Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/pagewalk.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130struct mempolicy *get_task_policy(struct task_struct *p)
 131{
 132	struct mempolicy *pol = p->mempolicy;
 133	int node;
 134
 135	if (pol)
 136		return pol;
 137
 138	node = numa_node_id();
 139	if (node != NUMA_NO_NODE) {
 140		pol = &preferred_node_policy[node];
 141		/* preferred_node_policy is not initialised early in boot */
 142		if (pol->mode)
 143			return pol;
 144	}
 145
 146	return &default_policy;
 147}
 148
 149static const struct mempolicy_operations {
 150	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 151	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 152} mpol_ops[MPOL_MAX];
 153
 154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 155{
 156	return pol->flags & MPOL_MODE_FLAGS;
 157}
 158
 159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 160				   const nodemask_t *rel)
 161{
 162	nodemask_t tmp;
 163	nodes_fold(tmp, *orig, nodes_weight(*rel));
 164	nodes_onto(*ret, tmp, *rel);
 165}
 166
 167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 168{
 169	if (nodes_empty(*nodes))
 170		return -EINVAL;
 171	pol->v.nodes = *nodes;
 172	return 0;
 173}
 174
 175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 176{
 177	if (!nodes)
 178		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 179	else if (nodes_empty(*nodes))
 180		return -EINVAL;			/*  no allowed nodes */
 181	else
 182		pol->v.preferred_node = first_node(*nodes);
 183	return 0;
 184}
 185
 186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (nodes_empty(*nodes))
 189		return -EINVAL;
 190	pol->v.nodes = *nodes;
 191	return 0;
 192}
 193
 194/*
 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 196 * any, for the new policy.  mpol_new() has already validated the nodes
 197 * parameter with respect to the policy mode and flags.  But, we need to
 198 * handle an empty nodemask with MPOL_PREFERRED here.
 199 *
 200 * Must be called holding task's alloc_lock to protect task's mems_allowed
 201 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 202 */
 203static int mpol_set_nodemask(struct mempolicy *pol,
 204		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 205{
 206	int ret;
 207
 208	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 209	if (pol == NULL)
 210		return 0;
 211	/* Check N_MEMORY */
 212	nodes_and(nsc->mask1,
 213		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 214
 215	VM_BUG_ON(!nodes);
 216	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 217		nodes = NULL;	/* explicit local allocation */
 218	else {
 219		if (pol->flags & MPOL_F_RELATIVE_NODES)
 220			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 221		else
 222			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 223
 224		if (mpol_store_user_nodemask(pol))
 225			pol->w.user_nodemask = *nodes;
 226		else
 227			pol->w.cpuset_mems_allowed =
 228						cpuset_current_mems_allowed;
 229	}
 230
 231	if (nodes)
 232		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 233	else
 234		ret = mpol_ops[pol->mode].create(pol, NULL);
 235	return ret;
 236}
 237
 238/*
 239 * This function just creates a new policy, does some check and simple
 240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 241 */
 242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 243				  nodemask_t *nodes)
 244{
 245	struct mempolicy *policy;
 246
 247	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 248		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 249
 250	if (mode == MPOL_DEFAULT) {
 251		if (nodes && !nodes_empty(*nodes))
 252			return ERR_PTR(-EINVAL);
 253		return NULL;
 254	}
 255	VM_BUG_ON(!nodes);
 256
 257	/*
 258	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 259	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 260	 * All other modes require a valid pointer to a non-empty nodemask.
 261	 */
 262	if (mode == MPOL_PREFERRED) {
 263		if (nodes_empty(*nodes)) {
 264			if (((flags & MPOL_F_STATIC_NODES) ||
 265			     (flags & MPOL_F_RELATIVE_NODES)))
 266				return ERR_PTR(-EINVAL);
 267		}
 268	} else if (mode == MPOL_LOCAL) {
 269		if (!nodes_empty(*nodes) ||
 270		    (flags & MPOL_F_STATIC_NODES) ||
 271		    (flags & MPOL_F_RELATIVE_NODES))
 272			return ERR_PTR(-EINVAL);
 273		mode = MPOL_PREFERRED;
 274	} else if (nodes_empty(*nodes))
 275		return ERR_PTR(-EINVAL);
 276	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 277	if (!policy)
 278		return ERR_PTR(-ENOMEM);
 279	atomic_set(&policy->refcnt, 1);
 280	policy->mode = mode;
 281	policy->flags = flags;
 282
 283	return policy;
 284}
 285
 286/* Slow path of a mpol destructor. */
 287void __mpol_put(struct mempolicy *p)
 288{
 289	if (!atomic_dec_and_test(&p->refcnt))
 290		return;
 291	kmem_cache_free(policy_cache, p);
 292}
 293
 294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 295{
 296}
 297
 298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 299{
 300	nodemask_t tmp;
 301
 302	if (pol->flags & MPOL_F_STATIC_NODES)
 303		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 304	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 305		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 306	else {
 307		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 308								*nodes);
 309		pol->w.cpuset_mems_allowed = *nodes;
 310	}
 311
 312	if (nodes_empty(tmp))
 313		tmp = *nodes;
 314
 315	pol->v.nodes = tmp;
 316}
 317
 318static void mpol_rebind_preferred(struct mempolicy *pol,
 319						const nodemask_t *nodes)
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES) {
 324		int node = first_node(pol->w.user_nodemask);
 325
 326		if (node_isset(node, *nodes)) {
 327			pol->v.preferred_node = node;
 328			pol->flags &= ~MPOL_F_LOCAL;
 329		} else
 330			pol->flags |= MPOL_F_LOCAL;
 331	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 332		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 333		pol->v.preferred_node = first_node(tmp);
 334	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 335		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 336						   pol->w.cpuset_mems_allowed,
 337						   *nodes);
 338		pol->w.cpuset_mems_allowed = *nodes;
 339	}
 340}
 341
 342/*
 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 344 *
 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 346 * policies are protected by task->mems_allowed_seq to prevent a premature
 347 * OOM/allocation failure due to parallel nodemask modification.
 348 */
 349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 350{
 351	if (!pol)
 352		return;
 353	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
 354	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 355		return;
 356
 357	mpol_ops[pol->mode].rebind(pol, newmask);
 358}
 359
 360/*
 361 * Wrapper for mpol_rebind_policy() that just requires task
 362 * pointer, and updates task mempolicy.
 363 *
 364 * Called with task's alloc_lock held.
 365 */
 366
 367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 368{
 369	mpol_rebind_policy(tsk->mempolicy, new);
 370}
 371
 372/*
 373 * Rebind each vma in mm to new nodemask.
 374 *
 375 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 376 */
 377
 378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 379{
 380	struct vm_area_struct *vma;
 381
 382	down_write(&mm->mmap_sem);
 383	for (vma = mm->mmap; vma; vma = vma->vm_next)
 384		mpol_rebind_policy(vma->vm_policy, new);
 385	up_write(&mm->mmap_sem);
 386}
 387
 388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 389	[MPOL_DEFAULT] = {
 390		.rebind = mpol_rebind_default,
 391	},
 392	[MPOL_INTERLEAVE] = {
 393		.create = mpol_new_interleave,
 394		.rebind = mpol_rebind_nodemask,
 395	},
 396	[MPOL_PREFERRED] = {
 397		.create = mpol_new_preferred,
 398		.rebind = mpol_rebind_preferred,
 399	},
 400	[MPOL_BIND] = {
 401		.create = mpol_new_bind,
 402		.rebind = mpol_rebind_nodemask,
 403	},
 404};
 405
 406static int migrate_page_add(struct page *page, struct list_head *pagelist,
 407				unsigned long flags);
 408
 409struct queue_pages {
 410	struct list_head *pagelist;
 411	unsigned long flags;
 412	nodemask_t *nmask;
 413	struct vm_area_struct *prev;
 
 
 414};
 415
 416/*
 417 * Check if the page's nid is in qp->nmask.
 418 *
 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 420 * in the invert of qp->nmask.
 421 */
 422static inline bool queue_pages_required(struct page *page,
 423					struct queue_pages *qp)
 424{
 425	int nid = page_to_nid(page);
 426	unsigned long flags = qp->flags;
 427
 428	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 429}
 430
 431/*
 432 * queue_pages_pmd() has four possible return values:
 433 * 0 - pages are placed on the right node or queued successfully.
 434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 435 *     specified.
 436 * 2 - THP was split.
 437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 438 *        existing page was already on a node that does not follow the
 439 *        policy.
 440 */
 441static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 442				unsigned long end, struct mm_walk *walk)
 
 443{
 444	int ret = 0;
 445	struct page *page;
 446	struct queue_pages *qp = walk->private;
 447	unsigned long flags;
 448
 449	if (unlikely(is_pmd_migration_entry(*pmd))) {
 450		ret = -EIO;
 451		goto unlock;
 452	}
 453	page = pmd_page(*pmd);
 454	if (is_huge_zero_page(page)) {
 455		spin_unlock(ptl);
 456		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 457		ret = 2;
 458		goto out;
 459	}
 460	if (!queue_pages_required(page, qp))
 461		goto unlock;
 462
 463	flags = qp->flags;
 464	/* go to thp migration */
 465	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 466		if (!vma_migratable(walk->vma) ||
 467		    migrate_page_add(page, qp->pagelist, flags)) {
 468			ret = 1;
 469			goto unlock;
 470		}
 471	} else
 472		ret = -EIO;
 473unlock:
 474	spin_unlock(ptl);
 475out:
 476	return ret;
 477}
 478
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 482 *
 483 * queue_pages_pte_range() has three possible return values:
 484 * 0 - pages are placed on the right node or queued successfully.
 485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 486 *     specified.
 487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 488 *        on a node that does not follow the policy.
 489 */
 490static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 491			unsigned long end, struct mm_walk *walk)
 492{
 493	struct vm_area_struct *vma = walk->vma;
 494	struct page *page;
 495	struct queue_pages *qp = walk->private;
 496	unsigned long flags = qp->flags;
 497	int ret;
 498	bool has_unmovable = false;
 499	pte_t *pte;
 500	spinlock_t *ptl;
 501
 502	ptl = pmd_trans_huge_lock(pmd, vma);
 503	if (ptl) {
 504		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 505		if (ret != 2)
 506			return ret;
 507	}
 508	/* THP was split, fall through to pte walk */
 509
 510	if (pmd_trans_unstable(pmd))
 511		return 0;
 512
 513	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 514	for (; addr != end; pte++, addr += PAGE_SIZE) {
 515		if (!pte_present(*pte))
 516			continue;
 517		page = vm_normal_page(vma, addr, *pte);
 518		if (!page)
 519			continue;
 520		/*
 521		 * vm_normal_page() filters out zero pages, but there might
 522		 * still be PageReserved pages to skip, perhaps in a VDSO.
 523		 */
 524		if (PageReserved(page))
 525			continue;
 526		if (!queue_pages_required(page, qp))
 527			continue;
 528		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 529			/* MPOL_MF_STRICT must be specified if we get here */
 530			if (!vma_migratable(vma)) {
 531				has_unmovable = true;
 532				break;
 533			}
 534
 535			/*
 536			 * Do not abort immediately since there may be
 537			 * temporary off LRU pages in the range.  Still
 538			 * need migrate other LRU pages.
 539			 */
 540			if (migrate_page_add(page, qp->pagelist, flags))
 541				has_unmovable = true;
 542		} else
 543			break;
 544	}
 545	pte_unmap_unlock(pte - 1, ptl);
 546	cond_resched();
 547
 548	if (has_unmovable)
 549		return 1;
 550
 551	return addr != end ? -EIO : 0;
 552}
 553
 554static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 555			       unsigned long addr, unsigned long end,
 556			       struct mm_walk *walk)
 557{
 
 558#ifdef CONFIG_HUGETLB_PAGE
 559	struct queue_pages *qp = walk->private;
 560	unsigned long flags = qp->flags;
 561	struct page *page;
 562	spinlock_t *ptl;
 563	pte_t entry;
 564
 565	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 566	entry = huge_ptep_get(pte);
 567	if (!pte_present(entry))
 568		goto unlock;
 569	page = pte_page(entry);
 570	if (!queue_pages_required(page, qp))
 571		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 573	if (flags & (MPOL_MF_MOVE_ALL) ||
 574	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 575		isolate_huge_page(page, qp->pagelist);
 
 
 
 
 
 
 
 576unlock:
 577	spin_unlock(ptl);
 578#else
 579	BUG();
 580#endif
 581	return 0;
 582}
 583
 584#ifdef CONFIG_NUMA_BALANCING
 585/*
 586 * This is used to mark a range of virtual addresses to be inaccessible.
 587 * These are later cleared by a NUMA hinting fault. Depending on these
 588 * faults, pages may be migrated for better NUMA placement.
 589 *
 590 * This is assuming that NUMA faults are handled using PROT_NONE. If
 591 * an architecture makes a different choice, it will need further
 592 * changes to the core.
 593 */
 594unsigned long change_prot_numa(struct vm_area_struct *vma,
 595			unsigned long addr, unsigned long end)
 596{
 597	int nr_updated;
 598
 599	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 600	if (nr_updated)
 601		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 602
 603	return nr_updated;
 604}
 605#else
 606static unsigned long change_prot_numa(struct vm_area_struct *vma,
 607			unsigned long addr, unsigned long end)
 608{
 609	return 0;
 610}
 611#endif /* CONFIG_NUMA_BALANCING */
 612
 613static int queue_pages_test_walk(unsigned long start, unsigned long end,
 614				struct mm_walk *walk)
 615{
 616	struct vm_area_struct *vma = walk->vma;
 617	struct queue_pages *qp = walk->private;
 618	unsigned long endvma = vma->vm_end;
 619	unsigned long flags = qp->flags;
 620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621	/*
 622	 * Need check MPOL_MF_STRICT to return -EIO if possible
 623	 * regardless of vma_migratable
 624	 */
 625	if (!vma_migratable(vma) &&
 626	    !(flags & MPOL_MF_STRICT))
 627		return 1;
 628
 629	if (endvma > end)
 630		endvma = end;
 631	if (vma->vm_start > start)
 632		start = vma->vm_start;
 633
 634	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 635		if (!vma->vm_next && vma->vm_end < end)
 636			return -EFAULT;
 637		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 638			return -EFAULT;
 639	}
 640
 641	qp->prev = vma;
 642
 643	if (flags & MPOL_MF_LAZY) {
 644		/* Similar to task_numa_work, skip inaccessible VMAs */
 645		if (!is_vm_hugetlb_page(vma) &&
 646			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 647			!(vma->vm_flags & VM_MIXEDMAP))
 648			change_prot_numa(vma, start, endvma);
 649		return 1;
 650	}
 651
 652	/* queue pages from current vma */
 653	if (flags & MPOL_MF_VALID)
 654		return 0;
 655	return 1;
 656}
 657
 658static const struct mm_walk_ops queue_pages_walk_ops = {
 659	.hugetlb_entry		= queue_pages_hugetlb,
 660	.pmd_entry		= queue_pages_pte_range,
 661	.test_walk		= queue_pages_test_walk,
 662};
 663
 664/*
 665 * Walk through page tables and collect pages to be migrated.
 666 *
 667 * If pages found in a given range are on a set of nodes (determined by
 668 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 669 * passed via @private.
 670 *
 671 * queue_pages_range() has three possible return values:
 672 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 673 *     specified.
 674 * 0 - queue pages successfully or no misplaced page.
 675 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 676 *         memory range specified by nodemask and maxnode points outside
 677 *         your accessible address space (-EFAULT)
 678 */
 679static int
 680queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 681		nodemask_t *nodes, unsigned long flags,
 682		struct list_head *pagelist)
 683{
 
 684	struct queue_pages qp = {
 685		.pagelist = pagelist,
 686		.flags = flags,
 687		.nmask = nodes,
 688		.prev = NULL,
 
 
 689	};
 690
 691	return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 
 
 
 
 
 
 692}
 693
 694/*
 695 * Apply policy to a single VMA
 696 * This must be called with the mmap_sem held for writing.
 697 */
 698static int vma_replace_policy(struct vm_area_struct *vma,
 699						struct mempolicy *pol)
 700{
 701	int err;
 702	struct mempolicy *old;
 703	struct mempolicy *new;
 704
 705	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 706		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 707		 vma->vm_ops, vma->vm_file,
 708		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 709
 710	new = mpol_dup(pol);
 711	if (IS_ERR(new))
 712		return PTR_ERR(new);
 713
 714	if (vma->vm_ops && vma->vm_ops->set_policy) {
 715		err = vma->vm_ops->set_policy(vma, new);
 716		if (err)
 717			goto err_out;
 718	}
 719
 720	old = vma->vm_policy;
 721	vma->vm_policy = new; /* protected by mmap_sem */
 722	mpol_put(old);
 723
 724	return 0;
 725 err_out:
 726	mpol_put(new);
 727	return err;
 728}
 729
 730/* Step 2: apply policy to a range and do splits. */
 731static int mbind_range(struct mm_struct *mm, unsigned long start,
 732		       unsigned long end, struct mempolicy *new_pol)
 733{
 734	struct vm_area_struct *next;
 735	struct vm_area_struct *prev;
 736	struct vm_area_struct *vma;
 737	int err = 0;
 738	pgoff_t pgoff;
 739	unsigned long vmstart;
 740	unsigned long vmend;
 741
 742	vma = find_vma(mm, start);
 743	if (!vma || vma->vm_start > start)
 744		return -EFAULT;
 745
 746	prev = vma->vm_prev;
 747	if (start > vma->vm_start)
 748		prev = vma;
 749
 750	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 751		next = vma->vm_next;
 752		vmstart = max(start, vma->vm_start);
 753		vmend   = min(end, vma->vm_end);
 754
 755		if (mpol_equal(vma_policy(vma), new_pol))
 756			continue;
 757
 758		pgoff = vma->vm_pgoff +
 759			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 760		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 761				 vma->anon_vma, vma->vm_file, pgoff,
 762				 new_pol, vma->vm_userfaultfd_ctx);
 763		if (prev) {
 764			vma = prev;
 765			next = vma->vm_next;
 766			if (mpol_equal(vma_policy(vma), new_pol))
 767				continue;
 768			/* vma_merge() joined vma && vma->next, case 8 */
 769			goto replace;
 770		}
 771		if (vma->vm_start != vmstart) {
 772			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 773			if (err)
 774				goto out;
 775		}
 776		if (vma->vm_end != vmend) {
 777			err = split_vma(vma->vm_mm, vma, vmend, 0);
 778			if (err)
 779				goto out;
 780		}
 781 replace:
 782		err = vma_replace_policy(vma, new_pol);
 783		if (err)
 784			goto out;
 785	}
 786
 787 out:
 788	return err;
 789}
 790
 791/* Set the process memory policy */
 792static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 793			     nodemask_t *nodes)
 794{
 795	struct mempolicy *new, *old;
 796	NODEMASK_SCRATCH(scratch);
 797	int ret;
 798
 799	if (!scratch)
 800		return -ENOMEM;
 801
 802	new = mpol_new(mode, flags, nodes);
 803	if (IS_ERR(new)) {
 804		ret = PTR_ERR(new);
 805		goto out;
 806	}
 807
 808	task_lock(current);
 809	ret = mpol_set_nodemask(new, nodes, scratch);
 810	if (ret) {
 811		task_unlock(current);
 812		mpol_put(new);
 813		goto out;
 814	}
 815	old = current->mempolicy;
 816	current->mempolicy = new;
 817	if (new && new->mode == MPOL_INTERLEAVE)
 818		current->il_prev = MAX_NUMNODES-1;
 819	task_unlock(current);
 820	mpol_put(old);
 821	ret = 0;
 822out:
 823	NODEMASK_SCRATCH_FREE(scratch);
 824	return ret;
 825}
 826
 827/*
 828 * Return nodemask for policy for get_mempolicy() query
 829 *
 830 * Called with task's alloc_lock held
 831 */
 832static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 833{
 834	nodes_clear(*nodes);
 835	if (p == &default_policy)
 836		return;
 837
 838	switch (p->mode) {
 839	case MPOL_BIND:
 840		/* Fall through */
 841	case MPOL_INTERLEAVE:
 842		*nodes = p->v.nodes;
 843		break;
 844	case MPOL_PREFERRED:
 845		if (!(p->flags & MPOL_F_LOCAL))
 846			node_set(p->v.preferred_node, *nodes);
 847		/* else return empty node mask for local allocation */
 848		break;
 849	default:
 850		BUG();
 851	}
 852}
 853
 854static int lookup_node(struct mm_struct *mm, unsigned long addr)
 855{
 856	struct page *p;
 857	int err;
 858
 859	int locked = 1;
 860	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
 861	if (err >= 0) {
 862		err = page_to_nid(p);
 863		put_page(p);
 864	}
 865	if (locked)
 866		up_read(&mm->mmap_sem);
 867	return err;
 868}
 869
 870/* Retrieve NUMA policy */
 871static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 872			     unsigned long addr, unsigned long flags)
 873{
 874	int err;
 875	struct mm_struct *mm = current->mm;
 876	struct vm_area_struct *vma = NULL;
 877	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 878
 879	if (flags &
 880		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 881		return -EINVAL;
 882
 883	if (flags & MPOL_F_MEMS_ALLOWED) {
 884		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 885			return -EINVAL;
 886		*policy = 0;	/* just so it's initialized */
 887		task_lock(current);
 888		*nmask  = cpuset_current_mems_allowed;
 889		task_unlock(current);
 890		return 0;
 891	}
 892
 893	if (flags & MPOL_F_ADDR) {
 894		/*
 895		 * Do NOT fall back to task policy if the
 896		 * vma/shared policy at addr is NULL.  We
 897		 * want to return MPOL_DEFAULT in this case.
 898		 */
 899		down_read(&mm->mmap_sem);
 900		vma = find_vma_intersection(mm, addr, addr+1);
 901		if (!vma) {
 902			up_read(&mm->mmap_sem);
 903			return -EFAULT;
 904		}
 905		if (vma->vm_ops && vma->vm_ops->get_policy)
 906			pol = vma->vm_ops->get_policy(vma, addr);
 907		else
 908			pol = vma->vm_policy;
 909	} else if (addr)
 910		return -EINVAL;
 911
 912	if (!pol)
 913		pol = &default_policy;	/* indicates default behavior */
 914
 915	if (flags & MPOL_F_NODE) {
 916		if (flags & MPOL_F_ADDR) {
 917			/*
 918			 * Take a refcount on the mpol, lookup_node()
 919			 * wil drop the mmap_sem, so after calling
 920			 * lookup_node() only "pol" remains valid, "vma"
 921			 * is stale.
 922			 */
 923			pol_refcount = pol;
 924			vma = NULL;
 925			mpol_get(pol);
 926			err = lookup_node(mm, addr);
 927			if (err < 0)
 928				goto out;
 929			*policy = err;
 930		} else if (pol == current->mempolicy &&
 931				pol->mode == MPOL_INTERLEAVE) {
 932			*policy = next_node_in(current->il_prev, pol->v.nodes);
 933		} else {
 934			err = -EINVAL;
 935			goto out;
 936		}
 937	} else {
 938		*policy = pol == &default_policy ? MPOL_DEFAULT :
 939						pol->mode;
 940		/*
 941		 * Internal mempolicy flags must be masked off before exposing
 942		 * the policy to userspace.
 943		 */
 944		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 945	}
 946
 947	err = 0;
 948	if (nmask) {
 949		if (mpol_store_user_nodemask(pol)) {
 950			*nmask = pol->w.user_nodemask;
 951		} else {
 952			task_lock(current);
 953			get_policy_nodemask(pol, nmask);
 954			task_unlock(current);
 955		}
 956	}
 957
 958 out:
 959	mpol_cond_put(pol);
 960	if (vma)
 961		up_read(&mm->mmap_sem);
 962	if (pol_refcount)
 963		mpol_put(pol_refcount);
 964	return err;
 965}
 966
 967#ifdef CONFIG_MIGRATION
 968/*
 969 * page migration, thp tail pages can be passed.
 970 */
 971static int migrate_page_add(struct page *page, struct list_head *pagelist,
 972				unsigned long flags)
 973{
 974	struct page *head = compound_head(page);
 975	/*
 976	 * Avoid migrating a page that is shared with others.
 977	 */
 978	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 979		if (!isolate_lru_page(head)) {
 980			list_add_tail(&head->lru, pagelist);
 981			mod_node_page_state(page_pgdat(head),
 982				NR_ISOLATED_ANON + page_is_file_cache(head),
 983				hpage_nr_pages(head));
 984		} else if (flags & MPOL_MF_STRICT) {
 985			/*
 986			 * Non-movable page may reach here.  And, there may be
 987			 * temporary off LRU pages or non-LRU movable pages.
 988			 * Treat them as unmovable pages since they can't be
 989			 * isolated, so they can't be moved at the moment.  It
 990			 * should return -EIO for this case too.
 991			 */
 992			return -EIO;
 993		}
 994	}
 995
 996	return 0;
 997}
 998
 999/* page allocation callback for NUMA node migration */
1000struct page *alloc_new_node_page(struct page *page, unsigned long node)
1001{
1002	if (PageHuge(page))
1003		return alloc_huge_page_node(page_hstate(compound_head(page)),
1004					node);
1005	else if (PageTransHuge(page)) {
1006		struct page *thp;
1007
1008		thp = alloc_pages_node(node,
1009			(GFP_TRANSHUGE | __GFP_THISNODE),
1010			HPAGE_PMD_ORDER);
1011		if (!thp)
1012			return NULL;
1013		prep_transhuge_page(thp);
1014		return thp;
1015	} else
1016		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1017						    __GFP_THISNODE, 0);
1018}
1019
1020/*
1021 * Migrate pages from one node to a target node.
1022 * Returns error or the number of pages not migrated.
1023 */
1024static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1025			   int flags)
1026{
1027	nodemask_t nmask;
1028	LIST_HEAD(pagelist);
1029	int err = 0;
 
 
 
 
1030
1031	nodes_clear(nmask);
1032	node_set(source, nmask);
1033
1034	/*
1035	 * This does not "check" the range but isolates all pages that
1036	 * need migration.  Between passing in the full user address
1037	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1038	 */
1039	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1040	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1041			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1042
1043	if (!list_empty(&pagelist)) {
1044		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1045					MIGRATE_SYNC, MR_SYSCALL);
1046		if (err)
1047			putback_movable_pages(&pagelist);
1048	}
1049
1050	return err;
1051}
1052
1053/*
1054 * Move pages between the two nodesets so as to preserve the physical
1055 * layout as much as possible.
1056 *
1057 * Returns the number of page that could not be moved.
1058 */
1059int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1060		     const nodemask_t *to, int flags)
1061{
1062	int busy = 0;
1063	int err;
1064	nodemask_t tmp;
1065
1066	err = migrate_prep();
1067	if (err)
1068		return err;
1069
1070	down_read(&mm->mmap_sem);
1071
1072	/*
1073	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1074	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1075	 * bit in 'tmp', and return that <source, dest> pair for migration.
1076	 * The pair of nodemasks 'to' and 'from' define the map.
1077	 *
1078	 * If no pair of bits is found that way, fallback to picking some
1079	 * pair of 'source' and 'dest' bits that are not the same.  If the
1080	 * 'source' and 'dest' bits are the same, this represents a node
1081	 * that will be migrating to itself, so no pages need move.
1082	 *
1083	 * If no bits are left in 'tmp', or if all remaining bits left
1084	 * in 'tmp' correspond to the same bit in 'to', return false
1085	 * (nothing left to migrate).
1086	 *
1087	 * This lets us pick a pair of nodes to migrate between, such that
1088	 * if possible the dest node is not already occupied by some other
1089	 * source node, minimizing the risk of overloading the memory on a
1090	 * node that would happen if we migrated incoming memory to a node
1091	 * before migrating outgoing memory source that same node.
1092	 *
1093	 * A single scan of tmp is sufficient.  As we go, we remember the
1094	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1095	 * that not only moved, but what's better, moved to an empty slot
1096	 * (d is not set in tmp), then we break out then, with that pair.
1097	 * Otherwise when we finish scanning from_tmp, we at least have the
1098	 * most recent <s, d> pair that moved.  If we get all the way through
1099	 * the scan of tmp without finding any node that moved, much less
1100	 * moved to an empty node, then there is nothing left worth migrating.
1101	 */
1102
1103	tmp = *from;
1104	while (!nodes_empty(tmp)) {
1105		int s,d;
1106		int source = NUMA_NO_NODE;
1107		int dest = 0;
1108
1109		for_each_node_mask(s, tmp) {
1110
1111			/*
1112			 * do_migrate_pages() tries to maintain the relative
1113			 * node relationship of the pages established between
1114			 * threads and memory areas.
1115                         *
1116			 * However if the number of source nodes is not equal to
1117			 * the number of destination nodes we can not preserve
1118			 * this node relative relationship.  In that case, skip
1119			 * copying memory from a node that is in the destination
1120			 * mask.
1121			 *
1122			 * Example: [2,3,4] -> [3,4,5] moves everything.
1123			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1124			 */
1125
1126			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1127						(node_isset(s, *to)))
1128				continue;
1129
1130			d = node_remap(s, *from, *to);
1131			if (s == d)
1132				continue;
1133
1134			source = s;	/* Node moved. Memorize */
1135			dest = d;
1136
1137			/* dest not in remaining from nodes? */
1138			if (!node_isset(dest, tmp))
1139				break;
1140		}
1141		if (source == NUMA_NO_NODE)
1142			break;
1143
1144		node_clear(source, tmp);
1145		err = migrate_to_node(mm, source, dest, flags);
1146		if (err > 0)
1147			busy += err;
1148		if (err < 0)
1149			break;
1150	}
1151	up_read(&mm->mmap_sem);
1152	if (err < 0)
1153		return err;
1154	return busy;
1155
1156}
1157
1158/*
1159 * Allocate a new page for page migration based on vma policy.
1160 * Start by assuming the page is mapped by the same vma as contains @start.
1161 * Search forward from there, if not.  N.B., this assumes that the
1162 * list of pages handed to migrate_pages()--which is how we get here--
1163 * is in virtual address order.
1164 */
1165static struct page *new_page(struct page *page, unsigned long start)
1166{
1167	struct vm_area_struct *vma;
1168	unsigned long uninitialized_var(address);
1169
1170	vma = find_vma(current->mm, start);
1171	while (vma) {
1172		address = page_address_in_vma(page, vma);
1173		if (address != -EFAULT)
1174			break;
1175		vma = vma->vm_next;
1176	}
1177
1178	if (PageHuge(page)) {
1179		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1180				vma, address);
1181	} else if (PageTransHuge(page)) {
1182		struct page *thp;
1183
1184		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1185					 HPAGE_PMD_ORDER);
1186		if (!thp)
1187			return NULL;
1188		prep_transhuge_page(thp);
1189		return thp;
1190	}
1191	/*
1192	 * if !vma, alloc_page_vma() will use task or system default policy
1193	 */
1194	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1195			vma, address);
1196}
1197#else
1198
1199static int migrate_page_add(struct page *page, struct list_head *pagelist,
1200				unsigned long flags)
1201{
1202	return -EIO;
1203}
1204
1205int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1206		     const nodemask_t *to, int flags)
1207{
1208	return -ENOSYS;
1209}
1210
1211static struct page *new_page(struct page *page, unsigned long start)
1212{
1213	return NULL;
1214}
1215#endif
1216
1217static long do_mbind(unsigned long start, unsigned long len,
1218		     unsigned short mode, unsigned short mode_flags,
1219		     nodemask_t *nmask, unsigned long flags)
1220{
1221	struct mm_struct *mm = current->mm;
1222	struct mempolicy *new;
1223	unsigned long end;
1224	int err;
1225	int ret;
1226	LIST_HEAD(pagelist);
1227
1228	if (flags & ~(unsigned long)MPOL_MF_VALID)
1229		return -EINVAL;
1230	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1231		return -EPERM;
1232
1233	if (start & ~PAGE_MASK)
1234		return -EINVAL;
1235
1236	if (mode == MPOL_DEFAULT)
1237		flags &= ~MPOL_MF_STRICT;
1238
1239	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1240	end = start + len;
1241
1242	if (end < start)
1243		return -EINVAL;
1244	if (end == start)
1245		return 0;
1246
1247	new = mpol_new(mode, mode_flags, nmask);
1248	if (IS_ERR(new))
1249		return PTR_ERR(new);
1250
1251	if (flags & MPOL_MF_LAZY)
1252		new->flags |= MPOL_F_MOF;
1253
1254	/*
1255	 * If we are using the default policy then operation
1256	 * on discontinuous address spaces is okay after all
1257	 */
1258	if (!new)
1259		flags |= MPOL_MF_DISCONTIG_OK;
1260
1261	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1262		 start, start + len, mode, mode_flags,
1263		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1264
1265	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1266
1267		err = migrate_prep();
1268		if (err)
1269			goto mpol_out;
1270	}
1271	{
1272		NODEMASK_SCRATCH(scratch);
1273		if (scratch) {
1274			down_write(&mm->mmap_sem);
1275			task_lock(current);
1276			err = mpol_set_nodemask(new, nmask, scratch);
1277			task_unlock(current);
1278			if (err)
1279				up_write(&mm->mmap_sem);
1280		} else
1281			err = -ENOMEM;
1282		NODEMASK_SCRATCH_FREE(scratch);
1283	}
1284	if (err)
1285		goto mpol_out;
1286
1287	ret = queue_pages_range(mm, start, end, nmask,
1288			  flags | MPOL_MF_INVERT, &pagelist);
1289
1290	if (ret < 0) {
1291		err = ret;
1292		goto up_out;
1293	}
1294
1295	err = mbind_range(mm, start, end, new);
1296
1297	if (!err) {
1298		int nr_failed = 0;
1299
1300		if (!list_empty(&pagelist)) {
1301			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1302			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1303				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1304			if (nr_failed)
1305				putback_movable_pages(&pagelist);
1306		}
1307
1308		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1309			err = -EIO;
1310	} else {
1311up_out:
1312		if (!list_empty(&pagelist))
1313			putback_movable_pages(&pagelist);
1314	}
1315
1316	up_write(&mm->mmap_sem);
1317mpol_out:
1318	mpol_put(new);
1319	return err;
1320}
1321
1322/*
1323 * User space interface with variable sized bitmaps for nodelists.
1324 */
1325
1326/* Copy a node mask from user space. */
1327static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1328		     unsigned long maxnode)
1329{
1330	unsigned long k;
1331	unsigned long t;
1332	unsigned long nlongs;
1333	unsigned long endmask;
1334
1335	--maxnode;
1336	nodes_clear(*nodes);
1337	if (maxnode == 0 || !nmask)
1338		return 0;
1339	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1340		return -EINVAL;
1341
1342	nlongs = BITS_TO_LONGS(maxnode);
1343	if ((maxnode % BITS_PER_LONG) == 0)
1344		endmask = ~0UL;
1345	else
1346		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1347
1348	/*
1349	 * When the user specified more nodes than supported just check
1350	 * if the non supported part is all zero.
1351	 *
1352	 * If maxnode have more longs than MAX_NUMNODES, check
1353	 * the bits in that area first. And then go through to
1354	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1355	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1356	 */
1357	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1358		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1359			if (get_user(t, nmask + k))
1360				return -EFAULT;
1361			if (k == nlongs - 1) {
1362				if (t & endmask)
1363					return -EINVAL;
1364			} else if (t)
1365				return -EINVAL;
1366		}
1367		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1368		endmask = ~0UL;
1369	}
1370
1371	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1372		unsigned long valid_mask = endmask;
1373
1374		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1375		if (get_user(t, nmask + nlongs - 1))
1376			return -EFAULT;
1377		if (t & valid_mask)
1378			return -EINVAL;
1379	}
1380
1381	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1382		return -EFAULT;
1383	nodes_addr(*nodes)[nlongs-1] &= endmask;
1384	return 0;
1385}
1386
1387/* Copy a kernel node mask to user space */
1388static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1389			      nodemask_t *nodes)
1390{
1391	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1392	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1393
1394	if (copy > nbytes) {
1395		if (copy > PAGE_SIZE)
1396			return -EINVAL;
1397		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1398			return -EFAULT;
1399		copy = nbytes;
1400	}
1401	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1402}
1403
1404static long kernel_mbind(unsigned long start, unsigned long len,
1405			 unsigned long mode, const unsigned long __user *nmask,
1406			 unsigned long maxnode, unsigned int flags)
1407{
1408	nodemask_t nodes;
1409	int err;
1410	unsigned short mode_flags;
1411
1412	start = untagged_addr(start);
1413	mode_flags = mode & MPOL_MODE_FLAGS;
1414	mode &= ~MPOL_MODE_FLAGS;
1415	if (mode >= MPOL_MAX)
1416		return -EINVAL;
1417	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1418	    (mode_flags & MPOL_F_RELATIVE_NODES))
1419		return -EINVAL;
1420	err = get_nodes(&nodes, nmask, maxnode);
1421	if (err)
1422		return err;
1423	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1424}
1425
1426SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1427		unsigned long, mode, const unsigned long __user *, nmask,
1428		unsigned long, maxnode, unsigned int, flags)
1429{
1430	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1431}
1432
1433/* Set the process memory policy */
1434static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1435				 unsigned long maxnode)
1436{
1437	int err;
1438	nodemask_t nodes;
1439	unsigned short flags;
1440
1441	flags = mode & MPOL_MODE_FLAGS;
1442	mode &= ~MPOL_MODE_FLAGS;
1443	if ((unsigned int)mode >= MPOL_MAX)
1444		return -EINVAL;
1445	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1446		return -EINVAL;
1447	err = get_nodes(&nodes, nmask, maxnode);
1448	if (err)
1449		return err;
1450	return do_set_mempolicy(mode, flags, &nodes);
1451}
1452
1453SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1454		unsigned long, maxnode)
1455{
1456	return kernel_set_mempolicy(mode, nmask, maxnode);
1457}
1458
1459static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1460				const unsigned long __user *old_nodes,
1461				const unsigned long __user *new_nodes)
1462{
1463	struct mm_struct *mm = NULL;
1464	struct task_struct *task;
1465	nodemask_t task_nodes;
1466	int err;
1467	nodemask_t *old;
1468	nodemask_t *new;
1469	NODEMASK_SCRATCH(scratch);
1470
1471	if (!scratch)
1472		return -ENOMEM;
1473
1474	old = &scratch->mask1;
1475	new = &scratch->mask2;
1476
1477	err = get_nodes(old, old_nodes, maxnode);
1478	if (err)
1479		goto out;
1480
1481	err = get_nodes(new, new_nodes, maxnode);
1482	if (err)
1483		goto out;
1484
1485	/* Find the mm_struct */
1486	rcu_read_lock();
1487	task = pid ? find_task_by_vpid(pid) : current;
1488	if (!task) {
1489		rcu_read_unlock();
1490		err = -ESRCH;
1491		goto out;
1492	}
1493	get_task_struct(task);
1494
1495	err = -EINVAL;
1496
1497	/*
1498	 * Check if this process has the right to modify the specified process.
1499	 * Use the regular "ptrace_may_access()" checks.
1500	 */
1501	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1502		rcu_read_unlock();
1503		err = -EPERM;
1504		goto out_put;
1505	}
1506	rcu_read_unlock();
1507
1508	task_nodes = cpuset_mems_allowed(task);
1509	/* Is the user allowed to access the target nodes? */
1510	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1511		err = -EPERM;
1512		goto out_put;
1513	}
1514
1515	task_nodes = cpuset_mems_allowed(current);
1516	nodes_and(*new, *new, task_nodes);
1517	if (nodes_empty(*new))
1518		goto out_put;
1519
1520	err = security_task_movememory(task);
1521	if (err)
1522		goto out_put;
1523
1524	mm = get_task_mm(task);
1525	put_task_struct(task);
1526
1527	if (!mm) {
1528		err = -EINVAL;
1529		goto out;
1530	}
1531
1532	err = do_migrate_pages(mm, old, new,
1533		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1534
1535	mmput(mm);
1536out:
1537	NODEMASK_SCRATCH_FREE(scratch);
1538
1539	return err;
1540
1541out_put:
1542	put_task_struct(task);
1543	goto out;
1544
1545}
1546
1547SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1548		const unsigned long __user *, old_nodes,
1549		const unsigned long __user *, new_nodes)
1550{
1551	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1552}
1553
1554
1555/* Retrieve NUMA policy */
1556static int kernel_get_mempolicy(int __user *policy,
1557				unsigned long __user *nmask,
1558				unsigned long maxnode,
1559				unsigned long addr,
1560				unsigned long flags)
1561{
1562	int err;
1563	int uninitialized_var(pval);
1564	nodemask_t nodes;
1565
1566	addr = untagged_addr(addr);
1567
1568	if (nmask != NULL && maxnode < nr_node_ids)
1569		return -EINVAL;
1570
 
 
1571	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1572
1573	if (err)
1574		return err;
1575
1576	if (policy && put_user(pval, policy))
1577		return -EFAULT;
1578
1579	if (nmask)
1580		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1581
1582	return err;
1583}
1584
1585SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1586		unsigned long __user *, nmask, unsigned long, maxnode,
1587		unsigned long, addr, unsigned long, flags)
1588{
1589	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1590}
1591
1592#ifdef CONFIG_COMPAT
1593
1594COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1595		       compat_ulong_t __user *, nmask,
1596		       compat_ulong_t, maxnode,
1597		       compat_ulong_t, addr, compat_ulong_t, flags)
1598{
1599	long err;
1600	unsigned long __user *nm = NULL;
1601	unsigned long nr_bits, alloc_size;
1602	DECLARE_BITMAP(bm, MAX_NUMNODES);
1603
1604	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1605	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1606
1607	if (nmask)
1608		nm = compat_alloc_user_space(alloc_size);
1609
1610	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1611
1612	if (!err && nmask) {
1613		unsigned long copy_size;
1614		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1615		err = copy_from_user(bm, nm, copy_size);
1616		/* ensure entire bitmap is zeroed */
1617		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1618		err |= compat_put_bitmap(nmask, bm, nr_bits);
1619	}
1620
1621	return err;
1622}
1623
1624COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1625		       compat_ulong_t, maxnode)
1626{
1627	unsigned long __user *nm = NULL;
1628	unsigned long nr_bits, alloc_size;
1629	DECLARE_BITMAP(bm, MAX_NUMNODES);
1630
1631	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1632	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1633
1634	if (nmask) {
1635		if (compat_get_bitmap(bm, nmask, nr_bits))
1636			return -EFAULT;
1637		nm = compat_alloc_user_space(alloc_size);
1638		if (copy_to_user(nm, bm, alloc_size))
1639			return -EFAULT;
1640	}
1641
1642	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1643}
1644
1645COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1646		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1647		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1648{
1649	unsigned long __user *nm = NULL;
1650	unsigned long nr_bits, alloc_size;
1651	nodemask_t bm;
1652
1653	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1654	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1655
1656	if (nmask) {
1657		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1658			return -EFAULT;
1659		nm = compat_alloc_user_space(alloc_size);
1660		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1661			return -EFAULT;
1662	}
1663
1664	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1665}
1666
1667COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1668		       compat_ulong_t, maxnode,
1669		       const compat_ulong_t __user *, old_nodes,
1670		       const compat_ulong_t __user *, new_nodes)
1671{
1672	unsigned long __user *old = NULL;
1673	unsigned long __user *new = NULL;
1674	nodemask_t tmp_mask;
1675	unsigned long nr_bits;
1676	unsigned long size;
1677
1678	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1679	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1680	if (old_nodes) {
1681		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1682			return -EFAULT;
1683		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1684		if (new_nodes)
1685			new = old + size / sizeof(unsigned long);
1686		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1687			return -EFAULT;
1688	}
1689	if (new_nodes) {
1690		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1691			return -EFAULT;
1692		if (new == NULL)
1693			new = compat_alloc_user_space(size);
1694		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1695			return -EFAULT;
1696	}
1697	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1698}
1699
1700#endif /* CONFIG_COMPAT */
1701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1703						unsigned long addr)
1704{
1705	struct mempolicy *pol = NULL;
1706
1707	if (vma) {
1708		if (vma->vm_ops && vma->vm_ops->get_policy) {
1709			pol = vma->vm_ops->get_policy(vma, addr);
1710		} else if (vma->vm_policy) {
1711			pol = vma->vm_policy;
1712
1713			/*
1714			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1715			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1716			 * count on these policies which will be dropped by
1717			 * mpol_cond_put() later
1718			 */
1719			if (mpol_needs_cond_ref(pol))
1720				mpol_get(pol);
1721		}
1722	}
1723
1724	return pol;
1725}
1726
1727/*
1728 * get_vma_policy(@vma, @addr)
1729 * @vma: virtual memory area whose policy is sought
1730 * @addr: address in @vma for shared policy lookup
1731 *
1732 * Returns effective policy for a VMA at specified address.
1733 * Falls back to current->mempolicy or system default policy, as necessary.
1734 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1735 * count--added by the get_policy() vm_op, as appropriate--to protect against
1736 * freeing by another task.  It is the caller's responsibility to free the
1737 * extra reference for shared policies.
1738 */
1739static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1740						unsigned long addr)
1741{
1742	struct mempolicy *pol = __get_vma_policy(vma, addr);
1743
1744	if (!pol)
1745		pol = get_task_policy(current);
1746
1747	return pol;
1748}
1749
1750bool vma_policy_mof(struct vm_area_struct *vma)
1751{
1752	struct mempolicy *pol;
1753
1754	if (vma->vm_ops && vma->vm_ops->get_policy) {
1755		bool ret = false;
1756
1757		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1758		if (pol && (pol->flags & MPOL_F_MOF))
1759			ret = true;
1760		mpol_cond_put(pol);
1761
1762		return ret;
1763	}
1764
1765	pol = vma->vm_policy;
1766	if (!pol)
1767		pol = get_task_policy(current);
1768
1769	return pol->flags & MPOL_F_MOF;
1770}
1771
1772static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1773{
1774	enum zone_type dynamic_policy_zone = policy_zone;
1775
1776	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1777
1778	/*
1779	 * if policy->v.nodes has movable memory only,
1780	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1781	 *
1782	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1783	 * so if the following test faile, it implies
1784	 * policy->v.nodes has movable memory only.
1785	 */
1786	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1787		dynamic_policy_zone = ZONE_MOVABLE;
1788
1789	return zone >= dynamic_policy_zone;
1790}
1791
1792/*
1793 * Return a nodemask representing a mempolicy for filtering nodes for
1794 * page allocation
1795 */
1796static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1797{
1798	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1799	if (unlikely(policy->mode == MPOL_BIND) &&
1800			apply_policy_zone(policy, gfp_zone(gfp)) &&
1801			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1802		return &policy->v.nodes;
1803
1804	return NULL;
1805}
1806
1807/* Return the node id preferred by the given mempolicy, or the given id */
1808static int policy_node(gfp_t gfp, struct mempolicy *policy,
1809								int nd)
1810{
1811	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1812		nd = policy->v.preferred_node;
1813	else {
1814		/*
1815		 * __GFP_THISNODE shouldn't even be used with the bind policy
1816		 * because we might easily break the expectation to stay on the
1817		 * requested node and not break the policy.
1818		 */
1819		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1820	}
1821
1822	return nd;
1823}
1824
1825/* Do dynamic interleaving for a process */
1826static unsigned interleave_nodes(struct mempolicy *policy)
1827{
1828	unsigned next;
1829	struct task_struct *me = current;
1830
1831	next = next_node_in(me->il_prev, policy->v.nodes);
1832	if (next < MAX_NUMNODES)
1833		me->il_prev = next;
1834	return next;
1835}
1836
1837/*
1838 * Depending on the memory policy provide a node from which to allocate the
1839 * next slab entry.
1840 */
1841unsigned int mempolicy_slab_node(void)
1842{
1843	struct mempolicy *policy;
1844	int node = numa_mem_id();
1845
1846	if (in_interrupt())
1847		return node;
1848
1849	policy = current->mempolicy;
1850	if (!policy || policy->flags & MPOL_F_LOCAL)
1851		return node;
1852
1853	switch (policy->mode) {
1854	case MPOL_PREFERRED:
1855		/*
1856		 * handled MPOL_F_LOCAL above
1857		 */
1858		return policy->v.preferred_node;
1859
1860	case MPOL_INTERLEAVE:
1861		return interleave_nodes(policy);
1862
1863	case MPOL_BIND: {
1864		struct zoneref *z;
1865
1866		/*
1867		 * Follow bind policy behavior and start allocation at the
1868		 * first node.
1869		 */
1870		struct zonelist *zonelist;
1871		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1872		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1873		z = first_zones_zonelist(zonelist, highest_zoneidx,
1874							&policy->v.nodes);
1875		return z->zone ? zone_to_nid(z->zone) : node;
1876	}
1877
1878	default:
1879		BUG();
1880	}
1881}
1882
1883/*
1884 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1885 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1886 * number of present nodes.
1887 */
1888static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1889{
1890	unsigned nnodes = nodes_weight(pol->v.nodes);
1891	unsigned target;
1892	int i;
1893	int nid;
1894
1895	if (!nnodes)
1896		return numa_node_id();
1897	target = (unsigned int)n % nnodes;
1898	nid = first_node(pol->v.nodes);
1899	for (i = 0; i < target; i++)
1900		nid = next_node(nid, pol->v.nodes);
1901	return nid;
1902}
1903
1904/* Determine a node number for interleave */
1905static inline unsigned interleave_nid(struct mempolicy *pol,
1906		 struct vm_area_struct *vma, unsigned long addr, int shift)
1907{
1908	if (vma) {
1909		unsigned long off;
1910
1911		/*
1912		 * for small pages, there is no difference between
1913		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1914		 * for huge pages, since vm_pgoff is in units of small
1915		 * pages, we need to shift off the always 0 bits to get
1916		 * a useful offset.
1917		 */
1918		BUG_ON(shift < PAGE_SHIFT);
1919		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1920		off += (addr - vma->vm_start) >> shift;
1921		return offset_il_node(pol, off);
1922	} else
1923		return interleave_nodes(pol);
1924}
1925
1926#ifdef CONFIG_HUGETLBFS
1927/*
1928 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1929 * @vma: virtual memory area whose policy is sought
1930 * @addr: address in @vma for shared policy lookup and interleave policy
1931 * @gfp_flags: for requested zone
1932 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1933 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1934 *
1935 * Returns a nid suitable for a huge page allocation and a pointer
1936 * to the struct mempolicy for conditional unref after allocation.
1937 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1938 * @nodemask for filtering the zonelist.
1939 *
1940 * Must be protected by read_mems_allowed_begin()
1941 */
1942int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1943				struct mempolicy **mpol, nodemask_t **nodemask)
1944{
1945	int nid;
1946
1947	*mpol = get_vma_policy(vma, addr);
1948	*nodemask = NULL;	/* assume !MPOL_BIND */
1949
1950	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1951		nid = interleave_nid(*mpol, vma, addr,
1952					huge_page_shift(hstate_vma(vma)));
1953	} else {
1954		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1955		if ((*mpol)->mode == MPOL_BIND)
1956			*nodemask = &(*mpol)->v.nodes;
1957	}
1958	return nid;
1959}
1960
1961/*
1962 * init_nodemask_of_mempolicy
1963 *
1964 * If the current task's mempolicy is "default" [NULL], return 'false'
1965 * to indicate default policy.  Otherwise, extract the policy nodemask
1966 * for 'bind' or 'interleave' policy into the argument nodemask, or
1967 * initialize the argument nodemask to contain the single node for
1968 * 'preferred' or 'local' policy and return 'true' to indicate presence
1969 * of non-default mempolicy.
1970 *
1971 * We don't bother with reference counting the mempolicy [mpol_get/put]
1972 * because the current task is examining it's own mempolicy and a task's
1973 * mempolicy is only ever changed by the task itself.
1974 *
1975 * N.B., it is the caller's responsibility to free a returned nodemask.
1976 */
1977bool init_nodemask_of_mempolicy(nodemask_t *mask)
1978{
1979	struct mempolicy *mempolicy;
1980	int nid;
1981
1982	if (!(mask && current->mempolicy))
1983		return false;
1984
1985	task_lock(current);
1986	mempolicy = current->mempolicy;
1987	switch (mempolicy->mode) {
1988	case MPOL_PREFERRED:
1989		if (mempolicy->flags & MPOL_F_LOCAL)
1990			nid = numa_node_id();
1991		else
1992			nid = mempolicy->v.preferred_node;
1993		init_nodemask_of_node(mask, nid);
1994		break;
1995
1996	case MPOL_BIND:
1997		/* Fall through */
1998	case MPOL_INTERLEAVE:
1999		*mask =  mempolicy->v.nodes;
2000		break;
2001
2002	default:
2003		BUG();
2004	}
2005	task_unlock(current);
2006
2007	return true;
2008}
2009#endif
2010
2011/*
2012 * mempolicy_nodemask_intersects
2013 *
2014 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2015 * policy.  Otherwise, check for intersection between mask and the policy
2016 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2017 * policy, always return true since it may allocate elsewhere on fallback.
2018 *
2019 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2020 */
2021bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2022					const nodemask_t *mask)
2023{
2024	struct mempolicy *mempolicy;
2025	bool ret = true;
2026
2027	if (!mask)
2028		return ret;
2029	task_lock(tsk);
2030	mempolicy = tsk->mempolicy;
2031	if (!mempolicy)
2032		goto out;
2033
2034	switch (mempolicy->mode) {
2035	case MPOL_PREFERRED:
2036		/*
2037		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2038		 * allocate from, they may fallback to other nodes when oom.
2039		 * Thus, it's possible for tsk to have allocated memory from
2040		 * nodes in mask.
2041		 */
2042		break;
2043	case MPOL_BIND:
2044	case MPOL_INTERLEAVE:
2045		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2046		break;
2047	default:
2048		BUG();
2049	}
2050out:
2051	task_unlock(tsk);
2052	return ret;
2053}
2054
2055/* Allocate a page in interleaved policy.
2056   Own path because it needs to do special accounting. */
2057static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2058					unsigned nid)
2059{
2060	struct page *page;
2061
2062	page = __alloc_pages(gfp, order, nid);
2063	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2064	if (!static_branch_likely(&vm_numa_stat_key))
2065		return page;
2066	if (page && page_to_nid(page) == nid) {
2067		preempt_disable();
2068		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2069		preempt_enable();
2070	}
2071	return page;
2072}
2073
2074/**
2075 * 	alloc_pages_vma	- Allocate a page for a VMA.
2076 *
2077 * 	@gfp:
2078 *      %GFP_USER    user allocation.
2079 *      %GFP_KERNEL  kernel allocations,
2080 *      %GFP_HIGHMEM highmem/user allocations,
2081 *      %GFP_FS      allocation should not call back into a file system.
2082 *      %GFP_ATOMIC  don't sleep.
2083 *
2084 *	@order:Order of the GFP allocation.
2085 * 	@vma:  Pointer to VMA or NULL if not available.
2086 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2087 *	@node: Which node to prefer for allocation (modulo policy).
2088 *	@hugepage: for hugepages try only the preferred node if possible
2089 *
2090 * 	This function allocates a page from the kernel page pool and applies
2091 *	a NUMA policy associated with the VMA or the current process.
2092 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2093 *	mm_struct of the VMA to prevent it from going away. Should be used for
2094 *	all allocations for pages that will be mapped into user space. Returns
2095 *	NULL when no page can be allocated.
2096 */
2097struct page *
2098alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2099		unsigned long addr, int node, bool hugepage)
2100{
2101	struct mempolicy *pol;
2102	struct page *page;
2103	int preferred_nid;
2104	nodemask_t *nmask;
2105
2106	pol = get_vma_policy(vma, addr);
2107
2108	if (pol->mode == MPOL_INTERLEAVE) {
2109		unsigned nid;
2110
2111		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2112		mpol_cond_put(pol);
2113		page = alloc_page_interleave(gfp, order, nid);
2114		goto out;
2115	}
2116
2117	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2118		int hpage_node = node;
2119
2120		/*
2121		 * For hugepage allocation and non-interleave policy which
2122		 * allows the current node (or other explicitly preferred
2123		 * node) we only try to allocate from the current/preferred
2124		 * node and don't fall back to other nodes, as the cost of
2125		 * remote accesses would likely offset THP benefits.
2126		 *
2127		 * If the policy is interleave, or does not allow the current
2128		 * node in its nodemask, we allocate the standard way.
2129		 */
2130		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2131			hpage_node = pol->v.preferred_node;
2132
2133		nmask = policy_nodemask(gfp, pol);
2134		if (!nmask || node_isset(hpage_node, *nmask)) {
2135			mpol_cond_put(pol);
 
 
 
 
2136			page = __alloc_pages_node(hpage_node,
2137						gfp | __GFP_THISNODE, order);
2138
2139			/*
2140			 * If hugepage allocations are configured to always
2141			 * synchronous compact or the vma has been madvised
2142			 * to prefer hugepage backing, retry allowing remote
2143			 * memory as well.
2144			 */
2145			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2146				page = __alloc_pages_node(hpage_node,
2147						gfp | __GFP_NORETRY, order);
2148
2149			goto out;
2150		}
2151	}
2152
2153	nmask = policy_nodemask(gfp, pol);
2154	preferred_nid = policy_node(gfp, pol, node);
2155	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2156	mpol_cond_put(pol);
2157out:
2158	return page;
2159}
2160EXPORT_SYMBOL(alloc_pages_vma);
2161
2162/**
2163 * 	alloc_pages_current - Allocate pages.
2164 *
2165 *	@gfp:
2166 *		%GFP_USER   user allocation,
2167 *      	%GFP_KERNEL kernel allocation,
2168 *      	%GFP_HIGHMEM highmem allocation,
2169 *      	%GFP_FS     don't call back into a file system.
2170 *      	%GFP_ATOMIC don't sleep.
2171 *	@order: Power of two of allocation size in pages. 0 is a single page.
2172 *
2173 *	Allocate a page from the kernel page pool.  When not in
2174 *	interrupt context and apply the current process NUMA policy.
2175 *	Returns NULL when no page can be allocated.
2176 */
2177struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2178{
2179	struct mempolicy *pol = &default_policy;
2180	struct page *page;
2181
2182	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2183		pol = get_task_policy(current);
2184
2185	/*
2186	 * No reference counting needed for current->mempolicy
2187	 * nor system default_policy
2188	 */
2189	if (pol->mode == MPOL_INTERLEAVE)
2190		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2191	else
2192		page = __alloc_pages_nodemask(gfp, order,
2193				policy_node(gfp, pol, numa_node_id()),
2194				policy_nodemask(gfp, pol));
2195
2196	return page;
2197}
2198EXPORT_SYMBOL(alloc_pages_current);
2199
2200int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2201{
2202	struct mempolicy *pol = mpol_dup(vma_policy(src));
2203
2204	if (IS_ERR(pol))
2205		return PTR_ERR(pol);
2206	dst->vm_policy = pol;
2207	return 0;
2208}
2209
2210/*
2211 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2212 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2213 * with the mems_allowed returned by cpuset_mems_allowed().  This
2214 * keeps mempolicies cpuset relative after its cpuset moves.  See
2215 * further kernel/cpuset.c update_nodemask().
2216 *
2217 * current's mempolicy may be rebinded by the other task(the task that changes
2218 * cpuset's mems), so we needn't do rebind work for current task.
2219 */
2220
2221/* Slow path of a mempolicy duplicate */
2222struct mempolicy *__mpol_dup(struct mempolicy *old)
2223{
2224	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2225
2226	if (!new)
2227		return ERR_PTR(-ENOMEM);
2228
2229	/* task's mempolicy is protected by alloc_lock */
2230	if (old == current->mempolicy) {
2231		task_lock(current);
2232		*new = *old;
2233		task_unlock(current);
2234	} else
2235		*new = *old;
2236
2237	if (current_cpuset_is_being_rebound()) {
2238		nodemask_t mems = cpuset_mems_allowed(current);
2239		mpol_rebind_policy(new, &mems);
2240	}
2241	atomic_set(&new->refcnt, 1);
2242	return new;
2243}
2244
2245/* Slow path of a mempolicy comparison */
2246bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2247{
2248	if (!a || !b)
2249		return false;
2250	if (a->mode != b->mode)
2251		return false;
2252	if (a->flags != b->flags)
2253		return false;
2254	if (mpol_store_user_nodemask(a))
2255		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2256			return false;
2257
2258	switch (a->mode) {
2259	case MPOL_BIND:
2260		/* Fall through */
2261	case MPOL_INTERLEAVE:
2262		return !!nodes_equal(a->v.nodes, b->v.nodes);
2263	case MPOL_PREFERRED:
2264		/* a's ->flags is the same as b's */
2265		if (a->flags & MPOL_F_LOCAL)
2266			return true;
2267		return a->v.preferred_node == b->v.preferred_node;
2268	default:
2269		BUG();
2270		return false;
2271	}
2272}
2273
2274/*
2275 * Shared memory backing store policy support.
2276 *
2277 * Remember policies even when nobody has shared memory mapped.
2278 * The policies are kept in Red-Black tree linked from the inode.
2279 * They are protected by the sp->lock rwlock, which should be held
2280 * for any accesses to the tree.
2281 */
2282
2283/*
2284 * lookup first element intersecting start-end.  Caller holds sp->lock for
2285 * reading or for writing
2286 */
2287static struct sp_node *
2288sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2289{
2290	struct rb_node *n = sp->root.rb_node;
2291
2292	while (n) {
2293		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2294
2295		if (start >= p->end)
2296			n = n->rb_right;
2297		else if (end <= p->start)
2298			n = n->rb_left;
2299		else
2300			break;
2301	}
2302	if (!n)
2303		return NULL;
2304	for (;;) {
2305		struct sp_node *w = NULL;
2306		struct rb_node *prev = rb_prev(n);
2307		if (!prev)
2308			break;
2309		w = rb_entry(prev, struct sp_node, nd);
2310		if (w->end <= start)
2311			break;
2312		n = prev;
2313	}
2314	return rb_entry(n, struct sp_node, nd);
2315}
2316
2317/*
2318 * Insert a new shared policy into the list.  Caller holds sp->lock for
2319 * writing.
2320 */
2321static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2322{
2323	struct rb_node **p = &sp->root.rb_node;
2324	struct rb_node *parent = NULL;
2325	struct sp_node *nd;
2326
2327	while (*p) {
2328		parent = *p;
2329		nd = rb_entry(parent, struct sp_node, nd);
2330		if (new->start < nd->start)
2331			p = &(*p)->rb_left;
2332		else if (new->end > nd->end)
2333			p = &(*p)->rb_right;
2334		else
2335			BUG();
2336	}
2337	rb_link_node(&new->nd, parent, p);
2338	rb_insert_color(&new->nd, &sp->root);
2339	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2340		 new->policy ? new->policy->mode : 0);
2341}
2342
2343/* Find shared policy intersecting idx */
2344struct mempolicy *
2345mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2346{
2347	struct mempolicy *pol = NULL;
2348	struct sp_node *sn;
2349
2350	if (!sp->root.rb_node)
2351		return NULL;
2352	read_lock(&sp->lock);
2353	sn = sp_lookup(sp, idx, idx+1);
2354	if (sn) {
2355		mpol_get(sn->policy);
2356		pol = sn->policy;
2357	}
2358	read_unlock(&sp->lock);
2359	return pol;
2360}
2361
2362static void sp_free(struct sp_node *n)
2363{
2364	mpol_put(n->policy);
2365	kmem_cache_free(sn_cache, n);
2366}
2367
2368/**
2369 * mpol_misplaced - check whether current page node is valid in policy
2370 *
2371 * @page: page to be checked
2372 * @vma: vm area where page mapped
2373 * @addr: virtual address where page mapped
2374 *
2375 * Lookup current policy node id for vma,addr and "compare to" page's
2376 * node id.
2377 *
2378 * Returns:
2379 *	-1	- not misplaced, page is in the right node
2380 *	node	- node id where the page should be
2381 *
2382 * Policy determination "mimics" alloc_page_vma().
2383 * Called from fault path where we know the vma and faulting address.
2384 */
2385int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2386{
2387	struct mempolicy *pol;
2388	struct zoneref *z;
2389	int curnid = page_to_nid(page);
2390	unsigned long pgoff;
2391	int thiscpu = raw_smp_processor_id();
2392	int thisnid = cpu_to_node(thiscpu);
2393	int polnid = NUMA_NO_NODE;
2394	int ret = -1;
2395
2396	pol = get_vma_policy(vma, addr);
2397	if (!(pol->flags & MPOL_F_MOF))
2398		goto out;
2399
2400	switch (pol->mode) {
2401	case MPOL_INTERLEAVE:
2402		pgoff = vma->vm_pgoff;
2403		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2404		polnid = offset_il_node(pol, pgoff);
2405		break;
2406
2407	case MPOL_PREFERRED:
2408		if (pol->flags & MPOL_F_LOCAL)
2409			polnid = numa_node_id();
2410		else
2411			polnid = pol->v.preferred_node;
2412		break;
2413
2414	case MPOL_BIND:
2415
2416		/*
2417		 * allows binding to multiple nodes.
2418		 * use current page if in policy nodemask,
2419		 * else select nearest allowed node, if any.
2420		 * If no allowed nodes, use current [!misplaced].
2421		 */
2422		if (node_isset(curnid, pol->v.nodes))
2423			goto out;
2424		z = first_zones_zonelist(
2425				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2426				gfp_zone(GFP_HIGHUSER),
2427				&pol->v.nodes);
2428		polnid = zone_to_nid(z->zone);
2429		break;
2430
2431	default:
2432		BUG();
2433	}
2434
2435	/* Migrate the page towards the node whose CPU is referencing it */
2436	if (pol->flags & MPOL_F_MORON) {
2437		polnid = thisnid;
2438
2439		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2440			goto out;
2441	}
2442
2443	if (curnid != polnid)
2444		ret = polnid;
2445out:
2446	mpol_cond_put(pol);
2447
2448	return ret;
2449}
2450
2451/*
2452 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2453 * dropped after task->mempolicy is set to NULL so that any allocation done as
2454 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2455 * policy.
2456 */
2457void mpol_put_task_policy(struct task_struct *task)
2458{
2459	struct mempolicy *pol;
2460
2461	task_lock(task);
2462	pol = task->mempolicy;
2463	task->mempolicy = NULL;
2464	task_unlock(task);
2465	mpol_put(pol);
2466}
2467
2468static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2469{
2470	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2471	rb_erase(&n->nd, &sp->root);
2472	sp_free(n);
2473}
2474
2475static void sp_node_init(struct sp_node *node, unsigned long start,
2476			unsigned long end, struct mempolicy *pol)
2477{
2478	node->start = start;
2479	node->end = end;
2480	node->policy = pol;
2481}
2482
2483static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2484				struct mempolicy *pol)
2485{
2486	struct sp_node *n;
2487	struct mempolicy *newpol;
2488
2489	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2490	if (!n)
2491		return NULL;
2492
2493	newpol = mpol_dup(pol);
2494	if (IS_ERR(newpol)) {
2495		kmem_cache_free(sn_cache, n);
2496		return NULL;
2497	}
2498	newpol->flags |= MPOL_F_SHARED;
2499	sp_node_init(n, start, end, newpol);
2500
2501	return n;
2502}
2503
2504/* Replace a policy range. */
2505static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2506				 unsigned long end, struct sp_node *new)
2507{
2508	struct sp_node *n;
2509	struct sp_node *n_new = NULL;
2510	struct mempolicy *mpol_new = NULL;
2511	int ret = 0;
2512
2513restart:
2514	write_lock(&sp->lock);
2515	n = sp_lookup(sp, start, end);
2516	/* Take care of old policies in the same range. */
2517	while (n && n->start < end) {
2518		struct rb_node *next = rb_next(&n->nd);
2519		if (n->start >= start) {
2520			if (n->end <= end)
2521				sp_delete(sp, n);
2522			else
2523				n->start = end;
2524		} else {
2525			/* Old policy spanning whole new range. */
2526			if (n->end > end) {
2527				if (!n_new)
2528					goto alloc_new;
2529
2530				*mpol_new = *n->policy;
2531				atomic_set(&mpol_new->refcnt, 1);
2532				sp_node_init(n_new, end, n->end, mpol_new);
2533				n->end = start;
2534				sp_insert(sp, n_new);
2535				n_new = NULL;
2536				mpol_new = NULL;
2537				break;
2538			} else
2539				n->end = start;
2540		}
2541		if (!next)
2542			break;
2543		n = rb_entry(next, struct sp_node, nd);
2544	}
2545	if (new)
2546		sp_insert(sp, new);
2547	write_unlock(&sp->lock);
2548	ret = 0;
2549
2550err_out:
2551	if (mpol_new)
2552		mpol_put(mpol_new);
2553	if (n_new)
2554		kmem_cache_free(sn_cache, n_new);
2555
2556	return ret;
2557
2558alloc_new:
2559	write_unlock(&sp->lock);
2560	ret = -ENOMEM;
2561	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2562	if (!n_new)
2563		goto err_out;
2564	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2565	if (!mpol_new)
2566		goto err_out;
2567	goto restart;
2568}
2569
2570/**
2571 * mpol_shared_policy_init - initialize shared policy for inode
2572 * @sp: pointer to inode shared policy
2573 * @mpol:  struct mempolicy to install
2574 *
2575 * Install non-NULL @mpol in inode's shared policy rb-tree.
2576 * On entry, the current task has a reference on a non-NULL @mpol.
2577 * This must be released on exit.
2578 * This is called at get_inode() calls and we can use GFP_KERNEL.
2579 */
2580void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2581{
2582	int ret;
2583
2584	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2585	rwlock_init(&sp->lock);
2586
2587	if (mpol) {
2588		struct vm_area_struct pvma;
2589		struct mempolicy *new;
2590		NODEMASK_SCRATCH(scratch);
2591
2592		if (!scratch)
2593			goto put_mpol;
2594		/* contextualize the tmpfs mount point mempolicy */
2595		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2596		if (IS_ERR(new))
2597			goto free_scratch; /* no valid nodemask intersection */
2598
2599		task_lock(current);
2600		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2601		task_unlock(current);
2602		if (ret)
2603			goto put_new;
2604
2605		/* Create pseudo-vma that contains just the policy */
2606		vma_init(&pvma, NULL);
2607		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2608		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2609
2610put_new:
2611		mpol_put(new);			/* drop initial ref */
2612free_scratch:
2613		NODEMASK_SCRATCH_FREE(scratch);
2614put_mpol:
2615		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2616	}
2617}
2618
2619int mpol_set_shared_policy(struct shared_policy *info,
2620			struct vm_area_struct *vma, struct mempolicy *npol)
2621{
2622	int err;
2623	struct sp_node *new = NULL;
2624	unsigned long sz = vma_pages(vma);
2625
2626	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2627		 vma->vm_pgoff,
2628		 sz, npol ? npol->mode : -1,
2629		 npol ? npol->flags : -1,
2630		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2631
2632	if (npol) {
2633		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2634		if (!new)
2635			return -ENOMEM;
2636	}
2637	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2638	if (err && new)
2639		sp_free(new);
2640	return err;
2641}
2642
2643/* Free a backing policy store on inode delete. */
2644void mpol_free_shared_policy(struct shared_policy *p)
2645{
2646	struct sp_node *n;
2647	struct rb_node *next;
2648
2649	if (!p->root.rb_node)
2650		return;
2651	write_lock(&p->lock);
2652	next = rb_first(&p->root);
2653	while (next) {
2654		n = rb_entry(next, struct sp_node, nd);
2655		next = rb_next(&n->nd);
2656		sp_delete(p, n);
2657	}
2658	write_unlock(&p->lock);
2659}
2660
2661#ifdef CONFIG_NUMA_BALANCING
2662static int __initdata numabalancing_override;
2663
2664static void __init check_numabalancing_enable(void)
2665{
2666	bool numabalancing_default = false;
2667
2668	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2669		numabalancing_default = true;
2670
2671	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2672	if (numabalancing_override)
2673		set_numabalancing_state(numabalancing_override == 1);
2674
2675	if (num_online_nodes() > 1 && !numabalancing_override) {
2676		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2677			numabalancing_default ? "Enabling" : "Disabling");
2678		set_numabalancing_state(numabalancing_default);
2679	}
2680}
2681
2682static int __init setup_numabalancing(char *str)
2683{
2684	int ret = 0;
2685	if (!str)
2686		goto out;
2687
2688	if (!strcmp(str, "enable")) {
2689		numabalancing_override = 1;
2690		ret = 1;
2691	} else if (!strcmp(str, "disable")) {
2692		numabalancing_override = -1;
2693		ret = 1;
2694	}
2695out:
2696	if (!ret)
2697		pr_warn("Unable to parse numa_balancing=\n");
2698
2699	return ret;
2700}
2701__setup("numa_balancing=", setup_numabalancing);
2702#else
2703static inline void __init check_numabalancing_enable(void)
2704{
2705}
2706#endif /* CONFIG_NUMA_BALANCING */
2707
2708/* assumes fs == KERNEL_DS */
2709void __init numa_policy_init(void)
2710{
2711	nodemask_t interleave_nodes;
2712	unsigned long largest = 0;
2713	int nid, prefer = 0;
2714
2715	policy_cache = kmem_cache_create("numa_policy",
2716					 sizeof(struct mempolicy),
2717					 0, SLAB_PANIC, NULL);
2718
2719	sn_cache = kmem_cache_create("shared_policy_node",
2720				     sizeof(struct sp_node),
2721				     0, SLAB_PANIC, NULL);
2722
2723	for_each_node(nid) {
2724		preferred_node_policy[nid] = (struct mempolicy) {
2725			.refcnt = ATOMIC_INIT(1),
2726			.mode = MPOL_PREFERRED,
2727			.flags = MPOL_F_MOF | MPOL_F_MORON,
2728			.v = { .preferred_node = nid, },
2729		};
2730	}
2731
2732	/*
2733	 * Set interleaving policy for system init. Interleaving is only
2734	 * enabled across suitably sized nodes (default is >= 16MB), or
2735	 * fall back to the largest node if they're all smaller.
2736	 */
2737	nodes_clear(interleave_nodes);
2738	for_each_node_state(nid, N_MEMORY) {
2739		unsigned long total_pages = node_present_pages(nid);
2740
2741		/* Preserve the largest node */
2742		if (largest < total_pages) {
2743			largest = total_pages;
2744			prefer = nid;
2745		}
2746
2747		/* Interleave this node? */
2748		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2749			node_set(nid, interleave_nodes);
2750	}
2751
2752	/* All too small, use the largest */
2753	if (unlikely(nodes_empty(interleave_nodes)))
2754		node_set(prefer, interleave_nodes);
2755
2756	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2757		pr_err("%s: interleaving failed\n", __func__);
2758
2759	check_numabalancing_enable();
2760}
2761
2762/* Reset policy of current process to default */
2763void numa_default_policy(void)
2764{
2765	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2766}
2767
2768/*
2769 * Parse and format mempolicy from/to strings
2770 */
2771
2772/*
2773 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2774 */
2775static const char * const policy_modes[] =
2776{
2777	[MPOL_DEFAULT]    = "default",
2778	[MPOL_PREFERRED]  = "prefer",
2779	[MPOL_BIND]       = "bind",
2780	[MPOL_INTERLEAVE] = "interleave",
2781	[MPOL_LOCAL]      = "local",
2782};
2783
2784
2785#ifdef CONFIG_TMPFS
2786/**
2787 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2788 * @str:  string containing mempolicy to parse
2789 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2790 *
2791 * Format of input:
2792 *	<mode>[=<flags>][:<nodelist>]
2793 *
2794 * On success, returns 0, else 1
2795 */
2796int mpol_parse_str(char *str, struct mempolicy **mpol)
2797{
2798	struct mempolicy *new = NULL;
2799	unsigned short mode_flags;
2800	nodemask_t nodes;
2801	char *nodelist = strchr(str, ':');
2802	char *flags = strchr(str, '=');
2803	int err = 1, mode;
2804
 
 
 
2805	if (nodelist) {
2806		/* NUL-terminate mode or flags string */
2807		*nodelist++ = '\0';
2808		if (nodelist_parse(nodelist, nodes))
2809			goto out;
2810		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2811			goto out;
2812	} else
2813		nodes_clear(nodes);
2814
2815	if (flags)
2816		*flags++ = '\0';	/* terminate mode string */
2817
2818	mode = match_string(policy_modes, MPOL_MAX, str);
2819	if (mode < 0)
2820		goto out;
2821
2822	switch (mode) {
2823	case MPOL_PREFERRED:
2824		/*
2825		 * Insist on a nodelist of one node only
 
 
2826		 */
2827		if (nodelist) {
2828			char *rest = nodelist;
2829			while (isdigit(*rest))
2830				rest++;
2831			if (*rest)
 
 
2832				goto out;
2833		}
2834		break;
2835	case MPOL_INTERLEAVE:
2836		/*
2837		 * Default to online nodes with memory if no nodelist
2838		 */
2839		if (!nodelist)
2840			nodes = node_states[N_MEMORY];
2841		break;
2842	case MPOL_LOCAL:
2843		/*
2844		 * Don't allow a nodelist;  mpol_new() checks flags
2845		 */
2846		if (nodelist)
2847			goto out;
2848		mode = MPOL_PREFERRED;
2849		break;
2850	case MPOL_DEFAULT:
2851		/*
2852		 * Insist on a empty nodelist
2853		 */
2854		if (!nodelist)
2855			err = 0;
2856		goto out;
2857	case MPOL_BIND:
2858		/*
2859		 * Insist on a nodelist
2860		 */
2861		if (!nodelist)
2862			goto out;
2863	}
2864
2865	mode_flags = 0;
2866	if (flags) {
2867		/*
2868		 * Currently, we only support two mutually exclusive
2869		 * mode flags.
2870		 */
2871		if (!strcmp(flags, "static"))
2872			mode_flags |= MPOL_F_STATIC_NODES;
2873		else if (!strcmp(flags, "relative"))
2874			mode_flags |= MPOL_F_RELATIVE_NODES;
2875		else
2876			goto out;
2877	}
2878
2879	new = mpol_new(mode, mode_flags, &nodes);
2880	if (IS_ERR(new))
2881		goto out;
2882
2883	/*
2884	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2885	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2886	 */
2887	if (mode != MPOL_PREFERRED)
2888		new->v.nodes = nodes;
2889	else if (nodelist)
2890		new->v.preferred_node = first_node(nodes);
2891	else
2892		new->flags |= MPOL_F_LOCAL;
2893
2894	/*
2895	 * Save nodes for contextualization: this will be used to "clone"
2896	 * the mempolicy in a specific context [cpuset] at a later time.
2897	 */
2898	new->w.user_nodemask = nodes;
2899
2900	err = 0;
2901
2902out:
2903	/* Restore string for error message */
2904	if (nodelist)
2905		*--nodelist = ':';
2906	if (flags)
2907		*--flags = '=';
2908	if (!err)
2909		*mpol = new;
2910	return err;
2911}
2912#endif /* CONFIG_TMPFS */
2913
2914/**
2915 * mpol_to_str - format a mempolicy structure for printing
2916 * @buffer:  to contain formatted mempolicy string
2917 * @maxlen:  length of @buffer
2918 * @pol:  pointer to mempolicy to be formatted
2919 *
2920 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2921 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2922 * longest flag, "relative", and to display at least a few node ids.
2923 */
2924void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2925{
2926	char *p = buffer;
2927	nodemask_t nodes = NODE_MASK_NONE;
2928	unsigned short mode = MPOL_DEFAULT;
2929	unsigned short flags = 0;
2930
2931	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2932		mode = pol->mode;
2933		flags = pol->flags;
2934	}
2935
2936	switch (mode) {
2937	case MPOL_DEFAULT:
2938		break;
2939	case MPOL_PREFERRED:
2940		if (flags & MPOL_F_LOCAL)
2941			mode = MPOL_LOCAL;
2942		else
2943			node_set(pol->v.preferred_node, nodes);
2944		break;
2945	case MPOL_BIND:
2946	case MPOL_INTERLEAVE:
2947		nodes = pol->v.nodes;
2948		break;
2949	default:
2950		WARN_ON_ONCE(1);
2951		snprintf(p, maxlen, "unknown");
2952		return;
2953	}
2954
2955	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2956
2957	if (flags & MPOL_MODE_FLAGS) {
2958		p += snprintf(p, buffer + maxlen - p, "=");
2959
2960		/*
2961		 * Currently, the only defined flags are mutually exclusive
2962		 */
2963		if (flags & MPOL_F_STATIC_NODES)
2964			p += snprintf(p, buffer + maxlen - p, "static");
2965		else if (flags & MPOL_F_RELATIVE_NODES)
2966			p += snprintf(p, buffer + maxlen - p, "relative");
2967	}
2968
2969	if (!nodes_empty(nodes))
2970		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2971			       nodemask_pr_args(&nodes));
2972}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/pagewalk.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 129
 130/**
 131 * numa_map_to_online_node - Find closest online node
 132 * @node: Node id to start the search
 133 *
 134 * Lookup the next closest node by distance if @nid is not online.
 135 */
 136int numa_map_to_online_node(int node)
 137{
 138	int min_dist = INT_MAX, dist, n, min_node;
 139
 140	if (node == NUMA_NO_NODE || node_online(node))
 141		return node;
 142
 143	min_node = node;
 144	for_each_online_node(n) {
 145		dist = node_distance(node, n);
 146		if (dist < min_dist) {
 147			min_dist = dist;
 148			min_node = n;
 149		}
 150	}
 151
 152	return min_node;
 153}
 154EXPORT_SYMBOL_GPL(numa_map_to_online_node);
 155
 156struct mempolicy *get_task_policy(struct task_struct *p)
 157{
 158	struct mempolicy *pol = p->mempolicy;
 159	int node;
 160
 161	if (pol)
 162		return pol;
 163
 164	node = numa_node_id();
 165	if (node != NUMA_NO_NODE) {
 166		pol = &preferred_node_policy[node];
 167		/* preferred_node_policy is not initialised early in boot */
 168		if (pol->mode)
 169			return pol;
 170	}
 171
 172	return &default_policy;
 173}
 174
 175static const struct mempolicy_operations {
 176	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 177	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 178} mpol_ops[MPOL_MAX];
 179
 180static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 181{
 182	return pol->flags & MPOL_MODE_FLAGS;
 183}
 184
 185static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 186				   const nodemask_t *rel)
 187{
 188	nodemask_t tmp;
 189	nodes_fold(tmp, *orig, nodes_weight(*rel));
 190	nodes_onto(*ret, tmp, *rel);
 191}
 192
 193static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 194{
 195	if (nodes_empty(*nodes))
 196		return -EINVAL;
 197	pol->v.nodes = *nodes;
 198	return 0;
 199}
 200
 201static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 202{
 203	if (!nodes)
 204		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 205	else if (nodes_empty(*nodes))
 206		return -EINVAL;			/*  no allowed nodes */
 207	else
 208		pol->v.preferred_node = first_node(*nodes);
 209	return 0;
 210}
 211
 212static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 213{
 214	if (nodes_empty(*nodes))
 215		return -EINVAL;
 216	pol->v.nodes = *nodes;
 217	return 0;
 218}
 219
 220/*
 221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 222 * any, for the new policy.  mpol_new() has already validated the nodes
 223 * parameter with respect to the policy mode and flags.  But, we need to
 224 * handle an empty nodemask with MPOL_PREFERRED here.
 225 *
 226 * Must be called holding task's alloc_lock to protect task's mems_allowed
 227 * and mempolicy.  May also be called holding the mmap_lock for write.
 228 */
 229static int mpol_set_nodemask(struct mempolicy *pol,
 230		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 231{
 232	int ret;
 233
 234	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 235	if (pol == NULL)
 236		return 0;
 237	/* Check N_MEMORY */
 238	nodes_and(nsc->mask1,
 239		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 240
 241	VM_BUG_ON(!nodes);
 242	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 243		nodes = NULL;	/* explicit local allocation */
 244	else {
 245		if (pol->flags & MPOL_F_RELATIVE_NODES)
 246			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 247		else
 248			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 249
 250		if (mpol_store_user_nodemask(pol))
 251			pol->w.user_nodemask = *nodes;
 252		else
 253			pol->w.cpuset_mems_allowed =
 254						cpuset_current_mems_allowed;
 255	}
 256
 257	if (nodes)
 258		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 259	else
 260		ret = mpol_ops[pol->mode].create(pol, NULL);
 261	return ret;
 262}
 263
 264/*
 265 * This function just creates a new policy, does some check and simple
 266 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 267 */
 268static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 269				  nodemask_t *nodes)
 270{
 271	struct mempolicy *policy;
 272
 273	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 274		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 275
 276	if (mode == MPOL_DEFAULT) {
 277		if (nodes && !nodes_empty(*nodes))
 278			return ERR_PTR(-EINVAL);
 279		return NULL;
 280	}
 281	VM_BUG_ON(!nodes);
 282
 283	/*
 284	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 285	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 286	 * All other modes require a valid pointer to a non-empty nodemask.
 287	 */
 288	if (mode == MPOL_PREFERRED) {
 289		if (nodes_empty(*nodes)) {
 290			if (((flags & MPOL_F_STATIC_NODES) ||
 291			     (flags & MPOL_F_RELATIVE_NODES)))
 292				return ERR_PTR(-EINVAL);
 293		}
 294	} else if (mode == MPOL_LOCAL) {
 295		if (!nodes_empty(*nodes) ||
 296		    (flags & MPOL_F_STATIC_NODES) ||
 297		    (flags & MPOL_F_RELATIVE_NODES))
 298			return ERR_PTR(-EINVAL);
 299		mode = MPOL_PREFERRED;
 300	} else if (nodes_empty(*nodes))
 301		return ERR_PTR(-EINVAL);
 302	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 303	if (!policy)
 304		return ERR_PTR(-ENOMEM);
 305	atomic_set(&policy->refcnt, 1);
 306	policy->mode = mode;
 307	policy->flags = flags;
 308
 309	return policy;
 310}
 311
 312/* Slow path of a mpol destructor. */
 313void __mpol_put(struct mempolicy *p)
 314{
 315	if (!atomic_dec_and_test(&p->refcnt))
 316		return;
 317	kmem_cache_free(policy_cache, p);
 318}
 319
 320static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 321{
 322}
 323
 324static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 325{
 326	nodemask_t tmp;
 327
 328	if (pol->flags & MPOL_F_STATIC_NODES)
 329		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 330	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 331		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 332	else {
 333		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 334								*nodes);
 335		pol->w.cpuset_mems_allowed = *nodes;
 336	}
 337
 338	if (nodes_empty(tmp))
 339		tmp = *nodes;
 340
 341	pol->v.nodes = tmp;
 342}
 343
 344static void mpol_rebind_preferred(struct mempolicy *pol,
 345						const nodemask_t *nodes)
 346{
 347	nodemask_t tmp;
 348
 349	if (pol->flags & MPOL_F_STATIC_NODES) {
 350		int node = first_node(pol->w.user_nodemask);
 351
 352		if (node_isset(node, *nodes)) {
 353			pol->v.preferred_node = node;
 354			pol->flags &= ~MPOL_F_LOCAL;
 355		} else
 356			pol->flags |= MPOL_F_LOCAL;
 357	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 358		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 359		pol->v.preferred_node = first_node(tmp);
 360	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 361		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 362						   pol->w.cpuset_mems_allowed,
 363						   *nodes);
 364		pol->w.cpuset_mems_allowed = *nodes;
 365	}
 366}
 367
 368/*
 369 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 370 *
 371 * Per-vma policies are protected by mmap_lock. Allocations using per-task
 372 * policies are protected by task->mems_allowed_seq to prevent a premature
 373 * OOM/allocation failure due to parallel nodemask modification.
 374 */
 375static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 376{
 377	if (!pol)
 378		return;
 379	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
 380	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 381		return;
 382
 383	mpol_ops[pol->mode].rebind(pol, newmask);
 384}
 385
 386/*
 387 * Wrapper for mpol_rebind_policy() that just requires task
 388 * pointer, and updates task mempolicy.
 389 *
 390 * Called with task's alloc_lock held.
 391 */
 392
 393void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 394{
 395	mpol_rebind_policy(tsk->mempolicy, new);
 396}
 397
 398/*
 399 * Rebind each vma in mm to new nodemask.
 400 *
 401 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 402 */
 403
 404void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 405{
 406	struct vm_area_struct *vma;
 407
 408	mmap_write_lock(mm);
 409	for (vma = mm->mmap; vma; vma = vma->vm_next)
 410		mpol_rebind_policy(vma->vm_policy, new);
 411	mmap_write_unlock(mm);
 412}
 413
 414static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 415	[MPOL_DEFAULT] = {
 416		.rebind = mpol_rebind_default,
 417	},
 418	[MPOL_INTERLEAVE] = {
 419		.create = mpol_new_interleave,
 420		.rebind = mpol_rebind_nodemask,
 421	},
 422	[MPOL_PREFERRED] = {
 423		.create = mpol_new_preferred,
 424		.rebind = mpol_rebind_preferred,
 425	},
 426	[MPOL_BIND] = {
 427		.create = mpol_new_bind,
 428		.rebind = mpol_rebind_nodemask,
 429	},
 430};
 431
 432static int migrate_page_add(struct page *page, struct list_head *pagelist,
 433				unsigned long flags);
 434
 435struct queue_pages {
 436	struct list_head *pagelist;
 437	unsigned long flags;
 438	nodemask_t *nmask;
 439	unsigned long start;
 440	unsigned long end;
 441	struct vm_area_struct *first;
 442};
 443
 444/*
 445 * Check if the page's nid is in qp->nmask.
 446 *
 447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 448 * in the invert of qp->nmask.
 449 */
 450static inline bool queue_pages_required(struct page *page,
 451					struct queue_pages *qp)
 452{
 453	int nid = page_to_nid(page);
 454	unsigned long flags = qp->flags;
 455
 456	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 457}
 458
 459/*
 460 * queue_pages_pmd() has four possible return values:
 461 * 0 - pages are placed on the right node or queued successfully.
 462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 463 *     specified.
 464 * 2 - THP was split.
 465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 466 *        existing page was already on a node that does not follow the
 467 *        policy.
 468 */
 469static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 470				unsigned long end, struct mm_walk *walk)
 471	__releases(ptl)
 472{
 473	int ret = 0;
 474	struct page *page;
 475	struct queue_pages *qp = walk->private;
 476	unsigned long flags;
 477
 478	if (unlikely(is_pmd_migration_entry(*pmd))) {
 479		ret = -EIO;
 480		goto unlock;
 481	}
 482	page = pmd_page(*pmd);
 483	if (is_huge_zero_page(page)) {
 484		spin_unlock(ptl);
 485		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 486		ret = 2;
 487		goto out;
 488	}
 489	if (!queue_pages_required(page, qp))
 490		goto unlock;
 491
 492	flags = qp->flags;
 493	/* go to thp migration */
 494	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 495		if (!vma_migratable(walk->vma) ||
 496		    migrate_page_add(page, qp->pagelist, flags)) {
 497			ret = 1;
 498			goto unlock;
 499		}
 500	} else
 501		ret = -EIO;
 502unlock:
 503	spin_unlock(ptl);
 504out:
 505	return ret;
 506}
 507
 508/*
 509 * Scan through pages checking if pages follow certain conditions,
 510 * and move them to the pagelist if they do.
 511 *
 512 * queue_pages_pte_range() has three possible return values:
 513 * 0 - pages are placed on the right node or queued successfully.
 514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 515 *     specified.
 516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 517 *        on a node that does not follow the policy.
 518 */
 519static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 520			unsigned long end, struct mm_walk *walk)
 521{
 522	struct vm_area_struct *vma = walk->vma;
 523	struct page *page;
 524	struct queue_pages *qp = walk->private;
 525	unsigned long flags = qp->flags;
 526	int ret;
 527	bool has_unmovable = false;
 528	pte_t *pte;
 529	spinlock_t *ptl;
 530
 531	ptl = pmd_trans_huge_lock(pmd, vma);
 532	if (ptl) {
 533		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 534		if (ret != 2)
 535			return ret;
 536	}
 537	/* THP was split, fall through to pte walk */
 538
 539	if (pmd_trans_unstable(pmd))
 540		return 0;
 541
 542	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 543	for (; addr != end; pte++, addr += PAGE_SIZE) {
 544		if (!pte_present(*pte))
 545			continue;
 546		page = vm_normal_page(vma, addr, *pte);
 547		if (!page)
 548			continue;
 549		/*
 550		 * vm_normal_page() filters out zero pages, but there might
 551		 * still be PageReserved pages to skip, perhaps in a VDSO.
 552		 */
 553		if (PageReserved(page))
 554			continue;
 555		if (!queue_pages_required(page, qp))
 556			continue;
 557		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 558			/* MPOL_MF_STRICT must be specified if we get here */
 559			if (!vma_migratable(vma)) {
 560				has_unmovable = true;
 561				break;
 562			}
 563
 564			/*
 565			 * Do not abort immediately since there may be
 566			 * temporary off LRU pages in the range.  Still
 567			 * need migrate other LRU pages.
 568			 */
 569			if (migrate_page_add(page, qp->pagelist, flags))
 570				has_unmovable = true;
 571		} else
 572			break;
 573	}
 574	pte_unmap_unlock(pte - 1, ptl);
 575	cond_resched();
 576
 577	if (has_unmovable)
 578		return 1;
 579
 580	return addr != end ? -EIO : 0;
 581}
 582
 583static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 584			       unsigned long addr, unsigned long end,
 585			       struct mm_walk *walk)
 586{
 587	int ret = 0;
 588#ifdef CONFIG_HUGETLB_PAGE
 589	struct queue_pages *qp = walk->private;
 590	unsigned long flags = (qp->flags & MPOL_MF_VALID);
 591	struct page *page;
 592	spinlock_t *ptl;
 593	pte_t entry;
 594
 595	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 596	entry = huge_ptep_get(pte);
 597	if (!pte_present(entry))
 598		goto unlock;
 599	page = pte_page(entry);
 600	if (!queue_pages_required(page, qp))
 601		goto unlock;
 602
 603	if (flags == MPOL_MF_STRICT) {
 604		/*
 605		 * STRICT alone means only detecting misplaced page and no
 606		 * need to further check other vma.
 607		 */
 608		ret = -EIO;
 609		goto unlock;
 610	}
 611
 612	if (!vma_migratable(walk->vma)) {
 613		/*
 614		 * Must be STRICT with MOVE*, otherwise .test_walk() have
 615		 * stopped walking current vma.
 616		 * Detecting misplaced page but allow migrating pages which
 617		 * have been queued.
 618		 */
 619		ret = 1;
 620		goto unlock;
 621	}
 622
 623	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 624	if (flags & (MPOL_MF_MOVE_ALL) ||
 625	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
 626		if (!isolate_huge_page(page, qp->pagelist) &&
 627			(flags & MPOL_MF_STRICT))
 628			/*
 629			 * Failed to isolate page but allow migrating pages
 630			 * which have been queued.
 631			 */
 632			ret = 1;
 633	}
 634unlock:
 635	spin_unlock(ptl);
 636#else
 637	BUG();
 638#endif
 639	return ret;
 640}
 641
 642#ifdef CONFIG_NUMA_BALANCING
 643/*
 644 * This is used to mark a range of virtual addresses to be inaccessible.
 645 * These are later cleared by a NUMA hinting fault. Depending on these
 646 * faults, pages may be migrated for better NUMA placement.
 647 *
 648 * This is assuming that NUMA faults are handled using PROT_NONE. If
 649 * an architecture makes a different choice, it will need further
 650 * changes to the core.
 651 */
 652unsigned long change_prot_numa(struct vm_area_struct *vma,
 653			unsigned long addr, unsigned long end)
 654{
 655	int nr_updated;
 656
 657	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
 658	if (nr_updated)
 659		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 660
 661	return nr_updated;
 662}
 663#else
 664static unsigned long change_prot_numa(struct vm_area_struct *vma,
 665			unsigned long addr, unsigned long end)
 666{
 667	return 0;
 668}
 669#endif /* CONFIG_NUMA_BALANCING */
 670
 671static int queue_pages_test_walk(unsigned long start, unsigned long end,
 672				struct mm_walk *walk)
 673{
 674	struct vm_area_struct *vma = walk->vma;
 675	struct queue_pages *qp = walk->private;
 676	unsigned long endvma = vma->vm_end;
 677	unsigned long flags = qp->flags;
 678
 679	/* range check first */
 680	VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
 681
 682	if (!qp->first) {
 683		qp->first = vma;
 684		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 685			(qp->start < vma->vm_start))
 686			/* hole at head side of range */
 687			return -EFAULT;
 688	}
 689	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 690		((vma->vm_end < qp->end) &&
 691		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
 692		/* hole at middle or tail of range */
 693		return -EFAULT;
 694
 695	/*
 696	 * Need check MPOL_MF_STRICT to return -EIO if possible
 697	 * regardless of vma_migratable
 698	 */
 699	if (!vma_migratable(vma) &&
 700	    !(flags & MPOL_MF_STRICT))
 701		return 1;
 702
 703	if (endvma > end)
 704		endvma = end;
 
 
 
 
 
 
 
 
 
 
 
 705
 706	if (flags & MPOL_MF_LAZY) {
 707		/* Similar to task_numa_work, skip inaccessible VMAs */
 708		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
 
 709			!(vma->vm_flags & VM_MIXEDMAP))
 710			change_prot_numa(vma, start, endvma);
 711		return 1;
 712	}
 713
 714	/* queue pages from current vma */
 715	if (flags & MPOL_MF_VALID)
 716		return 0;
 717	return 1;
 718}
 719
 720static const struct mm_walk_ops queue_pages_walk_ops = {
 721	.hugetlb_entry		= queue_pages_hugetlb,
 722	.pmd_entry		= queue_pages_pte_range,
 723	.test_walk		= queue_pages_test_walk,
 724};
 725
 726/*
 727 * Walk through page tables and collect pages to be migrated.
 728 *
 729 * If pages found in a given range are on a set of nodes (determined by
 730 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 731 * passed via @private.
 732 *
 733 * queue_pages_range() has three possible return values:
 734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 735 *     specified.
 736 * 0 - queue pages successfully or no misplaced page.
 737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 738 *         memory range specified by nodemask and maxnode points outside
 739 *         your accessible address space (-EFAULT)
 740 */
 741static int
 742queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 743		nodemask_t *nodes, unsigned long flags,
 744		struct list_head *pagelist)
 745{
 746	int err;
 747	struct queue_pages qp = {
 748		.pagelist = pagelist,
 749		.flags = flags,
 750		.nmask = nodes,
 751		.start = start,
 752		.end = end,
 753		.first = NULL,
 754	};
 755
 756	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 757
 758	if (!qp.first)
 759		/* whole range in hole */
 760		err = -EFAULT;
 761
 762	return err;
 763}
 764
 765/*
 766 * Apply policy to a single VMA
 767 * This must be called with the mmap_lock held for writing.
 768 */
 769static int vma_replace_policy(struct vm_area_struct *vma,
 770						struct mempolicy *pol)
 771{
 772	int err;
 773	struct mempolicy *old;
 774	struct mempolicy *new;
 775
 776	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 777		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 778		 vma->vm_ops, vma->vm_file,
 779		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 780
 781	new = mpol_dup(pol);
 782	if (IS_ERR(new))
 783		return PTR_ERR(new);
 784
 785	if (vma->vm_ops && vma->vm_ops->set_policy) {
 786		err = vma->vm_ops->set_policy(vma, new);
 787		if (err)
 788			goto err_out;
 789	}
 790
 791	old = vma->vm_policy;
 792	vma->vm_policy = new; /* protected by mmap_lock */
 793	mpol_put(old);
 794
 795	return 0;
 796 err_out:
 797	mpol_put(new);
 798	return err;
 799}
 800
 801/* Step 2: apply policy to a range and do splits. */
 802static int mbind_range(struct mm_struct *mm, unsigned long start,
 803		       unsigned long end, struct mempolicy *new_pol)
 804{
 805	struct vm_area_struct *next;
 806	struct vm_area_struct *prev;
 807	struct vm_area_struct *vma;
 808	int err = 0;
 809	pgoff_t pgoff;
 810	unsigned long vmstart;
 811	unsigned long vmend;
 812
 813	vma = find_vma(mm, start);
 814	VM_BUG_ON(!vma);
 
 815
 816	prev = vma->vm_prev;
 817	if (start > vma->vm_start)
 818		prev = vma;
 819
 820	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 821		next = vma->vm_next;
 822		vmstart = max(start, vma->vm_start);
 823		vmend   = min(end, vma->vm_end);
 824
 825		if (mpol_equal(vma_policy(vma), new_pol))
 826			continue;
 827
 828		pgoff = vma->vm_pgoff +
 829			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 830		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 831				 vma->anon_vma, vma->vm_file, pgoff,
 832				 new_pol, vma->vm_userfaultfd_ctx);
 833		if (prev) {
 834			vma = prev;
 835			next = vma->vm_next;
 836			if (mpol_equal(vma_policy(vma), new_pol))
 837				continue;
 838			/* vma_merge() joined vma && vma->next, case 8 */
 839			goto replace;
 840		}
 841		if (vma->vm_start != vmstart) {
 842			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 843			if (err)
 844				goto out;
 845		}
 846		if (vma->vm_end != vmend) {
 847			err = split_vma(vma->vm_mm, vma, vmend, 0);
 848			if (err)
 849				goto out;
 850		}
 851 replace:
 852		err = vma_replace_policy(vma, new_pol);
 853		if (err)
 854			goto out;
 855	}
 856
 857 out:
 858	return err;
 859}
 860
 861/* Set the process memory policy */
 862static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 863			     nodemask_t *nodes)
 864{
 865	struct mempolicy *new, *old;
 866	NODEMASK_SCRATCH(scratch);
 867	int ret;
 868
 869	if (!scratch)
 870		return -ENOMEM;
 871
 872	new = mpol_new(mode, flags, nodes);
 873	if (IS_ERR(new)) {
 874		ret = PTR_ERR(new);
 875		goto out;
 876	}
 877
 878	task_lock(current);
 879	ret = mpol_set_nodemask(new, nodes, scratch);
 880	if (ret) {
 881		task_unlock(current);
 882		mpol_put(new);
 883		goto out;
 884	}
 885	old = current->mempolicy;
 886	current->mempolicy = new;
 887	if (new && new->mode == MPOL_INTERLEAVE)
 888		current->il_prev = MAX_NUMNODES-1;
 889	task_unlock(current);
 890	mpol_put(old);
 891	ret = 0;
 892out:
 893	NODEMASK_SCRATCH_FREE(scratch);
 894	return ret;
 895}
 896
 897/*
 898 * Return nodemask for policy for get_mempolicy() query
 899 *
 900 * Called with task's alloc_lock held
 901 */
 902static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 903{
 904	nodes_clear(*nodes);
 905	if (p == &default_policy)
 906		return;
 907
 908	switch (p->mode) {
 909	case MPOL_BIND:
 
 910	case MPOL_INTERLEAVE:
 911		*nodes = p->v.nodes;
 912		break;
 913	case MPOL_PREFERRED:
 914		if (!(p->flags & MPOL_F_LOCAL))
 915			node_set(p->v.preferred_node, *nodes);
 916		/* else return empty node mask for local allocation */
 917		break;
 918	default:
 919		BUG();
 920	}
 921}
 922
 923static int lookup_node(struct mm_struct *mm, unsigned long addr)
 924{
 925	struct page *p = NULL;
 926	int err;
 927
 928	int locked = 1;
 929	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
 930	if (err > 0) {
 931		err = page_to_nid(p);
 932		put_page(p);
 933	}
 934	if (locked)
 935		mmap_read_unlock(mm);
 936	return err;
 937}
 938
 939/* Retrieve NUMA policy */
 940static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 941			     unsigned long addr, unsigned long flags)
 942{
 943	int err;
 944	struct mm_struct *mm = current->mm;
 945	struct vm_area_struct *vma = NULL;
 946	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 947
 948	if (flags &
 949		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 950		return -EINVAL;
 951
 952	if (flags & MPOL_F_MEMS_ALLOWED) {
 953		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 954			return -EINVAL;
 955		*policy = 0;	/* just so it's initialized */
 956		task_lock(current);
 957		*nmask  = cpuset_current_mems_allowed;
 958		task_unlock(current);
 959		return 0;
 960	}
 961
 962	if (flags & MPOL_F_ADDR) {
 963		/*
 964		 * Do NOT fall back to task policy if the
 965		 * vma/shared policy at addr is NULL.  We
 966		 * want to return MPOL_DEFAULT in this case.
 967		 */
 968		mmap_read_lock(mm);
 969		vma = find_vma_intersection(mm, addr, addr+1);
 970		if (!vma) {
 971			mmap_read_unlock(mm);
 972			return -EFAULT;
 973		}
 974		if (vma->vm_ops && vma->vm_ops->get_policy)
 975			pol = vma->vm_ops->get_policy(vma, addr);
 976		else
 977			pol = vma->vm_policy;
 978	} else if (addr)
 979		return -EINVAL;
 980
 981	if (!pol)
 982		pol = &default_policy;	/* indicates default behavior */
 983
 984	if (flags & MPOL_F_NODE) {
 985		if (flags & MPOL_F_ADDR) {
 986			/*
 987			 * Take a refcount on the mpol, lookup_node()
 988			 * wil drop the mmap_lock, so after calling
 989			 * lookup_node() only "pol" remains valid, "vma"
 990			 * is stale.
 991			 */
 992			pol_refcount = pol;
 993			vma = NULL;
 994			mpol_get(pol);
 995			err = lookup_node(mm, addr);
 996			if (err < 0)
 997				goto out;
 998			*policy = err;
 999		} else if (pol == current->mempolicy &&
1000				pol->mode == MPOL_INTERLEAVE) {
1001			*policy = next_node_in(current->il_prev, pol->v.nodes);
1002		} else {
1003			err = -EINVAL;
1004			goto out;
1005		}
1006	} else {
1007		*policy = pol == &default_policy ? MPOL_DEFAULT :
1008						pol->mode;
1009		/*
1010		 * Internal mempolicy flags must be masked off before exposing
1011		 * the policy to userspace.
1012		 */
1013		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1014	}
1015
1016	err = 0;
1017	if (nmask) {
1018		if (mpol_store_user_nodemask(pol)) {
1019			*nmask = pol->w.user_nodemask;
1020		} else {
1021			task_lock(current);
1022			get_policy_nodemask(pol, nmask);
1023			task_unlock(current);
1024		}
1025	}
1026
1027 out:
1028	mpol_cond_put(pol);
1029	if (vma)
1030		mmap_read_unlock(mm);
1031	if (pol_refcount)
1032		mpol_put(pol_refcount);
1033	return err;
1034}
1035
1036#ifdef CONFIG_MIGRATION
1037/*
1038 * page migration, thp tail pages can be passed.
1039 */
1040static int migrate_page_add(struct page *page, struct list_head *pagelist,
1041				unsigned long flags)
1042{
1043	struct page *head = compound_head(page);
1044	/*
1045	 * Avoid migrating a page that is shared with others.
1046	 */
1047	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1048		if (!isolate_lru_page(head)) {
1049			list_add_tail(&head->lru, pagelist);
1050			mod_node_page_state(page_pgdat(head),
1051				NR_ISOLATED_ANON + page_is_file_lru(head),
1052				thp_nr_pages(head));
1053		} else if (flags & MPOL_MF_STRICT) {
1054			/*
1055			 * Non-movable page may reach here.  And, there may be
1056			 * temporary off LRU pages or non-LRU movable pages.
1057			 * Treat them as unmovable pages since they can't be
1058			 * isolated, so they can't be moved at the moment.  It
1059			 * should return -EIO for this case too.
1060			 */
1061			return -EIO;
1062		}
1063	}
1064
1065	return 0;
1066}
1067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068/*
1069 * Migrate pages from one node to a target node.
1070 * Returns error or the number of pages not migrated.
1071 */
1072static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1073			   int flags)
1074{
1075	nodemask_t nmask;
1076	LIST_HEAD(pagelist);
1077	int err = 0;
1078	struct migration_target_control mtc = {
1079		.nid = dest,
1080		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1081	};
1082
1083	nodes_clear(nmask);
1084	node_set(source, nmask);
1085
1086	/*
1087	 * This does not "check" the range but isolates all pages that
1088	 * need migration.  Between passing in the full user address
1089	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1090	 */
1091	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1092	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1093			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1094
1095	if (!list_empty(&pagelist)) {
1096		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1097				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1098		if (err)
1099			putback_movable_pages(&pagelist);
1100	}
1101
1102	return err;
1103}
1104
1105/*
1106 * Move pages between the two nodesets so as to preserve the physical
1107 * layout as much as possible.
1108 *
1109 * Returns the number of page that could not be moved.
1110 */
1111int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1112		     const nodemask_t *to, int flags)
1113{
1114	int busy = 0;
1115	int err;
1116	nodemask_t tmp;
1117
1118	err = migrate_prep();
1119	if (err)
1120		return err;
1121
1122	mmap_read_lock(mm);
1123
1124	/*
1125	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1126	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1127	 * bit in 'tmp', and return that <source, dest> pair for migration.
1128	 * The pair of nodemasks 'to' and 'from' define the map.
1129	 *
1130	 * If no pair of bits is found that way, fallback to picking some
1131	 * pair of 'source' and 'dest' bits that are not the same.  If the
1132	 * 'source' and 'dest' bits are the same, this represents a node
1133	 * that will be migrating to itself, so no pages need move.
1134	 *
1135	 * If no bits are left in 'tmp', or if all remaining bits left
1136	 * in 'tmp' correspond to the same bit in 'to', return false
1137	 * (nothing left to migrate).
1138	 *
1139	 * This lets us pick a pair of nodes to migrate between, such that
1140	 * if possible the dest node is not already occupied by some other
1141	 * source node, minimizing the risk of overloading the memory on a
1142	 * node that would happen if we migrated incoming memory to a node
1143	 * before migrating outgoing memory source that same node.
1144	 *
1145	 * A single scan of tmp is sufficient.  As we go, we remember the
1146	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1147	 * that not only moved, but what's better, moved to an empty slot
1148	 * (d is not set in tmp), then we break out then, with that pair.
1149	 * Otherwise when we finish scanning from_tmp, we at least have the
1150	 * most recent <s, d> pair that moved.  If we get all the way through
1151	 * the scan of tmp without finding any node that moved, much less
1152	 * moved to an empty node, then there is nothing left worth migrating.
1153	 */
1154
1155	tmp = *from;
1156	while (!nodes_empty(tmp)) {
1157		int s,d;
1158		int source = NUMA_NO_NODE;
1159		int dest = 0;
1160
1161		for_each_node_mask(s, tmp) {
1162
1163			/*
1164			 * do_migrate_pages() tries to maintain the relative
1165			 * node relationship of the pages established between
1166			 * threads and memory areas.
1167                         *
1168			 * However if the number of source nodes is not equal to
1169			 * the number of destination nodes we can not preserve
1170			 * this node relative relationship.  In that case, skip
1171			 * copying memory from a node that is in the destination
1172			 * mask.
1173			 *
1174			 * Example: [2,3,4] -> [3,4,5] moves everything.
1175			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1176			 */
1177
1178			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1179						(node_isset(s, *to)))
1180				continue;
1181
1182			d = node_remap(s, *from, *to);
1183			if (s == d)
1184				continue;
1185
1186			source = s;	/* Node moved. Memorize */
1187			dest = d;
1188
1189			/* dest not in remaining from nodes? */
1190			if (!node_isset(dest, tmp))
1191				break;
1192		}
1193		if (source == NUMA_NO_NODE)
1194			break;
1195
1196		node_clear(source, tmp);
1197		err = migrate_to_node(mm, source, dest, flags);
1198		if (err > 0)
1199			busy += err;
1200		if (err < 0)
1201			break;
1202	}
1203	mmap_read_unlock(mm);
1204	if (err < 0)
1205		return err;
1206	return busy;
1207
1208}
1209
1210/*
1211 * Allocate a new page for page migration based on vma policy.
1212 * Start by assuming the page is mapped by the same vma as contains @start.
1213 * Search forward from there, if not.  N.B., this assumes that the
1214 * list of pages handed to migrate_pages()--which is how we get here--
1215 * is in virtual address order.
1216 */
1217static struct page *new_page(struct page *page, unsigned long start)
1218{
1219	struct vm_area_struct *vma;
1220	unsigned long address;
1221
1222	vma = find_vma(current->mm, start);
1223	while (vma) {
1224		address = page_address_in_vma(page, vma);
1225		if (address != -EFAULT)
1226			break;
1227		vma = vma->vm_next;
1228	}
1229
1230	if (PageHuge(page)) {
1231		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1232				vma, address);
1233	} else if (PageTransHuge(page)) {
1234		struct page *thp;
1235
1236		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1237					 HPAGE_PMD_ORDER);
1238		if (!thp)
1239			return NULL;
1240		prep_transhuge_page(thp);
1241		return thp;
1242	}
1243	/*
1244	 * if !vma, alloc_page_vma() will use task or system default policy
1245	 */
1246	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1247			vma, address);
1248}
1249#else
1250
1251static int migrate_page_add(struct page *page, struct list_head *pagelist,
1252				unsigned long flags)
1253{
1254	return -EIO;
1255}
1256
1257int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1258		     const nodemask_t *to, int flags)
1259{
1260	return -ENOSYS;
1261}
1262
1263static struct page *new_page(struct page *page, unsigned long start)
1264{
1265	return NULL;
1266}
1267#endif
1268
1269static long do_mbind(unsigned long start, unsigned long len,
1270		     unsigned short mode, unsigned short mode_flags,
1271		     nodemask_t *nmask, unsigned long flags)
1272{
1273	struct mm_struct *mm = current->mm;
1274	struct mempolicy *new;
1275	unsigned long end;
1276	int err;
1277	int ret;
1278	LIST_HEAD(pagelist);
1279
1280	if (flags & ~(unsigned long)MPOL_MF_VALID)
1281		return -EINVAL;
1282	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1283		return -EPERM;
1284
1285	if (start & ~PAGE_MASK)
1286		return -EINVAL;
1287
1288	if (mode == MPOL_DEFAULT)
1289		flags &= ~MPOL_MF_STRICT;
1290
1291	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1292	end = start + len;
1293
1294	if (end < start)
1295		return -EINVAL;
1296	if (end == start)
1297		return 0;
1298
1299	new = mpol_new(mode, mode_flags, nmask);
1300	if (IS_ERR(new))
1301		return PTR_ERR(new);
1302
1303	if (flags & MPOL_MF_LAZY)
1304		new->flags |= MPOL_F_MOF;
1305
1306	/*
1307	 * If we are using the default policy then operation
1308	 * on discontinuous address spaces is okay after all
1309	 */
1310	if (!new)
1311		flags |= MPOL_MF_DISCONTIG_OK;
1312
1313	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1314		 start, start + len, mode, mode_flags,
1315		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1316
1317	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1318
1319		err = migrate_prep();
1320		if (err)
1321			goto mpol_out;
1322	}
1323	{
1324		NODEMASK_SCRATCH(scratch);
1325		if (scratch) {
1326			mmap_write_lock(mm);
1327			task_lock(current);
1328			err = mpol_set_nodemask(new, nmask, scratch);
1329			task_unlock(current);
1330			if (err)
1331				mmap_write_unlock(mm);
1332		} else
1333			err = -ENOMEM;
1334		NODEMASK_SCRATCH_FREE(scratch);
1335	}
1336	if (err)
1337		goto mpol_out;
1338
1339	ret = queue_pages_range(mm, start, end, nmask,
1340			  flags | MPOL_MF_INVERT, &pagelist);
1341
1342	if (ret < 0) {
1343		err = ret;
1344		goto up_out;
1345	}
1346
1347	err = mbind_range(mm, start, end, new);
1348
1349	if (!err) {
1350		int nr_failed = 0;
1351
1352		if (!list_empty(&pagelist)) {
1353			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1354			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1355				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1356			if (nr_failed)
1357				putback_movable_pages(&pagelist);
1358		}
1359
1360		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1361			err = -EIO;
1362	} else {
1363up_out:
1364		if (!list_empty(&pagelist))
1365			putback_movable_pages(&pagelist);
1366	}
1367
1368	mmap_write_unlock(mm);
1369mpol_out:
1370	mpol_put(new);
1371	return err;
1372}
1373
1374/*
1375 * User space interface with variable sized bitmaps for nodelists.
1376 */
1377
1378/* Copy a node mask from user space. */
1379static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1380		     unsigned long maxnode)
1381{
1382	unsigned long k;
1383	unsigned long t;
1384	unsigned long nlongs;
1385	unsigned long endmask;
1386
1387	--maxnode;
1388	nodes_clear(*nodes);
1389	if (maxnode == 0 || !nmask)
1390		return 0;
1391	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1392		return -EINVAL;
1393
1394	nlongs = BITS_TO_LONGS(maxnode);
1395	if ((maxnode % BITS_PER_LONG) == 0)
1396		endmask = ~0UL;
1397	else
1398		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1399
1400	/*
1401	 * When the user specified more nodes than supported just check
1402	 * if the non supported part is all zero.
1403	 *
1404	 * If maxnode have more longs than MAX_NUMNODES, check
1405	 * the bits in that area first. And then go through to
1406	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1407	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1408	 */
1409	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1410		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1411			if (get_user(t, nmask + k))
1412				return -EFAULT;
1413			if (k == nlongs - 1) {
1414				if (t & endmask)
1415					return -EINVAL;
1416			} else if (t)
1417				return -EINVAL;
1418		}
1419		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1420		endmask = ~0UL;
1421	}
1422
1423	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1424		unsigned long valid_mask = endmask;
1425
1426		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1427		if (get_user(t, nmask + nlongs - 1))
1428			return -EFAULT;
1429		if (t & valid_mask)
1430			return -EINVAL;
1431	}
1432
1433	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1434		return -EFAULT;
1435	nodes_addr(*nodes)[nlongs-1] &= endmask;
1436	return 0;
1437}
1438
1439/* Copy a kernel node mask to user space */
1440static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1441			      nodemask_t *nodes)
1442{
1443	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1444	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1445
1446	if (copy > nbytes) {
1447		if (copy > PAGE_SIZE)
1448			return -EINVAL;
1449		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1450			return -EFAULT;
1451		copy = nbytes;
1452	}
1453	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1454}
1455
1456static long kernel_mbind(unsigned long start, unsigned long len,
1457			 unsigned long mode, const unsigned long __user *nmask,
1458			 unsigned long maxnode, unsigned int flags)
1459{
1460	nodemask_t nodes;
1461	int err;
1462	unsigned short mode_flags;
1463
1464	start = untagged_addr(start);
1465	mode_flags = mode & MPOL_MODE_FLAGS;
1466	mode &= ~MPOL_MODE_FLAGS;
1467	if (mode >= MPOL_MAX)
1468		return -EINVAL;
1469	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1470	    (mode_flags & MPOL_F_RELATIVE_NODES))
1471		return -EINVAL;
1472	err = get_nodes(&nodes, nmask, maxnode);
1473	if (err)
1474		return err;
1475	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1476}
1477
1478SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1479		unsigned long, mode, const unsigned long __user *, nmask,
1480		unsigned long, maxnode, unsigned int, flags)
1481{
1482	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1483}
1484
1485/* Set the process memory policy */
1486static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1487				 unsigned long maxnode)
1488{
1489	int err;
1490	nodemask_t nodes;
1491	unsigned short flags;
1492
1493	flags = mode & MPOL_MODE_FLAGS;
1494	mode &= ~MPOL_MODE_FLAGS;
1495	if ((unsigned int)mode >= MPOL_MAX)
1496		return -EINVAL;
1497	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1498		return -EINVAL;
1499	err = get_nodes(&nodes, nmask, maxnode);
1500	if (err)
1501		return err;
1502	return do_set_mempolicy(mode, flags, &nodes);
1503}
1504
1505SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1506		unsigned long, maxnode)
1507{
1508	return kernel_set_mempolicy(mode, nmask, maxnode);
1509}
1510
1511static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1512				const unsigned long __user *old_nodes,
1513				const unsigned long __user *new_nodes)
1514{
1515	struct mm_struct *mm = NULL;
1516	struct task_struct *task;
1517	nodemask_t task_nodes;
1518	int err;
1519	nodemask_t *old;
1520	nodemask_t *new;
1521	NODEMASK_SCRATCH(scratch);
1522
1523	if (!scratch)
1524		return -ENOMEM;
1525
1526	old = &scratch->mask1;
1527	new = &scratch->mask2;
1528
1529	err = get_nodes(old, old_nodes, maxnode);
1530	if (err)
1531		goto out;
1532
1533	err = get_nodes(new, new_nodes, maxnode);
1534	if (err)
1535		goto out;
1536
1537	/* Find the mm_struct */
1538	rcu_read_lock();
1539	task = pid ? find_task_by_vpid(pid) : current;
1540	if (!task) {
1541		rcu_read_unlock();
1542		err = -ESRCH;
1543		goto out;
1544	}
1545	get_task_struct(task);
1546
1547	err = -EINVAL;
1548
1549	/*
1550	 * Check if this process has the right to modify the specified process.
1551	 * Use the regular "ptrace_may_access()" checks.
1552	 */
1553	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1554		rcu_read_unlock();
1555		err = -EPERM;
1556		goto out_put;
1557	}
1558	rcu_read_unlock();
1559
1560	task_nodes = cpuset_mems_allowed(task);
1561	/* Is the user allowed to access the target nodes? */
1562	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1563		err = -EPERM;
1564		goto out_put;
1565	}
1566
1567	task_nodes = cpuset_mems_allowed(current);
1568	nodes_and(*new, *new, task_nodes);
1569	if (nodes_empty(*new))
1570		goto out_put;
1571
1572	err = security_task_movememory(task);
1573	if (err)
1574		goto out_put;
1575
1576	mm = get_task_mm(task);
1577	put_task_struct(task);
1578
1579	if (!mm) {
1580		err = -EINVAL;
1581		goto out;
1582	}
1583
1584	err = do_migrate_pages(mm, old, new,
1585		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1586
1587	mmput(mm);
1588out:
1589	NODEMASK_SCRATCH_FREE(scratch);
1590
1591	return err;
1592
1593out_put:
1594	put_task_struct(task);
1595	goto out;
1596
1597}
1598
1599SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1600		const unsigned long __user *, old_nodes,
1601		const unsigned long __user *, new_nodes)
1602{
1603	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1604}
1605
1606
1607/* Retrieve NUMA policy */
1608static int kernel_get_mempolicy(int __user *policy,
1609				unsigned long __user *nmask,
1610				unsigned long maxnode,
1611				unsigned long addr,
1612				unsigned long flags)
1613{
1614	int err;
1615	int pval;
1616	nodemask_t nodes;
1617
 
 
1618	if (nmask != NULL && maxnode < nr_node_ids)
1619		return -EINVAL;
1620
1621	addr = untagged_addr(addr);
1622
1623	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1624
1625	if (err)
1626		return err;
1627
1628	if (policy && put_user(pval, policy))
1629		return -EFAULT;
1630
1631	if (nmask)
1632		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1633
1634	return err;
1635}
1636
1637SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1638		unsigned long __user *, nmask, unsigned long, maxnode,
1639		unsigned long, addr, unsigned long, flags)
1640{
1641	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1642}
1643
1644#ifdef CONFIG_COMPAT
1645
1646COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1647		       compat_ulong_t __user *, nmask,
1648		       compat_ulong_t, maxnode,
1649		       compat_ulong_t, addr, compat_ulong_t, flags)
1650{
1651	long err;
1652	unsigned long __user *nm = NULL;
1653	unsigned long nr_bits, alloc_size;
1654	DECLARE_BITMAP(bm, MAX_NUMNODES);
1655
1656	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1657	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1658
1659	if (nmask)
1660		nm = compat_alloc_user_space(alloc_size);
1661
1662	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1663
1664	if (!err && nmask) {
1665		unsigned long copy_size;
1666		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1667		err = copy_from_user(bm, nm, copy_size);
1668		/* ensure entire bitmap is zeroed */
1669		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1670		err |= compat_put_bitmap(nmask, bm, nr_bits);
1671	}
1672
1673	return err;
1674}
1675
1676COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1677		       compat_ulong_t, maxnode)
1678{
1679	unsigned long __user *nm = NULL;
1680	unsigned long nr_bits, alloc_size;
1681	DECLARE_BITMAP(bm, MAX_NUMNODES);
1682
1683	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1684	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1685
1686	if (nmask) {
1687		if (compat_get_bitmap(bm, nmask, nr_bits))
1688			return -EFAULT;
1689		nm = compat_alloc_user_space(alloc_size);
1690		if (copy_to_user(nm, bm, alloc_size))
1691			return -EFAULT;
1692	}
1693
1694	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1695}
1696
1697COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1698		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1699		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1700{
1701	unsigned long __user *nm = NULL;
1702	unsigned long nr_bits, alloc_size;
1703	nodemask_t bm;
1704
1705	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1706	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1707
1708	if (nmask) {
1709		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1710			return -EFAULT;
1711		nm = compat_alloc_user_space(alloc_size);
1712		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1713			return -EFAULT;
1714	}
1715
1716	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1717}
1718
1719COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1720		       compat_ulong_t, maxnode,
1721		       const compat_ulong_t __user *, old_nodes,
1722		       const compat_ulong_t __user *, new_nodes)
1723{
1724	unsigned long __user *old = NULL;
1725	unsigned long __user *new = NULL;
1726	nodemask_t tmp_mask;
1727	unsigned long nr_bits;
1728	unsigned long size;
1729
1730	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1731	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1732	if (old_nodes) {
1733		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1734			return -EFAULT;
1735		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1736		if (new_nodes)
1737			new = old + size / sizeof(unsigned long);
1738		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1739			return -EFAULT;
1740	}
1741	if (new_nodes) {
1742		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1743			return -EFAULT;
1744		if (new == NULL)
1745			new = compat_alloc_user_space(size);
1746		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1747			return -EFAULT;
1748	}
1749	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1750}
1751
1752#endif /* CONFIG_COMPAT */
1753
1754bool vma_migratable(struct vm_area_struct *vma)
1755{
1756	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1757		return false;
1758
1759	/*
1760	 * DAX device mappings require predictable access latency, so avoid
1761	 * incurring periodic faults.
1762	 */
1763	if (vma_is_dax(vma))
1764		return false;
1765
1766	if (is_vm_hugetlb_page(vma) &&
1767		!hugepage_migration_supported(hstate_vma(vma)))
1768		return false;
1769
1770	/*
1771	 * Migration allocates pages in the highest zone. If we cannot
1772	 * do so then migration (at least from node to node) is not
1773	 * possible.
1774	 */
1775	if (vma->vm_file &&
1776		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1777			< policy_zone)
1778		return false;
1779	return true;
1780}
1781
1782struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1783						unsigned long addr)
1784{
1785	struct mempolicy *pol = NULL;
1786
1787	if (vma) {
1788		if (vma->vm_ops && vma->vm_ops->get_policy) {
1789			pol = vma->vm_ops->get_policy(vma, addr);
1790		} else if (vma->vm_policy) {
1791			pol = vma->vm_policy;
1792
1793			/*
1794			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1795			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1796			 * count on these policies which will be dropped by
1797			 * mpol_cond_put() later
1798			 */
1799			if (mpol_needs_cond_ref(pol))
1800				mpol_get(pol);
1801		}
1802	}
1803
1804	return pol;
1805}
1806
1807/*
1808 * get_vma_policy(@vma, @addr)
1809 * @vma: virtual memory area whose policy is sought
1810 * @addr: address in @vma for shared policy lookup
1811 *
1812 * Returns effective policy for a VMA at specified address.
1813 * Falls back to current->mempolicy or system default policy, as necessary.
1814 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1815 * count--added by the get_policy() vm_op, as appropriate--to protect against
1816 * freeing by another task.  It is the caller's responsibility to free the
1817 * extra reference for shared policies.
1818 */
1819static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1820						unsigned long addr)
1821{
1822	struct mempolicy *pol = __get_vma_policy(vma, addr);
1823
1824	if (!pol)
1825		pol = get_task_policy(current);
1826
1827	return pol;
1828}
1829
1830bool vma_policy_mof(struct vm_area_struct *vma)
1831{
1832	struct mempolicy *pol;
1833
1834	if (vma->vm_ops && vma->vm_ops->get_policy) {
1835		bool ret = false;
1836
1837		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1838		if (pol && (pol->flags & MPOL_F_MOF))
1839			ret = true;
1840		mpol_cond_put(pol);
1841
1842		return ret;
1843	}
1844
1845	pol = vma->vm_policy;
1846	if (!pol)
1847		pol = get_task_policy(current);
1848
1849	return pol->flags & MPOL_F_MOF;
1850}
1851
1852static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1853{
1854	enum zone_type dynamic_policy_zone = policy_zone;
1855
1856	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1857
1858	/*
1859	 * if policy->v.nodes has movable memory only,
1860	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1861	 *
1862	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1863	 * so if the following test faile, it implies
1864	 * policy->v.nodes has movable memory only.
1865	 */
1866	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1867		dynamic_policy_zone = ZONE_MOVABLE;
1868
1869	return zone >= dynamic_policy_zone;
1870}
1871
1872/*
1873 * Return a nodemask representing a mempolicy for filtering nodes for
1874 * page allocation
1875 */
1876nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1877{
1878	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1879	if (unlikely(policy->mode == MPOL_BIND) &&
1880			apply_policy_zone(policy, gfp_zone(gfp)) &&
1881			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1882		return &policy->v.nodes;
1883
1884	return NULL;
1885}
1886
1887/* Return the node id preferred by the given mempolicy, or the given id */
1888static int policy_node(gfp_t gfp, struct mempolicy *policy,
1889								int nd)
1890{
1891	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1892		nd = policy->v.preferred_node;
1893	else {
1894		/*
1895		 * __GFP_THISNODE shouldn't even be used with the bind policy
1896		 * because we might easily break the expectation to stay on the
1897		 * requested node and not break the policy.
1898		 */
1899		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1900	}
1901
1902	return nd;
1903}
1904
1905/* Do dynamic interleaving for a process */
1906static unsigned interleave_nodes(struct mempolicy *policy)
1907{
1908	unsigned next;
1909	struct task_struct *me = current;
1910
1911	next = next_node_in(me->il_prev, policy->v.nodes);
1912	if (next < MAX_NUMNODES)
1913		me->il_prev = next;
1914	return next;
1915}
1916
1917/*
1918 * Depending on the memory policy provide a node from which to allocate the
1919 * next slab entry.
1920 */
1921unsigned int mempolicy_slab_node(void)
1922{
1923	struct mempolicy *policy;
1924	int node = numa_mem_id();
1925
1926	if (in_interrupt())
1927		return node;
1928
1929	policy = current->mempolicy;
1930	if (!policy || policy->flags & MPOL_F_LOCAL)
1931		return node;
1932
1933	switch (policy->mode) {
1934	case MPOL_PREFERRED:
1935		/*
1936		 * handled MPOL_F_LOCAL above
1937		 */
1938		return policy->v.preferred_node;
1939
1940	case MPOL_INTERLEAVE:
1941		return interleave_nodes(policy);
1942
1943	case MPOL_BIND: {
1944		struct zoneref *z;
1945
1946		/*
1947		 * Follow bind policy behavior and start allocation at the
1948		 * first node.
1949		 */
1950		struct zonelist *zonelist;
1951		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1952		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1953		z = first_zones_zonelist(zonelist, highest_zoneidx,
1954							&policy->v.nodes);
1955		return z->zone ? zone_to_nid(z->zone) : node;
1956	}
1957
1958	default:
1959		BUG();
1960	}
1961}
1962
1963/*
1964 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1965 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1966 * number of present nodes.
1967 */
1968static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1969{
1970	unsigned nnodes = nodes_weight(pol->v.nodes);
1971	unsigned target;
1972	int i;
1973	int nid;
1974
1975	if (!nnodes)
1976		return numa_node_id();
1977	target = (unsigned int)n % nnodes;
1978	nid = first_node(pol->v.nodes);
1979	for (i = 0; i < target; i++)
1980		nid = next_node(nid, pol->v.nodes);
1981	return nid;
1982}
1983
1984/* Determine a node number for interleave */
1985static inline unsigned interleave_nid(struct mempolicy *pol,
1986		 struct vm_area_struct *vma, unsigned long addr, int shift)
1987{
1988	if (vma) {
1989		unsigned long off;
1990
1991		/*
1992		 * for small pages, there is no difference between
1993		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1994		 * for huge pages, since vm_pgoff is in units of small
1995		 * pages, we need to shift off the always 0 bits to get
1996		 * a useful offset.
1997		 */
1998		BUG_ON(shift < PAGE_SHIFT);
1999		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2000		off += (addr - vma->vm_start) >> shift;
2001		return offset_il_node(pol, off);
2002	} else
2003		return interleave_nodes(pol);
2004}
2005
2006#ifdef CONFIG_HUGETLBFS
2007/*
2008 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2009 * @vma: virtual memory area whose policy is sought
2010 * @addr: address in @vma for shared policy lookup and interleave policy
2011 * @gfp_flags: for requested zone
2012 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2013 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2014 *
2015 * Returns a nid suitable for a huge page allocation and a pointer
2016 * to the struct mempolicy for conditional unref after allocation.
2017 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2018 * @nodemask for filtering the zonelist.
2019 *
2020 * Must be protected by read_mems_allowed_begin()
2021 */
2022int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2023				struct mempolicy **mpol, nodemask_t **nodemask)
2024{
2025	int nid;
2026
2027	*mpol = get_vma_policy(vma, addr);
2028	*nodemask = NULL;	/* assume !MPOL_BIND */
2029
2030	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2031		nid = interleave_nid(*mpol, vma, addr,
2032					huge_page_shift(hstate_vma(vma)));
2033	} else {
2034		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2035		if ((*mpol)->mode == MPOL_BIND)
2036			*nodemask = &(*mpol)->v.nodes;
2037	}
2038	return nid;
2039}
2040
2041/*
2042 * init_nodemask_of_mempolicy
2043 *
2044 * If the current task's mempolicy is "default" [NULL], return 'false'
2045 * to indicate default policy.  Otherwise, extract the policy nodemask
2046 * for 'bind' or 'interleave' policy into the argument nodemask, or
2047 * initialize the argument nodemask to contain the single node for
2048 * 'preferred' or 'local' policy and return 'true' to indicate presence
2049 * of non-default mempolicy.
2050 *
2051 * We don't bother with reference counting the mempolicy [mpol_get/put]
2052 * because the current task is examining it's own mempolicy and a task's
2053 * mempolicy is only ever changed by the task itself.
2054 *
2055 * N.B., it is the caller's responsibility to free a returned nodemask.
2056 */
2057bool init_nodemask_of_mempolicy(nodemask_t *mask)
2058{
2059	struct mempolicy *mempolicy;
2060	int nid;
2061
2062	if (!(mask && current->mempolicy))
2063		return false;
2064
2065	task_lock(current);
2066	mempolicy = current->mempolicy;
2067	switch (mempolicy->mode) {
2068	case MPOL_PREFERRED:
2069		if (mempolicy->flags & MPOL_F_LOCAL)
2070			nid = numa_node_id();
2071		else
2072			nid = mempolicy->v.preferred_node;
2073		init_nodemask_of_node(mask, nid);
2074		break;
2075
2076	case MPOL_BIND:
 
2077	case MPOL_INTERLEAVE:
2078		*mask =  mempolicy->v.nodes;
2079		break;
2080
2081	default:
2082		BUG();
2083	}
2084	task_unlock(current);
2085
2086	return true;
2087}
2088#endif
2089
2090/*
2091 * mempolicy_nodemask_intersects
2092 *
2093 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2094 * policy.  Otherwise, check for intersection between mask and the policy
2095 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2096 * policy, always return true since it may allocate elsewhere on fallback.
2097 *
2098 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2099 */
2100bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2101					const nodemask_t *mask)
2102{
2103	struct mempolicy *mempolicy;
2104	bool ret = true;
2105
2106	if (!mask)
2107		return ret;
2108	task_lock(tsk);
2109	mempolicy = tsk->mempolicy;
2110	if (!mempolicy)
2111		goto out;
2112
2113	switch (mempolicy->mode) {
2114	case MPOL_PREFERRED:
2115		/*
2116		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2117		 * allocate from, they may fallback to other nodes when oom.
2118		 * Thus, it's possible for tsk to have allocated memory from
2119		 * nodes in mask.
2120		 */
2121		break;
2122	case MPOL_BIND:
2123	case MPOL_INTERLEAVE:
2124		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2125		break;
2126	default:
2127		BUG();
2128	}
2129out:
2130	task_unlock(tsk);
2131	return ret;
2132}
2133
2134/* Allocate a page in interleaved policy.
2135   Own path because it needs to do special accounting. */
2136static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2137					unsigned nid)
2138{
2139	struct page *page;
2140
2141	page = __alloc_pages(gfp, order, nid);
2142	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2143	if (!static_branch_likely(&vm_numa_stat_key))
2144		return page;
2145	if (page && page_to_nid(page) == nid) {
2146		preempt_disable();
2147		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2148		preempt_enable();
2149	}
2150	return page;
2151}
2152
2153/**
2154 * 	alloc_pages_vma	- Allocate a page for a VMA.
2155 *
2156 * 	@gfp:
2157 *      %GFP_USER    user allocation.
2158 *      %GFP_KERNEL  kernel allocations,
2159 *      %GFP_HIGHMEM highmem/user allocations,
2160 *      %GFP_FS      allocation should not call back into a file system.
2161 *      %GFP_ATOMIC  don't sleep.
2162 *
2163 *	@order:Order of the GFP allocation.
2164 * 	@vma:  Pointer to VMA or NULL if not available.
2165 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2166 *	@node: Which node to prefer for allocation (modulo policy).
2167 *	@hugepage: for hugepages try only the preferred node if possible
2168 *
2169 * 	This function allocates a page from the kernel page pool and applies
2170 *	a NUMA policy associated with the VMA or the current process.
2171 *	When VMA is not NULL caller must read-lock the mmap_lock of the
2172 *	mm_struct of the VMA to prevent it from going away. Should be used for
2173 *	all allocations for pages that will be mapped into user space. Returns
2174 *	NULL when no page can be allocated.
2175 */
2176struct page *
2177alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2178		unsigned long addr, int node, bool hugepage)
2179{
2180	struct mempolicy *pol;
2181	struct page *page;
2182	int preferred_nid;
2183	nodemask_t *nmask;
2184
2185	pol = get_vma_policy(vma, addr);
2186
2187	if (pol->mode == MPOL_INTERLEAVE) {
2188		unsigned nid;
2189
2190		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2191		mpol_cond_put(pol);
2192		page = alloc_page_interleave(gfp, order, nid);
2193		goto out;
2194	}
2195
2196	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2197		int hpage_node = node;
2198
2199		/*
2200		 * For hugepage allocation and non-interleave policy which
2201		 * allows the current node (or other explicitly preferred
2202		 * node) we only try to allocate from the current/preferred
2203		 * node and don't fall back to other nodes, as the cost of
2204		 * remote accesses would likely offset THP benefits.
2205		 *
2206		 * If the policy is interleave, or does not allow the current
2207		 * node in its nodemask, we allocate the standard way.
2208		 */
2209		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2210			hpage_node = pol->v.preferred_node;
2211
2212		nmask = policy_nodemask(gfp, pol);
2213		if (!nmask || node_isset(hpage_node, *nmask)) {
2214			mpol_cond_put(pol);
2215			/*
2216			 * First, try to allocate THP only on local node, but
2217			 * don't reclaim unnecessarily, just compact.
2218			 */
2219			page = __alloc_pages_node(hpage_node,
2220				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2221
2222			/*
2223			 * If hugepage allocations are configured to always
2224			 * synchronous compact or the vma has been madvised
2225			 * to prefer hugepage backing, retry allowing remote
2226			 * memory with both reclaim and compact as well.
2227			 */
2228			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2229				page = __alloc_pages_node(hpage_node,
2230								gfp, order);
2231
2232			goto out;
2233		}
2234	}
2235
2236	nmask = policy_nodemask(gfp, pol);
2237	preferred_nid = policy_node(gfp, pol, node);
2238	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2239	mpol_cond_put(pol);
2240out:
2241	return page;
2242}
2243EXPORT_SYMBOL(alloc_pages_vma);
2244
2245/**
2246 * 	alloc_pages_current - Allocate pages.
2247 *
2248 *	@gfp:
2249 *		%GFP_USER   user allocation,
2250 *      	%GFP_KERNEL kernel allocation,
2251 *      	%GFP_HIGHMEM highmem allocation,
2252 *      	%GFP_FS     don't call back into a file system.
2253 *      	%GFP_ATOMIC don't sleep.
2254 *	@order: Power of two of allocation size in pages. 0 is a single page.
2255 *
2256 *	Allocate a page from the kernel page pool.  When not in
2257 *	interrupt context and apply the current process NUMA policy.
2258 *	Returns NULL when no page can be allocated.
2259 */
2260struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2261{
2262	struct mempolicy *pol = &default_policy;
2263	struct page *page;
2264
2265	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2266		pol = get_task_policy(current);
2267
2268	/*
2269	 * No reference counting needed for current->mempolicy
2270	 * nor system default_policy
2271	 */
2272	if (pol->mode == MPOL_INTERLEAVE)
2273		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2274	else
2275		page = __alloc_pages_nodemask(gfp, order,
2276				policy_node(gfp, pol, numa_node_id()),
2277				policy_nodemask(gfp, pol));
2278
2279	return page;
2280}
2281EXPORT_SYMBOL(alloc_pages_current);
2282
2283int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2284{
2285	struct mempolicy *pol = mpol_dup(vma_policy(src));
2286
2287	if (IS_ERR(pol))
2288		return PTR_ERR(pol);
2289	dst->vm_policy = pol;
2290	return 0;
2291}
2292
2293/*
2294 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2295 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2296 * with the mems_allowed returned by cpuset_mems_allowed().  This
2297 * keeps mempolicies cpuset relative after its cpuset moves.  See
2298 * further kernel/cpuset.c update_nodemask().
2299 *
2300 * current's mempolicy may be rebinded by the other task(the task that changes
2301 * cpuset's mems), so we needn't do rebind work for current task.
2302 */
2303
2304/* Slow path of a mempolicy duplicate */
2305struct mempolicy *__mpol_dup(struct mempolicy *old)
2306{
2307	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2308
2309	if (!new)
2310		return ERR_PTR(-ENOMEM);
2311
2312	/* task's mempolicy is protected by alloc_lock */
2313	if (old == current->mempolicy) {
2314		task_lock(current);
2315		*new = *old;
2316		task_unlock(current);
2317	} else
2318		*new = *old;
2319
2320	if (current_cpuset_is_being_rebound()) {
2321		nodemask_t mems = cpuset_mems_allowed(current);
2322		mpol_rebind_policy(new, &mems);
2323	}
2324	atomic_set(&new->refcnt, 1);
2325	return new;
2326}
2327
2328/* Slow path of a mempolicy comparison */
2329bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2330{
2331	if (!a || !b)
2332		return false;
2333	if (a->mode != b->mode)
2334		return false;
2335	if (a->flags != b->flags)
2336		return false;
2337	if (mpol_store_user_nodemask(a))
2338		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2339			return false;
2340
2341	switch (a->mode) {
2342	case MPOL_BIND:
 
2343	case MPOL_INTERLEAVE:
2344		return !!nodes_equal(a->v.nodes, b->v.nodes);
2345	case MPOL_PREFERRED:
2346		/* a's ->flags is the same as b's */
2347		if (a->flags & MPOL_F_LOCAL)
2348			return true;
2349		return a->v.preferred_node == b->v.preferred_node;
2350	default:
2351		BUG();
2352		return false;
2353	}
2354}
2355
2356/*
2357 * Shared memory backing store policy support.
2358 *
2359 * Remember policies even when nobody has shared memory mapped.
2360 * The policies are kept in Red-Black tree linked from the inode.
2361 * They are protected by the sp->lock rwlock, which should be held
2362 * for any accesses to the tree.
2363 */
2364
2365/*
2366 * lookup first element intersecting start-end.  Caller holds sp->lock for
2367 * reading or for writing
2368 */
2369static struct sp_node *
2370sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2371{
2372	struct rb_node *n = sp->root.rb_node;
2373
2374	while (n) {
2375		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2376
2377		if (start >= p->end)
2378			n = n->rb_right;
2379		else if (end <= p->start)
2380			n = n->rb_left;
2381		else
2382			break;
2383	}
2384	if (!n)
2385		return NULL;
2386	for (;;) {
2387		struct sp_node *w = NULL;
2388		struct rb_node *prev = rb_prev(n);
2389		if (!prev)
2390			break;
2391		w = rb_entry(prev, struct sp_node, nd);
2392		if (w->end <= start)
2393			break;
2394		n = prev;
2395	}
2396	return rb_entry(n, struct sp_node, nd);
2397}
2398
2399/*
2400 * Insert a new shared policy into the list.  Caller holds sp->lock for
2401 * writing.
2402 */
2403static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2404{
2405	struct rb_node **p = &sp->root.rb_node;
2406	struct rb_node *parent = NULL;
2407	struct sp_node *nd;
2408
2409	while (*p) {
2410		parent = *p;
2411		nd = rb_entry(parent, struct sp_node, nd);
2412		if (new->start < nd->start)
2413			p = &(*p)->rb_left;
2414		else if (new->end > nd->end)
2415			p = &(*p)->rb_right;
2416		else
2417			BUG();
2418	}
2419	rb_link_node(&new->nd, parent, p);
2420	rb_insert_color(&new->nd, &sp->root);
2421	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2422		 new->policy ? new->policy->mode : 0);
2423}
2424
2425/* Find shared policy intersecting idx */
2426struct mempolicy *
2427mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2428{
2429	struct mempolicy *pol = NULL;
2430	struct sp_node *sn;
2431
2432	if (!sp->root.rb_node)
2433		return NULL;
2434	read_lock(&sp->lock);
2435	sn = sp_lookup(sp, idx, idx+1);
2436	if (sn) {
2437		mpol_get(sn->policy);
2438		pol = sn->policy;
2439	}
2440	read_unlock(&sp->lock);
2441	return pol;
2442}
2443
2444static void sp_free(struct sp_node *n)
2445{
2446	mpol_put(n->policy);
2447	kmem_cache_free(sn_cache, n);
2448}
2449
2450/**
2451 * mpol_misplaced - check whether current page node is valid in policy
2452 *
2453 * @page: page to be checked
2454 * @vma: vm area where page mapped
2455 * @addr: virtual address where page mapped
2456 *
2457 * Lookup current policy node id for vma,addr and "compare to" page's
2458 * node id.
2459 *
2460 * Returns:
2461 *	-1	- not misplaced, page is in the right node
2462 *	node	- node id where the page should be
2463 *
2464 * Policy determination "mimics" alloc_page_vma().
2465 * Called from fault path where we know the vma and faulting address.
2466 */
2467int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2468{
2469	struct mempolicy *pol;
2470	struct zoneref *z;
2471	int curnid = page_to_nid(page);
2472	unsigned long pgoff;
2473	int thiscpu = raw_smp_processor_id();
2474	int thisnid = cpu_to_node(thiscpu);
2475	int polnid = NUMA_NO_NODE;
2476	int ret = -1;
2477
2478	pol = get_vma_policy(vma, addr);
2479	if (!(pol->flags & MPOL_F_MOF))
2480		goto out;
2481
2482	switch (pol->mode) {
2483	case MPOL_INTERLEAVE:
2484		pgoff = vma->vm_pgoff;
2485		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2486		polnid = offset_il_node(pol, pgoff);
2487		break;
2488
2489	case MPOL_PREFERRED:
2490		if (pol->flags & MPOL_F_LOCAL)
2491			polnid = numa_node_id();
2492		else
2493			polnid = pol->v.preferred_node;
2494		break;
2495
2496	case MPOL_BIND:
2497
2498		/*
2499		 * allows binding to multiple nodes.
2500		 * use current page if in policy nodemask,
2501		 * else select nearest allowed node, if any.
2502		 * If no allowed nodes, use current [!misplaced].
2503		 */
2504		if (node_isset(curnid, pol->v.nodes))
2505			goto out;
2506		z = first_zones_zonelist(
2507				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2508				gfp_zone(GFP_HIGHUSER),
2509				&pol->v.nodes);
2510		polnid = zone_to_nid(z->zone);
2511		break;
2512
2513	default:
2514		BUG();
2515	}
2516
2517	/* Migrate the page towards the node whose CPU is referencing it */
2518	if (pol->flags & MPOL_F_MORON) {
2519		polnid = thisnid;
2520
2521		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2522			goto out;
2523	}
2524
2525	if (curnid != polnid)
2526		ret = polnid;
2527out:
2528	mpol_cond_put(pol);
2529
2530	return ret;
2531}
2532
2533/*
2534 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2535 * dropped after task->mempolicy is set to NULL so that any allocation done as
2536 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2537 * policy.
2538 */
2539void mpol_put_task_policy(struct task_struct *task)
2540{
2541	struct mempolicy *pol;
2542
2543	task_lock(task);
2544	pol = task->mempolicy;
2545	task->mempolicy = NULL;
2546	task_unlock(task);
2547	mpol_put(pol);
2548}
2549
2550static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2551{
2552	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2553	rb_erase(&n->nd, &sp->root);
2554	sp_free(n);
2555}
2556
2557static void sp_node_init(struct sp_node *node, unsigned long start,
2558			unsigned long end, struct mempolicy *pol)
2559{
2560	node->start = start;
2561	node->end = end;
2562	node->policy = pol;
2563}
2564
2565static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2566				struct mempolicy *pol)
2567{
2568	struct sp_node *n;
2569	struct mempolicy *newpol;
2570
2571	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2572	if (!n)
2573		return NULL;
2574
2575	newpol = mpol_dup(pol);
2576	if (IS_ERR(newpol)) {
2577		kmem_cache_free(sn_cache, n);
2578		return NULL;
2579	}
2580	newpol->flags |= MPOL_F_SHARED;
2581	sp_node_init(n, start, end, newpol);
2582
2583	return n;
2584}
2585
2586/* Replace a policy range. */
2587static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2588				 unsigned long end, struct sp_node *new)
2589{
2590	struct sp_node *n;
2591	struct sp_node *n_new = NULL;
2592	struct mempolicy *mpol_new = NULL;
2593	int ret = 0;
2594
2595restart:
2596	write_lock(&sp->lock);
2597	n = sp_lookup(sp, start, end);
2598	/* Take care of old policies in the same range. */
2599	while (n && n->start < end) {
2600		struct rb_node *next = rb_next(&n->nd);
2601		if (n->start >= start) {
2602			if (n->end <= end)
2603				sp_delete(sp, n);
2604			else
2605				n->start = end;
2606		} else {
2607			/* Old policy spanning whole new range. */
2608			if (n->end > end) {
2609				if (!n_new)
2610					goto alloc_new;
2611
2612				*mpol_new = *n->policy;
2613				atomic_set(&mpol_new->refcnt, 1);
2614				sp_node_init(n_new, end, n->end, mpol_new);
2615				n->end = start;
2616				sp_insert(sp, n_new);
2617				n_new = NULL;
2618				mpol_new = NULL;
2619				break;
2620			} else
2621				n->end = start;
2622		}
2623		if (!next)
2624			break;
2625		n = rb_entry(next, struct sp_node, nd);
2626	}
2627	if (new)
2628		sp_insert(sp, new);
2629	write_unlock(&sp->lock);
2630	ret = 0;
2631
2632err_out:
2633	if (mpol_new)
2634		mpol_put(mpol_new);
2635	if (n_new)
2636		kmem_cache_free(sn_cache, n_new);
2637
2638	return ret;
2639
2640alloc_new:
2641	write_unlock(&sp->lock);
2642	ret = -ENOMEM;
2643	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2644	if (!n_new)
2645		goto err_out;
2646	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2647	if (!mpol_new)
2648		goto err_out;
2649	goto restart;
2650}
2651
2652/**
2653 * mpol_shared_policy_init - initialize shared policy for inode
2654 * @sp: pointer to inode shared policy
2655 * @mpol:  struct mempolicy to install
2656 *
2657 * Install non-NULL @mpol in inode's shared policy rb-tree.
2658 * On entry, the current task has a reference on a non-NULL @mpol.
2659 * This must be released on exit.
2660 * This is called at get_inode() calls and we can use GFP_KERNEL.
2661 */
2662void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2663{
2664	int ret;
2665
2666	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2667	rwlock_init(&sp->lock);
2668
2669	if (mpol) {
2670		struct vm_area_struct pvma;
2671		struct mempolicy *new;
2672		NODEMASK_SCRATCH(scratch);
2673
2674		if (!scratch)
2675			goto put_mpol;
2676		/* contextualize the tmpfs mount point mempolicy */
2677		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2678		if (IS_ERR(new))
2679			goto free_scratch; /* no valid nodemask intersection */
2680
2681		task_lock(current);
2682		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2683		task_unlock(current);
2684		if (ret)
2685			goto put_new;
2686
2687		/* Create pseudo-vma that contains just the policy */
2688		vma_init(&pvma, NULL);
2689		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2690		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2691
2692put_new:
2693		mpol_put(new);			/* drop initial ref */
2694free_scratch:
2695		NODEMASK_SCRATCH_FREE(scratch);
2696put_mpol:
2697		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2698	}
2699}
2700
2701int mpol_set_shared_policy(struct shared_policy *info,
2702			struct vm_area_struct *vma, struct mempolicy *npol)
2703{
2704	int err;
2705	struct sp_node *new = NULL;
2706	unsigned long sz = vma_pages(vma);
2707
2708	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2709		 vma->vm_pgoff,
2710		 sz, npol ? npol->mode : -1,
2711		 npol ? npol->flags : -1,
2712		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2713
2714	if (npol) {
2715		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2716		if (!new)
2717			return -ENOMEM;
2718	}
2719	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2720	if (err && new)
2721		sp_free(new);
2722	return err;
2723}
2724
2725/* Free a backing policy store on inode delete. */
2726void mpol_free_shared_policy(struct shared_policy *p)
2727{
2728	struct sp_node *n;
2729	struct rb_node *next;
2730
2731	if (!p->root.rb_node)
2732		return;
2733	write_lock(&p->lock);
2734	next = rb_first(&p->root);
2735	while (next) {
2736		n = rb_entry(next, struct sp_node, nd);
2737		next = rb_next(&n->nd);
2738		sp_delete(p, n);
2739	}
2740	write_unlock(&p->lock);
2741}
2742
2743#ifdef CONFIG_NUMA_BALANCING
2744static int __initdata numabalancing_override;
2745
2746static void __init check_numabalancing_enable(void)
2747{
2748	bool numabalancing_default = false;
2749
2750	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2751		numabalancing_default = true;
2752
2753	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2754	if (numabalancing_override)
2755		set_numabalancing_state(numabalancing_override == 1);
2756
2757	if (num_online_nodes() > 1 && !numabalancing_override) {
2758		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2759			numabalancing_default ? "Enabling" : "Disabling");
2760		set_numabalancing_state(numabalancing_default);
2761	}
2762}
2763
2764static int __init setup_numabalancing(char *str)
2765{
2766	int ret = 0;
2767	if (!str)
2768		goto out;
2769
2770	if (!strcmp(str, "enable")) {
2771		numabalancing_override = 1;
2772		ret = 1;
2773	} else if (!strcmp(str, "disable")) {
2774		numabalancing_override = -1;
2775		ret = 1;
2776	}
2777out:
2778	if (!ret)
2779		pr_warn("Unable to parse numa_balancing=\n");
2780
2781	return ret;
2782}
2783__setup("numa_balancing=", setup_numabalancing);
2784#else
2785static inline void __init check_numabalancing_enable(void)
2786{
2787}
2788#endif /* CONFIG_NUMA_BALANCING */
2789
2790/* assumes fs == KERNEL_DS */
2791void __init numa_policy_init(void)
2792{
2793	nodemask_t interleave_nodes;
2794	unsigned long largest = 0;
2795	int nid, prefer = 0;
2796
2797	policy_cache = kmem_cache_create("numa_policy",
2798					 sizeof(struct mempolicy),
2799					 0, SLAB_PANIC, NULL);
2800
2801	sn_cache = kmem_cache_create("shared_policy_node",
2802				     sizeof(struct sp_node),
2803				     0, SLAB_PANIC, NULL);
2804
2805	for_each_node(nid) {
2806		preferred_node_policy[nid] = (struct mempolicy) {
2807			.refcnt = ATOMIC_INIT(1),
2808			.mode = MPOL_PREFERRED,
2809			.flags = MPOL_F_MOF | MPOL_F_MORON,
2810			.v = { .preferred_node = nid, },
2811		};
2812	}
2813
2814	/*
2815	 * Set interleaving policy for system init. Interleaving is only
2816	 * enabled across suitably sized nodes (default is >= 16MB), or
2817	 * fall back to the largest node if they're all smaller.
2818	 */
2819	nodes_clear(interleave_nodes);
2820	for_each_node_state(nid, N_MEMORY) {
2821		unsigned long total_pages = node_present_pages(nid);
2822
2823		/* Preserve the largest node */
2824		if (largest < total_pages) {
2825			largest = total_pages;
2826			prefer = nid;
2827		}
2828
2829		/* Interleave this node? */
2830		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2831			node_set(nid, interleave_nodes);
2832	}
2833
2834	/* All too small, use the largest */
2835	if (unlikely(nodes_empty(interleave_nodes)))
2836		node_set(prefer, interleave_nodes);
2837
2838	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2839		pr_err("%s: interleaving failed\n", __func__);
2840
2841	check_numabalancing_enable();
2842}
2843
2844/* Reset policy of current process to default */
2845void numa_default_policy(void)
2846{
2847	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2848}
2849
2850/*
2851 * Parse and format mempolicy from/to strings
2852 */
2853
2854/*
2855 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2856 */
2857static const char * const policy_modes[] =
2858{
2859	[MPOL_DEFAULT]    = "default",
2860	[MPOL_PREFERRED]  = "prefer",
2861	[MPOL_BIND]       = "bind",
2862	[MPOL_INTERLEAVE] = "interleave",
2863	[MPOL_LOCAL]      = "local",
2864};
2865
2866
2867#ifdef CONFIG_TMPFS
2868/**
2869 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2870 * @str:  string containing mempolicy to parse
2871 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2872 *
2873 * Format of input:
2874 *	<mode>[=<flags>][:<nodelist>]
2875 *
2876 * On success, returns 0, else 1
2877 */
2878int mpol_parse_str(char *str, struct mempolicy **mpol)
2879{
2880	struct mempolicy *new = NULL;
2881	unsigned short mode_flags;
2882	nodemask_t nodes;
2883	char *nodelist = strchr(str, ':');
2884	char *flags = strchr(str, '=');
2885	int err = 1, mode;
2886
2887	if (flags)
2888		*flags++ = '\0';	/* terminate mode string */
2889
2890	if (nodelist) {
2891		/* NUL-terminate mode or flags string */
2892		*nodelist++ = '\0';
2893		if (nodelist_parse(nodelist, nodes))
2894			goto out;
2895		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2896			goto out;
2897	} else
2898		nodes_clear(nodes);
2899
 
 
 
2900	mode = match_string(policy_modes, MPOL_MAX, str);
2901	if (mode < 0)
2902		goto out;
2903
2904	switch (mode) {
2905	case MPOL_PREFERRED:
2906		/*
2907		 * Insist on a nodelist of one node only, although later
2908		 * we use first_node(nodes) to grab a single node, so here
2909		 * nodelist (or nodes) cannot be empty.
2910		 */
2911		if (nodelist) {
2912			char *rest = nodelist;
2913			while (isdigit(*rest))
2914				rest++;
2915			if (*rest)
2916				goto out;
2917			if (nodes_empty(nodes))
2918				goto out;
2919		}
2920		break;
2921	case MPOL_INTERLEAVE:
2922		/*
2923		 * Default to online nodes with memory if no nodelist
2924		 */
2925		if (!nodelist)
2926			nodes = node_states[N_MEMORY];
2927		break;
2928	case MPOL_LOCAL:
2929		/*
2930		 * Don't allow a nodelist;  mpol_new() checks flags
2931		 */
2932		if (nodelist)
2933			goto out;
2934		mode = MPOL_PREFERRED;
2935		break;
2936	case MPOL_DEFAULT:
2937		/*
2938		 * Insist on a empty nodelist
2939		 */
2940		if (!nodelist)
2941			err = 0;
2942		goto out;
2943	case MPOL_BIND:
2944		/*
2945		 * Insist on a nodelist
2946		 */
2947		if (!nodelist)
2948			goto out;
2949	}
2950
2951	mode_flags = 0;
2952	if (flags) {
2953		/*
2954		 * Currently, we only support two mutually exclusive
2955		 * mode flags.
2956		 */
2957		if (!strcmp(flags, "static"))
2958			mode_flags |= MPOL_F_STATIC_NODES;
2959		else if (!strcmp(flags, "relative"))
2960			mode_flags |= MPOL_F_RELATIVE_NODES;
2961		else
2962			goto out;
2963	}
2964
2965	new = mpol_new(mode, mode_flags, &nodes);
2966	if (IS_ERR(new))
2967		goto out;
2968
2969	/*
2970	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2971	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2972	 */
2973	if (mode != MPOL_PREFERRED)
2974		new->v.nodes = nodes;
2975	else if (nodelist)
2976		new->v.preferred_node = first_node(nodes);
2977	else
2978		new->flags |= MPOL_F_LOCAL;
2979
2980	/*
2981	 * Save nodes for contextualization: this will be used to "clone"
2982	 * the mempolicy in a specific context [cpuset] at a later time.
2983	 */
2984	new->w.user_nodemask = nodes;
2985
2986	err = 0;
2987
2988out:
2989	/* Restore string for error message */
2990	if (nodelist)
2991		*--nodelist = ':';
2992	if (flags)
2993		*--flags = '=';
2994	if (!err)
2995		*mpol = new;
2996	return err;
2997}
2998#endif /* CONFIG_TMPFS */
2999
3000/**
3001 * mpol_to_str - format a mempolicy structure for printing
3002 * @buffer:  to contain formatted mempolicy string
3003 * @maxlen:  length of @buffer
3004 * @pol:  pointer to mempolicy to be formatted
3005 *
3006 * Convert @pol into a string.  If @buffer is too short, truncate the string.
3007 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3008 * longest flag, "relative", and to display at least a few node ids.
3009 */
3010void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3011{
3012	char *p = buffer;
3013	nodemask_t nodes = NODE_MASK_NONE;
3014	unsigned short mode = MPOL_DEFAULT;
3015	unsigned short flags = 0;
3016
3017	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3018		mode = pol->mode;
3019		flags = pol->flags;
3020	}
3021
3022	switch (mode) {
3023	case MPOL_DEFAULT:
3024		break;
3025	case MPOL_PREFERRED:
3026		if (flags & MPOL_F_LOCAL)
3027			mode = MPOL_LOCAL;
3028		else
3029			node_set(pol->v.preferred_node, nodes);
3030		break;
3031	case MPOL_BIND:
3032	case MPOL_INTERLEAVE:
3033		nodes = pol->v.nodes;
3034		break;
3035	default:
3036		WARN_ON_ONCE(1);
3037		snprintf(p, maxlen, "unknown");
3038		return;
3039	}
3040
3041	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3042
3043	if (flags & MPOL_MODE_FLAGS) {
3044		p += snprintf(p, buffer + maxlen - p, "=");
3045
3046		/*
3047		 * Currently, the only defined flags are mutually exclusive
3048		 */
3049		if (flags & MPOL_F_STATIC_NODES)
3050			p += snprintf(p, buffer + maxlen - p, "static");
3051		else if (flags & MPOL_F_RELATIVE_NODES)
3052			p += snprintf(p, buffer + maxlen - p, "relative");
3053	}
3054
3055	if (!nodes_empty(nodes))
3056		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3057			       nodemask_pr_args(&nodes));
3058}