Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36/*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46{
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
49 int err;
50
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
56 if (n < 0)
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
60 else
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
63 }
64 if (runtime->silence_filled >= runtime->buffer_size)
65 return;
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 return;
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
72 } else {
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
80 runtime->boundary;
81 } else {
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
90 } else {
91 runtime->silence_start = ofs;
92 }
93 }
94 frames = runtime->buffer_size - runtime->silence_filled;
95 }
96 if (snd_BUG_ON(frames > runtime->buffer_size))
97 return;
98 if (frames == 0)
99 return;
100 ofs = runtime->silence_start % runtime->buffer_size;
101 while (frames > 0) {
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 runtime->silence_filled += transfer;
106 frames -= transfer;
107 ofs = 0;
108 }
109}
110
111#ifdef CONFIG_SND_DEBUG
112void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113 char *name, size_t len)
114{
115 snprintf(name, len, "pcmC%dD%d%c:%d",
116 substream->pcm->card->number,
117 substream->pcm->device,
118 substream->stream ? 'c' : 'p',
119 substream->number);
120}
121EXPORT_SYMBOL(snd_pcm_debug_name);
122#endif
123
124#define XRUN_DEBUG_BASIC (1<<0)
125#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
126#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
127
128#ifdef CONFIG_SND_PCM_XRUN_DEBUG
129
130#define xrun_debug(substream, mask) \
131 ((substream)->pstr->xrun_debug & (mask))
132#else
133#define xrun_debug(substream, mask) 0
134#endif
135
136#define dump_stack_on_xrun(substream) do { \
137 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
138 dump_stack(); \
139 } while (0)
140
141/* call with stream lock held */
142void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143{
144 struct snd_pcm_runtime *runtime = substream->runtime;
145
146 trace_xrun(substream);
147 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
148 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
149 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
150 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
151 char name[16];
152 snd_pcm_debug_name(substream, name, sizeof(name));
153 pcm_warn(substream->pcm, "XRUN: %s\n", name);
154 dump_stack_on_xrun(substream);
155 }
156}
157
158#ifdef CONFIG_SND_PCM_XRUN_DEBUG
159#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
160 do { \
161 trace_hw_ptr_error(substream, reason); \
162 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
163 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
164 (in_interrupt) ? 'Q' : 'P', ##args); \
165 dump_stack_on_xrun(substream); \
166 } \
167 } while (0)
168
169#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
170
171#define hw_ptr_error(substream, fmt, args...) do { } while (0)
172
173#endif
174
175int snd_pcm_update_state(struct snd_pcm_substream *substream,
176 struct snd_pcm_runtime *runtime)
177{
178 snd_pcm_uframes_t avail;
179
180 avail = snd_pcm_avail(substream);
181 if (avail > runtime->avail_max)
182 runtime->avail_max = avail;
183 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
184 if (avail >= runtime->buffer_size) {
185 snd_pcm_drain_done(substream);
186 return -EPIPE;
187 }
188 } else {
189 if (avail >= runtime->stop_threshold) {
190 __snd_pcm_xrun(substream);
191 return -EPIPE;
192 }
193 }
194 if (runtime->twake) {
195 if (avail >= runtime->twake)
196 wake_up(&runtime->tsleep);
197 } else if (avail >= runtime->control->avail_min)
198 wake_up(&runtime->sleep);
199 return 0;
200}
201
202static void update_audio_tstamp(struct snd_pcm_substream *substream,
203 struct timespec *curr_tstamp,
204 struct timespec *audio_tstamp)
205{
206 struct snd_pcm_runtime *runtime = substream->runtime;
207 u64 audio_frames, audio_nsecs;
208 struct timespec driver_tstamp;
209
210 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
211 return;
212
213 if (!(substream->ops->get_time_info) ||
214 (runtime->audio_tstamp_report.actual_type ==
215 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
216
217 /*
218 * provide audio timestamp derived from pointer position
219 * add delay only if requested
220 */
221
222 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
223
224 if (runtime->audio_tstamp_config.report_delay) {
225 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
226 audio_frames -= runtime->delay;
227 else
228 audio_frames += runtime->delay;
229 }
230 audio_nsecs = div_u64(audio_frames * 1000000000LL,
231 runtime->rate);
232 *audio_tstamp = ns_to_timespec(audio_nsecs);
233 }
234 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
235 runtime->status->audio_tstamp = *audio_tstamp;
236 runtime->status->tstamp = *curr_tstamp;
237 }
238
239 /*
240 * re-take a driver timestamp to let apps detect if the reference tstamp
241 * read by low-level hardware was provided with a delay
242 */
243 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
244 runtime->driver_tstamp = driver_tstamp;
245}
246
247static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
248 unsigned int in_interrupt)
249{
250 struct snd_pcm_runtime *runtime = substream->runtime;
251 snd_pcm_uframes_t pos;
252 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
253 snd_pcm_sframes_t hdelta, delta;
254 unsigned long jdelta;
255 unsigned long curr_jiffies;
256 struct timespec curr_tstamp;
257 struct timespec audio_tstamp;
258 int crossed_boundary = 0;
259
260 old_hw_ptr = runtime->status->hw_ptr;
261
262 /*
263 * group pointer, time and jiffies reads to allow for more
264 * accurate correlations/corrections.
265 * The values are stored at the end of this routine after
266 * corrections for hw_ptr position
267 */
268 pos = substream->ops->pointer(substream);
269 curr_jiffies = jiffies;
270 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
271 if ((substream->ops->get_time_info) &&
272 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
273 substream->ops->get_time_info(substream, &curr_tstamp,
274 &audio_tstamp,
275 &runtime->audio_tstamp_config,
276 &runtime->audio_tstamp_report);
277
278 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
279 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
280 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
281 } else
282 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
283 }
284
285 if (pos == SNDRV_PCM_POS_XRUN) {
286 __snd_pcm_xrun(substream);
287 return -EPIPE;
288 }
289 if (pos >= runtime->buffer_size) {
290 if (printk_ratelimit()) {
291 char name[16];
292 snd_pcm_debug_name(substream, name, sizeof(name));
293 pcm_err(substream->pcm,
294 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
295 name, pos, runtime->buffer_size,
296 runtime->period_size);
297 }
298 pos = 0;
299 }
300 pos -= pos % runtime->min_align;
301 trace_hwptr(substream, pos, in_interrupt);
302 hw_base = runtime->hw_ptr_base;
303 new_hw_ptr = hw_base + pos;
304 if (in_interrupt) {
305 /* we know that one period was processed */
306 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
307 delta = runtime->hw_ptr_interrupt + runtime->period_size;
308 if (delta > new_hw_ptr) {
309 /* check for double acknowledged interrupts */
310 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
311 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
312 hw_base += runtime->buffer_size;
313 if (hw_base >= runtime->boundary) {
314 hw_base = 0;
315 crossed_boundary++;
316 }
317 new_hw_ptr = hw_base + pos;
318 goto __delta;
319 }
320 }
321 }
322 /* new_hw_ptr might be lower than old_hw_ptr in case when */
323 /* pointer crosses the end of the ring buffer */
324 if (new_hw_ptr < old_hw_ptr) {
325 hw_base += runtime->buffer_size;
326 if (hw_base >= runtime->boundary) {
327 hw_base = 0;
328 crossed_boundary++;
329 }
330 new_hw_ptr = hw_base + pos;
331 }
332 __delta:
333 delta = new_hw_ptr - old_hw_ptr;
334 if (delta < 0)
335 delta += runtime->boundary;
336
337 if (runtime->no_period_wakeup) {
338 snd_pcm_sframes_t xrun_threshold;
339 /*
340 * Without regular period interrupts, we have to check
341 * the elapsed time to detect xruns.
342 */
343 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
344 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
345 goto no_delta_check;
346 hdelta = jdelta - delta * HZ / runtime->rate;
347 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
348 while (hdelta > xrun_threshold) {
349 delta += runtime->buffer_size;
350 hw_base += runtime->buffer_size;
351 if (hw_base >= runtime->boundary) {
352 hw_base = 0;
353 crossed_boundary++;
354 }
355 new_hw_ptr = hw_base + pos;
356 hdelta -= runtime->hw_ptr_buffer_jiffies;
357 }
358 goto no_delta_check;
359 }
360
361 /* something must be really wrong */
362 if (delta >= runtime->buffer_size + runtime->period_size) {
363 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
364 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
365 substream->stream, (long)pos,
366 (long)new_hw_ptr, (long)old_hw_ptr);
367 return 0;
368 }
369
370 /* Do jiffies check only in xrun_debug mode */
371 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
372 goto no_jiffies_check;
373
374 /* Skip the jiffies check for hardwares with BATCH flag.
375 * Such hardware usually just increases the position at each IRQ,
376 * thus it can't give any strange position.
377 */
378 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
379 goto no_jiffies_check;
380 hdelta = delta;
381 if (hdelta < runtime->delay)
382 goto no_jiffies_check;
383 hdelta -= runtime->delay;
384 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
385 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
386 delta = jdelta /
387 (((runtime->period_size * HZ) / runtime->rate)
388 + HZ/100);
389 /* move new_hw_ptr according jiffies not pos variable */
390 new_hw_ptr = old_hw_ptr;
391 hw_base = delta;
392 /* use loop to avoid checks for delta overflows */
393 /* the delta value is small or zero in most cases */
394 while (delta > 0) {
395 new_hw_ptr += runtime->period_size;
396 if (new_hw_ptr >= runtime->boundary) {
397 new_hw_ptr -= runtime->boundary;
398 crossed_boundary--;
399 }
400 delta--;
401 }
402 /* align hw_base to buffer_size */
403 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
404 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
405 (long)pos, (long)hdelta,
406 (long)runtime->period_size, jdelta,
407 ((hdelta * HZ) / runtime->rate), hw_base,
408 (unsigned long)old_hw_ptr,
409 (unsigned long)new_hw_ptr);
410 /* reset values to proper state */
411 delta = 0;
412 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
413 }
414 no_jiffies_check:
415 if (delta > runtime->period_size + runtime->period_size / 2) {
416 hw_ptr_error(substream, in_interrupt,
417 "Lost interrupts?",
418 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
419 substream->stream, (long)delta,
420 (long)new_hw_ptr,
421 (long)old_hw_ptr);
422 }
423
424 no_delta_check:
425 if (runtime->status->hw_ptr == new_hw_ptr) {
426 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
427 return 0;
428 }
429
430 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
431 runtime->silence_size > 0)
432 snd_pcm_playback_silence(substream, new_hw_ptr);
433
434 if (in_interrupt) {
435 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
436 if (delta < 0)
437 delta += runtime->boundary;
438 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
439 runtime->hw_ptr_interrupt += delta;
440 if (runtime->hw_ptr_interrupt >= runtime->boundary)
441 runtime->hw_ptr_interrupt -= runtime->boundary;
442 }
443 runtime->hw_ptr_base = hw_base;
444 runtime->status->hw_ptr = new_hw_ptr;
445 runtime->hw_ptr_jiffies = curr_jiffies;
446 if (crossed_boundary) {
447 snd_BUG_ON(crossed_boundary != 1);
448 runtime->hw_ptr_wrap += runtime->boundary;
449 }
450
451 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
452
453 return snd_pcm_update_state(substream, runtime);
454}
455
456/* CAUTION: call it with irq disabled */
457int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
458{
459 return snd_pcm_update_hw_ptr0(substream, 0);
460}
461
462/**
463 * snd_pcm_set_ops - set the PCM operators
464 * @pcm: the pcm instance
465 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
466 * @ops: the operator table
467 *
468 * Sets the given PCM operators to the pcm instance.
469 */
470void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
471 const struct snd_pcm_ops *ops)
472{
473 struct snd_pcm_str *stream = &pcm->streams[direction];
474 struct snd_pcm_substream *substream;
475
476 for (substream = stream->substream; substream != NULL; substream = substream->next)
477 substream->ops = ops;
478}
479EXPORT_SYMBOL(snd_pcm_set_ops);
480
481/**
482 * snd_pcm_sync - set the PCM sync id
483 * @substream: the pcm substream
484 *
485 * Sets the PCM sync identifier for the card.
486 */
487void snd_pcm_set_sync(struct snd_pcm_substream *substream)
488{
489 struct snd_pcm_runtime *runtime = substream->runtime;
490
491 runtime->sync.id32[0] = substream->pcm->card->number;
492 runtime->sync.id32[1] = -1;
493 runtime->sync.id32[2] = -1;
494 runtime->sync.id32[3] = -1;
495}
496EXPORT_SYMBOL(snd_pcm_set_sync);
497
498/*
499 * Standard ioctl routine
500 */
501
502static inline unsigned int div32(unsigned int a, unsigned int b,
503 unsigned int *r)
504{
505 if (b == 0) {
506 *r = 0;
507 return UINT_MAX;
508 }
509 *r = a % b;
510 return a / b;
511}
512
513static inline unsigned int div_down(unsigned int a, unsigned int b)
514{
515 if (b == 0)
516 return UINT_MAX;
517 return a / b;
518}
519
520static inline unsigned int div_up(unsigned int a, unsigned int b)
521{
522 unsigned int r;
523 unsigned int q;
524 if (b == 0)
525 return UINT_MAX;
526 q = div32(a, b, &r);
527 if (r)
528 ++q;
529 return q;
530}
531
532static inline unsigned int mul(unsigned int a, unsigned int b)
533{
534 if (a == 0)
535 return 0;
536 if (div_down(UINT_MAX, a) < b)
537 return UINT_MAX;
538 return a * b;
539}
540
541static inline unsigned int muldiv32(unsigned int a, unsigned int b,
542 unsigned int c, unsigned int *r)
543{
544 u_int64_t n = (u_int64_t) a * b;
545 if (c == 0) {
546 *r = 0;
547 return UINT_MAX;
548 }
549 n = div_u64_rem(n, c, r);
550 if (n >= UINT_MAX) {
551 *r = 0;
552 return UINT_MAX;
553 }
554 return n;
555}
556
557/**
558 * snd_interval_refine - refine the interval value of configurator
559 * @i: the interval value to refine
560 * @v: the interval value to refer to
561 *
562 * Refines the interval value with the reference value.
563 * The interval is changed to the range satisfying both intervals.
564 * The interval status (min, max, integer, etc.) are evaluated.
565 *
566 * Return: Positive if the value is changed, zero if it's not changed, or a
567 * negative error code.
568 */
569int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
570{
571 int changed = 0;
572 if (snd_BUG_ON(snd_interval_empty(i)))
573 return -EINVAL;
574 if (i->min < v->min) {
575 i->min = v->min;
576 i->openmin = v->openmin;
577 changed = 1;
578 } else if (i->min == v->min && !i->openmin && v->openmin) {
579 i->openmin = 1;
580 changed = 1;
581 }
582 if (i->max > v->max) {
583 i->max = v->max;
584 i->openmax = v->openmax;
585 changed = 1;
586 } else if (i->max == v->max && !i->openmax && v->openmax) {
587 i->openmax = 1;
588 changed = 1;
589 }
590 if (!i->integer && v->integer) {
591 i->integer = 1;
592 changed = 1;
593 }
594 if (i->integer) {
595 if (i->openmin) {
596 i->min++;
597 i->openmin = 0;
598 }
599 if (i->openmax) {
600 i->max--;
601 i->openmax = 0;
602 }
603 } else if (!i->openmin && !i->openmax && i->min == i->max)
604 i->integer = 1;
605 if (snd_interval_checkempty(i)) {
606 snd_interval_none(i);
607 return -EINVAL;
608 }
609 return changed;
610}
611EXPORT_SYMBOL(snd_interval_refine);
612
613static int snd_interval_refine_first(struct snd_interval *i)
614{
615 const unsigned int last_max = i->max;
616
617 if (snd_BUG_ON(snd_interval_empty(i)))
618 return -EINVAL;
619 if (snd_interval_single(i))
620 return 0;
621 i->max = i->min;
622 if (i->openmin)
623 i->max++;
624 /* only exclude max value if also excluded before refine */
625 i->openmax = (i->openmax && i->max >= last_max);
626 return 1;
627}
628
629static int snd_interval_refine_last(struct snd_interval *i)
630{
631 const unsigned int last_min = i->min;
632
633 if (snd_BUG_ON(snd_interval_empty(i)))
634 return -EINVAL;
635 if (snd_interval_single(i))
636 return 0;
637 i->min = i->max;
638 if (i->openmax)
639 i->min--;
640 /* only exclude min value if also excluded before refine */
641 i->openmin = (i->openmin && i->min <= last_min);
642 return 1;
643}
644
645void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
646{
647 if (a->empty || b->empty) {
648 snd_interval_none(c);
649 return;
650 }
651 c->empty = 0;
652 c->min = mul(a->min, b->min);
653 c->openmin = (a->openmin || b->openmin);
654 c->max = mul(a->max, b->max);
655 c->openmax = (a->openmax || b->openmax);
656 c->integer = (a->integer && b->integer);
657}
658
659/**
660 * snd_interval_div - refine the interval value with division
661 * @a: dividend
662 * @b: divisor
663 * @c: quotient
664 *
665 * c = a / b
666 *
667 * Returns non-zero if the value is changed, zero if not changed.
668 */
669void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
670{
671 unsigned int r;
672 if (a->empty || b->empty) {
673 snd_interval_none(c);
674 return;
675 }
676 c->empty = 0;
677 c->min = div32(a->min, b->max, &r);
678 c->openmin = (r || a->openmin || b->openmax);
679 if (b->min > 0) {
680 c->max = div32(a->max, b->min, &r);
681 if (r) {
682 c->max++;
683 c->openmax = 1;
684 } else
685 c->openmax = (a->openmax || b->openmin);
686 } else {
687 c->max = UINT_MAX;
688 c->openmax = 0;
689 }
690 c->integer = 0;
691}
692
693/**
694 * snd_interval_muldivk - refine the interval value
695 * @a: dividend 1
696 * @b: dividend 2
697 * @k: divisor (as integer)
698 * @c: result
699 *
700 * c = a * b / k
701 *
702 * Returns non-zero if the value is changed, zero if not changed.
703 */
704void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
705 unsigned int k, struct snd_interval *c)
706{
707 unsigned int r;
708 if (a->empty || b->empty) {
709 snd_interval_none(c);
710 return;
711 }
712 c->empty = 0;
713 c->min = muldiv32(a->min, b->min, k, &r);
714 c->openmin = (r || a->openmin || b->openmin);
715 c->max = muldiv32(a->max, b->max, k, &r);
716 if (r) {
717 c->max++;
718 c->openmax = 1;
719 } else
720 c->openmax = (a->openmax || b->openmax);
721 c->integer = 0;
722}
723
724/**
725 * snd_interval_mulkdiv - refine the interval value
726 * @a: dividend 1
727 * @k: dividend 2 (as integer)
728 * @b: divisor
729 * @c: result
730 *
731 * c = a * k / b
732 *
733 * Returns non-zero if the value is changed, zero if not changed.
734 */
735void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
736 const struct snd_interval *b, struct snd_interval *c)
737{
738 unsigned int r;
739 if (a->empty || b->empty) {
740 snd_interval_none(c);
741 return;
742 }
743 c->empty = 0;
744 c->min = muldiv32(a->min, k, b->max, &r);
745 c->openmin = (r || a->openmin || b->openmax);
746 if (b->min > 0) {
747 c->max = muldiv32(a->max, k, b->min, &r);
748 if (r) {
749 c->max++;
750 c->openmax = 1;
751 } else
752 c->openmax = (a->openmax || b->openmin);
753 } else {
754 c->max = UINT_MAX;
755 c->openmax = 0;
756 }
757 c->integer = 0;
758}
759
760/* ---- */
761
762
763/**
764 * snd_interval_ratnum - refine the interval value
765 * @i: interval to refine
766 * @rats_count: number of ratnum_t
767 * @rats: ratnum_t array
768 * @nump: pointer to store the resultant numerator
769 * @denp: pointer to store the resultant denominator
770 *
771 * Return: Positive if the value is changed, zero if it's not changed, or a
772 * negative error code.
773 */
774int snd_interval_ratnum(struct snd_interval *i,
775 unsigned int rats_count, const struct snd_ratnum *rats,
776 unsigned int *nump, unsigned int *denp)
777{
778 unsigned int best_num, best_den;
779 int best_diff;
780 unsigned int k;
781 struct snd_interval t;
782 int err;
783 unsigned int result_num, result_den;
784 int result_diff;
785
786 best_num = best_den = best_diff = 0;
787 for (k = 0; k < rats_count; ++k) {
788 unsigned int num = rats[k].num;
789 unsigned int den;
790 unsigned int q = i->min;
791 int diff;
792 if (q == 0)
793 q = 1;
794 den = div_up(num, q);
795 if (den < rats[k].den_min)
796 continue;
797 if (den > rats[k].den_max)
798 den = rats[k].den_max;
799 else {
800 unsigned int r;
801 r = (den - rats[k].den_min) % rats[k].den_step;
802 if (r != 0)
803 den -= r;
804 }
805 diff = num - q * den;
806 if (diff < 0)
807 diff = -diff;
808 if (best_num == 0 ||
809 diff * best_den < best_diff * den) {
810 best_diff = diff;
811 best_den = den;
812 best_num = num;
813 }
814 }
815 if (best_den == 0) {
816 i->empty = 1;
817 return -EINVAL;
818 }
819 t.min = div_down(best_num, best_den);
820 t.openmin = !!(best_num % best_den);
821
822 result_num = best_num;
823 result_diff = best_diff;
824 result_den = best_den;
825 best_num = best_den = best_diff = 0;
826 for (k = 0; k < rats_count; ++k) {
827 unsigned int num = rats[k].num;
828 unsigned int den;
829 unsigned int q = i->max;
830 int diff;
831 if (q == 0) {
832 i->empty = 1;
833 return -EINVAL;
834 }
835 den = div_down(num, q);
836 if (den > rats[k].den_max)
837 continue;
838 if (den < rats[k].den_min)
839 den = rats[k].den_min;
840 else {
841 unsigned int r;
842 r = (den - rats[k].den_min) % rats[k].den_step;
843 if (r != 0)
844 den += rats[k].den_step - r;
845 }
846 diff = q * den - num;
847 if (diff < 0)
848 diff = -diff;
849 if (best_num == 0 ||
850 diff * best_den < best_diff * den) {
851 best_diff = diff;
852 best_den = den;
853 best_num = num;
854 }
855 }
856 if (best_den == 0) {
857 i->empty = 1;
858 return -EINVAL;
859 }
860 t.max = div_up(best_num, best_den);
861 t.openmax = !!(best_num % best_den);
862 t.integer = 0;
863 err = snd_interval_refine(i, &t);
864 if (err < 0)
865 return err;
866
867 if (snd_interval_single(i)) {
868 if (best_diff * result_den < result_diff * best_den) {
869 result_num = best_num;
870 result_den = best_den;
871 }
872 if (nump)
873 *nump = result_num;
874 if (denp)
875 *denp = result_den;
876 }
877 return err;
878}
879EXPORT_SYMBOL(snd_interval_ratnum);
880
881/**
882 * snd_interval_ratden - refine the interval value
883 * @i: interval to refine
884 * @rats_count: number of struct ratden
885 * @rats: struct ratden array
886 * @nump: pointer to store the resultant numerator
887 * @denp: pointer to store the resultant denominator
888 *
889 * Return: Positive if the value is changed, zero if it's not changed, or a
890 * negative error code.
891 */
892static int snd_interval_ratden(struct snd_interval *i,
893 unsigned int rats_count,
894 const struct snd_ratden *rats,
895 unsigned int *nump, unsigned int *denp)
896{
897 unsigned int best_num, best_diff, best_den;
898 unsigned int k;
899 struct snd_interval t;
900 int err;
901
902 best_num = best_den = best_diff = 0;
903 for (k = 0; k < rats_count; ++k) {
904 unsigned int num;
905 unsigned int den = rats[k].den;
906 unsigned int q = i->min;
907 int diff;
908 num = mul(q, den);
909 if (num > rats[k].num_max)
910 continue;
911 if (num < rats[k].num_min)
912 num = rats[k].num_max;
913 else {
914 unsigned int r;
915 r = (num - rats[k].num_min) % rats[k].num_step;
916 if (r != 0)
917 num += rats[k].num_step - r;
918 }
919 diff = num - q * den;
920 if (best_num == 0 ||
921 diff * best_den < best_diff * den) {
922 best_diff = diff;
923 best_den = den;
924 best_num = num;
925 }
926 }
927 if (best_den == 0) {
928 i->empty = 1;
929 return -EINVAL;
930 }
931 t.min = div_down(best_num, best_den);
932 t.openmin = !!(best_num % best_den);
933
934 best_num = best_den = best_diff = 0;
935 for (k = 0; k < rats_count; ++k) {
936 unsigned int num;
937 unsigned int den = rats[k].den;
938 unsigned int q = i->max;
939 int diff;
940 num = mul(q, den);
941 if (num < rats[k].num_min)
942 continue;
943 if (num > rats[k].num_max)
944 num = rats[k].num_max;
945 else {
946 unsigned int r;
947 r = (num - rats[k].num_min) % rats[k].num_step;
948 if (r != 0)
949 num -= r;
950 }
951 diff = q * den - num;
952 if (best_num == 0 ||
953 diff * best_den < best_diff * den) {
954 best_diff = diff;
955 best_den = den;
956 best_num = num;
957 }
958 }
959 if (best_den == 0) {
960 i->empty = 1;
961 return -EINVAL;
962 }
963 t.max = div_up(best_num, best_den);
964 t.openmax = !!(best_num % best_den);
965 t.integer = 0;
966 err = snd_interval_refine(i, &t);
967 if (err < 0)
968 return err;
969
970 if (snd_interval_single(i)) {
971 if (nump)
972 *nump = best_num;
973 if (denp)
974 *denp = best_den;
975 }
976 return err;
977}
978
979/**
980 * snd_interval_list - refine the interval value from the list
981 * @i: the interval value to refine
982 * @count: the number of elements in the list
983 * @list: the value list
984 * @mask: the bit-mask to evaluate
985 *
986 * Refines the interval value from the list.
987 * When mask is non-zero, only the elements corresponding to bit 1 are
988 * evaluated.
989 *
990 * Return: Positive if the value is changed, zero if it's not changed, or a
991 * negative error code.
992 */
993int snd_interval_list(struct snd_interval *i, unsigned int count,
994 const unsigned int *list, unsigned int mask)
995{
996 unsigned int k;
997 struct snd_interval list_range;
998
999 if (!count) {
1000 i->empty = 1;
1001 return -EINVAL;
1002 }
1003 snd_interval_any(&list_range);
1004 list_range.min = UINT_MAX;
1005 list_range.max = 0;
1006 for (k = 0; k < count; k++) {
1007 if (mask && !(mask & (1 << k)))
1008 continue;
1009 if (!snd_interval_test(i, list[k]))
1010 continue;
1011 list_range.min = min(list_range.min, list[k]);
1012 list_range.max = max(list_range.max, list[k]);
1013 }
1014 return snd_interval_refine(i, &list_range);
1015}
1016EXPORT_SYMBOL(snd_interval_list);
1017
1018/**
1019 * snd_interval_ranges - refine the interval value from the list of ranges
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list of ranges
1022 * @ranges: the ranges list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list of ranges.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Return: Positive if the value is changed, zero if it's not changed, or a
1030 * negative error code.
1031 */
1032int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1033 const struct snd_interval *ranges, unsigned int mask)
1034{
1035 unsigned int k;
1036 struct snd_interval range_union;
1037 struct snd_interval range;
1038
1039 if (!count) {
1040 snd_interval_none(i);
1041 return -EINVAL;
1042 }
1043 snd_interval_any(&range_union);
1044 range_union.min = UINT_MAX;
1045 range_union.max = 0;
1046 for (k = 0; k < count; k++) {
1047 if (mask && !(mask & (1 << k)))
1048 continue;
1049 snd_interval_copy(&range, &ranges[k]);
1050 if (snd_interval_refine(&range, i) < 0)
1051 continue;
1052 if (snd_interval_empty(&range))
1053 continue;
1054
1055 if (range.min < range_union.min) {
1056 range_union.min = range.min;
1057 range_union.openmin = 1;
1058 }
1059 if (range.min == range_union.min && !range.openmin)
1060 range_union.openmin = 0;
1061 if (range.max > range_union.max) {
1062 range_union.max = range.max;
1063 range_union.openmax = 1;
1064 }
1065 if (range.max == range_union.max && !range.openmax)
1066 range_union.openmax = 0;
1067 }
1068 return snd_interval_refine(i, &range_union);
1069}
1070EXPORT_SYMBOL(snd_interval_ranges);
1071
1072static int snd_interval_step(struct snd_interval *i, unsigned int step)
1073{
1074 unsigned int n;
1075 int changed = 0;
1076 n = i->min % step;
1077 if (n != 0 || i->openmin) {
1078 i->min += step - n;
1079 i->openmin = 0;
1080 changed = 1;
1081 }
1082 n = i->max % step;
1083 if (n != 0 || i->openmax) {
1084 i->max -= n;
1085 i->openmax = 0;
1086 changed = 1;
1087 }
1088 if (snd_interval_checkempty(i)) {
1089 i->empty = 1;
1090 return -EINVAL;
1091 }
1092 return changed;
1093}
1094
1095/* Info constraints helpers */
1096
1097/**
1098 * snd_pcm_hw_rule_add - add the hw-constraint rule
1099 * @runtime: the pcm runtime instance
1100 * @cond: condition bits
1101 * @var: the variable to evaluate
1102 * @func: the evaluation function
1103 * @private: the private data pointer passed to function
1104 * @dep: the dependent variables
1105 *
1106 * Return: Zero if successful, or a negative error code on failure.
1107 */
1108int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1109 int var,
1110 snd_pcm_hw_rule_func_t func, void *private,
1111 int dep, ...)
1112{
1113 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1114 struct snd_pcm_hw_rule *c;
1115 unsigned int k;
1116 va_list args;
1117 va_start(args, dep);
1118 if (constrs->rules_num >= constrs->rules_all) {
1119 struct snd_pcm_hw_rule *new;
1120 unsigned int new_rules = constrs->rules_all + 16;
1121 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1122 GFP_KERNEL);
1123 if (!new) {
1124 va_end(args);
1125 return -ENOMEM;
1126 }
1127 constrs->rules = new;
1128 constrs->rules_all = new_rules;
1129 }
1130 c = &constrs->rules[constrs->rules_num];
1131 c->cond = cond;
1132 c->func = func;
1133 c->var = var;
1134 c->private = private;
1135 k = 0;
1136 while (1) {
1137 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1138 va_end(args);
1139 return -EINVAL;
1140 }
1141 c->deps[k++] = dep;
1142 if (dep < 0)
1143 break;
1144 dep = va_arg(args, int);
1145 }
1146 constrs->rules_num++;
1147 va_end(args);
1148 return 0;
1149}
1150EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1151
1152/**
1153 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1154 * @runtime: PCM runtime instance
1155 * @var: hw_params variable to apply the mask
1156 * @mask: the bitmap mask
1157 *
1158 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1159 *
1160 * Return: Zero if successful, or a negative error code on failure.
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 u_int32_t mask)
1164{
1165 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 struct snd_mask *maskp = constrs_mask(constrs, var);
1167 *maskp->bits &= mask;
1168 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 if (*maskp->bits == 0)
1170 return -EINVAL;
1171 return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 *
1182 * Return: Zero if successful, or a negative error code on failure.
1183 */
1184int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1185 u_int64_t mask)
1186{
1187 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1188 struct snd_mask *maskp = constrs_mask(constrs, var);
1189 maskp->bits[0] &= (u_int32_t)mask;
1190 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1191 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1192 if (! maskp->bits[0] && ! maskp->bits[1])
1193 return -EINVAL;
1194 return 0;
1195}
1196EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1197
1198/**
1199 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1200 * @runtime: PCM runtime instance
1201 * @var: hw_params variable to apply the integer constraint
1202 *
1203 * Apply the constraint of integer to an interval parameter.
1204 *
1205 * Return: Positive if the value is changed, zero if it's not changed, or a
1206 * negative error code.
1207 */
1208int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1209{
1210 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1211 return snd_interval_setinteger(constrs_interval(constrs, var));
1212}
1213EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1214
1215/**
1216 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1217 * @runtime: PCM runtime instance
1218 * @var: hw_params variable to apply the range
1219 * @min: the minimal value
1220 * @max: the maximal value
1221 *
1222 * Apply the min/max range constraint to an interval parameter.
1223 *
1224 * Return: Positive if the value is changed, zero if it's not changed, or a
1225 * negative error code.
1226 */
1227int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1228 unsigned int min, unsigned int max)
1229{
1230 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1231 struct snd_interval t;
1232 t.min = min;
1233 t.max = max;
1234 t.openmin = t.openmax = 0;
1235 t.integer = 0;
1236 return snd_interval_refine(constrs_interval(constrs, var), &t);
1237}
1238EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1239
1240static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1241 struct snd_pcm_hw_rule *rule)
1242{
1243 struct snd_pcm_hw_constraint_list *list = rule->private;
1244 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1245}
1246
1247
1248/**
1249 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1250 * @runtime: PCM runtime instance
1251 * @cond: condition bits
1252 * @var: hw_params variable to apply the list constraint
1253 * @l: list
1254 *
1255 * Apply the list of constraints to an interval parameter.
1256 *
1257 * Return: Zero if successful, or a negative error code on failure.
1258 */
1259int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1260 unsigned int cond,
1261 snd_pcm_hw_param_t var,
1262 const struct snd_pcm_hw_constraint_list *l)
1263{
1264 return snd_pcm_hw_rule_add(runtime, cond, var,
1265 snd_pcm_hw_rule_list, (void *)l,
1266 var, -1);
1267}
1268EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1269
1270static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1271 struct snd_pcm_hw_rule *rule)
1272{
1273 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1274 return snd_interval_ranges(hw_param_interval(params, rule->var),
1275 r->count, r->ranges, r->mask);
1276}
1277
1278
1279/**
1280 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1281 * @runtime: PCM runtime instance
1282 * @cond: condition bits
1283 * @var: hw_params variable to apply the list of range constraints
1284 * @r: ranges
1285 *
1286 * Apply the list of range constraints to an interval parameter.
1287 *
1288 * Return: Zero if successful, or a negative error code on failure.
1289 */
1290int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1291 unsigned int cond,
1292 snd_pcm_hw_param_t var,
1293 const struct snd_pcm_hw_constraint_ranges *r)
1294{
1295 return snd_pcm_hw_rule_add(runtime, cond, var,
1296 snd_pcm_hw_rule_ranges, (void *)r,
1297 var, -1);
1298}
1299EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1300
1301static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1302 struct snd_pcm_hw_rule *rule)
1303{
1304 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1305 unsigned int num = 0, den = 0;
1306 int err;
1307 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1308 r->nrats, r->rats, &num, &den);
1309 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1310 params->rate_num = num;
1311 params->rate_den = den;
1312 }
1313 return err;
1314}
1315
1316/**
1317 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the ratnums constraint
1321 * @r: struct snd_ratnums constriants
1322 *
1323 * Return: Zero if successful, or a negative error code on failure.
1324 */
1325int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1326 unsigned int cond,
1327 snd_pcm_hw_param_t var,
1328 const struct snd_pcm_hw_constraint_ratnums *r)
1329{
1330 return snd_pcm_hw_rule_add(runtime, cond, var,
1331 snd_pcm_hw_rule_ratnums, (void *)r,
1332 var, -1);
1333}
1334EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1335
1336static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1337 struct snd_pcm_hw_rule *rule)
1338{
1339 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1340 unsigned int num = 0, den = 0;
1341 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1342 r->nrats, r->rats, &num, &den);
1343 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1344 params->rate_num = num;
1345 params->rate_den = den;
1346 }
1347 return err;
1348}
1349
1350/**
1351 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1352 * @runtime: PCM runtime instance
1353 * @cond: condition bits
1354 * @var: hw_params variable to apply the ratdens constraint
1355 * @r: struct snd_ratdens constriants
1356 *
1357 * Return: Zero if successful, or a negative error code on failure.
1358 */
1359int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1360 unsigned int cond,
1361 snd_pcm_hw_param_t var,
1362 const struct snd_pcm_hw_constraint_ratdens *r)
1363{
1364 return snd_pcm_hw_rule_add(runtime, cond, var,
1365 snd_pcm_hw_rule_ratdens, (void *)r,
1366 var, -1);
1367}
1368EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1369
1370static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1371 struct snd_pcm_hw_rule *rule)
1372{
1373 unsigned int l = (unsigned long) rule->private;
1374 int width = l & 0xffff;
1375 unsigned int msbits = l >> 16;
1376 const struct snd_interval *i =
1377 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1378
1379 if (!snd_interval_single(i))
1380 return 0;
1381
1382 if ((snd_interval_value(i) == width) ||
1383 (width == 0 && snd_interval_value(i) > msbits))
1384 params->msbits = min_not_zero(params->msbits, msbits);
1385
1386 return 0;
1387}
1388
1389/**
1390 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1391 * @runtime: PCM runtime instance
1392 * @cond: condition bits
1393 * @width: sample bits width
1394 * @msbits: msbits width
1395 *
1396 * This constraint will set the number of most significant bits (msbits) if a
1397 * sample format with the specified width has been select. If width is set to 0
1398 * the msbits will be set for any sample format with a width larger than the
1399 * specified msbits.
1400 *
1401 * Return: Zero if successful, or a negative error code on failure.
1402 */
1403int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1404 unsigned int cond,
1405 unsigned int width,
1406 unsigned int msbits)
1407{
1408 unsigned long l = (msbits << 16) | width;
1409 return snd_pcm_hw_rule_add(runtime, cond, -1,
1410 snd_pcm_hw_rule_msbits,
1411 (void*) l,
1412 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1413}
1414EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1415
1416static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1417 struct snd_pcm_hw_rule *rule)
1418{
1419 unsigned long step = (unsigned long) rule->private;
1420 return snd_interval_step(hw_param_interval(params, rule->var), step);
1421}
1422
1423/**
1424 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1425 * @runtime: PCM runtime instance
1426 * @cond: condition bits
1427 * @var: hw_params variable to apply the step constraint
1428 * @step: step size
1429 *
1430 * Return: Zero if successful, or a negative error code on failure.
1431 */
1432int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1433 unsigned int cond,
1434 snd_pcm_hw_param_t var,
1435 unsigned long step)
1436{
1437 return snd_pcm_hw_rule_add(runtime, cond, var,
1438 snd_pcm_hw_rule_step, (void *) step,
1439 var, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1442
1443static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1444{
1445 static unsigned int pow2_sizes[] = {
1446 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1447 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1448 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1449 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1450 };
1451 return snd_interval_list(hw_param_interval(params, rule->var),
1452 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1453}
1454
1455/**
1456 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1457 * @runtime: PCM runtime instance
1458 * @cond: condition bits
1459 * @var: hw_params variable to apply the power-of-2 constraint
1460 *
1461 * Return: Zero if successful, or a negative error code on failure.
1462 */
1463int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1464 unsigned int cond,
1465 snd_pcm_hw_param_t var)
1466{
1467 return snd_pcm_hw_rule_add(runtime, cond, var,
1468 snd_pcm_hw_rule_pow2, NULL,
1469 var, -1);
1470}
1471EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1472
1473static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1474 struct snd_pcm_hw_rule *rule)
1475{
1476 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1477 struct snd_interval *rate;
1478
1479 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1480 return snd_interval_list(rate, 1, &base_rate, 0);
1481}
1482
1483/**
1484 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1485 * @runtime: PCM runtime instance
1486 * @base_rate: the rate at which the hardware does not resample
1487 *
1488 * Return: Zero if successful, or a negative error code on failure.
1489 */
1490int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1491 unsigned int base_rate)
1492{
1493 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1494 SNDRV_PCM_HW_PARAM_RATE,
1495 snd_pcm_hw_rule_noresample_func,
1496 (void *)(uintptr_t)base_rate,
1497 SNDRV_PCM_HW_PARAM_RATE, -1);
1498}
1499EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1500
1501static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1502 snd_pcm_hw_param_t var)
1503{
1504 if (hw_is_mask(var)) {
1505 snd_mask_any(hw_param_mask(params, var));
1506 params->cmask |= 1 << var;
1507 params->rmask |= 1 << var;
1508 return;
1509 }
1510 if (hw_is_interval(var)) {
1511 snd_interval_any(hw_param_interval(params, var));
1512 params->cmask |= 1 << var;
1513 params->rmask |= 1 << var;
1514 return;
1515 }
1516 snd_BUG();
1517}
1518
1519void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1520{
1521 unsigned int k;
1522 memset(params, 0, sizeof(*params));
1523 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1524 _snd_pcm_hw_param_any(params, k);
1525 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1526 _snd_pcm_hw_param_any(params, k);
1527 params->info = ~0U;
1528}
1529EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1530
1531/**
1532 * snd_pcm_hw_param_value - return @params field @var value
1533 * @params: the hw_params instance
1534 * @var: parameter to retrieve
1535 * @dir: pointer to the direction (-1,0,1) or %NULL
1536 *
1537 * Return: The value for field @var if it's fixed in configuration space
1538 * defined by @params. -%EINVAL otherwise.
1539 */
1540int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1541 snd_pcm_hw_param_t var, int *dir)
1542{
1543 if (hw_is_mask(var)) {
1544 const struct snd_mask *mask = hw_param_mask_c(params, var);
1545 if (!snd_mask_single(mask))
1546 return -EINVAL;
1547 if (dir)
1548 *dir = 0;
1549 return snd_mask_value(mask);
1550 }
1551 if (hw_is_interval(var)) {
1552 const struct snd_interval *i = hw_param_interval_c(params, var);
1553 if (!snd_interval_single(i))
1554 return -EINVAL;
1555 if (dir)
1556 *dir = i->openmin;
1557 return snd_interval_value(i);
1558 }
1559 return -EINVAL;
1560}
1561EXPORT_SYMBOL(snd_pcm_hw_param_value);
1562
1563void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1564 snd_pcm_hw_param_t var)
1565{
1566 if (hw_is_mask(var)) {
1567 snd_mask_none(hw_param_mask(params, var));
1568 params->cmask |= 1 << var;
1569 params->rmask |= 1 << var;
1570 } else if (hw_is_interval(var)) {
1571 snd_interval_none(hw_param_interval(params, var));
1572 params->cmask |= 1 << var;
1573 params->rmask |= 1 << var;
1574 } else {
1575 snd_BUG();
1576 }
1577}
1578EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1579
1580static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1581 snd_pcm_hw_param_t var)
1582{
1583 int changed;
1584 if (hw_is_mask(var))
1585 changed = snd_mask_refine_first(hw_param_mask(params, var));
1586 else if (hw_is_interval(var))
1587 changed = snd_interval_refine_first(hw_param_interval(params, var));
1588 else
1589 return -EINVAL;
1590 if (changed > 0) {
1591 params->cmask |= 1 << var;
1592 params->rmask |= 1 << var;
1593 }
1594 return changed;
1595}
1596
1597
1598/**
1599 * snd_pcm_hw_param_first - refine config space and return minimum value
1600 * @pcm: PCM instance
1601 * @params: the hw_params instance
1602 * @var: parameter to retrieve
1603 * @dir: pointer to the direction (-1,0,1) or %NULL
1604 *
1605 * Inside configuration space defined by @params remove from @var all
1606 * values > minimum. Reduce configuration space accordingly.
1607 *
1608 * Return: The minimum, or a negative error code on failure.
1609 */
1610int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1611 struct snd_pcm_hw_params *params,
1612 snd_pcm_hw_param_t var, int *dir)
1613{
1614 int changed = _snd_pcm_hw_param_first(params, var);
1615 if (changed < 0)
1616 return changed;
1617 if (params->rmask) {
1618 int err = snd_pcm_hw_refine(pcm, params);
1619 if (err < 0)
1620 return err;
1621 }
1622 return snd_pcm_hw_param_value(params, var, dir);
1623}
1624EXPORT_SYMBOL(snd_pcm_hw_param_first);
1625
1626static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var)
1628{
1629 int changed;
1630 if (hw_is_mask(var))
1631 changed = snd_mask_refine_last(hw_param_mask(params, var));
1632 else if (hw_is_interval(var))
1633 changed = snd_interval_refine_last(hw_param_interval(params, var));
1634 else
1635 return -EINVAL;
1636 if (changed > 0) {
1637 params->cmask |= 1 << var;
1638 params->rmask |= 1 << var;
1639 }
1640 return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_last - refine config space and return maximum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values < maximum. Reduce configuration space accordingly.
1653 *
1654 * Return: The maximum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1657 struct snd_pcm_hw_params *params,
1658 snd_pcm_hw_param_t var, int *dir)
1659{
1660 int changed = _snd_pcm_hw_param_last(params, var);
1661 if (changed < 0)
1662 return changed;
1663 if (params->rmask) {
1664 int err = snd_pcm_hw_refine(pcm, params);
1665 if (err < 0)
1666 return err;
1667 }
1668 return snd_pcm_hw_param_value(params, var, dir);
1669}
1670EXPORT_SYMBOL(snd_pcm_hw_param_last);
1671
1672static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1673 void *arg)
1674{
1675 struct snd_pcm_runtime *runtime = substream->runtime;
1676 unsigned long flags;
1677 snd_pcm_stream_lock_irqsave(substream, flags);
1678 if (snd_pcm_running(substream) &&
1679 snd_pcm_update_hw_ptr(substream) >= 0)
1680 runtime->status->hw_ptr %= runtime->buffer_size;
1681 else {
1682 runtime->status->hw_ptr = 0;
1683 runtime->hw_ptr_wrap = 0;
1684 }
1685 snd_pcm_stream_unlock_irqrestore(substream, flags);
1686 return 0;
1687}
1688
1689static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1690 void *arg)
1691{
1692 struct snd_pcm_channel_info *info = arg;
1693 struct snd_pcm_runtime *runtime = substream->runtime;
1694 int width;
1695 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1696 info->offset = -1;
1697 return 0;
1698 }
1699 width = snd_pcm_format_physical_width(runtime->format);
1700 if (width < 0)
1701 return width;
1702 info->offset = 0;
1703 switch (runtime->access) {
1704 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1705 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1706 info->first = info->channel * width;
1707 info->step = runtime->channels * width;
1708 break;
1709 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1710 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1711 {
1712 size_t size = runtime->dma_bytes / runtime->channels;
1713 info->first = info->channel * size * 8;
1714 info->step = width;
1715 break;
1716 }
1717 default:
1718 snd_BUG();
1719 break;
1720 }
1721 return 0;
1722}
1723
1724static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1725 void *arg)
1726{
1727 struct snd_pcm_hw_params *params = arg;
1728 snd_pcm_format_t format;
1729 int channels;
1730 ssize_t frame_size;
1731
1732 params->fifo_size = substream->runtime->hw.fifo_size;
1733 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1734 format = params_format(params);
1735 channels = params_channels(params);
1736 frame_size = snd_pcm_format_size(format, channels);
1737 if (frame_size > 0)
1738 params->fifo_size /= (unsigned)frame_size;
1739 }
1740 return 0;
1741}
1742
1743/**
1744 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1745 * @substream: the pcm substream instance
1746 * @cmd: ioctl command
1747 * @arg: ioctl argument
1748 *
1749 * Processes the generic ioctl commands for PCM.
1750 * Can be passed as the ioctl callback for PCM ops.
1751 *
1752 * Return: Zero if successful, or a negative error code on failure.
1753 */
1754int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1755 unsigned int cmd, void *arg)
1756{
1757 switch (cmd) {
1758 case SNDRV_PCM_IOCTL1_RESET:
1759 return snd_pcm_lib_ioctl_reset(substream, arg);
1760 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1761 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1762 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1763 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1764 }
1765 return -ENXIO;
1766}
1767EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1768
1769/**
1770 * snd_pcm_period_elapsed - update the pcm status for the next period
1771 * @substream: the pcm substream instance
1772 *
1773 * This function is called from the interrupt handler when the
1774 * PCM has processed the period size. It will update the current
1775 * pointer, wake up sleepers, etc.
1776 *
1777 * Even if more than one periods have elapsed since the last call, you
1778 * have to call this only once.
1779 */
1780void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1781{
1782 struct snd_pcm_runtime *runtime;
1783 unsigned long flags;
1784
1785 if (snd_BUG_ON(!substream))
1786 return;
1787
1788 snd_pcm_stream_lock_irqsave(substream, flags);
1789 if (PCM_RUNTIME_CHECK(substream))
1790 goto _unlock;
1791 runtime = substream->runtime;
1792
1793 if (!snd_pcm_running(substream) ||
1794 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1795 goto _end;
1796
1797#ifdef CONFIG_SND_PCM_TIMER
1798 if (substream->timer_running)
1799 snd_timer_interrupt(substream->timer, 1);
1800#endif
1801 _end:
1802 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1803 _unlock:
1804 snd_pcm_stream_unlock_irqrestore(substream, flags);
1805}
1806EXPORT_SYMBOL(snd_pcm_period_elapsed);
1807
1808/*
1809 * Wait until avail_min data becomes available
1810 * Returns a negative error code if any error occurs during operation.
1811 * The available space is stored on availp. When err = 0 and avail = 0
1812 * on the capture stream, it indicates the stream is in DRAINING state.
1813 */
1814static int wait_for_avail(struct snd_pcm_substream *substream,
1815 snd_pcm_uframes_t *availp)
1816{
1817 struct snd_pcm_runtime *runtime = substream->runtime;
1818 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1819 wait_queue_entry_t wait;
1820 int err = 0;
1821 snd_pcm_uframes_t avail = 0;
1822 long wait_time, tout;
1823
1824 init_waitqueue_entry(&wait, current);
1825 set_current_state(TASK_INTERRUPTIBLE);
1826 add_wait_queue(&runtime->tsleep, &wait);
1827
1828 if (runtime->no_period_wakeup)
1829 wait_time = MAX_SCHEDULE_TIMEOUT;
1830 else {
1831 /* use wait time from substream if available */
1832 if (substream->wait_time) {
1833 wait_time = substream->wait_time;
1834 } else {
1835 wait_time = 10;
1836
1837 if (runtime->rate) {
1838 long t = runtime->period_size * 2 /
1839 runtime->rate;
1840 wait_time = max(t, wait_time);
1841 }
1842 wait_time = msecs_to_jiffies(wait_time * 1000);
1843 }
1844 }
1845
1846 for (;;) {
1847 if (signal_pending(current)) {
1848 err = -ERESTARTSYS;
1849 break;
1850 }
1851
1852 /*
1853 * We need to check if space became available already
1854 * (and thus the wakeup happened already) first to close
1855 * the race of space already having become available.
1856 * This check must happen after been added to the waitqueue
1857 * and having current state be INTERRUPTIBLE.
1858 */
1859 avail = snd_pcm_avail(substream);
1860 if (avail >= runtime->twake)
1861 break;
1862 snd_pcm_stream_unlock_irq(substream);
1863
1864 tout = schedule_timeout(wait_time);
1865
1866 snd_pcm_stream_lock_irq(substream);
1867 set_current_state(TASK_INTERRUPTIBLE);
1868 switch (runtime->status->state) {
1869 case SNDRV_PCM_STATE_SUSPENDED:
1870 err = -ESTRPIPE;
1871 goto _endloop;
1872 case SNDRV_PCM_STATE_XRUN:
1873 err = -EPIPE;
1874 goto _endloop;
1875 case SNDRV_PCM_STATE_DRAINING:
1876 if (is_playback)
1877 err = -EPIPE;
1878 else
1879 avail = 0; /* indicate draining */
1880 goto _endloop;
1881 case SNDRV_PCM_STATE_OPEN:
1882 case SNDRV_PCM_STATE_SETUP:
1883 case SNDRV_PCM_STATE_DISCONNECTED:
1884 err = -EBADFD;
1885 goto _endloop;
1886 case SNDRV_PCM_STATE_PAUSED:
1887 continue;
1888 }
1889 if (!tout) {
1890 pcm_dbg(substream->pcm,
1891 "%s write error (DMA or IRQ trouble?)\n",
1892 is_playback ? "playback" : "capture");
1893 err = -EIO;
1894 break;
1895 }
1896 }
1897 _endloop:
1898 set_current_state(TASK_RUNNING);
1899 remove_wait_queue(&runtime->tsleep, &wait);
1900 *availp = avail;
1901 return err;
1902}
1903
1904typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1905 int channel, unsigned long hwoff,
1906 void *buf, unsigned long bytes);
1907
1908typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1909 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1910
1911/* calculate the target DMA-buffer position to be written/read */
1912static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1913 int channel, unsigned long hwoff)
1914{
1915 return runtime->dma_area + hwoff +
1916 channel * (runtime->dma_bytes / runtime->channels);
1917}
1918
1919/* default copy_user ops for write; used for both interleaved and non- modes */
1920static int default_write_copy(struct snd_pcm_substream *substream,
1921 int channel, unsigned long hwoff,
1922 void *buf, unsigned long bytes)
1923{
1924 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1925 (void __user *)buf, bytes))
1926 return -EFAULT;
1927 return 0;
1928}
1929
1930/* default copy_kernel ops for write */
1931static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1932 int channel, unsigned long hwoff,
1933 void *buf, unsigned long bytes)
1934{
1935 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1936 return 0;
1937}
1938
1939/* fill silence instead of copy data; called as a transfer helper
1940 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1941 * a NULL buffer is passed
1942 */
1943static int fill_silence(struct snd_pcm_substream *substream, int channel,
1944 unsigned long hwoff, void *buf, unsigned long bytes)
1945{
1946 struct snd_pcm_runtime *runtime = substream->runtime;
1947
1948 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1949 return 0;
1950 if (substream->ops->fill_silence)
1951 return substream->ops->fill_silence(substream, channel,
1952 hwoff, bytes);
1953
1954 snd_pcm_format_set_silence(runtime->format,
1955 get_dma_ptr(runtime, channel, hwoff),
1956 bytes_to_samples(runtime, bytes));
1957 return 0;
1958}
1959
1960/* default copy_user ops for read; used for both interleaved and non- modes */
1961static int default_read_copy(struct snd_pcm_substream *substream,
1962 int channel, unsigned long hwoff,
1963 void *buf, unsigned long bytes)
1964{
1965 if (copy_to_user((void __user *)buf,
1966 get_dma_ptr(substream->runtime, channel, hwoff),
1967 bytes))
1968 return -EFAULT;
1969 return 0;
1970}
1971
1972/* default copy_kernel ops for read */
1973static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1974 int channel, unsigned long hwoff,
1975 void *buf, unsigned long bytes)
1976{
1977 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1978 return 0;
1979}
1980
1981/* call transfer function with the converted pointers and sizes;
1982 * for interleaved mode, it's one shot for all samples
1983 */
1984static int interleaved_copy(struct snd_pcm_substream *substream,
1985 snd_pcm_uframes_t hwoff, void *data,
1986 snd_pcm_uframes_t off,
1987 snd_pcm_uframes_t frames,
1988 pcm_transfer_f transfer)
1989{
1990 struct snd_pcm_runtime *runtime = substream->runtime;
1991
1992 /* convert to bytes */
1993 hwoff = frames_to_bytes(runtime, hwoff);
1994 off = frames_to_bytes(runtime, off);
1995 frames = frames_to_bytes(runtime, frames);
1996 return transfer(substream, 0, hwoff, data + off, frames);
1997}
1998
1999/* call transfer function with the converted pointers and sizes for each
2000 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2001 */
2002static int noninterleaved_copy(struct snd_pcm_substream *substream,
2003 snd_pcm_uframes_t hwoff, void *data,
2004 snd_pcm_uframes_t off,
2005 snd_pcm_uframes_t frames,
2006 pcm_transfer_f transfer)
2007{
2008 struct snd_pcm_runtime *runtime = substream->runtime;
2009 int channels = runtime->channels;
2010 void **bufs = data;
2011 int c, err;
2012
2013 /* convert to bytes; note that it's not frames_to_bytes() here.
2014 * in non-interleaved mode, we copy for each channel, thus
2015 * each copy is n_samples bytes x channels = whole frames.
2016 */
2017 off = samples_to_bytes(runtime, off);
2018 frames = samples_to_bytes(runtime, frames);
2019 hwoff = samples_to_bytes(runtime, hwoff);
2020 for (c = 0; c < channels; ++c, ++bufs) {
2021 if (!data || !*bufs)
2022 err = fill_silence(substream, c, hwoff, NULL, frames);
2023 else
2024 err = transfer(substream, c, hwoff, *bufs + off,
2025 frames);
2026 if (err < 0)
2027 return err;
2028 }
2029 return 0;
2030}
2031
2032/* fill silence on the given buffer position;
2033 * called from snd_pcm_playback_silence()
2034 */
2035static int fill_silence_frames(struct snd_pcm_substream *substream,
2036 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2037{
2038 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2039 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2040 return interleaved_copy(substream, off, NULL, 0, frames,
2041 fill_silence);
2042 else
2043 return noninterleaved_copy(substream, off, NULL, 0, frames,
2044 fill_silence);
2045}
2046
2047/* sanity-check for read/write methods */
2048static int pcm_sanity_check(struct snd_pcm_substream *substream)
2049{
2050 struct snd_pcm_runtime *runtime;
2051 if (PCM_RUNTIME_CHECK(substream))
2052 return -ENXIO;
2053 runtime = substream->runtime;
2054 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2055 return -EINVAL;
2056 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2057 return -EBADFD;
2058 return 0;
2059}
2060
2061static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2062{
2063 switch (runtime->status->state) {
2064 case SNDRV_PCM_STATE_PREPARED:
2065 case SNDRV_PCM_STATE_RUNNING:
2066 case SNDRV_PCM_STATE_PAUSED:
2067 return 0;
2068 case SNDRV_PCM_STATE_XRUN:
2069 return -EPIPE;
2070 case SNDRV_PCM_STATE_SUSPENDED:
2071 return -ESTRPIPE;
2072 default:
2073 return -EBADFD;
2074 }
2075}
2076
2077/* update to the given appl_ptr and call ack callback if needed;
2078 * when an error is returned, take back to the original value
2079 */
2080int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2081 snd_pcm_uframes_t appl_ptr)
2082{
2083 struct snd_pcm_runtime *runtime = substream->runtime;
2084 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2085 int ret;
2086
2087 if (old_appl_ptr == appl_ptr)
2088 return 0;
2089
2090 runtime->control->appl_ptr = appl_ptr;
2091 if (substream->ops->ack) {
2092 ret = substream->ops->ack(substream);
2093 if (ret < 0) {
2094 runtime->control->appl_ptr = old_appl_ptr;
2095 return ret;
2096 }
2097 }
2098
2099 trace_applptr(substream, old_appl_ptr, appl_ptr);
2100
2101 return 0;
2102}
2103
2104/* the common loop for read/write data */
2105snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2106 void *data, bool interleaved,
2107 snd_pcm_uframes_t size, bool in_kernel)
2108{
2109 struct snd_pcm_runtime *runtime = substream->runtime;
2110 snd_pcm_uframes_t xfer = 0;
2111 snd_pcm_uframes_t offset = 0;
2112 snd_pcm_uframes_t avail;
2113 pcm_copy_f writer;
2114 pcm_transfer_f transfer;
2115 bool nonblock;
2116 bool is_playback;
2117 int err;
2118
2119 err = pcm_sanity_check(substream);
2120 if (err < 0)
2121 return err;
2122
2123 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2124 if (interleaved) {
2125 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2126 runtime->channels > 1)
2127 return -EINVAL;
2128 writer = interleaved_copy;
2129 } else {
2130 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2131 return -EINVAL;
2132 writer = noninterleaved_copy;
2133 }
2134
2135 if (!data) {
2136 if (is_playback)
2137 transfer = fill_silence;
2138 else
2139 return -EINVAL;
2140 } else if (in_kernel) {
2141 if (substream->ops->copy_kernel)
2142 transfer = substream->ops->copy_kernel;
2143 else
2144 transfer = is_playback ?
2145 default_write_copy_kernel : default_read_copy_kernel;
2146 } else {
2147 if (substream->ops->copy_user)
2148 transfer = (pcm_transfer_f)substream->ops->copy_user;
2149 else
2150 transfer = is_playback ?
2151 default_write_copy : default_read_copy;
2152 }
2153
2154 if (size == 0)
2155 return 0;
2156
2157 nonblock = !!(substream->f_flags & O_NONBLOCK);
2158
2159 snd_pcm_stream_lock_irq(substream);
2160 err = pcm_accessible_state(runtime);
2161 if (err < 0)
2162 goto _end_unlock;
2163
2164 runtime->twake = runtime->control->avail_min ? : 1;
2165 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2166 snd_pcm_update_hw_ptr(substream);
2167
2168 /*
2169 * If size < start_threshold, wait indefinitely. Another
2170 * thread may start capture
2171 */
2172 if (!is_playback &&
2173 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2174 size >= runtime->start_threshold) {
2175 err = snd_pcm_start(substream);
2176 if (err < 0)
2177 goto _end_unlock;
2178 }
2179
2180 avail = snd_pcm_avail(substream);
2181
2182 while (size > 0) {
2183 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2184 snd_pcm_uframes_t cont;
2185 if (!avail) {
2186 if (!is_playback &&
2187 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2188 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2189 goto _end_unlock;
2190 }
2191 if (nonblock) {
2192 err = -EAGAIN;
2193 goto _end_unlock;
2194 }
2195 runtime->twake = min_t(snd_pcm_uframes_t, size,
2196 runtime->control->avail_min ? : 1);
2197 err = wait_for_avail(substream, &avail);
2198 if (err < 0)
2199 goto _end_unlock;
2200 if (!avail)
2201 continue; /* draining */
2202 }
2203 frames = size > avail ? avail : size;
2204 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2205 appl_ofs = appl_ptr % runtime->buffer_size;
2206 cont = runtime->buffer_size - appl_ofs;
2207 if (frames > cont)
2208 frames = cont;
2209 if (snd_BUG_ON(!frames)) {
2210 err = -EINVAL;
2211 goto _end_unlock;
2212 }
2213 snd_pcm_stream_unlock_irq(substream);
2214 err = writer(substream, appl_ofs, data, offset, frames,
2215 transfer);
2216 snd_pcm_stream_lock_irq(substream);
2217 if (err < 0)
2218 goto _end_unlock;
2219 err = pcm_accessible_state(runtime);
2220 if (err < 0)
2221 goto _end_unlock;
2222 appl_ptr += frames;
2223 if (appl_ptr >= runtime->boundary)
2224 appl_ptr -= runtime->boundary;
2225 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2226 if (err < 0)
2227 goto _end_unlock;
2228
2229 offset += frames;
2230 size -= frames;
2231 xfer += frames;
2232 avail -= frames;
2233 if (is_playback &&
2234 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2235 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2236 err = snd_pcm_start(substream);
2237 if (err < 0)
2238 goto _end_unlock;
2239 }
2240 }
2241 _end_unlock:
2242 runtime->twake = 0;
2243 if (xfer > 0 && err >= 0)
2244 snd_pcm_update_state(substream, runtime);
2245 snd_pcm_stream_unlock_irq(substream);
2246 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2247}
2248EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2249
2250/*
2251 * standard channel mapping helpers
2252 */
2253
2254/* default channel maps for multi-channel playbacks, up to 8 channels */
2255const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2256 { .channels = 1,
2257 .map = { SNDRV_CHMAP_MONO } },
2258 { .channels = 2,
2259 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2260 { .channels = 4,
2261 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2262 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2263 { .channels = 6,
2264 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2265 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2266 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2267 { .channels = 8,
2268 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2269 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2270 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2271 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2272 { }
2273};
2274EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2275
2276/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2277const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2278 { .channels = 1,
2279 .map = { SNDRV_CHMAP_MONO } },
2280 { .channels = 2,
2281 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2282 { .channels = 4,
2283 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2284 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2285 { .channels = 6,
2286 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2287 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2288 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2289 { .channels = 8,
2290 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2291 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2292 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2293 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2294 { }
2295};
2296EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2297
2298static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2299{
2300 if (ch > info->max_channels)
2301 return false;
2302 return !info->channel_mask || (info->channel_mask & (1U << ch));
2303}
2304
2305static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2306 struct snd_ctl_elem_info *uinfo)
2307{
2308 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2309
2310 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2311 uinfo->count = 0;
2312 uinfo->count = info->max_channels;
2313 uinfo->value.integer.min = 0;
2314 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2315 return 0;
2316}
2317
2318/* get callback for channel map ctl element
2319 * stores the channel position firstly matching with the current channels
2320 */
2321static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2322 struct snd_ctl_elem_value *ucontrol)
2323{
2324 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2325 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2326 struct snd_pcm_substream *substream;
2327 const struct snd_pcm_chmap_elem *map;
2328
2329 if (!info->chmap)
2330 return -EINVAL;
2331 substream = snd_pcm_chmap_substream(info, idx);
2332 if (!substream)
2333 return -ENODEV;
2334 memset(ucontrol->value.integer.value, 0,
2335 sizeof(ucontrol->value.integer.value));
2336 if (!substream->runtime)
2337 return 0; /* no channels set */
2338 for (map = info->chmap; map->channels; map++) {
2339 int i;
2340 if (map->channels == substream->runtime->channels &&
2341 valid_chmap_channels(info, map->channels)) {
2342 for (i = 0; i < map->channels; i++)
2343 ucontrol->value.integer.value[i] = map->map[i];
2344 return 0;
2345 }
2346 }
2347 return -EINVAL;
2348}
2349
2350/* tlv callback for channel map ctl element
2351 * expands the pre-defined channel maps in a form of TLV
2352 */
2353static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2354 unsigned int size, unsigned int __user *tlv)
2355{
2356 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2357 const struct snd_pcm_chmap_elem *map;
2358 unsigned int __user *dst;
2359 int c, count = 0;
2360
2361 if (!info->chmap)
2362 return -EINVAL;
2363 if (size < 8)
2364 return -ENOMEM;
2365 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2366 return -EFAULT;
2367 size -= 8;
2368 dst = tlv + 2;
2369 for (map = info->chmap; map->channels; map++) {
2370 int chs_bytes = map->channels * 4;
2371 if (!valid_chmap_channels(info, map->channels))
2372 continue;
2373 if (size < 8)
2374 return -ENOMEM;
2375 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2376 put_user(chs_bytes, dst + 1))
2377 return -EFAULT;
2378 dst += 2;
2379 size -= 8;
2380 count += 8;
2381 if (size < chs_bytes)
2382 return -ENOMEM;
2383 size -= chs_bytes;
2384 count += chs_bytes;
2385 for (c = 0; c < map->channels; c++) {
2386 if (put_user(map->map[c], dst))
2387 return -EFAULT;
2388 dst++;
2389 }
2390 }
2391 if (put_user(count, tlv + 1))
2392 return -EFAULT;
2393 return 0;
2394}
2395
2396static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2397{
2398 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2399 info->pcm->streams[info->stream].chmap_kctl = NULL;
2400 kfree(info);
2401}
2402
2403/**
2404 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2405 * @pcm: the assigned PCM instance
2406 * @stream: stream direction
2407 * @chmap: channel map elements (for query)
2408 * @max_channels: the max number of channels for the stream
2409 * @private_value: the value passed to each kcontrol's private_value field
2410 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2411 *
2412 * Create channel-mapping control elements assigned to the given PCM stream(s).
2413 * Return: Zero if successful, or a negative error value.
2414 */
2415int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2416 const struct snd_pcm_chmap_elem *chmap,
2417 int max_channels,
2418 unsigned long private_value,
2419 struct snd_pcm_chmap **info_ret)
2420{
2421 struct snd_pcm_chmap *info;
2422 struct snd_kcontrol_new knew = {
2423 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2424 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2425 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2426 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2427 .info = pcm_chmap_ctl_info,
2428 .get = pcm_chmap_ctl_get,
2429 .tlv.c = pcm_chmap_ctl_tlv,
2430 };
2431 int err;
2432
2433 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2434 return -EBUSY;
2435 info = kzalloc(sizeof(*info), GFP_KERNEL);
2436 if (!info)
2437 return -ENOMEM;
2438 info->pcm = pcm;
2439 info->stream = stream;
2440 info->chmap = chmap;
2441 info->max_channels = max_channels;
2442 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2443 knew.name = "Playback Channel Map";
2444 else
2445 knew.name = "Capture Channel Map";
2446 knew.device = pcm->device;
2447 knew.count = pcm->streams[stream].substream_count;
2448 knew.private_value = private_value;
2449 info->kctl = snd_ctl_new1(&knew, info);
2450 if (!info->kctl) {
2451 kfree(info);
2452 return -ENOMEM;
2453 }
2454 info->kctl->private_free = pcm_chmap_ctl_private_free;
2455 err = snd_ctl_add(pcm->card, info->kctl);
2456 if (err < 0)
2457 return err;
2458 pcm->streams[stream].chmap_kctl = info->kctl;
2459 if (info_ret)
2460 *info_ret = info;
2461 return 0;
2462}
2463EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
1/*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23#include <linux/slab.h>
24#include <linux/time.h>
25#include <linux/math64.h>
26#include <linux/export.h>
27#include <sound/core.h>
28#include <sound/control.h>
29#include <sound/info.h>
30#include <sound/pcm.h>
31#include <sound/pcm_params.h>
32#include <sound/timer.h>
33
34/*
35 * fill ring buffer with silence
36 * runtime->silence_start: starting pointer to silence area
37 * runtime->silence_filled: size filled with silence
38 * runtime->silence_threshold: threshold from application
39 * runtime->silence_size: maximal size from application
40 *
41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42 */
43void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44{
45 struct snd_pcm_runtime *runtime = substream->runtime;
46 snd_pcm_uframes_t frames, ofs, transfer;
47
48 if (runtime->silence_size < runtime->boundary) {
49 snd_pcm_sframes_t noise_dist, n;
50 if (runtime->silence_start != runtime->control->appl_ptr) {
51 n = runtime->control->appl_ptr - runtime->silence_start;
52 if (n < 0)
53 n += runtime->boundary;
54 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55 runtime->silence_filled -= n;
56 else
57 runtime->silence_filled = 0;
58 runtime->silence_start = runtime->control->appl_ptr;
59 }
60 if (runtime->silence_filled >= runtime->buffer_size)
61 return;
62 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 return;
65 frames = runtime->silence_threshold - noise_dist;
66 if (frames > runtime->silence_size)
67 frames = runtime->silence_size;
68 } else {
69 if (new_hw_ptr == ULONG_MAX) { /* initialization */
70 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 if (avail > runtime->buffer_size)
72 avail = runtime->buffer_size;
73 runtime->silence_filled = avail > 0 ? avail : 0;
74 runtime->silence_start = (runtime->status->hw_ptr +
75 runtime->silence_filled) %
76 runtime->boundary;
77 } else {
78 ofs = runtime->status->hw_ptr;
79 frames = new_hw_ptr - ofs;
80 if ((snd_pcm_sframes_t)frames < 0)
81 frames += runtime->boundary;
82 runtime->silence_filled -= frames;
83 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84 runtime->silence_filled = 0;
85 runtime->silence_start = new_hw_ptr;
86 } else {
87 runtime->silence_start = ofs;
88 }
89 }
90 frames = runtime->buffer_size - runtime->silence_filled;
91 }
92 if (snd_BUG_ON(frames > runtime->buffer_size))
93 return;
94 if (frames == 0)
95 return;
96 ofs = runtime->silence_start % runtime->buffer_size;
97 while (frames > 0) {
98 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101 if (substream->ops->silence) {
102 int err;
103 err = substream->ops->silence(substream, -1, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 } else {
106 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108 }
109 } else {
110 unsigned int c;
111 unsigned int channels = runtime->channels;
112 if (substream->ops->silence) {
113 for (c = 0; c < channels; ++c) {
114 int err;
115 err = substream->ops->silence(substream, c, ofs, transfer);
116 snd_BUG_ON(err < 0);
117 }
118 } else {
119 size_t dma_csize = runtime->dma_bytes / channels;
120 for (c = 0; c < channels; ++c) {
121 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123 }
124 }
125 }
126 runtime->silence_filled += transfer;
127 frames -= transfer;
128 ofs = 0;
129 }
130}
131
132#ifdef CONFIG_SND_DEBUG
133void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134 char *name, size_t len)
135{
136 snprintf(name, len, "pcmC%dD%d%c:%d",
137 substream->pcm->card->number,
138 substream->pcm->device,
139 substream->stream ? 'c' : 'p',
140 substream->number);
141}
142EXPORT_SYMBOL(snd_pcm_debug_name);
143#endif
144
145#define XRUN_DEBUG_BASIC (1<<0)
146#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
147#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
148#define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
149#define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
150#define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
151#define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
152
153#ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155#define xrun_debug(substream, mask) \
156 ((substream)->pstr->xrun_debug & (mask))
157#else
158#define xrun_debug(substream, mask) 0
159#endif
160
161#define dump_stack_on_xrun(substream) do { \
162 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
163 dump_stack(); \
164 } while (0)
165
166static void xrun(struct snd_pcm_substream *substream)
167{
168 struct snd_pcm_runtime *runtime = substream->runtime;
169
170 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174 char name[16];
175 snd_pcm_debug_name(substream, name, sizeof(name));
176 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177 dump_stack_on_xrun(substream);
178 }
179}
180
181#ifdef CONFIG_SND_PCM_XRUN_DEBUG
182#define hw_ptr_error(substream, fmt, args...) \
183 do { \
184 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
185 xrun_log_show(substream); \
186 if (printk_ratelimit()) { \
187 snd_printd("PCM: " fmt, ##args); \
188 } \
189 dump_stack_on_xrun(substream); \
190 } \
191 } while (0)
192
193#define XRUN_LOG_CNT 10
194
195struct hwptr_log_entry {
196 unsigned int in_interrupt;
197 unsigned long jiffies;
198 snd_pcm_uframes_t pos;
199 snd_pcm_uframes_t period_size;
200 snd_pcm_uframes_t buffer_size;
201 snd_pcm_uframes_t old_hw_ptr;
202 snd_pcm_uframes_t hw_ptr_base;
203};
204
205struct snd_pcm_hwptr_log {
206 unsigned int idx;
207 unsigned int hit: 1;
208 struct hwptr_log_entry entries[XRUN_LOG_CNT];
209};
210
211static void xrun_log(struct snd_pcm_substream *substream,
212 snd_pcm_uframes_t pos, int in_interrupt)
213{
214 struct snd_pcm_runtime *runtime = substream->runtime;
215 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216 struct hwptr_log_entry *entry;
217
218 if (log == NULL) {
219 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220 if (log == NULL)
221 return;
222 runtime->hwptr_log = log;
223 } else {
224 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225 return;
226 }
227 entry = &log->entries[log->idx];
228 entry->in_interrupt = in_interrupt;
229 entry->jiffies = jiffies;
230 entry->pos = pos;
231 entry->period_size = runtime->period_size;
232 entry->buffer_size = runtime->buffer_size;
233 entry->old_hw_ptr = runtime->status->hw_ptr;
234 entry->hw_ptr_base = runtime->hw_ptr_base;
235 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236}
237
238static void xrun_log_show(struct snd_pcm_substream *substream)
239{
240 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241 struct hwptr_log_entry *entry;
242 char name[16];
243 unsigned int idx;
244 int cnt;
245
246 if (log == NULL)
247 return;
248 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249 return;
250 snd_pcm_debug_name(substream, name, sizeof(name));
251 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252 entry = &log->entries[idx];
253 if (entry->period_size == 0)
254 break;
255 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256 "hwptr=%ld/%ld\n",
257 name, entry->in_interrupt ? "[Q] " : "",
258 entry->jiffies,
259 (unsigned long)entry->pos,
260 (unsigned long)entry->period_size,
261 (unsigned long)entry->buffer_size,
262 (unsigned long)entry->old_hw_ptr,
263 (unsigned long)entry->hw_ptr_base);
264 idx++;
265 idx %= XRUN_LOG_CNT;
266 }
267 log->hit = 1;
268}
269
270#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272#define hw_ptr_error(substream, fmt, args...) do { } while (0)
273#define xrun_log(substream, pos, in_interrupt) do { } while (0)
274#define xrun_log_show(substream) do { } while (0)
275
276#endif
277
278int snd_pcm_update_state(struct snd_pcm_substream *substream,
279 struct snd_pcm_runtime *runtime)
280{
281 snd_pcm_uframes_t avail;
282
283 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284 avail = snd_pcm_playback_avail(runtime);
285 else
286 avail = snd_pcm_capture_avail(runtime);
287 if (avail > runtime->avail_max)
288 runtime->avail_max = avail;
289 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290 if (avail >= runtime->buffer_size) {
291 snd_pcm_drain_done(substream);
292 return -EPIPE;
293 }
294 } else {
295 if (avail >= runtime->stop_threshold) {
296 xrun(substream);
297 return -EPIPE;
298 }
299 }
300 if (runtime->twake) {
301 if (avail >= runtime->twake)
302 wake_up(&runtime->tsleep);
303 } else if (avail >= runtime->control->avail_min)
304 wake_up(&runtime->sleep);
305 return 0;
306}
307
308static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309 unsigned int in_interrupt)
310{
311 struct snd_pcm_runtime *runtime = substream->runtime;
312 snd_pcm_uframes_t pos;
313 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314 snd_pcm_sframes_t hdelta, delta;
315 unsigned long jdelta;
316 unsigned long curr_jiffies;
317 struct timespec curr_tstamp;
318
319 old_hw_ptr = runtime->status->hw_ptr;
320
321 /*
322 * group pointer, time and jiffies reads to allow for more
323 * accurate correlations/corrections.
324 * The values are stored at the end of this routine after
325 * corrections for hw_ptr position
326 */
327 pos = substream->ops->pointer(substream);
328 curr_jiffies = jiffies;
329 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
330 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
331
332 if (pos == SNDRV_PCM_POS_XRUN) {
333 xrun(substream);
334 return -EPIPE;
335 }
336 if (pos >= runtime->buffer_size) {
337 if (printk_ratelimit()) {
338 char name[16];
339 snd_pcm_debug_name(substream, name, sizeof(name));
340 xrun_log_show(substream);
341 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
342 "buffer size = %ld, period size = %ld\n",
343 name, pos, runtime->buffer_size,
344 runtime->period_size);
345 }
346 pos = 0;
347 }
348 pos -= pos % runtime->min_align;
349 if (xrun_debug(substream, XRUN_DEBUG_LOG))
350 xrun_log(substream, pos, in_interrupt);
351 hw_base = runtime->hw_ptr_base;
352 new_hw_ptr = hw_base + pos;
353 if (in_interrupt) {
354 /* we know that one period was processed */
355 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
356 delta = runtime->hw_ptr_interrupt + runtime->period_size;
357 if (delta > new_hw_ptr) {
358 /* check for double acknowledged interrupts */
359 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
360 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary)
363 hw_base = 0;
364 new_hw_ptr = hw_base + pos;
365 goto __delta;
366 }
367 }
368 }
369 /* new_hw_ptr might be lower than old_hw_ptr in case when */
370 /* pointer crosses the end of the ring buffer */
371 if (new_hw_ptr < old_hw_ptr) {
372 hw_base += runtime->buffer_size;
373 if (hw_base >= runtime->boundary)
374 hw_base = 0;
375 new_hw_ptr = hw_base + pos;
376 }
377 __delta:
378 delta = new_hw_ptr - old_hw_ptr;
379 if (delta < 0)
380 delta += runtime->boundary;
381 if (xrun_debug(substream, in_interrupt ?
382 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
383 char name[16];
384 snd_pcm_debug_name(substream, name, sizeof(name));
385 snd_printd("%s_update: %s: pos=%u/%u/%u, "
386 "hwptr=%ld/%ld/%ld/%ld\n",
387 in_interrupt ? "period" : "hwptr",
388 name,
389 (unsigned int)pos,
390 (unsigned int)runtime->period_size,
391 (unsigned int)runtime->buffer_size,
392 (unsigned long)delta,
393 (unsigned long)old_hw_ptr,
394 (unsigned long)new_hw_ptr,
395 (unsigned long)runtime->hw_ptr_base);
396 }
397
398 if (runtime->no_period_wakeup) {
399 snd_pcm_sframes_t xrun_threshold;
400 /*
401 * Without regular period interrupts, we have to check
402 * the elapsed time to detect xruns.
403 */
404 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
405 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
406 goto no_delta_check;
407 hdelta = jdelta - delta * HZ / runtime->rate;
408 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
409 while (hdelta > xrun_threshold) {
410 delta += runtime->buffer_size;
411 hw_base += runtime->buffer_size;
412 if (hw_base >= runtime->boundary)
413 hw_base = 0;
414 new_hw_ptr = hw_base + pos;
415 hdelta -= runtime->hw_ptr_buffer_jiffies;
416 }
417 goto no_delta_check;
418 }
419
420 /* something must be really wrong */
421 if (delta >= runtime->buffer_size + runtime->period_size) {
422 hw_ptr_error(substream,
423 "Unexpected hw_pointer value %s"
424 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
425 "old_hw_ptr=%ld)\n",
426 in_interrupt ? "[Q] " : "[P]",
427 substream->stream, (long)pos,
428 (long)new_hw_ptr, (long)old_hw_ptr);
429 return 0;
430 }
431
432 /* Do jiffies check only in xrun_debug mode */
433 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
434 goto no_jiffies_check;
435
436 /* Skip the jiffies check for hardwares with BATCH flag.
437 * Such hardware usually just increases the position at each IRQ,
438 * thus it can't give any strange position.
439 */
440 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
441 goto no_jiffies_check;
442 hdelta = delta;
443 if (hdelta < runtime->delay)
444 goto no_jiffies_check;
445 hdelta -= runtime->delay;
446 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
447 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
448 delta = jdelta /
449 (((runtime->period_size * HZ) / runtime->rate)
450 + HZ/100);
451 /* move new_hw_ptr according jiffies not pos variable */
452 new_hw_ptr = old_hw_ptr;
453 hw_base = delta;
454 /* use loop to avoid checks for delta overflows */
455 /* the delta value is small or zero in most cases */
456 while (delta > 0) {
457 new_hw_ptr += runtime->period_size;
458 if (new_hw_ptr >= runtime->boundary)
459 new_hw_ptr -= runtime->boundary;
460 delta--;
461 }
462 /* align hw_base to buffer_size */
463 hw_ptr_error(substream,
464 "hw_ptr skipping! %s"
465 "(pos=%ld, delta=%ld, period=%ld, "
466 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
467 in_interrupt ? "[Q] " : "",
468 (long)pos, (long)hdelta,
469 (long)runtime->period_size, jdelta,
470 ((hdelta * HZ) / runtime->rate), hw_base,
471 (unsigned long)old_hw_ptr,
472 (unsigned long)new_hw_ptr);
473 /* reset values to proper state */
474 delta = 0;
475 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
476 }
477 no_jiffies_check:
478 if (delta > runtime->period_size + runtime->period_size / 2) {
479 hw_ptr_error(substream,
480 "Lost interrupts? %s"
481 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
482 "old_hw_ptr=%ld)\n",
483 in_interrupt ? "[Q] " : "",
484 substream->stream, (long)delta,
485 (long)new_hw_ptr,
486 (long)old_hw_ptr);
487 }
488
489 no_delta_check:
490 if (runtime->status->hw_ptr == new_hw_ptr)
491 return 0;
492
493 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
494 runtime->silence_size > 0)
495 snd_pcm_playback_silence(substream, new_hw_ptr);
496
497 if (in_interrupt) {
498 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
499 if (delta < 0)
500 delta += runtime->boundary;
501 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
502 runtime->hw_ptr_interrupt += delta;
503 if (runtime->hw_ptr_interrupt >= runtime->boundary)
504 runtime->hw_ptr_interrupt -= runtime->boundary;
505 }
506 runtime->hw_ptr_base = hw_base;
507 runtime->status->hw_ptr = new_hw_ptr;
508 runtime->hw_ptr_jiffies = curr_jiffies;
509 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
510 runtime->status->tstamp = curr_tstamp;
511
512 return snd_pcm_update_state(substream, runtime);
513}
514
515/* CAUTION: call it with irq disabled */
516int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
517{
518 return snd_pcm_update_hw_ptr0(substream, 0);
519}
520
521/**
522 * snd_pcm_set_ops - set the PCM operators
523 * @pcm: the pcm instance
524 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
525 * @ops: the operator table
526 *
527 * Sets the given PCM operators to the pcm instance.
528 */
529void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
530{
531 struct snd_pcm_str *stream = &pcm->streams[direction];
532 struct snd_pcm_substream *substream;
533
534 for (substream = stream->substream; substream != NULL; substream = substream->next)
535 substream->ops = ops;
536}
537
538EXPORT_SYMBOL(snd_pcm_set_ops);
539
540/**
541 * snd_pcm_sync - set the PCM sync id
542 * @substream: the pcm substream
543 *
544 * Sets the PCM sync identifier for the card.
545 */
546void snd_pcm_set_sync(struct snd_pcm_substream *substream)
547{
548 struct snd_pcm_runtime *runtime = substream->runtime;
549
550 runtime->sync.id32[0] = substream->pcm->card->number;
551 runtime->sync.id32[1] = -1;
552 runtime->sync.id32[2] = -1;
553 runtime->sync.id32[3] = -1;
554}
555
556EXPORT_SYMBOL(snd_pcm_set_sync);
557
558/*
559 * Standard ioctl routine
560 */
561
562static inline unsigned int div32(unsigned int a, unsigned int b,
563 unsigned int *r)
564{
565 if (b == 0) {
566 *r = 0;
567 return UINT_MAX;
568 }
569 *r = a % b;
570 return a / b;
571}
572
573static inline unsigned int div_down(unsigned int a, unsigned int b)
574{
575 if (b == 0)
576 return UINT_MAX;
577 return a / b;
578}
579
580static inline unsigned int div_up(unsigned int a, unsigned int b)
581{
582 unsigned int r;
583 unsigned int q;
584 if (b == 0)
585 return UINT_MAX;
586 q = div32(a, b, &r);
587 if (r)
588 ++q;
589 return q;
590}
591
592static inline unsigned int mul(unsigned int a, unsigned int b)
593{
594 if (a == 0)
595 return 0;
596 if (div_down(UINT_MAX, a) < b)
597 return UINT_MAX;
598 return a * b;
599}
600
601static inline unsigned int muldiv32(unsigned int a, unsigned int b,
602 unsigned int c, unsigned int *r)
603{
604 u_int64_t n = (u_int64_t) a * b;
605 if (c == 0) {
606 snd_BUG_ON(!n);
607 *r = 0;
608 return UINT_MAX;
609 }
610 n = div_u64_rem(n, c, r);
611 if (n >= UINT_MAX) {
612 *r = 0;
613 return UINT_MAX;
614 }
615 return n;
616}
617
618/**
619 * snd_interval_refine - refine the interval value of configurator
620 * @i: the interval value to refine
621 * @v: the interval value to refer to
622 *
623 * Refines the interval value with the reference value.
624 * The interval is changed to the range satisfying both intervals.
625 * The interval status (min, max, integer, etc.) are evaluated.
626 *
627 * Returns non-zero if the value is changed, zero if not changed.
628 */
629int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
630{
631 int changed = 0;
632 if (snd_BUG_ON(snd_interval_empty(i)))
633 return -EINVAL;
634 if (i->min < v->min) {
635 i->min = v->min;
636 i->openmin = v->openmin;
637 changed = 1;
638 } else if (i->min == v->min && !i->openmin && v->openmin) {
639 i->openmin = 1;
640 changed = 1;
641 }
642 if (i->max > v->max) {
643 i->max = v->max;
644 i->openmax = v->openmax;
645 changed = 1;
646 } else if (i->max == v->max && !i->openmax && v->openmax) {
647 i->openmax = 1;
648 changed = 1;
649 }
650 if (!i->integer && v->integer) {
651 i->integer = 1;
652 changed = 1;
653 }
654 if (i->integer) {
655 if (i->openmin) {
656 i->min++;
657 i->openmin = 0;
658 }
659 if (i->openmax) {
660 i->max--;
661 i->openmax = 0;
662 }
663 } else if (!i->openmin && !i->openmax && i->min == i->max)
664 i->integer = 1;
665 if (snd_interval_checkempty(i)) {
666 snd_interval_none(i);
667 return -EINVAL;
668 }
669 return changed;
670}
671
672EXPORT_SYMBOL(snd_interval_refine);
673
674static int snd_interval_refine_first(struct snd_interval *i)
675{
676 if (snd_BUG_ON(snd_interval_empty(i)))
677 return -EINVAL;
678 if (snd_interval_single(i))
679 return 0;
680 i->max = i->min;
681 i->openmax = i->openmin;
682 if (i->openmax)
683 i->max++;
684 return 1;
685}
686
687static int snd_interval_refine_last(struct snd_interval *i)
688{
689 if (snd_BUG_ON(snd_interval_empty(i)))
690 return -EINVAL;
691 if (snd_interval_single(i))
692 return 0;
693 i->min = i->max;
694 i->openmin = i->openmax;
695 if (i->openmin)
696 i->min--;
697 return 1;
698}
699
700void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
701{
702 if (a->empty || b->empty) {
703 snd_interval_none(c);
704 return;
705 }
706 c->empty = 0;
707 c->min = mul(a->min, b->min);
708 c->openmin = (a->openmin || b->openmin);
709 c->max = mul(a->max, b->max);
710 c->openmax = (a->openmax || b->openmax);
711 c->integer = (a->integer && b->integer);
712}
713
714/**
715 * snd_interval_div - refine the interval value with division
716 * @a: dividend
717 * @b: divisor
718 * @c: quotient
719 *
720 * c = a / b
721 *
722 * Returns non-zero if the value is changed, zero if not changed.
723 */
724void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
725{
726 unsigned int r;
727 if (a->empty || b->empty) {
728 snd_interval_none(c);
729 return;
730 }
731 c->empty = 0;
732 c->min = div32(a->min, b->max, &r);
733 c->openmin = (r || a->openmin || b->openmax);
734 if (b->min > 0) {
735 c->max = div32(a->max, b->min, &r);
736 if (r) {
737 c->max++;
738 c->openmax = 1;
739 } else
740 c->openmax = (a->openmax || b->openmin);
741 } else {
742 c->max = UINT_MAX;
743 c->openmax = 0;
744 }
745 c->integer = 0;
746}
747
748/**
749 * snd_interval_muldivk - refine the interval value
750 * @a: dividend 1
751 * @b: dividend 2
752 * @k: divisor (as integer)
753 * @c: result
754 *
755 * c = a * b / k
756 *
757 * Returns non-zero if the value is changed, zero if not changed.
758 */
759void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
760 unsigned int k, struct snd_interval *c)
761{
762 unsigned int r;
763 if (a->empty || b->empty) {
764 snd_interval_none(c);
765 return;
766 }
767 c->empty = 0;
768 c->min = muldiv32(a->min, b->min, k, &r);
769 c->openmin = (r || a->openmin || b->openmin);
770 c->max = muldiv32(a->max, b->max, k, &r);
771 if (r) {
772 c->max++;
773 c->openmax = 1;
774 } else
775 c->openmax = (a->openmax || b->openmax);
776 c->integer = 0;
777}
778
779/**
780 * snd_interval_mulkdiv - refine the interval value
781 * @a: dividend 1
782 * @k: dividend 2 (as integer)
783 * @b: divisor
784 * @c: result
785 *
786 * c = a * k / b
787 *
788 * Returns non-zero if the value is changed, zero if not changed.
789 */
790void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
791 const struct snd_interval *b, struct snd_interval *c)
792{
793 unsigned int r;
794 if (a->empty || b->empty) {
795 snd_interval_none(c);
796 return;
797 }
798 c->empty = 0;
799 c->min = muldiv32(a->min, k, b->max, &r);
800 c->openmin = (r || a->openmin || b->openmax);
801 if (b->min > 0) {
802 c->max = muldiv32(a->max, k, b->min, &r);
803 if (r) {
804 c->max++;
805 c->openmax = 1;
806 } else
807 c->openmax = (a->openmax || b->openmin);
808 } else {
809 c->max = UINT_MAX;
810 c->openmax = 0;
811 }
812 c->integer = 0;
813}
814
815/* ---- */
816
817
818/**
819 * snd_interval_ratnum - refine the interval value
820 * @i: interval to refine
821 * @rats_count: number of ratnum_t
822 * @rats: ratnum_t array
823 * @nump: pointer to store the resultant numerator
824 * @denp: pointer to store the resultant denominator
825 *
826 * Returns non-zero if the value is changed, zero if not changed.
827 */
828int snd_interval_ratnum(struct snd_interval *i,
829 unsigned int rats_count, struct snd_ratnum *rats,
830 unsigned int *nump, unsigned int *denp)
831{
832 unsigned int best_num, best_den;
833 int best_diff;
834 unsigned int k;
835 struct snd_interval t;
836 int err;
837 unsigned int result_num, result_den;
838 int result_diff;
839
840 best_num = best_den = best_diff = 0;
841 for (k = 0; k < rats_count; ++k) {
842 unsigned int num = rats[k].num;
843 unsigned int den;
844 unsigned int q = i->min;
845 int diff;
846 if (q == 0)
847 q = 1;
848 den = div_up(num, q);
849 if (den < rats[k].den_min)
850 continue;
851 if (den > rats[k].den_max)
852 den = rats[k].den_max;
853 else {
854 unsigned int r;
855 r = (den - rats[k].den_min) % rats[k].den_step;
856 if (r != 0)
857 den -= r;
858 }
859 diff = num - q * den;
860 if (diff < 0)
861 diff = -diff;
862 if (best_num == 0 ||
863 diff * best_den < best_diff * den) {
864 best_diff = diff;
865 best_den = den;
866 best_num = num;
867 }
868 }
869 if (best_den == 0) {
870 i->empty = 1;
871 return -EINVAL;
872 }
873 t.min = div_down(best_num, best_den);
874 t.openmin = !!(best_num % best_den);
875
876 result_num = best_num;
877 result_diff = best_diff;
878 result_den = best_den;
879 best_num = best_den = best_diff = 0;
880 for (k = 0; k < rats_count; ++k) {
881 unsigned int num = rats[k].num;
882 unsigned int den;
883 unsigned int q = i->max;
884 int diff;
885 if (q == 0) {
886 i->empty = 1;
887 return -EINVAL;
888 }
889 den = div_down(num, q);
890 if (den > rats[k].den_max)
891 continue;
892 if (den < rats[k].den_min)
893 den = rats[k].den_min;
894 else {
895 unsigned int r;
896 r = (den - rats[k].den_min) % rats[k].den_step;
897 if (r != 0)
898 den += rats[k].den_step - r;
899 }
900 diff = q * den - num;
901 if (diff < 0)
902 diff = -diff;
903 if (best_num == 0 ||
904 diff * best_den < best_diff * den) {
905 best_diff = diff;
906 best_den = den;
907 best_num = num;
908 }
909 }
910 if (best_den == 0) {
911 i->empty = 1;
912 return -EINVAL;
913 }
914 t.max = div_up(best_num, best_den);
915 t.openmax = !!(best_num % best_den);
916 t.integer = 0;
917 err = snd_interval_refine(i, &t);
918 if (err < 0)
919 return err;
920
921 if (snd_interval_single(i)) {
922 if (best_diff * result_den < result_diff * best_den) {
923 result_num = best_num;
924 result_den = best_den;
925 }
926 if (nump)
927 *nump = result_num;
928 if (denp)
929 *denp = result_den;
930 }
931 return err;
932}
933
934EXPORT_SYMBOL(snd_interval_ratnum);
935
936/**
937 * snd_interval_ratden - refine the interval value
938 * @i: interval to refine
939 * @rats_count: number of struct ratden
940 * @rats: struct ratden array
941 * @nump: pointer to store the resultant numerator
942 * @denp: pointer to store the resultant denominator
943 *
944 * Returns non-zero if the value is changed, zero if not changed.
945 */
946static int snd_interval_ratden(struct snd_interval *i,
947 unsigned int rats_count, struct snd_ratden *rats,
948 unsigned int *nump, unsigned int *denp)
949{
950 unsigned int best_num, best_diff, best_den;
951 unsigned int k;
952 struct snd_interval t;
953 int err;
954
955 best_num = best_den = best_diff = 0;
956 for (k = 0; k < rats_count; ++k) {
957 unsigned int num;
958 unsigned int den = rats[k].den;
959 unsigned int q = i->min;
960 int diff;
961 num = mul(q, den);
962 if (num > rats[k].num_max)
963 continue;
964 if (num < rats[k].num_min)
965 num = rats[k].num_max;
966 else {
967 unsigned int r;
968 r = (num - rats[k].num_min) % rats[k].num_step;
969 if (r != 0)
970 num += rats[k].num_step - r;
971 }
972 diff = num - q * den;
973 if (best_num == 0 ||
974 diff * best_den < best_diff * den) {
975 best_diff = diff;
976 best_den = den;
977 best_num = num;
978 }
979 }
980 if (best_den == 0) {
981 i->empty = 1;
982 return -EINVAL;
983 }
984 t.min = div_down(best_num, best_den);
985 t.openmin = !!(best_num % best_den);
986
987 best_num = best_den = best_diff = 0;
988 for (k = 0; k < rats_count; ++k) {
989 unsigned int num;
990 unsigned int den = rats[k].den;
991 unsigned int q = i->max;
992 int diff;
993 num = mul(q, den);
994 if (num < rats[k].num_min)
995 continue;
996 if (num > rats[k].num_max)
997 num = rats[k].num_max;
998 else {
999 unsigned int r;
1000 r = (num - rats[k].num_min) % rats[k].num_step;
1001 if (r != 0)
1002 num -= r;
1003 }
1004 diff = q * den - num;
1005 if (best_num == 0 ||
1006 diff * best_den < best_diff * den) {
1007 best_diff = diff;
1008 best_den = den;
1009 best_num = num;
1010 }
1011 }
1012 if (best_den == 0) {
1013 i->empty = 1;
1014 return -EINVAL;
1015 }
1016 t.max = div_up(best_num, best_den);
1017 t.openmax = !!(best_num % best_den);
1018 t.integer = 0;
1019 err = snd_interval_refine(i, &t);
1020 if (err < 0)
1021 return err;
1022
1023 if (snd_interval_single(i)) {
1024 if (nump)
1025 *nump = best_num;
1026 if (denp)
1027 *denp = best_den;
1028 }
1029 return err;
1030}
1031
1032/**
1033 * snd_interval_list - refine the interval value from the list
1034 * @i: the interval value to refine
1035 * @count: the number of elements in the list
1036 * @list: the value list
1037 * @mask: the bit-mask to evaluate
1038 *
1039 * Refines the interval value from the list.
1040 * When mask is non-zero, only the elements corresponding to bit 1 are
1041 * evaluated.
1042 *
1043 * Returns non-zero if the value is changed, zero if not changed.
1044 */
1045int snd_interval_list(struct snd_interval *i, unsigned int count,
1046 const unsigned int *list, unsigned int mask)
1047{
1048 unsigned int k;
1049 struct snd_interval list_range;
1050
1051 if (!count) {
1052 i->empty = 1;
1053 return -EINVAL;
1054 }
1055 snd_interval_any(&list_range);
1056 list_range.min = UINT_MAX;
1057 list_range.max = 0;
1058 for (k = 0; k < count; k++) {
1059 if (mask && !(mask & (1 << k)))
1060 continue;
1061 if (!snd_interval_test(i, list[k]))
1062 continue;
1063 list_range.min = min(list_range.min, list[k]);
1064 list_range.max = max(list_range.max, list[k]);
1065 }
1066 return snd_interval_refine(i, &list_range);
1067}
1068
1069EXPORT_SYMBOL(snd_interval_list);
1070
1071static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1072{
1073 unsigned int n;
1074 int changed = 0;
1075 n = (i->min - min) % step;
1076 if (n != 0 || i->openmin) {
1077 i->min += step - n;
1078 changed = 1;
1079 }
1080 n = (i->max - min) % step;
1081 if (n != 0 || i->openmax) {
1082 i->max -= n;
1083 changed = 1;
1084 }
1085 if (snd_interval_checkempty(i)) {
1086 i->empty = 1;
1087 return -EINVAL;
1088 }
1089 return changed;
1090}
1091
1092/* Info constraints helpers */
1093
1094/**
1095 * snd_pcm_hw_rule_add - add the hw-constraint rule
1096 * @runtime: the pcm runtime instance
1097 * @cond: condition bits
1098 * @var: the variable to evaluate
1099 * @func: the evaluation function
1100 * @private: the private data pointer passed to function
1101 * @dep: the dependent variables
1102 *
1103 * Returns zero if successful, or a negative error code on failure.
1104 */
1105int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1106 int var,
1107 snd_pcm_hw_rule_func_t func, void *private,
1108 int dep, ...)
1109{
1110 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1111 struct snd_pcm_hw_rule *c;
1112 unsigned int k;
1113 va_list args;
1114 va_start(args, dep);
1115 if (constrs->rules_num >= constrs->rules_all) {
1116 struct snd_pcm_hw_rule *new;
1117 unsigned int new_rules = constrs->rules_all + 16;
1118 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1119 if (!new) {
1120 va_end(args);
1121 return -ENOMEM;
1122 }
1123 if (constrs->rules) {
1124 memcpy(new, constrs->rules,
1125 constrs->rules_num * sizeof(*c));
1126 kfree(constrs->rules);
1127 }
1128 constrs->rules = new;
1129 constrs->rules_all = new_rules;
1130 }
1131 c = &constrs->rules[constrs->rules_num];
1132 c->cond = cond;
1133 c->func = func;
1134 c->var = var;
1135 c->private = private;
1136 k = 0;
1137 while (1) {
1138 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139 va_end(args);
1140 return -EINVAL;
1141 }
1142 c->deps[k++] = dep;
1143 if (dep < 0)
1144 break;
1145 dep = va_arg(args, int);
1146 }
1147 constrs->rules_num++;
1148 va_end(args);
1149 return 0;
1150}
1151
1152EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1153
1154/**
1155 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1156 * @runtime: PCM runtime instance
1157 * @var: hw_params variable to apply the mask
1158 * @mask: the bitmap mask
1159 *
1160 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 u_int32_t mask)
1164{
1165 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 struct snd_mask *maskp = constrs_mask(constrs, var);
1167 *maskp->bits &= mask;
1168 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 if (*maskp->bits == 0)
1170 return -EINVAL;
1171 return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 */
1182int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1183 u_int64_t mask)
1184{
1185 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1186 struct snd_mask *maskp = constrs_mask(constrs, var);
1187 maskp->bits[0] &= (u_int32_t)mask;
1188 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1189 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1190 if (! maskp->bits[0] && ! maskp->bits[1])
1191 return -EINVAL;
1192 return 0;
1193}
1194
1195/**
1196 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the integer constraint
1199 *
1200 * Apply the constraint of integer to an interval parameter.
1201 */
1202int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1203{
1204 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205 return snd_interval_setinteger(constrs_interval(constrs, var));
1206}
1207
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1209
1210/**
1211 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the range
1214 * @min: the minimal value
1215 * @max: the maximal value
1216 *
1217 * Apply the min/max range constraint to an interval parameter.
1218 */
1219int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220 unsigned int min, unsigned int max)
1221{
1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223 struct snd_interval t;
1224 t.min = min;
1225 t.max = max;
1226 t.openmin = t.openmax = 0;
1227 t.integer = 0;
1228 return snd_interval_refine(constrs_interval(constrs, var), &t);
1229}
1230
1231EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1232
1233static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1234 struct snd_pcm_hw_rule *rule)
1235{
1236 struct snd_pcm_hw_constraint_list *list = rule->private;
1237 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1238}
1239
1240
1241/**
1242 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1243 * @runtime: PCM runtime instance
1244 * @cond: condition bits
1245 * @var: hw_params variable to apply the list constraint
1246 * @l: list
1247 *
1248 * Apply the list of constraints to an interval parameter.
1249 */
1250int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1251 unsigned int cond,
1252 snd_pcm_hw_param_t var,
1253 struct snd_pcm_hw_constraint_list *l)
1254{
1255 return snd_pcm_hw_rule_add(runtime, cond, var,
1256 snd_pcm_hw_rule_list, l,
1257 var, -1);
1258}
1259
1260EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1261
1262static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1263 struct snd_pcm_hw_rule *rule)
1264{
1265 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1266 unsigned int num = 0, den = 0;
1267 int err;
1268 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1269 r->nrats, r->rats, &num, &den);
1270 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1271 params->rate_num = num;
1272 params->rate_den = den;
1273 }
1274 return err;
1275}
1276
1277/**
1278 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1279 * @runtime: PCM runtime instance
1280 * @cond: condition bits
1281 * @var: hw_params variable to apply the ratnums constraint
1282 * @r: struct snd_ratnums constriants
1283 */
1284int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1285 unsigned int cond,
1286 snd_pcm_hw_param_t var,
1287 struct snd_pcm_hw_constraint_ratnums *r)
1288{
1289 return snd_pcm_hw_rule_add(runtime, cond, var,
1290 snd_pcm_hw_rule_ratnums, r,
1291 var, -1);
1292}
1293
1294EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1295
1296static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1297 struct snd_pcm_hw_rule *rule)
1298{
1299 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1300 unsigned int num = 0, den = 0;
1301 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1302 r->nrats, r->rats, &num, &den);
1303 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1304 params->rate_num = num;
1305 params->rate_den = den;
1306 }
1307 return err;
1308}
1309
1310/**
1311 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1312 * @runtime: PCM runtime instance
1313 * @cond: condition bits
1314 * @var: hw_params variable to apply the ratdens constraint
1315 * @r: struct snd_ratdens constriants
1316 */
1317int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1318 unsigned int cond,
1319 snd_pcm_hw_param_t var,
1320 struct snd_pcm_hw_constraint_ratdens *r)
1321{
1322 return snd_pcm_hw_rule_add(runtime, cond, var,
1323 snd_pcm_hw_rule_ratdens, r,
1324 var, -1);
1325}
1326
1327EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1328
1329static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1330 struct snd_pcm_hw_rule *rule)
1331{
1332 unsigned int l = (unsigned long) rule->private;
1333 int width = l & 0xffff;
1334 unsigned int msbits = l >> 16;
1335 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1336 if (snd_interval_single(i) && snd_interval_value(i) == width)
1337 params->msbits = msbits;
1338 return 0;
1339}
1340
1341/**
1342 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1343 * @runtime: PCM runtime instance
1344 * @cond: condition bits
1345 * @width: sample bits width
1346 * @msbits: msbits width
1347 */
1348int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1349 unsigned int cond,
1350 unsigned int width,
1351 unsigned int msbits)
1352{
1353 unsigned long l = (msbits << 16) | width;
1354 return snd_pcm_hw_rule_add(runtime, cond, -1,
1355 snd_pcm_hw_rule_msbits,
1356 (void*) l,
1357 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1358}
1359
1360EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1361
1362static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1363 struct snd_pcm_hw_rule *rule)
1364{
1365 unsigned long step = (unsigned long) rule->private;
1366 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1367}
1368
1369/**
1370 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1371 * @runtime: PCM runtime instance
1372 * @cond: condition bits
1373 * @var: hw_params variable to apply the step constraint
1374 * @step: step size
1375 */
1376int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1377 unsigned int cond,
1378 snd_pcm_hw_param_t var,
1379 unsigned long step)
1380{
1381 return snd_pcm_hw_rule_add(runtime, cond, var,
1382 snd_pcm_hw_rule_step, (void *) step,
1383 var, -1);
1384}
1385
1386EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1387
1388static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1389{
1390 static unsigned int pow2_sizes[] = {
1391 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1392 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1393 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1394 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1395 };
1396 return snd_interval_list(hw_param_interval(params, rule->var),
1397 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1398}
1399
1400/**
1401 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @var: hw_params variable to apply the power-of-2 constraint
1405 */
1406int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1407 unsigned int cond,
1408 snd_pcm_hw_param_t var)
1409{
1410 return snd_pcm_hw_rule_add(runtime, cond, var,
1411 snd_pcm_hw_rule_pow2, NULL,
1412 var, -1);
1413}
1414
1415EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1416
1417static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1418 struct snd_pcm_hw_rule *rule)
1419{
1420 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1421 struct snd_interval *rate;
1422
1423 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1424 return snd_interval_list(rate, 1, &base_rate, 0);
1425}
1426
1427/**
1428 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1429 * @runtime: PCM runtime instance
1430 * @base_rate: the rate at which the hardware does not resample
1431 */
1432int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1433 unsigned int base_rate)
1434{
1435 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1436 SNDRV_PCM_HW_PARAM_RATE,
1437 snd_pcm_hw_rule_noresample_func,
1438 (void *)(uintptr_t)base_rate,
1439 SNDRV_PCM_HW_PARAM_RATE, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1442
1443static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1444 snd_pcm_hw_param_t var)
1445{
1446 if (hw_is_mask(var)) {
1447 snd_mask_any(hw_param_mask(params, var));
1448 params->cmask |= 1 << var;
1449 params->rmask |= 1 << var;
1450 return;
1451 }
1452 if (hw_is_interval(var)) {
1453 snd_interval_any(hw_param_interval(params, var));
1454 params->cmask |= 1 << var;
1455 params->rmask |= 1 << var;
1456 return;
1457 }
1458 snd_BUG();
1459}
1460
1461void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1462{
1463 unsigned int k;
1464 memset(params, 0, sizeof(*params));
1465 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1466 _snd_pcm_hw_param_any(params, k);
1467 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1468 _snd_pcm_hw_param_any(params, k);
1469 params->info = ~0U;
1470}
1471
1472EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1473
1474/**
1475 * snd_pcm_hw_param_value - return @params field @var value
1476 * @params: the hw_params instance
1477 * @var: parameter to retrieve
1478 * @dir: pointer to the direction (-1,0,1) or %NULL
1479 *
1480 * Return the value for field @var if it's fixed in configuration space
1481 * defined by @params. Return -%EINVAL otherwise.
1482 */
1483int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1484 snd_pcm_hw_param_t var, int *dir)
1485{
1486 if (hw_is_mask(var)) {
1487 const struct snd_mask *mask = hw_param_mask_c(params, var);
1488 if (!snd_mask_single(mask))
1489 return -EINVAL;
1490 if (dir)
1491 *dir = 0;
1492 return snd_mask_value(mask);
1493 }
1494 if (hw_is_interval(var)) {
1495 const struct snd_interval *i = hw_param_interval_c(params, var);
1496 if (!snd_interval_single(i))
1497 return -EINVAL;
1498 if (dir)
1499 *dir = i->openmin;
1500 return snd_interval_value(i);
1501 }
1502 return -EINVAL;
1503}
1504
1505EXPORT_SYMBOL(snd_pcm_hw_param_value);
1506
1507void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1508 snd_pcm_hw_param_t var)
1509{
1510 if (hw_is_mask(var)) {
1511 snd_mask_none(hw_param_mask(params, var));
1512 params->cmask |= 1 << var;
1513 params->rmask |= 1 << var;
1514 } else if (hw_is_interval(var)) {
1515 snd_interval_none(hw_param_interval(params, var));
1516 params->cmask |= 1 << var;
1517 params->rmask |= 1 << var;
1518 } else {
1519 snd_BUG();
1520 }
1521}
1522
1523EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1524
1525static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1526 snd_pcm_hw_param_t var)
1527{
1528 int changed;
1529 if (hw_is_mask(var))
1530 changed = snd_mask_refine_first(hw_param_mask(params, var));
1531 else if (hw_is_interval(var))
1532 changed = snd_interval_refine_first(hw_param_interval(params, var));
1533 else
1534 return -EINVAL;
1535 if (changed) {
1536 params->cmask |= 1 << var;
1537 params->rmask |= 1 << var;
1538 }
1539 return changed;
1540}
1541
1542
1543/**
1544 * snd_pcm_hw_param_first - refine config space and return minimum value
1545 * @pcm: PCM instance
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Inside configuration space defined by @params remove from @var all
1551 * values > minimum. Reduce configuration space accordingly.
1552 * Return the minimum.
1553 */
1554int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1555 struct snd_pcm_hw_params *params,
1556 snd_pcm_hw_param_t var, int *dir)
1557{
1558 int changed = _snd_pcm_hw_param_first(params, var);
1559 if (changed < 0)
1560 return changed;
1561 if (params->rmask) {
1562 int err = snd_pcm_hw_refine(pcm, params);
1563 if (snd_BUG_ON(err < 0))
1564 return err;
1565 }
1566 return snd_pcm_hw_param_value(params, var, dir);
1567}
1568
1569EXPORT_SYMBOL(snd_pcm_hw_param_first);
1570
1571static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1572 snd_pcm_hw_param_t var)
1573{
1574 int changed;
1575 if (hw_is_mask(var))
1576 changed = snd_mask_refine_last(hw_param_mask(params, var));
1577 else if (hw_is_interval(var))
1578 changed = snd_interval_refine_last(hw_param_interval(params, var));
1579 else
1580 return -EINVAL;
1581 if (changed) {
1582 params->cmask |= 1 << var;
1583 params->rmask |= 1 << var;
1584 }
1585 return changed;
1586}
1587
1588
1589/**
1590 * snd_pcm_hw_param_last - refine config space and return maximum value
1591 * @pcm: PCM instance
1592 * @params: the hw_params instance
1593 * @var: parameter to retrieve
1594 * @dir: pointer to the direction (-1,0,1) or %NULL
1595 *
1596 * Inside configuration space defined by @params remove from @var all
1597 * values < maximum. Reduce configuration space accordingly.
1598 * Return the maximum.
1599 */
1600int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1601 struct snd_pcm_hw_params *params,
1602 snd_pcm_hw_param_t var, int *dir)
1603{
1604 int changed = _snd_pcm_hw_param_last(params, var);
1605 if (changed < 0)
1606 return changed;
1607 if (params->rmask) {
1608 int err = snd_pcm_hw_refine(pcm, params);
1609 if (snd_BUG_ON(err < 0))
1610 return err;
1611 }
1612 return snd_pcm_hw_param_value(params, var, dir);
1613}
1614
1615EXPORT_SYMBOL(snd_pcm_hw_param_last);
1616
1617/**
1618 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1619 * @pcm: PCM instance
1620 * @params: the hw_params instance
1621 *
1622 * Choose one configuration from configuration space defined by @params.
1623 * The configuration chosen is that obtained fixing in this order:
1624 * first access, first format, first subformat, min channels,
1625 * min rate, min period time, max buffer size, min tick time
1626 */
1627int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1628 struct snd_pcm_hw_params *params)
1629{
1630 static int vars[] = {
1631 SNDRV_PCM_HW_PARAM_ACCESS,
1632 SNDRV_PCM_HW_PARAM_FORMAT,
1633 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1634 SNDRV_PCM_HW_PARAM_CHANNELS,
1635 SNDRV_PCM_HW_PARAM_RATE,
1636 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1637 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1638 SNDRV_PCM_HW_PARAM_TICK_TIME,
1639 -1
1640 };
1641 int err, *v;
1642
1643 for (v = vars; *v != -1; v++) {
1644 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1645 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1646 else
1647 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1648 if (snd_BUG_ON(err < 0))
1649 return err;
1650 }
1651 return 0;
1652}
1653
1654static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1655 void *arg)
1656{
1657 struct snd_pcm_runtime *runtime = substream->runtime;
1658 unsigned long flags;
1659 snd_pcm_stream_lock_irqsave(substream, flags);
1660 if (snd_pcm_running(substream) &&
1661 snd_pcm_update_hw_ptr(substream) >= 0)
1662 runtime->status->hw_ptr %= runtime->buffer_size;
1663 else
1664 runtime->status->hw_ptr = 0;
1665 snd_pcm_stream_unlock_irqrestore(substream, flags);
1666 return 0;
1667}
1668
1669static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1670 void *arg)
1671{
1672 struct snd_pcm_channel_info *info = arg;
1673 struct snd_pcm_runtime *runtime = substream->runtime;
1674 int width;
1675 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1676 info->offset = -1;
1677 return 0;
1678 }
1679 width = snd_pcm_format_physical_width(runtime->format);
1680 if (width < 0)
1681 return width;
1682 info->offset = 0;
1683 switch (runtime->access) {
1684 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1685 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1686 info->first = info->channel * width;
1687 info->step = runtime->channels * width;
1688 break;
1689 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1690 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1691 {
1692 size_t size = runtime->dma_bytes / runtime->channels;
1693 info->first = info->channel * size * 8;
1694 info->step = width;
1695 break;
1696 }
1697 default:
1698 snd_BUG();
1699 break;
1700 }
1701 return 0;
1702}
1703
1704static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1705 void *arg)
1706{
1707 struct snd_pcm_hw_params *params = arg;
1708 snd_pcm_format_t format;
1709 int channels, width;
1710
1711 params->fifo_size = substream->runtime->hw.fifo_size;
1712 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1713 format = params_format(params);
1714 channels = params_channels(params);
1715 width = snd_pcm_format_physical_width(format);
1716 params->fifo_size /= width * channels;
1717 }
1718 return 0;
1719}
1720
1721/**
1722 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1723 * @substream: the pcm substream instance
1724 * @cmd: ioctl command
1725 * @arg: ioctl argument
1726 *
1727 * Processes the generic ioctl commands for PCM.
1728 * Can be passed as the ioctl callback for PCM ops.
1729 *
1730 * Returns zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1733 unsigned int cmd, void *arg)
1734{
1735 switch (cmd) {
1736 case SNDRV_PCM_IOCTL1_INFO:
1737 return 0;
1738 case SNDRV_PCM_IOCTL1_RESET:
1739 return snd_pcm_lib_ioctl_reset(substream, arg);
1740 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1741 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1742 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1743 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1744 }
1745 return -ENXIO;
1746}
1747
1748EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1749
1750/**
1751 * snd_pcm_period_elapsed - update the pcm status for the next period
1752 * @substream: the pcm substream instance
1753 *
1754 * This function is called from the interrupt handler when the
1755 * PCM has processed the period size. It will update the current
1756 * pointer, wake up sleepers, etc.
1757 *
1758 * Even if more than one periods have elapsed since the last call, you
1759 * have to call this only once.
1760 */
1761void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1762{
1763 struct snd_pcm_runtime *runtime;
1764 unsigned long flags;
1765
1766 if (PCM_RUNTIME_CHECK(substream))
1767 return;
1768 runtime = substream->runtime;
1769
1770 if (runtime->transfer_ack_begin)
1771 runtime->transfer_ack_begin(substream);
1772
1773 snd_pcm_stream_lock_irqsave(substream, flags);
1774 if (!snd_pcm_running(substream) ||
1775 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1776 goto _end;
1777
1778 if (substream->timer_running)
1779 snd_timer_interrupt(substream->timer, 1);
1780 _end:
1781 snd_pcm_stream_unlock_irqrestore(substream, flags);
1782 if (runtime->transfer_ack_end)
1783 runtime->transfer_ack_end(substream);
1784 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1785}
1786
1787EXPORT_SYMBOL(snd_pcm_period_elapsed);
1788
1789/*
1790 * Wait until avail_min data becomes available
1791 * Returns a negative error code if any error occurs during operation.
1792 * The available space is stored on availp. When err = 0 and avail = 0
1793 * on the capture stream, it indicates the stream is in DRAINING state.
1794 */
1795static int wait_for_avail(struct snd_pcm_substream *substream,
1796 snd_pcm_uframes_t *availp)
1797{
1798 struct snd_pcm_runtime *runtime = substream->runtime;
1799 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1800 wait_queue_t wait;
1801 int err = 0;
1802 snd_pcm_uframes_t avail = 0;
1803 long wait_time, tout;
1804
1805 init_waitqueue_entry(&wait, current);
1806 set_current_state(TASK_INTERRUPTIBLE);
1807 add_wait_queue(&runtime->tsleep, &wait);
1808
1809 if (runtime->no_period_wakeup)
1810 wait_time = MAX_SCHEDULE_TIMEOUT;
1811 else {
1812 wait_time = 10;
1813 if (runtime->rate) {
1814 long t = runtime->period_size * 2 / runtime->rate;
1815 wait_time = max(t, wait_time);
1816 }
1817 wait_time = msecs_to_jiffies(wait_time * 1000);
1818 }
1819
1820 for (;;) {
1821 if (signal_pending(current)) {
1822 err = -ERESTARTSYS;
1823 break;
1824 }
1825
1826 /*
1827 * We need to check if space became available already
1828 * (and thus the wakeup happened already) first to close
1829 * the race of space already having become available.
1830 * This check must happen after been added to the waitqueue
1831 * and having current state be INTERRUPTIBLE.
1832 */
1833 if (is_playback)
1834 avail = snd_pcm_playback_avail(runtime);
1835 else
1836 avail = snd_pcm_capture_avail(runtime);
1837 if (avail >= runtime->twake)
1838 break;
1839 snd_pcm_stream_unlock_irq(substream);
1840
1841 tout = schedule_timeout(wait_time);
1842
1843 snd_pcm_stream_lock_irq(substream);
1844 set_current_state(TASK_INTERRUPTIBLE);
1845 switch (runtime->status->state) {
1846 case SNDRV_PCM_STATE_SUSPENDED:
1847 err = -ESTRPIPE;
1848 goto _endloop;
1849 case SNDRV_PCM_STATE_XRUN:
1850 err = -EPIPE;
1851 goto _endloop;
1852 case SNDRV_PCM_STATE_DRAINING:
1853 if (is_playback)
1854 err = -EPIPE;
1855 else
1856 avail = 0; /* indicate draining */
1857 goto _endloop;
1858 case SNDRV_PCM_STATE_OPEN:
1859 case SNDRV_PCM_STATE_SETUP:
1860 case SNDRV_PCM_STATE_DISCONNECTED:
1861 err = -EBADFD;
1862 goto _endloop;
1863 }
1864 if (!tout) {
1865 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1866 is_playback ? "playback" : "capture");
1867 err = -EIO;
1868 break;
1869 }
1870 }
1871 _endloop:
1872 set_current_state(TASK_RUNNING);
1873 remove_wait_queue(&runtime->tsleep, &wait);
1874 *availp = avail;
1875 return err;
1876}
1877
1878static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1879 unsigned int hwoff,
1880 unsigned long data, unsigned int off,
1881 snd_pcm_uframes_t frames)
1882{
1883 struct snd_pcm_runtime *runtime = substream->runtime;
1884 int err;
1885 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1886 if (substream->ops->copy) {
1887 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1888 return err;
1889 } else {
1890 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1891 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1892 return -EFAULT;
1893 }
1894 return 0;
1895}
1896
1897typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1898 unsigned long data, unsigned int off,
1899 snd_pcm_uframes_t size);
1900
1901static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1902 unsigned long data,
1903 snd_pcm_uframes_t size,
1904 int nonblock,
1905 transfer_f transfer)
1906{
1907 struct snd_pcm_runtime *runtime = substream->runtime;
1908 snd_pcm_uframes_t xfer = 0;
1909 snd_pcm_uframes_t offset = 0;
1910 snd_pcm_uframes_t avail;
1911 int err = 0;
1912
1913 if (size == 0)
1914 return 0;
1915
1916 snd_pcm_stream_lock_irq(substream);
1917 switch (runtime->status->state) {
1918 case SNDRV_PCM_STATE_PREPARED:
1919 case SNDRV_PCM_STATE_RUNNING:
1920 case SNDRV_PCM_STATE_PAUSED:
1921 break;
1922 case SNDRV_PCM_STATE_XRUN:
1923 err = -EPIPE;
1924 goto _end_unlock;
1925 case SNDRV_PCM_STATE_SUSPENDED:
1926 err = -ESTRPIPE;
1927 goto _end_unlock;
1928 default:
1929 err = -EBADFD;
1930 goto _end_unlock;
1931 }
1932
1933 runtime->twake = runtime->control->avail_min ? : 1;
1934 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935 snd_pcm_update_hw_ptr(substream);
1936 avail = snd_pcm_playback_avail(runtime);
1937 while (size > 0) {
1938 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1939 snd_pcm_uframes_t cont;
1940 if (!avail) {
1941 if (nonblock) {
1942 err = -EAGAIN;
1943 goto _end_unlock;
1944 }
1945 runtime->twake = min_t(snd_pcm_uframes_t, size,
1946 runtime->control->avail_min ? : 1);
1947 err = wait_for_avail(substream, &avail);
1948 if (err < 0)
1949 goto _end_unlock;
1950 }
1951 frames = size > avail ? avail : size;
1952 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1953 if (frames > cont)
1954 frames = cont;
1955 if (snd_BUG_ON(!frames)) {
1956 runtime->twake = 0;
1957 snd_pcm_stream_unlock_irq(substream);
1958 return -EINVAL;
1959 }
1960 appl_ptr = runtime->control->appl_ptr;
1961 appl_ofs = appl_ptr % runtime->buffer_size;
1962 snd_pcm_stream_unlock_irq(substream);
1963 err = transfer(substream, appl_ofs, data, offset, frames);
1964 snd_pcm_stream_lock_irq(substream);
1965 if (err < 0)
1966 goto _end_unlock;
1967 switch (runtime->status->state) {
1968 case SNDRV_PCM_STATE_XRUN:
1969 err = -EPIPE;
1970 goto _end_unlock;
1971 case SNDRV_PCM_STATE_SUSPENDED:
1972 err = -ESTRPIPE;
1973 goto _end_unlock;
1974 default:
1975 break;
1976 }
1977 appl_ptr += frames;
1978 if (appl_ptr >= runtime->boundary)
1979 appl_ptr -= runtime->boundary;
1980 runtime->control->appl_ptr = appl_ptr;
1981 if (substream->ops->ack)
1982 substream->ops->ack(substream);
1983
1984 offset += frames;
1985 size -= frames;
1986 xfer += frames;
1987 avail -= frames;
1988 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1989 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1990 err = snd_pcm_start(substream);
1991 if (err < 0)
1992 goto _end_unlock;
1993 }
1994 }
1995 _end_unlock:
1996 runtime->twake = 0;
1997 if (xfer > 0 && err >= 0)
1998 snd_pcm_update_state(substream, runtime);
1999 snd_pcm_stream_unlock_irq(substream);
2000 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2001}
2002
2003/* sanity-check for read/write methods */
2004static int pcm_sanity_check(struct snd_pcm_substream *substream)
2005{
2006 struct snd_pcm_runtime *runtime;
2007 if (PCM_RUNTIME_CHECK(substream))
2008 return -ENXIO;
2009 runtime = substream->runtime;
2010 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2011 return -EINVAL;
2012 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2013 return -EBADFD;
2014 return 0;
2015}
2016
2017snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2018{
2019 struct snd_pcm_runtime *runtime;
2020 int nonblock;
2021 int err;
2022
2023 err = pcm_sanity_check(substream);
2024 if (err < 0)
2025 return err;
2026 runtime = substream->runtime;
2027 nonblock = !!(substream->f_flags & O_NONBLOCK);
2028
2029 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2030 runtime->channels > 1)
2031 return -EINVAL;
2032 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2033 snd_pcm_lib_write_transfer);
2034}
2035
2036EXPORT_SYMBOL(snd_pcm_lib_write);
2037
2038static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2039 unsigned int hwoff,
2040 unsigned long data, unsigned int off,
2041 snd_pcm_uframes_t frames)
2042{
2043 struct snd_pcm_runtime *runtime = substream->runtime;
2044 int err;
2045 void __user **bufs = (void __user **)data;
2046 int channels = runtime->channels;
2047 int c;
2048 if (substream->ops->copy) {
2049 if (snd_BUG_ON(!substream->ops->silence))
2050 return -EINVAL;
2051 for (c = 0; c < channels; ++c, ++bufs) {
2052 if (*bufs == NULL) {
2053 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2054 return err;
2055 } else {
2056 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2058 return err;
2059 }
2060 }
2061 } else {
2062 /* default transfer behaviour */
2063 size_t dma_csize = runtime->dma_bytes / channels;
2064 for (c = 0; c < channels; ++c, ++bufs) {
2065 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2066 if (*bufs == NULL) {
2067 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2068 } else {
2069 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2070 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2071 return -EFAULT;
2072 }
2073 }
2074 }
2075 return 0;
2076}
2077
2078snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2079 void __user **bufs,
2080 snd_pcm_uframes_t frames)
2081{
2082 struct snd_pcm_runtime *runtime;
2083 int nonblock;
2084 int err;
2085
2086 err = pcm_sanity_check(substream);
2087 if (err < 0)
2088 return err;
2089 runtime = substream->runtime;
2090 nonblock = !!(substream->f_flags & O_NONBLOCK);
2091
2092 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2093 return -EINVAL;
2094 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2095 nonblock, snd_pcm_lib_writev_transfer);
2096}
2097
2098EXPORT_SYMBOL(snd_pcm_lib_writev);
2099
2100static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2101 unsigned int hwoff,
2102 unsigned long data, unsigned int off,
2103 snd_pcm_uframes_t frames)
2104{
2105 struct snd_pcm_runtime *runtime = substream->runtime;
2106 int err;
2107 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2108 if (substream->ops->copy) {
2109 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2110 return err;
2111 } else {
2112 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2113 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2114 return -EFAULT;
2115 }
2116 return 0;
2117}
2118
2119static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2120 unsigned long data,
2121 snd_pcm_uframes_t size,
2122 int nonblock,
2123 transfer_f transfer)
2124{
2125 struct snd_pcm_runtime *runtime = substream->runtime;
2126 snd_pcm_uframes_t xfer = 0;
2127 snd_pcm_uframes_t offset = 0;
2128 snd_pcm_uframes_t avail;
2129 int err = 0;
2130
2131 if (size == 0)
2132 return 0;
2133
2134 snd_pcm_stream_lock_irq(substream);
2135 switch (runtime->status->state) {
2136 case SNDRV_PCM_STATE_PREPARED:
2137 if (size >= runtime->start_threshold) {
2138 err = snd_pcm_start(substream);
2139 if (err < 0)
2140 goto _end_unlock;
2141 }
2142 break;
2143 case SNDRV_PCM_STATE_DRAINING:
2144 case SNDRV_PCM_STATE_RUNNING:
2145 case SNDRV_PCM_STATE_PAUSED:
2146 break;
2147 case SNDRV_PCM_STATE_XRUN:
2148 err = -EPIPE;
2149 goto _end_unlock;
2150 case SNDRV_PCM_STATE_SUSPENDED:
2151 err = -ESTRPIPE;
2152 goto _end_unlock;
2153 default:
2154 err = -EBADFD;
2155 goto _end_unlock;
2156 }
2157
2158 runtime->twake = runtime->control->avail_min ? : 1;
2159 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2160 snd_pcm_update_hw_ptr(substream);
2161 avail = snd_pcm_capture_avail(runtime);
2162 while (size > 0) {
2163 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2164 snd_pcm_uframes_t cont;
2165 if (!avail) {
2166 if (runtime->status->state ==
2167 SNDRV_PCM_STATE_DRAINING) {
2168 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2169 goto _end_unlock;
2170 }
2171 if (nonblock) {
2172 err = -EAGAIN;
2173 goto _end_unlock;
2174 }
2175 runtime->twake = min_t(snd_pcm_uframes_t, size,
2176 runtime->control->avail_min ? : 1);
2177 err = wait_for_avail(substream, &avail);
2178 if (err < 0)
2179 goto _end_unlock;
2180 if (!avail)
2181 continue; /* draining */
2182 }
2183 frames = size > avail ? avail : size;
2184 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2185 if (frames > cont)
2186 frames = cont;
2187 if (snd_BUG_ON(!frames)) {
2188 runtime->twake = 0;
2189 snd_pcm_stream_unlock_irq(substream);
2190 return -EINVAL;
2191 }
2192 appl_ptr = runtime->control->appl_ptr;
2193 appl_ofs = appl_ptr % runtime->buffer_size;
2194 snd_pcm_stream_unlock_irq(substream);
2195 err = transfer(substream, appl_ofs, data, offset, frames);
2196 snd_pcm_stream_lock_irq(substream);
2197 if (err < 0)
2198 goto _end_unlock;
2199 switch (runtime->status->state) {
2200 case SNDRV_PCM_STATE_XRUN:
2201 err = -EPIPE;
2202 goto _end_unlock;
2203 case SNDRV_PCM_STATE_SUSPENDED:
2204 err = -ESTRPIPE;
2205 goto _end_unlock;
2206 default:
2207 break;
2208 }
2209 appl_ptr += frames;
2210 if (appl_ptr >= runtime->boundary)
2211 appl_ptr -= runtime->boundary;
2212 runtime->control->appl_ptr = appl_ptr;
2213 if (substream->ops->ack)
2214 substream->ops->ack(substream);
2215
2216 offset += frames;
2217 size -= frames;
2218 xfer += frames;
2219 avail -= frames;
2220 }
2221 _end_unlock:
2222 runtime->twake = 0;
2223 if (xfer > 0 && err >= 0)
2224 snd_pcm_update_state(substream, runtime);
2225 snd_pcm_stream_unlock_irq(substream);
2226 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2227}
2228
2229snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2230{
2231 struct snd_pcm_runtime *runtime;
2232 int nonblock;
2233 int err;
2234
2235 err = pcm_sanity_check(substream);
2236 if (err < 0)
2237 return err;
2238 runtime = substream->runtime;
2239 nonblock = !!(substream->f_flags & O_NONBLOCK);
2240 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2241 return -EINVAL;
2242 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2243}
2244
2245EXPORT_SYMBOL(snd_pcm_lib_read);
2246
2247static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2248 unsigned int hwoff,
2249 unsigned long data, unsigned int off,
2250 snd_pcm_uframes_t frames)
2251{
2252 struct snd_pcm_runtime *runtime = substream->runtime;
2253 int err;
2254 void __user **bufs = (void __user **)data;
2255 int channels = runtime->channels;
2256 int c;
2257 if (substream->ops->copy) {
2258 for (c = 0; c < channels; ++c, ++bufs) {
2259 char __user *buf;
2260 if (*bufs == NULL)
2261 continue;
2262 buf = *bufs + samples_to_bytes(runtime, off);
2263 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2264 return err;
2265 }
2266 } else {
2267 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2268 for (c = 0; c < channels; ++c, ++bufs) {
2269 char *hwbuf;
2270 char __user *buf;
2271 if (*bufs == NULL)
2272 continue;
2273
2274 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2275 buf = *bufs + samples_to_bytes(runtime, off);
2276 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2277 return -EFAULT;
2278 }
2279 }
2280 return 0;
2281}
2282
2283snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2284 void __user **bufs,
2285 snd_pcm_uframes_t frames)
2286{
2287 struct snd_pcm_runtime *runtime;
2288 int nonblock;
2289 int err;
2290
2291 err = pcm_sanity_check(substream);
2292 if (err < 0)
2293 return err;
2294 runtime = substream->runtime;
2295 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2296 return -EBADFD;
2297
2298 nonblock = !!(substream->f_flags & O_NONBLOCK);
2299 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2300 return -EINVAL;
2301 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2302}
2303
2304EXPORT_SYMBOL(snd_pcm_lib_readv);