Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/pagewalk.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130struct mempolicy *get_task_policy(struct task_struct *p)
 131{
 132	struct mempolicy *pol = p->mempolicy;
 133	int node;
 134
 135	if (pol)
 136		return pol;
 137
 138	node = numa_node_id();
 139	if (node != NUMA_NO_NODE) {
 140		pol = &preferred_node_policy[node];
 141		/* preferred_node_policy is not initialised early in boot */
 142		if (pol->mode)
 143			return pol;
 144	}
 145
 146	return &default_policy;
 147}
 148
 149static const struct mempolicy_operations {
 150	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 151	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 152} mpol_ops[MPOL_MAX];
 153
 154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 155{
 156	return pol->flags & MPOL_MODE_FLAGS;
 157}
 158
 159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 160				   const nodemask_t *rel)
 161{
 162	nodemask_t tmp;
 163	nodes_fold(tmp, *orig, nodes_weight(*rel));
 164	nodes_onto(*ret, tmp, *rel);
 165}
 166
 167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 168{
 169	if (nodes_empty(*nodes))
 170		return -EINVAL;
 171	pol->v.nodes = *nodes;
 172	return 0;
 173}
 174
 175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 176{
 177	if (!nodes)
 178		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 179	else if (nodes_empty(*nodes))
 180		return -EINVAL;			/*  no allowed nodes */
 181	else
 182		pol->v.preferred_node = first_node(*nodes);
 183	return 0;
 184}
 185
 186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (nodes_empty(*nodes))
 189		return -EINVAL;
 190	pol->v.nodes = *nodes;
 191	return 0;
 192}
 193
 194/*
 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 196 * any, for the new policy.  mpol_new() has already validated the nodes
 197 * parameter with respect to the policy mode and flags.  But, we need to
 198 * handle an empty nodemask with MPOL_PREFERRED here.
 199 *
 200 * Must be called holding task's alloc_lock to protect task's mems_allowed
 201 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 202 */
 203static int mpol_set_nodemask(struct mempolicy *pol,
 204		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 205{
 206	int ret;
 207
 208	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 209	if (pol == NULL)
 
 
 
 
 210		return 0;
 
 211	/* Check N_MEMORY */
 212	nodes_and(nsc->mask1,
 213		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 214
 215	VM_BUG_ON(!nodes);
 216	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 217		nodes = NULL;	/* explicit local allocation */
 218	else {
 219		if (pol->flags & MPOL_F_RELATIVE_NODES)
 220			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 221		else
 222			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 223
 224		if (mpol_store_user_nodemask(pol))
 225			pol->w.user_nodemask = *nodes;
 226		else
 227			pol->w.cpuset_mems_allowed =
 228						cpuset_current_mems_allowed;
 229	}
 230
 231	if (nodes)
 232		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 233	else
 234		ret = mpol_ops[pol->mode].create(pol, NULL);
 
 
 235	return ret;
 236}
 237
 238/*
 239 * This function just creates a new policy, does some check and simple
 240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 241 */
 242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 243				  nodemask_t *nodes)
 244{
 245	struct mempolicy *policy;
 246
 247	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 248		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 249
 250	if (mode == MPOL_DEFAULT) {
 251		if (nodes && !nodes_empty(*nodes))
 252			return ERR_PTR(-EINVAL);
 253		return NULL;
 254	}
 255	VM_BUG_ON(!nodes);
 256
 257	/*
 258	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 259	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 260	 * All other modes require a valid pointer to a non-empty nodemask.
 261	 */
 262	if (mode == MPOL_PREFERRED) {
 263		if (nodes_empty(*nodes)) {
 264			if (((flags & MPOL_F_STATIC_NODES) ||
 265			     (flags & MPOL_F_RELATIVE_NODES)))
 266				return ERR_PTR(-EINVAL);
 
 
 267		}
 268	} else if (mode == MPOL_LOCAL) {
 269		if (!nodes_empty(*nodes) ||
 270		    (flags & MPOL_F_STATIC_NODES) ||
 271		    (flags & MPOL_F_RELATIVE_NODES))
 272			return ERR_PTR(-EINVAL);
 273		mode = MPOL_PREFERRED;
 274	} else if (nodes_empty(*nodes))
 275		return ERR_PTR(-EINVAL);
 276	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 277	if (!policy)
 278		return ERR_PTR(-ENOMEM);
 279	atomic_set(&policy->refcnt, 1);
 280	policy->mode = mode;
 281	policy->flags = flags;
 282
 283	return policy;
 284}
 285
 286/* Slow path of a mpol destructor. */
 287void __mpol_put(struct mempolicy *p)
 288{
 289	if (!atomic_dec_and_test(&p->refcnt))
 290		return;
 291	kmem_cache_free(policy_cache, p);
 292}
 293
 294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 295{
 296}
 297
 298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 299{
 300	nodemask_t tmp;
 301
 302	if (pol->flags & MPOL_F_STATIC_NODES)
 303		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 304	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 305		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 306	else {
 307		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 308								*nodes);
 309		pol->w.cpuset_mems_allowed = *nodes;
 310	}
 311
 312	if (nodes_empty(tmp))
 313		tmp = *nodes;
 314
 315	pol->v.nodes = tmp;
 316}
 317
 318static void mpol_rebind_preferred(struct mempolicy *pol,
 319						const nodemask_t *nodes)
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES) {
 324		int node = first_node(pol->w.user_nodemask);
 325
 326		if (node_isset(node, *nodes)) {
 327			pol->v.preferred_node = node;
 328			pol->flags &= ~MPOL_F_LOCAL;
 329		} else
 330			pol->flags |= MPOL_F_LOCAL;
 331	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 332		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 333		pol->v.preferred_node = first_node(tmp);
 334	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 335		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 336						   pol->w.cpuset_mems_allowed,
 337						   *nodes);
 338		pol->w.cpuset_mems_allowed = *nodes;
 339	}
 340}
 341
 342/*
 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 344 *
 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 346 * policies are protected by task->mems_allowed_seq to prevent a premature
 347 * OOM/allocation failure due to parallel nodemask modification.
 348 */
 349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 350{
 351	if (!pol)
 352		return;
 353	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
 354	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 355		return;
 356
 357	mpol_ops[pol->mode].rebind(pol, newmask);
 358}
 359
 360/*
 361 * Wrapper for mpol_rebind_policy() that just requires task
 362 * pointer, and updates task mempolicy.
 363 *
 364 * Called with task's alloc_lock held.
 365 */
 366
 367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 368{
 369	mpol_rebind_policy(tsk->mempolicy, new);
 370}
 371
 372/*
 373 * Rebind each vma in mm to new nodemask.
 374 *
 375 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 376 */
 377
 378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 379{
 380	struct vm_area_struct *vma;
 381
 382	down_write(&mm->mmap_sem);
 383	for (vma = mm->mmap; vma; vma = vma->vm_next)
 384		mpol_rebind_policy(vma->vm_policy, new);
 385	up_write(&mm->mmap_sem);
 386}
 387
 388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 389	[MPOL_DEFAULT] = {
 390		.rebind = mpol_rebind_default,
 391	},
 392	[MPOL_INTERLEAVE] = {
 393		.create = mpol_new_interleave,
 394		.rebind = mpol_rebind_nodemask,
 395	},
 396	[MPOL_PREFERRED] = {
 397		.create = mpol_new_preferred,
 398		.rebind = mpol_rebind_preferred,
 399	},
 400	[MPOL_BIND] = {
 401		.create = mpol_new_bind,
 402		.rebind = mpol_rebind_nodemask,
 403	},
 
 
 
 404};
 405
 406static int migrate_page_add(struct page *page, struct list_head *pagelist,
 407				unsigned long flags);
 408
 409struct queue_pages {
 410	struct list_head *pagelist;
 411	unsigned long flags;
 412	nodemask_t *nmask;
 413	struct vm_area_struct *prev;
 
 
 414};
 415
 416/*
 417 * Check if the page's nid is in qp->nmask.
 418 *
 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 420 * in the invert of qp->nmask.
 421 */
 422static inline bool queue_pages_required(struct page *page,
 423					struct queue_pages *qp)
 424{
 425	int nid = page_to_nid(page);
 426	unsigned long flags = qp->flags;
 427
 428	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 429}
 430
 431/*
 432 * queue_pages_pmd() has four possible return values:
 433 * 0 - pages are placed on the right node or queued successfully.
 
 434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 435 *     specified.
 436 * 2 - THP was split.
 437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 438 *        existing page was already on a node that does not follow the
 439 *        policy.
 440 */
 441static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 442				unsigned long end, struct mm_walk *walk)
 
 443{
 444	int ret = 0;
 445	struct page *page;
 446	struct queue_pages *qp = walk->private;
 447	unsigned long flags;
 448
 449	if (unlikely(is_pmd_migration_entry(*pmd))) {
 450		ret = -EIO;
 451		goto unlock;
 452	}
 453	page = pmd_page(*pmd);
 454	if (is_huge_zero_page(page)) {
 455		spin_unlock(ptl);
 456		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 457		ret = 2;
 458		goto out;
 459	}
 460	if (!queue_pages_required(page, qp))
 461		goto unlock;
 462
 463	flags = qp->flags;
 464	/* go to thp migration */
 465	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 466		if (!vma_migratable(walk->vma) ||
 467		    migrate_page_add(page, qp->pagelist, flags)) {
 468			ret = 1;
 469			goto unlock;
 470		}
 471	} else
 472		ret = -EIO;
 473unlock:
 474	spin_unlock(ptl);
 475out:
 476	return ret;
 477}
 478
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 482 *
 483 * queue_pages_pte_range() has three possible return values:
 484 * 0 - pages are placed on the right node or queued successfully.
 
 485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 486 *     specified.
 487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 488 *        on a node that does not follow the policy.
 489 */
 490static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 491			unsigned long end, struct mm_walk *walk)
 492{
 493	struct vm_area_struct *vma = walk->vma;
 494	struct page *page;
 495	struct queue_pages *qp = walk->private;
 496	unsigned long flags = qp->flags;
 497	int ret;
 498	bool has_unmovable = false;
 499	pte_t *pte;
 500	spinlock_t *ptl;
 501
 502	ptl = pmd_trans_huge_lock(pmd, vma);
 503	if (ptl) {
 504		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 505		if (ret != 2)
 506			return ret;
 507	}
 508	/* THP was split, fall through to pte walk */
 509
 510	if (pmd_trans_unstable(pmd))
 511		return 0;
 512
 513	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 514	for (; addr != end; pte++, addr += PAGE_SIZE) {
 515		if (!pte_present(*pte))
 516			continue;
 517		page = vm_normal_page(vma, addr, *pte);
 518		if (!page)
 519			continue;
 520		/*
 521		 * vm_normal_page() filters out zero pages, but there might
 522		 * still be PageReserved pages to skip, perhaps in a VDSO.
 523		 */
 524		if (PageReserved(page))
 525			continue;
 526		if (!queue_pages_required(page, qp))
 527			continue;
 528		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 529			/* MPOL_MF_STRICT must be specified if we get here */
 530			if (!vma_migratable(vma)) {
 531				has_unmovable = true;
 532				break;
 533			}
 534
 535			/*
 536			 * Do not abort immediately since there may be
 537			 * temporary off LRU pages in the range.  Still
 538			 * need migrate other LRU pages.
 539			 */
 540			if (migrate_page_add(page, qp->pagelist, flags))
 541				has_unmovable = true;
 542		} else
 543			break;
 544	}
 545	pte_unmap_unlock(pte - 1, ptl);
 546	cond_resched();
 547
 548	if (has_unmovable)
 549		return 1;
 550
 551	return addr != end ? -EIO : 0;
 552}
 553
 554static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 555			       unsigned long addr, unsigned long end,
 556			       struct mm_walk *walk)
 557{
 
 558#ifdef CONFIG_HUGETLB_PAGE
 559	struct queue_pages *qp = walk->private;
 560	unsigned long flags = qp->flags;
 561	struct page *page;
 562	spinlock_t *ptl;
 563	pte_t entry;
 564
 565	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 566	entry = huge_ptep_get(pte);
 567	if (!pte_present(entry))
 568		goto unlock;
 569	page = pte_page(entry);
 570	if (!queue_pages_required(page, qp))
 571		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 573	if (flags & (MPOL_MF_MOVE_ALL) ||
 574	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 575		isolate_huge_page(page, qp->pagelist);
 
 
 
 
 
 
 
 576unlock:
 577	spin_unlock(ptl);
 578#else
 579	BUG();
 580#endif
 581	return 0;
 582}
 583
 584#ifdef CONFIG_NUMA_BALANCING
 585/*
 586 * This is used to mark a range of virtual addresses to be inaccessible.
 587 * These are later cleared by a NUMA hinting fault. Depending on these
 588 * faults, pages may be migrated for better NUMA placement.
 589 *
 590 * This is assuming that NUMA faults are handled using PROT_NONE. If
 591 * an architecture makes a different choice, it will need further
 592 * changes to the core.
 593 */
 594unsigned long change_prot_numa(struct vm_area_struct *vma,
 595			unsigned long addr, unsigned long end)
 596{
 597	int nr_updated;
 598
 599	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 600	if (nr_updated)
 601		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 602
 603	return nr_updated;
 604}
 605#else
 606static unsigned long change_prot_numa(struct vm_area_struct *vma,
 607			unsigned long addr, unsigned long end)
 608{
 609	return 0;
 610}
 611#endif /* CONFIG_NUMA_BALANCING */
 612
 613static int queue_pages_test_walk(unsigned long start, unsigned long end,
 614				struct mm_walk *walk)
 615{
 616	struct vm_area_struct *vma = walk->vma;
 617	struct queue_pages *qp = walk->private;
 618	unsigned long endvma = vma->vm_end;
 619	unsigned long flags = qp->flags;
 620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621	/*
 622	 * Need check MPOL_MF_STRICT to return -EIO if possible
 623	 * regardless of vma_migratable
 624	 */
 625	if (!vma_migratable(vma) &&
 626	    !(flags & MPOL_MF_STRICT))
 627		return 1;
 628
 629	if (endvma > end)
 630		endvma = end;
 631	if (vma->vm_start > start)
 632		start = vma->vm_start;
 633
 634	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 635		if (!vma->vm_next && vma->vm_end < end)
 636			return -EFAULT;
 637		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 638			return -EFAULT;
 639	}
 640
 641	qp->prev = vma;
 642
 643	if (flags & MPOL_MF_LAZY) {
 644		/* Similar to task_numa_work, skip inaccessible VMAs */
 645		if (!is_vm_hugetlb_page(vma) &&
 646			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 647			!(vma->vm_flags & VM_MIXEDMAP))
 648			change_prot_numa(vma, start, endvma);
 649		return 1;
 650	}
 651
 652	/* queue pages from current vma */
 653	if (flags & MPOL_MF_VALID)
 654		return 0;
 655	return 1;
 656}
 657
 658static const struct mm_walk_ops queue_pages_walk_ops = {
 659	.hugetlb_entry		= queue_pages_hugetlb,
 660	.pmd_entry		= queue_pages_pte_range,
 661	.test_walk		= queue_pages_test_walk,
 662};
 663
 664/*
 665 * Walk through page tables and collect pages to be migrated.
 666 *
 667 * If pages found in a given range are on a set of nodes (determined by
 668 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 669 * passed via @private.
 670 *
 671 * queue_pages_range() has three possible return values:
 672 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 673 *     specified.
 674 * 0 - queue pages successfully or no misplaced page.
 675 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 676 *         memory range specified by nodemask and maxnode points outside
 677 *         your accessible address space (-EFAULT)
 678 */
 679static int
 680queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 681		nodemask_t *nodes, unsigned long flags,
 682		struct list_head *pagelist)
 683{
 
 684	struct queue_pages qp = {
 685		.pagelist = pagelist,
 686		.flags = flags,
 687		.nmask = nodes,
 688		.prev = NULL,
 
 
 689	};
 690
 691	return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 
 
 
 
 
 
 692}
 693
 694/*
 695 * Apply policy to a single VMA
 696 * This must be called with the mmap_sem held for writing.
 697 */
 698static int vma_replace_policy(struct vm_area_struct *vma,
 699						struct mempolicy *pol)
 700{
 701	int err;
 702	struct mempolicy *old;
 703	struct mempolicy *new;
 704
 705	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 706		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 707		 vma->vm_ops, vma->vm_file,
 708		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 709
 710	new = mpol_dup(pol);
 711	if (IS_ERR(new))
 712		return PTR_ERR(new);
 713
 714	if (vma->vm_ops && vma->vm_ops->set_policy) {
 715		err = vma->vm_ops->set_policy(vma, new);
 716		if (err)
 717			goto err_out;
 718	}
 719
 720	old = vma->vm_policy;
 721	vma->vm_policy = new; /* protected by mmap_sem */
 722	mpol_put(old);
 723
 724	return 0;
 725 err_out:
 726	mpol_put(new);
 727	return err;
 728}
 729
 730/* Step 2: apply policy to a range and do splits. */
 731static int mbind_range(struct mm_struct *mm, unsigned long start,
 732		       unsigned long end, struct mempolicy *new_pol)
 733{
 734	struct vm_area_struct *next;
 735	struct vm_area_struct *prev;
 736	struct vm_area_struct *vma;
 737	int err = 0;
 738	pgoff_t pgoff;
 739	unsigned long vmstart;
 740	unsigned long vmend;
 741
 742	vma = find_vma(mm, start);
 743	if (!vma || vma->vm_start > start)
 744		return -EFAULT;
 745
 746	prev = vma->vm_prev;
 747	if (start > vma->vm_start)
 748		prev = vma;
 749
 750	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 751		next = vma->vm_next;
 752		vmstart = max(start, vma->vm_start);
 753		vmend   = min(end, vma->vm_end);
 754
 755		if (mpol_equal(vma_policy(vma), new_pol))
 756			continue;
 757
 758		pgoff = vma->vm_pgoff +
 759			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 760		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 761				 vma->anon_vma, vma->vm_file, pgoff,
 762				 new_pol, vma->vm_userfaultfd_ctx);
 763		if (prev) {
 764			vma = prev;
 765			next = vma->vm_next;
 766			if (mpol_equal(vma_policy(vma), new_pol))
 767				continue;
 768			/* vma_merge() joined vma && vma->next, case 8 */
 769			goto replace;
 770		}
 771		if (vma->vm_start != vmstart) {
 772			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 773			if (err)
 774				goto out;
 775		}
 776		if (vma->vm_end != vmend) {
 777			err = split_vma(vma->vm_mm, vma, vmend, 0);
 778			if (err)
 779				goto out;
 780		}
 781 replace:
 782		err = vma_replace_policy(vma, new_pol);
 783		if (err)
 784			goto out;
 785	}
 786
 787 out:
 788	return err;
 789}
 790
 791/* Set the process memory policy */
 792static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 793			     nodemask_t *nodes)
 794{
 795	struct mempolicy *new, *old;
 796	NODEMASK_SCRATCH(scratch);
 797	int ret;
 798
 799	if (!scratch)
 800		return -ENOMEM;
 801
 802	new = mpol_new(mode, flags, nodes);
 803	if (IS_ERR(new)) {
 804		ret = PTR_ERR(new);
 805		goto out;
 806	}
 807
 808	task_lock(current);
 809	ret = mpol_set_nodemask(new, nodes, scratch);
 810	if (ret) {
 811		task_unlock(current);
 812		mpol_put(new);
 813		goto out;
 814	}
 
 815	old = current->mempolicy;
 816	current->mempolicy = new;
 817	if (new && new->mode == MPOL_INTERLEAVE)
 818		current->il_prev = MAX_NUMNODES-1;
 819	task_unlock(current);
 820	mpol_put(old);
 821	ret = 0;
 822out:
 823	NODEMASK_SCRATCH_FREE(scratch);
 824	return ret;
 825}
 826
 827/*
 828 * Return nodemask for policy for get_mempolicy() query
 829 *
 830 * Called with task's alloc_lock held
 831 */
 832static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 833{
 834	nodes_clear(*nodes);
 835	if (p == &default_policy)
 836		return;
 837
 838	switch (p->mode) {
 839	case MPOL_BIND:
 840		/* Fall through */
 841	case MPOL_INTERLEAVE:
 842		*nodes = p->v.nodes;
 843		break;
 844	case MPOL_PREFERRED:
 845		if (!(p->flags & MPOL_F_LOCAL))
 846			node_set(p->v.preferred_node, *nodes);
 847		/* else return empty node mask for local allocation */
 
 848		break;
 849	default:
 850		BUG();
 851	}
 852}
 853
 854static int lookup_node(struct mm_struct *mm, unsigned long addr)
 855{
 856	struct page *p;
 857	int err;
 858
 859	int locked = 1;
 860	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
 861	if (err >= 0) {
 862		err = page_to_nid(p);
 863		put_page(p);
 864	}
 865	if (locked)
 866		up_read(&mm->mmap_sem);
 867	return err;
 868}
 869
 870/* Retrieve NUMA policy */
 871static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 872			     unsigned long addr, unsigned long flags)
 873{
 874	int err;
 875	struct mm_struct *mm = current->mm;
 876	struct vm_area_struct *vma = NULL;
 877	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 878
 879	if (flags &
 880		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 881		return -EINVAL;
 882
 883	if (flags & MPOL_F_MEMS_ALLOWED) {
 884		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 885			return -EINVAL;
 886		*policy = 0;	/* just so it's initialized */
 887		task_lock(current);
 888		*nmask  = cpuset_current_mems_allowed;
 889		task_unlock(current);
 890		return 0;
 891	}
 892
 893	if (flags & MPOL_F_ADDR) {
 894		/*
 895		 * Do NOT fall back to task policy if the
 896		 * vma/shared policy at addr is NULL.  We
 897		 * want to return MPOL_DEFAULT in this case.
 898		 */
 899		down_read(&mm->mmap_sem);
 900		vma = find_vma_intersection(mm, addr, addr+1);
 901		if (!vma) {
 902			up_read(&mm->mmap_sem);
 903			return -EFAULT;
 904		}
 905		if (vma->vm_ops && vma->vm_ops->get_policy)
 906			pol = vma->vm_ops->get_policy(vma, addr);
 907		else
 908			pol = vma->vm_policy;
 909	} else if (addr)
 910		return -EINVAL;
 911
 912	if (!pol)
 913		pol = &default_policy;	/* indicates default behavior */
 914
 915	if (flags & MPOL_F_NODE) {
 916		if (flags & MPOL_F_ADDR) {
 917			/*
 918			 * Take a refcount on the mpol, lookup_node()
 919			 * wil drop the mmap_sem, so after calling
 920			 * lookup_node() only "pol" remains valid, "vma"
 921			 * is stale.
 922			 */
 923			pol_refcount = pol;
 924			vma = NULL;
 925			mpol_get(pol);
 926			err = lookup_node(mm, addr);
 927			if (err < 0)
 928				goto out;
 929			*policy = err;
 930		} else if (pol == current->mempolicy &&
 931				pol->mode == MPOL_INTERLEAVE) {
 932			*policy = next_node_in(current->il_prev, pol->v.nodes);
 933		} else {
 934			err = -EINVAL;
 935			goto out;
 936		}
 937	} else {
 938		*policy = pol == &default_policy ? MPOL_DEFAULT :
 939						pol->mode;
 940		/*
 941		 * Internal mempolicy flags must be masked off before exposing
 942		 * the policy to userspace.
 943		 */
 944		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 945	}
 946
 947	err = 0;
 948	if (nmask) {
 949		if (mpol_store_user_nodemask(pol)) {
 950			*nmask = pol->w.user_nodemask;
 951		} else {
 952			task_lock(current);
 953			get_policy_nodemask(pol, nmask);
 954			task_unlock(current);
 955		}
 956	}
 957
 958 out:
 959	mpol_cond_put(pol);
 960	if (vma)
 961		up_read(&mm->mmap_sem);
 962	if (pol_refcount)
 963		mpol_put(pol_refcount);
 964	return err;
 965}
 966
 967#ifdef CONFIG_MIGRATION
 968/*
 969 * page migration, thp tail pages can be passed.
 970 */
 971static int migrate_page_add(struct page *page, struct list_head *pagelist,
 972				unsigned long flags)
 973{
 974	struct page *head = compound_head(page);
 975	/*
 976	 * Avoid migrating a page that is shared with others.
 977	 */
 978	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 979		if (!isolate_lru_page(head)) {
 980			list_add_tail(&head->lru, pagelist);
 981			mod_node_page_state(page_pgdat(head),
 982				NR_ISOLATED_ANON + page_is_file_cache(head),
 983				hpage_nr_pages(head));
 984		} else if (flags & MPOL_MF_STRICT) {
 985			/*
 986			 * Non-movable page may reach here.  And, there may be
 987			 * temporary off LRU pages or non-LRU movable pages.
 988			 * Treat them as unmovable pages since they can't be
 989			 * isolated, so they can't be moved at the moment.  It
 990			 * should return -EIO for this case too.
 991			 */
 992			return -EIO;
 993		}
 994	}
 995
 996	return 0;
 997}
 998
 999/* page allocation callback for NUMA node migration */
1000struct page *alloc_new_node_page(struct page *page, unsigned long node)
1001{
1002	if (PageHuge(page))
1003		return alloc_huge_page_node(page_hstate(compound_head(page)),
1004					node);
1005	else if (PageTransHuge(page)) {
1006		struct page *thp;
1007
1008		thp = alloc_pages_node(node,
1009			(GFP_TRANSHUGE | __GFP_THISNODE),
1010			HPAGE_PMD_ORDER);
1011		if (!thp)
1012			return NULL;
1013		prep_transhuge_page(thp);
1014		return thp;
1015	} else
1016		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1017						    __GFP_THISNODE, 0);
1018}
1019
1020/*
1021 * Migrate pages from one node to a target node.
1022 * Returns error or the number of pages not migrated.
1023 */
1024static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1025			   int flags)
1026{
1027	nodemask_t nmask;
1028	LIST_HEAD(pagelist);
1029	int err = 0;
 
 
 
 
1030
1031	nodes_clear(nmask);
1032	node_set(source, nmask);
1033
1034	/*
1035	 * This does not "check" the range but isolates all pages that
1036	 * need migration.  Between passing in the full user address
1037	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1038	 */
1039	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1040	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1041			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1042
1043	if (!list_empty(&pagelist)) {
1044		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1045					MIGRATE_SYNC, MR_SYSCALL);
1046		if (err)
1047			putback_movable_pages(&pagelist);
1048	}
1049
1050	return err;
1051}
1052
1053/*
1054 * Move pages between the two nodesets so as to preserve the physical
1055 * layout as much as possible.
1056 *
1057 * Returns the number of page that could not be moved.
1058 */
1059int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1060		     const nodemask_t *to, int flags)
1061{
1062	int busy = 0;
1063	int err;
1064	nodemask_t tmp;
1065
1066	err = migrate_prep();
1067	if (err)
1068		return err;
1069
1070	down_read(&mm->mmap_sem);
1071
1072	/*
1073	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1074	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1075	 * bit in 'tmp', and return that <source, dest> pair for migration.
1076	 * The pair of nodemasks 'to' and 'from' define the map.
1077	 *
1078	 * If no pair of bits is found that way, fallback to picking some
1079	 * pair of 'source' and 'dest' bits that are not the same.  If the
1080	 * 'source' and 'dest' bits are the same, this represents a node
1081	 * that will be migrating to itself, so no pages need move.
1082	 *
1083	 * If no bits are left in 'tmp', or if all remaining bits left
1084	 * in 'tmp' correspond to the same bit in 'to', return false
1085	 * (nothing left to migrate).
1086	 *
1087	 * This lets us pick a pair of nodes to migrate between, such that
1088	 * if possible the dest node is not already occupied by some other
1089	 * source node, minimizing the risk of overloading the memory on a
1090	 * node that would happen if we migrated incoming memory to a node
1091	 * before migrating outgoing memory source that same node.
1092	 *
1093	 * A single scan of tmp is sufficient.  As we go, we remember the
1094	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1095	 * that not only moved, but what's better, moved to an empty slot
1096	 * (d is not set in tmp), then we break out then, with that pair.
1097	 * Otherwise when we finish scanning from_tmp, we at least have the
1098	 * most recent <s, d> pair that moved.  If we get all the way through
1099	 * the scan of tmp without finding any node that moved, much less
1100	 * moved to an empty node, then there is nothing left worth migrating.
1101	 */
1102
1103	tmp = *from;
1104	while (!nodes_empty(tmp)) {
1105		int s,d;
1106		int source = NUMA_NO_NODE;
1107		int dest = 0;
1108
1109		for_each_node_mask(s, tmp) {
1110
1111			/*
1112			 * do_migrate_pages() tries to maintain the relative
1113			 * node relationship of the pages established between
1114			 * threads and memory areas.
1115                         *
1116			 * However if the number of source nodes is not equal to
1117			 * the number of destination nodes we can not preserve
1118			 * this node relative relationship.  In that case, skip
1119			 * copying memory from a node that is in the destination
1120			 * mask.
1121			 *
1122			 * Example: [2,3,4] -> [3,4,5] moves everything.
1123			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1124			 */
1125
1126			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1127						(node_isset(s, *to)))
1128				continue;
1129
1130			d = node_remap(s, *from, *to);
1131			if (s == d)
1132				continue;
1133
1134			source = s;	/* Node moved. Memorize */
1135			dest = d;
1136
1137			/* dest not in remaining from nodes? */
1138			if (!node_isset(dest, tmp))
1139				break;
1140		}
1141		if (source == NUMA_NO_NODE)
1142			break;
1143
1144		node_clear(source, tmp);
1145		err = migrate_to_node(mm, source, dest, flags);
1146		if (err > 0)
1147			busy += err;
1148		if (err < 0)
1149			break;
1150	}
1151	up_read(&mm->mmap_sem);
 
 
1152	if (err < 0)
1153		return err;
1154	return busy;
1155
1156}
1157
1158/*
1159 * Allocate a new page for page migration based on vma policy.
1160 * Start by assuming the page is mapped by the same vma as contains @start.
1161 * Search forward from there, if not.  N.B., this assumes that the
1162 * list of pages handed to migrate_pages()--which is how we get here--
1163 * is in virtual address order.
1164 */
1165static struct page *new_page(struct page *page, unsigned long start)
1166{
1167	struct vm_area_struct *vma;
1168	unsigned long uninitialized_var(address);
1169
1170	vma = find_vma(current->mm, start);
1171	while (vma) {
1172		address = page_address_in_vma(page, vma);
1173		if (address != -EFAULT)
1174			break;
1175		vma = vma->vm_next;
1176	}
1177
1178	if (PageHuge(page)) {
1179		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1180				vma, address);
1181	} else if (PageTransHuge(page)) {
1182		struct page *thp;
1183
1184		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1185					 HPAGE_PMD_ORDER);
1186		if (!thp)
1187			return NULL;
1188		prep_transhuge_page(thp);
1189		return thp;
1190	}
1191	/*
1192	 * if !vma, alloc_page_vma() will use task or system default policy
1193	 */
1194	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1195			vma, address);
1196}
1197#else
1198
1199static int migrate_page_add(struct page *page, struct list_head *pagelist,
1200				unsigned long flags)
1201{
1202	return -EIO;
1203}
1204
1205int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1206		     const nodemask_t *to, int flags)
1207{
1208	return -ENOSYS;
1209}
1210
1211static struct page *new_page(struct page *page, unsigned long start)
1212{
1213	return NULL;
1214}
1215#endif
1216
1217static long do_mbind(unsigned long start, unsigned long len,
1218		     unsigned short mode, unsigned short mode_flags,
1219		     nodemask_t *nmask, unsigned long flags)
1220{
1221	struct mm_struct *mm = current->mm;
1222	struct mempolicy *new;
1223	unsigned long end;
1224	int err;
1225	int ret;
1226	LIST_HEAD(pagelist);
1227
1228	if (flags & ~(unsigned long)MPOL_MF_VALID)
1229		return -EINVAL;
1230	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1231		return -EPERM;
1232
1233	if (start & ~PAGE_MASK)
1234		return -EINVAL;
1235
1236	if (mode == MPOL_DEFAULT)
1237		flags &= ~MPOL_MF_STRICT;
1238
1239	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1240	end = start + len;
1241
1242	if (end < start)
1243		return -EINVAL;
1244	if (end == start)
1245		return 0;
1246
1247	new = mpol_new(mode, mode_flags, nmask);
1248	if (IS_ERR(new))
1249		return PTR_ERR(new);
1250
1251	if (flags & MPOL_MF_LAZY)
1252		new->flags |= MPOL_F_MOF;
1253
1254	/*
1255	 * If we are using the default policy then operation
1256	 * on discontinuous address spaces is okay after all
1257	 */
1258	if (!new)
1259		flags |= MPOL_MF_DISCONTIG_OK;
1260
1261	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1262		 start, start + len, mode, mode_flags,
1263		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1264
1265	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1266
1267		err = migrate_prep();
1268		if (err)
1269			goto mpol_out;
1270	}
1271	{
1272		NODEMASK_SCRATCH(scratch);
1273		if (scratch) {
1274			down_write(&mm->mmap_sem);
1275			task_lock(current);
1276			err = mpol_set_nodemask(new, nmask, scratch);
1277			task_unlock(current);
1278			if (err)
1279				up_write(&mm->mmap_sem);
1280		} else
1281			err = -ENOMEM;
1282		NODEMASK_SCRATCH_FREE(scratch);
1283	}
1284	if (err)
1285		goto mpol_out;
1286
1287	ret = queue_pages_range(mm, start, end, nmask,
1288			  flags | MPOL_MF_INVERT, &pagelist);
1289
1290	if (ret < 0) {
1291		err = ret;
1292		goto up_out;
1293	}
1294
1295	err = mbind_range(mm, start, end, new);
1296
1297	if (!err) {
1298		int nr_failed = 0;
1299
1300		if (!list_empty(&pagelist)) {
1301			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1302			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1303				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1304			if (nr_failed)
1305				putback_movable_pages(&pagelist);
1306		}
1307
1308		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1309			err = -EIO;
1310	} else {
1311up_out:
1312		if (!list_empty(&pagelist))
1313			putback_movable_pages(&pagelist);
1314	}
1315
1316	up_write(&mm->mmap_sem);
1317mpol_out:
1318	mpol_put(new);
 
 
1319	return err;
1320}
1321
1322/*
1323 * User space interface with variable sized bitmaps for nodelists.
1324 */
1325
1326/* Copy a node mask from user space. */
1327static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1328		     unsigned long maxnode)
1329{
1330	unsigned long k;
1331	unsigned long t;
1332	unsigned long nlongs;
1333	unsigned long endmask;
1334
1335	--maxnode;
1336	nodes_clear(*nodes);
1337	if (maxnode == 0 || !nmask)
1338		return 0;
1339	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1340		return -EINVAL;
1341
1342	nlongs = BITS_TO_LONGS(maxnode);
1343	if ((maxnode % BITS_PER_LONG) == 0)
1344		endmask = ~0UL;
1345	else
1346		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1347
1348	/*
1349	 * When the user specified more nodes than supported just check
1350	 * if the non supported part is all zero.
1351	 *
1352	 * If maxnode have more longs than MAX_NUMNODES, check
1353	 * the bits in that area first. And then go through to
1354	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1355	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1356	 */
1357	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1358		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1359			if (get_user(t, nmask + k))
1360				return -EFAULT;
1361			if (k == nlongs - 1) {
1362				if (t & endmask)
1363					return -EINVAL;
1364			} else if (t)
1365				return -EINVAL;
1366		}
1367		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1368		endmask = ~0UL;
1369	}
1370
1371	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1372		unsigned long valid_mask = endmask;
1373
1374		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1375		if (get_user(t, nmask + nlongs - 1))
1376			return -EFAULT;
1377		if (t & valid_mask)
1378			return -EINVAL;
1379	}
1380
1381	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1382		return -EFAULT;
1383	nodes_addr(*nodes)[nlongs-1] &= endmask;
1384	return 0;
1385}
1386
1387/* Copy a kernel node mask to user space */
1388static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1389			      nodemask_t *nodes)
1390{
1391	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1392	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1393
1394	if (copy > nbytes) {
1395		if (copy > PAGE_SIZE)
1396			return -EINVAL;
1397		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1398			return -EFAULT;
1399		copy = nbytes;
1400	}
1401	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1402}
1403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404static long kernel_mbind(unsigned long start, unsigned long len,
1405			 unsigned long mode, const unsigned long __user *nmask,
1406			 unsigned long maxnode, unsigned int flags)
1407{
 
1408	nodemask_t nodes;
 
1409	int err;
1410	unsigned short mode_flags;
1411
1412	start = untagged_addr(start);
1413	mode_flags = mode & MPOL_MODE_FLAGS;
1414	mode &= ~MPOL_MODE_FLAGS;
1415	if (mode >= MPOL_MAX)
1416		return -EINVAL;
1417	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1418	    (mode_flags & MPOL_F_RELATIVE_NODES))
1419		return -EINVAL;
1420	err = get_nodes(&nodes, nmask, maxnode);
1421	if (err)
1422		return err;
1423	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
 
1424}
1425
1426SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1427		unsigned long, mode, const unsigned long __user *, nmask,
1428		unsigned long, maxnode, unsigned int, flags)
1429{
1430	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1431}
1432
1433/* Set the process memory policy */
1434static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1435				 unsigned long maxnode)
1436{
1437	int err;
1438	nodemask_t nodes;
1439	unsigned short flags;
 
 
 
 
 
1440
1441	flags = mode & MPOL_MODE_FLAGS;
1442	mode &= ~MPOL_MODE_FLAGS;
1443	if ((unsigned int)mode >= MPOL_MAX)
1444		return -EINVAL;
1445	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1446		return -EINVAL;
1447	err = get_nodes(&nodes, nmask, maxnode);
1448	if (err)
1449		return err;
1450	return do_set_mempolicy(mode, flags, &nodes);
 
1451}
1452
1453SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1454		unsigned long, maxnode)
1455{
1456	return kernel_set_mempolicy(mode, nmask, maxnode);
1457}
1458
1459static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1460				const unsigned long __user *old_nodes,
1461				const unsigned long __user *new_nodes)
1462{
1463	struct mm_struct *mm = NULL;
1464	struct task_struct *task;
1465	nodemask_t task_nodes;
1466	int err;
1467	nodemask_t *old;
1468	nodemask_t *new;
1469	NODEMASK_SCRATCH(scratch);
1470
1471	if (!scratch)
1472		return -ENOMEM;
1473
1474	old = &scratch->mask1;
1475	new = &scratch->mask2;
1476
1477	err = get_nodes(old, old_nodes, maxnode);
1478	if (err)
1479		goto out;
1480
1481	err = get_nodes(new, new_nodes, maxnode);
1482	if (err)
1483		goto out;
1484
1485	/* Find the mm_struct */
1486	rcu_read_lock();
1487	task = pid ? find_task_by_vpid(pid) : current;
1488	if (!task) {
1489		rcu_read_unlock();
1490		err = -ESRCH;
1491		goto out;
1492	}
1493	get_task_struct(task);
1494
1495	err = -EINVAL;
1496
1497	/*
1498	 * Check if this process has the right to modify the specified process.
1499	 * Use the regular "ptrace_may_access()" checks.
1500	 */
1501	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1502		rcu_read_unlock();
1503		err = -EPERM;
1504		goto out_put;
1505	}
1506	rcu_read_unlock();
1507
1508	task_nodes = cpuset_mems_allowed(task);
1509	/* Is the user allowed to access the target nodes? */
1510	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1511		err = -EPERM;
1512		goto out_put;
1513	}
1514
1515	task_nodes = cpuset_mems_allowed(current);
1516	nodes_and(*new, *new, task_nodes);
1517	if (nodes_empty(*new))
1518		goto out_put;
1519
1520	err = security_task_movememory(task);
1521	if (err)
1522		goto out_put;
1523
1524	mm = get_task_mm(task);
1525	put_task_struct(task);
1526
1527	if (!mm) {
1528		err = -EINVAL;
1529		goto out;
1530	}
1531
1532	err = do_migrate_pages(mm, old, new,
1533		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1534
1535	mmput(mm);
1536out:
1537	NODEMASK_SCRATCH_FREE(scratch);
1538
1539	return err;
1540
1541out_put:
1542	put_task_struct(task);
1543	goto out;
1544
1545}
1546
1547SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1548		const unsigned long __user *, old_nodes,
1549		const unsigned long __user *, new_nodes)
1550{
1551	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1552}
1553
1554
1555/* Retrieve NUMA policy */
1556static int kernel_get_mempolicy(int __user *policy,
1557				unsigned long __user *nmask,
1558				unsigned long maxnode,
1559				unsigned long addr,
1560				unsigned long flags)
1561{
1562	int err;
1563	int uninitialized_var(pval);
1564	nodemask_t nodes;
1565
1566	addr = untagged_addr(addr);
1567
1568	if (nmask != NULL && maxnode < nr_node_ids)
1569		return -EINVAL;
1570
 
 
1571	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1572
1573	if (err)
1574		return err;
1575
1576	if (policy && put_user(pval, policy))
1577		return -EFAULT;
1578
1579	if (nmask)
1580		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1581
1582	return err;
1583}
1584
1585SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1586		unsigned long __user *, nmask, unsigned long, maxnode,
1587		unsigned long, addr, unsigned long, flags)
1588{
1589	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1590}
1591
1592#ifdef CONFIG_COMPAT
1593
1594COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1595		       compat_ulong_t __user *, nmask,
1596		       compat_ulong_t, maxnode,
1597		       compat_ulong_t, addr, compat_ulong_t, flags)
1598{
1599	long err;
1600	unsigned long __user *nm = NULL;
1601	unsigned long nr_bits, alloc_size;
1602	DECLARE_BITMAP(bm, MAX_NUMNODES);
1603
1604	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1605	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1606
1607	if (nmask)
1608		nm = compat_alloc_user_space(alloc_size);
1609
1610	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1611
1612	if (!err && nmask) {
1613		unsigned long copy_size;
1614		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1615		err = copy_from_user(bm, nm, copy_size);
1616		/* ensure entire bitmap is zeroed */
1617		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1618		err |= compat_put_bitmap(nmask, bm, nr_bits);
1619	}
1620
1621	return err;
1622}
1623
1624COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1625		       compat_ulong_t, maxnode)
1626{
1627	unsigned long __user *nm = NULL;
1628	unsigned long nr_bits, alloc_size;
1629	DECLARE_BITMAP(bm, MAX_NUMNODES);
1630
1631	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1632	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1633
1634	if (nmask) {
1635		if (compat_get_bitmap(bm, nmask, nr_bits))
1636			return -EFAULT;
1637		nm = compat_alloc_user_space(alloc_size);
1638		if (copy_to_user(nm, bm, alloc_size))
1639			return -EFAULT;
1640	}
1641
1642	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1643}
1644
1645COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1646		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1647		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1648{
1649	unsigned long __user *nm = NULL;
1650	unsigned long nr_bits, alloc_size;
1651	nodemask_t bm;
1652
1653	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1654	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1655
1656	if (nmask) {
1657		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1658			return -EFAULT;
1659		nm = compat_alloc_user_space(alloc_size);
1660		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1661			return -EFAULT;
1662	}
1663
1664	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1665}
1666
1667COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1668		       compat_ulong_t, maxnode,
1669		       const compat_ulong_t __user *, old_nodes,
1670		       const compat_ulong_t __user *, new_nodes)
1671{
1672	unsigned long __user *old = NULL;
1673	unsigned long __user *new = NULL;
1674	nodemask_t tmp_mask;
1675	unsigned long nr_bits;
1676	unsigned long size;
1677
1678	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1679	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1680	if (old_nodes) {
1681		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1682			return -EFAULT;
1683		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1684		if (new_nodes)
1685			new = old + size / sizeof(unsigned long);
1686		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1687			return -EFAULT;
1688	}
1689	if (new_nodes) {
1690		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1691			return -EFAULT;
1692		if (new == NULL)
1693			new = compat_alloc_user_space(size);
1694		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1695			return -EFAULT;
1696	}
1697	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1698}
1699
1700#endif /* CONFIG_COMPAT */
1701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1703						unsigned long addr)
1704{
1705	struct mempolicy *pol = NULL;
1706
1707	if (vma) {
1708		if (vma->vm_ops && vma->vm_ops->get_policy) {
1709			pol = vma->vm_ops->get_policy(vma, addr);
1710		} else if (vma->vm_policy) {
1711			pol = vma->vm_policy;
1712
1713			/*
1714			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1715			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1716			 * count on these policies which will be dropped by
1717			 * mpol_cond_put() later
1718			 */
1719			if (mpol_needs_cond_ref(pol))
1720				mpol_get(pol);
1721		}
1722	}
1723
1724	return pol;
1725}
1726
1727/*
1728 * get_vma_policy(@vma, @addr)
1729 * @vma: virtual memory area whose policy is sought
1730 * @addr: address in @vma for shared policy lookup
1731 *
1732 * Returns effective policy for a VMA at specified address.
1733 * Falls back to current->mempolicy or system default policy, as necessary.
1734 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1735 * count--added by the get_policy() vm_op, as appropriate--to protect against
1736 * freeing by another task.  It is the caller's responsibility to free the
1737 * extra reference for shared policies.
1738 */
1739static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1740						unsigned long addr)
1741{
1742	struct mempolicy *pol = __get_vma_policy(vma, addr);
1743
1744	if (!pol)
1745		pol = get_task_policy(current);
1746
1747	return pol;
1748}
1749
1750bool vma_policy_mof(struct vm_area_struct *vma)
1751{
1752	struct mempolicy *pol;
1753
1754	if (vma->vm_ops && vma->vm_ops->get_policy) {
1755		bool ret = false;
1756
1757		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1758		if (pol && (pol->flags & MPOL_F_MOF))
1759			ret = true;
1760		mpol_cond_put(pol);
1761
1762		return ret;
1763	}
1764
1765	pol = vma->vm_policy;
1766	if (!pol)
1767		pol = get_task_policy(current);
1768
1769	return pol->flags & MPOL_F_MOF;
1770}
1771
1772static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1773{
1774	enum zone_type dynamic_policy_zone = policy_zone;
1775
1776	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1777
1778	/*
1779	 * if policy->v.nodes has movable memory only,
1780	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1781	 *
1782	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1783	 * so if the following test faile, it implies
1784	 * policy->v.nodes has movable memory only.
1785	 */
1786	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1787		dynamic_policy_zone = ZONE_MOVABLE;
1788
1789	return zone >= dynamic_policy_zone;
1790}
1791
1792/*
1793 * Return a nodemask representing a mempolicy for filtering nodes for
1794 * page allocation
1795 */
1796static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1797{
1798	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1799	if (unlikely(policy->mode == MPOL_BIND) &&
1800			apply_policy_zone(policy, gfp_zone(gfp)) &&
1801			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1802		return &policy->v.nodes;
1803
1804	return NULL;
1805}
1806
1807/* Return the node id preferred by the given mempolicy, or the given id */
1808static int policy_node(gfp_t gfp, struct mempolicy *policy,
1809								int nd)
1810{
1811	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1812		nd = policy->v.preferred_node;
1813	else {
1814		/*
1815		 * __GFP_THISNODE shouldn't even be used with the bind policy
1816		 * because we might easily break the expectation to stay on the
1817		 * requested node and not break the policy.
1818		 */
1819		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1820	}
1821
1822	return nd;
1823}
1824
1825/* Do dynamic interleaving for a process */
1826static unsigned interleave_nodes(struct mempolicy *policy)
1827{
1828	unsigned next;
1829	struct task_struct *me = current;
1830
1831	next = next_node_in(me->il_prev, policy->v.nodes);
1832	if (next < MAX_NUMNODES)
1833		me->il_prev = next;
1834	return next;
1835}
1836
1837/*
1838 * Depending on the memory policy provide a node from which to allocate the
1839 * next slab entry.
1840 */
1841unsigned int mempolicy_slab_node(void)
1842{
1843	struct mempolicy *policy;
1844	int node = numa_mem_id();
1845
1846	if (in_interrupt())
1847		return node;
1848
1849	policy = current->mempolicy;
1850	if (!policy || policy->flags & MPOL_F_LOCAL)
1851		return node;
1852
1853	switch (policy->mode) {
1854	case MPOL_PREFERRED:
1855		/*
1856		 * handled MPOL_F_LOCAL above
1857		 */
1858		return policy->v.preferred_node;
1859
1860	case MPOL_INTERLEAVE:
1861		return interleave_nodes(policy);
1862
1863	case MPOL_BIND: {
1864		struct zoneref *z;
1865
1866		/*
1867		 * Follow bind policy behavior and start allocation at the
1868		 * first node.
1869		 */
1870		struct zonelist *zonelist;
1871		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1872		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1873		z = first_zones_zonelist(zonelist, highest_zoneidx,
1874							&policy->v.nodes);
1875		return z->zone ? zone_to_nid(z->zone) : node;
1876	}
 
 
1877
1878	default:
1879		BUG();
1880	}
1881}
1882
1883/*
1884 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1885 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1886 * number of present nodes.
1887 */
1888static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1889{
1890	unsigned nnodes = nodes_weight(pol->v.nodes);
1891	unsigned target;
1892	int i;
1893	int nid;
 
 
 
 
 
 
 
 
1894
 
1895	if (!nnodes)
1896		return numa_node_id();
1897	target = (unsigned int)n % nnodes;
1898	nid = first_node(pol->v.nodes);
1899	for (i = 0; i < target; i++)
1900		nid = next_node(nid, pol->v.nodes);
1901	return nid;
1902}
1903
1904/* Determine a node number for interleave */
1905static inline unsigned interleave_nid(struct mempolicy *pol,
1906		 struct vm_area_struct *vma, unsigned long addr, int shift)
1907{
1908	if (vma) {
1909		unsigned long off;
1910
1911		/*
1912		 * for small pages, there is no difference between
1913		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1914		 * for huge pages, since vm_pgoff is in units of small
1915		 * pages, we need to shift off the always 0 bits to get
1916		 * a useful offset.
1917		 */
1918		BUG_ON(shift < PAGE_SHIFT);
1919		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1920		off += (addr - vma->vm_start) >> shift;
1921		return offset_il_node(pol, off);
1922	} else
1923		return interleave_nodes(pol);
1924}
1925
1926#ifdef CONFIG_HUGETLBFS
1927/*
1928 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1929 * @vma: virtual memory area whose policy is sought
1930 * @addr: address in @vma for shared policy lookup and interleave policy
1931 * @gfp_flags: for requested zone
1932 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1933 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1934 *
1935 * Returns a nid suitable for a huge page allocation and a pointer
1936 * to the struct mempolicy for conditional unref after allocation.
1937 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1938 * @nodemask for filtering the zonelist.
1939 *
1940 * Must be protected by read_mems_allowed_begin()
1941 */
1942int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1943				struct mempolicy **mpol, nodemask_t **nodemask)
1944{
1945	int nid;
1946
1947	*mpol = get_vma_policy(vma, addr);
1948	*nodemask = NULL;	/* assume !MPOL_BIND */
1949
1950	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1951		nid = interleave_nid(*mpol, vma, addr,
1952					huge_page_shift(hstate_vma(vma)));
1953	} else {
1954		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1955		if ((*mpol)->mode == MPOL_BIND)
1956			*nodemask = &(*mpol)->v.nodes;
1957	}
1958	return nid;
1959}
1960
1961/*
1962 * init_nodemask_of_mempolicy
1963 *
1964 * If the current task's mempolicy is "default" [NULL], return 'false'
1965 * to indicate default policy.  Otherwise, extract the policy nodemask
1966 * for 'bind' or 'interleave' policy into the argument nodemask, or
1967 * initialize the argument nodemask to contain the single node for
1968 * 'preferred' or 'local' policy and return 'true' to indicate presence
1969 * of non-default mempolicy.
1970 *
1971 * We don't bother with reference counting the mempolicy [mpol_get/put]
1972 * because the current task is examining it's own mempolicy and a task's
1973 * mempolicy is only ever changed by the task itself.
1974 *
1975 * N.B., it is the caller's responsibility to free a returned nodemask.
1976 */
1977bool init_nodemask_of_mempolicy(nodemask_t *mask)
1978{
1979	struct mempolicy *mempolicy;
1980	int nid;
1981
1982	if (!(mask && current->mempolicy))
1983		return false;
1984
1985	task_lock(current);
1986	mempolicy = current->mempolicy;
1987	switch (mempolicy->mode) {
1988	case MPOL_PREFERRED:
1989		if (mempolicy->flags & MPOL_F_LOCAL)
1990			nid = numa_node_id();
1991		else
1992			nid = mempolicy->v.preferred_node;
1993		init_nodemask_of_node(mask, nid);
1994		break;
1995
1996	case MPOL_BIND:
1997		/* Fall through */
1998	case MPOL_INTERLEAVE:
1999		*mask =  mempolicy->v.nodes;
 
 
 
 
2000		break;
2001
2002	default:
2003		BUG();
2004	}
2005	task_unlock(current);
2006
2007	return true;
2008}
2009#endif
2010
2011/*
2012 * mempolicy_nodemask_intersects
2013 *
2014 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2015 * policy.  Otherwise, check for intersection between mask and the policy
2016 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2017 * policy, always return true since it may allocate elsewhere on fallback.
2018 *
2019 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2020 */
2021bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2022					const nodemask_t *mask)
2023{
2024	struct mempolicy *mempolicy;
2025	bool ret = true;
2026
2027	if (!mask)
2028		return ret;
 
2029	task_lock(tsk);
2030	mempolicy = tsk->mempolicy;
2031	if (!mempolicy)
2032		goto out;
2033
2034	switch (mempolicy->mode) {
2035	case MPOL_PREFERRED:
2036		/*
2037		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2038		 * allocate from, they may fallback to other nodes when oom.
2039		 * Thus, it's possible for tsk to have allocated memory from
2040		 * nodes in mask.
2041		 */
2042		break;
2043	case MPOL_BIND:
2044	case MPOL_INTERLEAVE:
2045		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2046		break;
2047	default:
2048		BUG();
2049	}
2050out:
2051	task_unlock(tsk);
 
2052	return ret;
2053}
2054
2055/* Allocate a page in interleaved policy.
2056   Own path because it needs to do special accounting. */
2057static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2058					unsigned nid)
2059{
2060	struct page *page;
2061
2062	page = __alloc_pages(gfp, order, nid);
2063	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2064	if (!static_branch_likely(&vm_numa_stat_key))
2065		return page;
2066	if (page && page_to_nid(page) == nid) {
2067		preempt_disable();
2068		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2069		preempt_enable();
2070	}
2071	return page;
2072}
2073
2074/**
2075 * 	alloc_pages_vma	- Allocate a page for a VMA.
 
 
 
 
 
 
 
 
 
 
 
2076 *
2077 * 	@gfp:
2078 *      %GFP_USER    user allocation.
2079 *      %GFP_KERNEL  kernel allocations,
2080 *      %GFP_HIGHMEM highmem/user allocations,
2081 *      %GFP_FS      allocation should not call back into a file system.
2082 *      %GFP_ATOMIC  don't sleep.
2083 *
2084 *	@order:Order of the GFP allocation.
2085 * 	@vma:  Pointer to VMA or NULL if not available.
2086 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2087 *	@node: Which node to prefer for allocation (modulo policy).
2088 *	@hugepage: for hugepages try only the preferred node if possible
2089 *
2090 * 	This function allocates a page from the kernel page pool and applies
2091 *	a NUMA policy associated with the VMA or the current process.
2092 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2093 *	mm_struct of the VMA to prevent it from going away. Should be used for
2094 *	all allocations for pages that will be mapped into user space. Returns
2095 *	NULL when no page can be allocated.
2096 */
2097struct page *
2098alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2099		unsigned long addr, int node, bool hugepage)
2100{
2101	struct mempolicy *pol;
2102	struct page *page;
2103	int preferred_nid;
2104	nodemask_t *nmask;
2105
2106	pol = get_vma_policy(vma, addr);
2107
2108	if (pol->mode == MPOL_INTERLEAVE) {
2109		unsigned nid;
2110
2111		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2112		mpol_cond_put(pol);
2113		page = alloc_page_interleave(gfp, order, nid);
2114		goto out;
2115	}
2116
2117	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2118		int hpage_node = node;
2119
2120		/*
2121		 * For hugepage allocation and non-interleave policy which
2122		 * allows the current node (or other explicitly preferred
2123		 * node) we only try to allocate from the current/preferred
2124		 * node and don't fall back to other nodes, as the cost of
2125		 * remote accesses would likely offset THP benefits.
2126		 *
2127		 * If the policy is interleave, or does not allow the current
2128		 * node in its nodemask, we allocate the standard way.
2129		 */
2130		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2131			hpage_node = pol->v.preferred_node;
2132
2133		nmask = policy_nodemask(gfp, pol);
2134		if (!nmask || node_isset(hpage_node, *nmask)) {
2135			mpol_cond_put(pol);
 
 
 
 
2136			page = __alloc_pages_node(hpage_node,
2137						gfp | __GFP_THISNODE, order);
2138
2139			/*
2140			 * If hugepage allocations are configured to always
2141			 * synchronous compact or the vma has been madvised
2142			 * to prefer hugepage backing, retry allowing remote
2143			 * memory as well.
2144			 */
2145			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2146				page = __alloc_pages_node(hpage_node,
2147						gfp | __GFP_NORETRY, order);
2148
2149			goto out;
2150		}
2151	}
2152
2153	nmask = policy_nodemask(gfp, pol);
2154	preferred_nid = policy_node(gfp, pol, node);
2155	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2156	mpol_cond_put(pol);
2157out:
2158	return page;
2159}
2160EXPORT_SYMBOL(alloc_pages_vma);
2161
2162/**
2163 * 	alloc_pages_current - Allocate pages.
2164 *
2165 *	@gfp:
2166 *		%GFP_USER   user allocation,
2167 *      	%GFP_KERNEL kernel allocation,
2168 *      	%GFP_HIGHMEM highmem allocation,
2169 *      	%GFP_FS     don't call back into a file system.
2170 *      	%GFP_ATOMIC don't sleep.
2171 *	@order: Power of two of allocation size in pages. 0 is a single page.
2172 *
2173 *	Allocate a page from the kernel page pool.  When not in
2174 *	interrupt context and apply the current process NUMA policy.
2175 *	Returns NULL when no page can be allocated.
2176 */
2177struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2178{
2179	struct mempolicy *pol = &default_policy;
2180	struct page *page;
2181
2182	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2183		pol = get_task_policy(current);
2184
2185	/*
2186	 * No reference counting needed for current->mempolicy
2187	 * nor system default_policy
2188	 */
2189	if (pol->mode == MPOL_INTERLEAVE)
2190		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2191	else
2192		page = __alloc_pages_nodemask(gfp, order,
2193				policy_node(gfp, pol, numa_node_id()),
2194				policy_nodemask(gfp, pol));
2195
2196	return page;
2197}
2198EXPORT_SYMBOL(alloc_pages_current);
2199
2200int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2201{
2202	struct mempolicy *pol = mpol_dup(vma_policy(src));
2203
2204	if (IS_ERR(pol))
2205		return PTR_ERR(pol);
2206	dst->vm_policy = pol;
2207	return 0;
2208}
2209
2210/*
2211 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2212 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2213 * with the mems_allowed returned by cpuset_mems_allowed().  This
2214 * keeps mempolicies cpuset relative after its cpuset moves.  See
2215 * further kernel/cpuset.c update_nodemask().
2216 *
2217 * current's mempolicy may be rebinded by the other task(the task that changes
2218 * cpuset's mems), so we needn't do rebind work for current task.
2219 */
2220
2221/* Slow path of a mempolicy duplicate */
2222struct mempolicy *__mpol_dup(struct mempolicy *old)
2223{
2224	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2225
2226	if (!new)
2227		return ERR_PTR(-ENOMEM);
2228
2229	/* task's mempolicy is protected by alloc_lock */
2230	if (old == current->mempolicy) {
2231		task_lock(current);
2232		*new = *old;
2233		task_unlock(current);
2234	} else
2235		*new = *old;
2236
2237	if (current_cpuset_is_being_rebound()) {
2238		nodemask_t mems = cpuset_mems_allowed(current);
2239		mpol_rebind_policy(new, &mems);
2240	}
2241	atomic_set(&new->refcnt, 1);
2242	return new;
2243}
2244
2245/* Slow path of a mempolicy comparison */
2246bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2247{
2248	if (!a || !b)
2249		return false;
2250	if (a->mode != b->mode)
2251		return false;
2252	if (a->flags != b->flags)
2253		return false;
2254	if (mpol_store_user_nodemask(a))
2255		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2256			return false;
2257
2258	switch (a->mode) {
2259	case MPOL_BIND:
2260		/* Fall through */
2261	case MPOL_INTERLEAVE:
2262		return !!nodes_equal(a->v.nodes, b->v.nodes);
2263	case MPOL_PREFERRED:
2264		/* a's ->flags is the same as b's */
2265		if (a->flags & MPOL_F_LOCAL)
2266			return true;
2267		return a->v.preferred_node == b->v.preferred_node;
2268	default:
2269		BUG();
2270		return false;
2271	}
2272}
2273
2274/*
2275 * Shared memory backing store policy support.
2276 *
2277 * Remember policies even when nobody has shared memory mapped.
2278 * The policies are kept in Red-Black tree linked from the inode.
2279 * They are protected by the sp->lock rwlock, which should be held
2280 * for any accesses to the tree.
2281 */
2282
2283/*
2284 * lookup first element intersecting start-end.  Caller holds sp->lock for
2285 * reading or for writing
2286 */
2287static struct sp_node *
2288sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2289{
2290	struct rb_node *n = sp->root.rb_node;
2291
2292	while (n) {
2293		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2294
2295		if (start >= p->end)
2296			n = n->rb_right;
2297		else if (end <= p->start)
2298			n = n->rb_left;
2299		else
2300			break;
2301	}
2302	if (!n)
2303		return NULL;
2304	for (;;) {
2305		struct sp_node *w = NULL;
2306		struct rb_node *prev = rb_prev(n);
2307		if (!prev)
2308			break;
2309		w = rb_entry(prev, struct sp_node, nd);
2310		if (w->end <= start)
2311			break;
2312		n = prev;
2313	}
2314	return rb_entry(n, struct sp_node, nd);
2315}
2316
2317/*
2318 * Insert a new shared policy into the list.  Caller holds sp->lock for
2319 * writing.
2320 */
2321static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2322{
2323	struct rb_node **p = &sp->root.rb_node;
2324	struct rb_node *parent = NULL;
2325	struct sp_node *nd;
2326
2327	while (*p) {
2328		parent = *p;
2329		nd = rb_entry(parent, struct sp_node, nd);
2330		if (new->start < nd->start)
2331			p = &(*p)->rb_left;
2332		else if (new->end > nd->end)
2333			p = &(*p)->rb_right;
2334		else
2335			BUG();
2336	}
2337	rb_link_node(&new->nd, parent, p);
2338	rb_insert_color(&new->nd, &sp->root);
2339	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2340		 new->policy ? new->policy->mode : 0);
2341}
2342
2343/* Find shared policy intersecting idx */
2344struct mempolicy *
2345mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2346{
2347	struct mempolicy *pol = NULL;
2348	struct sp_node *sn;
2349
2350	if (!sp->root.rb_node)
2351		return NULL;
2352	read_lock(&sp->lock);
2353	sn = sp_lookup(sp, idx, idx+1);
2354	if (sn) {
2355		mpol_get(sn->policy);
2356		pol = sn->policy;
2357	}
2358	read_unlock(&sp->lock);
2359	return pol;
2360}
2361
2362static void sp_free(struct sp_node *n)
2363{
2364	mpol_put(n->policy);
2365	kmem_cache_free(sn_cache, n);
2366}
2367
2368/**
2369 * mpol_misplaced - check whether current page node is valid in policy
2370 *
2371 * @page: page to be checked
2372 * @vma: vm area where page mapped
2373 * @addr: virtual address where page mapped
2374 *
2375 * Lookup current policy node id for vma,addr and "compare to" page's
2376 * node id.
2377 *
2378 * Returns:
2379 *	-1	- not misplaced, page is in the right node
2380 *	node	- node id where the page should be
2381 *
2382 * Policy determination "mimics" alloc_page_vma().
2383 * Called from fault path where we know the vma and faulting address.
 
 
 
2384 */
2385int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2386{
2387	struct mempolicy *pol;
2388	struct zoneref *z;
2389	int curnid = page_to_nid(page);
2390	unsigned long pgoff;
2391	int thiscpu = raw_smp_processor_id();
2392	int thisnid = cpu_to_node(thiscpu);
2393	int polnid = NUMA_NO_NODE;
2394	int ret = -1;
2395
2396	pol = get_vma_policy(vma, addr);
2397	if (!(pol->flags & MPOL_F_MOF))
2398		goto out;
2399
2400	switch (pol->mode) {
2401	case MPOL_INTERLEAVE:
2402		pgoff = vma->vm_pgoff;
2403		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2404		polnid = offset_il_node(pol, pgoff);
2405		break;
2406
2407	case MPOL_PREFERRED:
2408		if (pol->flags & MPOL_F_LOCAL)
2409			polnid = numa_node_id();
2410		else
2411			polnid = pol->v.preferred_node;
 
2412		break;
2413
2414	case MPOL_BIND:
 
 
 
 
 
 
2415
2416		/*
2417		 * allows binding to multiple nodes.
2418		 * use current page if in policy nodemask,
2419		 * else select nearest allowed node, if any.
2420		 * If no allowed nodes, use current [!misplaced].
2421		 */
2422		if (node_isset(curnid, pol->v.nodes))
2423			goto out;
2424		z = first_zones_zonelist(
2425				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2426				gfp_zone(GFP_HIGHUSER),
2427				&pol->v.nodes);
2428		polnid = zone_to_nid(z->zone);
2429		break;
2430
2431	default:
2432		BUG();
2433	}
2434
2435	/* Migrate the page towards the node whose CPU is referencing it */
2436	if (pol->flags & MPOL_F_MORON) {
2437		polnid = thisnid;
2438
2439		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2440			goto out;
2441	}
2442
2443	if (curnid != polnid)
2444		ret = polnid;
2445out:
2446	mpol_cond_put(pol);
2447
2448	return ret;
2449}
2450
2451/*
2452 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2453 * dropped after task->mempolicy is set to NULL so that any allocation done as
2454 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2455 * policy.
2456 */
2457void mpol_put_task_policy(struct task_struct *task)
2458{
2459	struct mempolicy *pol;
2460
2461	task_lock(task);
2462	pol = task->mempolicy;
2463	task->mempolicy = NULL;
2464	task_unlock(task);
2465	mpol_put(pol);
2466}
2467
2468static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2469{
2470	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2471	rb_erase(&n->nd, &sp->root);
2472	sp_free(n);
2473}
2474
2475static void sp_node_init(struct sp_node *node, unsigned long start,
2476			unsigned long end, struct mempolicy *pol)
2477{
2478	node->start = start;
2479	node->end = end;
2480	node->policy = pol;
2481}
2482
2483static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2484				struct mempolicy *pol)
2485{
2486	struct sp_node *n;
2487	struct mempolicy *newpol;
2488
2489	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2490	if (!n)
2491		return NULL;
2492
2493	newpol = mpol_dup(pol);
2494	if (IS_ERR(newpol)) {
2495		kmem_cache_free(sn_cache, n);
2496		return NULL;
2497	}
2498	newpol->flags |= MPOL_F_SHARED;
2499	sp_node_init(n, start, end, newpol);
2500
2501	return n;
2502}
2503
2504/* Replace a policy range. */
2505static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2506				 unsigned long end, struct sp_node *new)
2507{
2508	struct sp_node *n;
2509	struct sp_node *n_new = NULL;
2510	struct mempolicy *mpol_new = NULL;
2511	int ret = 0;
2512
2513restart:
2514	write_lock(&sp->lock);
2515	n = sp_lookup(sp, start, end);
2516	/* Take care of old policies in the same range. */
2517	while (n && n->start < end) {
2518		struct rb_node *next = rb_next(&n->nd);
2519		if (n->start >= start) {
2520			if (n->end <= end)
2521				sp_delete(sp, n);
2522			else
2523				n->start = end;
2524		} else {
2525			/* Old policy spanning whole new range. */
2526			if (n->end > end) {
2527				if (!n_new)
2528					goto alloc_new;
2529
2530				*mpol_new = *n->policy;
2531				atomic_set(&mpol_new->refcnt, 1);
2532				sp_node_init(n_new, end, n->end, mpol_new);
2533				n->end = start;
2534				sp_insert(sp, n_new);
2535				n_new = NULL;
2536				mpol_new = NULL;
2537				break;
2538			} else
2539				n->end = start;
2540		}
2541		if (!next)
2542			break;
2543		n = rb_entry(next, struct sp_node, nd);
2544	}
2545	if (new)
2546		sp_insert(sp, new);
2547	write_unlock(&sp->lock);
2548	ret = 0;
2549
2550err_out:
2551	if (mpol_new)
2552		mpol_put(mpol_new);
2553	if (n_new)
2554		kmem_cache_free(sn_cache, n_new);
2555
2556	return ret;
2557
2558alloc_new:
2559	write_unlock(&sp->lock);
2560	ret = -ENOMEM;
2561	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2562	if (!n_new)
2563		goto err_out;
2564	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2565	if (!mpol_new)
2566		goto err_out;
2567	goto restart;
2568}
2569
2570/**
2571 * mpol_shared_policy_init - initialize shared policy for inode
2572 * @sp: pointer to inode shared policy
2573 * @mpol:  struct mempolicy to install
2574 *
2575 * Install non-NULL @mpol in inode's shared policy rb-tree.
2576 * On entry, the current task has a reference on a non-NULL @mpol.
2577 * This must be released on exit.
2578 * This is called at get_inode() calls and we can use GFP_KERNEL.
2579 */
2580void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2581{
2582	int ret;
2583
2584	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2585	rwlock_init(&sp->lock);
2586
2587	if (mpol) {
2588		struct vm_area_struct pvma;
2589		struct mempolicy *new;
2590		NODEMASK_SCRATCH(scratch);
2591
2592		if (!scratch)
2593			goto put_mpol;
2594		/* contextualize the tmpfs mount point mempolicy */
2595		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2596		if (IS_ERR(new))
2597			goto free_scratch; /* no valid nodemask intersection */
2598
2599		task_lock(current);
2600		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2601		task_unlock(current);
2602		if (ret)
2603			goto put_new;
2604
2605		/* Create pseudo-vma that contains just the policy */
2606		vma_init(&pvma, NULL);
2607		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2608		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2609
2610put_new:
2611		mpol_put(new);			/* drop initial ref */
2612free_scratch:
2613		NODEMASK_SCRATCH_FREE(scratch);
2614put_mpol:
2615		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2616	}
2617}
2618
2619int mpol_set_shared_policy(struct shared_policy *info,
2620			struct vm_area_struct *vma, struct mempolicy *npol)
2621{
2622	int err;
2623	struct sp_node *new = NULL;
2624	unsigned long sz = vma_pages(vma);
2625
2626	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2627		 vma->vm_pgoff,
2628		 sz, npol ? npol->mode : -1,
2629		 npol ? npol->flags : -1,
2630		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2631
2632	if (npol) {
2633		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2634		if (!new)
2635			return -ENOMEM;
2636	}
2637	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2638	if (err && new)
2639		sp_free(new);
2640	return err;
2641}
2642
2643/* Free a backing policy store on inode delete. */
2644void mpol_free_shared_policy(struct shared_policy *p)
2645{
2646	struct sp_node *n;
2647	struct rb_node *next;
2648
2649	if (!p->root.rb_node)
2650		return;
2651	write_lock(&p->lock);
2652	next = rb_first(&p->root);
2653	while (next) {
2654		n = rb_entry(next, struct sp_node, nd);
2655		next = rb_next(&n->nd);
2656		sp_delete(p, n);
2657	}
2658	write_unlock(&p->lock);
2659}
2660
2661#ifdef CONFIG_NUMA_BALANCING
2662static int __initdata numabalancing_override;
2663
2664static void __init check_numabalancing_enable(void)
2665{
2666	bool numabalancing_default = false;
2667
2668	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2669		numabalancing_default = true;
2670
2671	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2672	if (numabalancing_override)
2673		set_numabalancing_state(numabalancing_override == 1);
2674
2675	if (num_online_nodes() > 1 && !numabalancing_override) {
2676		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2677			numabalancing_default ? "Enabling" : "Disabling");
2678		set_numabalancing_state(numabalancing_default);
2679	}
2680}
2681
2682static int __init setup_numabalancing(char *str)
2683{
2684	int ret = 0;
2685	if (!str)
2686		goto out;
2687
2688	if (!strcmp(str, "enable")) {
2689		numabalancing_override = 1;
2690		ret = 1;
2691	} else if (!strcmp(str, "disable")) {
2692		numabalancing_override = -1;
2693		ret = 1;
2694	}
2695out:
2696	if (!ret)
2697		pr_warn("Unable to parse numa_balancing=\n");
2698
2699	return ret;
2700}
2701__setup("numa_balancing=", setup_numabalancing);
2702#else
2703static inline void __init check_numabalancing_enable(void)
2704{
2705}
2706#endif /* CONFIG_NUMA_BALANCING */
2707
2708/* assumes fs == KERNEL_DS */
2709void __init numa_policy_init(void)
2710{
2711	nodemask_t interleave_nodes;
2712	unsigned long largest = 0;
2713	int nid, prefer = 0;
2714
2715	policy_cache = kmem_cache_create("numa_policy",
2716					 sizeof(struct mempolicy),
2717					 0, SLAB_PANIC, NULL);
2718
2719	sn_cache = kmem_cache_create("shared_policy_node",
2720				     sizeof(struct sp_node),
2721				     0, SLAB_PANIC, NULL);
2722
2723	for_each_node(nid) {
2724		preferred_node_policy[nid] = (struct mempolicy) {
2725			.refcnt = ATOMIC_INIT(1),
2726			.mode = MPOL_PREFERRED,
2727			.flags = MPOL_F_MOF | MPOL_F_MORON,
2728			.v = { .preferred_node = nid, },
2729		};
2730	}
2731
2732	/*
2733	 * Set interleaving policy for system init. Interleaving is only
2734	 * enabled across suitably sized nodes (default is >= 16MB), or
2735	 * fall back to the largest node if they're all smaller.
2736	 */
2737	nodes_clear(interleave_nodes);
2738	for_each_node_state(nid, N_MEMORY) {
2739		unsigned long total_pages = node_present_pages(nid);
2740
2741		/* Preserve the largest node */
2742		if (largest < total_pages) {
2743			largest = total_pages;
2744			prefer = nid;
2745		}
2746
2747		/* Interleave this node? */
2748		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2749			node_set(nid, interleave_nodes);
2750	}
2751
2752	/* All too small, use the largest */
2753	if (unlikely(nodes_empty(interleave_nodes)))
2754		node_set(prefer, interleave_nodes);
2755
2756	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2757		pr_err("%s: interleaving failed\n", __func__);
2758
2759	check_numabalancing_enable();
2760}
2761
2762/* Reset policy of current process to default */
2763void numa_default_policy(void)
2764{
2765	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2766}
2767
2768/*
2769 * Parse and format mempolicy from/to strings
2770 */
2771
2772/*
2773 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2774 */
2775static const char * const policy_modes[] =
2776{
2777	[MPOL_DEFAULT]    = "default",
2778	[MPOL_PREFERRED]  = "prefer",
2779	[MPOL_BIND]       = "bind",
2780	[MPOL_INTERLEAVE] = "interleave",
2781	[MPOL_LOCAL]      = "local",
2782};
2783
2784
2785#ifdef CONFIG_TMPFS
2786/**
2787 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2788 * @str:  string containing mempolicy to parse
2789 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2790 *
2791 * Format of input:
2792 *	<mode>[=<flags>][:<nodelist>]
2793 *
2794 * On success, returns 0, else 1
2795 */
2796int mpol_parse_str(char *str, struct mempolicy **mpol)
2797{
2798	struct mempolicy *new = NULL;
2799	unsigned short mode_flags;
2800	nodemask_t nodes;
2801	char *nodelist = strchr(str, ':');
2802	char *flags = strchr(str, '=');
2803	int err = 1, mode;
2804
 
 
 
2805	if (nodelist) {
2806		/* NUL-terminate mode or flags string */
2807		*nodelist++ = '\0';
2808		if (nodelist_parse(nodelist, nodes))
2809			goto out;
2810		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2811			goto out;
2812	} else
2813		nodes_clear(nodes);
2814
2815	if (flags)
2816		*flags++ = '\0';	/* terminate mode string */
2817
2818	mode = match_string(policy_modes, MPOL_MAX, str);
2819	if (mode < 0)
2820		goto out;
2821
2822	switch (mode) {
2823	case MPOL_PREFERRED:
2824		/*
2825		 * Insist on a nodelist of one node only
 
 
2826		 */
2827		if (nodelist) {
2828			char *rest = nodelist;
2829			while (isdigit(*rest))
2830				rest++;
2831			if (*rest)
2832				goto out;
 
 
2833		}
2834		break;
2835	case MPOL_INTERLEAVE:
2836		/*
2837		 * Default to online nodes with memory if no nodelist
2838		 */
2839		if (!nodelist)
2840			nodes = node_states[N_MEMORY];
2841		break;
2842	case MPOL_LOCAL:
2843		/*
2844		 * Don't allow a nodelist;  mpol_new() checks flags
2845		 */
2846		if (nodelist)
2847			goto out;
2848		mode = MPOL_PREFERRED;
2849		break;
2850	case MPOL_DEFAULT:
2851		/*
2852		 * Insist on a empty nodelist
2853		 */
2854		if (!nodelist)
2855			err = 0;
2856		goto out;
2857	case MPOL_BIND:
2858		/*
2859		 * Insist on a nodelist
2860		 */
2861		if (!nodelist)
2862			goto out;
2863	}
2864
2865	mode_flags = 0;
2866	if (flags) {
2867		/*
2868		 * Currently, we only support two mutually exclusive
2869		 * mode flags.
2870		 */
2871		if (!strcmp(flags, "static"))
2872			mode_flags |= MPOL_F_STATIC_NODES;
2873		else if (!strcmp(flags, "relative"))
2874			mode_flags |= MPOL_F_RELATIVE_NODES;
2875		else
2876			goto out;
2877	}
2878
2879	new = mpol_new(mode, mode_flags, &nodes);
2880	if (IS_ERR(new))
2881		goto out;
2882
2883	/*
2884	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2885	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2886	 */
2887	if (mode != MPOL_PREFERRED)
2888		new->v.nodes = nodes;
2889	else if (nodelist)
2890		new->v.preferred_node = first_node(nodes);
2891	else
2892		new->flags |= MPOL_F_LOCAL;
 
 
2893
2894	/*
2895	 * Save nodes for contextualization: this will be used to "clone"
2896	 * the mempolicy in a specific context [cpuset] at a later time.
2897	 */
2898	new->w.user_nodemask = nodes;
2899
2900	err = 0;
2901
2902out:
2903	/* Restore string for error message */
2904	if (nodelist)
2905		*--nodelist = ':';
2906	if (flags)
2907		*--flags = '=';
2908	if (!err)
2909		*mpol = new;
2910	return err;
2911}
2912#endif /* CONFIG_TMPFS */
2913
2914/**
2915 * mpol_to_str - format a mempolicy structure for printing
2916 * @buffer:  to contain formatted mempolicy string
2917 * @maxlen:  length of @buffer
2918 * @pol:  pointer to mempolicy to be formatted
2919 *
2920 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2921 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2922 * longest flag, "relative", and to display at least a few node ids.
2923 */
2924void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2925{
2926	char *p = buffer;
2927	nodemask_t nodes = NODE_MASK_NONE;
2928	unsigned short mode = MPOL_DEFAULT;
2929	unsigned short flags = 0;
2930
2931	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2932		mode = pol->mode;
2933		flags = pol->flags;
2934	}
2935
2936	switch (mode) {
2937	case MPOL_DEFAULT:
 
2938		break;
2939	case MPOL_PREFERRED:
2940		if (flags & MPOL_F_LOCAL)
2941			mode = MPOL_LOCAL;
2942		else
2943			node_set(pol->v.preferred_node, nodes);
2944		break;
2945	case MPOL_BIND:
2946	case MPOL_INTERLEAVE:
2947		nodes = pol->v.nodes;
2948		break;
2949	default:
2950		WARN_ON_ONCE(1);
2951		snprintf(p, maxlen, "unknown");
2952		return;
2953	}
2954
2955	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2956
2957	if (flags & MPOL_MODE_FLAGS) {
2958		p += snprintf(p, buffer + maxlen - p, "=");
2959
2960		/*
2961		 * Currently, the only defined flags are mutually exclusive
2962		 */
2963		if (flags & MPOL_F_STATIC_NODES)
2964			p += snprintf(p, buffer + maxlen - p, "static");
2965		else if (flags & MPOL_F_RELATIVE_NODES)
2966			p += snprintf(p, buffer + maxlen - p, "relative");
2967	}
2968
2969	if (!nodes_empty(nodes))
2970		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2971			       nodemask_pr_args(&nodes));
2972}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/pagewalk.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_LOCAL,
 
 125};
 126
 127static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 128
 129/**
 130 * numa_map_to_online_node - Find closest online node
 131 * @node: Node id to start the search
 132 *
 133 * Lookup the next closest node by distance if @nid is not online.
 134 */
 135int numa_map_to_online_node(int node)
 136{
 137	int min_dist = INT_MAX, dist, n, min_node;
 138
 139	if (node == NUMA_NO_NODE || node_online(node))
 140		return node;
 141
 142	min_node = node;
 143	for_each_online_node(n) {
 144		dist = node_distance(node, n);
 145		if (dist < min_dist) {
 146			min_dist = dist;
 147			min_node = n;
 148		}
 149	}
 150
 151	return min_node;
 152}
 153EXPORT_SYMBOL_GPL(numa_map_to_online_node);
 154
 155struct mempolicy *get_task_policy(struct task_struct *p)
 156{
 157	struct mempolicy *pol = p->mempolicy;
 158	int node;
 159
 160	if (pol)
 161		return pol;
 162
 163	node = numa_node_id();
 164	if (node != NUMA_NO_NODE) {
 165		pol = &preferred_node_policy[node];
 166		/* preferred_node_policy is not initialised early in boot */
 167		if (pol->mode)
 168			return pol;
 169	}
 170
 171	return &default_policy;
 172}
 173
 174static const struct mempolicy_operations {
 175	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 176	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 177} mpol_ops[MPOL_MAX];
 178
 179static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 180{
 181	return pol->flags & MPOL_MODE_FLAGS;
 182}
 183
 184static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 185				   const nodemask_t *rel)
 186{
 187	nodemask_t tmp;
 188	nodes_fold(tmp, *orig, nodes_weight(*rel));
 189	nodes_onto(*ret, tmp, *rel);
 190}
 191
 192static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 193{
 194	if (nodes_empty(*nodes))
 195		return -EINVAL;
 196	pol->nodes = *nodes;
 197	return 0;
 198}
 199
 200static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 201{
 202	if (nodes_empty(*nodes))
 203		return -EINVAL;
 204
 205	nodes_clear(pol->nodes);
 206	node_set(first_node(*nodes), pol->nodes);
 
 207	return 0;
 208}
 209
 210static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 211{
 212	if (nodes_empty(*nodes))
 213		return -EINVAL;
 214	pol->nodes = *nodes;
 215	return 0;
 216}
 217
 218/*
 219 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 220 * any, for the new policy.  mpol_new() has already validated the nodes
 221 * parameter with respect to the policy mode and flags.
 
 222 *
 223 * Must be called holding task's alloc_lock to protect task's mems_allowed
 224 * and mempolicy.  May also be called holding the mmap_lock for write.
 225 */
 226static int mpol_set_nodemask(struct mempolicy *pol,
 227		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 228{
 229	int ret;
 230
 231	/*
 232	 * Default (pol==NULL) resp. local memory policies are not a
 233	 * subject of any remapping. They also do not need any special
 234	 * constructor.
 235	 */
 236	if (!pol || pol->mode == MPOL_LOCAL)
 237		return 0;
 238
 239	/* Check N_MEMORY */
 240	nodes_and(nsc->mask1,
 241		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 242
 243	VM_BUG_ON(!nodes);
 
 
 
 
 
 
 
 244
 245	if (pol->flags & MPOL_F_RELATIVE_NODES)
 246		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 247	else
 248		nodes_and(nsc->mask2, *nodes, nsc->mask1);
 
 
 249
 250	if (mpol_store_user_nodemask(pol))
 251		pol->w.user_nodemask = *nodes;
 252	else
 253		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
 254
 255	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 256	return ret;
 257}
 258
 259/*
 260 * This function just creates a new policy, does some check and simple
 261 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 262 */
 263static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 264				  nodemask_t *nodes)
 265{
 266	struct mempolicy *policy;
 267
 268	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 269		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 270
 271	if (mode == MPOL_DEFAULT) {
 272		if (nodes && !nodes_empty(*nodes))
 273			return ERR_PTR(-EINVAL);
 274		return NULL;
 275	}
 276	VM_BUG_ON(!nodes);
 277
 278	/*
 279	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 280	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 281	 * All other modes require a valid pointer to a non-empty nodemask.
 282	 */
 283	if (mode == MPOL_PREFERRED) {
 284		if (nodes_empty(*nodes)) {
 285			if (((flags & MPOL_F_STATIC_NODES) ||
 286			     (flags & MPOL_F_RELATIVE_NODES)))
 287				return ERR_PTR(-EINVAL);
 288
 289			mode = MPOL_LOCAL;
 290		}
 291	} else if (mode == MPOL_LOCAL) {
 292		if (!nodes_empty(*nodes) ||
 293		    (flags & MPOL_F_STATIC_NODES) ||
 294		    (flags & MPOL_F_RELATIVE_NODES))
 295			return ERR_PTR(-EINVAL);
 
 296	} else if (nodes_empty(*nodes))
 297		return ERR_PTR(-EINVAL);
 298	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 299	if (!policy)
 300		return ERR_PTR(-ENOMEM);
 301	atomic_set(&policy->refcnt, 1);
 302	policy->mode = mode;
 303	policy->flags = flags;
 304
 305	return policy;
 306}
 307
 308/* Slow path of a mpol destructor. */
 309void __mpol_put(struct mempolicy *p)
 310{
 311	if (!atomic_dec_and_test(&p->refcnt))
 312		return;
 313	kmem_cache_free(policy_cache, p);
 314}
 315
 316static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 317{
 318}
 319
 320static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 321{
 322	nodemask_t tmp;
 323
 324	if (pol->flags & MPOL_F_STATIC_NODES)
 325		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 326	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 327		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 328	else {
 329		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
 330								*nodes);
 331		pol->w.cpuset_mems_allowed = *nodes;
 332	}
 333
 334	if (nodes_empty(tmp))
 335		tmp = *nodes;
 336
 337	pol->nodes = tmp;
 338}
 339
 340static void mpol_rebind_preferred(struct mempolicy *pol,
 341						const nodemask_t *nodes)
 342{
 343	pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344}
 345
 346/*
 347 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 348 *
 349 * Per-vma policies are protected by mmap_lock. Allocations using per-task
 350 * policies are protected by task->mems_allowed_seq to prevent a premature
 351 * OOM/allocation failure due to parallel nodemask modification.
 352 */
 353static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 354{
 355	if (!pol)
 356		return;
 357	if (!mpol_store_user_nodemask(pol) &&
 358	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 359		return;
 360
 361	mpol_ops[pol->mode].rebind(pol, newmask);
 362}
 363
 364/*
 365 * Wrapper for mpol_rebind_policy() that just requires task
 366 * pointer, and updates task mempolicy.
 367 *
 368 * Called with task's alloc_lock held.
 369 */
 370
 371void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 372{
 373	mpol_rebind_policy(tsk->mempolicy, new);
 374}
 375
 376/*
 377 * Rebind each vma in mm to new nodemask.
 378 *
 379 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 380 */
 381
 382void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 383{
 384	struct vm_area_struct *vma;
 385
 386	mmap_write_lock(mm);
 387	for (vma = mm->mmap; vma; vma = vma->vm_next)
 388		mpol_rebind_policy(vma->vm_policy, new);
 389	mmap_write_unlock(mm);
 390}
 391
 392static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 393	[MPOL_DEFAULT] = {
 394		.rebind = mpol_rebind_default,
 395	},
 396	[MPOL_INTERLEAVE] = {
 397		.create = mpol_new_interleave,
 398		.rebind = mpol_rebind_nodemask,
 399	},
 400	[MPOL_PREFERRED] = {
 401		.create = mpol_new_preferred,
 402		.rebind = mpol_rebind_preferred,
 403	},
 404	[MPOL_BIND] = {
 405		.create = mpol_new_bind,
 406		.rebind = mpol_rebind_nodemask,
 407	},
 408	[MPOL_LOCAL] = {
 409		.rebind = mpol_rebind_default,
 410	},
 411};
 412
 413static int migrate_page_add(struct page *page, struct list_head *pagelist,
 414				unsigned long flags);
 415
 416struct queue_pages {
 417	struct list_head *pagelist;
 418	unsigned long flags;
 419	nodemask_t *nmask;
 420	unsigned long start;
 421	unsigned long end;
 422	struct vm_area_struct *first;
 423};
 424
 425/*
 426 * Check if the page's nid is in qp->nmask.
 427 *
 428 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 429 * in the invert of qp->nmask.
 430 */
 431static inline bool queue_pages_required(struct page *page,
 432					struct queue_pages *qp)
 433{
 434	int nid = page_to_nid(page);
 435	unsigned long flags = qp->flags;
 436
 437	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 438}
 439
 440/*
 441 * queue_pages_pmd() has four possible return values:
 442 * 0 - pages are placed on the right node or queued successfully, or
 443 *     special page is met, i.e. huge zero page.
 444 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 445 *     specified.
 446 * 2 - THP was split.
 447 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 448 *        existing page was already on a node that does not follow the
 449 *        policy.
 450 */
 451static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 452				unsigned long end, struct mm_walk *walk)
 453	__releases(ptl)
 454{
 455	int ret = 0;
 456	struct page *page;
 457	struct queue_pages *qp = walk->private;
 458	unsigned long flags;
 459
 460	if (unlikely(is_pmd_migration_entry(*pmd))) {
 461		ret = -EIO;
 462		goto unlock;
 463	}
 464	page = pmd_page(*pmd);
 465	if (is_huge_zero_page(page)) {
 466		spin_unlock(ptl);
 467		walk->action = ACTION_CONTINUE;
 
 468		goto out;
 469	}
 470	if (!queue_pages_required(page, qp))
 471		goto unlock;
 472
 473	flags = qp->flags;
 474	/* go to thp migration */
 475	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 476		if (!vma_migratable(walk->vma) ||
 477		    migrate_page_add(page, qp->pagelist, flags)) {
 478			ret = 1;
 479			goto unlock;
 480		}
 481	} else
 482		ret = -EIO;
 483unlock:
 484	spin_unlock(ptl);
 485out:
 486	return ret;
 487}
 488
 489/*
 490 * Scan through pages checking if pages follow certain conditions,
 491 * and move them to the pagelist if they do.
 492 *
 493 * queue_pages_pte_range() has three possible return values:
 494 * 0 - pages are placed on the right node or queued successfully, or
 495 *     special page is met, i.e. zero page.
 496 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 497 *     specified.
 498 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 499 *        on a node that does not follow the policy.
 500 */
 501static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 502			unsigned long end, struct mm_walk *walk)
 503{
 504	struct vm_area_struct *vma = walk->vma;
 505	struct page *page;
 506	struct queue_pages *qp = walk->private;
 507	unsigned long flags = qp->flags;
 508	int ret;
 509	bool has_unmovable = false;
 510	pte_t *pte, *mapped_pte;
 511	spinlock_t *ptl;
 512
 513	ptl = pmd_trans_huge_lock(pmd, vma);
 514	if (ptl) {
 515		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 516		if (ret != 2)
 517			return ret;
 518	}
 519	/* THP was split, fall through to pte walk */
 520
 521	if (pmd_trans_unstable(pmd))
 522		return 0;
 523
 524	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 525	for (; addr != end; pte++, addr += PAGE_SIZE) {
 526		if (!pte_present(*pte))
 527			continue;
 528		page = vm_normal_page(vma, addr, *pte);
 529		if (!page)
 530			continue;
 531		/*
 532		 * vm_normal_page() filters out zero pages, but there might
 533		 * still be PageReserved pages to skip, perhaps in a VDSO.
 534		 */
 535		if (PageReserved(page))
 536			continue;
 537		if (!queue_pages_required(page, qp))
 538			continue;
 539		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 540			/* MPOL_MF_STRICT must be specified if we get here */
 541			if (!vma_migratable(vma)) {
 542				has_unmovable = true;
 543				break;
 544			}
 545
 546			/*
 547			 * Do not abort immediately since there may be
 548			 * temporary off LRU pages in the range.  Still
 549			 * need migrate other LRU pages.
 550			 */
 551			if (migrate_page_add(page, qp->pagelist, flags))
 552				has_unmovable = true;
 553		} else
 554			break;
 555	}
 556	pte_unmap_unlock(mapped_pte, ptl);
 557	cond_resched();
 558
 559	if (has_unmovable)
 560		return 1;
 561
 562	return addr != end ? -EIO : 0;
 563}
 564
 565static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 566			       unsigned long addr, unsigned long end,
 567			       struct mm_walk *walk)
 568{
 569	int ret = 0;
 570#ifdef CONFIG_HUGETLB_PAGE
 571	struct queue_pages *qp = walk->private;
 572	unsigned long flags = (qp->flags & MPOL_MF_VALID);
 573	struct page *page;
 574	spinlock_t *ptl;
 575	pte_t entry;
 576
 577	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 578	entry = huge_ptep_get(pte);
 579	if (!pte_present(entry))
 580		goto unlock;
 581	page = pte_page(entry);
 582	if (!queue_pages_required(page, qp))
 583		goto unlock;
 584
 585	if (flags == MPOL_MF_STRICT) {
 586		/*
 587		 * STRICT alone means only detecting misplaced page and no
 588		 * need to further check other vma.
 589		 */
 590		ret = -EIO;
 591		goto unlock;
 592	}
 593
 594	if (!vma_migratable(walk->vma)) {
 595		/*
 596		 * Must be STRICT with MOVE*, otherwise .test_walk() have
 597		 * stopped walking current vma.
 598		 * Detecting misplaced page but allow migrating pages which
 599		 * have been queued.
 600		 */
 601		ret = 1;
 602		goto unlock;
 603	}
 604
 605	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 606	if (flags & (MPOL_MF_MOVE_ALL) ||
 607	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
 608		if (!isolate_huge_page(page, qp->pagelist) &&
 609			(flags & MPOL_MF_STRICT))
 610			/*
 611			 * Failed to isolate page but allow migrating pages
 612			 * which have been queued.
 613			 */
 614			ret = 1;
 615	}
 616unlock:
 617	spin_unlock(ptl);
 618#else
 619	BUG();
 620#endif
 621	return ret;
 622}
 623
 624#ifdef CONFIG_NUMA_BALANCING
 625/*
 626 * This is used to mark a range of virtual addresses to be inaccessible.
 627 * These are later cleared by a NUMA hinting fault. Depending on these
 628 * faults, pages may be migrated for better NUMA placement.
 629 *
 630 * This is assuming that NUMA faults are handled using PROT_NONE. If
 631 * an architecture makes a different choice, it will need further
 632 * changes to the core.
 633 */
 634unsigned long change_prot_numa(struct vm_area_struct *vma,
 635			unsigned long addr, unsigned long end)
 636{
 637	int nr_updated;
 638
 639	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
 640	if (nr_updated)
 641		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 642
 643	return nr_updated;
 644}
 645#else
 646static unsigned long change_prot_numa(struct vm_area_struct *vma,
 647			unsigned long addr, unsigned long end)
 648{
 649	return 0;
 650}
 651#endif /* CONFIG_NUMA_BALANCING */
 652
 653static int queue_pages_test_walk(unsigned long start, unsigned long end,
 654				struct mm_walk *walk)
 655{
 656	struct vm_area_struct *vma = walk->vma;
 657	struct queue_pages *qp = walk->private;
 658	unsigned long endvma = vma->vm_end;
 659	unsigned long flags = qp->flags;
 660
 661	/* range check first */
 662	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
 663
 664	if (!qp->first) {
 665		qp->first = vma;
 666		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 667			(qp->start < vma->vm_start))
 668			/* hole at head side of range */
 669			return -EFAULT;
 670	}
 671	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 672		((vma->vm_end < qp->end) &&
 673		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
 674		/* hole at middle or tail of range */
 675		return -EFAULT;
 676
 677	/*
 678	 * Need check MPOL_MF_STRICT to return -EIO if possible
 679	 * regardless of vma_migratable
 680	 */
 681	if (!vma_migratable(vma) &&
 682	    !(flags & MPOL_MF_STRICT))
 683		return 1;
 684
 685	if (endvma > end)
 686		endvma = end;
 
 
 
 
 
 
 
 
 
 
 
 687
 688	if (flags & MPOL_MF_LAZY) {
 689		/* Similar to task_numa_work, skip inaccessible VMAs */
 690		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
 
 691			!(vma->vm_flags & VM_MIXEDMAP))
 692			change_prot_numa(vma, start, endvma);
 693		return 1;
 694	}
 695
 696	/* queue pages from current vma */
 697	if (flags & MPOL_MF_VALID)
 698		return 0;
 699	return 1;
 700}
 701
 702static const struct mm_walk_ops queue_pages_walk_ops = {
 703	.hugetlb_entry		= queue_pages_hugetlb,
 704	.pmd_entry		= queue_pages_pte_range,
 705	.test_walk		= queue_pages_test_walk,
 706};
 707
 708/*
 709 * Walk through page tables and collect pages to be migrated.
 710 *
 711 * If pages found in a given range are on a set of nodes (determined by
 712 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 713 * passed via @private.
 714 *
 715 * queue_pages_range() has three possible return values:
 716 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 717 *     specified.
 718 * 0 - queue pages successfully or no misplaced page.
 719 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 720 *         memory range specified by nodemask and maxnode points outside
 721 *         your accessible address space (-EFAULT)
 722 */
 723static int
 724queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 725		nodemask_t *nodes, unsigned long flags,
 726		struct list_head *pagelist)
 727{
 728	int err;
 729	struct queue_pages qp = {
 730		.pagelist = pagelist,
 731		.flags = flags,
 732		.nmask = nodes,
 733		.start = start,
 734		.end = end,
 735		.first = NULL,
 736	};
 737
 738	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 739
 740	if (!qp.first)
 741		/* whole range in hole */
 742		err = -EFAULT;
 743
 744	return err;
 745}
 746
 747/*
 748 * Apply policy to a single VMA
 749 * This must be called with the mmap_lock held for writing.
 750 */
 751static int vma_replace_policy(struct vm_area_struct *vma,
 752						struct mempolicy *pol)
 753{
 754	int err;
 755	struct mempolicy *old;
 756	struct mempolicy *new;
 757
 758	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 759		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 760		 vma->vm_ops, vma->vm_file,
 761		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 762
 763	new = mpol_dup(pol);
 764	if (IS_ERR(new))
 765		return PTR_ERR(new);
 766
 767	if (vma->vm_ops && vma->vm_ops->set_policy) {
 768		err = vma->vm_ops->set_policy(vma, new);
 769		if (err)
 770			goto err_out;
 771	}
 772
 773	old = vma->vm_policy;
 774	vma->vm_policy = new; /* protected by mmap_lock */
 775	mpol_put(old);
 776
 777	return 0;
 778 err_out:
 779	mpol_put(new);
 780	return err;
 781}
 782
 783/* Step 2: apply policy to a range and do splits. */
 784static int mbind_range(struct mm_struct *mm, unsigned long start,
 785		       unsigned long end, struct mempolicy *new_pol)
 786{
 787	struct vm_area_struct *next;
 788	struct vm_area_struct *prev;
 789	struct vm_area_struct *vma;
 790	int err = 0;
 791	pgoff_t pgoff;
 792	unsigned long vmstart;
 793	unsigned long vmend;
 794
 795	vma = find_vma(mm, start);
 796	VM_BUG_ON(!vma);
 
 797
 798	prev = vma->vm_prev;
 799	if (start > vma->vm_start)
 800		prev = vma;
 801
 802	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 803		next = vma->vm_next;
 804		vmstart = max(start, vma->vm_start);
 805		vmend   = min(end, vma->vm_end);
 806
 807		if (mpol_equal(vma_policy(vma), new_pol))
 808			continue;
 809
 810		pgoff = vma->vm_pgoff +
 811			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 812		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 813				 vma->anon_vma, vma->vm_file, pgoff,
 814				 new_pol, vma->vm_userfaultfd_ctx);
 815		if (prev) {
 816			vma = prev;
 817			next = vma->vm_next;
 818			if (mpol_equal(vma_policy(vma), new_pol))
 819				continue;
 820			/* vma_merge() joined vma && vma->next, case 8 */
 821			goto replace;
 822		}
 823		if (vma->vm_start != vmstart) {
 824			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 825			if (err)
 826				goto out;
 827		}
 828		if (vma->vm_end != vmend) {
 829			err = split_vma(vma->vm_mm, vma, vmend, 0);
 830			if (err)
 831				goto out;
 832		}
 833 replace:
 834		err = vma_replace_policy(vma, new_pol);
 835		if (err)
 836			goto out;
 837	}
 838
 839 out:
 840	return err;
 841}
 842
 843/* Set the process memory policy */
 844static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 845			     nodemask_t *nodes)
 846{
 847	struct mempolicy *new, *old;
 848	NODEMASK_SCRATCH(scratch);
 849	int ret;
 850
 851	if (!scratch)
 852		return -ENOMEM;
 853
 854	new = mpol_new(mode, flags, nodes);
 855	if (IS_ERR(new)) {
 856		ret = PTR_ERR(new);
 857		goto out;
 858	}
 859
 
 860	ret = mpol_set_nodemask(new, nodes, scratch);
 861	if (ret) {
 
 862		mpol_put(new);
 863		goto out;
 864	}
 865	task_lock(current);
 866	old = current->mempolicy;
 867	current->mempolicy = new;
 868	if (new && new->mode == MPOL_INTERLEAVE)
 869		current->il_prev = MAX_NUMNODES-1;
 870	task_unlock(current);
 871	mpol_put(old);
 872	ret = 0;
 873out:
 874	NODEMASK_SCRATCH_FREE(scratch);
 875	return ret;
 876}
 877
 878/*
 879 * Return nodemask for policy for get_mempolicy() query
 880 *
 881 * Called with task's alloc_lock held
 882 */
 883static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 884{
 885	nodes_clear(*nodes);
 886	if (p == &default_policy)
 887		return;
 888
 889	switch (p->mode) {
 890	case MPOL_BIND:
 
 891	case MPOL_INTERLEAVE:
 
 
 892	case MPOL_PREFERRED:
 893		*nodes = p->nodes;
 894		break;
 895	case MPOL_LOCAL:
 896		/* return empty node mask for local allocation */
 897		break;
 898	default:
 899		BUG();
 900	}
 901}
 902
 903static int lookup_node(struct mm_struct *mm, unsigned long addr)
 904{
 905	struct page *p = NULL;
 906	int err;
 907
 908	int locked = 1;
 909	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
 910	if (err > 0) {
 911		err = page_to_nid(p);
 912		put_page(p);
 913	}
 914	if (locked)
 915		mmap_read_unlock(mm);
 916	return err;
 917}
 918
 919/* Retrieve NUMA policy */
 920static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 921			     unsigned long addr, unsigned long flags)
 922{
 923	int err;
 924	struct mm_struct *mm = current->mm;
 925	struct vm_area_struct *vma = NULL;
 926	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 927
 928	if (flags &
 929		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 930		return -EINVAL;
 931
 932	if (flags & MPOL_F_MEMS_ALLOWED) {
 933		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 934			return -EINVAL;
 935		*policy = 0;	/* just so it's initialized */
 936		task_lock(current);
 937		*nmask  = cpuset_current_mems_allowed;
 938		task_unlock(current);
 939		return 0;
 940	}
 941
 942	if (flags & MPOL_F_ADDR) {
 943		/*
 944		 * Do NOT fall back to task policy if the
 945		 * vma/shared policy at addr is NULL.  We
 946		 * want to return MPOL_DEFAULT in this case.
 947		 */
 948		mmap_read_lock(mm);
 949		vma = vma_lookup(mm, addr);
 950		if (!vma) {
 951			mmap_read_unlock(mm);
 952			return -EFAULT;
 953		}
 954		if (vma->vm_ops && vma->vm_ops->get_policy)
 955			pol = vma->vm_ops->get_policy(vma, addr);
 956		else
 957			pol = vma->vm_policy;
 958	} else if (addr)
 959		return -EINVAL;
 960
 961	if (!pol)
 962		pol = &default_policy;	/* indicates default behavior */
 963
 964	if (flags & MPOL_F_NODE) {
 965		if (flags & MPOL_F_ADDR) {
 966			/*
 967			 * Take a refcount on the mpol, lookup_node()
 968			 * will drop the mmap_lock, so after calling
 969			 * lookup_node() only "pol" remains valid, "vma"
 970			 * is stale.
 971			 */
 972			pol_refcount = pol;
 973			vma = NULL;
 974			mpol_get(pol);
 975			err = lookup_node(mm, addr);
 976			if (err < 0)
 977				goto out;
 978			*policy = err;
 979		} else if (pol == current->mempolicy &&
 980				pol->mode == MPOL_INTERLEAVE) {
 981			*policy = next_node_in(current->il_prev, pol->nodes);
 982		} else {
 983			err = -EINVAL;
 984			goto out;
 985		}
 986	} else {
 987		*policy = pol == &default_policy ? MPOL_DEFAULT :
 988						pol->mode;
 989		/*
 990		 * Internal mempolicy flags must be masked off before exposing
 991		 * the policy to userspace.
 992		 */
 993		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 994	}
 995
 996	err = 0;
 997	if (nmask) {
 998		if (mpol_store_user_nodemask(pol)) {
 999			*nmask = pol->w.user_nodemask;
1000		} else {
1001			task_lock(current);
1002			get_policy_nodemask(pol, nmask);
1003			task_unlock(current);
1004		}
1005	}
1006
1007 out:
1008	mpol_cond_put(pol);
1009	if (vma)
1010		mmap_read_unlock(mm);
1011	if (pol_refcount)
1012		mpol_put(pol_refcount);
1013	return err;
1014}
1015
1016#ifdef CONFIG_MIGRATION
1017/*
1018 * page migration, thp tail pages can be passed.
1019 */
1020static int migrate_page_add(struct page *page, struct list_head *pagelist,
1021				unsigned long flags)
1022{
1023	struct page *head = compound_head(page);
1024	/*
1025	 * Avoid migrating a page that is shared with others.
1026	 */
1027	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1028		if (!isolate_lru_page(head)) {
1029			list_add_tail(&head->lru, pagelist);
1030			mod_node_page_state(page_pgdat(head),
1031				NR_ISOLATED_ANON + page_is_file_lru(head),
1032				thp_nr_pages(head));
1033		} else if (flags & MPOL_MF_STRICT) {
1034			/*
1035			 * Non-movable page may reach here.  And, there may be
1036			 * temporary off LRU pages or non-LRU movable pages.
1037			 * Treat them as unmovable pages since they can't be
1038			 * isolated, so they can't be moved at the moment.  It
1039			 * should return -EIO for this case too.
1040			 */
1041			return -EIO;
1042		}
1043	}
1044
1045	return 0;
1046}
1047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048/*
1049 * Migrate pages from one node to a target node.
1050 * Returns error or the number of pages not migrated.
1051 */
1052static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1053			   int flags)
1054{
1055	nodemask_t nmask;
1056	LIST_HEAD(pagelist);
1057	int err = 0;
1058	struct migration_target_control mtc = {
1059		.nid = dest,
1060		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1061	};
1062
1063	nodes_clear(nmask);
1064	node_set(source, nmask);
1065
1066	/*
1067	 * This does not "check" the range but isolates all pages that
1068	 * need migration.  Between passing in the full user address
1069	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1070	 */
1071	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1072	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1073			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1074
1075	if (!list_empty(&pagelist)) {
1076		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1077				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1078		if (err)
1079			putback_movable_pages(&pagelist);
1080	}
1081
1082	return err;
1083}
1084
1085/*
1086 * Move pages between the two nodesets so as to preserve the physical
1087 * layout as much as possible.
1088 *
1089 * Returns the number of page that could not be moved.
1090 */
1091int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1092		     const nodemask_t *to, int flags)
1093{
1094	int busy = 0;
1095	int err = 0;
1096	nodemask_t tmp;
1097
1098	lru_cache_disable();
 
 
1099
1100	mmap_read_lock(mm);
1101
1102	/*
1103	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1104	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1105	 * bit in 'tmp', and return that <source, dest> pair for migration.
1106	 * The pair of nodemasks 'to' and 'from' define the map.
1107	 *
1108	 * If no pair of bits is found that way, fallback to picking some
1109	 * pair of 'source' and 'dest' bits that are not the same.  If the
1110	 * 'source' and 'dest' bits are the same, this represents a node
1111	 * that will be migrating to itself, so no pages need move.
1112	 *
1113	 * If no bits are left in 'tmp', or if all remaining bits left
1114	 * in 'tmp' correspond to the same bit in 'to', return false
1115	 * (nothing left to migrate).
1116	 *
1117	 * This lets us pick a pair of nodes to migrate between, such that
1118	 * if possible the dest node is not already occupied by some other
1119	 * source node, minimizing the risk of overloading the memory on a
1120	 * node that would happen if we migrated incoming memory to a node
1121	 * before migrating outgoing memory source that same node.
1122	 *
1123	 * A single scan of tmp is sufficient.  As we go, we remember the
1124	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1125	 * that not only moved, but what's better, moved to an empty slot
1126	 * (d is not set in tmp), then we break out then, with that pair.
1127	 * Otherwise when we finish scanning from_tmp, we at least have the
1128	 * most recent <s, d> pair that moved.  If we get all the way through
1129	 * the scan of tmp without finding any node that moved, much less
1130	 * moved to an empty node, then there is nothing left worth migrating.
1131	 */
1132
1133	tmp = *from;
1134	while (!nodes_empty(tmp)) {
1135		int s, d;
1136		int source = NUMA_NO_NODE;
1137		int dest = 0;
1138
1139		for_each_node_mask(s, tmp) {
1140
1141			/*
1142			 * do_migrate_pages() tries to maintain the relative
1143			 * node relationship of the pages established between
1144			 * threads and memory areas.
1145                         *
1146			 * However if the number of source nodes is not equal to
1147			 * the number of destination nodes we can not preserve
1148			 * this node relative relationship.  In that case, skip
1149			 * copying memory from a node that is in the destination
1150			 * mask.
1151			 *
1152			 * Example: [2,3,4] -> [3,4,5] moves everything.
1153			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1154			 */
1155
1156			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1157						(node_isset(s, *to)))
1158				continue;
1159
1160			d = node_remap(s, *from, *to);
1161			if (s == d)
1162				continue;
1163
1164			source = s;	/* Node moved. Memorize */
1165			dest = d;
1166
1167			/* dest not in remaining from nodes? */
1168			if (!node_isset(dest, tmp))
1169				break;
1170		}
1171		if (source == NUMA_NO_NODE)
1172			break;
1173
1174		node_clear(source, tmp);
1175		err = migrate_to_node(mm, source, dest, flags);
1176		if (err > 0)
1177			busy += err;
1178		if (err < 0)
1179			break;
1180	}
1181	mmap_read_unlock(mm);
1182
1183	lru_cache_enable();
1184	if (err < 0)
1185		return err;
1186	return busy;
1187
1188}
1189
1190/*
1191 * Allocate a new page for page migration based on vma policy.
1192 * Start by assuming the page is mapped by the same vma as contains @start.
1193 * Search forward from there, if not.  N.B., this assumes that the
1194 * list of pages handed to migrate_pages()--which is how we get here--
1195 * is in virtual address order.
1196 */
1197static struct page *new_page(struct page *page, unsigned long start)
1198{
1199	struct vm_area_struct *vma;
1200	unsigned long address;
1201
1202	vma = find_vma(current->mm, start);
1203	while (vma) {
1204		address = page_address_in_vma(page, vma);
1205		if (address != -EFAULT)
1206			break;
1207		vma = vma->vm_next;
1208	}
1209
1210	if (PageHuge(page)) {
1211		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1212				vma, address);
1213	} else if (PageTransHuge(page)) {
1214		struct page *thp;
1215
1216		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1217					 HPAGE_PMD_ORDER);
1218		if (!thp)
1219			return NULL;
1220		prep_transhuge_page(thp);
1221		return thp;
1222	}
1223	/*
1224	 * if !vma, alloc_page_vma() will use task or system default policy
1225	 */
1226	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1227			vma, address);
1228}
1229#else
1230
1231static int migrate_page_add(struct page *page, struct list_head *pagelist,
1232				unsigned long flags)
1233{
1234	return -EIO;
1235}
1236
1237int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1238		     const nodemask_t *to, int flags)
1239{
1240	return -ENOSYS;
1241}
1242
1243static struct page *new_page(struct page *page, unsigned long start)
1244{
1245	return NULL;
1246}
1247#endif
1248
1249static long do_mbind(unsigned long start, unsigned long len,
1250		     unsigned short mode, unsigned short mode_flags,
1251		     nodemask_t *nmask, unsigned long flags)
1252{
1253	struct mm_struct *mm = current->mm;
1254	struct mempolicy *new;
1255	unsigned long end;
1256	int err;
1257	int ret;
1258	LIST_HEAD(pagelist);
1259
1260	if (flags & ~(unsigned long)MPOL_MF_VALID)
1261		return -EINVAL;
1262	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1263		return -EPERM;
1264
1265	if (start & ~PAGE_MASK)
1266		return -EINVAL;
1267
1268	if (mode == MPOL_DEFAULT)
1269		flags &= ~MPOL_MF_STRICT;
1270
1271	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1272	end = start + len;
1273
1274	if (end < start)
1275		return -EINVAL;
1276	if (end == start)
1277		return 0;
1278
1279	new = mpol_new(mode, mode_flags, nmask);
1280	if (IS_ERR(new))
1281		return PTR_ERR(new);
1282
1283	if (flags & MPOL_MF_LAZY)
1284		new->flags |= MPOL_F_MOF;
1285
1286	/*
1287	 * If we are using the default policy then operation
1288	 * on discontinuous address spaces is okay after all
1289	 */
1290	if (!new)
1291		flags |= MPOL_MF_DISCONTIG_OK;
1292
1293	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1294		 start, start + len, mode, mode_flags,
1295		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1296
1297	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1298
1299		lru_cache_disable();
 
 
1300	}
1301	{
1302		NODEMASK_SCRATCH(scratch);
1303		if (scratch) {
1304			mmap_write_lock(mm);
 
1305			err = mpol_set_nodemask(new, nmask, scratch);
 
1306			if (err)
1307				mmap_write_unlock(mm);
1308		} else
1309			err = -ENOMEM;
1310		NODEMASK_SCRATCH_FREE(scratch);
1311	}
1312	if (err)
1313		goto mpol_out;
1314
1315	ret = queue_pages_range(mm, start, end, nmask,
1316			  flags | MPOL_MF_INVERT, &pagelist);
1317
1318	if (ret < 0) {
1319		err = ret;
1320		goto up_out;
1321	}
1322
1323	err = mbind_range(mm, start, end, new);
1324
1325	if (!err) {
1326		int nr_failed = 0;
1327
1328		if (!list_empty(&pagelist)) {
1329			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1330			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1331				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1332			if (nr_failed)
1333				putback_movable_pages(&pagelist);
1334		}
1335
1336		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1337			err = -EIO;
1338	} else {
1339up_out:
1340		if (!list_empty(&pagelist))
1341			putback_movable_pages(&pagelist);
1342	}
1343
1344	mmap_write_unlock(mm);
1345mpol_out:
1346	mpol_put(new);
1347	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1348		lru_cache_enable();
1349	return err;
1350}
1351
1352/*
1353 * User space interface with variable sized bitmaps for nodelists.
1354 */
1355
1356/* Copy a node mask from user space. */
1357static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1358		     unsigned long maxnode)
1359{
1360	unsigned long k;
1361	unsigned long t;
1362	unsigned long nlongs;
1363	unsigned long endmask;
1364
1365	--maxnode;
1366	nodes_clear(*nodes);
1367	if (maxnode == 0 || !nmask)
1368		return 0;
1369	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1370		return -EINVAL;
1371
1372	nlongs = BITS_TO_LONGS(maxnode);
1373	if ((maxnode % BITS_PER_LONG) == 0)
1374		endmask = ~0UL;
1375	else
1376		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1377
1378	/*
1379	 * When the user specified more nodes than supported just check
1380	 * if the non supported part is all zero.
1381	 *
1382	 * If maxnode have more longs than MAX_NUMNODES, check
1383	 * the bits in that area first. And then go through to
1384	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1385	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1386	 */
1387	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1388		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1389			if (get_user(t, nmask + k))
1390				return -EFAULT;
1391			if (k == nlongs - 1) {
1392				if (t & endmask)
1393					return -EINVAL;
1394			} else if (t)
1395				return -EINVAL;
1396		}
1397		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1398		endmask = ~0UL;
1399	}
1400
1401	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1402		unsigned long valid_mask = endmask;
1403
1404		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1405		if (get_user(t, nmask + nlongs - 1))
1406			return -EFAULT;
1407		if (t & valid_mask)
1408			return -EINVAL;
1409	}
1410
1411	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1412		return -EFAULT;
1413	nodes_addr(*nodes)[nlongs-1] &= endmask;
1414	return 0;
1415}
1416
1417/* Copy a kernel node mask to user space */
1418static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1419			      nodemask_t *nodes)
1420{
1421	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1422	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1423
1424	if (copy > nbytes) {
1425		if (copy > PAGE_SIZE)
1426			return -EINVAL;
1427		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1428			return -EFAULT;
1429		copy = nbytes;
1430	}
1431	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1432}
1433
1434/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1435static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1436{
1437	*flags = *mode & MPOL_MODE_FLAGS;
1438	*mode &= ~MPOL_MODE_FLAGS;
1439	if ((unsigned int)(*mode) >= MPOL_MAX)
1440		return -EINVAL;
1441	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1442		return -EINVAL;
1443	if (*flags & MPOL_F_NUMA_BALANCING) {
1444		if (*mode != MPOL_BIND)
1445			return -EINVAL;
1446		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1447	}
1448	return 0;
1449}
1450
1451static long kernel_mbind(unsigned long start, unsigned long len,
1452			 unsigned long mode, const unsigned long __user *nmask,
1453			 unsigned long maxnode, unsigned int flags)
1454{
1455	unsigned short mode_flags;
1456	nodemask_t nodes;
1457	int lmode = mode;
1458	int err;
 
1459
1460	start = untagged_addr(start);
1461	err = sanitize_mpol_flags(&lmode, &mode_flags);
1462	if (err)
1463		return err;
1464
 
 
 
1465	err = get_nodes(&nodes, nmask, maxnode);
1466	if (err)
1467		return err;
1468
1469	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1470}
1471
1472SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1473		unsigned long, mode, const unsigned long __user *, nmask,
1474		unsigned long, maxnode, unsigned int, flags)
1475{
1476	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1477}
1478
1479/* Set the process memory policy */
1480static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1481				 unsigned long maxnode)
1482{
1483	unsigned short mode_flags;
1484	nodemask_t nodes;
1485	int lmode = mode;
1486	int err;
1487
1488	err = sanitize_mpol_flags(&lmode, &mode_flags);
1489	if (err)
1490		return err;
1491
 
 
 
 
 
 
1492	err = get_nodes(&nodes, nmask, maxnode);
1493	if (err)
1494		return err;
1495
1496	return do_set_mempolicy(lmode, mode_flags, &nodes);
1497}
1498
1499SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1500		unsigned long, maxnode)
1501{
1502	return kernel_set_mempolicy(mode, nmask, maxnode);
1503}
1504
1505static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1506				const unsigned long __user *old_nodes,
1507				const unsigned long __user *new_nodes)
1508{
1509	struct mm_struct *mm = NULL;
1510	struct task_struct *task;
1511	nodemask_t task_nodes;
1512	int err;
1513	nodemask_t *old;
1514	nodemask_t *new;
1515	NODEMASK_SCRATCH(scratch);
1516
1517	if (!scratch)
1518		return -ENOMEM;
1519
1520	old = &scratch->mask1;
1521	new = &scratch->mask2;
1522
1523	err = get_nodes(old, old_nodes, maxnode);
1524	if (err)
1525		goto out;
1526
1527	err = get_nodes(new, new_nodes, maxnode);
1528	if (err)
1529		goto out;
1530
1531	/* Find the mm_struct */
1532	rcu_read_lock();
1533	task = pid ? find_task_by_vpid(pid) : current;
1534	if (!task) {
1535		rcu_read_unlock();
1536		err = -ESRCH;
1537		goto out;
1538	}
1539	get_task_struct(task);
1540
1541	err = -EINVAL;
1542
1543	/*
1544	 * Check if this process has the right to modify the specified process.
1545	 * Use the regular "ptrace_may_access()" checks.
1546	 */
1547	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1548		rcu_read_unlock();
1549		err = -EPERM;
1550		goto out_put;
1551	}
1552	rcu_read_unlock();
1553
1554	task_nodes = cpuset_mems_allowed(task);
1555	/* Is the user allowed to access the target nodes? */
1556	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1557		err = -EPERM;
1558		goto out_put;
1559	}
1560
1561	task_nodes = cpuset_mems_allowed(current);
1562	nodes_and(*new, *new, task_nodes);
1563	if (nodes_empty(*new))
1564		goto out_put;
1565
1566	err = security_task_movememory(task);
1567	if (err)
1568		goto out_put;
1569
1570	mm = get_task_mm(task);
1571	put_task_struct(task);
1572
1573	if (!mm) {
1574		err = -EINVAL;
1575		goto out;
1576	}
1577
1578	err = do_migrate_pages(mm, old, new,
1579		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1580
1581	mmput(mm);
1582out:
1583	NODEMASK_SCRATCH_FREE(scratch);
1584
1585	return err;
1586
1587out_put:
1588	put_task_struct(task);
1589	goto out;
1590
1591}
1592
1593SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1594		const unsigned long __user *, old_nodes,
1595		const unsigned long __user *, new_nodes)
1596{
1597	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1598}
1599
1600
1601/* Retrieve NUMA policy */
1602static int kernel_get_mempolicy(int __user *policy,
1603				unsigned long __user *nmask,
1604				unsigned long maxnode,
1605				unsigned long addr,
1606				unsigned long flags)
1607{
1608	int err;
1609	int pval;
1610	nodemask_t nodes;
1611
 
 
1612	if (nmask != NULL && maxnode < nr_node_ids)
1613		return -EINVAL;
1614
1615	addr = untagged_addr(addr);
1616
1617	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1618
1619	if (err)
1620		return err;
1621
1622	if (policy && put_user(pval, policy))
1623		return -EFAULT;
1624
1625	if (nmask)
1626		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1627
1628	return err;
1629}
1630
1631SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1632		unsigned long __user *, nmask, unsigned long, maxnode,
1633		unsigned long, addr, unsigned long, flags)
1634{
1635	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1636}
1637
1638#ifdef CONFIG_COMPAT
1639
1640COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1641		       compat_ulong_t __user *, nmask,
1642		       compat_ulong_t, maxnode,
1643		       compat_ulong_t, addr, compat_ulong_t, flags)
1644{
1645	long err;
1646	unsigned long __user *nm = NULL;
1647	unsigned long nr_bits, alloc_size;
1648	DECLARE_BITMAP(bm, MAX_NUMNODES);
1649
1650	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1651	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1652
1653	if (nmask)
1654		nm = compat_alloc_user_space(alloc_size);
1655
1656	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1657
1658	if (!err && nmask) {
1659		unsigned long copy_size;
1660		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1661		err = copy_from_user(bm, nm, copy_size);
1662		/* ensure entire bitmap is zeroed */
1663		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1664		err |= compat_put_bitmap(nmask, bm, nr_bits);
1665	}
1666
1667	return err;
1668}
1669
1670COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1671		       compat_ulong_t, maxnode)
1672{
1673	unsigned long __user *nm = NULL;
1674	unsigned long nr_bits, alloc_size;
1675	DECLARE_BITMAP(bm, MAX_NUMNODES);
1676
1677	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1678	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1679
1680	if (nmask) {
1681		if (compat_get_bitmap(bm, nmask, nr_bits))
1682			return -EFAULT;
1683		nm = compat_alloc_user_space(alloc_size);
1684		if (copy_to_user(nm, bm, alloc_size))
1685			return -EFAULT;
1686	}
1687
1688	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1689}
1690
1691COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1692		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1693		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1694{
1695	unsigned long __user *nm = NULL;
1696	unsigned long nr_bits, alloc_size;
1697	nodemask_t bm;
1698
1699	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1700	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1701
1702	if (nmask) {
1703		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1704			return -EFAULT;
1705		nm = compat_alloc_user_space(alloc_size);
1706		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1707			return -EFAULT;
1708	}
1709
1710	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1711}
1712
1713COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1714		       compat_ulong_t, maxnode,
1715		       const compat_ulong_t __user *, old_nodes,
1716		       const compat_ulong_t __user *, new_nodes)
1717{
1718	unsigned long __user *old = NULL;
1719	unsigned long __user *new = NULL;
1720	nodemask_t tmp_mask;
1721	unsigned long nr_bits;
1722	unsigned long size;
1723
1724	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1725	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1726	if (old_nodes) {
1727		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1728			return -EFAULT;
1729		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1730		if (new_nodes)
1731			new = old + size / sizeof(unsigned long);
1732		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1733			return -EFAULT;
1734	}
1735	if (new_nodes) {
1736		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1737			return -EFAULT;
1738		if (new == NULL)
1739			new = compat_alloc_user_space(size);
1740		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1741			return -EFAULT;
1742	}
1743	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1744}
1745
1746#endif /* CONFIG_COMPAT */
1747
1748bool vma_migratable(struct vm_area_struct *vma)
1749{
1750	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1751		return false;
1752
1753	/*
1754	 * DAX device mappings require predictable access latency, so avoid
1755	 * incurring periodic faults.
1756	 */
1757	if (vma_is_dax(vma))
1758		return false;
1759
1760	if (is_vm_hugetlb_page(vma) &&
1761		!hugepage_migration_supported(hstate_vma(vma)))
1762		return false;
1763
1764	/*
1765	 * Migration allocates pages in the highest zone. If we cannot
1766	 * do so then migration (at least from node to node) is not
1767	 * possible.
1768	 */
1769	if (vma->vm_file &&
1770		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1771			< policy_zone)
1772		return false;
1773	return true;
1774}
1775
1776struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1777						unsigned long addr)
1778{
1779	struct mempolicy *pol = NULL;
1780
1781	if (vma) {
1782		if (vma->vm_ops && vma->vm_ops->get_policy) {
1783			pol = vma->vm_ops->get_policy(vma, addr);
1784		} else if (vma->vm_policy) {
1785			pol = vma->vm_policy;
1786
1787			/*
1788			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1789			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1790			 * count on these policies which will be dropped by
1791			 * mpol_cond_put() later
1792			 */
1793			if (mpol_needs_cond_ref(pol))
1794				mpol_get(pol);
1795		}
1796	}
1797
1798	return pol;
1799}
1800
1801/*
1802 * get_vma_policy(@vma, @addr)
1803 * @vma: virtual memory area whose policy is sought
1804 * @addr: address in @vma for shared policy lookup
1805 *
1806 * Returns effective policy for a VMA at specified address.
1807 * Falls back to current->mempolicy or system default policy, as necessary.
1808 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1809 * count--added by the get_policy() vm_op, as appropriate--to protect against
1810 * freeing by another task.  It is the caller's responsibility to free the
1811 * extra reference for shared policies.
1812 */
1813static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1814						unsigned long addr)
1815{
1816	struct mempolicy *pol = __get_vma_policy(vma, addr);
1817
1818	if (!pol)
1819		pol = get_task_policy(current);
1820
1821	return pol;
1822}
1823
1824bool vma_policy_mof(struct vm_area_struct *vma)
1825{
1826	struct mempolicy *pol;
1827
1828	if (vma->vm_ops && vma->vm_ops->get_policy) {
1829		bool ret = false;
1830
1831		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1832		if (pol && (pol->flags & MPOL_F_MOF))
1833			ret = true;
1834		mpol_cond_put(pol);
1835
1836		return ret;
1837	}
1838
1839	pol = vma->vm_policy;
1840	if (!pol)
1841		pol = get_task_policy(current);
1842
1843	return pol->flags & MPOL_F_MOF;
1844}
1845
1846static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1847{
1848	enum zone_type dynamic_policy_zone = policy_zone;
1849
1850	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1851
1852	/*
1853	 * if policy->nodes has movable memory only,
1854	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1855	 *
1856	 * policy->nodes is intersect with node_states[N_MEMORY].
1857	 * so if the following test fails, it implies
1858	 * policy->nodes has movable memory only.
1859	 */
1860	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1861		dynamic_policy_zone = ZONE_MOVABLE;
1862
1863	return zone >= dynamic_policy_zone;
1864}
1865
1866/*
1867 * Return a nodemask representing a mempolicy for filtering nodes for
1868 * page allocation
1869 */
1870nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1871{
1872	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1873	if (unlikely(policy->mode == MPOL_BIND) &&
1874			apply_policy_zone(policy, gfp_zone(gfp)) &&
1875			cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1876		return &policy->nodes;
1877
1878	return NULL;
1879}
1880
1881/* Return the node id preferred by the given mempolicy, or the given id */
1882static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
 
1883{
1884	if (policy->mode == MPOL_PREFERRED) {
1885		nd = first_node(policy->nodes);
1886	} else {
1887		/*
1888		 * __GFP_THISNODE shouldn't even be used with the bind policy
1889		 * because we might easily break the expectation to stay on the
1890		 * requested node and not break the policy.
1891		 */
1892		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1893	}
1894
1895	return nd;
1896}
1897
1898/* Do dynamic interleaving for a process */
1899static unsigned interleave_nodes(struct mempolicy *policy)
1900{
1901	unsigned next;
1902	struct task_struct *me = current;
1903
1904	next = next_node_in(me->il_prev, policy->nodes);
1905	if (next < MAX_NUMNODES)
1906		me->il_prev = next;
1907	return next;
1908}
1909
1910/*
1911 * Depending on the memory policy provide a node from which to allocate the
1912 * next slab entry.
1913 */
1914unsigned int mempolicy_slab_node(void)
1915{
1916	struct mempolicy *policy;
1917	int node = numa_mem_id();
1918
1919	if (in_interrupt())
1920		return node;
1921
1922	policy = current->mempolicy;
1923	if (!policy)
1924		return node;
1925
1926	switch (policy->mode) {
1927	case MPOL_PREFERRED:
1928		return first_node(policy->nodes);
 
 
 
1929
1930	case MPOL_INTERLEAVE:
1931		return interleave_nodes(policy);
1932
1933	case MPOL_BIND: {
1934		struct zoneref *z;
1935
1936		/*
1937		 * Follow bind policy behavior and start allocation at the
1938		 * first node.
1939		 */
1940		struct zonelist *zonelist;
1941		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1942		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1943		z = first_zones_zonelist(zonelist, highest_zoneidx,
1944							&policy->nodes);
1945		return z->zone ? zone_to_nid(z->zone) : node;
1946	}
1947	case MPOL_LOCAL:
1948		return node;
1949
1950	default:
1951		BUG();
1952	}
1953}
1954
1955/*
1956 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1957 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1958 * number of present nodes.
1959 */
1960static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1961{
1962	nodemask_t nodemask = pol->nodes;
1963	unsigned int target, nnodes;
1964	int i;
1965	int nid;
1966	/*
1967	 * The barrier will stabilize the nodemask in a register or on
1968	 * the stack so that it will stop changing under the code.
1969	 *
1970	 * Between first_node() and next_node(), pol->nodes could be changed
1971	 * by other threads. So we put pol->nodes in a local stack.
1972	 */
1973	barrier();
1974
1975	nnodes = nodes_weight(nodemask);
1976	if (!nnodes)
1977		return numa_node_id();
1978	target = (unsigned int)n % nnodes;
1979	nid = first_node(nodemask);
1980	for (i = 0; i < target; i++)
1981		nid = next_node(nid, nodemask);
1982	return nid;
1983}
1984
1985/* Determine a node number for interleave */
1986static inline unsigned interleave_nid(struct mempolicy *pol,
1987		 struct vm_area_struct *vma, unsigned long addr, int shift)
1988{
1989	if (vma) {
1990		unsigned long off;
1991
1992		/*
1993		 * for small pages, there is no difference between
1994		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1995		 * for huge pages, since vm_pgoff is in units of small
1996		 * pages, we need to shift off the always 0 bits to get
1997		 * a useful offset.
1998		 */
1999		BUG_ON(shift < PAGE_SHIFT);
2000		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2001		off += (addr - vma->vm_start) >> shift;
2002		return offset_il_node(pol, off);
2003	} else
2004		return interleave_nodes(pol);
2005}
2006
2007#ifdef CONFIG_HUGETLBFS
2008/*
2009 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2010 * @vma: virtual memory area whose policy is sought
2011 * @addr: address in @vma for shared policy lookup and interleave policy
2012 * @gfp_flags: for requested zone
2013 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2014 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2015 *
2016 * Returns a nid suitable for a huge page allocation and a pointer
2017 * to the struct mempolicy for conditional unref after allocation.
2018 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2019 * @nodemask for filtering the zonelist.
2020 *
2021 * Must be protected by read_mems_allowed_begin()
2022 */
2023int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2024				struct mempolicy **mpol, nodemask_t **nodemask)
2025{
2026	int nid;
2027
2028	*mpol = get_vma_policy(vma, addr);
2029	*nodemask = NULL;	/* assume !MPOL_BIND */
2030
2031	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2032		nid = interleave_nid(*mpol, vma, addr,
2033					huge_page_shift(hstate_vma(vma)));
2034	} else {
2035		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2036		if ((*mpol)->mode == MPOL_BIND)
2037			*nodemask = &(*mpol)->nodes;
2038	}
2039	return nid;
2040}
2041
2042/*
2043 * init_nodemask_of_mempolicy
2044 *
2045 * If the current task's mempolicy is "default" [NULL], return 'false'
2046 * to indicate default policy.  Otherwise, extract the policy nodemask
2047 * for 'bind' or 'interleave' policy into the argument nodemask, or
2048 * initialize the argument nodemask to contain the single node for
2049 * 'preferred' or 'local' policy and return 'true' to indicate presence
2050 * of non-default mempolicy.
2051 *
2052 * We don't bother with reference counting the mempolicy [mpol_get/put]
2053 * because the current task is examining it's own mempolicy and a task's
2054 * mempolicy is only ever changed by the task itself.
2055 *
2056 * N.B., it is the caller's responsibility to free a returned nodemask.
2057 */
2058bool init_nodemask_of_mempolicy(nodemask_t *mask)
2059{
2060	struct mempolicy *mempolicy;
 
2061
2062	if (!(mask && current->mempolicy))
2063		return false;
2064
2065	task_lock(current);
2066	mempolicy = current->mempolicy;
2067	switch (mempolicy->mode) {
2068	case MPOL_PREFERRED:
 
 
 
 
 
 
 
2069	case MPOL_BIND:
 
2070	case MPOL_INTERLEAVE:
2071		*mask = mempolicy->nodes;
2072		break;
2073
2074	case MPOL_LOCAL:
2075		init_nodemask_of_node(mask, numa_node_id());
2076		break;
2077
2078	default:
2079		BUG();
2080	}
2081	task_unlock(current);
2082
2083	return true;
2084}
2085#endif
2086
2087/*
2088 * mempolicy_in_oom_domain
2089 *
2090 * If tsk's mempolicy is "bind", check for intersection between mask and
2091 * the policy nodemask. Otherwise, return true for all other policies
2092 * including "interleave", as a tsk with "interleave" policy may have
2093 * memory allocated from all nodes in system.
2094 *
2095 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2096 */
2097bool mempolicy_in_oom_domain(struct task_struct *tsk,
2098					const nodemask_t *mask)
2099{
2100	struct mempolicy *mempolicy;
2101	bool ret = true;
2102
2103	if (!mask)
2104		return ret;
2105
2106	task_lock(tsk);
2107	mempolicy = tsk->mempolicy;
2108	if (mempolicy && mempolicy->mode == MPOL_BIND)
2109		ret = nodes_intersects(mempolicy->nodes, *mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2110	task_unlock(tsk);
2111
2112	return ret;
2113}
2114
2115/* Allocate a page in interleaved policy.
2116   Own path because it needs to do special accounting. */
2117static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2118					unsigned nid)
2119{
2120	struct page *page;
2121
2122	page = __alloc_pages(gfp, order, nid, NULL);
2123	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2124	if (!static_branch_likely(&vm_numa_stat_key))
2125		return page;
2126	if (page && page_to_nid(page) == nid) {
2127		preempt_disable();
2128		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2129		preempt_enable();
2130	}
2131	return page;
2132}
2133
2134/**
2135 * alloc_pages_vma - Allocate a page for a VMA.
2136 * @gfp: GFP flags.
2137 * @order: Order of the GFP allocation.
2138 * @vma: Pointer to VMA or NULL if not available.
2139 * @addr: Virtual address of the allocation.  Must be inside @vma.
2140 * @node: Which node to prefer for allocation (modulo policy).
2141 * @hugepage: For hugepages try only the preferred node if possible.
2142 *
2143 * Allocate a page for a specific address in @vma, using the appropriate
2144 * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2145 * of the mm_struct of the VMA to prevent it from going away.  Should be
2146 * used for all allocations for pages that will be mapped into user space.
2147 *
2148 * Return: The page on success or NULL if allocation fails.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149 */
2150struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
 
2151		unsigned long addr, int node, bool hugepage)
2152{
2153	struct mempolicy *pol;
2154	struct page *page;
2155	int preferred_nid;
2156	nodemask_t *nmask;
2157
2158	pol = get_vma_policy(vma, addr);
2159
2160	if (pol->mode == MPOL_INTERLEAVE) {
2161		unsigned nid;
2162
2163		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2164		mpol_cond_put(pol);
2165		page = alloc_page_interleave(gfp, order, nid);
2166		goto out;
2167	}
2168
2169	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2170		int hpage_node = node;
2171
2172		/*
2173		 * For hugepage allocation and non-interleave policy which
2174		 * allows the current node (or other explicitly preferred
2175		 * node) we only try to allocate from the current/preferred
2176		 * node and don't fall back to other nodes, as the cost of
2177		 * remote accesses would likely offset THP benefits.
2178		 *
2179		 * If the policy is interleave, or does not allow the current
2180		 * node in its nodemask, we allocate the standard way.
2181		 */
2182		if (pol->mode == MPOL_PREFERRED)
2183			hpage_node = first_node(pol->nodes);
2184
2185		nmask = policy_nodemask(gfp, pol);
2186		if (!nmask || node_isset(hpage_node, *nmask)) {
2187			mpol_cond_put(pol);
2188			/*
2189			 * First, try to allocate THP only on local node, but
2190			 * don't reclaim unnecessarily, just compact.
2191			 */
2192			page = __alloc_pages_node(hpage_node,
2193				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2194
2195			/*
2196			 * If hugepage allocations are configured to always
2197			 * synchronous compact or the vma has been madvised
2198			 * to prefer hugepage backing, retry allowing remote
2199			 * memory with both reclaim and compact as well.
2200			 */
2201			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2202				page = __alloc_pages_node(hpage_node,
2203								gfp, order);
2204
2205			goto out;
2206		}
2207	}
2208
2209	nmask = policy_nodemask(gfp, pol);
2210	preferred_nid = policy_node(gfp, pol, node);
2211	page = __alloc_pages(gfp, order, preferred_nid, nmask);
2212	mpol_cond_put(pol);
2213out:
2214	return page;
2215}
2216EXPORT_SYMBOL(alloc_pages_vma);
2217
2218/**
2219 * alloc_pages - Allocate pages.
2220 * @gfp: GFP flags.
2221 * @order: Power of two of number of pages to allocate.
2222 *
2223 * Allocate 1 << @order contiguous pages.  The physical address of the
2224 * first page is naturally aligned (eg an order-3 allocation will be aligned
2225 * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2226 * process is honoured when in process context.
2227 *
2228 * Context: Can be called from any context, providing the appropriate GFP
2229 * flags are used.
2230 * Return: The page on success or NULL if allocation fails.
 
2231 */
2232struct page *alloc_pages(gfp_t gfp, unsigned order)
2233{
2234	struct mempolicy *pol = &default_policy;
2235	struct page *page;
2236
2237	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2238		pol = get_task_policy(current);
2239
2240	/*
2241	 * No reference counting needed for current->mempolicy
2242	 * nor system default_policy
2243	 */
2244	if (pol->mode == MPOL_INTERLEAVE)
2245		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2246	else
2247		page = __alloc_pages(gfp, order,
2248				policy_node(gfp, pol, numa_node_id()),
2249				policy_nodemask(gfp, pol));
2250
2251	return page;
2252}
2253EXPORT_SYMBOL(alloc_pages);
2254
2255int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2256{
2257	struct mempolicy *pol = mpol_dup(vma_policy(src));
2258
2259	if (IS_ERR(pol))
2260		return PTR_ERR(pol);
2261	dst->vm_policy = pol;
2262	return 0;
2263}
2264
2265/*
2266 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2267 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2268 * with the mems_allowed returned by cpuset_mems_allowed().  This
2269 * keeps mempolicies cpuset relative after its cpuset moves.  See
2270 * further kernel/cpuset.c update_nodemask().
2271 *
2272 * current's mempolicy may be rebinded by the other task(the task that changes
2273 * cpuset's mems), so we needn't do rebind work for current task.
2274 */
2275
2276/* Slow path of a mempolicy duplicate */
2277struct mempolicy *__mpol_dup(struct mempolicy *old)
2278{
2279	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2280
2281	if (!new)
2282		return ERR_PTR(-ENOMEM);
2283
2284	/* task's mempolicy is protected by alloc_lock */
2285	if (old == current->mempolicy) {
2286		task_lock(current);
2287		*new = *old;
2288		task_unlock(current);
2289	} else
2290		*new = *old;
2291
2292	if (current_cpuset_is_being_rebound()) {
2293		nodemask_t mems = cpuset_mems_allowed(current);
2294		mpol_rebind_policy(new, &mems);
2295	}
2296	atomic_set(&new->refcnt, 1);
2297	return new;
2298}
2299
2300/* Slow path of a mempolicy comparison */
2301bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2302{
2303	if (!a || !b)
2304		return false;
2305	if (a->mode != b->mode)
2306		return false;
2307	if (a->flags != b->flags)
2308		return false;
2309	if (mpol_store_user_nodemask(a))
2310		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2311			return false;
2312
2313	switch (a->mode) {
2314	case MPOL_BIND:
 
2315	case MPOL_INTERLEAVE:
 
2316	case MPOL_PREFERRED:
2317		return !!nodes_equal(a->nodes, b->nodes);
2318	case MPOL_LOCAL:
2319		return true;
 
2320	default:
2321		BUG();
2322		return false;
2323	}
2324}
2325
2326/*
2327 * Shared memory backing store policy support.
2328 *
2329 * Remember policies even when nobody has shared memory mapped.
2330 * The policies are kept in Red-Black tree linked from the inode.
2331 * They are protected by the sp->lock rwlock, which should be held
2332 * for any accesses to the tree.
2333 */
2334
2335/*
2336 * lookup first element intersecting start-end.  Caller holds sp->lock for
2337 * reading or for writing
2338 */
2339static struct sp_node *
2340sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2341{
2342	struct rb_node *n = sp->root.rb_node;
2343
2344	while (n) {
2345		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2346
2347		if (start >= p->end)
2348			n = n->rb_right;
2349		else if (end <= p->start)
2350			n = n->rb_left;
2351		else
2352			break;
2353	}
2354	if (!n)
2355		return NULL;
2356	for (;;) {
2357		struct sp_node *w = NULL;
2358		struct rb_node *prev = rb_prev(n);
2359		if (!prev)
2360			break;
2361		w = rb_entry(prev, struct sp_node, nd);
2362		if (w->end <= start)
2363			break;
2364		n = prev;
2365	}
2366	return rb_entry(n, struct sp_node, nd);
2367}
2368
2369/*
2370 * Insert a new shared policy into the list.  Caller holds sp->lock for
2371 * writing.
2372 */
2373static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2374{
2375	struct rb_node **p = &sp->root.rb_node;
2376	struct rb_node *parent = NULL;
2377	struct sp_node *nd;
2378
2379	while (*p) {
2380		parent = *p;
2381		nd = rb_entry(parent, struct sp_node, nd);
2382		if (new->start < nd->start)
2383			p = &(*p)->rb_left;
2384		else if (new->end > nd->end)
2385			p = &(*p)->rb_right;
2386		else
2387			BUG();
2388	}
2389	rb_link_node(&new->nd, parent, p);
2390	rb_insert_color(&new->nd, &sp->root);
2391	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2392		 new->policy ? new->policy->mode : 0);
2393}
2394
2395/* Find shared policy intersecting idx */
2396struct mempolicy *
2397mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2398{
2399	struct mempolicy *pol = NULL;
2400	struct sp_node *sn;
2401
2402	if (!sp->root.rb_node)
2403		return NULL;
2404	read_lock(&sp->lock);
2405	sn = sp_lookup(sp, idx, idx+1);
2406	if (sn) {
2407		mpol_get(sn->policy);
2408		pol = sn->policy;
2409	}
2410	read_unlock(&sp->lock);
2411	return pol;
2412}
2413
2414static void sp_free(struct sp_node *n)
2415{
2416	mpol_put(n->policy);
2417	kmem_cache_free(sn_cache, n);
2418}
2419
2420/**
2421 * mpol_misplaced - check whether current page node is valid in policy
2422 *
2423 * @page: page to be checked
2424 * @vma: vm area where page mapped
2425 * @addr: virtual address where page mapped
2426 *
2427 * Lookup current policy node id for vma,addr and "compare to" page's
2428 * node id.  Policy determination "mimics" alloc_page_vma().
 
 
 
 
 
 
2429 * Called from fault path where we know the vma and faulting address.
2430 *
2431 * Return: -1 if the page is in a node that is valid for this policy, or a
2432 * suitable node ID to allocate a replacement page from.
2433 */
2434int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2435{
2436	struct mempolicy *pol;
2437	struct zoneref *z;
2438	int curnid = page_to_nid(page);
2439	unsigned long pgoff;
2440	int thiscpu = raw_smp_processor_id();
2441	int thisnid = cpu_to_node(thiscpu);
2442	int polnid = NUMA_NO_NODE;
2443	int ret = -1;
2444
2445	pol = get_vma_policy(vma, addr);
2446	if (!(pol->flags & MPOL_F_MOF))
2447		goto out;
2448
2449	switch (pol->mode) {
2450	case MPOL_INTERLEAVE:
2451		pgoff = vma->vm_pgoff;
2452		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2453		polnid = offset_il_node(pol, pgoff);
2454		break;
2455
2456	case MPOL_PREFERRED:
2457		polnid = first_node(pol->nodes);
2458		break;
2459
2460	case MPOL_LOCAL:
2461		polnid = numa_node_id();
2462		break;
2463
2464	case MPOL_BIND:
2465		/* Optimize placement among multiple nodes via NUMA balancing */
2466		if (pol->flags & MPOL_F_MORON) {
2467			if (node_isset(thisnid, pol->nodes))
2468				break;
2469			goto out;
2470		}
2471
2472		/*
2473		 * allows binding to multiple nodes.
2474		 * use current page if in policy nodemask,
2475		 * else select nearest allowed node, if any.
2476		 * If no allowed nodes, use current [!misplaced].
2477		 */
2478		if (node_isset(curnid, pol->nodes))
2479			goto out;
2480		z = first_zones_zonelist(
2481				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2482				gfp_zone(GFP_HIGHUSER),
2483				&pol->nodes);
2484		polnid = zone_to_nid(z->zone);
2485		break;
2486
2487	default:
2488		BUG();
2489	}
2490
2491	/* Migrate the page towards the node whose CPU is referencing it */
2492	if (pol->flags & MPOL_F_MORON) {
2493		polnid = thisnid;
2494
2495		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2496			goto out;
2497	}
2498
2499	if (curnid != polnid)
2500		ret = polnid;
2501out:
2502	mpol_cond_put(pol);
2503
2504	return ret;
2505}
2506
2507/*
2508 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2509 * dropped after task->mempolicy is set to NULL so that any allocation done as
2510 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2511 * policy.
2512 */
2513void mpol_put_task_policy(struct task_struct *task)
2514{
2515	struct mempolicy *pol;
2516
2517	task_lock(task);
2518	pol = task->mempolicy;
2519	task->mempolicy = NULL;
2520	task_unlock(task);
2521	mpol_put(pol);
2522}
2523
2524static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2525{
2526	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2527	rb_erase(&n->nd, &sp->root);
2528	sp_free(n);
2529}
2530
2531static void sp_node_init(struct sp_node *node, unsigned long start,
2532			unsigned long end, struct mempolicy *pol)
2533{
2534	node->start = start;
2535	node->end = end;
2536	node->policy = pol;
2537}
2538
2539static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2540				struct mempolicy *pol)
2541{
2542	struct sp_node *n;
2543	struct mempolicy *newpol;
2544
2545	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2546	if (!n)
2547		return NULL;
2548
2549	newpol = mpol_dup(pol);
2550	if (IS_ERR(newpol)) {
2551		kmem_cache_free(sn_cache, n);
2552		return NULL;
2553	}
2554	newpol->flags |= MPOL_F_SHARED;
2555	sp_node_init(n, start, end, newpol);
2556
2557	return n;
2558}
2559
2560/* Replace a policy range. */
2561static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2562				 unsigned long end, struct sp_node *new)
2563{
2564	struct sp_node *n;
2565	struct sp_node *n_new = NULL;
2566	struct mempolicy *mpol_new = NULL;
2567	int ret = 0;
2568
2569restart:
2570	write_lock(&sp->lock);
2571	n = sp_lookup(sp, start, end);
2572	/* Take care of old policies in the same range. */
2573	while (n && n->start < end) {
2574		struct rb_node *next = rb_next(&n->nd);
2575		if (n->start >= start) {
2576			if (n->end <= end)
2577				sp_delete(sp, n);
2578			else
2579				n->start = end;
2580		} else {
2581			/* Old policy spanning whole new range. */
2582			if (n->end > end) {
2583				if (!n_new)
2584					goto alloc_new;
2585
2586				*mpol_new = *n->policy;
2587				atomic_set(&mpol_new->refcnt, 1);
2588				sp_node_init(n_new, end, n->end, mpol_new);
2589				n->end = start;
2590				sp_insert(sp, n_new);
2591				n_new = NULL;
2592				mpol_new = NULL;
2593				break;
2594			} else
2595				n->end = start;
2596		}
2597		if (!next)
2598			break;
2599		n = rb_entry(next, struct sp_node, nd);
2600	}
2601	if (new)
2602		sp_insert(sp, new);
2603	write_unlock(&sp->lock);
2604	ret = 0;
2605
2606err_out:
2607	if (mpol_new)
2608		mpol_put(mpol_new);
2609	if (n_new)
2610		kmem_cache_free(sn_cache, n_new);
2611
2612	return ret;
2613
2614alloc_new:
2615	write_unlock(&sp->lock);
2616	ret = -ENOMEM;
2617	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2618	if (!n_new)
2619		goto err_out;
2620	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2621	if (!mpol_new)
2622		goto err_out;
2623	goto restart;
2624}
2625
2626/**
2627 * mpol_shared_policy_init - initialize shared policy for inode
2628 * @sp: pointer to inode shared policy
2629 * @mpol:  struct mempolicy to install
2630 *
2631 * Install non-NULL @mpol in inode's shared policy rb-tree.
2632 * On entry, the current task has a reference on a non-NULL @mpol.
2633 * This must be released on exit.
2634 * This is called at get_inode() calls and we can use GFP_KERNEL.
2635 */
2636void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2637{
2638	int ret;
2639
2640	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2641	rwlock_init(&sp->lock);
2642
2643	if (mpol) {
2644		struct vm_area_struct pvma;
2645		struct mempolicy *new;
2646		NODEMASK_SCRATCH(scratch);
2647
2648		if (!scratch)
2649			goto put_mpol;
2650		/* contextualize the tmpfs mount point mempolicy */
2651		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2652		if (IS_ERR(new))
2653			goto free_scratch; /* no valid nodemask intersection */
2654
2655		task_lock(current);
2656		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2657		task_unlock(current);
2658		if (ret)
2659			goto put_new;
2660
2661		/* Create pseudo-vma that contains just the policy */
2662		vma_init(&pvma, NULL);
2663		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2664		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2665
2666put_new:
2667		mpol_put(new);			/* drop initial ref */
2668free_scratch:
2669		NODEMASK_SCRATCH_FREE(scratch);
2670put_mpol:
2671		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2672	}
2673}
2674
2675int mpol_set_shared_policy(struct shared_policy *info,
2676			struct vm_area_struct *vma, struct mempolicy *npol)
2677{
2678	int err;
2679	struct sp_node *new = NULL;
2680	unsigned long sz = vma_pages(vma);
2681
2682	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2683		 vma->vm_pgoff,
2684		 sz, npol ? npol->mode : -1,
2685		 npol ? npol->flags : -1,
2686		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2687
2688	if (npol) {
2689		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2690		if (!new)
2691			return -ENOMEM;
2692	}
2693	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2694	if (err && new)
2695		sp_free(new);
2696	return err;
2697}
2698
2699/* Free a backing policy store on inode delete. */
2700void mpol_free_shared_policy(struct shared_policy *p)
2701{
2702	struct sp_node *n;
2703	struct rb_node *next;
2704
2705	if (!p->root.rb_node)
2706		return;
2707	write_lock(&p->lock);
2708	next = rb_first(&p->root);
2709	while (next) {
2710		n = rb_entry(next, struct sp_node, nd);
2711		next = rb_next(&n->nd);
2712		sp_delete(p, n);
2713	}
2714	write_unlock(&p->lock);
2715}
2716
2717#ifdef CONFIG_NUMA_BALANCING
2718static int __initdata numabalancing_override;
2719
2720static void __init check_numabalancing_enable(void)
2721{
2722	bool numabalancing_default = false;
2723
2724	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2725		numabalancing_default = true;
2726
2727	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2728	if (numabalancing_override)
2729		set_numabalancing_state(numabalancing_override == 1);
2730
2731	if (num_online_nodes() > 1 && !numabalancing_override) {
2732		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2733			numabalancing_default ? "Enabling" : "Disabling");
2734		set_numabalancing_state(numabalancing_default);
2735	}
2736}
2737
2738static int __init setup_numabalancing(char *str)
2739{
2740	int ret = 0;
2741	if (!str)
2742		goto out;
2743
2744	if (!strcmp(str, "enable")) {
2745		numabalancing_override = 1;
2746		ret = 1;
2747	} else if (!strcmp(str, "disable")) {
2748		numabalancing_override = -1;
2749		ret = 1;
2750	}
2751out:
2752	if (!ret)
2753		pr_warn("Unable to parse numa_balancing=\n");
2754
2755	return ret;
2756}
2757__setup("numa_balancing=", setup_numabalancing);
2758#else
2759static inline void __init check_numabalancing_enable(void)
2760{
2761}
2762#endif /* CONFIG_NUMA_BALANCING */
2763
2764/* assumes fs == KERNEL_DS */
2765void __init numa_policy_init(void)
2766{
2767	nodemask_t interleave_nodes;
2768	unsigned long largest = 0;
2769	int nid, prefer = 0;
2770
2771	policy_cache = kmem_cache_create("numa_policy",
2772					 sizeof(struct mempolicy),
2773					 0, SLAB_PANIC, NULL);
2774
2775	sn_cache = kmem_cache_create("shared_policy_node",
2776				     sizeof(struct sp_node),
2777				     0, SLAB_PANIC, NULL);
2778
2779	for_each_node(nid) {
2780		preferred_node_policy[nid] = (struct mempolicy) {
2781			.refcnt = ATOMIC_INIT(1),
2782			.mode = MPOL_PREFERRED,
2783			.flags = MPOL_F_MOF | MPOL_F_MORON,
2784			.nodes = nodemask_of_node(nid),
2785		};
2786	}
2787
2788	/*
2789	 * Set interleaving policy for system init. Interleaving is only
2790	 * enabled across suitably sized nodes (default is >= 16MB), or
2791	 * fall back to the largest node if they're all smaller.
2792	 */
2793	nodes_clear(interleave_nodes);
2794	for_each_node_state(nid, N_MEMORY) {
2795		unsigned long total_pages = node_present_pages(nid);
2796
2797		/* Preserve the largest node */
2798		if (largest < total_pages) {
2799			largest = total_pages;
2800			prefer = nid;
2801		}
2802
2803		/* Interleave this node? */
2804		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2805			node_set(nid, interleave_nodes);
2806	}
2807
2808	/* All too small, use the largest */
2809	if (unlikely(nodes_empty(interleave_nodes)))
2810		node_set(prefer, interleave_nodes);
2811
2812	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2813		pr_err("%s: interleaving failed\n", __func__);
2814
2815	check_numabalancing_enable();
2816}
2817
2818/* Reset policy of current process to default */
2819void numa_default_policy(void)
2820{
2821	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2822}
2823
2824/*
2825 * Parse and format mempolicy from/to strings
2826 */
2827
 
 
 
2828static const char * const policy_modes[] =
2829{
2830	[MPOL_DEFAULT]    = "default",
2831	[MPOL_PREFERRED]  = "prefer",
2832	[MPOL_BIND]       = "bind",
2833	[MPOL_INTERLEAVE] = "interleave",
2834	[MPOL_LOCAL]      = "local",
2835};
2836
2837
2838#ifdef CONFIG_TMPFS
2839/**
2840 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2841 * @str:  string containing mempolicy to parse
2842 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2843 *
2844 * Format of input:
2845 *	<mode>[=<flags>][:<nodelist>]
2846 *
2847 * On success, returns 0, else 1
2848 */
2849int mpol_parse_str(char *str, struct mempolicy **mpol)
2850{
2851	struct mempolicy *new = NULL;
2852	unsigned short mode_flags;
2853	nodemask_t nodes;
2854	char *nodelist = strchr(str, ':');
2855	char *flags = strchr(str, '=');
2856	int err = 1, mode;
2857
2858	if (flags)
2859		*flags++ = '\0';	/* terminate mode string */
2860
2861	if (nodelist) {
2862		/* NUL-terminate mode or flags string */
2863		*nodelist++ = '\0';
2864		if (nodelist_parse(nodelist, nodes))
2865			goto out;
2866		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2867			goto out;
2868	} else
2869		nodes_clear(nodes);
2870
 
 
 
2871	mode = match_string(policy_modes, MPOL_MAX, str);
2872	if (mode < 0)
2873		goto out;
2874
2875	switch (mode) {
2876	case MPOL_PREFERRED:
2877		/*
2878		 * Insist on a nodelist of one node only, although later
2879		 * we use first_node(nodes) to grab a single node, so here
2880		 * nodelist (or nodes) cannot be empty.
2881		 */
2882		if (nodelist) {
2883			char *rest = nodelist;
2884			while (isdigit(*rest))
2885				rest++;
2886			if (*rest)
2887				goto out;
2888			if (nodes_empty(nodes))
2889				goto out;
2890		}
2891		break;
2892	case MPOL_INTERLEAVE:
2893		/*
2894		 * Default to online nodes with memory if no nodelist
2895		 */
2896		if (!nodelist)
2897			nodes = node_states[N_MEMORY];
2898		break;
2899	case MPOL_LOCAL:
2900		/*
2901		 * Don't allow a nodelist;  mpol_new() checks flags
2902		 */
2903		if (nodelist)
2904			goto out;
 
2905		break;
2906	case MPOL_DEFAULT:
2907		/*
2908		 * Insist on a empty nodelist
2909		 */
2910		if (!nodelist)
2911			err = 0;
2912		goto out;
2913	case MPOL_BIND:
2914		/*
2915		 * Insist on a nodelist
2916		 */
2917		if (!nodelist)
2918			goto out;
2919	}
2920
2921	mode_flags = 0;
2922	if (flags) {
2923		/*
2924		 * Currently, we only support two mutually exclusive
2925		 * mode flags.
2926		 */
2927		if (!strcmp(flags, "static"))
2928			mode_flags |= MPOL_F_STATIC_NODES;
2929		else if (!strcmp(flags, "relative"))
2930			mode_flags |= MPOL_F_RELATIVE_NODES;
2931		else
2932			goto out;
2933	}
2934
2935	new = mpol_new(mode, mode_flags, &nodes);
2936	if (IS_ERR(new))
2937		goto out;
2938
2939	/*
2940	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2941	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2942	 */
2943	if (mode != MPOL_PREFERRED) {
2944		new->nodes = nodes;
2945	} else if (nodelist) {
2946		nodes_clear(new->nodes);
2947		node_set(first_node(nodes), new->nodes);
2948	} else {
2949		new->mode = MPOL_LOCAL;
2950	}
2951
2952	/*
2953	 * Save nodes for contextualization: this will be used to "clone"
2954	 * the mempolicy in a specific context [cpuset] at a later time.
2955	 */
2956	new->w.user_nodemask = nodes;
2957
2958	err = 0;
2959
2960out:
2961	/* Restore string for error message */
2962	if (nodelist)
2963		*--nodelist = ':';
2964	if (flags)
2965		*--flags = '=';
2966	if (!err)
2967		*mpol = new;
2968	return err;
2969}
2970#endif /* CONFIG_TMPFS */
2971
2972/**
2973 * mpol_to_str - format a mempolicy structure for printing
2974 * @buffer:  to contain formatted mempolicy string
2975 * @maxlen:  length of @buffer
2976 * @pol:  pointer to mempolicy to be formatted
2977 *
2978 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2979 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2980 * longest flag, "relative", and to display at least a few node ids.
2981 */
2982void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2983{
2984	char *p = buffer;
2985	nodemask_t nodes = NODE_MASK_NONE;
2986	unsigned short mode = MPOL_DEFAULT;
2987	unsigned short flags = 0;
2988
2989	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2990		mode = pol->mode;
2991		flags = pol->flags;
2992	}
2993
2994	switch (mode) {
2995	case MPOL_DEFAULT:
2996	case MPOL_LOCAL:
2997		break;
2998	case MPOL_PREFERRED:
 
 
 
 
 
2999	case MPOL_BIND:
3000	case MPOL_INTERLEAVE:
3001		nodes = pol->nodes;
3002		break;
3003	default:
3004		WARN_ON_ONCE(1);
3005		snprintf(p, maxlen, "unknown");
3006		return;
3007	}
3008
3009	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3010
3011	if (flags & MPOL_MODE_FLAGS) {
3012		p += snprintf(p, buffer + maxlen - p, "=");
3013
3014		/*
3015		 * Currently, the only defined flags are mutually exclusive
3016		 */
3017		if (flags & MPOL_F_STATIC_NODES)
3018			p += snprintf(p, buffer + maxlen - p, "static");
3019		else if (flags & MPOL_F_RELATIVE_NODES)
3020			p += snprintf(p, buffer + maxlen - p, "relative");
3021	}
3022
3023	if (!nodes_empty(nodes))
3024		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3025			       nodemask_pr_args(&nodes));
3026}