Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36/*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46{
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
49 int err;
50
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
56 if (n < 0)
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
60 else
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
63 }
64 if (runtime->silence_filled >= runtime->buffer_size)
65 return;
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 return;
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
72 } else {
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
80 runtime->boundary;
81 } else {
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
90 } else {
91 runtime->silence_start = ofs;
92 }
93 }
94 frames = runtime->buffer_size - runtime->silence_filled;
95 }
96 if (snd_BUG_ON(frames > runtime->buffer_size))
97 return;
98 if (frames == 0)
99 return;
100 ofs = runtime->silence_start % runtime->buffer_size;
101 while (frames > 0) {
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 runtime->silence_filled += transfer;
106 frames -= transfer;
107 ofs = 0;
108 }
109}
110
111#ifdef CONFIG_SND_DEBUG
112void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113 char *name, size_t len)
114{
115 snprintf(name, len, "pcmC%dD%d%c:%d",
116 substream->pcm->card->number,
117 substream->pcm->device,
118 substream->stream ? 'c' : 'p',
119 substream->number);
120}
121EXPORT_SYMBOL(snd_pcm_debug_name);
122#endif
123
124#define XRUN_DEBUG_BASIC (1<<0)
125#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
126#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
127
128#ifdef CONFIG_SND_PCM_XRUN_DEBUG
129
130#define xrun_debug(substream, mask) \
131 ((substream)->pstr->xrun_debug & (mask))
132#else
133#define xrun_debug(substream, mask) 0
134#endif
135
136#define dump_stack_on_xrun(substream) do { \
137 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
138 dump_stack(); \
139 } while (0)
140
141/* call with stream lock held */
142void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143{
144 struct snd_pcm_runtime *runtime = substream->runtime;
145
146 trace_xrun(substream);
147 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
148 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
149 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
150 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
151 char name[16];
152 snd_pcm_debug_name(substream, name, sizeof(name));
153 pcm_warn(substream->pcm, "XRUN: %s\n", name);
154 dump_stack_on_xrun(substream);
155 }
156}
157
158#ifdef CONFIG_SND_PCM_XRUN_DEBUG
159#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
160 do { \
161 trace_hw_ptr_error(substream, reason); \
162 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
163 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
164 (in_interrupt) ? 'Q' : 'P', ##args); \
165 dump_stack_on_xrun(substream); \
166 } \
167 } while (0)
168
169#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
170
171#define hw_ptr_error(substream, fmt, args...) do { } while (0)
172
173#endif
174
175int snd_pcm_update_state(struct snd_pcm_substream *substream,
176 struct snd_pcm_runtime *runtime)
177{
178 snd_pcm_uframes_t avail;
179
180 avail = snd_pcm_avail(substream);
181 if (avail > runtime->avail_max)
182 runtime->avail_max = avail;
183 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
184 if (avail >= runtime->buffer_size) {
185 snd_pcm_drain_done(substream);
186 return -EPIPE;
187 }
188 } else {
189 if (avail >= runtime->stop_threshold) {
190 __snd_pcm_xrun(substream);
191 return -EPIPE;
192 }
193 }
194 if (runtime->twake) {
195 if (avail >= runtime->twake)
196 wake_up(&runtime->tsleep);
197 } else if (avail >= runtime->control->avail_min)
198 wake_up(&runtime->sleep);
199 return 0;
200}
201
202static void update_audio_tstamp(struct snd_pcm_substream *substream,
203 struct timespec *curr_tstamp,
204 struct timespec *audio_tstamp)
205{
206 struct snd_pcm_runtime *runtime = substream->runtime;
207 u64 audio_frames, audio_nsecs;
208 struct timespec driver_tstamp;
209
210 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
211 return;
212
213 if (!(substream->ops->get_time_info) ||
214 (runtime->audio_tstamp_report.actual_type ==
215 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
216
217 /*
218 * provide audio timestamp derived from pointer position
219 * add delay only if requested
220 */
221
222 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
223
224 if (runtime->audio_tstamp_config.report_delay) {
225 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
226 audio_frames -= runtime->delay;
227 else
228 audio_frames += runtime->delay;
229 }
230 audio_nsecs = div_u64(audio_frames * 1000000000LL,
231 runtime->rate);
232 *audio_tstamp = ns_to_timespec(audio_nsecs);
233 }
234 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
235 runtime->status->audio_tstamp = *audio_tstamp;
236 runtime->status->tstamp = *curr_tstamp;
237 }
238
239 /*
240 * re-take a driver timestamp to let apps detect if the reference tstamp
241 * read by low-level hardware was provided with a delay
242 */
243 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
244 runtime->driver_tstamp = driver_tstamp;
245}
246
247static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
248 unsigned int in_interrupt)
249{
250 struct snd_pcm_runtime *runtime = substream->runtime;
251 snd_pcm_uframes_t pos;
252 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
253 snd_pcm_sframes_t hdelta, delta;
254 unsigned long jdelta;
255 unsigned long curr_jiffies;
256 struct timespec curr_tstamp;
257 struct timespec audio_tstamp;
258 int crossed_boundary = 0;
259
260 old_hw_ptr = runtime->status->hw_ptr;
261
262 /*
263 * group pointer, time and jiffies reads to allow for more
264 * accurate correlations/corrections.
265 * The values are stored at the end of this routine after
266 * corrections for hw_ptr position
267 */
268 pos = substream->ops->pointer(substream);
269 curr_jiffies = jiffies;
270 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
271 if ((substream->ops->get_time_info) &&
272 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
273 substream->ops->get_time_info(substream, &curr_tstamp,
274 &audio_tstamp,
275 &runtime->audio_tstamp_config,
276 &runtime->audio_tstamp_report);
277
278 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
279 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
280 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
281 } else
282 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
283 }
284
285 if (pos == SNDRV_PCM_POS_XRUN) {
286 __snd_pcm_xrun(substream);
287 return -EPIPE;
288 }
289 if (pos >= runtime->buffer_size) {
290 if (printk_ratelimit()) {
291 char name[16];
292 snd_pcm_debug_name(substream, name, sizeof(name));
293 pcm_err(substream->pcm,
294 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
295 name, pos, runtime->buffer_size,
296 runtime->period_size);
297 }
298 pos = 0;
299 }
300 pos -= pos % runtime->min_align;
301 trace_hwptr(substream, pos, in_interrupt);
302 hw_base = runtime->hw_ptr_base;
303 new_hw_ptr = hw_base + pos;
304 if (in_interrupt) {
305 /* we know that one period was processed */
306 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
307 delta = runtime->hw_ptr_interrupt + runtime->period_size;
308 if (delta > new_hw_ptr) {
309 /* check for double acknowledged interrupts */
310 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
311 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
312 hw_base += runtime->buffer_size;
313 if (hw_base >= runtime->boundary) {
314 hw_base = 0;
315 crossed_boundary++;
316 }
317 new_hw_ptr = hw_base + pos;
318 goto __delta;
319 }
320 }
321 }
322 /* new_hw_ptr might be lower than old_hw_ptr in case when */
323 /* pointer crosses the end of the ring buffer */
324 if (new_hw_ptr < old_hw_ptr) {
325 hw_base += runtime->buffer_size;
326 if (hw_base >= runtime->boundary) {
327 hw_base = 0;
328 crossed_boundary++;
329 }
330 new_hw_ptr = hw_base + pos;
331 }
332 __delta:
333 delta = new_hw_ptr - old_hw_ptr;
334 if (delta < 0)
335 delta += runtime->boundary;
336
337 if (runtime->no_period_wakeup) {
338 snd_pcm_sframes_t xrun_threshold;
339 /*
340 * Without regular period interrupts, we have to check
341 * the elapsed time to detect xruns.
342 */
343 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
344 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
345 goto no_delta_check;
346 hdelta = jdelta - delta * HZ / runtime->rate;
347 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
348 while (hdelta > xrun_threshold) {
349 delta += runtime->buffer_size;
350 hw_base += runtime->buffer_size;
351 if (hw_base >= runtime->boundary) {
352 hw_base = 0;
353 crossed_boundary++;
354 }
355 new_hw_ptr = hw_base + pos;
356 hdelta -= runtime->hw_ptr_buffer_jiffies;
357 }
358 goto no_delta_check;
359 }
360
361 /* something must be really wrong */
362 if (delta >= runtime->buffer_size + runtime->period_size) {
363 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
364 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
365 substream->stream, (long)pos,
366 (long)new_hw_ptr, (long)old_hw_ptr);
367 return 0;
368 }
369
370 /* Do jiffies check only in xrun_debug mode */
371 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
372 goto no_jiffies_check;
373
374 /* Skip the jiffies check for hardwares with BATCH flag.
375 * Such hardware usually just increases the position at each IRQ,
376 * thus it can't give any strange position.
377 */
378 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
379 goto no_jiffies_check;
380 hdelta = delta;
381 if (hdelta < runtime->delay)
382 goto no_jiffies_check;
383 hdelta -= runtime->delay;
384 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
385 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
386 delta = jdelta /
387 (((runtime->period_size * HZ) / runtime->rate)
388 + HZ/100);
389 /* move new_hw_ptr according jiffies not pos variable */
390 new_hw_ptr = old_hw_ptr;
391 hw_base = delta;
392 /* use loop to avoid checks for delta overflows */
393 /* the delta value is small or zero in most cases */
394 while (delta > 0) {
395 new_hw_ptr += runtime->period_size;
396 if (new_hw_ptr >= runtime->boundary) {
397 new_hw_ptr -= runtime->boundary;
398 crossed_boundary--;
399 }
400 delta--;
401 }
402 /* align hw_base to buffer_size */
403 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
404 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
405 (long)pos, (long)hdelta,
406 (long)runtime->period_size, jdelta,
407 ((hdelta * HZ) / runtime->rate), hw_base,
408 (unsigned long)old_hw_ptr,
409 (unsigned long)new_hw_ptr);
410 /* reset values to proper state */
411 delta = 0;
412 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
413 }
414 no_jiffies_check:
415 if (delta > runtime->period_size + runtime->period_size / 2) {
416 hw_ptr_error(substream, in_interrupt,
417 "Lost interrupts?",
418 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
419 substream->stream, (long)delta,
420 (long)new_hw_ptr,
421 (long)old_hw_ptr);
422 }
423
424 no_delta_check:
425 if (runtime->status->hw_ptr == new_hw_ptr) {
426 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
427 return 0;
428 }
429
430 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
431 runtime->silence_size > 0)
432 snd_pcm_playback_silence(substream, new_hw_ptr);
433
434 if (in_interrupt) {
435 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
436 if (delta < 0)
437 delta += runtime->boundary;
438 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
439 runtime->hw_ptr_interrupt += delta;
440 if (runtime->hw_ptr_interrupt >= runtime->boundary)
441 runtime->hw_ptr_interrupt -= runtime->boundary;
442 }
443 runtime->hw_ptr_base = hw_base;
444 runtime->status->hw_ptr = new_hw_ptr;
445 runtime->hw_ptr_jiffies = curr_jiffies;
446 if (crossed_boundary) {
447 snd_BUG_ON(crossed_boundary != 1);
448 runtime->hw_ptr_wrap += runtime->boundary;
449 }
450
451 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
452
453 return snd_pcm_update_state(substream, runtime);
454}
455
456/* CAUTION: call it with irq disabled */
457int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
458{
459 return snd_pcm_update_hw_ptr0(substream, 0);
460}
461
462/**
463 * snd_pcm_set_ops - set the PCM operators
464 * @pcm: the pcm instance
465 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
466 * @ops: the operator table
467 *
468 * Sets the given PCM operators to the pcm instance.
469 */
470void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
471 const struct snd_pcm_ops *ops)
472{
473 struct snd_pcm_str *stream = &pcm->streams[direction];
474 struct snd_pcm_substream *substream;
475
476 for (substream = stream->substream; substream != NULL; substream = substream->next)
477 substream->ops = ops;
478}
479EXPORT_SYMBOL(snd_pcm_set_ops);
480
481/**
482 * snd_pcm_sync - set the PCM sync id
483 * @substream: the pcm substream
484 *
485 * Sets the PCM sync identifier for the card.
486 */
487void snd_pcm_set_sync(struct snd_pcm_substream *substream)
488{
489 struct snd_pcm_runtime *runtime = substream->runtime;
490
491 runtime->sync.id32[0] = substream->pcm->card->number;
492 runtime->sync.id32[1] = -1;
493 runtime->sync.id32[2] = -1;
494 runtime->sync.id32[3] = -1;
495}
496EXPORT_SYMBOL(snd_pcm_set_sync);
497
498/*
499 * Standard ioctl routine
500 */
501
502static inline unsigned int div32(unsigned int a, unsigned int b,
503 unsigned int *r)
504{
505 if (b == 0) {
506 *r = 0;
507 return UINT_MAX;
508 }
509 *r = a % b;
510 return a / b;
511}
512
513static inline unsigned int div_down(unsigned int a, unsigned int b)
514{
515 if (b == 0)
516 return UINT_MAX;
517 return a / b;
518}
519
520static inline unsigned int div_up(unsigned int a, unsigned int b)
521{
522 unsigned int r;
523 unsigned int q;
524 if (b == 0)
525 return UINT_MAX;
526 q = div32(a, b, &r);
527 if (r)
528 ++q;
529 return q;
530}
531
532static inline unsigned int mul(unsigned int a, unsigned int b)
533{
534 if (a == 0)
535 return 0;
536 if (div_down(UINT_MAX, a) < b)
537 return UINT_MAX;
538 return a * b;
539}
540
541static inline unsigned int muldiv32(unsigned int a, unsigned int b,
542 unsigned int c, unsigned int *r)
543{
544 u_int64_t n = (u_int64_t) a * b;
545 if (c == 0) {
546 *r = 0;
547 return UINT_MAX;
548 }
549 n = div_u64_rem(n, c, r);
550 if (n >= UINT_MAX) {
551 *r = 0;
552 return UINT_MAX;
553 }
554 return n;
555}
556
557/**
558 * snd_interval_refine - refine the interval value of configurator
559 * @i: the interval value to refine
560 * @v: the interval value to refer to
561 *
562 * Refines the interval value with the reference value.
563 * The interval is changed to the range satisfying both intervals.
564 * The interval status (min, max, integer, etc.) are evaluated.
565 *
566 * Return: Positive if the value is changed, zero if it's not changed, or a
567 * negative error code.
568 */
569int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
570{
571 int changed = 0;
572 if (snd_BUG_ON(snd_interval_empty(i)))
573 return -EINVAL;
574 if (i->min < v->min) {
575 i->min = v->min;
576 i->openmin = v->openmin;
577 changed = 1;
578 } else if (i->min == v->min && !i->openmin && v->openmin) {
579 i->openmin = 1;
580 changed = 1;
581 }
582 if (i->max > v->max) {
583 i->max = v->max;
584 i->openmax = v->openmax;
585 changed = 1;
586 } else if (i->max == v->max && !i->openmax && v->openmax) {
587 i->openmax = 1;
588 changed = 1;
589 }
590 if (!i->integer && v->integer) {
591 i->integer = 1;
592 changed = 1;
593 }
594 if (i->integer) {
595 if (i->openmin) {
596 i->min++;
597 i->openmin = 0;
598 }
599 if (i->openmax) {
600 i->max--;
601 i->openmax = 0;
602 }
603 } else if (!i->openmin && !i->openmax && i->min == i->max)
604 i->integer = 1;
605 if (snd_interval_checkempty(i)) {
606 snd_interval_none(i);
607 return -EINVAL;
608 }
609 return changed;
610}
611EXPORT_SYMBOL(snd_interval_refine);
612
613static int snd_interval_refine_first(struct snd_interval *i)
614{
615 const unsigned int last_max = i->max;
616
617 if (snd_BUG_ON(snd_interval_empty(i)))
618 return -EINVAL;
619 if (snd_interval_single(i))
620 return 0;
621 i->max = i->min;
622 if (i->openmin)
623 i->max++;
624 /* only exclude max value if also excluded before refine */
625 i->openmax = (i->openmax && i->max >= last_max);
626 return 1;
627}
628
629static int snd_interval_refine_last(struct snd_interval *i)
630{
631 const unsigned int last_min = i->min;
632
633 if (snd_BUG_ON(snd_interval_empty(i)))
634 return -EINVAL;
635 if (snd_interval_single(i))
636 return 0;
637 i->min = i->max;
638 if (i->openmax)
639 i->min--;
640 /* only exclude min value if also excluded before refine */
641 i->openmin = (i->openmin && i->min <= last_min);
642 return 1;
643}
644
645void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
646{
647 if (a->empty || b->empty) {
648 snd_interval_none(c);
649 return;
650 }
651 c->empty = 0;
652 c->min = mul(a->min, b->min);
653 c->openmin = (a->openmin || b->openmin);
654 c->max = mul(a->max, b->max);
655 c->openmax = (a->openmax || b->openmax);
656 c->integer = (a->integer && b->integer);
657}
658
659/**
660 * snd_interval_div - refine the interval value with division
661 * @a: dividend
662 * @b: divisor
663 * @c: quotient
664 *
665 * c = a / b
666 *
667 * Returns non-zero if the value is changed, zero if not changed.
668 */
669void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
670{
671 unsigned int r;
672 if (a->empty || b->empty) {
673 snd_interval_none(c);
674 return;
675 }
676 c->empty = 0;
677 c->min = div32(a->min, b->max, &r);
678 c->openmin = (r || a->openmin || b->openmax);
679 if (b->min > 0) {
680 c->max = div32(a->max, b->min, &r);
681 if (r) {
682 c->max++;
683 c->openmax = 1;
684 } else
685 c->openmax = (a->openmax || b->openmin);
686 } else {
687 c->max = UINT_MAX;
688 c->openmax = 0;
689 }
690 c->integer = 0;
691}
692
693/**
694 * snd_interval_muldivk - refine the interval value
695 * @a: dividend 1
696 * @b: dividend 2
697 * @k: divisor (as integer)
698 * @c: result
699 *
700 * c = a * b / k
701 *
702 * Returns non-zero if the value is changed, zero if not changed.
703 */
704void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
705 unsigned int k, struct snd_interval *c)
706{
707 unsigned int r;
708 if (a->empty || b->empty) {
709 snd_interval_none(c);
710 return;
711 }
712 c->empty = 0;
713 c->min = muldiv32(a->min, b->min, k, &r);
714 c->openmin = (r || a->openmin || b->openmin);
715 c->max = muldiv32(a->max, b->max, k, &r);
716 if (r) {
717 c->max++;
718 c->openmax = 1;
719 } else
720 c->openmax = (a->openmax || b->openmax);
721 c->integer = 0;
722}
723
724/**
725 * snd_interval_mulkdiv - refine the interval value
726 * @a: dividend 1
727 * @k: dividend 2 (as integer)
728 * @b: divisor
729 * @c: result
730 *
731 * c = a * k / b
732 *
733 * Returns non-zero if the value is changed, zero if not changed.
734 */
735void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
736 const struct snd_interval *b, struct snd_interval *c)
737{
738 unsigned int r;
739 if (a->empty || b->empty) {
740 snd_interval_none(c);
741 return;
742 }
743 c->empty = 0;
744 c->min = muldiv32(a->min, k, b->max, &r);
745 c->openmin = (r || a->openmin || b->openmax);
746 if (b->min > 0) {
747 c->max = muldiv32(a->max, k, b->min, &r);
748 if (r) {
749 c->max++;
750 c->openmax = 1;
751 } else
752 c->openmax = (a->openmax || b->openmin);
753 } else {
754 c->max = UINT_MAX;
755 c->openmax = 0;
756 }
757 c->integer = 0;
758}
759
760/* ---- */
761
762
763/**
764 * snd_interval_ratnum - refine the interval value
765 * @i: interval to refine
766 * @rats_count: number of ratnum_t
767 * @rats: ratnum_t array
768 * @nump: pointer to store the resultant numerator
769 * @denp: pointer to store the resultant denominator
770 *
771 * Return: Positive if the value is changed, zero if it's not changed, or a
772 * negative error code.
773 */
774int snd_interval_ratnum(struct snd_interval *i,
775 unsigned int rats_count, const struct snd_ratnum *rats,
776 unsigned int *nump, unsigned int *denp)
777{
778 unsigned int best_num, best_den;
779 int best_diff;
780 unsigned int k;
781 struct snd_interval t;
782 int err;
783 unsigned int result_num, result_den;
784 int result_diff;
785
786 best_num = best_den = best_diff = 0;
787 for (k = 0; k < rats_count; ++k) {
788 unsigned int num = rats[k].num;
789 unsigned int den;
790 unsigned int q = i->min;
791 int diff;
792 if (q == 0)
793 q = 1;
794 den = div_up(num, q);
795 if (den < rats[k].den_min)
796 continue;
797 if (den > rats[k].den_max)
798 den = rats[k].den_max;
799 else {
800 unsigned int r;
801 r = (den - rats[k].den_min) % rats[k].den_step;
802 if (r != 0)
803 den -= r;
804 }
805 diff = num - q * den;
806 if (diff < 0)
807 diff = -diff;
808 if (best_num == 0 ||
809 diff * best_den < best_diff * den) {
810 best_diff = diff;
811 best_den = den;
812 best_num = num;
813 }
814 }
815 if (best_den == 0) {
816 i->empty = 1;
817 return -EINVAL;
818 }
819 t.min = div_down(best_num, best_den);
820 t.openmin = !!(best_num % best_den);
821
822 result_num = best_num;
823 result_diff = best_diff;
824 result_den = best_den;
825 best_num = best_den = best_diff = 0;
826 for (k = 0; k < rats_count; ++k) {
827 unsigned int num = rats[k].num;
828 unsigned int den;
829 unsigned int q = i->max;
830 int diff;
831 if (q == 0) {
832 i->empty = 1;
833 return -EINVAL;
834 }
835 den = div_down(num, q);
836 if (den > rats[k].den_max)
837 continue;
838 if (den < rats[k].den_min)
839 den = rats[k].den_min;
840 else {
841 unsigned int r;
842 r = (den - rats[k].den_min) % rats[k].den_step;
843 if (r != 0)
844 den += rats[k].den_step - r;
845 }
846 diff = q * den - num;
847 if (diff < 0)
848 diff = -diff;
849 if (best_num == 0 ||
850 diff * best_den < best_diff * den) {
851 best_diff = diff;
852 best_den = den;
853 best_num = num;
854 }
855 }
856 if (best_den == 0) {
857 i->empty = 1;
858 return -EINVAL;
859 }
860 t.max = div_up(best_num, best_den);
861 t.openmax = !!(best_num % best_den);
862 t.integer = 0;
863 err = snd_interval_refine(i, &t);
864 if (err < 0)
865 return err;
866
867 if (snd_interval_single(i)) {
868 if (best_diff * result_den < result_diff * best_den) {
869 result_num = best_num;
870 result_den = best_den;
871 }
872 if (nump)
873 *nump = result_num;
874 if (denp)
875 *denp = result_den;
876 }
877 return err;
878}
879EXPORT_SYMBOL(snd_interval_ratnum);
880
881/**
882 * snd_interval_ratden - refine the interval value
883 * @i: interval to refine
884 * @rats_count: number of struct ratden
885 * @rats: struct ratden array
886 * @nump: pointer to store the resultant numerator
887 * @denp: pointer to store the resultant denominator
888 *
889 * Return: Positive if the value is changed, zero if it's not changed, or a
890 * negative error code.
891 */
892static int snd_interval_ratden(struct snd_interval *i,
893 unsigned int rats_count,
894 const struct snd_ratden *rats,
895 unsigned int *nump, unsigned int *denp)
896{
897 unsigned int best_num, best_diff, best_den;
898 unsigned int k;
899 struct snd_interval t;
900 int err;
901
902 best_num = best_den = best_diff = 0;
903 for (k = 0; k < rats_count; ++k) {
904 unsigned int num;
905 unsigned int den = rats[k].den;
906 unsigned int q = i->min;
907 int diff;
908 num = mul(q, den);
909 if (num > rats[k].num_max)
910 continue;
911 if (num < rats[k].num_min)
912 num = rats[k].num_max;
913 else {
914 unsigned int r;
915 r = (num - rats[k].num_min) % rats[k].num_step;
916 if (r != 0)
917 num += rats[k].num_step - r;
918 }
919 diff = num - q * den;
920 if (best_num == 0 ||
921 diff * best_den < best_diff * den) {
922 best_diff = diff;
923 best_den = den;
924 best_num = num;
925 }
926 }
927 if (best_den == 0) {
928 i->empty = 1;
929 return -EINVAL;
930 }
931 t.min = div_down(best_num, best_den);
932 t.openmin = !!(best_num % best_den);
933
934 best_num = best_den = best_diff = 0;
935 for (k = 0; k < rats_count; ++k) {
936 unsigned int num;
937 unsigned int den = rats[k].den;
938 unsigned int q = i->max;
939 int diff;
940 num = mul(q, den);
941 if (num < rats[k].num_min)
942 continue;
943 if (num > rats[k].num_max)
944 num = rats[k].num_max;
945 else {
946 unsigned int r;
947 r = (num - rats[k].num_min) % rats[k].num_step;
948 if (r != 0)
949 num -= r;
950 }
951 diff = q * den - num;
952 if (best_num == 0 ||
953 diff * best_den < best_diff * den) {
954 best_diff = diff;
955 best_den = den;
956 best_num = num;
957 }
958 }
959 if (best_den == 0) {
960 i->empty = 1;
961 return -EINVAL;
962 }
963 t.max = div_up(best_num, best_den);
964 t.openmax = !!(best_num % best_den);
965 t.integer = 0;
966 err = snd_interval_refine(i, &t);
967 if (err < 0)
968 return err;
969
970 if (snd_interval_single(i)) {
971 if (nump)
972 *nump = best_num;
973 if (denp)
974 *denp = best_den;
975 }
976 return err;
977}
978
979/**
980 * snd_interval_list - refine the interval value from the list
981 * @i: the interval value to refine
982 * @count: the number of elements in the list
983 * @list: the value list
984 * @mask: the bit-mask to evaluate
985 *
986 * Refines the interval value from the list.
987 * When mask is non-zero, only the elements corresponding to bit 1 are
988 * evaluated.
989 *
990 * Return: Positive if the value is changed, zero if it's not changed, or a
991 * negative error code.
992 */
993int snd_interval_list(struct snd_interval *i, unsigned int count,
994 const unsigned int *list, unsigned int mask)
995{
996 unsigned int k;
997 struct snd_interval list_range;
998
999 if (!count) {
1000 i->empty = 1;
1001 return -EINVAL;
1002 }
1003 snd_interval_any(&list_range);
1004 list_range.min = UINT_MAX;
1005 list_range.max = 0;
1006 for (k = 0; k < count; k++) {
1007 if (mask && !(mask & (1 << k)))
1008 continue;
1009 if (!snd_interval_test(i, list[k]))
1010 continue;
1011 list_range.min = min(list_range.min, list[k]);
1012 list_range.max = max(list_range.max, list[k]);
1013 }
1014 return snd_interval_refine(i, &list_range);
1015}
1016EXPORT_SYMBOL(snd_interval_list);
1017
1018/**
1019 * snd_interval_ranges - refine the interval value from the list of ranges
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list of ranges
1022 * @ranges: the ranges list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list of ranges.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Return: Positive if the value is changed, zero if it's not changed, or a
1030 * negative error code.
1031 */
1032int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1033 const struct snd_interval *ranges, unsigned int mask)
1034{
1035 unsigned int k;
1036 struct snd_interval range_union;
1037 struct snd_interval range;
1038
1039 if (!count) {
1040 snd_interval_none(i);
1041 return -EINVAL;
1042 }
1043 snd_interval_any(&range_union);
1044 range_union.min = UINT_MAX;
1045 range_union.max = 0;
1046 for (k = 0; k < count; k++) {
1047 if (mask && !(mask & (1 << k)))
1048 continue;
1049 snd_interval_copy(&range, &ranges[k]);
1050 if (snd_interval_refine(&range, i) < 0)
1051 continue;
1052 if (snd_interval_empty(&range))
1053 continue;
1054
1055 if (range.min < range_union.min) {
1056 range_union.min = range.min;
1057 range_union.openmin = 1;
1058 }
1059 if (range.min == range_union.min && !range.openmin)
1060 range_union.openmin = 0;
1061 if (range.max > range_union.max) {
1062 range_union.max = range.max;
1063 range_union.openmax = 1;
1064 }
1065 if (range.max == range_union.max && !range.openmax)
1066 range_union.openmax = 0;
1067 }
1068 return snd_interval_refine(i, &range_union);
1069}
1070EXPORT_SYMBOL(snd_interval_ranges);
1071
1072static int snd_interval_step(struct snd_interval *i, unsigned int step)
1073{
1074 unsigned int n;
1075 int changed = 0;
1076 n = i->min % step;
1077 if (n != 0 || i->openmin) {
1078 i->min += step - n;
1079 i->openmin = 0;
1080 changed = 1;
1081 }
1082 n = i->max % step;
1083 if (n != 0 || i->openmax) {
1084 i->max -= n;
1085 i->openmax = 0;
1086 changed = 1;
1087 }
1088 if (snd_interval_checkempty(i)) {
1089 i->empty = 1;
1090 return -EINVAL;
1091 }
1092 return changed;
1093}
1094
1095/* Info constraints helpers */
1096
1097/**
1098 * snd_pcm_hw_rule_add - add the hw-constraint rule
1099 * @runtime: the pcm runtime instance
1100 * @cond: condition bits
1101 * @var: the variable to evaluate
1102 * @func: the evaluation function
1103 * @private: the private data pointer passed to function
1104 * @dep: the dependent variables
1105 *
1106 * Return: Zero if successful, or a negative error code on failure.
1107 */
1108int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1109 int var,
1110 snd_pcm_hw_rule_func_t func, void *private,
1111 int dep, ...)
1112{
1113 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1114 struct snd_pcm_hw_rule *c;
1115 unsigned int k;
1116 va_list args;
1117 va_start(args, dep);
1118 if (constrs->rules_num >= constrs->rules_all) {
1119 struct snd_pcm_hw_rule *new;
1120 unsigned int new_rules = constrs->rules_all + 16;
1121 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1122 GFP_KERNEL);
1123 if (!new) {
1124 va_end(args);
1125 return -ENOMEM;
1126 }
1127 constrs->rules = new;
1128 constrs->rules_all = new_rules;
1129 }
1130 c = &constrs->rules[constrs->rules_num];
1131 c->cond = cond;
1132 c->func = func;
1133 c->var = var;
1134 c->private = private;
1135 k = 0;
1136 while (1) {
1137 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1138 va_end(args);
1139 return -EINVAL;
1140 }
1141 c->deps[k++] = dep;
1142 if (dep < 0)
1143 break;
1144 dep = va_arg(args, int);
1145 }
1146 constrs->rules_num++;
1147 va_end(args);
1148 return 0;
1149}
1150EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1151
1152/**
1153 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1154 * @runtime: PCM runtime instance
1155 * @var: hw_params variable to apply the mask
1156 * @mask: the bitmap mask
1157 *
1158 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1159 *
1160 * Return: Zero if successful, or a negative error code on failure.
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 u_int32_t mask)
1164{
1165 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 struct snd_mask *maskp = constrs_mask(constrs, var);
1167 *maskp->bits &= mask;
1168 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 if (*maskp->bits == 0)
1170 return -EINVAL;
1171 return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 *
1182 * Return: Zero if successful, or a negative error code on failure.
1183 */
1184int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1185 u_int64_t mask)
1186{
1187 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1188 struct snd_mask *maskp = constrs_mask(constrs, var);
1189 maskp->bits[0] &= (u_int32_t)mask;
1190 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1191 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1192 if (! maskp->bits[0] && ! maskp->bits[1])
1193 return -EINVAL;
1194 return 0;
1195}
1196EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1197
1198/**
1199 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1200 * @runtime: PCM runtime instance
1201 * @var: hw_params variable to apply the integer constraint
1202 *
1203 * Apply the constraint of integer to an interval parameter.
1204 *
1205 * Return: Positive if the value is changed, zero if it's not changed, or a
1206 * negative error code.
1207 */
1208int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1209{
1210 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1211 return snd_interval_setinteger(constrs_interval(constrs, var));
1212}
1213EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1214
1215/**
1216 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1217 * @runtime: PCM runtime instance
1218 * @var: hw_params variable to apply the range
1219 * @min: the minimal value
1220 * @max: the maximal value
1221 *
1222 * Apply the min/max range constraint to an interval parameter.
1223 *
1224 * Return: Positive if the value is changed, zero if it's not changed, or a
1225 * negative error code.
1226 */
1227int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1228 unsigned int min, unsigned int max)
1229{
1230 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1231 struct snd_interval t;
1232 t.min = min;
1233 t.max = max;
1234 t.openmin = t.openmax = 0;
1235 t.integer = 0;
1236 return snd_interval_refine(constrs_interval(constrs, var), &t);
1237}
1238EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1239
1240static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1241 struct snd_pcm_hw_rule *rule)
1242{
1243 struct snd_pcm_hw_constraint_list *list = rule->private;
1244 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1245}
1246
1247
1248/**
1249 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1250 * @runtime: PCM runtime instance
1251 * @cond: condition bits
1252 * @var: hw_params variable to apply the list constraint
1253 * @l: list
1254 *
1255 * Apply the list of constraints to an interval parameter.
1256 *
1257 * Return: Zero if successful, or a negative error code on failure.
1258 */
1259int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1260 unsigned int cond,
1261 snd_pcm_hw_param_t var,
1262 const struct snd_pcm_hw_constraint_list *l)
1263{
1264 return snd_pcm_hw_rule_add(runtime, cond, var,
1265 snd_pcm_hw_rule_list, (void *)l,
1266 var, -1);
1267}
1268EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1269
1270static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1271 struct snd_pcm_hw_rule *rule)
1272{
1273 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1274 return snd_interval_ranges(hw_param_interval(params, rule->var),
1275 r->count, r->ranges, r->mask);
1276}
1277
1278
1279/**
1280 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1281 * @runtime: PCM runtime instance
1282 * @cond: condition bits
1283 * @var: hw_params variable to apply the list of range constraints
1284 * @r: ranges
1285 *
1286 * Apply the list of range constraints to an interval parameter.
1287 *
1288 * Return: Zero if successful, or a negative error code on failure.
1289 */
1290int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1291 unsigned int cond,
1292 snd_pcm_hw_param_t var,
1293 const struct snd_pcm_hw_constraint_ranges *r)
1294{
1295 return snd_pcm_hw_rule_add(runtime, cond, var,
1296 snd_pcm_hw_rule_ranges, (void *)r,
1297 var, -1);
1298}
1299EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1300
1301static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1302 struct snd_pcm_hw_rule *rule)
1303{
1304 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1305 unsigned int num = 0, den = 0;
1306 int err;
1307 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1308 r->nrats, r->rats, &num, &den);
1309 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1310 params->rate_num = num;
1311 params->rate_den = den;
1312 }
1313 return err;
1314}
1315
1316/**
1317 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the ratnums constraint
1321 * @r: struct snd_ratnums constriants
1322 *
1323 * Return: Zero if successful, or a negative error code on failure.
1324 */
1325int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1326 unsigned int cond,
1327 snd_pcm_hw_param_t var,
1328 const struct snd_pcm_hw_constraint_ratnums *r)
1329{
1330 return snd_pcm_hw_rule_add(runtime, cond, var,
1331 snd_pcm_hw_rule_ratnums, (void *)r,
1332 var, -1);
1333}
1334EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1335
1336static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1337 struct snd_pcm_hw_rule *rule)
1338{
1339 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1340 unsigned int num = 0, den = 0;
1341 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1342 r->nrats, r->rats, &num, &den);
1343 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1344 params->rate_num = num;
1345 params->rate_den = den;
1346 }
1347 return err;
1348}
1349
1350/**
1351 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1352 * @runtime: PCM runtime instance
1353 * @cond: condition bits
1354 * @var: hw_params variable to apply the ratdens constraint
1355 * @r: struct snd_ratdens constriants
1356 *
1357 * Return: Zero if successful, or a negative error code on failure.
1358 */
1359int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1360 unsigned int cond,
1361 snd_pcm_hw_param_t var,
1362 const struct snd_pcm_hw_constraint_ratdens *r)
1363{
1364 return snd_pcm_hw_rule_add(runtime, cond, var,
1365 snd_pcm_hw_rule_ratdens, (void *)r,
1366 var, -1);
1367}
1368EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1369
1370static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1371 struct snd_pcm_hw_rule *rule)
1372{
1373 unsigned int l = (unsigned long) rule->private;
1374 int width = l & 0xffff;
1375 unsigned int msbits = l >> 16;
1376 const struct snd_interval *i =
1377 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1378
1379 if (!snd_interval_single(i))
1380 return 0;
1381
1382 if ((snd_interval_value(i) == width) ||
1383 (width == 0 && snd_interval_value(i) > msbits))
1384 params->msbits = min_not_zero(params->msbits, msbits);
1385
1386 return 0;
1387}
1388
1389/**
1390 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1391 * @runtime: PCM runtime instance
1392 * @cond: condition bits
1393 * @width: sample bits width
1394 * @msbits: msbits width
1395 *
1396 * This constraint will set the number of most significant bits (msbits) if a
1397 * sample format with the specified width has been select. If width is set to 0
1398 * the msbits will be set for any sample format with a width larger than the
1399 * specified msbits.
1400 *
1401 * Return: Zero if successful, or a negative error code on failure.
1402 */
1403int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1404 unsigned int cond,
1405 unsigned int width,
1406 unsigned int msbits)
1407{
1408 unsigned long l = (msbits << 16) | width;
1409 return snd_pcm_hw_rule_add(runtime, cond, -1,
1410 snd_pcm_hw_rule_msbits,
1411 (void*) l,
1412 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1413}
1414EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1415
1416static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1417 struct snd_pcm_hw_rule *rule)
1418{
1419 unsigned long step = (unsigned long) rule->private;
1420 return snd_interval_step(hw_param_interval(params, rule->var), step);
1421}
1422
1423/**
1424 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1425 * @runtime: PCM runtime instance
1426 * @cond: condition bits
1427 * @var: hw_params variable to apply the step constraint
1428 * @step: step size
1429 *
1430 * Return: Zero if successful, or a negative error code on failure.
1431 */
1432int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1433 unsigned int cond,
1434 snd_pcm_hw_param_t var,
1435 unsigned long step)
1436{
1437 return snd_pcm_hw_rule_add(runtime, cond, var,
1438 snd_pcm_hw_rule_step, (void *) step,
1439 var, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1442
1443static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1444{
1445 static unsigned int pow2_sizes[] = {
1446 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1447 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1448 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1449 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1450 };
1451 return snd_interval_list(hw_param_interval(params, rule->var),
1452 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1453}
1454
1455/**
1456 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1457 * @runtime: PCM runtime instance
1458 * @cond: condition bits
1459 * @var: hw_params variable to apply the power-of-2 constraint
1460 *
1461 * Return: Zero if successful, or a negative error code on failure.
1462 */
1463int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1464 unsigned int cond,
1465 snd_pcm_hw_param_t var)
1466{
1467 return snd_pcm_hw_rule_add(runtime, cond, var,
1468 snd_pcm_hw_rule_pow2, NULL,
1469 var, -1);
1470}
1471EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1472
1473static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1474 struct snd_pcm_hw_rule *rule)
1475{
1476 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1477 struct snd_interval *rate;
1478
1479 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1480 return snd_interval_list(rate, 1, &base_rate, 0);
1481}
1482
1483/**
1484 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1485 * @runtime: PCM runtime instance
1486 * @base_rate: the rate at which the hardware does not resample
1487 *
1488 * Return: Zero if successful, or a negative error code on failure.
1489 */
1490int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1491 unsigned int base_rate)
1492{
1493 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1494 SNDRV_PCM_HW_PARAM_RATE,
1495 snd_pcm_hw_rule_noresample_func,
1496 (void *)(uintptr_t)base_rate,
1497 SNDRV_PCM_HW_PARAM_RATE, -1);
1498}
1499EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1500
1501static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1502 snd_pcm_hw_param_t var)
1503{
1504 if (hw_is_mask(var)) {
1505 snd_mask_any(hw_param_mask(params, var));
1506 params->cmask |= 1 << var;
1507 params->rmask |= 1 << var;
1508 return;
1509 }
1510 if (hw_is_interval(var)) {
1511 snd_interval_any(hw_param_interval(params, var));
1512 params->cmask |= 1 << var;
1513 params->rmask |= 1 << var;
1514 return;
1515 }
1516 snd_BUG();
1517}
1518
1519void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1520{
1521 unsigned int k;
1522 memset(params, 0, sizeof(*params));
1523 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1524 _snd_pcm_hw_param_any(params, k);
1525 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1526 _snd_pcm_hw_param_any(params, k);
1527 params->info = ~0U;
1528}
1529EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1530
1531/**
1532 * snd_pcm_hw_param_value - return @params field @var value
1533 * @params: the hw_params instance
1534 * @var: parameter to retrieve
1535 * @dir: pointer to the direction (-1,0,1) or %NULL
1536 *
1537 * Return: The value for field @var if it's fixed in configuration space
1538 * defined by @params. -%EINVAL otherwise.
1539 */
1540int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1541 snd_pcm_hw_param_t var, int *dir)
1542{
1543 if (hw_is_mask(var)) {
1544 const struct snd_mask *mask = hw_param_mask_c(params, var);
1545 if (!snd_mask_single(mask))
1546 return -EINVAL;
1547 if (dir)
1548 *dir = 0;
1549 return snd_mask_value(mask);
1550 }
1551 if (hw_is_interval(var)) {
1552 const struct snd_interval *i = hw_param_interval_c(params, var);
1553 if (!snd_interval_single(i))
1554 return -EINVAL;
1555 if (dir)
1556 *dir = i->openmin;
1557 return snd_interval_value(i);
1558 }
1559 return -EINVAL;
1560}
1561EXPORT_SYMBOL(snd_pcm_hw_param_value);
1562
1563void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1564 snd_pcm_hw_param_t var)
1565{
1566 if (hw_is_mask(var)) {
1567 snd_mask_none(hw_param_mask(params, var));
1568 params->cmask |= 1 << var;
1569 params->rmask |= 1 << var;
1570 } else if (hw_is_interval(var)) {
1571 snd_interval_none(hw_param_interval(params, var));
1572 params->cmask |= 1 << var;
1573 params->rmask |= 1 << var;
1574 } else {
1575 snd_BUG();
1576 }
1577}
1578EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1579
1580static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1581 snd_pcm_hw_param_t var)
1582{
1583 int changed;
1584 if (hw_is_mask(var))
1585 changed = snd_mask_refine_first(hw_param_mask(params, var));
1586 else if (hw_is_interval(var))
1587 changed = snd_interval_refine_first(hw_param_interval(params, var));
1588 else
1589 return -EINVAL;
1590 if (changed > 0) {
1591 params->cmask |= 1 << var;
1592 params->rmask |= 1 << var;
1593 }
1594 return changed;
1595}
1596
1597
1598/**
1599 * snd_pcm_hw_param_first - refine config space and return minimum value
1600 * @pcm: PCM instance
1601 * @params: the hw_params instance
1602 * @var: parameter to retrieve
1603 * @dir: pointer to the direction (-1,0,1) or %NULL
1604 *
1605 * Inside configuration space defined by @params remove from @var all
1606 * values > minimum. Reduce configuration space accordingly.
1607 *
1608 * Return: The minimum, or a negative error code on failure.
1609 */
1610int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1611 struct snd_pcm_hw_params *params,
1612 snd_pcm_hw_param_t var, int *dir)
1613{
1614 int changed = _snd_pcm_hw_param_first(params, var);
1615 if (changed < 0)
1616 return changed;
1617 if (params->rmask) {
1618 int err = snd_pcm_hw_refine(pcm, params);
1619 if (err < 0)
1620 return err;
1621 }
1622 return snd_pcm_hw_param_value(params, var, dir);
1623}
1624EXPORT_SYMBOL(snd_pcm_hw_param_first);
1625
1626static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var)
1628{
1629 int changed;
1630 if (hw_is_mask(var))
1631 changed = snd_mask_refine_last(hw_param_mask(params, var));
1632 else if (hw_is_interval(var))
1633 changed = snd_interval_refine_last(hw_param_interval(params, var));
1634 else
1635 return -EINVAL;
1636 if (changed > 0) {
1637 params->cmask |= 1 << var;
1638 params->rmask |= 1 << var;
1639 }
1640 return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_last - refine config space and return maximum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values < maximum. Reduce configuration space accordingly.
1653 *
1654 * Return: The maximum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1657 struct snd_pcm_hw_params *params,
1658 snd_pcm_hw_param_t var, int *dir)
1659{
1660 int changed = _snd_pcm_hw_param_last(params, var);
1661 if (changed < 0)
1662 return changed;
1663 if (params->rmask) {
1664 int err = snd_pcm_hw_refine(pcm, params);
1665 if (err < 0)
1666 return err;
1667 }
1668 return snd_pcm_hw_param_value(params, var, dir);
1669}
1670EXPORT_SYMBOL(snd_pcm_hw_param_last);
1671
1672static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1673 void *arg)
1674{
1675 struct snd_pcm_runtime *runtime = substream->runtime;
1676 unsigned long flags;
1677 snd_pcm_stream_lock_irqsave(substream, flags);
1678 if (snd_pcm_running(substream) &&
1679 snd_pcm_update_hw_ptr(substream) >= 0)
1680 runtime->status->hw_ptr %= runtime->buffer_size;
1681 else {
1682 runtime->status->hw_ptr = 0;
1683 runtime->hw_ptr_wrap = 0;
1684 }
1685 snd_pcm_stream_unlock_irqrestore(substream, flags);
1686 return 0;
1687}
1688
1689static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1690 void *arg)
1691{
1692 struct snd_pcm_channel_info *info = arg;
1693 struct snd_pcm_runtime *runtime = substream->runtime;
1694 int width;
1695 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1696 info->offset = -1;
1697 return 0;
1698 }
1699 width = snd_pcm_format_physical_width(runtime->format);
1700 if (width < 0)
1701 return width;
1702 info->offset = 0;
1703 switch (runtime->access) {
1704 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1705 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1706 info->first = info->channel * width;
1707 info->step = runtime->channels * width;
1708 break;
1709 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1710 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1711 {
1712 size_t size = runtime->dma_bytes / runtime->channels;
1713 info->first = info->channel * size * 8;
1714 info->step = width;
1715 break;
1716 }
1717 default:
1718 snd_BUG();
1719 break;
1720 }
1721 return 0;
1722}
1723
1724static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1725 void *arg)
1726{
1727 struct snd_pcm_hw_params *params = arg;
1728 snd_pcm_format_t format;
1729 int channels;
1730 ssize_t frame_size;
1731
1732 params->fifo_size = substream->runtime->hw.fifo_size;
1733 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1734 format = params_format(params);
1735 channels = params_channels(params);
1736 frame_size = snd_pcm_format_size(format, channels);
1737 if (frame_size > 0)
1738 params->fifo_size /= (unsigned)frame_size;
1739 }
1740 return 0;
1741}
1742
1743/**
1744 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1745 * @substream: the pcm substream instance
1746 * @cmd: ioctl command
1747 * @arg: ioctl argument
1748 *
1749 * Processes the generic ioctl commands for PCM.
1750 * Can be passed as the ioctl callback for PCM ops.
1751 *
1752 * Return: Zero if successful, or a negative error code on failure.
1753 */
1754int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1755 unsigned int cmd, void *arg)
1756{
1757 switch (cmd) {
1758 case SNDRV_PCM_IOCTL1_RESET:
1759 return snd_pcm_lib_ioctl_reset(substream, arg);
1760 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1761 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1762 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1763 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1764 }
1765 return -ENXIO;
1766}
1767EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1768
1769/**
1770 * snd_pcm_period_elapsed - update the pcm status for the next period
1771 * @substream: the pcm substream instance
1772 *
1773 * This function is called from the interrupt handler when the
1774 * PCM has processed the period size. It will update the current
1775 * pointer, wake up sleepers, etc.
1776 *
1777 * Even if more than one periods have elapsed since the last call, you
1778 * have to call this only once.
1779 */
1780void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1781{
1782 struct snd_pcm_runtime *runtime;
1783 unsigned long flags;
1784
1785 if (snd_BUG_ON(!substream))
1786 return;
1787
1788 snd_pcm_stream_lock_irqsave(substream, flags);
1789 if (PCM_RUNTIME_CHECK(substream))
1790 goto _unlock;
1791 runtime = substream->runtime;
1792
1793 if (!snd_pcm_running(substream) ||
1794 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1795 goto _end;
1796
1797#ifdef CONFIG_SND_PCM_TIMER
1798 if (substream->timer_running)
1799 snd_timer_interrupt(substream->timer, 1);
1800#endif
1801 _end:
1802 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1803 _unlock:
1804 snd_pcm_stream_unlock_irqrestore(substream, flags);
1805}
1806EXPORT_SYMBOL(snd_pcm_period_elapsed);
1807
1808/*
1809 * Wait until avail_min data becomes available
1810 * Returns a negative error code if any error occurs during operation.
1811 * The available space is stored on availp. When err = 0 and avail = 0
1812 * on the capture stream, it indicates the stream is in DRAINING state.
1813 */
1814static int wait_for_avail(struct snd_pcm_substream *substream,
1815 snd_pcm_uframes_t *availp)
1816{
1817 struct snd_pcm_runtime *runtime = substream->runtime;
1818 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1819 wait_queue_entry_t wait;
1820 int err = 0;
1821 snd_pcm_uframes_t avail = 0;
1822 long wait_time, tout;
1823
1824 init_waitqueue_entry(&wait, current);
1825 set_current_state(TASK_INTERRUPTIBLE);
1826 add_wait_queue(&runtime->tsleep, &wait);
1827
1828 if (runtime->no_period_wakeup)
1829 wait_time = MAX_SCHEDULE_TIMEOUT;
1830 else {
1831 /* use wait time from substream if available */
1832 if (substream->wait_time) {
1833 wait_time = substream->wait_time;
1834 } else {
1835 wait_time = 10;
1836
1837 if (runtime->rate) {
1838 long t = runtime->period_size * 2 /
1839 runtime->rate;
1840 wait_time = max(t, wait_time);
1841 }
1842 wait_time = msecs_to_jiffies(wait_time * 1000);
1843 }
1844 }
1845
1846 for (;;) {
1847 if (signal_pending(current)) {
1848 err = -ERESTARTSYS;
1849 break;
1850 }
1851
1852 /*
1853 * We need to check if space became available already
1854 * (and thus the wakeup happened already) first to close
1855 * the race of space already having become available.
1856 * This check must happen after been added to the waitqueue
1857 * and having current state be INTERRUPTIBLE.
1858 */
1859 avail = snd_pcm_avail(substream);
1860 if (avail >= runtime->twake)
1861 break;
1862 snd_pcm_stream_unlock_irq(substream);
1863
1864 tout = schedule_timeout(wait_time);
1865
1866 snd_pcm_stream_lock_irq(substream);
1867 set_current_state(TASK_INTERRUPTIBLE);
1868 switch (runtime->status->state) {
1869 case SNDRV_PCM_STATE_SUSPENDED:
1870 err = -ESTRPIPE;
1871 goto _endloop;
1872 case SNDRV_PCM_STATE_XRUN:
1873 err = -EPIPE;
1874 goto _endloop;
1875 case SNDRV_PCM_STATE_DRAINING:
1876 if (is_playback)
1877 err = -EPIPE;
1878 else
1879 avail = 0; /* indicate draining */
1880 goto _endloop;
1881 case SNDRV_PCM_STATE_OPEN:
1882 case SNDRV_PCM_STATE_SETUP:
1883 case SNDRV_PCM_STATE_DISCONNECTED:
1884 err = -EBADFD;
1885 goto _endloop;
1886 case SNDRV_PCM_STATE_PAUSED:
1887 continue;
1888 }
1889 if (!tout) {
1890 pcm_dbg(substream->pcm,
1891 "%s write error (DMA or IRQ trouble?)\n",
1892 is_playback ? "playback" : "capture");
1893 err = -EIO;
1894 break;
1895 }
1896 }
1897 _endloop:
1898 set_current_state(TASK_RUNNING);
1899 remove_wait_queue(&runtime->tsleep, &wait);
1900 *availp = avail;
1901 return err;
1902}
1903
1904typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1905 int channel, unsigned long hwoff,
1906 void *buf, unsigned long bytes);
1907
1908typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1909 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1910
1911/* calculate the target DMA-buffer position to be written/read */
1912static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1913 int channel, unsigned long hwoff)
1914{
1915 return runtime->dma_area + hwoff +
1916 channel * (runtime->dma_bytes / runtime->channels);
1917}
1918
1919/* default copy_user ops for write; used for both interleaved and non- modes */
1920static int default_write_copy(struct snd_pcm_substream *substream,
1921 int channel, unsigned long hwoff,
1922 void *buf, unsigned long bytes)
1923{
1924 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1925 (void __user *)buf, bytes))
1926 return -EFAULT;
1927 return 0;
1928}
1929
1930/* default copy_kernel ops for write */
1931static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1932 int channel, unsigned long hwoff,
1933 void *buf, unsigned long bytes)
1934{
1935 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1936 return 0;
1937}
1938
1939/* fill silence instead of copy data; called as a transfer helper
1940 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1941 * a NULL buffer is passed
1942 */
1943static int fill_silence(struct snd_pcm_substream *substream, int channel,
1944 unsigned long hwoff, void *buf, unsigned long bytes)
1945{
1946 struct snd_pcm_runtime *runtime = substream->runtime;
1947
1948 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1949 return 0;
1950 if (substream->ops->fill_silence)
1951 return substream->ops->fill_silence(substream, channel,
1952 hwoff, bytes);
1953
1954 snd_pcm_format_set_silence(runtime->format,
1955 get_dma_ptr(runtime, channel, hwoff),
1956 bytes_to_samples(runtime, bytes));
1957 return 0;
1958}
1959
1960/* default copy_user ops for read; used for both interleaved and non- modes */
1961static int default_read_copy(struct snd_pcm_substream *substream,
1962 int channel, unsigned long hwoff,
1963 void *buf, unsigned long bytes)
1964{
1965 if (copy_to_user((void __user *)buf,
1966 get_dma_ptr(substream->runtime, channel, hwoff),
1967 bytes))
1968 return -EFAULT;
1969 return 0;
1970}
1971
1972/* default copy_kernel ops for read */
1973static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1974 int channel, unsigned long hwoff,
1975 void *buf, unsigned long bytes)
1976{
1977 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1978 return 0;
1979}
1980
1981/* call transfer function with the converted pointers and sizes;
1982 * for interleaved mode, it's one shot for all samples
1983 */
1984static int interleaved_copy(struct snd_pcm_substream *substream,
1985 snd_pcm_uframes_t hwoff, void *data,
1986 snd_pcm_uframes_t off,
1987 snd_pcm_uframes_t frames,
1988 pcm_transfer_f transfer)
1989{
1990 struct snd_pcm_runtime *runtime = substream->runtime;
1991
1992 /* convert to bytes */
1993 hwoff = frames_to_bytes(runtime, hwoff);
1994 off = frames_to_bytes(runtime, off);
1995 frames = frames_to_bytes(runtime, frames);
1996 return transfer(substream, 0, hwoff, data + off, frames);
1997}
1998
1999/* call transfer function with the converted pointers and sizes for each
2000 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2001 */
2002static int noninterleaved_copy(struct snd_pcm_substream *substream,
2003 snd_pcm_uframes_t hwoff, void *data,
2004 snd_pcm_uframes_t off,
2005 snd_pcm_uframes_t frames,
2006 pcm_transfer_f transfer)
2007{
2008 struct snd_pcm_runtime *runtime = substream->runtime;
2009 int channels = runtime->channels;
2010 void **bufs = data;
2011 int c, err;
2012
2013 /* convert to bytes; note that it's not frames_to_bytes() here.
2014 * in non-interleaved mode, we copy for each channel, thus
2015 * each copy is n_samples bytes x channels = whole frames.
2016 */
2017 off = samples_to_bytes(runtime, off);
2018 frames = samples_to_bytes(runtime, frames);
2019 hwoff = samples_to_bytes(runtime, hwoff);
2020 for (c = 0; c < channels; ++c, ++bufs) {
2021 if (!data || !*bufs)
2022 err = fill_silence(substream, c, hwoff, NULL, frames);
2023 else
2024 err = transfer(substream, c, hwoff, *bufs + off,
2025 frames);
2026 if (err < 0)
2027 return err;
2028 }
2029 return 0;
2030}
2031
2032/* fill silence on the given buffer position;
2033 * called from snd_pcm_playback_silence()
2034 */
2035static int fill_silence_frames(struct snd_pcm_substream *substream,
2036 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2037{
2038 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2039 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2040 return interleaved_copy(substream, off, NULL, 0, frames,
2041 fill_silence);
2042 else
2043 return noninterleaved_copy(substream, off, NULL, 0, frames,
2044 fill_silence);
2045}
2046
2047/* sanity-check for read/write methods */
2048static int pcm_sanity_check(struct snd_pcm_substream *substream)
2049{
2050 struct snd_pcm_runtime *runtime;
2051 if (PCM_RUNTIME_CHECK(substream))
2052 return -ENXIO;
2053 runtime = substream->runtime;
2054 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2055 return -EINVAL;
2056 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2057 return -EBADFD;
2058 return 0;
2059}
2060
2061static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2062{
2063 switch (runtime->status->state) {
2064 case SNDRV_PCM_STATE_PREPARED:
2065 case SNDRV_PCM_STATE_RUNNING:
2066 case SNDRV_PCM_STATE_PAUSED:
2067 return 0;
2068 case SNDRV_PCM_STATE_XRUN:
2069 return -EPIPE;
2070 case SNDRV_PCM_STATE_SUSPENDED:
2071 return -ESTRPIPE;
2072 default:
2073 return -EBADFD;
2074 }
2075}
2076
2077/* update to the given appl_ptr and call ack callback if needed;
2078 * when an error is returned, take back to the original value
2079 */
2080int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2081 snd_pcm_uframes_t appl_ptr)
2082{
2083 struct snd_pcm_runtime *runtime = substream->runtime;
2084 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2085 int ret;
2086
2087 if (old_appl_ptr == appl_ptr)
2088 return 0;
2089
2090 runtime->control->appl_ptr = appl_ptr;
2091 if (substream->ops->ack) {
2092 ret = substream->ops->ack(substream);
2093 if (ret < 0) {
2094 runtime->control->appl_ptr = old_appl_ptr;
2095 return ret;
2096 }
2097 }
2098
2099 trace_applptr(substream, old_appl_ptr, appl_ptr);
2100
2101 return 0;
2102}
2103
2104/* the common loop for read/write data */
2105snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2106 void *data, bool interleaved,
2107 snd_pcm_uframes_t size, bool in_kernel)
2108{
2109 struct snd_pcm_runtime *runtime = substream->runtime;
2110 snd_pcm_uframes_t xfer = 0;
2111 snd_pcm_uframes_t offset = 0;
2112 snd_pcm_uframes_t avail;
2113 pcm_copy_f writer;
2114 pcm_transfer_f transfer;
2115 bool nonblock;
2116 bool is_playback;
2117 int err;
2118
2119 err = pcm_sanity_check(substream);
2120 if (err < 0)
2121 return err;
2122
2123 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2124 if (interleaved) {
2125 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2126 runtime->channels > 1)
2127 return -EINVAL;
2128 writer = interleaved_copy;
2129 } else {
2130 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2131 return -EINVAL;
2132 writer = noninterleaved_copy;
2133 }
2134
2135 if (!data) {
2136 if (is_playback)
2137 transfer = fill_silence;
2138 else
2139 return -EINVAL;
2140 } else if (in_kernel) {
2141 if (substream->ops->copy_kernel)
2142 transfer = substream->ops->copy_kernel;
2143 else
2144 transfer = is_playback ?
2145 default_write_copy_kernel : default_read_copy_kernel;
2146 } else {
2147 if (substream->ops->copy_user)
2148 transfer = (pcm_transfer_f)substream->ops->copy_user;
2149 else
2150 transfer = is_playback ?
2151 default_write_copy : default_read_copy;
2152 }
2153
2154 if (size == 0)
2155 return 0;
2156
2157 nonblock = !!(substream->f_flags & O_NONBLOCK);
2158
2159 snd_pcm_stream_lock_irq(substream);
2160 err = pcm_accessible_state(runtime);
2161 if (err < 0)
2162 goto _end_unlock;
2163
2164 runtime->twake = runtime->control->avail_min ? : 1;
2165 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2166 snd_pcm_update_hw_ptr(substream);
2167
2168 /*
2169 * If size < start_threshold, wait indefinitely. Another
2170 * thread may start capture
2171 */
2172 if (!is_playback &&
2173 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2174 size >= runtime->start_threshold) {
2175 err = snd_pcm_start(substream);
2176 if (err < 0)
2177 goto _end_unlock;
2178 }
2179
2180 avail = snd_pcm_avail(substream);
2181
2182 while (size > 0) {
2183 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2184 snd_pcm_uframes_t cont;
2185 if (!avail) {
2186 if (!is_playback &&
2187 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2188 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2189 goto _end_unlock;
2190 }
2191 if (nonblock) {
2192 err = -EAGAIN;
2193 goto _end_unlock;
2194 }
2195 runtime->twake = min_t(snd_pcm_uframes_t, size,
2196 runtime->control->avail_min ? : 1);
2197 err = wait_for_avail(substream, &avail);
2198 if (err < 0)
2199 goto _end_unlock;
2200 if (!avail)
2201 continue; /* draining */
2202 }
2203 frames = size > avail ? avail : size;
2204 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2205 appl_ofs = appl_ptr % runtime->buffer_size;
2206 cont = runtime->buffer_size - appl_ofs;
2207 if (frames > cont)
2208 frames = cont;
2209 if (snd_BUG_ON(!frames)) {
2210 err = -EINVAL;
2211 goto _end_unlock;
2212 }
2213 snd_pcm_stream_unlock_irq(substream);
2214 err = writer(substream, appl_ofs, data, offset, frames,
2215 transfer);
2216 snd_pcm_stream_lock_irq(substream);
2217 if (err < 0)
2218 goto _end_unlock;
2219 err = pcm_accessible_state(runtime);
2220 if (err < 0)
2221 goto _end_unlock;
2222 appl_ptr += frames;
2223 if (appl_ptr >= runtime->boundary)
2224 appl_ptr -= runtime->boundary;
2225 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2226 if (err < 0)
2227 goto _end_unlock;
2228
2229 offset += frames;
2230 size -= frames;
2231 xfer += frames;
2232 avail -= frames;
2233 if (is_playback &&
2234 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2235 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2236 err = snd_pcm_start(substream);
2237 if (err < 0)
2238 goto _end_unlock;
2239 }
2240 }
2241 _end_unlock:
2242 runtime->twake = 0;
2243 if (xfer > 0 && err >= 0)
2244 snd_pcm_update_state(substream, runtime);
2245 snd_pcm_stream_unlock_irq(substream);
2246 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2247}
2248EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2249
2250/*
2251 * standard channel mapping helpers
2252 */
2253
2254/* default channel maps for multi-channel playbacks, up to 8 channels */
2255const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2256 { .channels = 1,
2257 .map = { SNDRV_CHMAP_MONO } },
2258 { .channels = 2,
2259 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2260 { .channels = 4,
2261 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2262 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2263 { .channels = 6,
2264 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2265 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2266 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2267 { .channels = 8,
2268 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2269 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2270 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2271 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2272 { }
2273};
2274EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2275
2276/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2277const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2278 { .channels = 1,
2279 .map = { SNDRV_CHMAP_MONO } },
2280 { .channels = 2,
2281 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2282 { .channels = 4,
2283 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2284 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2285 { .channels = 6,
2286 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2287 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2288 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2289 { .channels = 8,
2290 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2291 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2292 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2293 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2294 { }
2295};
2296EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2297
2298static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2299{
2300 if (ch > info->max_channels)
2301 return false;
2302 return !info->channel_mask || (info->channel_mask & (1U << ch));
2303}
2304
2305static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2306 struct snd_ctl_elem_info *uinfo)
2307{
2308 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2309
2310 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2311 uinfo->count = 0;
2312 uinfo->count = info->max_channels;
2313 uinfo->value.integer.min = 0;
2314 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2315 return 0;
2316}
2317
2318/* get callback for channel map ctl element
2319 * stores the channel position firstly matching with the current channels
2320 */
2321static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2322 struct snd_ctl_elem_value *ucontrol)
2323{
2324 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2325 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2326 struct snd_pcm_substream *substream;
2327 const struct snd_pcm_chmap_elem *map;
2328
2329 if (!info->chmap)
2330 return -EINVAL;
2331 substream = snd_pcm_chmap_substream(info, idx);
2332 if (!substream)
2333 return -ENODEV;
2334 memset(ucontrol->value.integer.value, 0,
2335 sizeof(ucontrol->value.integer.value));
2336 if (!substream->runtime)
2337 return 0; /* no channels set */
2338 for (map = info->chmap; map->channels; map++) {
2339 int i;
2340 if (map->channels == substream->runtime->channels &&
2341 valid_chmap_channels(info, map->channels)) {
2342 for (i = 0; i < map->channels; i++)
2343 ucontrol->value.integer.value[i] = map->map[i];
2344 return 0;
2345 }
2346 }
2347 return -EINVAL;
2348}
2349
2350/* tlv callback for channel map ctl element
2351 * expands the pre-defined channel maps in a form of TLV
2352 */
2353static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2354 unsigned int size, unsigned int __user *tlv)
2355{
2356 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2357 const struct snd_pcm_chmap_elem *map;
2358 unsigned int __user *dst;
2359 int c, count = 0;
2360
2361 if (!info->chmap)
2362 return -EINVAL;
2363 if (size < 8)
2364 return -ENOMEM;
2365 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2366 return -EFAULT;
2367 size -= 8;
2368 dst = tlv + 2;
2369 for (map = info->chmap; map->channels; map++) {
2370 int chs_bytes = map->channels * 4;
2371 if (!valid_chmap_channels(info, map->channels))
2372 continue;
2373 if (size < 8)
2374 return -ENOMEM;
2375 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2376 put_user(chs_bytes, dst + 1))
2377 return -EFAULT;
2378 dst += 2;
2379 size -= 8;
2380 count += 8;
2381 if (size < chs_bytes)
2382 return -ENOMEM;
2383 size -= chs_bytes;
2384 count += chs_bytes;
2385 for (c = 0; c < map->channels; c++) {
2386 if (put_user(map->map[c], dst))
2387 return -EFAULT;
2388 dst++;
2389 }
2390 }
2391 if (put_user(count, tlv + 1))
2392 return -EFAULT;
2393 return 0;
2394}
2395
2396static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2397{
2398 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2399 info->pcm->streams[info->stream].chmap_kctl = NULL;
2400 kfree(info);
2401}
2402
2403/**
2404 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2405 * @pcm: the assigned PCM instance
2406 * @stream: stream direction
2407 * @chmap: channel map elements (for query)
2408 * @max_channels: the max number of channels for the stream
2409 * @private_value: the value passed to each kcontrol's private_value field
2410 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2411 *
2412 * Create channel-mapping control elements assigned to the given PCM stream(s).
2413 * Return: Zero if successful, or a negative error value.
2414 */
2415int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2416 const struct snd_pcm_chmap_elem *chmap,
2417 int max_channels,
2418 unsigned long private_value,
2419 struct snd_pcm_chmap **info_ret)
2420{
2421 struct snd_pcm_chmap *info;
2422 struct snd_kcontrol_new knew = {
2423 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2424 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2425 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2426 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2427 .info = pcm_chmap_ctl_info,
2428 .get = pcm_chmap_ctl_get,
2429 .tlv.c = pcm_chmap_ctl_tlv,
2430 };
2431 int err;
2432
2433 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2434 return -EBUSY;
2435 info = kzalloc(sizeof(*info), GFP_KERNEL);
2436 if (!info)
2437 return -ENOMEM;
2438 info->pcm = pcm;
2439 info->stream = stream;
2440 info->chmap = chmap;
2441 info->max_channels = max_channels;
2442 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2443 knew.name = "Playback Channel Map";
2444 else
2445 knew.name = "Capture Channel Map";
2446 knew.device = pcm->device;
2447 knew.count = pcm->streams[stream].substream_count;
2448 knew.private_value = private_value;
2449 info->kctl = snd_ctl_new1(&knew, info);
2450 if (!info->kctl) {
2451 kfree(info);
2452 return -ENOMEM;
2453 }
2454 info->kctl->private_free = pcm_chmap_ctl_private_free;
2455 err = snd_ctl_add(pcm->card, info->kctl);
2456 if (err < 0)
2457 return err;
2458 pcm->streams[stream].chmap_kctl = info->kctl;
2459 if (info_ret)
2460 *info_ret = info;
2461 return 0;
2462}
2463EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36/*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46{
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
49 int err;
50
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
56 if (n < 0)
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
60 else
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
63 }
64 if (runtime->silence_filled >= runtime->buffer_size)
65 return;
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 return;
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
72 } else {
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
80 runtime->boundary;
81 } else {
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
90 } else {
91 runtime->silence_start = ofs;
92 }
93 }
94 frames = runtime->buffer_size - runtime->silence_filled;
95 }
96 if (snd_BUG_ON(frames > runtime->buffer_size))
97 return;
98 if (frames == 0)
99 return;
100 ofs = runtime->silence_start % runtime->buffer_size;
101 while (frames > 0) {
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 runtime->silence_filled += transfer;
106 frames -= transfer;
107 ofs = 0;
108 }
109}
110
111#ifdef CONFIG_SND_DEBUG
112void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113 char *name, size_t len)
114{
115 snprintf(name, len, "pcmC%dD%d%c:%d",
116 substream->pcm->card->number,
117 substream->pcm->device,
118 substream->stream ? 'c' : 'p',
119 substream->number);
120}
121EXPORT_SYMBOL(snd_pcm_debug_name);
122#endif
123
124#define XRUN_DEBUG_BASIC (1<<0)
125#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
126#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
127
128#ifdef CONFIG_SND_PCM_XRUN_DEBUG
129
130#define xrun_debug(substream, mask) \
131 ((substream)->pstr->xrun_debug & (mask))
132#else
133#define xrun_debug(substream, mask) 0
134#endif
135
136#define dump_stack_on_xrun(substream) do { \
137 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
138 dump_stack(); \
139 } while (0)
140
141/* call with stream lock held */
142void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143{
144 struct snd_pcm_runtime *runtime = substream->runtime;
145
146 trace_xrun(substream);
147 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
148 struct timespec64 tstamp;
149
150 snd_pcm_gettime(runtime, &tstamp);
151 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
152 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
153 }
154 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
155 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
156 char name[16];
157 snd_pcm_debug_name(substream, name, sizeof(name));
158 pcm_warn(substream->pcm, "XRUN: %s\n", name);
159 dump_stack_on_xrun(substream);
160 }
161}
162
163#ifdef CONFIG_SND_PCM_XRUN_DEBUG
164#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
165 do { \
166 trace_hw_ptr_error(substream, reason); \
167 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
168 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
169 (in_interrupt) ? 'Q' : 'P', ##args); \
170 dump_stack_on_xrun(substream); \
171 } \
172 } while (0)
173
174#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
175
176#define hw_ptr_error(substream, fmt, args...) do { } while (0)
177
178#endif
179
180int snd_pcm_update_state(struct snd_pcm_substream *substream,
181 struct snd_pcm_runtime *runtime)
182{
183 snd_pcm_uframes_t avail;
184
185 avail = snd_pcm_avail(substream);
186 if (avail > runtime->avail_max)
187 runtime->avail_max = avail;
188 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
189 if (avail >= runtime->buffer_size) {
190 snd_pcm_drain_done(substream);
191 return -EPIPE;
192 }
193 } else {
194 if (avail >= runtime->stop_threshold) {
195 __snd_pcm_xrun(substream);
196 return -EPIPE;
197 }
198 }
199 if (runtime->twake) {
200 if (avail >= runtime->twake)
201 wake_up(&runtime->tsleep);
202 } else if (avail >= runtime->control->avail_min)
203 wake_up(&runtime->sleep);
204 return 0;
205}
206
207static void update_audio_tstamp(struct snd_pcm_substream *substream,
208 struct timespec64 *curr_tstamp,
209 struct timespec64 *audio_tstamp)
210{
211 struct snd_pcm_runtime *runtime = substream->runtime;
212 u64 audio_frames, audio_nsecs;
213 struct timespec64 driver_tstamp;
214
215 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
216 return;
217
218 if (!(substream->ops->get_time_info) ||
219 (runtime->audio_tstamp_report.actual_type ==
220 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
221
222 /*
223 * provide audio timestamp derived from pointer position
224 * add delay only if requested
225 */
226
227 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
228
229 if (runtime->audio_tstamp_config.report_delay) {
230 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
231 audio_frames -= runtime->delay;
232 else
233 audio_frames += runtime->delay;
234 }
235 audio_nsecs = div_u64(audio_frames * 1000000000LL,
236 runtime->rate);
237 *audio_tstamp = ns_to_timespec64(audio_nsecs);
238 }
239
240 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
241 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
242 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
243 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
244 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
245 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
246 }
247
248
249 /*
250 * re-take a driver timestamp to let apps detect if the reference tstamp
251 * read by low-level hardware was provided with a delay
252 */
253 snd_pcm_gettime(substream->runtime, &driver_tstamp);
254 runtime->driver_tstamp = driver_tstamp;
255}
256
257static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
258 unsigned int in_interrupt)
259{
260 struct snd_pcm_runtime *runtime = substream->runtime;
261 snd_pcm_uframes_t pos;
262 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
263 snd_pcm_sframes_t hdelta, delta;
264 unsigned long jdelta;
265 unsigned long curr_jiffies;
266 struct timespec64 curr_tstamp;
267 struct timespec64 audio_tstamp;
268 int crossed_boundary = 0;
269
270 old_hw_ptr = runtime->status->hw_ptr;
271
272 /*
273 * group pointer, time and jiffies reads to allow for more
274 * accurate correlations/corrections.
275 * The values are stored at the end of this routine after
276 * corrections for hw_ptr position
277 */
278 pos = substream->ops->pointer(substream);
279 curr_jiffies = jiffies;
280 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
281 if ((substream->ops->get_time_info) &&
282 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
283 substream->ops->get_time_info(substream, &curr_tstamp,
284 &audio_tstamp,
285 &runtime->audio_tstamp_config,
286 &runtime->audio_tstamp_report);
287
288 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
289 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
290 snd_pcm_gettime(runtime, &curr_tstamp);
291 } else
292 snd_pcm_gettime(runtime, &curr_tstamp);
293 }
294
295 if (pos == SNDRV_PCM_POS_XRUN) {
296 __snd_pcm_xrun(substream);
297 return -EPIPE;
298 }
299 if (pos >= runtime->buffer_size) {
300 if (printk_ratelimit()) {
301 char name[16];
302 snd_pcm_debug_name(substream, name, sizeof(name));
303 pcm_err(substream->pcm,
304 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
305 name, pos, runtime->buffer_size,
306 runtime->period_size);
307 }
308 pos = 0;
309 }
310 pos -= pos % runtime->min_align;
311 trace_hwptr(substream, pos, in_interrupt);
312 hw_base = runtime->hw_ptr_base;
313 new_hw_ptr = hw_base + pos;
314 if (in_interrupt) {
315 /* we know that one period was processed */
316 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
317 delta = runtime->hw_ptr_interrupt + runtime->period_size;
318 if (delta > new_hw_ptr) {
319 /* check for double acknowledged interrupts */
320 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
321 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
322 hw_base += runtime->buffer_size;
323 if (hw_base >= runtime->boundary) {
324 hw_base = 0;
325 crossed_boundary++;
326 }
327 new_hw_ptr = hw_base + pos;
328 goto __delta;
329 }
330 }
331 }
332 /* new_hw_ptr might be lower than old_hw_ptr in case when */
333 /* pointer crosses the end of the ring buffer */
334 if (new_hw_ptr < old_hw_ptr) {
335 hw_base += runtime->buffer_size;
336 if (hw_base >= runtime->boundary) {
337 hw_base = 0;
338 crossed_boundary++;
339 }
340 new_hw_ptr = hw_base + pos;
341 }
342 __delta:
343 delta = new_hw_ptr - old_hw_ptr;
344 if (delta < 0)
345 delta += runtime->boundary;
346
347 if (runtime->no_period_wakeup) {
348 snd_pcm_sframes_t xrun_threshold;
349 /*
350 * Without regular period interrupts, we have to check
351 * the elapsed time to detect xruns.
352 */
353 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
354 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
355 goto no_delta_check;
356 hdelta = jdelta - delta * HZ / runtime->rate;
357 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
358 while (hdelta > xrun_threshold) {
359 delta += runtime->buffer_size;
360 hw_base += runtime->buffer_size;
361 if (hw_base >= runtime->boundary) {
362 hw_base = 0;
363 crossed_boundary++;
364 }
365 new_hw_ptr = hw_base + pos;
366 hdelta -= runtime->hw_ptr_buffer_jiffies;
367 }
368 goto no_delta_check;
369 }
370
371 /* something must be really wrong */
372 if (delta >= runtime->buffer_size + runtime->period_size) {
373 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
374 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
375 substream->stream, (long)pos,
376 (long)new_hw_ptr, (long)old_hw_ptr);
377 return 0;
378 }
379
380 /* Do jiffies check only in xrun_debug mode */
381 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
382 goto no_jiffies_check;
383
384 /* Skip the jiffies check for hardwares with BATCH flag.
385 * Such hardware usually just increases the position at each IRQ,
386 * thus it can't give any strange position.
387 */
388 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
389 goto no_jiffies_check;
390 hdelta = delta;
391 if (hdelta < runtime->delay)
392 goto no_jiffies_check;
393 hdelta -= runtime->delay;
394 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
395 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
396 delta = jdelta /
397 (((runtime->period_size * HZ) / runtime->rate)
398 + HZ/100);
399 /* move new_hw_ptr according jiffies not pos variable */
400 new_hw_ptr = old_hw_ptr;
401 hw_base = delta;
402 /* use loop to avoid checks for delta overflows */
403 /* the delta value is small or zero in most cases */
404 while (delta > 0) {
405 new_hw_ptr += runtime->period_size;
406 if (new_hw_ptr >= runtime->boundary) {
407 new_hw_ptr -= runtime->boundary;
408 crossed_boundary--;
409 }
410 delta--;
411 }
412 /* align hw_base to buffer_size */
413 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
414 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
415 (long)pos, (long)hdelta,
416 (long)runtime->period_size, jdelta,
417 ((hdelta * HZ) / runtime->rate), hw_base,
418 (unsigned long)old_hw_ptr,
419 (unsigned long)new_hw_ptr);
420 /* reset values to proper state */
421 delta = 0;
422 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
423 }
424 no_jiffies_check:
425 if (delta > runtime->period_size + runtime->period_size / 2) {
426 hw_ptr_error(substream, in_interrupt,
427 "Lost interrupts?",
428 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
429 substream->stream, (long)delta,
430 (long)new_hw_ptr,
431 (long)old_hw_ptr);
432 }
433
434 no_delta_check:
435 if (runtime->status->hw_ptr == new_hw_ptr) {
436 runtime->hw_ptr_jiffies = curr_jiffies;
437 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
438 return 0;
439 }
440
441 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
442 runtime->silence_size > 0)
443 snd_pcm_playback_silence(substream, new_hw_ptr);
444
445 if (in_interrupt) {
446 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
447 if (delta < 0)
448 delta += runtime->boundary;
449 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
450 runtime->hw_ptr_interrupt += delta;
451 if (runtime->hw_ptr_interrupt >= runtime->boundary)
452 runtime->hw_ptr_interrupt -= runtime->boundary;
453 }
454 runtime->hw_ptr_base = hw_base;
455 runtime->status->hw_ptr = new_hw_ptr;
456 runtime->hw_ptr_jiffies = curr_jiffies;
457 if (crossed_boundary) {
458 snd_BUG_ON(crossed_boundary != 1);
459 runtime->hw_ptr_wrap += runtime->boundary;
460 }
461
462 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
463
464 return snd_pcm_update_state(substream, runtime);
465}
466
467/* CAUTION: call it with irq disabled */
468int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
469{
470 return snd_pcm_update_hw_ptr0(substream, 0);
471}
472
473/**
474 * snd_pcm_set_ops - set the PCM operators
475 * @pcm: the pcm instance
476 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
477 * @ops: the operator table
478 *
479 * Sets the given PCM operators to the pcm instance.
480 */
481void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
482 const struct snd_pcm_ops *ops)
483{
484 struct snd_pcm_str *stream = &pcm->streams[direction];
485 struct snd_pcm_substream *substream;
486
487 for (substream = stream->substream; substream != NULL; substream = substream->next)
488 substream->ops = ops;
489}
490EXPORT_SYMBOL(snd_pcm_set_ops);
491
492/**
493 * snd_pcm_sync - set the PCM sync id
494 * @substream: the pcm substream
495 *
496 * Sets the PCM sync identifier for the card.
497 */
498void snd_pcm_set_sync(struct snd_pcm_substream *substream)
499{
500 struct snd_pcm_runtime *runtime = substream->runtime;
501
502 runtime->sync.id32[0] = substream->pcm->card->number;
503 runtime->sync.id32[1] = -1;
504 runtime->sync.id32[2] = -1;
505 runtime->sync.id32[3] = -1;
506}
507EXPORT_SYMBOL(snd_pcm_set_sync);
508
509/*
510 * Standard ioctl routine
511 */
512
513static inline unsigned int div32(unsigned int a, unsigned int b,
514 unsigned int *r)
515{
516 if (b == 0) {
517 *r = 0;
518 return UINT_MAX;
519 }
520 *r = a % b;
521 return a / b;
522}
523
524static inline unsigned int div_down(unsigned int a, unsigned int b)
525{
526 if (b == 0)
527 return UINT_MAX;
528 return a / b;
529}
530
531static inline unsigned int div_up(unsigned int a, unsigned int b)
532{
533 unsigned int r;
534 unsigned int q;
535 if (b == 0)
536 return UINT_MAX;
537 q = div32(a, b, &r);
538 if (r)
539 ++q;
540 return q;
541}
542
543static inline unsigned int mul(unsigned int a, unsigned int b)
544{
545 if (a == 0)
546 return 0;
547 if (div_down(UINT_MAX, a) < b)
548 return UINT_MAX;
549 return a * b;
550}
551
552static inline unsigned int muldiv32(unsigned int a, unsigned int b,
553 unsigned int c, unsigned int *r)
554{
555 u_int64_t n = (u_int64_t) a * b;
556 if (c == 0) {
557 *r = 0;
558 return UINT_MAX;
559 }
560 n = div_u64_rem(n, c, r);
561 if (n >= UINT_MAX) {
562 *r = 0;
563 return UINT_MAX;
564 }
565 return n;
566}
567
568/**
569 * snd_interval_refine - refine the interval value of configurator
570 * @i: the interval value to refine
571 * @v: the interval value to refer to
572 *
573 * Refines the interval value with the reference value.
574 * The interval is changed to the range satisfying both intervals.
575 * The interval status (min, max, integer, etc.) are evaluated.
576 *
577 * Return: Positive if the value is changed, zero if it's not changed, or a
578 * negative error code.
579 */
580int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
581{
582 int changed = 0;
583 if (snd_BUG_ON(snd_interval_empty(i)))
584 return -EINVAL;
585 if (i->min < v->min) {
586 i->min = v->min;
587 i->openmin = v->openmin;
588 changed = 1;
589 } else if (i->min == v->min && !i->openmin && v->openmin) {
590 i->openmin = 1;
591 changed = 1;
592 }
593 if (i->max > v->max) {
594 i->max = v->max;
595 i->openmax = v->openmax;
596 changed = 1;
597 } else if (i->max == v->max && !i->openmax && v->openmax) {
598 i->openmax = 1;
599 changed = 1;
600 }
601 if (!i->integer && v->integer) {
602 i->integer = 1;
603 changed = 1;
604 }
605 if (i->integer) {
606 if (i->openmin) {
607 i->min++;
608 i->openmin = 0;
609 }
610 if (i->openmax) {
611 i->max--;
612 i->openmax = 0;
613 }
614 } else if (!i->openmin && !i->openmax && i->min == i->max)
615 i->integer = 1;
616 if (snd_interval_checkempty(i)) {
617 snd_interval_none(i);
618 return -EINVAL;
619 }
620 return changed;
621}
622EXPORT_SYMBOL(snd_interval_refine);
623
624static int snd_interval_refine_first(struct snd_interval *i)
625{
626 const unsigned int last_max = i->max;
627
628 if (snd_BUG_ON(snd_interval_empty(i)))
629 return -EINVAL;
630 if (snd_interval_single(i))
631 return 0;
632 i->max = i->min;
633 if (i->openmin)
634 i->max++;
635 /* only exclude max value if also excluded before refine */
636 i->openmax = (i->openmax && i->max >= last_max);
637 return 1;
638}
639
640static int snd_interval_refine_last(struct snd_interval *i)
641{
642 const unsigned int last_min = i->min;
643
644 if (snd_BUG_ON(snd_interval_empty(i)))
645 return -EINVAL;
646 if (snd_interval_single(i))
647 return 0;
648 i->min = i->max;
649 if (i->openmax)
650 i->min--;
651 /* only exclude min value if also excluded before refine */
652 i->openmin = (i->openmin && i->min <= last_min);
653 return 1;
654}
655
656void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
657{
658 if (a->empty || b->empty) {
659 snd_interval_none(c);
660 return;
661 }
662 c->empty = 0;
663 c->min = mul(a->min, b->min);
664 c->openmin = (a->openmin || b->openmin);
665 c->max = mul(a->max, b->max);
666 c->openmax = (a->openmax || b->openmax);
667 c->integer = (a->integer && b->integer);
668}
669
670/**
671 * snd_interval_div - refine the interval value with division
672 * @a: dividend
673 * @b: divisor
674 * @c: quotient
675 *
676 * c = a / b
677 *
678 * Returns non-zero if the value is changed, zero if not changed.
679 */
680void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
681{
682 unsigned int r;
683 if (a->empty || b->empty) {
684 snd_interval_none(c);
685 return;
686 }
687 c->empty = 0;
688 c->min = div32(a->min, b->max, &r);
689 c->openmin = (r || a->openmin || b->openmax);
690 if (b->min > 0) {
691 c->max = div32(a->max, b->min, &r);
692 if (r) {
693 c->max++;
694 c->openmax = 1;
695 } else
696 c->openmax = (a->openmax || b->openmin);
697 } else {
698 c->max = UINT_MAX;
699 c->openmax = 0;
700 }
701 c->integer = 0;
702}
703
704/**
705 * snd_interval_muldivk - refine the interval value
706 * @a: dividend 1
707 * @b: dividend 2
708 * @k: divisor (as integer)
709 * @c: result
710 *
711 * c = a * b / k
712 *
713 * Returns non-zero if the value is changed, zero if not changed.
714 */
715void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
716 unsigned int k, struct snd_interval *c)
717{
718 unsigned int r;
719 if (a->empty || b->empty) {
720 snd_interval_none(c);
721 return;
722 }
723 c->empty = 0;
724 c->min = muldiv32(a->min, b->min, k, &r);
725 c->openmin = (r || a->openmin || b->openmin);
726 c->max = muldiv32(a->max, b->max, k, &r);
727 if (r) {
728 c->max++;
729 c->openmax = 1;
730 } else
731 c->openmax = (a->openmax || b->openmax);
732 c->integer = 0;
733}
734
735/**
736 * snd_interval_mulkdiv - refine the interval value
737 * @a: dividend 1
738 * @k: dividend 2 (as integer)
739 * @b: divisor
740 * @c: result
741 *
742 * c = a * k / b
743 *
744 * Returns non-zero if the value is changed, zero if not changed.
745 */
746void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
747 const struct snd_interval *b, struct snd_interval *c)
748{
749 unsigned int r;
750 if (a->empty || b->empty) {
751 snd_interval_none(c);
752 return;
753 }
754 c->empty = 0;
755 c->min = muldiv32(a->min, k, b->max, &r);
756 c->openmin = (r || a->openmin || b->openmax);
757 if (b->min > 0) {
758 c->max = muldiv32(a->max, k, b->min, &r);
759 if (r) {
760 c->max++;
761 c->openmax = 1;
762 } else
763 c->openmax = (a->openmax || b->openmin);
764 } else {
765 c->max = UINT_MAX;
766 c->openmax = 0;
767 }
768 c->integer = 0;
769}
770
771/* ---- */
772
773
774/**
775 * snd_interval_ratnum - refine the interval value
776 * @i: interval to refine
777 * @rats_count: number of ratnum_t
778 * @rats: ratnum_t array
779 * @nump: pointer to store the resultant numerator
780 * @denp: pointer to store the resultant denominator
781 *
782 * Return: Positive if the value is changed, zero if it's not changed, or a
783 * negative error code.
784 */
785int snd_interval_ratnum(struct snd_interval *i,
786 unsigned int rats_count, const struct snd_ratnum *rats,
787 unsigned int *nump, unsigned int *denp)
788{
789 unsigned int best_num, best_den;
790 int best_diff;
791 unsigned int k;
792 struct snd_interval t;
793 int err;
794 unsigned int result_num, result_den;
795 int result_diff;
796
797 best_num = best_den = best_diff = 0;
798 for (k = 0; k < rats_count; ++k) {
799 unsigned int num = rats[k].num;
800 unsigned int den;
801 unsigned int q = i->min;
802 int diff;
803 if (q == 0)
804 q = 1;
805 den = div_up(num, q);
806 if (den < rats[k].den_min)
807 continue;
808 if (den > rats[k].den_max)
809 den = rats[k].den_max;
810 else {
811 unsigned int r;
812 r = (den - rats[k].den_min) % rats[k].den_step;
813 if (r != 0)
814 den -= r;
815 }
816 diff = num - q * den;
817 if (diff < 0)
818 diff = -diff;
819 if (best_num == 0 ||
820 diff * best_den < best_diff * den) {
821 best_diff = diff;
822 best_den = den;
823 best_num = num;
824 }
825 }
826 if (best_den == 0) {
827 i->empty = 1;
828 return -EINVAL;
829 }
830 t.min = div_down(best_num, best_den);
831 t.openmin = !!(best_num % best_den);
832
833 result_num = best_num;
834 result_diff = best_diff;
835 result_den = best_den;
836 best_num = best_den = best_diff = 0;
837 for (k = 0; k < rats_count; ++k) {
838 unsigned int num = rats[k].num;
839 unsigned int den;
840 unsigned int q = i->max;
841 int diff;
842 if (q == 0) {
843 i->empty = 1;
844 return -EINVAL;
845 }
846 den = div_down(num, q);
847 if (den > rats[k].den_max)
848 continue;
849 if (den < rats[k].den_min)
850 den = rats[k].den_min;
851 else {
852 unsigned int r;
853 r = (den - rats[k].den_min) % rats[k].den_step;
854 if (r != 0)
855 den += rats[k].den_step - r;
856 }
857 diff = q * den - num;
858 if (diff < 0)
859 diff = -diff;
860 if (best_num == 0 ||
861 diff * best_den < best_diff * den) {
862 best_diff = diff;
863 best_den = den;
864 best_num = num;
865 }
866 }
867 if (best_den == 0) {
868 i->empty = 1;
869 return -EINVAL;
870 }
871 t.max = div_up(best_num, best_den);
872 t.openmax = !!(best_num % best_den);
873 t.integer = 0;
874 err = snd_interval_refine(i, &t);
875 if (err < 0)
876 return err;
877
878 if (snd_interval_single(i)) {
879 if (best_diff * result_den < result_diff * best_den) {
880 result_num = best_num;
881 result_den = best_den;
882 }
883 if (nump)
884 *nump = result_num;
885 if (denp)
886 *denp = result_den;
887 }
888 return err;
889}
890EXPORT_SYMBOL(snd_interval_ratnum);
891
892/**
893 * snd_interval_ratden - refine the interval value
894 * @i: interval to refine
895 * @rats_count: number of struct ratden
896 * @rats: struct ratden array
897 * @nump: pointer to store the resultant numerator
898 * @denp: pointer to store the resultant denominator
899 *
900 * Return: Positive if the value is changed, zero if it's not changed, or a
901 * negative error code.
902 */
903static int snd_interval_ratden(struct snd_interval *i,
904 unsigned int rats_count,
905 const struct snd_ratden *rats,
906 unsigned int *nump, unsigned int *denp)
907{
908 unsigned int best_num, best_diff, best_den;
909 unsigned int k;
910 struct snd_interval t;
911 int err;
912
913 best_num = best_den = best_diff = 0;
914 for (k = 0; k < rats_count; ++k) {
915 unsigned int num;
916 unsigned int den = rats[k].den;
917 unsigned int q = i->min;
918 int diff;
919 num = mul(q, den);
920 if (num > rats[k].num_max)
921 continue;
922 if (num < rats[k].num_min)
923 num = rats[k].num_max;
924 else {
925 unsigned int r;
926 r = (num - rats[k].num_min) % rats[k].num_step;
927 if (r != 0)
928 num += rats[k].num_step - r;
929 }
930 diff = num - q * den;
931 if (best_num == 0 ||
932 diff * best_den < best_diff * den) {
933 best_diff = diff;
934 best_den = den;
935 best_num = num;
936 }
937 }
938 if (best_den == 0) {
939 i->empty = 1;
940 return -EINVAL;
941 }
942 t.min = div_down(best_num, best_den);
943 t.openmin = !!(best_num % best_den);
944
945 best_num = best_den = best_diff = 0;
946 for (k = 0; k < rats_count; ++k) {
947 unsigned int num;
948 unsigned int den = rats[k].den;
949 unsigned int q = i->max;
950 int diff;
951 num = mul(q, den);
952 if (num < rats[k].num_min)
953 continue;
954 if (num > rats[k].num_max)
955 num = rats[k].num_max;
956 else {
957 unsigned int r;
958 r = (num - rats[k].num_min) % rats[k].num_step;
959 if (r != 0)
960 num -= r;
961 }
962 diff = q * den - num;
963 if (best_num == 0 ||
964 diff * best_den < best_diff * den) {
965 best_diff = diff;
966 best_den = den;
967 best_num = num;
968 }
969 }
970 if (best_den == 0) {
971 i->empty = 1;
972 return -EINVAL;
973 }
974 t.max = div_up(best_num, best_den);
975 t.openmax = !!(best_num % best_den);
976 t.integer = 0;
977 err = snd_interval_refine(i, &t);
978 if (err < 0)
979 return err;
980
981 if (snd_interval_single(i)) {
982 if (nump)
983 *nump = best_num;
984 if (denp)
985 *denp = best_den;
986 }
987 return err;
988}
989
990/**
991 * snd_interval_list - refine the interval value from the list
992 * @i: the interval value to refine
993 * @count: the number of elements in the list
994 * @list: the value list
995 * @mask: the bit-mask to evaluate
996 *
997 * Refines the interval value from the list.
998 * When mask is non-zero, only the elements corresponding to bit 1 are
999 * evaluated.
1000 *
1001 * Return: Positive if the value is changed, zero if it's not changed, or a
1002 * negative error code.
1003 */
1004int snd_interval_list(struct snd_interval *i, unsigned int count,
1005 const unsigned int *list, unsigned int mask)
1006{
1007 unsigned int k;
1008 struct snd_interval list_range;
1009
1010 if (!count) {
1011 i->empty = 1;
1012 return -EINVAL;
1013 }
1014 snd_interval_any(&list_range);
1015 list_range.min = UINT_MAX;
1016 list_range.max = 0;
1017 for (k = 0; k < count; k++) {
1018 if (mask && !(mask & (1 << k)))
1019 continue;
1020 if (!snd_interval_test(i, list[k]))
1021 continue;
1022 list_range.min = min(list_range.min, list[k]);
1023 list_range.max = max(list_range.max, list[k]);
1024 }
1025 return snd_interval_refine(i, &list_range);
1026}
1027EXPORT_SYMBOL(snd_interval_list);
1028
1029/**
1030 * snd_interval_ranges - refine the interval value from the list of ranges
1031 * @i: the interval value to refine
1032 * @count: the number of elements in the list of ranges
1033 * @ranges: the ranges list
1034 * @mask: the bit-mask to evaluate
1035 *
1036 * Refines the interval value from the list of ranges.
1037 * When mask is non-zero, only the elements corresponding to bit 1 are
1038 * evaluated.
1039 *
1040 * Return: Positive if the value is changed, zero if it's not changed, or a
1041 * negative error code.
1042 */
1043int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1044 const struct snd_interval *ranges, unsigned int mask)
1045{
1046 unsigned int k;
1047 struct snd_interval range_union;
1048 struct snd_interval range;
1049
1050 if (!count) {
1051 snd_interval_none(i);
1052 return -EINVAL;
1053 }
1054 snd_interval_any(&range_union);
1055 range_union.min = UINT_MAX;
1056 range_union.max = 0;
1057 for (k = 0; k < count; k++) {
1058 if (mask && !(mask & (1 << k)))
1059 continue;
1060 snd_interval_copy(&range, &ranges[k]);
1061 if (snd_interval_refine(&range, i) < 0)
1062 continue;
1063 if (snd_interval_empty(&range))
1064 continue;
1065
1066 if (range.min < range_union.min) {
1067 range_union.min = range.min;
1068 range_union.openmin = 1;
1069 }
1070 if (range.min == range_union.min && !range.openmin)
1071 range_union.openmin = 0;
1072 if (range.max > range_union.max) {
1073 range_union.max = range.max;
1074 range_union.openmax = 1;
1075 }
1076 if (range.max == range_union.max && !range.openmax)
1077 range_union.openmax = 0;
1078 }
1079 return snd_interval_refine(i, &range_union);
1080}
1081EXPORT_SYMBOL(snd_interval_ranges);
1082
1083static int snd_interval_step(struct snd_interval *i, unsigned int step)
1084{
1085 unsigned int n;
1086 int changed = 0;
1087 n = i->min % step;
1088 if (n != 0 || i->openmin) {
1089 i->min += step - n;
1090 i->openmin = 0;
1091 changed = 1;
1092 }
1093 n = i->max % step;
1094 if (n != 0 || i->openmax) {
1095 i->max -= n;
1096 i->openmax = 0;
1097 changed = 1;
1098 }
1099 if (snd_interval_checkempty(i)) {
1100 i->empty = 1;
1101 return -EINVAL;
1102 }
1103 return changed;
1104}
1105
1106/* Info constraints helpers */
1107
1108/**
1109 * snd_pcm_hw_rule_add - add the hw-constraint rule
1110 * @runtime: the pcm runtime instance
1111 * @cond: condition bits
1112 * @var: the variable to evaluate
1113 * @func: the evaluation function
1114 * @private: the private data pointer passed to function
1115 * @dep: the dependent variables
1116 *
1117 * Return: Zero if successful, or a negative error code on failure.
1118 */
1119int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1120 int var,
1121 snd_pcm_hw_rule_func_t func, void *private,
1122 int dep, ...)
1123{
1124 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1125 struct snd_pcm_hw_rule *c;
1126 unsigned int k;
1127 va_list args;
1128 va_start(args, dep);
1129 if (constrs->rules_num >= constrs->rules_all) {
1130 struct snd_pcm_hw_rule *new;
1131 unsigned int new_rules = constrs->rules_all + 16;
1132 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1133 GFP_KERNEL);
1134 if (!new) {
1135 va_end(args);
1136 return -ENOMEM;
1137 }
1138 constrs->rules = new;
1139 constrs->rules_all = new_rules;
1140 }
1141 c = &constrs->rules[constrs->rules_num];
1142 c->cond = cond;
1143 c->func = func;
1144 c->var = var;
1145 c->private = private;
1146 k = 0;
1147 while (1) {
1148 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1149 va_end(args);
1150 return -EINVAL;
1151 }
1152 c->deps[k++] = dep;
1153 if (dep < 0)
1154 break;
1155 dep = va_arg(args, int);
1156 }
1157 constrs->rules_num++;
1158 va_end(args);
1159 return 0;
1160}
1161EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1162
1163/**
1164 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1165 * @runtime: PCM runtime instance
1166 * @var: hw_params variable to apply the mask
1167 * @mask: the bitmap mask
1168 *
1169 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1170 *
1171 * Return: Zero if successful, or a negative error code on failure.
1172 */
1173int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1174 u_int32_t mask)
1175{
1176 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1177 struct snd_mask *maskp = constrs_mask(constrs, var);
1178 *maskp->bits &= mask;
1179 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1180 if (*maskp->bits == 0)
1181 return -EINVAL;
1182 return 0;
1183}
1184
1185/**
1186 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1187 * @runtime: PCM runtime instance
1188 * @var: hw_params variable to apply the mask
1189 * @mask: the 64bit bitmap mask
1190 *
1191 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1192 *
1193 * Return: Zero if successful, or a negative error code on failure.
1194 */
1195int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1196 u_int64_t mask)
1197{
1198 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1199 struct snd_mask *maskp = constrs_mask(constrs, var);
1200 maskp->bits[0] &= (u_int32_t)mask;
1201 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1202 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1203 if (! maskp->bits[0] && ! maskp->bits[1])
1204 return -EINVAL;
1205 return 0;
1206}
1207EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1208
1209/**
1210 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1211 * @runtime: PCM runtime instance
1212 * @var: hw_params variable to apply the integer constraint
1213 *
1214 * Apply the constraint of integer to an interval parameter.
1215 *
1216 * Return: Positive if the value is changed, zero if it's not changed, or a
1217 * negative error code.
1218 */
1219int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1220{
1221 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1222 return snd_interval_setinteger(constrs_interval(constrs, var));
1223}
1224EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1225
1226/**
1227 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1228 * @runtime: PCM runtime instance
1229 * @var: hw_params variable to apply the range
1230 * @min: the minimal value
1231 * @max: the maximal value
1232 *
1233 * Apply the min/max range constraint to an interval parameter.
1234 *
1235 * Return: Positive if the value is changed, zero if it's not changed, or a
1236 * negative error code.
1237 */
1238int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1239 unsigned int min, unsigned int max)
1240{
1241 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1242 struct snd_interval t;
1243 t.min = min;
1244 t.max = max;
1245 t.openmin = t.openmax = 0;
1246 t.integer = 0;
1247 return snd_interval_refine(constrs_interval(constrs, var), &t);
1248}
1249EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1250
1251static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1252 struct snd_pcm_hw_rule *rule)
1253{
1254 struct snd_pcm_hw_constraint_list *list = rule->private;
1255 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1256}
1257
1258
1259/**
1260 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1261 * @runtime: PCM runtime instance
1262 * @cond: condition bits
1263 * @var: hw_params variable to apply the list constraint
1264 * @l: list
1265 *
1266 * Apply the list of constraints to an interval parameter.
1267 *
1268 * Return: Zero if successful, or a negative error code on failure.
1269 */
1270int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1271 unsigned int cond,
1272 snd_pcm_hw_param_t var,
1273 const struct snd_pcm_hw_constraint_list *l)
1274{
1275 return snd_pcm_hw_rule_add(runtime, cond, var,
1276 snd_pcm_hw_rule_list, (void *)l,
1277 var, -1);
1278}
1279EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1280
1281static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1282 struct snd_pcm_hw_rule *rule)
1283{
1284 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1285 return snd_interval_ranges(hw_param_interval(params, rule->var),
1286 r->count, r->ranges, r->mask);
1287}
1288
1289
1290/**
1291 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1292 * @runtime: PCM runtime instance
1293 * @cond: condition bits
1294 * @var: hw_params variable to apply the list of range constraints
1295 * @r: ranges
1296 *
1297 * Apply the list of range constraints to an interval parameter.
1298 *
1299 * Return: Zero if successful, or a negative error code on failure.
1300 */
1301int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1302 unsigned int cond,
1303 snd_pcm_hw_param_t var,
1304 const struct snd_pcm_hw_constraint_ranges *r)
1305{
1306 return snd_pcm_hw_rule_add(runtime, cond, var,
1307 snd_pcm_hw_rule_ranges, (void *)r,
1308 var, -1);
1309}
1310EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1311
1312static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1313 struct snd_pcm_hw_rule *rule)
1314{
1315 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1316 unsigned int num = 0, den = 0;
1317 int err;
1318 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1319 r->nrats, r->rats, &num, &den);
1320 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1321 params->rate_num = num;
1322 params->rate_den = den;
1323 }
1324 return err;
1325}
1326
1327/**
1328 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1329 * @runtime: PCM runtime instance
1330 * @cond: condition bits
1331 * @var: hw_params variable to apply the ratnums constraint
1332 * @r: struct snd_ratnums constriants
1333 *
1334 * Return: Zero if successful, or a negative error code on failure.
1335 */
1336int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1337 unsigned int cond,
1338 snd_pcm_hw_param_t var,
1339 const struct snd_pcm_hw_constraint_ratnums *r)
1340{
1341 return snd_pcm_hw_rule_add(runtime, cond, var,
1342 snd_pcm_hw_rule_ratnums, (void *)r,
1343 var, -1);
1344}
1345EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1346
1347static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1348 struct snd_pcm_hw_rule *rule)
1349{
1350 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1351 unsigned int num = 0, den = 0;
1352 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1353 r->nrats, r->rats, &num, &den);
1354 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1355 params->rate_num = num;
1356 params->rate_den = den;
1357 }
1358 return err;
1359}
1360
1361/**
1362 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1363 * @runtime: PCM runtime instance
1364 * @cond: condition bits
1365 * @var: hw_params variable to apply the ratdens constraint
1366 * @r: struct snd_ratdens constriants
1367 *
1368 * Return: Zero if successful, or a negative error code on failure.
1369 */
1370int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1371 unsigned int cond,
1372 snd_pcm_hw_param_t var,
1373 const struct snd_pcm_hw_constraint_ratdens *r)
1374{
1375 return snd_pcm_hw_rule_add(runtime, cond, var,
1376 snd_pcm_hw_rule_ratdens, (void *)r,
1377 var, -1);
1378}
1379EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1380
1381static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1382 struct snd_pcm_hw_rule *rule)
1383{
1384 unsigned int l = (unsigned long) rule->private;
1385 int width = l & 0xffff;
1386 unsigned int msbits = l >> 16;
1387 const struct snd_interval *i =
1388 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1389
1390 if (!snd_interval_single(i))
1391 return 0;
1392
1393 if ((snd_interval_value(i) == width) ||
1394 (width == 0 && snd_interval_value(i) > msbits))
1395 params->msbits = min_not_zero(params->msbits, msbits);
1396
1397 return 0;
1398}
1399
1400/**
1401 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @width: sample bits width
1405 * @msbits: msbits width
1406 *
1407 * This constraint will set the number of most significant bits (msbits) if a
1408 * sample format with the specified width has been select. If width is set to 0
1409 * the msbits will be set for any sample format with a width larger than the
1410 * specified msbits.
1411 *
1412 * Return: Zero if successful, or a negative error code on failure.
1413 */
1414int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1415 unsigned int cond,
1416 unsigned int width,
1417 unsigned int msbits)
1418{
1419 unsigned long l = (msbits << 16) | width;
1420 return snd_pcm_hw_rule_add(runtime, cond, -1,
1421 snd_pcm_hw_rule_msbits,
1422 (void*) l,
1423 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1424}
1425EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1426
1427static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1428 struct snd_pcm_hw_rule *rule)
1429{
1430 unsigned long step = (unsigned long) rule->private;
1431 return snd_interval_step(hw_param_interval(params, rule->var), step);
1432}
1433
1434/**
1435 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436 * @runtime: PCM runtime instance
1437 * @cond: condition bits
1438 * @var: hw_params variable to apply the step constraint
1439 * @step: step size
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1444 unsigned int cond,
1445 snd_pcm_hw_param_t var,
1446 unsigned long step)
1447{
1448 return snd_pcm_hw_rule_add(runtime, cond, var,
1449 snd_pcm_hw_rule_step, (void *) step,
1450 var, -1);
1451}
1452EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453
1454static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455{
1456 static const unsigned int pow2_sizes[] = {
1457 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461 };
1462 return snd_interval_list(hw_param_interval(params, rule->var),
1463 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464}
1465
1466/**
1467 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468 * @runtime: PCM runtime instance
1469 * @cond: condition bits
1470 * @var: hw_params variable to apply the power-of-2 constraint
1471 *
1472 * Return: Zero if successful, or a negative error code on failure.
1473 */
1474int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475 unsigned int cond,
1476 snd_pcm_hw_param_t var)
1477{
1478 return snd_pcm_hw_rule_add(runtime, cond, var,
1479 snd_pcm_hw_rule_pow2, NULL,
1480 var, -1);
1481}
1482EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1483
1484static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1485 struct snd_pcm_hw_rule *rule)
1486{
1487 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1488 struct snd_interval *rate;
1489
1490 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1491 return snd_interval_list(rate, 1, &base_rate, 0);
1492}
1493
1494/**
1495 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1496 * @runtime: PCM runtime instance
1497 * @base_rate: the rate at which the hardware does not resample
1498 *
1499 * Return: Zero if successful, or a negative error code on failure.
1500 */
1501int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1502 unsigned int base_rate)
1503{
1504 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1505 SNDRV_PCM_HW_PARAM_RATE,
1506 snd_pcm_hw_rule_noresample_func,
1507 (void *)(uintptr_t)base_rate,
1508 SNDRV_PCM_HW_PARAM_RATE, -1);
1509}
1510EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1511
1512static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1513 snd_pcm_hw_param_t var)
1514{
1515 if (hw_is_mask(var)) {
1516 snd_mask_any(hw_param_mask(params, var));
1517 params->cmask |= 1 << var;
1518 params->rmask |= 1 << var;
1519 return;
1520 }
1521 if (hw_is_interval(var)) {
1522 snd_interval_any(hw_param_interval(params, var));
1523 params->cmask |= 1 << var;
1524 params->rmask |= 1 << var;
1525 return;
1526 }
1527 snd_BUG();
1528}
1529
1530void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1531{
1532 unsigned int k;
1533 memset(params, 0, sizeof(*params));
1534 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1535 _snd_pcm_hw_param_any(params, k);
1536 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1537 _snd_pcm_hw_param_any(params, k);
1538 params->info = ~0U;
1539}
1540EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1541
1542/**
1543 * snd_pcm_hw_param_value - return @params field @var value
1544 * @params: the hw_params instance
1545 * @var: parameter to retrieve
1546 * @dir: pointer to the direction (-1,0,1) or %NULL
1547 *
1548 * Return: The value for field @var if it's fixed in configuration space
1549 * defined by @params. -%EINVAL otherwise.
1550 */
1551int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1552 snd_pcm_hw_param_t var, int *dir)
1553{
1554 if (hw_is_mask(var)) {
1555 const struct snd_mask *mask = hw_param_mask_c(params, var);
1556 if (!snd_mask_single(mask))
1557 return -EINVAL;
1558 if (dir)
1559 *dir = 0;
1560 return snd_mask_value(mask);
1561 }
1562 if (hw_is_interval(var)) {
1563 const struct snd_interval *i = hw_param_interval_c(params, var);
1564 if (!snd_interval_single(i))
1565 return -EINVAL;
1566 if (dir)
1567 *dir = i->openmin;
1568 return snd_interval_value(i);
1569 }
1570 return -EINVAL;
1571}
1572EXPORT_SYMBOL(snd_pcm_hw_param_value);
1573
1574void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1575 snd_pcm_hw_param_t var)
1576{
1577 if (hw_is_mask(var)) {
1578 snd_mask_none(hw_param_mask(params, var));
1579 params->cmask |= 1 << var;
1580 params->rmask |= 1 << var;
1581 } else if (hw_is_interval(var)) {
1582 snd_interval_none(hw_param_interval(params, var));
1583 params->cmask |= 1 << var;
1584 params->rmask |= 1 << var;
1585 } else {
1586 snd_BUG();
1587 }
1588}
1589EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1590
1591static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1592 snd_pcm_hw_param_t var)
1593{
1594 int changed;
1595 if (hw_is_mask(var))
1596 changed = snd_mask_refine_first(hw_param_mask(params, var));
1597 else if (hw_is_interval(var))
1598 changed = snd_interval_refine_first(hw_param_interval(params, var));
1599 else
1600 return -EINVAL;
1601 if (changed > 0) {
1602 params->cmask |= 1 << var;
1603 params->rmask |= 1 << var;
1604 }
1605 return changed;
1606}
1607
1608
1609/**
1610 * snd_pcm_hw_param_first - refine config space and return minimum value
1611 * @pcm: PCM instance
1612 * @params: the hw_params instance
1613 * @var: parameter to retrieve
1614 * @dir: pointer to the direction (-1,0,1) or %NULL
1615 *
1616 * Inside configuration space defined by @params remove from @var all
1617 * values > minimum. Reduce configuration space accordingly.
1618 *
1619 * Return: The minimum, or a negative error code on failure.
1620 */
1621int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1622 struct snd_pcm_hw_params *params,
1623 snd_pcm_hw_param_t var, int *dir)
1624{
1625 int changed = _snd_pcm_hw_param_first(params, var);
1626 if (changed < 0)
1627 return changed;
1628 if (params->rmask) {
1629 int err = snd_pcm_hw_refine(pcm, params);
1630 if (err < 0)
1631 return err;
1632 }
1633 return snd_pcm_hw_param_value(params, var, dir);
1634}
1635EXPORT_SYMBOL(snd_pcm_hw_param_first);
1636
1637static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1638 snd_pcm_hw_param_t var)
1639{
1640 int changed;
1641 if (hw_is_mask(var))
1642 changed = snd_mask_refine_last(hw_param_mask(params, var));
1643 else if (hw_is_interval(var))
1644 changed = snd_interval_refine_last(hw_param_interval(params, var));
1645 else
1646 return -EINVAL;
1647 if (changed > 0) {
1648 params->cmask |= 1 << var;
1649 params->rmask |= 1 << var;
1650 }
1651 return changed;
1652}
1653
1654
1655/**
1656 * snd_pcm_hw_param_last - refine config space and return maximum value
1657 * @pcm: PCM instance
1658 * @params: the hw_params instance
1659 * @var: parameter to retrieve
1660 * @dir: pointer to the direction (-1,0,1) or %NULL
1661 *
1662 * Inside configuration space defined by @params remove from @var all
1663 * values < maximum. Reduce configuration space accordingly.
1664 *
1665 * Return: The maximum, or a negative error code on failure.
1666 */
1667int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1668 struct snd_pcm_hw_params *params,
1669 snd_pcm_hw_param_t var, int *dir)
1670{
1671 int changed = _snd_pcm_hw_param_last(params, var);
1672 if (changed < 0)
1673 return changed;
1674 if (params->rmask) {
1675 int err = snd_pcm_hw_refine(pcm, params);
1676 if (err < 0)
1677 return err;
1678 }
1679 return snd_pcm_hw_param_value(params, var, dir);
1680}
1681EXPORT_SYMBOL(snd_pcm_hw_param_last);
1682
1683static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1684 void *arg)
1685{
1686 struct snd_pcm_runtime *runtime = substream->runtime;
1687 unsigned long flags;
1688 snd_pcm_stream_lock_irqsave(substream, flags);
1689 if (snd_pcm_running(substream) &&
1690 snd_pcm_update_hw_ptr(substream) >= 0)
1691 runtime->status->hw_ptr %= runtime->buffer_size;
1692 else {
1693 runtime->status->hw_ptr = 0;
1694 runtime->hw_ptr_wrap = 0;
1695 }
1696 snd_pcm_stream_unlock_irqrestore(substream, flags);
1697 return 0;
1698}
1699
1700static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1701 void *arg)
1702{
1703 struct snd_pcm_channel_info *info = arg;
1704 struct snd_pcm_runtime *runtime = substream->runtime;
1705 int width;
1706 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1707 info->offset = -1;
1708 return 0;
1709 }
1710 width = snd_pcm_format_physical_width(runtime->format);
1711 if (width < 0)
1712 return width;
1713 info->offset = 0;
1714 switch (runtime->access) {
1715 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1716 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1717 info->first = info->channel * width;
1718 info->step = runtime->channels * width;
1719 break;
1720 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1721 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1722 {
1723 size_t size = runtime->dma_bytes / runtime->channels;
1724 info->first = info->channel * size * 8;
1725 info->step = width;
1726 break;
1727 }
1728 default:
1729 snd_BUG();
1730 break;
1731 }
1732 return 0;
1733}
1734
1735static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1736 void *arg)
1737{
1738 struct snd_pcm_hw_params *params = arg;
1739 snd_pcm_format_t format;
1740 int channels;
1741 ssize_t frame_size;
1742
1743 params->fifo_size = substream->runtime->hw.fifo_size;
1744 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1745 format = params_format(params);
1746 channels = params_channels(params);
1747 frame_size = snd_pcm_format_size(format, channels);
1748 if (frame_size > 0)
1749 params->fifo_size /= (unsigned)frame_size;
1750 }
1751 return 0;
1752}
1753
1754/**
1755 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1756 * @substream: the pcm substream instance
1757 * @cmd: ioctl command
1758 * @arg: ioctl argument
1759 *
1760 * Processes the generic ioctl commands for PCM.
1761 * Can be passed as the ioctl callback for PCM ops.
1762 *
1763 * Return: Zero if successful, or a negative error code on failure.
1764 */
1765int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1766 unsigned int cmd, void *arg)
1767{
1768 switch (cmd) {
1769 case SNDRV_PCM_IOCTL1_RESET:
1770 return snd_pcm_lib_ioctl_reset(substream, arg);
1771 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1772 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1773 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1774 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1775 }
1776 return -ENXIO;
1777}
1778EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1779
1780/**
1781 * snd_pcm_period_elapsed - update the pcm status for the next period
1782 * @substream: the pcm substream instance
1783 *
1784 * This function is called from the interrupt handler when the
1785 * PCM has processed the period size. It will update the current
1786 * pointer, wake up sleepers, etc.
1787 *
1788 * Even if more than one periods have elapsed since the last call, you
1789 * have to call this only once.
1790 */
1791void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1792{
1793 struct snd_pcm_runtime *runtime;
1794 unsigned long flags;
1795
1796 if (snd_BUG_ON(!substream))
1797 return;
1798
1799 snd_pcm_stream_lock_irqsave(substream, flags);
1800 if (PCM_RUNTIME_CHECK(substream))
1801 goto _unlock;
1802 runtime = substream->runtime;
1803
1804 if (!snd_pcm_running(substream) ||
1805 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1806 goto _end;
1807
1808#ifdef CONFIG_SND_PCM_TIMER
1809 if (substream->timer_running)
1810 snd_timer_interrupt(substream->timer, 1);
1811#endif
1812 _end:
1813 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1814 _unlock:
1815 snd_pcm_stream_unlock_irqrestore(substream, flags);
1816}
1817EXPORT_SYMBOL(snd_pcm_period_elapsed);
1818
1819/*
1820 * Wait until avail_min data becomes available
1821 * Returns a negative error code if any error occurs during operation.
1822 * The available space is stored on availp. When err = 0 and avail = 0
1823 * on the capture stream, it indicates the stream is in DRAINING state.
1824 */
1825static int wait_for_avail(struct snd_pcm_substream *substream,
1826 snd_pcm_uframes_t *availp)
1827{
1828 struct snd_pcm_runtime *runtime = substream->runtime;
1829 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1830 wait_queue_entry_t wait;
1831 int err = 0;
1832 snd_pcm_uframes_t avail = 0;
1833 long wait_time, tout;
1834
1835 init_waitqueue_entry(&wait, current);
1836 set_current_state(TASK_INTERRUPTIBLE);
1837 add_wait_queue(&runtime->tsleep, &wait);
1838
1839 if (runtime->no_period_wakeup)
1840 wait_time = MAX_SCHEDULE_TIMEOUT;
1841 else {
1842 /* use wait time from substream if available */
1843 if (substream->wait_time) {
1844 wait_time = substream->wait_time;
1845 } else {
1846 wait_time = 10;
1847
1848 if (runtime->rate) {
1849 long t = runtime->period_size * 2 /
1850 runtime->rate;
1851 wait_time = max(t, wait_time);
1852 }
1853 wait_time = msecs_to_jiffies(wait_time * 1000);
1854 }
1855 }
1856
1857 for (;;) {
1858 if (signal_pending(current)) {
1859 err = -ERESTARTSYS;
1860 break;
1861 }
1862
1863 /*
1864 * We need to check if space became available already
1865 * (and thus the wakeup happened already) first to close
1866 * the race of space already having become available.
1867 * This check must happen after been added to the waitqueue
1868 * and having current state be INTERRUPTIBLE.
1869 */
1870 avail = snd_pcm_avail(substream);
1871 if (avail >= runtime->twake)
1872 break;
1873 snd_pcm_stream_unlock_irq(substream);
1874
1875 tout = schedule_timeout(wait_time);
1876
1877 snd_pcm_stream_lock_irq(substream);
1878 set_current_state(TASK_INTERRUPTIBLE);
1879 switch (runtime->status->state) {
1880 case SNDRV_PCM_STATE_SUSPENDED:
1881 err = -ESTRPIPE;
1882 goto _endloop;
1883 case SNDRV_PCM_STATE_XRUN:
1884 err = -EPIPE;
1885 goto _endloop;
1886 case SNDRV_PCM_STATE_DRAINING:
1887 if (is_playback)
1888 err = -EPIPE;
1889 else
1890 avail = 0; /* indicate draining */
1891 goto _endloop;
1892 case SNDRV_PCM_STATE_OPEN:
1893 case SNDRV_PCM_STATE_SETUP:
1894 case SNDRV_PCM_STATE_DISCONNECTED:
1895 err = -EBADFD;
1896 goto _endloop;
1897 case SNDRV_PCM_STATE_PAUSED:
1898 continue;
1899 }
1900 if (!tout) {
1901 pcm_dbg(substream->pcm,
1902 "%s write error (DMA or IRQ trouble?)\n",
1903 is_playback ? "playback" : "capture");
1904 err = -EIO;
1905 break;
1906 }
1907 }
1908 _endloop:
1909 set_current_state(TASK_RUNNING);
1910 remove_wait_queue(&runtime->tsleep, &wait);
1911 *availp = avail;
1912 return err;
1913}
1914
1915typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1916 int channel, unsigned long hwoff,
1917 void *buf, unsigned long bytes);
1918
1919typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1920 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1921
1922/* calculate the target DMA-buffer position to be written/read */
1923static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1924 int channel, unsigned long hwoff)
1925{
1926 return runtime->dma_area + hwoff +
1927 channel * (runtime->dma_bytes / runtime->channels);
1928}
1929
1930/* default copy_user ops for write; used for both interleaved and non- modes */
1931static int default_write_copy(struct snd_pcm_substream *substream,
1932 int channel, unsigned long hwoff,
1933 void *buf, unsigned long bytes)
1934{
1935 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1936 (void __user *)buf, bytes))
1937 return -EFAULT;
1938 return 0;
1939}
1940
1941/* default copy_kernel ops for write */
1942static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1943 int channel, unsigned long hwoff,
1944 void *buf, unsigned long bytes)
1945{
1946 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1947 return 0;
1948}
1949
1950/* fill silence instead of copy data; called as a transfer helper
1951 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1952 * a NULL buffer is passed
1953 */
1954static int fill_silence(struct snd_pcm_substream *substream, int channel,
1955 unsigned long hwoff, void *buf, unsigned long bytes)
1956{
1957 struct snd_pcm_runtime *runtime = substream->runtime;
1958
1959 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1960 return 0;
1961 if (substream->ops->fill_silence)
1962 return substream->ops->fill_silence(substream, channel,
1963 hwoff, bytes);
1964
1965 snd_pcm_format_set_silence(runtime->format,
1966 get_dma_ptr(runtime, channel, hwoff),
1967 bytes_to_samples(runtime, bytes));
1968 return 0;
1969}
1970
1971/* default copy_user ops for read; used for both interleaved and non- modes */
1972static int default_read_copy(struct snd_pcm_substream *substream,
1973 int channel, unsigned long hwoff,
1974 void *buf, unsigned long bytes)
1975{
1976 if (copy_to_user((void __user *)buf,
1977 get_dma_ptr(substream->runtime, channel, hwoff),
1978 bytes))
1979 return -EFAULT;
1980 return 0;
1981}
1982
1983/* default copy_kernel ops for read */
1984static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1985 int channel, unsigned long hwoff,
1986 void *buf, unsigned long bytes)
1987{
1988 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1989 return 0;
1990}
1991
1992/* call transfer function with the converted pointers and sizes;
1993 * for interleaved mode, it's one shot for all samples
1994 */
1995static int interleaved_copy(struct snd_pcm_substream *substream,
1996 snd_pcm_uframes_t hwoff, void *data,
1997 snd_pcm_uframes_t off,
1998 snd_pcm_uframes_t frames,
1999 pcm_transfer_f transfer)
2000{
2001 struct snd_pcm_runtime *runtime = substream->runtime;
2002
2003 /* convert to bytes */
2004 hwoff = frames_to_bytes(runtime, hwoff);
2005 off = frames_to_bytes(runtime, off);
2006 frames = frames_to_bytes(runtime, frames);
2007 return transfer(substream, 0, hwoff, data + off, frames);
2008}
2009
2010/* call transfer function with the converted pointers and sizes for each
2011 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2012 */
2013static int noninterleaved_copy(struct snd_pcm_substream *substream,
2014 snd_pcm_uframes_t hwoff, void *data,
2015 snd_pcm_uframes_t off,
2016 snd_pcm_uframes_t frames,
2017 pcm_transfer_f transfer)
2018{
2019 struct snd_pcm_runtime *runtime = substream->runtime;
2020 int channels = runtime->channels;
2021 void **bufs = data;
2022 int c, err;
2023
2024 /* convert to bytes; note that it's not frames_to_bytes() here.
2025 * in non-interleaved mode, we copy for each channel, thus
2026 * each copy is n_samples bytes x channels = whole frames.
2027 */
2028 off = samples_to_bytes(runtime, off);
2029 frames = samples_to_bytes(runtime, frames);
2030 hwoff = samples_to_bytes(runtime, hwoff);
2031 for (c = 0; c < channels; ++c, ++bufs) {
2032 if (!data || !*bufs)
2033 err = fill_silence(substream, c, hwoff, NULL, frames);
2034 else
2035 err = transfer(substream, c, hwoff, *bufs + off,
2036 frames);
2037 if (err < 0)
2038 return err;
2039 }
2040 return 0;
2041}
2042
2043/* fill silence on the given buffer position;
2044 * called from snd_pcm_playback_silence()
2045 */
2046static int fill_silence_frames(struct snd_pcm_substream *substream,
2047 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2048{
2049 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2050 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2051 return interleaved_copy(substream, off, NULL, 0, frames,
2052 fill_silence);
2053 else
2054 return noninterleaved_copy(substream, off, NULL, 0, frames,
2055 fill_silence);
2056}
2057
2058/* sanity-check for read/write methods */
2059static int pcm_sanity_check(struct snd_pcm_substream *substream)
2060{
2061 struct snd_pcm_runtime *runtime;
2062 if (PCM_RUNTIME_CHECK(substream))
2063 return -ENXIO;
2064 runtime = substream->runtime;
2065 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2066 return -EINVAL;
2067 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2068 return -EBADFD;
2069 return 0;
2070}
2071
2072static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2073{
2074 switch (runtime->status->state) {
2075 case SNDRV_PCM_STATE_PREPARED:
2076 case SNDRV_PCM_STATE_RUNNING:
2077 case SNDRV_PCM_STATE_PAUSED:
2078 return 0;
2079 case SNDRV_PCM_STATE_XRUN:
2080 return -EPIPE;
2081 case SNDRV_PCM_STATE_SUSPENDED:
2082 return -ESTRPIPE;
2083 default:
2084 return -EBADFD;
2085 }
2086}
2087
2088/* update to the given appl_ptr and call ack callback if needed;
2089 * when an error is returned, take back to the original value
2090 */
2091int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2092 snd_pcm_uframes_t appl_ptr)
2093{
2094 struct snd_pcm_runtime *runtime = substream->runtime;
2095 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2096 int ret;
2097
2098 if (old_appl_ptr == appl_ptr)
2099 return 0;
2100
2101 runtime->control->appl_ptr = appl_ptr;
2102 if (substream->ops->ack) {
2103 ret = substream->ops->ack(substream);
2104 if (ret < 0) {
2105 runtime->control->appl_ptr = old_appl_ptr;
2106 return ret;
2107 }
2108 }
2109
2110 trace_applptr(substream, old_appl_ptr, appl_ptr);
2111
2112 return 0;
2113}
2114
2115/* the common loop for read/write data */
2116snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2117 void *data, bool interleaved,
2118 snd_pcm_uframes_t size, bool in_kernel)
2119{
2120 struct snd_pcm_runtime *runtime = substream->runtime;
2121 snd_pcm_uframes_t xfer = 0;
2122 snd_pcm_uframes_t offset = 0;
2123 snd_pcm_uframes_t avail;
2124 pcm_copy_f writer;
2125 pcm_transfer_f transfer;
2126 bool nonblock;
2127 bool is_playback;
2128 int err;
2129
2130 err = pcm_sanity_check(substream);
2131 if (err < 0)
2132 return err;
2133
2134 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2135 if (interleaved) {
2136 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2137 runtime->channels > 1)
2138 return -EINVAL;
2139 writer = interleaved_copy;
2140 } else {
2141 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2142 return -EINVAL;
2143 writer = noninterleaved_copy;
2144 }
2145
2146 if (!data) {
2147 if (is_playback)
2148 transfer = fill_silence;
2149 else
2150 return -EINVAL;
2151 } else if (in_kernel) {
2152 if (substream->ops->copy_kernel)
2153 transfer = substream->ops->copy_kernel;
2154 else
2155 transfer = is_playback ?
2156 default_write_copy_kernel : default_read_copy_kernel;
2157 } else {
2158 if (substream->ops->copy_user)
2159 transfer = (pcm_transfer_f)substream->ops->copy_user;
2160 else
2161 transfer = is_playback ?
2162 default_write_copy : default_read_copy;
2163 }
2164
2165 if (size == 0)
2166 return 0;
2167
2168 nonblock = !!(substream->f_flags & O_NONBLOCK);
2169
2170 snd_pcm_stream_lock_irq(substream);
2171 err = pcm_accessible_state(runtime);
2172 if (err < 0)
2173 goto _end_unlock;
2174
2175 runtime->twake = runtime->control->avail_min ? : 1;
2176 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2177 snd_pcm_update_hw_ptr(substream);
2178
2179 /*
2180 * If size < start_threshold, wait indefinitely. Another
2181 * thread may start capture
2182 */
2183 if (!is_playback &&
2184 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2185 size >= runtime->start_threshold) {
2186 err = snd_pcm_start(substream);
2187 if (err < 0)
2188 goto _end_unlock;
2189 }
2190
2191 avail = snd_pcm_avail(substream);
2192
2193 while (size > 0) {
2194 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2195 snd_pcm_uframes_t cont;
2196 if (!avail) {
2197 if (!is_playback &&
2198 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2199 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2200 goto _end_unlock;
2201 }
2202 if (nonblock) {
2203 err = -EAGAIN;
2204 goto _end_unlock;
2205 }
2206 runtime->twake = min_t(snd_pcm_uframes_t, size,
2207 runtime->control->avail_min ? : 1);
2208 err = wait_for_avail(substream, &avail);
2209 if (err < 0)
2210 goto _end_unlock;
2211 if (!avail)
2212 continue; /* draining */
2213 }
2214 frames = size > avail ? avail : size;
2215 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2216 appl_ofs = appl_ptr % runtime->buffer_size;
2217 cont = runtime->buffer_size - appl_ofs;
2218 if (frames > cont)
2219 frames = cont;
2220 if (snd_BUG_ON(!frames)) {
2221 err = -EINVAL;
2222 goto _end_unlock;
2223 }
2224 snd_pcm_stream_unlock_irq(substream);
2225 err = writer(substream, appl_ofs, data, offset, frames,
2226 transfer);
2227 snd_pcm_stream_lock_irq(substream);
2228 if (err < 0)
2229 goto _end_unlock;
2230 err = pcm_accessible_state(runtime);
2231 if (err < 0)
2232 goto _end_unlock;
2233 appl_ptr += frames;
2234 if (appl_ptr >= runtime->boundary)
2235 appl_ptr -= runtime->boundary;
2236 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2237 if (err < 0)
2238 goto _end_unlock;
2239
2240 offset += frames;
2241 size -= frames;
2242 xfer += frames;
2243 avail -= frames;
2244 if (is_playback &&
2245 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2246 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2247 err = snd_pcm_start(substream);
2248 if (err < 0)
2249 goto _end_unlock;
2250 }
2251 }
2252 _end_unlock:
2253 runtime->twake = 0;
2254 if (xfer > 0 && err >= 0)
2255 snd_pcm_update_state(substream, runtime);
2256 snd_pcm_stream_unlock_irq(substream);
2257 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2258}
2259EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2260
2261/*
2262 * standard channel mapping helpers
2263 */
2264
2265/* default channel maps for multi-channel playbacks, up to 8 channels */
2266const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2267 { .channels = 1,
2268 .map = { SNDRV_CHMAP_MONO } },
2269 { .channels = 2,
2270 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2271 { .channels = 4,
2272 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2273 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2274 { .channels = 6,
2275 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2276 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2277 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2278 { .channels = 8,
2279 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2280 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2281 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2282 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2283 { }
2284};
2285EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2286
2287/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2288const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2289 { .channels = 1,
2290 .map = { SNDRV_CHMAP_MONO } },
2291 { .channels = 2,
2292 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2293 { .channels = 4,
2294 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2295 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2296 { .channels = 6,
2297 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2298 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2299 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2300 { .channels = 8,
2301 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2302 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2303 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2304 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2305 { }
2306};
2307EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2308
2309static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2310{
2311 if (ch > info->max_channels)
2312 return false;
2313 return !info->channel_mask || (info->channel_mask & (1U << ch));
2314}
2315
2316static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2317 struct snd_ctl_elem_info *uinfo)
2318{
2319 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2320
2321 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2322 uinfo->count = info->max_channels;
2323 uinfo->value.integer.min = 0;
2324 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2325 return 0;
2326}
2327
2328/* get callback for channel map ctl element
2329 * stores the channel position firstly matching with the current channels
2330 */
2331static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2332 struct snd_ctl_elem_value *ucontrol)
2333{
2334 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2335 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2336 struct snd_pcm_substream *substream;
2337 const struct snd_pcm_chmap_elem *map;
2338
2339 if (!info->chmap)
2340 return -EINVAL;
2341 substream = snd_pcm_chmap_substream(info, idx);
2342 if (!substream)
2343 return -ENODEV;
2344 memset(ucontrol->value.integer.value, 0,
2345 sizeof(long) * info->max_channels);
2346 if (!substream->runtime)
2347 return 0; /* no channels set */
2348 for (map = info->chmap; map->channels; map++) {
2349 int i;
2350 if (map->channels == substream->runtime->channels &&
2351 valid_chmap_channels(info, map->channels)) {
2352 for (i = 0; i < map->channels; i++)
2353 ucontrol->value.integer.value[i] = map->map[i];
2354 return 0;
2355 }
2356 }
2357 return -EINVAL;
2358}
2359
2360/* tlv callback for channel map ctl element
2361 * expands the pre-defined channel maps in a form of TLV
2362 */
2363static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2364 unsigned int size, unsigned int __user *tlv)
2365{
2366 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2367 const struct snd_pcm_chmap_elem *map;
2368 unsigned int __user *dst;
2369 int c, count = 0;
2370
2371 if (!info->chmap)
2372 return -EINVAL;
2373 if (size < 8)
2374 return -ENOMEM;
2375 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2376 return -EFAULT;
2377 size -= 8;
2378 dst = tlv + 2;
2379 for (map = info->chmap; map->channels; map++) {
2380 int chs_bytes = map->channels * 4;
2381 if (!valid_chmap_channels(info, map->channels))
2382 continue;
2383 if (size < 8)
2384 return -ENOMEM;
2385 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2386 put_user(chs_bytes, dst + 1))
2387 return -EFAULT;
2388 dst += 2;
2389 size -= 8;
2390 count += 8;
2391 if (size < chs_bytes)
2392 return -ENOMEM;
2393 size -= chs_bytes;
2394 count += chs_bytes;
2395 for (c = 0; c < map->channels; c++) {
2396 if (put_user(map->map[c], dst))
2397 return -EFAULT;
2398 dst++;
2399 }
2400 }
2401 if (put_user(count, tlv + 1))
2402 return -EFAULT;
2403 return 0;
2404}
2405
2406static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2407{
2408 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2409 info->pcm->streams[info->stream].chmap_kctl = NULL;
2410 kfree(info);
2411}
2412
2413/**
2414 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2415 * @pcm: the assigned PCM instance
2416 * @stream: stream direction
2417 * @chmap: channel map elements (for query)
2418 * @max_channels: the max number of channels for the stream
2419 * @private_value: the value passed to each kcontrol's private_value field
2420 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2421 *
2422 * Create channel-mapping control elements assigned to the given PCM stream(s).
2423 * Return: Zero if successful, or a negative error value.
2424 */
2425int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2426 const struct snd_pcm_chmap_elem *chmap,
2427 int max_channels,
2428 unsigned long private_value,
2429 struct snd_pcm_chmap **info_ret)
2430{
2431 struct snd_pcm_chmap *info;
2432 struct snd_kcontrol_new knew = {
2433 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2434 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2435 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2436 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2437 .info = pcm_chmap_ctl_info,
2438 .get = pcm_chmap_ctl_get,
2439 .tlv.c = pcm_chmap_ctl_tlv,
2440 };
2441 int err;
2442
2443 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2444 return -EBUSY;
2445 info = kzalloc(sizeof(*info), GFP_KERNEL);
2446 if (!info)
2447 return -ENOMEM;
2448 info->pcm = pcm;
2449 info->stream = stream;
2450 info->chmap = chmap;
2451 info->max_channels = max_channels;
2452 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2453 knew.name = "Playback Channel Map";
2454 else
2455 knew.name = "Capture Channel Map";
2456 knew.device = pcm->device;
2457 knew.count = pcm->streams[stream].substream_count;
2458 knew.private_value = private_value;
2459 info->kctl = snd_ctl_new1(&knew, info);
2460 if (!info->kctl) {
2461 kfree(info);
2462 return -ENOMEM;
2463 }
2464 info->kctl->private_free = pcm_chmap_ctl_private_free;
2465 err = snd_ctl_add(pcm->card, info->kctl);
2466 if (err < 0)
2467 return err;
2468 pcm->streams[stream].chmap_kctl = info->kctl;
2469 if (info_ret)
2470 *info_ret = info;
2471 return 0;
2472}
2473EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);