Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36/*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46{
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
49 int err;
50
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
56 if (n < 0)
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
60 else
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
63 }
64 if (runtime->silence_filled >= runtime->buffer_size)
65 return;
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 return;
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
72 } else {
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
80 runtime->boundary;
81 } else {
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
90 } else {
91 runtime->silence_start = ofs;
92 }
93 }
94 frames = runtime->buffer_size - runtime->silence_filled;
95 }
96 if (snd_BUG_ON(frames > runtime->buffer_size))
97 return;
98 if (frames == 0)
99 return;
100 ofs = runtime->silence_start % runtime->buffer_size;
101 while (frames > 0) {
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 runtime->silence_filled += transfer;
106 frames -= transfer;
107 ofs = 0;
108 }
109}
110
111#ifdef CONFIG_SND_DEBUG
112void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113 char *name, size_t len)
114{
115 snprintf(name, len, "pcmC%dD%d%c:%d",
116 substream->pcm->card->number,
117 substream->pcm->device,
118 substream->stream ? 'c' : 'p',
119 substream->number);
120}
121EXPORT_SYMBOL(snd_pcm_debug_name);
122#endif
123
124#define XRUN_DEBUG_BASIC (1<<0)
125#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
126#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
127
128#ifdef CONFIG_SND_PCM_XRUN_DEBUG
129
130#define xrun_debug(substream, mask) \
131 ((substream)->pstr->xrun_debug & (mask))
132#else
133#define xrun_debug(substream, mask) 0
134#endif
135
136#define dump_stack_on_xrun(substream) do { \
137 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
138 dump_stack(); \
139 } while (0)
140
141/* call with stream lock held */
142void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143{
144 struct snd_pcm_runtime *runtime = substream->runtime;
145
146 trace_xrun(substream);
147 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
148 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
149 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
150 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
151 char name[16];
152 snd_pcm_debug_name(substream, name, sizeof(name));
153 pcm_warn(substream->pcm, "XRUN: %s\n", name);
154 dump_stack_on_xrun(substream);
155 }
156}
157
158#ifdef CONFIG_SND_PCM_XRUN_DEBUG
159#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
160 do { \
161 trace_hw_ptr_error(substream, reason); \
162 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
163 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
164 (in_interrupt) ? 'Q' : 'P', ##args); \
165 dump_stack_on_xrun(substream); \
166 } \
167 } while (0)
168
169#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
170
171#define hw_ptr_error(substream, fmt, args...) do { } while (0)
172
173#endif
174
175int snd_pcm_update_state(struct snd_pcm_substream *substream,
176 struct snd_pcm_runtime *runtime)
177{
178 snd_pcm_uframes_t avail;
179
180 avail = snd_pcm_avail(substream);
181 if (avail > runtime->avail_max)
182 runtime->avail_max = avail;
183 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
184 if (avail >= runtime->buffer_size) {
185 snd_pcm_drain_done(substream);
186 return -EPIPE;
187 }
188 } else {
189 if (avail >= runtime->stop_threshold) {
190 __snd_pcm_xrun(substream);
191 return -EPIPE;
192 }
193 }
194 if (runtime->twake) {
195 if (avail >= runtime->twake)
196 wake_up(&runtime->tsleep);
197 } else if (avail >= runtime->control->avail_min)
198 wake_up(&runtime->sleep);
199 return 0;
200}
201
202static void update_audio_tstamp(struct snd_pcm_substream *substream,
203 struct timespec *curr_tstamp,
204 struct timespec *audio_tstamp)
205{
206 struct snd_pcm_runtime *runtime = substream->runtime;
207 u64 audio_frames, audio_nsecs;
208 struct timespec driver_tstamp;
209
210 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
211 return;
212
213 if (!(substream->ops->get_time_info) ||
214 (runtime->audio_tstamp_report.actual_type ==
215 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
216
217 /*
218 * provide audio timestamp derived from pointer position
219 * add delay only if requested
220 */
221
222 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
223
224 if (runtime->audio_tstamp_config.report_delay) {
225 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
226 audio_frames -= runtime->delay;
227 else
228 audio_frames += runtime->delay;
229 }
230 audio_nsecs = div_u64(audio_frames * 1000000000LL,
231 runtime->rate);
232 *audio_tstamp = ns_to_timespec(audio_nsecs);
233 }
234 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
235 runtime->status->audio_tstamp = *audio_tstamp;
236 runtime->status->tstamp = *curr_tstamp;
237 }
238
239 /*
240 * re-take a driver timestamp to let apps detect if the reference tstamp
241 * read by low-level hardware was provided with a delay
242 */
243 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
244 runtime->driver_tstamp = driver_tstamp;
245}
246
247static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
248 unsigned int in_interrupt)
249{
250 struct snd_pcm_runtime *runtime = substream->runtime;
251 snd_pcm_uframes_t pos;
252 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
253 snd_pcm_sframes_t hdelta, delta;
254 unsigned long jdelta;
255 unsigned long curr_jiffies;
256 struct timespec curr_tstamp;
257 struct timespec audio_tstamp;
258 int crossed_boundary = 0;
259
260 old_hw_ptr = runtime->status->hw_ptr;
261
262 /*
263 * group pointer, time and jiffies reads to allow for more
264 * accurate correlations/corrections.
265 * The values are stored at the end of this routine after
266 * corrections for hw_ptr position
267 */
268 pos = substream->ops->pointer(substream);
269 curr_jiffies = jiffies;
270 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
271 if ((substream->ops->get_time_info) &&
272 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
273 substream->ops->get_time_info(substream, &curr_tstamp,
274 &audio_tstamp,
275 &runtime->audio_tstamp_config,
276 &runtime->audio_tstamp_report);
277
278 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
279 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
280 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
281 } else
282 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
283 }
284
285 if (pos == SNDRV_PCM_POS_XRUN) {
286 __snd_pcm_xrun(substream);
287 return -EPIPE;
288 }
289 if (pos >= runtime->buffer_size) {
290 if (printk_ratelimit()) {
291 char name[16];
292 snd_pcm_debug_name(substream, name, sizeof(name));
293 pcm_err(substream->pcm,
294 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
295 name, pos, runtime->buffer_size,
296 runtime->period_size);
297 }
298 pos = 0;
299 }
300 pos -= pos % runtime->min_align;
301 trace_hwptr(substream, pos, in_interrupt);
302 hw_base = runtime->hw_ptr_base;
303 new_hw_ptr = hw_base + pos;
304 if (in_interrupt) {
305 /* we know that one period was processed */
306 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
307 delta = runtime->hw_ptr_interrupt + runtime->period_size;
308 if (delta > new_hw_ptr) {
309 /* check for double acknowledged interrupts */
310 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
311 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
312 hw_base += runtime->buffer_size;
313 if (hw_base >= runtime->boundary) {
314 hw_base = 0;
315 crossed_boundary++;
316 }
317 new_hw_ptr = hw_base + pos;
318 goto __delta;
319 }
320 }
321 }
322 /* new_hw_ptr might be lower than old_hw_ptr in case when */
323 /* pointer crosses the end of the ring buffer */
324 if (new_hw_ptr < old_hw_ptr) {
325 hw_base += runtime->buffer_size;
326 if (hw_base >= runtime->boundary) {
327 hw_base = 0;
328 crossed_boundary++;
329 }
330 new_hw_ptr = hw_base + pos;
331 }
332 __delta:
333 delta = new_hw_ptr - old_hw_ptr;
334 if (delta < 0)
335 delta += runtime->boundary;
336
337 if (runtime->no_period_wakeup) {
338 snd_pcm_sframes_t xrun_threshold;
339 /*
340 * Without regular period interrupts, we have to check
341 * the elapsed time to detect xruns.
342 */
343 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
344 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
345 goto no_delta_check;
346 hdelta = jdelta - delta * HZ / runtime->rate;
347 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
348 while (hdelta > xrun_threshold) {
349 delta += runtime->buffer_size;
350 hw_base += runtime->buffer_size;
351 if (hw_base >= runtime->boundary) {
352 hw_base = 0;
353 crossed_boundary++;
354 }
355 new_hw_ptr = hw_base + pos;
356 hdelta -= runtime->hw_ptr_buffer_jiffies;
357 }
358 goto no_delta_check;
359 }
360
361 /* something must be really wrong */
362 if (delta >= runtime->buffer_size + runtime->period_size) {
363 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
364 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
365 substream->stream, (long)pos,
366 (long)new_hw_ptr, (long)old_hw_ptr);
367 return 0;
368 }
369
370 /* Do jiffies check only in xrun_debug mode */
371 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
372 goto no_jiffies_check;
373
374 /* Skip the jiffies check for hardwares with BATCH flag.
375 * Such hardware usually just increases the position at each IRQ,
376 * thus it can't give any strange position.
377 */
378 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
379 goto no_jiffies_check;
380 hdelta = delta;
381 if (hdelta < runtime->delay)
382 goto no_jiffies_check;
383 hdelta -= runtime->delay;
384 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
385 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
386 delta = jdelta /
387 (((runtime->period_size * HZ) / runtime->rate)
388 + HZ/100);
389 /* move new_hw_ptr according jiffies not pos variable */
390 new_hw_ptr = old_hw_ptr;
391 hw_base = delta;
392 /* use loop to avoid checks for delta overflows */
393 /* the delta value is small or zero in most cases */
394 while (delta > 0) {
395 new_hw_ptr += runtime->period_size;
396 if (new_hw_ptr >= runtime->boundary) {
397 new_hw_ptr -= runtime->boundary;
398 crossed_boundary--;
399 }
400 delta--;
401 }
402 /* align hw_base to buffer_size */
403 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
404 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
405 (long)pos, (long)hdelta,
406 (long)runtime->period_size, jdelta,
407 ((hdelta * HZ) / runtime->rate), hw_base,
408 (unsigned long)old_hw_ptr,
409 (unsigned long)new_hw_ptr);
410 /* reset values to proper state */
411 delta = 0;
412 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
413 }
414 no_jiffies_check:
415 if (delta > runtime->period_size + runtime->period_size / 2) {
416 hw_ptr_error(substream, in_interrupt,
417 "Lost interrupts?",
418 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
419 substream->stream, (long)delta,
420 (long)new_hw_ptr,
421 (long)old_hw_ptr);
422 }
423
424 no_delta_check:
425 if (runtime->status->hw_ptr == new_hw_ptr) {
426 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
427 return 0;
428 }
429
430 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
431 runtime->silence_size > 0)
432 snd_pcm_playback_silence(substream, new_hw_ptr);
433
434 if (in_interrupt) {
435 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
436 if (delta < 0)
437 delta += runtime->boundary;
438 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
439 runtime->hw_ptr_interrupt += delta;
440 if (runtime->hw_ptr_interrupt >= runtime->boundary)
441 runtime->hw_ptr_interrupt -= runtime->boundary;
442 }
443 runtime->hw_ptr_base = hw_base;
444 runtime->status->hw_ptr = new_hw_ptr;
445 runtime->hw_ptr_jiffies = curr_jiffies;
446 if (crossed_boundary) {
447 snd_BUG_ON(crossed_boundary != 1);
448 runtime->hw_ptr_wrap += runtime->boundary;
449 }
450
451 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
452
453 return snd_pcm_update_state(substream, runtime);
454}
455
456/* CAUTION: call it with irq disabled */
457int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
458{
459 return snd_pcm_update_hw_ptr0(substream, 0);
460}
461
462/**
463 * snd_pcm_set_ops - set the PCM operators
464 * @pcm: the pcm instance
465 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
466 * @ops: the operator table
467 *
468 * Sets the given PCM operators to the pcm instance.
469 */
470void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
471 const struct snd_pcm_ops *ops)
472{
473 struct snd_pcm_str *stream = &pcm->streams[direction];
474 struct snd_pcm_substream *substream;
475
476 for (substream = stream->substream; substream != NULL; substream = substream->next)
477 substream->ops = ops;
478}
479EXPORT_SYMBOL(snd_pcm_set_ops);
480
481/**
482 * snd_pcm_sync - set the PCM sync id
483 * @substream: the pcm substream
484 *
485 * Sets the PCM sync identifier for the card.
486 */
487void snd_pcm_set_sync(struct snd_pcm_substream *substream)
488{
489 struct snd_pcm_runtime *runtime = substream->runtime;
490
491 runtime->sync.id32[0] = substream->pcm->card->number;
492 runtime->sync.id32[1] = -1;
493 runtime->sync.id32[2] = -1;
494 runtime->sync.id32[3] = -1;
495}
496EXPORT_SYMBOL(snd_pcm_set_sync);
497
498/*
499 * Standard ioctl routine
500 */
501
502static inline unsigned int div32(unsigned int a, unsigned int b,
503 unsigned int *r)
504{
505 if (b == 0) {
506 *r = 0;
507 return UINT_MAX;
508 }
509 *r = a % b;
510 return a / b;
511}
512
513static inline unsigned int div_down(unsigned int a, unsigned int b)
514{
515 if (b == 0)
516 return UINT_MAX;
517 return a / b;
518}
519
520static inline unsigned int div_up(unsigned int a, unsigned int b)
521{
522 unsigned int r;
523 unsigned int q;
524 if (b == 0)
525 return UINT_MAX;
526 q = div32(a, b, &r);
527 if (r)
528 ++q;
529 return q;
530}
531
532static inline unsigned int mul(unsigned int a, unsigned int b)
533{
534 if (a == 0)
535 return 0;
536 if (div_down(UINT_MAX, a) < b)
537 return UINT_MAX;
538 return a * b;
539}
540
541static inline unsigned int muldiv32(unsigned int a, unsigned int b,
542 unsigned int c, unsigned int *r)
543{
544 u_int64_t n = (u_int64_t) a * b;
545 if (c == 0) {
546 *r = 0;
547 return UINT_MAX;
548 }
549 n = div_u64_rem(n, c, r);
550 if (n >= UINT_MAX) {
551 *r = 0;
552 return UINT_MAX;
553 }
554 return n;
555}
556
557/**
558 * snd_interval_refine - refine the interval value of configurator
559 * @i: the interval value to refine
560 * @v: the interval value to refer to
561 *
562 * Refines the interval value with the reference value.
563 * The interval is changed to the range satisfying both intervals.
564 * The interval status (min, max, integer, etc.) are evaluated.
565 *
566 * Return: Positive if the value is changed, zero if it's not changed, or a
567 * negative error code.
568 */
569int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
570{
571 int changed = 0;
572 if (snd_BUG_ON(snd_interval_empty(i)))
573 return -EINVAL;
574 if (i->min < v->min) {
575 i->min = v->min;
576 i->openmin = v->openmin;
577 changed = 1;
578 } else if (i->min == v->min && !i->openmin && v->openmin) {
579 i->openmin = 1;
580 changed = 1;
581 }
582 if (i->max > v->max) {
583 i->max = v->max;
584 i->openmax = v->openmax;
585 changed = 1;
586 } else if (i->max == v->max && !i->openmax && v->openmax) {
587 i->openmax = 1;
588 changed = 1;
589 }
590 if (!i->integer && v->integer) {
591 i->integer = 1;
592 changed = 1;
593 }
594 if (i->integer) {
595 if (i->openmin) {
596 i->min++;
597 i->openmin = 0;
598 }
599 if (i->openmax) {
600 i->max--;
601 i->openmax = 0;
602 }
603 } else if (!i->openmin && !i->openmax && i->min == i->max)
604 i->integer = 1;
605 if (snd_interval_checkempty(i)) {
606 snd_interval_none(i);
607 return -EINVAL;
608 }
609 return changed;
610}
611EXPORT_SYMBOL(snd_interval_refine);
612
613static int snd_interval_refine_first(struct snd_interval *i)
614{
615 const unsigned int last_max = i->max;
616
617 if (snd_BUG_ON(snd_interval_empty(i)))
618 return -EINVAL;
619 if (snd_interval_single(i))
620 return 0;
621 i->max = i->min;
622 if (i->openmin)
623 i->max++;
624 /* only exclude max value if also excluded before refine */
625 i->openmax = (i->openmax && i->max >= last_max);
626 return 1;
627}
628
629static int snd_interval_refine_last(struct snd_interval *i)
630{
631 const unsigned int last_min = i->min;
632
633 if (snd_BUG_ON(snd_interval_empty(i)))
634 return -EINVAL;
635 if (snd_interval_single(i))
636 return 0;
637 i->min = i->max;
638 if (i->openmax)
639 i->min--;
640 /* only exclude min value if also excluded before refine */
641 i->openmin = (i->openmin && i->min <= last_min);
642 return 1;
643}
644
645void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
646{
647 if (a->empty || b->empty) {
648 snd_interval_none(c);
649 return;
650 }
651 c->empty = 0;
652 c->min = mul(a->min, b->min);
653 c->openmin = (a->openmin || b->openmin);
654 c->max = mul(a->max, b->max);
655 c->openmax = (a->openmax || b->openmax);
656 c->integer = (a->integer && b->integer);
657}
658
659/**
660 * snd_interval_div - refine the interval value with division
661 * @a: dividend
662 * @b: divisor
663 * @c: quotient
664 *
665 * c = a / b
666 *
667 * Returns non-zero if the value is changed, zero if not changed.
668 */
669void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
670{
671 unsigned int r;
672 if (a->empty || b->empty) {
673 snd_interval_none(c);
674 return;
675 }
676 c->empty = 0;
677 c->min = div32(a->min, b->max, &r);
678 c->openmin = (r || a->openmin || b->openmax);
679 if (b->min > 0) {
680 c->max = div32(a->max, b->min, &r);
681 if (r) {
682 c->max++;
683 c->openmax = 1;
684 } else
685 c->openmax = (a->openmax || b->openmin);
686 } else {
687 c->max = UINT_MAX;
688 c->openmax = 0;
689 }
690 c->integer = 0;
691}
692
693/**
694 * snd_interval_muldivk - refine the interval value
695 * @a: dividend 1
696 * @b: dividend 2
697 * @k: divisor (as integer)
698 * @c: result
699 *
700 * c = a * b / k
701 *
702 * Returns non-zero if the value is changed, zero if not changed.
703 */
704void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
705 unsigned int k, struct snd_interval *c)
706{
707 unsigned int r;
708 if (a->empty || b->empty) {
709 snd_interval_none(c);
710 return;
711 }
712 c->empty = 0;
713 c->min = muldiv32(a->min, b->min, k, &r);
714 c->openmin = (r || a->openmin || b->openmin);
715 c->max = muldiv32(a->max, b->max, k, &r);
716 if (r) {
717 c->max++;
718 c->openmax = 1;
719 } else
720 c->openmax = (a->openmax || b->openmax);
721 c->integer = 0;
722}
723
724/**
725 * snd_interval_mulkdiv - refine the interval value
726 * @a: dividend 1
727 * @k: dividend 2 (as integer)
728 * @b: divisor
729 * @c: result
730 *
731 * c = a * k / b
732 *
733 * Returns non-zero if the value is changed, zero if not changed.
734 */
735void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
736 const struct snd_interval *b, struct snd_interval *c)
737{
738 unsigned int r;
739 if (a->empty || b->empty) {
740 snd_interval_none(c);
741 return;
742 }
743 c->empty = 0;
744 c->min = muldiv32(a->min, k, b->max, &r);
745 c->openmin = (r || a->openmin || b->openmax);
746 if (b->min > 0) {
747 c->max = muldiv32(a->max, k, b->min, &r);
748 if (r) {
749 c->max++;
750 c->openmax = 1;
751 } else
752 c->openmax = (a->openmax || b->openmin);
753 } else {
754 c->max = UINT_MAX;
755 c->openmax = 0;
756 }
757 c->integer = 0;
758}
759
760/* ---- */
761
762
763/**
764 * snd_interval_ratnum - refine the interval value
765 * @i: interval to refine
766 * @rats_count: number of ratnum_t
767 * @rats: ratnum_t array
768 * @nump: pointer to store the resultant numerator
769 * @denp: pointer to store the resultant denominator
770 *
771 * Return: Positive if the value is changed, zero if it's not changed, or a
772 * negative error code.
773 */
774int snd_interval_ratnum(struct snd_interval *i,
775 unsigned int rats_count, const struct snd_ratnum *rats,
776 unsigned int *nump, unsigned int *denp)
777{
778 unsigned int best_num, best_den;
779 int best_diff;
780 unsigned int k;
781 struct snd_interval t;
782 int err;
783 unsigned int result_num, result_den;
784 int result_diff;
785
786 best_num = best_den = best_diff = 0;
787 for (k = 0; k < rats_count; ++k) {
788 unsigned int num = rats[k].num;
789 unsigned int den;
790 unsigned int q = i->min;
791 int diff;
792 if (q == 0)
793 q = 1;
794 den = div_up(num, q);
795 if (den < rats[k].den_min)
796 continue;
797 if (den > rats[k].den_max)
798 den = rats[k].den_max;
799 else {
800 unsigned int r;
801 r = (den - rats[k].den_min) % rats[k].den_step;
802 if (r != 0)
803 den -= r;
804 }
805 diff = num - q * den;
806 if (diff < 0)
807 diff = -diff;
808 if (best_num == 0 ||
809 diff * best_den < best_diff * den) {
810 best_diff = diff;
811 best_den = den;
812 best_num = num;
813 }
814 }
815 if (best_den == 0) {
816 i->empty = 1;
817 return -EINVAL;
818 }
819 t.min = div_down(best_num, best_den);
820 t.openmin = !!(best_num % best_den);
821
822 result_num = best_num;
823 result_diff = best_diff;
824 result_den = best_den;
825 best_num = best_den = best_diff = 0;
826 for (k = 0; k < rats_count; ++k) {
827 unsigned int num = rats[k].num;
828 unsigned int den;
829 unsigned int q = i->max;
830 int diff;
831 if (q == 0) {
832 i->empty = 1;
833 return -EINVAL;
834 }
835 den = div_down(num, q);
836 if (den > rats[k].den_max)
837 continue;
838 if (den < rats[k].den_min)
839 den = rats[k].den_min;
840 else {
841 unsigned int r;
842 r = (den - rats[k].den_min) % rats[k].den_step;
843 if (r != 0)
844 den += rats[k].den_step - r;
845 }
846 diff = q * den - num;
847 if (diff < 0)
848 diff = -diff;
849 if (best_num == 0 ||
850 diff * best_den < best_diff * den) {
851 best_diff = diff;
852 best_den = den;
853 best_num = num;
854 }
855 }
856 if (best_den == 0) {
857 i->empty = 1;
858 return -EINVAL;
859 }
860 t.max = div_up(best_num, best_den);
861 t.openmax = !!(best_num % best_den);
862 t.integer = 0;
863 err = snd_interval_refine(i, &t);
864 if (err < 0)
865 return err;
866
867 if (snd_interval_single(i)) {
868 if (best_diff * result_den < result_diff * best_den) {
869 result_num = best_num;
870 result_den = best_den;
871 }
872 if (nump)
873 *nump = result_num;
874 if (denp)
875 *denp = result_den;
876 }
877 return err;
878}
879EXPORT_SYMBOL(snd_interval_ratnum);
880
881/**
882 * snd_interval_ratden - refine the interval value
883 * @i: interval to refine
884 * @rats_count: number of struct ratden
885 * @rats: struct ratden array
886 * @nump: pointer to store the resultant numerator
887 * @denp: pointer to store the resultant denominator
888 *
889 * Return: Positive if the value is changed, zero if it's not changed, or a
890 * negative error code.
891 */
892static int snd_interval_ratden(struct snd_interval *i,
893 unsigned int rats_count,
894 const struct snd_ratden *rats,
895 unsigned int *nump, unsigned int *denp)
896{
897 unsigned int best_num, best_diff, best_den;
898 unsigned int k;
899 struct snd_interval t;
900 int err;
901
902 best_num = best_den = best_diff = 0;
903 for (k = 0; k < rats_count; ++k) {
904 unsigned int num;
905 unsigned int den = rats[k].den;
906 unsigned int q = i->min;
907 int diff;
908 num = mul(q, den);
909 if (num > rats[k].num_max)
910 continue;
911 if (num < rats[k].num_min)
912 num = rats[k].num_max;
913 else {
914 unsigned int r;
915 r = (num - rats[k].num_min) % rats[k].num_step;
916 if (r != 0)
917 num += rats[k].num_step - r;
918 }
919 diff = num - q * den;
920 if (best_num == 0 ||
921 diff * best_den < best_diff * den) {
922 best_diff = diff;
923 best_den = den;
924 best_num = num;
925 }
926 }
927 if (best_den == 0) {
928 i->empty = 1;
929 return -EINVAL;
930 }
931 t.min = div_down(best_num, best_den);
932 t.openmin = !!(best_num % best_den);
933
934 best_num = best_den = best_diff = 0;
935 for (k = 0; k < rats_count; ++k) {
936 unsigned int num;
937 unsigned int den = rats[k].den;
938 unsigned int q = i->max;
939 int diff;
940 num = mul(q, den);
941 if (num < rats[k].num_min)
942 continue;
943 if (num > rats[k].num_max)
944 num = rats[k].num_max;
945 else {
946 unsigned int r;
947 r = (num - rats[k].num_min) % rats[k].num_step;
948 if (r != 0)
949 num -= r;
950 }
951 diff = q * den - num;
952 if (best_num == 0 ||
953 diff * best_den < best_diff * den) {
954 best_diff = diff;
955 best_den = den;
956 best_num = num;
957 }
958 }
959 if (best_den == 0) {
960 i->empty = 1;
961 return -EINVAL;
962 }
963 t.max = div_up(best_num, best_den);
964 t.openmax = !!(best_num % best_den);
965 t.integer = 0;
966 err = snd_interval_refine(i, &t);
967 if (err < 0)
968 return err;
969
970 if (snd_interval_single(i)) {
971 if (nump)
972 *nump = best_num;
973 if (denp)
974 *denp = best_den;
975 }
976 return err;
977}
978
979/**
980 * snd_interval_list - refine the interval value from the list
981 * @i: the interval value to refine
982 * @count: the number of elements in the list
983 * @list: the value list
984 * @mask: the bit-mask to evaluate
985 *
986 * Refines the interval value from the list.
987 * When mask is non-zero, only the elements corresponding to bit 1 are
988 * evaluated.
989 *
990 * Return: Positive if the value is changed, zero if it's not changed, or a
991 * negative error code.
992 */
993int snd_interval_list(struct snd_interval *i, unsigned int count,
994 const unsigned int *list, unsigned int mask)
995{
996 unsigned int k;
997 struct snd_interval list_range;
998
999 if (!count) {
1000 i->empty = 1;
1001 return -EINVAL;
1002 }
1003 snd_interval_any(&list_range);
1004 list_range.min = UINT_MAX;
1005 list_range.max = 0;
1006 for (k = 0; k < count; k++) {
1007 if (mask && !(mask & (1 << k)))
1008 continue;
1009 if (!snd_interval_test(i, list[k]))
1010 continue;
1011 list_range.min = min(list_range.min, list[k]);
1012 list_range.max = max(list_range.max, list[k]);
1013 }
1014 return snd_interval_refine(i, &list_range);
1015}
1016EXPORT_SYMBOL(snd_interval_list);
1017
1018/**
1019 * snd_interval_ranges - refine the interval value from the list of ranges
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list of ranges
1022 * @ranges: the ranges list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list of ranges.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Return: Positive if the value is changed, zero if it's not changed, or a
1030 * negative error code.
1031 */
1032int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1033 const struct snd_interval *ranges, unsigned int mask)
1034{
1035 unsigned int k;
1036 struct snd_interval range_union;
1037 struct snd_interval range;
1038
1039 if (!count) {
1040 snd_interval_none(i);
1041 return -EINVAL;
1042 }
1043 snd_interval_any(&range_union);
1044 range_union.min = UINT_MAX;
1045 range_union.max = 0;
1046 for (k = 0; k < count; k++) {
1047 if (mask && !(mask & (1 << k)))
1048 continue;
1049 snd_interval_copy(&range, &ranges[k]);
1050 if (snd_interval_refine(&range, i) < 0)
1051 continue;
1052 if (snd_interval_empty(&range))
1053 continue;
1054
1055 if (range.min < range_union.min) {
1056 range_union.min = range.min;
1057 range_union.openmin = 1;
1058 }
1059 if (range.min == range_union.min && !range.openmin)
1060 range_union.openmin = 0;
1061 if (range.max > range_union.max) {
1062 range_union.max = range.max;
1063 range_union.openmax = 1;
1064 }
1065 if (range.max == range_union.max && !range.openmax)
1066 range_union.openmax = 0;
1067 }
1068 return snd_interval_refine(i, &range_union);
1069}
1070EXPORT_SYMBOL(snd_interval_ranges);
1071
1072static int snd_interval_step(struct snd_interval *i, unsigned int step)
1073{
1074 unsigned int n;
1075 int changed = 0;
1076 n = i->min % step;
1077 if (n != 0 || i->openmin) {
1078 i->min += step - n;
1079 i->openmin = 0;
1080 changed = 1;
1081 }
1082 n = i->max % step;
1083 if (n != 0 || i->openmax) {
1084 i->max -= n;
1085 i->openmax = 0;
1086 changed = 1;
1087 }
1088 if (snd_interval_checkempty(i)) {
1089 i->empty = 1;
1090 return -EINVAL;
1091 }
1092 return changed;
1093}
1094
1095/* Info constraints helpers */
1096
1097/**
1098 * snd_pcm_hw_rule_add - add the hw-constraint rule
1099 * @runtime: the pcm runtime instance
1100 * @cond: condition bits
1101 * @var: the variable to evaluate
1102 * @func: the evaluation function
1103 * @private: the private data pointer passed to function
1104 * @dep: the dependent variables
1105 *
1106 * Return: Zero if successful, or a negative error code on failure.
1107 */
1108int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1109 int var,
1110 snd_pcm_hw_rule_func_t func, void *private,
1111 int dep, ...)
1112{
1113 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1114 struct snd_pcm_hw_rule *c;
1115 unsigned int k;
1116 va_list args;
1117 va_start(args, dep);
1118 if (constrs->rules_num >= constrs->rules_all) {
1119 struct snd_pcm_hw_rule *new;
1120 unsigned int new_rules = constrs->rules_all + 16;
1121 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1122 GFP_KERNEL);
1123 if (!new) {
1124 va_end(args);
1125 return -ENOMEM;
1126 }
1127 constrs->rules = new;
1128 constrs->rules_all = new_rules;
1129 }
1130 c = &constrs->rules[constrs->rules_num];
1131 c->cond = cond;
1132 c->func = func;
1133 c->var = var;
1134 c->private = private;
1135 k = 0;
1136 while (1) {
1137 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1138 va_end(args);
1139 return -EINVAL;
1140 }
1141 c->deps[k++] = dep;
1142 if (dep < 0)
1143 break;
1144 dep = va_arg(args, int);
1145 }
1146 constrs->rules_num++;
1147 va_end(args);
1148 return 0;
1149}
1150EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1151
1152/**
1153 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1154 * @runtime: PCM runtime instance
1155 * @var: hw_params variable to apply the mask
1156 * @mask: the bitmap mask
1157 *
1158 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1159 *
1160 * Return: Zero if successful, or a negative error code on failure.
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 u_int32_t mask)
1164{
1165 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 struct snd_mask *maskp = constrs_mask(constrs, var);
1167 *maskp->bits &= mask;
1168 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 if (*maskp->bits == 0)
1170 return -EINVAL;
1171 return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 *
1182 * Return: Zero if successful, or a negative error code on failure.
1183 */
1184int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1185 u_int64_t mask)
1186{
1187 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1188 struct snd_mask *maskp = constrs_mask(constrs, var);
1189 maskp->bits[0] &= (u_int32_t)mask;
1190 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1191 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1192 if (! maskp->bits[0] && ! maskp->bits[1])
1193 return -EINVAL;
1194 return 0;
1195}
1196EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1197
1198/**
1199 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1200 * @runtime: PCM runtime instance
1201 * @var: hw_params variable to apply the integer constraint
1202 *
1203 * Apply the constraint of integer to an interval parameter.
1204 *
1205 * Return: Positive if the value is changed, zero if it's not changed, or a
1206 * negative error code.
1207 */
1208int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1209{
1210 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1211 return snd_interval_setinteger(constrs_interval(constrs, var));
1212}
1213EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1214
1215/**
1216 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1217 * @runtime: PCM runtime instance
1218 * @var: hw_params variable to apply the range
1219 * @min: the minimal value
1220 * @max: the maximal value
1221 *
1222 * Apply the min/max range constraint to an interval parameter.
1223 *
1224 * Return: Positive if the value is changed, zero if it's not changed, or a
1225 * negative error code.
1226 */
1227int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1228 unsigned int min, unsigned int max)
1229{
1230 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1231 struct snd_interval t;
1232 t.min = min;
1233 t.max = max;
1234 t.openmin = t.openmax = 0;
1235 t.integer = 0;
1236 return snd_interval_refine(constrs_interval(constrs, var), &t);
1237}
1238EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1239
1240static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1241 struct snd_pcm_hw_rule *rule)
1242{
1243 struct snd_pcm_hw_constraint_list *list = rule->private;
1244 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1245}
1246
1247
1248/**
1249 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1250 * @runtime: PCM runtime instance
1251 * @cond: condition bits
1252 * @var: hw_params variable to apply the list constraint
1253 * @l: list
1254 *
1255 * Apply the list of constraints to an interval parameter.
1256 *
1257 * Return: Zero if successful, or a negative error code on failure.
1258 */
1259int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1260 unsigned int cond,
1261 snd_pcm_hw_param_t var,
1262 const struct snd_pcm_hw_constraint_list *l)
1263{
1264 return snd_pcm_hw_rule_add(runtime, cond, var,
1265 snd_pcm_hw_rule_list, (void *)l,
1266 var, -1);
1267}
1268EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1269
1270static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1271 struct snd_pcm_hw_rule *rule)
1272{
1273 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1274 return snd_interval_ranges(hw_param_interval(params, rule->var),
1275 r->count, r->ranges, r->mask);
1276}
1277
1278
1279/**
1280 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1281 * @runtime: PCM runtime instance
1282 * @cond: condition bits
1283 * @var: hw_params variable to apply the list of range constraints
1284 * @r: ranges
1285 *
1286 * Apply the list of range constraints to an interval parameter.
1287 *
1288 * Return: Zero if successful, or a negative error code on failure.
1289 */
1290int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1291 unsigned int cond,
1292 snd_pcm_hw_param_t var,
1293 const struct snd_pcm_hw_constraint_ranges *r)
1294{
1295 return snd_pcm_hw_rule_add(runtime, cond, var,
1296 snd_pcm_hw_rule_ranges, (void *)r,
1297 var, -1);
1298}
1299EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1300
1301static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1302 struct snd_pcm_hw_rule *rule)
1303{
1304 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1305 unsigned int num = 0, den = 0;
1306 int err;
1307 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1308 r->nrats, r->rats, &num, &den);
1309 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1310 params->rate_num = num;
1311 params->rate_den = den;
1312 }
1313 return err;
1314}
1315
1316/**
1317 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the ratnums constraint
1321 * @r: struct snd_ratnums constriants
1322 *
1323 * Return: Zero if successful, or a negative error code on failure.
1324 */
1325int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1326 unsigned int cond,
1327 snd_pcm_hw_param_t var,
1328 const struct snd_pcm_hw_constraint_ratnums *r)
1329{
1330 return snd_pcm_hw_rule_add(runtime, cond, var,
1331 snd_pcm_hw_rule_ratnums, (void *)r,
1332 var, -1);
1333}
1334EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1335
1336static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1337 struct snd_pcm_hw_rule *rule)
1338{
1339 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1340 unsigned int num = 0, den = 0;
1341 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1342 r->nrats, r->rats, &num, &den);
1343 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1344 params->rate_num = num;
1345 params->rate_den = den;
1346 }
1347 return err;
1348}
1349
1350/**
1351 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1352 * @runtime: PCM runtime instance
1353 * @cond: condition bits
1354 * @var: hw_params variable to apply the ratdens constraint
1355 * @r: struct snd_ratdens constriants
1356 *
1357 * Return: Zero if successful, or a negative error code on failure.
1358 */
1359int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1360 unsigned int cond,
1361 snd_pcm_hw_param_t var,
1362 const struct snd_pcm_hw_constraint_ratdens *r)
1363{
1364 return snd_pcm_hw_rule_add(runtime, cond, var,
1365 snd_pcm_hw_rule_ratdens, (void *)r,
1366 var, -1);
1367}
1368EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1369
1370static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1371 struct snd_pcm_hw_rule *rule)
1372{
1373 unsigned int l = (unsigned long) rule->private;
1374 int width = l & 0xffff;
1375 unsigned int msbits = l >> 16;
1376 const struct snd_interval *i =
1377 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1378
1379 if (!snd_interval_single(i))
1380 return 0;
1381
1382 if ((snd_interval_value(i) == width) ||
1383 (width == 0 && snd_interval_value(i) > msbits))
1384 params->msbits = min_not_zero(params->msbits, msbits);
1385
1386 return 0;
1387}
1388
1389/**
1390 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1391 * @runtime: PCM runtime instance
1392 * @cond: condition bits
1393 * @width: sample bits width
1394 * @msbits: msbits width
1395 *
1396 * This constraint will set the number of most significant bits (msbits) if a
1397 * sample format with the specified width has been select. If width is set to 0
1398 * the msbits will be set for any sample format with a width larger than the
1399 * specified msbits.
1400 *
1401 * Return: Zero if successful, or a negative error code on failure.
1402 */
1403int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1404 unsigned int cond,
1405 unsigned int width,
1406 unsigned int msbits)
1407{
1408 unsigned long l = (msbits << 16) | width;
1409 return snd_pcm_hw_rule_add(runtime, cond, -1,
1410 snd_pcm_hw_rule_msbits,
1411 (void*) l,
1412 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1413}
1414EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1415
1416static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1417 struct snd_pcm_hw_rule *rule)
1418{
1419 unsigned long step = (unsigned long) rule->private;
1420 return snd_interval_step(hw_param_interval(params, rule->var), step);
1421}
1422
1423/**
1424 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1425 * @runtime: PCM runtime instance
1426 * @cond: condition bits
1427 * @var: hw_params variable to apply the step constraint
1428 * @step: step size
1429 *
1430 * Return: Zero if successful, or a negative error code on failure.
1431 */
1432int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1433 unsigned int cond,
1434 snd_pcm_hw_param_t var,
1435 unsigned long step)
1436{
1437 return snd_pcm_hw_rule_add(runtime, cond, var,
1438 snd_pcm_hw_rule_step, (void *) step,
1439 var, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1442
1443static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1444{
1445 static unsigned int pow2_sizes[] = {
1446 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1447 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1448 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1449 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1450 };
1451 return snd_interval_list(hw_param_interval(params, rule->var),
1452 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1453}
1454
1455/**
1456 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1457 * @runtime: PCM runtime instance
1458 * @cond: condition bits
1459 * @var: hw_params variable to apply the power-of-2 constraint
1460 *
1461 * Return: Zero if successful, or a negative error code on failure.
1462 */
1463int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1464 unsigned int cond,
1465 snd_pcm_hw_param_t var)
1466{
1467 return snd_pcm_hw_rule_add(runtime, cond, var,
1468 snd_pcm_hw_rule_pow2, NULL,
1469 var, -1);
1470}
1471EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1472
1473static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1474 struct snd_pcm_hw_rule *rule)
1475{
1476 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1477 struct snd_interval *rate;
1478
1479 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1480 return snd_interval_list(rate, 1, &base_rate, 0);
1481}
1482
1483/**
1484 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1485 * @runtime: PCM runtime instance
1486 * @base_rate: the rate at which the hardware does not resample
1487 *
1488 * Return: Zero if successful, or a negative error code on failure.
1489 */
1490int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1491 unsigned int base_rate)
1492{
1493 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1494 SNDRV_PCM_HW_PARAM_RATE,
1495 snd_pcm_hw_rule_noresample_func,
1496 (void *)(uintptr_t)base_rate,
1497 SNDRV_PCM_HW_PARAM_RATE, -1);
1498}
1499EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1500
1501static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1502 snd_pcm_hw_param_t var)
1503{
1504 if (hw_is_mask(var)) {
1505 snd_mask_any(hw_param_mask(params, var));
1506 params->cmask |= 1 << var;
1507 params->rmask |= 1 << var;
1508 return;
1509 }
1510 if (hw_is_interval(var)) {
1511 snd_interval_any(hw_param_interval(params, var));
1512 params->cmask |= 1 << var;
1513 params->rmask |= 1 << var;
1514 return;
1515 }
1516 snd_BUG();
1517}
1518
1519void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1520{
1521 unsigned int k;
1522 memset(params, 0, sizeof(*params));
1523 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1524 _snd_pcm_hw_param_any(params, k);
1525 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1526 _snd_pcm_hw_param_any(params, k);
1527 params->info = ~0U;
1528}
1529EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1530
1531/**
1532 * snd_pcm_hw_param_value - return @params field @var value
1533 * @params: the hw_params instance
1534 * @var: parameter to retrieve
1535 * @dir: pointer to the direction (-1,0,1) or %NULL
1536 *
1537 * Return: The value for field @var if it's fixed in configuration space
1538 * defined by @params. -%EINVAL otherwise.
1539 */
1540int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1541 snd_pcm_hw_param_t var, int *dir)
1542{
1543 if (hw_is_mask(var)) {
1544 const struct snd_mask *mask = hw_param_mask_c(params, var);
1545 if (!snd_mask_single(mask))
1546 return -EINVAL;
1547 if (dir)
1548 *dir = 0;
1549 return snd_mask_value(mask);
1550 }
1551 if (hw_is_interval(var)) {
1552 const struct snd_interval *i = hw_param_interval_c(params, var);
1553 if (!snd_interval_single(i))
1554 return -EINVAL;
1555 if (dir)
1556 *dir = i->openmin;
1557 return snd_interval_value(i);
1558 }
1559 return -EINVAL;
1560}
1561EXPORT_SYMBOL(snd_pcm_hw_param_value);
1562
1563void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1564 snd_pcm_hw_param_t var)
1565{
1566 if (hw_is_mask(var)) {
1567 snd_mask_none(hw_param_mask(params, var));
1568 params->cmask |= 1 << var;
1569 params->rmask |= 1 << var;
1570 } else if (hw_is_interval(var)) {
1571 snd_interval_none(hw_param_interval(params, var));
1572 params->cmask |= 1 << var;
1573 params->rmask |= 1 << var;
1574 } else {
1575 snd_BUG();
1576 }
1577}
1578EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1579
1580static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1581 snd_pcm_hw_param_t var)
1582{
1583 int changed;
1584 if (hw_is_mask(var))
1585 changed = snd_mask_refine_first(hw_param_mask(params, var));
1586 else if (hw_is_interval(var))
1587 changed = snd_interval_refine_first(hw_param_interval(params, var));
1588 else
1589 return -EINVAL;
1590 if (changed > 0) {
1591 params->cmask |= 1 << var;
1592 params->rmask |= 1 << var;
1593 }
1594 return changed;
1595}
1596
1597
1598/**
1599 * snd_pcm_hw_param_first - refine config space and return minimum value
1600 * @pcm: PCM instance
1601 * @params: the hw_params instance
1602 * @var: parameter to retrieve
1603 * @dir: pointer to the direction (-1,0,1) or %NULL
1604 *
1605 * Inside configuration space defined by @params remove from @var all
1606 * values > minimum. Reduce configuration space accordingly.
1607 *
1608 * Return: The minimum, or a negative error code on failure.
1609 */
1610int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1611 struct snd_pcm_hw_params *params,
1612 snd_pcm_hw_param_t var, int *dir)
1613{
1614 int changed = _snd_pcm_hw_param_first(params, var);
1615 if (changed < 0)
1616 return changed;
1617 if (params->rmask) {
1618 int err = snd_pcm_hw_refine(pcm, params);
1619 if (err < 0)
1620 return err;
1621 }
1622 return snd_pcm_hw_param_value(params, var, dir);
1623}
1624EXPORT_SYMBOL(snd_pcm_hw_param_first);
1625
1626static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var)
1628{
1629 int changed;
1630 if (hw_is_mask(var))
1631 changed = snd_mask_refine_last(hw_param_mask(params, var));
1632 else if (hw_is_interval(var))
1633 changed = snd_interval_refine_last(hw_param_interval(params, var));
1634 else
1635 return -EINVAL;
1636 if (changed > 0) {
1637 params->cmask |= 1 << var;
1638 params->rmask |= 1 << var;
1639 }
1640 return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_last - refine config space and return maximum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values < maximum. Reduce configuration space accordingly.
1653 *
1654 * Return: The maximum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1657 struct snd_pcm_hw_params *params,
1658 snd_pcm_hw_param_t var, int *dir)
1659{
1660 int changed = _snd_pcm_hw_param_last(params, var);
1661 if (changed < 0)
1662 return changed;
1663 if (params->rmask) {
1664 int err = snd_pcm_hw_refine(pcm, params);
1665 if (err < 0)
1666 return err;
1667 }
1668 return snd_pcm_hw_param_value(params, var, dir);
1669}
1670EXPORT_SYMBOL(snd_pcm_hw_param_last);
1671
1672static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1673 void *arg)
1674{
1675 struct snd_pcm_runtime *runtime = substream->runtime;
1676 unsigned long flags;
1677 snd_pcm_stream_lock_irqsave(substream, flags);
1678 if (snd_pcm_running(substream) &&
1679 snd_pcm_update_hw_ptr(substream) >= 0)
1680 runtime->status->hw_ptr %= runtime->buffer_size;
1681 else {
1682 runtime->status->hw_ptr = 0;
1683 runtime->hw_ptr_wrap = 0;
1684 }
1685 snd_pcm_stream_unlock_irqrestore(substream, flags);
1686 return 0;
1687}
1688
1689static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1690 void *arg)
1691{
1692 struct snd_pcm_channel_info *info = arg;
1693 struct snd_pcm_runtime *runtime = substream->runtime;
1694 int width;
1695 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1696 info->offset = -1;
1697 return 0;
1698 }
1699 width = snd_pcm_format_physical_width(runtime->format);
1700 if (width < 0)
1701 return width;
1702 info->offset = 0;
1703 switch (runtime->access) {
1704 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1705 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1706 info->first = info->channel * width;
1707 info->step = runtime->channels * width;
1708 break;
1709 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1710 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1711 {
1712 size_t size = runtime->dma_bytes / runtime->channels;
1713 info->first = info->channel * size * 8;
1714 info->step = width;
1715 break;
1716 }
1717 default:
1718 snd_BUG();
1719 break;
1720 }
1721 return 0;
1722}
1723
1724static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1725 void *arg)
1726{
1727 struct snd_pcm_hw_params *params = arg;
1728 snd_pcm_format_t format;
1729 int channels;
1730 ssize_t frame_size;
1731
1732 params->fifo_size = substream->runtime->hw.fifo_size;
1733 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1734 format = params_format(params);
1735 channels = params_channels(params);
1736 frame_size = snd_pcm_format_size(format, channels);
1737 if (frame_size > 0)
1738 params->fifo_size /= (unsigned)frame_size;
1739 }
1740 return 0;
1741}
1742
1743/**
1744 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1745 * @substream: the pcm substream instance
1746 * @cmd: ioctl command
1747 * @arg: ioctl argument
1748 *
1749 * Processes the generic ioctl commands for PCM.
1750 * Can be passed as the ioctl callback for PCM ops.
1751 *
1752 * Return: Zero if successful, or a negative error code on failure.
1753 */
1754int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1755 unsigned int cmd, void *arg)
1756{
1757 switch (cmd) {
1758 case SNDRV_PCM_IOCTL1_RESET:
1759 return snd_pcm_lib_ioctl_reset(substream, arg);
1760 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1761 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1762 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1763 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1764 }
1765 return -ENXIO;
1766}
1767EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1768
1769/**
1770 * snd_pcm_period_elapsed - update the pcm status for the next period
1771 * @substream: the pcm substream instance
1772 *
1773 * This function is called from the interrupt handler when the
1774 * PCM has processed the period size. It will update the current
1775 * pointer, wake up sleepers, etc.
1776 *
1777 * Even if more than one periods have elapsed since the last call, you
1778 * have to call this only once.
1779 */
1780void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1781{
1782 struct snd_pcm_runtime *runtime;
1783 unsigned long flags;
1784
1785 if (snd_BUG_ON(!substream))
1786 return;
1787
1788 snd_pcm_stream_lock_irqsave(substream, flags);
1789 if (PCM_RUNTIME_CHECK(substream))
1790 goto _unlock;
1791 runtime = substream->runtime;
1792
1793 if (!snd_pcm_running(substream) ||
1794 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1795 goto _end;
1796
1797#ifdef CONFIG_SND_PCM_TIMER
1798 if (substream->timer_running)
1799 snd_timer_interrupt(substream->timer, 1);
1800#endif
1801 _end:
1802 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1803 _unlock:
1804 snd_pcm_stream_unlock_irqrestore(substream, flags);
1805}
1806EXPORT_SYMBOL(snd_pcm_period_elapsed);
1807
1808/*
1809 * Wait until avail_min data becomes available
1810 * Returns a negative error code if any error occurs during operation.
1811 * The available space is stored on availp. When err = 0 and avail = 0
1812 * on the capture stream, it indicates the stream is in DRAINING state.
1813 */
1814static int wait_for_avail(struct snd_pcm_substream *substream,
1815 snd_pcm_uframes_t *availp)
1816{
1817 struct snd_pcm_runtime *runtime = substream->runtime;
1818 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1819 wait_queue_entry_t wait;
1820 int err = 0;
1821 snd_pcm_uframes_t avail = 0;
1822 long wait_time, tout;
1823
1824 init_waitqueue_entry(&wait, current);
1825 set_current_state(TASK_INTERRUPTIBLE);
1826 add_wait_queue(&runtime->tsleep, &wait);
1827
1828 if (runtime->no_period_wakeup)
1829 wait_time = MAX_SCHEDULE_TIMEOUT;
1830 else {
1831 /* use wait time from substream if available */
1832 if (substream->wait_time) {
1833 wait_time = substream->wait_time;
1834 } else {
1835 wait_time = 10;
1836
1837 if (runtime->rate) {
1838 long t = runtime->period_size * 2 /
1839 runtime->rate;
1840 wait_time = max(t, wait_time);
1841 }
1842 wait_time = msecs_to_jiffies(wait_time * 1000);
1843 }
1844 }
1845
1846 for (;;) {
1847 if (signal_pending(current)) {
1848 err = -ERESTARTSYS;
1849 break;
1850 }
1851
1852 /*
1853 * We need to check if space became available already
1854 * (and thus the wakeup happened already) first to close
1855 * the race of space already having become available.
1856 * This check must happen after been added to the waitqueue
1857 * and having current state be INTERRUPTIBLE.
1858 */
1859 avail = snd_pcm_avail(substream);
1860 if (avail >= runtime->twake)
1861 break;
1862 snd_pcm_stream_unlock_irq(substream);
1863
1864 tout = schedule_timeout(wait_time);
1865
1866 snd_pcm_stream_lock_irq(substream);
1867 set_current_state(TASK_INTERRUPTIBLE);
1868 switch (runtime->status->state) {
1869 case SNDRV_PCM_STATE_SUSPENDED:
1870 err = -ESTRPIPE;
1871 goto _endloop;
1872 case SNDRV_PCM_STATE_XRUN:
1873 err = -EPIPE;
1874 goto _endloop;
1875 case SNDRV_PCM_STATE_DRAINING:
1876 if (is_playback)
1877 err = -EPIPE;
1878 else
1879 avail = 0; /* indicate draining */
1880 goto _endloop;
1881 case SNDRV_PCM_STATE_OPEN:
1882 case SNDRV_PCM_STATE_SETUP:
1883 case SNDRV_PCM_STATE_DISCONNECTED:
1884 err = -EBADFD;
1885 goto _endloop;
1886 case SNDRV_PCM_STATE_PAUSED:
1887 continue;
1888 }
1889 if (!tout) {
1890 pcm_dbg(substream->pcm,
1891 "%s write error (DMA or IRQ trouble?)\n",
1892 is_playback ? "playback" : "capture");
1893 err = -EIO;
1894 break;
1895 }
1896 }
1897 _endloop:
1898 set_current_state(TASK_RUNNING);
1899 remove_wait_queue(&runtime->tsleep, &wait);
1900 *availp = avail;
1901 return err;
1902}
1903
1904typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1905 int channel, unsigned long hwoff,
1906 void *buf, unsigned long bytes);
1907
1908typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1909 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1910
1911/* calculate the target DMA-buffer position to be written/read */
1912static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1913 int channel, unsigned long hwoff)
1914{
1915 return runtime->dma_area + hwoff +
1916 channel * (runtime->dma_bytes / runtime->channels);
1917}
1918
1919/* default copy_user ops for write; used for both interleaved and non- modes */
1920static int default_write_copy(struct snd_pcm_substream *substream,
1921 int channel, unsigned long hwoff,
1922 void *buf, unsigned long bytes)
1923{
1924 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1925 (void __user *)buf, bytes))
1926 return -EFAULT;
1927 return 0;
1928}
1929
1930/* default copy_kernel ops for write */
1931static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1932 int channel, unsigned long hwoff,
1933 void *buf, unsigned long bytes)
1934{
1935 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1936 return 0;
1937}
1938
1939/* fill silence instead of copy data; called as a transfer helper
1940 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1941 * a NULL buffer is passed
1942 */
1943static int fill_silence(struct snd_pcm_substream *substream, int channel,
1944 unsigned long hwoff, void *buf, unsigned long bytes)
1945{
1946 struct snd_pcm_runtime *runtime = substream->runtime;
1947
1948 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1949 return 0;
1950 if (substream->ops->fill_silence)
1951 return substream->ops->fill_silence(substream, channel,
1952 hwoff, bytes);
1953
1954 snd_pcm_format_set_silence(runtime->format,
1955 get_dma_ptr(runtime, channel, hwoff),
1956 bytes_to_samples(runtime, bytes));
1957 return 0;
1958}
1959
1960/* default copy_user ops for read; used for both interleaved and non- modes */
1961static int default_read_copy(struct snd_pcm_substream *substream,
1962 int channel, unsigned long hwoff,
1963 void *buf, unsigned long bytes)
1964{
1965 if (copy_to_user((void __user *)buf,
1966 get_dma_ptr(substream->runtime, channel, hwoff),
1967 bytes))
1968 return -EFAULT;
1969 return 0;
1970}
1971
1972/* default copy_kernel ops for read */
1973static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1974 int channel, unsigned long hwoff,
1975 void *buf, unsigned long bytes)
1976{
1977 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1978 return 0;
1979}
1980
1981/* call transfer function with the converted pointers and sizes;
1982 * for interleaved mode, it's one shot for all samples
1983 */
1984static int interleaved_copy(struct snd_pcm_substream *substream,
1985 snd_pcm_uframes_t hwoff, void *data,
1986 snd_pcm_uframes_t off,
1987 snd_pcm_uframes_t frames,
1988 pcm_transfer_f transfer)
1989{
1990 struct snd_pcm_runtime *runtime = substream->runtime;
1991
1992 /* convert to bytes */
1993 hwoff = frames_to_bytes(runtime, hwoff);
1994 off = frames_to_bytes(runtime, off);
1995 frames = frames_to_bytes(runtime, frames);
1996 return transfer(substream, 0, hwoff, data + off, frames);
1997}
1998
1999/* call transfer function with the converted pointers and sizes for each
2000 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2001 */
2002static int noninterleaved_copy(struct snd_pcm_substream *substream,
2003 snd_pcm_uframes_t hwoff, void *data,
2004 snd_pcm_uframes_t off,
2005 snd_pcm_uframes_t frames,
2006 pcm_transfer_f transfer)
2007{
2008 struct snd_pcm_runtime *runtime = substream->runtime;
2009 int channels = runtime->channels;
2010 void **bufs = data;
2011 int c, err;
2012
2013 /* convert to bytes; note that it's not frames_to_bytes() here.
2014 * in non-interleaved mode, we copy for each channel, thus
2015 * each copy is n_samples bytes x channels = whole frames.
2016 */
2017 off = samples_to_bytes(runtime, off);
2018 frames = samples_to_bytes(runtime, frames);
2019 hwoff = samples_to_bytes(runtime, hwoff);
2020 for (c = 0; c < channels; ++c, ++bufs) {
2021 if (!data || !*bufs)
2022 err = fill_silence(substream, c, hwoff, NULL, frames);
2023 else
2024 err = transfer(substream, c, hwoff, *bufs + off,
2025 frames);
2026 if (err < 0)
2027 return err;
2028 }
2029 return 0;
2030}
2031
2032/* fill silence on the given buffer position;
2033 * called from snd_pcm_playback_silence()
2034 */
2035static int fill_silence_frames(struct snd_pcm_substream *substream,
2036 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2037{
2038 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2039 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2040 return interleaved_copy(substream, off, NULL, 0, frames,
2041 fill_silence);
2042 else
2043 return noninterleaved_copy(substream, off, NULL, 0, frames,
2044 fill_silence);
2045}
2046
2047/* sanity-check for read/write methods */
2048static int pcm_sanity_check(struct snd_pcm_substream *substream)
2049{
2050 struct snd_pcm_runtime *runtime;
2051 if (PCM_RUNTIME_CHECK(substream))
2052 return -ENXIO;
2053 runtime = substream->runtime;
2054 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2055 return -EINVAL;
2056 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2057 return -EBADFD;
2058 return 0;
2059}
2060
2061static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2062{
2063 switch (runtime->status->state) {
2064 case SNDRV_PCM_STATE_PREPARED:
2065 case SNDRV_PCM_STATE_RUNNING:
2066 case SNDRV_PCM_STATE_PAUSED:
2067 return 0;
2068 case SNDRV_PCM_STATE_XRUN:
2069 return -EPIPE;
2070 case SNDRV_PCM_STATE_SUSPENDED:
2071 return -ESTRPIPE;
2072 default:
2073 return -EBADFD;
2074 }
2075}
2076
2077/* update to the given appl_ptr and call ack callback if needed;
2078 * when an error is returned, take back to the original value
2079 */
2080int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2081 snd_pcm_uframes_t appl_ptr)
2082{
2083 struct snd_pcm_runtime *runtime = substream->runtime;
2084 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2085 int ret;
2086
2087 if (old_appl_ptr == appl_ptr)
2088 return 0;
2089
2090 runtime->control->appl_ptr = appl_ptr;
2091 if (substream->ops->ack) {
2092 ret = substream->ops->ack(substream);
2093 if (ret < 0) {
2094 runtime->control->appl_ptr = old_appl_ptr;
2095 return ret;
2096 }
2097 }
2098
2099 trace_applptr(substream, old_appl_ptr, appl_ptr);
2100
2101 return 0;
2102}
2103
2104/* the common loop for read/write data */
2105snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2106 void *data, bool interleaved,
2107 snd_pcm_uframes_t size, bool in_kernel)
2108{
2109 struct snd_pcm_runtime *runtime = substream->runtime;
2110 snd_pcm_uframes_t xfer = 0;
2111 snd_pcm_uframes_t offset = 0;
2112 snd_pcm_uframes_t avail;
2113 pcm_copy_f writer;
2114 pcm_transfer_f transfer;
2115 bool nonblock;
2116 bool is_playback;
2117 int err;
2118
2119 err = pcm_sanity_check(substream);
2120 if (err < 0)
2121 return err;
2122
2123 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2124 if (interleaved) {
2125 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2126 runtime->channels > 1)
2127 return -EINVAL;
2128 writer = interleaved_copy;
2129 } else {
2130 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2131 return -EINVAL;
2132 writer = noninterleaved_copy;
2133 }
2134
2135 if (!data) {
2136 if (is_playback)
2137 transfer = fill_silence;
2138 else
2139 return -EINVAL;
2140 } else if (in_kernel) {
2141 if (substream->ops->copy_kernel)
2142 transfer = substream->ops->copy_kernel;
2143 else
2144 transfer = is_playback ?
2145 default_write_copy_kernel : default_read_copy_kernel;
2146 } else {
2147 if (substream->ops->copy_user)
2148 transfer = (pcm_transfer_f)substream->ops->copy_user;
2149 else
2150 transfer = is_playback ?
2151 default_write_copy : default_read_copy;
2152 }
2153
2154 if (size == 0)
2155 return 0;
2156
2157 nonblock = !!(substream->f_flags & O_NONBLOCK);
2158
2159 snd_pcm_stream_lock_irq(substream);
2160 err = pcm_accessible_state(runtime);
2161 if (err < 0)
2162 goto _end_unlock;
2163
2164 runtime->twake = runtime->control->avail_min ? : 1;
2165 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2166 snd_pcm_update_hw_ptr(substream);
2167
2168 /*
2169 * If size < start_threshold, wait indefinitely. Another
2170 * thread may start capture
2171 */
2172 if (!is_playback &&
2173 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2174 size >= runtime->start_threshold) {
2175 err = snd_pcm_start(substream);
2176 if (err < 0)
2177 goto _end_unlock;
2178 }
2179
2180 avail = snd_pcm_avail(substream);
2181
2182 while (size > 0) {
2183 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2184 snd_pcm_uframes_t cont;
2185 if (!avail) {
2186 if (!is_playback &&
2187 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2188 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2189 goto _end_unlock;
2190 }
2191 if (nonblock) {
2192 err = -EAGAIN;
2193 goto _end_unlock;
2194 }
2195 runtime->twake = min_t(snd_pcm_uframes_t, size,
2196 runtime->control->avail_min ? : 1);
2197 err = wait_for_avail(substream, &avail);
2198 if (err < 0)
2199 goto _end_unlock;
2200 if (!avail)
2201 continue; /* draining */
2202 }
2203 frames = size > avail ? avail : size;
2204 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2205 appl_ofs = appl_ptr % runtime->buffer_size;
2206 cont = runtime->buffer_size - appl_ofs;
2207 if (frames > cont)
2208 frames = cont;
2209 if (snd_BUG_ON(!frames)) {
2210 err = -EINVAL;
2211 goto _end_unlock;
2212 }
2213 snd_pcm_stream_unlock_irq(substream);
2214 err = writer(substream, appl_ofs, data, offset, frames,
2215 transfer);
2216 snd_pcm_stream_lock_irq(substream);
2217 if (err < 0)
2218 goto _end_unlock;
2219 err = pcm_accessible_state(runtime);
2220 if (err < 0)
2221 goto _end_unlock;
2222 appl_ptr += frames;
2223 if (appl_ptr >= runtime->boundary)
2224 appl_ptr -= runtime->boundary;
2225 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2226 if (err < 0)
2227 goto _end_unlock;
2228
2229 offset += frames;
2230 size -= frames;
2231 xfer += frames;
2232 avail -= frames;
2233 if (is_playback &&
2234 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2235 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2236 err = snd_pcm_start(substream);
2237 if (err < 0)
2238 goto _end_unlock;
2239 }
2240 }
2241 _end_unlock:
2242 runtime->twake = 0;
2243 if (xfer > 0 && err >= 0)
2244 snd_pcm_update_state(substream, runtime);
2245 snd_pcm_stream_unlock_irq(substream);
2246 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2247}
2248EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2249
2250/*
2251 * standard channel mapping helpers
2252 */
2253
2254/* default channel maps for multi-channel playbacks, up to 8 channels */
2255const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2256 { .channels = 1,
2257 .map = { SNDRV_CHMAP_MONO } },
2258 { .channels = 2,
2259 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2260 { .channels = 4,
2261 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2262 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2263 { .channels = 6,
2264 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2265 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2266 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2267 { .channels = 8,
2268 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2269 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2270 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2271 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2272 { }
2273};
2274EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2275
2276/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2277const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2278 { .channels = 1,
2279 .map = { SNDRV_CHMAP_MONO } },
2280 { .channels = 2,
2281 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2282 { .channels = 4,
2283 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2284 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2285 { .channels = 6,
2286 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2287 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2288 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2289 { .channels = 8,
2290 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2291 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2292 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2293 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2294 { }
2295};
2296EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2297
2298static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2299{
2300 if (ch > info->max_channels)
2301 return false;
2302 return !info->channel_mask || (info->channel_mask & (1U << ch));
2303}
2304
2305static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2306 struct snd_ctl_elem_info *uinfo)
2307{
2308 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2309
2310 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2311 uinfo->count = 0;
2312 uinfo->count = info->max_channels;
2313 uinfo->value.integer.min = 0;
2314 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2315 return 0;
2316}
2317
2318/* get callback for channel map ctl element
2319 * stores the channel position firstly matching with the current channels
2320 */
2321static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2322 struct snd_ctl_elem_value *ucontrol)
2323{
2324 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2325 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2326 struct snd_pcm_substream *substream;
2327 const struct snd_pcm_chmap_elem *map;
2328
2329 if (!info->chmap)
2330 return -EINVAL;
2331 substream = snd_pcm_chmap_substream(info, idx);
2332 if (!substream)
2333 return -ENODEV;
2334 memset(ucontrol->value.integer.value, 0,
2335 sizeof(ucontrol->value.integer.value));
2336 if (!substream->runtime)
2337 return 0; /* no channels set */
2338 for (map = info->chmap; map->channels; map++) {
2339 int i;
2340 if (map->channels == substream->runtime->channels &&
2341 valid_chmap_channels(info, map->channels)) {
2342 for (i = 0; i < map->channels; i++)
2343 ucontrol->value.integer.value[i] = map->map[i];
2344 return 0;
2345 }
2346 }
2347 return -EINVAL;
2348}
2349
2350/* tlv callback for channel map ctl element
2351 * expands the pre-defined channel maps in a form of TLV
2352 */
2353static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2354 unsigned int size, unsigned int __user *tlv)
2355{
2356 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2357 const struct snd_pcm_chmap_elem *map;
2358 unsigned int __user *dst;
2359 int c, count = 0;
2360
2361 if (!info->chmap)
2362 return -EINVAL;
2363 if (size < 8)
2364 return -ENOMEM;
2365 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2366 return -EFAULT;
2367 size -= 8;
2368 dst = tlv + 2;
2369 for (map = info->chmap; map->channels; map++) {
2370 int chs_bytes = map->channels * 4;
2371 if (!valid_chmap_channels(info, map->channels))
2372 continue;
2373 if (size < 8)
2374 return -ENOMEM;
2375 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2376 put_user(chs_bytes, dst + 1))
2377 return -EFAULT;
2378 dst += 2;
2379 size -= 8;
2380 count += 8;
2381 if (size < chs_bytes)
2382 return -ENOMEM;
2383 size -= chs_bytes;
2384 count += chs_bytes;
2385 for (c = 0; c < map->channels; c++) {
2386 if (put_user(map->map[c], dst))
2387 return -EFAULT;
2388 dst++;
2389 }
2390 }
2391 if (put_user(count, tlv + 1))
2392 return -EFAULT;
2393 return 0;
2394}
2395
2396static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2397{
2398 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2399 info->pcm->streams[info->stream].chmap_kctl = NULL;
2400 kfree(info);
2401}
2402
2403/**
2404 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2405 * @pcm: the assigned PCM instance
2406 * @stream: stream direction
2407 * @chmap: channel map elements (for query)
2408 * @max_channels: the max number of channels for the stream
2409 * @private_value: the value passed to each kcontrol's private_value field
2410 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2411 *
2412 * Create channel-mapping control elements assigned to the given PCM stream(s).
2413 * Return: Zero if successful, or a negative error value.
2414 */
2415int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2416 const struct snd_pcm_chmap_elem *chmap,
2417 int max_channels,
2418 unsigned long private_value,
2419 struct snd_pcm_chmap **info_ret)
2420{
2421 struct snd_pcm_chmap *info;
2422 struct snd_kcontrol_new knew = {
2423 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2424 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2425 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2426 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2427 .info = pcm_chmap_ctl_info,
2428 .get = pcm_chmap_ctl_get,
2429 .tlv.c = pcm_chmap_ctl_tlv,
2430 };
2431 int err;
2432
2433 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2434 return -EBUSY;
2435 info = kzalloc(sizeof(*info), GFP_KERNEL);
2436 if (!info)
2437 return -ENOMEM;
2438 info->pcm = pcm;
2439 info->stream = stream;
2440 info->chmap = chmap;
2441 info->max_channels = max_channels;
2442 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2443 knew.name = "Playback Channel Map";
2444 else
2445 knew.name = "Capture Channel Map";
2446 knew.device = pcm->device;
2447 knew.count = pcm->streams[stream].substream_count;
2448 knew.private_value = private_value;
2449 info->kctl = snd_ctl_new1(&knew, info);
2450 if (!info->kctl) {
2451 kfree(info);
2452 return -ENOMEM;
2453 }
2454 info->kctl->private_free = pcm_chmap_ctl_private_free;
2455 err = snd_ctl_add(pcm->card, info->kctl);
2456 if (err < 0)
2457 return err;
2458 pcm->streams[stream].chmap_kctl = info->kctl;
2459 if (info_ret)
2460 *info_ret = info;
2461 return 0;
2462}
2463EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
1/*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23#include <linux/slab.h>
24#include <linux/time.h>
25#include <linux/math64.h>
26#include <linux/export.h>
27#include <sound/core.h>
28#include <sound/control.h>
29#include <sound/tlv.h>
30#include <sound/info.h>
31#include <sound/pcm.h>
32#include <sound/pcm_params.h>
33#include <sound/timer.h>
34
35#ifdef CONFIG_SND_PCM_XRUN_DEBUG
36#define CREATE_TRACE_POINTS
37#include "pcm_trace.h"
38#else
39#define trace_hwptr(substream, pos, in_interrupt)
40#define trace_xrun(substream)
41#define trace_hw_ptr_error(substream, reason)
42#endif
43
44/*
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
50 *
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52 */
53void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54{
55 struct snd_pcm_runtime *runtime = substream->runtime;
56 snd_pcm_uframes_t frames, ofs, transfer;
57
58 if (runtime->silence_size < runtime->boundary) {
59 snd_pcm_sframes_t noise_dist, n;
60 if (runtime->silence_start != runtime->control->appl_ptr) {
61 n = runtime->control->appl_ptr - runtime->silence_start;
62 if (n < 0)
63 n += runtime->boundary;
64 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65 runtime->silence_filled -= n;
66 else
67 runtime->silence_filled = 0;
68 runtime->silence_start = runtime->control->appl_ptr;
69 }
70 if (runtime->silence_filled >= runtime->buffer_size)
71 return;
72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74 return;
75 frames = runtime->silence_threshold - noise_dist;
76 if (frames > runtime->silence_size)
77 frames = runtime->silence_size;
78 } else {
79 if (new_hw_ptr == ULONG_MAX) { /* initialization */
80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81 if (avail > runtime->buffer_size)
82 avail = runtime->buffer_size;
83 runtime->silence_filled = avail > 0 ? avail : 0;
84 runtime->silence_start = (runtime->status->hw_ptr +
85 runtime->silence_filled) %
86 runtime->boundary;
87 } else {
88 ofs = runtime->status->hw_ptr;
89 frames = new_hw_ptr - ofs;
90 if ((snd_pcm_sframes_t)frames < 0)
91 frames += runtime->boundary;
92 runtime->silence_filled -= frames;
93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94 runtime->silence_filled = 0;
95 runtime->silence_start = new_hw_ptr;
96 } else {
97 runtime->silence_start = ofs;
98 }
99 }
100 frames = runtime->buffer_size - runtime->silence_filled;
101 }
102 if (snd_BUG_ON(frames > runtime->buffer_size))
103 return;
104 if (frames == 0)
105 return;
106 ofs = runtime->silence_start % runtime->buffer_size;
107 while (frames > 0) {
108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111 if (substream->ops->silence) {
112 int err;
113 err = substream->ops->silence(substream, -1, ofs, transfer);
114 snd_BUG_ON(err < 0);
115 } else {
116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118 }
119 } else {
120 unsigned int c;
121 unsigned int channels = runtime->channels;
122 if (substream->ops->silence) {
123 for (c = 0; c < channels; ++c) {
124 int err;
125 err = substream->ops->silence(substream, c, ofs, transfer);
126 snd_BUG_ON(err < 0);
127 }
128 } else {
129 size_t dma_csize = runtime->dma_bytes / channels;
130 for (c = 0; c < channels; ++c) {
131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133 }
134 }
135 }
136 runtime->silence_filled += transfer;
137 frames -= transfer;
138 ofs = 0;
139 }
140}
141
142#ifdef CONFIG_SND_DEBUG
143void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144 char *name, size_t len)
145{
146 snprintf(name, len, "pcmC%dD%d%c:%d",
147 substream->pcm->card->number,
148 substream->pcm->device,
149 substream->stream ? 'c' : 'p',
150 substream->number);
151}
152EXPORT_SYMBOL(snd_pcm_debug_name);
153#endif
154
155#define XRUN_DEBUG_BASIC (1<<0)
156#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
158
159#ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161#define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
163#else
164#define xrun_debug(substream, mask) 0
165#endif
166
167#define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
169 dump_stack(); \
170 } while (0)
171
172static void xrun(struct snd_pcm_substream *substream)
173{
174 struct snd_pcm_runtime *runtime = substream->runtime;
175
176 trace_xrun(substream);
177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181 char name[16];
182 snd_pcm_debug_name(substream, name, sizeof(name));
183 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184 dump_stack_on_xrun(substream);
185 }
186}
187
188#ifdef CONFIG_SND_PCM_XRUN_DEBUG
189#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
190 do { \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
196 } \
197 } while (0)
198
199#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201#define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203#endif
204
205int snd_pcm_update_state(struct snd_pcm_substream *substream,
206 struct snd_pcm_runtime *runtime)
207{
208 snd_pcm_uframes_t avail;
209
210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211 avail = snd_pcm_playback_avail(runtime);
212 else
213 avail = snd_pcm_capture_avail(runtime);
214 if (avail > runtime->avail_max)
215 runtime->avail_max = avail;
216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217 if (avail >= runtime->buffer_size) {
218 snd_pcm_drain_done(substream);
219 return -EPIPE;
220 }
221 } else {
222 if (avail >= runtime->stop_threshold) {
223 xrun(substream);
224 return -EPIPE;
225 }
226 }
227 if (runtime->twake) {
228 if (avail >= runtime->twake)
229 wake_up(&runtime->tsleep);
230 } else if (avail >= runtime->control->avail_min)
231 wake_up(&runtime->sleep);
232 return 0;
233}
234
235static void update_audio_tstamp(struct snd_pcm_substream *substream,
236 struct timespec *curr_tstamp,
237 struct timespec *audio_tstamp)
238{
239 struct snd_pcm_runtime *runtime = substream->runtime;
240 u64 audio_frames, audio_nsecs;
241 struct timespec driver_tstamp;
242
243 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
244 return;
245
246 if (!(substream->ops->get_time_info) ||
247 (runtime->audio_tstamp_report.actual_type ==
248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
249
250 /*
251 * provide audio timestamp derived from pointer position
252 * add delay only if requested
253 */
254
255 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
256
257 if (runtime->audio_tstamp_config.report_delay) {
258 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
259 audio_frames -= runtime->delay;
260 else
261 audio_frames += runtime->delay;
262 }
263 audio_nsecs = div_u64(audio_frames * 1000000000LL,
264 runtime->rate);
265 *audio_tstamp = ns_to_timespec(audio_nsecs);
266 }
267 runtime->status->audio_tstamp = *audio_tstamp;
268 runtime->status->tstamp = *curr_tstamp;
269
270 /*
271 * re-take a driver timestamp to let apps detect if the reference tstamp
272 * read by low-level hardware was provided with a delay
273 */
274 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
275 runtime->driver_tstamp = driver_tstamp;
276}
277
278static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
279 unsigned int in_interrupt)
280{
281 struct snd_pcm_runtime *runtime = substream->runtime;
282 snd_pcm_uframes_t pos;
283 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
284 snd_pcm_sframes_t hdelta, delta;
285 unsigned long jdelta;
286 unsigned long curr_jiffies;
287 struct timespec curr_tstamp;
288 struct timespec audio_tstamp;
289 int crossed_boundary = 0;
290
291 old_hw_ptr = runtime->status->hw_ptr;
292
293 /*
294 * group pointer, time and jiffies reads to allow for more
295 * accurate correlations/corrections.
296 * The values are stored at the end of this routine after
297 * corrections for hw_ptr position
298 */
299 pos = substream->ops->pointer(substream);
300 curr_jiffies = jiffies;
301 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
302 if ((substream->ops->get_time_info) &&
303 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
304 substream->ops->get_time_info(substream, &curr_tstamp,
305 &audio_tstamp,
306 &runtime->audio_tstamp_config,
307 &runtime->audio_tstamp_report);
308
309 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
310 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
311 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
312 } else
313 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
314 }
315
316 if (pos == SNDRV_PCM_POS_XRUN) {
317 xrun(substream);
318 return -EPIPE;
319 }
320 if (pos >= runtime->buffer_size) {
321 if (printk_ratelimit()) {
322 char name[16];
323 snd_pcm_debug_name(substream, name, sizeof(name));
324 pcm_err(substream->pcm,
325 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
326 name, pos, runtime->buffer_size,
327 runtime->period_size);
328 }
329 pos = 0;
330 }
331 pos -= pos % runtime->min_align;
332 trace_hwptr(substream, pos, in_interrupt);
333 hw_base = runtime->hw_ptr_base;
334 new_hw_ptr = hw_base + pos;
335 if (in_interrupt) {
336 /* we know that one period was processed */
337 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
338 delta = runtime->hw_ptr_interrupt + runtime->period_size;
339 if (delta > new_hw_ptr) {
340 /* check for double acknowledged interrupts */
341 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
342 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
343 hw_base += runtime->buffer_size;
344 if (hw_base >= runtime->boundary) {
345 hw_base = 0;
346 crossed_boundary++;
347 }
348 new_hw_ptr = hw_base + pos;
349 goto __delta;
350 }
351 }
352 }
353 /* new_hw_ptr might be lower than old_hw_ptr in case when */
354 /* pointer crosses the end of the ring buffer */
355 if (new_hw_ptr < old_hw_ptr) {
356 hw_base += runtime->buffer_size;
357 if (hw_base >= runtime->boundary) {
358 hw_base = 0;
359 crossed_boundary++;
360 }
361 new_hw_ptr = hw_base + pos;
362 }
363 __delta:
364 delta = new_hw_ptr - old_hw_ptr;
365 if (delta < 0)
366 delta += runtime->boundary;
367
368 if (runtime->no_period_wakeup) {
369 snd_pcm_sframes_t xrun_threshold;
370 /*
371 * Without regular period interrupts, we have to check
372 * the elapsed time to detect xruns.
373 */
374 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
375 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
376 goto no_delta_check;
377 hdelta = jdelta - delta * HZ / runtime->rate;
378 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
379 while (hdelta > xrun_threshold) {
380 delta += runtime->buffer_size;
381 hw_base += runtime->buffer_size;
382 if (hw_base >= runtime->boundary) {
383 hw_base = 0;
384 crossed_boundary++;
385 }
386 new_hw_ptr = hw_base + pos;
387 hdelta -= runtime->hw_ptr_buffer_jiffies;
388 }
389 goto no_delta_check;
390 }
391
392 /* something must be really wrong */
393 if (delta >= runtime->buffer_size + runtime->period_size) {
394 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
395 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
396 substream->stream, (long)pos,
397 (long)new_hw_ptr, (long)old_hw_ptr);
398 return 0;
399 }
400
401 /* Do jiffies check only in xrun_debug mode */
402 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
403 goto no_jiffies_check;
404
405 /* Skip the jiffies check for hardwares with BATCH flag.
406 * Such hardware usually just increases the position at each IRQ,
407 * thus it can't give any strange position.
408 */
409 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
410 goto no_jiffies_check;
411 hdelta = delta;
412 if (hdelta < runtime->delay)
413 goto no_jiffies_check;
414 hdelta -= runtime->delay;
415 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
416 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
417 delta = jdelta /
418 (((runtime->period_size * HZ) / runtime->rate)
419 + HZ/100);
420 /* move new_hw_ptr according jiffies not pos variable */
421 new_hw_ptr = old_hw_ptr;
422 hw_base = delta;
423 /* use loop to avoid checks for delta overflows */
424 /* the delta value is small or zero in most cases */
425 while (delta > 0) {
426 new_hw_ptr += runtime->period_size;
427 if (new_hw_ptr >= runtime->boundary) {
428 new_hw_ptr -= runtime->boundary;
429 crossed_boundary--;
430 }
431 delta--;
432 }
433 /* align hw_base to buffer_size */
434 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
435 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
436 (long)pos, (long)hdelta,
437 (long)runtime->period_size, jdelta,
438 ((hdelta * HZ) / runtime->rate), hw_base,
439 (unsigned long)old_hw_ptr,
440 (unsigned long)new_hw_ptr);
441 /* reset values to proper state */
442 delta = 0;
443 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
444 }
445 no_jiffies_check:
446 if (delta > runtime->period_size + runtime->period_size / 2) {
447 hw_ptr_error(substream, in_interrupt,
448 "Lost interrupts?",
449 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
450 substream->stream, (long)delta,
451 (long)new_hw_ptr,
452 (long)old_hw_ptr);
453 }
454
455 no_delta_check:
456 if (runtime->status->hw_ptr == new_hw_ptr) {
457 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
458 return 0;
459 }
460
461 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
462 runtime->silence_size > 0)
463 snd_pcm_playback_silence(substream, new_hw_ptr);
464
465 if (in_interrupt) {
466 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
467 if (delta < 0)
468 delta += runtime->boundary;
469 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
470 runtime->hw_ptr_interrupt += delta;
471 if (runtime->hw_ptr_interrupt >= runtime->boundary)
472 runtime->hw_ptr_interrupt -= runtime->boundary;
473 }
474 runtime->hw_ptr_base = hw_base;
475 runtime->status->hw_ptr = new_hw_ptr;
476 runtime->hw_ptr_jiffies = curr_jiffies;
477 if (crossed_boundary) {
478 snd_BUG_ON(crossed_boundary != 1);
479 runtime->hw_ptr_wrap += runtime->boundary;
480 }
481
482 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
483
484 return snd_pcm_update_state(substream, runtime);
485}
486
487/* CAUTION: call it with irq disabled */
488int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
489{
490 return snd_pcm_update_hw_ptr0(substream, 0);
491}
492
493/**
494 * snd_pcm_set_ops - set the PCM operators
495 * @pcm: the pcm instance
496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
497 * @ops: the operator table
498 *
499 * Sets the given PCM operators to the pcm instance.
500 */
501void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
502 const struct snd_pcm_ops *ops)
503{
504 struct snd_pcm_str *stream = &pcm->streams[direction];
505 struct snd_pcm_substream *substream;
506
507 for (substream = stream->substream; substream != NULL; substream = substream->next)
508 substream->ops = ops;
509}
510
511EXPORT_SYMBOL(snd_pcm_set_ops);
512
513/**
514 * snd_pcm_sync - set the PCM sync id
515 * @substream: the pcm substream
516 *
517 * Sets the PCM sync identifier for the card.
518 */
519void snd_pcm_set_sync(struct snd_pcm_substream *substream)
520{
521 struct snd_pcm_runtime *runtime = substream->runtime;
522
523 runtime->sync.id32[0] = substream->pcm->card->number;
524 runtime->sync.id32[1] = -1;
525 runtime->sync.id32[2] = -1;
526 runtime->sync.id32[3] = -1;
527}
528
529EXPORT_SYMBOL(snd_pcm_set_sync);
530
531/*
532 * Standard ioctl routine
533 */
534
535static inline unsigned int div32(unsigned int a, unsigned int b,
536 unsigned int *r)
537{
538 if (b == 0) {
539 *r = 0;
540 return UINT_MAX;
541 }
542 *r = a % b;
543 return a / b;
544}
545
546static inline unsigned int div_down(unsigned int a, unsigned int b)
547{
548 if (b == 0)
549 return UINT_MAX;
550 return a / b;
551}
552
553static inline unsigned int div_up(unsigned int a, unsigned int b)
554{
555 unsigned int r;
556 unsigned int q;
557 if (b == 0)
558 return UINT_MAX;
559 q = div32(a, b, &r);
560 if (r)
561 ++q;
562 return q;
563}
564
565static inline unsigned int mul(unsigned int a, unsigned int b)
566{
567 if (a == 0)
568 return 0;
569 if (div_down(UINT_MAX, a) < b)
570 return UINT_MAX;
571 return a * b;
572}
573
574static inline unsigned int muldiv32(unsigned int a, unsigned int b,
575 unsigned int c, unsigned int *r)
576{
577 u_int64_t n = (u_int64_t) a * b;
578 if (c == 0) {
579 snd_BUG_ON(!n);
580 *r = 0;
581 return UINT_MAX;
582 }
583 n = div_u64_rem(n, c, r);
584 if (n >= UINT_MAX) {
585 *r = 0;
586 return UINT_MAX;
587 }
588 return n;
589}
590
591/**
592 * snd_interval_refine - refine the interval value of configurator
593 * @i: the interval value to refine
594 * @v: the interval value to refer to
595 *
596 * Refines the interval value with the reference value.
597 * The interval is changed to the range satisfying both intervals.
598 * The interval status (min, max, integer, etc.) are evaluated.
599 *
600 * Return: Positive if the value is changed, zero if it's not changed, or a
601 * negative error code.
602 */
603int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
604{
605 int changed = 0;
606 if (snd_BUG_ON(snd_interval_empty(i)))
607 return -EINVAL;
608 if (i->min < v->min) {
609 i->min = v->min;
610 i->openmin = v->openmin;
611 changed = 1;
612 } else if (i->min == v->min && !i->openmin && v->openmin) {
613 i->openmin = 1;
614 changed = 1;
615 }
616 if (i->max > v->max) {
617 i->max = v->max;
618 i->openmax = v->openmax;
619 changed = 1;
620 } else if (i->max == v->max && !i->openmax && v->openmax) {
621 i->openmax = 1;
622 changed = 1;
623 }
624 if (!i->integer && v->integer) {
625 i->integer = 1;
626 changed = 1;
627 }
628 if (i->integer) {
629 if (i->openmin) {
630 i->min++;
631 i->openmin = 0;
632 }
633 if (i->openmax) {
634 i->max--;
635 i->openmax = 0;
636 }
637 } else if (!i->openmin && !i->openmax && i->min == i->max)
638 i->integer = 1;
639 if (snd_interval_checkempty(i)) {
640 snd_interval_none(i);
641 return -EINVAL;
642 }
643 return changed;
644}
645
646EXPORT_SYMBOL(snd_interval_refine);
647
648static int snd_interval_refine_first(struct snd_interval *i)
649{
650 if (snd_BUG_ON(snd_interval_empty(i)))
651 return -EINVAL;
652 if (snd_interval_single(i))
653 return 0;
654 i->max = i->min;
655 i->openmax = i->openmin;
656 if (i->openmax)
657 i->max++;
658 return 1;
659}
660
661static int snd_interval_refine_last(struct snd_interval *i)
662{
663 if (snd_BUG_ON(snd_interval_empty(i)))
664 return -EINVAL;
665 if (snd_interval_single(i))
666 return 0;
667 i->min = i->max;
668 i->openmin = i->openmax;
669 if (i->openmin)
670 i->min--;
671 return 1;
672}
673
674void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
675{
676 if (a->empty || b->empty) {
677 snd_interval_none(c);
678 return;
679 }
680 c->empty = 0;
681 c->min = mul(a->min, b->min);
682 c->openmin = (a->openmin || b->openmin);
683 c->max = mul(a->max, b->max);
684 c->openmax = (a->openmax || b->openmax);
685 c->integer = (a->integer && b->integer);
686}
687
688/**
689 * snd_interval_div - refine the interval value with division
690 * @a: dividend
691 * @b: divisor
692 * @c: quotient
693 *
694 * c = a / b
695 *
696 * Returns non-zero if the value is changed, zero if not changed.
697 */
698void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
699{
700 unsigned int r;
701 if (a->empty || b->empty) {
702 snd_interval_none(c);
703 return;
704 }
705 c->empty = 0;
706 c->min = div32(a->min, b->max, &r);
707 c->openmin = (r || a->openmin || b->openmax);
708 if (b->min > 0) {
709 c->max = div32(a->max, b->min, &r);
710 if (r) {
711 c->max++;
712 c->openmax = 1;
713 } else
714 c->openmax = (a->openmax || b->openmin);
715 } else {
716 c->max = UINT_MAX;
717 c->openmax = 0;
718 }
719 c->integer = 0;
720}
721
722/**
723 * snd_interval_muldivk - refine the interval value
724 * @a: dividend 1
725 * @b: dividend 2
726 * @k: divisor (as integer)
727 * @c: result
728 *
729 * c = a * b / k
730 *
731 * Returns non-zero if the value is changed, zero if not changed.
732 */
733void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
734 unsigned int k, struct snd_interval *c)
735{
736 unsigned int r;
737 if (a->empty || b->empty) {
738 snd_interval_none(c);
739 return;
740 }
741 c->empty = 0;
742 c->min = muldiv32(a->min, b->min, k, &r);
743 c->openmin = (r || a->openmin || b->openmin);
744 c->max = muldiv32(a->max, b->max, k, &r);
745 if (r) {
746 c->max++;
747 c->openmax = 1;
748 } else
749 c->openmax = (a->openmax || b->openmax);
750 c->integer = 0;
751}
752
753/**
754 * snd_interval_mulkdiv - refine the interval value
755 * @a: dividend 1
756 * @k: dividend 2 (as integer)
757 * @b: divisor
758 * @c: result
759 *
760 * c = a * k / b
761 *
762 * Returns non-zero if the value is changed, zero if not changed.
763 */
764void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
765 const struct snd_interval *b, struct snd_interval *c)
766{
767 unsigned int r;
768 if (a->empty || b->empty) {
769 snd_interval_none(c);
770 return;
771 }
772 c->empty = 0;
773 c->min = muldiv32(a->min, k, b->max, &r);
774 c->openmin = (r || a->openmin || b->openmax);
775 if (b->min > 0) {
776 c->max = muldiv32(a->max, k, b->min, &r);
777 if (r) {
778 c->max++;
779 c->openmax = 1;
780 } else
781 c->openmax = (a->openmax || b->openmin);
782 } else {
783 c->max = UINT_MAX;
784 c->openmax = 0;
785 }
786 c->integer = 0;
787}
788
789/* ---- */
790
791
792/**
793 * snd_interval_ratnum - refine the interval value
794 * @i: interval to refine
795 * @rats_count: number of ratnum_t
796 * @rats: ratnum_t array
797 * @nump: pointer to store the resultant numerator
798 * @denp: pointer to store the resultant denominator
799 *
800 * Return: Positive if the value is changed, zero if it's not changed, or a
801 * negative error code.
802 */
803int snd_interval_ratnum(struct snd_interval *i,
804 unsigned int rats_count, const struct snd_ratnum *rats,
805 unsigned int *nump, unsigned int *denp)
806{
807 unsigned int best_num, best_den;
808 int best_diff;
809 unsigned int k;
810 struct snd_interval t;
811 int err;
812 unsigned int result_num, result_den;
813 int result_diff;
814
815 best_num = best_den = best_diff = 0;
816 for (k = 0; k < rats_count; ++k) {
817 unsigned int num = rats[k].num;
818 unsigned int den;
819 unsigned int q = i->min;
820 int diff;
821 if (q == 0)
822 q = 1;
823 den = div_up(num, q);
824 if (den < rats[k].den_min)
825 continue;
826 if (den > rats[k].den_max)
827 den = rats[k].den_max;
828 else {
829 unsigned int r;
830 r = (den - rats[k].den_min) % rats[k].den_step;
831 if (r != 0)
832 den -= r;
833 }
834 diff = num - q * den;
835 if (diff < 0)
836 diff = -diff;
837 if (best_num == 0 ||
838 diff * best_den < best_diff * den) {
839 best_diff = diff;
840 best_den = den;
841 best_num = num;
842 }
843 }
844 if (best_den == 0) {
845 i->empty = 1;
846 return -EINVAL;
847 }
848 t.min = div_down(best_num, best_den);
849 t.openmin = !!(best_num % best_den);
850
851 result_num = best_num;
852 result_diff = best_diff;
853 result_den = best_den;
854 best_num = best_den = best_diff = 0;
855 for (k = 0; k < rats_count; ++k) {
856 unsigned int num = rats[k].num;
857 unsigned int den;
858 unsigned int q = i->max;
859 int diff;
860 if (q == 0) {
861 i->empty = 1;
862 return -EINVAL;
863 }
864 den = div_down(num, q);
865 if (den > rats[k].den_max)
866 continue;
867 if (den < rats[k].den_min)
868 den = rats[k].den_min;
869 else {
870 unsigned int r;
871 r = (den - rats[k].den_min) % rats[k].den_step;
872 if (r != 0)
873 den += rats[k].den_step - r;
874 }
875 diff = q * den - num;
876 if (diff < 0)
877 diff = -diff;
878 if (best_num == 0 ||
879 diff * best_den < best_diff * den) {
880 best_diff = diff;
881 best_den = den;
882 best_num = num;
883 }
884 }
885 if (best_den == 0) {
886 i->empty = 1;
887 return -EINVAL;
888 }
889 t.max = div_up(best_num, best_den);
890 t.openmax = !!(best_num % best_den);
891 t.integer = 0;
892 err = snd_interval_refine(i, &t);
893 if (err < 0)
894 return err;
895
896 if (snd_interval_single(i)) {
897 if (best_diff * result_den < result_diff * best_den) {
898 result_num = best_num;
899 result_den = best_den;
900 }
901 if (nump)
902 *nump = result_num;
903 if (denp)
904 *denp = result_den;
905 }
906 return err;
907}
908
909EXPORT_SYMBOL(snd_interval_ratnum);
910
911/**
912 * snd_interval_ratden - refine the interval value
913 * @i: interval to refine
914 * @rats_count: number of struct ratden
915 * @rats: struct ratden array
916 * @nump: pointer to store the resultant numerator
917 * @denp: pointer to store the resultant denominator
918 *
919 * Return: Positive if the value is changed, zero if it's not changed, or a
920 * negative error code.
921 */
922static int snd_interval_ratden(struct snd_interval *i,
923 unsigned int rats_count,
924 const struct snd_ratden *rats,
925 unsigned int *nump, unsigned int *denp)
926{
927 unsigned int best_num, best_diff, best_den;
928 unsigned int k;
929 struct snd_interval t;
930 int err;
931
932 best_num = best_den = best_diff = 0;
933 for (k = 0; k < rats_count; ++k) {
934 unsigned int num;
935 unsigned int den = rats[k].den;
936 unsigned int q = i->min;
937 int diff;
938 num = mul(q, den);
939 if (num > rats[k].num_max)
940 continue;
941 if (num < rats[k].num_min)
942 num = rats[k].num_max;
943 else {
944 unsigned int r;
945 r = (num - rats[k].num_min) % rats[k].num_step;
946 if (r != 0)
947 num += rats[k].num_step - r;
948 }
949 diff = num - q * den;
950 if (best_num == 0 ||
951 diff * best_den < best_diff * den) {
952 best_diff = diff;
953 best_den = den;
954 best_num = num;
955 }
956 }
957 if (best_den == 0) {
958 i->empty = 1;
959 return -EINVAL;
960 }
961 t.min = div_down(best_num, best_den);
962 t.openmin = !!(best_num % best_den);
963
964 best_num = best_den = best_diff = 0;
965 for (k = 0; k < rats_count; ++k) {
966 unsigned int num;
967 unsigned int den = rats[k].den;
968 unsigned int q = i->max;
969 int diff;
970 num = mul(q, den);
971 if (num < rats[k].num_min)
972 continue;
973 if (num > rats[k].num_max)
974 num = rats[k].num_max;
975 else {
976 unsigned int r;
977 r = (num - rats[k].num_min) % rats[k].num_step;
978 if (r != 0)
979 num -= r;
980 }
981 diff = q * den - num;
982 if (best_num == 0 ||
983 diff * best_den < best_diff * den) {
984 best_diff = diff;
985 best_den = den;
986 best_num = num;
987 }
988 }
989 if (best_den == 0) {
990 i->empty = 1;
991 return -EINVAL;
992 }
993 t.max = div_up(best_num, best_den);
994 t.openmax = !!(best_num % best_den);
995 t.integer = 0;
996 err = snd_interval_refine(i, &t);
997 if (err < 0)
998 return err;
999
1000 if (snd_interval_single(i)) {
1001 if (nump)
1002 *nump = best_num;
1003 if (denp)
1004 *denp = best_den;
1005 }
1006 return err;
1007}
1008
1009/**
1010 * snd_interval_list - refine the interval value from the list
1011 * @i: the interval value to refine
1012 * @count: the number of elements in the list
1013 * @list: the value list
1014 * @mask: the bit-mask to evaluate
1015 *
1016 * Refines the interval value from the list.
1017 * When mask is non-zero, only the elements corresponding to bit 1 are
1018 * evaluated.
1019 *
1020 * Return: Positive if the value is changed, zero if it's not changed, or a
1021 * negative error code.
1022 */
1023int snd_interval_list(struct snd_interval *i, unsigned int count,
1024 const unsigned int *list, unsigned int mask)
1025{
1026 unsigned int k;
1027 struct snd_interval list_range;
1028
1029 if (!count) {
1030 i->empty = 1;
1031 return -EINVAL;
1032 }
1033 snd_interval_any(&list_range);
1034 list_range.min = UINT_MAX;
1035 list_range.max = 0;
1036 for (k = 0; k < count; k++) {
1037 if (mask && !(mask & (1 << k)))
1038 continue;
1039 if (!snd_interval_test(i, list[k]))
1040 continue;
1041 list_range.min = min(list_range.min, list[k]);
1042 list_range.max = max(list_range.max, list[k]);
1043 }
1044 return snd_interval_refine(i, &list_range);
1045}
1046
1047EXPORT_SYMBOL(snd_interval_list);
1048
1049/**
1050 * snd_interval_ranges - refine the interval value from the list of ranges
1051 * @i: the interval value to refine
1052 * @count: the number of elements in the list of ranges
1053 * @ranges: the ranges list
1054 * @mask: the bit-mask to evaluate
1055 *
1056 * Refines the interval value from the list of ranges.
1057 * When mask is non-zero, only the elements corresponding to bit 1 are
1058 * evaluated.
1059 *
1060 * Return: Positive if the value is changed, zero if it's not changed, or a
1061 * negative error code.
1062 */
1063int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1064 const struct snd_interval *ranges, unsigned int mask)
1065{
1066 unsigned int k;
1067 struct snd_interval range_union;
1068 struct snd_interval range;
1069
1070 if (!count) {
1071 snd_interval_none(i);
1072 return -EINVAL;
1073 }
1074 snd_interval_any(&range_union);
1075 range_union.min = UINT_MAX;
1076 range_union.max = 0;
1077 for (k = 0; k < count; k++) {
1078 if (mask && !(mask & (1 << k)))
1079 continue;
1080 snd_interval_copy(&range, &ranges[k]);
1081 if (snd_interval_refine(&range, i) < 0)
1082 continue;
1083 if (snd_interval_empty(&range))
1084 continue;
1085
1086 if (range.min < range_union.min) {
1087 range_union.min = range.min;
1088 range_union.openmin = 1;
1089 }
1090 if (range.min == range_union.min && !range.openmin)
1091 range_union.openmin = 0;
1092 if (range.max > range_union.max) {
1093 range_union.max = range.max;
1094 range_union.openmax = 1;
1095 }
1096 if (range.max == range_union.max && !range.openmax)
1097 range_union.openmax = 0;
1098 }
1099 return snd_interval_refine(i, &range_union);
1100}
1101EXPORT_SYMBOL(snd_interval_ranges);
1102
1103static int snd_interval_step(struct snd_interval *i, unsigned int step)
1104{
1105 unsigned int n;
1106 int changed = 0;
1107 n = i->min % step;
1108 if (n != 0 || i->openmin) {
1109 i->min += step - n;
1110 i->openmin = 0;
1111 changed = 1;
1112 }
1113 n = i->max % step;
1114 if (n != 0 || i->openmax) {
1115 i->max -= n;
1116 i->openmax = 0;
1117 changed = 1;
1118 }
1119 if (snd_interval_checkempty(i)) {
1120 i->empty = 1;
1121 return -EINVAL;
1122 }
1123 return changed;
1124}
1125
1126/* Info constraints helpers */
1127
1128/**
1129 * snd_pcm_hw_rule_add - add the hw-constraint rule
1130 * @runtime: the pcm runtime instance
1131 * @cond: condition bits
1132 * @var: the variable to evaluate
1133 * @func: the evaluation function
1134 * @private: the private data pointer passed to function
1135 * @dep: the dependent variables
1136 *
1137 * Return: Zero if successful, or a negative error code on failure.
1138 */
1139int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1140 int var,
1141 snd_pcm_hw_rule_func_t func, void *private,
1142 int dep, ...)
1143{
1144 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1145 struct snd_pcm_hw_rule *c;
1146 unsigned int k;
1147 va_list args;
1148 va_start(args, dep);
1149 if (constrs->rules_num >= constrs->rules_all) {
1150 struct snd_pcm_hw_rule *new;
1151 unsigned int new_rules = constrs->rules_all + 16;
1152 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1153 if (!new) {
1154 va_end(args);
1155 return -ENOMEM;
1156 }
1157 if (constrs->rules) {
1158 memcpy(new, constrs->rules,
1159 constrs->rules_num * sizeof(*c));
1160 kfree(constrs->rules);
1161 }
1162 constrs->rules = new;
1163 constrs->rules_all = new_rules;
1164 }
1165 c = &constrs->rules[constrs->rules_num];
1166 c->cond = cond;
1167 c->func = func;
1168 c->var = var;
1169 c->private = private;
1170 k = 0;
1171 while (1) {
1172 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1173 va_end(args);
1174 return -EINVAL;
1175 }
1176 c->deps[k++] = dep;
1177 if (dep < 0)
1178 break;
1179 dep = va_arg(args, int);
1180 }
1181 constrs->rules_num++;
1182 va_end(args);
1183 return 0;
1184}
1185
1186EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1187
1188/**
1189 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the bitmap mask
1193 *
1194 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1195 *
1196 * Return: Zero if successful, or a negative error code on failure.
1197 */
1198int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199 u_int32_t mask)
1200{
1201 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202 struct snd_mask *maskp = constrs_mask(constrs, var);
1203 *maskp->bits &= mask;
1204 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1205 if (*maskp->bits == 0)
1206 return -EINVAL;
1207 return 0;
1208}
1209
1210/**
1211 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the mask
1214 * @mask: the 64bit bitmap mask
1215 *
1216 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1217 *
1218 * Return: Zero if successful, or a negative error code on failure.
1219 */
1220int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1221 u_int64_t mask)
1222{
1223 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1224 struct snd_mask *maskp = constrs_mask(constrs, var);
1225 maskp->bits[0] &= (u_int32_t)mask;
1226 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1227 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1228 if (! maskp->bits[0] && ! maskp->bits[1])
1229 return -EINVAL;
1230 return 0;
1231}
1232EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1233
1234/**
1235 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1236 * @runtime: PCM runtime instance
1237 * @var: hw_params variable to apply the integer constraint
1238 *
1239 * Apply the constraint of integer to an interval parameter.
1240 *
1241 * Return: Positive if the value is changed, zero if it's not changed, or a
1242 * negative error code.
1243 */
1244int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1245{
1246 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247 return snd_interval_setinteger(constrs_interval(constrs, var));
1248}
1249
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 *
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265 unsigned int min, unsigned int max)
1266{
1267 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268 struct snd_interval t;
1269 t.min = min;
1270 t.max = max;
1271 t.openmin = t.openmax = 0;
1272 t.integer = 0;
1273 return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275
1276EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1277
1278static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1279 struct snd_pcm_hw_rule *rule)
1280{
1281 struct snd_pcm_hw_constraint_list *list = rule->private;
1282 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1283}
1284
1285
1286/**
1287 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1288 * @runtime: PCM runtime instance
1289 * @cond: condition bits
1290 * @var: hw_params variable to apply the list constraint
1291 * @l: list
1292 *
1293 * Apply the list of constraints to an interval parameter.
1294 *
1295 * Return: Zero if successful, or a negative error code on failure.
1296 */
1297int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1298 unsigned int cond,
1299 snd_pcm_hw_param_t var,
1300 const struct snd_pcm_hw_constraint_list *l)
1301{
1302 return snd_pcm_hw_rule_add(runtime, cond, var,
1303 snd_pcm_hw_rule_list, (void *)l,
1304 var, -1);
1305}
1306
1307EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1308
1309static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1310 struct snd_pcm_hw_rule *rule)
1311{
1312 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1313 return snd_interval_ranges(hw_param_interval(params, rule->var),
1314 r->count, r->ranges, r->mask);
1315}
1316
1317
1318/**
1319 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1320 * @runtime: PCM runtime instance
1321 * @cond: condition bits
1322 * @var: hw_params variable to apply the list of range constraints
1323 * @r: ranges
1324 *
1325 * Apply the list of range constraints to an interval parameter.
1326 *
1327 * Return: Zero if successful, or a negative error code on failure.
1328 */
1329int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1330 unsigned int cond,
1331 snd_pcm_hw_param_t var,
1332 const struct snd_pcm_hw_constraint_ranges *r)
1333{
1334 return snd_pcm_hw_rule_add(runtime, cond, var,
1335 snd_pcm_hw_rule_ranges, (void *)r,
1336 var, -1);
1337}
1338EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1339
1340static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1341 struct snd_pcm_hw_rule *rule)
1342{
1343 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1344 unsigned int num = 0, den = 0;
1345 int err;
1346 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1347 r->nrats, r->rats, &num, &den);
1348 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1349 params->rate_num = num;
1350 params->rate_den = den;
1351 }
1352 return err;
1353}
1354
1355/**
1356 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1357 * @runtime: PCM runtime instance
1358 * @cond: condition bits
1359 * @var: hw_params variable to apply the ratnums constraint
1360 * @r: struct snd_ratnums constriants
1361 *
1362 * Return: Zero if successful, or a negative error code on failure.
1363 */
1364int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1365 unsigned int cond,
1366 snd_pcm_hw_param_t var,
1367 const struct snd_pcm_hw_constraint_ratnums *r)
1368{
1369 return snd_pcm_hw_rule_add(runtime, cond, var,
1370 snd_pcm_hw_rule_ratnums, (void *)r,
1371 var, -1);
1372}
1373
1374EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1375
1376static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1377 struct snd_pcm_hw_rule *rule)
1378{
1379 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1380 unsigned int num = 0, den = 0;
1381 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1382 r->nrats, r->rats, &num, &den);
1383 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1384 params->rate_num = num;
1385 params->rate_den = den;
1386 }
1387 return err;
1388}
1389
1390/**
1391 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1392 * @runtime: PCM runtime instance
1393 * @cond: condition bits
1394 * @var: hw_params variable to apply the ratdens constraint
1395 * @r: struct snd_ratdens constriants
1396 *
1397 * Return: Zero if successful, or a negative error code on failure.
1398 */
1399int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1400 unsigned int cond,
1401 snd_pcm_hw_param_t var,
1402 const struct snd_pcm_hw_constraint_ratdens *r)
1403{
1404 return snd_pcm_hw_rule_add(runtime, cond, var,
1405 snd_pcm_hw_rule_ratdens, (void *)r,
1406 var, -1);
1407}
1408
1409EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1410
1411static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1412 struct snd_pcm_hw_rule *rule)
1413{
1414 unsigned int l = (unsigned long) rule->private;
1415 int width = l & 0xffff;
1416 unsigned int msbits = l >> 16;
1417 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1418
1419 if (!snd_interval_single(i))
1420 return 0;
1421
1422 if ((snd_interval_value(i) == width) ||
1423 (width == 0 && snd_interval_value(i) > msbits))
1424 params->msbits = min_not_zero(params->msbits, msbits);
1425
1426 return 0;
1427}
1428
1429/**
1430 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1431 * @runtime: PCM runtime instance
1432 * @cond: condition bits
1433 * @width: sample bits width
1434 * @msbits: msbits width
1435 *
1436 * This constraint will set the number of most significant bits (msbits) if a
1437 * sample format with the specified width has been select. If width is set to 0
1438 * the msbits will be set for any sample format with a width larger than the
1439 * specified msbits.
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1444 unsigned int cond,
1445 unsigned int width,
1446 unsigned int msbits)
1447{
1448 unsigned long l = (msbits << 16) | width;
1449 return snd_pcm_hw_rule_add(runtime, cond, -1,
1450 snd_pcm_hw_rule_msbits,
1451 (void*) l,
1452 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1453}
1454
1455EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1456
1457static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1458 struct snd_pcm_hw_rule *rule)
1459{
1460 unsigned long step = (unsigned long) rule->private;
1461 return snd_interval_step(hw_param_interval(params, rule->var), step);
1462}
1463
1464/**
1465 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1466 * @runtime: PCM runtime instance
1467 * @cond: condition bits
1468 * @var: hw_params variable to apply the step constraint
1469 * @step: step size
1470 *
1471 * Return: Zero if successful, or a negative error code on failure.
1472 */
1473int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1474 unsigned int cond,
1475 snd_pcm_hw_param_t var,
1476 unsigned long step)
1477{
1478 return snd_pcm_hw_rule_add(runtime, cond, var,
1479 snd_pcm_hw_rule_step, (void *) step,
1480 var, -1);
1481}
1482
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1484
1485static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1486{
1487 static unsigned int pow2_sizes[] = {
1488 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1489 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1490 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1491 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1492 };
1493 return snd_interval_list(hw_param_interval(params, rule->var),
1494 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1495}
1496
1497/**
1498 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1499 * @runtime: PCM runtime instance
1500 * @cond: condition bits
1501 * @var: hw_params variable to apply the power-of-2 constraint
1502 *
1503 * Return: Zero if successful, or a negative error code on failure.
1504 */
1505int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1506 unsigned int cond,
1507 snd_pcm_hw_param_t var)
1508{
1509 return snd_pcm_hw_rule_add(runtime, cond, var,
1510 snd_pcm_hw_rule_pow2, NULL,
1511 var, -1);
1512}
1513
1514EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1515
1516static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1517 struct snd_pcm_hw_rule *rule)
1518{
1519 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1520 struct snd_interval *rate;
1521
1522 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1523 return snd_interval_list(rate, 1, &base_rate, 0);
1524}
1525
1526/**
1527 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1528 * @runtime: PCM runtime instance
1529 * @base_rate: the rate at which the hardware does not resample
1530 *
1531 * Return: Zero if successful, or a negative error code on failure.
1532 */
1533int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1534 unsigned int base_rate)
1535{
1536 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1537 SNDRV_PCM_HW_PARAM_RATE,
1538 snd_pcm_hw_rule_noresample_func,
1539 (void *)(uintptr_t)base_rate,
1540 SNDRV_PCM_HW_PARAM_RATE, -1);
1541}
1542EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1543
1544static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1545 snd_pcm_hw_param_t var)
1546{
1547 if (hw_is_mask(var)) {
1548 snd_mask_any(hw_param_mask(params, var));
1549 params->cmask |= 1 << var;
1550 params->rmask |= 1 << var;
1551 return;
1552 }
1553 if (hw_is_interval(var)) {
1554 snd_interval_any(hw_param_interval(params, var));
1555 params->cmask |= 1 << var;
1556 params->rmask |= 1 << var;
1557 return;
1558 }
1559 snd_BUG();
1560}
1561
1562void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1563{
1564 unsigned int k;
1565 memset(params, 0, sizeof(*params));
1566 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1567 _snd_pcm_hw_param_any(params, k);
1568 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1569 _snd_pcm_hw_param_any(params, k);
1570 params->info = ~0U;
1571}
1572
1573EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1574
1575/**
1576 * snd_pcm_hw_param_value - return @params field @var value
1577 * @params: the hw_params instance
1578 * @var: parameter to retrieve
1579 * @dir: pointer to the direction (-1,0,1) or %NULL
1580 *
1581 * Return: The value for field @var if it's fixed in configuration space
1582 * defined by @params. -%EINVAL otherwise.
1583 */
1584int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1585 snd_pcm_hw_param_t var, int *dir)
1586{
1587 if (hw_is_mask(var)) {
1588 const struct snd_mask *mask = hw_param_mask_c(params, var);
1589 if (!snd_mask_single(mask))
1590 return -EINVAL;
1591 if (dir)
1592 *dir = 0;
1593 return snd_mask_value(mask);
1594 }
1595 if (hw_is_interval(var)) {
1596 const struct snd_interval *i = hw_param_interval_c(params, var);
1597 if (!snd_interval_single(i))
1598 return -EINVAL;
1599 if (dir)
1600 *dir = i->openmin;
1601 return snd_interval_value(i);
1602 }
1603 return -EINVAL;
1604}
1605
1606EXPORT_SYMBOL(snd_pcm_hw_param_value);
1607
1608void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1609 snd_pcm_hw_param_t var)
1610{
1611 if (hw_is_mask(var)) {
1612 snd_mask_none(hw_param_mask(params, var));
1613 params->cmask |= 1 << var;
1614 params->rmask |= 1 << var;
1615 } else if (hw_is_interval(var)) {
1616 snd_interval_none(hw_param_interval(params, var));
1617 params->cmask |= 1 << var;
1618 params->rmask |= 1 << var;
1619 } else {
1620 snd_BUG();
1621 }
1622}
1623
1624EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1625
1626static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var)
1628{
1629 int changed;
1630 if (hw_is_mask(var))
1631 changed = snd_mask_refine_first(hw_param_mask(params, var));
1632 else if (hw_is_interval(var))
1633 changed = snd_interval_refine_first(hw_param_interval(params, var));
1634 else
1635 return -EINVAL;
1636 if (changed) {
1637 params->cmask |= 1 << var;
1638 params->rmask |= 1 << var;
1639 }
1640 return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_first - refine config space and return minimum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values > minimum. Reduce configuration space accordingly.
1653 *
1654 * Return: The minimum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1657 struct snd_pcm_hw_params *params,
1658 snd_pcm_hw_param_t var, int *dir)
1659{
1660 int changed = _snd_pcm_hw_param_first(params, var);
1661 if (changed < 0)
1662 return changed;
1663 if (params->rmask) {
1664 int err = snd_pcm_hw_refine(pcm, params);
1665 if (snd_BUG_ON(err < 0))
1666 return err;
1667 }
1668 return snd_pcm_hw_param_value(params, var, dir);
1669}
1670
1671EXPORT_SYMBOL(snd_pcm_hw_param_first);
1672
1673static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1674 snd_pcm_hw_param_t var)
1675{
1676 int changed;
1677 if (hw_is_mask(var))
1678 changed = snd_mask_refine_last(hw_param_mask(params, var));
1679 else if (hw_is_interval(var))
1680 changed = snd_interval_refine_last(hw_param_interval(params, var));
1681 else
1682 return -EINVAL;
1683 if (changed) {
1684 params->cmask |= 1 << var;
1685 params->rmask |= 1 << var;
1686 }
1687 return changed;
1688}
1689
1690
1691/**
1692 * snd_pcm_hw_param_last - refine config space and return maximum value
1693 * @pcm: PCM instance
1694 * @params: the hw_params instance
1695 * @var: parameter to retrieve
1696 * @dir: pointer to the direction (-1,0,1) or %NULL
1697 *
1698 * Inside configuration space defined by @params remove from @var all
1699 * values < maximum. Reduce configuration space accordingly.
1700 *
1701 * Return: The maximum, or a negative error code on failure.
1702 */
1703int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1704 struct snd_pcm_hw_params *params,
1705 snd_pcm_hw_param_t var, int *dir)
1706{
1707 int changed = _snd_pcm_hw_param_last(params, var);
1708 if (changed < 0)
1709 return changed;
1710 if (params->rmask) {
1711 int err = snd_pcm_hw_refine(pcm, params);
1712 if (snd_BUG_ON(err < 0))
1713 return err;
1714 }
1715 return snd_pcm_hw_param_value(params, var, dir);
1716}
1717
1718EXPORT_SYMBOL(snd_pcm_hw_param_last);
1719
1720/**
1721 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1722 * @pcm: PCM instance
1723 * @params: the hw_params instance
1724 *
1725 * Choose one configuration from configuration space defined by @params.
1726 * The configuration chosen is that obtained fixing in this order:
1727 * first access, first format, first subformat, min channels,
1728 * min rate, min period time, max buffer size, min tick time
1729 *
1730 * Return: Zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1733 struct snd_pcm_hw_params *params)
1734{
1735 static int vars[] = {
1736 SNDRV_PCM_HW_PARAM_ACCESS,
1737 SNDRV_PCM_HW_PARAM_FORMAT,
1738 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1739 SNDRV_PCM_HW_PARAM_CHANNELS,
1740 SNDRV_PCM_HW_PARAM_RATE,
1741 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1742 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1743 SNDRV_PCM_HW_PARAM_TICK_TIME,
1744 -1
1745 };
1746 int err, *v;
1747
1748 for (v = vars; *v != -1; v++) {
1749 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1750 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1751 else
1752 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1753 if (snd_BUG_ON(err < 0))
1754 return err;
1755 }
1756 return 0;
1757}
1758
1759static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1760 void *arg)
1761{
1762 struct snd_pcm_runtime *runtime = substream->runtime;
1763 unsigned long flags;
1764 snd_pcm_stream_lock_irqsave(substream, flags);
1765 if (snd_pcm_running(substream) &&
1766 snd_pcm_update_hw_ptr(substream) >= 0)
1767 runtime->status->hw_ptr %= runtime->buffer_size;
1768 else {
1769 runtime->status->hw_ptr = 0;
1770 runtime->hw_ptr_wrap = 0;
1771 }
1772 snd_pcm_stream_unlock_irqrestore(substream, flags);
1773 return 0;
1774}
1775
1776static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1777 void *arg)
1778{
1779 struct snd_pcm_channel_info *info = arg;
1780 struct snd_pcm_runtime *runtime = substream->runtime;
1781 int width;
1782 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1783 info->offset = -1;
1784 return 0;
1785 }
1786 width = snd_pcm_format_physical_width(runtime->format);
1787 if (width < 0)
1788 return width;
1789 info->offset = 0;
1790 switch (runtime->access) {
1791 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1792 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1793 info->first = info->channel * width;
1794 info->step = runtime->channels * width;
1795 break;
1796 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1797 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1798 {
1799 size_t size = runtime->dma_bytes / runtime->channels;
1800 info->first = info->channel * size * 8;
1801 info->step = width;
1802 break;
1803 }
1804 default:
1805 snd_BUG();
1806 break;
1807 }
1808 return 0;
1809}
1810
1811static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1812 void *arg)
1813{
1814 struct snd_pcm_hw_params *params = arg;
1815 snd_pcm_format_t format;
1816 int channels;
1817 ssize_t frame_size;
1818
1819 params->fifo_size = substream->runtime->hw.fifo_size;
1820 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1821 format = params_format(params);
1822 channels = params_channels(params);
1823 frame_size = snd_pcm_format_size(format, channels);
1824 if (frame_size > 0)
1825 params->fifo_size /= (unsigned)frame_size;
1826 }
1827 return 0;
1828}
1829
1830/**
1831 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832 * @substream: the pcm substream instance
1833 * @cmd: ioctl command
1834 * @arg: ioctl argument
1835 *
1836 * Processes the generic ioctl commands for PCM.
1837 * Can be passed as the ioctl callback for PCM ops.
1838 *
1839 * Return: Zero if successful, or a negative error code on failure.
1840 */
1841int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1842 unsigned int cmd, void *arg)
1843{
1844 switch (cmd) {
1845 case SNDRV_PCM_IOCTL1_INFO:
1846 return 0;
1847 case SNDRV_PCM_IOCTL1_RESET:
1848 return snd_pcm_lib_ioctl_reset(substream, arg);
1849 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1850 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1851 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1852 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1853 }
1854 return -ENXIO;
1855}
1856
1857EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1858
1859/**
1860 * snd_pcm_period_elapsed - update the pcm status for the next period
1861 * @substream: the pcm substream instance
1862 *
1863 * This function is called from the interrupt handler when the
1864 * PCM has processed the period size. It will update the current
1865 * pointer, wake up sleepers, etc.
1866 *
1867 * Even if more than one periods have elapsed since the last call, you
1868 * have to call this only once.
1869 */
1870void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1871{
1872 struct snd_pcm_runtime *runtime;
1873 unsigned long flags;
1874
1875 if (PCM_RUNTIME_CHECK(substream))
1876 return;
1877 runtime = substream->runtime;
1878
1879 snd_pcm_stream_lock_irqsave(substream, flags);
1880 if (!snd_pcm_running(substream) ||
1881 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1882 goto _end;
1883
1884#ifdef CONFIG_SND_PCM_TIMER
1885 if (substream->timer_running)
1886 snd_timer_interrupt(substream->timer, 1);
1887#endif
1888 _end:
1889 snd_pcm_stream_unlock_irqrestore(substream, flags);
1890 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1891}
1892
1893EXPORT_SYMBOL(snd_pcm_period_elapsed);
1894
1895/*
1896 * Wait until avail_min data becomes available
1897 * Returns a negative error code if any error occurs during operation.
1898 * The available space is stored on availp. When err = 0 and avail = 0
1899 * on the capture stream, it indicates the stream is in DRAINING state.
1900 */
1901static int wait_for_avail(struct snd_pcm_substream *substream,
1902 snd_pcm_uframes_t *availp)
1903{
1904 struct snd_pcm_runtime *runtime = substream->runtime;
1905 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1906 wait_queue_t wait;
1907 int err = 0;
1908 snd_pcm_uframes_t avail = 0;
1909 long wait_time, tout;
1910
1911 init_waitqueue_entry(&wait, current);
1912 set_current_state(TASK_INTERRUPTIBLE);
1913 add_wait_queue(&runtime->tsleep, &wait);
1914
1915 if (runtime->no_period_wakeup)
1916 wait_time = MAX_SCHEDULE_TIMEOUT;
1917 else {
1918 wait_time = 10;
1919 if (runtime->rate) {
1920 long t = runtime->period_size * 2 / runtime->rate;
1921 wait_time = max(t, wait_time);
1922 }
1923 wait_time = msecs_to_jiffies(wait_time * 1000);
1924 }
1925
1926 for (;;) {
1927 if (signal_pending(current)) {
1928 err = -ERESTARTSYS;
1929 break;
1930 }
1931
1932 /*
1933 * We need to check if space became available already
1934 * (and thus the wakeup happened already) first to close
1935 * the race of space already having become available.
1936 * This check must happen after been added to the waitqueue
1937 * and having current state be INTERRUPTIBLE.
1938 */
1939 if (is_playback)
1940 avail = snd_pcm_playback_avail(runtime);
1941 else
1942 avail = snd_pcm_capture_avail(runtime);
1943 if (avail >= runtime->twake)
1944 break;
1945 snd_pcm_stream_unlock_irq(substream);
1946
1947 tout = schedule_timeout(wait_time);
1948
1949 snd_pcm_stream_lock_irq(substream);
1950 set_current_state(TASK_INTERRUPTIBLE);
1951 switch (runtime->status->state) {
1952 case SNDRV_PCM_STATE_SUSPENDED:
1953 err = -ESTRPIPE;
1954 goto _endloop;
1955 case SNDRV_PCM_STATE_XRUN:
1956 err = -EPIPE;
1957 goto _endloop;
1958 case SNDRV_PCM_STATE_DRAINING:
1959 if (is_playback)
1960 err = -EPIPE;
1961 else
1962 avail = 0; /* indicate draining */
1963 goto _endloop;
1964 case SNDRV_PCM_STATE_OPEN:
1965 case SNDRV_PCM_STATE_SETUP:
1966 case SNDRV_PCM_STATE_DISCONNECTED:
1967 err = -EBADFD;
1968 goto _endloop;
1969 case SNDRV_PCM_STATE_PAUSED:
1970 continue;
1971 }
1972 if (!tout) {
1973 pcm_dbg(substream->pcm,
1974 "%s write error (DMA or IRQ trouble?)\n",
1975 is_playback ? "playback" : "capture");
1976 err = -EIO;
1977 break;
1978 }
1979 }
1980 _endloop:
1981 set_current_state(TASK_RUNNING);
1982 remove_wait_queue(&runtime->tsleep, &wait);
1983 *availp = avail;
1984 return err;
1985}
1986
1987static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1988 unsigned int hwoff,
1989 unsigned long data, unsigned int off,
1990 snd_pcm_uframes_t frames)
1991{
1992 struct snd_pcm_runtime *runtime = substream->runtime;
1993 int err;
1994 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1995 if (substream->ops->copy) {
1996 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1997 return err;
1998 } else {
1999 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2000 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2001 return -EFAULT;
2002 }
2003 return 0;
2004}
2005
2006typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2007 unsigned long data, unsigned int off,
2008 snd_pcm_uframes_t size);
2009
2010static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
2011 unsigned long data,
2012 snd_pcm_uframes_t size,
2013 int nonblock,
2014 transfer_f transfer)
2015{
2016 struct snd_pcm_runtime *runtime = substream->runtime;
2017 snd_pcm_uframes_t xfer = 0;
2018 snd_pcm_uframes_t offset = 0;
2019 snd_pcm_uframes_t avail;
2020 int err = 0;
2021
2022 if (size == 0)
2023 return 0;
2024
2025 snd_pcm_stream_lock_irq(substream);
2026 switch (runtime->status->state) {
2027 case SNDRV_PCM_STATE_PREPARED:
2028 case SNDRV_PCM_STATE_RUNNING:
2029 case SNDRV_PCM_STATE_PAUSED:
2030 break;
2031 case SNDRV_PCM_STATE_XRUN:
2032 err = -EPIPE;
2033 goto _end_unlock;
2034 case SNDRV_PCM_STATE_SUSPENDED:
2035 err = -ESTRPIPE;
2036 goto _end_unlock;
2037 default:
2038 err = -EBADFD;
2039 goto _end_unlock;
2040 }
2041
2042 runtime->twake = runtime->control->avail_min ? : 1;
2043 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2044 snd_pcm_update_hw_ptr(substream);
2045 avail = snd_pcm_playback_avail(runtime);
2046 while (size > 0) {
2047 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2048 snd_pcm_uframes_t cont;
2049 if (!avail) {
2050 if (nonblock) {
2051 err = -EAGAIN;
2052 goto _end_unlock;
2053 }
2054 runtime->twake = min_t(snd_pcm_uframes_t, size,
2055 runtime->control->avail_min ? : 1);
2056 err = wait_for_avail(substream, &avail);
2057 if (err < 0)
2058 goto _end_unlock;
2059 }
2060 frames = size > avail ? avail : size;
2061 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2062 if (frames > cont)
2063 frames = cont;
2064 if (snd_BUG_ON(!frames)) {
2065 runtime->twake = 0;
2066 snd_pcm_stream_unlock_irq(substream);
2067 return -EINVAL;
2068 }
2069 appl_ptr = runtime->control->appl_ptr;
2070 appl_ofs = appl_ptr % runtime->buffer_size;
2071 snd_pcm_stream_unlock_irq(substream);
2072 err = transfer(substream, appl_ofs, data, offset, frames);
2073 snd_pcm_stream_lock_irq(substream);
2074 if (err < 0)
2075 goto _end_unlock;
2076 switch (runtime->status->state) {
2077 case SNDRV_PCM_STATE_XRUN:
2078 err = -EPIPE;
2079 goto _end_unlock;
2080 case SNDRV_PCM_STATE_SUSPENDED:
2081 err = -ESTRPIPE;
2082 goto _end_unlock;
2083 default:
2084 break;
2085 }
2086 appl_ptr += frames;
2087 if (appl_ptr >= runtime->boundary)
2088 appl_ptr -= runtime->boundary;
2089 runtime->control->appl_ptr = appl_ptr;
2090 if (substream->ops->ack)
2091 substream->ops->ack(substream);
2092
2093 offset += frames;
2094 size -= frames;
2095 xfer += frames;
2096 avail -= frames;
2097 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2098 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2099 err = snd_pcm_start(substream);
2100 if (err < 0)
2101 goto _end_unlock;
2102 }
2103 }
2104 _end_unlock:
2105 runtime->twake = 0;
2106 if (xfer > 0 && err >= 0)
2107 snd_pcm_update_state(substream, runtime);
2108 snd_pcm_stream_unlock_irq(substream);
2109 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2110}
2111
2112/* sanity-check for read/write methods */
2113static int pcm_sanity_check(struct snd_pcm_substream *substream)
2114{
2115 struct snd_pcm_runtime *runtime;
2116 if (PCM_RUNTIME_CHECK(substream))
2117 return -ENXIO;
2118 runtime = substream->runtime;
2119 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2120 return -EINVAL;
2121 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2122 return -EBADFD;
2123 return 0;
2124}
2125
2126snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2127{
2128 struct snd_pcm_runtime *runtime;
2129 int nonblock;
2130 int err;
2131
2132 err = pcm_sanity_check(substream);
2133 if (err < 0)
2134 return err;
2135 runtime = substream->runtime;
2136 nonblock = !!(substream->f_flags & O_NONBLOCK);
2137
2138 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2139 runtime->channels > 1)
2140 return -EINVAL;
2141 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2142 snd_pcm_lib_write_transfer);
2143}
2144
2145EXPORT_SYMBOL(snd_pcm_lib_write);
2146
2147static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2148 unsigned int hwoff,
2149 unsigned long data, unsigned int off,
2150 snd_pcm_uframes_t frames)
2151{
2152 struct snd_pcm_runtime *runtime = substream->runtime;
2153 int err;
2154 void __user **bufs = (void __user **)data;
2155 int channels = runtime->channels;
2156 int c;
2157 if (substream->ops->copy) {
2158 if (snd_BUG_ON(!substream->ops->silence))
2159 return -EINVAL;
2160 for (c = 0; c < channels; ++c, ++bufs) {
2161 if (*bufs == NULL) {
2162 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2163 return err;
2164 } else {
2165 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2166 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2167 return err;
2168 }
2169 }
2170 } else {
2171 /* default transfer behaviour */
2172 size_t dma_csize = runtime->dma_bytes / channels;
2173 for (c = 0; c < channels; ++c, ++bufs) {
2174 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2175 if (*bufs == NULL) {
2176 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2177 } else {
2178 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2179 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2180 return -EFAULT;
2181 }
2182 }
2183 }
2184 return 0;
2185}
2186
2187snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2188 void __user **bufs,
2189 snd_pcm_uframes_t frames)
2190{
2191 struct snd_pcm_runtime *runtime;
2192 int nonblock;
2193 int err;
2194
2195 err = pcm_sanity_check(substream);
2196 if (err < 0)
2197 return err;
2198 runtime = substream->runtime;
2199 nonblock = !!(substream->f_flags & O_NONBLOCK);
2200
2201 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2202 return -EINVAL;
2203 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2204 nonblock, snd_pcm_lib_writev_transfer);
2205}
2206
2207EXPORT_SYMBOL(snd_pcm_lib_writev);
2208
2209static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2210 unsigned int hwoff,
2211 unsigned long data, unsigned int off,
2212 snd_pcm_uframes_t frames)
2213{
2214 struct snd_pcm_runtime *runtime = substream->runtime;
2215 int err;
2216 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2217 if (substream->ops->copy) {
2218 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2219 return err;
2220 } else {
2221 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2222 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2223 return -EFAULT;
2224 }
2225 return 0;
2226}
2227
2228static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2229 unsigned long data,
2230 snd_pcm_uframes_t size,
2231 int nonblock,
2232 transfer_f transfer)
2233{
2234 struct snd_pcm_runtime *runtime = substream->runtime;
2235 snd_pcm_uframes_t xfer = 0;
2236 snd_pcm_uframes_t offset = 0;
2237 snd_pcm_uframes_t avail;
2238 int err = 0;
2239
2240 if (size == 0)
2241 return 0;
2242
2243 snd_pcm_stream_lock_irq(substream);
2244 switch (runtime->status->state) {
2245 case SNDRV_PCM_STATE_PREPARED:
2246 if (size >= runtime->start_threshold) {
2247 err = snd_pcm_start(substream);
2248 if (err < 0)
2249 goto _end_unlock;
2250 }
2251 break;
2252 case SNDRV_PCM_STATE_DRAINING:
2253 case SNDRV_PCM_STATE_RUNNING:
2254 case SNDRV_PCM_STATE_PAUSED:
2255 break;
2256 case SNDRV_PCM_STATE_XRUN:
2257 err = -EPIPE;
2258 goto _end_unlock;
2259 case SNDRV_PCM_STATE_SUSPENDED:
2260 err = -ESTRPIPE;
2261 goto _end_unlock;
2262 default:
2263 err = -EBADFD;
2264 goto _end_unlock;
2265 }
2266
2267 runtime->twake = runtime->control->avail_min ? : 1;
2268 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2269 snd_pcm_update_hw_ptr(substream);
2270 avail = snd_pcm_capture_avail(runtime);
2271 while (size > 0) {
2272 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2273 snd_pcm_uframes_t cont;
2274 if (!avail) {
2275 if (runtime->status->state ==
2276 SNDRV_PCM_STATE_DRAINING) {
2277 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2278 goto _end_unlock;
2279 }
2280 if (nonblock) {
2281 err = -EAGAIN;
2282 goto _end_unlock;
2283 }
2284 runtime->twake = min_t(snd_pcm_uframes_t, size,
2285 runtime->control->avail_min ? : 1);
2286 err = wait_for_avail(substream, &avail);
2287 if (err < 0)
2288 goto _end_unlock;
2289 if (!avail)
2290 continue; /* draining */
2291 }
2292 frames = size > avail ? avail : size;
2293 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2294 if (frames > cont)
2295 frames = cont;
2296 if (snd_BUG_ON(!frames)) {
2297 runtime->twake = 0;
2298 snd_pcm_stream_unlock_irq(substream);
2299 return -EINVAL;
2300 }
2301 appl_ptr = runtime->control->appl_ptr;
2302 appl_ofs = appl_ptr % runtime->buffer_size;
2303 snd_pcm_stream_unlock_irq(substream);
2304 err = transfer(substream, appl_ofs, data, offset, frames);
2305 snd_pcm_stream_lock_irq(substream);
2306 if (err < 0)
2307 goto _end_unlock;
2308 switch (runtime->status->state) {
2309 case SNDRV_PCM_STATE_XRUN:
2310 err = -EPIPE;
2311 goto _end_unlock;
2312 case SNDRV_PCM_STATE_SUSPENDED:
2313 err = -ESTRPIPE;
2314 goto _end_unlock;
2315 default:
2316 break;
2317 }
2318 appl_ptr += frames;
2319 if (appl_ptr >= runtime->boundary)
2320 appl_ptr -= runtime->boundary;
2321 runtime->control->appl_ptr = appl_ptr;
2322 if (substream->ops->ack)
2323 substream->ops->ack(substream);
2324
2325 offset += frames;
2326 size -= frames;
2327 xfer += frames;
2328 avail -= frames;
2329 }
2330 _end_unlock:
2331 runtime->twake = 0;
2332 if (xfer > 0 && err >= 0)
2333 snd_pcm_update_state(substream, runtime);
2334 snd_pcm_stream_unlock_irq(substream);
2335 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2336}
2337
2338snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2339{
2340 struct snd_pcm_runtime *runtime;
2341 int nonblock;
2342 int err;
2343
2344 err = pcm_sanity_check(substream);
2345 if (err < 0)
2346 return err;
2347 runtime = substream->runtime;
2348 nonblock = !!(substream->f_flags & O_NONBLOCK);
2349 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2350 return -EINVAL;
2351 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2352}
2353
2354EXPORT_SYMBOL(snd_pcm_lib_read);
2355
2356static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2357 unsigned int hwoff,
2358 unsigned long data, unsigned int off,
2359 snd_pcm_uframes_t frames)
2360{
2361 struct snd_pcm_runtime *runtime = substream->runtime;
2362 int err;
2363 void __user **bufs = (void __user **)data;
2364 int channels = runtime->channels;
2365 int c;
2366 if (substream->ops->copy) {
2367 for (c = 0; c < channels; ++c, ++bufs) {
2368 char __user *buf;
2369 if (*bufs == NULL)
2370 continue;
2371 buf = *bufs + samples_to_bytes(runtime, off);
2372 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2373 return err;
2374 }
2375 } else {
2376 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2377 for (c = 0; c < channels; ++c, ++bufs) {
2378 char *hwbuf;
2379 char __user *buf;
2380 if (*bufs == NULL)
2381 continue;
2382
2383 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2384 buf = *bufs + samples_to_bytes(runtime, off);
2385 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2386 return -EFAULT;
2387 }
2388 }
2389 return 0;
2390}
2391
2392snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2393 void __user **bufs,
2394 snd_pcm_uframes_t frames)
2395{
2396 struct snd_pcm_runtime *runtime;
2397 int nonblock;
2398 int err;
2399
2400 err = pcm_sanity_check(substream);
2401 if (err < 0)
2402 return err;
2403 runtime = substream->runtime;
2404 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2405 return -EBADFD;
2406
2407 nonblock = !!(substream->f_flags & O_NONBLOCK);
2408 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2409 return -EINVAL;
2410 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2411}
2412
2413EXPORT_SYMBOL(snd_pcm_lib_readv);
2414
2415/*
2416 * standard channel mapping helpers
2417 */
2418
2419/* default channel maps for multi-channel playbacks, up to 8 channels */
2420const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2421 { .channels = 1,
2422 .map = { SNDRV_CHMAP_MONO } },
2423 { .channels = 2,
2424 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2425 { .channels = 4,
2426 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2427 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2428 { .channels = 6,
2429 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2430 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2431 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2432 { .channels = 8,
2433 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2436 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2437 { }
2438};
2439EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2440
2441/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2442const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2443 { .channels = 1,
2444 .map = { SNDRV_CHMAP_MONO } },
2445 { .channels = 2,
2446 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2447 { .channels = 4,
2448 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2449 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2450 { .channels = 6,
2451 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2452 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2453 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454 { .channels = 8,
2455 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2458 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2459 { }
2460};
2461EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2462
2463static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2464{
2465 if (ch > info->max_channels)
2466 return false;
2467 return !info->channel_mask || (info->channel_mask & (1U << ch));
2468}
2469
2470static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2471 struct snd_ctl_elem_info *uinfo)
2472{
2473 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2474
2475 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2476 uinfo->count = 0;
2477 uinfo->count = info->max_channels;
2478 uinfo->value.integer.min = 0;
2479 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2480 return 0;
2481}
2482
2483/* get callback for channel map ctl element
2484 * stores the channel position firstly matching with the current channels
2485 */
2486static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2487 struct snd_ctl_elem_value *ucontrol)
2488{
2489 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2490 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2491 struct snd_pcm_substream *substream;
2492 const struct snd_pcm_chmap_elem *map;
2493
2494 if (snd_BUG_ON(!info->chmap))
2495 return -EINVAL;
2496 substream = snd_pcm_chmap_substream(info, idx);
2497 if (!substream)
2498 return -ENODEV;
2499 memset(ucontrol->value.integer.value, 0,
2500 sizeof(ucontrol->value.integer.value));
2501 if (!substream->runtime)
2502 return 0; /* no channels set */
2503 for (map = info->chmap; map->channels; map++) {
2504 int i;
2505 if (map->channels == substream->runtime->channels &&
2506 valid_chmap_channels(info, map->channels)) {
2507 for (i = 0; i < map->channels; i++)
2508 ucontrol->value.integer.value[i] = map->map[i];
2509 return 0;
2510 }
2511 }
2512 return -EINVAL;
2513}
2514
2515/* tlv callback for channel map ctl element
2516 * expands the pre-defined channel maps in a form of TLV
2517 */
2518static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2519 unsigned int size, unsigned int __user *tlv)
2520{
2521 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2522 const struct snd_pcm_chmap_elem *map;
2523 unsigned int __user *dst;
2524 int c, count = 0;
2525
2526 if (snd_BUG_ON(!info->chmap))
2527 return -EINVAL;
2528 if (size < 8)
2529 return -ENOMEM;
2530 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2531 return -EFAULT;
2532 size -= 8;
2533 dst = tlv + 2;
2534 for (map = info->chmap; map->channels; map++) {
2535 int chs_bytes = map->channels * 4;
2536 if (!valid_chmap_channels(info, map->channels))
2537 continue;
2538 if (size < 8)
2539 return -ENOMEM;
2540 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2541 put_user(chs_bytes, dst + 1))
2542 return -EFAULT;
2543 dst += 2;
2544 size -= 8;
2545 count += 8;
2546 if (size < chs_bytes)
2547 return -ENOMEM;
2548 size -= chs_bytes;
2549 count += chs_bytes;
2550 for (c = 0; c < map->channels; c++) {
2551 if (put_user(map->map[c], dst))
2552 return -EFAULT;
2553 dst++;
2554 }
2555 }
2556 if (put_user(count, tlv + 1))
2557 return -EFAULT;
2558 return 0;
2559}
2560
2561static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2562{
2563 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2564 info->pcm->streams[info->stream].chmap_kctl = NULL;
2565 kfree(info);
2566}
2567
2568/**
2569 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2570 * @pcm: the assigned PCM instance
2571 * @stream: stream direction
2572 * @chmap: channel map elements (for query)
2573 * @max_channels: the max number of channels for the stream
2574 * @private_value: the value passed to each kcontrol's private_value field
2575 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2576 *
2577 * Create channel-mapping control elements assigned to the given PCM stream(s).
2578 * Return: Zero if successful, or a negative error value.
2579 */
2580int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2581 const struct snd_pcm_chmap_elem *chmap,
2582 int max_channels,
2583 unsigned long private_value,
2584 struct snd_pcm_chmap **info_ret)
2585{
2586 struct snd_pcm_chmap *info;
2587 struct snd_kcontrol_new knew = {
2588 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2589 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2590 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2591 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2592 .info = pcm_chmap_ctl_info,
2593 .get = pcm_chmap_ctl_get,
2594 .tlv.c = pcm_chmap_ctl_tlv,
2595 };
2596 int err;
2597
2598 info = kzalloc(sizeof(*info), GFP_KERNEL);
2599 if (!info)
2600 return -ENOMEM;
2601 info->pcm = pcm;
2602 info->stream = stream;
2603 info->chmap = chmap;
2604 info->max_channels = max_channels;
2605 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2606 knew.name = "Playback Channel Map";
2607 else
2608 knew.name = "Capture Channel Map";
2609 knew.device = pcm->device;
2610 knew.count = pcm->streams[stream].substream_count;
2611 knew.private_value = private_value;
2612 info->kctl = snd_ctl_new1(&knew, info);
2613 if (!info->kctl) {
2614 kfree(info);
2615 return -ENOMEM;
2616 }
2617 info->kctl->private_free = pcm_chmap_ctl_private_free;
2618 err = snd_ctl_add(pcm->card, info->kctl);
2619 if (err < 0)
2620 return err;
2621 pcm->streams[stream].chmap_kctl = info->kctl;
2622 if (info_ret)
2623 *info_ret = info;
2624 return 0;
2625}
2626EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);