Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 28#include <linux/dcache.h>
 29#include <linux/namei.h>
 30#include <crypto/aes.h>
 31#include <crypto/skcipher.h>
 32#include "fscrypt_private.h"
 33
 34static unsigned int num_prealloc_crypto_pages = 32;
 35static unsigned int num_prealloc_crypto_ctxs = 128;
 36
 37module_param(num_prealloc_crypto_pages, uint, 0444);
 38MODULE_PARM_DESC(num_prealloc_crypto_pages,
 39		"Number of crypto pages to preallocate");
 40module_param(num_prealloc_crypto_ctxs, uint, 0444);
 41MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 42		"Number of crypto contexts to preallocate");
 43
 44static mempool_t *fscrypt_bounce_page_pool = NULL;
 45
 46static LIST_HEAD(fscrypt_free_ctxs);
 47static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 48
 49static struct workqueue_struct *fscrypt_read_workqueue;
 50static DEFINE_MUTEX(fscrypt_init_mutex);
 51
 52static struct kmem_cache *fscrypt_ctx_cachep;
 53struct kmem_cache *fscrypt_info_cachep;
 54
 55void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 56{
 57	queue_work(fscrypt_read_workqueue, work);
 58}
 59EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 60
 61/**
 62 * fscrypt_release_ctx() - Release a decryption context
 63 * @ctx: The decryption context to release.
 64 *
 65 * If the decryption context was allocated from the pre-allocated pool, return
 66 * it to that pool.  Else, free it.
 67 */
 68void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 69{
 70	unsigned long flags;
 71
 72	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 73		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 74	} else {
 75		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 76		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 77		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 78	}
 79}
 80EXPORT_SYMBOL(fscrypt_release_ctx);
 81
 82/**
 83 * fscrypt_get_ctx() - Get a decryption context
 84 * @gfp_flags:   The gfp flag for memory allocation
 85 *
 86 * Allocate and initialize a decryption context.
 87 *
 88 * Return: A new decryption context on success; an ERR_PTR() otherwise.
 89 */
 90struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
 91{
 92	struct fscrypt_ctx *ctx;
 93	unsigned long flags;
 94
 95	/*
 96	 * First try getting a ctx from the free list so that we don't have to
 97	 * call into the slab allocator.
 98	 */
 99	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
100	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
101					struct fscrypt_ctx, free_list);
102	if (ctx)
103		list_del(&ctx->free_list);
104	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
105	if (!ctx) {
106		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
107		if (!ctx)
108			return ERR_PTR(-ENOMEM);
109		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
110	} else {
111		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
112	}
113	return ctx;
114}
115EXPORT_SYMBOL(fscrypt_get_ctx);
116
117struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
118{
119	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
120}
121
122/**
123 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 
124 *
125 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
126 * or by fscrypt_alloc_bounce_page() directly.
127 */
128void fscrypt_free_bounce_page(struct page *bounce_page)
129{
130	if (!bounce_page)
131		return;
132	set_page_private(bounce_page, (unsigned long)NULL);
133	ClearPagePrivate(bounce_page);
134	mempool_free(bounce_page, fscrypt_bounce_page_pool);
135}
136EXPORT_SYMBOL(fscrypt_free_bounce_page);
137
138void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
139			 const struct fscrypt_info *ci)
140{
141	memset(iv, 0, ci->ci_mode->ivsize);
142	iv->lblk_num = cpu_to_le64(lblk_num);
143
144	if (fscrypt_is_direct_key_policy(&ci->ci_policy))
145		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
146
147	if (ci->ci_essiv_tfm != NULL)
148		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
 
 
 
 
 
 
 
 
 
149}
150
151/* Encrypt or decrypt a single filesystem block of file contents */
152int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
153			u64 lblk_num, struct page *src_page,
154			struct page *dest_page, unsigned int len,
155			unsigned int offs, gfp_t gfp_flags)
156{
157	union fscrypt_iv iv;
158	struct skcipher_request *req = NULL;
159	DECLARE_CRYPTO_WAIT(wait);
160	struct scatterlist dst, src;
161	struct fscrypt_info *ci = inode->i_crypt_info;
162	struct crypto_skcipher *tfm = ci->ci_ctfm;
163	int res = 0;
164
165	if (WARN_ON_ONCE(len <= 0))
166		return -EINVAL;
167	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
168		return -EINVAL;
169
170	fscrypt_generate_iv(&iv, lblk_num, ci);
171
172	req = skcipher_request_alloc(tfm, gfp_flags);
173	if (!req)
174		return -ENOMEM;
175
176	skcipher_request_set_callback(
177		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
178		crypto_req_done, &wait);
179
180	sg_init_table(&dst, 1);
181	sg_set_page(&dst, dest_page, len, offs);
182	sg_init_table(&src, 1);
183	sg_set_page(&src, src_page, len, offs);
184	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
185	if (rw == FS_DECRYPT)
186		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
187	else
188		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
189	skcipher_request_free(req);
190	if (res) {
191		fscrypt_err(inode, "%scryption failed for block %llu: %d",
192			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
193		return res;
194	}
195	return 0;
196}
197
198/**
199 * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
 
200 * @page:      The locked pagecache page containing the block(s) to encrypt
201 * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
202 *		multiple of the filesystem's block size.
203 * @offs:      Byte offset within @page of the first block to encrypt.  Must be
204 *		a multiple of the filesystem's block size.
205 * @gfp_flags: Memory allocation flags
206 *
207 * A new bounce page is allocated, and the specified block(s) are encrypted into
208 * it.  In the bounce page, the ciphertext block(s) will be located at the same
209 * offsets at which the plaintext block(s) were located in the source page; any
210 * other parts of the bounce page will be left uninitialized.  However, normally
211 * blocksize == PAGE_SIZE and the whole page is encrypted at once.
212 *
213 * This is for use by the filesystem's ->writepages() method.
214 *
 
 
 
 
 
215 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
216 */
217struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
218					      unsigned int len,
219					      unsigned int offs,
220					      gfp_t gfp_flags)
221
222{
223	const struct inode *inode = page->mapping->host;
224	const unsigned int blockbits = inode->i_blkbits;
225	const unsigned int blocksize = 1 << blockbits;
226	struct page *ciphertext_page;
227	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
228		       (offs >> blockbits);
229	unsigned int i;
230	int err;
231
232	if (WARN_ON_ONCE(!PageLocked(page)))
233		return ERR_PTR(-EINVAL);
234
235	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
236		return ERR_PTR(-EINVAL);
237
238	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
239	if (!ciphertext_page)
240		return ERR_PTR(-ENOMEM);
241
242	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
243		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
244					  page, ciphertext_page,
245					  blocksize, i, gfp_flags);
246		if (err) {
247			fscrypt_free_bounce_page(ciphertext_page);
248			return ERR_PTR(err);
249		}
250	}
251	SetPagePrivate(ciphertext_page);
252	set_page_private(ciphertext_page, (unsigned long)page);
253	return ciphertext_page;
254}
255EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
256
257/**
258 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
259 * @inode:     The inode to which this block belongs
260 * @page:      The page containing the block to encrypt
261 * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
262 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
263 * @offs:      Byte offset within @page at which the block to encrypt begins
264 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
265 *		number of the block within the file
266 * @gfp_flags: Memory allocation flags
267 *
268 * Encrypt a possibly-compressed filesystem block that is located in an
269 * arbitrary page, not necessarily in the original pagecache page.  The @inode
270 * and @lblk_num must be specified, as they can't be determined from @page.
271 *
272 * Return: 0 on success; -errno on failure
273 */
274int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
275				  unsigned int len, unsigned int offs,
276				  u64 lblk_num, gfp_t gfp_flags)
277{
278	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
279				   len, offs, gfp_flags);
280}
281EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
282
283/**
284 * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
 
285 * @page:      The locked pagecache page containing the block(s) to decrypt
286 * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
287 *		multiple of the filesystem's block size.
288 * @offs:      Byte offset within @page of the first block to decrypt.  Must be
289 *		a multiple of the filesystem's block size.
290 *
291 * The specified block(s) are decrypted in-place within the pagecache page,
292 * which must still be locked and not uptodate.  Normally, blocksize ==
293 * PAGE_SIZE and the whole page is decrypted at once.
294 *
295 * This is for use by the filesystem's ->readpages() method.
296 *
297 * Return: 0 on success; -errno on failure
298 */
299int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
300				     unsigned int offs)
301{
302	const struct inode *inode = page->mapping->host;
303	const unsigned int blockbits = inode->i_blkbits;
304	const unsigned int blocksize = 1 << blockbits;
305	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
306		       (offs >> blockbits);
307	unsigned int i;
308	int err;
309
310	if (WARN_ON_ONCE(!PageLocked(page)))
311		return -EINVAL;
312
313	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
314		return -EINVAL;
315
316	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
317		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
318					  page, blocksize, i, GFP_NOFS);
319		if (err)
320			return err;
321	}
322	return 0;
323}
324EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
325
326/**
327 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
328 * @inode:     The inode to which this block belongs
329 * @page:      The page containing the block to decrypt
330 * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
331 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
332 * @offs:      Byte offset within @page at which the block to decrypt begins
333 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
334 *		number of the block within the file
335 *
336 * Decrypt a possibly-compressed filesystem block that is located in an
337 * arbitrary page, not necessarily in the original pagecache page.  The @inode
338 * and @lblk_num must be specified, as they can't be determined from @page.
339 *
340 * Return: 0 on success; -errno on failure
341 */
342int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
343				  unsigned int len, unsigned int offs,
344				  u64 lblk_num)
345{
346	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
347				   len, offs, GFP_NOFS);
348}
349EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
350
351/*
352 * Validate dentries in encrypted directories to make sure we aren't potentially
353 * caching stale dentries after a key has been added.
354 */
355static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
356{
357	struct dentry *dir;
358	int err;
359	int valid;
360
361	/*
362	 * Plaintext names are always valid, since fscrypt doesn't support
363	 * reverting to ciphertext names without evicting the directory's inode
364	 * -- which implies eviction of the dentries in the directory.
365	 */
366	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
367		return 1;
368
369	/*
370	 * Ciphertext name; valid if the directory's key is still unavailable.
371	 *
372	 * Although fscrypt forbids rename() on ciphertext names, we still must
373	 * use dget_parent() here rather than use ->d_parent directly.  That's
374	 * because a corrupted fs image may contain directory hard links, which
375	 * the VFS handles by moving the directory's dentry tree in the dcache
376	 * each time ->lookup() finds the directory and it already has a dentry
377	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
378	 * a reference to some ->d_parent to prevent it from being freed.
379	 */
380
381	if (flags & LOOKUP_RCU)
382		return -ECHILD;
383
384	dir = dget_parent(dentry);
385	err = fscrypt_get_encryption_info(d_inode(dir));
386	valid = !fscrypt_has_encryption_key(d_inode(dir));
387	dput(dir);
388
389	if (err < 0)
390		return err;
391
392	return valid;
393}
394
395const struct dentry_operations fscrypt_d_ops = {
396	.d_revalidate = fscrypt_d_revalidate,
397};
398
399static void fscrypt_destroy(void)
400{
401	struct fscrypt_ctx *pos, *n;
402
403	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
404		kmem_cache_free(fscrypt_ctx_cachep, pos);
405	INIT_LIST_HEAD(&fscrypt_free_ctxs);
406	mempool_destroy(fscrypt_bounce_page_pool);
407	fscrypt_bounce_page_pool = NULL;
408}
409
410/**
411 * fscrypt_initialize() - allocate major buffers for fs encryption.
412 * @cop_flags:  fscrypt operations flags
413 *
414 * We only call this when we start accessing encrypted files, since it
415 * results in memory getting allocated that wouldn't otherwise be used.
416 *
417 * Return: Zero on success, non-zero otherwise.
418 */
419int fscrypt_initialize(unsigned int cop_flags)
420{
421	int i, res = -ENOMEM;
422
423	/* No need to allocate a bounce page pool if this FS won't use it. */
424	if (cop_flags & FS_CFLG_OWN_PAGES)
425		return 0;
426
427	mutex_lock(&fscrypt_init_mutex);
428	if (fscrypt_bounce_page_pool)
429		goto already_initialized;
430
431	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
432		struct fscrypt_ctx *ctx;
433
434		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
435		if (!ctx)
436			goto fail;
437		list_add(&ctx->free_list, &fscrypt_free_ctxs);
438	}
439
 
440	fscrypt_bounce_page_pool =
441		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
442	if (!fscrypt_bounce_page_pool)
443		goto fail;
444
445already_initialized:
 
446	mutex_unlock(&fscrypt_init_mutex);
447	return 0;
448fail:
449	fscrypt_destroy();
450	mutex_unlock(&fscrypt_init_mutex);
451	return res;
452}
453
454void fscrypt_msg(const struct inode *inode, const char *level,
455		 const char *fmt, ...)
456{
457	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
458				      DEFAULT_RATELIMIT_BURST);
459	struct va_format vaf;
460	va_list args;
461
462	if (!__ratelimit(&rs))
463		return;
464
465	va_start(args, fmt);
466	vaf.fmt = fmt;
467	vaf.va = &args;
468	if (inode)
469		printk("%sfscrypt (%s, inode %lu): %pV\n",
470		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
 
 
471	else
472		printk("%sfscrypt: %pV\n", level, &vaf);
473	va_end(args);
474}
475
476/**
477 * fscrypt_init() - Set up for fs encryption.
 
 
478 */
479static int __init fscrypt_init(void)
480{
481	int err = -ENOMEM;
482
483	/*
484	 * Use an unbound workqueue to allow bios to be decrypted in parallel
485	 * even when they happen to complete on the same CPU.  This sacrifices
486	 * locality, but it's worthwhile since decryption is CPU-intensive.
487	 *
488	 * Also use a high-priority workqueue to prioritize decryption work,
489	 * which blocks reads from completing, over regular application tasks.
490	 */
491	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
492						 WQ_UNBOUND | WQ_HIGHPRI,
493						 num_online_cpus());
494	if (!fscrypt_read_workqueue)
495		goto fail;
496
497	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
498	if (!fscrypt_ctx_cachep)
499		goto fail_free_queue;
500
501	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
502	if (!fscrypt_info_cachep)
503		goto fail_free_ctx;
504
505	err = fscrypt_init_keyring();
506	if (err)
507		goto fail_free_info;
508
509	return 0;
510
511fail_free_info:
512	kmem_cache_destroy(fscrypt_info_cachep);
513fail_free_ctx:
514	kmem_cache_destroy(fscrypt_ctx_cachep);
515fail_free_queue:
516	destroy_workqueue(fscrypt_read_workqueue);
517fail:
518	return err;
519}
520late_initcall(fscrypt_init)
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 
 
 
 28#include <crypto/skcipher.h>
 29#include "fscrypt_private.h"
 30
 31static unsigned int num_prealloc_crypto_pages = 32;
 
 32
 33module_param(num_prealloc_crypto_pages, uint, 0444);
 34MODULE_PARM_DESC(num_prealloc_crypto_pages,
 35		"Number of crypto pages to preallocate");
 
 
 
 36
 37static mempool_t *fscrypt_bounce_page_pool = NULL;
 38
 
 
 
 39static struct workqueue_struct *fscrypt_read_workqueue;
 40static DEFINE_MUTEX(fscrypt_init_mutex);
 41
 
 42struct kmem_cache *fscrypt_info_cachep;
 43
 44void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 45{
 46	queue_work(fscrypt_read_workqueue, work);
 47}
 48EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
 51{
 52	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
 53}
 54
 55/**
 56 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 57 * @bounce_page: the bounce page to free, or NULL
 58 *
 59 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
 60 * or by fscrypt_alloc_bounce_page() directly.
 61 */
 62void fscrypt_free_bounce_page(struct page *bounce_page)
 63{
 64	if (!bounce_page)
 65		return;
 66	set_page_private(bounce_page, (unsigned long)NULL);
 67	ClearPagePrivate(bounce_page);
 68	mempool_free(bounce_page, fscrypt_bounce_page_pool);
 69}
 70EXPORT_SYMBOL(fscrypt_free_bounce_page);
 71
 72void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
 73			 const struct fscrypt_info *ci)
 74{
 75	u8 flags = fscrypt_policy_flags(&ci->ci_policy);
 
 76
 77	memset(iv, 0, ci->ci_mode->ivsize);
 
 78
 79	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
 80		WARN_ON_ONCE(lblk_num > U32_MAX);
 81		WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
 82		lblk_num |= (u64)ci->ci_inode->i_ino << 32;
 83	} else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
 84		WARN_ON_ONCE(lblk_num > U32_MAX);
 85		lblk_num = (u32)(ci->ci_hashed_ino + lblk_num);
 86	} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
 87		memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
 88	}
 89	iv->lblk_num = cpu_to_le64(lblk_num);
 90}
 91
 92/* Encrypt or decrypt a single filesystem block of file contents */
 93int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
 94			u64 lblk_num, struct page *src_page,
 95			struct page *dest_page, unsigned int len,
 96			unsigned int offs, gfp_t gfp_flags)
 97{
 98	union fscrypt_iv iv;
 99	struct skcipher_request *req = NULL;
100	DECLARE_CRYPTO_WAIT(wait);
101	struct scatterlist dst, src;
102	struct fscrypt_info *ci = inode->i_crypt_info;
103	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
104	int res = 0;
105
106	if (WARN_ON_ONCE(len <= 0))
107		return -EINVAL;
108	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
109		return -EINVAL;
110
111	fscrypt_generate_iv(&iv, lblk_num, ci);
112
113	req = skcipher_request_alloc(tfm, gfp_flags);
114	if (!req)
115		return -ENOMEM;
116
117	skcipher_request_set_callback(
118		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
119		crypto_req_done, &wait);
120
121	sg_init_table(&dst, 1);
122	sg_set_page(&dst, dest_page, len, offs);
123	sg_init_table(&src, 1);
124	sg_set_page(&src, src_page, len, offs);
125	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
126	if (rw == FS_DECRYPT)
127		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
128	else
129		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
130	skcipher_request_free(req);
131	if (res) {
132		fscrypt_err(inode, "%scryption failed for block %llu: %d",
133			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
134		return res;
135	}
136	return 0;
137}
138
139/**
140 * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a
141 *					pagecache page
142 * @page:      The locked pagecache page containing the block(s) to encrypt
143 * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
144 *		multiple of the filesystem's block size.
145 * @offs:      Byte offset within @page of the first block to encrypt.  Must be
146 *		a multiple of the filesystem's block size.
147 * @gfp_flags: Memory allocation flags.  See details below.
148 *
149 * A new bounce page is allocated, and the specified block(s) are encrypted into
150 * it.  In the bounce page, the ciphertext block(s) will be located at the same
151 * offsets at which the plaintext block(s) were located in the source page; any
152 * other parts of the bounce page will be left uninitialized.  However, normally
153 * blocksize == PAGE_SIZE and the whole page is encrypted at once.
154 *
155 * This is for use by the filesystem's ->writepages() method.
156 *
157 * The bounce page allocation is mempool-backed, so it will always succeed when
158 * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS.  However,
159 * only the first page of each bio can be allocated this way.  To prevent
160 * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used.
161 *
162 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
163 */
164struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
165					      unsigned int len,
166					      unsigned int offs,
167					      gfp_t gfp_flags)
168
169{
170	const struct inode *inode = page->mapping->host;
171	const unsigned int blockbits = inode->i_blkbits;
172	const unsigned int blocksize = 1 << blockbits;
173	struct page *ciphertext_page;
174	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
175		       (offs >> blockbits);
176	unsigned int i;
177	int err;
178
179	if (WARN_ON_ONCE(!PageLocked(page)))
180		return ERR_PTR(-EINVAL);
181
182	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
183		return ERR_PTR(-EINVAL);
184
185	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
186	if (!ciphertext_page)
187		return ERR_PTR(-ENOMEM);
188
189	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
190		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
191					  page, ciphertext_page,
192					  blocksize, i, gfp_flags);
193		if (err) {
194			fscrypt_free_bounce_page(ciphertext_page);
195			return ERR_PTR(err);
196		}
197	}
198	SetPagePrivate(ciphertext_page);
199	set_page_private(ciphertext_page, (unsigned long)page);
200	return ciphertext_page;
201}
202EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
203
204/**
205 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
206 * @inode:     The inode to which this block belongs
207 * @page:      The page containing the block to encrypt
208 * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
209 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
210 * @offs:      Byte offset within @page at which the block to encrypt begins
211 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
212 *		number of the block within the file
213 * @gfp_flags: Memory allocation flags
214 *
215 * Encrypt a possibly-compressed filesystem block that is located in an
216 * arbitrary page, not necessarily in the original pagecache page.  The @inode
217 * and @lblk_num must be specified, as they can't be determined from @page.
218 *
219 * Return: 0 on success; -errno on failure
220 */
221int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
222				  unsigned int len, unsigned int offs,
223				  u64 lblk_num, gfp_t gfp_flags)
224{
225	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
226				   len, offs, gfp_flags);
227}
228EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
229
230/**
231 * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a
232 *					pagecache page
233 * @page:      The locked pagecache page containing the block(s) to decrypt
234 * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
235 *		multiple of the filesystem's block size.
236 * @offs:      Byte offset within @page of the first block to decrypt.  Must be
237 *		a multiple of the filesystem's block size.
238 *
239 * The specified block(s) are decrypted in-place within the pagecache page,
240 * which must still be locked and not uptodate.  Normally, blocksize ==
241 * PAGE_SIZE and the whole page is decrypted at once.
242 *
243 * This is for use by the filesystem's ->readpages() method.
244 *
245 * Return: 0 on success; -errno on failure
246 */
247int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
248				     unsigned int offs)
249{
250	const struct inode *inode = page->mapping->host;
251	const unsigned int blockbits = inode->i_blkbits;
252	const unsigned int blocksize = 1 << blockbits;
253	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
254		       (offs >> blockbits);
255	unsigned int i;
256	int err;
257
258	if (WARN_ON_ONCE(!PageLocked(page)))
259		return -EINVAL;
260
261	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
262		return -EINVAL;
263
264	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
265		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
266					  page, blocksize, i, GFP_NOFS);
267		if (err)
268			return err;
269	}
270	return 0;
271}
272EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
273
274/**
275 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
276 * @inode:     The inode to which this block belongs
277 * @page:      The page containing the block to decrypt
278 * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
279 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
280 * @offs:      Byte offset within @page at which the block to decrypt begins
281 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
282 *		number of the block within the file
283 *
284 * Decrypt a possibly-compressed filesystem block that is located in an
285 * arbitrary page, not necessarily in the original pagecache page.  The @inode
286 * and @lblk_num must be specified, as they can't be determined from @page.
287 *
288 * Return: 0 on success; -errno on failure
289 */
290int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
291				  unsigned int len, unsigned int offs,
292				  u64 lblk_num)
293{
294	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
295				   len, offs, GFP_NOFS);
296}
297EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299/**
300 * fscrypt_initialize() - allocate major buffers for fs encryption.
301 * @cop_flags:  fscrypt operations flags
302 *
303 * We only call this when we start accessing encrypted files, since it
304 * results in memory getting allocated that wouldn't otherwise be used.
305 *
306 * Return: 0 on success; -errno on failure
307 */
308int fscrypt_initialize(unsigned int cop_flags)
309{
310	int err = 0;
311
312	/* No need to allocate a bounce page pool if this FS won't use it. */
313	if (cop_flags & FS_CFLG_OWN_PAGES)
314		return 0;
315
316	mutex_lock(&fscrypt_init_mutex);
317	if (fscrypt_bounce_page_pool)
318		goto out_unlock;
 
 
 
 
 
 
 
 
 
319
320	err = -ENOMEM;
321	fscrypt_bounce_page_pool =
322		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
323	if (!fscrypt_bounce_page_pool)
324		goto out_unlock;
325
326	err = 0;
327out_unlock:
328	mutex_unlock(&fscrypt_init_mutex);
329	return err;
 
 
 
 
330}
331
332void fscrypt_msg(const struct inode *inode, const char *level,
333		 const char *fmt, ...)
334{
335	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
336				      DEFAULT_RATELIMIT_BURST);
337	struct va_format vaf;
338	va_list args;
339
340	if (!__ratelimit(&rs))
341		return;
342
343	va_start(args, fmt);
344	vaf.fmt = fmt;
345	vaf.va = &args;
346	if (inode && inode->i_ino)
347		printk("%sfscrypt (%s, inode %lu): %pV\n",
348		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
349	else if (inode)
350		printk("%sfscrypt (%s): %pV\n", level, inode->i_sb->s_id, &vaf);
351	else
352		printk("%sfscrypt: %pV\n", level, &vaf);
353	va_end(args);
354}
355
356/**
357 * fscrypt_init() - Set up for fs encryption.
358 *
359 * Return: 0 on success; -errno on failure
360 */
361static int __init fscrypt_init(void)
362{
363	int err = -ENOMEM;
364
365	/*
366	 * Use an unbound workqueue to allow bios to be decrypted in parallel
367	 * even when they happen to complete on the same CPU.  This sacrifices
368	 * locality, but it's worthwhile since decryption is CPU-intensive.
369	 *
370	 * Also use a high-priority workqueue to prioritize decryption work,
371	 * which blocks reads from completing, over regular application tasks.
372	 */
373	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
374						 WQ_UNBOUND | WQ_HIGHPRI,
375						 num_online_cpus());
376	if (!fscrypt_read_workqueue)
377		goto fail;
378
 
 
 
 
379	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
380	if (!fscrypt_info_cachep)
381		goto fail_free_queue;
382
383	err = fscrypt_init_keyring();
384	if (err)
385		goto fail_free_info;
386
387	return 0;
388
389fail_free_info:
390	kmem_cache_destroy(fscrypt_info_cachep);
 
 
391fail_free_queue:
392	destroy_workqueue(fscrypt_read_workqueue);
393fail:
394	return err;
395}
396late_initcall(fscrypt_init)