Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/pagewalk.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 129
 130struct mempolicy *get_task_policy(struct task_struct *p)
 131{
 132	struct mempolicy *pol = p->mempolicy;
 133	int node;
 134
 135	if (pol)
 136		return pol;
 137
 138	node = numa_node_id();
 139	if (node != NUMA_NO_NODE) {
 140		pol = &preferred_node_policy[node];
 141		/* preferred_node_policy is not initialised early in boot */
 142		if (pol->mode)
 143			return pol;
 
 
 
 144	}
 145
 146	return &default_policy;
 147}
 148
 149static const struct mempolicy_operations {
 150	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 151	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152} mpol_ops[MPOL_MAX];
 153
 
 
 
 
 
 
 154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 155{
 156	return pol->flags & MPOL_MODE_FLAGS;
 157}
 158
 159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 160				   const nodemask_t *rel)
 161{
 162	nodemask_t tmp;
 163	nodes_fold(tmp, *orig, nodes_weight(*rel));
 164	nodes_onto(*ret, tmp, *rel);
 165}
 166
 167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 168{
 169	if (nodes_empty(*nodes))
 170		return -EINVAL;
 171	pol->v.nodes = *nodes;
 172	return 0;
 173}
 174
 175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 176{
 177	if (!nodes)
 178		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 179	else if (nodes_empty(*nodes))
 180		return -EINVAL;			/*  no allowed nodes */
 181	else
 182		pol->v.preferred_node = first_node(*nodes);
 183	return 0;
 184}
 185
 186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (nodes_empty(*nodes))
 189		return -EINVAL;
 190	pol->v.nodes = *nodes;
 191	return 0;
 192}
 193
 194/*
 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 196 * any, for the new policy.  mpol_new() has already validated the nodes
 197 * parameter with respect to the policy mode and flags.  But, we need to
 198 * handle an empty nodemask with MPOL_PREFERRED here.
 199 *
 200 * Must be called holding task's alloc_lock to protect task's mems_allowed
 201 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 202 */
 203static int mpol_set_nodemask(struct mempolicy *pol,
 204		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 205{
 206	int ret;
 207
 208	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 209	if (pol == NULL)
 210		return 0;
 211	/* Check N_MEMORY */
 212	nodes_and(nsc->mask1,
 213		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 214
 215	VM_BUG_ON(!nodes);
 216	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 217		nodes = NULL;	/* explicit local allocation */
 218	else {
 219		if (pol->flags & MPOL_F_RELATIVE_NODES)
 220			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 221		else
 222			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 223
 224		if (mpol_store_user_nodemask(pol))
 225			pol->w.user_nodemask = *nodes;
 226		else
 227			pol->w.cpuset_mems_allowed =
 228						cpuset_current_mems_allowed;
 229	}
 230
 231	if (nodes)
 232		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 233	else
 234		ret = mpol_ops[pol->mode].create(pol, NULL);
 235	return ret;
 236}
 237
 238/*
 239 * This function just creates a new policy, does some check and simple
 240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 241 */
 242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 243				  nodemask_t *nodes)
 244{
 245	struct mempolicy *policy;
 246
 247	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 248		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 249
 250	if (mode == MPOL_DEFAULT) {
 251		if (nodes && !nodes_empty(*nodes))
 252			return ERR_PTR(-EINVAL);
 253		return NULL;
 254	}
 255	VM_BUG_ON(!nodes);
 256
 257	/*
 258	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 259	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 260	 * All other modes require a valid pointer to a non-empty nodemask.
 261	 */
 262	if (mode == MPOL_PREFERRED) {
 263		if (nodes_empty(*nodes)) {
 264			if (((flags & MPOL_F_STATIC_NODES) ||
 265			     (flags & MPOL_F_RELATIVE_NODES)))
 266				return ERR_PTR(-EINVAL);
 267		}
 268	} else if (mode == MPOL_LOCAL) {
 269		if (!nodes_empty(*nodes) ||
 270		    (flags & MPOL_F_STATIC_NODES) ||
 271		    (flags & MPOL_F_RELATIVE_NODES))
 272			return ERR_PTR(-EINVAL);
 273		mode = MPOL_PREFERRED;
 274	} else if (nodes_empty(*nodes))
 275		return ERR_PTR(-EINVAL);
 276	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 277	if (!policy)
 278		return ERR_PTR(-ENOMEM);
 279	atomic_set(&policy->refcnt, 1);
 280	policy->mode = mode;
 281	policy->flags = flags;
 282
 283	return policy;
 284}
 285
 286/* Slow path of a mpol destructor. */
 287void __mpol_put(struct mempolicy *p)
 288{
 289	if (!atomic_dec_and_test(&p->refcnt))
 290		return;
 291	kmem_cache_free(policy_cache, p);
 292}
 293
 294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 
 295{
 296}
 297
 298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 
 
 
 
 
 
 
 299{
 300	nodemask_t tmp;
 301
 302	if (pol->flags & MPOL_F_STATIC_NODES)
 303		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 304	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 305		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 306	else {
 307		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 308								*nodes);
 309		pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 310	}
 311
 312	if (nodes_empty(tmp))
 313		tmp = *nodes;
 314
 315	pol->v.nodes = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 316}
 317
 318static void mpol_rebind_preferred(struct mempolicy *pol,
 319						const nodemask_t *nodes)
 
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES) {
 324		int node = first_node(pol->w.user_nodemask);
 325
 326		if (node_isset(node, *nodes)) {
 327			pol->v.preferred_node = node;
 328			pol->flags &= ~MPOL_F_LOCAL;
 329		} else
 330			pol->flags |= MPOL_F_LOCAL;
 331	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 332		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 333		pol->v.preferred_node = first_node(tmp);
 334	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 335		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 336						   pol->w.cpuset_mems_allowed,
 337						   *nodes);
 338		pol->w.cpuset_mems_allowed = *nodes;
 339	}
 340}
 341
 342/*
 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 344 *
 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 346 * policies are protected by task->mems_allowed_seq to prevent a premature
 347 * OOM/allocation failure due to parallel nodemask modification.
 
 
 
 
 
 
 
 
 
 348 */
 349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 
 350{
 351	if (!pol)
 352		return;
 353	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
 354	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 355		return;
 356
 357	mpol_ops[pol->mode].rebind(pol, newmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 358}
 359
 360/*
 361 * Wrapper for mpol_rebind_policy() that just requires task
 362 * pointer, and updates task mempolicy.
 363 *
 364 * Called with task's alloc_lock held.
 365 */
 366
 367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 
 368{
 369	mpol_rebind_policy(tsk->mempolicy, new);
 370}
 371
 372/*
 373 * Rebind each vma in mm to new nodemask.
 374 *
 375 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 376 */
 377
 378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 379{
 380	struct vm_area_struct *vma;
 381
 382	down_write(&mm->mmap_sem);
 383	for (vma = mm->mmap; vma; vma = vma->vm_next)
 384		mpol_rebind_policy(vma->vm_policy, new);
 385	up_write(&mm->mmap_sem);
 386}
 387
 388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 389	[MPOL_DEFAULT] = {
 390		.rebind = mpol_rebind_default,
 391	},
 392	[MPOL_INTERLEAVE] = {
 393		.create = mpol_new_interleave,
 394		.rebind = mpol_rebind_nodemask,
 395	},
 396	[MPOL_PREFERRED] = {
 397		.create = mpol_new_preferred,
 398		.rebind = mpol_rebind_preferred,
 399	},
 400	[MPOL_BIND] = {
 401		.create = mpol_new_bind,
 402		.rebind = mpol_rebind_nodemask,
 403	},
 404};
 405
 406static int migrate_page_add(struct page *page, struct list_head *pagelist,
 407				unsigned long flags);
 408
 409struct queue_pages {
 410	struct list_head *pagelist;
 411	unsigned long flags;
 412	nodemask_t *nmask;
 413	struct vm_area_struct *prev;
 414};
 415
 416/*
 417 * Check if the page's nid is in qp->nmask.
 418 *
 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 420 * in the invert of qp->nmask.
 421 */
 422static inline bool queue_pages_required(struct page *page,
 423					struct queue_pages *qp)
 424{
 425	int nid = page_to_nid(page);
 426	unsigned long flags = qp->flags;
 427
 428	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 429}
 430
 431/*
 432 * queue_pages_pmd() has four possible return values:
 433 * 0 - pages are placed on the right node or queued successfully.
 434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 435 *     specified.
 436 * 2 - THP was split.
 437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 438 *        existing page was already on a node that does not follow the
 439 *        policy.
 440 */
 441static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 442				unsigned long end, struct mm_walk *walk)
 443{
 444	int ret = 0;
 445	struct page *page;
 446	struct queue_pages *qp = walk->private;
 447	unsigned long flags;
 448
 449	if (unlikely(is_pmd_migration_entry(*pmd))) {
 450		ret = -EIO;
 451		goto unlock;
 452	}
 453	page = pmd_page(*pmd);
 454	if (is_huge_zero_page(page)) {
 455		spin_unlock(ptl);
 456		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 457		ret = 2;
 458		goto out;
 459	}
 460	if (!queue_pages_required(page, qp))
 461		goto unlock;
 462
 463	flags = qp->flags;
 464	/* go to thp migration */
 465	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 466		if (!vma_migratable(walk->vma) ||
 467		    migrate_page_add(page, qp->pagelist, flags)) {
 468			ret = 1;
 469			goto unlock;
 470		}
 471	} else
 472		ret = -EIO;
 473unlock:
 474	spin_unlock(ptl);
 475out:
 476	return ret;
 477}
 478
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 482 *
 483 * queue_pages_pte_range() has three possible return values:
 484 * 0 - pages are placed on the right node or queued successfully.
 485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 486 *     specified.
 487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 488 *        on a node that does not follow the policy.
 489 */
 490static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 491			unsigned long end, struct mm_walk *walk)
 
 
 492{
 493	struct vm_area_struct *vma = walk->vma;
 494	struct page *page;
 495	struct queue_pages *qp = walk->private;
 496	unsigned long flags = qp->flags;
 497	int ret;
 498	bool has_unmovable = false;
 499	pte_t *pte;
 500	spinlock_t *ptl;
 501
 502	ptl = pmd_trans_huge_lock(pmd, vma);
 503	if (ptl) {
 504		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 505		if (ret != 2)
 506			return ret;
 507	}
 508	/* THP was split, fall through to pte walk */
 509
 510	if (pmd_trans_unstable(pmd))
 511		return 0;
 512
 513	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 514	for (; addr != end; pte++, addr += PAGE_SIZE) {
 515		if (!pte_present(*pte))
 516			continue;
 517		page = vm_normal_page(vma, addr, *pte);
 518		if (!page)
 519			continue;
 520		/*
 521		 * vm_normal_page() filters out zero pages, but there might
 522		 * still be PageReserved pages to skip, perhaps in a VDSO.
 523		 */
 524		if (PageReserved(page))
 525			continue;
 526		if (!queue_pages_required(page, qp))
 
 527			continue;
 528		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 529			/* MPOL_MF_STRICT must be specified if we get here */
 530			if (!vma_migratable(vma)) {
 531				has_unmovable = true;
 532				break;
 533			}
 534
 535			/*
 536			 * Do not abort immediately since there may be
 537			 * temporary off LRU pages in the range.  Still
 538			 * need migrate other LRU pages.
 539			 */
 540			if (migrate_page_add(page, qp->pagelist, flags))
 541				has_unmovable = true;
 542		} else
 543			break;
 544	}
 545	pte_unmap_unlock(pte - 1, ptl);
 546	cond_resched();
 547
 548	if (has_unmovable)
 549		return 1;
 550
 551	return addr != end ? -EIO : 0;
 552}
 553
 554static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 555			       unsigned long addr, unsigned long end,
 556			       struct mm_walk *walk)
 557{
 558#ifdef CONFIG_HUGETLB_PAGE
 559	struct queue_pages *qp = walk->private;
 560	unsigned long flags = qp->flags;
 561	struct page *page;
 562	spinlock_t *ptl;
 563	pte_t entry;
 564
 565	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 566	entry = huge_ptep_get(pte);
 567	if (!pte_present(entry))
 568		goto unlock;
 569	page = pte_page(entry);
 570	if (!queue_pages_required(page, qp))
 
 571		goto unlock;
 572	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 573	if (flags & (MPOL_MF_MOVE_ALL) ||
 574	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 575		isolate_huge_page(page, qp->pagelist);
 576unlock:
 577	spin_unlock(ptl);
 578#else
 579	BUG();
 580#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581	return 0;
 582}
 583
 584#ifdef CONFIG_NUMA_BALANCING
 585/*
 586 * This is used to mark a range of virtual addresses to be inaccessible.
 587 * These are later cleared by a NUMA hinting fault. Depending on these
 588 * faults, pages may be migrated for better NUMA placement.
 589 *
 590 * This is assuming that NUMA faults are handled using PROT_NONE. If
 591 * an architecture makes a different choice, it will need further
 592 * changes to the core.
 593 */
 594unsigned long change_prot_numa(struct vm_area_struct *vma,
 595			unsigned long addr, unsigned long end)
 596{
 597	int nr_updated;
 598
 599	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 600	if (nr_updated)
 601		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 602
 603	return nr_updated;
 604}
 605#else
 606static unsigned long change_prot_numa(struct vm_area_struct *vma,
 607			unsigned long addr, unsigned long end)
 608{
 609	return 0;
 610}
 611#endif /* CONFIG_NUMA_BALANCING */
 612
 613static int queue_pages_test_walk(unsigned long start, unsigned long end,
 614				struct mm_walk *walk)
 615{
 616	struct vm_area_struct *vma = walk->vma;
 617	struct queue_pages *qp = walk->private;
 618	unsigned long endvma = vma->vm_end;
 619	unsigned long flags = qp->flags;
 620
 621	/*
 622	 * Need check MPOL_MF_STRICT to return -EIO if possible
 623	 * regardless of vma_migratable
 624	 */
 625	if (!vma_migratable(vma) &&
 626	    !(flags & MPOL_MF_STRICT))
 627		return 1;
 628
 629	if (endvma > end)
 630		endvma = end;
 631	if (vma->vm_start > start)
 632		start = vma->vm_start;
 633
 634	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 635		if (!vma->vm_next && vma->vm_end < end)
 636			return -EFAULT;
 637		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 638			return -EFAULT;
 639	}
 640
 641	qp->prev = vma;
 642
 643	if (flags & MPOL_MF_LAZY) {
 644		/* Similar to task_numa_work, skip inaccessible VMAs */
 645		if (!is_vm_hugetlb_page(vma) &&
 646			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 647			!(vma->vm_flags & VM_MIXEDMAP))
 648			change_prot_numa(vma, start, endvma);
 649		return 1;
 650	}
 651
 652	/* queue pages from current vma */
 653	if (flags & MPOL_MF_VALID)
 654		return 0;
 655	return 1;
 656}
 657
 658static const struct mm_walk_ops queue_pages_walk_ops = {
 659	.hugetlb_entry		= queue_pages_hugetlb,
 660	.pmd_entry		= queue_pages_pte_range,
 661	.test_walk		= queue_pages_test_walk,
 662};
 663
 664/*
 665 * Walk through page tables and collect pages to be migrated.
 666 *
 667 * If pages found in a given range are on a set of nodes (determined by
 668 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 669 * passed via @private.
 670 *
 671 * queue_pages_range() has three possible return values:
 672 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 673 *     specified.
 674 * 0 - queue pages successfully or no misplaced page.
 675 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 676 *         memory range specified by nodemask and maxnode points outside
 677 *         your accessible address space (-EFAULT)
 678 */
 679static int
 680queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 681		nodemask_t *nodes, unsigned long flags,
 682		struct list_head *pagelist)
 683{
 684	struct queue_pages qp = {
 685		.pagelist = pagelist,
 686		.flags = flags,
 687		.nmask = nodes,
 688		.prev = NULL,
 689	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691	return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692}
 693
 694/*
 695 * Apply policy to a single VMA
 696 * This must be called with the mmap_sem held for writing.
 697 */
 698static int vma_replace_policy(struct vm_area_struct *vma,
 699						struct mempolicy *pol)
 700{
 701	int err;
 702	struct mempolicy *old;
 703	struct mempolicy *new;
 704
 705	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 706		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 707		 vma->vm_ops, vma->vm_file,
 708		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 709
 710	new = mpol_dup(pol);
 711	if (IS_ERR(new))
 712		return PTR_ERR(new);
 713
 714	if (vma->vm_ops && vma->vm_ops->set_policy) {
 715		err = vma->vm_ops->set_policy(vma, new);
 716		if (err)
 717			goto err_out;
 718	}
 719
 720	old = vma->vm_policy;
 721	vma->vm_policy = new; /* protected by mmap_sem */
 722	mpol_put(old);
 723
 724	return 0;
 725 err_out:
 726	mpol_put(new);
 727	return err;
 728}
 729
 730/* Step 2: apply policy to a range and do splits. */
 731static int mbind_range(struct mm_struct *mm, unsigned long start,
 732		       unsigned long end, struct mempolicy *new_pol)
 733{
 734	struct vm_area_struct *next;
 735	struct vm_area_struct *prev;
 736	struct vm_area_struct *vma;
 737	int err = 0;
 738	pgoff_t pgoff;
 739	unsigned long vmstart;
 740	unsigned long vmend;
 741
 742	vma = find_vma(mm, start);
 743	if (!vma || vma->vm_start > start)
 744		return -EFAULT;
 745
 746	prev = vma->vm_prev;
 747	if (start > vma->vm_start)
 748		prev = vma;
 749
 750	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 751		next = vma->vm_next;
 752		vmstart = max(start, vma->vm_start);
 753		vmend   = min(end, vma->vm_end);
 754
 755		if (mpol_equal(vma_policy(vma), new_pol))
 756			continue;
 757
 758		pgoff = vma->vm_pgoff +
 759			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 760		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 761				 vma->anon_vma, vma->vm_file, pgoff,
 762				 new_pol, vma->vm_userfaultfd_ctx);
 763		if (prev) {
 764			vma = prev;
 765			next = vma->vm_next;
 766			if (mpol_equal(vma_policy(vma), new_pol))
 767				continue;
 768			/* vma_merge() joined vma && vma->next, case 8 */
 769			goto replace;
 770		}
 771		if (vma->vm_start != vmstart) {
 772			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 773			if (err)
 774				goto out;
 775		}
 776		if (vma->vm_end != vmend) {
 777			err = split_vma(vma->vm_mm, vma, vmend, 0);
 778			if (err)
 779				goto out;
 780		}
 781 replace:
 782		err = vma_replace_policy(vma, new_pol);
 783		if (err)
 784			goto out;
 785	}
 786
 787 out:
 788	return err;
 789}
 790
 791/* Set the process memory policy */
 792static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 793			     nodemask_t *nodes)
 794{
 795	struct mempolicy *new, *old;
 
 796	NODEMASK_SCRATCH(scratch);
 797	int ret;
 798
 799	if (!scratch)
 800		return -ENOMEM;
 801
 802	new = mpol_new(mode, flags, nodes);
 803	if (IS_ERR(new)) {
 804		ret = PTR_ERR(new);
 805		goto out;
 806	}
 807
 
 
 
 
 
 
 
 808	task_lock(current);
 809	ret = mpol_set_nodemask(new, nodes, scratch);
 810	if (ret) {
 811		task_unlock(current);
 
 
 812		mpol_put(new);
 813		goto out;
 814	}
 815	old = current->mempolicy;
 816	current->mempolicy = new;
 817	if (new && new->mode == MPOL_INTERLEAVE)
 818		current->il_prev = MAX_NUMNODES-1;
 
 819	task_unlock(current);
 
 
 
 820	mpol_put(old);
 821	ret = 0;
 822out:
 823	NODEMASK_SCRATCH_FREE(scratch);
 824	return ret;
 825}
 826
 827/*
 828 * Return nodemask for policy for get_mempolicy() query
 829 *
 830 * Called with task's alloc_lock held
 831 */
 832static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 833{
 834	nodes_clear(*nodes);
 835	if (p == &default_policy)
 836		return;
 837
 838	switch (p->mode) {
 839	case MPOL_BIND:
 840		/* Fall through */
 841	case MPOL_INTERLEAVE:
 842		*nodes = p->v.nodes;
 843		break;
 844	case MPOL_PREFERRED:
 845		if (!(p->flags & MPOL_F_LOCAL))
 846			node_set(p->v.preferred_node, *nodes);
 847		/* else return empty node mask for local allocation */
 848		break;
 849	default:
 850		BUG();
 851	}
 852}
 853
 854static int lookup_node(struct mm_struct *mm, unsigned long addr)
 855{
 856	struct page *p;
 857	int err;
 858
 859	int locked = 1;
 860	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
 861	if (err >= 0) {
 862		err = page_to_nid(p);
 863		put_page(p);
 864	}
 865	if (locked)
 866		up_read(&mm->mmap_sem);
 867	return err;
 868}
 869
 870/* Retrieve NUMA policy */
 871static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 872			     unsigned long addr, unsigned long flags)
 873{
 874	int err;
 875	struct mm_struct *mm = current->mm;
 876	struct vm_area_struct *vma = NULL;
 877	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 878
 879	if (flags &
 880		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 881		return -EINVAL;
 882
 883	if (flags & MPOL_F_MEMS_ALLOWED) {
 884		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 885			return -EINVAL;
 886		*policy = 0;	/* just so it's initialized */
 887		task_lock(current);
 888		*nmask  = cpuset_current_mems_allowed;
 889		task_unlock(current);
 890		return 0;
 891	}
 892
 893	if (flags & MPOL_F_ADDR) {
 894		/*
 895		 * Do NOT fall back to task policy if the
 896		 * vma/shared policy at addr is NULL.  We
 897		 * want to return MPOL_DEFAULT in this case.
 898		 */
 899		down_read(&mm->mmap_sem);
 900		vma = find_vma_intersection(mm, addr, addr+1);
 901		if (!vma) {
 902			up_read(&mm->mmap_sem);
 903			return -EFAULT;
 904		}
 905		if (vma->vm_ops && vma->vm_ops->get_policy)
 906			pol = vma->vm_ops->get_policy(vma, addr);
 907		else
 908			pol = vma->vm_policy;
 909	} else if (addr)
 910		return -EINVAL;
 911
 912	if (!pol)
 913		pol = &default_policy;	/* indicates default behavior */
 914
 915	if (flags & MPOL_F_NODE) {
 916		if (flags & MPOL_F_ADDR) {
 917			/*
 918			 * Take a refcount on the mpol, lookup_node()
 919			 * wil drop the mmap_sem, so after calling
 920			 * lookup_node() only "pol" remains valid, "vma"
 921			 * is stale.
 922			 */
 923			pol_refcount = pol;
 924			vma = NULL;
 925			mpol_get(pol);
 926			err = lookup_node(mm, addr);
 927			if (err < 0)
 928				goto out;
 929			*policy = err;
 930		} else if (pol == current->mempolicy &&
 931				pol->mode == MPOL_INTERLEAVE) {
 932			*policy = next_node_in(current->il_prev, pol->v.nodes);
 933		} else {
 934			err = -EINVAL;
 935			goto out;
 936		}
 937	} else {
 938		*policy = pol == &default_policy ? MPOL_DEFAULT :
 939						pol->mode;
 940		/*
 941		 * Internal mempolicy flags must be masked off before exposing
 942		 * the policy to userspace.
 943		 */
 944		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 945	}
 946
 
 
 
 
 
 947	err = 0;
 948	if (nmask) {
 949		if (mpol_store_user_nodemask(pol)) {
 950			*nmask = pol->w.user_nodemask;
 951		} else {
 952			task_lock(current);
 953			get_policy_nodemask(pol, nmask);
 954			task_unlock(current);
 955		}
 956	}
 957
 958 out:
 959	mpol_cond_put(pol);
 960	if (vma)
 961		up_read(&mm->mmap_sem);
 962	if (pol_refcount)
 963		mpol_put(pol_refcount);
 964	return err;
 965}
 966
 967#ifdef CONFIG_MIGRATION
 968/*
 969 * page migration, thp tail pages can be passed.
 970 */
 971static int migrate_page_add(struct page *page, struct list_head *pagelist,
 972				unsigned long flags)
 973{
 974	struct page *head = compound_head(page);
 975	/*
 976	 * Avoid migrating a page that is shared with others.
 977	 */
 978	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 979		if (!isolate_lru_page(head)) {
 980			list_add_tail(&head->lru, pagelist);
 981			mod_node_page_state(page_pgdat(head),
 982				NR_ISOLATED_ANON + page_is_file_cache(head),
 983				hpage_nr_pages(head));
 984		} else if (flags & MPOL_MF_STRICT) {
 985			/*
 986			 * Non-movable page may reach here.  And, there may be
 987			 * temporary off LRU pages or non-LRU movable pages.
 988			 * Treat them as unmovable pages since they can't be
 989			 * isolated, so they can't be moved at the moment.  It
 990			 * should return -EIO for this case too.
 991			 */
 992			return -EIO;
 993		}
 994	}
 995
 996	return 0;
 997}
 998
 999/* page allocation callback for NUMA node migration */
1000struct page *alloc_new_node_page(struct page *page, unsigned long node)
1001{
1002	if (PageHuge(page))
1003		return alloc_huge_page_node(page_hstate(compound_head(page)),
1004					node);
1005	else if (PageTransHuge(page)) {
1006		struct page *thp;
1007
1008		thp = alloc_pages_node(node,
1009			(GFP_TRANSHUGE | __GFP_THISNODE),
1010			HPAGE_PMD_ORDER);
1011		if (!thp)
1012			return NULL;
1013		prep_transhuge_page(thp);
1014		return thp;
1015	} else
1016		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1017						    __GFP_THISNODE, 0);
1018}
1019
1020/*
1021 * Migrate pages from one node to a target node.
1022 * Returns error or the number of pages not migrated.
1023 */
1024static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1025			   int flags)
1026{
1027	nodemask_t nmask;
1028	LIST_HEAD(pagelist);
1029	int err = 0;
1030
1031	nodes_clear(nmask);
1032	node_set(source, nmask);
1033
1034	/*
1035	 * This does not "check" the range but isolates all pages that
1036	 * need migration.  Between passing in the full user address
1037	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1038	 */
1039	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1040	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1041			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1042
1043	if (!list_empty(&pagelist)) {
1044		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1045					MIGRATE_SYNC, MR_SYSCALL);
1046		if (err)
1047			putback_movable_pages(&pagelist);
1048	}
1049
1050	return err;
1051}
1052
1053/*
1054 * Move pages between the two nodesets so as to preserve the physical
1055 * layout as much as possible.
1056 *
1057 * Returns the number of page that could not be moved.
1058 */
1059int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1060		     const nodemask_t *to, int flags)
1061{
1062	int busy = 0;
1063	int err;
1064	nodemask_t tmp;
1065
1066	err = migrate_prep();
1067	if (err)
1068		return err;
1069
1070	down_read(&mm->mmap_sem);
1071
 
 
 
 
1072	/*
1073	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1074	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1075	 * bit in 'tmp', and return that <source, dest> pair for migration.
1076	 * The pair of nodemasks 'to' and 'from' define the map.
1077	 *
1078	 * If no pair of bits is found that way, fallback to picking some
1079	 * pair of 'source' and 'dest' bits that are not the same.  If the
1080	 * 'source' and 'dest' bits are the same, this represents a node
1081	 * that will be migrating to itself, so no pages need move.
1082	 *
1083	 * If no bits are left in 'tmp', or if all remaining bits left
1084	 * in 'tmp' correspond to the same bit in 'to', return false
1085	 * (nothing left to migrate).
1086	 *
1087	 * This lets us pick a pair of nodes to migrate between, such that
1088	 * if possible the dest node is not already occupied by some other
1089	 * source node, minimizing the risk of overloading the memory on a
1090	 * node that would happen if we migrated incoming memory to a node
1091	 * before migrating outgoing memory source that same node.
1092	 *
1093	 * A single scan of tmp is sufficient.  As we go, we remember the
1094	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1095	 * that not only moved, but what's better, moved to an empty slot
1096	 * (d is not set in tmp), then we break out then, with that pair.
1097	 * Otherwise when we finish scanning from_tmp, we at least have the
1098	 * most recent <s, d> pair that moved.  If we get all the way through
1099	 * the scan of tmp without finding any node that moved, much less
1100	 * moved to an empty node, then there is nothing left worth migrating.
1101	 */
1102
1103	tmp = *from;
1104	while (!nodes_empty(tmp)) {
1105		int s,d;
1106		int source = NUMA_NO_NODE;
1107		int dest = 0;
1108
1109		for_each_node_mask(s, tmp) {
1110
1111			/*
1112			 * do_migrate_pages() tries to maintain the relative
1113			 * node relationship of the pages established between
1114			 * threads and memory areas.
1115                         *
1116			 * However if the number of source nodes is not equal to
1117			 * the number of destination nodes we can not preserve
1118			 * this node relative relationship.  In that case, skip
1119			 * copying memory from a node that is in the destination
1120			 * mask.
1121			 *
1122			 * Example: [2,3,4] -> [3,4,5] moves everything.
1123			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1124			 */
1125
1126			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1127						(node_isset(s, *to)))
1128				continue;
1129
1130			d = node_remap(s, *from, *to);
1131			if (s == d)
1132				continue;
1133
1134			source = s;	/* Node moved. Memorize */
1135			dest = d;
1136
1137			/* dest not in remaining from nodes? */
1138			if (!node_isset(dest, tmp))
1139				break;
1140		}
1141		if (source == NUMA_NO_NODE)
1142			break;
1143
1144		node_clear(source, tmp);
1145		err = migrate_to_node(mm, source, dest, flags);
1146		if (err > 0)
1147			busy += err;
1148		if (err < 0)
1149			break;
1150	}
 
1151	up_read(&mm->mmap_sem);
1152	if (err < 0)
1153		return err;
1154	return busy;
1155
1156}
1157
1158/*
1159 * Allocate a new page for page migration based on vma policy.
1160 * Start by assuming the page is mapped by the same vma as contains @start.
1161 * Search forward from there, if not.  N.B., this assumes that the
1162 * list of pages handed to migrate_pages()--which is how we get here--
1163 * is in virtual address order.
1164 */
1165static struct page *new_page(struct page *page, unsigned long start)
1166{
1167	struct vm_area_struct *vma;
1168	unsigned long uninitialized_var(address);
1169
1170	vma = find_vma(current->mm, start);
1171	while (vma) {
1172		address = page_address_in_vma(page, vma);
1173		if (address != -EFAULT)
1174			break;
1175		vma = vma->vm_next;
1176	}
1177
1178	if (PageHuge(page)) {
1179		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1180				vma, address);
1181	} else if (PageTransHuge(page)) {
1182		struct page *thp;
1183
1184		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1185					 HPAGE_PMD_ORDER);
1186		if (!thp)
1187			return NULL;
1188		prep_transhuge_page(thp);
1189		return thp;
1190	}
1191	/*
1192	 * if !vma, alloc_page_vma() will use task or system default policy
1193	 */
1194	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1195			vma, address);
1196}
1197#else
1198
1199static int migrate_page_add(struct page *page, struct list_head *pagelist,
1200				unsigned long flags)
1201{
1202	return -EIO;
1203}
1204
1205int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1206		     const nodemask_t *to, int flags)
1207{
1208	return -ENOSYS;
1209}
1210
1211static struct page *new_page(struct page *page, unsigned long start)
1212{
1213	return NULL;
1214}
1215#endif
1216
1217static long do_mbind(unsigned long start, unsigned long len,
1218		     unsigned short mode, unsigned short mode_flags,
1219		     nodemask_t *nmask, unsigned long flags)
1220{
 
1221	struct mm_struct *mm = current->mm;
1222	struct mempolicy *new;
1223	unsigned long end;
1224	int err;
1225	int ret;
1226	LIST_HEAD(pagelist);
1227
1228	if (flags & ~(unsigned long)MPOL_MF_VALID)
1229		return -EINVAL;
1230	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1231		return -EPERM;
1232
1233	if (start & ~PAGE_MASK)
1234		return -EINVAL;
1235
1236	if (mode == MPOL_DEFAULT)
1237		flags &= ~MPOL_MF_STRICT;
1238
1239	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1240	end = start + len;
1241
1242	if (end < start)
1243		return -EINVAL;
1244	if (end == start)
1245		return 0;
1246
1247	new = mpol_new(mode, mode_flags, nmask);
1248	if (IS_ERR(new))
1249		return PTR_ERR(new);
1250
1251	if (flags & MPOL_MF_LAZY)
1252		new->flags |= MPOL_F_MOF;
1253
1254	/*
1255	 * If we are using the default policy then operation
1256	 * on discontinuous address spaces is okay after all
1257	 */
1258	if (!new)
1259		flags |= MPOL_MF_DISCONTIG_OK;
1260
1261	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1262		 start, start + len, mode, mode_flags,
1263		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1264
1265	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1266
1267		err = migrate_prep();
1268		if (err)
1269			goto mpol_out;
1270	}
1271	{
1272		NODEMASK_SCRATCH(scratch);
1273		if (scratch) {
1274			down_write(&mm->mmap_sem);
1275			task_lock(current);
1276			err = mpol_set_nodemask(new, nmask, scratch);
1277			task_unlock(current);
1278			if (err)
1279				up_write(&mm->mmap_sem);
1280		} else
1281			err = -ENOMEM;
1282		NODEMASK_SCRATCH_FREE(scratch);
1283	}
1284	if (err)
1285		goto mpol_out;
1286
1287	ret = queue_pages_range(mm, start, end, nmask,
1288			  flags | MPOL_MF_INVERT, &pagelist);
1289
1290	if (ret < 0) {
1291		err = ret;
1292		goto up_out;
1293	}
1294
1295	err = mbind_range(mm, start, end, new);
1296
1297	if (!err) {
1298		int nr_failed = 0;
1299
1300		if (!list_empty(&pagelist)) {
1301			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1302			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1303				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
 
1304			if (nr_failed)
1305				putback_movable_pages(&pagelist);
1306		}
1307
1308		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1309			err = -EIO;
1310	} else {
1311up_out:
1312		if (!list_empty(&pagelist))
1313			putback_movable_pages(&pagelist);
1314	}
1315
1316	up_write(&mm->mmap_sem);
1317mpol_out:
1318	mpol_put(new);
1319	return err;
1320}
1321
1322/*
1323 * User space interface with variable sized bitmaps for nodelists.
1324 */
1325
1326/* Copy a node mask from user space. */
1327static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1328		     unsigned long maxnode)
1329{
1330	unsigned long k;
1331	unsigned long t;
1332	unsigned long nlongs;
1333	unsigned long endmask;
1334
1335	--maxnode;
1336	nodes_clear(*nodes);
1337	if (maxnode == 0 || !nmask)
1338		return 0;
1339	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1340		return -EINVAL;
1341
1342	nlongs = BITS_TO_LONGS(maxnode);
1343	if ((maxnode % BITS_PER_LONG) == 0)
1344		endmask = ~0UL;
1345	else
1346		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1347
1348	/*
1349	 * When the user specified more nodes than supported just check
1350	 * if the non supported part is all zero.
1351	 *
1352	 * If maxnode have more longs than MAX_NUMNODES, check
1353	 * the bits in that area first. And then go through to
1354	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1355	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1356	 */
1357	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
 
 
1358		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
 
1359			if (get_user(t, nmask + k))
1360				return -EFAULT;
1361			if (k == nlongs - 1) {
1362				if (t & endmask)
1363					return -EINVAL;
1364			} else if (t)
1365				return -EINVAL;
1366		}
1367		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1368		endmask = ~0UL;
1369	}
1370
1371	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1372		unsigned long valid_mask = endmask;
1373
1374		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1375		if (get_user(t, nmask + nlongs - 1))
1376			return -EFAULT;
1377		if (t & valid_mask)
1378			return -EINVAL;
1379	}
1380
1381	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1382		return -EFAULT;
1383	nodes_addr(*nodes)[nlongs-1] &= endmask;
1384	return 0;
1385}
1386
1387/* Copy a kernel node mask to user space */
1388static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1389			      nodemask_t *nodes)
1390{
1391	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1392	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1393
1394	if (copy > nbytes) {
1395		if (copy > PAGE_SIZE)
1396			return -EINVAL;
1397		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1398			return -EFAULT;
1399		copy = nbytes;
1400	}
1401	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1402}
1403
1404static long kernel_mbind(unsigned long start, unsigned long len,
1405			 unsigned long mode, const unsigned long __user *nmask,
1406			 unsigned long maxnode, unsigned int flags)
1407{
1408	nodemask_t nodes;
1409	int err;
1410	unsigned short mode_flags;
1411
1412	start = untagged_addr(start);
1413	mode_flags = mode & MPOL_MODE_FLAGS;
1414	mode &= ~MPOL_MODE_FLAGS;
1415	if (mode >= MPOL_MAX)
1416		return -EINVAL;
1417	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1418	    (mode_flags & MPOL_F_RELATIVE_NODES))
1419		return -EINVAL;
1420	err = get_nodes(&nodes, nmask, maxnode);
1421	if (err)
1422		return err;
1423	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1424}
1425
1426SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1427		unsigned long, mode, const unsigned long __user *, nmask,
1428		unsigned long, maxnode, unsigned int, flags)
1429{
1430	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1431}
1432
1433/* Set the process memory policy */
1434static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1435				 unsigned long maxnode)
1436{
1437	int err;
1438	nodemask_t nodes;
1439	unsigned short flags;
1440
1441	flags = mode & MPOL_MODE_FLAGS;
1442	mode &= ~MPOL_MODE_FLAGS;
1443	if ((unsigned int)mode >= MPOL_MAX)
1444		return -EINVAL;
1445	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1446		return -EINVAL;
1447	err = get_nodes(&nodes, nmask, maxnode);
1448	if (err)
1449		return err;
1450	return do_set_mempolicy(mode, flags, &nodes);
1451}
1452
1453SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1454		unsigned long, maxnode)
1455{
1456	return kernel_set_mempolicy(mode, nmask, maxnode);
1457}
1458
1459static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1460				const unsigned long __user *old_nodes,
1461				const unsigned long __user *new_nodes)
1462{
 
1463	struct mm_struct *mm = NULL;
1464	struct task_struct *task;
1465	nodemask_t task_nodes;
1466	int err;
1467	nodemask_t *old;
1468	nodemask_t *new;
1469	NODEMASK_SCRATCH(scratch);
1470
1471	if (!scratch)
1472		return -ENOMEM;
1473
1474	old = &scratch->mask1;
1475	new = &scratch->mask2;
1476
1477	err = get_nodes(old, old_nodes, maxnode);
1478	if (err)
1479		goto out;
1480
1481	err = get_nodes(new, new_nodes, maxnode);
1482	if (err)
1483		goto out;
1484
1485	/* Find the mm_struct */
1486	rcu_read_lock();
1487	task = pid ? find_task_by_vpid(pid) : current;
1488	if (!task) {
1489		rcu_read_unlock();
1490		err = -ESRCH;
1491		goto out;
1492	}
1493	get_task_struct(task);
1494
1495	err = -EINVAL;
1496
1497	/*
1498	 * Check if this process has the right to modify the specified process.
1499	 * Use the regular "ptrace_may_access()" checks.
 
 
1500	 */
1501	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
1502		rcu_read_unlock();
1503		err = -EPERM;
1504		goto out_put;
1505	}
1506	rcu_read_unlock();
1507
1508	task_nodes = cpuset_mems_allowed(task);
1509	/* Is the user allowed to access the target nodes? */
1510	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1511		err = -EPERM;
1512		goto out_put;
1513	}
1514
1515	task_nodes = cpuset_mems_allowed(current);
1516	nodes_and(*new, *new, task_nodes);
1517	if (nodes_empty(*new))
1518		goto out_put;
 
1519
1520	err = security_task_movememory(task);
1521	if (err)
1522		goto out_put;
1523
1524	mm = get_task_mm(task);
1525	put_task_struct(task);
1526
1527	if (!mm) {
1528		err = -EINVAL;
1529		goto out;
1530	}
1531
1532	err = do_migrate_pages(mm, old, new,
1533		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1534
1535	mmput(mm);
1536out:
1537	NODEMASK_SCRATCH_FREE(scratch);
1538
1539	return err;
1540
1541out_put:
1542	put_task_struct(task);
1543	goto out;
1544
1545}
1546
1547SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1548		const unsigned long __user *, old_nodes,
1549		const unsigned long __user *, new_nodes)
1550{
1551	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1552}
1553
1554
1555/* Retrieve NUMA policy */
1556static int kernel_get_mempolicy(int __user *policy,
1557				unsigned long __user *nmask,
1558				unsigned long maxnode,
1559				unsigned long addr,
1560				unsigned long flags)
1561{
1562	int err;
1563	int uninitialized_var(pval);
1564	nodemask_t nodes;
1565
1566	addr = untagged_addr(addr);
1567
1568	if (nmask != NULL && maxnode < nr_node_ids)
1569		return -EINVAL;
1570
1571	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1572
1573	if (err)
1574		return err;
1575
1576	if (policy && put_user(pval, policy))
1577		return -EFAULT;
1578
1579	if (nmask)
1580		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1581
1582	return err;
1583}
1584
1585SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1586		unsigned long __user *, nmask, unsigned long, maxnode,
1587		unsigned long, addr, unsigned long, flags)
1588{
1589	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1590}
1591
1592#ifdef CONFIG_COMPAT
1593
1594COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1595		       compat_ulong_t __user *, nmask,
1596		       compat_ulong_t, maxnode,
1597		       compat_ulong_t, addr, compat_ulong_t, flags)
1598{
1599	long err;
1600	unsigned long __user *nm = NULL;
1601	unsigned long nr_bits, alloc_size;
1602	DECLARE_BITMAP(bm, MAX_NUMNODES);
1603
1604	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1605	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1606
1607	if (nmask)
1608		nm = compat_alloc_user_space(alloc_size);
1609
1610	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1611
1612	if (!err && nmask) {
1613		unsigned long copy_size;
1614		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1615		err = copy_from_user(bm, nm, copy_size);
1616		/* ensure entire bitmap is zeroed */
1617		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1618		err |= compat_put_bitmap(nmask, bm, nr_bits);
1619	}
1620
1621	return err;
1622}
1623
1624COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1625		       compat_ulong_t, maxnode)
1626{
 
1627	unsigned long __user *nm = NULL;
1628	unsigned long nr_bits, alloc_size;
1629	DECLARE_BITMAP(bm, MAX_NUMNODES);
1630
1631	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1632	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1633
1634	if (nmask) {
1635		if (compat_get_bitmap(bm, nmask, nr_bits))
1636			return -EFAULT;
1637		nm = compat_alloc_user_space(alloc_size);
1638		if (copy_to_user(nm, bm, alloc_size))
1639			return -EFAULT;
1640	}
1641
1642	return kernel_set_mempolicy(mode, nm, nr_bits+1);
 
 
 
1643}
1644
1645COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1646		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1647		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1648{
 
1649	unsigned long __user *nm = NULL;
1650	unsigned long nr_bits, alloc_size;
1651	nodemask_t bm;
1652
1653	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1654	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1655
1656	if (nmask) {
1657		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1658			return -EFAULT;
1659		nm = compat_alloc_user_space(alloc_size);
1660		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1661			return -EFAULT;
1662	}
1663
1664	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1665}
1666
1667COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1668		       compat_ulong_t, maxnode,
1669		       const compat_ulong_t __user *, old_nodes,
1670		       const compat_ulong_t __user *, new_nodes)
1671{
1672	unsigned long __user *old = NULL;
1673	unsigned long __user *new = NULL;
1674	nodemask_t tmp_mask;
1675	unsigned long nr_bits;
1676	unsigned long size;
1677
1678	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1679	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1680	if (old_nodes) {
1681		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1682			return -EFAULT;
1683		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1684		if (new_nodes)
1685			new = old + size / sizeof(unsigned long);
1686		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1687			return -EFAULT;
1688	}
1689	if (new_nodes) {
1690		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1691			return -EFAULT;
1692		if (new == NULL)
1693			new = compat_alloc_user_space(size);
1694		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1695			return -EFAULT;
1696	}
1697	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1698}
1699
1700#endif /* CONFIG_COMPAT */
1701
1702struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1703						unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704{
1705	struct mempolicy *pol = NULL;
1706
1707	if (vma) {
1708		if (vma->vm_ops && vma->vm_ops->get_policy) {
1709			pol = vma->vm_ops->get_policy(vma, addr);
 
 
 
1710		} else if (vma->vm_policy) {
1711			pol = vma->vm_policy;
1712
1713			/*
1714			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1715			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1716			 * count on these policies which will be dropped by
1717			 * mpol_cond_put() later
1718			 */
1719			if (mpol_needs_cond_ref(pol))
1720				mpol_get(pol);
1721		}
1722	}
1723
1724	return pol;
1725}
1726
1727/*
1728 * get_vma_policy(@vma, @addr)
1729 * @vma: virtual memory area whose policy is sought
1730 * @addr: address in @vma for shared policy lookup
1731 *
1732 * Returns effective policy for a VMA at specified address.
1733 * Falls back to current->mempolicy or system default policy, as necessary.
1734 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1735 * count--added by the get_policy() vm_op, as appropriate--to protect against
1736 * freeing by another task.  It is the caller's responsibility to free the
1737 * extra reference for shared policies.
1738 */
1739static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1740						unsigned long addr)
1741{
1742	struct mempolicy *pol = __get_vma_policy(vma, addr);
1743
1744	if (!pol)
1745		pol = get_task_policy(current);
1746
1747	return pol;
1748}
1749
1750bool vma_policy_mof(struct vm_area_struct *vma)
1751{
1752	struct mempolicy *pol;
1753
1754	if (vma->vm_ops && vma->vm_ops->get_policy) {
1755		bool ret = false;
1756
1757		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1758		if (pol && (pol->flags & MPOL_F_MOF))
1759			ret = true;
1760		mpol_cond_put(pol);
1761
1762		return ret;
 
 
 
1763	}
1764
1765	pol = vma->vm_policy;
1766	if (!pol)
1767		pol = get_task_policy(current);
1768
1769	return pol->flags & MPOL_F_MOF;
1770}
1771
1772static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1773{
1774	enum zone_type dynamic_policy_zone = policy_zone;
1775
1776	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1777
1778	/*
1779	 * if policy->v.nodes has movable memory only,
1780	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1781	 *
1782	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1783	 * so if the following test faile, it implies
1784	 * policy->v.nodes has movable memory only.
1785	 */
1786	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1787		dynamic_policy_zone = ZONE_MOVABLE;
1788
1789	return zone >= dynamic_policy_zone;
1790}
1791
1792/*
1793 * Return a nodemask representing a mempolicy for filtering nodes for
1794 * page allocation
1795 */
1796static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1797{
1798	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1799	if (unlikely(policy->mode == MPOL_BIND) &&
1800			apply_policy_zone(policy, gfp_zone(gfp)) &&
1801			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1802		return &policy->v.nodes;
1803
1804	return NULL;
1805}
1806
1807/* Return the node id preferred by the given mempolicy, or the given id */
1808static int policy_node(gfp_t gfp, struct mempolicy *policy,
1809								int nd)
1810{
1811	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1812		nd = policy->v.preferred_node;
1813	else {
 
 
 
1814		/*
1815		 * __GFP_THISNODE shouldn't even be used with the bind policy
1816		 * because we might easily break the expectation to stay on the
1817		 * requested node and not break the policy.
 
1818		 */
1819		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
 
 
 
 
 
1820	}
1821
1822	return nd;
1823}
1824
1825/* Do dynamic interleaving for a process */
1826static unsigned interleave_nodes(struct mempolicy *policy)
1827{
1828	unsigned next;
1829	struct task_struct *me = current;
1830
1831	next = next_node_in(me->il_prev, policy->v.nodes);
 
 
 
1832	if (next < MAX_NUMNODES)
1833		me->il_prev = next;
1834	return next;
1835}
1836
1837/*
1838 * Depending on the memory policy provide a node from which to allocate the
1839 * next slab entry.
1840 */
1841unsigned int mempolicy_slab_node(void)
1842{
1843	struct mempolicy *policy;
1844	int node = numa_mem_id();
1845
1846	if (in_interrupt())
1847		return node;
1848
1849	policy = current->mempolicy;
1850	if (!policy || policy->flags & MPOL_F_LOCAL)
1851		return node;
1852
1853	switch (policy->mode) {
1854	case MPOL_PREFERRED:
1855		/*
1856		 * handled MPOL_F_LOCAL above
1857		 */
1858		return policy->v.preferred_node;
1859
1860	case MPOL_INTERLEAVE:
1861		return interleave_nodes(policy);
1862
1863	case MPOL_BIND: {
1864		struct zoneref *z;
1865
1866		/*
1867		 * Follow bind policy behavior and start allocation at the
1868		 * first node.
1869		 */
1870		struct zonelist *zonelist;
 
1871		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1872		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1873		z = first_zones_zonelist(zonelist, highest_zoneidx,
1874							&policy->v.nodes);
1875		return z->zone ? zone_to_nid(z->zone) : node;
 
1876	}
1877
1878	default:
1879		BUG();
1880	}
1881}
1882
1883/*
1884 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1885 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1886 * number of present nodes.
1887 */
1888static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1889{
1890	unsigned nnodes = nodes_weight(pol->v.nodes);
1891	unsigned target;
1892	int i;
1893	int nid;
1894
1895	if (!nnodes)
1896		return numa_node_id();
1897	target = (unsigned int)n % nnodes;
1898	nid = first_node(pol->v.nodes);
1899	for (i = 0; i < target; i++)
1900		nid = next_node(nid, pol->v.nodes);
 
 
1901	return nid;
1902}
1903
1904/* Determine a node number for interleave */
1905static inline unsigned interleave_nid(struct mempolicy *pol,
1906		 struct vm_area_struct *vma, unsigned long addr, int shift)
1907{
1908	if (vma) {
1909		unsigned long off;
1910
1911		/*
1912		 * for small pages, there is no difference between
1913		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1914		 * for huge pages, since vm_pgoff is in units of small
1915		 * pages, we need to shift off the always 0 bits to get
1916		 * a useful offset.
1917		 */
1918		BUG_ON(shift < PAGE_SHIFT);
1919		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1920		off += (addr - vma->vm_start) >> shift;
1921		return offset_il_node(pol, off);
1922	} else
1923		return interleave_nodes(pol);
1924}
1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926#ifdef CONFIG_HUGETLBFS
1927/*
1928 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1929 * @vma: virtual memory area whose policy is sought
1930 * @addr: address in @vma for shared policy lookup and interleave policy
1931 * @gfp_flags: for requested zone
1932 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1933 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1934 *
1935 * Returns a nid suitable for a huge page allocation and a pointer
1936 * to the struct mempolicy for conditional unref after allocation.
1937 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1938 * @nodemask for filtering the zonelist.
1939 *
1940 * Must be protected by read_mems_allowed_begin()
1941 */
1942int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1943				struct mempolicy **mpol, nodemask_t **nodemask)
 
1944{
1945	int nid;
1946
1947	*mpol = get_vma_policy(vma, addr);
1948	*nodemask = NULL;	/* assume !MPOL_BIND */
1949
1950	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1951		nid = interleave_nid(*mpol, vma, addr,
1952					huge_page_shift(hstate_vma(vma)));
1953	} else {
1954		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1955		if ((*mpol)->mode == MPOL_BIND)
1956			*nodemask = &(*mpol)->v.nodes;
1957	}
1958	return nid;
1959}
1960
1961/*
1962 * init_nodemask_of_mempolicy
1963 *
1964 * If the current task's mempolicy is "default" [NULL], return 'false'
1965 * to indicate default policy.  Otherwise, extract the policy nodemask
1966 * for 'bind' or 'interleave' policy into the argument nodemask, or
1967 * initialize the argument nodemask to contain the single node for
1968 * 'preferred' or 'local' policy and return 'true' to indicate presence
1969 * of non-default mempolicy.
1970 *
1971 * We don't bother with reference counting the mempolicy [mpol_get/put]
1972 * because the current task is examining it's own mempolicy and a task's
1973 * mempolicy is only ever changed by the task itself.
1974 *
1975 * N.B., it is the caller's responsibility to free a returned nodemask.
1976 */
1977bool init_nodemask_of_mempolicy(nodemask_t *mask)
1978{
1979	struct mempolicy *mempolicy;
1980	int nid;
1981
1982	if (!(mask && current->mempolicy))
1983		return false;
1984
1985	task_lock(current);
1986	mempolicy = current->mempolicy;
1987	switch (mempolicy->mode) {
1988	case MPOL_PREFERRED:
1989		if (mempolicy->flags & MPOL_F_LOCAL)
1990			nid = numa_node_id();
1991		else
1992			nid = mempolicy->v.preferred_node;
1993		init_nodemask_of_node(mask, nid);
1994		break;
1995
1996	case MPOL_BIND:
1997		/* Fall through */
1998	case MPOL_INTERLEAVE:
1999		*mask =  mempolicy->v.nodes;
2000		break;
2001
2002	default:
2003		BUG();
2004	}
2005	task_unlock(current);
2006
2007	return true;
2008}
2009#endif
2010
2011/*
2012 * mempolicy_nodemask_intersects
2013 *
2014 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2015 * policy.  Otherwise, check for intersection between mask and the policy
2016 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2017 * policy, always return true since it may allocate elsewhere on fallback.
2018 *
2019 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2020 */
2021bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2022					const nodemask_t *mask)
2023{
2024	struct mempolicy *mempolicy;
2025	bool ret = true;
2026
2027	if (!mask)
2028		return ret;
2029	task_lock(tsk);
2030	mempolicy = tsk->mempolicy;
2031	if (!mempolicy)
2032		goto out;
2033
2034	switch (mempolicy->mode) {
2035	case MPOL_PREFERRED:
2036		/*
2037		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2038		 * allocate from, they may fallback to other nodes when oom.
2039		 * Thus, it's possible for tsk to have allocated memory from
2040		 * nodes in mask.
2041		 */
2042		break;
2043	case MPOL_BIND:
2044	case MPOL_INTERLEAVE:
2045		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2046		break;
2047	default:
2048		BUG();
2049	}
2050out:
2051	task_unlock(tsk);
2052	return ret;
2053}
2054
2055/* Allocate a page in interleaved policy.
2056   Own path because it needs to do special accounting. */
2057static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2058					unsigned nid)
2059{
 
2060	struct page *page;
2061
2062	page = __alloc_pages(gfp, order, nid);
2063	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2064	if (!static_branch_likely(&vm_numa_stat_key))
2065		return page;
2066	if (page && page_to_nid(page) == nid) {
2067		preempt_disable();
2068		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2069		preempt_enable();
2070	}
2071	return page;
2072}
2073
2074/**
2075 * 	alloc_pages_vma	- Allocate a page for a VMA.
2076 *
2077 * 	@gfp:
2078 *      %GFP_USER    user allocation.
2079 *      %GFP_KERNEL  kernel allocations,
2080 *      %GFP_HIGHMEM highmem/user allocations,
2081 *      %GFP_FS      allocation should not call back into a file system.
2082 *      %GFP_ATOMIC  don't sleep.
2083 *
2084 *	@order:Order of the GFP allocation.
2085 * 	@vma:  Pointer to VMA or NULL if not available.
2086 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2087 *	@node: Which node to prefer for allocation (modulo policy).
2088 *	@hugepage: for hugepages try only the preferred node if possible
2089 *
2090 * 	This function allocates a page from the kernel page pool and applies
2091 *	a NUMA policy associated with the VMA or the current process.
2092 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2093 *	mm_struct of the VMA to prevent it from going away. Should be used for
2094 *	all allocations for pages that will be mapped into user space. Returns
2095 *	NULL when no page can be allocated.
 
 
2096 */
2097struct page *
2098alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2099		unsigned long addr, int node, bool hugepage)
2100{
2101	struct mempolicy *pol;
2102	struct page *page;
2103	int preferred_nid;
2104	nodemask_t *nmask;
2105
2106	pol = get_vma_policy(vma, addr);
 
 
2107
2108	if (pol->mode == MPOL_INTERLEAVE) {
2109		unsigned nid;
2110
2111		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2112		mpol_cond_put(pol);
2113		page = alloc_page_interleave(gfp, order, nid);
2114		goto out;
2115	}
2116
2117	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2118		int hpage_node = node;
2119
2120		/*
2121		 * For hugepage allocation and non-interleave policy which
2122		 * allows the current node (or other explicitly preferred
2123		 * node) we only try to allocate from the current/preferred
2124		 * node and don't fall back to other nodes, as the cost of
2125		 * remote accesses would likely offset THP benefits.
2126		 *
2127		 * If the policy is interleave, or does not allow the current
2128		 * node in its nodemask, we allocate the standard way.
2129		 */
2130		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2131			hpage_node = pol->v.preferred_node;
2132
2133		nmask = policy_nodemask(gfp, pol);
2134		if (!nmask || node_isset(hpage_node, *nmask)) {
2135			mpol_cond_put(pol);
2136			page = __alloc_pages_node(hpage_node,
2137						gfp | __GFP_THISNODE, order);
2138
2139			/*
2140			 * If hugepage allocations are configured to always
2141			 * synchronous compact or the vma has been madvised
2142			 * to prefer hugepage backing, retry allowing remote
2143			 * memory as well.
2144			 */
2145			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2146				page = __alloc_pages_node(hpage_node,
2147						gfp | __GFP_NORETRY, order);
2148
2149			goto out;
2150		}
2151	}
2152
2153	nmask = policy_nodemask(gfp, pol);
2154	preferred_nid = policy_node(gfp, pol, node);
2155	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2156	mpol_cond_put(pol);
2157out:
 
2158	return page;
2159}
2160EXPORT_SYMBOL(alloc_pages_vma);
2161
2162/**
2163 * 	alloc_pages_current - Allocate pages.
2164 *
2165 *	@gfp:
2166 *		%GFP_USER   user allocation,
2167 *      	%GFP_KERNEL kernel allocation,
2168 *      	%GFP_HIGHMEM highmem allocation,
2169 *      	%GFP_FS     don't call back into a file system.
2170 *      	%GFP_ATOMIC don't sleep.
2171 *	@order: Power of two of allocation size in pages. 0 is a single page.
2172 *
2173 *	Allocate a page from the kernel page pool.  When not in
2174 *	interrupt context and apply the current process NUMA policy.
2175 *	Returns NULL when no page can be allocated.
 
 
 
 
2176 */
2177struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2178{
2179	struct mempolicy *pol = &default_policy;
2180	struct page *page;
 
 
 
 
2181
2182	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2183		pol = get_task_policy(current);
2184
2185	/*
2186	 * No reference counting needed for current->mempolicy
2187	 * nor system default_policy
2188	 */
2189	if (pol->mode == MPOL_INTERLEAVE)
2190		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2191	else
2192		page = __alloc_pages_nodemask(gfp, order,
2193				policy_node(gfp, pol, numa_node_id()),
2194				policy_nodemask(gfp, pol));
2195
 
 
 
2196	return page;
2197}
2198EXPORT_SYMBOL(alloc_pages_current);
2199
2200int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2201{
2202	struct mempolicy *pol = mpol_dup(vma_policy(src));
2203
2204	if (IS_ERR(pol))
2205		return PTR_ERR(pol);
2206	dst->vm_policy = pol;
2207	return 0;
2208}
2209
2210/*
2211 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2212 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2213 * with the mems_allowed returned by cpuset_mems_allowed().  This
2214 * keeps mempolicies cpuset relative after its cpuset moves.  See
2215 * further kernel/cpuset.c update_nodemask().
2216 *
2217 * current's mempolicy may be rebinded by the other task(the task that changes
2218 * cpuset's mems), so we needn't do rebind work for current task.
2219 */
2220
2221/* Slow path of a mempolicy duplicate */
2222struct mempolicy *__mpol_dup(struct mempolicy *old)
2223{
2224	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2225
2226	if (!new)
2227		return ERR_PTR(-ENOMEM);
2228
2229	/* task's mempolicy is protected by alloc_lock */
2230	if (old == current->mempolicy) {
2231		task_lock(current);
2232		*new = *old;
2233		task_unlock(current);
2234	} else
2235		*new = *old;
2236
 
2237	if (current_cpuset_is_being_rebound()) {
2238		nodemask_t mems = cpuset_mems_allowed(current);
2239		mpol_rebind_policy(new, &mems);
 
 
 
2240	}
 
2241	atomic_set(&new->refcnt, 1);
2242	return new;
2243}
2244
2245/* Slow path of a mempolicy comparison */
2246bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2247{
2248	if (!a || !b)
2249		return false;
2250	if (a->mode != b->mode)
2251		return false;
2252	if (a->flags != b->flags)
2253		return false;
2254	if (mpol_store_user_nodemask(a))
2255		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2256			return false;
2257
2258	switch (a->mode) {
2259	case MPOL_BIND:
2260		/* Fall through */
2261	case MPOL_INTERLEAVE:
2262		return !!nodes_equal(a->v.nodes, b->v.nodes);
2263	case MPOL_PREFERRED:
2264		/* a's ->flags is the same as b's */
2265		if (a->flags & MPOL_F_LOCAL)
2266			return true;
2267		return a->v.preferred_node == b->v.preferred_node;
2268	default:
2269		BUG();
2270		return false;
2271	}
2272}
2273
2274/*
2275 * Shared memory backing store policy support.
2276 *
2277 * Remember policies even when nobody has shared memory mapped.
2278 * The policies are kept in Red-Black tree linked from the inode.
2279 * They are protected by the sp->lock rwlock, which should be held
2280 * for any accesses to the tree.
2281 */
2282
2283/*
2284 * lookup first element intersecting start-end.  Caller holds sp->lock for
2285 * reading or for writing
2286 */
2287static struct sp_node *
2288sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2289{
2290	struct rb_node *n = sp->root.rb_node;
2291
2292	while (n) {
2293		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2294
2295		if (start >= p->end)
2296			n = n->rb_right;
2297		else if (end <= p->start)
2298			n = n->rb_left;
2299		else
2300			break;
2301	}
2302	if (!n)
2303		return NULL;
2304	for (;;) {
2305		struct sp_node *w = NULL;
2306		struct rb_node *prev = rb_prev(n);
2307		if (!prev)
2308			break;
2309		w = rb_entry(prev, struct sp_node, nd);
2310		if (w->end <= start)
2311			break;
2312		n = prev;
2313	}
2314	return rb_entry(n, struct sp_node, nd);
2315}
2316
2317/*
2318 * Insert a new shared policy into the list.  Caller holds sp->lock for
2319 * writing.
2320 */
2321static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2322{
2323	struct rb_node **p = &sp->root.rb_node;
2324	struct rb_node *parent = NULL;
2325	struct sp_node *nd;
2326
2327	while (*p) {
2328		parent = *p;
2329		nd = rb_entry(parent, struct sp_node, nd);
2330		if (new->start < nd->start)
2331			p = &(*p)->rb_left;
2332		else if (new->end > nd->end)
2333			p = &(*p)->rb_right;
2334		else
2335			BUG();
2336	}
2337	rb_link_node(&new->nd, parent, p);
2338	rb_insert_color(&new->nd, &sp->root);
2339	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2340		 new->policy ? new->policy->mode : 0);
2341}
2342
2343/* Find shared policy intersecting idx */
2344struct mempolicy *
2345mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2346{
2347	struct mempolicy *pol = NULL;
2348	struct sp_node *sn;
2349
2350	if (!sp->root.rb_node)
2351		return NULL;
2352	read_lock(&sp->lock);
2353	sn = sp_lookup(sp, idx, idx+1);
2354	if (sn) {
2355		mpol_get(sn->policy);
2356		pol = sn->policy;
2357	}
2358	read_unlock(&sp->lock);
2359	return pol;
2360}
2361
2362static void sp_free(struct sp_node *n)
2363{
2364	mpol_put(n->policy);
2365	kmem_cache_free(sn_cache, n);
2366}
2367
2368/**
2369 * mpol_misplaced - check whether current page node is valid in policy
2370 *
2371 * @page: page to be checked
2372 * @vma: vm area where page mapped
2373 * @addr: virtual address where page mapped
2374 *
2375 * Lookup current policy node id for vma,addr and "compare to" page's
2376 * node id.
2377 *
2378 * Returns:
2379 *	-1	- not misplaced, page is in the right node
2380 *	node	- node id where the page should be
2381 *
2382 * Policy determination "mimics" alloc_page_vma().
2383 * Called from fault path where we know the vma and faulting address.
2384 */
2385int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2386{
2387	struct mempolicy *pol;
2388	struct zoneref *z;
2389	int curnid = page_to_nid(page);
2390	unsigned long pgoff;
2391	int thiscpu = raw_smp_processor_id();
2392	int thisnid = cpu_to_node(thiscpu);
2393	int polnid = NUMA_NO_NODE;
2394	int ret = -1;
2395
2396	pol = get_vma_policy(vma, addr);
 
 
2397	if (!(pol->flags & MPOL_F_MOF))
2398		goto out;
2399
2400	switch (pol->mode) {
2401	case MPOL_INTERLEAVE:
 
 
 
2402		pgoff = vma->vm_pgoff;
2403		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2404		polnid = offset_il_node(pol, pgoff);
2405		break;
2406
2407	case MPOL_PREFERRED:
2408		if (pol->flags & MPOL_F_LOCAL)
2409			polnid = numa_node_id();
2410		else
2411			polnid = pol->v.preferred_node;
2412		break;
2413
2414	case MPOL_BIND:
2415
2416		/*
2417		 * allows binding to multiple nodes.
2418		 * use current page if in policy nodemask,
2419		 * else select nearest allowed node, if any.
2420		 * If no allowed nodes, use current [!misplaced].
2421		 */
2422		if (node_isset(curnid, pol->v.nodes))
2423			goto out;
2424		z = first_zones_zonelist(
2425				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2426				gfp_zone(GFP_HIGHUSER),
2427				&pol->v.nodes);
2428		polnid = zone_to_nid(z->zone);
2429		break;
2430
2431	default:
2432		BUG();
2433	}
2434
2435	/* Migrate the page towards the node whose CPU is referencing it */
2436	if (pol->flags & MPOL_F_MORON) {
2437		polnid = thisnid;
2438
2439		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2440			goto out;
2441	}
2442
2443	if (curnid != polnid)
2444		ret = polnid;
2445out:
2446	mpol_cond_put(pol);
2447
2448	return ret;
2449}
2450
2451/*
2452 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2453 * dropped after task->mempolicy is set to NULL so that any allocation done as
2454 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2455 * policy.
2456 */
2457void mpol_put_task_policy(struct task_struct *task)
2458{
2459	struct mempolicy *pol;
2460
2461	task_lock(task);
2462	pol = task->mempolicy;
2463	task->mempolicy = NULL;
2464	task_unlock(task);
2465	mpol_put(pol);
2466}
2467
2468static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2469{
2470	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2471	rb_erase(&n->nd, &sp->root);
2472	sp_free(n);
2473}
2474
2475static void sp_node_init(struct sp_node *node, unsigned long start,
2476			unsigned long end, struct mempolicy *pol)
2477{
2478	node->start = start;
2479	node->end = end;
2480	node->policy = pol;
2481}
2482
2483static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2484				struct mempolicy *pol)
2485{
2486	struct sp_node *n;
2487	struct mempolicy *newpol;
2488
2489	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2490	if (!n)
2491		return NULL;
2492
2493	newpol = mpol_dup(pol);
2494	if (IS_ERR(newpol)) {
2495		kmem_cache_free(sn_cache, n);
2496		return NULL;
2497	}
2498	newpol->flags |= MPOL_F_SHARED;
2499	sp_node_init(n, start, end, newpol);
2500
2501	return n;
2502}
2503
2504/* Replace a policy range. */
2505static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2506				 unsigned long end, struct sp_node *new)
2507{
2508	struct sp_node *n;
2509	struct sp_node *n_new = NULL;
2510	struct mempolicy *mpol_new = NULL;
2511	int ret = 0;
2512
2513restart:
2514	write_lock(&sp->lock);
2515	n = sp_lookup(sp, start, end);
2516	/* Take care of old policies in the same range. */
2517	while (n && n->start < end) {
2518		struct rb_node *next = rb_next(&n->nd);
2519		if (n->start >= start) {
2520			if (n->end <= end)
2521				sp_delete(sp, n);
2522			else
2523				n->start = end;
2524		} else {
2525			/* Old policy spanning whole new range. */
2526			if (n->end > end) {
2527				if (!n_new)
2528					goto alloc_new;
2529
2530				*mpol_new = *n->policy;
2531				atomic_set(&mpol_new->refcnt, 1);
2532				sp_node_init(n_new, end, n->end, mpol_new);
2533				n->end = start;
2534				sp_insert(sp, n_new);
2535				n_new = NULL;
2536				mpol_new = NULL;
2537				break;
2538			} else
2539				n->end = start;
2540		}
2541		if (!next)
2542			break;
2543		n = rb_entry(next, struct sp_node, nd);
2544	}
2545	if (new)
2546		sp_insert(sp, new);
2547	write_unlock(&sp->lock);
2548	ret = 0;
2549
2550err_out:
2551	if (mpol_new)
2552		mpol_put(mpol_new);
2553	if (n_new)
2554		kmem_cache_free(sn_cache, n_new);
2555
2556	return ret;
2557
2558alloc_new:
2559	write_unlock(&sp->lock);
2560	ret = -ENOMEM;
2561	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2562	if (!n_new)
2563		goto err_out;
2564	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2565	if (!mpol_new)
2566		goto err_out;
2567	goto restart;
2568}
2569
2570/**
2571 * mpol_shared_policy_init - initialize shared policy for inode
2572 * @sp: pointer to inode shared policy
2573 * @mpol:  struct mempolicy to install
2574 *
2575 * Install non-NULL @mpol in inode's shared policy rb-tree.
2576 * On entry, the current task has a reference on a non-NULL @mpol.
2577 * This must be released on exit.
2578 * This is called at get_inode() calls and we can use GFP_KERNEL.
2579 */
2580void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2581{
2582	int ret;
2583
2584	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2585	rwlock_init(&sp->lock);
2586
2587	if (mpol) {
2588		struct vm_area_struct pvma;
2589		struct mempolicy *new;
2590		NODEMASK_SCRATCH(scratch);
2591
2592		if (!scratch)
2593			goto put_mpol;
2594		/* contextualize the tmpfs mount point mempolicy */
2595		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2596		if (IS_ERR(new))
2597			goto free_scratch; /* no valid nodemask intersection */
2598
2599		task_lock(current);
2600		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2601		task_unlock(current);
2602		if (ret)
2603			goto put_new;
2604
2605		/* Create pseudo-vma that contains just the policy */
2606		vma_init(&pvma, NULL);
2607		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2608		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2609
2610put_new:
2611		mpol_put(new);			/* drop initial ref */
2612free_scratch:
2613		NODEMASK_SCRATCH_FREE(scratch);
2614put_mpol:
2615		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2616	}
2617}
2618
2619int mpol_set_shared_policy(struct shared_policy *info,
2620			struct vm_area_struct *vma, struct mempolicy *npol)
2621{
2622	int err;
2623	struct sp_node *new = NULL;
2624	unsigned long sz = vma_pages(vma);
2625
2626	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2627		 vma->vm_pgoff,
2628		 sz, npol ? npol->mode : -1,
2629		 npol ? npol->flags : -1,
2630		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2631
2632	if (npol) {
2633		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2634		if (!new)
2635			return -ENOMEM;
2636	}
2637	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2638	if (err && new)
2639		sp_free(new);
2640	return err;
2641}
2642
2643/* Free a backing policy store on inode delete. */
2644void mpol_free_shared_policy(struct shared_policy *p)
2645{
2646	struct sp_node *n;
2647	struct rb_node *next;
2648
2649	if (!p->root.rb_node)
2650		return;
2651	write_lock(&p->lock);
2652	next = rb_first(&p->root);
2653	while (next) {
2654		n = rb_entry(next, struct sp_node, nd);
2655		next = rb_next(&n->nd);
2656		sp_delete(p, n);
2657	}
2658	write_unlock(&p->lock);
2659}
2660
2661#ifdef CONFIG_NUMA_BALANCING
2662static int __initdata numabalancing_override;
2663
2664static void __init check_numabalancing_enable(void)
2665{
2666	bool numabalancing_default = false;
2667
2668	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2669		numabalancing_default = true;
2670
2671	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2672	if (numabalancing_override)
2673		set_numabalancing_state(numabalancing_override == 1);
2674
2675	if (num_online_nodes() > 1 && !numabalancing_override) {
2676		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
 
 
2677			numabalancing_default ? "Enabling" : "Disabling");
2678		set_numabalancing_state(numabalancing_default);
2679	}
2680}
2681
2682static int __init setup_numabalancing(char *str)
2683{
2684	int ret = 0;
2685	if (!str)
2686		goto out;
2687
2688	if (!strcmp(str, "enable")) {
2689		numabalancing_override = 1;
2690		ret = 1;
2691	} else if (!strcmp(str, "disable")) {
2692		numabalancing_override = -1;
2693		ret = 1;
2694	}
2695out:
2696	if (!ret)
2697		pr_warn("Unable to parse numa_balancing=\n");
2698
2699	return ret;
2700}
2701__setup("numa_balancing=", setup_numabalancing);
2702#else
2703static inline void __init check_numabalancing_enable(void)
2704{
2705}
2706#endif /* CONFIG_NUMA_BALANCING */
2707
2708/* assumes fs == KERNEL_DS */
2709void __init numa_policy_init(void)
2710{
2711	nodemask_t interleave_nodes;
2712	unsigned long largest = 0;
2713	int nid, prefer = 0;
2714
2715	policy_cache = kmem_cache_create("numa_policy",
2716					 sizeof(struct mempolicy),
2717					 0, SLAB_PANIC, NULL);
2718
2719	sn_cache = kmem_cache_create("shared_policy_node",
2720				     sizeof(struct sp_node),
2721				     0, SLAB_PANIC, NULL);
2722
2723	for_each_node(nid) {
2724		preferred_node_policy[nid] = (struct mempolicy) {
2725			.refcnt = ATOMIC_INIT(1),
2726			.mode = MPOL_PREFERRED,
2727			.flags = MPOL_F_MOF | MPOL_F_MORON,
2728			.v = { .preferred_node = nid, },
2729		};
2730	}
2731
2732	/*
2733	 * Set interleaving policy for system init. Interleaving is only
2734	 * enabled across suitably sized nodes (default is >= 16MB), or
2735	 * fall back to the largest node if they're all smaller.
2736	 */
2737	nodes_clear(interleave_nodes);
2738	for_each_node_state(nid, N_MEMORY) {
2739		unsigned long total_pages = node_present_pages(nid);
2740
2741		/* Preserve the largest node */
2742		if (largest < total_pages) {
2743			largest = total_pages;
2744			prefer = nid;
2745		}
2746
2747		/* Interleave this node? */
2748		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2749			node_set(nid, interleave_nodes);
2750	}
2751
2752	/* All too small, use the largest */
2753	if (unlikely(nodes_empty(interleave_nodes)))
2754		node_set(prefer, interleave_nodes);
2755
2756	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2757		pr_err("%s: interleaving failed\n", __func__);
2758
2759	check_numabalancing_enable();
2760}
2761
2762/* Reset policy of current process to default */
2763void numa_default_policy(void)
2764{
2765	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2766}
2767
2768/*
2769 * Parse and format mempolicy from/to strings
2770 */
2771
2772/*
2773 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2774 */
2775static const char * const policy_modes[] =
2776{
2777	[MPOL_DEFAULT]    = "default",
2778	[MPOL_PREFERRED]  = "prefer",
2779	[MPOL_BIND]       = "bind",
2780	[MPOL_INTERLEAVE] = "interleave",
2781	[MPOL_LOCAL]      = "local",
2782};
2783
2784
2785#ifdef CONFIG_TMPFS
2786/**
2787 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2788 * @str:  string containing mempolicy to parse
2789 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2790 *
2791 * Format of input:
2792 *	<mode>[=<flags>][:<nodelist>]
2793 *
2794 * On success, returns 0, else 1
2795 */
2796int mpol_parse_str(char *str, struct mempolicy **mpol)
2797{
2798	struct mempolicy *new = NULL;
 
2799	unsigned short mode_flags;
2800	nodemask_t nodes;
2801	char *nodelist = strchr(str, ':');
2802	char *flags = strchr(str, '=');
2803	int err = 1, mode;
2804
2805	if (nodelist) {
2806		/* NUL-terminate mode or flags string */
2807		*nodelist++ = '\0';
2808		if (nodelist_parse(nodelist, nodes))
2809			goto out;
2810		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2811			goto out;
2812	} else
2813		nodes_clear(nodes);
2814
2815	if (flags)
2816		*flags++ = '\0';	/* terminate mode string */
2817
2818	mode = match_string(policy_modes, MPOL_MAX, str);
2819	if (mode < 0)
 
 
 
 
2820		goto out;
2821
2822	switch (mode) {
2823	case MPOL_PREFERRED:
2824		/*
2825		 * Insist on a nodelist of one node only
2826		 */
2827		if (nodelist) {
2828			char *rest = nodelist;
2829			while (isdigit(*rest))
2830				rest++;
2831			if (*rest)
2832				goto out;
2833		}
2834		break;
2835	case MPOL_INTERLEAVE:
2836		/*
2837		 * Default to online nodes with memory if no nodelist
2838		 */
2839		if (!nodelist)
2840			nodes = node_states[N_MEMORY];
2841		break;
2842	case MPOL_LOCAL:
2843		/*
2844		 * Don't allow a nodelist;  mpol_new() checks flags
2845		 */
2846		if (nodelist)
2847			goto out;
2848		mode = MPOL_PREFERRED;
2849		break;
2850	case MPOL_DEFAULT:
2851		/*
2852		 * Insist on a empty nodelist
2853		 */
2854		if (!nodelist)
2855			err = 0;
2856		goto out;
2857	case MPOL_BIND:
2858		/*
2859		 * Insist on a nodelist
2860		 */
2861		if (!nodelist)
2862			goto out;
2863	}
2864
2865	mode_flags = 0;
2866	if (flags) {
2867		/*
2868		 * Currently, we only support two mutually exclusive
2869		 * mode flags.
2870		 */
2871		if (!strcmp(flags, "static"))
2872			mode_flags |= MPOL_F_STATIC_NODES;
2873		else if (!strcmp(flags, "relative"))
2874			mode_flags |= MPOL_F_RELATIVE_NODES;
2875		else
2876			goto out;
2877	}
2878
2879	new = mpol_new(mode, mode_flags, &nodes);
2880	if (IS_ERR(new))
2881		goto out;
2882
2883	/*
2884	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2885	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2886	 */
2887	if (mode != MPOL_PREFERRED)
2888		new->v.nodes = nodes;
2889	else if (nodelist)
2890		new->v.preferred_node = first_node(nodes);
2891	else
2892		new->flags |= MPOL_F_LOCAL;
2893
2894	/*
2895	 * Save nodes for contextualization: this will be used to "clone"
2896	 * the mempolicy in a specific context [cpuset] at a later time.
2897	 */
2898	new->w.user_nodemask = nodes;
2899
2900	err = 0;
2901
2902out:
2903	/* Restore string for error message */
2904	if (nodelist)
2905		*--nodelist = ':';
2906	if (flags)
2907		*--flags = '=';
2908	if (!err)
2909		*mpol = new;
2910	return err;
2911}
2912#endif /* CONFIG_TMPFS */
2913
2914/**
2915 * mpol_to_str - format a mempolicy structure for printing
2916 * @buffer:  to contain formatted mempolicy string
2917 * @maxlen:  length of @buffer
2918 * @pol:  pointer to mempolicy to be formatted
2919 *
2920 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2921 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2922 * longest flag, "relative", and to display at least a few node ids.
2923 */
2924void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2925{
2926	char *p = buffer;
2927	nodemask_t nodes = NODE_MASK_NONE;
2928	unsigned short mode = MPOL_DEFAULT;
2929	unsigned short flags = 0;
2930
2931	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2932		mode = pol->mode;
2933		flags = pol->flags;
2934	}
2935
2936	switch (mode) {
2937	case MPOL_DEFAULT:
2938		break;
2939	case MPOL_PREFERRED:
2940		if (flags & MPOL_F_LOCAL)
2941			mode = MPOL_LOCAL;
2942		else
2943			node_set(pol->v.preferred_node, nodes);
2944		break;
2945	case MPOL_BIND:
2946	case MPOL_INTERLEAVE:
2947		nodes = pol->v.nodes;
2948		break;
2949	default:
2950		WARN_ON_ONCE(1);
2951		snprintf(p, maxlen, "unknown");
2952		return;
2953	}
2954
2955	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2956
2957	if (flags & MPOL_MODE_FLAGS) {
2958		p += snprintf(p, buffer + maxlen - p, "=");
2959
2960		/*
2961		 * Currently, the only defined flags are mutually exclusive
2962		 */
2963		if (flags & MPOL_F_STATIC_NODES)
2964			p += snprintf(p, buffer + maxlen - p, "static");
2965		else if (flags & MPOL_F_RELATIVE_NODES)
2966			p += snprintf(p, buffer + maxlen - p, "relative");
2967	}
2968
2969	if (!nodes_empty(nodes))
2970		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2971			       nodemask_pr_args(&nodes));
 
2972}
v3.15
 
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
 
 
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
 
 
 
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/export.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
 
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
  93#include <linux/mmu_notifier.h>
 
 
  94
  95#include <asm/tlbflush.h>
  96#include <asm/uaccess.h>
  97#include <linux/random.h>
  98
  99#include "internal.h"
 100
 101/* Internal flags */
 102#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 103#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 104
 105static struct kmem_cache *policy_cache;
 106static struct kmem_cache *sn_cache;
 107
 108/* Highest zone. An specific allocation for a zone below that is not
 109   policied. */
 110enum zone_type policy_zone = 0;
 111
 112/*
 113 * run-time system-wide default policy => local allocation
 114 */
 115static struct mempolicy default_policy = {
 116	.refcnt = ATOMIC_INIT(1), /* never free it */
 117	.mode = MPOL_PREFERRED,
 118	.flags = MPOL_F_LOCAL,
 119};
 120
 121static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 122
 123static struct mempolicy *get_task_policy(struct task_struct *p)
 124{
 125	struct mempolicy *pol = p->mempolicy;
 
 126
 127	if (!pol) {
 128		int node = numa_node_id();
 129
 130		if (node != NUMA_NO_NODE) {
 131			pol = &preferred_node_policy[node];
 132			/*
 133			 * preferred_node_policy is not initialised early in
 134			 * boot
 135			 */
 136			if (!pol->mode)
 137				pol = NULL;
 138		}
 139	}
 140
 141	return pol;
 142}
 143
 144static const struct mempolicy_operations {
 145	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 146	/*
 147	 * If read-side task has no lock to protect task->mempolicy, write-side
 148	 * task will rebind the task->mempolicy by two step. The first step is
 149	 * setting all the newly nodes, and the second step is cleaning all the
 150	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 151	 * page.
 152	 * If we have a lock to protect task->mempolicy in read-side, we do
 153	 * rebind directly.
 154	 *
 155	 * step:
 156	 * 	MPOL_REBIND_ONCE - do rebind work at once
 157	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 158	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 159	 */
 160	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 161			enum mpol_rebind_step step);
 162} mpol_ops[MPOL_MAX];
 163
 164/* Check that the nodemask contains at least one populated zone */
 165static int is_valid_nodemask(const nodemask_t *nodemask)
 166{
 167	return nodes_intersects(*nodemask, node_states[N_MEMORY]);
 168}
 169
 170static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 171{
 172	return pol->flags & MPOL_MODE_FLAGS;
 173}
 174
 175static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 176				   const nodemask_t *rel)
 177{
 178	nodemask_t tmp;
 179	nodes_fold(tmp, *orig, nodes_weight(*rel));
 180	nodes_onto(*ret, tmp, *rel);
 181}
 182
 183static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 184{
 185	if (nodes_empty(*nodes))
 186		return -EINVAL;
 187	pol->v.nodes = *nodes;
 188	return 0;
 189}
 190
 191static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 192{
 193	if (!nodes)
 194		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 195	else if (nodes_empty(*nodes))
 196		return -EINVAL;			/*  no allowed nodes */
 197	else
 198		pol->v.preferred_node = first_node(*nodes);
 199	return 0;
 200}
 201
 202static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 203{
 204	if (!is_valid_nodemask(nodes))
 205		return -EINVAL;
 206	pol->v.nodes = *nodes;
 207	return 0;
 208}
 209
 210/*
 211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 212 * any, for the new policy.  mpol_new() has already validated the nodes
 213 * parameter with respect to the policy mode and flags.  But, we need to
 214 * handle an empty nodemask with MPOL_PREFERRED here.
 215 *
 216 * Must be called holding task's alloc_lock to protect task's mems_allowed
 217 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 218 */
 219static int mpol_set_nodemask(struct mempolicy *pol,
 220		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 221{
 222	int ret;
 223
 224	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 225	if (pol == NULL)
 226		return 0;
 227	/* Check N_MEMORY */
 228	nodes_and(nsc->mask1,
 229		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 230
 231	VM_BUG_ON(!nodes);
 232	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 233		nodes = NULL;	/* explicit local allocation */
 234	else {
 235		if (pol->flags & MPOL_F_RELATIVE_NODES)
 236			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 237		else
 238			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 239
 240		if (mpol_store_user_nodemask(pol))
 241			pol->w.user_nodemask = *nodes;
 242		else
 243			pol->w.cpuset_mems_allowed =
 244						cpuset_current_mems_allowed;
 245	}
 246
 247	if (nodes)
 248		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 249	else
 250		ret = mpol_ops[pol->mode].create(pol, NULL);
 251	return ret;
 252}
 253
 254/*
 255 * This function just creates a new policy, does some check and simple
 256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 257 */
 258static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 259				  nodemask_t *nodes)
 260{
 261	struct mempolicy *policy;
 262
 263	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 264		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 265
 266	if (mode == MPOL_DEFAULT) {
 267		if (nodes && !nodes_empty(*nodes))
 268			return ERR_PTR(-EINVAL);
 269		return NULL;
 270	}
 271	VM_BUG_ON(!nodes);
 272
 273	/*
 274	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 275	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 276	 * All other modes require a valid pointer to a non-empty nodemask.
 277	 */
 278	if (mode == MPOL_PREFERRED) {
 279		if (nodes_empty(*nodes)) {
 280			if (((flags & MPOL_F_STATIC_NODES) ||
 281			     (flags & MPOL_F_RELATIVE_NODES)))
 282				return ERR_PTR(-EINVAL);
 283		}
 284	} else if (mode == MPOL_LOCAL) {
 285		if (!nodes_empty(*nodes))
 
 
 286			return ERR_PTR(-EINVAL);
 287		mode = MPOL_PREFERRED;
 288	} else if (nodes_empty(*nodes))
 289		return ERR_PTR(-EINVAL);
 290	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 291	if (!policy)
 292		return ERR_PTR(-ENOMEM);
 293	atomic_set(&policy->refcnt, 1);
 294	policy->mode = mode;
 295	policy->flags = flags;
 296
 297	return policy;
 298}
 299
 300/* Slow path of a mpol destructor. */
 301void __mpol_put(struct mempolicy *p)
 302{
 303	if (!atomic_dec_and_test(&p->refcnt))
 304		return;
 305	kmem_cache_free(policy_cache, p);
 306}
 307
 308static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 309				enum mpol_rebind_step step)
 310{
 311}
 312
 313/*
 314 * step:
 315 * 	MPOL_REBIND_ONCE  - do rebind work at once
 316 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 317 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 318 */
 319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 320				 enum mpol_rebind_step step)
 321{
 322	nodemask_t tmp;
 323
 324	if (pol->flags & MPOL_F_STATIC_NODES)
 325		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 326	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 327		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 328	else {
 329		/*
 330		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 331		 * result
 332		 */
 333		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 334			nodes_remap(tmp, pol->v.nodes,
 335					pol->w.cpuset_mems_allowed, *nodes);
 336			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 337		} else if (step == MPOL_REBIND_STEP2) {
 338			tmp = pol->w.cpuset_mems_allowed;
 339			pol->w.cpuset_mems_allowed = *nodes;
 340		} else
 341			BUG();
 342	}
 343
 344	if (nodes_empty(tmp))
 345		tmp = *nodes;
 346
 347	if (step == MPOL_REBIND_STEP1)
 348		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 349	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 350		pol->v.nodes = tmp;
 351	else
 352		BUG();
 353
 354	if (!node_isset(current->il_next, tmp)) {
 355		current->il_next = next_node(current->il_next, tmp);
 356		if (current->il_next >= MAX_NUMNODES)
 357			current->il_next = first_node(tmp);
 358		if (current->il_next >= MAX_NUMNODES)
 359			current->il_next = numa_node_id();
 360	}
 361}
 362
 363static void mpol_rebind_preferred(struct mempolicy *pol,
 364				  const nodemask_t *nodes,
 365				  enum mpol_rebind_step step)
 366{
 367	nodemask_t tmp;
 368
 369	if (pol->flags & MPOL_F_STATIC_NODES) {
 370		int node = first_node(pol->w.user_nodemask);
 371
 372		if (node_isset(node, *nodes)) {
 373			pol->v.preferred_node = node;
 374			pol->flags &= ~MPOL_F_LOCAL;
 375		} else
 376			pol->flags |= MPOL_F_LOCAL;
 377	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 378		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 379		pol->v.preferred_node = first_node(tmp);
 380	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 381		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 382						   pol->w.cpuset_mems_allowed,
 383						   *nodes);
 384		pol->w.cpuset_mems_allowed = *nodes;
 385	}
 386}
 387
 388/*
 389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 390 *
 391 * If read-side task has no lock to protect task->mempolicy, write-side
 392 * task will rebind the task->mempolicy by two step. The first step is
 393 * setting all the newly nodes, and the second step is cleaning all the
 394 * disallowed nodes. In this way, we can avoid finding no node to alloc
 395 * page.
 396 * If we have a lock to protect task->mempolicy in read-side, we do
 397 * rebind directly.
 398 *
 399 * step:
 400 * 	MPOL_REBIND_ONCE  - do rebind work at once
 401 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 402 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 403 */
 404static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 405				enum mpol_rebind_step step)
 406{
 407	if (!pol)
 408		return;
 409	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 410	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 411		return;
 412
 413	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 414		return;
 415
 416	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 417		BUG();
 418
 419	if (step == MPOL_REBIND_STEP1)
 420		pol->flags |= MPOL_F_REBINDING;
 421	else if (step == MPOL_REBIND_STEP2)
 422		pol->flags &= ~MPOL_F_REBINDING;
 423	else if (step >= MPOL_REBIND_NSTEP)
 424		BUG();
 425
 426	mpol_ops[pol->mode].rebind(pol, newmask, step);
 427}
 428
 429/*
 430 * Wrapper for mpol_rebind_policy() that just requires task
 431 * pointer, and updates task mempolicy.
 432 *
 433 * Called with task's alloc_lock held.
 434 */
 435
 436void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 437			enum mpol_rebind_step step)
 438{
 439	mpol_rebind_policy(tsk->mempolicy, new, step);
 440}
 441
 442/*
 443 * Rebind each vma in mm to new nodemask.
 444 *
 445 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 446 */
 447
 448void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 449{
 450	struct vm_area_struct *vma;
 451
 452	down_write(&mm->mmap_sem);
 453	for (vma = mm->mmap; vma; vma = vma->vm_next)
 454		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 455	up_write(&mm->mmap_sem);
 456}
 457
 458static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 459	[MPOL_DEFAULT] = {
 460		.rebind = mpol_rebind_default,
 461	},
 462	[MPOL_INTERLEAVE] = {
 463		.create = mpol_new_interleave,
 464		.rebind = mpol_rebind_nodemask,
 465	},
 466	[MPOL_PREFERRED] = {
 467		.create = mpol_new_preferred,
 468		.rebind = mpol_rebind_preferred,
 469	},
 470	[MPOL_BIND] = {
 471		.create = mpol_new_bind,
 472		.rebind = mpol_rebind_nodemask,
 473	},
 474};
 475
 476static void migrate_page_add(struct page *page, struct list_head *pagelist,
 477				unsigned long flags);
 478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 
 
 
 
 
 
 
 482 */
 483static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 484		unsigned long addr, unsigned long end,
 485		const nodemask_t *nodes, unsigned long flags,
 486		void *private)
 487{
 488	pte_t *orig_pte;
 
 
 
 
 
 489	pte_t *pte;
 490	spinlock_t *ptl;
 491
 492	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 493	do {
 494		struct page *page;
 495		int nid;
 
 
 
 
 
 
 496
 
 
 497		if (!pte_present(*pte))
 498			continue;
 499		page = vm_normal_page(vma, addr, *pte);
 500		if (!page)
 501			continue;
 502		/*
 503		 * vm_normal_page() filters out zero pages, but there might
 504		 * still be PageReserved pages to skip, perhaps in a VDSO.
 505		 */
 506		if (PageReserved(page))
 507			continue;
 508		nid = page_to_nid(page);
 509		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 510			continue;
 
 
 
 
 
 
 511
 512		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 513			migrate_page_add(page, private, flags);
 514		else
 
 
 
 
 
 515			break;
 516	} while (pte++, addr += PAGE_SIZE, addr != end);
 517	pte_unmap_unlock(orig_pte, ptl);
 518	return addr != end;
 
 
 
 
 
 519}
 520
 521static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
 522		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
 523				    void *private)
 524{
 525#ifdef CONFIG_HUGETLB_PAGE
 526	int nid;
 
 527	struct page *page;
 528	spinlock_t *ptl;
 529	pte_t entry;
 530
 531	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
 532	entry = huge_ptep_get((pte_t *)pmd);
 533	if (!pte_present(entry))
 534		goto unlock;
 535	page = pte_page(entry);
 536	nid = page_to_nid(page);
 537	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 538		goto unlock;
 539	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 540	if (flags & (MPOL_MF_MOVE_ALL) ||
 541	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 542		isolate_huge_page(page, private);
 543unlock:
 544	spin_unlock(ptl);
 545#else
 546	BUG();
 547#endif
 548}
 549
 550static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 551		unsigned long addr, unsigned long end,
 552		const nodemask_t *nodes, unsigned long flags,
 553		void *private)
 554{
 555	pmd_t *pmd;
 556	unsigned long next;
 557
 558	pmd = pmd_offset(pud, addr);
 559	do {
 560		next = pmd_addr_end(addr, end);
 561		if (!pmd_present(*pmd))
 562			continue;
 563		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
 564			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
 565						flags, private);
 566			continue;
 567		}
 568		split_huge_page_pmd(vma, addr, pmd);
 569		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 570			continue;
 571		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
 572				    flags, private))
 573			return -EIO;
 574	} while (pmd++, addr = next, addr != end);
 575	return 0;
 576}
 577
 578static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 579		unsigned long addr, unsigned long end,
 580		const nodemask_t *nodes, unsigned long flags,
 581		void *private)
 582{
 583	pud_t *pud;
 584	unsigned long next;
 585
 586	pud = pud_offset(pgd, addr);
 587	do {
 588		next = pud_addr_end(addr, end);
 589		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
 590			continue;
 591		if (pud_none_or_clear_bad(pud))
 592			continue;
 593		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
 594				    flags, private))
 595			return -EIO;
 596	} while (pud++, addr = next, addr != end);
 597	return 0;
 598}
 599
 600static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
 601		unsigned long addr, unsigned long end,
 602		const nodemask_t *nodes, unsigned long flags,
 603		void *private)
 604{
 605	pgd_t *pgd;
 606	unsigned long next;
 607
 608	pgd = pgd_offset(vma->vm_mm, addr);
 609	do {
 610		next = pgd_addr_end(addr, end);
 611		if (pgd_none_or_clear_bad(pgd))
 612			continue;
 613		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
 614				    flags, private))
 615			return -EIO;
 616	} while (pgd++, addr = next, addr != end);
 617	return 0;
 618}
 619
 620#ifdef CONFIG_NUMA_BALANCING
 621/*
 622 * This is used to mark a range of virtual addresses to be inaccessible.
 623 * These are later cleared by a NUMA hinting fault. Depending on these
 624 * faults, pages may be migrated for better NUMA placement.
 625 *
 626 * This is assuming that NUMA faults are handled using PROT_NONE. If
 627 * an architecture makes a different choice, it will need further
 628 * changes to the core.
 629 */
 630unsigned long change_prot_numa(struct vm_area_struct *vma,
 631			unsigned long addr, unsigned long end)
 632{
 633	int nr_updated;
 634
 635	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
 636	if (nr_updated)
 637		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 638
 639	return nr_updated;
 640}
 641#else
 642static unsigned long change_prot_numa(struct vm_area_struct *vma,
 643			unsigned long addr, unsigned long end)
 644{
 645	return 0;
 646}
 647#endif /* CONFIG_NUMA_BALANCING */
 648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649/*
 650 * Walk through page tables and collect pages to be migrated.
 651 *
 652 * If pages found in a given range are on a set of nodes (determined by
 653 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 654 * passed via @private.)
 
 
 
 
 
 
 
 
 655 */
 656static struct vm_area_struct *
 657queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 658		const nodemask_t *nodes, unsigned long flags, void *private)
 
 659{
 660	int err;
 661	struct vm_area_struct *first, *vma, *prev;
 662
 663
 664	first = find_vma(mm, start);
 665	if (!first)
 666		return ERR_PTR(-EFAULT);
 667	prev = NULL;
 668	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 669		unsigned long endvma = vma->vm_end;
 670
 671		if (endvma > end)
 672			endvma = end;
 673		if (vma->vm_start > start)
 674			start = vma->vm_start;
 675
 676		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 677			if (!vma->vm_next && vma->vm_end < end)
 678				return ERR_PTR(-EFAULT);
 679			if (prev && prev->vm_end < vma->vm_start)
 680				return ERR_PTR(-EFAULT);
 681		}
 682
 683		if (flags & MPOL_MF_LAZY) {
 684			change_prot_numa(vma, start, endvma);
 685			goto next;
 686		}
 687
 688		if ((flags & MPOL_MF_STRICT) ||
 689		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 690		      vma_migratable(vma))) {
 691
 692			err = queue_pages_pgd_range(vma, start, endvma, nodes,
 693						flags, private);
 694			if (err) {
 695				first = ERR_PTR(err);
 696				break;
 697			}
 698		}
 699next:
 700		prev = vma;
 701	}
 702	return first;
 703}
 704
 705/*
 706 * Apply policy to a single VMA
 707 * This must be called with the mmap_sem held for writing.
 708 */
 709static int vma_replace_policy(struct vm_area_struct *vma,
 710						struct mempolicy *pol)
 711{
 712	int err;
 713	struct mempolicy *old;
 714	struct mempolicy *new;
 715
 716	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 717		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 718		 vma->vm_ops, vma->vm_file,
 719		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 720
 721	new = mpol_dup(pol);
 722	if (IS_ERR(new))
 723		return PTR_ERR(new);
 724
 725	if (vma->vm_ops && vma->vm_ops->set_policy) {
 726		err = vma->vm_ops->set_policy(vma, new);
 727		if (err)
 728			goto err_out;
 729	}
 730
 731	old = vma->vm_policy;
 732	vma->vm_policy = new; /* protected by mmap_sem */
 733	mpol_put(old);
 734
 735	return 0;
 736 err_out:
 737	mpol_put(new);
 738	return err;
 739}
 740
 741/* Step 2: apply policy to a range and do splits. */
 742static int mbind_range(struct mm_struct *mm, unsigned long start,
 743		       unsigned long end, struct mempolicy *new_pol)
 744{
 745	struct vm_area_struct *next;
 746	struct vm_area_struct *prev;
 747	struct vm_area_struct *vma;
 748	int err = 0;
 749	pgoff_t pgoff;
 750	unsigned long vmstart;
 751	unsigned long vmend;
 752
 753	vma = find_vma(mm, start);
 754	if (!vma || vma->vm_start > start)
 755		return -EFAULT;
 756
 757	prev = vma->vm_prev;
 758	if (start > vma->vm_start)
 759		prev = vma;
 760
 761	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 762		next = vma->vm_next;
 763		vmstart = max(start, vma->vm_start);
 764		vmend   = min(end, vma->vm_end);
 765
 766		if (mpol_equal(vma_policy(vma), new_pol))
 767			continue;
 768
 769		pgoff = vma->vm_pgoff +
 770			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 771		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 772				  vma->anon_vma, vma->vm_file, pgoff,
 773				  new_pol);
 774		if (prev) {
 775			vma = prev;
 776			next = vma->vm_next;
 777			if (mpol_equal(vma_policy(vma), new_pol))
 778				continue;
 779			/* vma_merge() joined vma && vma->next, case 8 */
 780			goto replace;
 781		}
 782		if (vma->vm_start != vmstart) {
 783			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 784			if (err)
 785				goto out;
 786		}
 787		if (vma->vm_end != vmend) {
 788			err = split_vma(vma->vm_mm, vma, vmend, 0);
 789			if (err)
 790				goto out;
 791		}
 792 replace:
 793		err = vma_replace_policy(vma, new_pol);
 794		if (err)
 795			goto out;
 796	}
 797
 798 out:
 799	return err;
 800}
 801
 802/* Set the process memory policy */
 803static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 804			     nodemask_t *nodes)
 805{
 806	struct mempolicy *new, *old;
 807	struct mm_struct *mm = current->mm;
 808	NODEMASK_SCRATCH(scratch);
 809	int ret;
 810
 811	if (!scratch)
 812		return -ENOMEM;
 813
 814	new = mpol_new(mode, flags, nodes);
 815	if (IS_ERR(new)) {
 816		ret = PTR_ERR(new);
 817		goto out;
 818	}
 819	/*
 820	 * prevent changing our mempolicy while show_numa_maps()
 821	 * is using it.
 822	 * Note:  do_set_mempolicy() can be called at init time
 823	 * with no 'mm'.
 824	 */
 825	if (mm)
 826		down_write(&mm->mmap_sem);
 827	task_lock(current);
 828	ret = mpol_set_nodemask(new, nodes, scratch);
 829	if (ret) {
 830		task_unlock(current);
 831		if (mm)
 832			up_write(&mm->mmap_sem);
 833		mpol_put(new);
 834		goto out;
 835	}
 836	old = current->mempolicy;
 837	current->mempolicy = new;
 838	if (new && new->mode == MPOL_INTERLEAVE &&
 839	    nodes_weight(new->v.nodes))
 840		current->il_next = first_node(new->v.nodes);
 841	task_unlock(current);
 842	if (mm)
 843		up_write(&mm->mmap_sem);
 844
 845	mpol_put(old);
 846	ret = 0;
 847out:
 848	NODEMASK_SCRATCH_FREE(scratch);
 849	return ret;
 850}
 851
 852/*
 853 * Return nodemask for policy for get_mempolicy() query
 854 *
 855 * Called with task's alloc_lock held
 856 */
 857static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 858{
 859	nodes_clear(*nodes);
 860	if (p == &default_policy)
 861		return;
 862
 863	switch (p->mode) {
 864	case MPOL_BIND:
 865		/* Fall through */
 866	case MPOL_INTERLEAVE:
 867		*nodes = p->v.nodes;
 868		break;
 869	case MPOL_PREFERRED:
 870		if (!(p->flags & MPOL_F_LOCAL))
 871			node_set(p->v.preferred_node, *nodes);
 872		/* else return empty node mask for local allocation */
 873		break;
 874	default:
 875		BUG();
 876	}
 877}
 878
 879static int lookup_node(struct mm_struct *mm, unsigned long addr)
 880{
 881	struct page *p;
 882	int err;
 883
 884	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 
 885	if (err >= 0) {
 886		err = page_to_nid(p);
 887		put_page(p);
 888	}
 
 
 889	return err;
 890}
 891
 892/* Retrieve NUMA policy */
 893static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 894			     unsigned long addr, unsigned long flags)
 895{
 896	int err;
 897	struct mm_struct *mm = current->mm;
 898	struct vm_area_struct *vma = NULL;
 899	struct mempolicy *pol = current->mempolicy;
 900
 901	if (flags &
 902		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 903		return -EINVAL;
 904
 905	if (flags & MPOL_F_MEMS_ALLOWED) {
 906		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 907			return -EINVAL;
 908		*policy = 0;	/* just so it's initialized */
 909		task_lock(current);
 910		*nmask  = cpuset_current_mems_allowed;
 911		task_unlock(current);
 912		return 0;
 913	}
 914
 915	if (flags & MPOL_F_ADDR) {
 916		/*
 917		 * Do NOT fall back to task policy if the
 918		 * vma/shared policy at addr is NULL.  We
 919		 * want to return MPOL_DEFAULT in this case.
 920		 */
 921		down_read(&mm->mmap_sem);
 922		vma = find_vma_intersection(mm, addr, addr+1);
 923		if (!vma) {
 924			up_read(&mm->mmap_sem);
 925			return -EFAULT;
 926		}
 927		if (vma->vm_ops && vma->vm_ops->get_policy)
 928			pol = vma->vm_ops->get_policy(vma, addr);
 929		else
 930			pol = vma->vm_policy;
 931	} else if (addr)
 932		return -EINVAL;
 933
 934	if (!pol)
 935		pol = &default_policy;	/* indicates default behavior */
 936
 937	if (flags & MPOL_F_NODE) {
 938		if (flags & MPOL_F_ADDR) {
 
 
 
 
 
 
 
 
 
 939			err = lookup_node(mm, addr);
 940			if (err < 0)
 941				goto out;
 942			*policy = err;
 943		} else if (pol == current->mempolicy &&
 944				pol->mode == MPOL_INTERLEAVE) {
 945			*policy = current->il_next;
 946		} else {
 947			err = -EINVAL;
 948			goto out;
 949		}
 950	} else {
 951		*policy = pol == &default_policy ? MPOL_DEFAULT :
 952						pol->mode;
 953		/*
 954		 * Internal mempolicy flags must be masked off before exposing
 955		 * the policy to userspace.
 956		 */
 957		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 958	}
 959
 960	if (vma) {
 961		up_read(&current->mm->mmap_sem);
 962		vma = NULL;
 963	}
 964
 965	err = 0;
 966	if (nmask) {
 967		if (mpol_store_user_nodemask(pol)) {
 968			*nmask = pol->w.user_nodemask;
 969		} else {
 970			task_lock(current);
 971			get_policy_nodemask(pol, nmask);
 972			task_unlock(current);
 973		}
 974	}
 975
 976 out:
 977	mpol_cond_put(pol);
 978	if (vma)
 979		up_read(&current->mm->mmap_sem);
 
 
 980	return err;
 981}
 982
 983#ifdef CONFIG_MIGRATION
 984/*
 985 * page migration
 986 */
 987static void migrate_page_add(struct page *page, struct list_head *pagelist,
 988				unsigned long flags)
 989{
 
 990	/*
 991	 * Avoid migrating a page that is shared with others.
 992	 */
 993	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 994		if (!isolate_lru_page(page)) {
 995			list_add_tail(&page->lru, pagelist);
 996			inc_zone_page_state(page, NR_ISOLATED_ANON +
 997					    page_is_file_cache(page));
 
 
 
 
 
 
 
 
 
 
 998		}
 999	}
 
 
1000}
1001
1002static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 
1003{
1004	if (PageHuge(page))
1005		return alloc_huge_page_node(page_hstate(compound_head(page)),
1006					node);
1007	else
1008		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011/*
1012 * Migrate pages from one node to a target node.
1013 * Returns error or the number of pages not migrated.
1014 */
1015static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1016			   int flags)
1017{
1018	nodemask_t nmask;
1019	LIST_HEAD(pagelist);
1020	int err = 0;
1021
1022	nodes_clear(nmask);
1023	node_set(source, nmask);
1024
1025	/*
1026	 * This does not "check" the range but isolates all pages that
1027	 * need migration.  Between passing in the full user address
1028	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1029	 */
1030	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1031	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1032			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1033
1034	if (!list_empty(&pagelist)) {
1035		err = migrate_pages(&pagelist, new_node_page, dest,
1036					MIGRATE_SYNC, MR_SYSCALL);
1037		if (err)
1038			putback_movable_pages(&pagelist);
1039	}
1040
1041	return err;
1042}
1043
1044/*
1045 * Move pages between the two nodesets so as to preserve the physical
1046 * layout as much as possible.
1047 *
1048 * Returns the number of page that could not be moved.
1049 */
1050int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1051		     const nodemask_t *to, int flags)
1052{
1053	int busy = 0;
1054	int err;
1055	nodemask_t tmp;
1056
1057	err = migrate_prep();
1058	if (err)
1059		return err;
1060
1061	down_read(&mm->mmap_sem);
1062
1063	err = migrate_vmas(mm, from, to, flags);
1064	if (err)
1065		goto out;
1066
1067	/*
1068	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1069	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1070	 * bit in 'tmp', and return that <source, dest> pair for migration.
1071	 * The pair of nodemasks 'to' and 'from' define the map.
1072	 *
1073	 * If no pair of bits is found that way, fallback to picking some
1074	 * pair of 'source' and 'dest' bits that are not the same.  If the
1075	 * 'source' and 'dest' bits are the same, this represents a node
1076	 * that will be migrating to itself, so no pages need move.
1077	 *
1078	 * If no bits are left in 'tmp', or if all remaining bits left
1079	 * in 'tmp' correspond to the same bit in 'to', return false
1080	 * (nothing left to migrate).
1081	 *
1082	 * This lets us pick a pair of nodes to migrate between, such that
1083	 * if possible the dest node is not already occupied by some other
1084	 * source node, minimizing the risk of overloading the memory on a
1085	 * node that would happen if we migrated incoming memory to a node
1086	 * before migrating outgoing memory source that same node.
1087	 *
1088	 * A single scan of tmp is sufficient.  As we go, we remember the
1089	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1090	 * that not only moved, but what's better, moved to an empty slot
1091	 * (d is not set in tmp), then we break out then, with that pair.
1092	 * Otherwise when we finish scanning from_tmp, we at least have the
1093	 * most recent <s, d> pair that moved.  If we get all the way through
1094	 * the scan of tmp without finding any node that moved, much less
1095	 * moved to an empty node, then there is nothing left worth migrating.
1096	 */
1097
1098	tmp = *from;
1099	while (!nodes_empty(tmp)) {
1100		int s,d;
1101		int source = NUMA_NO_NODE;
1102		int dest = 0;
1103
1104		for_each_node_mask(s, tmp) {
1105
1106			/*
1107			 * do_migrate_pages() tries to maintain the relative
1108			 * node relationship of the pages established between
1109			 * threads and memory areas.
1110                         *
1111			 * However if the number of source nodes is not equal to
1112			 * the number of destination nodes we can not preserve
1113			 * this node relative relationship.  In that case, skip
1114			 * copying memory from a node that is in the destination
1115			 * mask.
1116			 *
1117			 * Example: [2,3,4] -> [3,4,5] moves everything.
1118			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1119			 */
1120
1121			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1122						(node_isset(s, *to)))
1123				continue;
1124
1125			d = node_remap(s, *from, *to);
1126			if (s == d)
1127				continue;
1128
1129			source = s;	/* Node moved. Memorize */
1130			dest = d;
1131
1132			/* dest not in remaining from nodes? */
1133			if (!node_isset(dest, tmp))
1134				break;
1135		}
1136		if (source == NUMA_NO_NODE)
1137			break;
1138
1139		node_clear(source, tmp);
1140		err = migrate_to_node(mm, source, dest, flags);
1141		if (err > 0)
1142			busy += err;
1143		if (err < 0)
1144			break;
1145	}
1146out:
1147	up_read(&mm->mmap_sem);
1148	if (err < 0)
1149		return err;
1150	return busy;
1151
1152}
1153
1154/*
1155 * Allocate a new page for page migration based on vma policy.
1156 * Start assuming that page is mapped by vma pointed to by @private.
1157 * Search forward from there, if not.  N.B., this assumes that the
1158 * list of pages handed to migrate_pages()--which is how we get here--
1159 * is in virtual address order.
1160 */
1161static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1162{
1163	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1164	unsigned long uninitialized_var(address);
1165
 
1166	while (vma) {
1167		address = page_address_in_vma(page, vma);
1168		if (address != -EFAULT)
1169			break;
1170		vma = vma->vm_next;
1171	}
1172
1173	if (PageHuge(page)) {
1174		BUG_ON(!vma);
1175		return alloc_huge_page_noerr(vma, address, 1);
 
 
 
 
 
 
 
 
 
1176	}
1177	/*
1178	 * if !vma, alloc_page_vma() will use task or system default policy
1179	 */
1180	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
1181}
1182#else
1183
1184static void migrate_page_add(struct page *page, struct list_head *pagelist,
1185				unsigned long flags)
1186{
 
1187}
1188
1189int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1190		     const nodemask_t *to, int flags)
1191{
1192	return -ENOSYS;
1193}
1194
1195static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1196{
1197	return NULL;
1198}
1199#endif
1200
1201static long do_mbind(unsigned long start, unsigned long len,
1202		     unsigned short mode, unsigned short mode_flags,
1203		     nodemask_t *nmask, unsigned long flags)
1204{
1205	struct vm_area_struct *vma;
1206	struct mm_struct *mm = current->mm;
1207	struct mempolicy *new;
1208	unsigned long end;
1209	int err;
 
1210	LIST_HEAD(pagelist);
1211
1212	if (flags & ~(unsigned long)MPOL_MF_VALID)
1213		return -EINVAL;
1214	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1215		return -EPERM;
1216
1217	if (start & ~PAGE_MASK)
1218		return -EINVAL;
1219
1220	if (mode == MPOL_DEFAULT)
1221		flags &= ~MPOL_MF_STRICT;
1222
1223	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1224	end = start + len;
1225
1226	if (end < start)
1227		return -EINVAL;
1228	if (end == start)
1229		return 0;
1230
1231	new = mpol_new(mode, mode_flags, nmask);
1232	if (IS_ERR(new))
1233		return PTR_ERR(new);
1234
1235	if (flags & MPOL_MF_LAZY)
1236		new->flags |= MPOL_F_MOF;
1237
1238	/*
1239	 * If we are using the default policy then operation
1240	 * on discontinuous address spaces is okay after all
1241	 */
1242	if (!new)
1243		flags |= MPOL_MF_DISCONTIG_OK;
1244
1245	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1246		 start, start + len, mode, mode_flags,
1247		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1248
1249	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1250
1251		err = migrate_prep();
1252		if (err)
1253			goto mpol_out;
1254	}
1255	{
1256		NODEMASK_SCRATCH(scratch);
1257		if (scratch) {
1258			down_write(&mm->mmap_sem);
1259			task_lock(current);
1260			err = mpol_set_nodemask(new, nmask, scratch);
1261			task_unlock(current);
1262			if (err)
1263				up_write(&mm->mmap_sem);
1264		} else
1265			err = -ENOMEM;
1266		NODEMASK_SCRATCH_FREE(scratch);
1267	}
1268	if (err)
1269		goto mpol_out;
1270
1271	vma = queue_pages_range(mm, start, end, nmask,
1272			  flags | MPOL_MF_INVERT, &pagelist);
1273
1274	err = PTR_ERR(vma);	/* maybe ... */
1275	if (!IS_ERR(vma))
1276		err = mbind_range(mm, start, end, new);
 
 
 
1277
1278	if (!err) {
1279		int nr_failed = 0;
1280
1281		if (!list_empty(&pagelist)) {
1282			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1283			nr_failed = migrate_pages(&pagelist, new_vma_page,
1284					(unsigned long)vma,
1285					MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1286			if (nr_failed)
1287				putback_movable_pages(&pagelist);
1288		}
1289
1290		if (nr_failed && (flags & MPOL_MF_STRICT))
1291			err = -EIO;
1292	} else
1293		putback_movable_pages(&pagelist);
 
 
 
1294
1295	up_write(&mm->mmap_sem);
1296 mpol_out:
1297	mpol_put(new);
1298	return err;
1299}
1300
1301/*
1302 * User space interface with variable sized bitmaps for nodelists.
1303 */
1304
1305/* Copy a node mask from user space. */
1306static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1307		     unsigned long maxnode)
1308{
1309	unsigned long k;
 
1310	unsigned long nlongs;
1311	unsigned long endmask;
1312
1313	--maxnode;
1314	nodes_clear(*nodes);
1315	if (maxnode == 0 || !nmask)
1316		return 0;
1317	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1318		return -EINVAL;
1319
1320	nlongs = BITS_TO_LONGS(maxnode);
1321	if ((maxnode % BITS_PER_LONG) == 0)
1322		endmask = ~0UL;
1323	else
1324		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1325
1326	/* When the user specified more nodes than supported just check
1327	   if the non supported part is all zero. */
 
 
 
 
 
 
 
1328	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1329		if (nlongs > PAGE_SIZE/sizeof(long))
1330			return -EINVAL;
1331		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1332			unsigned long t;
1333			if (get_user(t, nmask + k))
1334				return -EFAULT;
1335			if (k == nlongs - 1) {
1336				if (t & endmask)
1337					return -EINVAL;
1338			} else if (t)
1339				return -EINVAL;
1340		}
1341		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1342		endmask = ~0UL;
1343	}
1344
 
 
 
 
 
 
 
 
 
 
1345	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1346		return -EFAULT;
1347	nodes_addr(*nodes)[nlongs-1] &= endmask;
1348	return 0;
1349}
1350
1351/* Copy a kernel node mask to user space */
1352static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1353			      nodemask_t *nodes)
1354{
1355	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1356	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1357
1358	if (copy > nbytes) {
1359		if (copy > PAGE_SIZE)
1360			return -EINVAL;
1361		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1362			return -EFAULT;
1363		copy = nbytes;
1364	}
1365	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1366}
1367
1368SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1369		unsigned long, mode, unsigned long __user *, nmask,
1370		unsigned long, maxnode, unsigned, flags)
1371{
1372	nodemask_t nodes;
1373	int err;
1374	unsigned short mode_flags;
1375
 
1376	mode_flags = mode & MPOL_MODE_FLAGS;
1377	mode &= ~MPOL_MODE_FLAGS;
1378	if (mode >= MPOL_MAX)
1379		return -EINVAL;
1380	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1381	    (mode_flags & MPOL_F_RELATIVE_NODES))
1382		return -EINVAL;
1383	err = get_nodes(&nodes, nmask, maxnode);
1384	if (err)
1385		return err;
1386	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1387}
1388
 
 
 
 
 
 
 
1389/* Set the process memory policy */
1390SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1391		unsigned long, maxnode)
1392{
1393	int err;
1394	nodemask_t nodes;
1395	unsigned short flags;
1396
1397	flags = mode & MPOL_MODE_FLAGS;
1398	mode &= ~MPOL_MODE_FLAGS;
1399	if ((unsigned int)mode >= MPOL_MAX)
1400		return -EINVAL;
1401	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1402		return -EINVAL;
1403	err = get_nodes(&nodes, nmask, maxnode);
1404	if (err)
1405		return err;
1406	return do_set_mempolicy(mode, flags, &nodes);
1407}
1408
1409SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1410		const unsigned long __user *, old_nodes,
1411		const unsigned long __user *, new_nodes)
 
 
 
 
 
 
1412{
1413	const struct cred *cred = current_cred(), *tcred;
1414	struct mm_struct *mm = NULL;
1415	struct task_struct *task;
1416	nodemask_t task_nodes;
1417	int err;
1418	nodemask_t *old;
1419	nodemask_t *new;
1420	NODEMASK_SCRATCH(scratch);
1421
1422	if (!scratch)
1423		return -ENOMEM;
1424
1425	old = &scratch->mask1;
1426	new = &scratch->mask2;
1427
1428	err = get_nodes(old, old_nodes, maxnode);
1429	if (err)
1430		goto out;
1431
1432	err = get_nodes(new, new_nodes, maxnode);
1433	if (err)
1434		goto out;
1435
1436	/* Find the mm_struct */
1437	rcu_read_lock();
1438	task = pid ? find_task_by_vpid(pid) : current;
1439	if (!task) {
1440		rcu_read_unlock();
1441		err = -ESRCH;
1442		goto out;
1443	}
1444	get_task_struct(task);
1445
1446	err = -EINVAL;
1447
1448	/*
1449	 * Check if this process has the right to modify the specified
1450	 * process. The right exists if the process has administrative
1451	 * capabilities, superuser privileges or the same
1452	 * userid as the target process.
1453	 */
1454	tcred = __task_cred(task);
1455	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1456	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1457	    !capable(CAP_SYS_NICE)) {
1458		rcu_read_unlock();
1459		err = -EPERM;
1460		goto out_put;
1461	}
1462	rcu_read_unlock();
1463
1464	task_nodes = cpuset_mems_allowed(task);
1465	/* Is the user allowed to access the target nodes? */
1466	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1467		err = -EPERM;
1468		goto out_put;
1469	}
1470
1471	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1472		err = -EINVAL;
 
1473		goto out_put;
1474	}
1475
1476	err = security_task_movememory(task);
1477	if (err)
1478		goto out_put;
1479
1480	mm = get_task_mm(task);
1481	put_task_struct(task);
1482
1483	if (!mm) {
1484		err = -EINVAL;
1485		goto out;
1486	}
1487
1488	err = do_migrate_pages(mm, old, new,
1489		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1490
1491	mmput(mm);
1492out:
1493	NODEMASK_SCRATCH_FREE(scratch);
1494
1495	return err;
1496
1497out_put:
1498	put_task_struct(task);
1499	goto out;
1500
1501}
1502
 
 
 
 
 
 
 
1503
1504/* Retrieve NUMA policy */
1505SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1506		unsigned long __user *, nmask, unsigned long, maxnode,
1507		unsigned long, addr, unsigned long, flags)
 
 
1508{
1509	int err;
1510	int uninitialized_var(pval);
1511	nodemask_t nodes;
1512
1513	if (nmask != NULL && maxnode < MAX_NUMNODES)
 
 
1514		return -EINVAL;
1515
1516	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1517
1518	if (err)
1519		return err;
1520
1521	if (policy && put_user(pval, policy))
1522		return -EFAULT;
1523
1524	if (nmask)
1525		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1526
1527	return err;
1528}
1529
 
 
 
 
 
 
 
1530#ifdef CONFIG_COMPAT
1531
1532COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1533		       compat_ulong_t __user *, nmask,
1534		       compat_ulong_t, maxnode,
1535		       compat_ulong_t, addr, compat_ulong_t, flags)
1536{
1537	long err;
1538	unsigned long __user *nm = NULL;
1539	unsigned long nr_bits, alloc_size;
1540	DECLARE_BITMAP(bm, MAX_NUMNODES);
1541
1542	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1543	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1544
1545	if (nmask)
1546		nm = compat_alloc_user_space(alloc_size);
1547
1548	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1549
1550	if (!err && nmask) {
1551		unsigned long copy_size;
1552		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1553		err = copy_from_user(bm, nm, copy_size);
1554		/* ensure entire bitmap is zeroed */
1555		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1556		err |= compat_put_bitmap(nmask, bm, nr_bits);
1557	}
1558
1559	return err;
1560}
1561
1562COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1563		       compat_ulong_t, maxnode)
1564{
1565	long err = 0;
1566	unsigned long __user *nm = NULL;
1567	unsigned long nr_bits, alloc_size;
1568	DECLARE_BITMAP(bm, MAX_NUMNODES);
1569
1570	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1571	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1572
1573	if (nmask) {
1574		err = compat_get_bitmap(bm, nmask, nr_bits);
 
1575		nm = compat_alloc_user_space(alloc_size);
1576		err |= copy_to_user(nm, bm, alloc_size);
 
1577	}
1578
1579	if (err)
1580		return -EFAULT;
1581
1582	return sys_set_mempolicy(mode, nm, nr_bits+1);
1583}
1584
1585COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1586		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1587		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1588{
1589	long err = 0;
1590	unsigned long __user *nm = NULL;
1591	unsigned long nr_bits, alloc_size;
1592	nodemask_t bm;
1593
1594	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1595	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1596
1597	if (nmask) {
1598		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
 
1599		nm = compat_alloc_user_space(alloc_size);
1600		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
 
1601	}
1602
1603	if (err)
1604		return -EFAULT;
1605
1606	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607}
1608
1609#endif
1610
1611/*
1612 * get_vma_policy(@task, @vma, @addr)
1613 * @task - task for fallback if vma policy == default
1614 * @vma   - virtual memory area whose policy is sought
1615 * @addr  - address in @vma for shared policy lookup
1616 *
1617 * Returns effective policy for a VMA at specified address.
1618 * Falls back to @task or system default policy, as necessary.
1619 * Current or other task's task mempolicy and non-shared vma policies must be
1620 * protected by task_lock(task) by the caller.
1621 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1622 * count--added by the get_policy() vm_op, as appropriate--to protect against
1623 * freeing by another task.  It is the caller's responsibility to free the
1624 * extra reference for shared policies.
1625 */
1626struct mempolicy *get_vma_policy(struct task_struct *task,
1627		struct vm_area_struct *vma, unsigned long addr)
1628{
1629	struct mempolicy *pol = get_task_policy(task);
1630
1631	if (vma) {
1632		if (vma->vm_ops && vma->vm_ops->get_policy) {
1633			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1634									addr);
1635			if (vpol)
1636				pol = vpol;
1637		} else if (vma->vm_policy) {
1638			pol = vma->vm_policy;
1639
1640			/*
1641			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1642			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1643			 * count on these policies which will be dropped by
1644			 * mpol_cond_put() later
1645			 */
1646			if (mpol_needs_cond_ref(pol))
1647				mpol_get(pol);
1648		}
1649	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650	if (!pol)
1651		pol = &default_policy;
 
1652	return pol;
1653}
1654
1655bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1656{
1657	struct mempolicy *pol = get_task_policy(task);
1658	if (vma) {
1659		if (vma->vm_ops && vma->vm_ops->get_policy) {
1660			bool ret = false;
1661
1662			pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1663			if (pol && (pol->flags & MPOL_F_MOF))
1664				ret = true;
1665			mpol_cond_put(pol);
1666
1667			return ret;
1668		} else if (vma->vm_policy) {
1669			pol = vma->vm_policy;
1670		}
1671	}
1672
 
1673	if (!pol)
1674		return default_policy.flags & MPOL_F_MOF;
1675
1676	return pol->flags & MPOL_F_MOF;
1677}
1678
1679static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1680{
1681	enum zone_type dynamic_policy_zone = policy_zone;
1682
1683	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1684
1685	/*
1686	 * if policy->v.nodes has movable memory only,
1687	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1688	 *
1689	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1690	 * so if the following test faile, it implies
1691	 * policy->v.nodes has movable memory only.
1692	 */
1693	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1694		dynamic_policy_zone = ZONE_MOVABLE;
1695
1696	return zone >= dynamic_policy_zone;
1697}
1698
1699/*
1700 * Return a nodemask representing a mempolicy for filtering nodes for
1701 * page allocation
1702 */
1703static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1704{
1705	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1706	if (unlikely(policy->mode == MPOL_BIND) &&
1707			apply_policy_zone(policy, gfp_zone(gfp)) &&
1708			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1709		return &policy->v.nodes;
1710
1711	return NULL;
1712}
1713
1714/* Return a zonelist indicated by gfp for node representing a mempolicy */
1715static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1716	int nd)
1717{
1718	switch (policy->mode) {
1719	case MPOL_PREFERRED:
1720		if (!(policy->flags & MPOL_F_LOCAL))
1721			nd = policy->v.preferred_node;
1722		break;
1723	case MPOL_BIND:
1724		/*
1725		 * Normally, MPOL_BIND allocations are node-local within the
1726		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1727		 * current node isn't part of the mask, we use the zonelist for
1728		 * the first node in the mask instead.
1729		 */
1730		if (unlikely(gfp & __GFP_THISNODE) &&
1731				unlikely(!node_isset(nd, policy->v.nodes)))
1732			nd = first_node(policy->v.nodes);
1733		break;
1734	default:
1735		BUG();
1736	}
1737	return node_zonelist(nd, gfp);
 
1738}
1739
1740/* Do dynamic interleaving for a process */
1741static unsigned interleave_nodes(struct mempolicy *policy)
1742{
1743	unsigned nid, next;
1744	struct task_struct *me = current;
1745
1746	nid = me->il_next;
1747	next = next_node(nid, policy->v.nodes);
1748	if (next >= MAX_NUMNODES)
1749		next = first_node(policy->v.nodes);
1750	if (next < MAX_NUMNODES)
1751		me->il_next = next;
1752	return nid;
1753}
1754
1755/*
1756 * Depending on the memory policy provide a node from which to allocate the
1757 * next slab entry.
1758 */
1759unsigned int mempolicy_slab_node(void)
1760{
1761	struct mempolicy *policy;
1762	int node = numa_mem_id();
1763
1764	if (in_interrupt())
1765		return node;
1766
1767	policy = current->mempolicy;
1768	if (!policy || policy->flags & MPOL_F_LOCAL)
1769		return node;
1770
1771	switch (policy->mode) {
1772	case MPOL_PREFERRED:
1773		/*
1774		 * handled MPOL_F_LOCAL above
1775		 */
1776		return policy->v.preferred_node;
1777
1778	case MPOL_INTERLEAVE:
1779		return interleave_nodes(policy);
1780
1781	case MPOL_BIND: {
 
 
1782		/*
1783		 * Follow bind policy behavior and start allocation at the
1784		 * first node.
1785		 */
1786		struct zonelist *zonelist;
1787		struct zone *zone;
1788		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1789		zonelist = &NODE_DATA(node)->node_zonelists[0];
1790		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1791							&policy->v.nodes,
1792							&zone);
1793		return zone ? zone->node : node;
1794	}
1795
1796	default:
1797		BUG();
1798	}
1799}
1800
1801/* Do static interleaving for a VMA with known offset. */
1802static unsigned offset_il_node(struct mempolicy *pol,
1803		struct vm_area_struct *vma, unsigned long off)
 
 
 
1804{
1805	unsigned nnodes = nodes_weight(pol->v.nodes);
1806	unsigned target;
1807	int c;
1808	int nid = NUMA_NO_NODE;
1809
1810	if (!nnodes)
1811		return numa_node_id();
1812	target = (unsigned int)off % nnodes;
1813	c = 0;
1814	do {
1815		nid = next_node(nid, pol->v.nodes);
1816		c++;
1817	} while (c <= target);
1818	return nid;
1819}
1820
1821/* Determine a node number for interleave */
1822static inline unsigned interleave_nid(struct mempolicy *pol,
1823		 struct vm_area_struct *vma, unsigned long addr, int shift)
1824{
1825	if (vma) {
1826		unsigned long off;
1827
1828		/*
1829		 * for small pages, there is no difference between
1830		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1831		 * for huge pages, since vm_pgoff is in units of small
1832		 * pages, we need to shift off the always 0 bits to get
1833		 * a useful offset.
1834		 */
1835		BUG_ON(shift < PAGE_SHIFT);
1836		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1837		off += (addr - vma->vm_start) >> shift;
1838		return offset_il_node(pol, vma, off);
1839	} else
1840		return interleave_nodes(pol);
1841}
1842
1843/*
1844 * Return the bit number of a random bit set in the nodemask.
1845 * (returns NUMA_NO_NODE if nodemask is empty)
1846 */
1847int node_random(const nodemask_t *maskp)
1848{
1849	int w, bit = NUMA_NO_NODE;
1850
1851	w = nodes_weight(*maskp);
1852	if (w)
1853		bit = bitmap_ord_to_pos(maskp->bits,
1854			get_random_int() % w, MAX_NUMNODES);
1855	return bit;
1856}
1857
1858#ifdef CONFIG_HUGETLBFS
1859/*
1860 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1861 * @vma = virtual memory area whose policy is sought
1862 * @addr = address in @vma for shared policy lookup and interleave policy
1863 * @gfp_flags = for requested zone
1864 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1865 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1866 *
1867 * Returns a zonelist suitable for a huge page allocation and a pointer
1868 * to the struct mempolicy for conditional unref after allocation.
1869 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1870 * @nodemask for filtering the zonelist.
1871 *
1872 * Must be protected by read_mems_allowed_begin()
1873 */
1874struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1875				gfp_t gfp_flags, struct mempolicy **mpol,
1876				nodemask_t **nodemask)
1877{
1878	struct zonelist *zl;
1879
1880	*mpol = get_vma_policy(current, vma, addr);
1881	*nodemask = NULL;	/* assume !MPOL_BIND */
1882
1883	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1884		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1885				huge_page_shift(hstate_vma(vma))), gfp_flags);
1886	} else {
1887		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1888		if ((*mpol)->mode == MPOL_BIND)
1889			*nodemask = &(*mpol)->v.nodes;
1890	}
1891	return zl;
1892}
1893
1894/*
1895 * init_nodemask_of_mempolicy
1896 *
1897 * If the current task's mempolicy is "default" [NULL], return 'false'
1898 * to indicate default policy.  Otherwise, extract the policy nodemask
1899 * for 'bind' or 'interleave' policy into the argument nodemask, or
1900 * initialize the argument nodemask to contain the single node for
1901 * 'preferred' or 'local' policy and return 'true' to indicate presence
1902 * of non-default mempolicy.
1903 *
1904 * We don't bother with reference counting the mempolicy [mpol_get/put]
1905 * because the current task is examining it's own mempolicy and a task's
1906 * mempolicy is only ever changed by the task itself.
1907 *
1908 * N.B., it is the caller's responsibility to free a returned nodemask.
1909 */
1910bool init_nodemask_of_mempolicy(nodemask_t *mask)
1911{
1912	struct mempolicy *mempolicy;
1913	int nid;
1914
1915	if (!(mask && current->mempolicy))
1916		return false;
1917
1918	task_lock(current);
1919	mempolicy = current->mempolicy;
1920	switch (mempolicy->mode) {
1921	case MPOL_PREFERRED:
1922		if (mempolicy->flags & MPOL_F_LOCAL)
1923			nid = numa_node_id();
1924		else
1925			nid = mempolicy->v.preferred_node;
1926		init_nodemask_of_node(mask, nid);
1927		break;
1928
1929	case MPOL_BIND:
1930		/* Fall through */
1931	case MPOL_INTERLEAVE:
1932		*mask =  mempolicy->v.nodes;
1933		break;
1934
1935	default:
1936		BUG();
1937	}
1938	task_unlock(current);
1939
1940	return true;
1941}
1942#endif
1943
1944/*
1945 * mempolicy_nodemask_intersects
1946 *
1947 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1948 * policy.  Otherwise, check for intersection between mask and the policy
1949 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1950 * policy, always return true since it may allocate elsewhere on fallback.
1951 *
1952 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1953 */
1954bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1955					const nodemask_t *mask)
1956{
1957	struct mempolicy *mempolicy;
1958	bool ret = true;
1959
1960	if (!mask)
1961		return ret;
1962	task_lock(tsk);
1963	mempolicy = tsk->mempolicy;
1964	if (!mempolicy)
1965		goto out;
1966
1967	switch (mempolicy->mode) {
1968	case MPOL_PREFERRED:
1969		/*
1970		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1971		 * allocate from, they may fallback to other nodes when oom.
1972		 * Thus, it's possible for tsk to have allocated memory from
1973		 * nodes in mask.
1974		 */
1975		break;
1976	case MPOL_BIND:
1977	case MPOL_INTERLEAVE:
1978		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1979		break;
1980	default:
1981		BUG();
1982	}
1983out:
1984	task_unlock(tsk);
1985	return ret;
1986}
1987
1988/* Allocate a page in interleaved policy.
1989   Own path because it needs to do special accounting. */
1990static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1991					unsigned nid)
1992{
1993	struct zonelist *zl;
1994	struct page *page;
1995
1996	zl = node_zonelist(nid, gfp);
1997	page = __alloc_pages(gfp, order, zl);
1998	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1999		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
 
 
 
 
 
2000	return page;
2001}
2002
2003/**
2004 * 	alloc_pages_vma	- Allocate a page for a VMA.
2005 *
2006 * 	@gfp:
2007 *      %GFP_USER    user allocation.
2008 *      %GFP_KERNEL  kernel allocations,
2009 *      %GFP_HIGHMEM highmem/user allocations,
2010 *      %GFP_FS      allocation should not call back into a file system.
2011 *      %GFP_ATOMIC  don't sleep.
2012 *
2013 *	@order:Order of the GFP allocation.
2014 * 	@vma:  Pointer to VMA or NULL if not available.
2015 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
 
 
2016 *
2017 * 	This function allocates a page from the kernel page pool and applies
2018 *	a NUMA policy associated with the VMA or the current process.
2019 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2020 *	mm_struct of the VMA to prevent it from going away. Should be used for
2021 *	all allocations for pages that will be mapped into
2022 * 	user space. Returns NULL when no page can be allocated.
2023 *
2024 *	Should be called with the mm_sem of the vma hold.
2025 */
2026struct page *
2027alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2028		unsigned long addr, int node)
2029{
2030	struct mempolicy *pol;
2031	struct page *page;
2032	unsigned int cpuset_mems_cookie;
 
2033
2034retry_cpuset:
2035	pol = get_vma_policy(current, vma, addr);
2036	cpuset_mems_cookie = read_mems_allowed_begin();
2037
2038	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2039		unsigned nid;
2040
2041		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2042		mpol_cond_put(pol);
2043		page = alloc_page_interleave(gfp, order, nid);
2044		if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2045			goto retry_cpuset;
2046
2047		return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048	}
2049	page = __alloc_pages_nodemask(gfp, order,
2050				      policy_zonelist(gfp, pol, node),
2051				      policy_nodemask(gfp, pol));
2052	if (unlikely(mpol_needs_cond_ref(pol)))
2053		__mpol_put(pol);
2054	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2055		goto retry_cpuset;
2056	return page;
2057}
 
2058
2059/**
2060 * 	alloc_pages_current - Allocate pages.
2061 *
2062 *	@gfp:
2063 *		%GFP_USER   user allocation,
2064 *      	%GFP_KERNEL kernel allocation,
2065 *      	%GFP_HIGHMEM highmem allocation,
2066 *      	%GFP_FS     don't call back into a file system.
2067 *      	%GFP_ATOMIC don't sleep.
2068 *	@order: Power of two of allocation size in pages. 0 is a single page.
2069 *
2070 *	Allocate a page from the kernel page pool.  When not in
2071 *	interrupt context and apply the current process NUMA policy.
2072 *	Returns NULL when no page can be allocated.
2073 *
2074 *	Don't call cpuset_update_task_memory_state() unless
2075 *	1) it's ok to take cpuset_sem (can WAIT), and
2076 *	2) allocating for current task (not interrupt).
2077 */
2078struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2079{
2080	struct mempolicy *pol = get_task_policy(current);
2081	struct page *page;
2082	unsigned int cpuset_mems_cookie;
2083
2084	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2085		pol = &default_policy;
2086
2087retry_cpuset:
2088	cpuset_mems_cookie = read_mems_allowed_begin();
2089
2090	/*
2091	 * No reference counting needed for current->mempolicy
2092	 * nor system default_policy
2093	 */
2094	if (pol->mode == MPOL_INTERLEAVE)
2095		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2096	else
2097		page = __alloc_pages_nodemask(gfp, order,
2098				policy_zonelist(gfp, pol, numa_node_id()),
2099				policy_nodemask(gfp, pol));
2100
2101	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2102		goto retry_cpuset;
2103
2104	return page;
2105}
2106EXPORT_SYMBOL(alloc_pages_current);
2107
2108int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2109{
2110	struct mempolicy *pol = mpol_dup(vma_policy(src));
2111
2112	if (IS_ERR(pol))
2113		return PTR_ERR(pol);
2114	dst->vm_policy = pol;
2115	return 0;
2116}
2117
2118/*
2119 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2120 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2121 * with the mems_allowed returned by cpuset_mems_allowed().  This
2122 * keeps mempolicies cpuset relative after its cpuset moves.  See
2123 * further kernel/cpuset.c update_nodemask().
2124 *
2125 * current's mempolicy may be rebinded by the other task(the task that changes
2126 * cpuset's mems), so we needn't do rebind work for current task.
2127 */
2128
2129/* Slow path of a mempolicy duplicate */
2130struct mempolicy *__mpol_dup(struct mempolicy *old)
2131{
2132	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2133
2134	if (!new)
2135		return ERR_PTR(-ENOMEM);
2136
2137	/* task's mempolicy is protected by alloc_lock */
2138	if (old == current->mempolicy) {
2139		task_lock(current);
2140		*new = *old;
2141		task_unlock(current);
2142	} else
2143		*new = *old;
2144
2145	rcu_read_lock();
2146	if (current_cpuset_is_being_rebound()) {
2147		nodemask_t mems = cpuset_mems_allowed(current);
2148		if (new->flags & MPOL_F_REBINDING)
2149			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2150		else
2151			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2152	}
2153	rcu_read_unlock();
2154	atomic_set(&new->refcnt, 1);
2155	return new;
2156}
2157
2158/* Slow path of a mempolicy comparison */
2159bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2160{
2161	if (!a || !b)
2162		return false;
2163	if (a->mode != b->mode)
2164		return false;
2165	if (a->flags != b->flags)
2166		return false;
2167	if (mpol_store_user_nodemask(a))
2168		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2169			return false;
2170
2171	switch (a->mode) {
2172	case MPOL_BIND:
2173		/* Fall through */
2174	case MPOL_INTERLEAVE:
2175		return !!nodes_equal(a->v.nodes, b->v.nodes);
2176	case MPOL_PREFERRED:
 
 
 
2177		return a->v.preferred_node == b->v.preferred_node;
2178	default:
2179		BUG();
2180		return false;
2181	}
2182}
2183
2184/*
2185 * Shared memory backing store policy support.
2186 *
2187 * Remember policies even when nobody has shared memory mapped.
2188 * The policies are kept in Red-Black tree linked from the inode.
2189 * They are protected by the sp->lock spinlock, which should be held
2190 * for any accesses to the tree.
2191 */
2192
2193/* lookup first element intersecting start-end */
2194/* Caller holds sp->lock */
 
 
2195static struct sp_node *
2196sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2197{
2198	struct rb_node *n = sp->root.rb_node;
2199
2200	while (n) {
2201		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2202
2203		if (start >= p->end)
2204			n = n->rb_right;
2205		else if (end <= p->start)
2206			n = n->rb_left;
2207		else
2208			break;
2209	}
2210	if (!n)
2211		return NULL;
2212	for (;;) {
2213		struct sp_node *w = NULL;
2214		struct rb_node *prev = rb_prev(n);
2215		if (!prev)
2216			break;
2217		w = rb_entry(prev, struct sp_node, nd);
2218		if (w->end <= start)
2219			break;
2220		n = prev;
2221	}
2222	return rb_entry(n, struct sp_node, nd);
2223}
2224
2225/* Insert a new shared policy into the list. */
2226/* Caller holds sp->lock */
 
 
2227static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2228{
2229	struct rb_node **p = &sp->root.rb_node;
2230	struct rb_node *parent = NULL;
2231	struct sp_node *nd;
2232
2233	while (*p) {
2234		parent = *p;
2235		nd = rb_entry(parent, struct sp_node, nd);
2236		if (new->start < nd->start)
2237			p = &(*p)->rb_left;
2238		else if (new->end > nd->end)
2239			p = &(*p)->rb_right;
2240		else
2241			BUG();
2242	}
2243	rb_link_node(&new->nd, parent, p);
2244	rb_insert_color(&new->nd, &sp->root);
2245	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2246		 new->policy ? new->policy->mode : 0);
2247}
2248
2249/* Find shared policy intersecting idx */
2250struct mempolicy *
2251mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2252{
2253	struct mempolicy *pol = NULL;
2254	struct sp_node *sn;
2255
2256	if (!sp->root.rb_node)
2257		return NULL;
2258	spin_lock(&sp->lock);
2259	sn = sp_lookup(sp, idx, idx+1);
2260	if (sn) {
2261		mpol_get(sn->policy);
2262		pol = sn->policy;
2263	}
2264	spin_unlock(&sp->lock);
2265	return pol;
2266}
2267
2268static void sp_free(struct sp_node *n)
2269{
2270	mpol_put(n->policy);
2271	kmem_cache_free(sn_cache, n);
2272}
2273
2274/**
2275 * mpol_misplaced - check whether current page node is valid in policy
2276 *
2277 * @page   - page to be checked
2278 * @vma    - vm area where page mapped
2279 * @addr   - virtual address where page mapped
2280 *
2281 * Lookup current policy node id for vma,addr and "compare to" page's
2282 * node id.
2283 *
2284 * Returns:
2285 *	-1	- not misplaced, page is in the right node
2286 *	node	- node id where the page should be
2287 *
2288 * Policy determination "mimics" alloc_page_vma().
2289 * Called from fault path where we know the vma and faulting address.
2290 */
2291int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2292{
2293	struct mempolicy *pol;
2294	struct zone *zone;
2295	int curnid = page_to_nid(page);
2296	unsigned long pgoff;
2297	int thiscpu = raw_smp_processor_id();
2298	int thisnid = cpu_to_node(thiscpu);
2299	int polnid = -1;
2300	int ret = -1;
2301
2302	BUG_ON(!vma);
2303
2304	pol = get_vma_policy(current, vma, addr);
2305	if (!(pol->flags & MPOL_F_MOF))
2306		goto out;
2307
2308	switch (pol->mode) {
2309	case MPOL_INTERLEAVE:
2310		BUG_ON(addr >= vma->vm_end);
2311		BUG_ON(addr < vma->vm_start);
2312
2313		pgoff = vma->vm_pgoff;
2314		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2315		polnid = offset_il_node(pol, vma, pgoff);
2316		break;
2317
2318	case MPOL_PREFERRED:
2319		if (pol->flags & MPOL_F_LOCAL)
2320			polnid = numa_node_id();
2321		else
2322			polnid = pol->v.preferred_node;
2323		break;
2324
2325	case MPOL_BIND:
 
2326		/*
2327		 * allows binding to multiple nodes.
2328		 * use current page if in policy nodemask,
2329		 * else select nearest allowed node, if any.
2330		 * If no allowed nodes, use current [!misplaced].
2331		 */
2332		if (node_isset(curnid, pol->v.nodes))
2333			goto out;
2334		(void)first_zones_zonelist(
2335				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2336				gfp_zone(GFP_HIGHUSER),
2337				&pol->v.nodes, &zone);
2338		polnid = zone->node;
2339		break;
2340
2341	default:
2342		BUG();
2343	}
2344
2345	/* Migrate the page towards the node whose CPU is referencing it */
2346	if (pol->flags & MPOL_F_MORON) {
2347		polnid = thisnid;
2348
2349		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2350			goto out;
2351	}
2352
2353	if (curnid != polnid)
2354		ret = polnid;
2355out:
2356	mpol_cond_put(pol);
2357
2358	return ret;
2359}
2360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2362{
2363	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2364	rb_erase(&n->nd, &sp->root);
2365	sp_free(n);
2366}
2367
2368static void sp_node_init(struct sp_node *node, unsigned long start,
2369			unsigned long end, struct mempolicy *pol)
2370{
2371	node->start = start;
2372	node->end = end;
2373	node->policy = pol;
2374}
2375
2376static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2377				struct mempolicy *pol)
2378{
2379	struct sp_node *n;
2380	struct mempolicy *newpol;
2381
2382	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2383	if (!n)
2384		return NULL;
2385
2386	newpol = mpol_dup(pol);
2387	if (IS_ERR(newpol)) {
2388		kmem_cache_free(sn_cache, n);
2389		return NULL;
2390	}
2391	newpol->flags |= MPOL_F_SHARED;
2392	sp_node_init(n, start, end, newpol);
2393
2394	return n;
2395}
2396
2397/* Replace a policy range. */
2398static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2399				 unsigned long end, struct sp_node *new)
2400{
2401	struct sp_node *n;
2402	struct sp_node *n_new = NULL;
2403	struct mempolicy *mpol_new = NULL;
2404	int ret = 0;
2405
2406restart:
2407	spin_lock(&sp->lock);
2408	n = sp_lookup(sp, start, end);
2409	/* Take care of old policies in the same range. */
2410	while (n && n->start < end) {
2411		struct rb_node *next = rb_next(&n->nd);
2412		if (n->start >= start) {
2413			if (n->end <= end)
2414				sp_delete(sp, n);
2415			else
2416				n->start = end;
2417		} else {
2418			/* Old policy spanning whole new range. */
2419			if (n->end > end) {
2420				if (!n_new)
2421					goto alloc_new;
2422
2423				*mpol_new = *n->policy;
2424				atomic_set(&mpol_new->refcnt, 1);
2425				sp_node_init(n_new, end, n->end, mpol_new);
2426				n->end = start;
2427				sp_insert(sp, n_new);
2428				n_new = NULL;
2429				mpol_new = NULL;
2430				break;
2431			} else
2432				n->end = start;
2433		}
2434		if (!next)
2435			break;
2436		n = rb_entry(next, struct sp_node, nd);
2437	}
2438	if (new)
2439		sp_insert(sp, new);
2440	spin_unlock(&sp->lock);
2441	ret = 0;
2442
2443err_out:
2444	if (mpol_new)
2445		mpol_put(mpol_new);
2446	if (n_new)
2447		kmem_cache_free(sn_cache, n_new);
2448
2449	return ret;
2450
2451alloc_new:
2452	spin_unlock(&sp->lock);
2453	ret = -ENOMEM;
2454	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2455	if (!n_new)
2456		goto err_out;
2457	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2458	if (!mpol_new)
2459		goto err_out;
2460	goto restart;
2461}
2462
2463/**
2464 * mpol_shared_policy_init - initialize shared policy for inode
2465 * @sp: pointer to inode shared policy
2466 * @mpol:  struct mempolicy to install
2467 *
2468 * Install non-NULL @mpol in inode's shared policy rb-tree.
2469 * On entry, the current task has a reference on a non-NULL @mpol.
2470 * This must be released on exit.
2471 * This is called at get_inode() calls and we can use GFP_KERNEL.
2472 */
2473void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2474{
2475	int ret;
2476
2477	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2478	spin_lock_init(&sp->lock);
2479
2480	if (mpol) {
2481		struct vm_area_struct pvma;
2482		struct mempolicy *new;
2483		NODEMASK_SCRATCH(scratch);
2484
2485		if (!scratch)
2486			goto put_mpol;
2487		/* contextualize the tmpfs mount point mempolicy */
2488		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2489		if (IS_ERR(new))
2490			goto free_scratch; /* no valid nodemask intersection */
2491
2492		task_lock(current);
2493		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2494		task_unlock(current);
2495		if (ret)
2496			goto put_new;
2497
2498		/* Create pseudo-vma that contains just the policy */
2499		memset(&pvma, 0, sizeof(struct vm_area_struct));
2500		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2501		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2502
2503put_new:
2504		mpol_put(new);			/* drop initial ref */
2505free_scratch:
2506		NODEMASK_SCRATCH_FREE(scratch);
2507put_mpol:
2508		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2509	}
2510}
2511
2512int mpol_set_shared_policy(struct shared_policy *info,
2513			struct vm_area_struct *vma, struct mempolicy *npol)
2514{
2515	int err;
2516	struct sp_node *new = NULL;
2517	unsigned long sz = vma_pages(vma);
2518
2519	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2520		 vma->vm_pgoff,
2521		 sz, npol ? npol->mode : -1,
2522		 npol ? npol->flags : -1,
2523		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2524
2525	if (npol) {
2526		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2527		if (!new)
2528			return -ENOMEM;
2529	}
2530	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2531	if (err && new)
2532		sp_free(new);
2533	return err;
2534}
2535
2536/* Free a backing policy store on inode delete. */
2537void mpol_free_shared_policy(struct shared_policy *p)
2538{
2539	struct sp_node *n;
2540	struct rb_node *next;
2541
2542	if (!p->root.rb_node)
2543		return;
2544	spin_lock(&p->lock);
2545	next = rb_first(&p->root);
2546	while (next) {
2547		n = rb_entry(next, struct sp_node, nd);
2548		next = rb_next(&n->nd);
2549		sp_delete(p, n);
2550	}
2551	spin_unlock(&p->lock);
2552}
2553
2554#ifdef CONFIG_NUMA_BALANCING
2555static int __initdata numabalancing_override;
2556
2557static void __init check_numabalancing_enable(void)
2558{
2559	bool numabalancing_default = false;
2560
2561	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2562		numabalancing_default = true;
2563
2564	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2565	if (numabalancing_override)
2566		set_numabalancing_state(numabalancing_override == 1);
2567
2568	if (nr_node_ids > 1 && !numabalancing_override) {
2569		pr_info("%s automatic NUMA balancing. "
2570			"Configure with numa_balancing= or the "
2571			"kernel.numa_balancing sysctl",
2572			numabalancing_default ? "Enabling" : "Disabling");
2573		set_numabalancing_state(numabalancing_default);
2574	}
2575}
2576
2577static int __init setup_numabalancing(char *str)
2578{
2579	int ret = 0;
2580	if (!str)
2581		goto out;
2582
2583	if (!strcmp(str, "enable")) {
2584		numabalancing_override = 1;
2585		ret = 1;
2586	} else if (!strcmp(str, "disable")) {
2587		numabalancing_override = -1;
2588		ret = 1;
2589	}
2590out:
2591	if (!ret)
2592		pr_warn("Unable to parse numa_balancing=\n");
2593
2594	return ret;
2595}
2596__setup("numa_balancing=", setup_numabalancing);
2597#else
2598static inline void __init check_numabalancing_enable(void)
2599{
2600}
2601#endif /* CONFIG_NUMA_BALANCING */
2602
2603/* assumes fs == KERNEL_DS */
2604void __init numa_policy_init(void)
2605{
2606	nodemask_t interleave_nodes;
2607	unsigned long largest = 0;
2608	int nid, prefer = 0;
2609
2610	policy_cache = kmem_cache_create("numa_policy",
2611					 sizeof(struct mempolicy),
2612					 0, SLAB_PANIC, NULL);
2613
2614	sn_cache = kmem_cache_create("shared_policy_node",
2615				     sizeof(struct sp_node),
2616				     0, SLAB_PANIC, NULL);
2617
2618	for_each_node(nid) {
2619		preferred_node_policy[nid] = (struct mempolicy) {
2620			.refcnt = ATOMIC_INIT(1),
2621			.mode = MPOL_PREFERRED,
2622			.flags = MPOL_F_MOF | MPOL_F_MORON,
2623			.v = { .preferred_node = nid, },
2624		};
2625	}
2626
2627	/*
2628	 * Set interleaving policy for system init. Interleaving is only
2629	 * enabled across suitably sized nodes (default is >= 16MB), or
2630	 * fall back to the largest node if they're all smaller.
2631	 */
2632	nodes_clear(interleave_nodes);
2633	for_each_node_state(nid, N_MEMORY) {
2634		unsigned long total_pages = node_present_pages(nid);
2635
2636		/* Preserve the largest node */
2637		if (largest < total_pages) {
2638			largest = total_pages;
2639			prefer = nid;
2640		}
2641
2642		/* Interleave this node? */
2643		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2644			node_set(nid, interleave_nodes);
2645	}
2646
2647	/* All too small, use the largest */
2648	if (unlikely(nodes_empty(interleave_nodes)))
2649		node_set(prefer, interleave_nodes);
2650
2651	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2652		printk("numa_policy_init: interleaving failed\n");
2653
2654	check_numabalancing_enable();
2655}
2656
2657/* Reset policy of current process to default */
2658void numa_default_policy(void)
2659{
2660	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2661}
2662
2663/*
2664 * Parse and format mempolicy from/to strings
2665 */
2666
2667/*
2668 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2669 */
2670static const char * const policy_modes[] =
2671{
2672	[MPOL_DEFAULT]    = "default",
2673	[MPOL_PREFERRED]  = "prefer",
2674	[MPOL_BIND]       = "bind",
2675	[MPOL_INTERLEAVE] = "interleave",
2676	[MPOL_LOCAL]      = "local",
2677};
2678
2679
2680#ifdef CONFIG_TMPFS
2681/**
2682 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2683 * @str:  string containing mempolicy to parse
2684 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2685 *
2686 * Format of input:
2687 *	<mode>[=<flags>][:<nodelist>]
2688 *
2689 * On success, returns 0, else 1
2690 */
2691int mpol_parse_str(char *str, struct mempolicy **mpol)
2692{
2693	struct mempolicy *new = NULL;
2694	unsigned short mode;
2695	unsigned short mode_flags;
2696	nodemask_t nodes;
2697	char *nodelist = strchr(str, ':');
2698	char *flags = strchr(str, '=');
2699	int err = 1;
2700
2701	if (nodelist) {
2702		/* NUL-terminate mode or flags string */
2703		*nodelist++ = '\0';
2704		if (nodelist_parse(nodelist, nodes))
2705			goto out;
2706		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2707			goto out;
2708	} else
2709		nodes_clear(nodes);
2710
2711	if (flags)
2712		*flags++ = '\0';	/* terminate mode string */
2713
2714	for (mode = 0; mode < MPOL_MAX; mode++) {
2715		if (!strcmp(str, policy_modes[mode])) {
2716			break;
2717		}
2718	}
2719	if (mode >= MPOL_MAX)
2720		goto out;
2721
2722	switch (mode) {
2723	case MPOL_PREFERRED:
2724		/*
2725		 * Insist on a nodelist of one node only
2726		 */
2727		if (nodelist) {
2728			char *rest = nodelist;
2729			while (isdigit(*rest))
2730				rest++;
2731			if (*rest)
2732				goto out;
2733		}
2734		break;
2735	case MPOL_INTERLEAVE:
2736		/*
2737		 * Default to online nodes with memory if no nodelist
2738		 */
2739		if (!nodelist)
2740			nodes = node_states[N_MEMORY];
2741		break;
2742	case MPOL_LOCAL:
2743		/*
2744		 * Don't allow a nodelist;  mpol_new() checks flags
2745		 */
2746		if (nodelist)
2747			goto out;
2748		mode = MPOL_PREFERRED;
2749		break;
2750	case MPOL_DEFAULT:
2751		/*
2752		 * Insist on a empty nodelist
2753		 */
2754		if (!nodelist)
2755			err = 0;
2756		goto out;
2757	case MPOL_BIND:
2758		/*
2759		 * Insist on a nodelist
2760		 */
2761		if (!nodelist)
2762			goto out;
2763	}
2764
2765	mode_flags = 0;
2766	if (flags) {
2767		/*
2768		 * Currently, we only support two mutually exclusive
2769		 * mode flags.
2770		 */
2771		if (!strcmp(flags, "static"))
2772			mode_flags |= MPOL_F_STATIC_NODES;
2773		else if (!strcmp(flags, "relative"))
2774			mode_flags |= MPOL_F_RELATIVE_NODES;
2775		else
2776			goto out;
2777	}
2778
2779	new = mpol_new(mode, mode_flags, &nodes);
2780	if (IS_ERR(new))
2781		goto out;
2782
2783	/*
2784	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2785	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2786	 */
2787	if (mode != MPOL_PREFERRED)
2788		new->v.nodes = nodes;
2789	else if (nodelist)
2790		new->v.preferred_node = first_node(nodes);
2791	else
2792		new->flags |= MPOL_F_LOCAL;
2793
2794	/*
2795	 * Save nodes for contextualization: this will be used to "clone"
2796	 * the mempolicy in a specific context [cpuset] at a later time.
2797	 */
2798	new->w.user_nodemask = nodes;
2799
2800	err = 0;
2801
2802out:
2803	/* Restore string for error message */
2804	if (nodelist)
2805		*--nodelist = ':';
2806	if (flags)
2807		*--flags = '=';
2808	if (!err)
2809		*mpol = new;
2810	return err;
2811}
2812#endif /* CONFIG_TMPFS */
2813
2814/**
2815 * mpol_to_str - format a mempolicy structure for printing
2816 * @buffer:  to contain formatted mempolicy string
2817 * @maxlen:  length of @buffer
2818 * @pol:  pointer to mempolicy to be formatted
2819 *
2820 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2821 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2822 * longest flag, "relative", and to display at least a few node ids.
2823 */
2824void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2825{
2826	char *p = buffer;
2827	nodemask_t nodes = NODE_MASK_NONE;
2828	unsigned short mode = MPOL_DEFAULT;
2829	unsigned short flags = 0;
2830
2831	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2832		mode = pol->mode;
2833		flags = pol->flags;
2834	}
2835
2836	switch (mode) {
2837	case MPOL_DEFAULT:
2838		break;
2839	case MPOL_PREFERRED:
2840		if (flags & MPOL_F_LOCAL)
2841			mode = MPOL_LOCAL;
2842		else
2843			node_set(pol->v.preferred_node, nodes);
2844		break;
2845	case MPOL_BIND:
2846	case MPOL_INTERLEAVE:
2847		nodes = pol->v.nodes;
2848		break;
2849	default:
2850		WARN_ON_ONCE(1);
2851		snprintf(p, maxlen, "unknown");
2852		return;
2853	}
2854
2855	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2856
2857	if (flags & MPOL_MODE_FLAGS) {
2858		p += snprintf(p, buffer + maxlen - p, "=");
2859
2860		/*
2861		 * Currently, the only defined flags are mutually exclusive
2862		 */
2863		if (flags & MPOL_F_STATIC_NODES)
2864			p += snprintf(p, buffer + maxlen - p, "static");
2865		else if (flags & MPOL_F_RELATIVE_NODES)
2866			p += snprintf(p, buffer + maxlen - p, "relative");
2867	}
2868
2869	if (!nodes_empty(nodes)) {
2870		p += snprintf(p, buffer + maxlen - p, ":");
2871	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2872	}
2873}