Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Digital Audio (PCM) abstract layer
   4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   5 *                   Abramo Bagnara <abramo@alsa-project.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/sched/signal.h>
  10#include <linux/time.h>
  11#include <linux/math64.h>
  12#include <linux/export.h>
  13#include <sound/core.h>
  14#include <sound/control.h>
  15#include <sound/tlv.h>
  16#include <sound/info.h>
  17#include <sound/pcm.h>
  18#include <sound/pcm_params.h>
  19#include <sound/timer.h>
  20
  21#include "pcm_local.h"
  22
  23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  24#define CREATE_TRACE_POINTS
  25#include "pcm_trace.h"
  26#else
  27#define trace_hwptr(substream, pos, in_interrupt)
  28#define trace_xrun(substream)
  29#define trace_hw_ptr_error(substream, reason)
  30#define trace_applptr(substream, prev, curr)
  31#endif
  32
  33static int fill_silence_frames(struct snd_pcm_substream *substream,
  34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
  35
  36/*
  37 * fill ring buffer with silence
  38 * runtime->silence_start: starting pointer to silence area
  39 * runtime->silence_filled: size filled with silence
  40 * runtime->silence_threshold: threshold from application
  41 * runtime->silence_size: maximal size from application
  42 *
  43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  44 */
  45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  46{
  47	struct snd_pcm_runtime *runtime = substream->runtime;
  48	snd_pcm_uframes_t frames, ofs, transfer;
  49	int err;
  50
  51	if (runtime->silence_size < runtime->boundary) {
  52		snd_pcm_sframes_t noise_dist, n;
  53		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
  54		if (runtime->silence_start != appl_ptr) {
  55			n = appl_ptr - runtime->silence_start;
  56			if (n < 0)
  57				n += runtime->boundary;
  58			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  59				runtime->silence_filled -= n;
  60			else
  61				runtime->silence_filled = 0;
  62			runtime->silence_start = appl_ptr;
  63		}
  64		if (runtime->silence_filled >= runtime->buffer_size)
  65			return;
  66		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  67		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  68			return;
  69		frames = runtime->silence_threshold - noise_dist;
  70		if (frames > runtime->silence_size)
  71			frames = runtime->silence_size;
  72	} else {
  73		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  74			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  75			if (avail > runtime->buffer_size)
  76				avail = runtime->buffer_size;
  77			runtime->silence_filled = avail > 0 ? avail : 0;
  78			runtime->silence_start = (runtime->status->hw_ptr +
  79						  runtime->silence_filled) %
  80						 runtime->boundary;
  81		} else {
  82			ofs = runtime->status->hw_ptr;
  83			frames = new_hw_ptr - ofs;
  84			if ((snd_pcm_sframes_t)frames < 0)
  85				frames += runtime->boundary;
  86			runtime->silence_filled -= frames;
  87			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  88				runtime->silence_filled = 0;
  89				runtime->silence_start = new_hw_ptr;
  90			} else {
  91				runtime->silence_start = ofs;
  92			}
  93		}
  94		frames = runtime->buffer_size - runtime->silence_filled;
  95	}
  96	if (snd_BUG_ON(frames > runtime->buffer_size))
  97		return;
  98	if (frames == 0)
  99		return;
 100	ofs = runtime->silence_start % runtime->buffer_size;
 101	while (frames > 0) {
 102		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 103		err = fill_silence_frames(substream, ofs, transfer);
 104		snd_BUG_ON(err < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105		runtime->silence_filled += transfer;
 106		frames -= transfer;
 107		ofs = 0;
 108	}
 109}
 110
 111#ifdef CONFIG_SND_DEBUG
 112void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 113			   char *name, size_t len)
 114{
 115	snprintf(name, len, "pcmC%dD%d%c:%d",
 116		 substream->pcm->card->number,
 117		 substream->pcm->device,
 118		 substream->stream ? 'c' : 'p',
 119		 substream->number);
 120}
 121EXPORT_SYMBOL(snd_pcm_debug_name);
 122#endif
 123
 124#define XRUN_DEBUG_BASIC	(1<<0)
 125#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 126#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 
 
 
 
 127
 128#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 129
 130#define xrun_debug(substream, mask) \
 131			((substream)->pstr->xrun_debug & (mask))
 132#else
 133#define xrun_debug(substream, mask)	0
 134#endif
 135
 136#define dump_stack_on_xrun(substream) do {			\
 137		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 138			dump_stack();				\
 139	} while (0)
 140
 141/* call with stream lock held */
 142void __snd_pcm_xrun(struct snd_pcm_substream *substream)
 143{
 144	struct snd_pcm_runtime *runtime = substream->runtime;
 145
 146	trace_xrun(substream);
 147	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 148		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 149	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 150	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 151		char name[16];
 152		snd_pcm_debug_name(substream, name, sizeof(name));
 153		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 154		dump_stack_on_xrun(substream);
 155	}
 156}
 157
 158#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 159#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
 160	do {								\
 161		trace_hw_ptr_error(substream, reason);	\
 162		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 163			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 164					   (in_interrupt) ? 'Q' : 'P', ##args);	\
 
 
 165			dump_stack_on_xrun(substream);			\
 166		}							\
 167	} while (0)
 168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 170
 171#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 
 
 172
 173#endif
 174
 175int snd_pcm_update_state(struct snd_pcm_substream *substream,
 176			 struct snd_pcm_runtime *runtime)
 177{
 178	snd_pcm_uframes_t avail;
 179
 180	avail = snd_pcm_avail(substream);
 
 
 
 181	if (avail > runtime->avail_max)
 182		runtime->avail_max = avail;
 183	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 184		if (avail >= runtime->buffer_size) {
 185			snd_pcm_drain_done(substream);
 186			return -EPIPE;
 187		}
 188	} else {
 189		if (avail >= runtime->stop_threshold) {
 190			__snd_pcm_xrun(substream);
 191			return -EPIPE;
 192		}
 193	}
 194	if (runtime->twake) {
 195		if (avail >= runtime->twake)
 196			wake_up(&runtime->tsleep);
 197	} else if (avail >= runtime->control->avail_min)
 198		wake_up(&runtime->sleep);
 199	return 0;
 200}
 201
 202static void update_audio_tstamp(struct snd_pcm_substream *substream,
 203				struct timespec *curr_tstamp,
 204				struct timespec *audio_tstamp)
 205{
 206	struct snd_pcm_runtime *runtime = substream->runtime;
 207	u64 audio_frames, audio_nsecs;
 208	struct timespec driver_tstamp;
 209
 210	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 211		return;
 212
 213	if (!(substream->ops->get_time_info) ||
 214		(runtime->audio_tstamp_report.actual_type ==
 215			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 216
 217		/*
 218		 * provide audio timestamp derived from pointer position
 219		 * add delay only if requested
 220		 */
 221
 222		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 223
 224		if (runtime->audio_tstamp_config.report_delay) {
 225			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 226				audio_frames -=  runtime->delay;
 227			else
 228				audio_frames +=  runtime->delay;
 229		}
 230		audio_nsecs = div_u64(audio_frames * 1000000000LL,
 231				runtime->rate);
 232		*audio_tstamp = ns_to_timespec(audio_nsecs);
 233	}
 234	if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
 235		runtime->status->audio_tstamp = *audio_tstamp;
 236		runtime->status->tstamp = *curr_tstamp;
 237	}
 238
 239	/*
 240	 * re-take a driver timestamp to let apps detect if the reference tstamp
 241	 * read by low-level hardware was provided with a delay
 242	 */
 243	snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
 244	runtime->driver_tstamp = driver_tstamp;
 245}
 246
 247static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 248				  unsigned int in_interrupt)
 249{
 250	struct snd_pcm_runtime *runtime = substream->runtime;
 251	snd_pcm_uframes_t pos;
 252	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 253	snd_pcm_sframes_t hdelta, delta;
 254	unsigned long jdelta;
 255	unsigned long curr_jiffies;
 256	struct timespec curr_tstamp;
 257	struct timespec audio_tstamp;
 258	int crossed_boundary = 0;
 259
 260	old_hw_ptr = runtime->status->hw_ptr;
 261
 262	/*
 263	 * group pointer, time and jiffies reads to allow for more
 264	 * accurate correlations/corrections.
 265	 * The values are stored at the end of this routine after
 266	 * corrections for hw_ptr position
 267	 */
 268	pos = substream->ops->pointer(substream);
 269	curr_jiffies = jiffies;
 270	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 271		if ((substream->ops->get_time_info) &&
 272			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 273			substream->ops->get_time_info(substream, &curr_tstamp,
 274						&audio_tstamp,
 275						&runtime->audio_tstamp_config,
 276						&runtime->audio_tstamp_report);
 277
 278			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 279			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 280				snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 281		} else
 282			snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 283	}
 284
 285	if (pos == SNDRV_PCM_POS_XRUN) {
 286		__snd_pcm_xrun(substream);
 287		return -EPIPE;
 288	}
 289	if (pos >= runtime->buffer_size) {
 290		if (printk_ratelimit()) {
 291			char name[16];
 292			snd_pcm_debug_name(substream, name, sizeof(name));
 293			pcm_err(substream->pcm,
 294				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 295				name, pos, runtime->buffer_size,
 296				runtime->period_size);
 
 297		}
 298		pos = 0;
 299	}
 300	pos -= pos % runtime->min_align;
 301	trace_hwptr(substream, pos, in_interrupt);
 
 302	hw_base = runtime->hw_ptr_base;
 303	new_hw_ptr = hw_base + pos;
 304	if (in_interrupt) {
 305		/* we know that one period was processed */
 306		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 307		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 308		if (delta > new_hw_ptr) {
 309			/* check for double acknowledged interrupts */
 310			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 311			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 312				hw_base += runtime->buffer_size;
 313				if (hw_base >= runtime->boundary) {
 314					hw_base = 0;
 315					crossed_boundary++;
 316				}
 317				new_hw_ptr = hw_base + pos;
 318				goto __delta;
 319			}
 320		}
 321	}
 322	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 323	/* pointer crosses the end of the ring buffer */
 324	if (new_hw_ptr < old_hw_ptr) {
 325		hw_base += runtime->buffer_size;
 326		if (hw_base >= runtime->boundary) {
 327			hw_base = 0;
 328			crossed_boundary++;
 329		}
 330		new_hw_ptr = hw_base + pos;
 331	}
 332      __delta:
 333	delta = new_hw_ptr - old_hw_ptr;
 334	if (delta < 0)
 335		delta += runtime->boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336
 337	if (runtime->no_period_wakeup) {
 338		snd_pcm_sframes_t xrun_threshold;
 339		/*
 340		 * Without regular period interrupts, we have to check
 341		 * the elapsed time to detect xruns.
 342		 */
 343		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 344		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 345			goto no_delta_check;
 346		hdelta = jdelta - delta * HZ / runtime->rate;
 347		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 348		while (hdelta > xrun_threshold) {
 349			delta += runtime->buffer_size;
 350			hw_base += runtime->buffer_size;
 351			if (hw_base >= runtime->boundary) {
 352				hw_base = 0;
 353				crossed_boundary++;
 354			}
 355			new_hw_ptr = hw_base + pos;
 356			hdelta -= runtime->hw_ptr_buffer_jiffies;
 357		}
 358		goto no_delta_check;
 359	}
 360
 361	/* something must be really wrong */
 362	if (delta >= runtime->buffer_size + runtime->period_size) {
 363		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 364			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 365			     substream->stream, (long)pos,
 366			     (long)new_hw_ptr, (long)old_hw_ptr);
 
 
 
 367		return 0;
 368	}
 369
 370	/* Do jiffies check only in xrun_debug mode */
 371	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 372		goto no_jiffies_check;
 373
 374	/* Skip the jiffies check for hardwares with BATCH flag.
 375	 * Such hardware usually just increases the position at each IRQ,
 376	 * thus it can't give any strange position.
 377	 */
 378	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 379		goto no_jiffies_check;
 380	hdelta = delta;
 381	if (hdelta < runtime->delay)
 382		goto no_jiffies_check;
 383	hdelta -= runtime->delay;
 384	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 385	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 386		delta = jdelta /
 387			(((runtime->period_size * HZ) / runtime->rate)
 388								+ HZ/100);
 389		/* move new_hw_ptr according jiffies not pos variable */
 390		new_hw_ptr = old_hw_ptr;
 391		hw_base = delta;
 392		/* use loop to avoid checks for delta overflows */
 393		/* the delta value is small or zero in most cases */
 394		while (delta > 0) {
 395			new_hw_ptr += runtime->period_size;
 396			if (new_hw_ptr >= runtime->boundary) {
 397				new_hw_ptr -= runtime->boundary;
 398				crossed_boundary--;
 399			}
 400			delta--;
 401		}
 402		/* align hw_base to buffer_size */
 403		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 404			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 
 
 
 405			     (long)pos, (long)hdelta,
 406			     (long)runtime->period_size, jdelta,
 407			     ((hdelta * HZ) / runtime->rate), hw_base,
 408			     (unsigned long)old_hw_ptr,
 409			     (unsigned long)new_hw_ptr);
 410		/* reset values to proper state */
 411		delta = 0;
 412		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 413	}
 414 no_jiffies_check:
 415	if (delta > runtime->period_size + runtime->period_size / 2) {
 416		hw_ptr_error(substream, in_interrupt,
 417			     "Lost interrupts?",
 418			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 
 
 419			     substream->stream, (long)delta,
 420			     (long)new_hw_ptr,
 421			     (long)old_hw_ptr);
 422	}
 423
 424 no_delta_check:
 425	if (runtime->status->hw_ptr == new_hw_ptr) {
 426		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 427		return 0;
 428	}
 429
 430	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 431	    runtime->silence_size > 0)
 432		snd_pcm_playback_silence(substream, new_hw_ptr);
 433
 434	if (in_interrupt) {
 435		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 436		if (delta < 0)
 437			delta += runtime->boundary;
 438		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 439		runtime->hw_ptr_interrupt += delta;
 440		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 441			runtime->hw_ptr_interrupt -= runtime->boundary;
 442	}
 443	runtime->hw_ptr_base = hw_base;
 444	runtime->status->hw_ptr = new_hw_ptr;
 445	runtime->hw_ptr_jiffies = curr_jiffies;
 446	if (crossed_boundary) {
 447		snd_BUG_ON(crossed_boundary != 1);
 448		runtime->hw_ptr_wrap += runtime->boundary;
 449	}
 450
 451	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 452
 453	return snd_pcm_update_state(substream, runtime);
 454}
 455
 456/* CAUTION: call it with irq disabled */
 457int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 458{
 459	return snd_pcm_update_hw_ptr0(substream, 0);
 460}
 461
 462/**
 463 * snd_pcm_set_ops - set the PCM operators
 464 * @pcm: the pcm instance
 465 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 466 * @ops: the operator table
 467 *
 468 * Sets the given PCM operators to the pcm instance.
 469 */
 470void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 471		     const struct snd_pcm_ops *ops)
 472{
 473	struct snd_pcm_str *stream = &pcm->streams[direction];
 474	struct snd_pcm_substream *substream;
 475	
 476	for (substream = stream->substream; substream != NULL; substream = substream->next)
 477		substream->ops = ops;
 478}
 
 479EXPORT_SYMBOL(snd_pcm_set_ops);
 480
 481/**
 482 * snd_pcm_sync - set the PCM sync id
 483 * @substream: the pcm substream
 484 *
 485 * Sets the PCM sync identifier for the card.
 486 */
 487void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 488{
 489	struct snd_pcm_runtime *runtime = substream->runtime;
 490	
 491	runtime->sync.id32[0] = substream->pcm->card->number;
 492	runtime->sync.id32[1] = -1;
 493	runtime->sync.id32[2] = -1;
 494	runtime->sync.id32[3] = -1;
 495}
 
 496EXPORT_SYMBOL(snd_pcm_set_sync);
 497
 498/*
 499 *  Standard ioctl routine
 500 */
 501
 502static inline unsigned int div32(unsigned int a, unsigned int b, 
 503				 unsigned int *r)
 504{
 505	if (b == 0) {
 506		*r = 0;
 507		return UINT_MAX;
 508	}
 509	*r = a % b;
 510	return a / b;
 511}
 512
 513static inline unsigned int div_down(unsigned int a, unsigned int b)
 514{
 515	if (b == 0)
 516		return UINT_MAX;
 517	return a / b;
 518}
 519
 520static inline unsigned int div_up(unsigned int a, unsigned int b)
 521{
 522	unsigned int r;
 523	unsigned int q;
 524	if (b == 0)
 525		return UINT_MAX;
 526	q = div32(a, b, &r);
 527	if (r)
 528		++q;
 529	return q;
 530}
 531
 532static inline unsigned int mul(unsigned int a, unsigned int b)
 533{
 534	if (a == 0)
 535		return 0;
 536	if (div_down(UINT_MAX, a) < b)
 537		return UINT_MAX;
 538	return a * b;
 539}
 540
 541static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 542				    unsigned int c, unsigned int *r)
 543{
 544	u_int64_t n = (u_int64_t) a * b;
 545	if (c == 0) {
 
 546		*r = 0;
 547		return UINT_MAX;
 548	}
 549	n = div_u64_rem(n, c, r);
 550	if (n >= UINT_MAX) {
 551		*r = 0;
 552		return UINT_MAX;
 553	}
 554	return n;
 555}
 556
 557/**
 558 * snd_interval_refine - refine the interval value of configurator
 559 * @i: the interval value to refine
 560 * @v: the interval value to refer to
 561 *
 562 * Refines the interval value with the reference value.
 563 * The interval is changed to the range satisfying both intervals.
 564 * The interval status (min, max, integer, etc.) are evaluated.
 565 *
 566 * Return: Positive if the value is changed, zero if it's not changed, or a
 567 * negative error code.
 568 */
 569int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 570{
 571	int changed = 0;
 572	if (snd_BUG_ON(snd_interval_empty(i)))
 573		return -EINVAL;
 574	if (i->min < v->min) {
 575		i->min = v->min;
 576		i->openmin = v->openmin;
 577		changed = 1;
 578	} else if (i->min == v->min && !i->openmin && v->openmin) {
 579		i->openmin = 1;
 580		changed = 1;
 581	}
 582	if (i->max > v->max) {
 583		i->max = v->max;
 584		i->openmax = v->openmax;
 585		changed = 1;
 586	} else if (i->max == v->max && !i->openmax && v->openmax) {
 587		i->openmax = 1;
 588		changed = 1;
 589	}
 590	if (!i->integer && v->integer) {
 591		i->integer = 1;
 592		changed = 1;
 593	}
 594	if (i->integer) {
 595		if (i->openmin) {
 596			i->min++;
 597			i->openmin = 0;
 598		}
 599		if (i->openmax) {
 600			i->max--;
 601			i->openmax = 0;
 602		}
 603	} else if (!i->openmin && !i->openmax && i->min == i->max)
 604		i->integer = 1;
 605	if (snd_interval_checkempty(i)) {
 606		snd_interval_none(i);
 607		return -EINVAL;
 608	}
 609	return changed;
 610}
 
 611EXPORT_SYMBOL(snd_interval_refine);
 612
 613static int snd_interval_refine_first(struct snd_interval *i)
 614{
 615	const unsigned int last_max = i->max;
 616
 617	if (snd_BUG_ON(snd_interval_empty(i)))
 618		return -EINVAL;
 619	if (snd_interval_single(i))
 620		return 0;
 621	i->max = i->min;
 622	if (i->openmin)
 
 623		i->max++;
 624	/* only exclude max value if also excluded before refine */
 625	i->openmax = (i->openmax && i->max >= last_max);
 626	return 1;
 627}
 628
 629static int snd_interval_refine_last(struct snd_interval *i)
 630{
 631	const unsigned int last_min = i->min;
 632
 633	if (snd_BUG_ON(snd_interval_empty(i)))
 634		return -EINVAL;
 635	if (snd_interval_single(i))
 636		return 0;
 637	i->min = i->max;
 638	if (i->openmax)
 
 639		i->min--;
 640	/* only exclude min value if also excluded before refine */
 641	i->openmin = (i->openmin && i->min <= last_min);
 642	return 1;
 643}
 644
 645void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 646{
 647	if (a->empty || b->empty) {
 648		snd_interval_none(c);
 649		return;
 650	}
 651	c->empty = 0;
 652	c->min = mul(a->min, b->min);
 653	c->openmin = (a->openmin || b->openmin);
 654	c->max = mul(a->max,  b->max);
 655	c->openmax = (a->openmax || b->openmax);
 656	c->integer = (a->integer && b->integer);
 657}
 658
 659/**
 660 * snd_interval_div - refine the interval value with division
 661 * @a: dividend
 662 * @b: divisor
 663 * @c: quotient
 664 *
 665 * c = a / b
 666 *
 667 * Returns non-zero if the value is changed, zero if not changed.
 668 */
 669void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 670{
 671	unsigned int r;
 672	if (a->empty || b->empty) {
 673		snd_interval_none(c);
 674		return;
 675	}
 676	c->empty = 0;
 677	c->min = div32(a->min, b->max, &r);
 678	c->openmin = (r || a->openmin || b->openmax);
 679	if (b->min > 0) {
 680		c->max = div32(a->max, b->min, &r);
 681		if (r) {
 682			c->max++;
 683			c->openmax = 1;
 684		} else
 685			c->openmax = (a->openmax || b->openmin);
 686	} else {
 687		c->max = UINT_MAX;
 688		c->openmax = 0;
 689	}
 690	c->integer = 0;
 691}
 692
 693/**
 694 * snd_interval_muldivk - refine the interval value
 695 * @a: dividend 1
 696 * @b: dividend 2
 697 * @k: divisor (as integer)
 698 * @c: result
 699  *
 700 * c = a * b / k
 701 *
 702 * Returns non-zero if the value is changed, zero if not changed.
 703 */
 704void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 705		      unsigned int k, struct snd_interval *c)
 706{
 707	unsigned int r;
 708	if (a->empty || b->empty) {
 709		snd_interval_none(c);
 710		return;
 711	}
 712	c->empty = 0;
 713	c->min = muldiv32(a->min, b->min, k, &r);
 714	c->openmin = (r || a->openmin || b->openmin);
 715	c->max = muldiv32(a->max, b->max, k, &r);
 716	if (r) {
 717		c->max++;
 718		c->openmax = 1;
 719	} else
 720		c->openmax = (a->openmax || b->openmax);
 721	c->integer = 0;
 722}
 723
 724/**
 725 * snd_interval_mulkdiv - refine the interval value
 726 * @a: dividend 1
 727 * @k: dividend 2 (as integer)
 728 * @b: divisor
 729 * @c: result
 730 *
 731 * c = a * k / b
 732 *
 733 * Returns non-zero if the value is changed, zero if not changed.
 734 */
 735void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 736		      const struct snd_interval *b, struct snd_interval *c)
 737{
 738	unsigned int r;
 739	if (a->empty || b->empty) {
 740		snd_interval_none(c);
 741		return;
 742	}
 743	c->empty = 0;
 744	c->min = muldiv32(a->min, k, b->max, &r);
 745	c->openmin = (r || a->openmin || b->openmax);
 746	if (b->min > 0) {
 747		c->max = muldiv32(a->max, k, b->min, &r);
 748		if (r) {
 749			c->max++;
 750			c->openmax = 1;
 751		} else
 752			c->openmax = (a->openmax || b->openmin);
 753	} else {
 754		c->max = UINT_MAX;
 755		c->openmax = 0;
 756	}
 757	c->integer = 0;
 758}
 759
 760/* ---- */
 761
 762
 763/**
 764 * snd_interval_ratnum - refine the interval value
 765 * @i: interval to refine
 766 * @rats_count: number of ratnum_t 
 767 * @rats: ratnum_t array
 768 * @nump: pointer to store the resultant numerator
 769 * @denp: pointer to store the resultant denominator
 770 *
 771 * Return: Positive if the value is changed, zero if it's not changed, or a
 772 * negative error code.
 773 */
 774int snd_interval_ratnum(struct snd_interval *i,
 775			unsigned int rats_count, const struct snd_ratnum *rats,
 776			unsigned int *nump, unsigned int *denp)
 777{
 778	unsigned int best_num, best_den;
 779	int best_diff;
 780	unsigned int k;
 781	struct snd_interval t;
 782	int err;
 783	unsigned int result_num, result_den;
 784	int result_diff;
 785
 786	best_num = best_den = best_diff = 0;
 787	for (k = 0; k < rats_count; ++k) {
 788		unsigned int num = rats[k].num;
 789		unsigned int den;
 790		unsigned int q = i->min;
 791		int diff;
 792		if (q == 0)
 793			q = 1;
 794		den = div_up(num, q);
 795		if (den < rats[k].den_min)
 796			continue;
 797		if (den > rats[k].den_max)
 798			den = rats[k].den_max;
 799		else {
 800			unsigned int r;
 801			r = (den - rats[k].den_min) % rats[k].den_step;
 802			if (r != 0)
 803				den -= r;
 804		}
 805		diff = num - q * den;
 806		if (diff < 0)
 807			diff = -diff;
 808		if (best_num == 0 ||
 809		    diff * best_den < best_diff * den) {
 810			best_diff = diff;
 811			best_den = den;
 812			best_num = num;
 813		}
 814	}
 815	if (best_den == 0) {
 816		i->empty = 1;
 817		return -EINVAL;
 818	}
 819	t.min = div_down(best_num, best_den);
 820	t.openmin = !!(best_num % best_den);
 821	
 822	result_num = best_num;
 823	result_diff = best_diff;
 824	result_den = best_den;
 825	best_num = best_den = best_diff = 0;
 826	for (k = 0; k < rats_count; ++k) {
 827		unsigned int num = rats[k].num;
 828		unsigned int den;
 829		unsigned int q = i->max;
 830		int diff;
 831		if (q == 0) {
 832			i->empty = 1;
 833			return -EINVAL;
 834		}
 835		den = div_down(num, q);
 836		if (den > rats[k].den_max)
 837			continue;
 838		if (den < rats[k].den_min)
 839			den = rats[k].den_min;
 840		else {
 841			unsigned int r;
 842			r = (den - rats[k].den_min) % rats[k].den_step;
 843			if (r != 0)
 844				den += rats[k].den_step - r;
 845		}
 846		diff = q * den - num;
 847		if (diff < 0)
 848			diff = -diff;
 849		if (best_num == 0 ||
 850		    diff * best_den < best_diff * den) {
 851			best_diff = diff;
 852			best_den = den;
 853			best_num = num;
 854		}
 855	}
 856	if (best_den == 0) {
 857		i->empty = 1;
 858		return -EINVAL;
 859	}
 860	t.max = div_up(best_num, best_den);
 861	t.openmax = !!(best_num % best_den);
 862	t.integer = 0;
 863	err = snd_interval_refine(i, &t);
 864	if (err < 0)
 865		return err;
 866
 867	if (snd_interval_single(i)) {
 868		if (best_diff * result_den < result_diff * best_den) {
 869			result_num = best_num;
 870			result_den = best_den;
 871		}
 872		if (nump)
 873			*nump = result_num;
 874		if (denp)
 875			*denp = result_den;
 876	}
 877	return err;
 878}
 
 879EXPORT_SYMBOL(snd_interval_ratnum);
 880
 881/**
 882 * snd_interval_ratden - refine the interval value
 883 * @i: interval to refine
 884 * @rats_count: number of struct ratden
 885 * @rats: struct ratden array
 886 * @nump: pointer to store the resultant numerator
 887 * @denp: pointer to store the resultant denominator
 888 *
 889 * Return: Positive if the value is changed, zero if it's not changed, or a
 890 * negative error code.
 891 */
 892static int snd_interval_ratden(struct snd_interval *i,
 893			       unsigned int rats_count,
 894			       const struct snd_ratden *rats,
 895			       unsigned int *nump, unsigned int *denp)
 896{
 897	unsigned int best_num, best_diff, best_den;
 898	unsigned int k;
 899	struct snd_interval t;
 900	int err;
 901
 902	best_num = best_den = best_diff = 0;
 903	for (k = 0; k < rats_count; ++k) {
 904		unsigned int num;
 905		unsigned int den = rats[k].den;
 906		unsigned int q = i->min;
 907		int diff;
 908		num = mul(q, den);
 909		if (num > rats[k].num_max)
 910			continue;
 911		if (num < rats[k].num_min)
 912			num = rats[k].num_max;
 913		else {
 914			unsigned int r;
 915			r = (num - rats[k].num_min) % rats[k].num_step;
 916			if (r != 0)
 917				num += rats[k].num_step - r;
 918		}
 919		diff = num - q * den;
 920		if (best_num == 0 ||
 921		    diff * best_den < best_diff * den) {
 922			best_diff = diff;
 923			best_den = den;
 924			best_num = num;
 925		}
 926	}
 927	if (best_den == 0) {
 928		i->empty = 1;
 929		return -EINVAL;
 930	}
 931	t.min = div_down(best_num, best_den);
 932	t.openmin = !!(best_num % best_den);
 933	
 934	best_num = best_den = best_diff = 0;
 935	for (k = 0; k < rats_count; ++k) {
 936		unsigned int num;
 937		unsigned int den = rats[k].den;
 938		unsigned int q = i->max;
 939		int diff;
 940		num = mul(q, den);
 941		if (num < rats[k].num_min)
 942			continue;
 943		if (num > rats[k].num_max)
 944			num = rats[k].num_max;
 945		else {
 946			unsigned int r;
 947			r = (num - rats[k].num_min) % rats[k].num_step;
 948			if (r != 0)
 949				num -= r;
 950		}
 951		diff = q * den - num;
 952		if (best_num == 0 ||
 953		    diff * best_den < best_diff * den) {
 954			best_diff = diff;
 955			best_den = den;
 956			best_num = num;
 957		}
 958	}
 959	if (best_den == 0) {
 960		i->empty = 1;
 961		return -EINVAL;
 962	}
 963	t.max = div_up(best_num, best_den);
 964	t.openmax = !!(best_num % best_den);
 965	t.integer = 0;
 966	err = snd_interval_refine(i, &t);
 967	if (err < 0)
 968		return err;
 969
 970	if (snd_interval_single(i)) {
 971		if (nump)
 972			*nump = best_num;
 973		if (denp)
 974			*denp = best_den;
 975	}
 976	return err;
 977}
 978
 979/**
 980 * snd_interval_list - refine the interval value from the list
 981 * @i: the interval value to refine
 982 * @count: the number of elements in the list
 983 * @list: the value list
 984 * @mask: the bit-mask to evaluate
 985 *
 986 * Refines the interval value from the list.
 987 * When mask is non-zero, only the elements corresponding to bit 1 are
 988 * evaluated.
 989 *
 990 * Return: Positive if the value is changed, zero if it's not changed, or a
 991 * negative error code.
 992 */
 993int snd_interval_list(struct snd_interval *i, unsigned int count,
 994		      const unsigned int *list, unsigned int mask)
 995{
 996        unsigned int k;
 997	struct snd_interval list_range;
 998
 999	if (!count) {
1000		i->empty = 1;
1001		return -EINVAL;
1002	}
1003	snd_interval_any(&list_range);
1004	list_range.min = UINT_MAX;
1005	list_range.max = 0;
1006        for (k = 0; k < count; k++) {
1007		if (mask && !(mask & (1 << k)))
1008			continue;
1009		if (!snd_interval_test(i, list[k]))
1010			continue;
1011		list_range.min = min(list_range.min, list[k]);
1012		list_range.max = max(list_range.max, list[k]);
1013        }
1014	return snd_interval_refine(i, &list_range);
1015}
1016EXPORT_SYMBOL(snd_interval_list);
1017
1018/**
1019 * snd_interval_ranges - refine the interval value from the list of ranges
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list of ranges
1022 * @ranges: the ranges list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list of ranges.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Return: Positive if the value is changed, zero if it's not changed, or a
1030 * negative error code.
1031 */
1032int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1033			const struct snd_interval *ranges, unsigned int mask)
1034{
1035	unsigned int k;
1036	struct snd_interval range_union;
1037	struct snd_interval range;
1038
1039	if (!count) {
1040		snd_interval_none(i);
1041		return -EINVAL;
1042	}
1043	snd_interval_any(&range_union);
1044	range_union.min = UINT_MAX;
1045	range_union.max = 0;
1046	for (k = 0; k < count; k++) {
1047		if (mask && !(mask & (1 << k)))
1048			continue;
1049		snd_interval_copy(&range, &ranges[k]);
1050		if (snd_interval_refine(&range, i) < 0)
1051			continue;
1052		if (snd_interval_empty(&range))
1053			continue;
1054
1055		if (range.min < range_union.min) {
1056			range_union.min = range.min;
1057			range_union.openmin = 1;
1058		}
1059		if (range.min == range_union.min && !range.openmin)
1060			range_union.openmin = 0;
1061		if (range.max > range_union.max) {
1062			range_union.max = range.max;
1063			range_union.openmax = 1;
1064		}
1065		if (range.max == range_union.max && !range.openmax)
1066			range_union.openmax = 0;
1067	}
1068	return snd_interval_refine(i, &range_union);
1069}
1070EXPORT_SYMBOL(snd_interval_ranges);
1071
1072static int snd_interval_step(struct snd_interval *i, unsigned int step)
1073{
1074	unsigned int n;
1075	int changed = 0;
1076	n = i->min % step;
1077	if (n != 0 || i->openmin) {
1078		i->min += step - n;
1079		i->openmin = 0;
1080		changed = 1;
1081	}
1082	n = i->max % step;
1083	if (n != 0 || i->openmax) {
1084		i->max -= n;
1085		i->openmax = 0;
1086		changed = 1;
1087	}
1088	if (snd_interval_checkempty(i)) {
1089		i->empty = 1;
1090		return -EINVAL;
1091	}
1092	return changed;
1093}
1094
1095/* Info constraints helpers */
1096
1097/**
1098 * snd_pcm_hw_rule_add - add the hw-constraint rule
1099 * @runtime: the pcm runtime instance
1100 * @cond: condition bits
1101 * @var: the variable to evaluate
1102 * @func: the evaluation function
1103 * @private: the private data pointer passed to function
1104 * @dep: the dependent variables
1105 *
1106 * Return: Zero if successful, or a negative error code on failure.
1107 */
1108int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1109			int var,
1110			snd_pcm_hw_rule_func_t func, void *private,
1111			int dep, ...)
1112{
1113	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1114	struct snd_pcm_hw_rule *c;
1115	unsigned int k;
1116	va_list args;
1117	va_start(args, dep);
1118	if (constrs->rules_num >= constrs->rules_all) {
1119		struct snd_pcm_hw_rule *new;
1120		unsigned int new_rules = constrs->rules_all + 16;
1121		new = krealloc(constrs->rules, new_rules * sizeof(*c),
1122			       GFP_KERNEL);
1123		if (!new) {
1124			va_end(args);
1125			return -ENOMEM;
1126		}
 
 
 
 
 
1127		constrs->rules = new;
1128		constrs->rules_all = new_rules;
1129	}
1130	c = &constrs->rules[constrs->rules_num];
1131	c->cond = cond;
1132	c->func = func;
1133	c->var = var;
1134	c->private = private;
1135	k = 0;
1136	while (1) {
1137		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1138			va_end(args);
1139			return -EINVAL;
1140		}
1141		c->deps[k++] = dep;
1142		if (dep < 0)
1143			break;
1144		dep = va_arg(args, int);
1145	}
1146	constrs->rules_num++;
1147	va_end(args);
1148	return 0;
1149}
 
1150EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1151
1152/**
1153 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1154 * @runtime: PCM runtime instance
1155 * @var: hw_params variable to apply the mask
1156 * @mask: the bitmap mask
1157 *
1158 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1159 *
1160 * Return: Zero if successful, or a negative error code on failure.
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163			       u_int32_t mask)
1164{
1165	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166	struct snd_mask *maskp = constrs_mask(constrs, var);
1167	*maskp->bits &= mask;
1168	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169	if (*maskp->bits == 0)
1170		return -EINVAL;
1171	return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 *
1182 * Return: Zero if successful, or a negative error code on failure.
1183 */
1184int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1185				 u_int64_t mask)
1186{
1187	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1188	struct snd_mask *maskp = constrs_mask(constrs, var);
1189	maskp->bits[0] &= (u_int32_t)mask;
1190	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1191	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1192	if (! maskp->bits[0] && ! maskp->bits[1])
1193		return -EINVAL;
1194	return 0;
1195}
1196EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1197
1198/**
1199 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1200 * @runtime: PCM runtime instance
1201 * @var: hw_params variable to apply the integer constraint
1202 *
1203 * Apply the constraint of integer to an interval parameter.
1204 *
1205 * Return: Positive if the value is changed, zero if it's not changed, or a
1206 * negative error code.
1207 */
1208int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1209{
1210	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1211	return snd_interval_setinteger(constrs_interval(constrs, var));
1212}
 
1213EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1214
1215/**
1216 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1217 * @runtime: PCM runtime instance
1218 * @var: hw_params variable to apply the range
1219 * @min: the minimal value
1220 * @max: the maximal value
1221 * 
1222 * Apply the min/max range constraint to an interval parameter.
1223 *
1224 * Return: Positive if the value is changed, zero if it's not changed, or a
1225 * negative error code.
1226 */
1227int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1228				 unsigned int min, unsigned int max)
1229{
1230	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1231	struct snd_interval t;
1232	t.min = min;
1233	t.max = max;
1234	t.openmin = t.openmax = 0;
1235	t.integer = 0;
1236	return snd_interval_refine(constrs_interval(constrs, var), &t);
1237}
 
1238EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1239
1240static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1241				struct snd_pcm_hw_rule *rule)
1242{
1243	struct snd_pcm_hw_constraint_list *list = rule->private;
1244	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1245}		
1246
1247
1248/**
1249 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1250 * @runtime: PCM runtime instance
1251 * @cond: condition bits
1252 * @var: hw_params variable to apply the list constraint
1253 * @l: list
1254 * 
1255 * Apply the list of constraints to an interval parameter.
1256 *
1257 * Return: Zero if successful, or a negative error code on failure.
1258 */
1259int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1260			       unsigned int cond,
1261			       snd_pcm_hw_param_t var,
1262			       const struct snd_pcm_hw_constraint_list *l)
1263{
1264	return snd_pcm_hw_rule_add(runtime, cond, var,
1265				   snd_pcm_hw_rule_list, (void *)l,
1266				   var, -1);
1267}
1268EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1269
1270static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1271				  struct snd_pcm_hw_rule *rule)
1272{
1273	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1274	return snd_interval_ranges(hw_param_interval(params, rule->var),
1275				   r->count, r->ranges, r->mask);
1276}
1277
1278
1279/**
1280 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1281 * @runtime: PCM runtime instance
1282 * @cond: condition bits
1283 * @var: hw_params variable to apply the list of range constraints
1284 * @r: ranges
1285 *
1286 * Apply the list of range constraints to an interval parameter.
1287 *
1288 * Return: Zero if successful, or a negative error code on failure.
1289 */
1290int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1291				 unsigned int cond,
1292				 snd_pcm_hw_param_t var,
1293				 const struct snd_pcm_hw_constraint_ranges *r)
1294{
1295	return snd_pcm_hw_rule_add(runtime, cond, var,
1296				   snd_pcm_hw_rule_ranges, (void *)r,
1297				   var, -1);
1298}
1299EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1300
1301static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1302				   struct snd_pcm_hw_rule *rule)
1303{
1304	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1305	unsigned int num = 0, den = 0;
1306	int err;
1307	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1308				  r->nrats, r->rats, &num, &den);
1309	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1310		params->rate_num = num;
1311		params->rate_den = den;
1312	}
1313	return err;
1314}
1315
1316/**
1317 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the ratnums constraint
1321 * @r: struct snd_ratnums constriants
1322 *
1323 * Return: Zero if successful, or a negative error code on failure.
1324 */
1325int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1326				  unsigned int cond,
1327				  snd_pcm_hw_param_t var,
1328				  const struct snd_pcm_hw_constraint_ratnums *r)
1329{
1330	return snd_pcm_hw_rule_add(runtime, cond, var,
1331				   snd_pcm_hw_rule_ratnums, (void *)r,
1332				   var, -1);
1333}
 
1334EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1335
1336static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1337				   struct snd_pcm_hw_rule *rule)
1338{
1339	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1340	unsigned int num = 0, den = 0;
1341	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1342				  r->nrats, r->rats, &num, &den);
1343	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1344		params->rate_num = num;
1345		params->rate_den = den;
1346	}
1347	return err;
1348}
1349
1350/**
1351 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1352 * @runtime: PCM runtime instance
1353 * @cond: condition bits
1354 * @var: hw_params variable to apply the ratdens constraint
1355 * @r: struct snd_ratdens constriants
1356 *
1357 * Return: Zero if successful, or a negative error code on failure.
1358 */
1359int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1360				  unsigned int cond,
1361				  snd_pcm_hw_param_t var,
1362				  const struct snd_pcm_hw_constraint_ratdens *r)
1363{
1364	return snd_pcm_hw_rule_add(runtime, cond, var,
1365				   snd_pcm_hw_rule_ratdens, (void *)r,
1366				   var, -1);
1367}
 
1368EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1369
1370static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1371				  struct snd_pcm_hw_rule *rule)
1372{
1373	unsigned int l = (unsigned long) rule->private;
1374	int width = l & 0xffff;
1375	unsigned int msbits = l >> 16;
1376	const struct snd_interval *i =
1377		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1378
1379	if (!snd_interval_single(i))
1380		return 0;
1381
1382	if ((snd_interval_value(i) == width) ||
1383	    (width == 0 && snd_interval_value(i) > msbits))
1384		params->msbits = min_not_zero(params->msbits, msbits);
1385
1386	return 0;
1387}
1388
1389/**
1390 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1391 * @runtime: PCM runtime instance
1392 * @cond: condition bits
1393 * @width: sample bits width
1394 * @msbits: msbits width
1395 *
1396 * This constraint will set the number of most significant bits (msbits) if a
1397 * sample format with the specified width has been select. If width is set to 0
1398 * the msbits will be set for any sample format with a width larger than the
1399 * specified msbits.
1400 *
1401 * Return: Zero if successful, or a negative error code on failure.
1402 */
1403int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1404				 unsigned int cond,
1405				 unsigned int width,
1406				 unsigned int msbits)
1407{
1408	unsigned long l = (msbits << 16) | width;
1409	return snd_pcm_hw_rule_add(runtime, cond, -1,
1410				    snd_pcm_hw_rule_msbits,
1411				    (void*) l,
1412				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1413}
 
1414EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1415
1416static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1417				struct snd_pcm_hw_rule *rule)
1418{
1419	unsigned long step = (unsigned long) rule->private;
1420	return snd_interval_step(hw_param_interval(params, rule->var), step);
1421}
1422
1423/**
1424 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1425 * @runtime: PCM runtime instance
1426 * @cond: condition bits
1427 * @var: hw_params variable to apply the step constraint
1428 * @step: step size
1429 *
1430 * Return: Zero if successful, or a negative error code on failure.
1431 */
1432int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1433			       unsigned int cond,
1434			       snd_pcm_hw_param_t var,
1435			       unsigned long step)
1436{
1437	return snd_pcm_hw_rule_add(runtime, cond, var, 
1438				   snd_pcm_hw_rule_step, (void *) step,
1439				   var, -1);
1440}
 
1441EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1442
1443static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1444{
1445	static unsigned int pow2_sizes[] = {
1446		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1447		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1448		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1449		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1450	};
1451	return snd_interval_list(hw_param_interval(params, rule->var),
1452				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1453}		
1454
1455/**
1456 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1457 * @runtime: PCM runtime instance
1458 * @cond: condition bits
1459 * @var: hw_params variable to apply the power-of-2 constraint
1460 *
1461 * Return: Zero if successful, or a negative error code on failure.
1462 */
1463int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1464			       unsigned int cond,
1465			       snd_pcm_hw_param_t var)
1466{
1467	return snd_pcm_hw_rule_add(runtime, cond, var, 
1468				   snd_pcm_hw_rule_pow2, NULL,
1469				   var, -1);
1470}
 
1471EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1472
1473static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1474					   struct snd_pcm_hw_rule *rule)
1475{
1476	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1477	struct snd_interval *rate;
1478
1479	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1480	return snd_interval_list(rate, 1, &base_rate, 0);
1481}
1482
1483/**
1484 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1485 * @runtime: PCM runtime instance
1486 * @base_rate: the rate at which the hardware does not resample
1487 *
1488 * Return: Zero if successful, or a negative error code on failure.
1489 */
1490int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1491			       unsigned int base_rate)
1492{
1493	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1494				   SNDRV_PCM_HW_PARAM_RATE,
1495				   snd_pcm_hw_rule_noresample_func,
1496				   (void *)(uintptr_t)base_rate,
1497				   SNDRV_PCM_HW_PARAM_RATE, -1);
1498}
1499EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1500
1501static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1502				  snd_pcm_hw_param_t var)
1503{
1504	if (hw_is_mask(var)) {
1505		snd_mask_any(hw_param_mask(params, var));
1506		params->cmask |= 1 << var;
1507		params->rmask |= 1 << var;
1508		return;
1509	}
1510	if (hw_is_interval(var)) {
1511		snd_interval_any(hw_param_interval(params, var));
1512		params->cmask |= 1 << var;
1513		params->rmask |= 1 << var;
1514		return;
1515	}
1516	snd_BUG();
1517}
1518
1519void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1520{
1521	unsigned int k;
1522	memset(params, 0, sizeof(*params));
1523	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1524		_snd_pcm_hw_param_any(params, k);
1525	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1526		_snd_pcm_hw_param_any(params, k);
1527	params->info = ~0U;
1528}
 
1529EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1530
1531/**
1532 * snd_pcm_hw_param_value - return @params field @var value
1533 * @params: the hw_params instance
1534 * @var: parameter to retrieve
1535 * @dir: pointer to the direction (-1,0,1) or %NULL
1536 *
1537 * Return: The value for field @var if it's fixed in configuration space
1538 * defined by @params. -%EINVAL otherwise.
1539 */
1540int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1541			   snd_pcm_hw_param_t var, int *dir)
1542{
1543	if (hw_is_mask(var)) {
1544		const struct snd_mask *mask = hw_param_mask_c(params, var);
1545		if (!snd_mask_single(mask))
1546			return -EINVAL;
1547		if (dir)
1548			*dir = 0;
1549		return snd_mask_value(mask);
1550	}
1551	if (hw_is_interval(var)) {
1552		const struct snd_interval *i = hw_param_interval_c(params, var);
1553		if (!snd_interval_single(i))
1554			return -EINVAL;
1555		if (dir)
1556			*dir = i->openmin;
1557		return snd_interval_value(i);
1558	}
1559	return -EINVAL;
1560}
 
1561EXPORT_SYMBOL(snd_pcm_hw_param_value);
1562
1563void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1564				snd_pcm_hw_param_t var)
1565{
1566	if (hw_is_mask(var)) {
1567		snd_mask_none(hw_param_mask(params, var));
1568		params->cmask |= 1 << var;
1569		params->rmask |= 1 << var;
1570	} else if (hw_is_interval(var)) {
1571		snd_interval_none(hw_param_interval(params, var));
1572		params->cmask |= 1 << var;
1573		params->rmask |= 1 << var;
1574	} else {
1575		snd_BUG();
1576	}
1577}
 
1578EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1579
1580static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1581				   snd_pcm_hw_param_t var)
1582{
1583	int changed;
1584	if (hw_is_mask(var))
1585		changed = snd_mask_refine_first(hw_param_mask(params, var));
1586	else if (hw_is_interval(var))
1587		changed = snd_interval_refine_first(hw_param_interval(params, var));
1588	else
1589		return -EINVAL;
1590	if (changed > 0) {
1591		params->cmask |= 1 << var;
1592		params->rmask |= 1 << var;
1593	}
1594	return changed;
1595}
1596
1597
1598/**
1599 * snd_pcm_hw_param_first - refine config space and return minimum value
1600 * @pcm: PCM instance
1601 * @params: the hw_params instance
1602 * @var: parameter to retrieve
1603 * @dir: pointer to the direction (-1,0,1) or %NULL
1604 *
1605 * Inside configuration space defined by @params remove from @var all
1606 * values > minimum. Reduce configuration space accordingly.
1607 *
1608 * Return: The minimum, or a negative error code on failure.
1609 */
1610int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1611			   struct snd_pcm_hw_params *params, 
1612			   snd_pcm_hw_param_t var, int *dir)
1613{
1614	int changed = _snd_pcm_hw_param_first(params, var);
1615	if (changed < 0)
1616		return changed;
1617	if (params->rmask) {
1618		int err = snd_pcm_hw_refine(pcm, params);
1619		if (err < 0)
1620			return err;
1621	}
1622	return snd_pcm_hw_param_value(params, var, dir);
1623}
 
1624EXPORT_SYMBOL(snd_pcm_hw_param_first);
1625
1626static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1627				  snd_pcm_hw_param_t var)
1628{
1629	int changed;
1630	if (hw_is_mask(var))
1631		changed = snd_mask_refine_last(hw_param_mask(params, var));
1632	else if (hw_is_interval(var))
1633		changed = snd_interval_refine_last(hw_param_interval(params, var));
1634	else
1635		return -EINVAL;
1636	if (changed > 0) {
1637		params->cmask |= 1 << var;
1638		params->rmask |= 1 << var;
1639	}
1640	return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_last - refine config space and return maximum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values < maximum. Reduce configuration space accordingly.
1653 *
1654 * Return: The maximum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1657			  struct snd_pcm_hw_params *params,
1658			  snd_pcm_hw_param_t var, int *dir)
1659{
1660	int changed = _snd_pcm_hw_param_last(params, var);
1661	if (changed < 0)
1662		return changed;
1663	if (params->rmask) {
1664		int err = snd_pcm_hw_refine(pcm, params);
1665		if (err < 0)
1666			return err;
1667	}
1668	return snd_pcm_hw_param_value(params, var, dir);
1669}
 
1670EXPORT_SYMBOL(snd_pcm_hw_param_last);
1671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1673				   void *arg)
1674{
1675	struct snd_pcm_runtime *runtime = substream->runtime;
1676	unsigned long flags;
1677	snd_pcm_stream_lock_irqsave(substream, flags);
1678	if (snd_pcm_running(substream) &&
1679	    snd_pcm_update_hw_ptr(substream) >= 0)
1680		runtime->status->hw_ptr %= runtime->buffer_size;
1681	else {
1682		runtime->status->hw_ptr = 0;
1683		runtime->hw_ptr_wrap = 0;
1684	}
1685	snd_pcm_stream_unlock_irqrestore(substream, flags);
1686	return 0;
1687}
1688
1689static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1690					  void *arg)
1691{
1692	struct snd_pcm_channel_info *info = arg;
1693	struct snd_pcm_runtime *runtime = substream->runtime;
1694	int width;
1695	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1696		info->offset = -1;
1697		return 0;
1698	}
1699	width = snd_pcm_format_physical_width(runtime->format);
1700	if (width < 0)
1701		return width;
1702	info->offset = 0;
1703	switch (runtime->access) {
1704	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1705	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1706		info->first = info->channel * width;
1707		info->step = runtime->channels * width;
1708		break;
1709	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1710	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1711	{
1712		size_t size = runtime->dma_bytes / runtime->channels;
1713		info->first = info->channel * size * 8;
1714		info->step = width;
1715		break;
1716	}
1717	default:
1718		snd_BUG();
1719		break;
1720	}
1721	return 0;
1722}
1723
1724static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1725				       void *arg)
1726{
1727	struct snd_pcm_hw_params *params = arg;
1728	snd_pcm_format_t format;
1729	int channels;
1730	ssize_t frame_size;
1731
1732	params->fifo_size = substream->runtime->hw.fifo_size;
1733	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1734		format = params_format(params);
1735		channels = params_channels(params);
1736		frame_size = snd_pcm_format_size(format, channels);
1737		if (frame_size > 0)
1738			params->fifo_size /= (unsigned)frame_size;
1739	}
1740	return 0;
1741}
1742
1743/**
1744 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1745 * @substream: the pcm substream instance
1746 * @cmd: ioctl command
1747 * @arg: ioctl argument
1748 *
1749 * Processes the generic ioctl commands for PCM.
1750 * Can be passed as the ioctl callback for PCM ops.
1751 *
1752 * Return: Zero if successful, or a negative error code on failure.
1753 */
1754int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1755		      unsigned int cmd, void *arg)
1756{
1757	switch (cmd) {
 
 
1758	case SNDRV_PCM_IOCTL1_RESET:
1759		return snd_pcm_lib_ioctl_reset(substream, arg);
1760	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1761		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1762	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1763		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1764	}
1765	return -ENXIO;
1766}
 
1767EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1768
1769/**
1770 * snd_pcm_period_elapsed - update the pcm status for the next period
1771 * @substream: the pcm substream instance
1772 *
1773 * This function is called from the interrupt handler when the
1774 * PCM has processed the period size.  It will update the current
1775 * pointer, wake up sleepers, etc.
1776 *
1777 * Even if more than one periods have elapsed since the last call, you
1778 * have to call this only once.
1779 */
1780void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1781{
1782	struct snd_pcm_runtime *runtime;
1783	unsigned long flags;
1784
1785	if (snd_BUG_ON(!substream))
1786		return;
1787
1788	snd_pcm_stream_lock_irqsave(substream, flags);
1789	if (PCM_RUNTIME_CHECK(substream))
1790		goto _unlock;
1791	runtime = substream->runtime;
1792
 
 
 
 
1793	if (!snd_pcm_running(substream) ||
1794	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1795		goto _end;
1796
1797#ifdef CONFIG_SND_PCM_TIMER
1798	if (substream->timer_running)
1799		snd_timer_interrupt(substream->timer, 1);
1800#endif
1801 _end:
1802	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1803 _unlock:
1804	snd_pcm_stream_unlock_irqrestore(substream, flags);
 
 
 
1805}
 
1806EXPORT_SYMBOL(snd_pcm_period_elapsed);
1807
1808/*
1809 * Wait until avail_min data becomes available
1810 * Returns a negative error code if any error occurs during operation.
1811 * The available space is stored on availp.  When err = 0 and avail = 0
1812 * on the capture stream, it indicates the stream is in DRAINING state.
1813 */
1814static int wait_for_avail(struct snd_pcm_substream *substream,
1815			      snd_pcm_uframes_t *availp)
1816{
1817	struct snd_pcm_runtime *runtime = substream->runtime;
1818	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1819	wait_queue_entry_t wait;
1820	int err = 0;
1821	snd_pcm_uframes_t avail = 0;
1822	long wait_time, tout;
1823
1824	init_waitqueue_entry(&wait, current);
1825	set_current_state(TASK_INTERRUPTIBLE);
1826	add_wait_queue(&runtime->tsleep, &wait);
1827
1828	if (runtime->no_period_wakeup)
1829		wait_time = MAX_SCHEDULE_TIMEOUT;
1830	else {
1831		/* use wait time from substream if available */
1832		if (substream->wait_time) {
1833			wait_time = substream->wait_time;
1834		} else {
1835			wait_time = 10;
1836
1837			if (runtime->rate) {
1838				long t = runtime->period_size * 2 /
1839					 runtime->rate;
1840				wait_time = max(t, wait_time);
1841			}
1842			wait_time = msecs_to_jiffies(wait_time * 1000);
1843		}
 
1844	}
1845
1846	for (;;) {
1847		if (signal_pending(current)) {
1848			err = -ERESTARTSYS;
1849			break;
1850		}
1851
1852		/*
1853		 * We need to check if space became available already
1854		 * (and thus the wakeup happened already) first to close
1855		 * the race of space already having become available.
1856		 * This check must happen after been added to the waitqueue
1857		 * and having current state be INTERRUPTIBLE.
1858		 */
1859		avail = snd_pcm_avail(substream);
 
 
 
1860		if (avail >= runtime->twake)
1861			break;
1862		snd_pcm_stream_unlock_irq(substream);
1863
1864		tout = schedule_timeout(wait_time);
1865
1866		snd_pcm_stream_lock_irq(substream);
1867		set_current_state(TASK_INTERRUPTIBLE);
1868		switch (runtime->status->state) {
1869		case SNDRV_PCM_STATE_SUSPENDED:
1870			err = -ESTRPIPE;
1871			goto _endloop;
1872		case SNDRV_PCM_STATE_XRUN:
1873			err = -EPIPE;
1874			goto _endloop;
1875		case SNDRV_PCM_STATE_DRAINING:
1876			if (is_playback)
1877				err = -EPIPE;
1878			else 
1879				avail = 0; /* indicate draining */
1880			goto _endloop;
1881		case SNDRV_PCM_STATE_OPEN:
1882		case SNDRV_PCM_STATE_SETUP:
1883		case SNDRV_PCM_STATE_DISCONNECTED:
1884			err = -EBADFD;
1885			goto _endloop;
1886		case SNDRV_PCM_STATE_PAUSED:
1887			continue;
1888		}
1889		if (!tout) {
1890			pcm_dbg(substream->pcm,
1891				"%s write error (DMA or IRQ trouble?)\n",
1892				is_playback ? "playback" : "capture");
1893			err = -EIO;
1894			break;
1895		}
1896	}
1897 _endloop:
1898	set_current_state(TASK_RUNNING);
1899	remove_wait_queue(&runtime->tsleep, &wait);
1900	*availp = avail;
1901	return err;
1902}
1903	
1904typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1905			      int channel, unsigned long hwoff,
1906			      void *buf, unsigned long bytes);
1907
1908typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1909			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1910
1911/* calculate the target DMA-buffer position to be written/read */
1912static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1913			   int channel, unsigned long hwoff)
1914{
1915	return runtime->dma_area + hwoff +
1916		channel * (runtime->dma_bytes / runtime->channels);
1917}
1918
1919/* default copy_user ops for write; used for both interleaved and non- modes */
1920static int default_write_copy(struct snd_pcm_substream *substream,
1921			      int channel, unsigned long hwoff,
1922			      void *buf, unsigned long bytes)
1923{
1924	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1925			   (void __user *)buf, bytes))
1926		return -EFAULT;
1927	return 0;
1928}
1929
1930/* default copy_kernel ops for write */
1931static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1932				     int channel, unsigned long hwoff,
1933				     void *buf, unsigned long bytes)
1934{
1935	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1936	return 0;
1937}
1938
1939/* fill silence instead of copy data; called as a transfer helper
1940 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1941 * a NULL buffer is passed
1942 */
1943static int fill_silence(struct snd_pcm_substream *substream, int channel,
1944			unsigned long hwoff, void *buf, unsigned long bytes)
1945{
1946	struct snd_pcm_runtime *runtime = substream->runtime;
1947
1948	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1949		return 0;
1950	if (substream->ops->fill_silence)
1951		return substream->ops->fill_silence(substream, channel,
1952						    hwoff, bytes);
1953
1954	snd_pcm_format_set_silence(runtime->format,
1955				   get_dma_ptr(runtime, channel, hwoff),
1956				   bytes_to_samples(runtime, bytes));
1957	return 0;
1958}
1959
1960/* default copy_user ops for read; used for both interleaved and non- modes */
1961static int default_read_copy(struct snd_pcm_substream *substream,
1962			     int channel, unsigned long hwoff,
1963			     void *buf, unsigned long bytes)
1964{
1965	if (copy_to_user((void __user *)buf,
1966			 get_dma_ptr(substream->runtime, channel, hwoff),
1967			 bytes))
1968		return -EFAULT;
1969	return 0;
1970}
1971
1972/* default copy_kernel ops for read */
1973static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1974				    int channel, unsigned long hwoff,
1975				    void *buf, unsigned long bytes)
1976{
1977	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1978	return 0;
1979}
1980
1981/* call transfer function with the converted pointers and sizes;
1982 * for interleaved mode, it's one shot for all samples
1983 */
1984static int interleaved_copy(struct snd_pcm_substream *substream,
1985			    snd_pcm_uframes_t hwoff, void *data,
1986			    snd_pcm_uframes_t off,
1987			    snd_pcm_uframes_t frames,
1988			    pcm_transfer_f transfer)
 
1989{
1990	struct snd_pcm_runtime *runtime = substream->runtime;
 
 
 
 
1991
1992	/* convert to bytes */
1993	hwoff = frames_to_bytes(runtime, hwoff);
1994	off = frames_to_bytes(runtime, off);
1995	frames = frames_to_bytes(runtime, frames);
1996	return transfer(substream, 0, hwoff, data + off, frames);
1997}
1998
1999/* call transfer function with the converted pointers and sizes for each
2000 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2001 */
2002static int noninterleaved_copy(struct snd_pcm_substream *substream,
2003			       snd_pcm_uframes_t hwoff, void *data,
2004			       snd_pcm_uframes_t off,
2005			       snd_pcm_uframes_t frames,
2006			       pcm_transfer_f transfer)
2007{
2008	struct snd_pcm_runtime *runtime = substream->runtime;
2009	int channels = runtime->channels;
2010	void **bufs = data;
2011	int c, err;
 
 
 
2012
2013	/* convert to bytes; note that it's not frames_to_bytes() here.
2014	 * in non-interleaved mode, we copy for each channel, thus
2015	 * each copy is n_samples bytes x channels = whole frames.
2016	 */
2017	off = samples_to_bytes(runtime, off);
2018	frames = samples_to_bytes(runtime, frames);
2019	hwoff = samples_to_bytes(runtime, hwoff);
2020	for (c = 0; c < channels; ++c, ++bufs) {
2021		if (!data || !*bufs)
2022			err = fill_silence(substream, c, hwoff, NULL, frames);
2023		else
2024			err = transfer(substream, c, hwoff, *bufs + off,
2025				       frames);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026		if (err < 0)
2027			return err;
2028	}
2029	return 0;
2030}
 
 
 
 
 
 
 
 
 
 
 
 
 
2031
2032/* fill silence on the given buffer position;
2033 * called from snd_pcm_playback_silence()
2034 */
2035static int fill_silence_frames(struct snd_pcm_substream *substream,
2036			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2037{
2038	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2039	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2040		return interleaved_copy(substream, off, NULL, 0, frames,
2041					fill_silence);
2042	else
2043		return noninterleaved_copy(substream, off, NULL, 0, frames,
2044					   fill_silence);
 
 
 
 
2045}
2046
2047/* sanity-check for read/write methods */
2048static int pcm_sanity_check(struct snd_pcm_substream *substream)
2049{
2050	struct snd_pcm_runtime *runtime;
2051	if (PCM_RUNTIME_CHECK(substream))
2052		return -ENXIO;
2053	runtime = substream->runtime;
2054	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2055		return -EINVAL;
2056	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2057		return -EBADFD;
2058	return 0;
2059}
2060
2061static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2062{
2063	switch (runtime->status->state) {
2064	case SNDRV_PCM_STATE_PREPARED:
2065	case SNDRV_PCM_STATE_RUNNING:
2066	case SNDRV_PCM_STATE_PAUSED:
2067		return 0;
2068	case SNDRV_PCM_STATE_XRUN:
2069		return -EPIPE;
2070	case SNDRV_PCM_STATE_SUSPENDED:
2071		return -ESTRPIPE;
2072	default:
2073		return -EBADFD;
2074	}
 
 
 
2075}
2076
2077/* update to the given appl_ptr and call ack callback if needed;
2078 * when an error is returned, take back to the original value
2079 */
2080int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2081			   snd_pcm_uframes_t appl_ptr)
 
2082{
2083	struct snd_pcm_runtime *runtime = substream->runtime;
2084	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2085	int ret;
2086
2087	if (old_appl_ptr == appl_ptr)
2088		return 0;
2089
2090	runtime->control->appl_ptr = appl_ptr;
2091	if (substream->ops->ack) {
2092		ret = substream->ops->ack(substream);
2093		if (ret < 0) {
2094			runtime->control->appl_ptr = old_appl_ptr;
2095			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096		}
2097	}
2098
2099	trace_applptr(substream, old_appl_ptr, appl_ptr);
2100
2101	return 0;
2102}
2103
2104/* the common loop for read/write data */
2105snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2106				     void *data, bool interleaved,
2107				     snd_pcm_uframes_t size, bool in_kernel)
2108{
2109	struct snd_pcm_runtime *runtime = substream->runtime;
2110	snd_pcm_uframes_t xfer = 0;
2111	snd_pcm_uframes_t offset = 0;
2112	snd_pcm_uframes_t avail;
2113	pcm_copy_f writer;
2114	pcm_transfer_f transfer;
2115	bool nonblock;
2116	bool is_playback;
2117	int err;
2118
2119	err = pcm_sanity_check(substream);
2120	if (err < 0)
2121		return err;
 
 
2122
2123	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2124	if (interleaved) {
2125		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2126		    runtime->channels > 1)
2127			return -EINVAL;
2128		writer = interleaved_copy;
2129	} else {
2130		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2131			return -EINVAL;
2132		writer = noninterleaved_copy;
2133	}
2134
2135	if (!data) {
2136		if (is_playback)
2137			transfer = fill_silence;
2138		else
2139			return -EINVAL;
2140	} else if (in_kernel) {
2141		if (substream->ops->copy_kernel)
2142			transfer = substream->ops->copy_kernel;
2143		else
2144			transfer = is_playback ?
2145				default_write_copy_kernel : default_read_copy_kernel;
 
 
2146	} else {
2147		if (substream->ops->copy_user)
2148			transfer = (pcm_transfer_f)substream->ops->copy_user;
2149		else
2150			transfer = is_playback ?
2151				default_write_copy : default_read_copy;
2152	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153
2154	if (size == 0)
2155		return 0;
2156
2157	nonblock = !!(substream->f_flags & O_NONBLOCK);
2158
2159	snd_pcm_stream_lock_irq(substream);
2160	err = pcm_accessible_state(runtime);
2161	if (err < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162		goto _end_unlock;
 
2163
2164	runtime->twake = runtime->control->avail_min ? : 1;
2165	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2166		snd_pcm_update_hw_ptr(substream);
2167
2168	/*
2169	 * If size < start_threshold, wait indefinitely. Another
2170	 * thread may start capture
2171	 */
2172	if (!is_playback &&
2173	    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2174	    size >= runtime->start_threshold) {
2175		err = snd_pcm_start(substream);
2176		if (err < 0)
2177			goto _end_unlock;
2178	}
2179
2180	avail = snd_pcm_avail(substream);
2181
2182	while (size > 0) {
2183		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2184		snd_pcm_uframes_t cont;
2185		if (!avail) {
2186			if (!is_playback &&
2187			    runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2188				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2189				goto _end_unlock;
2190			}
2191			if (nonblock) {
2192				err = -EAGAIN;
2193				goto _end_unlock;
2194			}
2195			runtime->twake = min_t(snd_pcm_uframes_t, size,
2196					runtime->control->avail_min ? : 1);
2197			err = wait_for_avail(substream, &avail);
2198			if (err < 0)
2199				goto _end_unlock;
2200			if (!avail)
2201				continue; /* draining */
2202		}
2203		frames = size > avail ? avail : size;
2204		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2205		appl_ofs = appl_ptr % runtime->buffer_size;
2206		cont = runtime->buffer_size - appl_ofs;
2207		if (frames > cont)
2208			frames = cont;
2209		if (snd_BUG_ON(!frames)) {
2210			err = -EINVAL;
2211			goto _end_unlock;
 
2212		}
 
 
2213		snd_pcm_stream_unlock_irq(substream);
2214		err = writer(substream, appl_ofs, data, offset, frames,
2215			     transfer);
2216		snd_pcm_stream_lock_irq(substream);
2217		if (err < 0)
2218			goto _end_unlock;
2219		err = pcm_accessible_state(runtime);
2220		if (err < 0)
 
2221			goto _end_unlock;
 
 
 
 
 
 
2222		appl_ptr += frames;
2223		if (appl_ptr >= runtime->boundary)
2224			appl_ptr -= runtime->boundary;
2225		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2226		if (err < 0)
2227			goto _end_unlock;
2228
2229		offset += frames;
2230		size -= frames;
2231		xfer += frames;
2232		avail -= frames;
2233		if (is_playback &&
2234		    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2235		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2236			err = snd_pcm_start(substream);
2237			if (err < 0)
2238				goto _end_unlock;
2239		}
2240	}
2241 _end_unlock:
2242	runtime->twake = 0;
2243	if (xfer > 0 && err >= 0)
2244		snd_pcm_update_state(substream, runtime);
2245	snd_pcm_stream_unlock_irq(substream);
2246	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2247}
2248EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2249
2250/*
2251 * standard channel mapping helpers
2252 */
2253
2254/* default channel maps for multi-channel playbacks, up to 8 channels */
2255const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2256	{ .channels = 1,
2257	  .map = { SNDRV_CHMAP_MONO } },
2258	{ .channels = 2,
2259	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2260	{ .channels = 4,
2261	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2262		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2263	{ .channels = 6,
2264	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2265		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2266		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2267	{ .channels = 8,
2268	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2269		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2270		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2271		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2272	{ }
2273};
2274EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2275
2276/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2277const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2278	{ .channels = 1,
2279	  .map = { SNDRV_CHMAP_MONO } },
2280	{ .channels = 2,
2281	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2282	{ .channels = 4,
2283	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2284		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2285	{ .channels = 6,
2286	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2287		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2288		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2289	{ .channels = 8,
2290	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2291		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2292		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2293		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2294	{ }
2295};
2296EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2297
2298static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2299{
2300	if (ch > info->max_channels)
2301		return false;
2302	return !info->channel_mask || (info->channel_mask & (1U << ch));
 
 
 
 
 
 
 
 
 
2303}
2304
2305static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2306			      struct snd_ctl_elem_info *uinfo)
2307{
2308	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2309
2310	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2311	uinfo->count = 0;
2312	uinfo->count = info->max_channels;
2313	uinfo->value.integer.min = 0;
2314	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2315	return 0;
2316}
2317
2318/* get callback for channel map ctl element
2319 * stores the channel position firstly matching with the current channels
2320 */
2321static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2322			     struct snd_ctl_elem_value *ucontrol)
2323{
2324	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2325	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2326	struct snd_pcm_substream *substream;
2327	const struct snd_pcm_chmap_elem *map;
2328
2329	if (!info->chmap)
2330		return -EINVAL;
2331	substream = snd_pcm_chmap_substream(info, idx);
2332	if (!substream)
2333		return -ENODEV;
2334	memset(ucontrol->value.integer.value, 0,
2335	       sizeof(ucontrol->value.integer.value));
2336	if (!substream->runtime)
2337		return 0; /* no channels set */
2338	for (map = info->chmap; map->channels; map++) {
2339		int i;
2340		if (map->channels == substream->runtime->channels &&
2341		    valid_chmap_channels(info, map->channels)) {
2342			for (i = 0; i < map->channels; i++)
2343				ucontrol->value.integer.value[i] = map->map[i];
2344			return 0;
2345		}
2346	}
2347	return -EINVAL;
2348}
2349
2350/* tlv callback for channel map ctl element
2351 * expands the pre-defined channel maps in a form of TLV
2352 */
2353static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2354			     unsigned int size, unsigned int __user *tlv)
2355{
2356	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2357	const struct snd_pcm_chmap_elem *map;
2358	unsigned int __user *dst;
2359	int c, count = 0;
2360
2361	if (!info->chmap)
2362		return -EINVAL;
2363	if (size < 8)
2364		return -ENOMEM;
2365	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2366		return -EFAULT;
2367	size -= 8;
2368	dst = tlv + 2;
2369	for (map = info->chmap; map->channels; map++) {
2370		int chs_bytes = map->channels * 4;
2371		if (!valid_chmap_channels(info, map->channels))
2372			continue;
2373		if (size < 8)
2374			return -ENOMEM;
2375		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2376		    put_user(chs_bytes, dst + 1))
2377			return -EFAULT;
2378		dst += 2;
2379		size -= 8;
2380		count += 8;
2381		if (size < chs_bytes)
2382			return -ENOMEM;
2383		size -= chs_bytes;
2384		count += chs_bytes;
2385		for (c = 0; c < map->channels; c++) {
2386			if (put_user(map->map[c], dst))
2387				return -EFAULT;
2388			dst++;
2389		}
2390	}
2391	if (put_user(count, tlv + 1))
2392		return -EFAULT;
2393	return 0;
2394}
2395
2396static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
 
 
2397{
2398	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2399	info->pcm->streams[info->stream].chmap_kctl = NULL;
2400	kfree(info);
2401}
2402
2403/**
2404 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2405 * @pcm: the assigned PCM instance
2406 * @stream: stream direction
2407 * @chmap: channel map elements (for query)
2408 * @max_channels: the max number of channels for the stream
2409 * @private_value: the value passed to each kcontrol's private_value field
2410 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2411 *
2412 * Create channel-mapping control elements assigned to the given PCM stream(s).
2413 * Return: Zero if successful, or a negative error value.
2414 */
2415int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2416			   const struct snd_pcm_chmap_elem *chmap,
2417			   int max_channels,
2418			   unsigned long private_value,
2419			   struct snd_pcm_chmap **info_ret)
2420{
2421	struct snd_pcm_chmap *info;
2422	struct snd_kcontrol_new knew = {
2423		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2424		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2425			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2426			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2427		.info = pcm_chmap_ctl_info,
2428		.get = pcm_chmap_ctl_get,
2429		.tlv.c = pcm_chmap_ctl_tlv,
2430	};
2431	int err;
2432
2433	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2434		return -EBUSY;
2435	info = kzalloc(sizeof(*info), GFP_KERNEL);
2436	if (!info)
2437		return -ENOMEM;
2438	info->pcm = pcm;
2439	info->stream = stream;
2440	info->chmap = chmap;
2441	info->max_channels = max_channels;
2442	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2443		knew.name = "Playback Channel Map";
2444	else
2445		knew.name = "Capture Channel Map";
2446	knew.device = pcm->device;
2447	knew.count = pcm->streams[stream].substream_count;
2448	knew.private_value = private_value;
2449	info->kctl = snd_ctl_new1(&knew, info);
2450	if (!info->kctl) {
2451		kfree(info);
2452		return -ENOMEM;
2453	}
2454	info->kctl->private_free = pcm_chmap_ctl_private_free;
2455	err = snd_ctl_add(pcm->card, info->kctl);
2456	if (err < 0)
2457		return err;
2458	pcm->streams[stream].chmap_kctl = info->kctl;
2459	if (info_ret)
2460		*info_ret = info;
2461	return 0;
 
 
 
 
2462}
2463EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
 
v3.5.6
 
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
 
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
 
  29#include <sound/info.h>
  30#include <sound/pcm.h>
  31#include <sound/pcm_params.h>
  32#include <sound/timer.h>
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34/*
  35 * fill ring buffer with silence
  36 * runtime->silence_start: starting pointer to silence area
  37 * runtime->silence_filled: size filled with silence
  38 * runtime->silence_threshold: threshold from application
  39 * runtime->silence_size: maximal size from application
  40 *
  41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  42 */
  43void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  44{
  45	struct snd_pcm_runtime *runtime = substream->runtime;
  46	snd_pcm_uframes_t frames, ofs, transfer;
 
  47
  48	if (runtime->silence_size < runtime->boundary) {
  49		snd_pcm_sframes_t noise_dist, n;
  50		if (runtime->silence_start != runtime->control->appl_ptr) {
  51			n = runtime->control->appl_ptr - runtime->silence_start;
 
  52			if (n < 0)
  53				n += runtime->boundary;
  54			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  55				runtime->silence_filled -= n;
  56			else
  57				runtime->silence_filled = 0;
  58			runtime->silence_start = runtime->control->appl_ptr;
  59		}
  60		if (runtime->silence_filled >= runtime->buffer_size)
  61			return;
  62		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  63		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  64			return;
  65		frames = runtime->silence_threshold - noise_dist;
  66		if (frames > runtime->silence_size)
  67			frames = runtime->silence_size;
  68	} else {
  69		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  70			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  71			if (avail > runtime->buffer_size)
  72				avail = runtime->buffer_size;
  73			runtime->silence_filled = avail > 0 ? avail : 0;
  74			runtime->silence_start = (runtime->status->hw_ptr +
  75						  runtime->silence_filled) %
  76						 runtime->boundary;
  77		} else {
  78			ofs = runtime->status->hw_ptr;
  79			frames = new_hw_ptr - ofs;
  80			if ((snd_pcm_sframes_t)frames < 0)
  81				frames += runtime->boundary;
  82			runtime->silence_filled -= frames;
  83			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  84				runtime->silence_filled = 0;
  85				runtime->silence_start = new_hw_ptr;
  86			} else {
  87				runtime->silence_start = ofs;
  88			}
  89		}
  90		frames = runtime->buffer_size - runtime->silence_filled;
  91	}
  92	if (snd_BUG_ON(frames > runtime->buffer_size))
  93		return;
  94	if (frames == 0)
  95		return;
  96	ofs = runtime->silence_start % runtime->buffer_size;
  97	while (frames > 0) {
  98		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
  99		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 100		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 101			if (substream->ops->silence) {
 102				int err;
 103				err = substream->ops->silence(substream, -1, ofs, transfer);
 104				snd_BUG_ON(err < 0);
 105			} else {
 106				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 107				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 108			}
 109		} else {
 110			unsigned int c;
 111			unsigned int channels = runtime->channels;
 112			if (substream->ops->silence) {
 113				for (c = 0; c < channels; ++c) {
 114					int err;
 115					err = substream->ops->silence(substream, c, ofs, transfer);
 116					snd_BUG_ON(err < 0);
 117				}
 118			} else {
 119				size_t dma_csize = runtime->dma_bytes / channels;
 120				for (c = 0; c < channels; ++c) {
 121					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 122					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 123				}
 124			}
 125		}
 126		runtime->silence_filled += transfer;
 127		frames -= transfer;
 128		ofs = 0;
 129	}
 130}
 131
 132#ifdef CONFIG_SND_DEBUG
 133void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 134			   char *name, size_t len)
 135{
 136	snprintf(name, len, "pcmC%dD%d%c:%d",
 137		 substream->pcm->card->number,
 138		 substream->pcm->device,
 139		 substream->stream ? 'c' : 'p',
 140		 substream->number);
 141}
 142EXPORT_SYMBOL(snd_pcm_debug_name);
 143#endif
 144
 145#define XRUN_DEBUG_BASIC	(1<<0)
 146#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 147#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 148#define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
 149#define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
 150#define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
 151#define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
 152
 153#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 154
 155#define xrun_debug(substream, mask) \
 156			((substream)->pstr->xrun_debug & (mask))
 157#else
 158#define xrun_debug(substream, mask)	0
 159#endif
 160
 161#define dump_stack_on_xrun(substream) do {			\
 162		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 163			dump_stack();				\
 164	} while (0)
 165
 166static void xrun(struct snd_pcm_substream *substream)
 
 167{
 168	struct snd_pcm_runtime *runtime = substream->runtime;
 169
 
 170	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 171		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 172	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 173	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 174		char name[16];
 175		snd_pcm_debug_name(substream, name, sizeof(name));
 176		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
 177		dump_stack_on_xrun(substream);
 178	}
 179}
 180
 181#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 182#define hw_ptr_error(substream, fmt, args...)				\
 183	do {								\
 
 184		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 185			xrun_log_show(substream);			\
 186			if (printk_ratelimit()) {			\
 187				snd_printd("PCM: " fmt, ##args);	\
 188			}						\
 189			dump_stack_on_xrun(substream);			\
 190		}							\
 191	} while (0)
 192
 193#define XRUN_LOG_CNT	10
 194
 195struct hwptr_log_entry {
 196	unsigned int in_interrupt;
 197	unsigned long jiffies;
 198	snd_pcm_uframes_t pos;
 199	snd_pcm_uframes_t period_size;
 200	snd_pcm_uframes_t buffer_size;
 201	snd_pcm_uframes_t old_hw_ptr;
 202	snd_pcm_uframes_t hw_ptr_base;
 203};
 204
 205struct snd_pcm_hwptr_log {
 206	unsigned int idx;
 207	unsigned int hit: 1;
 208	struct hwptr_log_entry entries[XRUN_LOG_CNT];
 209};
 210
 211static void xrun_log(struct snd_pcm_substream *substream,
 212		     snd_pcm_uframes_t pos, int in_interrupt)
 213{
 214	struct snd_pcm_runtime *runtime = substream->runtime;
 215	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 216	struct hwptr_log_entry *entry;
 217
 218	if (log == NULL) {
 219		log = kzalloc(sizeof(*log), GFP_ATOMIC);
 220		if (log == NULL)
 221			return;
 222		runtime->hwptr_log = log;
 223	} else {
 224		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 225			return;
 226	}
 227	entry = &log->entries[log->idx];
 228	entry->in_interrupt = in_interrupt;
 229	entry->jiffies = jiffies;
 230	entry->pos = pos;
 231	entry->period_size = runtime->period_size;
 232	entry->buffer_size = runtime->buffer_size;
 233	entry->old_hw_ptr = runtime->status->hw_ptr;
 234	entry->hw_ptr_base = runtime->hw_ptr_base;
 235	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 236}
 237
 238static void xrun_log_show(struct snd_pcm_substream *substream)
 239{
 240	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 241	struct hwptr_log_entry *entry;
 242	char name[16];
 243	unsigned int idx;
 244	int cnt;
 245
 246	if (log == NULL)
 247		return;
 248	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 249		return;
 250	snd_pcm_debug_name(substream, name, sizeof(name));
 251	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 252		entry = &log->entries[idx];
 253		if (entry->period_size == 0)
 254			break;
 255		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
 256			   "hwptr=%ld/%ld\n",
 257			   name, entry->in_interrupt ? "[Q] " : "",
 258			   entry->jiffies,
 259			   (unsigned long)entry->pos,
 260			   (unsigned long)entry->period_size,
 261			   (unsigned long)entry->buffer_size,
 262			   (unsigned long)entry->old_hw_ptr,
 263			   (unsigned long)entry->hw_ptr_base);
 264		idx++;
 265		idx %= XRUN_LOG_CNT;
 266	}
 267	log->hit = 1;
 268}
 269
 270#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 271
 272#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 273#define xrun_log(substream, pos, in_interrupt)	do { } while (0)
 274#define xrun_log_show(substream)	do { } while (0)
 275
 276#endif
 277
 278int snd_pcm_update_state(struct snd_pcm_substream *substream,
 279			 struct snd_pcm_runtime *runtime)
 280{
 281	snd_pcm_uframes_t avail;
 282
 283	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 284		avail = snd_pcm_playback_avail(runtime);
 285	else
 286		avail = snd_pcm_capture_avail(runtime);
 287	if (avail > runtime->avail_max)
 288		runtime->avail_max = avail;
 289	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 290		if (avail >= runtime->buffer_size) {
 291			snd_pcm_drain_done(substream);
 292			return -EPIPE;
 293		}
 294	} else {
 295		if (avail >= runtime->stop_threshold) {
 296			xrun(substream);
 297			return -EPIPE;
 298		}
 299	}
 300	if (runtime->twake) {
 301		if (avail >= runtime->twake)
 302			wake_up(&runtime->tsleep);
 303	} else if (avail >= runtime->control->avail_min)
 304		wake_up(&runtime->sleep);
 305	return 0;
 306}
 307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 309				  unsigned int in_interrupt)
 310{
 311	struct snd_pcm_runtime *runtime = substream->runtime;
 312	snd_pcm_uframes_t pos;
 313	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 314	snd_pcm_sframes_t hdelta, delta;
 315	unsigned long jdelta;
 316	unsigned long curr_jiffies;
 317	struct timespec curr_tstamp;
 
 
 318
 319	old_hw_ptr = runtime->status->hw_ptr;
 320
 321	/*
 322	 * group pointer, time and jiffies reads to allow for more
 323	 * accurate correlations/corrections.
 324	 * The values are stored at the end of this routine after
 325	 * corrections for hw_ptr position
 326	 */
 327	pos = substream->ops->pointer(substream);
 328	curr_jiffies = jiffies;
 329	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 330		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 
 
 
 
 
 
 
 
 
 
 
 
 331
 332	if (pos == SNDRV_PCM_POS_XRUN) {
 333		xrun(substream);
 334		return -EPIPE;
 335	}
 336	if (pos >= runtime->buffer_size) {
 337		if (printk_ratelimit()) {
 338			char name[16];
 339			snd_pcm_debug_name(substream, name, sizeof(name));
 340			xrun_log_show(substream);
 341			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
 342				   "buffer size = %ld, period size = %ld\n",
 343				   name, pos, runtime->buffer_size,
 344				   runtime->period_size);
 345		}
 346		pos = 0;
 347	}
 348	pos -= pos % runtime->min_align;
 349	if (xrun_debug(substream, XRUN_DEBUG_LOG))
 350		xrun_log(substream, pos, in_interrupt);
 351	hw_base = runtime->hw_ptr_base;
 352	new_hw_ptr = hw_base + pos;
 353	if (in_interrupt) {
 354		/* we know that one period was processed */
 355		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 356		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 357		if (delta > new_hw_ptr) {
 358			/* check for double acknowledged interrupts */
 359			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 360			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 361				hw_base += runtime->buffer_size;
 362				if (hw_base >= runtime->boundary)
 363					hw_base = 0;
 
 
 364				new_hw_ptr = hw_base + pos;
 365				goto __delta;
 366			}
 367		}
 368	}
 369	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 370	/* pointer crosses the end of the ring buffer */
 371	if (new_hw_ptr < old_hw_ptr) {
 372		hw_base += runtime->buffer_size;
 373		if (hw_base >= runtime->boundary)
 374			hw_base = 0;
 
 
 375		new_hw_ptr = hw_base + pos;
 376	}
 377      __delta:
 378	delta = new_hw_ptr - old_hw_ptr;
 379	if (delta < 0)
 380		delta += runtime->boundary;
 381	if (xrun_debug(substream, in_interrupt ?
 382			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 383		char name[16];
 384		snd_pcm_debug_name(substream, name, sizeof(name));
 385		snd_printd("%s_update: %s: pos=%u/%u/%u, "
 386			   "hwptr=%ld/%ld/%ld/%ld\n",
 387			   in_interrupt ? "period" : "hwptr",
 388			   name,
 389			   (unsigned int)pos,
 390			   (unsigned int)runtime->period_size,
 391			   (unsigned int)runtime->buffer_size,
 392			   (unsigned long)delta,
 393			   (unsigned long)old_hw_ptr,
 394			   (unsigned long)new_hw_ptr,
 395			   (unsigned long)runtime->hw_ptr_base);
 396	}
 397
 398	if (runtime->no_period_wakeup) {
 399		snd_pcm_sframes_t xrun_threshold;
 400		/*
 401		 * Without regular period interrupts, we have to check
 402		 * the elapsed time to detect xruns.
 403		 */
 404		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 405		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 406			goto no_delta_check;
 407		hdelta = jdelta - delta * HZ / runtime->rate;
 408		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 409		while (hdelta > xrun_threshold) {
 410			delta += runtime->buffer_size;
 411			hw_base += runtime->buffer_size;
 412			if (hw_base >= runtime->boundary)
 413				hw_base = 0;
 
 
 414			new_hw_ptr = hw_base + pos;
 415			hdelta -= runtime->hw_ptr_buffer_jiffies;
 416		}
 417		goto no_delta_check;
 418	}
 419
 420	/* something must be really wrong */
 421	if (delta >= runtime->buffer_size + runtime->period_size) {
 422		hw_ptr_error(substream,
 423			       "Unexpected hw_pointer value %s"
 424			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 425			       "old_hw_ptr=%ld)\n",
 426				     in_interrupt ? "[Q] " : "[P]",
 427				     substream->stream, (long)pos,
 428				     (long)new_hw_ptr, (long)old_hw_ptr);
 429		return 0;
 430	}
 431
 432	/* Do jiffies check only in xrun_debug mode */
 433	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 434		goto no_jiffies_check;
 435
 436	/* Skip the jiffies check for hardwares with BATCH flag.
 437	 * Such hardware usually just increases the position at each IRQ,
 438	 * thus it can't give any strange position.
 439	 */
 440	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 441		goto no_jiffies_check;
 442	hdelta = delta;
 443	if (hdelta < runtime->delay)
 444		goto no_jiffies_check;
 445	hdelta -= runtime->delay;
 446	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 447	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 448		delta = jdelta /
 449			(((runtime->period_size * HZ) / runtime->rate)
 450								+ HZ/100);
 451		/* move new_hw_ptr according jiffies not pos variable */
 452		new_hw_ptr = old_hw_ptr;
 453		hw_base = delta;
 454		/* use loop to avoid checks for delta overflows */
 455		/* the delta value is small or zero in most cases */
 456		while (delta > 0) {
 457			new_hw_ptr += runtime->period_size;
 458			if (new_hw_ptr >= runtime->boundary)
 459				new_hw_ptr -= runtime->boundary;
 
 
 460			delta--;
 461		}
 462		/* align hw_base to buffer_size */
 463		hw_ptr_error(substream,
 464			     "hw_ptr skipping! %s"
 465			     "(pos=%ld, delta=%ld, period=%ld, "
 466			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 467			     in_interrupt ? "[Q] " : "",
 468			     (long)pos, (long)hdelta,
 469			     (long)runtime->period_size, jdelta,
 470			     ((hdelta * HZ) / runtime->rate), hw_base,
 471			     (unsigned long)old_hw_ptr,
 472			     (unsigned long)new_hw_ptr);
 473		/* reset values to proper state */
 474		delta = 0;
 475		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 476	}
 477 no_jiffies_check:
 478	if (delta > runtime->period_size + runtime->period_size / 2) {
 479		hw_ptr_error(substream,
 480			     "Lost interrupts? %s"
 481			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 482			     "old_hw_ptr=%ld)\n",
 483			     in_interrupt ? "[Q] " : "",
 484			     substream->stream, (long)delta,
 485			     (long)new_hw_ptr,
 486			     (long)old_hw_ptr);
 487	}
 488
 489 no_delta_check:
 490	if (runtime->status->hw_ptr == new_hw_ptr)
 
 491		return 0;
 
 492
 493	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 494	    runtime->silence_size > 0)
 495		snd_pcm_playback_silence(substream, new_hw_ptr);
 496
 497	if (in_interrupt) {
 498		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 499		if (delta < 0)
 500			delta += runtime->boundary;
 501		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 502		runtime->hw_ptr_interrupt += delta;
 503		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 504			runtime->hw_ptr_interrupt -= runtime->boundary;
 505	}
 506	runtime->hw_ptr_base = hw_base;
 507	runtime->status->hw_ptr = new_hw_ptr;
 508	runtime->hw_ptr_jiffies = curr_jiffies;
 509	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 510		runtime->status->tstamp = curr_tstamp;
 
 
 
 
 511
 512	return snd_pcm_update_state(substream, runtime);
 513}
 514
 515/* CAUTION: call it with irq disabled */
 516int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 517{
 518	return snd_pcm_update_hw_ptr0(substream, 0);
 519}
 520
 521/**
 522 * snd_pcm_set_ops - set the PCM operators
 523 * @pcm: the pcm instance
 524 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 525 * @ops: the operator table
 526 *
 527 * Sets the given PCM operators to the pcm instance.
 528 */
 529void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
 
 530{
 531	struct snd_pcm_str *stream = &pcm->streams[direction];
 532	struct snd_pcm_substream *substream;
 533	
 534	for (substream = stream->substream; substream != NULL; substream = substream->next)
 535		substream->ops = ops;
 536}
 537
 538EXPORT_SYMBOL(snd_pcm_set_ops);
 539
 540/**
 541 * snd_pcm_sync - set the PCM sync id
 542 * @substream: the pcm substream
 543 *
 544 * Sets the PCM sync identifier for the card.
 545 */
 546void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 547{
 548	struct snd_pcm_runtime *runtime = substream->runtime;
 549	
 550	runtime->sync.id32[0] = substream->pcm->card->number;
 551	runtime->sync.id32[1] = -1;
 552	runtime->sync.id32[2] = -1;
 553	runtime->sync.id32[3] = -1;
 554}
 555
 556EXPORT_SYMBOL(snd_pcm_set_sync);
 557
 558/*
 559 *  Standard ioctl routine
 560 */
 561
 562static inline unsigned int div32(unsigned int a, unsigned int b, 
 563				 unsigned int *r)
 564{
 565	if (b == 0) {
 566		*r = 0;
 567		return UINT_MAX;
 568	}
 569	*r = a % b;
 570	return a / b;
 571}
 572
 573static inline unsigned int div_down(unsigned int a, unsigned int b)
 574{
 575	if (b == 0)
 576		return UINT_MAX;
 577	return a / b;
 578}
 579
 580static inline unsigned int div_up(unsigned int a, unsigned int b)
 581{
 582	unsigned int r;
 583	unsigned int q;
 584	if (b == 0)
 585		return UINT_MAX;
 586	q = div32(a, b, &r);
 587	if (r)
 588		++q;
 589	return q;
 590}
 591
 592static inline unsigned int mul(unsigned int a, unsigned int b)
 593{
 594	if (a == 0)
 595		return 0;
 596	if (div_down(UINT_MAX, a) < b)
 597		return UINT_MAX;
 598	return a * b;
 599}
 600
 601static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 602				    unsigned int c, unsigned int *r)
 603{
 604	u_int64_t n = (u_int64_t) a * b;
 605	if (c == 0) {
 606		snd_BUG_ON(!n);
 607		*r = 0;
 608		return UINT_MAX;
 609	}
 610	n = div_u64_rem(n, c, r);
 611	if (n >= UINT_MAX) {
 612		*r = 0;
 613		return UINT_MAX;
 614	}
 615	return n;
 616}
 617
 618/**
 619 * snd_interval_refine - refine the interval value of configurator
 620 * @i: the interval value to refine
 621 * @v: the interval value to refer to
 622 *
 623 * Refines the interval value with the reference value.
 624 * The interval is changed to the range satisfying both intervals.
 625 * The interval status (min, max, integer, etc.) are evaluated.
 626 *
 627 * Returns non-zero if the value is changed, zero if not changed.
 
 628 */
 629int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 630{
 631	int changed = 0;
 632	if (snd_BUG_ON(snd_interval_empty(i)))
 633		return -EINVAL;
 634	if (i->min < v->min) {
 635		i->min = v->min;
 636		i->openmin = v->openmin;
 637		changed = 1;
 638	} else if (i->min == v->min && !i->openmin && v->openmin) {
 639		i->openmin = 1;
 640		changed = 1;
 641	}
 642	if (i->max > v->max) {
 643		i->max = v->max;
 644		i->openmax = v->openmax;
 645		changed = 1;
 646	} else if (i->max == v->max && !i->openmax && v->openmax) {
 647		i->openmax = 1;
 648		changed = 1;
 649	}
 650	if (!i->integer && v->integer) {
 651		i->integer = 1;
 652		changed = 1;
 653	}
 654	if (i->integer) {
 655		if (i->openmin) {
 656			i->min++;
 657			i->openmin = 0;
 658		}
 659		if (i->openmax) {
 660			i->max--;
 661			i->openmax = 0;
 662		}
 663	} else if (!i->openmin && !i->openmax && i->min == i->max)
 664		i->integer = 1;
 665	if (snd_interval_checkempty(i)) {
 666		snd_interval_none(i);
 667		return -EINVAL;
 668	}
 669	return changed;
 670}
 671
 672EXPORT_SYMBOL(snd_interval_refine);
 673
 674static int snd_interval_refine_first(struct snd_interval *i)
 675{
 
 
 676	if (snd_BUG_ON(snd_interval_empty(i)))
 677		return -EINVAL;
 678	if (snd_interval_single(i))
 679		return 0;
 680	i->max = i->min;
 681	i->openmax = i->openmin;
 682	if (i->openmax)
 683		i->max++;
 
 
 684	return 1;
 685}
 686
 687static int snd_interval_refine_last(struct snd_interval *i)
 688{
 
 
 689	if (snd_BUG_ON(snd_interval_empty(i)))
 690		return -EINVAL;
 691	if (snd_interval_single(i))
 692		return 0;
 693	i->min = i->max;
 694	i->openmin = i->openmax;
 695	if (i->openmin)
 696		i->min--;
 
 
 697	return 1;
 698}
 699
 700void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 701{
 702	if (a->empty || b->empty) {
 703		snd_interval_none(c);
 704		return;
 705	}
 706	c->empty = 0;
 707	c->min = mul(a->min, b->min);
 708	c->openmin = (a->openmin || b->openmin);
 709	c->max = mul(a->max,  b->max);
 710	c->openmax = (a->openmax || b->openmax);
 711	c->integer = (a->integer && b->integer);
 712}
 713
 714/**
 715 * snd_interval_div - refine the interval value with division
 716 * @a: dividend
 717 * @b: divisor
 718 * @c: quotient
 719 *
 720 * c = a / b
 721 *
 722 * Returns non-zero if the value is changed, zero if not changed.
 723 */
 724void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 725{
 726	unsigned int r;
 727	if (a->empty || b->empty) {
 728		snd_interval_none(c);
 729		return;
 730	}
 731	c->empty = 0;
 732	c->min = div32(a->min, b->max, &r);
 733	c->openmin = (r || a->openmin || b->openmax);
 734	if (b->min > 0) {
 735		c->max = div32(a->max, b->min, &r);
 736		if (r) {
 737			c->max++;
 738			c->openmax = 1;
 739		} else
 740			c->openmax = (a->openmax || b->openmin);
 741	} else {
 742		c->max = UINT_MAX;
 743		c->openmax = 0;
 744	}
 745	c->integer = 0;
 746}
 747
 748/**
 749 * snd_interval_muldivk - refine the interval value
 750 * @a: dividend 1
 751 * @b: dividend 2
 752 * @k: divisor (as integer)
 753 * @c: result
 754  *
 755 * c = a * b / k
 756 *
 757 * Returns non-zero if the value is changed, zero if not changed.
 758 */
 759void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 760		      unsigned int k, struct snd_interval *c)
 761{
 762	unsigned int r;
 763	if (a->empty || b->empty) {
 764		snd_interval_none(c);
 765		return;
 766	}
 767	c->empty = 0;
 768	c->min = muldiv32(a->min, b->min, k, &r);
 769	c->openmin = (r || a->openmin || b->openmin);
 770	c->max = muldiv32(a->max, b->max, k, &r);
 771	if (r) {
 772		c->max++;
 773		c->openmax = 1;
 774	} else
 775		c->openmax = (a->openmax || b->openmax);
 776	c->integer = 0;
 777}
 778
 779/**
 780 * snd_interval_mulkdiv - refine the interval value
 781 * @a: dividend 1
 782 * @k: dividend 2 (as integer)
 783 * @b: divisor
 784 * @c: result
 785 *
 786 * c = a * k / b
 787 *
 788 * Returns non-zero if the value is changed, zero if not changed.
 789 */
 790void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 791		      const struct snd_interval *b, struct snd_interval *c)
 792{
 793	unsigned int r;
 794	if (a->empty || b->empty) {
 795		snd_interval_none(c);
 796		return;
 797	}
 798	c->empty = 0;
 799	c->min = muldiv32(a->min, k, b->max, &r);
 800	c->openmin = (r || a->openmin || b->openmax);
 801	if (b->min > 0) {
 802		c->max = muldiv32(a->max, k, b->min, &r);
 803		if (r) {
 804			c->max++;
 805			c->openmax = 1;
 806		} else
 807			c->openmax = (a->openmax || b->openmin);
 808	} else {
 809		c->max = UINT_MAX;
 810		c->openmax = 0;
 811	}
 812	c->integer = 0;
 813}
 814
 815/* ---- */
 816
 817
 818/**
 819 * snd_interval_ratnum - refine the interval value
 820 * @i: interval to refine
 821 * @rats_count: number of ratnum_t 
 822 * @rats: ratnum_t array
 823 * @nump: pointer to store the resultant numerator
 824 * @denp: pointer to store the resultant denominator
 825 *
 826 * Returns non-zero if the value is changed, zero if not changed.
 
 827 */
 828int snd_interval_ratnum(struct snd_interval *i,
 829			unsigned int rats_count, struct snd_ratnum *rats,
 830			unsigned int *nump, unsigned int *denp)
 831{
 832	unsigned int best_num, best_den;
 833	int best_diff;
 834	unsigned int k;
 835	struct snd_interval t;
 836	int err;
 837	unsigned int result_num, result_den;
 838	int result_diff;
 839
 840	best_num = best_den = best_diff = 0;
 841	for (k = 0; k < rats_count; ++k) {
 842		unsigned int num = rats[k].num;
 843		unsigned int den;
 844		unsigned int q = i->min;
 845		int diff;
 846		if (q == 0)
 847			q = 1;
 848		den = div_up(num, q);
 849		if (den < rats[k].den_min)
 850			continue;
 851		if (den > rats[k].den_max)
 852			den = rats[k].den_max;
 853		else {
 854			unsigned int r;
 855			r = (den - rats[k].den_min) % rats[k].den_step;
 856			if (r != 0)
 857				den -= r;
 858		}
 859		diff = num - q * den;
 860		if (diff < 0)
 861			diff = -diff;
 862		if (best_num == 0 ||
 863		    diff * best_den < best_diff * den) {
 864			best_diff = diff;
 865			best_den = den;
 866			best_num = num;
 867		}
 868	}
 869	if (best_den == 0) {
 870		i->empty = 1;
 871		return -EINVAL;
 872	}
 873	t.min = div_down(best_num, best_den);
 874	t.openmin = !!(best_num % best_den);
 875	
 876	result_num = best_num;
 877	result_diff = best_diff;
 878	result_den = best_den;
 879	best_num = best_den = best_diff = 0;
 880	for (k = 0; k < rats_count; ++k) {
 881		unsigned int num = rats[k].num;
 882		unsigned int den;
 883		unsigned int q = i->max;
 884		int diff;
 885		if (q == 0) {
 886			i->empty = 1;
 887			return -EINVAL;
 888		}
 889		den = div_down(num, q);
 890		if (den > rats[k].den_max)
 891			continue;
 892		if (den < rats[k].den_min)
 893			den = rats[k].den_min;
 894		else {
 895			unsigned int r;
 896			r = (den - rats[k].den_min) % rats[k].den_step;
 897			if (r != 0)
 898				den += rats[k].den_step - r;
 899		}
 900		diff = q * den - num;
 901		if (diff < 0)
 902			diff = -diff;
 903		if (best_num == 0 ||
 904		    diff * best_den < best_diff * den) {
 905			best_diff = diff;
 906			best_den = den;
 907			best_num = num;
 908		}
 909	}
 910	if (best_den == 0) {
 911		i->empty = 1;
 912		return -EINVAL;
 913	}
 914	t.max = div_up(best_num, best_den);
 915	t.openmax = !!(best_num % best_den);
 916	t.integer = 0;
 917	err = snd_interval_refine(i, &t);
 918	if (err < 0)
 919		return err;
 920
 921	if (snd_interval_single(i)) {
 922		if (best_diff * result_den < result_diff * best_den) {
 923			result_num = best_num;
 924			result_den = best_den;
 925		}
 926		if (nump)
 927			*nump = result_num;
 928		if (denp)
 929			*denp = result_den;
 930	}
 931	return err;
 932}
 933
 934EXPORT_SYMBOL(snd_interval_ratnum);
 935
 936/**
 937 * snd_interval_ratden - refine the interval value
 938 * @i: interval to refine
 939 * @rats_count: number of struct ratden
 940 * @rats: struct ratden array
 941 * @nump: pointer to store the resultant numerator
 942 * @denp: pointer to store the resultant denominator
 943 *
 944 * Returns non-zero if the value is changed, zero if not changed.
 
 945 */
 946static int snd_interval_ratden(struct snd_interval *i,
 947			       unsigned int rats_count, struct snd_ratden *rats,
 
 948			       unsigned int *nump, unsigned int *denp)
 949{
 950	unsigned int best_num, best_diff, best_den;
 951	unsigned int k;
 952	struct snd_interval t;
 953	int err;
 954
 955	best_num = best_den = best_diff = 0;
 956	for (k = 0; k < rats_count; ++k) {
 957		unsigned int num;
 958		unsigned int den = rats[k].den;
 959		unsigned int q = i->min;
 960		int diff;
 961		num = mul(q, den);
 962		if (num > rats[k].num_max)
 963			continue;
 964		if (num < rats[k].num_min)
 965			num = rats[k].num_max;
 966		else {
 967			unsigned int r;
 968			r = (num - rats[k].num_min) % rats[k].num_step;
 969			if (r != 0)
 970				num += rats[k].num_step - r;
 971		}
 972		diff = num - q * den;
 973		if (best_num == 0 ||
 974		    diff * best_den < best_diff * den) {
 975			best_diff = diff;
 976			best_den = den;
 977			best_num = num;
 978		}
 979	}
 980	if (best_den == 0) {
 981		i->empty = 1;
 982		return -EINVAL;
 983	}
 984	t.min = div_down(best_num, best_den);
 985	t.openmin = !!(best_num % best_den);
 986	
 987	best_num = best_den = best_diff = 0;
 988	for (k = 0; k < rats_count; ++k) {
 989		unsigned int num;
 990		unsigned int den = rats[k].den;
 991		unsigned int q = i->max;
 992		int diff;
 993		num = mul(q, den);
 994		if (num < rats[k].num_min)
 995			continue;
 996		if (num > rats[k].num_max)
 997			num = rats[k].num_max;
 998		else {
 999			unsigned int r;
1000			r = (num - rats[k].num_min) % rats[k].num_step;
1001			if (r != 0)
1002				num -= r;
1003		}
1004		diff = q * den - num;
1005		if (best_num == 0 ||
1006		    diff * best_den < best_diff * den) {
1007			best_diff = diff;
1008			best_den = den;
1009			best_num = num;
1010		}
1011	}
1012	if (best_den == 0) {
1013		i->empty = 1;
1014		return -EINVAL;
1015	}
1016	t.max = div_up(best_num, best_den);
1017	t.openmax = !!(best_num % best_den);
1018	t.integer = 0;
1019	err = snd_interval_refine(i, &t);
1020	if (err < 0)
1021		return err;
1022
1023	if (snd_interval_single(i)) {
1024		if (nump)
1025			*nump = best_num;
1026		if (denp)
1027			*denp = best_den;
1028	}
1029	return err;
1030}
1031
1032/**
1033 * snd_interval_list - refine the interval value from the list
1034 * @i: the interval value to refine
1035 * @count: the number of elements in the list
1036 * @list: the value list
1037 * @mask: the bit-mask to evaluate
1038 *
1039 * Refines the interval value from the list.
1040 * When mask is non-zero, only the elements corresponding to bit 1 are
1041 * evaluated.
1042 *
1043 * Returns non-zero if the value is changed, zero if not changed.
 
1044 */
1045int snd_interval_list(struct snd_interval *i, unsigned int count,
1046		      const unsigned int *list, unsigned int mask)
1047{
1048        unsigned int k;
1049	struct snd_interval list_range;
1050
1051	if (!count) {
1052		i->empty = 1;
1053		return -EINVAL;
1054	}
1055	snd_interval_any(&list_range);
1056	list_range.min = UINT_MAX;
1057	list_range.max = 0;
1058        for (k = 0; k < count; k++) {
1059		if (mask && !(mask & (1 << k)))
1060			continue;
1061		if (!snd_interval_test(i, list[k]))
1062			continue;
1063		list_range.min = min(list_range.min, list[k]);
1064		list_range.max = max(list_range.max, list[k]);
1065        }
1066	return snd_interval_refine(i, &list_range);
1067}
 
1068
1069EXPORT_SYMBOL(snd_interval_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1072{
1073	unsigned int n;
1074	int changed = 0;
1075	n = (i->min - min) % step;
1076	if (n != 0 || i->openmin) {
1077		i->min += step - n;
 
1078		changed = 1;
1079	}
1080	n = (i->max - min) % step;
1081	if (n != 0 || i->openmax) {
1082		i->max -= n;
 
1083		changed = 1;
1084	}
1085	if (snd_interval_checkempty(i)) {
1086		i->empty = 1;
1087		return -EINVAL;
1088	}
1089	return changed;
1090}
1091
1092/* Info constraints helpers */
1093
1094/**
1095 * snd_pcm_hw_rule_add - add the hw-constraint rule
1096 * @runtime: the pcm runtime instance
1097 * @cond: condition bits
1098 * @var: the variable to evaluate
1099 * @func: the evaluation function
1100 * @private: the private data pointer passed to function
1101 * @dep: the dependent variables
1102 *
1103 * Returns zero if successful, or a negative error code on failure.
1104 */
1105int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1106			int var,
1107			snd_pcm_hw_rule_func_t func, void *private,
1108			int dep, ...)
1109{
1110	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1111	struct snd_pcm_hw_rule *c;
1112	unsigned int k;
1113	va_list args;
1114	va_start(args, dep);
1115	if (constrs->rules_num >= constrs->rules_all) {
1116		struct snd_pcm_hw_rule *new;
1117		unsigned int new_rules = constrs->rules_all + 16;
1118		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
 
1119		if (!new) {
1120			va_end(args);
1121			return -ENOMEM;
1122		}
1123		if (constrs->rules) {
1124			memcpy(new, constrs->rules,
1125			       constrs->rules_num * sizeof(*c));
1126			kfree(constrs->rules);
1127		}
1128		constrs->rules = new;
1129		constrs->rules_all = new_rules;
1130	}
1131	c = &constrs->rules[constrs->rules_num];
1132	c->cond = cond;
1133	c->func = func;
1134	c->var = var;
1135	c->private = private;
1136	k = 0;
1137	while (1) {
1138		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139			va_end(args);
1140			return -EINVAL;
1141		}
1142		c->deps[k++] = dep;
1143		if (dep < 0)
1144			break;
1145		dep = va_arg(args, int);
1146	}
1147	constrs->rules_num++;
1148	va_end(args);
1149	return 0;
1150}
1151
1152EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1153
1154/**
1155 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1156 * @runtime: PCM runtime instance
1157 * @var: hw_params variable to apply the mask
1158 * @mask: the bitmap mask
1159 *
1160 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
 
 
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163			       u_int32_t mask)
1164{
1165	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166	struct snd_mask *maskp = constrs_mask(constrs, var);
1167	*maskp->bits &= mask;
1168	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169	if (*maskp->bits == 0)
1170		return -EINVAL;
1171	return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
 
 
1181 */
1182int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1183				 u_int64_t mask)
1184{
1185	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1186	struct snd_mask *maskp = constrs_mask(constrs, var);
1187	maskp->bits[0] &= (u_int32_t)mask;
1188	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1189	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1190	if (! maskp->bits[0] && ! maskp->bits[1])
1191		return -EINVAL;
1192	return 0;
1193}
 
1194
1195/**
1196 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the integer constraint
1199 *
1200 * Apply the constraint of integer to an interval parameter.
 
 
 
1201 */
1202int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1203{
1204	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205	return snd_interval_setinteger(constrs_interval(constrs, var));
1206}
1207
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1209
1210/**
1211 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the range
1214 * @min: the minimal value
1215 * @max: the maximal value
1216 * 
1217 * Apply the min/max range constraint to an interval parameter.
 
 
 
1218 */
1219int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220				 unsigned int min, unsigned int max)
1221{
1222	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223	struct snd_interval t;
1224	t.min = min;
1225	t.max = max;
1226	t.openmin = t.openmax = 0;
1227	t.integer = 0;
1228	return snd_interval_refine(constrs_interval(constrs, var), &t);
1229}
1230
1231EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1232
1233static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1234				struct snd_pcm_hw_rule *rule)
1235{
1236	struct snd_pcm_hw_constraint_list *list = rule->private;
1237	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1238}		
1239
1240
1241/**
1242 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1243 * @runtime: PCM runtime instance
1244 * @cond: condition bits
1245 * @var: hw_params variable to apply the list constraint
1246 * @l: list
1247 * 
1248 * Apply the list of constraints to an interval parameter.
 
 
1249 */
1250int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1251			       unsigned int cond,
1252			       snd_pcm_hw_param_t var,
1253			       struct snd_pcm_hw_constraint_list *l)
1254{
1255	return snd_pcm_hw_rule_add(runtime, cond, var,
1256				   snd_pcm_hw_rule_list, l,
1257				   var, -1);
1258}
 
 
 
 
 
 
 
 
 
 
1259
1260EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261
1262static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1263				   struct snd_pcm_hw_rule *rule)
1264{
1265	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1266	unsigned int num = 0, den = 0;
1267	int err;
1268	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1269				  r->nrats, r->rats, &num, &den);
1270	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1271		params->rate_num = num;
1272		params->rate_den = den;
1273	}
1274	return err;
1275}
1276
1277/**
1278 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1279 * @runtime: PCM runtime instance
1280 * @cond: condition bits
1281 * @var: hw_params variable to apply the ratnums constraint
1282 * @r: struct snd_ratnums constriants
 
 
1283 */
1284int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1285				  unsigned int cond,
1286				  snd_pcm_hw_param_t var,
1287				  struct snd_pcm_hw_constraint_ratnums *r)
1288{
1289	return snd_pcm_hw_rule_add(runtime, cond, var,
1290				   snd_pcm_hw_rule_ratnums, r,
1291				   var, -1);
1292}
1293
1294EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1295
1296static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1297				   struct snd_pcm_hw_rule *rule)
1298{
1299	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1300	unsigned int num = 0, den = 0;
1301	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1302				  r->nrats, r->rats, &num, &den);
1303	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1304		params->rate_num = num;
1305		params->rate_den = den;
1306	}
1307	return err;
1308}
1309
1310/**
1311 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1312 * @runtime: PCM runtime instance
1313 * @cond: condition bits
1314 * @var: hw_params variable to apply the ratdens constraint
1315 * @r: struct snd_ratdens constriants
 
 
1316 */
1317int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1318				  unsigned int cond,
1319				  snd_pcm_hw_param_t var,
1320				  struct snd_pcm_hw_constraint_ratdens *r)
1321{
1322	return snd_pcm_hw_rule_add(runtime, cond, var,
1323				   snd_pcm_hw_rule_ratdens, r,
1324				   var, -1);
1325}
1326
1327EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1328
1329static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1330				  struct snd_pcm_hw_rule *rule)
1331{
1332	unsigned int l = (unsigned long) rule->private;
1333	int width = l & 0xffff;
1334	unsigned int msbits = l >> 16;
1335	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1336	if (snd_interval_single(i) && snd_interval_value(i) == width)
1337		params->msbits = msbits;
 
 
 
 
 
 
 
1338	return 0;
1339}
1340
1341/**
1342 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1343 * @runtime: PCM runtime instance
1344 * @cond: condition bits
1345 * @width: sample bits width
1346 * @msbits: msbits width
 
 
 
 
 
 
 
1347 */
1348int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1349				 unsigned int cond,
1350				 unsigned int width,
1351				 unsigned int msbits)
1352{
1353	unsigned long l = (msbits << 16) | width;
1354	return snd_pcm_hw_rule_add(runtime, cond, -1,
1355				    snd_pcm_hw_rule_msbits,
1356				    (void*) l,
1357				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1358}
1359
1360EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1361
1362static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1363				struct snd_pcm_hw_rule *rule)
1364{
1365	unsigned long step = (unsigned long) rule->private;
1366	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1367}
1368
1369/**
1370 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1371 * @runtime: PCM runtime instance
1372 * @cond: condition bits
1373 * @var: hw_params variable to apply the step constraint
1374 * @step: step size
 
 
1375 */
1376int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1377			       unsigned int cond,
1378			       snd_pcm_hw_param_t var,
1379			       unsigned long step)
1380{
1381	return snd_pcm_hw_rule_add(runtime, cond, var, 
1382				   snd_pcm_hw_rule_step, (void *) step,
1383				   var, -1);
1384}
1385
1386EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1387
1388static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1389{
1390	static unsigned int pow2_sizes[] = {
1391		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1392		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1393		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1394		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1395	};
1396	return snd_interval_list(hw_param_interval(params, rule->var),
1397				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1398}		
1399
1400/**
1401 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @var: hw_params variable to apply the power-of-2 constraint
 
 
1405 */
1406int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1407			       unsigned int cond,
1408			       snd_pcm_hw_param_t var)
1409{
1410	return snd_pcm_hw_rule_add(runtime, cond, var, 
1411				   snd_pcm_hw_rule_pow2, NULL,
1412				   var, -1);
1413}
1414
1415EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1416
1417static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1418					   struct snd_pcm_hw_rule *rule)
1419{
1420	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1421	struct snd_interval *rate;
1422
1423	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1424	return snd_interval_list(rate, 1, &base_rate, 0);
1425}
1426
1427/**
1428 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1429 * @runtime: PCM runtime instance
1430 * @base_rate: the rate at which the hardware does not resample
 
 
1431 */
1432int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1433			       unsigned int base_rate)
1434{
1435	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1436				   SNDRV_PCM_HW_PARAM_RATE,
1437				   snd_pcm_hw_rule_noresample_func,
1438				   (void *)(uintptr_t)base_rate,
1439				   SNDRV_PCM_HW_PARAM_RATE, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1442
1443static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1444				  snd_pcm_hw_param_t var)
1445{
1446	if (hw_is_mask(var)) {
1447		snd_mask_any(hw_param_mask(params, var));
1448		params->cmask |= 1 << var;
1449		params->rmask |= 1 << var;
1450		return;
1451	}
1452	if (hw_is_interval(var)) {
1453		snd_interval_any(hw_param_interval(params, var));
1454		params->cmask |= 1 << var;
1455		params->rmask |= 1 << var;
1456		return;
1457	}
1458	snd_BUG();
1459}
1460
1461void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1462{
1463	unsigned int k;
1464	memset(params, 0, sizeof(*params));
1465	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1466		_snd_pcm_hw_param_any(params, k);
1467	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1468		_snd_pcm_hw_param_any(params, k);
1469	params->info = ~0U;
1470}
1471
1472EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1473
1474/**
1475 * snd_pcm_hw_param_value - return @params field @var value
1476 * @params: the hw_params instance
1477 * @var: parameter to retrieve
1478 * @dir: pointer to the direction (-1,0,1) or %NULL
1479 *
1480 * Return the value for field @var if it's fixed in configuration space
1481 * defined by @params. Return -%EINVAL otherwise.
1482 */
1483int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1484			   snd_pcm_hw_param_t var, int *dir)
1485{
1486	if (hw_is_mask(var)) {
1487		const struct snd_mask *mask = hw_param_mask_c(params, var);
1488		if (!snd_mask_single(mask))
1489			return -EINVAL;
1490		if (dir)
1491			*dir = 0;
1492		return snd_mask_value(mask);
1493	}
1494	if (hw_is_interval(var)) {
1495		const struct snd_interval *i = hw_param_interval_c(params, var);
1496		if (!snd_interval_single(i))
1497			return -EINVAL;
1498		if (dir)
1499			*dir = i->openmin;
1500		return snd_interval_value(i);
1501	}
1502	return -EINVAL;
1503}
1504
1505EXPORT_SYMBOL(snd_pcm_hw_param_value);
1506
1507void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1508				snd_pcm_hw_param_t var)
1509{
1510	if (hw_is_mask(var)) {
1511		snd_mask_none(hw_param_mask(params, var));
1512		params->cmask |= 1 << var;
1513		params->rmask |= 1 << var;
1514	} else if (hw_is_interval(var)) {
1515		snd_interval_none(hw_param_interval(params, var));
1516		params->cmask |= 1 << var;
1517		params->rmask |= 1 << var;
1518	} else {
1519		snd_BUG();
1520	}
1521}
1522
1523EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1524
1525static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1526				   snd_pcm_hw_param_t var)
1527{
1528	int changed;
1529	if (hw_is_mask(var))
1530		changed = snd_mask_refine_first(hw_param_mask(params, var));
1531	else if (hw_is_interval(var))
1532		changed = snd_interval_refine_first(hw_param_interval(params, var));
1533	else
1534		return -EINVAL;
1535	if (changed) {
1536		params->cmask |= 1 << var;
1537		params->rmask |= 1 << var;
1538	}
1539	return changed;
1540}
1541
1542
1543/**
1544 * snd_pcm_hw_param_first - refine config space and return minimum value
1545 * @pcm: PCM instance
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Inside configuration space defined by @params remove from @var all
1551 * values > minimum. Reduce configuration space accordingly.
1552 * Return the minimum.
 
1553 */
1554int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1555			   struct snd_pcm_hw_params *params, 
1556			   snd_pcm_hw_param_t var, int *dir)
1557{
1558	int changed = _snd_pcm_hw_param_first(params, var);
1559	if (changed < 0)
1560		return changed;
1561	if (params->rmask) {
1562		int err = snd_pcm_hw_refine(pcm, params);
1563		if (snd_BUG_ON(err < 0))
1564			return err;
1565	}
1566	return snd_pcm_hw_param_value(params, var, dir);
1567}
1568
1569EXPORT_SYMBOL(snd_pcm_hw_param_first);
1570
1571static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1572				  snd_pcm_hw_param_t var)
1573{
1574	int changed;
1575	if (hw_is_mask(var))
1576		changed = snd_mask_refine_last(hw_param_mask(params, var));
1577	else if (hw_is_interval(var))
1578		changed = snd_interval_refine_last(hw_param_interval(params, var));
1579	else
1580		return -EINVAL;
1581	if (changed) {
1582		params->cmask |= 1 << var;
1583		params->rmask |= 1 << var;
1584	}
1585	return changed;
1586}
1587
1588
1589/**
1590 * snd_pcm_hw_param_last - refine config space and return maximum value
1591 * @pcm: PCM instance
1592 * @params: the hw_params instance
1593 * @var: parameter to retrieve
1594 * @dir: pointer to the direction (-1,0,1) or %NULL
1595 *
1596 * Inside configuration space defined by @params remove from @var all
1597 * values < maximum. Reduce configuration space accordingly.
1598 * Return the maximum.
 
1599 */
1600int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1601			  struct snd_pcm_hw_params *params,
1602			  snd_pcm_hw_param_t var, int *dir)
1603{
1604	int changed = _snd_pcm_hw_param_last(params, var);
1605	if (changed < 0)
1606		return changed;
1607	if (params->rmask) {
1608		int err = snd_pcm_hw_refine(pcm, params);
1609		if (snd_BUG_ON(err < 0))
1610			return err;
1611	}
1612	return snd_pcm_hw_param_value(params, var, dir);
1613}
1614
1615EXPORT_SYMBOL(snd_pcm_hw_param_last);
1616
1617/**
1618 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1619 * @pcm: PCM instance
1620 * @params: the hw_params instance
1621 *
1622 * Choose one configuration from configuration space defined by @params.
1623 * The configuration chosen is that obtained fixing in this order:
1624 * first access, first format, first subformat, min channels,
1625 * min rate, min period time, max buffer size, min tick time
1626 */
1627int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1628			     struct snd_pcm_hw_params *params)
1629{
1630	static int vars[] = {
1631		SNDRV_PCM_HW_PARAM_ACCESS,
1632		SNDRV_PCM_HW_PARAM_FORMAT,
1633		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1634		SNDRV_PCM_HW_PARAM_CHANNELS,
1635		SNDRV_PCM_HW_PARAM_RATE,
1636		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1637		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1638		SNDRV_PCM_HW_PARAM_TICK_TIME,
1639		-1
1640	};
1641	int err, *v;
1642
1643	for (v = vars; *v != -1; v++) {
1644		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1645			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1646		else
1647			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1648		if (snd_BUG_ON(err < 0))
1649			return err;
1650	}
1651	return 0;
1652}
1653
1654static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1655				   void *arg)
1656{
1657	struct snd_pcm_runtime *runtime = substream->runtime;
1658	unsigned long flags;
1659	snd_pcm_stream_lock_irqsave(substream, flags);
1660	if (snd_pcm_running(substream) &&
1661	    snd_pcm_update_hw_ptr(substream) >= 0)
1662		runtime->status->hw_ptr %= runtime->buffer_size;
1663	else
1664		runtime->status->hw_ptr = 0;
 
 
1665	snd_pcm_stream_unlock_irqrestore(substream, flags);
1666	return 0;
1667}
1668
1669static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1670					  void *arg)
1671{
1672	struct snd_pcm_channel_info *info = arg;
1673	struct snd_pcm_runtime *runtime = substream->runtime;
1674	int width;
1675	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1676		info->offset = -1;
1677		return 0;
1678	}
1679	width = snd_pcm_format_physical_width(runtime->format);
1680	if (width < 0)
1681		return width;
1682	info->offset = 0;
1683	switch (runtime->access) {
1684	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1685	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1686		info->first = info->channel * width;
1687		info->step = runtime->channels * width;
1688		break;
1689	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1690	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1691	{
1692		size_t size = runtime->dma_bytes / runtime->channels;
1693		info->first = info->channel * size * 8;
1694		info->step = width;
1695		break;
1696	}
1697	default:
1698		snd_BUG();
1699		break;
1700	}
1701	return 0;
1702}
1703
1704static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1705				       void *arg)
1706{
1707	struct snd_pcm_hw_params *params = arg;
1708	snd_pcm_format_t format;
1709	int channels, width;
 
1710
1711	params->fifo_size = substream->runtime->hw.fifo_size;
1712	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1713		format = params_format(params);
1714		channels = params_channels(params);
1715		width = snd_pcm_format_physical_width(format);
1716		params->fifo_size /= width * channels;
 
1717	}
1718	return 0;
1719}
1720
1721/**
1722 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1723 * @substream: the pcm substream instance
1724 * @cmd: ioctl command
1725 * @arg: ioctl argument
1726 *
1727 * Processes the generic ioctl commands for PCM.
1728 * Can be passed as the ioctl callback for PCM ops.
1729 *
1730 * Returns zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1733		      unsigned int cmd, void *arg)
1734{
1735	switch (cmd) {
1736	case SNDRV_PCM_IOCTL1_INFO:
1737		return 0;
1738	case SNDRV_PCM_IOCTL1_RESET:
1739		return snd_pcm_lib_ioctl_reset(substream, arg);
1740	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1741		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1742	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1743		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1744	}
1745	return -ENXIO;
1746}
1747
1748EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1749
1750/**
1751 * snd_pcm_period_elapsed - update the pcm status for the next period
1752 * @substream: the pcm substream instance
1753 *
1754 * This function is called from the interrupt handler when the
1755 * PCM has processed the period size.  It will update the current
1756 * pointer, wake up sleepers, etc.
1757 *
1758 * Even if more than one periods have elapsed since the last call, you
1759 * have to call this only once.
1760 */
1761void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1762{
1763	struct snd_pcm_runtime *runtime;
1764	unsigned long flags;
1765
 
 
 
 
1766	if (PCM_RUNTIME_CHECK(substream))
1767		return;
1768	runtime = substream->runtime;
1769
1770	if (runtime->transfer_ack_begin)
1771		runtime->transfer_ack_begin(substream);
1772
1773	snd_pcm_stream_lock_irqsave(substream, flags);
1774	if (!snd_pcm_running(substream) ||
1775	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1776		goto _end;
1777
 
1778	if (substream->timer_running)
1779		snd_timer_interrupt(substream->timer, 1);
 
1780 _end:
 
 
1781	snd_pcm_stream_unlock_irqrestore(substream, flags);
1782	if (runtime->transfer_ack_end)
1783		runtime->transfer_ack_end(substream);
1784	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1785}
1786
1787EXPORT_SYMBOL(snd_pcm_period_elapsed);
1788
1789/*
1790 * Wait until avail_min data becomes available
1791 * Returns a negative error code if any error occurs during operation.
1792 * The available space is stored on availp.  When err = 0 and avail = 0
1793 * on the capture stream, it indicates the stream is in DRAINING state.
1794 */
1795static int wait_for_avail(struct snd_pcm_substream *substream,
1796			      snd_pcm_uframes_t *availp)
1797{
1798	struct snd_pcm_runtime *runtime = substream->runtime;
1799	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1800	wait_queue_t wait;
1801	int err = 0;
1802	snd_pcm_uframes_t avail = 0;
1803	long wait_time, tout;
1804
1805	init_waitqueue_entry(&wait, current);
1806	set_current_state(TASK_INTERRUPTIBLE);
1807	add_wait_queue(&runtime->tsleep, &wait);
1808
1809	if (runtime->no_period_wakeup)
1810		wait_time = MAX_SCHEDULE_TIMEOUT;
1811	else {
1812		wait_time = 10;
1813		if (runtime->rate) {
1814			long t = runtime->period_size * 2 / runtime->rate;
1815			wait_time = max(t, wait_time);
 
 
 
 
 
 
 
 
1816		}
1817		wait_time = msecs_to_jiffies(wait_time * 1000);
1818	}
1819
1820	for (;;) {
1821		if (signal_pending(current)) {
1822			err = -ERESTARTSYS;
1823			break;
1824		}
1825
1826		/*
1827		 * We need to check if space became available already
1828		 * (and thus the wakeup happened already) first to close
1829		 * the race of space already having become available.
1830		 * This check must happen after been added to the waitqueue
1831		 * and having current state be INTERRUPTIBLE.
1832		 */
1833		if (is_playback)
1834			avail = snd_pcm_playback_avail(runtime);
1835		else
1836			avail = snd_pcm_capture_avail(runtime);
1837		if (avail >= runtime->twake)
1838			break;
1839		snd_pcm_stream_unlock_irq(substream);
1840
1841		tout = schedule_timeout(wait_time);
1842
1843		snd_pcm_stream_lock_irq(substream);
1844		set_current_state(TASK_INTERRUPTIBLE);
1845		switch (runtime->status->state) {
1846		case SNDRV_PCM_STATE_SUSPENDED:
1847			err = -ESTRPIPE;
1848			goto _endloop;
1849		case SNDRV_PCM_STATE_XRUN:
1850			err = -EPIPE;
1851			goto _endloop;
1852		case SNDRV_PCM_STATE_DRAINING:
1853			if (is_playback)
1854				err = -EPIPE;
1855			else 
1856				avail = 0; /* indicate draining */
1857			goto _endloop;
1858		case SNDRV_PCM_STATE_OPEN:
1859		case SNDRV_PCM_STATE_SETUP:
1860		case SNDRV_PCM_STATE_DISCONNECTED:
1861			err = -EBADFD;
1862			goto _endloop;
 
 
1863		}
1864		if (!tout) {
1865			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1866				   is_playback ? "playback" : "capture");
 
1867			err = -EIO;
1868			break;
1869		}
1870	}
1871 _endloop:
1872	set_current_state(TASK_RUNNING);
1873	remove_wait_queue(&runtime->tsleep, &wait);
1874	*availp = avail;
1875	return err;
1876}
1877	
1878static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1879				      unsigned int hwoff,
1880				      unsigned long data, unsigned int off,
1881				      snd_pcm_uframes_t frames)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882{
1883	struct snd_pcm_runtime *runtime = substream->runtime;
1884	int err;
1885	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1886	if (substream->ops->copy) {
1887		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1888			return err;
1889	} else {
1890		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1891		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1892			return -EFAULT;
1893	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894	return 0;
1895}
1896 
1897typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1898			  unsigned long data, unsigned int off,
1899			  snd_pcm_uframes_t size);
1900
1901static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1902					    unsigned long data,
1903					    snd_pcm_uframes_t size,
1904					    int nonblock,
1905					    transfer_f transfer)
1906{
1907	struct snd_pcm_runtime *runtime = substream->runtime;
1908	snd_pcm_uframes_t xfer = 0;
1909	snd_pcm_uframes_t offset = 0;
1910	snd_pcm_uframes_t avail;
1911	int err = 0;
1912
1913	if (size == 0)
1914		return 0;
 
 
 
 
1915
1916	snd_pcm_stream_lock_irq(substream);
1917	switch (runtime->status->state) {
1918	case SNDRV_PCM_STATE_PREPARED:
1919	case SNDRV_PCM_STATE_RUNNING:
1920	case SNDRV_PCM_STATE_PAUSED:
1921		break;
1922	case SNDRV_PCM_STATE_XRUN:
1923		err = -EPIPE;
1924		goto _end_unlock;
1925	case SNDRV_PCM_STATE_SUSPENDED:
1926		err = -ESTRPIPE;
1927		goto _end_unlock;
1928	default:
1929		err = -EBADFD;
1930		goto _end_unlock;
1931	}
1932
1933	runtime->twake = runtime->control->avail_min ? : 1;
1934	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935		snd_pcm_update_hw_ptr(substream);
1936	avail = snd_pcm_playback_avail(runtime);
1937	while (size > 0) {
1938		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1939		snd_pcm_uframes_t cont;
1940		if (!avail) {
1941			if (nonblock) {
1942				err = -EAGAIN;
1943				goto _end_unlock;
1944			}
1945			runtime->twake = min_t(snd_pcm_uframes_t, size,
1946					runtime->control->avail_min ? : 1);
1947			err = wait_for_avail(substream, &avail);
1948			if (err < 0)
1949				goto _end_unlock;
1950		}
1951		frames = size > avail ? avail : size;
1952		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1953		if (frames > cont)
1954			frames = cont;
1955		if (snd_BUG_ON(!frames)) {
1956			runtime->twake = 0;
1957			snd_pcm_stream_unlock_irq(substream);
1958			return -EINVAL;
1959		}
1960		appl_ptr = runtime->control->appl_ptr;
1961		appl_ofs = appl_ptr % runtime->buffer_size;
1962		snd_pcm_stream_unlock_irq(substream);
1963		err = transfer(substream, appl_ofs, data, offset, frames);
1964		snd_pcm_stream_lock_irq(substream);
1965		if (err < 0)
1966			goto _end_unlock;
1967		switch (runtime->status->state) {
1968		case SNDRV_PCM_STATE_XRUN:
1969			err = -EPIPE;
1970			goto _end_unlock;
1971		case SNDRV_PCM_STATE_SUSPENDED:
1972			err = -ESTRPIPE;
1973			goto _end_unlock;
1974		default:
1975			break;
1976		}
1977		appl_ptr += frames;
1978		if (appl_ptr >= runtime->boundary)
1979			appl_ptr -= runtime->boundary;
1980		runtime->control->appl_ptr = appl_ptr;
1981		if (substream->ops->ack)
1982			substream->ops->ack(substream);
1983
1984		offset += frames;
1985		size -= frames;
1986		xfer += frames;
1987		avail -= frames;
1988		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1989		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1990			err = snd_pcm_start(substream);
1991			if (err < 0)
1992				goto _end_unlock;
1993		}
1994	}
1995 _end_unlock:
1996	runtime->twake = 0;
1997	if (xfer > 0 && err >= 0)
1998		snd_pcm_update_state(substream, runtime);
1999	snd_pcm_stream_unlock_irq(substream);
2000	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2001}
2002
2003/* sanity-check for read/write methods */
2004static int pcm_sanity_check(struct snd_pcm_substream *substream)
2005{
2006	struct snd_pcm_runtime *runtime;
2007	if (PCM_RUNTIME_CHECK(substream))
2008		return -ENXIO;
2009	runtime = substream->runtime;
2010	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2011		return -EINVAL;
2012	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2013		return -EBADFD;
2014	return 0;
2015}
2016
2017snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2018{
2019	struct snd_pcm_runtime *runtime;
2020	int nonblock;
2021	int err;
2022
2023	err = pcm_sanity_check(substream);
2024	if (err < 0)
2025		return err;
2026	runtime = substream->runtime;
2027	nonblock = !!(substream->f_flags & O_NONBLOCK);
2028
2029	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2030	    runtime->channels > 1)
2031		return -EINVAL;
2032	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2033				  snd_pcm_lib_write_transfer);
2034}
2035
2036EXPORT_SYMBOL(snd_pcm_lib_write);
2037
2038static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2039				       unsigned int hwoff,
2040				       unsigned long data, unsigned int off,
2041				       snd_pcm_uframes_t frames)
2042{
2043	struct snd_pcm_runtime *runtime = substream->runtime;
2044	int err;
2045	void __user **bufs = (void __user **)data;
2046	int channels = runtime->channels;
2047	int c;
2048	if (substream->ops->copy) {
2049		if (snd_BUG_ON(!substream->ops->silence))
2050			return -EINVAL;
2051		for (c = 0; c < channels; ++c, ++bufs) {
2052			if (*bufs == NULL) {
2053				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2054					return err;
2055			} else {
2056				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2058					return err;
2059			}
2060		}
2061	} else {
2062		/* default transfer behaviour */
2063		size_t dma_csize = runtime->dma_bytes / channels;
2064		for (c = 0; c < channels; ++c, ++bufs) {
2065			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2066			if (*bufs == NULL) {
2067				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2068			} else {
2069				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2070				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2071					return -EFAULT;
2072			}
2073		}
2074	}
 
 
 
2075	return 0;
2076}
2077 
2078snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2079				     void __user **bufs,
2080				     snd_pcm_uframes_t frames)
 
2081{
2082	struct snd_pcm_runtime *runtime;
2083	int nonblock;
 
 
 
 
 
 
2084	int err;
2085
2086	err = pcm_sanity_check(substream);
2087	if (err < 0)
2088		return err;
2089	runtime = substream->runtime;
2090	nonblock = !!(substream->f_flags & O_NONBLOCK);
2091
2092	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2093		return -EINVAL;
2094	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2095				  nonblock, snd_pcm_lib_writev_transfer);
2096}
 
 
 
 
 
 
2097
2098EXPORT_SYMBOL(snd_pcm_lib_writev);
2099
2100static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2101				     unsigned int hwoff,
2102				     unsigned long data, unsigned int off,
2103				     snd_pcm_uframes_t frames)
2104{
2105	struct snd_pcm_runtime *runtime = substream->runtime;
2106	int err;
2107	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2108	if (substream->ops->copy) {
2109		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2110			return err;
2111	} else {
2112		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2113		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2114			return -EFAULT;
 
 
2115	}
2116	return 0;
2117}
2118
2119static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2120					   unsigned long data,
2121					   snd_pcm_uframes_t size,
2122					   int nonblock,
2123					   transfer_f transfer)
2124{
2125	struct snd_pcm_runtime *runtime = substream->runtime;
2126	snd_pcm_uframes_t xfer = 0;
2127	snd_pcm_uframes_t offset = 0;
2128	snd_pcm_uframes_t avail;
2129	int err = 0;
2130
2131	if (size == 0)
2132		return 0;
2133
 
 
2134	snd_pcm_stream_lock_irq(substream);
2135	switch (runtime->status->state) {
2136	case SNDRV_PCM_STATE_PREPARED:
2137		if (size >= runtime->start_threshold) {
2138			err = snd_pcm_start(substream);
2139			if (err < 0)
2140				goto _end_unlock;
2141		}
2142		break;
2143	case SNDRV_PCM_STATE_DRAINING:
2144	case SNDRV_PCM_STATE_RUNNING:
2145	case SNDRV_PCM_STATE_PAUSED:
2146		break;
2147	case SNDRV_PCM_STATE_XRUN:
2148		err = -EPIPE;
2149		goto _end_unlock;
2150	case SNDRV_PCM_STATE_SUSPENDED:
2151		err = -ESTRPIPE;
2152		goto _end_unlock;
2153	default:
2154		err = -EBADFD;
2155		goto _end_unlock;
2156	}
2157
2158	runtime->twake = runtime->control->avail_min ? : 1;
2159	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2160		snd_pcm_update_hw_ptr(substream);
2161	avail = snd_pcm_capture_avail(runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162	while (size > 0) {
2163		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2164		snd_pcm_uframes_t cont;
2165		if (!avail) {
2166			if (runtime->status->state ==
2167			    SNDRV_PCM_STATE_DRAINING) {
2168				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2169				goto _end_unlock;
2170			}
2171			if (nonblock) {
2172				err = -EAGAIN;
2173				goto _end_unlock;
2174			}
2175			runtime->twake = min_t(snd_pcm_uframes_t, size,
2176					runtime->control->avail_min ? : 1);
2177			err = wait_for_avail(substream, &avail);
2178			if (err < 0)
2179				goto _end_unlock;
2180			if (!avail)
2181				continue; /* draining */
2182		}
2183		frames = size > avail ? avail : size;
2184		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
 
 
2185		if (frames > cont)
2186			frames = cont;
2187		if (snd_BUG_ON(!frames)) {
2188			runtime->twake = 0;
2189			snd_pcm_stream_unlock_irq(substream);
2190			return -EINVAL;
2191		}
2192		appl_ptr = runtime->control->appl_ptr;
2193		appl_ofs = appl_ptr % runtime->buffer_size;
2194		snd_pcm_stream_unlock_irq(substream);
2195		err = transfer(substream, appl_ofs, data, offset, frames);
 
2196		snd_pcm_stream_lock_irq(substream);
2197		if (err < 0)
2198			goto _end_unlock;
2199		switch (runtime->status->state) {
2200		case SNDRV_PCM_STATE_XRUN:
2201			err = -EPIPE;
2202			goto _end_unlock;
2203		case SNDRV_PCM_STATE_SUSPENDED:
2204			err = -ESTRPIPE;
2205			goto _end_unlock;
2206		default:
2207			break;
2208		}
2209		appl_ptr += frames;
2210		if (appl_ptr >= runtime->boundary)
2211			appl_ptr -= runtime->boundary;
2212		runtime->control->appl_ptr = appl_ptr;
2213		if (substream->ops->ack)
2214			substream->ops->ack(substream);
2215
2216		offset += frames;
2217		size -= frames;
2218		xfer += frames;
2219		avail -= frames;
 
 
 
 
 
 
 
2220	}
2221 _end_unlock:
2222	runtime->twake = 0;
2223	if (xfer > 0 && err >= 0)
2224		snd_pcm_update_state(substream, runtime);
2225	snd_pcm_stream_unlock_irq(substream);
2226	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2227}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228
2229snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2230{
2231	struct snd_pcm_runtime *runtime;
2232	int nonblock;
2233	int err;
2234	
2235	err = pcm_sanity_check(substream);
2236	if (err < 0)
2237		return err;
2238	runtime = substream->runtime;
2239	nonblock = !!(substream->f_flags & O_NONBLOCK);
2240	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2241		return -EINVAL;
2242	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2243}
2244
2245EXPORT_SYMBOL(snd_pcm_lib_read);
 
 
 
 
 
 
 
 
 
 
 
2246
2247static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2248				      unsigned int hwoff,
2249				      unsigned long data, unsigned int off,
2250				      snd_pcm_uframes_t frames)
 
2251{
2252	struct snd_pcm_runtime *runtime = substream->runtime;
2253	int err;
2254	void __user **bufs = (void __user **)data;
2255	int channels = runtime->channels;
2256	int c;
2257	if (substream->ops->copy) {
2258		for (c = 0; c < channels; ++c, ++bufs) {
2259			char __user *buf;
2260			if (*bufs == NULL)
2261				continue;
2262			buf = *bufs + samples_to_bytes(runtime, off);
2263			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2264				return err;
 
 
 
 
 
 
 
 
2265		}
2266	} else {
2267		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2268		for (c = 0; c < channels; ++c, ++bufs) {
2269			char *hwbuf;
2270			char __user *buf;
2271			if (*bufs == NULL)
2272				continue;
2273
2274			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2275			buf = *bufs + samples_to_bytes(runtime, off);
2276			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277				return -EFAULT;
 
2278		}
2279	}
 
 
2280	return 0;
2281}
2282 
2283snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2284				    void __user **bufs,
2285				    snd_pcm_uframes_t frames)
2286{
2287	struct snd_pcm_runtime *runtime;
2288	int nonblock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289	int err;
2290
2291	err = pcm_sanity_check(substream);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292	if (err < 0)
2293		return err;
2294	runtime = substream->runtime;
2295	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2296		return -EBADFD;
2297
2298	nonblock = !!(substream->f_flags & O_NONBLOCK);
2299	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2300		return -EINVAL;
2301	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2302}
2303
2304EXPORT_SYMBOL(snd_pcm_lib_readv);