Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 
 28#include <linux/dcache.h>
 29#include <linux/namei.h>
 30#include <crypto/aes.h>
 31#include <crypto/skcipher.h>
 32#include "fscrypt_private.h"
 33
 34static unsigned int num_prealloc_crypto_pages = 32;
 35static unsigned int num_prealloc_crypto_ctxs = 128;
 36
 37module_param(num_prealloc_crypto_pages, uint, 0444);
 38MODULE_PARM_DESC(num_prealloc_crypto_pages,
 39		"Number of crypto pages to preallocate");
 40module_param(num_prealloc_crypto_ctxs, uint, 0444);
 41MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 42		"Number of crypto contexts to preallocate");
 43
 44static mempool_t *fscrypt_bounce_page_pool = NULL;
 45
 46static LIST_HEAD(fscrypt_free_ctxs);
 47static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 48
 49static struct workqueue_struct *fscrypt_read_workqueue;
 50static DEFINE_MUTEX(fscrypt_init_mutex);
 51
 52static struct kmem_cache *fscrypt_ctx_cachep;
 53struct kmem_cache *fscrypt_info_cachep;
 54
 55void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 56{
 57	queue_work(fscrypt_read_workqueue, work);
 58}
 59EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 60
 61/**
 62 * fscrypt_release_ctx() - Release a decryption context
 63 * @ctx: The decryption context to release.
 
 
 
 64 *
 65 * If the decryption context was allocated from the pre-allocated pool, return
 66 * it to that pool.  Else, free it.
 67 */
 68void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 69{
 70	unsigned long flags;
 71
 
 
 
 
 
 72	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 73		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 74	} else {
 75		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 76		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 77		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 78	}
 79}
 80EXPORT_SYMBOL(fscrypt_release_ctx);
 81
 82/**
 83 * fscrypt_get_ctx() - Get a decryption context
 
 84 * @gfp_flags:   The gfp flag for memory allocation
 85 *
 86 * Allocate and initialize a decryption context.
 87 *
 88 * Return: A new decryption context on success; an ERR_PTR() otherwise.
 
 89 */
 90struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
 91{
 92	struct fscrypt_ctx *ctx;
 
 93	unsigned long flags;
 94
 
 
 
 95	/*
 96	 * First try getting a ctx from the free list so that we don't have to
 97	 * call into the slab allocator.
 
 
 
 
 
 
 98	 */
 99	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
100	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
101					struct fscrypt_ctx, free_list);
102	if (ctx)
103		list_del(&ctx->free_list);
104	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
105	if (!ctx) {
106		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
107		if (!ctx)
108			return ERR_PTR(-ENOMEM);
109		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
110	} else {
111		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
112	}
 
113	return ctx;
114}
115EXPORT_SYMBOL(fscrypt_get_ctx);
116
117struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
118{
119	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
120}
121
122/**
123 * fscrypt_free_bounce_page() - free a ciphertext bounce page
124 *
125 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
126 * or by fscrypt_alloc_bounce_page() directly.
127 */
128void fscrypt_free_bounce_page(struct page *bounce_page)
129{
130	if (!bounce_page)
 
 
131		return;
132	set_page_private(bounce_page, (unsigned long)NULL);
133	ClearPagePrivate(bounce_page);
134	mempool_free(bounce_page, fscrypt_bounce_page_pool);
135}
136EXPORT_SYMBOL(fscrypt_free_bounce_page);
137
138void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
139			 const struct fscrypt_info *ci)
140{
141	memset(iv, 0, ci->ci_mode->ivsize);
142	iv->lblk_num = cpu_to_le64(lblk_num);
143
144	if (fscrypt_is_direct_key_policy(&ci->ci_policy))
145		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
 
 
146
147	if (ci->ci_essiv_tfm != NULL)
148		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
149}
150
151/* Encrypt or decrypt a single filesystem block of file contents */
152int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
153			u64 lblk_num, struct page *src_page,
154			struct page *dest_page, unsigned int len,
155			unsigned int offs, gfp_t gfp_flags)
156{
157	union fscrypt_iv iv;
158	struct skcipher_request *req = NULL;
159	DECLARE_CRYPTO_WAIT(wait);
160	struct scatterlist dst, src;
161	struct fscrypt_info *ci = inode->i_crypt_info;
162	struct crypto_skcipher *tfm = ci->ci_ctfm;
163	int res = 0;
164
165	if (WARN_ON_ONCE(len <= 0))
166		return -EINVAL;
167	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
168		return -EINVAL;
169
170	fscrypt_generate_iv(&iv, lblk_num, ci);
171
172	req = skcipher_request_alloc(tfm, gfp_flags);
173	if (!req)
 
 
 
174		return -ENOMEM;
 
175
176	skcipher_request_set_callback(
177		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
178		crypto_req_done, &wait);
 
 
 
 
 
179
180	sg_init_table(&dst, 1);
181	sg_set_page(&dst, dest_page, len, offs);
182	sg_init_table(&src, 1);
183	sg_set_page(&src, src_page, len, offs);
184	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
 
185	if (rw == FS_DECRYPT)
186		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
187	else
188		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 
 
 
 
 
189	skcipher_request_free(req);
190	if (res) {
191		fscrypt_err(inode, "%scryption failed for block %llu: %d",
192			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
 
193		return res;
194	}
195	return 0;
196}
197
 
 
 
 
 
 
 
 
 
198/**
199 * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
200 * @page:      The locked pagecache page containing the block(s) to encrypt
201 * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
202 *		multiple of the filesystem's block size.
203 * @offs:      Byte offset within @page of the first block to encrypt.  Must be
204 *		a multiple of the filesystem's block size.
205 * @gfp_flags: Memory allocation flags
206 *
207 * A new bounce page is allocated, and the specified block(s) are encrypted into
208 * it.  In the bounce page, the ciphertext block(s) will be located at the same
209 * offsets at which the plaintext block(s) were located in the source page; any
210 * other parts of the bounce page will be left uninitialized.  However, normally
211 * blocksize == PAGE_SIZE and the whole page is encrypted at once.
212 *
213 * This is for use by the filesystem's ->writepages() method.
214 *
215 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
216 */
217struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
218					      unsigned int len,
219					      unsigned int offs,
220					      gfp_t gfp_flags)
221
222{
223	const struct inode *inode = page->mapping->host;
224	const unsigned int blockbits = inode->i_blkbits;
225	const unsigned int blocksize = 1 << blockbits;
226	struct page *ciphertext_page;
227	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
228		       (offs >> blockbits);
229	unsigned int i;
230	int err;
231
232	if (WARN_ON_ONCE(!PageLocked(page)))
233		return ERR_PTR(-EINVAL);
234
235	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
236		return ERR_PTR(-EINVAL);
237
238	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
239	if (!ciphertext_page)
240		return ERR_PTR(-ENOMEM);
241
242	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
243		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
244					  page, ciphertext_page,
245					  blocksize, i, gfp_flags);
246		if (err) {
247			fscrypt_free_bounce_page(ciphertext_page);
248			return ERR_PTR(err);
249		}
 
 
 
 
250	}
251	SetPagePrivate(ciphertext_page);
252	set_page_private(ciphertext_page, (unsigned long)page);
 
 
 
 
 
253	return ciphertext_page;
254}
255EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
256
257/**
258 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
259 * @inode:     The inode to which this block belongs
260 * @page:      The page containing the block to encrypt
261 * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
262 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
263 * @offs:      Byte offset within @page at which the block to encrypt begins
264 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
265 *		number of the block within the file
266 * @gfp_flags: Memory allocation flags
267 *
268 * Encrypt a possibly-compressed filesystem block that is located in an
269 * arbitrary page, not necessarily in the original pagecache page.  The @inode
270 * and @lblk_num must be specified, as they can't be determined from @page.
271 *
272 * Return: 0 on success; -errno on failure
273 */
274int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
275				  unsigned int len, unsigned int offs,
276				  u64 lblk_num, gfp_t gfp_flags)
277{
278	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
279				   len, offs, gfp_flags);
280}
281EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
282
283/**
284 * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
285 * @page:      The locked pagecache page containing the block(s) to decrypt
286 * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
287 *		multiple of the filesystem's block size.
288 * @offs:      Byte offset within @page of the first block to decrypt.  Must be
289 *		a multiple of the filesystem's block size.
290 *
291 * The specified block(s) are decrypted in-place within the pagecache page,
292 * which must still be locked and not uptodate.  Normally, blocksize ==
293 * PAGE_SIZE and the whole page is decrypted at once.
294 *
295 * This is for use by the filesystem's ->readpages() method.
296 *
297 * Return: 0 on success; -errno on failure
298 */
299int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
300				     unsigned int offs)
301{
302	const struct inode *inode = page->mapping->host;
303	const unsigned int blockbits = inode->i_blkbits;
304	const unsigned int blocksize = 1 << blockbits;
305	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
306		       (offs >> blockbits);
307	unsigned int i;
308	int err;
309
310	if (WARN_ON_ONCE(!PageLocked(page)))
311		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
313	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
314		return -EINVAL;
 
 
 
 
315
316	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
317		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
318					  page, blocksize, i, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319		if (err)
320			return err;
 
 
321	}
322	return 0;
323}
324EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
325
326/**
327 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
328 * @inode:     The inode to which this block belongs
329 * @page:      The page containing the block to decrypt
330 * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
331 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
332 * @offs:      Byte offset within @page at which the block to decrypt begins
333 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
334 *		number of the block within the file
335 *
336 * Decrypt a possibly-compressed filesystem block that is located in an
337 * arbitrary page, not necessarily in the original pagecache page.  The @inode
338 * and @lblk_num must be specified, as they can't be determined from @page.
339 *
340 * Return: 0 on success; -errno on failure
341 */
342int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
343				  unsigned int len, unsigned int offs,
344				  u64 lblk_num)
345{
346	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
347				   len, offs, GFP_NOFS);
348}
349EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
350
351/*
352 * Validate dentries in encrypted directories to make sure we aren't potentially
353 * caching stale dentries after a key has been added.
 
354 */
355static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
356{
357	struct dentry *dir;
358	int err;
359	int valid;
360
361	/*
362	 * Plaintext names are always valid, since fscrypt doesn't support
363	 * reverting to ciphertext names without evicting the directory's inode
364	 * -- which implies eviction of the dentries in the directory.
365	 */
366	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
367		return 1;
368
369	/*
370	 * Ciphertext name; valid if the directory's key is still unavailable.
371	 *
372	 * Although fscrypt forbids rename() on ciphertext names, we still must
373	 * use dget_parent() here rather than use ->d_parent directly.  That's
374	 * because a corrupted fs image may contain directory hard links, which
375	 * the VFS handles by moving the directory's dentry tree in the dcache
376	 * each time ->lookup() finds the directory and it already has a dentry
377	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
378	 * a reference to some ->d_parent to prevent it from being freed.
379	 */
380
381	if (flags & LOOKUP_RCU)
382		return -ECHILD;
383
384	dir = dget_parent(dentry);
385	err = fscrypt_get_encryption_info(d_inode(dir));
386	valid = !fscrypt_has_encryption_key(d_inode(dir));
387	dput(dir);
 
388
389	if (err < 0)
390		return err;
 
 
 
 
 
 
 
 
 
 
 
391
392	return valid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393}
394
395const struct dentry_operations fscrypt_d_ops = {
396	.d_revalidate = fscrypt_d_revalidate,
397};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398
399static void fscrypt_destroy(void)
400{
401	struct fscrypt_ctx *pos, *n;
402
403	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
404		kmem_cache_free(fscrypt_ctx_cachep, pos);
405	INIT_LIST_HEAD(&fscrypt_free_ctxs);
406	mempool_destroy(fscrypt_bounce_page_pool);
407	fscrypt_bounce_page_pool = NULL;
408}
409
410/**
411 * fscrypt_initialize() - allocate major buffers for fs encryption.
412 * @cop_flags:  fscrypt operations flags
413 *
414 * We only call this when we start accessing encrypted files, since it
415 * results in memory getting allocated that wouldn't otherwise be used.
416 *
417 * Return: Zero on success, non-zero otherwise.
418 */
419int fscrypt_initialize(unsigned int cop_flags)
420{
421	int i, res = -ENOMEM;
422
423	/* No need to allocate a bounce page pool if this FS won't use it. */
424	if (cop_flags & FS_CFLG_OWN_PAGES)
425		return 0;
426
427	mutex_lock(&fscrypt_init_mutex);
428	if (fscrypt_bounce_page_pool)
429		goto already_initialized;
430
431	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
432		struct fscrypt_ctx *ctx;
433
434		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
435		if (!ctx)
436			goto fail;
437		list_add(&ctx->free_list, &fscrypt_free_ctxs);
438	}
439
440	fscrypt_bounce_page_pool =
441		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
442	if (!fscrypt_bounce_page_pool)
443		goto fail;
444
445already_initialized:
446	mutex_unlock(&fscrypt_init_mutex);
447	return 0;
448fail:
449	fscrypt_destroy();
450	mutex_unlock(&fscrypt_init_mutex);
451	return res;
452}
453
454void fscrypt_msg(const struct inode *inode, const char *level,
455		 const char *fmt, ...)
456{
457	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
458				      DEFAULT_RATELIMIT_BURST);
459	struct va_format vaf;
460	va_list args;
461
462	if (!__ratelimit(&rs))
463		return;
464
465	va_start(args, fmt);
466	vaf.fmt = fmt;
467	vaf.va = &args;
468	if (inode)
469		printk("%sfscrypt (%s, inode %lu): %pV\n",
470		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
471	else
472		printk("%sfscrypt: %pV\n", level, &vaf);
473	va_end(args);
474}
475
476/**
477 * fscrypt_init() - Set up for fs encryption.
478 */
479static int __init fscrypt_init(void)
480{
481	int err = -ENOMEM;
482
483	/*
484	 * Use an unbound workqueue to allow bios to be decrypted in parallel
485	 * even when they happen to complete on the same CPU.  This sacrifices
486	 * locality, but it's worthwhile since decryption is CPU-intensive.
487	 *
488	 * Also use a high-priority workqueue to prioritize decryption work,
489	 * which blocks reads from completing, over regular application tasks.
490	 */
491	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
492						 WQ_UNBOUND | WQ_HIGHPRI,
493						 num_online_cpus());
494	if (!fscrypt_read_workqueue)
495		goto fail;
496
497	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
498	if (!fscrypt_ctx_cachep)
499		goto fail_free_queue;
500
501	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
502	if (!fscrypt_info_cachep)
503		goto fail_free_ctx;
504
505	err = fscrypt_init_keyring();
506	if (err)
507		goto fail_free_info;
508
509	return 0;
510
511fail_free_info:
512	kmem_cache_destroy(fscrypt_info_cachep);
513fail_free_ctx:
514	kmem_cache_destroy(fscrypt_ctx_cachep);
515fail_free_queue:
516	destroy_workqueue(fscrypt_read_workqueue);
517fail:
518	return err;
519}
520late_initcall(fscrypt_init)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.6
 
  1/*
  2 * This contains encryption functions for per-file encryption.
  3 *
  4 * Copyright (C) 2015, Google, Inc.
  5 * Copyright (C) 2015, Motorola Mobility
  6 *
  7 * Written by Michael Halcrow, 2014.
  8 *
  9 * Filename encryption additions
 10 *	Uday Savagaonkar, 2014
 11 * Encryption policy handling additions
 12 *	Ildar Muslukhov, 2014
 13 * Add fscrypt_pullback_bio_page()
 14 *	Jaegeuk Kim, 2015.
 15 *
 16 * This has not yet undergone a rigorous security audit.
 17 *
 18 * The usage of AES-XTS should conform to recommendations in NIST
 19 * Special Publication 800-38E and IEEE P1619/D16.
 20 */
 21
 22#include <linux/pagemap.h>
 23#include <linux/mempool.h>
 24#include <linux/module.h>
 25#include <linux/scatterlist.h>
 26#include <linux/ratelimit.h>
 27#include <linux/bio.h>
 28#include <linux/dcache.h>
 29#include <linux/namei.h>
 30#include <linux/fscrypto.h>
 31#include <linux/ecryptfs.h>
 
 32
 33static unsigned int num_prealloc_crypto_pages = 32;
 34static unsigned int num_prealloc_crypto_ctxs = 128;
 35
 36module_param(num_prealloc_crypto_pages, uint, 0444);
 37MODULE_PARM_DESC(num_prealloc_crypto_pages,
 38		"Number of crypto pages to preallocate");
 39module_param(num_prealloc_crypto_ctxs, uint, 0444);
 40MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 41		"Number of crypto contexts to preallocate");
 42
 43static mempool_t *fscrypt_bounce_page_pool = NULL;
 44
 45static LIST_HEAD(fscrypt_free_ctxs);
 46static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 47
 48static struct workqueue_struct *fscrypt_read_workqueue;
 49static DEFINE_MUTEX(fscrypt_init_mutex);
 50
 51static struct kmem_cache *fscrypt_ctx_cachep;
 52struct kmem_cache *fscrypt_info_cachep;
 53
 
 
 
 
 
 
 54/**
 55 * fscrypt_release_ctx() - Releases an encryption context
 56 * @ctx: The encryption context to release.
 57 *
 58 * If the encryption context was allocated from the pre-allocated pool, returns
 59 * it to that pool. Else, frees it.
 60 *
 61 * If there's a bounce page in the context, this frees that.
 
 62 */
 63void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 64{
 65	unsigned long flags;
 66
 67	if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
 68		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
 69		ctx->w.bounce_page = NULL;
 70	}
 71	ctx->w.control_page = NULL;
 72	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 73		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 74	} else {
 75		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 76		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 77		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 78	}
 79}
 80EXPORT_SYMBOL(fscrypt_release_ctx);
 81
 82/**
 83 * fscrypt_get_ctx() - Gets an encryption context
 84 * @inode:       The inode for which we are doing the crypto
 85 * @gfp_flags:   The gfp flag for memory allocation
 86 *
 87 * Allocates and initializes an encryption context.
 88 *
 89 * Return: An allocated and initialized encryption context on success; error
 90 * value or NULL otherwise.
 91 */
 92struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
 93{
 94	struct fscrypt_ctx *ctx = NULL;
 95	struct fscrypt_info *ci = inode->i_crypt_info;
 96	unsigned long flags;
 97
 98	if (ci == NULL)
 99		return ERR_PTR(-ENOKEY);
100
101	/*
102	 * We first try getting the ctx from a free list because in
103	 * the common case the ctx will have an allocated and
104	 * initialized crypto tfm, so it's probably a worthwhile
105	 * optimization. For the bounce page, we first try getting it
106	 * from the kernel allocator because that's just about as fast
107	 * as getting it from a list and because a cache of free pages
108	 * should generally be a "last resort" option for a filesystem
109	 * to be able to do its job.
110	 */
111	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113					struct fscrypt_ctx, free_list);
114	if (ctx)
115		list_del(&ctx->free_list);
116	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117	if (!ctx) {
118		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119		if (!ctx)
120			return ERR_PTR(-ENOMEM);
121		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122	} else {
123		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124	}
125	ctx->flags &= ~FS_WRITE_PATH_FL;
126	return ctx;
127}
128EXPORT_SYMBOL(fscrypt_get_ctx);
129
 
 
 
 
 
130/**
131 * fscrypt_complete() - The completion callback for page encryption
132 * @req: The asynchronous encryption request context
133 * @res: The result of the encryption operation
 
134 */
135static void fscrypt_complete(struct crypto_async_request *req, int res)
136{
137	struct fscrypt_completion_result *ecr = req->data;
138
139	if (res == -EINPROGRESS)
140		return;
141	ecr->res = res;
142	complete(&ecr->completion);
 
143}
 
 
 
 
 
 
 
144
145typedef enum {
146	FS_DECRYPT = 0,
147	FS_ENCRYPT,
148} fscrypt_direction_t;
149
150static int do_page_crypto(struct inode *inode,
151			fscrypt_direction_t rw, pgoff_t index,
152			struct page *src_page, struct page *dest_page,
153			gfp_t gfp_flags)
 
 
 
 
 
154{
155	u8 xts_tweak[FS_XTS_TWEAK_SIZE];
156	struct skcipher_request *req = NULL;
157	DECLARE_FS_COMPLETION_RESULT(ecr);
158	struct scatterlist dst, src;
159	struct fscrypt_info *ci = inode->i_crypt_info;
160	struct crypto_skcipher *tfm = ci->ci_ctfm;
161	int res = 0;
162
 
 
 
 
 
 
 
163	req = skcipher_request_alloc(tfm, gfp_flags);
164	if (!req) {
165		printk_ratelimited(KERN_ERR
166				"%s: crypto_request_alloc() failed\n",
167				__func__);
168		return -ENOMEM;
169	}
170
171	skcipher_request_set_callback(
172		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
173		fscrypt_complete, &ecr);
174
175	BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
176	memcpy(xts_tweak, &index, sizeof(index));
177	memset(&xts_tweak[sizeof(index)], 0,
178			FS_XTS_TWEAK_SIZE - sizeof(index));
179
180	sg_init_table(&dst, 1);
181	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
182	sg_init_table(&src, 1);
183	sg_set_page(&src, src_page, PAGE_SIZE, 0);
184	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
185					xts_tweak);
186	if (rw == FS_DECRYPT)
187		res = crypto_skcipher_decrypt(req);
188	else
189		res = crypto_skcipher_encrypt(req);
190	if (res == -EINPROGRESS || res == -EBUSY) {
191		BUG_ON(req->base.data != &ecr);
192		wait_for_completion(&ecr.completion);
193		res = ecr.res;
194	}
195	skcipher_request_free(req);
196	if (res) {
197		printk_ratelimited(KERN_ERR
198			"%s: crypto_skcipher_encrypt() returned %d\n",
199			__func__, res);
200		return res;
201	}
202	return 0;
203}
204
205static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
206{
207	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
208	if (ctx->w.bounce_page == NULL)
209		return ERR_PTR(-ENOMEM);
210	ctx->flags |= FS_WRITE_PATH_FL;
211	return ctx->w.bounce_page;
212}
213
214/**
215 * fscypt_encrypt_page() - Encrypts a page
216 * @inode:          The inode for which the encryption should take place
217 * @plaintext_page: The page to encrypt. Must be locked.
218 * @gfp_flags:      The gfp flag for memory allocation
219 *
220 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
221 * encryption context.
222 *
223 * Called on the page write path.  The caller must call
224 * fscrypt_restore_control_page() on the returned ciphertext page to
225 * release the bounce buffer and the encryption context.
226 *
227 * Return: An allocated page with the encrypted content on success. Else, an
228 * error value or NULL.
229 */
230struct page *fscrypt_encrypt_page(struct inode *inode,
231				struct page *plaintext_page, gfp_t gfp_flags)
232{
233	struct fscrypt_ctx *ctx;
234	struct page *ciphertext_page = NULL;
 
 
 
 
 
 
 
 
 
 
 
235	int err;
236
237	BUG_ON(!PageLocked(plaintext_page));
 
 
 
 
238
239	ctx = fscrypt_get_ctx(inode, gfp_flags);
240	if (IS_ERR(ctx))
241		return (struct page *)ctx;
242
243	/* The encryption operation will require a bounce page. */
244	ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
245	if (IS_ERR(ciphertext_page))
246		goto errout;
247
248	ctx->w.control_page = plaintext_page;
249	err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
250					plaintext_page, ciphertext_page,
251					gfp_flags);
252	if (err) {
253		ciphertext_page = ERR_PTR(err);
254		goto errout;
255	}
256	SetPagePrivate(ciphertext_page);
257	set_page_private(ciphertext_page, (unsigned long)ctx);
258	lock_page(ciphertext_page);
259	return ciphertext_page;
260
261errout:
262	fscrypt_release_ctx(ctx);
263	return ciphertext_page;
264}
265EXPORT_SYMBOL(fscrypt_encrypt_page);
266
267/**
268 * f2crypt_decrypt_page() - Decrypts a page in-place
269 * @page: The page to decrypt. Must be locked.
270 *
271 * Decrypts page in-place using the ctx encryption context.
272 *
273 * Called from the read completion callback.
274 *
275 * Return: Zero on success, non-zero otherwise.
276 */
277int fscrypt_decrypt_page(struct page *page)
 
 
 
 
 
 
 
 
 
278{
279	BUG_ON(!PageLocked(page));
 
 
 
280
281	return do_page_crypto(page->mapping->host,
282			FS_DECRYPT, page->index, page, page, GFP_NOFS);
283}
284EXPORT_SYMBOL(fscrypt_decrypt_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
287				sector_t pblk, unsigned int len)
288{
289	struct fscrypt_ctx *ctx;
290	struct page *ciphertext_page = NULL;
291	struct bio *bio;
292	int ret, err = 0;
293
294	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
295
296	ctx = fscrypt_get_ctx(inode, GFP_NOFS);
297	if (IS_ERR(ctx))
298		return PTR_ERR(ctx);
299
300	ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
301	if (IS_ERR(ciphertext_page)) {
302		err = PTR_ERR(ciphertext_page);
303		goto errout;
304	}
305
306	while (len--) {
307		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
308					ZERO_PAGE(0), ciphertext_page,
309					GFP_NOFS);
310		if (err)
311			goto errout;
312
313		bio = bio_alloc(GFP_NOWAIT, 1);
314		if (!bio) {
315			err = -ENOMEM;
316			goto errout;
317		}
318		bio->bi_bdev = inode->i_sb->s_bdev;
319		bio->bi_iter.bi_sector =
320			pblk << (inode->i_sb->s_blocksize_bits - 9);
321		ret = bio_add_page(bio, ciphertext_page,
322					inode->i_sb->s_blocksize, 0);
323		if (ret != inode->i_sb->s_blocksize) {
324			/* should never happen! */
325			WARN_ON(1);
326			bio_put(bio);
327			err = -EIO;
328			goto errout;
329		}
330		err = submit_bio_wait(WRITE, bio);
331		if ((err == 0) && bio->bi_error)
332			err = -EIO;
333		bio_put(bio);
334		if (err)
335			goto errout;
336		lblk++;
337		pblk++;
338	}
339	err = 0;
340errout:
341	fscrypt_release_ctx(ctx);
342	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343}
344EXPORT_SYMBOL(fscrypt_zeroout_range);
345
346/*
347 * Validate dentries for encrypted directories to make sure we aren't
348 * potentially caching stale data after a key has been added or
349 * removed.
350 */
351static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
352{
353	struct dentry *dir;
354	struct fscrypt_info *ci;
355	int dir_has_key, cached_with_key;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356
357	if (flags & LOOKUP_RCU)
358		return -ECHILD;
359
360	dir = dget_parent(dentry);
361	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
362		dput(dir);
363		return 0;
364	}
365
366	ci = d_inode(dir)->i_crypt_info;
367	if (ci && ci->ci_keyring_key &&
368	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
369					  (1 << KEY_FLAG_REVOKED) |
370					  (1 << KEY_FLAG_DEAD))))
371		ci = NULL;
372
373	/* this should eventually be an flag in d_flags */
374	spin_lock(&dentry->d_lock);
375	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
376	spin_unlock(&dentry->d_lock);
377	dir_has_key = (ci != NULL);
378	dput(dir);
379
380	/*
381	 * If the dentry was cached without the key, and it is a
382	 * negative dentry, it might be a valid name.  We can't check
383	 * if the key has since been made available due to locking
384	 * reasons, so we fail the validation so ext4_lookup() can do
385	 * this check.
386	 *
387	 * We also fail the validation if the dentry was created with
388	 * the key present, but we no longer have the key, or vice versa.
389	 */
390	if ((!cached_with_key && d_is_negative(dentry)) ||
391			(!cached_with_key && dir_has_key) ||
392			(cached_with_key && !dir_has_key))
393		return 0;
394	return 1;
395}
396
397const struct dentry_operations fscrypt_d_ops = {
398	.d_revalidate = fscrypt_d_revalidate,
399};
400EXPORT_SYMBOL(fscrypt_d_ops);
401
402/*
403 * Call fscrypt_decrypt_page on every single page, reusing the encryption
404 * context.
405 */
406static void completion_pages(struct work_struct *work)
407{
408	struct fscrypt_ctx *ctx =
409		container_of(work, struct fscrypt_ctx, r.work);
410	struct bio *bio = ctx->r.bio;
411	struct bio_vec *bv;
412	int i;
413
414	bio_for_each_segment_all(bv, bio, i) {
415		struct page *page = bv->bv_page;
416		int ret = fscrypt_decrypt_page(page);
417
418		if (ret) {
419			WARN_ON_ONCE(1);
420			SetPageError(page);
421		} else {
422			SetPageUptodate(page);
423		}
424		unlock_page(page);
425	}
426	fscrypt_release_ctx(ctx);
427	bio_put(bio);
428}
429
430void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
431{
432	INIT_WORK(&ctx->r.work, completion_pages);
433	ctx->r.bio = bio;
434	queue_work(fscrypt_read_workqueue, &ctx->r.work);
435}
436EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
437
438void fscrypt_pullback_bio_page(struct page **page, bool restore)
439{
440	struct fscrypt_ctx *ctx;
441	struct page *bounce_page;
442
443	/* The bounce data pages are unmapped. */
444	if ((*page)->mapping)
445		return;
446
447	/* The bounce data page is unmapped. */
448	bounce_page = *page;
449	ctx = (struct fscrypt_ctx *)page_private(bounce_page);
450
451	/* restore control page */
452	*page = ctx->w.control_page;
453
454	if (restore)
455		fscrypt_restore_control_page(bounce_page);
456}
457EXPORT_SYMBOL(fscrypt_pullback_bio_page);
458
459void fscrypt_restore_control_page(struct page *page)
460{
461	struct fscrypt_ctx *ctx;
462
463	ctx = (struct fscrypt_ctx *)page_private(page);
464	set_page_private(page, (unsigned long)NULL);
465	ClearPagePrivate(page);
466	unlock_page(page);
467	fscrypt_release_ctx(ctx);
468}
469EXPORT_SYMBOL(fscrypt_restore_control_page);
470
471static void fscrypt_destroy(void)
472{
473	struct fscrypt_ctx *pos, *n;
474
475	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
476		kmem_cache_free(fscrypt_ctx_cachep, pos);
477	INIT_LIST_HEAD(&fscrypt_free_ctxs);
478	mempool_destroy(fscrypt_bounce_page_pool);
479	fscrypt_bounce_page_pool = NULL;
480}
481
482/**
483 * fscrypt_initialize() - allocate major buffers for fs encryption.
 
484 *
485 * We only call this when we start accessing encrypted files, since it
486 * results in memory getting allocated that wouldn't otherwise be used.
487 *
488 * Return: Zero on success, non-zero otherwise.
489 */
490int fscrypt_initialize(void)
491{
492	int i, res = -ENOMEM;
493
494	if (fscrypt_bounce_page_pool)
 
495		return 0;
496
497	mutex_lock(&fscrypt_init_mutex);
498	if (fscrypt_bounce_page_pool)
499		goto already_initialized;
500
501	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
502		struct fscrypt_ctx *ctx;
503
504		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
505		if (!ctx)
506			goto fail;
507		list_add(&ctx->free_list, &fscrypt_free_ctxs);
508	}
509
510	fscrypt_bounce_page_pool =
511		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
512	if (!fscrypt_bounce_page_pool)
513		goto fail;
514
515already_initialized:
516	mutex_unlock(&fscrypt_init_mutex);
517	return 0;
518fail:
519	fscrypt_destroy();
520	mutex_unlock(&fscrypt_init_mutex);
521	return res;
522}
523EXPORT_SYMBOL(fscrypt_initialize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524
525/**
526 * fscrypt_init() - Set up for fs encryption.
527 */
528static int __init fscrypt_init(void)
529{
 
 
 
 
 
 
 
 
 
 
530	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
531							WQ_HIGHPRI, 0);
 
532	if (!fscrypt_read_workqueue)
533		goto fail;
534
535	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
536	if (!fscrypt_ctx_cachep)
537		goto fail_free_queue;
538
539	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
540	if (!fscrypt_info_cachep)
541		goto fail_free_ctx;
542
 
 
 
 
543	return 0;
544
 
 
545fail_free_ctx:
546	kmem_cache_destroy(fscrypt_ctx_cachep);
547fail_free_queue:
548	destroy_workqueue(fscrypt_read_workqueue);
549fail:
550	return -ENOMEM;
551}
552module_init(fscrypt_init)
553
554/**
555 * fscrypt_exit() - Shutdown the fs encryption system
556 */
557static void __exit fscrypt_exit(void)
558{
559	fscrypt_destroy();
560
561	if (fscrypt_read_workqueue)
562		destroy_workqueue(fscrypt_read_workqueue);
563	kmem_cache_destroy(fscrypt_ctx_cachep);
564	kmem_cache_destroy(fscrypt_info_cachep);
565}
566module_exit(fscrypt_exit);
567
568MODULE_LICENSE("GPL");