Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 28#include <linux/dcache.h>
 29#include <linux/namei.h>
 30#include <crypto/aes.h>
 31#include <crypto/skcipher.h>
 32#include "fscrypt_private.h"
 33
 34static unsigned int num_prealloc_crypto_pages = 32;
 35static unsigned int num_prealloc_crypto_ctxs = 128;
 36
 37module_param(num_prealloc_crypto_pages, uint, 0444);
 38MODULE_PARM_DESC(num_prealloc_crypto_pages,
 39		"Number of crypto pages to preallocate");
 40module_param(num_prealloc_crypto_ctxs, uint, 0444);
 41MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 42		"Number of crypto contexts to preallocate");
 43
 44static mempool_t *fscrypt_bounce_page_pool = NULL;
 45
 46static LIST_HEAD(fscrypt_free_ctxs);
 47static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 48
 49static struct workqueue_struct *fscrypt_read_workqueue;
 50static DEFINE_MUTEX(fscrypt_init_mutex);
 51
 52static struct kmem_cache *fscrypt_ctx_cachep;
 53struct kmem_cache *fscrypt_info_cachep;
 54
 55void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 56{
 57	queue_work(fscrypt_read_workqueue, work);
 58}
 59EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 60
 61/**
 62 * fscrypt_release_ctx() - Release a decryption context
 63 * @ctx: The decryption context to release.
 64 *
 65 * If the decryption context was allocated from the pre-allocated pool, return
 66 * it to that pool.  Else, free it.
 67 */
 68void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 69{
 70	unsigned long flags;
 71
 72	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 73		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 74	} else {
 75		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 76		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 77		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 78	}
 79}
 80EXPORT_SYMBOL(fscrypt_release_ctx);
 81
 82/**
 83 * fscrypt_get_ctx() - Get a decryption context
 84 * @gfp_flags:   The gfp flag for memory allocation
 85 *
 86 * Allocate and initialize a decryption context.
 87 *
 88 * Return: A new decryption context on success; an ERR_PTR() otherwise.
 89 */
 90struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
 91{
 92	struct fscrypt_ctx *ctx;
 93	unsigned long flags;
 94
 95	/*
 96	 * First try getting a ctx from the free list so that we don't have to
 97	 * call into the slab allocator.
 98	 */
 99	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
100	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
101					struct fscrypt_ctx, free_list);
102	if (ctx)
103		list_del(&ctx->free_list);
104	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
105	if (!ctx) {
106		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
107		if (!ctx)
108			return ERR_PTR(-ENOMEM);
109		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
110	} else {
111		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
112	}
113	return ctx;
114}
115EXPORT_SYMBOL(fscrypt_get_ctx);
116
117struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
118{
 
 
 
 
 
 
 
119	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
120}
121
122/**
123 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 
124 *
125 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
126 * or by fscrypt_alloc_bounce_page() directly.
127 */
128void fscrypt_free_bounce_page(struct page *bounce_page)
129{
130	if (!bounce_page)
131		return;
132	set_page_private(bounce_page, (unsigned long)NULL);
133	ClearPagePrivate(bounce_page);
134	mempool_free(bounce_page, fscrypt_bounce_page_pool);
135}
136EXPORT_SYMBOL(fscrypt_free_bounce_page);
137
138void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
139			 const struct fscrypt_info *ci)
 
 
 
 
 
 
 
 
140{
141	memset(iv, 0, ci->ci_mode->ivsize);
142	iv->lblk_num = cpu_to_le64(lblk_num);
143
144	if (fscrypt_is_direct_key_policy(&ci->ci_policy))
145		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
146
147	if (ci->ci_essiv_tfm != NULL)
148		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
 
 
 
 
 
 
 
 
 
149}
150
151/* Encrypt or decrypt a single filesystem block of file contents */
152int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
153			u64 lblk_num, struct page *src_page,
154			struct page *dest_page, unsigned int len,
155			unsigned int offs, gfp_t gfp_flags)
 
156{
157	union fscrypt_iv iv;
158	struct skcipher_request *req = NULL;
159	DECLARE_CRYPTO_WAIT(wait);
160	struct scatterlist dst, src;
161	struct fscrypt_info *ci = inode->i_crypt_info;
162	struct crypto_skcipher *tfm = ci->ci_ctfm;
163	int res = 0;
164
165	if (WARN_ON_ONCE(len <= 0))
166		return -EINVAL;
167	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
168		return -EINVAL;
169
170	fscrypt_generate_iv(&iv, lblk_num, ci);
171
172	req = skcipher_request_alloc(tfm, gfp_flags);
173	if (!req)
174		return -ENOMEM;
175
176	skcipher_request_set_callback(
177		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
178		crypto_req_done, &wait);
179
180	sg_init_table(&dst, 1);
181	sg_set_page(&dst, dest_page, len, offs);
182	sg_init_table(&src, 1);
183	sg_set_page(&src, src_page, len, offs);
184	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
185	if (rw == FS_DECRYPT)
186		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
187	else
188		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
189	skcipher_request_free(req);
190	if (res) {
191		fscrypt_err(inode, "%scryption failed for block %llu: %d",
192			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
 
193		return res;
194	}
195	return 0;
196}
197
198/**
199 * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
200 * @page:      The locked pagecache page containing the block(s) to encrypt
201 * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
202 *		multiple of the filesystem's block size.
203 * @offs:      Byte offset within @page of the first block to encrypt.  Must be
204 *		a multiple of the filesystem's block size.
205 * @gfp_flags: Memory allocation flags
206 *
207 * A new bounce page is allocated, and the specified block(s) are encrypted into
208 * it.  In the bounce page, the ciphertext block(s) will be located at the same
209 * offsets at which the plaintext block(s) were located in the source page; any
210 * other parts of the bounce page will be left uninitialized.  However, normally
211 * blocksize == PAGE_SIZE and the whole page is encrypted at once.
 
212 *
213 * This is for use by the filesystem's ->writepages() method.
214 *
 
 
 
 
 
215 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
216 */
217struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
218					      unsigned int len,
219					      unsigned int offs,
220					      gfp_t gfp_flags)
221
222{
223	const struct inode *inode = page->mapping->host;
224	const unsigned int blockbits = inode->i_blkbits;
225	const unsigned int blocksize = 1 << blockbits;
 
226	struct page *ciphertext_page;
227	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
228		       (offs >> blockbits);
229	unsigned int i;
230	int err;
231
232	if (WARN_ON_ONCE(!PageLocked(page)))
233		return ERR_PTR(-EINVAL);
234
235	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
236		return ERR_PTR(-EINVAL);
237
238	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
239	if (!ciphertext_page)
240		return ERR_PTR(-ENOMEM);
241
242	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
243		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
244					  page, ciphertext_page,
245					  blocksize, i, gfp_flags);
246		if (err) {
247			fscrypt_free_bounce_page(ciphertext_page);
248			return ERR_PTR(err);
249		}
250	}
251	SetPagePrivate(ciphertext_page);
252	set_page_private(ciphertext_page, (unsigned long)page);
253	return ciphertext_page;
254}
255EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
256
257/**
258 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
259 * @inode:     The inode to which this block belongs
260 * @page:      The page containing the block to encrypt
261 * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
262 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
263 * @offs:      Byte offset within @page at which the block to encrypt begins
264 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
265 *		number of the block within the file
266 * @gfp_flags: Memory allocation flags
267 *
268 * Encrypt a possibly-compressed filesystem block that is located in an
269 * arbitrary page, not necessarily in the original pagecache page.  The @inode
270 * and @lblk_num must be specified, as they can't be determined from @page.
271 *
 
 
272 * Return: 0 on success; -errno on failure
273 */
274int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
275				  unsigned int len, unsigned int offs,
276				  u64 lblk_num, gfp_t gfp_flags)
277{
278	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
279				   len, offs, gfp_flags);
 
 
 
280}
281EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
282
283/**
284 * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
285 * @page:      The locked pagecache page containing the block(s) to decrypt
286 * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
287 *		multiple of the filesystem's block size.
288 * @offs:      Byte offset within @page of the first block to decrypt.  Must be
289 *		a multiple of the filesystem's block size.
290 *
291 * The specified block(s) are decrypted in-place within the pagecache page,
292 * which must still be locked and not uptodate.  Normally, blocksize ==
293 * PAGE_SIZE and the whole page is decrypted at once.
294 *
295 * This is for use by the filesystem's ->readpages() method.
296 *
297 * Return: 0 on success; -errno on failure
298 */
299int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
300				     unsigned int offs)
301{
302	const struct inode *inode = page->mapping->host;
303	const unsigned int blockbits = inode->i_blkbits;
304	const unsigned int blocksize = 1 << blockbits;
305	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
306		       (offs >> blockbits);
307	unsigned int i;
 
308	int err;
309
310	if (WARN_ON_ONCE(!PageLocked(page)))
311		return -EINVAL;
312
313	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
314		return -EINVAL;
315
316	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
317		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
318					  page, blocksize, i, GFP_NOFS);
 
 
 
319		if (err)
320			return err;
321	}
322	return 0;
323}
324EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
325
326/**
327 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
328 * @inode:     The inode to which this block belongs
329 * @page:      The page containing the block to decrypt
330 * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
331 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
332 * @offs:      Byte offset within @page at which the block to decrypt begins
333 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
334 *		number of the block within the file
335 *
336 * Decrypt a possibly-compressed filesystem block that is located in an
337 * arbitrary page, not necessarily in the original pagecache page.  The @inode
338 * and @lblk_num must be specified, as they can't be determined from @page.
339 *
 
 
340 * Return: 0 on success; -errno on failure
341 */
342int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
343				  unsigned int len, unsigned int offs,
344				  u64 lblk_num)
345{
346	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
347				   len, offs, GFP_NOFS);
 
 
 
348}
349EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
350
351/*
352 * Validate dentries in encrypted directories to make sure we aren't potentially
353 * caching stale dentries after a key has been added.
354 */
355static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
356{
357	struct dentry *dir;
358	int err;
359	int valid;
360
361	/*
362	 * Plaintext names are always valid, since fscrypt doesn't support
363	 * reverting to ciphertext names without evicting the directory's inode
364	 * -- which implies eviction of the dentries in the directory.
365	 */
366	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
367		return 1;
368
369	/*
370	 * Ciphertext name; valid if the directory's key is still unavailable.
371	 *
372	 * Although fscrypt forbids rename() on ciphertext names, we still must
373	 * use dget_parent() here rather than use ->d_parent directly.  That's
374	 * because a corrupted fs image may contain directory hard links, which
375	 * the VFS handles by moving the directory's dentry tree in the dcache
376	 * each time ->lookup() finds the directory and it already has a dentry
377	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
378	 * a reference to some ->d_parent to prevent it from being freed.
379	 */
380
381	if (flags & LOOKUP_RCU)
382		return -ECHILD;
383
384	dir = dget_parent(dentry);
385	err = fscrypt_get_encryption_info(d_inode(dir));
386	valid = !fscrypt_has_encryption_key(d_inode(dir));
387	dput(dir);
388
389	if (err < 0)
390		return err;
391
392	return valid;
393}
394
395const struct dentry_operations fscrypt_d_ops = {
396	.d_revalidate = fscrypt_d_revalidate,
397};
398
399static void fscrypt_destroy(void)
400{
401	struct fscrypt_ctx *pos, *n;
402
403	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
404		kmem_cache_free(fscrypt_ctx_cachep, pos);
405	INIT_LIST_HEAD(&fscrypt_free_ctxs);
406	mempool_destroy(fscrypt_bounce_page_pool);
407	fscrypt_bounce_page_pool = NULL;
408}
409
410/**
411 * fscrypt_initialize() - allocate major buffers for fs encryption.
412 * @cop_flags:  fscrypt operations flags
413 *
414 * We only call this when we start accessing encrypted files, since it
415 * results in memory getting allocated that wouldn't otherwise be used.
416 *
417 * Return: Zero on success, non-zero otherwise.
418 */
419int fscrypt_initialize(unsigned int cop_flags)
420{
421	int i, res = -ENOMEM;
 
 
 
 
 
422
423	/* No need to allocate a bounce page pool if this FS won't use it. */
424	if (cop_flags & FS_CFLG_OWN_PAGES)
425		return 0;
426
427	mutex_lock(&fscrypt_init_mutex);
428	if (fscrypt_bounce_page_pool)
429		goto already_initialized;
430
431	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
432		struct fscrypt_ctx *ctx;
433
434		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
435		if (!ctx)
436			goto fail;
437		list_add(&ctx->free_list, &fscrypt_free_ctxs);
438	}
439
440	fscrypt_bounce_page_pool =
441		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
442	if (!fscrypt_bounce_page_pool)
443		goto fail;
444
445already_initialized:
446	mutex_unlock(&fscrypt_init_mutex);
447	return 0;
448fail:
449	fscrypt_destroy();
450	mutex_unlock(&fscrypt_init_mutex);
451	return res;
452}
453
454void fscrypt_msg(const struct inode *inode, const char *level,
455		 const char *fmt, ...)
456{
457	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
458				      DEFAULT_RATELIMIT_BURST);
459	struct va_format vaf;
460	va_list args;
461
462	if (!__ratelimit(&rs))
463		return;
464
465	va_start(args, fmt);
466	vaf.fmt = fmt;
467	vaf.va = &args;
468	if (inode)
469		printk("%sfscrypt (%s, inode %lu): %pV\n",
470		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
 
 
471	else
472		printk("%sfscrypt: %pV\n", level, &vaf);
473	va_end(args);
474}
475
476/**
477 * fscrypt_init() - Set up for fs encryption.
 
 
478 */
479static int __init fscrypt_init(void)
480{
481	int err = -ENOMEM;
482
483	/*
484	 * Use an unbound workqueue to allow bios to be decrypted in parallel
485	 * even when they happen to complete on the same CPU.  This sacrifices
486	 * locality, but it's worthwhile since decryption is CPU-intensive.
487	 *
488	 * Also use a high-priority workqueue to prioritize decryption work,
489	 * which blocks reads from completing, over regular application tasks.
490	 */
491	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
492						 WQ_UNBOUND | WQ_HIGHPRI,
493						 num_online_cpus());
494	if (!fscrypt_read_workqueue)
495		goto fail;
496
497	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
498	if (!fscrypt_ctx_cachep)
 
499		goto fail_free_queue;
500
501	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
502	if (!fscrypt_info_cachep)
503		goto fail_free_ctx;
504
505	err = fscrypt_init_keyring();
506	if (err)
507		goto fail_free_info;
508
509	return 0;
510
511fail_free_info:
512	kmem_cache_destroy(fscrypt_info_cachep);
513fail_free_ctx:
514	kmem_cache_destroy(fscrypt_ctx_cachep);
515fail_free_queue:
516	destroy_workqueue(fscrypt_read_workqueue);
517fail:
518	return err;
519}
520late_initcall(fscrypt_init)
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 
 
 
 28#include <crypto/skcipher.h>
 29#include "fscrypt_private.h"
 30
 31static unsigned int num_prealloc_crypto_pages = 32;
 
 32
 33module_param(num_prealloc_crypto_pages, uint, 0444);
 34MODULE_PARM_DESC(num_prealloc_crypto_pages,
 35		"Number of crypto pages to preallocate");
 
 
 
 36
 37static mempool_t *fscrypt_bounce_page_pool = NULL;
 38
 
 
 
 39static struct workqueue_struct *fscrypt_read_workqueue;
 40static DEFINE_MUTEX(fscrypt_init_mutex);
 41
 42struct kmem_cache *fscrypt_inode_info_cachep;
 
 43
 44void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 45{
 46	queue_work(fscrypt_read_workqueue, work);
 47}
 48EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
 51{
 52	if (WARN_ON_ONCE(!fscrypt_bounce_page_pool)) {
 53		/*
 54		 * Oops, the filesystem called a function that uses the bounce
 55		 * page pool, but it didn't set needs_bounce_pages.
 56		 */
 57		return NULL;
 58	}
 59	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
 60}
 61
 62/**
 63 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 64 * @bounce_page: the bounce page to free, or NULL
 65 *
 66 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
 67 * or by fscrypt_alloc_bounce_page() directly.
 68 */
 69void fscrypt_free_bounce_page(struct page *bounce_page)
 70{
 71	if (!bounce_page)
 72		return;
 73	set_page_private(bounce_page, (unsigned long)NULL);
 74	ClearPagePrivate(bounce_page);
 75	mempool_free(bounce_page, fscrypt_bounce_page_pool);
 76}
 77EXPORT_SYMBOL(fscrypt_free_bounce_page);
 78
 79/*
 80 * Generate the IV for the given data unit index within the given file.
 81 * For filenames encryption, index == 0.
 82 *
 83 * Keep this in sync with fscrypt_limit_io_blocks().  fscrypt_limit_io_blocks()
 84 * needs to know about any IV generation methods where the low bits of IV don't
 85 * simply contain the data unit index (e.g., IV_INO_LBLK_32).
 86 */
 87void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
 88			 const struct fscrypt_inode_info *ci)
 89{
 90	u8 flags = fscrypt_policy_flags(&ci->ci_policy);
 
 91
 92	memset(iv, 0, ci->ci_mode->ivsize);
 
 93
 94	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
 95		WARN_ON_ONCE(index > U32_MAX);
 96		WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
 97		index |= (u64)ci->ci_inode->i_ino << 32;
 98	} else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
 99		WARN_ON_ONCE(index > U32_MAX);
100		index = (u32)(ci->ci_hashed_ino + index);
101	} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
102		memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
103	}
104	iv->index = cpu_to_le64(index);
105}
106
107/* Encrypt or decrypt a single "data unit" of file contents. */
108int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
109			    fscrypt_direction_t rw, u64 index,
110			    struct page *src_page, struct page *dest_page,
111			    unsigned int len, unsigned int offs,
112			    gfp_t gfp_flags)
113{
114	union fscrypt_iv iv;
115	struct skcipher_request *req = NULL;
116	DECLARE_CRYPTO_WAIT(wait);
117	struct scatterlist dst, src;
118	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
 
119	int res = 0;
120
121	if (WARN_ON_ONCE(len <= 0))
122		return -EINVAL;
123	if (WARN_ON_ONCE(len % FSCRYPT_CONTENTS_ALIGNMENT != 0))
124		return -EINVAL;
125
126	fscrypt_generate_iv(&iv, index, ci);
127
128	req = skcipher_request_alloc(tfm, gfp_flags);
129	if (!req)
130		return -ENOMEM;
131
132	skcipher_request_set_callback(
133		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
134		crypto_req_done, &wait);
135
136	sg_init_table(&dst, 1);
137	sg_set_page(&dst, dest_page, len, offs);
138	sg_init_table(&src, 1);
139	sg_set_page(&src, src_page, len, offs);
140	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
141	if (rw == FS_DECRYPT)
142		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
143	else
144		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
145	skcipher_request_free(req);
146	if (res) {
147		fscrypt_err(ci->ci_inode,
148			    "%scryption failed for data unit %llu: %d",
149			    (rw == FS_DECRYPT ? "De" : "En"), index, res);
150		return res;
151	}
152	return 0;
153}
154
155/**
156 * fscrypt_encrypt_pagecache_blocks() - Encrypt data from a pagecache page
157 * @page: the locked pagecache page containing the data to encrypt
158 * @len: size of the data to encrypt, in bytes
159 * @offs: offset within @page of the data to encrypt, in bytes
160 * @gfp_flags: memory allocation flags; see details below
161 *
162 * This allocates a new bounce page and encrypts the given data into it.  The
163 * length and offset of the data must be aligned to the file's crypto data unit
164 * size.  Alignment to the filesystem block size fulfills this requirement, as
165 * the filesystem block size is always a multiple of the data unit size.
166 *
167 * In the bounce page, the ciphertext data will be located at the same offset at
168 * which the plaintext data was located in the source page.  Any other parts of
169 * the bounce page will be left uninitialized.
170 *
171 * This is for use by the filesystem's ->writepages() method.
172 *
173 * The bounce page allocation is mempool-backed, so it will always succeed when
174 * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS.  However,
175 * only the first page of each bio can be allocated this way.  To prevent
176 * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used.
177 *
178 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
179 */
180struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
181					      unsigned int len,
182					      unsigned int offs,
183					      gfp_t gfp_flags)
184
185{
186	const struct inode *inode = page->mapping->host;
187	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
188	const unsigned int du_bits = ci->ci_data_unit_bits;
189	const unsigned int du_size = 1U << du_bits;
190	struct page *ciphertext_page;
191	u64 index = ((u64)page->index << (PAGE_SHIFT - du_bits)) +
192		    (offs >> du_bits);
193	unsigned int i;
194	int err;
195
196	if (WARN_ON_ONCE(!PageLocked(page)))
197		return ERR_PTR(-EINVAL);
198
199	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size)))
200		return ERR_PTR(-EINVAL);
201
202	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
203	if (!ciphertext_page)
204		return ERR_PTR(-ENOMEM);
205
206	for (i = offs; i < offs + len; i += du_size, index++) {
207		err = fscrypt_crypt_data_unit(ci, FS_ENCRYPT, index,
208					      page, ciphertext_page,
209					      du_size, i, gfp_flags);
210		if (err) {
211			fscrypt_free_bounce_page(ciphertext_page);
212			return ERR_PTR(err);
213		}
214	}
215	SetPagePrivate(ciphertext_page);
216	set_page_private(ciphertext_page, (unsigned long)page);
217	return ciphertext_page;
218}
219EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
220
221/**
222 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
223 * @inode:     The inode to which this block belongs
224 * @page:      The page containing the block to encrypt
225 * @len:       Size of block to encrypt.  This must be a multiple of
226 *		FSCRYPT_CONTENTS_ALIGNMENT.
227 * @offs:      Byte offset within @page at which the block to encrypt begins
228 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
229 *		number of the block within the file
230 * @gfp_flags: Memory allocation flags
231 *
232 * Encrypt a possibly-compressed filesystem block that is located in an
233 * arbitrary page, not necessarily in the original pagecache page.  The @inode
234 * and @lblk_num must be specified, as they can't be determined from @page.
235 *
236 * This is not compatible with fscrypt_operations::supports_subblock_data_units.
237 *
238 * Return: 0 on success; -errno on failure
239 */
240int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
241				  unsigned int len, unsigned int offs,
242				  u64 lblk_num, gfp_t gfp_flags)
243{
244	if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units))
245		return -EOPNOTSUPP;
246	return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_ENCRYPT,
247				       lblk_num, page, page, len, offs,
248				       gfp_flags);
249}
250EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
251
252/**
253 * fscrypt_decrypt_pagecache_blocks() - Decrypt data from a pagecache folio
254 * @folio: the pagecache folio containing the data to decrypt
255 * @len: size of the data to decrypt, in bytes
256 * @offs: offset within @folio of the data to decrypt, in bytes
257 *
258 * Decrypt data that has just been read from an encrypted file.  The data must
259 * be located in a pagecache folio that is still locked and not yet uptodate.
260 * The length and offset of the data must be aligned to the file's crypto data
261 * unit size.  Alignment to the filesystem block size fulfills this requirement,
262 * as the filesystem block size is always a multiple of the data unit size.
 
 
263 *
264 * Return: 0 on success; -errno on failure
265 */
266int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
267				     size_t offs)
268{
269	const struct inode *inode = folio->mapping->host;
270	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
271	const unsigned int du_bits = ci->ci_data_unit_bits;
272	const unsigned int du_size = 1U << du_bits;
273	u64 index = ((u64)folio->index << (PAGE_SHIFT - du_bits)) +
274		    (offs >> du_bits);
275	size_t i;
276	int err;
277
278	if (WARN_ON_ONCE(!folio_test_locked(folio)))
279		return -EINVAL;
280
281	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size)))
282		return -EINVAL;
283
284	for (i = offs; i < offs + len; i += du_size, index++) {
285		struct page *page = folio_page(folio, i >> PAGE_SHIFT);
286
287		err = fscrypt_crypt_data_unit(ci, FS_DECRYPT, index, page,
288					      page, du_size, i & ~PAGE_MASK,
289					      GFP_NOFS);
290		if (err)
291			return err;
292	}
293	return 0;
294}
295EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
296
297/**
298 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
299 * @inode:     The inode to which this block belongs
300 * @page:      The page containing the block to decrypt
301 * @len:       Size of block to decrypt.  This must be a multiple of
302 *		FSCRYPT_CONTENTS_ALIGNMENT.
303 * @offs:      Byte offset within @page at which the block to decrypt begins
304 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
305 *		number of the block within the file
306 *
307 * Decrypt a possibly-compressed filesystem block that is located in an
308 * arbitrary page, not necessarily in the original pagecache page.  The @inode
309 * and @lblk_num must be specified, as they can't be determined from @page.
310 *
311 * This is not compatible with fscrypt_operations::supports_subblock_data_units.
312 *
313 * Return: 0 on success; -errno on failure
314 */
315int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
316				  unsigned int len, unsigned int offs,
317				  u64 lblk_num)
318{
319	if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units))
320		return -EOPNOTSUPP;
321	return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_DECRYPT,
322				       lblk_num, page, page, len, offs,
323				       GFP_NOFS);
324}
325EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327/**
328 * fscrypt_initialize() - allocate major buffers for fs encryption.
329 * @sb: the filesystem superblock
330 *
331 * We only call this when we start accessing encrypted files, since it
332 * results in memory getting allocated that wouldn't otherwise be used.
333 *
334 * Return: 0 on success; -errno on failure
335 */
336int fscrypt_initialize(struct super_block *sb)
337{
338	int err = 0;
339	mempool_t *pool;
340
341	/* pairs with smp_store_release() below */
342	if (likely(smp_load_acquire(&fscrypt_bounce_page_pool)))
343		return 0;
344
345	/* No need to allocate a bounce page pool if this FS won't use it. */
346	if (!sb->s_cop->needs_bounce_pages)
347		return 0;
348
349	mutex_lock(&fscrypt_init_mutex);
350	if (fscrypt_bounce_page_pool)
351		goto out_unlock;
 
 
 
352
353	err = -ENOMEM;
354	pool = mempool_create_page_pool(num_prealloc_crypto_pages, 0);
355	if (!pool)
356		goto out_unlock;
357	/* pairs with smp_load_acquire() above */
358	smp_store_release(&fscrypt_bounce_page_pool, pool);
359	err = 0;
360out_unlock:
 
 
 
 
361	mutex_unlock(&fscrypt_init_mutex);
362	return err;
 
 
 
 
363}
364
365void fscrypt_msg(const struct inode *inode, const char *level,
366		 const char *fmt, ...)
367{
368	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
369				      DEFAULT_RATELIMIT_BURST);
370	struct va_format vaf;
371	va_list args;
372
373	if (!__ratelimit(&rs))
374		return;
375
376	va_start(args, fmt);
377	vaf.fmt = fmt;
378	vaf.va = &args;
379	if (inode && inode->i_ino)
380		printk("%sfscrypt (%s, inode %lu): %pV\n",
381		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
382	else if (inode)
383		printk("%sfscrypt (%s): %pV\n", level, inode->i_sb->s_id, &vaf);
384	else
385		printk("%sfscrypt: %pV\n", level, &vaf);
386	va_end(args);
387}
388
389/**
390 * fscrypt_init() - Set up for fs encryption.
391 *
392 * Return: 0 on success; -errno on failure
393 */
394static int __init fscrypt_init(void)
395{
396	int err = -ENOMEM;
397
398	/*
399	 * Use an unbound workqueue to allow bios to be decrypted in parallel
400	 * even when they happen to complete on the same CPU.  This sacrifices
401	 * locality, but it's worthwhile since decryption is CPU-intensive.
402	 *
403	 * Also use a high-priority workqueue to prioritize decryption work,
404	 * which blocks reads from completing, over regular application tasks.
405	 */
406	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
407						 WQ_UNBOUND | WQ_HIGHPRI,
408						 num_online_cpus());
409	if (!fscrypt_read_workqueue)
410		goto fail;
411
412	fscrypt_inode_info_cachep = KMEM_CACHE(fscrypt_inode_info,
413					       SLAB_RECLAIM_ACCOUNT);
414	if (!fscrypt_inode_info_cachep)
415		goto fail_free_queue;
416
 
 
 
 
417	err = fscrypt_init_keyring();
418	if (err)
419		goto fail_free_inode_info;
420
421	return 0;
422
423fail_free_inode_info:
424	kmem_cache_destroy(fscrypt_inode_info_cachep);
 
 
425fail_free_queue:
426	destroy_workqueue(fscrypt_read_workqueue);
427fail:
428	return err;
429}
430late_initcall(fscrypt_init)