Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 
 25#include <linux/uio.h>
 26#include <linux/sched/task.h>
 27#include <asm/pgtable.h>
 
 
 28
 29static struct bio *get_swap_bio(gfp_t gfp_flags,
 30				struct page *page, bio_end_io_t end_io)
 31{
 32	struct bio *bio;
 33
 34	bio = bio_alloc(gfp_flags, 1);
 35	if (bio) {
 36		struct block_device *bdev;
 37
 38		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
 39		bio_set_dev(bio, bdev);
 40		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 41		bio->bi_end_io = end_io;
 42
 43		bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
 44	}
 45	return bio;
 46}
 47
 48void end_swap_bio_write(struct bio *bio)
 49{
 50	struct page *page = bio_first_page_all(bio);
 51
 52	if (bio->bi_status) {
 53		SetPageError(page);
 54		/*
 55		 * We failed to write the page out to swap-space.
 56		 * Re-dirty the page in order to avoid it being reclaimed.
 57		 * Also print a dire warning that things will go BAD (tm)
 58		 * very quickly.
 59		 *
 60		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 61		 */
 62		set_page_dirty(page);
 63		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 64			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65			 (unsigned long long)bio->bi_iter.bi_sector);
 66		ClearPageReclaim(page);
 67	}
 68	end_page_writeback(page);
 69	bio_put(bio);
 70}
 71
 72static void swap_slot_free_notify(struct page *page)
 73{
 74	struct swap_info_struct *sis;
 75	struct gendisk *disk;
 76	swp_entry_t entry;
 77
 78	/*
 79	 * There is no guarantee that the page is in swap cache - the software
 80	 * suspend code (at least) uses end_swap_bio_read() against a non-
 81	 * swapcache page.  So we must check PG_swapcache before proceeding with
 82	 * this optimization.
 83	 */
 84	if (unlikely(!PageSwapCache(page)))
 85		return;
 86
 87	sis = page_swap_info(page);
 88	if (!(sis->flags & SWP_BLKDEV))
 89		return;
 90
 91	/*
 92	 * The swap subsystem performs lazy swap slot freeing,
 93	 * expecting that the page will be swapped out again.
 94	 * So we can avoid an unnecessary write if the page
 95	 * isn't redirtied.
 96	 * This is good for real swap storage because we can
 97	 * reduce unnecessary I/O and enhance wear-leveling
 98	 * if an SSD is used as the as swap device.
 99	 * But if in-memory swap device (eg zram) is used,
100	 * this causes a duplicated copy between uncompressed
101	 * data in VM-owned memory and compressed data in
102	 * zram-owned memory.  So let's free zram-owned memory
103	 * and make the VM-owned decompressed page *dirty*,
104	 * so the page should be swapped out somewhere again if
105	 * we again wish to reclaim it.
106	 */
107	disk = sis->bdev->bd_disk;
108	entry.val = page_private(page);
109	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
110		unsigned long offset;
111
112		offset = swp_offset(entry);
113
114		SetPageDirty(page);
115		disk->fops->swap_slot_free_notify(sis->bdev,
116				offset);
117	}
118}
119
120static void end_swap_bio_read(struct bio *bio)
121{
122	struct page *page = bio_first_page_all(bio);
123	struct task_struct *waiter = bio->bi_private;
124
125	if (bio->bi_status) {
126		SetPageError(page);
127		ClearPageUptodate(page);
128		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130			 (unsigned long long)bio->bi_iter.bi_sector);
131		goto out;
132	}
 
 
133
134	SetPageUptodate(page);
135	swap_slot_free_notify(page);
136out:
137	unlock_page(page);
138	WRITE_ONCE(bio->bi_private, NULL);
139	bio_put(bio);
140	if (waiter) {
141		blk_wake_io_task(waiter);
142		put_task_struct(waiter);
143	}
144}
145
146int generic_swapfile_activate(struct swap_info_struct *sis,
147				struct file *swap_file,
148				sector_t *span)
149{
150	struct address_space *mapping = swap_file->f_mapping;
151	struct inode *inode = mapping->host;
152	unsigned blocks_per_page;
153	unsigned long page_no;
154	unsigned blkbits;
155	sector_t probe_block;
156	sector_t last_block;
157	sector_t lowest_block = -1;
158	sector_t highest_block = 0;
159	int nr_extents = 0;
160	int ret;
161
162	blkbits = inode->i_blkbits;
163	blocks_per_page = PAGE_SIZE >> blkbits;
164
165	/*
166	 * Map all the blocks into the extent tree.  This code doesn't try
167	 * to be very smart.
168	 */
169	probe_block = 0;
170	page_no = 0;
171	last_block = i_size_read(inode) >> blkbits;
172	while ((probe_block + blocks_per_page) <= last_block &&
173			page_no < sis->max) {
174		unsigned block_in_page;
175		sector_t first_block;
176
177		cond_resched();
178
179		first_block = bmap(inode, probe_block);
180		if (first_block == 0)
 
181			goto bad_bmap;
182
183		/*
184		 * It must be PAGE_SIZE aligned on-disk
185		 */
186		if (first_block & (blocks_per_page - 1)) {
187			probe_block++;
188			goto reprobe;
189		}
190
191		for (block_in_page = 1; block_in_page < blocks_per_page;
192					block_in_page++) {
193			sector_t block;
194
195			block = bmap(inode, probe_block + block_in_page);
196			if (block == 0)
 
197				goto bad_bmap;
 
198			if (block != first_block + block_in_page) {
199				/* Discontiguity */
200				probe_block++;
201				goto reprobe;
202			}
203		}
204
205		first_block >>= (PAGE_SHIFT - blkbits);
206		if (page_no) {	/* exclude the header page */
207			if (first_block < lowest_block)
208				lowest_block = first_block;
209			if (first_block > highest_block)
210				highest_block = first_block;
211		}
212
213		/*
214		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
215		 */
216		ret = add_swap_extent(sis, page_no, 1, first_block);
217		if (ret < 0)
218			goto out;
219		nr_extents += ret;
220		page_no++;
221		probe_block += blocks_per_page;
222reprobe:
223		continue;
224	}
225	ret = nr_extents;
226	*span = 1 + highest_block - lowest_block;
227	if (page_no == 0)
228		page_no = 1;	/* force Empty message */
229	sis->max = page_no;
230	sis->pages = page_no - 1;
231	sis->highest_bit = page_no - 1;
232out:
233	return ret;
234bad_bmap:
235	pr_err("swapon: swapfile has holes\n");
236	ret = -EINVAL;
237	goto out;
238}
239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240/*
241 * We may have stale swap cache pages in memory: notice
242 * them here and get rid of the unnecessary final write.
243 */
244int swap_writepage(struct page *page, struct writeback_control *wbc)
245{
246	int ret = 0;
 
247
248	if (try_to_free_swap(page)) {
249		unlock_page(page);
250		goto out;
251	}
252	if (frontswap_store(page) == 0) {
253		set_page_writeback(page);
254		unlock_page(page);
255		end_page_writeback(page);
256		goto out;
 
 
 
 
257	}
258	ret = __swap_writepage(page, wbc, end_swap_bio_write);
259out:
260	return ret;
261}
262
263static sector_t swap_page_sector(struct page *page)
264{
265	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266}
267
268static inline void count_swpout_vm_event(struct page *page)
269{
270#ifdef CONFIG_TRANSPARENT_HUGEPAGE
271	if (unlikely(PageTransHuge(page)))
 
272		count_vm_event(THP_SWPOUT);
 
273#endif
274	count_vm_events(PSWPOUT, hpage_nr_pages(page));
 
 
275}
276
277int __swap_writepage(struct page *page, struct writeback_control *wbc,
278		bio_end_io_t end_write_func)
279{
280	struct bio *bio;
281	int ret;
282	struct swap_info_struct *sis = page_swap_info(page);
 
 
 
283
284	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
285	if (sis->flags & SWP_FS) {
286		struct kiocb kiocb;
287		struct file *swap_file = sis->swap_file;
288		struct address_space *mapping = swap_file->f_mapping;
289		struct bio_vec bv = {
290			.bv_page = page,
291			.bv_len  = PAGE_SIZE,
292			.bv_offset = 0
293		};
294		struct iov_iter from;
295
296		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
297		init_sync_kiocb(&kiocb, swap_file);
298		kiocb.ki_pos = page_file_offset(page);
299
300		set_page_writeback(page);
301		unlock_page(page);
302		ret = mapping->a_ops->direct_IO(&kiocb, &from);
303		if (ret == PAGE_SIZE) {
304			count_vm_event(PSWPOUT);
305			ret = 0;
306		} else {
307			/*
308			 * In the case of swap-over-nfs, this can be a
309			 * temporary failure if the system has limited
310			 * memory for allocating transmit buffers.
311			 * Mark the page dirty and avoid
312			 * rotate_reclaimable_page but rate-limit the
313			 * messages but do not flag PageError like
314			 * the normal direct-to-bio case as it could
315			 * be temporary.
316			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317			set_page_dirty(page);
318			ClearPageReclaim(page);
319			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
320					   page_file_offset(page));
321		}
322		end_page_writeback(page);
323		return ret;
324	}
325
326	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
327	if (!ret) {
328		count_swpout_vm_event(page);
329		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330	}
 
 
 
331
332	ret = 0;
333	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
334	if (bio == NULL) {
335		set_page_dirty(page);
336		unlock_page(page);
337		ret = -ENOMEM;
338		goto out;
339	}
340	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
341	bio_associate_blkg_from_page(bio, page);
342	count_swpout_vm_event(page);
343	set_page_writeback(page);
344	unlock_page(page);
345	submit_bio(bio);
346out:
347	return ret;
 
 
 
348}
349
350int swap_readpage(struct page *page, bool synchronous)
 
351{
352	struct bio *bio;
353	int ret = 0;
354	struct swap_info_struct *sis = page_swap_info(page);
355	blk_qc_t qc;
356	struct gendisk *disk;
357
358	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
359	VM_BUG_ON_PAGE(!PageLocked(page), page);
360	VM_BUG_ON_PAGE(PageUptodate(page), page);
361	if (frontswap_load(page) == 0) {
362		SetPageUptodate(page);
363		unlock_page(page);
364		goto out;
365	}
366
367	if (sis->flags & SWP_FS) {
368		struct file *swap_file = sis->swap_file;
369		struct address_space *mapping = swap_file->f_mapping;
370
371		ret = mapping->a_ops->readpage(swap_file, page);
372		if (!ret)
373			count_vm_event(PSWPIN);
374		return ret;
375	}
376
377	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
378	if (!ret) {
379		if (trylock_page(page)) {
380			swap_slot_free_notify(page);
381			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382		}
 
 
 
 
383
384		count_vm_event(PSWPIN);
385		return 0;
 
386	}
 
 
 
 
 
 
 
 
387
388	ret = 0;
389	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
390	if (bio == NULL) {
391		unlock_page(page);
392		ret = -ENOMEM;
393		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394	}
395	disk = bio->bi_disk;
 
 
 
 
 
 
 
 
 
 
 
 
396	/*
397	 * Keep this task valid during swap readpage because the oom killer may
398	 * attempt to access it in the page fault retry time check.
399	 */
400	bio_set_op_attrs(bio, REQ_OP_READ, 0);
401	if (synchronous) {
402		bio->bi_opf |= REQ_HIPRI;
403		get_task_struct(current);
404		bio->bi_private = current;
405	}
406	count_vm_event(PSWPIN);
407	bio_get(bio);
408	qc = submit_bio(bio);
409	while (synchronous) {
410		set_current_state(TASK_UNINTERRUPTIBLE);
411		if (!READ_ONCE(bio->bi_private))
412			break;
413
414		if (!blk_poll(disk->queue, qc, true))
415			io_schedule();
416	}
417	__set_current_state(TASK_RUNNING);
418	bio_put(bio);
419
420out:
421	return ret;
 
 
 
 
 
 
422}
423
424int swap_set_page_dirty(struct page *page)
425{
426	struct swap_info_struct *sis = page_swap_info(page);
427
428	if (sis->flags & SWP_FS) {
429		struct address_space *mapping = sis->swap_file->f_mapping;
 
 
 
 
 
430
431		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
432		return mapping->a_ops->set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433	} else {
434		return __set_page_dirty_no_writeback(page);
435	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 
 21#include <linux/writeback.h>
 
 22#include <linux/blkdev.h>
 23#include <linux/psi.h>
 24#include <linux/uio.h>
 25#include <linux/sched/task.h>
 26#include <linux/delayacct.h>
 27#include <linux/zswap.h>
 28#include "swap.h"
 29
 30static void __end_swap_bio_write(struct bio *bio)
 
 31{
 32	struct folio *folio = bio_first_folio_all(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34	if (bio->bi_status) {
 
 35		/*
 36		 * We failed to write the page out to swap-space.
 37		 * Re-dirty the page in order to avoid it being reclaimed.
 38		 * Also print a dire warning that things will go BAD (tm)
 39		 * very quickly.
 40		 *
 41		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
 42		 */
 43		folio_mark_dirty(folio);
 44		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
 45				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 46				     (unsigned long long)bio->bi_iter.bi_sector);
 47		folio_clear_reclaim(folio);
 48	}
 49	folio_end_writeback(folio);
 
 50}
 51
 52static void end_swap_bio_write(struct bio *bio)
 53{
 54	__end_swap_bio_write(bio);
 55	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56}
 57
 58static void __end_swap_bio_read(struct bio *bio)
 59{
 60	struct folio *folio = bio_first_folio_all(bio);
 
 61
 62	if (bio->bi_status) {
 63		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
 64				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65				     (unsigned long long)bio->bi_iter.bi_sector);
 66	} else {
 67		folio_mark_uptodate(folio);
 
 68	}
 69	folio_unlock(folio);
 70}
 71
 72static void end_swap_bio_read(struct bio *bio)
 73{
 74	__end_swap_bio_read(bio);
 
 
 75	bio_put(bio);
 
 
 
 
 76}
 77
 78int generic_swapfile_activate(struct swap_info_struct *sis,
 79				struct file *swap_file,
 80				sector_t *span)
 81{
 82	struct address_space *mapping = swap_file->f_mapping;
 83	struct inode *inode = mapping->host;
 84	unsigned blocks_per_page;
 85	unsigned long page_no;
 86	unsigned blkbits;
 87	sector_t probe_block;
 88	sector_t last_block;
 89	sector_t lowest_block = -1;
 90	sector_t highest_block = 0;
 91	int nr_extents = 0;
 92	int ret;
 93
 94	blkbits = inode->i_blkbits;
 95	blocks_per_page = PAGE_SIZE >> blkbits;
 96
 97	/*
 98	 * Map all the blocks into the extent tree.  This code doesn't try
 99	 * to be very smart.
100	 */
101	probe_block = 0;
102	page_no = 0;
103	last_block = i_size_read(inode) >> blkbits;
104	while ((probe_block + blocks_per_page) <= last_block &&
105			page_no < sis->max) {
106		unsigned block_in_page;
107		sector_t first_block;
108
109		cond_resched();
110
111		first_block = probe_block;
112		ret = bmap(inode, &first_block);
113		if (ret || !first_block)
114			goto bad_bmap;
115
116		/*
117		 * It must be PAGE_SIZE aligned on-disk
118		 */
119		if (first_block & (blocks_per_page - 1)) {
120			probe_block++;
121			goto reprobe;
122		}
123
124		for (block_in_page = 1; block_in_page < blocks_per_page;
125					block_in_page++) {
126			sector_t block;
127
128			block = probe_block + block_in_page;
129			ret = bmap(inode, &block);
130			if (ret || !block)
131				goto bad_bmap;
132
133			if (block != first_block + block_in_page) {
134				/* Discontiguity */
135				probe_block++;
136				goto reprobe;
137			}
138		}
139
140		first_block >>= (PAGE_SHIFT - blkbits);
141		if (page_no) {	/* exclude the header page */
142			if (first_block < lowest_block)
143				lowest_block = first_block;
144			if (first_block > highest_block)
145				highest_block = first_block;
146		}
147
148		/*
149		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
150		 */
151		ret = add_swap_extent(sis, page_no, 1, first_block);
152		if (ret < 0)
153			goto out;
154		nr_extents += ret;
155		page_no++;
156		probe_block += blocks_per_page;
157reprobe:
158		continue;
159	}
160	ret = nr_extents;
161	*span = 1 + highest_block - lowest_block;
162	if (page_no == 0)
163		page_no = 1;	/* force Empty message */
164	sis->max = page_no;
165	sis->pages = page_no - 1;
166	sis->highest_bit = page_no - 1;
167out:
168	return ret;
169bad_bmap:
170	pr_err("swapon: swapfile has holes\n");
171	ret = -EINVAL;
172	goto out;
173}
174
175static bool is_folio_zero_filled(struct folio *folio)
176{
177	unsigned int pos, last_pos;
178	unsigned long *data;
179	unsigned int i;
180
181	last_pos = PAGE_SIZE / sizeof(*data) - 1;
182	for (i = 0; i < folio_nr_pages(folio); i++) {
183		data = kmap_local_folio(folio, i * PAGE_SIZE);
184		/*
185		 * Check last word first, incase the page is zero-filled at
186		 * the start and has non-zero data at the end, which is common
187		 * in real-world workloads.
188		 */
189		if (data[last_pos]) {
190			kunmap_local(data);
191			return false;
192		}
193		for (pos = 0; pos < last_pos; pos++) {
194			if (data[pos]) {
195				kunmap_local(data);
196				return false;
197			}
198		}
199		kunmap_local(data);
200	}
201
202	return true;
203}
204
205static void swap_zeromap_folio_set(struct folio *folio)
206{
207	struct obj_cgroup *objcg = get_obj_cgroup_from_folio(folio);
208	struct swap_info_struct *sis = swp_swap_info(folio->swap);
209	int nr_pages = folio_nr_pages(folio);
210	swp_entry_t entry;
211	unsigned int i;
212
213	for (i = 0; i < folio_nr_pages(folio); i++) {
214		entry = page_swap_entry(folio_page(folio, i));
215		set_bit(swp_offset(entry), sis->zeromap);
216	}
217
218	count_vm_events(SWPOUT_ZERO, nr_pages);
219	if (objcg) {
220		count_objcg_events(objcg, SWPOUT_ZERO, nr_pages);
221		obj_cgroup_put(objcg);
222	}
223}
224
225static void swap_zeromap_folio_clear(struct folio *folio)
226{
227	struct swap_info_struct *sis = swp_swap_info(folio->swap);
228	swp_entry_t entry;
229	unsigned int i;
230
231	for (i = 0; i < folio_nr_pages(folio); i++) {
232		entry = page_swap_entry(folio_page(folio, i));
233		clear_bit(swp_offset(entry), sis->zeromap);
234	}
235}
236
237/*
238 * We may have stale swap cache pages in memory: notice
239 * them here and get rid of the unnecessary final write.
240 */
241int swap_writepage(struct page *page, struct writeback_control *wbc)
242{
243	struct folio *folio = page_folio(page);
244	int ret;
245
246	if (folio_free_swap(folio)) {
247		folio_unlock(folio);
248		return 0;
249	}
250	/*
251	 * Arch code may have to preserve more data than just the page
252	 * contents, e.g. memory tags.
253	 */
254	ret = arch_prepare_to_swap(folio);
255	if (ret) {
256		folio_mark_dirty(folio);
257		folio_unlock(folio);
258		return ret;
259	}
 
 
 
 
260
261	/*
262	 * Use a bitmap (zeromap) to avoid doing IO for zero-filled pages.
263	 * The bits in zeromap are protected by the locked swapcache folio
264	 * and atomic updates are used to protect against read-modify-write
265	 * corruption due to other zero swap entries seeing concurrent updates.
266	 */
267	if (is_folio_zero_filled(folio)) {
268		swap_zeromap_folio_set(folio);
269		folio_unlock(folio);
270		return 0;
271	} else {
272		/*
273		 * Clear bits this folio occupies in the zeromap to prevent
274		 * zero data being read in from any previous zero writes that
275		 * occupied the same swap entries.
276		 */
277		swap_zeromap_folio_clear(folio);
278	}
279	if (zswap_store(folio)) {
280		count_mthp_stat(folio_order(folio), MTHP_STAT_ZSWPOUT);
281		folio_unlock(folio);
282		return 0;
283	}
284	if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) {
285		folio_mark_dirty(folio);
286		return AOP_WRITEPAGE_ACTIVATE;
287	}
288
289	__swap_writepage(folio, wbc);
290	return 0;
291}
292
293static inline void count_swpout_vm_event(struct folio *folio)
294{
295#ifdef CONFIG_TRANSPARENT_HUGEPAGE
296	if (unlikely(folio_test_pmd_mappable(folio))) {
297		count_memcg_folio_events(folio, THP_SWPOUT, 1);
298		count_vm_event(THP_SWPOUT);
299	}
300#endif
301	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPOUT);
302	count_memcg_folio_events(folio, PSWPOUT, folio_nr_pages(folio));
303	count_vm_events(PSWPOUT, folio_nr_pages(folio));
304}
305
306#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
307static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio)
308{
309	struct cgroup_subsys_state *css;
310	struct mem_cgroup *memcg;
311
312	memcg = folio_memcg(folio);
313	if (!memcg)
314		return;
315
316	rcu_read_lock();
317	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
318	bio_associate_blkg_from_css(bio, css);
319	rcu_read_unlock();
320}
321#else
322#define bio_associate_blkg_from_page(bio, folio)		do { } while (0)
323#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
324
325struct swap_iocb {
326	struct kiocb		iocb;
327	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
328	int			pages;
329	int			len;
330};
331static mempool_t *sio_pool;
332
333int sio_pool_init(void)
334{
335	if (!sio_pool) {
336		mempool_t *pool = mempool_create_kmalloc_pool(
337			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
338		if (cmpxchg(&sio_pool, NULL, pool))
339			mempool_destroy(pool);
340	}
341	if (!sio_pool)
342		return -ENOMEM;
343	return 0;
344}
345
346static void sio_write_complete(struct kiocb *iocb, long ret)
347{
348	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
349	struct page *page = sio->bvec[0].bv_page;
350	int p;
351
352	if (ret != sio->len) {
353		/*
354		 * In the case of swap-over-nfs, this can be a
355		 * temporary failure if the system has limited
356		 * memory for allocating transmit buffers.
357		 * Mark the page dirty and avoid
358		 * folio_rotate_reclaimable but rate-limit the
359		 * messages.
360		 */
361		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
362				   ret, swap_dev_pos(page_swap_entry(page)));
363		for (p = 0; p < sio->pages; p++) {
364			page = sio->bvec[p].bv_page;
365			set_page_dirty(page);
366			ClearPageReclaim(page);
 
 
367		}
 
 
368	}
369
370	for (p = 0; p < sio->pages; p++)
371		end_page_writeback(sio->bvec[p].bv_page);
372
373	mempool_free(sio, sio_pool);
374}
375
376static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc)
377{
378	struct swap_iocb *sio = NULL;
379	struct swap_info_struct *sis = swp_swap_info(folio->swap);
380	struct file *swap_file = sis->swap_file;
381	loff_t pos = swap_dev_pos(folio->swap);
382
383	count_swpout_vm_event(folio);
384	folio_start_writeback(folio);
385	folio_unlock(folio);
386	if (wbc->swap_plug)
387		sio = *wbc->swap_plug;
388	if (sio) {
389		if (sio->iocb.ki_filp != swap_file ||
390		    sio->iocb.ki_pos + sio->len != pos) {
391			swap_write_unplug(sio);
392			sio = NULL;
393		}
394	}
395	if (!sio) {
396		sio = mempool_alloc(sio_pool, GFP_NOIO);
397		init_sync_kiocb(&sio->iocb, swap_file);
398		sio->iocb.ki_complete = sio_write_complete;
399		sio->iocb.ki_pos = pos;
400		sio->pages = 0;
401		sio->len = 0;
402	}
403	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
404	sio->len += folio_size(folio);
405	sio->pages += 1;
406	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
407		swap_write_unplug(sio);
408		sio = NULL;
409	}
410	if (wbc->swap_plug)
411		*wbc->swap_plug = sio;
412}
413
414static void swap_writepage_bdev_sync(struct folio *folio,
415		struct writeback_control *wbc, struct swap_info_struct *sis)
416{
417	struct bio_vec bv;
418	struct bio bio;
419
420	bio_init(&bio, sis->bdev, &bv, 1,
421		 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
422	bio.bi_iter.bi_sector = swap_folio_sector(folio);
423	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
424
425	bio_associate_blkg_from_page(&bio, folio);
426	count_swpout_vm_event(folio);
427
428	folio_start_writeback(folio);
429	folio_unlock(folio);
430
431	submit_bio_wait(&bio);
432	__end_swap_bio_write(&bio);
433}
434
435static void swap_writepage_bdev_async(struct folio *folio,
436		struct writeback_control *wbc, struct swap_info_struct *sis)
437{
438	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439
440	bio = bio_alloc(sis->bdev, 1,
441			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
442			GFP_NOIO);
443	bio->bi_iter.bi_sector = swap_folio_sector(folio);
444	bio->bi_end_io = end_swap_bio_write;
445	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
446
447	bio_associate_blkg_from_page(bio, folio);
448	count_swpout_vm_event(folio);
449	folio_start_writeback(folio);
450	folio_unlock(folio);
451	submit_bio(bio);
452}
453
454void __swap_writepage(struct folio *folio, struct writeback_control *wbc)
455{
456	struct swap_info_struct *sis = swp_swap_info(folio->swap);
457
458	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
459	/*
460	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
461	 * but that will never affect SWP_FS_OPS, so the data_race
462	 * is safe.
463	 */
464	if (data_race(sis->flags & SWP_FS_OPS))
465		swap_writepage_fs(folio, wbc);
466	/*
467	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
468	 * but that will never affect SWP_SYNCHRONOUS_IO, so the data_race
469	 * is safe.
470	 */
471	else if (data_race(sis->flags & SWP_SYNCHRONOUS_IO))
472		swap_writepage_bdev_sync(folio, wbc, sis);
473	else
474		swap_writepage_bdev_async(folio, wbc, sis);
475}
476
477void swap_write_unplug(struct swap_iocb *sio)
478{
479	struct iov_iter from;
480	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
481	int ret;
482
483	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
484	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
485	if (ret != -EIOCBQUEUED)
486		sio_write_complete(&sio->iocb, ret);
487}
488
489static void sio_read_complete(struct kiocb *iocb, long ret)
490{
491	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
492	int p;
493
494	if (ret == sio->len) {
495		for (p = 0; p < sio->pages; p++) {
496			struct folio *folio = page_folio(sio->bvec[p].bv_page);
497
498			count_mthp_stat(folio_order(folio), MTHP_STAT_SWPIN);
499			count_memcg_folio_events(folio, PSWPIN, folio_nr_pages(folio));
500			folio_mark_uptodate(folio);
501			folio_unlock(folio);
502		}
503		count_vm_events(PSWPIN, sio->pages);
504	} else {
505		for (p = 0; p < sio->pages; p++) {
506			struct folio *folio = page_folio(sio->bvec[p].bv_page);
507
508			folio_unlock(folio);
509		}
510		pr_alert_ratelimited("Read-error on swap-device\n");
511	}
512	mempool_free(sio, sio_pool);
513}
514
515static bool swap_read_folio_zeromap(struct folio *folio)
516{
517	int nr_pages = folio_nr_pages(folio);
518	struct obj_cgroup *objcg;
519	bool is_zeromap;
520
521	/*
522	 * Swapping in a large folio that is partially in the zeromap is not
523	 * currently handled. Return true without marking the folio uptodate so
524	 * that an IO error is emitted (e.g. do_swap_page() will sigbus).
525	 */
526	if (WARN_ON_ONCE(swap_zeromap_batch(folio->swap, nr_pages,
527			&is_zeromap) != nr_pages))
528		return true;
529
530	if (!is_zeromap)
531		return false;
532
533	objcg = get_obj_cgroup_from_folio(folio);
534	count_vm_events(SWPIN_ZERO, nr_pages);
535	if (objcg) {
536		count_objcg_events(objcg, SWPIN_ZERO, nr_pages);
537		obj_cgroup_put(objcg);
538	}
539
540	folio_zero_range(folio, 0, folio_size(folio));
541	folio_mark_uptodate(folio);
542	return true;
543}
544
545static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug)
546{
547	struct swap_info_struct *sis = swp_swap_info(folio->swap);
548	struct swap_iocb *sio = NULL;
549	loff_t pos = swap_dev_pos(folio->swap);
550
551	if (plug)
552		sio = *plug;
553	if (sio) {
554		if (sio->iocb.ki_filp != sis->swap_file ||
555		    sio->iocb.ki_pos + sio->len != pos) {
556			swap_read_unplug(sio);
557			sio = NULL;
558		}
559	}
560	if (!sio) {
561		sio = mempool_alloc(sio_pool, GFP_KERNEL);
562		init_sync_kiocb(&sio->iocb, sis->swap_file);
563		sio->iocb.ki_pos = pos;
564		sio->iocb.ki_complete = sio_read_complete;
565		sio->pages = 0;
566		sio->len = 0;
567	}
568	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
569	sio->len += folio_size(folio);
570	sio->pages += 1;
571	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
572		swap_read_unplug(sio);
573		sio = NULL;
574	}
575	if (plug)
576		*plug = sio;
577}
578
579static void swap_read_folio_bdev_sync(struct folio *folio,
580		struct swap_info_struct *sis)
581{
582	struct bio_vec bv;
583	struct bio bio;
584
585	bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
586	bio.bi_iter.bi_sector = swap_folio_sector(folio);
587	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
588	/*
589	 * Keep this task valid during swap readpage because the oom killer may
590	 * attempt to access it in the page fault retry time check.
591	 */
592	get_task_struct(current);
593	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPIN);
594	count_memcg_folio_events(folio, PSWPIN, folio_nr_pages(folio));
595	count_vm_events(PSWPIN, folio_nr_pages(folio));
596	submit_bio_wait(&bio);
597	__end_swap_bio_read(&bio);
598	put_task_struct(current);
599}
 
 
 
 
 
600
601static void swap_read_folio_bdev_async(struct folio *folio,
602		struct swap_info_struct *sis)
603{
604	struct bio *bio;
 
605
606	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
607	bio->bi_iter.bi_sector = swap_folio_sector(folio);
608	bio->bi_end_io = end_swap_bio_read;
609	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
610	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPIN);
611	count_memcg_folio_events(folio, PSWPIN, folio_nr_pages(folio));
612	count_vm_events(PSWPIN, folio_nr_pages(folio));
613	submit_bio(bio);
614}
615
616void swap_read_folio(struct folio *folio, struct swap_iocb **plug)
617{
618	struct swap_info_struct *sis = swp_swap_info(folio->swap);
619	bool synchronous = sis->flags & SWP_SYNCHRONOUS_IO;
620	bool workingset = folio_test_workingset(folio);
621	unsigned long pflags;
622	bool in_thrashing;
623
624	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio);
625	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
626	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
627
628	/*
629	 * Count submission time as memory stall and delay. When the device
630	 * is congested, or the submitting cgroup IO-throttled, submission
631	 * can be a significant part of overall IO time.
632	 */
633	if (workingset) {
634		delayacct_thrashing_start(&in_thrashing);
635		psi_memstall_enter(&pflags);
636	}
637	delayacct_swapin_start();
638
639	if (swap_read_folio_zeromap(folio)) {
640		folio_unlock(folio);
641		goto finish;
642	} else if (zswap_load(folio)) {
643		folio_unlock(folio);
644		goto finish;
645	}
646
647	/* We have to read from slower devices. Increase zswap protection. */
648	zswap_folio_swapin(folio);
649
650	if (data_race(sis->flags & SWP_FS_OPS)) {
651		swap_read_folio_fs(folio, plug);
652	} else if (synchronous) {
653		swap_read_folio_bdev_sync(folio, sis);
654	} else {
655		swap_read_folio_bdev_async(folio, sis);
656	}
657
658finish:
659	if (workingset) {
660		delayacct_thrashing_end(&in_thrashing);
661		psi_memstall_leave(&pflags);
662	}
663	delayacct_swapin_end();
664}
665
666void __swap_read_unplug(struct swap_iocb *sio)
667{
668	struct iov_iter from;
669	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
670	int ret;
671
672	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
673	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
674	if (ret != -EIOCBQUEUED)
675		sio_read_complete(&sio->iocb, ret);
676}