1802 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1803 _unlock:
1804 snd_pcm_stream_unlock_irqrestore(substream, flags);
1805}
1806EXPORT_SYMBOL(snd_pcm_period_elapsed);
1807
1808/*
1809 * Wait until avail_min data becomes available
1810 * Returns a negative error code if any error occurs during operation.
1811 * The available space is stored on availp. When err = 0 and avail = 0
1812 * on the capture stream, it indicates the stream is in DRAINING state.
1813 */
1814static int wait_for_avail(struct snd_pcm_substream *substream,
1815 snd_pcm_uframes_t *availp)
1816{
1817 struct snd_pcm_runtime *runtime = substream->runtime;
1818 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1819 wait_queue_entry_t wait;
1820 int err = 0;
1821 snd_pcm_uframes_t avail = 0;
1822 long wait_time, tout;
1823
1824 init_waitqueue_entry(&wait, current);
1825 set_current_state(TASK_INTERRUPTIBLE);
1826 add_wait_queue(&runtime->tsleep, &wait);
1827
1828 if (runtime->no_period_wakeup)
1829 wait_time = MAX_SCHEDULE_TIMEOUT;
1830 else {
1831 /* use wait time from substream if available */
1832 if (substream->wait_time) {
1833 wait_time = substream->wait_time;
1834 } else {
1835 wait_time = 10;
1836
1837 if (runtime->rate) {
1838 long t = runtime->period_size * 2 /
1839 runtime->rate;
1840 wait_time = max(t, wait_time);
1841 }
1842 wait_time = msecs_to_jiffies(wait_time * 1000);
1843 }
1844 }
1845
1846 for (;;) {
1847 if (signal_pending(current)) {
1848 err = -ERESTARTSYS;
1849 break;
1850 }
1851
1852 /*
1853 * We need to check if space became available already
1854 * (and thus the wakeup happened already) first to close
1855 * the race of space already having become available.
1856 * This check must happen after been added to the waitqueue
1857 * and having current state be INTERRUPTIBLE.
1858 */
1859 avail = snd_pcm_avail(substream);
1860 if (avail >= runtime->twake)
1861 break;
1862 snd_pcm_stream_unlock_irq(substream);
1863
1864 tout = schedule_timeout(wait_time);
1865
1866 snd_pcm_stream_lock_irq(substream);
1867 set_current_state(TASK_INTERRUPTIBLE);
1868 switch (runtime->status->state) {
1869 case SNDRV_PCM_STATE_SUSPENDED:
1870 err = -ESTRPIPE;
1871 goto _endloop;
1872 case SNDRV_PCM_STATE_XRUN:
1873 err = -EPIPE;
1874 goto _endloop;
1875 case SNDRV_PCM_STATE_DRAINING:
1876 if (is_playback)
1877 err = -EPIPE;
1878 else
1879 avail = 0; /* indicate draining */
1880 goto _endloop;
1881 case SNDRV_PCM_STATE_OPEN:
1882 case SNDRV_PCM_STATE_SETUP:
1883 case SNDRV_PCM_STATE_DISCONNECTED:
1884 err = -EBADFD;
1885 goto _endloop;
1886 case SNDRV_PCM_STATE_PAUSED:
1887 continue;
1888 }
1889 if (!tout) {
1890 pcm_dbg(substream->pcm,
1891 "%s write error (DMA or IRQ trouble?)\n",
1892 is_playback ? "playback" : "capture");
1893 err = -EIO;
1894 break;
1895 }
1896 }
1897 _endloop:
1898 set_current_state(TASK_RUNNING);
1899 remove_wait_queue(&runtime->tsleep, &wait);
1900 *availp = avail;
1901 return err;
1902}
1903
1904typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1905 int channel, unsigned long hwoff,
1906 void *buf, unsigned long bytes);
1907
1908typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1909 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1910
1911/* calculate the target DMA-buffer position to be written/read */
1912static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1913 int channel, unsigned long hwoff)
1914{
1915 return runtime->dma_area + hwoff +
1916 channel * (runtime->dma_bytes / runtime->channels);
1917}
1918
1919/* default copy_user ops for write; used for both interleaved and non- modes */
1920static int default_write_copy(struct snd_pcm_substream *substream,
1921 int channel, unsigned long hwoff,
1922 void *buf, unsigned long bytes)
1923{
1924 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1925 (void __user *)buf, bytes))
1926 return -EFAULT;
1927 return 0;
1928}
1929
1930/* default copy_kernel ops for write */
1931static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1932 int channel, unsigned long hwoff,
1933 void *buf, unsigned long bytes)
1934{
1935 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1936 return 0;
1937}
1938
1939/* fill silence instead of copy data; called as a transfer helper
1940 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1941 * a NULL buffer is passed
1942 */
1943static int fill_silence(struct snd_pcm_substream *substream, int channel,
1944 unsigned long hwoff, void *buf, unsigned long bytes)
1945{
1946 struct snd_pcm_runtime *runtime = substream->runtime;
1947
1948 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1949 return 0;
1950 if (substream->ops->fill_silence)
1951 return substream->ops->fill_silence(substream, channel,
1952 hwoff, bytes);
1953
1954 snd_pcm_format_set_silence(runtime->format,
1955 get_dma_ptr(runtime, channel, hwoff),
1956 bytes_to_samples(runtime, bytes));
1957 return 0;
1958}
1959
1960/* default copy_user ops for read; used for both interleaved and non- modes */
1961static int default_read_copy(struct snd_pcm_substream *substream,
1962 int channel, unsigned long hwoff,
1963 void *buf, unsigned long bytes)
1964{
1965 if (copy_to_user((void __user *)buf,
1966 get_dma_ptr(substream->runtime, channel, hwoff),
1967 bytes))
1968 return -EFAULT;
1969 return 0;
1970}
1971
1972/* default copy_kernel ops for read */
1973static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1974 int channel, unsigned long hwoff,
1975 void *buf, unsigned long bytes)
1976{
1977 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1978 return 0;
1979}
1980
1981/* call transfer function with the converted pointers and sizes;
1982 * for interleaved mode, it's one shot for all samples
1983 */
1984static int interleaved_copy(struct snd_pcm_substream *substream,
1985 snd_pcm_uframes_t hwoff, void *data,
1986 snd_pcm_uframes_t off,
1987 snd_pcm_uframes_t frames,
1988 pcm_transfer_f transfer)
1989{
1990 struct snd_pcm_runtime *runtime = substream->runtime;
1991
1992 /* convert to bytes */
1993 hwoff = frames_to_bytes(runtime, hwoff);
1994 off = frames_to_bytes(runtime, off);
1995 frames = frames_to_bytes(runtime, frames);
1996 return transfer(substream, 0, hwoff, data + off, frames);
1997}
1998
1999/* call transfer function with the converted pointers and sizes for each
2000 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2001 */
2002static int noninterleaved_copy(struct snd_pcm_substream *substream,
2003 snd_pcm_uframes_t hwoff, void *data,
2004 snd_pcm_uframes_t off,
2005 snd_pcm_uframes_t frames,
2006 pcm_transfer_f transfer)
2007{
2008 struct snd_pcm_runtime *runtime = substream->runtime;
2009 int channels = runtime->channels;
2010 void **bufs = data;
2011 int c, err;
2012
2013 /* convert to bytes; note that it's not frames_to_bytes() here.
2014 * in non-interleaved mode, we copy for each channel, thus
2015 * each copy is n_samples bytes x channels = whole frames.
2016 */
2017 off = samples_to_bytes(runtime, off);
2018 frames = samples_to_bytes(runtime, frames);
2019 hwoff = samples_to_bytes(runtime, hwoff);
2020 for (c = 0; c < channels; ++c, ++bufs) {
2021 if (!data || !*bufs)
2022 err = fill_silence(substream, c, hwoff, NULL, frames);
2023 else
2024 err = transfer(substream, c, hwoff, *bufs + off,
2025 frames);
2026 if (err < 0)
2027 return err;
2028 }
2029 return 0;
2030}
2031
2032/* fill silence on the given buffer position;
2033 * called from snd_pcm_playback_silence()
2034 */
2035static int fill_silence_frames(struct snd_pcm_substream *substream,
2036 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2037{
2038 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2039 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2040 return interleaved_copy(substream, off, NULL, 0, frames,
2041 fill_silence);
2042 else
2043 return noninterleaved_copy(substream, off, NULL, 0, frames,
2044 fill_silence);
2045}
2046
2047/* sanity-check for read/write methods */
2048static int pcm_sanity_check(struct snd_pcm_substream *substream)
2049{
2050 struct snd_pcm_runtime *runtime;
2051 if (PCM_RUNTIME_CHECK(substream))
2052 return -ENXIO;
2053 runtime = substream->runtime;
2054 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2055 return -EINVAL;
2056 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2057 return -EBADFD;
2058 return 0;
2059}
2060
2061static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2062{
2063 switch (runtime->status->state) {
2064 case SNDRV_PCM_STATE_PREPARED:
2065 case SNDRV_PCM_STATE_RUNNING:
2066 case SNDRV_PCM_STATE_PAUSED:
2067 return 0;
2068 case SNDRV_PCM_STATE_XRUN:
2069 return -EPIPE;
2070 case SNDRV_PCM_STATE_SUSPENDED:
2071 return -ESTRPIPE;
2072 default:
2073 return -EBADFD;
2074 }
2075}
2076
2077/* update to the given appl_ptr and call ack callback if needed;
2078 * when an error is returned, take back to the original value
2079 */
2080int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2081 snd_pcm_uframes_t appl_ptr)
2082{
2083 struct snd_pcm_runtime *runtime = substream->runtime;
2084 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2085 int ret;
2086
2087 if (old_appl_ptr == appl_ptr)
2088 return 0;
2089
2090 runtime->control->appl_ptr = appl_ptr;
2091 if (substream->ops->ack) {
2092 ret = substream->ops->ack(substream);
2093 if (ret < 0) {
2094 runtime->control->appl_ptr = old_appl_ptr;
2095 return ret;
2096 }
2097 }
2098
2099 trace_applptr(substream, old_appl_ptr, appl_ptr);
2100
2101 return 0;
2102}
2103
2104/* the common loop for read/write data */
2105snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2106 void *data, bool interleaved,
2107 snd_pcm_uframes_t size, bool in_kernel)
2108{
2109 struct snd_pcm_runtime *runtime = substream->runtime;
2110 snd_pcm_uframes_t xfer = 0;
2111 snd_pcm_uframes_t offset = 0;
2112 snd_pcm_uframes_t avail;
2113 pcm_copy_f writer;
2114 pcm_transfer_f transfer;
2115 bool nonblock;
2116 bool is_playback;
2117 int err;
2118
2119 err = pcm_sanity_check(substream);
2120 if (err < 0)
2121 return err;
2122
2123 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2124 if (interleaved) {
2125 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2126 runtime->channels > 1)
2127 return -EINVAL;
2128 writer = interleaved_copy;
2129 } else {
2130 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2131 return -EINVAL;
2132 writer = noninterleaved_copy;
2133 }
2134
2135 if (!data) {
2136 if (is_playback)
2137 transfer = fill_silence;
2138 else
2139 return -EINVAL;
2140 } else if (in_kernel) {
2141 if (substream->ops->copy_kernel)
2142 transfer = substream->ops->copy_kernel;
2143 else
2144 transfer = is_playback ?
2145 default_write_copy_kernel : default_read_copy_kernel;
2146 } else {
2147 if (substream->ops->copy_user)
2148 transfer = (pcm_transfer_f)substream->ops->copy_user;
2149 else
2150 transfer = is_playback ?
2151 default_write_copy : default_read_copy;
2152 }
2153
2154 if (size == 0)
2155 return 0;
2156
2157 nonblock = !!(substream->f_flags & O_NONBLOCK);
2158
2159 snd_pcm_stream_lock_irq(substream);
2160 err = pcm_accessible_state(runtime);
2161 if (err < 0)
2162 goto _end_unlock;
2163
2164 runtime->twake = runtime->control->avail_min ? : 1;
2165 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2166 snd_pcm_update_hw_ptr(substream);
2167
2168 /*
2169 * If size < start_threshold, wait indefinitely. Another
2170 * thread may start capture
2171 */
2172 if (!is_playback &&
2173 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2174 size >= runtime->start_threshold) {
2175 err = snd_pcm_start(substream);
2176 if (err < 0)
2177 goto _end_unlock;
2178 }
2179
2180 avail = snd_pcm_avail(substream);
2181
2182 while (size > 0) {
2183 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2184 snd_pcm_uframes_t cont;
2185 if (!avail) {
2186 if (!is_playback &&
2187 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2188 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2189 goto _end_unlock;
2190 }
2191 if (nonblock) {
2192 err = -EAGAIN;
2193 goto _end_unlock;
2194 }
2195 runtime->twake = min_t(snd_pcm_uframes_t, size,
2196 runtime->control->avail_min ? : 1);
2197 err = wait_for_avail(substream, &avail);
2198 if (err < 0)
2199 goto _end_unlock;
2200 if (!avail)
2201 continue; /* draining */
2202 }
2203 frames = size > avail ? avail : size;
2204 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2205 appl_ofs = appl_ptr % runtime->buffer_size;
2206 cont = runtime->buffer_size - appl_ofs;
2207 if (frames > cont)
2208 frames = cont;
2209 if (snd_BUG_ON(!frames)) {
2210 err = -EINVAL;
2211 goto _end_unlock;
2212 }
2213 snd_pcm_stream_unlock_irq(substream);
2214 err = writer(substream, appl_ofs, data, offset, frames,
2215 transfer);
2216 snd_pcm_stream_lock_irq(substream);
2217 if (err < 0)
2218 goto _end_unlock;
2219 err = pcm_accessible_state(runtime);
2220 if (err < 0)
2221 goto _end_unlock;
2222 appl_ptr += frames;
2223 if (appl_ptr >= runtime->boundary)
2224 appl_ptr -= runtime->boundary;
2225 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2226 if (err < 0)
2227 goto _end_unlock;
2228
2229 offset += frames;
2230 size -= frames;
2231 xfer += frames;
2232 avail -= frames;
2233 if (is_playback &&
2234 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2235 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2236 err = snd_pcm_start(substream);
2237 if (err < 0)
2238 goto _end_unlock;
2239 }
2240 }
2241 _end_unlock:
2242 runtime->twake = 0;
2243 if (xfer > 0 && err >= 0)
2244 snd_pcm_update_state(substream, runtime);
2245 snd_pcm_stream_unlock_irq(substream);
2246 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2247}
2248EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2249
2250/*
2251 * standard channel mapping helpers
2252 */
2253
2254/* default channel maps for multi-channel playbacks, up to 8 channels */
2255const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2256 { .channels = 1,
2257 .map = { SNDRV_CHMAP_MONO } },
2258 { .channels = 2,
2259 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2260 { .channels = 4,
2261 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2262 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2263 { .channels = 6,
2264 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2265 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2266 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2267 { .channels = 8,
2268 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2269 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2270 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2271 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2272 { }
2273};
2274EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2275
2276/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2277const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2278 { .channels = 1,
2279 .map = { SNDRV_CHMAP_MONO } },
2280 { .channels = 2,
2281 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2282 { .channels = 4,
2283 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2284 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2285 { .channels = 6,
2286 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2287 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2288 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2289 { .channels = 8,
2290 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2291 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2292 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2293 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2294 { }
2295};
2296EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2297
2298static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2299{
2300 if (ch > info->max_channels)
2301 return false;
2302 return !info->channel_mask || (info->channel_mask & (1U << ch));
2303}
2304
2305static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2306 struct snd_ctl_elem_info *uinfo)
2307{
2308 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2309
2310 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2311 uinfo->count = 0;
2312 uinfo->count = info->max_channels;
2313 uinfo->value.integer.min = 0;
2314 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2315 return 0;
2316}
2317
2318/* get callback for channel map ctl element
2319 * stores the channel position firstly matching with the current channels
2320 */
2321static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2322 struct snd_ctl_elem_value *ucontrol)
2323{
2324 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2325 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2326 struct snd_pcm_substream *substream;
2327 const struct snd_pcm_chmap_elem *map;
2328
2329 if (!info->chmap)
2330 return -EINVAL;
2331 substream = snd_pcm_chmap_substream(info, idx);
2332 if (!substream)
2333 return -ENODEV;
2334 memset(ucontrol->value.integer.value, 0,
2335 sizeof(ucontrol->value.integer.value));
2336 if (!substream->runtime)
2337 return 0; /* no channels set */
2338 for (map = info->chmap; map->channels; map++) {
2339 int i;
2340 if (map->channels == substream->runtime->channels &&
2341 valid_chmap_channels(info, map->channels)) {
2342 for (i = 0; i < map->channels; i++)
2343 ucontrol->value.integer.value[i] = map->map[i];
2344 return 0;
2345 }
2346 }
2347 return -EINVAL;
2348}
2349
2350/* tlv callback for channel map ctl element
2351 * expands the pre-defined channel maps in a form of TLV
2352 */
2353static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2354 unsigned int size, unsigned int __user *tlv)
2355{
2356 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2357 const struct snd_pcm_chmap_elem *map;
2358 unsigned int __user *dst;
2359 int c, count = 0;
2360
2361 if (!info->chmap)
2362 return -EINVAL;
2363 if (size < 8)
2364 return -ENOMEM;
2365 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2366 return -EFAULT;
2367 size -= 8;
2368 dst = tlv + 2;
2369 for (map = info->chmap; map->channels; map++) {
2370 int chs_bytes = map->channels * 4;
2371 if (!valid_chmap_channels(info, map->channels))
2372 continue;
2373 if (size < 8)
2374 return -ENOMEM;
2375 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2376 put_user(chs_bytes, dst + 1))
2377 return -EFAULT;
2378 dst += 2;
2379 size -= 8;
2380 count += 8;
2381 if (size < chs_bytes)
2382 return -ENOMEM;
2383 size -= chs_bytes;
2384 count += chs_bytes;
2385 for (c = 0; c < map->channels; c++) {
2386 if (put_user(map->map[c], dst))
2387 return -EFAULT;
2388 dst++;
2389 }
2390 }
2391 if (put_user(count, tlv + 1))
2392 return -EFAULT;
2393 return 0;
2394}
2395
2396static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2397{
2398 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2399 info->pcm->streams[info->stream].chmap_kctl = NULL;
2400 kfree(info);
2401}
2402
2403/**
2404 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2405 * @pcm: the assigned PCM instance
2406 * @stream: stream direction
2407 * @chmap: channel map elements (for query)
2408 * @max_channels: the max number of channels for the stream
2409 * @private_value: the value passed to each kcontrol's private_value field
2410 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2411 *
2412 * Create channel-mapping control elements assigned to the given PCM stream(s).
2413 * Return: Zero if successful, or a negative error value.
2414 */
2415int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2416 const struct snd_pcm_chmap_elem *chmap,
2417 int max_channels,
2418 unsigned long private_value,
2419 struct snd_pcm_chmap **info_ret)
2420{
2421 struct snd_pcm_chmap *info;
2422 struct snd_kcontrol_new knew = {
2423 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2424 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2425 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2426 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2427 .info = pcm_chmap_ctl_info,
2428 .get = pcm_chmap_ctl_get,
2429 .tlv.c = pcm_chmap_ctl_tlv,
2430 };
2431 int err;
2432
2433 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2434 return -EBUSY;
2435 info = kzalloc(sizeof(*info), GFP_KERNEL);
2436 if (!info)
2437 return -ENOMEM;
2438 info->pcm = pcm;
2439 info->stream = stream;
2440 info->chmap = chmap;
2441 info->max_channels = max_channels;
2442 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2443 knew.name = "Playback Channel Map";
2444 else
2445 knew.name = "Capture Channel Map";
2446 knew.device = pcm->device;
2447 knew.count = pcm->streams[stream].substream_count;
2448 knew.private_value = private_value;
2449 info->kctl = snd_ctl_new1(&knew, info);
2450 if (!info->kctl) {
2451 kfree(info);
2452 return -ENOMEM;
2453 }
2454 info->kctl->private_free = pcm_chmap_ctl_private_free;
2455 err = snd_ctl_add(pcm->card, info->kctl);
2456 if (err < 0)
2457 return err;
2458 pcm->streams[stream].chmap_kctl = info->kctl;
2459 if (info_ret)
2460 *info_ret = info;
2461 return 0;
2462}
2463EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36/*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46{
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
49 int err;
50
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
56 if (n < 0)
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
60 else
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
63 }
64 if (runtime->silence_filled >= runtime->buffer_size)
65 return;
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 return;
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
72 } else {
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
80 runtime->boundary;
81 } else {
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
90 } else {
91 runtime->silence_start = ofs;
92 }
93 }
94 frames = runtime->buffer_size - runtime->silence_filled;
95 }
96 if (snd_BUG_ON(frames > runtime->buffer_size))
97 return;
98 if (frames == 0)
99 return;
100 ofs = runtime->silence_start % runtime->buffer_size;
101 while (frames > 0) {
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 runtime->silence_filled += transfer;
106 frames -= transfer;
107 ofs = 0;
108 }
109 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
110}
111
112#ifdef CONFIG_SND_DEBUG
113void snd_pcm_debug_name(struct snd_pcm_substream *substream,
114 char *name, size_t len)
115{
116 snprintf(name, len, "pcmC%dD%d%c:%d",
117 substream->pcm->card->number,
118 substream->pcm->device,
119 substream->stream ? 'c' : 'p',
120 substream->number);
121}
122EXPORT_SYMBOL(snd_pcm_debug_name);
123#endif
124
125#define XRUN_DEBUG_BASIC (1<<0)
126#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
127#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
128
129#ifdef CONFIG_SND_PCM_XRUN_DEBUG
130
131#define xrun_debug(substream, mask) \
132 ((substream)->pstr->xrun_debug & (mask))
133#else
134#define xrun_debug(substream, mask) 0
135#endif
136
137#define dump_stack_on_xrun(substream) do { \
138 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
139 dump_stack(); \
140 } while (0)
141
142/* call with stream lock held */
143void __snd_pcm_xrun(struct snd_pcm_substream *substream)
144{
145 struct snd_pcm_runtime *runtime = substream->runtime;
146
147 trace_xrun(substream);
148 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
149 struct timespec64 tstamp;
150
151 snd_pcm_gettime(runtime, &tstamp);
152 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
153 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
154 }
155 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
156 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
157 char name[16];
158 snd_pcm_debug_name(substream, name, sizeof(name));
159 pcm_warn(substream->pcm, "XRUN: %s\n", name);
160 dump_stack_on_xrun(substream);
161 }
162}
163
164#ifdef CONFIG_SND_PCM_XRUN_DEBUG
165#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
166 do { \
167 trace_hw_ptr_error(substream, reason); \
168 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
169 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
170 (in_interrupt) ? 'Q' : 'P', ##args); \
171 dump_stack_on_xrun(substream); \
172 } \
173 } while (0)
174
175#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
176
177#define hw_ptr_error(substream, fmt, args...) do { } while (0)
178
179#endif
180
181int snd_pcm_update_state(struct snd_pcm_substream *substream,
182 struct snd_pcm_runtime *runtime)
183{
184 snd_pcm_uframes_t avail;
185
186 avail = snd_pcm_avail(substream);
187 if (avail > runtime->avail_max)
188 runtime->avail_max = avail;
189 if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
190 if (avail >= runtime->buffer_size) {
191 snd_pcm_drain_done(substream);
192 return -EPIPE;
193 }
194 } else {
195 if (avail >= runtime->stop_threshold) {
196 __snd_pcm_xrun(substream);
197 return -EPIPE;
198 }
199 }
200 if (runtime->twake) {
201 if (avail >= runtime->twake)
202 wake_up(&runtime->tsleep);
203 } else if (avail >= runtime->control->avail_min)
204 wake_up(&runtime->sleep);
205 return 0;
206}
207
208static void update_audio_tstamp(struct snd_pcm_substream *substream,
209 struct timespec64 *curr_tstamp,
210 struct timespec64 *audio_tstamp)
211{
212 struct snd_pcm_runtime *runtime = substream->runtime;
213 u64 audio_frames, audio_nsecs;
214 struct timespec64 driver_tstamp;
215
216 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
217 return;
218
219 if (!(substream->ops->get_time_info) ||
220 (runtime->audio_tstamp_report.actual_type ==
221 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
222
223 /*
224 * provide audio timestamp derived from pointer position
225 * add delay only if requested
226 */
227
228 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
229
230 if (runtime->audio_tstamp_config.report_delay) {
231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 audio_frames -= runtime->delay;
233 else
234 audio_frames += runtime->delay;
235 }
236 audio_nsecs = div_u64(audio_frames * 1000000000LL,
237 runtime->rate);
238 *audio_tstamp = ns_to_timespec64(audio_nsecs);
239 }
240
241 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
242 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
243 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
244 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
245 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
246 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
247 }
248
249
250 /*
251 * re-take a driver timestamp to let apps detect if the reference tstamp
252 * read by low-level hardware was provided with a delay
253 */
254 snd_pcm_gettime(substream->runtime, &driver_tstamp);
255 runtime->driver_tstamp = driver_tstamp;
256}
257
258static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
259 unsigned int in_interrupt)
260{
261 struct snd_pcm_runtime *runtime = substream->runtime;
262 snd_pcm_uframes_t pos;
263 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
264 snd_pcm_sframes_t hdelta, delta;
265 unsigned long jdelta;
266 unsigned long curr_jiffies;
267 struct timespec64 curr_tstamp;
268 struct timespec64 audio_tstamp;
269 int crossed_boundary = 0;
270
271 old_hw_ptr = runtime->status->hw_ptr;
272
273 /*
274 * group pointer, time and jiffies reads to allow for more
275 * accurate correlations/corrections.
276 * The values are stored at the end of this routine after
277 * corrections for hw_ptr position
278 */
279 pos = substream->ops->pointer(substream);
280 curr_jiffies = jiffies;
281 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
282 if ((substream->ops->get_time_info) &&
283 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
284 substream->ops->get_time_info(substream, &curr_tstamp,
285 &audio_tstamp,
286 &runtime->audio_tstamp_config,
287 &runtime->audio_tstamp_report);
288
289 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
290 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
291 snd_pcm_gettime(runtime, &curr_tstamp);
292 } else
293 snd_pcm_gettime(runtime, &curr_tstamp);
294 }
295
296 if (pos == SNDRV_PCM_POS_XRUN) {
297 __snd_pcm_xrun(substream);
298 return -EPIPE;
299 }
300 if (pos >= runtime->buffer_size) {
301 if (printk_ratelimit()) {
302 char name[16];
303 snd_pcm_debug_name(substream, name, sizeof(name));
304 pcm_err(substream->pcm,
305 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
306 name, pos, runtime->buffer_size,
307 runtime->period_size);
308 }
309 pos = 0;
310 }
311 pos -= pos % runtime->min_align;
312 trace_hwptr(substream, pos, in_interrupt);
313 hw_base = runtime->hw_ptr_base;
314 new_hw_ptr = hw_base + pos;
315 if (in_interrupt) {
316 /* we know that one period was processed */
317 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
318 delta = runtime->hw_ptr_interrupt + runtime->period_size;
319 if (delta > new_hw_ptr) {
320 /* check for double acknowledged interrupts */
321 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
322 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
323 hw_base += runtime->buffer_size;
324 if (hw_base >= runtime->boundary) {
325 hw_base = 0;
326 crossed_boundary++;
327 }
328 new_hw_ptr = hw_base + pos;
329 goto __delta;
330 }
331 }
332 }
333 /* new_hw_ptr might be lower than old_hw_ptr in case when */
334 /* pointer crosses the end of the ring buffer */
335 if (new_hw_ptr < old_hw_ptr) {
336 hw_base += runtime->buffer_size;
337 if (hw_base >= runtime->boundary) {
338 hw_base = 0;
339 crossed_boundary++;
340 }
341 new_hw_ptr = hw_base + pos;
342 }
343 __delta:
344 delta = new_hw_ptr - old_hw_ptr;
345 if (delta < 0)
346 delta += runtime->boundary;
347
348 if (runtime->no_period_wakeup) {
349 snd_pcm_sframes_t xrun_threshold;
350 /*
351 * Without regular period interrupts, we have to check
352 * the elapsed time to detect xruns.
353 */
354 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
355 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
356 goto no_delta_check;
357 hdelta = jdelta - delta * HZ / runtime->rate;
358 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
359 while (hdelta > xrun_threshold) {
360 delta += runtime->buffer_size;
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary) {
363 hw_base = 0;
364 crossed_boundary++;
365 }
366 new_hw_ptr = hw_base + pos;
367 hdelta -= runtime->hw_ptr_buffer_jiffies;
368 }
369 goto no_delta_check;
370 }
371
372 /* something must be really wrong */
373 if (delta >= runtime->buffer_size + runtime->period_size) {
374 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
375 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
376 substream->stream, (long)pos,
377 (long)new_hw_ptr, (long)old_hw_ptr);
378 return 0;
379 }
380
381 /* Do jiffies check only in xrun_debug mode */
382 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
383 goto no_jiffies_check;
384
385 /* Skip the jiffies check for hardwares with BATCH flag.
386 * Such hardware usually just increases the position at each IRQ,
387 * thus it can't give any strange position.
388 */
389 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
390 goto no_jiffies_check;
391 hdelta = delta;
392 if (hdelta < runtime->delay)
393 goto no_jiffies_check;
394 hdelta -= runtime->delay;
395 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
396 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
397 delta = jdelta /
398 (((runtime->period_size * HZ) / runtime->rate)
399 + HZ/100);
400 /* move new_hw_ptr according jiffies not pos variable */
401 new_hw_ptr = old_hw_ptr;
402 hw_base = delta;
403 /* use loop to avoid checks for delta overflows */
404 /* the delta value is small or zero in most cases */
405 while (delta > 0) {
406 new_hw_ptr += runtime->period_size;
407 if (new_hw_ptr >= runtime->boundary) {
408 new_hw_ptr -= runtime->boundary;
409 crossed_boundary--;
410 }
411 delta--;
412 }
413 /* align hw_base to buffer_size */
414 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
415 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
416 (long)pos, (long)hdelta,
417 (long)runtime->period_size, jdelta,
418 ((hdelta * HZ) / runtime->rate), hw_base,
419 (unsigned long)old_hw_ptr,
420 (unsigned long)new_hw_ptr);
421 /* reset values to proper state */
422 delta = 0;
423 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
424 }
425 no_jiffies_check:
426 if (delta > runtime->period_size + runtime->period_size / 2) {
427 hw_ptr_error(substream, in_interrupt,
428 "Lost interrupts?",
429 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
430 substream->stream, (long)delta,
431 (long)new_hw_ptr,
432 (long)old_hw_ptr);
433 }
434
435 no_delta_check:
436 if (runtime->status->hw_ptr == new_hw_ptr) {
437 runtime->hw_ptr_jiffies = curr_jiffies;
438 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
439 return 0;
440 }
441
442 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
443 runtime->silence_size > 0)
444 snd_pcm_playback_silence(substream, new_hw_ptr);
445
446 if (in_interrupt) {
447 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
448 if (delta < 0)
449 delta += runtime->boundary;
450 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
451 runtime->hw_ptr_interrupt += delta;
452 if (runtime->hw_ptr_interrupt >= runtime->boundary)
453 runtime->hw_ptr_interrupt -= runtime->boundary;
454 }
455 runtime->hw_ptr_base = hw_base;
456 runtime->status->hw_ptr = new_hw_ptr;
457 runtime->hw_ptr_jiffies = curr_jiffies;
458 if (crossed_boundary) {
459 snd_BUG_ON(crossed_boundary != 1);
460 runtime->hw_ptr_wrap += runtime->boundary;
461 }
462
463 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464
465 return snd_pcm_update_state(substream, runtime);
466}
467
468/* CAUTION: call it with irq disabled */
469int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
470{
471 return snd_pcm_update_hw_ptr0(substream, 0);
472}
473
474/**
475 * snd_pcm_set_ops - set the PCM operators
476 * @pcm: the pcm instance
477 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
478 * @ops: the operator table
479 *
480 * Sets the given PCM operators to the pcm instance.
481 */
482void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
483 const struct snd_pcm_ops *ops)
484{
485 struct snd_pcm_str *stream = &pcm->streams[direction];
486 struct snd_pcm_substream *substream;
487
488 for (substream = stream->substream; substream != NULL; substream = substream->next)
489 substream->ops = ops;
490}
491EXPORT_SYMBOL(snd_pcm_set_ops);
492
493/**
494 * snd_pcm_set_sync - set the PCM sync id
495 * @substream: the pcm substream
496 *
497 * Sets the PCM sync identifier for the card.
498 */
499void snd_pcm_set_sync(struct snd_pcm_substream *substream)
500{
501 struct snd_pcm_runtime *runtime = substream->runtime;
502
503 runtime->sync.id32[0] = substream->pcm->card->number;
504 runtime->sync.id32[1] = -1;
505 runtime->sync.id32[2] = -1;
506 runtime->sync.id32[3] = -1;
507}
508EXPORT_SYMBOL(snd_pcm_set_sync);
509
510/*
511 * Standard ioctl routine
512 */
513
514static inline unsigned int div32(unsigned int a, unsigned int b,
515 unsigned int *r)
516{
517 if (b == 0) {
518 *r = 0;
519 return UINT_MAX;
520 }
521 *r = a % b;
522 return a / b;
523}
524
525static inline unsigned int div_down(unsigned int a, unsigned int b)
526{
527 if (b == 0)
528 return UINT_MAX;
529 return a / b;
530}
531
532static inline unsigned int div_up(unsigned int a, unsigned int b)
533{
534 unsigned int r;
535 unsigned int q;
536 if (b == 0)
537 return UINT_MAX;
538 q = div32(a, b, &r);
539 if (r)
540 ++q;
541 return q;
542}
543
544static inline unsigned int mul(unsigned int a, unsigned int b)
545{
546 if (a == 0)
547 return 0;
548 if (div_down(UINT_MAX, a) < b)
549 return UINT_MAX;
550 return a * b;
551}
552
553static inline unsigned int muldiv32(unsigned int a, unsigned int b,
554 unsigned int c, unsigned int *r)
555{
556 u_int64_t n = (u_int64_t) a * b;
557 if (c == 0) {
558 *r = 0;
559 return UINT_MAX;
560 }
561 n = div_u64_rem(n, c, r);
562 if (n >= UINT_MAX) {
563 *r = 0;
564 return UINT_MAX;
565 }
566 return n;
567}
568
569/**
570 * snd_interval_refine - refine the interval value of configurator
571 * @i: the interval value to refine
572 * @v: the interval value to refer to
573 *
574 * Refines the interval value with the reference value.
575 * The interval is changed to the range satisfying both intervals.
576 * The interval status (min, max, integer, etc.) are evaluated.
577 *
578 * Return: Positive if the value is changed, zero if it's not changed, or a
579 * negative error code.
580 */
581int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
582{
583 int changed = 0;
584 if (snd_BUG_ON(snd_interval_empty(i)))
585 return -EINVAL;
586 if (i->min < v->min) {
587 i->min = v->min;
588 i->openmin = v->openmin;
589 changed = 1;
590 } else if (i->min == v->min && !i->openmin && v->openmin) {
591 i->openmin = 1;
592 changed = 1;
593 }
594 if (i->max > v->max) {
595 i->max = v->max;
596 i->openmax = v->openmax;
597 changed = 1;
598 } else if (i->max == v->max && !i->openmax && v->openmax) {
599 i->openmax = 1;
600 changed = 1;
601 }
602 if (!i->integer && v->integer) {
603 i->integer = 1;
604 changed = 1;
605 }
606 if (i->integer) {
607 if (i->openmin) {
608 i->min++;
609 i->openmin = 0;
610 }
611 if (i->openmax) {
612 i->max--;
613 i->openmax = 0;
614 }
615 } else if (!i->openmin && !i->openmax && i->min == i->max)
616 i->integer = 1;
617 if (snd_interval_checkempty(i)) {
618 snd_interval_none(i);
619 return -EINVAL;
620 }
621 return changed;
622}
623EXPORT_SYMBOL(snd_interval_refine);
624
625static int snd_interval_refine_first(struct snd_interval *i)
626{
627 const unsigned int last_max = i->max;
628
629 if (snd_BUG_ON(snd_interval_empty(i)))
630 return -EINVAL;
631 if (snd_interval_single(i))
632 return 0;
633 i->max = i->min;
634 if (i->openmin)
635 i->max++;
636 /* only exclude max value if also excluded before refine */
637 i->openmax = (i->openmax && i->max >= last_max);
638 return 1;
639}
640
641static int snd_interval_refine_last(struct snd_interval *i)
642{
643 const unsigned int last_min = i->min;
644
645 if (snd_BUG_ON(snd_interval_empty(i)))
646 return -EINVAL;
647 if (snd_interval_single(i))
648 return 0;
649 i->min = i->max;
650 if (i->openmax)
651 i->min--;
652 /* only exclude min value if also excluded before refine */
653 i->openmin = (i->openmin && i->min <= last_min);
654 return 1;
655}
656
657void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
658{
659 if (a->empty || b->empty) {
660 snd_interval_none(c);
661 return;
662 }
663 c->empty = 0;
664 c->min = mul(a->min, b->min);
665 c->openmin = (a->openmin || b->openmin);
666 c->max = mul(a->max, b->max);
667 c->openmax = (a->openmax || b->openmax);
668 c->integer = (a->integer && b->integer);
669}
670
671/**
672 * snd_interval_div - refine the interval value with division
673 * @a: dividend
674 * @b: divisor
675 * @c: quotient
676 *
677 * c = a / b
678 *
679 * Returns non-zero if the value is changed, zero if not changed.
680 */
681void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
682{
683 unsigned int r;
684 if (a->empty || b->empty) {
685 snd_interval_none(c);
686 return;
687 }
688 c->empty = 0;
689 c->min = div32(a->min, b->max, &r);
690 c->openmin = (r || a->openmin || b->openmax);
691 if (b->min > 0) {
692 c->max = div32(a->max, b->min, &r);
693 if (r) {
694 c->max++;
695 c->openmax = 1;
696 } else
697 c->openmax = (a->openmax || b->openmin);
698 } else {
699 c->max = UINT_MAX;
700 c->openmax = 0;
701 }
702 c->integer = 0;
703}
704
705/**
706 * snd_interval_muldivk - refine the interval value
707 * @a: dividend 1
708 * @b: dividend 2
709 * @k: divisor (as integer)
710 * @c: result
711 *
712 * c = a * b / k
713 *
714 * Returns non-zero if the value is changed, zero if not changed.
715 */
716void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
717 unsigned int k, struct snd_interval *c)
718{
719 unsigned int r;
720 if (a->empty || b->empty) {
721 snd_interval_none(c);
722 return;
723 }
724 c->empty = 0;
725 c->min = muldiv32(a->min, b->min, k, &r);
726 c->openmin = (r || a->openmin || b->openmin);
727 c->max = muldiv32(a->max, b->max, k, &r);
728 if (r) {
729 c->max++;
730 c->openmax = 1;
731 } else
732 c->openmax = (a->openmax || b->openmax);
733 c->integer = 0;
734}
735
736/**
737 * snd_interval_mulkdiv - refine the interval value
738 * @a: dividend 1
739 * @k: dividend 2 (as integer)
740 * @b: divisor
741 * @c: result
742 *
743 * c = a * k / b
744 *
745 * Returns non-zero if the value is changed, zero if not changed.
746 */
747void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
748 const struct snd_interval *b, struct snd_interval *c)
749{
750 unsigned int r;
751 if (a->empty || b->empty) {
752 snd_interval_none(c);
753 return;
754 }
755 c->empty = 0;
756 c->min = muldiv32(a->min, k, b->max, &r);
757 c->openmin = (r || a->openmin || b->openmax);
758 if (b->min > 0) {
759 c->max = muldiv32(a->max, k, b->min, &r);
760 if (r) {
761 c->max++;
762 c->openmax = 1;
763 } else
764 c->openmax = (a->openmax || b->openmin);
765 } else {
766 c->max = UINT_MAX;
767 c->openmax = 0;
768 }
769 c->integer = 0;
770}
771
772/* ---- */
773
774
775/**
776 * snd_interval_ratnum - refine the interval value
777 * @i: interval to refine
778 * @rats_count: number of ratnum_t
779 * @rats: ratnum_t array
780 * @nump: pointer to store the resultant numerator
781 * @denp: pointer to store the resultant denominator
782 *
783 * Return: Positive if the value is changed, zero if it's not changed, or a
784 * negative error code.
785 */
786int snd_interval_ratnum(struct snd_interval *i,
787 unsigned int rats_count, const struct snd_ratnum *rats,
788 unsigned int *nump, unsigned int *denp)
789{
790 unsigned int best_num, best_den;
791 int best_diff;
792 unsigned int k;
793 struct snd_interval t;
794 int err;
795 unsigned int result_num, result_den;
796 int result_diff;
797
798 best_num = best_den = best_diff = 0;
799 for (k = 0; k < rats_count; ++k) {
800 unsigned int num = rats[k].num;
801 unsigned int den;
802 unsigned int q = i->min;
803 int diff;
804 if (q == 0)
805 q = 1;
806 den = div_up(num, q);
807 if (den < rats[k].den_min)
808 continue;
809 if (den > rats[k].den_max)
810 den = rats[k].den_max;
811 else {
812 unsigned int r;
813 r = (den - rats[k].den_min) % rats[k].den_step;
814 if (r != 0)
815 den -= r;
816 }
817 diff = num - q * den;
818 if (diff < 0)
819 diff = -diff;
820 if (best_num == 0 ||
821 diff * best_den < best_diff * den) {
822 best_diff = diff;
823 best_den = den;
824 best_num = num;
825 }
826 }
827 if (best_den == 0) {
828 i->empty = 1;
829 return -EINVAL;
830 }
831 t.min = div_down(best_num, best_den);
832 t.openmin = !!(best_num % best_den);
833
834 result_num = best_num;
835 result_diff = best_diff;
836 result_den = best_den;
837 best_num = best_den = best_diff = 0;
838 for (k = 0; k < rats_count; ++k) {
839 unsigned int num = rats[k].num;
840 unsigned int den;
841 unsigned int q = i->max;
842 int diff;
843 if (q == 0) {
844 i->empty = 1;
845 return -EINVAL;
846 }
847 den = div_down(num, q);
848 if (den > rats[k].den_max)
849 continue;
850 if (den < rats[k].den_min)
851 den = rats[k].den_min;
852 else {
853 unsigned int r;
854 r = (den - rats[k].den_min) % rats[k].den_step;
855 if (r != 0)
856 den += rats[k].den_step - r;
857 }
858 diff = q * den - num;
859 if (diff < 0)
860 diff = -diff;
861 if (best_num == 0 ||
862 diff * best_den < best_diff * den) {
863 best_diff = diff;
864 best_den = den;
865 best_num = num;
866 }
867 }
868 if (best_den == 0) {
869 i->empty = 1;
870 return -EINVAL;
871 }
872 t.max = div_up(best_num, best_den);
873 t.openmax = !!(best_num % best_den);
874 t.integer = 0;
875 err = snd_interval_refine(i, &t);
876 if (err < 0)
877 return err;
878
879 if (snd_interval_single(i)) {
880 if (best_diff * result_den < result_diff * best_den) {
881 result_num = best_num;
882 result_den = best_den;
883 }
884 if (nump)
885 *nump = result_num;
886 if (denp)
887 *denp = result_den;
888 }
889 return err;
890}
891EXPORT_SYMBOL(snd_interval_ratnum);
892
893/**
894 * snd_interval_ratden - refine the interval value
895 * @i: interval to refine
896 * @rats_count: number of struct ratden
897 * @rats: struct ratden array
898 * @nump: pointer to store the resultant numerator
899 * @denp: pointer to store the resultant denominator
900 *
901 * Return: Positive if the value is changed, zero if it's not changed, or a
902 * negative error code.
903 */
904static int snd_interval_ratden(struct snd_interval *i,
905 unsigned int rats_count,
906 const struct snd_ratden *rats,
907 unsigned int *nump, unsigned int *denp)
908{
909 unsigned int best_num, best_diff, best_den;
910 unsigned int k;
911 struct snd_interval t;
912 int err;
913
914 best_num = best_den = best_diff = 0;
915 for (k = 0; k < rats_count; ++k) {
916 unsigned int num;
917 unsigned int den = rats[k].den;
918 unsigned int q = i->min;
919 int diff;
920 num = mul(q, den);
921 if (num > rats[k].num_max)
922 continue;
923 if (num < rats[k].num_min)
924 num = rats[k].num_max;
925 else {
926 unsigned int r;
927 r = (num - rats[k].num_min) % rats[k].num_step;
928 if (r != 0)
929 num += rats[k].num_step - r;
930 }
931 diff = num - q * den;
932 if (best_num == 0 ||
933 diff * best_den < best_diff * den) {
934 best_diff = diff;
935 best_den = den;
936 best_num = num;
937 }
938 }
939 if (best_den == 0) {
940 i->empty = 1;
941 return -EINVAL;
942 }
943 t.min = div_down(best_num, best_den);
944 t.openmin = !!(best_num % best_den);
945
946 best_num = best_den = best_diff = 0;
947 for (k = 0; k < rats_count; ++k) {
948 unsigned int num;
949 unsigned int den = rats[k].den;
950 unsigned int q = i->max;
951 int diff;
952 num = mul(q, den);
953 if (num < rats[k].num_min)
954 continue;
955 if (num > rats[k].num_max)
956 num = rats[k].num_max;
957 else {
958 unsigned int r;
959 r = (num - rats[k].num_min) % rats[k].num_step;
960 if (r != 0)
961 num -= r;
962 }
963 diff = q * den - num;
964 if (best_num == 0 ||
965 diff * best_den < best_diff * den) {
966 best_diff = diff;
967 best_den = den;
968 best_num = num;
969 }
970 }
971 if (best_den == 0) {
972 i->empty = 1;
973 return -EINVAL;
974 }
975 t.max = div_up(best_num, best_den);
976 t.openmax = !!(best_num % best_den);
977 t.integer = 0;
978 err = snd_interval_refine(i, &t);
979 if (err < 0)
980 return err;
981
982 if (snd_interval_single(i)) {
983 if (nump)
984 *nump = best_num;
985 if (denp)
986 *denp = best_den;
987 }
988 return err;
989}
990
991/**
992 * snd_interval_list - refine the interval value from the list
993 * @i: the interval value to refine
994 * @count: the number of elements in the list
995 * @list: the value list
996 * @mask: the bit-mask to evaluate
997 *
998 * Refines the interval value from the list.
999 * When mask is non-zero, only the elements corresponding to bit 1 are
1000 * evaluated.
1001 *
1002 * Return: Positive if the value is changed, zero if it's not changed, or a
1003 * negative error code.
1004 */
1005int snd_interval_list(struct snd_interval *i, unsigned int count,
1006 const unsigned int *list, unsigned int mask)
1007{
1008 unsigned int k;
1009 struct snd_interval list_range;
1010
1011 if (!count) {
1012 i->empty = 1;
1013 return -EINVAL;
1014 }
1015 snd_interval_any(&list_range);
1016 list_range.min = UINT_MAX;
1017 list_range.max = 0;
1018 for (k = 0; k < count; k++) {
1019 if (mask && !(mask & (1 << k)))
1020 continue;
1021 if (!snd_interval_test(i, list[k]))
1022 continue;
1023 list_range.min = min(list_range.min, list[k]);
1024 list_range.max = max(list_range.max, list[k]);
1025 }
1026 return snd_interval_refine(i, &list_range);
1027}
1028EXPORT_SYMBOL(snd_interval_list);
1029
1030/**
1031 * snd_interval_ranges - refine the interval value from the list of ranges
1032 * @i: the interval value to refine
1033 * @count: the number of elements in the list of ranges
1034 * @ranges: the ranges list
1035 * @mask: the bit-mask to evaluate
1036 *
1037 * Refines the interval value from the list of ranges.
1038 * When mask is non-zero, only the elements corresponding to bit 1 are
1039 * evaluated.
1040 *
1041 * Return: Positive if the value is changed, zero if it's not changed, or a
1042 * negative error code.
1043 */
1044int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045 const struct snd_interval *ranges, unsigned int mask)
1046{
1047 unsigned int k;
1048 struct snd_interval range_union;
1049 struct snd_interval range;
1050
1051 if (!count) {
1052 snd_interval_none(i);
1053 return -EINVAL;
1054 }
1055 snd_interval_any(&range_union);
1056 range_union.min = UINT_MAX;
1057 range_union.max = 0;
1058 for (k = 0; k < count; k++) {
1059 if (mask && !(mask & (1 << k)))
1060 continue;
1061 snd_interval_copy(&range, &ranges[k]);
1062 if (snd_interval_refine(&range, i) < 0)
1063 continue;
1064 if (snd_interval_empty(&range))
1065 continue;
1066
1067 if (range.min < range_union.min) {
1068 range_union.min = range.min;
1069 range_union.openmin = 1;
1070 }
1071 if (range.min == range_union.min && !range.openmin)
1072 range_union.openmin = 0;
1073 if (range.max > range_union.max) {
1074 range_union.max = range.max;
1075 range_union.openmax = 1;
1076 }
1077 if (range.max == range_union.max && !range.openmax)
1078 range_union.openmax = 0;
1079 }
1080 return snd_interval_refine(i, &range_union);
1081}
1082EXPORT_SYMBOL(snd_interval_ranges);
1083
1084static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085{
1086 unsigned int n;
1087 int changed = 0;
1088 n = i->min % step;
1089 if (n != 0 || i->openmin) {
1090 i->min += step - n;
1091 i->openmin = 0;
1092 changed = 1;
1093 }
1094 n = i->max % step;
1095 if (n != 0 || i->openmax) {
1096 i->max -= n;
1097 i->openmax = 0;
1098 changed = 1;
1099 }
1100 if (snd_interval_checkempty(i)) {
1101 i->empty = 1;
1102 return -EINVAL;
1103 }
1104 return changed;
1105}
1106
1107/* Info constraints helpers */
1108
1109/**
1110 * snd_pcm_hw_rule_add - add the hw-constraint rule
1111 * @runtime: the pcm runtime instance
1112 * @cond: condition bits
1113 * @var: the variable to evaluate
1114 * @func: the evaluation function
1115 * @private: the private data pointer passed to function
1116 * @dep: the dependent variables
1117 *
1118 * Return: Zero if successful, or a negative error code on failure.
1119 */
1120int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121 int var,
1122 snd_pcm_hw_rule_func_t func, void *private,
1123 int dep, ...)
1124{
1125 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126 struct snd_pcm_hw_rule *c;
1127 unsigned int k;
1128 va_list args;
1129 va_start(args, dep);
1130 if (constrs->rules_num >= constrs->rules_all) {
1131 struct snd_pcm_hw_rule *new;
1132 unsigned int new_rules = constrs->rules_all + 16;
1133 new = krealloc_array(constrs->rules, new_rules,
1134 sizeof(*c), GFP_KERNEL);
1135 if (!new) {
1136 va_end(args);
1137 return -ENOMEM;
1138 }
1139 constrs->rules = new;
1140 constrs->rules_all = new_rules;
1141 }
1142 c = &constrs->rules[constrs->rules_num];
1143 c->cond = cond;
1144 c->func = func;
1145 c->var = var;
1146 c->private = private;
1147 k = 0;
1148 while (1) {
1149 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1150 va_end(args);
1151 return -EINVAL;
1152 }
1153 c->deps[k++] = dep;
1154 if (dep < 0)
1155 break;
1156 dep = va_arg(args, int);
1157 }
1158 constrs->rules_num++;
1159 va_end(args);
1160 return 0;
1161}
1162EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1163
1164/**
1165 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1166 * @runtime: PCM runtime instance
1167 * @var: hw_params variable to apply the mask
1168 * @mask: the bitmap mask
1169 *
1170 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1171 *
1172 * Return: Zero if successful, or a negative error code on failure.
1173 */
1174int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1175 u_int32_t mask)
1176{
1177 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1178 struct snd_mask *maskp = constrs_mask(constrs, var);
1179 *maskp->bits &= mask;
1180 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1181 if (*maskp->bits == 0)
1182 return -EINVAL;
1183 return 0;
1184}
1185
1186/**
1187 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1188 * @runtime: PCM runtime instance
1189 * @var: hw_params variable to apply the mask
1190 * @mask: the 64bit bitmap mask
1191 *
1192 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1193 *
1194 * Return: Zero if successful, or a negative error code on failure.
1195 */
1196int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1197 u_int64_t mask)
1198{
1199 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1200 struct snd_mask *maskp = constrs_mask(constrs, var);
1201 maskp->bits[0] &= (u_int32_t)mask;
1202 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1203 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1204 if (! maskp->bits[0] && ! maskp->bits[1])
1205 return -EINVAL;
1206 return 0;
1207}
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1209
1210/**
1211 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the integer constraint
1214 *
1215 * Apply the constraint of integer to an interval parameter.
1216 *
1217 * Return: Positive if the value is changed, zero if it's not changed, or a
1218 * negative error code.
1219 */
1220int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1221{
1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223 return snd_interval_setinteger(constrs_interval(constrs, var));
1224}
1225EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1226
1227/**
1228 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1229 * @runtime: PCM runtime instance
1230 * @var: hw_params variable to apply the range
1231 * @min: the minimal value
1232 * @max: the maximal value
1233 *
1234 * Apply the min/max range constraint to an interval parameter.
1235 *
1236 * Return: Positive if the value is changed, zero if it's not changed, or a
1237 * negative error code.
1238 */
1239int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1240 unsigned int min, unsigned int max)
1241{
1242 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1243 struct snd_interval t;
1244 t.min = min;
1245 t.max = max;
1246 t.openmin = t.openmax = 0;
1247 t.integer = 0;
1248 return snd_interval_refine(constrs_interval(constrs, var), &t);
1249}
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1251
1252static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1253 struct snd_pcm_hw_rule *rule)
1254{
1255 struct snd_pcm_hw_constraint_list *list = rule->private;
1256 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1257}
1258
1259
1260/**
1261 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1262 * @runtime: PCM runtime instance
1263 * @cond: condition bits
1264 * @var: hw_params variable to apply the list constraint
1265 * @l: list
1266 *
1267 * Apply the list of constraints to an interval parameter.
1268 *
1269 * Return: Zero if successful, or a negative error code on failure.
1270 */
1271int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1272 unsigned int cond,
1273 snd_pcm_hw_param_t var,
1274 const struct snd_pcm_hw_constraint_list *l)
1275{
1276 return snd_pcm_hw_rule_add(runtime, cond, var,
1277 snd_pcm_hw_rule_list, (void *)l,
1278 var, -1);
1279}
1280EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1281
1282static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1283 struct snd_pcm_hw_rule *rule)
1284{
1285 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1286 return snd_interval_ranges(hw_param_interval(params, rule->var),
1287 r->count, r->ranges, r->mask);
1288}
1289
1290
1291/**
1292 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1293 * @runtime: PCM runtime instance
1294 * @cond: condition bits
1295 * @var: hw_params variable to apply the list of range constraints
1296 * @r: ranges
1297 *
1298 * Apply the list of range constraints to an interval parameter.
1299 *
1300 * Return: Zero if successful, or a negative error code on failure.
1301 */
1302int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1303 unsigned int cond,
1304 snd_pcm_hw_param_t var,
1305 const struct snd_pcm_hw_constraint_ranges *r)
1306{
1307 return snd_pcm_hw_rule_add(runtime, cond, var,
1308 snd_pcm_hw_rule_ranges, (void *)r,
1309 var, -1);
1310}
1311EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1312
1313static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1314 struct snd_pcm_hw_rule *rule)
1315{
1316 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1317 unsigned int num = 0, den = 0;
1318 int err;
1319 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1320 r->nrats, r->rats, &num, &den);
1321 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1322 params->rate_num = num;
1323 params->rate_den = den;
1324 }
1325 return err;
1326}
1327
1328/**
1329 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1330 * @runtime: PCM runtime instance
1331 * @cond: condition bits
1332 * @var: hw_params variable to apply the ratnums constraint
1333 * @r: struct snd_ratnums constriants
1334 *
1335 * Return: Zero if successful, or a negative error code on failure.
1336 */
1337int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1338 unsigned int cond,
1339 snd_pcm_hw_param_t var,
1340 const struct snd_pcm_hw_constraint_ratnums *r)
1341{
1342 return snd_pcm_hw_rule_add(runtime, cond, var,
1343 snd_pcm_hw_rule_ratnums, (void *)r,
1344 var, -1);
1345}
1346EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1347
1348static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1349 struct snd_pcm_hw_rule *rule)
1350{
1351 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1352 unsigned int num = 0, den = 0;
1353 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1354 r->nrats, r->rats, &num, &den);
1355 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1356 params->rate_num = num;
1357 params->rate_den = den;
1358 }
1359 return err;
1360}
1361
1362/**
1363 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1364 * @runtime: PCM runtime instance
1365 * @cond: condition bits
1366 * @var: hw_params variable to apply the ratdens constraint
1367 * @r: struct snd_ratdens constriants
1368 *
1369 * Return: Zero if successful, or a negative error code on failure.
1370 */
1371int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1372 unsigned int cond,
1373 snd_pcm_hw_param_t var,
1374 const struct snd_pcm_hw_constraint_ratdens *r)
1375{
1376 return snd_pcm_hw_rule_add(runtime, cond, var,
1377 snd_pcm_hw_rule_ratdens, (void *)r,
1378 var, -1);
1379}
1380EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1381
1382static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1383 struct snd_pcm_hw_rule *rule)
1384{
1385 unsigned int l = (unsigned long) rule->private;
1386 int width = l & 0xffff;
1387 unsigned int msbits = l >> 16;
1388 const struct snd_interval *i =
1389 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1390
1391 if (!snd_interval_single(i))
1392 return 0;
1393
1394 if ((snd_interval_value(i) == width) ||
1395 (width == 0 && snd_interval_value(i) > msbits))
1396 params->msbits = min_not_zero(params->msbits, msbits);
1397
1398 return 0;
1399}
1400
1401/**
1402 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1403 * @runtime: PCM runtime instance
1404 * @cond: condition bits
1405 * @width: sample bits width
1406 * @msbits: msbits width
1407 *
1408 * This constraint will set the number of most significant bits (msbits) if a
1409 * sample format with the specified width has been select. If width is set to 0
1410 * the msbits will be set for any sample format with a width larger than the
1411 * specified msbits.
1412 *
1413 * Return: Zero if successful, or a negative error code on failure.
1414 */
1415int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1416 unsigned int cond,
1417 unsigned int width,
1418 unsigned int msbits)
1419{
1420 unsigned long l = (msbits << 16) | width;
1421 return snd_pcm_hw_rule_add(runtime, cond, -1,
1422 snd_pcm_hw_rule_msbits,
1423 (void*) l,
1424 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1425}
1426EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1427
1428static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1429 struct snd_pcm_hw_rule *rule)
1430{
1431 unsigned long step = (unsigned long) rule->private;
1432 return snd_interval_step(hw_param_interval(params, rule->var), step);
1433}
1434
1435/**
1436 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1437 * @runtime: PCM runtime instance
1438 * @cond: condition bits
1439 * @var: hw_params variable to apply the step constraint
1440 * @step: step size
1441 *
1442 * Return: Zero if successful, or a negative error code on failure.
1443 */
1444int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1445 unsigned int cond,
1446 snd_pcm_hw_param_t var,
1447 unsigned long step)
1448{
1449 return snd_pcm_hw_rule_add(runtime, cond, var,
1450 snd_pcm_hw_rule_step, (void *) step,
1451 var, -1);
1452}
1453EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454
1455static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456{
1457 static const unsigned int pow2_sizes[] = {
1458 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462 };
1463 return snd_interval_list(hw_param_interval(params, rule->var),
1464 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465}
1466
1467/**
1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469 * @runtime: PCM runtime instance
1470 * @cond: condition bits
1471 * @var: hw_params variable to apply the power-of-2 constraint
1472 *
1473 * Return: Zero if successful, or a negative error code on failure.
1474 */
1475int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476 unsigned int cond,
1477 snd_pcm_hw_param_t var)
1478{
1479 return snd_pcm_hw_rule_add(runtime, cond, var,
1480 snd_pcm_hw_rule_pow2, NULL,
1481 var, -1);
1482}
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486 struct snd_pcm_hw_rule *rule)
1487{
1488 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489 struct snd_interval *rate;
1490
1491 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492 return snd_interval_list(rate, 1, &base_rate, 0);
1493}
1494
1495/**
1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497 * @runtime: PCM runtime instance
1498 * @base_rate: the rate at which the hardware does not resample
1499 *
1500 * Return: Zero if successful, or a negative error code on failure.
1501 */
1502int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503 unsigned int base_rate)
1504{
1505 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506 SNDRV_PCM_HW_PARAM_RATE,
1507 snd_pcm_hw_rule_noresample_func,
1508 (void *)(uintptr_t)base_rate,
1509 SNDRV_PCM_HW_PARAM_RATE, -1);
1510}
1511EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514 snd_pcm_hw_param_t var)
1515{
1516 if (hw_is_mask(var)) {
1517 snd_mask_any(hw_param_mask(params, var));
1518 params->cmask |= 1 << var;
1519 params->rmask |= 1 << var;
1520 return;
1521 }
1522 if (hw_is_interval(var)) {
1523 snd_interval_any(hw_param_interval(params, var));
1524 params->cmask |= 1 << var;
1525 params->rmask |= 1 << var;
1526 return;
1527 }
1528 snd_BUG();
1529}
1530
1531void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532{
1533 unsigned int k;
1534 memset(params, 0, sizeof(*params));
1535 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536 _snd_pcm_hw_param_any(params, k);
1537 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538 _snd_pcm_hw_param_any(params, k);
1539 params->info = ~0U;
1540}
1541EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1542
1543/**
1544 * snd_pcm_hw_param_value - return @params field @var value
1545 * @params: the hw_params instance
1546 * @var: parameter to retrieve
1547 * @dir: pointer to the direction (-1,0,1) or %NULL
1548 *
1549 * Return: The value for field @var if it's fixed in configuration space
1550 * defined by @params. -%EINVAL otherwise.
1551 */
1552int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1553 snd_pcm_hw_param_t var, int *dir)
1554{
1555 if (hw_is_mask(var)) {
1556 const struct snd_mask *mask = hw_param_mask_c(params, var);
1557 if (!snd_mask_single(mask))
1558 return -EINVAL;
1559 if (dir)
1560 *dir = 0;
1561 return snd_mask_value(mask);
1562 }
1563 if (hw_is_interval(var)) {
1564 const struct snd_interval *i = hw_param_interval_c(params, var);
1565 if (!snd_interval_single(i))
1566 return -EINVAL;
1567 if (dir)
1568 *dir = i->openmin;
1569 return snd_interval_value(i);
1570 }
1571 return -EINVAL;
1572}
1573EXPORT_SYMBOL(snd_pcm_hw_param_value);
1574
1575void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1576 snd_pcm_hw_param_t var)
1577{
1578 if (hw_is_mask(var)) {
1579 snd_mask_none(hw_param_mask(params, var));
1580 params->cmask |= 1 << var;
1581 params->rmask |= 1 << var;
1582 } else if (hw_is_interval(var)) {
1583 snd_interval_none(hw_param_interval(params, var));
1584 params->cmask |= 1 << var;
1585 params->rmask |= 1 << var;
1586 } else {
1587 snd_BUG();
1588 }
1589}
1590EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1591
1592static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1593 snd_pcm_hw_param_t var)
1594{
1595 int changed;
1596 if (hw_is_mask(var))
1597 changed = snd_mask_refine_first(hw_param_mask(params, var));
1598 else if (hw_is_interval(var))
1599 changed = snd_interval_refine_first(hw_param_interval(params, var));
1600 else
1601 return -EINVAL;
1602 if (changed > 0) {
1603 params->cmask |= 1 << var;
1604 params->rmask |= 1 << var;
1605 }
1606 return changed;
1607}
1608
1609
1610/**
1611 * snd_pcm_hw_param_first - refine config space and return minimum value
1612 * @pcm: PCM instance
1613 * @params: the hw_params instance
1614 * @var: parameter to retrieve
1615 * @dir: pointer to the direction (-1,0,1) or %NULL
1616 *
1617 * Inside configuration space defined by @params remove from @var all
1618 * values > minimum. Reduce configuration space accordingly.
1619 *
1620 * Return: The minimum, or a negative error code on failure.
1621 */
1622int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1623 struct snd_pcm_hw_params *params,
1624 snd_pcm_hw_param_t var, int *dir)
1625{
1626 int changed = _snd_pcm_hw_param_first(params, var);
1627 if (changed < 0)
1628 return changed;
1629 if (params->rmask) {
1630 int err = snd_pcm_hw_refine(pcm, params);
1631 if (err < 0)
1632 return err;
1633 }
1634 return snd_pcm_hw_param_value(params, var, dir);
1635}
1636EXPORT_SYMBOL(snd_pcm_hw_param_first);
1637
1638static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1639 snd_pcm_hw_param_t var)
1640{
1641 int changed;
1642 if (hw_is_mask(var))
1643 changed = snd_mask_refine_last(hw_param_mask(params, var));
1644 else if (hw_is_interval(var))
1645 changed = snd_interval_refine_last(hw_param_interval(params, var));
1646 else
1647 return -EINVAL;
1648 if (changed > 0) {
1649 params->cmask |= 1 << var;
1650 params->rmask |= 1 << var;
1651 }
1652 return changed;
1653}
1654
1655
1656/**
1657 * snd_pcm_hw_param_last - refine config space and return maximum value
1658 * @pcm: PCM instance
1659 * @params: the hw_params instance
1660 * @var: parameter to retrieve
1661 * @dir: pointer to the direction (-1,0,1) or %NULL
1662 *
1663 * Inside configuration space defined by @params remove from @var all
1664 * values < maximum. Reduce configuration space accordingly.
1665 *
1666 * Return: The maximum, or a negative error code on failure.
1667 */
1668int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1669 struct snd_pcm_hw_params *params,
1670 snd_pcm_hw_param_t var, int *dir)
1671{
1672 int changed = _snd_pcm_hw_param_last(params, var);
1673 if (changed < 0)
1674 return changed;
1675 if (params->rmask) {
1676 int err = snd_pcm_hw_refine(pcm, params);
1677 if (err < 0)
1678 return err;
1679 }
1680 return snd_pcm_hw_param_value(params, var, dir);
1681}
1682EXPORT_SYMBOL(snd_pcm_hw_param_last);
1683
1684static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1685 void *arg)
1686{
1687 struct snd_pcm_runtime *runtime = substream->runtime;
1688 unsigned long flags;
1689 snd_pcm_stream_lock_irqsave(substream, flags);
1690 if (snd_pcm_running(substream) &&
1691 snd_pcm_update_hw_ptr(substream) >= 0)
1692 runtime->status->hw_ptr %= runtime->buffer_size;
1693 else {
1694 runtime->status->hw_ptr = 0;
1695 runtime->hw_ptr_wrap = 0;
1696 }
1697 snd_pcm_stream_unlock_irqrestore(substream, flags);
1698 return 0;
1699}
1700
1701static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1702 void *arg)
1703{
1704 struct snd_pcm_channel_info *info = arg;
1705 struct snd_pcm_runtime *runtime = substream->runtime;
1706 int width;
1707 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1708 info->offset = -1;
1709 return 0;
1710 }
1711 width = snd_pcm_format_physical_width(runtime->format);
1712 if (width < 0)
1713 return width;
1714 info->offset = 0;
1715 switch (runtime->access) {
1716 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1717 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1718 info->first = info->channel * width;
1719 info->step = runtime->channels * width;
1720 break;
1721 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1722 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1723 {
1724 size_t size = runtime->dma_bytes / runtime->channels;
1725 info->first = info->channel * size * 8;
1726 info->step = width;
1727 break;
1728 }
1729 default:
1730 snd_BUG();
1731 break;
1732 }
1733 return 0;
1734}
1735
1736static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1737 void *arg)
1738{
1739 struct snd_pcm_hw_params *params = arg;
1740 snd_pcm_format_t format;
1741 int channels;
1742 ssize_t frame_size;
1743
1744 params->fifo_size = substream->runtime->hw.fifo_size;
1745 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1746 format = params_format(params);
1747 channels = params_channels(params);
1748 frame_size = snd_pcm_format_size(format, channels);
1749 if (frame_size > 0)
1750 params->fifo_size /= frame_size;
1751 }
1752 return 0;
1753}
1754
1755/**
1756 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1757 * @substream: the pcm substream instance
1758 * @cmd: ioctl command
1759 * @arg: ioctl argument
1760 *
1761 * Processes the generic ioctl commands for PCM.
1762 * Can be passed as the ioctl callback for PCM ops.
1763 *
1764 * Return: Zero if successful, or a negative error code on failure.
1765 */
1766int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1767 unsigned int cmd, void *arg)
1768{
1769 switch (cmd) {
1770 case SNDRV_PCM_IOCTL1_RESET:
1771 return snd_pcm_lib_ioctl_reset(substream, arg);
1772 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1773 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1774 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1775 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1776 }
1777 return -ENXIO;
1778}
1779EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1780
1781/**
1782 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1783 * under acquired lock of PCM substream.
1784 * @substream: the instance of pcm substream.
1785 *
1786 * This function is called when the batch of audio data frames as the same size as the period of
1787 * buffer is already processed in audio data transmission.
1788 *
1789 * The call of function updates the status of runtime with the latest position of audio data
1790 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1791 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1792 * substream according to configured threshold.
1793 *
1794 * The function is intended to use for the case that PCM driver operates audio data frames under
1795 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1796 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1797 * since lock of PCM substream should be acquired in advance.
1798 *
1799 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1800 * function:
1801 *
1802 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1803 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1804 * - .get_time_info - to retrieve audio time stamp if needed.
1805 *
1806 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1807 */
1808void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1809{
1810 struct snd_pcm_runtime *runtime;
1811
1812 if (PCM_RUNTIME_CHECK(substream))
1813 return;
1814 runtime = substream->runtime;
1815
1816 if (!snd_pcm_running(substream) ||
1817 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1818 goto _end;
1819
1820#ifdef CONFIG_SND_PCM_TIMER
1821 if (substream->timer_running)
1822 snd_timer_interrupt(substream->timer, 1);
1823#endif
1824 _end:
1825 snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1826}
1827EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1828
1829/**
1830 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1831 * PCM substream.
1832 * @substream: the instance of PCM substream.
1833 *
1834 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1835 * acquiring lock of PCM substream voluntarily.
1836 *
1837 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1838 * the batch of audio data frames as the same size as the period of buffer is already processed in
1839 * audio data transmission.
1840 */
1841void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1842{
1843 unsigned long flags;
1844
1845 if (snd_BUG_ON(!substream))
1846 return;
1847
1848 snd_pcm_stream_lock_irqsave(substream, flags);
1849 snd_pcm_period_elapsed_under_stream_lock(substream);
1850 snd_pcm_stream_unlock_irqrestore(substream, flags);
1851}
1852EXPORT_SYMBOL(snd_pcm_period_elapsed);
1853
1854/*
1855 * Wait until avail_min data becomes available
1856 * Returns a negative error code if any error occurs during operation.
1857 * The available space is stored on availp. When err = 0 and avail = 0
1858 * on the capture stream, it indicates the stream is in DRAINING state.
1859 */
1860static int wait_for_avail(struct snd_pcm_substream *substream,
1861 snd_pcm_uframes_t *availp)
1862{
1863 struct snd_pcm_runtime *runtime = substream->runtime;
1864 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1865 wait_queue_entry_t wait;
1866 int err = 0;
1867 snd_pcm_uframes_t avail = 0;
1868 long wait_time, tout;
1869
1870 init_waitqueue_entry(&wait, current);
1871 set_current_state(TASK_INTERRUPTIBLE);
1872 add_wait_queue(&runtime->tsleep, &wait);
1873
1874 if (runtime->no_period_wakeup)
1875 wait_time = MAX_SCHEDULE_TIMEOUT;
1876 else {
1877 /* use wait time from substream if available */
1878 if (substream->wait_time) {
1879 wait_time = substream->wait_time;
1880 } else {
1881 wait_time = 10;
1882
1883 if (runtime->rate) {
1884 long t = runtime->period_size * 2 /
1885 runtime->rate;
1886 wait_time = max(t, wait_time);
1887 }
1888 wait_time = msecs_to_jiffies(wait_time * 1000);
1889 }
1890 }
1891
1892 for (;;) {
1893 if (signal_pending(current)) {
1894 err = -ERESTARTSYS;
1895 break;
1896 }
1897
1898 /*
1899 * We need to check if space became available already
1900 * (and thus the wakeup happened already) first to close
1901 * the race of space already having become available.
1902 * This check must happen after been added to the waitqueue
1903 * and having current state be INTERRUPTIBLE.
1904 */
1905 avail = snd_pcm_avail(substream);
1906 if (avail >= runtime->twake)
1907 break;
1908 snd_pcm_stream_unlock_irq(substream);
1909
1910 tout = schedule_timeout(wait_time);
1911
1912 snd_pcm_stream_lock_irq(substream);
1913 set_current_state(TASK_INTERRUPTIBLE);
1914 switch (runtime->state) {
1915 case SNDRV_PCM_STATE_SUSPENDED:
1916 err = -ESTRPIPE;
1917 goto _endloop;
1918 case SNDRV_PCM_STATE_XRUN:
1919 err = -EPIPE;
1920 goto _endloop;
1921 case SNDRV_PCM_STATE_DRAINING:
1922 if (is_playback)
1923 err = -EPIPE;
1924 else
1925 avail = 0; /* indicate draining */
1926 goto _endloop;
1927 case SNDRV_PCM_STATE_OPEN:
1928 case SNDRV_PCM_STATE_SETUP:
1929 case SNDRV_PCM_STATE_DISCONNECTED:
1930 err = -EBADFD;
1931 goto _endloop;
1932 case SNDRV_PCM_STATE_PAUSED:
1933 continue;
1934 }
1935 if (!tout) {
1936 pcm_dbg(substream->pcm,
1937 "%s write error (DMA or IRQ trouble?)\n",
1938 is_playback ? "playback" : "capture");
1939 err = -EIO;
1940 break;
1941 }
1942 }
1943 _endloop:
1944 set_current_state(TASK_RUNNING);
1945 remove_wait_queue(&runtime->tsleep, &wait);
1946 *availp = avail;
1947 return err;
1948}
1949
1950typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1951 int channel, unsigned long hwoff,
1952 void *buf, unsigned long bytes);
1953
1954typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1955 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1956
1957/* calculate the target DMA-buffer position to be written/read */
1958static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1959 int channel, unsigned long hwoff)
1960{
1961 return runtime->dma_area + hwoff +
1962 channel * (runtime->dma_bytes / runtime->channels);
1963}
1964
1965/* default copy_user ops for write; used for both interleaved and non- modes */
1966static int default_write_copy(struct snd_pcm_substream *substream,
1967 int channel, unsigned long hwoff,
1968 void *buf, unsigned long bytes)
1969{
1970 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1971 (void __user *)buf, bytes))
1972 return -EFAULT;
1973 return 0;
1974}
1975
1976/* default copy_kernel ops for write */
1977static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1978 int channel, unsigned long hwoff,
1979 void *buf, unsigned long bytes)
1980{
1981 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1982 return 0;
1983}
1984
1985/* fill silence instead of copy data; called as a transfer helper
1986 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1987 * a NULL buffer is passed
1988 */
1989static int fill_silence(struct snd_pcm_substream *substream, int channel,
1990 unsigned long hwoff, void *buf, unsigned long bytes)
1991{
1992 struct snd_pcm_runtime *runtime = substream->runtime;
1993
1994 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1995 return 0;
1996 if (substream->ops->fill_silence)
1997 return substream->ops->fill_silence(substream, channel,
1998 hwoff, bytes);
1999
2000 snd_pcm_format_set_silence(runtime->format,
2001 get_dma_ptr(runtime, channel, hwoff),
2002 bytes_to_samples(runtime, bytes));
2003 return 0;
2004}
2005
2006/* default copy_user ops for read; used for both interleaved and non- modes */
2007static int default_read_copy(struct snd_pcm_substream *substream,
2008 int channel, unsigned long hwoff,
2009 void *buf, unsigned long bytes)
2010{
2011 if (copy_to_user((void __user *)buf,
2012 get_dma_ptr(substream->runtime, channel, hwoff),
2013 bytes))
2014 return -EFAULT;
2015 return 0;
2016}
2017
2018/* default copy_kernel ops for read */
2019static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2020 int channel, unsigned long hwoff,
2021 void *buf, unsigned long bytes)
2022{
2023 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2024 return 0;
2025}
2026
2027/* call transfer function with the converted pointers and sizes;
2028 * for interleaved mode, it's one shot for all samples
2029 */
2030static int interleaved_copy(struct snd_pcm_substream *substream,
2031 snd_pcm_uframes_t hwoff, void *data,
2032 snd_pcm_uframes_t off,
2033 snd_pcm_uframes_t frames,
2034 pcm_transfer_f transfer)
2035{
2036 struct snd_pcm_runtime *runtime = substream->runtime;
2037
2038 /* convert to bytes */
2039 hwoff = frames_to_bytes(runtime, hwoff);
2040 off = frames_to_bytes(runtime, off);
2041 frames = frames_to_bytes(runtime, frames);
2042 return transfer(substream, 0, hwoff, data + off, frames);
2043}
2044
2045/* call transfer function with the converted pointers and sizes for each
2046 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2047 */
2048static int noninterleaved_copy(struct snd_pcm_substream *substream,
2049 snd_pcm_uframes_t hwoff, void *data,
2050 snd_pcm_uframes_t off,
2051 snd_pcm_uframes_t frames,
2052 pcm_transfer_f transfer)
2053{
2054 struct snd_pcm_runtime *runtime = substream->runtime;
2055 int channels = runtime->channels;
2056 void **bufs = data;
2057 int c, err;
2058
2059 /* convert to bytes; note that it's not frames_to_bytes() here.
2060 * in non-interleaved mode, we copy for each channel, thus
2061 * each copy is n_samples bytes x channels = whole frames.
2062 */
2063 off = samples_to_bytes(runtime, off);
2064 frames = samples_to_bytes(runtime, frames);
2065 hwoff = samples_to_bytes(runtime, hwoff);
2066 for (c = 0; c < channels; ++c, ++bufs) {
2067 if (!data || !*bufs)
2068 err = fill_silence(substream, c, hwoff, NULL, frames);
2069 else
2070 err = transfer(substream, c, hwoff, *bufs + off,
2071 frames);
2072 if (err < 0)
2073 return err;
2074 }
2075 return 0;
2076}
2077
2078/* fill silence on the given buffer position;
2079 * called from snd_pcm_playback_silence()
2080 */
2081static int fill_silence_frames(struct snd_pcm_substream *substream,
2082 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2083{
2084 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2085 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2086 return interleaved_copy(substream, off, NULL, 0, frames,
2087 fill_silence);
2088 else
2089 return noninterleaved_copy(substream, off, NULL, 0, frames,
2090 fill_silence);
2091}
2092
2093/* sanity-check for read/write methods */
2094static int pcm_sanity_check(struct snd_pcm_substream *substream)
2095{
2096 struct snd_pcm_runtime *runtime;
2097 if (PCM_RUNTIME_CHECK(substream))
2098 return -ENXIO;
2099 runtime = substream->runtime;
2100 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2101 return -EINVAL;
2102 if (runtime->state == SNDRV_PCM_STATE_OPEN)
2103 return -EBADFD;
2104 return 0;
2105}
2106
2107static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2108{
2109 switch (runtime->state) {
2110 case SNDRV_PCM_STATE_PREPARED:
2111 case SNDRV_PCM_STATE_RUNNING:
2112 case SNDRV_PCM_STATE_PAUSED:
2113 return 0;
2114 case SNDRV_PCM_STATE_XRUN:
2115 return -EPIPE;
2116 case SNDRV_PCM_STATE_SUSPENDED:
2117 return -ESTRPIPE;
2118 default:
2119 return -EBADFD;
2120 }
2121}
2122
2123/* update to the given appl_ptr and call ack callback if needed;
2124 * when an error is returned, take back to the original value
2125 */
2126int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2127 snd_pcm_uframes_t appl_ptr)
2128{
2129 struct snd_pcm_runtime *runtime = substream->runtime;
2130 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2131 snd_pcm_sframes_t diff;
2132 int ret;
2133
2134 if (old_appl_ptr == appl_ptr)
2135 return 0;
2136
2137 if (appl_ptr >= runtime->boundary)
2138 return -EINVAL;
2139 /*
2140 * check if a rewind is requested by the application
2141 */
2142 if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2143 diff = appl_ptr - old_appl_ptr;
2144 if (diff >= 0) {
2145 if (diff > runtime->buffer_size)
2146 return -EINVAL;
2147 } else {
2148 if (runtime->boundary + diff > runtime->buffer_size)
2149 return -EINVAL;
2150 }
2151 }
2152
2153 runtime->control->appl_ptr = appl_ptr;
2154 if (substream->ops->ack) {
2155 ret = substream->ops->ack(substream);
2156 if (ret < 0) {
2157 runtime->control->appl_ptr = old_appl_ptr;
2158 return ret;
2159 }
2160 }
2161
2162 trace_applptr(substream, old_appl_ptr, appl_ptr);
2163
2164 return 0;
2165}
2166
2167/* the common loop for read/write data */
2168snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2169 void *data, bool interleaved,
2170 snd_pcm_uframes_t size, bool in_kernel)
2171{
2172 struct snd_pcm_runtime *runtime = substream->runtime;
2173 snd_pcm_uframes_t xfer = 0;
2174 snd_pcm_uframes_t offset = 0;
2175 snd_pcm_uframes_t avail;
2176 pcm_copy_f writer;
2177 pcm_transfer_f transfer;
2178 bool nonblock;
2179 bool is_playback;
2180 int err;
2181
2182 err = pcm_sanity_check(substream);
2183 if (err < 0)
2184 return err;
2185
2186 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2187 if (interleaved) {
2188 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2189 runtime->channels > 1)
2190 return -EINVAL;
2191 writer = interleaved_copy;
2192 } else {
2193 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2194 return -EINVAL;
2195 writer = noninterleaved_copy;
2196 }
2197
2198 if (!data) {
2199 if (is_playback)
2200 transfer = fill_silence;
2201 else
2202 return -EINVAL;
2203 } else if (in_kernel) {
2204 if (substream->ops->copy_kernel)
2205 transfer = substream->ops->copy_kernel;
2206 else
2207 transfer = is_playback ?
2208 default_write_copy_kernel : default_read_copy_kernel;
2209 } else {
2210 if (substream->ops->copy_user)
2211 transfer = (pcm_transfer_f)substream->ops->copy_user;
2212 else
2213 transfer = is_playback ?
2214 default_write_copy : default_read_copy;
2215 }
2216
2217 if (size == 0)
2218 return 0;
2219
2220 nonblock = !!(substream->f_flags & O_NONBLOCK);
2221
2222 snd_pcm_stream_lock_irq(substream);
2223 err = pcm_accessible_state(runtime);
2224 if (err < 0)
2225 goto _end_unlock;
2226
2227 runtime->twake = runtime->control->avail_min ? : 1;
2228 if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2229 snd_pcm_update_hw_ptr(substream);
2230
2231 /*
2232 * If size < start_threshold, wait indefinitely. Another
2233 * thread may start capture
2234 */
2235 if (!is_playback &&
2236 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2237 size >= runtime->start_threshold) {
2238 err = snd_pcm_start(substream);
2239 if (err < 0)
2240 goto _end_unlock;
2241 }
2242
2243 avail = snd_pcm_avail(substream);
2244
2245 while (size > 0) {
2246 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2247 snd_pcm_uframes_t cont;
2248 if (!avail) {
2249 if (!is_playback &&
2250 runtime->state == SNDRV_PCM_STATE_DRAINING) {
2251 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2252 goto _end_unlock;
2253 }
2254 if (nonblock) {
2255 err = -EAGAIN;
2256 goto _end_unlock;
2257 }
2258 runtime->twake = min_t(snd_pcm_uframes_t, size,
2259 runtime->control->avail_min ? : 1);
2260 err = wait_for_avail(substream, &avail);
2261 if (err < 0)
2262 goto _end_unlock;
2263 if (!avail)
2264 continue; /* draining */
2265 }
2266 frames = size > avail ? avail : size;
2267 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2268 appl_ofs = appl_ptr % runtime->buffer_size;
2269 cont = runtime->buffer_size - appl_ofs;
2270 if (frames > cont)
2271 frames = cont;
2272 if (snd_BUG_ON(!frames)) {
2273 err = -EINVAL;
2274 goto _end_unlock;
2275 }
2276 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2277 err = -EBUSY;
2278 goto _end_unlock;
2279 }
2280 snd_pcm_stream_unlock_irq(substream);
2281 if (!is_playback)
2282 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2283 err = writer(substream, appl_ofs, data, offset, frames,
2284 transfer);
2285 if (is_playback)
2286 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2287 snd_pcm_stream_lock_irq(substream);
2288 atomic_dec(&runtime->buffer_accessing);
2289 if (err < 0)
2290 goto _end_unlock;
2291 err = pcm_accessible_state(runtime);
2292 if (err < 0)
2293 goto _end_unlock;
2294 appl_ptr += frames;
2295 if (appl_ptr >= runtime->boundary)
2296 appl_ptr -= runtime->boundary;
2297 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2298 if (err < 0)
2299 goto _end_unlock;
2300
2301 offset += frames;
2302 size -= frames;
2303 xfer += frames;
2304 avail -= frames;
2305 if (is_playback &&
2306 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2307 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2308 err = snd_pcm_start(substream);
2309 if (err < 0)
2310 goto _end_unlock;
2311 }
2312 }
2313 _end_unlock:
2314 runtime->twake = 0;
2315 if (xfer > 0 && err >= 0)
2316 snd_pcm_update_state(substream, runtime);
2317 snd_pcm_stream_unlock_irq(substream);
2318 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2319}
2320EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2321
2322/*
2323 * standard channel mapping helpers
2324 */
2325
2326/* default channel maps for multi-channel playbacks, up to 8 channels */
2327const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2328 { .channels = 1,
2329 .map = { SNDRV_CHMAP_MONO } },
2330 { .channels = 2,
2331 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2332 { .channels = 4,
2333 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2334 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2335 { .channels = 6,
2336 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2337 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2338 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2339 { .channels = 8,
2340 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2341 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2342 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2343 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2344 { }
2345};
2346EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2347
2348/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2349const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2350 { .channels = 1,
2351 .map = { SNDRV_CHMAP_MONO } },
2352 { .channels = 2,
2353 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2354 { .channels = 4,
2355 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2356 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2357 { .channels = 6,
2358 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2359 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2360 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2361 { .channels = 8,
2362 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2363 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2364 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2365 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2366 { }
2367};
2368EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2369
2370static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2371{
2372 if (ch > info->max_channels)
2373 return false;
2374 return !info->channel_mask || (info->channel_mask & (1U << ch));
2375}
2376
2377static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2378 struct snd_ctl_elem_info *uinfo)
2379{
2380 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2381
2382 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2383 uinfo->count = info->max_channels;
2384 uinfo->value.integer.min = 0;
2385 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2386 return 0;
2387}
2388
2389/* get callback for channel map ctl element
2390 * stores the channel position firstly matching with the current channels
2391 */
2392static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2393 struct snd_ctl_elem_value *ucontrol)
2394{
2395 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2396 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2397 struct snd_pcm_substream *substream;
2398 const struct snd_pcm_chmap_elem *map;
2399
2400 if (!info->chmap)
2401 return -EINVAL;
2402 substream = snd_pcm_chmap_substream(info, idx);
2403 if (!substream)
2404 return -ENODEV;
2405 memset(ucontrol->value.integer.value, 0,
2406 sizeof(long) * info->max_channels);
2407 if (!substream->runtime)
2408 return 0; /* no channels set */
2409 for (map = info->chmap; map->channels; map++) {
2410 int i;
2411 if (map->channels == substream->runtime->channels &&
2412 valid_chmap_channels(info, map->channels)) {
2413 for (i = 0; i < map->channels; i++)
2414 ucontrol->value.integer.value[i] = map->map[i];
2415 return 0;
2416 }
2417 }
2418 return -EINVAL;
2419}
2420
2421/* tlv callback for channel map ctl element
2422 * expands the pre-defined channel maps in a form of TLV
2423 */
2424static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2425 unsigned int size, unsigned int __user *tlv)
2426{
2427 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2428 const struct snd_pcm_chmap_elem *map;
2429 unsigned int __user *dst;
2430 int c, count = 0;
2431
2432 if (!info->chmap)
2433 return -EINVAL;
2434 if (size < 8)
2435 return -ENOMEM;
2436 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2437 return -EFAULT;
2438 size -= 8;
2439 dst = tlv + 2;
2440 for (map = info->chmap; map->channels; map++) {
2441 int chs_bytes = map->channels * 4;
2442 if (!valid_chmap_channels(info, map->channels))
2443 continue;
2444 if (size < 8)
2445 return -ENOMEM;
2446 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2447 put_user(chs_bytes, dst + 1))
2448 return -EFAULT;
2449 dst += 2;
2450 size -= 8;
2451 count += 8;
2452 if (size < chs_bytes)
2453 return -ENOMEM;
2454 size -= chs_bytes;
2455 count += chs_bytes;
2456 for (c = 0; c < map->channels; c++) {
2457 if (put_user(map->map[c], dst))
2458 return -EFAULT;
2459 dst++;
2460 }
2461 }
2462 if (put_user(count, tlv + 1))
2463 return -EFAULT;
2464 return 0;
2465}
2466
2467static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2468{
2469 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2470 info->pcm->streams[info->stream].chmap_kctl = NULL;
2471 kfree(info);
2472}
2473
2474/**
2475 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2476 * @pcm: the assigned PCM instance
2477 * @stream: stream direction
2478 * @chmap: channel map elements (for query)
2479 * @max_channels: the max number of channels for the stream
2480 * @private_value: the value passed to each kcontrol's private_value field
2481 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2482 *
2483 * Create channel-mapping control elements assigned to the given PCM stream(s).
2484 * Return: Zero if successful, or a negative error value.
2485 */
2486int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2487 const struct snd_pcm_chmap_elem *chmap,
2488 int max_channels,
2489 unsigned long private_value,
2490 struct snd_pcm_chmap **info_ret)
2491{
2492 struct snd_pcm_chmap *info;
2493 struct snd_kcontrol_new knew = {
2494 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2495 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2496 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2497 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2498 .info = pcm_chmap_ctl_info,
2499 .get = pcm_chmap_ctl_get,
2500 .tlv.c = pcm_chmap_ctl_tlv,
2501 };
2502 int err;
2503
2504 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2505 return -EBUSY;
2506 info = kzalloc(sizeof(*info), GFP_KERNEL);
2507 if (!info)
2508 return -ENOMEM;
2509 info->pcm = pcm;
2510 info->stream = stream;
2511 info->chmap = chmap;
2512 info->max_channels = max_channels;
2513 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2514 knew.name = "Playback Channel Map";
2515 else
2516 knew.name = "Capture Channel Map";
2517 knew.device = pcm->device;
2518 knew.count = pcm->streams[stream].substream_count;
2519 knew.private_value = private_value;
2520 info->kctl = snd_ctl_new1(&knew, info);
2521 if (!info->kctl) {
2522 kfree(info);
2523 return -ENOMEM;
2524 }
2525 info->kctl->private_free = pcm_chmap_ctl_private_free;
2526 err = snd_ctl_add(pcm->card, info->kctl);
2527 if (err < 0)
2528 return err;
2529 pcm->streams[stream].chmap_kctl = info->kctl;
2530 if (info_ret)
2531 *info_ret = info;
2532 return 0;
2533}
2534EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);