Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
 
 
 
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/pagewalk.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 
 104#include <linux/uaccess.h>
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130struct mempolicy *get_task_policy(struct task_struct *p)
 131{
 132	struct mempolicy *pol = p->mempolicy;
 133	int node;
 134
 135	if (pol)
 136		return pol;
 137
 138	node = numa_node_id();
 139	if (node != NUMA_NO_NODE) {
 140		pol = &preferred_node_policy[node];
 141		/* preferred_node_policy is not initialised early in boot */
 142		if (pol->mode)
 143			return pol;
 144	}
 145
 146	return &default_policy;
 147}
 148
 149static const struct mempolicy_operations {
 150	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 151	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 152} mpol_ops[MPOL_MAX];
 153
 154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 155{
 156	return pol->flags & MPOL_MODE_FLAGS;
 157}
 158
 159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 160				   const nodemask_t *rel)
 161{
 162	nodemask_t tmp;
 163	nodes_fold(tmp, *orig, nodes_weight(*rel));
 164	nodes_onto(*ret, tmp, *rel);
 165}
 166
 167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 168{
 169	if (nodes_empty(*nodes))
 170		return -EINVAL;
 171	pol->v.nodes = *nodes;
 172	return 0;
 173}
 174
 175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 176{
 177	if (!nodes)
 178		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 179	else if (nodes_empty(*nodes))
 180		return -EINVAL;			/*  no allowed nodes */
 181	else
 182		pol->v.preferred_node = first_node(*nodes);
 183	return 0;
 184}
 185
 186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (nodes_empty(*nodes))
 189		return -EINVAL;
 190	pol->v.nodes = *nodes;
 
 
 191	return 0;
 192}
 193
 194/*
 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 196 * any, for the new policy.  mpol_new() has already validated the nodes
 197 * parameter with respect to the policy mode and flags.  But, we need to
 198 * handle an empty nodemask with MPOL_PREFERRED here.
 199 *
 200 * Must be called holding task's alloc_lock to protect task's mems_allowed
 201 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 202 */
 203static int mpol_set_nodemask(struct mempolicy *pol,
 204		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 205{
 206	int ret;
 207
 208	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 209	if (pol == NULL)
 
 
 
 
 210		return 0;
 
 211	/* Check N_MEMORY */
 212	nodes_and(nsc->mask1,
 213		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 214
 215	VM_BUG_ON(!nodes);
 216	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 217		nodes = NULL;	/* explicit local allocation */
 218	else {
 219		if (pol->flags & MPOL_F_RELATIVE_NODES)
 220			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 221		else
 222			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 223
 224		if (mpol_store_user_nodemask(pol))
 225			pol->w.user_nodemask = *nodes;
 226		else
 227			pol->w.cpuset_mems_allowed =
 228						cpuset_current_mems_allowed;
 229	}
 230
 231	if (nodes)
 232		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 233	else
 234		ret = mpol_ops[pol->mode].create(pol, NULL);
 
 
 235	return ret;
 236}
 237
 238/*
 239 * This function just creates a new policy, does some check and simple
 240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 241 */
 242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 243				  nodemask_t *nodes)
 244{
 245	struct mempolicy *policy;
 246
 247	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 248		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 249
 250	if (mode == MPOL_DEFAULT) {
 251		if (nodes && !nodes_empty(*nodes))
 252			return ERR_PTR(-EINVAL);
 253		return NULL;
 254	}
 255	VM_BUG_ON(!nodes);
 256
 257	/*
 258	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 259	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 260	 * All other modes require a valid pointer to a non-empty nodemask.
 261	 */
 262	if (mode == MPOL_PREFERRED) {
 263		if (nodes_empty(*nodes)) {
 264			if (((flags & MPOL_F_STATIC_NODES) ||
 265			     (flags & MPOL_F_RELATIVE_NODES)))
 266				return ERR_PTR(-EINVAL);
 
 
 267		}
 268	} else if (mode == MPOL_LOCAL) {
 269		if (!nodes_empty(*nodes) ||
 270		    (flags & MPOL_F_STATIC_NODES) ||
 271		    (flags & MPOL_F_RELATIVE_NODES))
 272			return ERR_PTR(-EINVAL);
 273		mode = MPOL_PREFERRED;
 274	} else if (nodes_empty(*nodes))
 275		return ERR_PTR(-EINVAL);
 276	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 277	if (!policy)
 278		return ERR_PTR(-ENOMEM);
 279	atomic_set(&policy->refcnt, 1);
 280	policy->mode = mode;
 281	policy->flags = flags;
 
 282
 283	return policy;
 284}
 285
 286/* Slow path of a mpol destructor. */
 287void __mpol_put(struct mempolicy *p)
 288{
 289	if (!atomic_dec_and_test(&p->refcnt))
 290		return;
 291	kmem_cache_free(policy_cache, p);
 292}
 293
 294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 295{
 296}
 297
 298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 299{
 300	nodemask_t tmp;
 301
 302	if (pol->flags & MPOL_F_STATIC_NODES)
 303		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 304	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 305		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 306	else {
 307		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 308								*nodes);
 309		pol->w.cpuset_mems_allowed = *nodes;
 310	}
 311
 312	if (nodes_empty(tmp))
 313		tmp = *nodes;
 314
 315	pol->v.nodes = tmp;
 316}
 317
 318static void mpol_rebind_preferred(struct mempolicy *pol,
 319						const nodemask_t *nodes)
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES) {
 324		int node = first_node(pol->w.user_nodemask);
 325
 326		if (node_isset(node, *nodes)) {
 327			pol->v.preferred_node = node;
 328			pol->flags &= ~MPOL_F_LOCAL;
 329		} else
 330			pol->flags |= MPOL_F_LOCAL;
 331	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 332		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 333		pol->v.preferred_node = first_node(tmp);
 334	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 335		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 336						   pol->w.cpuset_mems_allowed,
 337						   *nodes);
 338		pol->w.cpuset_mems_allowed = *nodes;
 339	}
 340}
 341
 342/*
 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 344 *
 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 346 * policies are protected by task->mems_allowed_seq to prevent a premature
 347 * OOM/allocation failure due to parallel nodemask modification.
 348 */
 349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 350{
 351	if (!pol)
 352		return;
 353	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
 354	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 355		return;
 356
 357	mpol_ops[pol->mode].rebind(pol, newmask);
 358}
 359
 360/*
 361 * Wrapper for mpol_rebind_policy() that just requires task
 362 * pointer, and updates task mempolicy.
 363 *
 364 * Called with task's alloc_lock held.
 365 */
 366
 367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 368{
 369	mpol_rebind_policy(tsk->mempolicy, new);
 370}
 371
 372/*
 373 * Rebind each vma in mm to new nodemask.
 374 *
 375 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 376 */
 377
 378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 379{
 380	struct vm_area_struct *vma;
 
 381
 382	down_write(&mm->mmap_sem);
 383	for (vma = mm->mmap; vma; vma = vma->vm_next)
 384		mpol_rebind_policy(vma->vm_policy, new);
 385	up_write(&mm->mmap_sem);
 386}
 387
 388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 389	[MPOL_DEFAULT] = {
 390		.rebind = mpol_rebind_default,
 391	},
 392	[MPOL_INTERLEAVE] = {
 393		.create = mpol_new_interleave,
 394		.rebind = mpol_rebind_nodemask,
 395	},
 396	[MPOL_PREFERRED] = {
 397		.create = mpol_new_preferred,
 398		.rebind = mpol_rebind_preferred,
 399	},
 400	[MPOL_BIND] = {
 401		.create = mpol_new_bind,
 402		.rebind = mpol_rebind_nodemask,
 403	},
 
 
 
 
 
 
 
 404};
 405
 406static int migrate_page_add(struct page *page, struct list_head *pagelist,
 407				unsigned long flags);
 408
 409struct queue_pages {
 410	struct list_head *pagelist;
 411	unsigned long flags;
 412	nodemask_t *nmask;
 413	struct vm_area_struct *prev;
 
 
 414};
 415
 416/*
 417 * Check if the page's nid is in qp->nmask.
 418 *
 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 420 * in the invert of qp->nmask.
 421 */
 422static inline bool queue_pages_required(struct page *page,
 423					struct queue_pages *qp)
 424{
 425	int nid = page_to_nid(page);
 426	unsigned long flags = qp->flags;
 427
 428	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 429}
 430
 431/*
 432 * queue_pages_pmd() has four possible return values:
 433 * 0 - pages are placed on the right node or queued successfully.
 
 434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 435 *     specified.
 436 * 2 - THP was split.
 437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 438 *        existing page was already on a node that does not follow the
 439 *        policy.
 440 */
 441static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 442				unsigned long end, struct mm_walk *walk)
 
 443{
 444	int ret = 0;
 445	struct page *page;
 446	struct queue_pages *qp = walk->private;
 447	unsigned long flags;
 448
 449	if (unlikely(is_pmd_migration_entry(*pmd))) {
 450		ret = -EIO;
 451		goto unlock;
 452	}
 453	page = pmd_page(*pmd);
 454	if (is_huge_zero_page(page)) {
 455		spin_unlock(ptl);
 456		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 457		ret = 2;
 458		goto out;
 459	}
 460	if (!queue_pages_required(page, qp))
 461		goto unlock;
 462
 463	flags = qp->flags;
 464	/* go to thp migration */
 465	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 466		if (!vma_migratable(walk->vma) ||
 467		    migrate_page_add(page, qp->pagelist, flags)) {
 468			ret = 1;
 469			goto unlock;
 470		}
 471	} else
 472		ret = -EIO;
 473unlock:
 474	spin_unlock(ptl);
 475out:
 476	return ret;
 477}
 478
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 482 *
 483 * queue_pages_pte_range() has three possible return values:
 484 * 0 - pages are placed on the right node or queued successfully.
 
 485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 486 *     specified.
 487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 488 *        on a node that does not follow the policy.
 489 */
 490static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 491			unsigned long end, struct mm_walk *walk)
 492{
 493	struct vm_area_struct *vma = walk->vma;
 494	struct page *page;
 495	struct queue_pages *qp = walk->private;
 496	unsigned long flags = qp->flags;
 497	int ret;
 498	bool has_unmovable = false;
 499	pte_t *pte;
 500	spinlock_t *ptl;
 501
 502	ptl = pmd_trans_huge_lock(pmd, vma);
 503	if (ptl) {
 504		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 505		if (ret != 2)
 506			return ret;
 507	}
 508	/* THP was split, fall through to pte walk */
 509
 510	if (pmd_trans_unstable(pmd))
 511		return 0;
 512
 513	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 514	for (; addr != end; pte++, addr += PAGE_SIZE) {
 515		if (!pte_present(*pte))
 516			continue;
 517		page = vm_normal_page(vma, addr, *pte);
 518		if (!page)
 519			continue;
 520		/*
 521		 * vm_normal_page() filters out zero pages, but there might
 522		 * still be PageReserved pages to skip, perhaps in a VDSO.
 523		 */
 524		if (PageReserved(page))
 525			continue;
 526		if (!queue_pages_required(page, qp))
 527			continue;
 528		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 529			/* MPOL_MF_STRICT must be specified if we get here */
 530			if (!vma_migratable(vma)) {
 531				has_unmovable = true;
 532				break;
 533			}
 534
 535			/*
 536			 * Do not abort immediately since there may be
 537			 * temporary off LRU pages in the range.  Still
 538			 * need migrate other LRU pages.
 539			 */
 540			if (migrate_page_add(page, qp->pagelist, flags))
 541				has_unmovable = true;
 542		} else
 543			break;
 544	}
 545	pte_unmap_unlock(pte - 1, ptl);
 546	cond_resched();
 547
 548	if (has_unmovable)
 549		return 1;
 550
 551	return addr != end ? -EIO : 0;
 552}
 553
 554static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 555			       unsigned long addr, unsigned long end,
 556			       struct mm_walk *walk)
 557{
 
 558#ifdef CONFIG_HUGETLB_PAGE
 559	struct queue_pages *qp = walk->private;
 560	unsigned long flags = qp->flags;
 561	struct page *page;
 562	spinlock_t *ptl;
 563	pte_t entry;
 564
 565	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 566	entry = huge_ptep_get(pte);
 567	if (!pte_present(entry))
 568		goto unlock;
 569	page = pte_page(entry);
 570	if (!queue_pages_required(page, qp))
 571		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 573	if (flags & (MPOL_MF_MOVE_ALL) ||
 574	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 575		isolate_huge_page(page, qp->pagelist);
 
 
 
 
 
 
 
 
 576unlock:
 577	spin_unlock(ptl);
 578#else
 579	BUG();
 580#endif
 581	return 0;
 582}
 583
 584#ifdef CONFIG_NUMA_BALANCING
 585/*
 586 * This is used to mark a range of virtual addresses to be inaccessible.
 587 * These are later cleared by a NUMA hinting fault. Depending on these
 588 * faults, pages may be migrated for better NUMA placement.
 589 *
 590 * This is assuming that NUMA faults are handled using PROT_NONE. If
 591 * an architecture makes a different choice, it will need further
 592 * changes to the core.
 593 */
 594unsigned long change_prot_numa(struct vm_area_struct *vma,
 595			unsigned long addr, unsigned long end)
 596{
 
 597	int nr_updated;
 598
 599	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 
 
 
 600	if (nr_updated)
 601		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 602
 
 
 603	return nr_updated;
 604}
 605#else
 606static unsigned long change_prot_numa(struct vm_area_struct *vma,
 607			unsigned long addr, unsigned long end)
 608{
 609	return 0;
 610}
 611#endif /* CONFIG_NUMA_BALANCING */
 612
 613static int queue_pages_test_walk(unsigned long start, unsigned long end,
 614				struct mm_walk *walk)
 615{
 616	struct vm_area_struct *vma = walk->vma;
 617	struct queue_pages *qp = walk->private;
 618	unsigned long endvma = vma->vm_end;
 619	unsigned long flags = qp->flags;
 620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621	/*
 622	 * Need check MPOL_MF_STRICT to return -EIO if possible
 623	 * regardless of vma_migratable
 624	 */
 625	if (!vma_migratable(vma) &&
 626	    !(flags & MPOL_MF_STRICT))
 627		return 1;
 628
 629	if (endvma > end)
 630		endvma = end;
 631	if (vma->vm_start > start)
 632		start = vma->vm_start;
 633
 634	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 635		if (!vma->vm_next && vma->vm_end < end)
 636			return -EFAULT;
 637		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 638			return -EFAULT;
 639	}
 640
 641	qp->prev = vma;
 642
 643	if (flags & MPOL_MF_LAZY) {
 644		/* Similar to task_numa_work, skip inaccessible VMAs */
 645		if (!is_vm_hugetlb_page(vma) &&
 646			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 647			!(vma->vm_flags & VM_MIXEDMAP))
 648			change_prot_numa(vma, start, endvma);
 649		return 1;
 650	}
 651
 652	/* queue pages from current vma */
 653	if (flags & MPOL_MF_VALID)
 654		return 0;
 655	return 1;
 656}
 657
 658static const struct mm_walk_ops queue_pages_walk_ops = {
 659	.hugetlb_entry		= queue_pages_hugetlb,
 660	.pmd_entry		= queue_pages_pte_range,
 661	.test_walk		= queue_pages_test_walk,
 662};
 663
 664/*
 665 * Walk through page tables and collect pages to be migrated.
 666 *
 667 * If pages found in a given range are on a set of nodes (determined by
 668 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 669 * passed via @private.
 670 *
 671 * queue_pages_range() has three possible return values:
 672 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 673 *     specified.
 674 * 0 - queue pages successfully or no misplaced page.
 675 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 676 *         memory range specified by nodemask and maxnode points outside
 677 *         your accessible address space (-EFAULT)
 678 */
 679static int
 680queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 681		nodemask_t *nodes, unsigned long flags,
 682		struct list_head *pagelist)
 683{
 
 684	struct queue_pages qp = {
 685		.pagelist = pagelist,
 686		.flags = flags,
 687		.nmask = nodes,
 688		.prev = NULL,
 
 
 689	};
 690
 691	return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 
 
 
 
 
 
 692}
 693
 694/*
 695 * Apply policy to a single VMA
 696 * This must be called with the mmap_sem held for writing.
 697 */
 698static int vma_replace_policy(struct vm_area_struct *vma,
 699						struct mempolicy *pol)
 700{
 701	int err;
 702	struct mempolicy *old;
 703	struct mempolicy *new;
 704
 705	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 706		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 707		 vma->vm_ops, vma->vm_file,
 708		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 709
 710	new = mpol_dup(pol);
 711	if (IS_ERR(new))
 712		return PTR_ERR(new);
 713
 714	if (vma->vm_ops && vma->vm_ops->set_policy) {
 715		err = vma->vm_ops->set_policy(vma, new);
 716		if (err)
 717			goto err_out;
 718	}
 719
 720	old = vma->vm_policy;
 721	vma->vm_policy = new; /* protected by mmap_sem */
 722	mpol_put(old);
 723
 724	return 0;
 725 err_out:
 726	mpol_put(new);
 727	return err;
 728}
 729
 730/* Step 2: apply policy to a range and do splits. */
 731static int mbind_range(struct mm_struct *mm, unsigned long start,
 732		       unsigned long end, struct mempolicy *new_pol)
 733{
 734	struct vm_area_struct *next;
 735	struct vm_area_struct *prev;
 736	struct vm_area_struct *vma;
 737	int err = 0;
 738	pgoff_t pgoff;
 739	unsigned long vmstart;
 740	unsigned long vmend;
 741
 742	vma = find_vma(mm, start);
 743	if (!vma || vma->vm_start > start)
 744		return -EFAULT;
 
 
 
 
 745
 746	prev = vma->vm_prev;
 747	if (start > vma->vm_start)
 748		prev = vma;
 749
 750	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 751		next = vma->vm_next;
 752		vmstart = max(start, vma->vm_start);
 753		vmend   = min(end, vma->vm_end);
 754
 755		if (mpol_equal(vma_policy(vma), new_pol))
 756			continue;
 757
 758		pgoff = vma->vm_pgoff +
 759			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 760		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 761				 vma->anon_vma, vma->vm_file, pgoff,
 762				 new_pol, vma->vm_userfaultfd_ctx);
 
 763		if (prev) {
 
 
 764			vma = prev;
 765			next = vma->vm_next;
 766			if (mpol_equal(vma_policy(vma), new_pol))
 767				continue;
 768			/* vma_merge() joined vma && vma->next, case 8 */
 769			goto replace;
 770		}
 771		if (vma->vm_start != vmstart) {
 772			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 773			if (err)
 774				goto out;
 
 
 775		}
 776		if (vma->vm_end != vmend) {
 777			err = split_vma(vma->vm_mm, vma, vmend, 0);
 778			if (err)
 779				goto out;
 
 
 780		}
 781 replace:
 782		err = vma_replace_policy(vma, new_pol);
 783		if (err)
 784			goto out;
 
 
 785	}
 786
 787 out:
 788	return err;
 789}
 790
 791/* Set the process memory policy */
 792static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 793			     nodemask_t *nodes)
 794{
 795	struct mempolicy *new, *old;
 796	NODEMASK_SCRATCH(scratch);
 797	int ret;
 798
 799	if (!scratch)
 800		return -ENOMEM;
 801
 802	new = mpol_new(mode, flags, nodes);
 803	if (IS_ERR(new)) {
 804		ret = PTR_ERR(new);
 805		goto out;
 806	}
 807
 808	task_lock(current);
 809	ret = mpol_set_nodemask(new, nodes, scratch);
 810	if (ret) {
 811		task_unlock(current);
 812		mpol_put(new);
 813		goto out;
 814	}
 
 815	old = current->mempolicy;
 816	current->mempolicy = new;
 817	if (new && new->mode == MPOL_INTERLEAVE)
 818		current->il_prev = MAX_NUMNODES-1;
 819	task_unlock(current);
 820	mpol_put(old);
 821	ret = 0;
 822out:
 823	NODEMASK_SCRATCH_FREE(scratch);
 824	return ret;
 825}
 826
 827/*
 828 * Return nodemask for policy for get_mempolicy() query
 829 *
 830 * Called with task's alloc_lock held
 831 */
 832static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 833{
 834	nodes_clear(*nodes);
 835	if (p == &default_policy)
 836		return;
 837
 838	switch (p->mode) {
 839	case MPOL_BIND:
 840		/* Fall through */
 841	case MPOL_INTERLEAVE:
 842		*nodes = p->v.nodes;
 843		break;
 844	case MPOL_PREFERRED:
 845		if (!(p->flags & MPOL_F_LOCAL))
 846			node_set(p->v.preferred_node, *nodes);
 847		/* else return empty node mask for local allocation */
 
 
 848		break;
 849	default:
 850		BUG();
 851	}
 852}
 853
 854static int lookup_node(struct mm_struct *mm, unsigned long addr)
 855{
 856	struct page *p;
 857	int err;
 858
 859	int locked = 1;
 860	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
 861	if (err >= 0) {
 862		err = page_to_nid(p);
 863		put_page(p);
 864	}
 865	if (locked)
 866		up_read(&mm->mmap_sem);
 867	return err;
 868}
 869
 870/* Retrieve NUMA policy */
 871static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 872			     unsigned long addr, unsigned long flags)
 873{
 874	int err;
 875	struct mm_struct *mm = current->mm;
 876	struct vm_area_struct *vma = NULL;
 877	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 878
 879	if (flags &
 880		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 881		return -EINVAL;
 882
 883	if (flags & MPOL_F_MEMS_ALLOWED) {
 884		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 885			return -EINVAL;
 886		*policy = 0;	/* just so it's initialized */
 887		task_lock(current);
 888		*nmask  = cpuset_current_mems_allowed;
 889		task_unlock(current);
 890		return 0;
 891	}
 892
 893	if (flags & MPOL_F_ADDR) {
 894		/*
 895		 * Do NOT fall back to task policy if the
 896		 * vma/shared policy at addr is NULL.  We
 897		 * want to return MPOL_DEFAULT in this case.
 898		 */
 899		down_read(&mm->mmap_sem);
 900		vma = find_vma_intersection(mm, addr, addr+1);
 901		if (!vma) {
 902			up_read(&mm->mmap_sem);
 903			return -EFAULT;
 904		}
 905		if (vma->vm_ops && vma->vm_ops->get_policy)
 906			pol = vma->vm_ops->get_policy(vma, addr);
 907		else
 908			pol = vma->vm_policy;
 909	} else if (addr)
 910		return -EINVAL;
 911
 912	if (!pol)
 913		pol = &default_policy;	/* indicates default behavior */
 914
 915	if (flags & MPOL_F_NODE) {
 916		if (flags & MPOL_F_ADDR) {
 917			/*
 918			 * Take a refcount on the mpol, lookup_node()
 919			 * wil drop the mmap_sem, so after calling
 920			 * lookup_node() only "pol" remains valid, "vma"
 921			 * is stale.
 922			 */
 923			pol_refcount = pol;
 924			vma = NULL;
 925			mpol_get(pol);
 
 926			err = lookup_node(mm, addr);
 927			if (err < 0)
 928				goto out;
 929			*policy = err;
 930		} else if (pol == current->mempolicy &&
 931				pol->mode == MPOL_INTERLEAVE) {
 932			*policy = next_node_in(current->il_prev, pol->v.nodes);
 933		} else {
 934			err = -EINVAL;
 935			goto out;
 936		}
 937	} else {
 938		*policy = pol == &default_policy ? MPOL_DEFAULT :
 939						pol->mode;
 940		/*
 941		 * Internal mempolicy flags must be masked off before exposing
 942		 * the policy to userspace.
 943		 */
 944		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 945	}
 946
 947	err = 0;
 948	if (nmask) {
 949		if (mpol_store_user_nodemask(pol)) {
 950			*nmask = pol->w.user_nodemask;
 951		} else {
 952			task_lock(current);
 953			get_policy_nodemask(pol, nmask);
 954			task_unlock(current);
 955		}
 956	}
 957
 958 out:
 959	mpol_cond_put(pol);
 960	if (vma)
 961		up_read(&mm->mmap_sem);
 962	if (pol_refcount)
 963		mpol_put(pol_refcount);
 964	return err;
 965}
 966
 967#ifdef CONFIG_MIGRATION
 968/*
 969 * page migration, thp tail pages can be passed.
 970 */
 971static int migrate_page_add(struct page *page, struct list_head *pagelist,
 972				unsigned long flags)
 973{
 974	struct page *head = compound_head(page);
 975	/*
 976	 * Avoid migrating a page that is shared with others.
 977	 */
 978	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 979		if (!isolate_lru_page(head)) {
 980			list_add_tail(&head->lru, pagelist);
 981			mod_node_page_state(page_pgdat(head),
 982				NR_ISOLATED_ANON + page_is_file_cache(head),
 983				hpage_nr_pages(head));
 984		} else if (flags & MPOL_MF_STRICT) {
 985			/*
 986			 * Non-movable page may reach here.  And, there may be
 987			 * temporary off LRU pages or non-LRU movable pages.
 988			 * Treat them as unmovable pages since they can't be
 989			 * isolated, so they can't be moved at the moment.  It
 990			 * should return -EIO for this case too.
 991			 */
 992			return -EIO;
 993		}
 994	}
 995
 996	return 0;
 997}
 998
 999/* page allocation callback for NUMA node migration */
1000struct page *alloc_new_node_page(struct page *page, unsigned long node)
1001{
1002	if (PageHuge(page))
1003		return alloc_huge_page_node(page_hstate(compound_head(page)),
1004					node);
1005	else if (PageTransHuge(page)) {
1006		struct page *thp;
1007
1008		thp = alloc_pages_node(node,
1009			(GFP_TRANSHUGE | __GFP_THISNODE),
1010			HPAGE_PMD_ORDER);
1011		if (!thp)
1012			return NULL;
1013		prep_transhuge_page(thp);
1014		return thp;
1015	} else
1016		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1017						    __GFP_THISNODE, 0);
1018}
1019
1020/*
1021 * Migrate pages from one node to a target node.
1022 * Returns error or the number of pages not migrated.
1023 */
1024static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1025			   int flags)
1026{
1027	nodemask_t nmask;
 
1028	LIST_HEAD(pagelist);
1029	int err = 0;
 
 
 
 
1030
1031	nodes_clear(nmask);
1032	node_set(source, nmask);
1033
1034	/*
1035	 * This does not "check" the range but isolates all pages that
1036	 * need migration.  Between passing in the full user address
1037	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1038	 */
 
1039	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1040	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1041			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1042
1043	if (!list_empty(&pagelist)) {
1044		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1045					MIGRATE_SYNC, MR_SYSCALL);
1046		if (err)
1047			putback_movable_pages(&pagelist);
1048	}
1049
1050	return err;
1051}
1052
1053/*
1054 * Move pages between the two nodesets so as to preserve the physical
1055 * layout as much as possible.
1056 *
1057 * Returns the number of page that could not be moved.
1058 */
1059int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1060		     const nodemask_t *to, int flags)
1061{
1062	int busy = 0;
1063	int err;
1064	nodemask_t tmp;
1065
1066	err = migrate_prep();
1067	if (err)
1068		return err;
1069
1070	down_read(&mm->mmap_sem);
1071
1072	/*
1073	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1074	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1075	 * bit in 'tmp', and return that <source, dest> pair for migration.
1076	 * The pair of nodemasks 'to' and 'from' define the map.
1077	 *
1078	 * If no pair of bits is found that way, fallback to picking some
1079	 * pair of 'source' and 'dest' bits that are not the same.  If the
1080	 * 'source' and 'dest' bits are the same, this represents a node
1081	 * that will be migrating to itself, so no pages need move.
1082	 *
1083	 * If no bits are left in 'tmp', or if all remaining bits left
1084	 * in 'tmp' correspond to the same bit in 'to', return false
1085	 * (nothing left to migrate).
1086	 *
1087	 * This lets us pick a pair of nodes to migrate between, such that
1088	 * if possible the dest node is not already occupied by some other
1089	 * source node, minimizing the risk of overloading the memory on a
1090	 * node that would happen if we migrated incoming memory to a node
1091	 * before migrating outgoing memory source that same node.
1092	 *
1093	 * A single scan of tmp is sufficient.  As we go, we remember the
1094	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1095	 * that not only moved, but what's better, moved to an empty slot
1096	 * (d is not set in tmp), then we break out then, with that pair.
1097	 * Otherwise when we finish scanning from_tmp, we at least have the
1098	 * most recent <s, d> pair that moved.  If we get all the way through
1099	 * the scan of tmp without finding any node that moved, much less
1100	 * moved to an empty node, then there is nothing left worth migrating.
1101	 */
1102
1103	tmp = *from;
1104	while (!nodes_empty(tmp)) {
1105		int s,d;
1106		int source = NUMA_NO_NODE;
1107		int dest = 0;
1108
1109		for_each_node_mask(s, tmp) {
1110
1111			/*
1112			 * do_migrate_pages() tries to maintain the relative
1113			 * node relationship of the pages established between
1114			 * threads and memory areas.
1115                         *
1116			 * However if the number of source nodes is not equal to
1117			 * the number of destination nodes we can not preserve
1118			 * this node relative relationship.  In that case, skip
1119			 * copying memory from a node that is in the destination
1120			 * mask.
1121			 *
1122			 * Example: [2,3,4] -> [3,4,5] moves everything.
1123			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1124			 */
1125
1126			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1127						(node_isset(s, *to)))
1128				continue;
1129
1130			d = node_remap(s, *from, *to);
1131			if (s == d)
1132				continue;
1133
1134			source = s;	/* Node moved. Memorize */
1135			dest = d;
1136
1137			/* dest not in remaining from nodes? */
1138			if (!node_isset(dest, tmp))
1139				break;
1140		}
1141		if (source == NUMA_NO_NODE)
1142			break;
1143
1144		node_clear(source, tmp);
1145		err = migrate_to_node(mm, source, dest, flags);
1146		if (err > 0)
1147			busy += err;
1148		if (err < 0)
1149			break;
1150	}
1151	up_read(&mm->mmap_sem);
 
 
1152	if (err < 0)
1153		return err;
1154	return busy;
1155
1156}
1157
1158/*
1159 * Allocate a new page for page migration based on vma policy.
1160 * Start by assuming the page is mapped by the same vma as contains @start.
1161 * Search forward from there, if not.  N.B., this assumes that the
1162 * list of pages handed to migrate_pages()--which is how we get here--
1163 * is in virtual address order.
1164 */
1165static struct page *new_page(struct page *page, unsigned long start)
1166{
 
1167	struct vm_area_struct *vma;
1168	unsigned long uninitialized_var(address);
 
 
1169
1170	vma = find_vma(current->mm, start);
1171	while (vma) {
1172		address = page_address_in_vma(page, vma);
1173		if (address != -EFAULT)
1174			break;
1175		vma = vma->vm_next;
1176	}
1177
1178	if (PageHuge(page)) {
1179		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1180				vma, address);
1181	} else if (PageTransHuge(page)) {
1182		struct page *thp;
1183
1184		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1185					 HPAGE_PMD_ORDER);
1186		if (!thp)
1187			return NULL;
1188		prep_transhuge_page(thp);
1189		return thp;
1190	}
1191	/*
1192	 * if !vma, alloc_page_vma() will use task or system default policy
1193	 */
1194	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1195			vma, address);
 
1196}
1197#else
1198
1199static int migrate_page_add(struct page *page, struct list_head *pagelist,
1200				unsigned long flags)
1201{
1202	return -EIO;
1203}
1204
1205int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1206		     const nodemask_t *to, int flags)
1207{
1208	return -ENOSYS;
1209}
1210
1211static struct page *new_page(struct page *page, unsigned long start)
1212{
1213	return NULL;
1214}
1215#endif
1216
1217static long do_mbind(unsigned long start, unsigned long len,
1218		     unsigned short mode, unsigned short mode_flags,
1219		     nodemask_t *nmask, unsigned long flags)
1220{
1221	struct mm_struct *mm = current->mm;
1222	struct mempolicy *new;
1223	unsigned long end;
1224	int err;
1225	int ret;
1226	LIST_HEAD(pagelist);
1227
1228	if (flags & ~(unsigned long)MPOL_MF_VALID)
1229		return -EINVAL;
1230	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1231		return -EPERM;
1232
1233	if (start & ~PAGE_MASK)
1234		return -EINVAL;
1235
1236	if (mode == MPOL_DEFAULT)
1237		flags &= ~MPOL_MF_STRICT;
1238
1239	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1240	end = start + len;
1241
1242	if (end < start)
1243		return -EINVAL;
1244	if (end == start)
1245		return 0;
1246
1247	new = mpol_new(mode, mode_flags, nmask);
1248	if (IS_ERR(new))
1249		return PTR_ERR(new);
1250
1251	if (flags & MPOL_MF_LAZY)
1252		new->flags |= MPOL_F_MOF;
1253
1254	/*
1255	 * If we are using the default policy then operation
1256	 * on discontinuous address spaces is okay after all
1257	 */
1258	if (!new)
1259		flags |= MPOL_MF_DISCONTIG_OK;
1260
1261	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1262		 start, start + len, mode, mode_flags,
1263		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1264
1265	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1266
1267		err = migrate_prep();
1268		if (err)
1269			goto mpol_out;
1270	}
1271	{
1272		NODEMASK_SCRATCH(scratch);
1273		if (scratch) {
1274			down_write(&mm->mmap_sem);
1275			task_lock(current);
1276			err = mpol_set_nodemask(new, nmask, scratch);
1277			task_unlock(current);
1278			if (err)
1279				up_write(&mm->mmap_sem);
1280		} else
1281			err = -ENOMEM;
1282		NODEMASK_SCRATCH_FREE(scratch);
1283	}
1284	if (err)
1285		goto mpol_out;
1286
1287	ret = queue_pages_range(mm, start, end, nmask,
1288			  flags | MPOL_MF_INVERT, &pagelist);
1289
1290	if (ret < 0) {
1291		err = ret;
1292		goto up_out;
1293	}
1294
1295	err = mbind_range(mm, start, end, new);
1296
1297	if (!err) {
1298		int nr_failed = 0;
1299
1300		if (!list_empty(&pagelist)) {
1301			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1302			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1303				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1304			if (nr_failed)
1305				putback_movable_pages(&pagelist);
1306		}
1307
1308		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1309			err = -EIO;
1310	} else {
1311up_out:
1312		if (!list_empty(&pagelist))
1313			putback_movable_pages(&pagelist);
1314	}
1315
1316	up_write(&mm->mmap_sem);
1317mpol_out:
1318	mpol_put(new);
 
 
1319	return err;
1320}
1321
1322/*
1323 * User space interface with variable sized bitmaps for nodelists.
1324 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1325
1326/* Copy a node mask from user space. */
1327static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1328		     unsigned long maxnode)
1329{
1330	unsigned long k;
1331	unsigned long t;
1332	unsigned long nlongs;
1333	unsigned long endmask;
1334
1335	--maxnode;
1336	nodes_clear(*nodes);
1337	if (maxnode == 0 || !nmask)
1338		return 0;
1339	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1340		return -EINVAL;
1341
1342	nlongs = BITS_TO_LONGS(maxnode);
1343	if ((maxnode % BITS_PER_LONG) == 0)
1344		endmask = ~0UL;
1345	else
1346		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1347
1348	/*
1349	 * When the user specified more nodes than supported just check
1350	 * if the non supported part is all zero.
1351	 *
1352	 * If maxnode have more longs than MAX_NUMNODES, check
1353	 * the bits in that area first. And then go through to
1354	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1355	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1356	 */
1357	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1358		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1359			if (get_user(t, nmask + k))
1360				return -EFAULT;
1361			if (k == nlongs - 1) {
1362				if (t & endmask)
1363					return -EINVAL;
1364			} else if (t)
1365				return -EINVAL;
1366		}
1367		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1368		endmask = ~0UL;
1369	}
1370
1371	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1372		unsigned long valid_mask = endmask;
1373
1374		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1375		if (get_user(t, nmask + nlongs - 1))
1376			return -EFAULT;
1377		if (t & valid_mask)
 
 
 
 
 
 
 
1378			return -EINVAL;
1379	}
1380
1381	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1382		return -EFAULT;
1383	nodes_addr(*nodes)[nlongs-1] &= endmask;
1384	return 0;
1385}
1386
1387/* Copy a kernel node mask to user space */
1388static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1389			      nodemask_t *nodes)
1390{
1391	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1392	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
 
 
 
 
1393
1394	if (copy > nbytes) {
1395		if (copy > PAGE_SIZE)
1396			return -EINVAL;
1397		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1398			return -EFAULT;
1399		copy = nbytes;
 
1400	}
 
 
 
 
 
1401	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1402}
1403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404static long kernel_mbind(unsigned long start, unsigned long len,
1405			 unsigned long mode, const unsigned long __user *nmask,
1406			 unsigned long maxnode, unsigned int flags)
1407{
 
1408	nodemask_t nodes;
 
1409	int err;
1410	unsigned short mode_flags;
1411
1412	start = untagged_addr(start);
1413	mode_flags = mode & MPOL_MODE_FLAGS;
1414	mode &= ~MPOL_MODE_FLAGS;
1415	if (mode >= MPOL_MAX)
1416		return -EINVAL;
1417	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1418	    (mode_flags & MPOL_F_RELATIVE_NODES))
1419		return -EINVAL;
1420	err = get_nodes(&nodes, nmask, maxnode);
1421	if (err)
1422		return err;
1423	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424}
1425
1426SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1427		unsigned long, mode, const unsigned long __user *, nmask,
1428		unsigned long, maxnode, unsigned int, flags)
1429{
1430	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1431}
1432
1433/* Set the process memory policy */
1434static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1435				 unsigned long maxnode)
1436{
1437	int err;
1438	nodemask_t nodes;
1439	unsigned short flags;
 
 
 
 
 
1440
1441	flags = mode & MPOL_MODE_FLAGS;
1442	mode &= ~MPOL_MODE_FLAGS;
1443	if ((unsigned int)mode >= MPOL_MAX)
1444		return -EINVAL;
1445	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1446		return -EINVAL;
1447	err = get_nodes(&nodes, nmask, maxnode);
1448	if (err)
1449		return err;
1450	return do_set_mempolicy(mode, flags, &nodes);
 
1451}
1452
1453SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1454		unsigned long, maxnode)
1455{
1456	return kernel_set_mempolicy(mode, nmask, maxnode);
1457}
1458
1459static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1460				const unsigned long __user *old_nodes,
1461				const unsigned long __user *new_nodes)
1462{
1463	struct mm_struct *mm = NULL;
1464	struct task_struct *task;
1465	nodemask_t task_nodes;
1466	int err;
1467	nodemask_t *old;
1468	nodemask_t *new;
1469	NODEMASK_SCRATCH(scratch);
1470
1471	if (!scratch)
1472		return -ENOMEM;
1473
1474	old = &scratch->mask1;
1475	new = &scratch->mask2;
1476
1477	err = get_nodes(old, old_nodes, maxnode);
1478	if (err)
1479		goto out;
1480
1481	err = get_nodes(new, new_nodes, maxnode);
1482	if (err)
1483		goto out;
1484
1485	/* Find the mm_struct */
1486	rcu_read_lock();
1487	task = pid ? find_task_by_vpid(pid) : current;
1488	if (!task) {
1489		rcu_read_unlock();
1490		err = -ESRCH;
1491		goto out;
1492	}
1493	get_task_struct(task);
1494
1495	err = -EINVAL;
1496
1497	/*
1498	 * Check if this process has the right to modify the specified process.
1499	 * Use the regular "ptrace_may_access()" checks.
1500	 */
1501	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1502		rcu_read_unlock();
1503		err = -EPERM;
1504		goto out_put;
1505	}
1506	rcu_read_unlock();
1507
1508	task_nodes = cpuset_mems_allowed(task);
1509	/* Is the user allowed to access the target nodes? */
1510	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1511		err = -EPERM;
1512		goto out_put;
1513	}
1514
1515	task_nodes = cpuset_mems_allowed(current);
1516	nodes_and(*new, *new, task_nodes);
1517	if (nodes_empty(*new))
1518		goto out_put;
1519
1520	err = security_task_movememory(task);
1521	if (err)
1522		goto out_put;
1523
1524	mm = get_task_mm(task);
1525	put_task_struct(task);
1526
1527	if (!mm) {
1528		err = -EINVAL;
1529		goto out;
1530	}
1531
1532	err = do_migrate_pages(mm, old, new,
1533		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1534
1535	mmput(mm);
1536out:
1537	NODEMASK_SCRATCH_FREE(scratch);
1538
1539	return err;
1540
1541out_put:
1542	put_task_struct(task);
1543	goto out;
1544
1545}
1546
1547SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1548		const unsigned long __user *, old_nodes,
1549		const unsigned long __user *, new_nodes)
1550{
1551	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1552}
1553
1554
1555/* Retrieve NUMA policy */
1556static int kernel_get_mempolicy(int __user *policy,
1557				unsigned long __user *nmask,
1558				unsigned long maxnode,
1559				unsigned long addr,
1560				unsigned long flags)
1561{
1562	int err;
1563	int uninitialized_var(pval);
1564	nodemask_t nodes;
1565
1566	addr = untagged_addr(addr);
1567
1568	if (nmask != NULL && maxnode < nr_node_ids)
1569		return -EINVAL;
1570
 
 
1571	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1572
1573	if (err)
1574		return err;
1575
1576	if (policy && put_user(pval, policy))
1577		return -EFAULT;
1578
1579	if (nmask)
1580		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1581
1582	return err;
1583}
1584
1585SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1586		unsigned long __user *, nmask, unsigned long, maxnode,
1587		unsigned long, addr, unsigned long, flags)
1588{
1589	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1590}
1591
1592#ifdef CONFIG_COMPAT
1593
1594COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1595		       compat_ulong_t __user *, nmask,
1596		       compat_ulong_t, maxnode,
1597		       compat_ulong_t, addr, compat_ulong_t, flags)
1598{
1599	long err;
1600	unsigned long __user *nm = NULL;
1601	unsigned long nr_bits, alloc_size;
1602	DECLARE_BITMAP(bm, MAX_NUMNODES);
1603
1604	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1605	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1606
1607	if (nmask)
1608		nm = compat_alloc_user_space(alloc_size);
1609
1610	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1611
1612	if (!err && nmask) {
1613		unsigned long copy_size;
1614		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1615		err = copy_from_user(bm, nm, copy_size);
1616		/* ensure entire bitmap is zeroed */
1617		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1618		err |= compat_put_bitmap(nmask, bm, nr_bits);
1619	}
1620
1621	return err;
1622}
1623
1624COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1625		       compat_ulong_t, maxnode)
1626{
1627	unsigned long __user *nm = NULL;
1628	unsigned long nr_bits, alloc_size;
1629	DECLARE_BITMAP(bm, MAX_NUMNODES);
1630
1631	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1632	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1633
1634	if (nmask) {
1635		if (compat_get_bitmap(bm, nmask, nr_bits))
1636			return -EFAULT;
1637		nm = compat_alloc_user_space(alloc_size);
1638		if (copy_to_user(nm, bm, alloc_size))
1639			return -EFAULT;
1640	}
1641
1642	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1643}
1644
1645COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1646		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1647		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1648{
1649	unsigned long __user *nm = NULL;
1650	unsigned long nr_bits, alloc_size;
1651	nodemask_t bm;
1652
1653	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1654	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1655
1656	if (nmask) {
1657		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1658			return -EFAULT;
1659		nm = compat_alloc_user_space(alloc_size);
1660		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1661			return -EFAULT;
1662	}
1663
1664	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1665}
 
1666
1667COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1668		       compat_ulong_t, maxnode,
1669		       const compat_ulong_t __user *, old_nodes,
1670		       const compat_ulong_t __user *, new_nodes)
1671{
1672	unsigned long __user *old = NULL;
1673	unsigned long __user *new = NULL;
1674	nodemask_t tmp_mask;
1675	unsigned long nr_bits;
1676	unsigned long size;
1677
1678	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1679	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1680	if (old_nodes) {
1681		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1682			return -EFAULT;
1683		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1684		if (new_nodes)
1685			new = old + size / sizeof(unsigned long);
1686		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1687			return -EFAULT;
1688	}
1689	if (new_nodes) {
1690		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1691			return -EFAULT;
1692		if (new == NULL)
1693			new = compat_alloc_user_space(size);
1694		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1695			return -EFAULT;
1696	}
1697	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1698}
1699
1700#endif /* CONFIG_COMPAT */
1701
1702struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1703						unsigned long addr)
1704{
1705	struct mempolicy *pol = NULL;
1706
1707	if (vma) {
1708		if (vma->vm_ops && vma->vm_ops->get_policy) {
1709			pol = vma->vm_ops->get_policy(vma, addr);
1710		} else if (vma->vm_policy) {
1711			pol = vma->vm_policy;
1712
1713			/*
1714			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1715			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1716			 * count on these policies which will be dropped by
1717			 * mpol_cond_put() later
1718			 */
1719			if (mpol_needs_cond_ref(pol))
1720				mpol_get(pol);
1721		}
1722	}
1723
1724	return pol;
1725}
1726
1727/*
1728 * get_vma_policy(@vma, @addr)
1729 * @vma: virtual memory area whose policy is sought
1730 * @addr: address in @vma for shared policy lookup
1731 *
1732 * Returns effective policy for a VMA at specified address.
1733 * Falls back to current->mempolicy or system default policy, as necessary.
1734 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1735 * count--added by the get_policy() vm_op, as appropriate--to protect against
1736 * freeing by another task.  It is the caller's responsibility to free the
1737 * extra reference for shared policies.
1738 */
1739static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1740						unsigned long addr)
1741{
1742	struct mempolicy *pol = __get_vma_policy(vma, addr);
1743
1744	if (!pol)
1745		pol = get_task_policy(current);
1746
1747	return pol;
1748}
1749
1750bool vma_policy_mof(struct vm_area_struct *vma)
1751{
1752	struct mempolicy *pol;
1753
1754	if (vma->vm_ops && vma->vm_ops->get_policy) {
1755		bool ret = false;
1756
1757		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1758		if (pol && (pol->flags & MPOL_F_MOF))
1759			ret = true;
1760		mpol_cond_put(pol);
1761
1762		return ret;
1763	}
1764
1765	pol = vma->vm_policy;
1766	if (!pol)
1767		pol = get_task_policy(current);
1768
1769	return pol->flags & MPOL_F_MOF;
1770}
1771
1772static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1773{
1774	enum zone_type dynamic_policy_zone = policy_zone;
1775
1776	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1777
1778	/*
1779	 * if policy->v.nodes has movable memory only,
1780	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1781	 *
1782	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1783	 * so if the following test faile, it implies
1784	 * policy->v.nodes has movable memory only.
1785	 */
1786	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1787		dynamic_policy_zone = ZONE_MOVABLE;
1788
1789	return zone >= dynamic_policy_zone;
1790}
1791
1792/*
1793 * Return a nodemask representing a mempolicy for filtering nodes for
1794 * page allocation
1795 */
1796static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1797{
 
 
1798	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1799	if (unlikely(policy->mode == MPOL_BIND) &&
1800			apply_policy_zone(policy, gfp_zone(gfp)) &&
1801			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1802		return &policy->v.nodes;
 
 
 
1803
1804	return NULL;
1805}
1806
1807/* Return the node id preferred by the given mempolicy, or the given id */
1808static int policy_node(gfp_t gfp, struct mempolicy *policy,
1809								int nd)
 
 
 
 
 
1810{
1811	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1812		nd = policy->v.preferred_node;
1813	else {
1814		/*
1815		 * __GFP_THISNODE shouldn't even be used with the bind policy
1816		 * because we might easily break the expectation to stay on the
1817		 * requested node and not break the policy.
1818		 */
1819		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1820	}
1821
 
 
 
 
 
1822	return nd;
1823}
1824
1825/* Do dynamic interleaving for a process */
1826static unsigned interleave_nodes(struct mempolicy *policy)
1827{
1828	unsigned next;
1829	struct task_struct *me = current;
1830
1831	next = next_node_in(me->il_prev, policy->v.nodes);
1832	if (next < MAX_NUMNODES)
1833		me->il_prev = next;
1834	return next;
1835}
1836
1837/*
1838 * Depending on the memory policy provide a node from which to allocate the
1839 * next slab entry.
1840 */
1841unsigned int mempolicy_slab_node(void)
1842{
1843	struct mempolicy *policy;
1844	int node = numa_mem_id();
1845
1846	if (in_interrupt())
1847		return node;
1848
1849	policy = current->mempolicy;
1850	if (!policy || policy->flags & MPOL_F_LOCAL)
1851		return node;
1852
1853	switch (policy->mode) {
1854	case MPOL_PREFERRED:
1855		/*
1856		 * handled MPOL_F_LOCAL above
1857		 */
1858		return policy->v.preferred_node;
1859
1860	case MPOL_INTERLEAVE:
1861		return interleave_nodes(policy);
1862
1863	case MPOL_BIND: {
 
 
1864		struct zoneref *z;
1865
1866		/*
1867		 * Follow bind policy behavior and start allocation at the
1868		 * first node.
1869		 */
1870		struct zonelist *zonelist;
1871		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1872		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1873		z = first_zones_zonelist(zonelist, highest_zoneidx,
1874							&policy->v.nodes);
1875		return z->zone ? zone_to_nid(z->zone) : node;
1876	}
 
 
1877
1878	default:
1879		BUG();
1880	}
1881}
1882
1883/*
1884 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1885 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1886 * number of present nodes.
1887 */
1888static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1889{
1890	unsigned nnodes = nodes_weight(pol->v.nodes);
1891	unsigned target;
1892	int i;
1893	int nid;
 
 
 
 
 
 
 
 
1894
 
1895	if (!nnodes)
1896		return numa_node_id();
1897	target = (unsigned int)n % nnodes;
1898	nid = first_node(pol->v.nodes);
1899	for (i = 0; i < target; i++)
1900		nid = next_node(nid, pol->v.nodes);
1901	return nid;
1902}
1903
1904/* Determine a node number for interleave */
1905static inline unsigned interleave_nid(struct mempolicy *pol,
1906		 struct vm_area_struct *vma, unsigned long addr, int shift)
1907{
1908	if (vma) {
1909		unsigned long off;
1910
1911		/*
1912		 * for small pages, there is no difference between
1913		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1914		 * for huge pages, since vm_pgoff is in units of small
1915		 * pages, we need to shift off the always 0 bits to get
1916		 * a useful offset.
1917		 */
1918		BUG_ON(shift < PAGE_SHIFT);
1919		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1920		off += (addr - vma->vm_start) >> shift;
1921		return offset_il_node(pol, off);
1922	} else
1923		return interleave_nodes(pol);
1924}
1925
1926#ifdef CONFIG_HUGETLBFS
1927/*
1928 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1929 * @vma: virtual memory area whose policy is sought
1930 * @addr: address in @vma for shared policy lookup and interleave policy
1931 * @gfp_flags: for requested zone
1932 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1933 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1934 *
1935 * Returns a nid suitable for a huge page allocation and a pointer
1936 * to the struct mempolicy for conditional unref after allocation.
1937 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1938 * @nodemask for filtering the zonelist.
1939 *
1940 * Must be protected by read_mems_allowed_begin()
1941 */
1942int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1943				struct mempolicy **mpol, nodemask_t **nodemask)
1944{
1945	int nid;
 
1946
1947	*mpol = get_vma_policy(vma, addr);
1948	*nodemask = NULL;	/* assume !MPOL_BIND */
 
1949
1950	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1951		nid = interleave_nid(*mpol, vma, addr,
1952					huge_page_shift(hstate_vma(vma)));
1953	} else {
1954		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1955		if ((*mpol)->mode == MPOL_BIND)
1956			*nodemask = &(*mpol)->v.nodes;
1957	}
1958	return nid;
1959}
1960
1961/*
1962 * init_nodemask_of_mempolicy
1963 *
1964 * If the current task's mempolicy is "default" [NULL], return 'false'
1965 * to indicate default policy.  Otherwise, extract the policy nodemask
1966 * for 'bind' or 'interleave' policy into the argument nodemask, or
1967 * initialize the argument nodemask to contain the single node for
1968 * 'preferred' or 'local' policy and return 'true' to indicate presence
1969 * of non-default mempolicy.
1970 *
1971 * We don't bother with reference counting the mempolicy [mpol_get/put]
1972 * because the current task is examining it's own mempolicy and a task's
1973 * mempolicy is only ever changed by the task itself.
1974 *
1975 * N.B., it is the caller's responsibility to free a returned nodemask.
1976 */
1977bool init_nodemask_of_mempolicy(nodemask_t *mask)
1978{
1979	struct mempolicy *mempolicy;
1980	int nid;
1981
1982	if (!(mask && current->mempolicy))
1983		return false;
1984
1985	task_lock(current);
1986	mempolicy = current->mempolicy;
1987	switch (mempolicy->mode) {
1988	case MPOL_PREFERRED:
1989		if (mempolicy->flags & MPOL_F_LOCAL)
1990			nid = numa_node_id();
1991		else
1992			nid = mempolicy->v.preferred_node;
1993		init_nodemask_of_node(mask, nid);
1994		break;
1995
1996	case MPOL_BIND:
1997		/* Fall through */
1998	case MPOL_INTERLEAVE:
1999		*mask =  mempolicy->v.nodes;
 
 
 
 
2000		break;
2001
2002	default:
2003		BUG();
2004	}
2005	task_unlock(current);
2006
2007	return true;
2008}
2009#endif
2010
2011/*
2012 * mempolicy_nodemask_intersects
2013 *
2014 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2015 * policy.  Otherwise, check for intersection between mask and the policy
2016 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2017 * policy, always return true since it may allocate elsewhere on fallback.
2018 *
2019 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2020 */
2021bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2022					const nodemask_t *mask)
2023{
2024	struct mempolicy *mempolicy;
2025	bool ret = true;
2026
2027	if (!mask)
2028		return ret;
 
2029	task_lock(tsk);
2030	mempolicy = tsk->mempolicy;
2031	if (!mempolicy)
2032		goto out;
2033
2034	switch (mempolicy->mode) {
2035	case MPOL_PREFERRED:
2036		/*
2037		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2038		 * allocate from, they may fallback to other nodes when oom.
2039		 * Thus, it's possible for tsk to have allocated memory from
2040		 * nodes in mask.
2041		 */
2042		break;
2043	case MPOL_BIND:
2044	case MPOL_INTERLEAVE:
2045		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2046		break;
2047	default:
2048		BUG();
2049	}
2050out:
2051	task_unlock(tsk);
 
2052	return ret;
2053}
2054
2055/* Allocate a page in interleaved policy.
2056   Own path because it needs to do special accounting. */
2057static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2058					unsigned nid)
2059{
2060	struct page *page;
2061
2062	page = __alloc_pages(gfp, order, nid);
2063	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2064	if (!static_branch_likely(&vm_numa_stat_key))
2065		return page;
2066	if (page && page_to_nid(page) == nid) {
2067		preempt_disable();
2068		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2069		preempt_enable();
2070	}
2071	return page;
2072}
2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074/**
2075 * 	alloc_pages_vma	- Allocate a page for a VMA.
 
 
 
 
 
 
 
 
 
 
2076 *
2077 * 	@gfp:
2078 *      %GFP_USER    user allocation.
2079 *      %GFP_KERNEL  kernel allocations,
2080 *      %GFP_HIGHMEM highmem/user allocations,
2081 *      %GFP_FS      allocation should not call back into a file system.
2082 *      %GFP_ATOMIC  don't sleep.
2083 *
2084 *	@order:Order of the GFP allocation.
2085 * 	@vma:  Pointer to VMA or NULL if not available.
2086 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2087 *	@node: Which node to prefer for allocation (modulo policy).
2088 *	@hugepage: for hugepages try only the preferred node if possible
2089 *
2090 * 	This function allocates a page from the kernel page pool and applies
2091 *	a NUMA policy associated with the VMA or the current process.
2092 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2093 *	mm_struct of the VMA to prevent it from going away. Should be used for
2094 *	all allocations for pages that will be mapped into user space. Returns
2095 *	NULL when no page can be allocated.
2096 */
2097struct page *
2098alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2099		unsigned long addr, int node, bool hugepage)
2100{
2101	struct mempolicy *pol;
2102	struct page *page;
 
2103	int preferred_nid;
2104	nodemask_t *nmask;
2105
2106	pol = get_vma_policy(vma, addr);
2107
2108	if (pol->mode == MPOL_INTERLEAVE) {
 
2109		unsigned nid;
2110
2111		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2112		mpol_cond_put(pol);
 
2113		page = alloc_page_interleave(gfp, order, nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114		goto out;
2115	}
2116
2117	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2118		int hpage_node = node;
2119
2120		/*
2121		 * For hugepage allocation and non-interleave policy which
2122		 * allows the current node (or other explicitly preferred
2123		 * node) we only try to allocate from the current/preferred
2124		 * node and don't fall back to other nodes, as the cost of
2125		 * remote accesses would likely offset THP benefits.
2126		 *
2127		 * If the policy is interleave, or does not allow the current
2128		 * node in its nodemask, we allocate the standard way.
2129		 */
2130		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2131			hpage_node = pol->v.preferred_node;
2132
2133		nmask = policy_nodemask(gfp, pol);
2134		if (!nmask || node_isset(hpage_node, *nmask)) {
2135			mpol_cond_put(pol);
2136			page = __alloc_pages_node(hpage_node,
2137						gfp | __GFP_THISNODE, order);
 
 
 
 
2138
2139			/*
2140			 * If hugepage allocations are configured to always
2141			 * synchronous compact or the vma has been madvised
2142			 * to prefer hugepage backing, retry allowing remote
2143			 * memory as well.
2144			 */
2145			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2146				page = __alloc_pages_node(hpage_node,
2147						gfp | __GFP_NORETRY, order);
2148
2149			goto out;
2150		}
2151	}
2152
2153	nmask = policy_nodemask(gfp, pol);
2154	preferred_nid = policy_node(gfp, pol, node);
2155	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2156	mpol_cond_put(pol);
2157out:
2158	return page;
2159}
2160EXPORT_SYMBOL(alloc_pages_vma);
2161
2162/**
2163 * 	alloc_pages_current - Allocate pages.
2164 *
2165 *	@gfp:
2166 *		%GFP_USER   user allocation,
2167 *      	%GFP_KERNEL kernel allocation,
2168 *      	%GFP_HIGHMEM highmem allocation,
2169 *      	%GFP_FS     don't call back into a file system.
2170 *      	%GFP_ATOMIC don't sleep.
2171 *	@order: Power of two of allocation size in pages. 0 is a single page.
2172 *
2173 *	Allocate a page from the kernel page pool.  When not in
2174 *	interrupt context and apply the current process NUMA policy.
2175 *	Returns NULL when no page can be allocated.
2176 */
2177struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2178{
2179	struct mempolicy *pol = &default_policy;
2180	struct page *page;
2181
2182	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2183		pol = get_task_policy(current);
2184
2185	/*
2186	 * No reference counting needed for current->mempolicy
2187	 * nor system default_policy
2188	 */
2189	if (pol->mode == MPOL_INTERLEAVE)
2190		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
 
 
 
2191	else
2192		page = __alloc_pages_nodemask(gfp, order,
2193				policy_node(gfp, pol, numa_node_id()),
2194				policy_nodemask(gfp, pol));
2195
2196	return page;
2197}
2198EXPORT_SYMBOL(alloc_pages_current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2199
2200int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2201{
2202	struct mempolicy *pol = mpol_dup(vma_policy(src));
2203
2204	if (IS_ERR(pol))
2205		return PTR_ERR(pol);
2206	dst->vm_policy = pol;
2207	return 0;
2208}
2209
2210/*
2211 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2212 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2213 * with the mems_allowed returned by cpuset_mems_allowed().  This
2214 * keeps mempolicies cpuset relative after its cpuset moves.  See
2215 * further kernel/cpuset.c update_nodemask().
2216 *
2217 * current's mempolicy may be rebinded by the other task(the task that changes
2218 * cpuset's mems), so we needn't do rebind work for current task.
2219 */
2220
2221/* Slow path of a mempolicy duplicate */
2222struct mempolicy *__mpol_dup(struct mempolicy *old)
2223{
2224	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2225
2226	if (!new)
2227		return ERR_PTR(-ENOMEM);
2228
2229	/* task's mempolicy is protected by alloc_lock */
2230	if (old == current->mempolicy) {
2231		task_lock(current);
2232		*new = *old;
2233		task_unlock(current);
2234	} else
2235		*new = *old;
2236
2237	if (current_cpuset_is_being_rebound()) {
2238		nodemask_t mems = cpuset_mems_allowed(current);
2239		mpol_rebind_policy(new, &mems);
2240	}
2241	atomic_set(&new->refcnt, 1);
2242	return new;
2243}
2244
2245/* Slow path of a mempolicy comparison */
2246bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2247{
2248	if (!a || !b)
2249		return false;
2250	if (a->mode != b->mode)
2251		return false;
2252	if (a->flags != b->flags)
2253		return false;
 
 
2254	if (mpol_store_user_nodemask(a))
2255		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2256			return false;
2257
2258	switch (a->mode) {
2259	case MPOL_BIND:
2260		/* Fall through */
2261	case MPOL_INTERLEAVE:
2262		return !!nodes_equal(a->v.nodes, b->v.nodes);
2263	case MPOL_PREFERRED:
2264		/* a's ->flags is the same as b's */
2265		if (a->flags & MPOL_F_LOCAL)
2266			return true;
2267		return a->v.preferred_node == b->v.preferred_node;
2268	default:
2269		BUG();
2270		return false;
2271	}
2272}
2273
2274/*
2275 * Shared memory backing store policy support.
2276 *
2277 * Remember policies even when nobody has shared memory mapped.
2278 * The policies are kept in Red-Black tree linked from the inode.
2279 * They are protected by the sp->lock rwlock, which should be held
2280 * for any accesses to the tree.
2281 */
2282
2283/*
2284 * lookup first element intersecting start-end.  Caller holds sp->lock for
2285 * reading or for writing
2286 */
2287static struct sp_node *
2288sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2289{
2290	struct rb_node *n = sp->root.rb_node;
2291
2292	while (n) {
2293		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2294
2295		if (start >= p->end)
2296			n = n->rb_right;
2297		else if (end <= p->start)
2298			n = n->rb_left;
2299		else
2300			break;
2301	}
2302	if (!n)
2303		return NULL;
2304	for (;;) {
2305		struct sp_node *w = NULL;
2306		struct rb_node *prev = rb_prev(n);
2307		if (!prev)
2308			break;
2309		w = rb_entry(prev, struct sp_node, nd);
2310		if (w->end <= start)
2311			break;
2312		n = prev;
2313	}
2314	return rb_entry(n, struct sp_node, nd);
2315}
2316
2317/*
2318 * Insert a new shared policy into the list.  Caller holds sp->lock for
2319 * writing.
2320 */
2321static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2322{
2323	struct rb_node **p = &sp->root.rb_node;
2324	struct rb_node *parent = NULL;
2325	struct sp_node *nd;
2326
2327	while (*p) {
2328		parent = *p;
2329		nd = rb_entry(parent, struct sp_node, nd);
2330		if (new->start < nd->start)
2331			p = &(*p)->rb_left;
2332		else if (new->end > nd->end)
2333			p = &(*p)->rb_right;
2334		else
2335			BUG();
2336	}
2337	rb_link_node(&new->nd, parent, p);
2338	rb_insert_color(&new->nd, &sp->root);
2339	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2340		 new->policy ? new->policy->mode : 0);
2341}
2342
2343/* Find shared policy intersecting idx */
2344struct mempolicy *
2345mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2346{
2347	struct mempolicy *pol = NULL;
2348	struct sp_node *sn;
2349
2350	if (!sp->root.rb_node)
2351		return NULL;
2352	read_lock(&sp->lock);
2353	sn = sp_lookup(sp, idx, idx+1);
2354	if (sn) {
2355		mpol_get(sn->policy);
2356		pol = sn->policy;
2357	}
2358	read_unlock(&sp->lock);
2359	return pol;
2360}
2361
2362static void sp_free(struct sp_node *n)
2363{
2364	mpol_put(n->policy);
2365	kmem_cache_free(sn_cache, n);
2366}
2367
2368/**
2369 * mpol_misplaced - check whether current page node is valid in policy
2370 *
2371 * @page: page to be checked
2372 * @vma: vm area where page mapped
2373 * @addr: virtual address where page mapped
2374 *
2375 * Lookup current policy node id for vma,addr and "compare to" page's
2376 * node id.
2377 *
2378 * Returns:
2379 *	-1	- not misplaced, page is in the right node
2380 *	node	- node id where the page should be
2381 *
2382 * Policy determination "mimics" alloc_page_vma().
2383 * Called from fault path where we know the vma and faulting address.
 
 
 
2384 */
2385int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2386{
2387	struct mempolicy *pol;
2388	struct zoneref *z;
2389	int curnid = page_to_nid(page);
2390	unsigned long pgoff;
2391	int thiscpu = raw_smp_processor_id();
2392	int thisnid = cpu_to_node(thiscpu);
2393	int polnid = NUMA_NO_NODE;
2394	int ret = -1;
2395
2396	pol = get_vma_policy(vma, addr);
2397	if (!(pol->flags & MPOL_F_MOF))
2398		goto out;
2399
2400	switch (pol->mode) {
2401	case MPOL_INTERLEAVE:
2402		pgoff = vma->vm_pgoff;
2403		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2404		polnid = offset_il_node(pol, pgoff);
2405		break;
2406
2407	case MPOL_PREFERRED:
2408		if (pol->flags & MPOL_F_LOCAL)
2409			polnid = numa_node_id();
2410		else
2411			polnid = pol->v.preferred_node;
 
 
 
2412		break;
2413
2414	case MPOL_BIND:
 
 
 
 
 
 
 
2415
 
2416		/*
2417		 * allows binding to multiple nodes.
2418		 * use current page if in policy nodemask,
2419		 * else select nearest allowed node, if any.
2420		 * If no allowed nodes, use current [!misplaced].
2421		 */
2422		if (node_isset(curnid, pol->v.nodes))
2423			goto out;
2424		z = first_zones_zonelist(
2425				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2426				gfp_zone(GFP_HIGHUSER),
2427				&pol->v.nodes);
2428		polnid = zone_to_nid(z->zone);
2429		break;
2430
2431	default:
2432		BUG();
2433	}
2434
2435	/* Migrate the page towards the node whose CPU is referencing it */
2436	if (pol->flags & MPOL_F_MORON) {
2437		polnid = thisnid;
2438
2439		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2440			goto out;
2441	}
2442
2443	if (curnid != polnid)
2444		ret = polnid;
2445out:
2446	mpol_cond_put(pol);
2447
2448	return ret;
2449}
2450
2451/*
2452 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2453 * dropped after task->mempolicy is set to NULL so that any allocation done as
2454 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2455 * policy.
2456 */
2457void mpol_put_task_policy(struct task_struct *task)
2458{
2459	struct mempolicy *pol;
2460
2461	task_lock(task);
2462	pol = task->mempolicy;
2463	task->mempolicy = NULL;
2464	task_unlock(task);
2465	mpol_put(pol);
2466}
2467
2468static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2469{
2470	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2471	rb_erase(&n->nd, &sp->root);
2472	sp_free(n);
2473}
2474
2475static void sp_node_init(struct sp_node *node, unsigned long start,
2476			unsigned long end, struct mempolicy *pol)
2477{
2478	node->start = start;
2479	node->end = end;
2480	node->policy = pol;
2481}
2482
2483static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2484				struct mempolicy *pol)
2485{
2486	struct sp_node *n;
2487	struct mempolicy *newpol;
2488
2489	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2490	if (!n)
2491		return NULL;
2492
2493	newpol = mpol_dup(pol);
2494	if (IS_ERR(newpol)) {
2495		kmem_cache_free(sn_cache, n);
2496		return NULL;
2497	}
2498	newpol->flags |= MPOL_F_SHARED;
2499	sp_node_init(n, start, end, newpol);
2500
2501	return n;
2502}
2503
2504/* Replace a policy range. */
2505static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2506				 unsigned long end, struct sp_node *new)
2507{
2508	struct sp_node *n;
2509	struct sp_node *n_new = NULL;
2510	struct mempolicy *mpol_new = NULL;
2511	int ret = 0;
2512
2513restart:
2514	write_lock(&sp->lock);
2515	n = sp_lookup(sp, start, end);
2516	/* Take care of old policies in the same range. */
2517	while (n && n->start < end) {
2518		struct rb_node *next = rb_next(&n->nd);
2519		if (n->start >= start) {
2520			if (n->end <= end)
2521				sp_delete(sp, n);
2522			else
2523				n->start = end;
2524		} else {
2525			/* Old policy spanning whole new range. */
2526			if (n->end > end) {
2527				if (!n_new)
2528					goto alloc_new;
2529
2530				*mpol_new = *n->policy;
2531				atomic_set(&mpol_new->refcnt, 1);
2532				sp_node_init(n_new, end, n->end, mpol_new);
2533				n->end = start;
2534				sp_insert(sp, n_new);
2535				n_new = NULL;
2536				mpol_new = NULL;
2537				break;
2538			} else
2539				n->end = start;
2540		}
2541		if (!next)
2542			break;
2543		n = rb_entry(next, struct sp_node, nd);
2544	}
2545	if (new)
2546		sp_insert(sp, new);
2547	write_unlock(&sp->lock);
2548	ret = 0;
2549
2550err_out:
2551	if (mpol_new)
2552		mpol_put(mpol_new);
2553	if (n_new)
2554		kmem_cache_free(sn_cache, n_new);
2555
2556	return ret;
2557
2558alloc_new:
2559	write_unlock(&sp->lock);
2560	ret = -ENOMEM;
2561	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2562	if (!n_new)
2563		goto err_out;
2564	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2565	if (!mpol_new)
2566		goto err_out;
 
2567	goto restart;
2568}
2569
2570/**
2571 * mpol_shared_policy_init - initialize shared policy for inode
2572 * @sp: pointer to inode shared policy
2573 * @mpol:  struct mempolicy to install
2574 *
2575 * Install non-NULL @mpol in inode's shared policy rb-tree.
2576 * On entry, the current task has a reference on a non-NULL @mpol.
2577 * This must be released on exit.
2578 * This is called at get_inode() calls and we can use GFP_KERNEL.
2579 */
2580void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2581{
2582	int ret;
2583
2584	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2585	rwlock_init(&sp->lock);
2586
2587	if (mpol) {
2588		struct vm_area_struct pvma;
2589		struct mempolicy *new;
2590		NODEMASK_SCRATCH(scratch);
2591
2592		if (!scratch)
2593			goto put_mpol;
2594		/* contextualize the tmpfs mount point mempolicy */
2595		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2596		if (IS_ERR(new))
2597			goto free_scratch; /* no valid nodemask intersection */
2598
2599		task_lock(current);
2600		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2601		task_unlock(current);
2602		if (ret)
2603			goto put_new;
2604
2605		/* Create pseudo-vma that contains just the policy */
2606		vma_init(&pvma, NULL);
2607		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2608		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2609
2610put_new:
2611		mpol_put(new);			/* drop initial ref */
2612free_scratch:
2613		NODEMASK_SCRATCH_FREE(scratch);
2614put_mpol:
2615		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2616	}
2617}
2618
2619int mpol_set_shared_policy(struct shared_policy *info,
2620			struct vm_area_struct *vma, struct mempolicy *npol)
2621{
2622	int err;
2623	struct sp_node *new = NULL;
2624	unsigned long sz = vma_pages(vma);
2625
2626	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2627		 vma->vm_pgoff,
2628		 sz, npol ? npol->mode : -1,
2629		 npol ? npol->flags : -1,
2630		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2631
2632	if (npol) {
2633		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2634		if (!new)
2635			return -ENOMEM;
2636	}
2637	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2638	if (err && new)
2639		sp_free(new);
2640	return err;
2641}
2642
2643/* Free a backing policy store on inode delete. */
2644void mpol_free_shared_policy(struct shared_policy *p)
2645{
2646	struct sp_node *n;
2647	struct rb_node *next;
2648
2649	if (!p->root.rb_node)
2650		return;
2651	write_lock(&p->lock);
2652	next = rb_first(&p->root);
2653	while (next) {
2654		n = rb_entry(next, struct sp_node, nd);
2655		next = rb_next(&n->nd);
2656		sp_delete(p, n);
2657	}
2658	write_unlock(&p->lock);
2659}
2660
2661#ifdef CONFIG_NUMA_BALANCING
2662static int __initdata numabalancing_override;
2663
2664static void __init check_numabalancing_enable(void)
2665{
2666	bool numabalancing_default = false;
2667
2668	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2669		numabalancing_default = true;
2670
2671	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2672	if (numabalancing_override)
2673		set_numabalancing_state(numabalancing_override == 1);
2674
2675	if (num_online_nodes() > 1 && !numabalancing_override) {
2676		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2677			numabalancing_default ? "Enabling" : "Disabling");
2678		set_numabalancing_state(numabalancing_default);
2679	}
2680}
2681
2682static int __init setup_numabalancing(char *str)
2683{
2684	int ret = 0;
2685	if (!str)
2686		goto out;
2687
2688	if (!strcmp(str, "enable")) {
2689		numabalancing_override = 1;
2690		ret = 1;
2691	} else if (!strcmp(str, "disable")) {
2692		numabalancing_override = -1;
2693		ret = 1;
2694	}
2695out:
2696	if (!ret)
2697		pr_warn("Unable to parse numa_balancing=\n");
2698
2699	return ret;
2700}
2701__setup("numa_balancing=", setup_numabalancing);
2702#else
2703static inline void __init check_numabalancing_enable(void)
2704{
2705}
2706#endif /* CONFIG_NUMA_BALANCING */
2707
2708/* assumes fs == KERNEL_DS */
2709void __init numa_policy_init(void)
2710{
2711	nodemask_t interleave_nodes;
2712	unsigned long largest = 0;
2713	int nid, prefer = 0;
2714
2715	policy_cache = kmem_cache_create("numa_policy",
2716					 sizeof(struct mempolicy),
2717					 0, SLAB_PANIC, NULL);
2718
2719	sn_cache = kmem_cache_create("shared_policy_node",
2720				     sizeof(struct sp_node),
2721				     0, SLAB_PANIC, NULL);
2722
2723	for_each_node(nid) {
2724		preferred_node_policy[nid] = (struct mempolicy) {
2725			.refcnt = ATOMIC_INIT(1),
2726			.mode = MPOL_PREFERRED,
2727			.flags = MPOL_F_MOF | MPOL_F_MORON,
2728			.v = { .preferred_node = nid, },
2729		};
2730	}
2731
2732	/*
2733	 * Set interleaving policy for system init. Interleaving is only
2734	 * enabled across suitably sized nodes (default is >= 16MB), or
2735	 * fall back to the largest node if they're all smaller.
2736	 */
2737	nodes_clear(interleave_nodes);
2738	for_each_node_state(nid, N_MEMORY) {
2739		unsigned long total_pages = node_present_pages(nid);
2740
2741		/* Preserve the largest node */
2742		if (largest < total_pages) {
2743			largest = total_pages;
2744			prefer = nid;
2745		}
2746
2747		/* Interleave this node? */
2748		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2749			node_set(nid, interleave_nodes);
2750	}
2751
2752	/* All too small, use the largest */
2753	if (unlikely(nodes_empty(interleave_nodes)))
2754		node_set(prefer, interleave_nodes);
2755
2756	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2757		pr_err("%s: interleaving failed\n", __func__);
2758
2759	check_numabalancing_enable();
2760}
2761
2762/* Reset policy of current process to default */
2763void numa_default_policy(void)
2764{
2765	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2766}
2767
2768/*
2769 * Parse and format mempolicy from/to strings
2770 */
2771
2772/*
2773 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2774 */
2775static const char * const policy_modes[] =
2776{
2777	[MPOL_DEFAULT]    = "default",
2778	[MPOL_PREFERRED]  = "prefer",
2779	[MPOL_BIND]       = "bind",
2780	[MPOL_INTERLEAVE] = "interleave",
2781	[MPOL_LOCAL]      = "local",
 
2782};
2783
2784
2785#ifdef CONFIG_TMPFS
2786/**
2787 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2788 * @str:  string containing mempolicy to parse
2789 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2790 *
2791 * Format of input:
2792 *	<mode>[=<flags>][:<nodelist>]
2793 *
2794 * On success, returns 0, else 1
2795 */
2796int mpol_parse_str(char *str, struct mempolicy **mpol)
2797{
2798	struct mempolicy *new = NULL;
2799	unsigned short mode_flags;
2800	nodemask_t nodes;
2801	char *nodelist = strchr(str, ':');
2802	char *flags = strchr(str, '=');
2803	int err = 1, mode;
2804
 
 
 
2805	if (nodelist) {
2806		/* NUL-terminate mode or flags string */
2807		*nodelist++ = '\0';
2808		if (nodelist_parse(nodelist, nodes))
2809			goto out;
2810		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2811			goto out;
2812	} else
2813		nodes_clear(nodes);
2814
2815	if (flags)
2816		*flags++ = '\0';	/* terminate mode string */
2817
2818	mode = match_string(policy_modes, MPOL_MAX, str);
2819	if (mode < 0)
2820		goto out;
2821
2822	switch (mode) {
2823	case MPOL_PREFERRED:
2824		/*
2825		 * Insist on a nodelist of one node only
 
 
2826		 */
2827		if (nodelist) {
2828			char *rest = nodelist;
2829			while (isdigit(*rest))
2830				rest++;
2831			if (*rest)
2832				goto out;
 
 
2833		}
2834		break;
2835	case MPOL_INTERLEAVE:
2836		/*
2837		 * Default to online nodes with memory if no nodelist
2838		 */
2839		if (!nodelist)
2840			nodes = node_states[N_MEMORY];
2841		break;
2842	case MPOL_LOCAL:
2843		/*
2844		 * Don't allow a nodelist;  mpol_new() checks flags
2845		 */
2846		if (nodelist)
2847			goto out;
2848		mode = MPOL_PREFERRED;
2849		break;
2850	case MPOL_DEFAULT:
2851		/*
2852		 * Insist on a empty nodelist
2853		 */
2854		if (!nodelist)
2855			err = 0;
2856		goto out;
 
2857	case MPOL_BIND:
2858		/*
2859		 * Insist on a nodelist
2860		 */
2861		if (!nodelist)
2862			goto out;
2863	}
2864
2865	mode_flags = 0;
2866	if (flags) {
2867		/*
2868		 * Currently, we only support two mutually exclusive
2869		 * mode flags.
2870		 */
2871		if (!strcmp(flags, "static"))
2872			mode_flags |= MPOL_F_STATIC_NODES;
2873		else if (!strcmp(flags, "relative"))
2874			mode_flags |= MPOL_F_RELATIVE_NODES;
2875		else
2876			goto out;
2877	}
2878
2879	new = mpol_new(mode, mode_flags, &nodes);
2880	if (IS_ERR(new))
2881		goto out;
2882
2883	/*
2884	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2885	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2886	 */
2887	if (mode != MPOL_PREFERRED)
2888		new->v.nodes = nodes;
2889	else if (nodelist)
2890		new->v.preferred_node = first_node(nodes);
2891	else
2892		new->flags |= MPOL_F_LOCAL;
 
 
2893
2894	/*
2895	 * Save nodes for contextualization: this will be used to "clone"
2896	 * the mempolicy in a specific context [cpuset] at a later time.
2897	 */
2898	new->w.user_nodemask = nodes;
2899
2900	err = 0;
2901
2902out:
2903	/* Restore string for error message */
2904	if (nodelist)
2905		*--nodelist = ':';
2906	if (flags)
2907		*--flags = '=';
2908	if (!err)
2909		*mpol = new;
2910	return err;
2911}
2912#endif /* CONFIG_TMPFS */
2913
2914/**
2915 * mpol_to_str - format a mempolicy structure for printing
2916 * @buffer:  to contain formatted mempolicy string
2917 * @maxlen:  length of @buffer
2918 * @pol:  pointer to mempolicy to be formatted
2919 *
2920 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2921 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2922 * longest flag, "relative", and to display at least a few node ids.
2923 */
2924void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2925{
2926	char *p = buffer;
2927	nodemask_t nodes = NODE_MASK_NONE;
2928	unsigned short mode = MPOL_DEFAULT;
2929	unsigned short flags = 0;
2930
2931	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2932		mode = pol->mode;
2933		flags = pol->flags;
2934	}
2935
2936	switch (mode) {
2937	case MPOL_DEFAULT:
 
2938		break;
2939	case MPOL_PREFERRED:
2940		if (flags & MPOL_F_LOCAL)
2941			mode = MPOL_LOCAL;
2942		else
2943			node_set(pol->v.preferred_node, nodes);
2944		break;
2945	case MPOL_BIND:
2946	case MPOL_INTERLEAVE:
2947		nodes = pol->v.nodes;
2948		break;
2949	default:
2950		WARN_ON_ONCE(1);
2951		snprintf(p, maxlen, "unknown");
2952		return;
2953	}
2954
2955	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2956
2957	if (flags & MPOL_MODE_FLAGS) {
2958		p += snprintf(p, buffer + maxlen - p, "=");
2959
2960		/*
2961		 * Currently, the only defined flags are mutually exclusive
2962		 */
2963		if (flags & MPOL_F_STATIC_NODES)
2964			p += snprintf(p, buffer + maxlen - p, "static");
2965		else if (flags & MPOL_F_RELATIVE_NODES)
2966			p += snprintf(p, buffer + maxlen - p, "relative");
2967	}
2968
2969	if (!nodes_empty(nodes))
2970		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2971			       nodemask_pr_args(&nodes));
2972}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * preferred many Try a set of nodes first before normal fallback. This is
  35 *                similar to preferred without the special case.
  36 *
  37 * default        Allocate on the local node first, or when on a VMA
  38 *                use the process policy. This is what Linux always did
  39 *		  in a NUMA aware kernel and still does by, ahem, default.
  40 *
  41 * The process policy is applied for most non interrupt memory allocations
  42 * in that process' context. Interrupts ignore the policies and always
  43 * try to allocate on the local CPU. The VMA policy is only applied for memory
  44 * allocations for a VMA in the VM.
  45 *
  46 * Currently there are a few corner cases in swapping where the policy
  47 * is not applied, but the majority should be handled. When process policy
  48 * is used it is not remembered over swap outs/swap ins.
  49 *
  50 * Only the highest zone in the zone hierarchy gets policied. Allocations
  51 * requesting a lower zone just use default policy. This implies that
  52 * on systems with highmem kernel lowmem allocation don't get policied.
  53 * Same with GFP_DMA allocations.
  54 *
  55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  56 * all users and remembered even when nobody has memory mapped.
  57 */
  58
  59/* Notebook:
  60   fix mmap readahead to honour policy and enable policy for any page cache
  61   object
  62   statistics for bigpages
  63   global policy for page cache? currently it uses process policy. Requires
  64   first item above.
  65   handle mremap for shared memory (currently ignored for the policy)
  66   grows down?
  67   make bind policy root only? It can trigger oom much faster and the
  68   kernel is not always grateful with that.
  69*/
  70
  71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  72
  73#include <linux/mempolicy.h>
  74#include <linux/pagewalk.h>
  75#include <linux/highmem.h>
  76#include <linux/hugetlb.h>
  77#include <linux/kernel.h>
  78#include <linux/sched.h>
  79#include <linux/sched/mm.h>
  80#include <linux/sched/numa_balancing.h>
  81#include <linux/sched/task.h>
  82#include <linux/nodemask.h>
  83#include <linux/cpuset.h>
  84#include <linux/slab.h>
  85#include <linux/string.h>
  86#include <linux/export.h>
  87#include <linux/nsproxy.h>
  88#include <linux/interrupt.h>
  89#include <linux/init.h>
  90#include <linux/compat.h>
  91#include <linux/ptrace.h>
  92#include <linux/swap.h>
  93#include <linux/seq_file.h>
  94#include <linux/proc_fs.h>
  95#include <linux/migrate.h>
  96#include <linux/ksm.h>
  97#include <linux/rmap.h>
  98#include <linux/security.h>
  99#include <linux/syscalls.h>
 100#include <linux/ctype.h>
 101#include <linux/mm_inline.h>
 102#include <linux/mmu_notifier.h>
 103#include <linux/printk.h>
 104#include <linux/swapops.h>
 105
 106#include <asm/tlbflush.h>
 107#include <asm/tlb.h>
 108#include <linux/uaccess.h>
 109
 110#include "internal.h"
 111
 112/* Internal flags */
 113#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 114#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 115
 116static struct kmem_cache *policy_cache;
 117static struct kmem_cache *sn_cache;
 118
 119/* Highest zone. An specific allocation for a zone below that is not
 120   policied. */
 121enum zone_type policy_zone = 0;
 122
 123/*
 124 * run-time system-wide default policy => local allocation
 125 */
 126static struct mempolicy default_policy = {
 127	.refcnt = ATOMIC_INIT(1), /* never free it */
 128	.mode = MPOL_LOCAL,
 
 129};
 130
 131static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 132
 133/**
 134 * numa_map_to_online_node - Find closest online node
 135 * @node: Node id to start the search
 136 *
 137 * Lookup the next closest node by distance if @nid is not online.
 138 *
 139 * Return: this @node if it is online, otherwise the closest node by distance
 140 */
 141int numa_map_to_online_node(int node)
 142{
 143	int min_dist = INT_MAX, dist, n, min_node;
 144
 145	if (node == NUMA_NO_NODE || node_online(node))
 146		return node;
 147
 148	min_node = node;
 149	for_each_online_node(n) {
 150		dist = node_distance(node, n);
 151		if (dist < min_dist) {
 152			min_dist = dist;
 153			min_node = n;
 154		}
 155	}
 156
 157	return min_node;
 158}
 159EXPORT_SYMBOL_GPL(numa_map_to_online_node);
 160
 161struct mempolicy *get_task_policy(struct task_struct *p)
 162{
 163	struct mempolicy *pol = p->mempolicy;
 164	int node;
 165
 166	if (pol)
 167		return pol;
 168
 169	node = numa_node_id();
 170	if (node != NUMA_NO_NODE) {
 171		pol = &preferred_node_policy[node];
 172		/* preferred_node_policy is not initialised early in boot */
 173		if (pol->mode)
 174			return pol;
 175	}
 176
 177	return &default_policy;
 178}
 179
 180static const struct mempolicy_operations {
 181	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 182	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 183} mpol_ops[MPOL_MAX];
 184
 185static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 186{
 187	return pol->flags & MPOL_MODE_FLAGS;
 188}
 189
 190static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 191				   const nodemask_t *rel)
 192{
 193	nodemask_t tmp;
 194	nodes_fold(tmp, *orig, nodes_weight(*rel));
 195	nodes_onto(*ret, tmp, *rel);
 196}
 197
 198static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 199{
 200	if (nodes_empty(*nodes))
 201		return -EINVAL;
 202	pol->nodes = *nodes;
 203	return 0;
 204}
 205
 206static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 207{
 
 
 
 
 
 
 
 
 
 
 
 208	if (nodes_empty(*nodes))
 209		return -EINVAL;
 210
 211	nodes_clear(pol->nodes);
 212	node_set(first_node(*nodes), pol->nodes);
 213	return 0;
 214}
 215
 216/*
 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 218 * any, for the new policy.  mpol_new() has already validated the nodes
 219 * parameter with respect to the policy mode and flags.
 
 220 *
 221 * Must be called holding task's alloc_lock to protect task's mems_allowed
 222 * and mempolicy.  May also be called holding the mmap_lock for write.
 223 */
 224static int mpol_set_nodemask(struct mempolicy *pol,
 225		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 226{
 227	int ret;
 228
 229	/*
 230	 * Default (pol==NULL) resp. local memory policies are not a
 231	 * subject of any remapping. They also do not need any special
 232	 * constructor.
 233	 */
 234	if (!pol || pol->mode == MPOL_LOCAL)
 235		return 0;
 236
 237	/* Check N_MEMORY */
 238	nodes_and(nsc->mask1,
 239		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 240
 241	VM_BUG_ON(!nodes);
 
 
 
 
 
 
 
 242
 243	if (pol->flags & MPOL_F_RELATIVE_NODES)
 244		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 245	else
 246		nodes_and(nsc->mask2, *nodes, nsc->mask1);
 
 
 247
 248	if (mpol_store_user_nodemask(pol))
 249		pol->w.user_nodemask = *nodes;
 250	else
 251		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
 252
 253	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 254	return ret;
 255}
 256
 257/*
 258 * This function just creates a new policy, does some check and simple
 259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 260 */
 261static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 262				  nodemask_t *nodes)
 263{
 264	struct mempolicy *policy;
 265
 266	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 267		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 268
 269	if (mode == MPOL_DEFAULT) {
 270		if (nodes && !nodes_empty(*nodes))
 271			return ERR_PTR(-EINVAL);
 272		return NULL;
 273	}
 274	VM_BUG_ON(!nodes);
 275
 276	/*
 277	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 278	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 279	 * All other modes require a valid pointer to a non-empty nodemask.
 280	 */
 281	if (mode == MPOL_PREFERRED) {
 282		if (nodes_empty(*nodes)) {
 283			if (((flags & MPOL_F_STATIC_NODES) ||
 284			     (flags & MPOL_F_RELATIVE_NODES)))
 285				return ERR_PTR(-EINVAL);
 286
 287			mode = MPOL_LOCAL;
 288		}
 289	} else if (mode == MPOL_LOCAL) {
 290		if (!nodes_empty(*nodes) ||
 291		    (flags & MPOL_F_STATIC_NODES) ||
 292		    (flags & MPOL_F_RELATIVE_NODES))
 293			return ERR_PTR(-EINVAL);
 
 294	} else if (nodes_empty(*nodes))
 295		return ERR_PTR(-EINVAL);
 296	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 297	if (!policy)
 298		return ERR_PTR(-ENOMEM);
 299	atomic_set(&policy->refcnt, 1);
 300	policy->mode = mode;
 301	policy->flags = flags;
 302	policy->home_node = NUMA_NO_NODE;
 303
 304	return policy;
 305}
 306
 307/* Slow path of a mpol destructor. */
 308void __mpol_put(struct mempolicy *p)
 309{
 310	if (!atomic_dec_and_test(&p->refcnt))
 311		return;
 312	kmem_cache_free(policy_cache, p);
 313}
 314
 315static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 316{
 317}
 318
 319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES)
 324		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 325	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 326		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 327	else {
 328		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
 329								*nodes);
 330		pol->w.cpuset_mems_allowed = *nodes;
 331	}
 332
 333	if (nodes_empty(tmp))
 334		tmp = *nodes;
 335
 336	pol->nodes = tmp;
 337}
 338
 339static void mpol_rebind_preferred(struct mempolicy *pol,
 340						const nodemask_t *nodes)
 341{
 342	pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343}
 344
 345/*
 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 347 *
 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
 349 * policies are protected by task->mems_allowed_seq to prevent a premature
 350 * OOM/allocation failure due to parallel nodemask modification.
 351 */
 352static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 353{
 354	if (!pol || pol->mode == MPOL_LOCAL)
 355		return;
 356	if (!mpol_store_user_nodemask(pol) &&
 357	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 358		return;
 359
 360	mpol_ops[pol->mode].rebind(pol, newmask);
 361}
 362
 363/*
 364 * Wrapper for mpol_rebind_policy() that just requires task
 365 * pointer, and updates task mempolicy.
 366 *
 367 * Called with task's alloc_lock held.
 368 */
 369
 370void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 371{
 372	mpol_rebind_policy(tsk->mempolicy, new);
 373}
 374
 375/*
 376 * Rebind each vma in mm to new nodemask.
 377 *
 378 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 379 */
 380
 381void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 382{
 383	struct vm_area_struct *vma;
 384	VMA_ITERATOR(vmi, mm, 0);
 385
 386	mmap_write_lock(mm);
 387	for_each_vma(vmi, vma)
 388		mpol_rebind_policy(vma->vm_policy, new);
 389	mmap_write_unlock(mm);
 390}
 391
 392static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 393	[MPOL_DEFAULT] = {
 394		.rebind = mpol_rebind_default,
 395	},
 396	[MPOL_INTERLEAVE] = {
 397		.create = mpol_new_nodemask,
 398		.rebind = mpol_rebind_nodemask,
 399	},
 400	[MPOL_PREFERRED] = {
 401		.create = mpol_new_preferred,
 402		.rebind = mpol_rebind_preferred,
 403	},
 404	[MPOL_BIND] = {
 405		.create = mpol_new_nodemask,
 406		.rebind = mpol_rebind_nodemask,
 407	},
 408	[MPOL_LOCAL] = {
 409		.rebind = mpol_rebind_default,
 410	},
 411	[MPOL_PREFERRED_MANY] = {
 412		.create = mpol_new_nodemask,
 413		.rebind = mpol_rebind_preferred,
 414	},
 415};
 416
 417static int migrate_page_add(struct page *page, struct list_head *pagelist,
 418				unsigned long flags);
 419
 420struct queue_pages {
 421	struct list_head *pagelist;
 422	unsigned long flags;
 423	nodemask_t *nmask;
 424	unsigned long start;
 425	unsigned long end;
 426	struct vm_area_struct *first;
 427};
 428
 429/*
 430 * Check if the page's nid is in qp->nmask.
 431 *
 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 433 * in the invert of qp->nmask.
 434 */
 435static inline bool queue_pages_required(struct page *page,
 436					struct queue_pages *qp)
 437{
 438	int nid = page_to_nid(page);
 439	unsigned long flags = qp->flags;
 440
 441	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 442}
 443
 444/*
 445 * queue_pages_pmd() has three possible return values:
 446 * 0 - pages are placed on the right node or queued successfully, or
 447 *     special page is met, i.e. huge zero page.
 448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 449 *     specified.
 
 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 451 *        existing page was already on a node that does not follow the
 452 *        policy.
 453 */
 454static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 455				unsigned long end, struct mm_walk *walk)
 456	__releases(ptl)
 457{
 458	int ret = 0;
 459	struct page *page;
 460	struct queue_pages *qp = walk->private;
 461	unsigned long flags;
 462
 463	if (unlikely(is_pmd_migration_entry(*pmd))) {
 464		ret = -EIO;
 465		goto unlock;
 466	}
 467	page = pmd_page(*pmd);
 468	if (is_huge_zero_page(page)) {
 469		walk->action = ACTION_CONTINUE;
 470		goto unlock;
 
 
 471	}
 472	if (!queue_pages_required(page, qp))
 473		goto unlock;
 474
 475	flags = qp->flags;
 476	/* go to thp migration */
 477	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 478		if (!vma_migratable(walk->vma) ||
 479		    migrate_page_add(page, qp->pagelist, flags)) {
 480			ret = 1;
 481			goto unlock;
 482		}
 483	} else
 484		ret = -EIO;
 485unlock:
 486	spin_unlock(ptl);
 
 487	return ret;
 488}
 489
 490/*
 491 * Scan through pages checking if pages follow certain conditions,
 492 * and move them to the pagelist if they do.
 493 *
 494 * queue_pages_pte_range() has three possible return values:
 495 * 0 - pages are placed on the right node or queued successfully, or
 496 *     special page is met, i.e. zero page.
 497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 498 *     specified.
 499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 500 *        on a node that does not follow the policy.
 501 */
 502static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 503			unsigned long end, struct mm_walk *walk)
 504{
 505	struct vm_area_struct *vma = walk->vma;
 506	struct page *page;
 507	struct queue_pages *qp = walk->private;
 508	unsigned long flags = qp->flags;
 
 509	bool has_unmovable = false;
 510	pte_t *pte, *mapped_pte;
 511	spinlock_t *ptl;
 512
 513	ptl = pmd_trans_huge_lock(pmd, vma);
 514	if (ptl)
 515		return queue_pages_pmd(pmd, ptl, addr, end, walk);
 
 
 
 
 516
 517	if (pmd_trans_unstable(pmd))
 518		return 0;
 519
 520	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 521	for (; addr != end; pte++, addr += PAGE_SIZE) {
 522		if (!pte_present(*pte))
 523			continue;
 524		page = vm_normal_page(vma, addr, *pte);
 525		if (!page || is_zone_device_page(page))
 526			continue;
 527		/*
 528		 * vm_normal_page() filters out zero pages, but there might
 529		 * still be PageReserved pages to skip, perhaps in a VDSO.
 530		 */
 531		if (PageReserved(page))
 532			continue;
 533		if (!queue_pages_required(page, qp))
 534			continue;
 535		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 536			/* MPOL_MF_STRICT must be specified if we get here */
 537			if (!vma_migratable(vma)) {
 538				has_unmovable = true;
 539				break;
 540			}
 541
 542			/*
 543			 * Do not abort immediately since there may be
 544			 * temporary off LRU pages in the range.  Still
 545			 * need migrate other LRU pages.
 546			 */
 547			if (migrate_page_add(page, qp->pagelist, flags))
 548				has_unmovable = true;
 549		} else
 550			break;
 551	}
 552	pte_unmap_unlock(mapped_pte, ptl);
 553	cond_resched();
 554
 555	if (has_unmovable)
 556		return 1;
 557
 558	return addr != end ? -EIO : 0;
 559}
 560
 561static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 562			       unsigned long addr, unsigned long end,
 563			       struct mm_walk *walk)
 564{
 565	int ret = 0;
 566#ifdef CONFIG_HUGETLB_PAGE
 567	struct queue_pages *qp = walk->private;
 568	unsigned long flags = (qp->flags & MPOL_MF_VALID);
 569	struct page *page;
 570	spinlock_t *ptl;
 571	pte_t entry;
 572
 573	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 574	entry = huge_ptep_get(pte);
 575	if (!pte_present(entry))
 576		goto unlock;
 577	page = pte_page(entry);
 578	if (!queue_pages_required(page, qp))
 579		goto unlock;
 580
 581	if (flags == MPOL_MF_STRICT) {
 582		/*
 583		 * STRICT alone means only detecting misplaced page and no
 584		 * need to further check other vma.
 585		 */
 586		ret = -EIO;
 587		goto unlock;
 588	}
 589
 590	if (!vma_migratable(walk->vma)) {
 591		/*
 592		 * Must be STRICT with MOVE*, otherwise .test_walk() have
 593		 * stopped walking current vma.
 594		 * Detecting misplaced page but allow migrating pages which
 595		 * have been queued.
 596		 */
 597		ret = 1;
 598		goto unlock;
 599	}
 600
 601	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 602	if (flags & (MPOL_MF_MOVE_ALL) ||
 603	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
 604	     !hugetlb_pmd_shared(pte))) {
 605		if (isolate_hugetlb(page, qp->pagelist) &&
 606			(flags & MPOL_MF_STRICT))
 607			/*
 608			 * Failed to isolate page but allow migrating pages
 609			 * which have been queued.
 610			 */
 611			ret = 1;
 612	}
 613unlock:
 614	spin_unlock(ptl);
 615#else
 616	BUG();
 617#endif
 618	return ret;
 619}
 620
 621#ifdef CONFIG_NUMA_BALANCING
 622/*
 623 * This is used to mark a range of virtual addresses to be inaccessible.
 624 * These are later cleared by a NUMA hinting fault. Depending on these
 625 * faults, pages may be migrated for better NUMA placement.
 626 *
 627 * This is assuming that NUMA faults are handled using PROT_NONE. If
 628 * an architecture makes a different choice, it will need further
 629 * changes to the core.
 630 */
 631unsigned long change_prot_numa(struct vm_area_struct *vma,
 632			unsigned long addr, unsigned long end)
 633{
 634	struct mmu_gather tlb;
 635	int nr_updated;
 636
 637	tlb_gather_mmu(&tlb, vma->vm_mm);
 638
 639	nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
 640				       MM_CP_PROT_NUMA);
 641	if (nr_updated)
 642		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 643
 644	tlb_finish_mmu(&tlb);
 645
 646	return nr_updated;
 647}
 648#else
 649static unsigned long change_prot_numa(struct vm_area_struct *vma,
 650			unsigned long addr, unsigned long end)
 651{
 652	return 0;
 653}
 654#endif /* CONFIG_NUMA_BALANCING */
 655
 656static int queue_pages_test_walk(unsigned long start, unsigned long end,
 657				struct mm_walk *walk)
 658{
 659	struct vm_area_struct *next, *vma = walk->vma;
 660	struct queue_pages *qp = walk->private;
 661	unsigned long endvma = vma->vm_end;
 662	unsigned long flags = qp->flags;
 663
 664	/* range check first */
 665	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
 666
 667	if (!qp->first) {
 668		qp->first = vma;
 669		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 670			(qp->start < vma->vm_start))
 671			/* hole at head side of range */
 672			return -EFAULT;
 673	}
 674	next = find_vma(vma->vm_mm, vma->vm_end);
 675	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 676		((vma->vm_end < qp->end) &&
 677		(!next || vma->vm_end < next->vm_start)))
 678		/* hole at middle or tail of range */
 679		return -EFAULT;
 680
 681	/*
 682	 * Need check MPOL_MF_STRICT to return -EIO if possible
 683	 * regardless of vma_migratable
 684	 */
 685	if (!vma_migratable(vma) &&
 686	    !(flags & MPOL_MF_STRICT))
 687		return 1;
 688
 689	if (endvma > end)
 690		endvma = end;
 
 
 
 
 
 
 
 
 
 
 
 691
 692	if (flags & MPOL_MF_LAZY) {
 693		/* Similar to task_numa_work, skip inaccessible VMAs */
 694		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
 
 695			!(vma->vm_flags & VM_MIXEDMAP))
 696			change_prot_numa(vma, start, endvma);
 697		return 1;
 698	}
 699
 700	/* queue pages from current vma */
 701	if (flags & MPOL_MF_VALID)
 702		return 0;
 703	return 1;
 704}
 705
 706static const struct mm_walk_ops queue_pages_walk_ops = {
 707	.hugetlb_entry		= queue_pages_hugetlb,
 708	.pmd_entry		= queue_pages_pte_range,
 709	.test_walk		= queue_pages_test_walk,
 710};
 711
 712/*
 713 * Walk through page tables and collect pages to be migrated.
 714 *
 715 * If pages found in a given range are on a set of nodes (determined by
 716 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 717 * passed via @private.
 718 *
 719 * queue_pages_range() has three possible return values:
 720 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 721 *     specified.
 722 * 0 - queue pages successfully or no misplaced page.
 723 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 724 *         memory range specified by nodemask and maxnode points outside
 725 *         your accessible address space (-EFAULT)
 726 */
 727static int
 728queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 729		nodemask_t *nodes, unsigned long flags,
 730		struct list_head *pagelist)
 731{
 732	int err;
 733	struct queue_pages qp = {
 734		.pagelist = pagelist,
 735		.flags = flags,
 736		.nmask = nodes,
 737		.start = start,
 738		.end = end,
 739		.first = NULL,
 740	};
 741
 742	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 743
 744	if (!qp.first)
 745		/* whole range in hole */
 746		err = -EFAULT;
 747
 748	return err;
 749}
 750
 751/*
 752 * Apply policy to a single VMA
 753 * This must be called with the mmap_lock held for writing.
 754 */
 755static int vma_replace_policy(struct vm_area_struct *vma,
 756						struct mempolicy *pol)
 757{
 758	int err;
 759	struct mempolicy *old;
 760	struct mempolicy *new;
 761
 762	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 763		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 764		 vma->vm_ops, vma->vm_file,
 765		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 766
 767	new = mpol_dup(pol);
 768	if (IS_ERR(new))
 769		return PTR_ERR(new);
 770
 771	if (vma->vm_ops && vma->vm_ops->set_policy) {
 772		err = vma->vm_ops->set_policy(vma, new);
 773		if (err)
 774			goto err_out;
 775	}
 776
 777	old = vma->vm_policy;
 778	vma->vm_policy = new; /* protected by mmap_lock */
 779	mpol_put(old);
 780
 781	return 0;
 782 err_out:
 783	mpol_put(new);
 784	return err;
 785}
 786
 787/* Step 2: apply policy to a range and do splits. */
 788static int mbind_range(struct mm_struct *mm, unsigned long start,
 789		       unsigned long end, struct mempolicy *new_pol)
 790{
 791	MA_STATE(mas, &mm->mm_mt, start, start);
 792	struct vm_area_struct *prev;
 793	struct vm_area_struct *vma;
 794	int err = 0;
 795	pgoff_t pgoff;
 
 
 796
 797	prev = mas_prev(&mas, 0);
 798	if (unlikely(!prev))
 799		mas_set(&mas, start);
 800
 801	vma = mas_find(&mas, end - 1);
 802	if (WARN_ON(!vma))
 803		return 0;
 804
 
 805	if (start > vma->vm_start)
 806		prev = vma;
 807
 808	for (; vma; vma = mas_next(&mas, end - 1)) {
 809		unsigned long vmstart = max(start, vma->vm_start);
 810		unsigned long vmend = min(end, vma->vm_end);
 
 811
 812		if (mpol_equal(vma_policy(vma), new_pol))
 813			goto next;
 814
 815		pgoff = vma->vm_pgoff +
 816			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 817		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 818				 vma->anon_vma, vma->vm_file, pgoff,
 819				 new_pol, vma->vm_userfaultfd_ctx,
 820				 anon_vma_name(vma));
 821		if (prev) {
 822			/* vma_merge() invalidated the mas */
 823			mas_pause(&mas);
 824			vma = prev;
 
 
 
 
 825			goto replace;
 826		}
 827		if (vma->vm_start != vmstart) {
 828			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 829			if (err)
 830				goto out;
 831			/* split_vma() invalidated the mas */
 832			mas_pause(&mas);
 833		}
 834		if (vma->vm_end != vmend) {
 835			err = split_vma(vma->vm_mm, vma, vmend, 0);
 836			if (err)
 837				goto out;
 838			/* split_vma() invalidated the mas */
 839			mas_pause(&mas);
 840		}
 841replace:
 842		err = vma_replace_policy(vma, new_pol);
 843		if (err)
 844			goto out;
 845next:
 846		prev = vma;
 847	}
 848
 849out:
 850	return err;
 851}
 852
 853/* Set the process memory policy */
 854static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 855			     nodemask_t *nodes)
 856{
 857	struct mempolicy *new, *old;
 858	NODEMASK_SCRATCH(scratch);
 859	int ret;
 860
 861	if (!scratch)
 862		return -ENOMEM;
 863
 864	new = mpol_new(mode, flags, nodes);
 865	if (IS_ERR(new)) {
 866		ret = PTR_ERR(new);
 867		goto out;
 868	}
 869
 870	task_lock(current);
 871	ret = mpol_set_nodemask(new, nodes, scratch);
 872	if (ret) {
 873		task_unlock(current);
 874		mpol_put(new);
 875		goto out;
 876	}
 877
 878	old = current->mempolicy;
 879	current->mempolicy = new;
 880	if (new && new->mode == MPOL_INTERLEAVE)
 881		current->il_prev = MAX_NUMNODES-1;
 882	task_unlock(current);
 883	mpol_put(old);
 884	ret = 0;
 885out:
 886	NODEMASK_SCRATCH_FREE(scratch);
 887	return ret;
 888}
 889
 890/*
 891 * Return nodemask for policy for get_mempolicy() query
 892 *
 893 * Called with task's alloc_lock held
 894 */
 895static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 896{
 897	nodes_clear(*nodes);
 898	if (p == &default_policy)
 899		return;
 900
 901	switch (p->mode) {
 902	case MPOL_BIND:
 
 903	case MPOL_INTERLEAVE:
 
 
 904	case MPOL_PREFERRED:
 905	case MPOL_PREFERRED_MANY:
 906		*nodes = p->nodes;
 907		break;
 908	case MPOL_LOCAL:
 909		/* return empty node mask for local allocation */
 910		break;
 911	default:
 912		BUG();
 913	}
 914}
 915
 916static int lookup_node(struct mm_struct *mm, unsigned long addr)
 917{
 918	struct page *p = NULL;
 919	int ret;
 920
 921	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
 922	if (ret > 0) {
 923		ret = page_to_nid(p);
 
 924		put_page(p);
 925	}
 926	return ret;
 
 
 927}
 928
 929/* Retrieve NUMA policy */
 930static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 931			     unsigned long addr, unsigned long flags)
 932{
 933	int err;
 934	struct mm_struct *mm = current->mm;
 935	struct vm_area_struct *vma = NULL;
 936	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 937
 938	if (flags &
 939		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 940		return -EINVAL;
 941
 942	if (flags & MPOL_F_MEMS_ALLOWED) {
 943		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 944			return -EINVAL;
 945		*policy = 0;	/* just so it's initialized */
 946		task_lock(current);
 947		*nmask  = cpuset_current_mems_allowed;
 948		task_unlock(current);
 949		return 0;
 950	}
 951
 952	if (flags & MPOL_F_ADDR) {
 953		/*
 954		 * Do NOT fall back to task policy if the
 955		 * vma/shared policy at addr is NULL.  We
 956		 * want to return MPOL_DEFAULT in this case.
 957		 */
 958		mmap_read_lock(mm);
 959		vma = vma_lookup(mm, addr);
 960		if (!vma) {
 961			mmap_read_unlock(mm);
 962			return -EFAULT;
 963		}
 964		if (vma->vm_ops && vma->vm_ops->get_policy)
 965			pol = vma->vm_ops->get_policy(vma, addr);
 966		else
 967			pol = vma->vm_policy;
 968	} else if (addr)
 969		return -EINVAL;
 970
 971	if (!pol)
 972		pol = &default_policy;	/* indicates default behavior */
 973
 974	if (flags & MPOL_F_NODE) {
 975		if (flags & MPOL_F_ADDR) {
 976			/*
 977			 * Take a refcount on the mpol, because we are about to
 978			 * drop the mmap_lock, after which only "pol" remains
 979			 * valid, "vma" is stale.
 
 980			 */
 981			pol_refcount = pol;
 982			vma = NULL;
 983			mpol_get(pol);
 984			mmap_read_unlock(mm);
 985			err = lookup_node(mm, addr);
 986			if (err < 0)
 987				goto out;
 988			*policy = err;
 989		} else if (pol == current->mempolicy &&
 990				pol->mode == MPOL_INTERLEAVE) {
 991			*policy = next_node_in(current->il_prev, pol->nodes);
 992		} else {
 993			err = -EINVAL;
 994			goto out;
 995		}
 996	} else {
 997		*policy = pol == &default_policy ? MPOL_DEFAULT :
 998						pol->mode;
 999		/*
1000		 * Internal mempolicy flags must be masked off before exposing
1001		 * the policy to userspace.
1002		 */
1003		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1004	}
1005
1006	err = 0;
1007	if (nmask) {
1008		if (mpol_store_user_nodemask(pol)) {
1009			*nmask = pol->w.user_nodemask;
1010		} else {
1011			task_lock(current);
1012			get_policy_nodemask(pol, nmask);
1013			task_unlock(current);
1014		}
1015	}
1016
1017 out:
1018	mpol_cond_put(pol);
1019	if (vma)
1020		mmap_read_unlock(mm);
1021	if (pol_refcount)
1022		mpol_put(pol_refcount);
1023	return err;
1024}
1025
1026#ifdef CONFIG_MIGRATION
1027/*
1028 * page migration, thp tail pages can be passed.
1029 */
1030static int migrate_page_add(struct page *page, struct list_head *pagelist,
1031				unsigned long flags)
1032{
1033	struct page *head = compound_head(page);
1034	/*
1035	 * Avoid migrating a page that is shared with others.
1036	 */
1037	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1038		if (!isolate_lru_page(head)) {
1039			list_add_tail(&head->lru, pagelist);
1040			mod_node_page_state(page_pgdat(head),
1041				NR_ISOLATED_ANON + page_is_file_lru(head),
1042				thp_nr_pages(head));
1043		} else if (flags & MPOL_MF_STRICT) {
1044			/*
1045			 * Non-movable page may reach here.  And, there may be
1046			 * temporary off LRU pages or non-LRU movable pages.
1047			 * Treat them as unmovable pages since they can't be
1048			 * isolated, so they can't be moved at the moment.  It
1049			 * should return -EIO for this case too.
1050			 */
1051			return -EIO;
1052		}
1053	}
1054
1055	return 0;
1056}
1057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058/*
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1061 */
1062static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1063			   int flags)
1064{
1065	nodemask_t nmask;
1066	struct vm_area_struct *vma;
1067	LIST_HEAD(pagelist);
1068	int err = 0;
1069	struct migration_target_control mtc = {
1070		.nid = dest,
1071		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1072	};
1073
1074	nodes_clear(nmask);
1075	node_set(source, nmask);
1076
1077	/*
1078	 * This does not "check" the range but isolates all pages that
1079	 * need migration.  Between passing in the full user address
1080	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1081	 */
1082	vma = find_vma(mm, 0);
1083	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1084	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1085			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1086
1087	if (!list_empty(&pagelist)) {
1088		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1089				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1090		if (err)
1091			putback_movable_pages(&pagelist);
1092	}
1093
1094	return err;
1095}
1096
1097/*
1098 * Move pages between the two nodesets so as to preserve the physical
1099 * layout as much as possible.
1100 *
1101 * Returns the number of page that could not be moved.
1102 */
1103int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1104		     const nodemask_t *to, int flags)
1105{
1106	int busy = 0;
1107	int err = 0;
1108	nodemask_t tmp;
1109
1110	lru_cache_disable();
 
 
1111
1112	mmap_read_lock(mm);
1113
1114	/*
1115	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1116	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1117	 * bit in 'tmp', and return that <source, dest> pair for migration.
1118	 * The pair of nodemasks 'to' and 'from' define the map.
1119	 *
1120	 * If no pair of bits is found that way, fallback to picking some
1121	 * pair of 'source' and 'dest' bits that are not the same.  If the
1122	 * 'source' and 'dest' bits are the same, this represents a node
1123	 * that will be migrating to itself, so no pages need move.
1124	 *
1125	 * If no bits are left in 'tmp', or if all remaining bits left
1126	 * in 'tmp' correspond to the same bit in 'to', return false
1127	 * (nothing left to migrate).
1128	 *
1129	 * This lets us pick a pair of nodes to migrate between, such that
1130	 * if possible the dest node is not already occupied by some other
1131	 * source node, minimizing the risk of overloading the memory on a
1132	 * node that would happen if we migrated incoming memory to a node
1133	 * before migrating outgoing memory source that same node.
1134	 *
1135	 * A single scan of tmp is sufficient.  As we go, we remember the
1136	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1137	 * that not only moved, but what's better, moved to an empty slot
1138	 * (d is not set in tmp), then we break out then, with that pair.
1139	 * Otherwise when we finish scanning from_tmp, we at least have the
1140	 * most recent <s, d> pair that moved.  If we get all the way through
1141	 * the scan of tmp without finding any node that moved, much less
1142	 * moved to an empty node, then there is nothing left worth migrating.
1143	 */
1144
1145	tmp = *from;
1146	while (!nodes_empty(tmp)) {
1147		int s, d;
1148		int source = NUMA_NO_NODE;
1149		int dest = 0;
1150
1151		for_each_node_mask(s, tmp) {
1152
1153			/*
1154			 * do_migrate_pages() tries to maintain the relative
1155			 * node relationship of the pages established between
1156			 * threads and memory areas.
1157                         *
1158			 * However if the number of source nodes is not equal to
1159			 * the number of destination nodes we can not preserve
1160			 * this node relative relationship.  In that case, skip
1161			 * copying memory from a node that is in the destination
1162			 * mask.
1163			 *
1164			 * Example: [2,3,4] -> [3,4,5] moves everything.
1165			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1166			 */
1167
1168			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1169						(node_isset(s, *to)))
1170				continue;
1171
1172			d = node_remap(s, *from, *to);
1173			if (s == d)
1174				continue;
1175
1176			source = s;	/* Node moved. Memorize */
1177			dest = d;
1178
1179			/* dest not in remaining from nodes? */
1180			if (!node_isset(dest, tmp))
1181				break;
1182		}
1183		if (source == NUMA_NO_NODE)
1184			break;
1185
1186		node_clear(source, tmp);
1187		err = migrate_to_node(mm, source, dest, flags);
1188		if (err > 0)
1189			busy += err;
1190		if (err < 0)
1191			break;
1192	}
1193	mmap_read_unlock(mm);
1194
1195	lru_cache_enable();
1196	if (err < 0)
1197		return err;
1198	return busy;
1199
1200}
1201
1202/*
1203 * Allocate a new page for page migration based on vma policy.
1204 * Start by assuming the page is mapped by the same vma as contains @start.
1205 * Search forward from there, if not.  N.B., this assumes that the
1206 * list of pages handed to migrate_pages()--which is how we get here--
1207 * is in virtual address order.
1208 */
1209static struct page *new_page(struct page *page, unsigned long start)
1210{
1211	struct folio *dst, *src = page_folio(page);
1212	struct vm_area_struct *vma;
1213	unsigned long address;
1214	VMA_ITERATOR(vmi, current->mm, start);
1215	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1216
1217	for_each_vma(vmi, vma) {
 
1218		address = page_address_in_vma(page, vma);
1219		if (address != -EFAULT)
1220			break;
 
1221	}
1222
1223	if (folio_test_hugetlb(src))
1224		return alloc_huge_page_vma(page_hstate(&src->page),
1225				vma, address);
 
 
1226
1227	if (folio_test_large(src))
1228		gfp = GFP_TRANSHUGE;
1229
 
 
 
 
1230	/*
1231	 * if !vma, vma_alloc_folio() will use task or system default policy
1232	 */
1233	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1234			folio_test_large(src));
1235	return &dst->page;
1236}
1237#else
1238
1239static int migrate_page_add(struct page *page, struct list_head *pagelist,
1240				unsigned long flags)
1241{
1242	return -EIO;
1243}
1244
1245int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1246		     const nodemask_t *to, int flags)
1247{
1248	return -ENOSYS;
1249}
1250
1251static struct page *new_page(struct page *page, unsigned long start)
1252{
1253	return NULL;
1254}
1255#endif
1256
1257static long do_mbind(unsigned long start, unsigned long len,
1258		     unsigned short mode, unsigned short mode_flags,
1259		     nodemask_t *nmask, unsigned long flags)
1260{
1261	struct mm_struct *mm = current->mm;
1262	struct mempolicy *new;
1263	unsigned long end;
1264	int err;
1265	int ret;
1266	LIST_HEAD(pagelist);
1267
1268	if (flags & ~(unsigned long)MPOL_MF_VALID)
1269		return -EINVAL;
1270	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1271		return -EPERM;
1272
1273	if (start & ~PAGE_MASK)
1274		return -EINVAL;
1275
1276	if (mode == MPOL_DEFAULT)
1277		flags &= ~MPOL_MF_STRICT;
1278
1279	len = PAGE_ALIGN(len);
1280	end = start + len;
1281
1282	if (end < start)
1283		return -EINVAL;
1284	if (end == start)
1285		return 0;
1286
1287	new = mpol_new(mode, mode_flags, nmask);
1288	if (IS_ERR(new))
1289		return PTR_ERR(new);
1290
1291	if (flags & MPOL_MF_LAZY)
1292		new->flags |= MPOL_F_MOF;
1293
1294	/*
1295	 * If we are using the default policy then operation
1296	 * on discontinuous address spaces is okay after all
1297	 */
1298	if (!new)
1299		flags |= MPOL_MF_DISCONTIG_OK;
1300
1301	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1302		 start, start + len, mode, mode_flags,
1303		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1304
1305	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1306
1307		lru_cache_disable();
 
 
1308	}
1309	{
1310		NODEMASK_SCRATCH(scratch);
1311		if (scratch) {
1312			mmap_write_lock(mm);
 
1313			err = mpol_set_nodemask(new, nmask, scratch);
 
1314			if (err)
1315				mmap_write_unlock(mm);
1316		} else
1317			err = -ENOMEM;
1318		NODEMASK_SCRATCH_FREE(scratch);
1319	}
1320	if (err)
1321		goto mpol_out;
1322
1323	ret = queue_pages_range(mm, start, end, nmask,
1324			  flags | MPOL_MF_INVERT, &pagelist);
1325
1326	if (ret < 0) {
1327		err = ret;
1328		goto up_out;
1329	}
1330
1331	err = mbind_range(mm, start, end, new);
1332
1333	if (!err) {
1334		int nr_failed = 0;
1335
1336		if (!list_empty(&pagelist)) {
1337			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1338			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1339				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1340			if (nr_failed)
1341				putback_movable_pages(&pagelist);
1342		}
1343
1344		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1345			err = -EIO;
1346	} else {
1347up_out:
1348		if (!list_empty(&pagelist))
1349			putback_movable_pages(&pagelist);
1350	}
1351
1352	mmap_write_unlock(mm);
1353mpol_out:
1354	mpol_put(new);
1355	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1356		lru_cache_enable();
1357	return err;
1358}
1359
1360/*
1361 * User space interface with variable sized bitmaps for nodelists.
1362 */
1363static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1364		      unsigned long maxnode)
1365{
1366	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1367	int ret;
1368
1369	if (in_compat_syscall())
1370		ret = compat_get_bitmap(mask,
1371					(const compat_ulong_t __user *)nmask,
1372					maxnode);
1373	else
1374		ret = copy_from_user(mask, nmask,
1375				     nlongs * sizeof(unsigned long));
1376
1377	if (ret)
1378		return -EFAULT;
1379
1380	if (maxnode % BITS_PER_LONG)
1381		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1382
1383	return 0;
1384}
1385
1386/* Copy a node mask from user space. */
1387static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1388		     unsigned long maxnode)
1389{
 
 
 
 
 
1390	--maxnode;
1391	nodes_clear(*nodes);
1392	if (maxnode == 0 || !nmask)
1393		return 0;
1394	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395		return -EINVAL;
1396
 
 
 
 
 
 
1397	/*
1398	 * When the user specified more nodes than supported just check
1399	 * if the non supported part is all zero, one word at a time,
1400	 * starting at the end.
1401	 */
1402	while (maxnode > MAX_NUMNODES) {
1403		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1404		unsigned long t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405
1406		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
 
1407			return -EFAULT;
1408
1409		if (maxnode - bits >= MAX_NUMNODES) {
1410			maxnode -= bits;
1411		} else {
1412			maxnode = MAX_NUMNODES;
1413			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1414		}
1415		if (t)
1416			return -EINVAL;
1417	}
1418
1419	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
 
 
 
1420}
1421
1422/* Copy a kernel node mask to user space */
1423static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1424			      nodemask_t *nodes)
1425{
1426	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1427	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1428	bool compat = in_compat_syscall();
1429
1430	if (compat)
1431		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1432
1433	if (copy > nbytes) {
1434		if (copy > PAGE_SIZE)
1435			return -EINVAL;
1436		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1437			return -EFAULT;
1438		copy = nbytes;
1439		maxnode = nr_node_ids;
1440	}
1441
1442	if (compat)
1443		return compat_put_bitmap((compat_ulong_t __user *)mask,
1444					 nodes_addr(*nodes), maxnode);
1445
1446	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447}
1448
1449/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1450static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1451{
1452	*flags = *mode & MPOL_MODE_FLAGS;
1453	*mode &= ~MPOL_MODE_FLAGS;
1454
1455	if ((unsigned int)(*mode) >=  MPOL_MAX)
1456		return -EINVAL;
1457	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1458		return -EINVAL;
1459	if (*flags & MPOL_F_NUMA_BALANCING) {
1460		if (*mode != MPOL_BIND)
1461			return -EINVAL;
1462		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1463	}
1464	return 0;
1465}
1466
1467static long kernel_mbind(unsigned long start, unsigned long len,
1468			 unsigned long mode, const unsigned long __user *nmask,
1469			 unsigned long maxnode, unsigned int flags)
1470{
1471	unsigned short mode_flags;
1472	nodemask_t nodes;
1473	int lmode = mode;
1474	int err;
 
1475
1476	start = untagged_addr(start);
1477	err = sanitize_mpol_flags(&lmode, &mode_flags);
1478	if (err)
1479		return err;
1480
 
 
 
1481	err = get_nodes(&nodes, nmask, maxnode);
1482	if (err)
1483		return err;
1484
1485	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1486}
1487
1488SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1489		unsigned long, home_node, unsigned long, flags)
1490{
1491	struct mm_struct *mm = current->mm;
1492	struct vm_area_struct *vma;
1493	struct mempolicy *new;
1494	unsigned long vmstart;
1495	unsigned long vmend;
1496	unsigned long end;
1497	int err = -ENOENT;
1498	VMA_ITERATOR(vmi, mm, start);
1499
1500	start = untagged_addr(start);
1501	if (start & ~PAGE_MASK)
1502		return -EINVAL;
1503	/*
1504	 * flags is used for future extension if any.
1505	 */
1506	if (flags != 0)
1507		return -EINVAL;
1508
1509	/*
1510	 * Check home_node is online to avoid accessing uninitialized
1511	 * NODE_DATA.
1512	 */
1513	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1514		return -EINVAL;
1515
1516	len = PAGE_ALIGN(len);
1517	end = start + len;
1518
1519	if (end < start)
1520		return -EINVAL;
1521	if (end == start)
1522		return 0;
1523	mmap_write_lock(mm);
1524	for_each_vma_range(vmi, vma, end) {
1525		vmstart = max(start, vma->vm_start);
1526		vmend   = min(end, vma->vm_end);
1527		new = mpol_dup(vma_policy(vma));
1528		if (IS_ERR(new)) {
1529			err = PTR_ERR(new);
1530			break;
1531		}
1532		/*
1533		 * Only update home node if there is an existing vma policy
1534		 */
1535		if (!new)
1536			continue;
1537
1538		/*
1539		 * If any vma in the range got policy other than MPOL_BIND
1540		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1541		 * the home node for vmas we already updated before.
1542		 */
1543		if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1544			mpol_put(new);
1545			err = -EOPNOTSUPP;
1546			break;
1547		}
1548
1549		new->home_node = home_node;
1550		err = mbind_range(mm, vmstart, vmend, new);
1551		mpol_put(new);
1552		if (err)
1553			break;
1554	}
1555	mmap_write_unlock(mm);
1556	return err;
1557}
1558
1559SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1560		unsigned long, mode, const unsigned long __user *, nmask,
1561		unsigned long, maxnode, unsigned int, flags)
1562{
1563	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1564}
1565
1566/* Set the process memory policy */
1567static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1568				 unsigned long maxnode)
1569{
1570	unsigned short mode_flags;
1571	nodemask_t nodes;
1572	int lmode = mode;
1573	int err;
1574
1575	err = sanitize_mpol_flags(&lmode, &mode_flags);
1576	if (err)
1577		return err;
1578
 
 
 
 
 
 
1579	err = get_nodes(&nodes, nmask, maxnode);
1580	if (err)
1581		return err;
1582
1583	return do_set_mempolicy(lmode, mode_flags, &nodes);
1584}
1585
1586SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1587		unsigned long, maxnode)
1588{
1589	return kernel_set_mempolicy(mode, nmask, maxnode);
1590}
1591
1592static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1593				const unsigned long __user *old_nodes,
1594				const unsigned long __user *new_nodes)
1595{
1596	struct mm_struct *mm = NULL;
1597	struct task_struct *task;
1598	nodemask_t task_nodes;
1599	int err;
1600	nodemask_t *old;
1601	nodemask_t *new;
1602	NODEMASK_SCRATCH(scratch);
1603
1604	if (!scratch)
1605		return -ENOMEM;
1606
1607	old = &scratch->mask1;
1608	new = &scratch->mask2;
1609
1610	err = get_nodes(old, old_nodes, maxnode);
1611	if (err)
1612		goto out;
1613
1614	err = get_nodes(new, new_nodes, maxnode);
1615	if (err)
1616		goto out;
1617
1618	/* Find the mm_struct */
1619	rcu_read_lock();
1620	task = pid ? find_task_by_vpid(pid) : current;
1621	if (!task) {
1622		rcu_read_unlock();
1623		err = -ESRCH;
1624		goto out;
1625	}
1626	get_task_struct(task);
1627
1628	err = -EINVAL;
1629
1630	/*
1631	 * Check if this process has the right to modify the specified process.
1632	 * Use the regular "ptrace_may_access()" checks.
1633	 */
1634	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1635		rcu_read_unlock();
1636		err = -EPERM;
1637		goto out_put;
1638	}
1639	rcu_read_unlock();
1640
1641	task_nodes = cpuset_mems_allowed(task);
1642	/* Is the user allowed to access the target nodes? */
1643	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1644		err = -EPERM;
1645		goto out_put;
1646	}
1647
1648	task_nodes = cpuset_mems_allowed(current);
1649	nodes_and(*new, *new, task_nodes);
1650	if (nodes_empty(*new))
1651		goto out_put;
1652
1653	err = security_task_movememory(task);
1654	if (err)
1655		goto out_put;
1656
1657	mm = get_task_mm(task);
1658	put_task_struct(task);
1659
1660	if (!mm) {
1661		err = -EINVAL;
1662		goto out;
1663	}
1664
1665	err = do_migrate_pages(mm, old, new,
1666		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1667
1668	mmput(mm);
1669out:
1670	NODEMASK_SCRATCH_FREE(scratch);
1671
1672	return err;
1673
1674out_put:
1675	put_task_struct(task);
1676	goto out;
1677
1678}
1679
1680SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1681		const unsigned long __user *, old_nodes,
1682		const unsigned long __user *, new_nodes)
1683{
1684	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1685}
1686
1687
1688/* Retrieve NUMA policy */
1689static int kernel_get_mempolicy(int __user *policy,
1690				unsigned long __user *nmask,
1691				unsigned long maxnode,
1692				unsigned long addr,
1693				unsigned long flags)
1694{
1695	int err;
1696	int pval;
1697	nodemask_t nodes;
1698
 
 
1699	if (nmask != NULL && maxnode < nr_node_ids)
1700		return -EINVAL;
1701
1702	addr = untagged_addr(addr);
1703
1704	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1705
1706	if (err)
1707		return err;
1708
1709	if (policy && put_user(pval, policy))
1710		return -EFAULT;
1711
1712	if (nmask)
1713		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1714
1715	return err;
1716}
1717
1718SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1719		unsigned long __user *, nmask, unsigned long, maxnode,
1720		unsigned long, addr, unsigned long, flags)
1721{
1722	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1723}
1724
1725bool vma_migratable(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1726{
1727	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1728		return false;
 
 
 
 
1729
1730	/*
1731	 * DAX device mappings require predictable access latency, so avoid
1732	 * incurring periodic faults.
1733	 */
1734	if (vma_is_dax(vma))
1735		return false;
 
1736
1737	if (is_vm_hugetlb_page(vma) &&
1738		!hugepage_migration_supported(hstate_vma(vma)))
1739		return false;
1740
1741	/*
1742	 * Migration allocates pages in the highest zone. If we cannot
1743	 * do so then migration (at least from node to node) is not
1744	 * possible.
1745	 */
1746	if (vma->vm_file &&
1747		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1748			< policy_zone)
1749		return false;
1750	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751}
1752
 
 
1753struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1754						unsigned long addr)
1755{
1756	struct mempolicy *pol = NULL;
1757
1758	if (vma) {
1759		if (vma->vm_ops && vma->vm_ops->get_policy) {
1760			pol = vma->vm_ops->get_policy(vma, addr);
1761		} else if (vma->vm_policy) {
1762			pol = vma->vm_policy;
1763
1764			/*
1765			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1766			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1767			 * count on these policies which will be dropped by
1768			 * mpol_cond_put() later
1769			 */
1770			if (mpol_needs_cond_ref(pol))
1771				mpol_get(pol);
1772		}
1773	}
1774
1775	return pol;
1776}
1777
1778/*
1779 * get_vma_policy(@vma, @addr)
1780 * @vma: virtual memory area whose policy is sought
1781 * @addr: address in @vma for shared policy lookup
1782 *
1783 * Returns effective policy for a VMA at specified address.
1784 * Falls back to current->mempolicy or system default policy, as necessary.
1785 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1786 * count--added by the get_policy() vm_op, as appropriate--to protect against
1787 * freeing by another task.  It is the caller's responsibility to free the
1788 * extra reference for shared policies.
1789 */
1790static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1791						unsigned long addr)
1792{
1793	struct mempolicy *pol = __get_vma_policy(vma, addr);
1794
1795	if (!pol)
1796		pol = get_task_policy(current);
1797
1798	return pol;
1799}
1800
1801bool vma_policy_mof(struct vm_area_struct *vma)
1802{
1803	struct mempolicy *pol;
1804
1805	if (vma->vm_ops && vma->vm_ops->get_policy) {
1806		bool ret = false;
1807
1808		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1809		if (pol && (pol->flags & MPOL_F_MOF))
1810			ret = true;
1811		mpol_cond_put(pol);
1812
1813		return ret;
1814	}
1815
1816	pol = vma->vm_policy;
1817	if (!pol)
1818		pol = get_task_policy(current);
1819
1820	return pol->flags & MPOL_F_MOF;
1821}
1822
1823bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1824{
1825	enum zone_type dynamic_policy_zone = policy_zone;
1826
1827	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1828
1829	/*
1830	 * if policy->nodes has movable memory only,
1831	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1832	 *
1833	 * policy->nodes is intersect with node_states[N_MEMORY].
1834	 * so if the following test fails, it implies
1835	 * policy->nodes has movable memory only.
1836	 */
1837	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1838		dynamic_policy_zone = ZONE_MOVABLE;
1839
1840	return zone >= dynamic_policy_zone;
1841}
1842
1843/*
1844 * Return a nodemask representing a mempolicy for filtering nodes for
1845 * page allocation
1846 */
1847nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1848{
1849	int mode = policy->mode;
1850
1851	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1852	if (unlikely(mode == MPOL_BIND) &&
1853		apply_policy_zone(policy, gfp_zone(gfp)) &&
1854		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1855		return &policy->nodes;
1856
1857	if (mode == MPOL_PREFERRED_MANY)
1858		return &policy->nodes;
1859
1860	return NULL;
1861}
1862
1863/*
1864 * Return the  preferred node id for 'prefer' mempolicy, and return
1865 * the given id for all other policies.
1866 *
1867 * policy_node() is always coupled with policy_nodemask(), which
1868 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1869 */
1870static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1871{
1872	if (policy->mode == MPOL_PREFERRED) {
1873		nd = first_node(policy->nodes);
1874	} else {
1875		/*
1876		 * __GFP_THISNODE shouldn't even be used with the bind policy
1877		 * because we might easily break the expectation to stay on the
1878		 * requested node and not break the policy.
1879		 */
1880		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1881	}
1882
1883	if ((policy->mode == MPOL_BIND ||
1884	     policy->mode == MPOL_PREFERRED_MANY) &&
1885	    policy->home_node != NUMA_NO_NODE)
1886		return policy->home_node;
1887
1888	return nd;
1889}
1890
1891/* Do dynamic interleaving for a process */
1892static unsigned interleave_nodes(struct mempolicy *policy)
1893{
1894	unsigned next;
1895	struct task_struct *me = current;
1896
1897	next = next_node_in(me->il_prev, policy->nodes);
1898	if (next < MAX_NUMNODES)
1899		me->il_prev = next;
1900	return next;
1901}
1902
1903/*
1904 * Depending on the memory policy provide a node from which to allocate the
1905 * next slab entry.
1906 */
1907unsigned int mempolicy_slab_node(void)
1908{
1909	struct mempolicy *policy;
1910	int node = numa_mem_id();
1911
1912	if (!in_task())
1913		return node;
1914
1915	policy = current->mempolicy;
1916	if (!policy)
1917		return node;
1918
1919	switch (policy->mode) {
1920	case MPOL_PREFERRED:
1921		return first_node(policy->nodes);
 
 
 
1922
1923	case MPOL_INTERLEAVE:
1924		return interleave_nodes(policy);
1925
1926	case MPOL_BIND:
1927	case MPOL_PREFERRED_MANY:
1928	{
1929		struct zoneref *z;
1930
1931		/*
1932		 * Follow bind policy behavior and start allocation at the
1933		 * first node.
1934		 */
1935		struct zonelist *zonelist;
1936		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1937		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1938		z = first_zones_zonelist(zonelist, highest_zoneidx,
1939							&policy->nodes);
1940		return z->zone ? zone_to_nid(z->zone) : node;
1941	}
1942	case MPOL_LOCAL:
1943		return node;
1944
1945	default:
1946		BUG();
1947	}
1948}
1949
1950/*
1951 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1952 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1953 * number of present nodes.
1954 */
1955static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1956{
1957	nodemask_t nodemask = pol->nodes;
1958	unsigned int target, nnodes;
1959	int i;
1960	int nid;
1961	/*
1962	 * The barrier will stabilize the nodemask in a register or on
1963	 * the stack so that it will stop changing under the code.
1964	 *
1965	 * Between first_node() and next_node(), pol->nodes could be changed
1966	 * by other threads. So we put pol->nodes in a local stack.
1967	 */
1968	barrier();
1969
1970	nnodes = nodes_weight(nodemask);
1971	if (!nnodes)
1972		return numa_node_id();
1973	target = (unsigned int)n % nnodes;
1974	nid = first_node(nodemask);
1975	for (i = 0; i < target; i++)
1976		nid = next_node(nid, nodemask);
1977	return nid;
1978}
1979
1980/* Determine a node number for interleave */
1981static inline unsigned interleave_nid(struct mempolicy *pol,
1982		 struct vm_area_struct *vma, unsigned long addr, int shift)
1983{
1984	if (vma) {
1985		unsigned long off;
1986
1987		/*
1988		 * for small pages, there is no difference between
1989		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1990		 * for huge pages, since vm_pgoff is in units of small
1991		 * pages, we need to shift off the always 0 bits to get
1992		 * a useful offset.
1993		 */
1994		BUG_ON(shift < PAGE_SHIFT);
1995		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1996		off += (addr - vma->vm_start) >> shift;
1997		return offset_il_node(pol, off);
1998	} else
1999		return interleave_nodes(pol);
2000}
2001
2002#ifdef CONFIG_HUGETLBFS
2003/*
2004 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2005 * @vma: virtual memory area whose policy is sought
2006 * @addr: address in @vma for shared policy lookup and interleave policy
2007 * @gfp_flags: for requested zone
2008 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2009 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2010 *
2011 * Returns a nid suitable for a huge page allocation and a pointer
2012 * to the struct mempolicy for conditional unref after allocation.
2013 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2014 * to the mempolicy's @nodemask for filtering the zonelist.
2015 *
2016 * Must be protected by read_mems_allowed_begin()
2017 */
2018int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2019				struct mempolicy **mpol, nodemask_t **nodemask)
2020{
2021	int nid;
2022	int mode;
2023
2024	*mpol = get_vma_policy(vma, addr);
2025	*nodemask = NULL;
2026	mode = (*mpol)->mode;
2027
2028	if (unlikely(mode == MPOL_INTERLEAVE)) {
2029		nid = interleave_nid(*mpol, vma, addr,
2030					huge_page_shift(hstate_vma(vma)));
2031	} else {
2032		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2033		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2034			*nodemask = &(*mpol)->nodes;
2035	}
2036	return nid;
2037}
2038
2039/*
2040 * init_nodemask_of_mempolicy
2041 *
2042 * If the current task's mempolicy is "default" [NULL], return 'false'
2043 * to indicate default policy.  Otherwise, extract the policy nodemask
2044 * for 'bind' or 'interleave' policy into the argument nodemask, or
2045 * initialize the argument nodemask to contain the single node for
2046 * 'preferred' or 'local' policy and return 'true' to indicate presence
2047 * of non-default mempolicy.
2048 *
2049 * We don't bother with reference counting the mempolicy [mpol_get/put]
2050 * because the current task is examining it's own mempolicy and a task's
2051 * mempolicy is only ever changed by the task itself.
2052 *
2053 * N.B., it is the caller's responsibility to free a returned nodemask.
2054 */
2055bool init_nodemask_of_mempolicy(nodemask_t *mask)
2056{
2057	struct mempolicy *mempolicy;
 
2058
2059	if (!(mask && current->mempolicy))
2060		return false;
2061
2062	task_lock(current);
2063	mempolicy = current->mempolicy;
2064	switch (mempolicy->mode) {
2065	case MPOL_PREFERRED:
2066	case MPOL_PREFERRED_MANY:
 
 
 
 
 
 
2067	case MPOL_BIND:
 
2068	case MPOL_INTERLEAVE:
2069		*mask = mempolicy->nodes;
2070		break;
2071
2072	case MPOL_LOCAL:
2073		init_nodemask_of_node(mask, numa_node_id());
2074		break;
2075
2076	default:
2077		BUG();
2078	}
2079	task_unlock(current);
2080
2081	return true;
2082}
2083#endif
2084
2085/*
2086 * mempolicy_in_oom_domain
2087 *
2088 * If tsk's mempolicy is "bind", check for intersection between mask and
2089 * the policy nodemask. Otherwise, return true for all other policies
2090 * including "interleave", as a tsk with "interleave" policy may have
2091 * memory allocated from all nodes in system.
2092 *
2093 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2094 */
2095bool mempolicy_in_oom_domain(struct task_struct *tsk,
2096					const nodemask_t *mask)
2097{
2098	struct mempolicy *mempolicy;
2099	bool ret = true;
2100
2101	if (!mask)
2102		return ret;
2103
2104	task_lock(tsk);
2105	mempolicy = tsk->mempolicy;
2106	if (mempolicy && mempolicy->mode == MPOL_BIND)
2107		ret = nodes_intersects(mempolicy->nodes, *mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2108	task_unlock(tsk);
2109
2110	return ret;
2111}
2112
2113/* Allocate a page in interleaved policy.
2114   Own path because it needs to do special accounting. */
2115static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2116					unsigned nid)
2117{
2118	struct page *page;
2119
2120	page = __alloc_pages(gfp, order, nid, NULL);
2121	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2122	if (!static_branch_likely(&vm_numa_stat_key))
2123		return page;
2124	if (page && page_to_nid(page) == nid) {
2125		preempt_disable();
2126		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2127		preempt_enable();
2128	}
2129	return page;
2130}
2131
2132static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2133						int nid, struct mempolicy *pol)
2134{
2135	struct page *page;
2136	gfp_t preferred_gfp;
2137
2138	/*
2139	 * This is a two pass approach. The first pass will only try the
2140	 * preferred nodes but skip the direct reclaim and allow the
2141	 * allocation to fail, while the second pass will try all the
2142	 * nodes in system.
2143	 */
2144	preferred_gfp = gfp | __GFP_NOWARN;
2145	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2146	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2147	if (!page)
2148		page = __alloc_pages(gfp, order, nid, NULL);
2149
2150	return page;
2151}
2152
2153/**
2154 * vma_alloc_folio - Allocate a folio for a VMA.
2155 * @gfp: GFP flags.
2156 * @order: Order of the folio.
2157 * @vma: Pointer to VMA or NULL if not available.
2158 * @addr: Virtual address of the allocation.  Must be inside @vma.
2159 * @hugepage: For hugepages try only the preferred node if possible.
2160 *
2161 * Allocate a folio for a specific address in @vma, using the appropriate
2162 * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2163 * of the mm_struct of the VMA to prevent it from going away.  Should be
2164 * used for all allocations for folios that will be mapped into user space.
2165 *
2166 * Return: The folio on success or NULL if allocation fails.
2167 */
2168struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2169		unsigned long addr, bool hugepage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170{
2171	struct mempolicy *pol;
2172	int node = numa_node_id();
2173	struct folio *folio;
2174	int preferred_nid;
2175	nodemask_t *nmask;
2176
2177	pol = get_vma_policy(vma, addr);
2178
2179	if (pol->mode == MPOL_INTERLEAVE) {
2180		struct page *page;
2181		unsigned nid;
2182
2183		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2184		mpol_cond_put(pol);
2185		gfp |= __GFP_COMP;
2186		page = alloc_page_interleave(gfp, order, nid);
2187		if (page && order > 1)
2188			prep_transhuge_page(page);
2189		folio = (struct folio *)page;
2190		goto out;
2191	}
2192
2193	if (pol->mode == MPOL_PREFERRED_MANY) {
2194		struct page *page;
2195
2196		node = policy_node(gfp, pol, node);
2197		gfp |= __GFP_COMP;
2198		page = alloc_pages_preferred_many(gfp, order, node, pol);
2199		mpol_cond_put(pol);
2200		if (page && order > 1)
2201			prep_transhuge_page(page);
2202		folio = (struct folio *)page;
2203		goto out;
2204	}
2205
2206	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2207		int hpage_node = node;
2208
2209		/*
2210		 * For hugepage allocation and non-interleave policy which
2211		 * allows the current node (or other explicitly preferred
2212		 * node) we only try to allocate from the current/preferred
2213		 * node and don't fall back to other nodes, as the cost of
2214		 * remote accesses would likely offset THP benefits.
2215		 *
2216		 * If the policy is interleave or does not allow the current
2217		 * node in its nodemask, we allocate the standard way.
2218		 */
2219		if (pol->mode == MPOL_PREFERRED)
2220			hpage_node = first_node(pol->nodes);
2221
2222		nmask = policy_nodemask(gfp, pol);
2223		if (!nmask || node_isset(hpage_node, *nmask)) {
2224			mpol_cond_put(pol);
2225			/*
2226			 * First, try to allocate THP only on local node, but
2227			 * don't reclaim unnecessarily, just compact.
2228			 */
2229			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2230					__GFP_NORETRY, order, hpage_node);
2231
2232			/*
2233			 * If hugepage allocations are configured to always
2234			 * synchronous compact or the vma has been madvised
2235			 * to prefer hugepage backing, retry allowing remote
2236			 * memory with both reclaim and compact as well.
2237			 */
2238			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2239				folio = __folio_alloc(gfp, order, hpage_node,
2240						      nmask);
2241
2242			goto out;
2243		}
2244	}
2245
2246	nmask = policy_nodemask(gfp, pol);
2247	preferred_nid = policy_node(gfp, pol, node);
2248	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2249	mpol_cond_put(pol);
2250out:
2251	return folio;
2252}
2253EXPORT_SYMBOL(vma_alloc_folio);
2254
2255/**
2256 * alloc_pages - Allocate pages.
2257 * @gfp: GFP flags.
2258 * @order: Power of two of number of pages to allocate.
2259 *
2260 * Allocate 1 << @order contiguous pages.  The physical address of the
2261 * first page is naturally aligned (eg an order-3 allocation will be aligned
2262 * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2263 * process is honoured when in process context.
2264 *
2265 * Context: Can be called from any context, providing the appropriate GFP
2266 * flags are used.
2267 * Return: The page on success or NULL if allocation fails.
 
2268 */
2269struct page *alloc_pages(gfp_t gfp, unsigned order)
2270{
2271	struct mempolicy *pol = &default_policy;
2272	struct page *page;
2273
2274	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2275		pol = get_task_policy(current);
2276
2277	/*
2278	 * No reference counting needed for current->mempolicy
2279	 * nor system default_policy
2280	 */
2281	if (pol->mode == MPOL_INTERLEAVE)
2282		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2283	else if (pol->mode == MPOL_PREFERRED_MANY)
2284		page = alloc_pages_preferred_many(gfp, order,
2285				  policy_node(gfp, pol, numa_node_id()), pol);
2286	else
2287		page = __alloc_pages(gfp, order,
2288				policy_node(gfp, pol, numa_node_id()),
2289				policy_nodemask(gfp, pol));
2290
2291	return page;
2292}
2293EXPORT_SYMBOL(alloc_pages);
2294
2295struct folio *folio_alloc(gfp_t gfp, unsigned order)
2296{
2297	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2298
2299	if (page && order > 1)
2300		prep_transhuge_page(page);
2301	return (struct folio *)page;
2302}
2303EXPORT_SYMBOL(folio_alloc);
2304
2305static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2306		struct mempolicy *pol, unsigned long nr_pages,
2307		struct page **page_array)
2308{
2309	int nodes;
2310	unsigned long nr_pages_per_node;
2311	int delta;
2312	int i;
2313	unsigned long nr_allocated;
2314	unsigned long total_allocated = 0;
2315
2316	nodes = nodes_weight(pol->nodes);
2317	nr_pages_per_node = nr_pages / nodes;
2318	delta = nr_pages - nodes * nr_pages_per_node;
2319
2320	for (i = 0; i < nodes; i++) {
2321		if (delta) {
2322			nr_allocated = __alloc_pages_bulk(gfp,
2323					interleave_nodes(pol), NULL,
2324					nr_pages_per_node + 1, NULL,
2325					page_array);
2326			delta--;
2327		} else {
2328			nr_allocated = __alloc_pages_bulk(gfp,
2329					interleave_nodes(pol), NULL,
2330					nr_pages_per_node, NULL, page_array);
2331		}
2332
2333		page_array += nr_allocated;
2334		total_allocated += nr_allocated;
2335	}
2336
2337	return total_allocated;
2338}
2339
2340static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2341		struct mempolicy *pol, unsigned long nr_pages,
2342		struct page **page_array)
2343{
2344	gfp_t preferred_gfp;
2345	unsigned long nr_allocated = 0;
2346
2347	preferred_gfp = gfp | __GFP_NOWARN;
2348	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2349
2350	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2351					   nr_pages, NULL, page_array);
2352
2353	if (nr_allocated < nr_pages)
2354		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2355				nr_pages - nr_allocated, NULL,
2356				page_array + nr_allocated);
2357	return nr_allocated;
2358}
2359
2360/* alloc pages bulk and mempolicy should be considered at the
2361 * same time in some situation such as vmalloc.
2362 *
2363 * It can accelerate memory allocation especially interleaving
2364 * allocate memory.
2365 */
2366unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2367		unsigned long nr_pages, struct page **page_array)
2368{
2369	struct mempolicy *pol = &default_policy;
2370
2371	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2372		pol = get_task_policy(current);
2373
2374	if (pol->mode == MPOL_INTERLEAVE)
2375		return alloc_pages_bulk_array_interleave(gfp, pol,
2376							 nr_pages, page_array);
2377
2378	if (pol->mode == MPOL_PREFERRED_MANY)
2379		return alloc_pages_bulk_array_preferred_many(gfp,
2380				numa_node_id(), pol, nr_pages, page_array);
2381
2382	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2383				  policy_nodemask(gfp, pol), nr_pages, NULL,
2384				  page_array);
2385}
2386
2387int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2388{
2389	struct mempolicy *pol = mpol_dup(vma_policy(src));
2390
2391	if (IS_ERR(pol))
2392		return PTR_ERR(pol);
2393	dst->vm_policy = pol;
2394	return 0;
2395}
2396
2397/*
2398 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2399 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2400 * with the mems_allowed returned by cpuset_mems_allowed().  This
2401 * keeps mempolicies cpuset relative after its cpuset moves.  See
2402 * further kernel/cpuset.c update_nodemask().
2403 *
2404 * current's mempolicy may be rebinded by the other task(the task that changes
2405 * cpuset's mems), so we needn't do rebind work for current task.
2406 */
2407
2408/* Slow path of a mempolicy duplicate */
2409struct mempolicy *__mpol_dup(struct mempolicy *old)
2410{
2411	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2412
2413	if (!new)
2414		return ERR_PTR(-ENOMEM);
2415
2416	/* task's mempolicy is protected by alloc_lock */
2417	if (old == current->mempolicy) {
2418		task_lock(current);
2419		*new = *old;
2420		task_unlock(current);
2421	} else
2422		*new = *old;
2423
2424	if (current_cpuset_is_being_rebound()) {
2425		nodemask_t mems = cpuset_mems_allowed(current);
2426		mpol_rebind_policy(new, &mems);
2427	}
2428	atomic_set(&new->refcnt, 1);
2429	return new;
2430}
2431
2432/* Slow path of a mempolicy comparison */
2433bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2434{
2435	if (!a || !b)
2436		return false;
2437	if (a->mode != b->mode)
2438		return false;
2439	if (a->flags != b->flags)
2440		return false;
2441	if (a->home_node != b->home_node)
2442		return false;
2443	if (mpol_store_user_nodemask(a))
2444		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2445			return false;
2446
2447	switch (a->mode) {
2448	case MPOL_BIND:
 
2449	case MPOL_INTERLEAVE:
 
2450	case MPOL_PREFERRED:
2451	case MPOL_PREFERRED_MANY:
2452		return !!nodes_equal(a->nodes, b->nodes);
2453	case MPOL_LOCAL:
2454		return true;
2455	default:
2456		BUG();
2457		return false;
2458	}
2459}
2460
2461/*
2462 * Shared memory backing store policy support.
2463 *
2464 * Remember policies even when nobody has shared memory mapped.
2465 * The policies are kept in Red-Black tree linked from the inode.
2466 * They are protected by the sp->lock rwlock, which should be held
2467 * for any accesses to the tree.
2468 */
2469
2470/*
2471 * lookup first element intersecting start-end.  Caller holds sp->lock for
2472 * reading or for writing
2473 */
2474static struct sp_node *
2475sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2476{
2477	struct rb_node *n = sp->root.rb_node;
2478
2479	while (n) {
2480		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2481
2482		if (start >= p->end)
2483			n = n->rb_right;
2484		else if (end <= p->start)
2485			n = n->rb_left;
2486		else
2487			break;
2488	}
2489	if (!n)
2490		return NULL;
2491	for (;;) {
2492		struct sp_node *w = NULL;
2493		struct rb_node *prev = rb_prev(n);
2494		if (!prev)
2495			break;
2496		w = rb_entry(prev, struct sp_node, nd);
2497		if (w->end <= start)
2498			break;
2499		n = prev;
2500	}
2501	return rb_entry(n, struct sp_node, nd);
2502}
2503
2504/*
2505 * Insert a new shared policy into the list.  Caller holds sp->lock for
2506 * writing.
2507 */
2508static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2509{
2510	struct rb_node **p = &sp->root.rb_node;
2511	struct rb_node *parent = NULL;
2512	struct sp_node *nd;
2513
2514	while (*p) {
2515		parent = *p;
2516		nd = rb_entry(parent, struct sp_node, nd);
2517		if (new->start < nd->start)
2518			p = &(*p)->rb_left;
2519		else if (new->end > nd->end)
2520			p = &(*p)->rb_right;
2521		else
2522			BUG();
2523	}
2524	rb_link_node(&new->nd, parent, p);
2525	rb_insert_color(&new->nd, &sp->root);
2526	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2527		 new->policy ? new->policy->mode : 0);
2528}
2529
2530/* Find shared policy intersecting idx */
2531struct mempolicy *
2532mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2533{
2534	struct mempolicy *pol = NULL;
2535	struct sp_node *sn;
2536
2537	if (!sp->root.rb_node)
2538		return NULL;
2539	read_lock(&sp->lock);
2540	sn = sp_lookup(sp, idx, idx+1);
2541	if (sn) {
2542		mpol_get(sn->policy);
2543		pol = sn->policy;
2544	}
2545	read_unlock(&sp->lock);
2546	return pol;
2547}
2548
2549static void sp_free(struct sp_node *n)
2550{
2551	mpol_put(n->policy);
2552	kmem_cache_free(sn_cache, n);
2553}
2554
2555/**
2556 * mpol_misplaced - check whether current page node is valid in policy
2557 *
2558 * @page: page to be checked
2559 * @vma: vm area where page mapped
2560 * @addr: virtual address where page mapped
2561 *
2562 * Lookup current policy node id for vma,addr and "compare to" page's
2563 * node id.  Policy determination "mimics" alloc_page_vma().
 
 
 
 
 
 
2564 * Called from fault path where we know the vma and faulting address.
2565 *
2566 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2567 * policy, or a suitable node ID to allocate a replacement page from.
2568 */
2569int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2570{
2571	struct mempolicy *pol;
2572	struct zoneref *z;
2573	int curnid = page_to_nid(page);
2574	unsigned long pgoff;
2575	int thiscpu = raw_smp_processor_id();
2576	int thisnid = cpu_to_node(thiscpu);
2577	int polnid = NUMA_NO_NODE;
2578	int ret = NUMA_NO_NODE;
2579
2580	pol = get_vma_policy(vma, addr);
2581	if (!(pol->flags & MPOL_F_MOF))
2582		goto out;
2583
2584	switch (pol->mode) {
2585	case MPOL_INTERLEAVE:
2586		pgoff = vma->vm_pgoff;
2587		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2588		polnid = offset_il_node(pol, pgoff);
2589		break;
2590
2591	case MPOL_PREFERRED:
2592		if (node_isset(curnid, pol->nodes))
2593			goto out;
2594		polnid = first_node(pol->nodes);
2595		break;
2596
2597	case MPOL_LOCAL:
2598		polnid = numa_node_id();
2599		break;
2600
2601	case MPOL_BIND:
2602		/* Optimize placement among multiple nodes via NUMA balancing */
2603		if (pol->flags & MPOL_F_MORON) {
2604			if (node_isset(thisnid, pol->nodes))
2605				break;
2606			goto out;
2607		}
2608		fallthrough;
2609
2610	case MPOL_PREFERRED_MANY:
2611		/*
 
2612		 * use current page if in policy nodemask,
2613		 * else select nearest allowed node, if any.
2614		 * If no allowed nodes, use current [!misplaced].
2615		 */
2616		if (node_isset(curnid, pol->nodes))
2617			goto out;
2618		z = first_zones_zonelist(
2619				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2620				gfp_zone(GFP_HIGHUSER),
2621				&pol->nodes);
2622		polnid = zone_to_nid(z->zone);
2623		break;
2624
2625	default:
2626		BUG();
2627	}
2628
2629	/* Migrate the page towards the node whose CPU is referencing it */
2630	if (pol->flags & MPOL_F_MORON) {
2631		polnid = thisnid;
2632
2633		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2634			goto out;
2635	}
2636
2637	if (curnid != polnid)
2638		ret = polnid;
2639out:
2640	mpol_cond_put(pol);
2641
2642	return ret;
2643}
2644
2645/*
2646 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2647 * dropped after task->mempolicy is set to NULL so that any allocation done as
2648 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2649 * policy.
2650 */
2651void mpol_put_task_policy(struct task_struct *task)
2652{
2653	struct mempolicy *pol;
2654
2655	task_lock(task);
2656	pol = task->mempolicy;
2657	task->mempolicy = NULL;
2658	task_unlock(task);
2659	mpol_put(pol);
2660}
2661
2662static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2663{
2664	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2665	rb_erase(&n->nd, &sp->root);
2666	sp_free(n);
2667}
2668
2669static void sp_node_init(struct sp_node *node, unsigned long start,
2670			unsigned long end, struct mempolicy *pol)
2671{
2672	node->start = start;
2673	node->end = end;
2674	node->policy = pol;
2675}
2676
2677static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2678				struct mempolicy *pol)
2679{
2680	struct sp_node *n;
2681	struct mempolicy *newpol;
2682
2683	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2684	if (!n)
2685		return NULL;
2686
2687	newpol = mpol_dup(pol);
2688	if (IS_ERR(newpol)) {
2689		kmem_cache_free(sn_cache, n);
2690		return NULL;
2691	}
2692	newpol->flags |= MPOL_F_SHARED;
2693	sp_node_init(n, start, end, newpol);
2694
2695	return n;
2696}
2697
2698/* Replace a policy range. */
2699static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2700				 unsigned long end, struct sp_node *new)
2701{
2702	struct sp_node *n;
2703	struct sp_node *n_new = NULL;
2704	struct mempolicy *mpol_new = NULL;
2705	int ret = 0;
2706
2707restart:
2708	write_lock(&sp->lock);
2709	n = sp_lookup(sp, start, end);
2710	/* Take care of old policies in the same range. */
2711	while (n && n->start < end) {
2712		struct rb_node *next = rb_next(&n->nd);
2713		if (n->start >= start) {
2714			if (n->end <= end)
2715				sp_delete(sp, n);
2716			else
2717				n->start = end;
2718		} else {
2719			/* Old policy spanning whole new range. */
2720			if (n->end > end) {
2721				if (!n_new)
2722					goto alloc_new;
2723
2724				*mpol_new = *n->policy;
2725				atomic_set(&mpol_new->refcnt, 1);
2726				sp_node_init(n_new, end, n->end, mpol_new);
2727				n->end = start;
2728				sp_insert(sp, n_new);
2729				n_new = NULL;
2730				mpol_new = NULL;
2731				break;
2732			} else
2733				n->end = start;
2734		}
2735		if (!next)
2736			break;
2737		n = rb_entry(next, struct sp_node, nd);
2738	}
2739	if (new)
2740		sp_insert(sp, new);
2741	write_unlock(&sp->lock);
2742	ret = 0;
2743
2744err_out:
2745	if (mpol_new)
2746		mpol_put(mpol_new);
2747	if (n_new)
2748		kmem_cache_free(sn_cache, n_new);
2749
2750	return ret;
2751
2752alloc_new:
2753	write_unlock(&sp->lock);
2754	ret = -ENOMEM;
2755	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2756	if (!n_new)
2757		goto err_out;
2758	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2759	if (!mpol_new)
2760		goto err_out;
2761	atomic_set(&mpol_new->refcnt, 1);
2762	goto restart;
2763}
2764
2765/**
2766 * mpol_shared_policy_init - initialize shared policy for inode
2767 * @sp: pointer to inode shared policy
2768 * @mpol:  struct mempolicy to install
2769 *
2770 * Install non-NULL @mpol in inode's shared policy rb-tree.
2771 * On entry, the current task has a reference on a non-NULL @mpol.
2772 * This must be released on exit.
2773 * This is called at get_inode() calls and we can use GFP_KERNEL.
2774 */
2775void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2776{
2777	int ret;
2778
2779	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2780	rwlock_init(&sp->lock);
2781
2782	if (mpol) {
2783		struct vm_area_struct pvma;
2784		struct mempolicy *new;
2785		NODEMASK_SCRATCH(scratch);
2786
2787		if (!scratch)
2788			goto put_mpol;
2789		/* contextualize the tmpfs mount point mempolicy */
2790		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2791		if (IS_ERR(new))
2792			goto free_scratch; /* no valid nodemask intersection */
2793
2794		task_lock(current);
2795		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2796		task_unlock(current);
2797		if (ret)
2798			goto put_new;
2799
2800		/* Create pseudo-vma that contains just the policy */
2801		vma_init(&pvma, NULL);
2802		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2803		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2804
2805put_new:
2806		mpol_put(new);			/* drop initial ref */
2807free_scratch:
2808		NODEMASK_SCRATCH_FREE(scratch);
2809put_mpol:
2810		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2811	}
2812}
2813
2814int mpol_set_shared_policy(struct shared_policy *info,
2815			struct vm_area_struct *vma, struct mempolicy *npol)
2816{
2817	int err;
2818	struct sp_node *new = NULL;
2819	unsigned long sz = vma_pages(vma);
2820
2821	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2822		 vma->vm_pgoff,
2823		 sz, npol ? npol->mode : -1,
2824		 npol ? npol->flags : -1,
2825		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2826
2827	if (npol) {
2828		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2829		if (!new)
2830			return -ENOMEM;
2831	}
2832	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2833	if (err && new)
2834		sp_free(new);
2835	return err;
2836}
2837
2838/* Free a backing policy store on inode delete. */
2839void mpol_free_shared_policy(struct shared_policy *p)
2840{
2841	struct sp_node *n;
2842	struct rb_node *next;
2843
2844	if (!p->root.rb_node)
2845		return;
2846	write_lock(&p->lock);
2847	next = rb_first(&p->root);
2848	while (next) {
2849		n = rb_entry(next, struct sp_node, nd);
2850		next = rb_next(&n->nd);
2851		sp_delete(p, n);
2852	}
2853	write_unlock(&p->lock);
2854}
2855
2856#ifdef CONFIG_NUMA_BALANCING
2857static int __initdata numabalancing_override;
2858
2859static void __init check_numabalancing_enable(void)
2860{
2861	bool numabalancing_default = false;
2862
2863	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2864		numabalancing_default = true;
2865
2866	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2867	if (numabalancing_override)
2868		set_numabalancing_state(numabalancing_override == 1);
2869
2870	if (num_online_nodes() > 1 && !numabalancing_override) {
2871		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2872			numabalancing_default ? "Enabling" : "Disabling");
2873		set_numabalancing_state(numabalancing_default);
2874	}
2875}
2876
2877static int __init setup_numabalancing(char *str)
2878{
2879	int ret = 0;
2880	if (!str)
2881		goto out;
2882
2883	if (!strcmp(str, "enable")) {
2884		numabalancing_override = 1;
2885		ret = 1;
2886	} else if (!strcmp(str, "disable")) {
2887		numabalancing_override = -1;
2888		ret = 1;
2889	}
2890out:
2891	if (!ret)
2892		pr_warn("Unable to parse numa_balancing=\n");
2893
2894	return ret;
2895}
2896__setup("numa_balancing=", setup_numabalancing);
2897#else
2898static inline void __init check_numabalancing_enable(void)
2899{
2900}
2901#endif /* CONFIG_NUMA_BALANCING */
2902
2903/* assumes fs == KERNEL_DS */
2904void __init numa_policy_init(void)
2905{
2906	nodemask_t interleave_nodes;
2907	unsigned long largest = 0;
2908	int nid, prefer = 0;
2909
2910	policy_cache = kmem_cache_create("numa_policy",
2911					 sizeof(struct mempolicy),
2912					 0, SLAB_PANIC, NULL);
2913
2914	sn_cache = kmem_cache_create("shared_policy_node",
2915				     sizeof(struct sp_node),
2916				     0, SLAB_PANIC, NULL);
2917
2918	for_each_node(nid) {
2919		preferred_node_policy[nid] = (struct mempolicy) {
2920			.refcnt = ATOMIC_INIT(1),
2921			.mode = MPOL_PREFERRED,
2922			.flags = MPOL_F_MOF | MPOL_F_MORON,
2923			.nodes = nodemask_of_node(nid),
2924		};
2925	}
2926
2927	/*
2928	 * Set interleaving policy for system init. Interleaving is only
2929	 * enabled across suitably sized nodes (default is >= 16MB), or
2930	 * fall back to the largest node if they're all smaller.
2931	 */
2932	nodes_clear(interleave_nodes);
2933	for_each_node_state(nid, N_MEMORY) {
2934		unsigned long total_pages = node_present_pages(nid);
2935
2936		/* Preserve the largest node */
2937		if (largest < total_pages) {
2938			largest = total_pages;
2939			prefer = nid;
2940		}
2941
2942		/* Interleave this node? */
2943		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2944			node_set(nid, interleave_nodes);
2945	}
2946
2947	/* All too small, use the largest */
2948	if (unlikely(nodes_empty(interleave_nodes)))
2949		node_set(prefer, interleave_nodes);
2950
2951	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2952		pr_err("%s: interleaving failed\n", __func__);
2953
2954	check_numabalancing_enable();
2955}
2956
2957/* Reset policy of current process to default */
2958void numa_default_policy(void)
2959{
2960	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2961}
2962
2963/*
2964 * Parse and format mempolicy from/to strings
2965 */
2966
 
 
 
2967static const char * const policy_modes[] =
2968{
2969	[MPOL_DEFAULT]    = "default",
2970	[MPOL_PREFERRED]  = "prefer",
2971	[MPOL_BIND]       = "bind",
2972	[MPOL_INTERLEAVE] = "interleave",
2973	[MPOL_LOCAL]      = "local",
2974	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2975};
2976
2977
2978#ifdef CONFIG_TMPFS
2979/**
2980 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2981 * @str:  string containing mempolicy to parse
2982 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2983 *
2984 * Format of input:
2985 *	<mode>[=<flags>][:<nodelist>]
2986 *
2987 * Return: %0 on success, else %1
2988 */
2989int mpol_parse_str(char *str, struct mempolicy **mpol)
2990{
2991	struct mempolicy *new = NULL;
2992	unsigned short mode_flags;
2993	nodemask_t nodes;
2994	char *nodelist = strchr(str, ':');
2995	char *flags = strchr(str, '=');
2996	int err = 1, mode;
2997
2998	if (flags)
2999		*flags++ = '\0';	/* terminate mode string */
3000
3001	if (nodelist) {
3002		/* NUL-terminate mode or flags string */
3003		*nodelist++ = '\0';
3004		if (nodelist_parse(nodelist, nodes))
3005			goto out;
3006		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3007			goto out;
3008	} else
3009		nodes_clear(nodes);
3010
 
 
 
3011	mode = match_string(policy_modes, MPOL_MAX, str);
3012	if (mode < 0)
3013		goto out;
3014
3015	switch (mode) {
3016	case MPOL_PREFERRED:
3017		/*
3018		 * Insist on a nodelist of one node only, although later
3019		 * we use first_node(nodes) to grab a single node, so here
3020		 * nodelist (or nodes) cannot be empty.
3021		 */
3022		if (nodelist) {
3023			char *rest = nodelist;
3024			while (isdigit(*rest))
3025				rest++;
3026			if (*rest)
3027				goto out;
3028			if (nodes_empty(nodes))
3029				goto out;
3030		}
3031		break;
3032	case MPOL_INTERLEAVE:
3033		/*
3034		 * Default to online nodes with memory if no nodelist
3035		 */
3036		if (!nodelist)
3037			nodes = node_states[N_MEMORY];
3038		break;
3039	case MPOL_LOCAL:
3040		/*
3041		 * Don't allow a nodelist;  mpol_new() checks flags
3042		 */
3043		if (nodelist)
3044			goto out;
 
3045		break;
3046	case MPOL_DEFAULT:
3047		/*
3048		 * Insist on a empty nodelist
3049		 */
3050		if (!nodelist)
3051			err = 0;
3052		goto out;
3053	case MPOL_PREFERRED_MANY:
3054	case MPOL_BIND:
3055		/*
3056		 * Insist on a nodelist
3057		 */
3058		if (!nodelist)
3059			goto out;
3060	}
3061
3062	mode_flags = 0;
3063	if (flags) {
3064		/*
3065		 * Currently, we only support two mutually exclusive
3066		 * mode flags.
3067		 */
3068		if (!strcmp(flags, "static"))
3069			mode_flags |= MPOL_F_STATIC_NODES;
3070		else if (!strcmp(flags, "relative"))
3071			mode_flags |= MPOL_F_RELATIVE_NODES;
3072		else
3073			goto out;
3074	}
3075
3076	new = mpol_new(mode, mode_flags, &nodes);
3077	if (IS_ERR(new))
3078		goto out;
3079
3080	/*
3081	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3082	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3083	 */
3084	if (mode != MPOL_PREFERRED) {
3085		new->nodes = nodes;
3086	} else if (nodelist) {
3087		nodes_clear(new->nodes);
3088		node_set(first_node(nodes), new->nodes);
3089	} else {
3090		new->mode = MPOL_LOCAL;
3091	}
3092
3093	/*
3094	 * Save nodes for contextualization: this will be used to "clone"
3095	 * the mempolicy in a specific context [cpuset] at a later time.
3096	 */
3097	new->w.user_nodemask = nodes;
3098
3099	err = 0;
3100
3101out:
3102	/* Restore string for error message */
3103	if (nodelist)
3104		*--nodelist = ':';
3105	if (flags)
3106		*--flags = '=';
3107	if (!err)
3108		*mpol = new;
3109	return err;
3110}
3111#endif /* CONFIG_TMPFS */
3112
3113/**
3114 * mpol_to_str - format a mempolicy structure for printing
3115 * @buffer:  to contain formatted mempolicy string
3116 * @maxlen:  length of @buffer
3117 * @pol:  pointer to mempolicy to be formatted
3118 *
3119 * Convert @pol into a string.  If @buffer is too short, truncate the string.
3120 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3121 * longest flag, "relative", and to display at least a few node ids.
3122 */
3123void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3124{
3125	char *p = buffer;
3126	nodemask_t nodes = NODE_MASK_NONE;
3127	unsigned short mode = MPOL_DEFAULT;
3128	unsigned short flags = 0;
3129
3130	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3131		mode = pol->mode;
3132		flags = pol->flags;
3133	}
3134
3135	switch (mode) {
3136	case MPOL_DEFAULT:
3137	case MPOL_LOCAL:
3138		break;
3139	case MPOL_PREFERRED:
3140	case MPOL_PREFERRED_MANY:
 
 
 
 
3141	case MPOL_BIND:
3142	case MPOL_INTERLEAVE:
3143		nodes = pol->nodes;
3144		break;
3145	default:
3146		WARN_ON_ONCE(1);
3147		snprintf(p, maxlen, "unknown");
3148		return;
3149	}
3150
3151	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3152
3153	if (flags & MPOL_MODE_FLAGS) {
3154		p += snprintf(p, buffer + maxlen - p, "=");
3155
3156		/*
3157		 * Currently, the only defined flags are mutually exclusive
3158		 */
3159		if (flags & MPOL_F_STATIC_NODES)
3160			p += snprintf(p, buffer + maxlen - p, "static");
3161		else if (flags & MPOL_F_RELATIVE_NODES)
3162			p += snprintf(p, buffer + maxlen - p, "relative");
3163	}
3164
3165	if (!nodes_empty(nodes))
3166		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3167			       nodemask_pr_args(&nodes));
3168}