Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 25#include <linux/uio.h>
 26#include <linux/sched/task.h>
 27#include <asm/pgtable.h>
 28
 29static struct bio *get_swap_bio(gfp_t gfp_flags,
 30				struct page *page, bio_end_io_t end_io)
 31{
 
 32	struct bio *bio;
 33
 34	bio = bio_alloc(gfp_flags, 1);
 35	if (bio) {
 36		struct block_device *bdev;
 37
 38		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
 39		bio_set_dev(bio, bdev);
 40		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 41		bio->bi_end_io = end_io;
 42
 43		bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
 
 
 44	}
 45	return bio;
 46}
 47
 48void end_swap_bio_write(struct bio *bio)
 49{
 50	struct page *page = bio_first_page_all(bio);
 51
 52	if (bio->bi_status) {
 53		SetPageError(page);
 54		/*
 55		 * We failed to write the page out to swap-space.
 56		 * Re-dirty the page in order to avoid it being reclaimed.
 57		 * Also print a dire warning that things will go BAD (tm)
 58		 * very quickly.
 59		 *
 60		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 61		 */
 62		set_page_dirty(page);
 63		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 64			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65			 (unsigned long long)bio->bi_iter.bi_sector);
 66		ClearPageReclaim(page);
 67	}
 68	end_page_writeback(page);
 69	bio_put(bio);
 70}
 71
 72static void swap_slot_free_notify(struct page *page)
 73{
 74	struct swap_info_struct *sis;
 75	struct gendisk *disk;
 76	swp_entry_t entry;
 77
 78	/*
 79	 * There is no guarantee that the page is in swap cache - the software
 80	 * suspend code (at least) uses end_swap_bio_read() against a non-
 81	 * swapcache page.  So we must check PG_swapcache before proceeding with
 82	 * this optimization.
 83	 */
 84	if (unlikely(!PageSwapCache(page)))
 85		return;
 86
 87	sis = page_swap_info(page);
 88	if (!(sis->flags & SWP_BLKDEV))
 89		return;
 90
 91	/*
 92	 * The swap subsystem performs lazy swap slot freeing,
 93	 * expecting that the page will be swapped out again.
 94	 * So we can avoid an unnecessary write if the page
 95	 * isn't redirtied.
 96	 * This is good for real swap storage because we can
 97	 * reduce unnecessary I/O and enhance wear-leveling
 98	 * if an SSD is used as the as swap device.
 99	 * But if in-memory swap device (eg zram) is used,
100	 * this causes a duplicated copy between uncompressed
101	 * data in VM-owned memory and compressed data in
102	 * zram-owned memory.  So let's free zram-owned memory
103	 * and make the VM-owned decompressed page *dirty*,
104	 * so the page should be swapped out somewhere again if
105	 * we again wish to reclaim it.
106	 */
107	disk = sis->bdev->bd_disk;
108	entry.val = page_private(page);
109	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
110		unsigned long offset;
111
 
112		offset = swp_offset(entry);
113
114		SetPageDirty(page);
115		disk->fops->swap_slot_free_notify(sis->bdev,
116				offset);
117	}
118}
119
120static void end_swap_bio_read(struct bio *bio)
121{
122	struct page *page = bio_first_page_all(bio);
123	struct task_struct *waiter = bio->bi_private;
124
125	if (bio->bi_status) {
126		SetPageError(page);
127		ClearPageUptodate(page);
128		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130			 (unsigned long long)bio->bi_iter.bi_sector);
131		goto out;
132	}
133
134	SetPageUptodate(page);
135	swap_slot_free_notify(page);
136out:
137	unlock_page(page);
138	WRITE_ONCE(bio->bi_private, NULL);
139	bio_put(bio);
140	if (waiter) {
141		blk_wake_io_task(waiter);
142		put_task_struct(waiter);
143	}
144}
145
146int generic_swapfile_activate(struct swap_info_struct *sis,
147				struct file *swap_file,
148				sector_t *span)
149{
150	struct address_space *mapping = swap_file->f_mapping;
151	struct inode *inode = mapping->host;
152	unsigned blocks_per_page;
153	unsigned long page_no;
154	unsigned blkbits;
155	sector_t probe_block;
156	sector_t last_block;
157	sector_t lowest_block = -1;
158	sector_t highest_block = 0;
159	int nr_extents = 0;
160	int ret;
161
162	blkbits = inode->i_blkbits;
163	blocks_per_page = PAGE_SIZE >> blkbits;
164
165	/*
166	 * Map all the blocks into the extent tree.  This code doesn't try
167	 * to be very smart.
168	 */
169	probe_block = 0;
170	page_no = 0;
171	last_block = i_size_read(inode) >> blkbits;
172	while ((probe_block + blocks_per_page) <= last_block &&
173			page_no < sis->max) {
174		unsigned block_in_page;
175		sector_t first_block;
176
177		cond_resched();
178
179		first_block = bmap(inode, probe_block);
180		if (first_block == 0)
181			goto bad_bmap;
182
183		/*
184		 * It must be PAGE_SIZE aligned on-disk
185		 */
186		if (first_block & (blocks_per_page - 1)) {
187			probe_block++;
188			goto reprobe;
189		}
190
191		for (block_in_page = 1; block_in_page < blocks_per_page;
192					block_in_page++) {
193			sector_t block;
194
195			block = bmap(inode, probe_block + block_in_page);
196			if (block == 0)
197				goto bad_bmap;
198			if (block != first_block + block_in_page) {
199				/* Discontiguity */
200				probe_block++;
201				goto reprobe;
202			}
203		}
204
205		first_block >>= (PAGE_SHIFT - blkbits);
206		if (page_no) {	/* exclude the header page */
207			if (first_block < lowest_block)
208				lowest_block = first_block;
209			if (first_block > highest_block)
210				highest_block = first_block;
211		}
212
213		/*
214		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
215		 */
216		ret = add_swap_extent(sis, page_no, 1, first_block);
217		if (ret < 0)
218			goto out;
219		nr_extents += ret;
220		page_no++;
221		probe_block += blocks_per_page;
222reprobe:
223		continue;
224	}
225	ret = nr_extents;
226	*span = 1 + highest_block - lowest_block;
227	if (page_no == 0)
228		page_no = 1;	/* force Empty message */
229	sis->max = page_no;
230	sis->pages = page_no - 1;
231	sis->highest_bit = page_no - 1;
232out:
233	return ret;
234bad_bmap:
235	pr_err("swapon: swapfile has holes\n");
236	ret = -EINVAL;
237	goto out;
238}
239
240/*
241 * We may have stale swap cache pages in memory: notice
242 * them here and get rid of the unnecessary final write.
243 */
244int swap_writepage(struct page *page, struct writeback_control *wbc)
245{
246	int ret = 0;
247
248	if (try_to_free_swap(page)) {
249		unlock_page(page);
250		goto out;
251	}
252	if (frontswap_store(page) == 0) {
253		set_page_writeback(page);
254		unlock_page(page);
255		end_page_writeback(page);
256		goto out;
257	}
258	ret = __swap_writepage(page, wbc, end_swap_bio_write);
259out:
260	return ret;
261}
262
263static sector_t swap_page_sector(struct page *page)
264{
265	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
266}
267
268static inline void count_swpout_vm_event(struct page *page)
269{
270#ifdef CONFIG_TRANSPARENT_HUGEPAGE
271	if (unlikely(PageTransHuge(page)))
272		count_vm_event(THP_SWPOUT);
273#endif
274	count_vm_events(PSWPOUT, hpage_nr_pages(page));
275}
276
277int __swap_writepage(struct page *page, struct writeback_control *wbc,
278		bio_end_io_t end_write_func)
279{
280	struct bio *bio;
281	int ret;
282	struct swap_info_struct *sis = page_swap_info(page);
283
284	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
285	if (sis->flags & SWP_FS) {
286		struct kiocb kiocb;
287		struct file *swap_file = sis->swap_file;
288		struct address_space *mapping = swap_file->f_mapping;
289		struct bio_vec bv = {
290			.bv_page = page,
291			.bv_len  = PAGE_SIZE,
292			.bv_offset = 0
293		};
294		struct iov_iter from;
295
296		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
297		init_sync_kiocb(&kiocb, swap_file);
298		kiocb.ki_pos = page_file_offset(page);
299
300		set_page_writeback(page);
301		unlock_page(page);
302		ret = mapping->a_ops->direct_IO(&kiocb, &from);
303		if (ret == PAGE_SIZE) {
304			count_vm_event(PSWPOUT);
305			ret = 0;
306		} else {
307			/*
308			 * In the case of swap-over-nfs, this can be a
309			 * temporary failure if the system has limited
310			 * memory for allocating transmit buffers.
311			 * Mark the page dirty and avoid
312			 * rotate_reclaimable_page but rate-limit the
313			 * messages but do not flag PageError like
314			 * the normal direct-to-bio case as it could
315			 * be temporary.
316			 */
317			set_page_dirty(page);
318			ClearPageReclaim(page);
319			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
320					   page_file_offset(page));
321		}
322		end_page_writeback(page);
323		return ret;
324	}
325
326	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
327	if (!ret) {
328		count_swpout_vm_event(page);
329		return 0;
330	}
331
332	ret = 0;
333	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
334	if (bio == NULL) {
335		set_page_dirty(page);
336		unlock_page(page);
337		ret = -ENOMEM;
338		goto out;
339	}
340	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
341	bio_associate_blkg_from_page(bio, page);
342	count_swpout_vm_event(page);
343	set_page_writeback(page);
344	unlock_page(page);
345	submit_bio(bio);
346out:
347	return ret;
348}
349
350int swap_readpage(struct page *page, bool synchronous)
351{
352	struct bio *bio;
353	int ret = 0;
354	struct swap_info_struct *sis = page_swap_info(page);
355	blk_qc_t qc;
356	struct gendisk *disk;
357
358	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
359	VM_BUG_ON_PAGE(!PageLocked(page), page);
360	VM_BUG_ON_PAGE(PageUptodate(page), page);
361	if (frontswap_load(page) == 0) {
362		SetPageUptodate(page);
363		unlock_page(page);
364		goto out;
365	}
366
367	if (sis->flags & SWP_FS) {
368		struct file *swap_file = sis->swap_file;
369		struct address_space *mapping = swap_file->f_mapping;
370
371		ret = mapping->a_ops->readpage(swap_file, page);
372		if (!ret)
373			count_vm_event(PSWPIN);
374		return ret;
375	}
376
377	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
378	if (!ret) {
379		if (trylock_page(page)) {
380			swap_slot_free_notify(page);
381			unlock_page(page);
382		}
383
384		count_vm_event(PSWPIN);
385		return 0;
386	}
387
388	ret = 0;
389	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
390	if (bio == NULL) {
391		unlock_page(page);
392		ret = -ENOMEM;
393		goto out;
394	}
395	disk = bio->bi_disk;
396	/*
397	 * Keep this task valid during swap readpage because the oom killer may
398	 * attempt to access it in the page fault retry time check.
399	 */
 
 
400	bio_set_op_attrs(bio, REQ_OP_READ, 0);
401	if (synchronous) {
402		bio->bi_opf |= REQ_HIPRI;
403		get_task_struct(current);
404		bio->bi_private = current;
405	}
406	count_vm_event(PSWPIN);
407	bio_get(bio);
408	qc = submit_bio(bio);
409	while (synchronous) {
410		set_current_state(TASK_UNINTERRUPTIBLE);
411		if (!READ_ONCE(bio->bi_private))
412			break;
413
414		if (!blk_poll(disk->queue, qc, true))
415			io_schedule();
416	}
417	__set_current_state(TASK_RUNNING);
418	bio_put(bio);
419
420out:
421	return ret;
422}
423
424int swap_set_page_dirty(struct page *page)
425{
426	struct swap_info_struct *sis = page_swap_info(page);
427
428	if (sis->flags & SWP_FS) {
429		struct address_space *mapping = sis->swap_file->f_mapping;
430
431		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
432		return mapping->a_ops->set_page_dirty(page);
433	} else {
434		return __set_page_dirty_no_writeback(page);
435	}
436}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 25#include <linux/uio.h>
 26#include <linux/sched/task.h>
 27#include <asm/pgtable.h>
 28
 29static struct bio *get_swap_bio(gfp_t gfp_flags,
 30				struct page *page, bio_end_io_t end_io)
 31{
 32	int i, nr = hpage_nr_pages(page);
 33	struct bio *bio;
 34
 35	bio = bio_alloc(gfp_flags, nr);
 36	if (bio) {
 37		struct block_device *bdev;
 38
 39		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
 40		bio_set_dev(bio, bdev);
 41		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 42		bio->bi_end_io = end_io;
 43
 44		for (i = 0; i < nr; i++)
 45			bio_add_page(bio, page + i, PAGE_SIZE, 0);
 46		VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
 47	}
 48	return bio;
 49}
 50
 51void end_swap_bio_write(struct bio *bio)
 52{
 53	struct page *page = bio_first_page_all(bio);
 54
 55	if (bio->bi_status) {
 56		SetPageError(page);
 57		/*
 58		 * We failed to write the page out to swap-space.
 59		 * Re-dirty the page in order to avoid it being reclaimed.
 60		 * Also print a dire warning that things will go BAD (tm)
 61		 * very quickly.
 62		 *
 63		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 64		 */
 65		set_page_dirty(page);
 66		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 67			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 68			 (unsigned long long)bio->bi_iter.bi_sector);
 69		ClearPageReclaim(page);
 70	}
 71	end_page_writeback(page);
 72	bio_put(bio);
 73}
 74
 75static void swap_slot_free_notify(struct page *page)
 76{
 77	struct swap_info_struct *sis;
 78	struct gendisk *disk;
 
 79
 80	/*
 81	 * There is no guarantee that the page is in swap cache - the software
 82	 * suspend code (at least) uses end_swap_bio_read() against a non-
 83	 * swapcache page.  So we must check PG_swapcache before proceeding with
 84	 * this optimization.
 85	 */
 86	if (unlikely(!PageSwapCache(page)))
 87		return;
 88
 89	sis = page_swap_info(page);
 90	if (!(sis->flags & SWP_BLKDEV))
 91		return;
 92
 93	/*
 94	 * The swap subsystem performs lazy swap slot freeing,
 95	 * expecting that the page will be swapped out again.
 96	 * So we can avoid an unnecessary write if the page
 97	 * isn't redirtied.
 98	 * This is good for real swap storage because we can
 99	 * reduce unnecessary I/O and enhance wear-leveling
100	 * if an SSD is used as the as swap device.
101	 * But if in-memory swap device (eg zram) is used,
102	 * this causes a duplicated copy between uncompressed
103	 * data in VM-owned memory and compressed data in
104	 * zram-owned memory.  So let's free zram-owned memory
105	 * and make the VM-owned decompressed page *dirty*,
106	 * so the page should be swapped out somewhere again if
107	 * we again wish to reclaim it.
108	 */
109	disk = sis->bdev->bd_disk;
110	if (disk->fops->swap_slot_free_notify) {
111		swp_entry_t entry;
112		unsigned long offset;
113
114		entry.val = page_private(page);
115		offset = swp_offset(entry);
116
117		SetPageDirty(page);
118		disk->fops->swap_slot_free_notify(sis->bdev,
119				offset);
120	}
121}
122
123static void end_swap_bio_read(struct bio *bio)
124{
125	struct page *page = bio_first_page_all(bio);
126	struct task_struct *waiter = bio->bi_private;
127
128	if (bio->bi_status) {
129		SetPageError(page);
130		ClearPageUptodate(page);
131		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
132			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
133			 (unsigned long long)bio->bi_iter.bi_sector);
134		goto out;
135	}
136
137	SetPageUptodate(page);
138	swap_slot_free_notify(page);
139out:
140	unlock_page(page);
141	WRITE_ONCE(bio->bi_private, NULL);
142	bio_put(bio);
143	wake_up_process(waiter);
144	put_task_struct(waiter);
 
 
145}
146
147int generic_swapfile_activate(struct swap_info_struct *sis,
148				struct file *swap_file,
149				sector_t *span)
150{
151	struct address_space *mapping = swap_file->f_mapping;
152	struct inode *inode = mapping->host;
153	unsigned blocks_per_page;
154	unsigned long page_no;
155	unsigned blkbits;
156	sector_t probe_block;
157	sector_t last_block;
158	sector_t lowest_block = -1;
159	sector_t highest_block = 0;
160	int nr_extents = 0;
161	int ret;
162
163	blkbits = inode->i_blkbits;
164	blocks_per_page = PAGE_SIZE >> blkbits;
165
166	/*
167	 * Map all the blocks into the extent list.  This code doesn't try
168	 * to be very smart.
169	 */
170	probe_block = 0;
171	page_no = 0;
172	last_block = i_size_read(inode) >> blkbits;
173	while ((probe_block + blocks_per_page) <= last_block &&
174			page_no < sis->max) {
175		unsigned block_in_page;
176		sector_t first_block;
177
178		cond_resched();
179
180		first_block = bmap(inode, probe_block);
181		if (first_block == 0)
182			goto bad_bmap;
183
184		/*
185		 * It must be PAGE_SIZE aligned on-disk
186		 */
187		if (first_block & (blocks_per_page - 1)) {
188			probe_block++;
189			goto reprobe;
190		}
191
192		for (block_in_page = 1; block_in_page < blocks_per_page;
193					block_in_page++) {
194			sector_t block;
195
196			block = bmap(inode, probe_block + block_in_page);
197			if (block == 0)
198				goto bad_bmap;
199			if (block != first_block + block_in_page) {
200				/* Discontiguity */
201				probe_block++;
202				goto reprobe;
203			}
204		}
205
206		first_block >>= (PAGE_SHIFT - blkbits);
207		if (page_no) {	/* exclude the header page */
208			if (first_block < lowest_block)
209				lowest_block = first_block;
210			if (first_block > highest_block)
211				highest_block = first_block;
212		}
213
214		/*
215		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
216		 */
217		ret = add_swap_extent(sis, page_no, 1, first_block);
218		if (ret < 0)
219			goto out;
220		nr_extents += ret;
221		page_no++;
222		probe_block += blocks_per_page;
223reprobe:
224		continue;
225	}
226	ret = nr_extents;
227	*span = 1 + highest_block - lowest_block;
228	if (page_no == 0)
229		page_no = 1;	/* force Empty message */
230	sis->max = page_no;
231	sis->pages = page_no - 1;
232	sis->highest_bit = page_no - 1;
233out:
234	return ret;
235bad_bmap:
236	pr_err("swapon: swapfile has holes\n");
237	ret = -EINVAL;
238	goto out;
239}
240
241/*
242 * We may have stale swap cache pages in memory: notice
243 * them here and get rid of the unnecessary final write.
244 */
245int swap_writepage(struct page *page, struct writeback_control *wbc)
246{
247	int ret = 0;
248
249	if (try_to_free_swap(page)) {
250		unlock_page(page);
251		goto out;
252	}
253	if (frontswap_store(page) == 0) {
254		set_page_writeback(page);
255		unlock_page(page);
256		end_page_writeback(page);
257		goto out;
258	}
259	ret = __swap_writepage(page, wbc, end_swap_bio_write);
260out:
261	return ret;
262}
263
264static sector_t swap_page_sector(struct page *page)
265{
266	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
267}
268
269static inline void count_swpout_vm_event(struct page *page)
270{
271#ifdef CONFIG_TRANSPARENT_HUGEPAGE
272	if (unlikely(PageTransHuge(page)))
273		count_vm_event(THP_SWPOUT);
274#endif
275	count_vm_events(PSWPOUT, hpage_nr_pages(page));
276}
277
278int __swap_writepage(struct page *page, struct writeback_control *wbc,
279		bio_end_io_t end_write_func)
280{
281	struct bio *bio;
282	int ret;
283	struct swap_info_struct *sis = page_swap_info(page);
284
285	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
286	if (sis->flags & SWP_FILE) {
287		struct kiocb kiocb;
288		struct file *swap_file = sis->swap_file;
289		struct address_space *mapping = swap_file->f_mapping;
290		struct bio_vec bv = {
291			.bv_page = page,
292			.bv_len  = PAGE_SIZE,
293			.bv_offset = 0
294		};
295		struct iov_iter from;
296
297		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
298		init_sync_kiocb(&kiocb, swap_file);
299		kiocb.ki_pos = page_file_offset(page);
300
301		set_page_writeback(page);
302		unlock_page(page);
303		ret = mapping->a_ops->direct_IO(&kiocb, &from);
304		if (ret == PAGE_SIZE) {
305			count_vm_event(PSWPOUT);
306			ret = 0;
307		} else {
308			/*
309			 * In the case of swap-over-nfs, this can be a
310			 * temporary failure if the system has limited
311			 * memory for allocating transmit buffers.
312			 * Mark the page dirty and avoid
313			 * rotate_reclaimable_page but rate-limit the
314			 * messages but do not flag PageError like
315			 * the normal direct-to-bio case as it could
316			 * be temporary.
317			 */
318			set_page_dirty(page);
319			ClearPageReclaim(page);
320			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
321					   page_file_offset(page));
322		}
323		end_page_writeback(page);
324		return ret;
325	}
326
327	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
328	if (!ret) {
329		count_swpout_vm_event(page);
330		return 0;
331	}
332
333	ret = 0;
334	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
335	if (bio == NULL) {
336		set_page_dirty(page);
337		unlock_page(page);
338		ret = -ENOMEM;
339		goto out;
340	}
341	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 
342	count_swpout_vm_event(page);
343	set_page_writeback(page);
344	unlock_page(page);
345	submit_bio(bio);
346out:
347	return ret;
348}
349
350int swap_readpage(struct page *page, bool synchronous)
351{
352	struct bio *bio;
353	int ret = 0;
354	struct swap_info_struct *sis = page_swap_info(page);
355	blk_qc_t qc;
356	struct gendisk *disk;
357
358	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
359	VM_BUG_ON_PAGE(!PageLocked(page), page);
360	VM_BUG_ON_PAGE(PageUptodate(page), page);
361	if (frontswap_load(page) == 0) {
362		SetPageUptodate(page);
363		unlock_page(page);
364		goto out;
365	}
366
367	if (sis->flags & SWP_FILE) {
368		struct file *swap_file = sis->swap_file;
369		struct address_space *mapping = swap_file->f_mapping;
370
371		ret = mapping->a_ops->readpage(swap_file, page);
372		if (!ret)
373			count_vm_event(PSWPIN);
374		return ret;
375	}
376
377	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
378	if (!ret) {
379		if (trylock_page(page)) {
380			swap_slot_free_notify(page);
381			unlock_page(page);
382		}
383
384		count_vm_event(PSWPIN);
385		return 0;
386	}
387
388	ret = 0;
389	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
390	if (bio == NULL) {
391		unlock_page(page);
392		ret = -ENOMEM;
393		goto out;
394	}
395	disk = bio->bi_disk;
396	/*
397	 * Keep this task valid during swap readpage because the oom killer may
398	 * attempt to access it in the page fault retry time check.
399	 */
400	get_task_struct(current);
401	bio->bi_private = current;
402	bio_set_op_attrs(bio, REQ_OP_READ, 0);
 
 
 
 
 
403	count_vm_event(PSWPIN);
404	bio_get(bio);
405	qc = submit_bio(bio);
406	while (synchronous) {
407		set_current_state(TASK_UNINTERRUPTIBLE);
408		if (!READ_ONCE(bio->bi_private))
409			break;
410
411		if (!blk_poll(disk->queue, qc))
412			break;
413	}
414	__set_current_state(TASK_RUNNING);
415	bio_put(bio);
416
417out:
418	return ret;
419}
420
421int swap_set_page_dirty(struct page *page)
422{
423	struct swap_info_struct *sis = page_swap_info(page);
424
425	if (sis->flags & SWP_FILE) {
426		struct address_space *mapping = sis->swap_file->f_mapping;
427
428		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
429		return mapping->a_ops->set_page_dirty(page);
430	} else {
431		return __set_page_dirty_no_writeback(page);
432	}
433}