Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 
 25#include <linux/uio.h>
 26#include <linux/sched/task.h>
 27#include <asm/pgtable.h>
 
 28
 29static struct bio *get_swap_bio(gfp_t gfp_flags,
 30				struct page *page, bio_end_io_t end_io)
 31{
 32	struct bio *bio;
 33
 34	bio = bio_alloc(gfp_flags, 1);
 35	if (bio) {
 36		struct block_device *bdev;
 37
 38		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
 39		bio_set_dev(bio, bdev);
 40		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 41		bio->bi_end_io = end_io;
 42
 43		bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
 44	}
 45	return bio;
 46}
 47
 48void end_swap_bio_write(struct bio *bio)
 49{
 50	struct page *page = bio_first_page_all(bio);
 51
 52	if (bio->bi_status) {
 53		SetPageError(page);
 54		/*
 55		 * We failed to write the page out to swap-space.
 56		 * Re-dirty the page in order to avoid it being reclaimed.
 57		 * Also print a dire warning that things will go BAD (tm)
 58		 * very quickly.
 59		 *
 60		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 61		 */
 62		set_page_dirty(page);
 63		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 64			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65			 (unsigned long long)bio->bi_iter.bi_sector);
 66		ClearPageReclaim(page);
 67	}
 68	end_page_writeback(page);
 69	bio_put(bio);
 70}
 71
 72static void swap_slot_free_notify(struct page *page)
 73{
 74	struct swap_info_struct *sis;
 75	struct gendisk *disk;
 76	swp_entry_t entry;
 77
 78	/*
 79	 * There is no guarantee that the page is in swap cache - the software
 80	 * suspend code (at least) uses end_swap_bio_read() against a non-
 81	 * swapcache page.  So we must check PG_swapcache before proceeding with
 82	 * this optimization.
 83	 */
 84	if (unlikely(!PageSwapCache(page)))
 85		return;
 86
 87	sis = page_swap_info(page);
 88	if (!(sis->flags & SWP_BLKDEV))
 89		return;
 90
 91	/*
 92	 * The swap subsystem performs lazy swap slot freeing,
 93	 * expecting that the page will be swapped out again.
 94	 * So we can avoid an unnecessary write if the page
 95	 * isn't redirtied.
 96	 * This is good for real swap storage because we can
 97	 * reduce unnecessary I/O and enhance wear-leveling
 98	 * if an SSD is used as the as swap device.
 99	 * But if in-memory swap device (eg zram) is used,
100	 * this causes a duplicated copy between uncompressed
101	 * data in VM-owned memory and compressed data in
102	 * zram-owned memory.  So let's free zram-owned memory
103	 * and make the VM-owned decompressed page *dirty*,
104	 * so the page should be swapped out somewhere again if
105	 * we again wish to reclaim it.
106	 */
107	disk = sis->bdev->bd_disk;
108	entry.val = page_private(page);
109	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
110		unsigned long offset;
111
112		offset = swp_offset(entry);
113
114		SetPageDirty(page);
115		disk->fops->swap_slot_free_notify(sis->bdev,
116				offset);
117	}
118}
119
120static void end_swap_bio_read(struct bio *bio)
121{
122	struct page *page = bio_first_page_all(bio);
123	struct task_struct *waiter = bio->bi_private;
124
125	if (bio->bi_status) {
126		SetPageError(page);
127		ClearPageUptodate(page);
128		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130			 (unsigned long long)bio->bi_iter.bi_sector);
131		goto out;
132	}
133
134	SetPageUptodate(page);
135	swap_slot_free_notify(page);
136out:
137	unlock_page(page);
138	WRITE_ONCE(bio->bi_private, NULL);
139	bio_put(bio);
140	if (waiter) {
141		blk_wake_io_task(waiter);
142		put_task_struct(waiter);
143	}
144}
145
146int generic_swapfile_activate(struct swap_info_struct *sis,
147				struct file *swap_file,
148				sector_t *span)
149{
150	struct address_space *mapping = swap_file->f_mapping;
151	struct inode *inode = mapping->host;
152	unsigned blocks_per_page;
153	unsigned long page_no;
154	unsigned blkbits;
155	sector_t probe_block;
156	sector_t last_block;
157	sector_t lowest_block = -1;
158	sector_t highest_block = 0;
159	int nr_extents = 0;
160	int ret;
161
162	blkbits = inode->i_blkbits;
163	blocks_per_page = PAGE_SIZE >> blkbits;
164
165	/*
166	 * Map all the blocks into the extent tree.  This code doesn't try
167	 * to be very smart.
168	 */
169	probe_block = 0;
170	page_no = 0;
171	last_block = i_size_read(inode) >> blkbits;
172	while ((probe_block + blocks_per_page) <= last_block &&
173			page_no < sis->max) {
174		unsigned block_in_page;
175		sector_t first_block;
176
177		cond_resched();
178
179		first_block = bmap(inode, probe_block);
180		if (first_block == 0)
 
181			goto bad_bmap;
182
183		/*
184		 * It must be PAGE_SIZE aligned on-disk
185		 */
186		if (first_block & (blocks_per_page - 1)) {
187			probe_block++;
188			goto reprobe;
189		}
190
191		for (block_in_page = 1; block_in_page < blocks_per_page;
192					block_in_page++) {
193			sector_t block;
194
195			block = bmap(inode, probe_block + block_in_page);
196			if (block == 0)
 
197				goto bad_bmap;
 
198			if (block != first_block + block_in_page) {
199				/* Discontiguity */
200				probe_block++;
201				goto reprobe;
202			}
203		}
204
205		first_block >>= (PAGE_SHIFT - blkbits);
206		if (page_no) {	/* exclude the header page */
207			if (first_block < lowest_block)
208				lowest_block = first_block;
209			if (first_block > highest_block)
210				highest_block = first_block;
211		}
212
213		/*
214		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
215		 */
216		ret = add_swap_extent(sis, page_no, 1, first_block);
217		if (ret < 0)
218			goto out;
219		nr_extents += ret;
220		page_no++;
221		probe_block += blocks_per_page;
222reprobe:
223		continue;
224	}
225	ret = nr_extents;
226	*span = 1 + highest_block - lowest_block;
227	if (page_no == 0)
228		page_no = 1;	/* force Empty message */
229	sis->max = page_no;
230	sis->pages = page_no - 1;
231	sis->highest_bit = page_no - 1;
232out:
233	return ret;
234bad_bmap:
235	pr_err("swapon: swapfile has holes\n");
236	ret = -EINVAL;
237	goto out;
238}
239
240/*
241 * We may have stale swap cache pages in memory: notice
242 * them here and get rid of the unnecessary final write.
243 */
244int swap_writepage(struct page *page, struct writeback_control *wbc)
245{
 
246	int ret = 0;
247
248	if (try_to_free_swap(page)) {
249		unlock_page(page);
250		goto out;
251	}
252	if (frontswap_store(page) == 0) {
253		set_page_writeback(page);
254		unlock_page(page);
255		end_page_writeback(page);
 
 
 
 
 
 
 
 
 
 
256		goto out;
257	}
258	ret = __swap_writepage(page, wbc, end_swap_bio_write);
259out:
260	return ret;
261}
262
263static sector_t swap_page_sector(struct page *page)
264{
265	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
266}
267
268static inline void count_swpout_vm_event(struct page *page)
269{
270#ifdef CONFIG_TRANSPARENT_HUGEPAGE
271	if (unlikely(PageTransHuge(page)))
272		count_vm_event(THP_SWPOUT);
273#endif
274	count_vm_events(PSWPOUT, hpage_nr_pages(page));
275}
276
277int __swap_writepage(struct page *page, struct writeback_control *wbc,
278		bio_end_io_t end_write_func)
279{
280	struct bio *bio;
281	int ret;
282	struct swap_info_struct *sis = page_swap_info(page);
283
284	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
285	if (sis->flags & SWP_FS) {
286		struct kiocb kiocb;
287		struct file *swap_file = sis->swap_file;
288		struct address_space *mapping = swap_file->f_mapping;
289		struct bio_vec bv = {
290			.bv_page = page,
291			.bv_len  = PAGE_SIZE,
292			.bv_offset = 0
293		};
294		struct iov_iter from;
295
296		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
297		init_sync_kiocb(&kiocb, swap_file);
298		kiocb.ki_pos = page_file_offset(page);
299
300		set_page_writeback(page);
301		unlock_page(page);
302		ret = mapping->a_ops->direct_IO(&kiocb, &from);
303		if (ret == PAGE_SIZE) {
304			count_vm_event(PSWPOUT);
305			ret = 0;
306		} else {
307			/*
308			 * In the case of swap-over-nfs, this can be a
309			 * temporary failure if the system has limited
310			 * memory for allocating transmit buffers.
311			 * Mark the page dirty and avoid
312			 * rotate_reclaimable_page but rate-limit the
313			 * messages but do not flag PageError like
314			 * the normal direct-to-bio case as it could
315			 * be temporary.
316			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317			set_page_dirty(page);
318			ClearPageReclaim(page);
319			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
320					   page_file_offset(page));
321		}
322		end_page_writeback(page);
323		return ret;
 
324	}
325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
327	if (!ret) {
328		count_swpout_vm_event(page);
329		return 0;
330	}
331
332	ret = 0;
333	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
334	if (bio == NULL) {
335		set_page_dirty(page);
336		unlock_page(page);
337		ret = -ENOMEM;
338		goto out;
339	}
340	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
341	bio_associate_blkg_from_page(bio, page);
342	count_swpout_vm_event(page);
343	set_page_writeback(page);
344	unlock_page(page);
345	submit_bio(bio);
346out:
347	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348}
349
350int swap_readpage(struct page *page, bool synchronous)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351{
352	struct bio *bio;
353	int ret = 0;
354	struct swap_info_struct *sis = page_swap_info(page);
355	blk_qc_t qc;
356	struct gendisk *disk;
 
357
358	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
359	VM_BUG_ON_PAGE(!PageLocked(page), page);
360	VM_BUG_ON_PAGE(PageUptodate(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
361	if (frontswap_load(page) == 0) {
362		SetPageUptodate(page);
363		unlock_page(page);
364		goto out;
365	}
366
367	if (sis->flags & SWP_FS) {
368		struct file *swap_file = sis->swap_file;
369		struct address_space *mapping = swap_file->f_mapping;
370
371		ret = mapping->a_ops->readpage(swap_file, page);
372		if (!ret)
373			count_vm_event(PSWPIN);
374		return ret;
375	}
376
377	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
378	if (!ret) {
379		if (trylock_page(page)) {
380			swap_slot_free_notify(page);
381			unlock_page(page);
382		}
383
384		count_vm_event(PSWPIN);
385		return 0;
386	}
387
388	ret = 0;
389	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
390	if (bio == NULL) {
391		unlock_page(page);
392		ret = -ENOMEM;
393		goto out;
394	}
395	disk = bio->bi_disk;
396	/*
397	 * Keep this task valid during swap readpage because the oom killer may
398	 * attempt to access it in the page fault retry time check.
399	 */
400	bio_set_op_attrs(bio, REQ_OP_READ, 0);
401	if (synchronous) {
402		bio->bi_opf |= REQ_HIPRI;
403		get_task_struct(current);
404		bio->bi_private = current;
405	}
406	count_vm_event(PSWPIN);
407	bio_get(bio);
408	qc = submit_bio(bio);
409	while (synchronous) {
410		set_current_state(TASK_UNINTERRUPTIBLE);
411		if (!READ_ONCE(bio->bi_private))
412			break;
413
414		if (!blk_poll(disk->queue, qc, true))
415			io_schedule();
416	}
417	__set_current_state(TASK_RUNNING);
418	bio_put(bio);
419
420out:
 
 
 
 
 
421	return ret;
422}
423
424int swap_set_page_dirty(struct page *page)
425{
426	struct swap_info_struct *sis = page_swap_info(page);
427
428	if (sis->flags & SWP_FS) {
429		struct address_space *mapping = sis->swap_file->f_mapping;
430
431		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
432		return mapping->a_ops->set_page_dirty(page);
433	} else {
434		return __set_page_dirty_no_writeback(page);
435	}
436}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 25#include <linux/psi.h>
 26#include <linux/uio.h>
 27#include <linux/sched/task.h>
 28#include <linux/delayacct.h>
 29#include "swap.h"
 30
 31static void end_swap_bio_write(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32{
 33	struct page *page = bio_first_page_all(bio);
 34
 35	if (bio->bi_status) {
 36		SetPageError(page);
 37		/*
 38		 * We failed to write the page out to swap-space.
 39		 * Re-dirty the page in order to avoid it being reclaimed.
 40		 * Also print a dire warning that things will go BAD (tm)
 41		 * very quickly.
 42		 *
 43		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
 44		 */
 45		set_page_dirty(page);
 46		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
 47				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 48				     (unsigned long long)bio->bi_iter.bi_sector);
 49		ClearPageReclaim(page);
 50	}
 51	end_page_writeback(page);
 52	bio_put(bio);
 53}
 54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55static void end_swap_bio_read(struct bio *bio)
 56{
 57	struct page *page = bio_first_page_all(bio);
 58	struct task_struct *waiter = bio->bi_private;
 59
 60	if (bio->bi_status) {
 61		SetPageError(page);
 62		ClearPageUptodate(page);
 63		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
 64				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65				     (unsigned long long)bio->bi_iter.bi_sector);
 66		goto out;
 67	}
 68
 69	SetPageUptodate(page);
 
 70out:
 71	unlock_page(page);
 72	WRITE_ONCE(bio->bi_private, NULL);
 73	bio_put(bio);
 74	if (waiter) {
 75		blk_wake_io_task(waiter);
 76		put_task_struct(waiter);
 77	}
 78}
 79
 80int generic_swapfile_activate(struct swap_info_struct *sis,
 81				struct file *swap_file,
 82				sector_t *span)
 83{
 84	struct address_space *mapping = swap_file->f_mapping;
 85	struct inode *inode = mapping->host;
 86	unsigned blocks_per_page;
 87	unsigned long page_no;
 88	unsigned blkbits;
 89	sector_t probe_block;
 90	sector_t last_block;
 91	sector_t lowest_block = -1;
 92	sector_t highest_block = 0;
 93	int nr_extents = 0;
 94	int ret;
 95
 96	blkbits = inode->i_blkbits;
 97	blocks_per_page = PAGE_SIZE >> blkbits;
 98
 99	/*
100	 * Map all the blocks into the extent tree.  This code doesn't try
101	 * to be very smart.
102	 */
103	probe_block = 0;
104	page_no = 0;
105	last_block = i_size_read(inode) >> blkbits;
106	while ((probe_block + blocks_per_page) <= last_block &&
107			page_no < sis->max) {
108		unsigned block_in_page;
109		sector_t first_block;
110
111		cond_resched();
112
113		first_block = probe_block;
114		ret = bmap(inode, &first_block);
115		if (ret || !first_block)
116			goto bad_bmap;
117
118		/*
119		 * It must be PAGE_SIZE aligned on-disk
120		 */
121		if (first_block & (blocks_per_page - 1)) {
122			probe_block++;
123			goto reprobe;
124		}
125
126		for (block_in_page = 1; block_in_page < blocks_per_page;
127					block_in_page++) {
128			sector_t block;
129
130			block = probe_block + block_in_page;
131			ret = bmap(inode, &block);
132			if (ret || !block)
133				goto bad_bmap;
134
135			if (block != first_block + block_in_page) {
136				/* Discontiguity */
137				probe_block++;
138				goto reprobe;
139			}
140		}
141
142		first_block >>= (PAGE_SHIFT - blkbits);
143		if (page_no) {	/* exclude the header page */
144			if (first_block < lowest_block)
145				lowest_block = first_block;
146			if (first_block > highest_block)
147				highest_block = first_block;
148		}
149
150		/*
151		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
152		 */
153		ret = add_swap_extent(sis, page_no, 1, first_block);
154		if (ret < 0)
155			goto out;
156		nr_extents += ret;
157		page_no++;
158		probe_block += blocks_per_page;
159reprobe:
160		continue;
161	}
162	ret = nr_extents;
163	*span = 1 + highest_block - lowest_block;
164	if (page_no == 0)
165		page_no = 1;	/* force Empty message */
166	sis->max = page_no;
167	sis->pages = page_no - 1;
168	sis->highest_bit = page_no - 1;
169out:
170	return ret;
171bad_bmap:
172	pr_err("swapon: swapfile has holes\n");
173	ret = -EINVAL;
174	goto out;
175}
176
177/*
178 * We may have stale swap cache pages in memory: notice
179 * them here and get rid of the unnecessary final write.
180 */
181int swap_writepage(struct page *page, struct writeback_control *wbc)
182{
183	struct folio *folio = page_folio(page);
184	int ret = 0;
185
186	if (folio_free_swap(folio)) {
187		folio_unlock(folio);
188		goto out;
189	}
190	/*
191	 * Arch code may have to preserve more data than just the page
192	 * contents, e.g. memory tags.
193	 */
194	ret = arch_prepare_to_swap(&folio->page);
195	if (ret) {
196		folio_mark_dirty(folio);
197		folio_unlock(folio);
198		goto out;
199	}
200	if (frontswap_store(&folio->page) == 0) {
201		folio_start_writeback(folio);
202		folio_unlock(folio);
203		folio_end_writeback(folio);
204		goto out;
205	}
206	ret = __swap_writepage(&folio->page, wbc);
207out:
208	return ret;
209}
210
 
 
 
 
 
211static inline void count_swpout_vm_event(struct page *page)
212{
213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
214	if (unlikely(PageTransHuge(page)))
215		count_vm_event(THP_SWPOUT);
216#endif
217	count_vm_events(PSWPOUT, thp_nr_pages(page));
218}
219
220#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
221static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
222{
223	struct cgroup_subsys_state *css;
224	struct mem_cgroup *memcg;
 
225
226	memcg = page_memcg(page);
227	if (!memcg)
228		return;
 
 
 
 
 
 
 
 
 
 
 
 
229
230	rcu_read_lock();
231	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
232	bio_associate_blkg_from_css(bio, css);
233	rcu_read_unlock();
234}
235#else
236#define bio_associate_blkg_from_page(bio, page)		do { } while (0)
237#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
238
239struct swap_iocb {
240	struct kiocb		iocb;
241	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
242	int			pages;
243	int			len;
244};
245static mempool_t *sio_pool;
246
247int sio_pool_init(void)
248{
249	if (!sio_pool) {
250		mempool_t *pool = mempool_create_kmalloc_pool(
251			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
252		if (cmpxchg(&sio_pool, NULL, pool))
253			mempool_destroy(pool);
254	}
255	if (!sio_pool)
256		return -ENOMEM;
257	return 0;
258}
259
260static void sio_write_complete(struct kiocb *iocb, long ret)
261{
262	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
263	struct page *page = sio->bvec[0].bv_page;
264	int p;
265
266	if (ret != sio->len) {
267		/*
268		 * In the case of swap-over-nfs, this can be a
269		 * temporary failure if the system has limited
270		 * memory for allocating transmit buffers.
271		 * Mark the page dirty and avoid
272		 * folio_rotate_reclaimable but rate-limit the
273		 * messages but do not flag PageError like
274		 * the normal direct-to-bio case as it could
275		 * be temporary.
276		 */
277		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
278				   ret, page_file_offset(page));
279		for (p = 0; p < sio->pages; p++) {
280			page = sio->bvec[p].bv_page;
281			set_page_dirty(page);
282			ClearPageReclaim(page);
 
 
283		}
284	} else {
285		for (p = 0; p < sio->pages; p++)
286			count_swpout_vm_event(sio->bvec[p].bv_page);
287	}
288
289	for (p = 0; p < sio->pages; p++)
290		end_page_writeback(sio->bvec[p].bv_page);
291
292	mempool_free(sio, sio_pool);
293}
294
295static int swap_writepage_fs(struct page *page, struct writeback_control *wbc)
296{
297	struct swap_iocb *sio = NULL;
298	struct swap_info_struct *sis = page_swap_info(page);
299	struct file *swap_file = sis->swap_file;
300	loff_t pos = page_file_offset(page);
301
302	set_page_writeback(page);
303	unlock_page(page);
304	if (wbc->swap_plug)
305		sio = *wbc->swap_plug;
306	if (sio) {
307		if (sio->iocb.ki_filp != swap_file ||
308		    sio->iocb.ki_pos + sio->len != pos) {
309			swap_write_unplug(sio);
310			sio = NULL;
311		}
312	}
313	if (!sio) {
314		sio = mempool_alloc(sio_pool, GFP_NOIO);
315		init_sync_kiocb(&sio->iocb, swap_file);
316		sio->iocb.ki_complete = sio_write_complete;
317		sio->iocb.ki_pos = pos;
318		sio->pages = 0;
319		sio->len = 0;
320	}
321	sio->bvec[sio->pages].bv_page = page;
322	sio->bvec[sio->pages].bv_len = thp_size(page);
323	sio->bvec[sio->pages].bv_offset = 0;
324	sio->len += thp_size(page);
325	sio->pages += 1;
326	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
327		swap_write_unplug(sio);
328		sio = NULL;
329	}
330	if (wbc->swap_plug)
331		*wbc->swap_plug = sio;
332
333	return 0;
334}
335
336int __swap_writepage(struct page *page, struct writeback_control *wbc)
337{
338	struct bio *bio;
339	int ret;
340	struct swap_info_struct *sis = page_swap_info(page);
341
342	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
343	/*
344	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
345	 * but that will never affect SWP_FS_OPS, so the data_race
346	 * is safe.
347	 */
348	if (data_race(sis->flags & SWP_FS_OPS))
349		return swap_writepage_fs(page, wbc);
350
351	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
352	if (!ret) {
353		count_swpout_vm_event(page);
354		return 0;
355	}
356
357	bio = bio_alloc(sis->bdev, 1,
358			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
359			GFP_NOIO);
360	bio->bi_iter.bi_sector = swap_page_sector(page);
361	bio->bi_end_io = end_swap_bio_write;
362	bio_add_page(bio, page, thp_size(page), 0);
363
 
 
364	bio_associate_blkg_from_page(bio, page);
365	count_swpout_vm_event(page);
366	set_page_writeback(page);
367	unlock_page(page);
368	submit_bio(bio);
369
370	return 0;
371}
372
373void swap_write_unplug(struct swap_iocb *sio)
374{
375	struct iov_iter from;
376	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
377	int ret;
378
379	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
380	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
381	if (ret != -EIOCBQUEUED)
382		sio_write_complete(&sio->iocb, ret);
383}
384
385static void sio_read_complete(struct kiocb *iocb, long ret)
386{
387	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
388	int p;
389
390	if (ret == sio->len) {
391		for (p = 0; p < sio->pages; p++) {
392			struct page *page = sio->bvec[p].bv_page;
393
394			SetPageUptodate(page);
395			unlock_page(page);
396		}
397		count_vm_events(PSWPIN, sio->pages);
398	} else {
399		for (p = 0; p < sio->pages; p++) {
400			struct page *page = sio->bvec[p].bv_page;
401
402			SetPageError(page);
403			ClearPageUptodate(page);
404			unlock_page(page);
405		}
406		pr_alert_ratelimited("Read-error on swap-device\n");
407	}
408	mempool_free(sio, sio_pool);
409}
410
411static void swap_readpage_fs(struct page *page,
412			     struct swap_iocb **plug)
413{
414	struct swap_info_struct *sis = page_swap_info(page);
415	struct swap_iocb *sio = NULL;
416	loff_t pos = page_file_offset(page);
417
418	if (plug)
419		sio = *plug;
420	if (sio) {
421		if (sio->iocb.ki_filp != sis->swap_file ||
422		    sio->iocb.ki_pos + sio->len != pos) {
423			swap_read_unplug(sio);
424			sio = NULL;
425		}
426	}
427	if (!sio) {
428		sio = mempool_alloc(sio_pool, GFP_KERNEL);
429		init_sync_kiocb(&sio->iocb, sis->swap_file);
430		sio->iocb.ki_pos = pos;
431		sio->iocb.ki_complete = sio_read_complete;
432		sio->pages = 0;
433		sio->len = 0;
434	}
435	sio->bvec[sio->pages].bv_page = page;
436	sio->bvec[sio->pages].bv_len = thp_size(page);
437	sio->bvec[sio->pages].bv_offset = 0;
438	sio->len += thp_size(page);
439	sio->pages += 1;
440	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
441		swap_read_unplug(sio);
442		sio = NULL;
443	}
444	if (plug)
445		*plug = sio;
446}
447
448int swap_readpage(struct page *page, bool synchronous,
449		  struct swap_iocb **plug)
450{
451	struct bio *bio;
452	int ret = 0;
453	struct swap_info_struct *sis = page_swap_info(page);
454	bool workingset = PageWorkingset(page);
455	unsigned long pflags;
456	bool in_thrashing;
457
458	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
459	VM_BUG_ON_PAGE(!PageLocked(page), page);
460	VM_BUG_ON_PAGE(PageUptodate(page), page);
461
462	/*
463	 * Count submission time as memory stall and delay. When the device
464	 * is congested, or the submitting cgroup IO-throttled, submission
465	 * can be a significant part of overall IO time.
466	 */
467	if (workingset) {
468		delayacct_thrashing_start(&in_thrashing);
469		psi_memstall_enter(&pflags);
470	}
471	delayacct_swapin_start();
472
473	if (frontswap_load(page) == 0) {
474		SetPageUptodate(page);
475		unlock_page(page);
476		goto out;
477	}
478
479	if (data_race(sis->flags & SWP_FS_OPS)) {
480		swap_readpage_fs(page, plug);
481		goto out;
 
 
 
 
 
482	}
483
484	if (sis->flags & SWP_SYNCHRONOUS_IO) {
485		ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
486		if (!ret) {
487			count_vm_event(PSWPIN);
488			goto out;
489		}
 
 
 
490	}
491
492	ret = 0;
493	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
494	bio->bi_iter.bi_sector = swap_page_sector(page);
495	bio->bi_end_io = end_swap_bio_read;
496	bio_add_page(bio, page, thp_size(page), 0);
 
 
 
497	/*
498	 * Keep this task valid during swap readpage because the oom killer may
499	 * attempt to access it in the page fault retry time check.
500	 */
 
501	if (synchronous) {
 
502		get_task_struct(current);
503		bio->bi_private = current;
504	}
505	count_vm_event(PSWPIN);
506	bio_get(bio);
507	submit_bio(bio);
508	while (synchronous) {
509		set_current_state(TASK_UNINTERRUPTIBLE);
510		if (!READ_ONCE(bio->bi_private))
511			break;
512
513		blk_io_schedule();
 
514	}
515	__set_current_state(TASK_RUNNING);
516	bio_put(bio);
517
518out:
519	if (workingset) {
520		delayacct_thrashing_end(&in_thrashing);
521		psi_memstall_leave(&pflags);
522	}
523	delayacct_swapin_end();
524	return ret;
525}
526
527void __swap_read_unplug(struct swap_iocb *sio)
528{
529	struct iov_iter from;
530	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
531	int ret;
 
532
533	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
534	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
535	if (ret != -EIOCBQUEUED)
536		sio_read_complete(&sio->iocb, ret);
 
537}