Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 28#include <linux/dcache.h>
 29#include <linux/namei.h>
 30#include <crypto/aes.h>
 31#include <crypto/skcipher.h>
 32#include "fscrypt_private.h"
 33
 34static unsigned int num_prealloc_crypto_pages = 32;
 35static unsigned int num_prealloc_crypto_ctxs = 128;
 36
 37module_param(num_prealloc_crypto_pages, uint, 0444);
 38MODULE_PARM_DESC(num_prealloc_crypto_pages,
 39		"Number of crypto pages to preallocate");
 40module_param(num_prealloc_crypto_ctxs, uint, 0444);
 41MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 42		"Number of crypto contexts to preallocate");
 43
 44static mempool_t *fscrypt_bounce_page_pool = NULL;
 45
 46static LIST_HEAD(fscrypt_free_ctxs);
 47static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 48
 49static struct workqueue_struct *fscrypt_read_workqueue;
 50static DEFINE_MUTEX(fscrypt_init_mutex);
 51
 52static struct kmem_cache *fscrypt_ctx_cachep;
 53struct kmem_cache *fscrypt_info_cachep;
 54
 55void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 56{
 57	queue_work(fscrypt_read_workqueue, work);
 58}
 59EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 60
 61/**
 62 * fscrypt_release_ctx() - Release a decryption context
 63 * @ctx: The decryption context to release.
 64 *
 65 * If the decryption context was allocated from the pre-allocated pool, return
 66 * it to that pool.  Else, free it.
 67 */
 68void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 69{
 70	unsigned long flags;
 71
 72	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 73		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 74	} else {
 75		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 76		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 77		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 78	}
 79}
 80EXPORT_SYMBOL(fscrypt_release_ctx);
 81
 82/**
 83 * fscrypt_get_ctx() - Get a decryption context
 84 * @gfp_flags:   The gfp flag for memory allocation
 85 *
 86 * Allocate and initialize a decryption context.
 87 *
 88 * Return: A new decryption context on success; an ERR_PTR() otherwise.
 89 */
 90struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
 91{
 92	struct fscrypt_ctx *ctx;
 93	unsigned long flags;
 94
 95	/*
 96	 * First try getting a ctx from the free list so that we don't have to
 97	 * call into the slab allocator.
 98	 */
 99	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
100	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
101					struct fscrypt_ctx, free_list);
102	if (ctx)
103		list_del(&ctx->free_list);
104	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
105	if (!ctx) {
106		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
107		if (!ctx)
108			return ERR_PTR(-ENOMEM);
109		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
110	} else {
111		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
112	}
113	return ctx;
114}
115EXPORT_SYMBOL(fscrypt_get_ctx);
116
117struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
118{
119	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
120}
121
122/**
123 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 
124 *
125 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
126 * or by fscrypt_alloc_bounce_page() directly.
127 */
128void fscrypt_free_bounce_page(struct page *bounce_page)
129{
130	if (!bounce_page)
131		return;
132	set_page_private(bounce_page, (unsigned long)NULL);
133	ClearPagePrivate(bounce_page);
134	mempool_free(bounce_page, fscrypt_bounce_page_pool);
135}
136EXPORT_SYMBOL(fscrypt_free_bounce_page);
137
 
 
 
 
 
 
 
 
138void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
139			 const struct fscrypt_info *ci)
140{
141	memset(iv, 0, ci->ci_mode->ivsize);
142	iv->lblk_num = cpu_to_le64(lblk_num);
143
144	if (fscrypt_is_direct_key_policy(&ci->ci_policy))
145		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
146
147	if (ci->ci_essiv_tfm != NULL)
148		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
 
 
 
 
 
 
 
 
 
149}
150
151/* Encrypt or decrypt a single filesystem block of file contents */
152int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
153			u64 lblk_num, struct page *src_page,
154			struct page *dest_page, unsigned int len,
155			unsigned int offs, gfp_t gfp_flags)
156{
157	union fscrypt_iv iv;
158	struct skcipher_request *req = NULL;
159	DECLARE_CRYPTO_WAIT(wait);
160	struct scatterlist dst, src;
161	struct fscrypt_info *ci = inode->i_crypt_info;
162	struct crypto_skcipher *tfm = ci->ci_ctfm;
163	int res = 0;
164
165	if (WARN_ON_ONCE(len <= 0))
166		return -EINVAL;
167	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
168		return -EINVAL;
169
170	fscrypt_generate_iv(&iv, lblk_num, ci);
171
172	req = skcipher_request_alloc(tfm, gfp_flags);
173	if (!req)
174		return -ENOMEM;
175
176	skcipher_request_set_callback(
177		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
178		crypto_req_done, &wait);
179
180	sg_init_table(&dst, 1);
181	sg_set_page(&dst, dest_page, len, offs);
182	sg_init_table(&src, 1);
183	sg_set_page(&src, src_page, len, offs);
184	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
185	if (rw == FS_DECRYPT)
186		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
187	else
188		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
189	skcipher_request_free(req);
190	if (res) {
191		fscrypt_err(inode, "%scryption failed for block %llu: %d",
192			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
193		return res;
194	}
195	return 0;
196}
197
198/**
199 * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
 
200 * @page:      The locked pagecache page containing the block(s) to encrypt
201 * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
202 *		multiple of the filesystem's block size.
203 * @offs:      Byte offset within @page of the first block to encrypt.  Must be
204 *		a multiple of the filesystem's block size.
205 * @gfp_flags: Memory allocation flags
206 *
207 * A new bounce page is allocated, and the specified block(s) are encrypted into
208 * it.  In the bounce page, the ciphertext block(s) will be located at the same
209 * offsets at which the plaintext block(s) were located in the source page; any
210 * other parts of the bounce page will be left uninitialized.  However, normally
211 * blocksize == PAGE_SIZE and the whole page is encrypted at once.
212 *
213 * This is for use by the filesystem's ->writepages() method.
214 *
 
 
 
 
 
215 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
216 */
217struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
218					      unsigned int len,
219					      unsigned int offs,
220					      gfp_t gfp_flags)
221
222{
223	const struct inode *inode = page->mapping->host;
224	const unsigned int blockbits = inode->i_blkbits;
225	const unsigned int blocksize = 1 << blockbits;
226	struct page *ciphertext_page;
227	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
228		       (offs >> blockbits);
229	unsigned int i;
230	int err;
231
232	if (WARN_ON_ONCE(!PageLocked(page)))
233		return ERR_PTR(-EINVAL);
234
235	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
236		return ERR_PTR(-EINVAL);
237
238	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
239	if (!ciphertext_page)
240		return ERR_PTR(-ENOMEM);
241
242	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
243		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
244					  page, ciphertext_page,
245					  blocksize, i, gfp_flags);
246		if (err) {
247			fscrypt_free_bounce_page(ciphertext_page);
248			return ERR_PTR(err);
249		}
250	}
251	SetPagePrivate(ciphertext_page);
252	set_page_private(ciphertext_page, (unsigned long)page);
253	return ciphertext_page;
254}
255EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
256
257/**
258 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
259 * @inode:     The inode to which this block belongs
260 * @page:      The page containing the block to encrypt
261 * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
262 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
263 * @offs:      Byte offset within @page at which the block to encrypt begins
264 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
265 *		number of the block within the file
266 * @gfp_flags: Memory allocation flags
267 *
268 * Encrypt a possibly-compressed filesystem block that is located in an
269 * arbitrary page, not necessarily in the original pagecache page.  The @inode
270 * and @lblk_num must be specified, as they can't be determined from @page.
271 *
272 * Return: 0 on success; -errno on failure
273 */
274int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
275				  unsigned int len, unsigned int offs,
276				  u64 lblk_num, gfp_t gfp_flags)
277{
278	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
279				   len, offs, gfp_flags);
280}
281EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
282
283/**
284 * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
 
285 * @page:      The locked pagecache page containing the block(s) to decrypt
286 * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
287 *		multiple of the filesystem's block size.
288 * @offs:      Byte offset within @page of the first block to decrypt.  Must be
289 *		a multiple of the filesystem's block size.
290 *
291 * The specified block(s) are decrypted in-place within the pagecache page,
292 * which must still be locked and not uptodate.  Normally, blocksize ==
293 * PAGE_SIZE and the whole page is decrypted at once.
294 *
295 * This is for use by the filesystem's ->readpages() method.
296 *
297 * Return: 0 on success; -errno on failure
298 */
299int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
300				     unsigned int offs)
301{
302	const struct inode *inode = page->mapping->host;
303	const unsigned int blockbits = inode->i_blkbits;
304	const unsigned int blocksize = 1 << blockbits;
305	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
306		       (offs >> blockbits);
307	unsigned int i;
308	int err;
309
310	if (WARN_ON_ONCE(!PageLocked(page)))
311		return -EINVAL;
312
313	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
314		return -EINVAL;
315
316	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
317		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
318					  page, blocksize, i, GFP_NOFS);
319		if (err)
320			return err;
321	}
322	return 0;
323}
324EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
325
326/**
327 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
328 * @inode:     The inode to which this block belongs
329 * @page:      The page containing the block to decrypt
330 * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
331 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
332 * @offs:      Byte offset within @page at which the block to decrypt begins
333 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
334 *		number of the block within the file
335 *
336 * Decrypt a possibly-compressed filesystem block that is located in an
337 * arbitrary page, not necessarily in the original pagecache page.  The @inode
338 * and @lblk_num must be specified, as they can't be determined from @page.
339 *
340 * Return: 0 on success; -errno on failure
341 */
342int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
343				  unsigned int len, unsigned int offs,
344				  u64 lblk_num)
345{
346	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
347				   len, offs, GFP_NOFS);
348}
349EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
350
351/*
352 * Validate dentries in encrypted directories to make sure we aren't potentially
353 * caching stale dentries after a key has been added.
354 */
355static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
356{
357	struct dentry *dir;
358	int err;
359	int valid;
360
361	/*
362	 * Plaintext names are always valid, since fscrypt doesn't support
363	 * reverting to ciphertext names without evicting the directory's inode
364	 * -- which implies eviction of the dentries in the directory.
365	 */
366	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
367		return 1;
368
369	/*
370	 * Ciphertext name; valid if the directory's key is still unavailable.
371	 *
372	 * Although fscrypt forbids rename() on ciphertext names, we still must
373	 * use dget_parent() here rather than use ->d_parent directly.  That's
374	 * because a corrupted fs image may contain directory hard links, which
375	 * the VFS handles by moving the directory's dentry tree in the dcache
376	 * each time ->lookup() finds the directory and it already has a dentry
377	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
378	 * a reference to some ->d_parent to prevent it from being freed.
379	 */
380
381	if (flags & LOOKUP_RCU)
382		return -ECHILD;
383
384	dir = dget_parent(dentry);
385	err = fscrypt_get_encryption_info(d_inode(dir));
386	valid = !fscrypt_has_encryption_key(d_inode(dir));
387	dput(dir);
388
389	if (err < 0)
390		return err;
391
392	return valid;
393}
394
395const struct dentry_operations fscrypt_d_ops = {
396	.d_revalidate = fscrypt_d_revalidate,
397};
398
399static void fscrypt_destroy(void)
400{
401	struct fscrypt_ctx *pos, *n;
402
403	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
404		kmem_cache_free(fscrypt_ctx_cachep, pos);
405	INIT_LIST_HEAD(&fscrypt_free_ctxs);
406	mempool_destroy(fscrypt_bounce_page_pool);
407	fscrypt_bounce_page_pool = NULL;
408}
409
410/**
411 * fscrypt_initialize() - allocate major buffers for fs encryption.
412 * @cop_flags:  fscrypt operations flags
413 *
414 * We only call this when we start accessing encrypted files, since it
415 * results in memory getting allocated that wouldn't otherwise be used.
416 *
417 * Return: Zero on success, non-zero otherwise.
418 */
419int fscrypt_initialize(unsigned int cop_flags)
420{
421	int i, res = -ENOMEM;
422
423	/* No need to allocate a bounce page pool if this FS won't use it. */
424	if (cop_flags & FS_CFLG_OWN_PAGES)
425		return 0;
426
427	mutex_lock(&fscrypt_init_mutex);
428	if (fscrypt_bounce_page_pool)
429		goto already_initialized;
430
431	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
432		struct fscrypt_ctx *ctx;
433
434		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
435		if (!ctx)
436			goto fail;
437		list_add(&ctx->free_list, &fscrypt_free_ctxs);
438	}
439
 
440	fscrypt_bounce_page_pool =
441		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
442	if (!fscrypt_bounce_page_pool)
443		goto fail;
444
445already_initialized:
446	mutex_unlock(&fscrypt_init_mutex);
447	return 0;
448fail:
449	fscrypt_destroy();
450	mutex_unlock(&fscrypt_init_mutex);
451	return res;
452}
453
454void fscrypt_msg(const struct inode *inode, const char *level,
455		 const char *fmt, ...)
456{
457	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
458				      DEFAULT_RATELIMIT_BURST);
459	struct va_format vaf;
460	va_list args;
461
462	if (!__ratelimit(&rs))
463		return;
464
465	va_start(args, fmt);
466	vaf.fmt = fmt;
467	vaf.va = &args;
468	if (inode)
469		printk("%sfscrypt (%s, inode %lu): %pV\n",
470		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
 
 
471	else
472		printk("%sfscrypt: %pV\n", level, &vaf);
473	va_end(args);
474}
475
476/**
477 * fscrypt_init() - Set up for fs encryption.
 
 
478 */
479static int __init fscrypt_init(void)
480{
481	int err = -ENOMEM;
482
483	/*
484	 * Use an unbound workqueue to allow bios to be decrypted in parallel
485	 * even when they happen to complete on the same CPU.  This sacrifices
486	 * locality, but it's worthwhile since decryption is CPU-intensive.
487	 *
488	 * Also use a high-priority workqueue to prioritize decryption work,
489	 * which blocks reads from completing, over regular application tasks.
490	 */
491	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
492						 WQ_UNBOUND | WQ_HIGHPRI,
493						 num_online_cpus());
494	if (!fscrypt_read_workqueue)
495		goto fail;
496
497	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
498	if (!fscrypt_ctx_cachep)
499		goto fail_free_queue;
500
501	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
502	if (!fscrypt_info_cachep)
503		goto fail_free_ctx;
504
505	err = fscrypt_init_keyring();
506	if (err)
507		goto fail_free_info;
508
509	return 0;
510
511fail_free_info:
512	kmem_cache_destroy(fscrypt_info_cachep);
513fail_free_ctx:
514	kmem_cache_destroy(fscrypt_ctx_cachep);
515fail_free_queue:
516	destroy_workqueue(fscrypt_read_workqueue);
517fail:
518	return err;
519}
520late_initcall(fscrypt_init)
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 
 
 
 28#include <crypto/skcipher.h>
 29#include "fscrypt_private.h"
 30
 31static unsigned int num_prealloc_crypto_pages = 32;
 
 32
 33module_param(num_prealloc_crypto_pages, uint, 0444);
 34MODULE_PARM_DESC(num_prealloc_crypto_pages,
 35		"Number of crypto pages to preallocate");
 
 
 
 36
 37static mempool_t *fscrypt_bounce_page_pool = NULL;
 38
 
 
 
 39static struct workqueue_struct *fscrypt_read_workqueue;
 40static DEFINE_MUTEX(fscrypt_init_mutex);
 41
 
 42struct kmem_cache *fscrypt_info_cachep;
 43
 44void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 45{
 46	queue_work(fscrypt_read_workqueue, work);
 47}
 48EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
 51{
 52	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
 53}
 54
 55/**
 56 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 57 * @bounce_page: the bounce page to free, or NULL
 58 *
 59 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
 60 * or by fscrypt_alloc_bounce_page() directly.
 61 */
 62void fscrypt_free_bounce_page(struct page *bounce_page)
 63{
 64	if (!bounce_page)
 65		return;
 66	set_page_private(bounce_page, (unsigned long)NULL);
 67	ClearPagePrivate(bounce_page);
 68	mempool_free(bounce_page, fscrypt_bounce_page_pool);
 69}
 70EXPORT_SYMBOL(fscrypt_free_bounce_page);
 71
 72/*
 73 * Generate the IV for the given logical block number within the given file.
 74 * For filenames encryption, lblk_num == 0.
 75 *
 76 * Keep this in sync with fscrypt_limit_io_blocks().  fscrypt_limit_io_blocks()
 77 * needs to know about any IV generation methods where the low bits of IV don't
 78 * simply contain the lblk_num (e.g., IV_INO_LBLK_32).
 79 */
 80void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
 81			 const struct fscrypt_info *ci)
 82{
 83	u8 flags = fscrypt_policy_flags(&ci->ci_policy);
 
 84
 85	memset(iv, 0, ci->ci_mode->ivsize);
 
 86
 87	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
 88		WARN_ON_ONCE(lblk_num > U32_MAX);
 89		WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
 90		lblk_num |= (u64)ci->ci_inode->i_ino << 32;
 91	} else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
 92		WARN_ON_ONCE(lblk_num > U32_MAX);
 93		lblk_num = (u32)(ci->ci_hashed_ino + lblk_num);
 94	} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
 95		memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
 96	}
 97	iv->lblk_num = cpu_to_le64(lblk_num);
 98}
 99
100/* Encrypt or decrypt a single filesystem block of file contents */
101int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
102			u64 lblk_num, struct page *src_page,
103			struct page *dest_page, unsigned int len,
104			unsigned int offs, gfp_t gfp_flags)
105{
106	union fscrypt_iv iv;
107	struct skcipher_request *req = NULL;
108	DECLARE_CRYPTO_WAIT(wait);
109	struct scatterlist dst, src;
110	struct fscrypt_info *ci = inode->i_crypt_info;
111	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
112	int res = 0;
113
114	if (WARN_ON_ONCE(len <= 0))
115		return -EINVAL;
116	if (WARN_ON_ONCE(len % FSCRYPT_CONTENTS_ALIGNMENT != 0))
117		return -EINVAL;
118
119	fscrypt_generate_iv(&iv, lblk_num, ci);
120
121	req = skcipher_request_alloc(tfm, gfp_flags);
122	if (!req)
123		return -ENOMEM;
124
125	skcipher_request_set_callback(
126		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
127		crypto_req_done, &wait);
128
129	sg_init_table(&dst, 1);
130	sg_set_page(&dst, dest_page, len, offs);
131	sg_init_table(&src, 1);
132	sg_set_page(&src, src_page, len, offs);
133	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
134	if (rw == FS_DECRYPT)
135		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
136	else
137		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
138	skcipher_request_free(req);
139	if (res) {
140		fscrypt_err(inode, "%scryption failed for block %llu: %d",
141			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
142		return res;
143	}
144	return 0;
145}
146
147/**
148 * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a
149 *					pagecache page
150 * @page:      The locked pagecache page containing the block(s) to encrypt
151 * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
152 *		multiple of the filesystem's block size.
153 * @offs:      Byte offset within @page of the first block to encrypt.  Must be
154 *		a multiple of the filesystem's block size.
155 * @gfp_flags: Memory allocation flags.  See details below.
156 *
157 * A new bounce page is allocated, and the specified block(s) are encrypted into
158 * it.  In the bounce page, the ciphertext block(s) will be located at the same
159 * offsets at which the plaintext block(s) were located in the source page; any
160 * other parts of the bounce page will be left uninitialized.  However, normally
161 * blocksize == PAGE_SIZE and the whole page is encrypted at once.
162 *
163 * This is for use by the filesystem's ->writepages() method.
164 *
165 * The bounce page allocation is mempool-backed, so it will always succeed when
166 * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS.  However,
167 * only the first page of each bio can be allocated this way.  To prevent
168 * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used.
169 *
170 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
171 */
172struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
173					      unsigned int len,
174					      unsigned int offs,
175					      gfp_t gfp_flags)
176
177{
178	const struct inode *inode = page->mapping->host;
179	const unsigned int blockbits = inode->i_blkbits;
180	const unsigned int blocksize = 1 << blockbits;
181	struct page *ciphertext_page;
182	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
183		       (offs >> blockbits);
184	unsigned int i;
185	int err;
186
187	if (WARN_ON_ONCE(!PageLocked(page)))
188		return ERR_PTR(-EINVAL);
189
190	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
191		return ERR_PTR(-EINVAL);
192
193	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
194	if (!ciphertext_page)
195		return ERR_PTR(-ENOMEM);
196
197	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
198		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
199					  page, ciphertext_page,
200					  blocksize, i, gfp_flags);
201		if (err) {
202			fscrypt_free_bounce_page(ciphertext_page);
203			return ERR_PTR(err);
204		}
205	}
206	SetPagePrivate(ciphertext_page);
207	set_page_private(ciphertext_page, (unsigned long)page);
208	return ciphertext_page;
209}
210EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
211
212/**
213 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
214 * @inode:     The inode to which this block belongs
215 * @page:      The page containing the block to encrypt
216 * @len:       Size of block to encrypt.  This must be a multiple of
217 *		FSCRYPT_CONTENTS_ALIGNMENT.
218 * @offs:      Byte offset within @page at which the block to encrypt begins
219 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
220 *		number of the block within the file
221 * @gfp_flags: Memory allocation flags
222 *
223 * Encrypt a possibly-compressed filesystem block that is located in an
224 * arbitrary page, not necessarily in the original pagecache page.  The @inode
225 * and @lblk_num must be specified, as they can't be determined from @page.
226 *
227 * Return: 0 on success; -errno on failure
228 */
229int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
230				  unsigned int len, unsigned int offs,
231				  u64 lblk_num, gfp_t gfp_flags)
232{
233	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
234				   len, offs, gfp_flags);
235}
236EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
237
238/**
239 * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a
240 *					pagecache page
241 * @page:      The locked pagecache page containing the block(s) to decrypt
242 * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
243 *		multiple of the filesystem's block size.
244 * @offs:      Byte offset within @page of the first block to decrypt.  Must be
245 *		a multiple of the filesystem's block size.
246 *
247 * The specified block(s) are decrypted in-place within the pagecache page,
248 * which must still be locked and not uptodate.  Normally, blocksize ==
249 * PAGE_SIZE and the whole page is decrypted at once.
250 *
251 * This is for use by the filesystem's ->readahead() method.
252 *
253 * Return: 0 on success; -errno on failure
254 */
255int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
256				     unsigned int offs)
257{
258	const struct inode *inode = page->mapping->host;
259	const unsigned int blockbits = inode->i_blkbits;
260	const unsigned int blocksize = 1 << blockbits;
261	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
262		       (offs >> blockbits);
263	unsigned int i;
264	int err;
265
266	if (WARN_ON_ONCE(!PageLocked(page)))
267		return -EINVAL;
268
269	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
270		return -EINVAL;
271
272	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
273		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
274					  page, blocksize, i, GFP_NOFS);
275		if (err)
276			return err;
277	}
278	return 0;
279}
280EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
281
282/**
283 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
284 * @inode:     The inode to which this block belongs
285 * @page:      The page containing the block to decrypt
286 * @len:       Size of block to decrypt.  This must be a multiple of
287 *		FSCRYPT_CONTENTS_ALIGNMENT.
288 * @offs:      Byte offset within @page at which the block to decrypt begins
289 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
290 *		number of the block within the file
291 *
292 * Decrypt a possibly-compressed filesystem block that is located in an
293 * arbitrary page, not necessarily in the original pagecache page.  The @inode
294 * and @lblk_num must be specified, as they can't be determined from @page.
295 *
296 * Return: 0 on success; -errno on failure
297 */
298int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
299				  unsigned int len, unsigned int offs,
300				  u64 lblk_num)
301{
302	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
303				   len, offs, GFP_NOFS);
304}
305EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307/**
308 * fscrypt_initialize() - allocate major buffers for fs encryption.
309 * @cop_flags:  fscrypt operations flags
310 *
311 * We only call this when we start accessing encrypted files, since it
312 * results in memory getting allocated that wouldn't otherwise be used.
313 *
314 * Return: 0 on success; -errno on failure
315 */
316int fscrypt_initialize(unsigned int cop_flags)
317{
318	int err = 0;
319
320	/* No need to allocate a bounce page pool if this FS won't use it. */
321	if (cop_flags & FS_CFLG_OWN_PAGES)
322		return 0;
323
324	mutex_lock(&fscrypt_init_mutex);
325	if (fscrypt_bounce_page_pool)
326		goto out_unlock;
 
 
 
 
 
 
 
 
 
327
328	err = -ENOMEM;
329	fscrypt_bounce_page_pool =
330		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
331	if (!fscrypt_bounce_page_pool)
332		goto out_unlock;
333
334	err = 0;
335out_unlock:
 
 
 
336	mutex_unlock(&fscrypt_init_mutex);
337	return err;
338}
339
340void fscrypt_msg(const struct inode *inode, const char *level,
341		 const char *fmt, ...)
342{
343	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
344				      DEFAULT_RATELIMIT_BURST);
345	struct va_format vaf;
346	va_list args;
347
348	if (!__ratelimit(&rs))
349		return;
350
351	va_start(args, fmt);
352	vaf.fmt = fmt;
353	vaf.va = &args;
354	if (inode && inode->i_ino)
355		printk("%sfscrypt (%s, inode %lu): %pV\n",
356		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
357	else if (inode)
358		printk("%sfscrypt (%s): %pV\n", level, inode->i_sb->s_id, &vaf);
359	else
360		printk("%sfscrypt: %pV\n", level, &vaf);
361	va_end(args);
362}
363
364/**
365 * fscrypt_init() - Set up for fs encryption.
366 *
367 * Return: 0 on success; -errno on failure
368 */
369static int __init fscrypt_init(void)
370{
371	int err = -ENOMEM;
372
373	/*
374	 * Use an unbound workqueue to allow bios to be decrypted in parallel
375	 * even when they happen to complete on the same CPU.  This sacrifices
376	 * locality, but it's worthwhile since decryption is CPU-intensive.
377	 *
378	 * Also use a high-priority workqueue to prioritize decryption work,
379	 * which blocks reads from completing, over regular application tasks.
380	 */
381	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
382						 WQ_UNBOUND | WQ_HIGHPRI,
383						 num_online_cpus());
384	if (!fscrypt_read_workqueue)
385		goto fail;
386
 
 
 
 
387	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
388	if (!fscrypt_info_cachep)
389		goto fail_free_queue;
390
391	err = fscrypt_init_keyring();
392	if (err)
393		goto fail_free_info;
394
395	return 0;
396
397fail_free_info:
398	kmem_cache_destroy(fscrypt_info_cachep);
 
 
399fail_free_queue:
400	destroy_workqueue(fscrypt_read_workqueue);
401fail:
402	return err;
403}
404late_initcall(fscrypt_init)