Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
 
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
 
  29
  30#include <linux/kernel.h>
  31#include <linux/log2.h>
  32#include <linux/zalloc.h>
  33#include <sys/prctl.h>
  34#include <sys/resource.h>
  35#include <inttypes.h>
  36
  37#include <errno.h>
  38#include <semaphore.h>
  39#include <pthread.h>
  40#include <math.h>
  41#include <api/fs/fs.h>
  42#include <perf/cpumap.h>
  43#include <linux/time64.h>
  44#include <linux/err.h>
  45
  46#include <linux/ctype.h>
  47
  48#define PR_SET_NAME		15               /* Set process name */
  49#define MAX_CPUS		4096
  50#define COMM_LEN		20
  51#define SYM_LEN			129
  52#define MAX_PID			1024000
 
 
 
 
  53
  54struct sched_atom;
  55
  56struct task_desc {
  57	unsigned long		nr;
  58	unsigned long		pid;
  59	char			comm[COMM_LEN];
  60
  61	unsigned long		nr_events;
  62	unsigned long		curr_event;
  63	struct sched_atom	**atoms;
  64
  65	pthread_t		thread;
  66	sem_t			sleep_sem;
  67
  68	sem_t			ready_for_work;
  69	sem_t			work_done_sem;
  70
  71	u64			cpu_usage;
  72};
  73
  74enum sched_event_type {
  75	SCHED_EVENT_RUN,
  76	SCHED_EVENT_SLEEP,
  77	SCHED_EVENT_WAKEUP,
  78	SCHED_EVENT_MIGRATION,
  79};
  80
  81struct sched_atom {
  82	enum sched_event_type	type;
  83	int			specific_wait;
  84	u64			timestamp;
  85	u64			duration;
  86	unsigned long		nr;
  87	sem_t			*wait_sem;
  88	struct task_desc	*wakee;
  89};
  90
  91#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  92
  93/* task state bitmask, copied from include/linux/sched.h */
  94#define TASK_RUNNING		0
  95#define TASK_INTERRUPTIBLE	1
  96#define TASK_UNINTERRUPTIBLE	2
  97#define __TASK_STOPPED		4
  98#define __TASK_TRACED		8
  99/* in tsk->exit_state */
 100#define EXIT_DEAD		16
 101#define EXIT_ZOMBIE		32
 102#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 103/* in tsk->state again */
 104#define TASK_DEAD		64
 105#define TASK_WAKEKILL		128
 106#define TASK_WAKING		256
 107#define TASK_PARKED		512
 108
 109enum thread_state {
 110	THREAD_SLEEPING = 0,
 111	THREAD_WAIT_CPU,
 112	THREAD_SCHED_IN,
 113	THREAD_IGNORE
 114};
 115
 116struct work_atom {
 117	struct list_head	list;
 118	enum thread_state	state;
 119	u64			sched_out_time;
 120	u64			wake_up_time;
 121	u64			sched_in_time;
 122	u64			runtime;
 123};
 124
 125struct work_atoms {
 126	struct list_head	work_list;
 127	struct thread		*thread;
 128	struct rb_node		node;
 129	u64			max_lat;
 130	u64			max_lat_at;
 
 131	u64			total_lat;
 132	u64			nb_atoms;
 133	u64			total_runtime;
 134	int			num_merged;
 135};
 136
 137typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 138
 139struct perf_sched;
 140
 141struct trace_sched_handler {
 142	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 143			    struct perf_sample *sample, struct machine *machine);
 144
 145	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 146			     struct perf_sample *sample, struct machine *machine);
 147
 148	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 149			    struct perf_sample *sample, struct machine *machine);
 150
 151	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 152	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 153			  struct machine *machine);
 154
 155	int (*migrate_task_event)(struct perf_sched *sched,
 156				  struct evsel *evsel,
 157				  struct perf_sample *sample,
 158				  struct machine *machine);
 159};
 160
 161#define COLOR_PIDS PERF_COLOR_BLUE
 162#define COLOR_CPUS PERF_COLOR_BG_RED
 163
 164struct perf_sched_map {
 165	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 166	int			*comp_cpus;
 167	bool			 comp;
 168	struct perf_thread_map *color_pids;
 169	const char		*color_pids_str;
 170	struct perf_cpu_map	*color_cpus;
 171	const char		*color_cpus_str;
 
 
 
 172	struct perf_cpu_map	*cpus;
 173	const char		*cpus_str;
 174};
 175
 176struct perf_sched {
 177	struct perf_tool tool;
 178	const char	 *sort_order;
 179	unsigned long	 nr_tasks;
 180	struct task_desc **pid_to_task;
 181	struct task_desc **tasks;
 182	const struct trace_sched_handler *tp_handler;
 183	pthread_mutex_t	 start_work_mutex;
 184	pthread_mutex_t	 work_done_wait_mutex;
 185	int		 profile_cpu;
 186/*
 187 * Track the current task - that way we can know whether there's any
 188 * weird events, such as a task being switched away that is not current.
 189 */
 190	int		 max_cpu;
 191	u32		 curr_pid[MAX_CPUS];
 192	struct thread	 *curr_thread[MAX_CPUS];
 
 193	char		 next_shortname1;
 194	char		 next_shortname2;
 195	unsigned int	 replay_repeat;
 196	unsigned long	 nr_run_events;
 197	unsigned long	 nr_sleep_events;
 198	unsigned long	 nr_wakeup_events;
 199	unsigned long	 nr_sleep_corrections;
 200	unsigned long	 nr_run_events_optimized;
 201	unsigned long	 targetless_wakeups;
 202	unsigned long	 multitarget_wakeups;
 203	unsigned long	 nr_runs;
 204	unsigned long	 nr_timestamps;
 205	unsigned long	 nr_unordered_timestamps;
 206	unsigned long	 nr_context_switch_bugs;
 207	unsigned long	 nr_events;
 208	unsigned long	 nr_lost_chunks;
 209	unsigned long	 nr_lost_events;
 210	u64		 run_measurement_overhead;
 211	u64		 sleep_measurement_overhead;
 212	u64		 start_time;
 213	u64		 cpu_usage;
 214	u64		 runavg_cpu_usage;
 215	u64		 parent_cpu_usage;
 216	u64		 runavg_parent_cpu_usage;
 217	u64		 sum_runtime;
 218	u64		 sum_fluct;
 219	u64		 run_avg;
 220	u64		 all_runtime;
 221	u64		 all_count;
 222	u64		 cpu_last_switched[MAX_CPUS];
 223	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 224	struct list_head sort_list, cmp_pid;
 225	bool force;
 226	bool skip_merge;
 227	struct perf_sched_map map;
 228
 229	/* options for timehist command */
 230	bool		summary;
 231	bool		summary_only;
 232	bool		idle_hist;
 233	bool		show_callchain;
 234	unsigned int	max_stack;
 235	bool		show_cpu_visual;
 236	bool		show_wakeups;
 237	bool		show_next;
 238	bool		show_migrations;
 
 239	bool		show_state;
 
 240	u64		skipped_samples;
 241	const char	*time_str;
 242	struct perf_time_interval ptime;
 243	struct perf_time_interval hist_time;
 
 
 
 244};
 245
 246/* per thread run time data */
 247struct thread_runtime {
 248	u64 last_time;      /* time of previous sched in/out event */
 249	u64 dt_run;         /* run time */
 250	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 251	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 252	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 253	u64 dt_delay;       /* time between wakeup and sched-in */
 
 254	u64 ready_to_run;   /* time of wakeup */
 
 255
 256	struct stats run_stats;
 257	u64 total_run_time;
 258	u64 total_sleep_time;
 259	u64 total_iowait_time;
 260	u64 total_preempt_time;
 261	u64 total_delay_time;
 
 262
 263	int last_state;
 264
 265	char shortname[3];
 266	bool comm_changed;
 267
 268	u64 migrations;
 
 
 269};
 270
 271/* per event run time data */
 272struct evsel_runtime {
 273	u64 *last_time; /* time this event was last seen per cpu */
 274	u32 ncpu;       /* highest cpu slot allocated */
 275};
 276
 277/* per cpu idle time data */
 278struct idle_thread_runtime {
 279	struct thread_runtime	tr;
 280	struct thread		*last_thread;
 281	struct rb_root_cached	sorted_root;
 282	struct callchain_root	callchain;
 283	struct callchain_cursor	cursor;
 284};
 285
 286/* track idle times per cpu */
 287static struct thread **idle_threads;
 288static int idle_max_cpu;
 289static char idle_comm[] = "<idle>";
 290
 291static u64 get_nsecs(void)
 292{
 293	struct timespec ts;
 294
 295	clock_gettime(CLOCK_MONOTONIC, &ts);
 296
 297	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 298}
 299
 300static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 301{
 302	u64 T0 = get_nsecs(), T1;
 303
 304	do {
 305		T1 = get_nsecs();
 306	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 307}
 308
 309static void sleep_nsecs(u64 nsecs)
 310{
 311	struct timespec ts;
 312
 313	ts.tv_nsec = nsecs % 999999999;
 314	ts.tv_sec = nsecs / 999999999;
 315
 316	nanosleep(&ts, NULL);
 317}
 318
 319static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 320{
 321	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 322	int i;
 323
 324	for (i = 0; i < 10; i++) {
 325		T0 = get_nsecs();
 326		burn_nsecs(sched, 0);
 327		T1 = get_nsecs();
 328		delta = T1-T0;
 329		min_delta = min(min_delta, delta);
 330	}
 331	sched->run_measurement_overhead = min_delta;
 332
 333	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 334}
 335
 336static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 337{
 338	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 339	int i;
 340
 341	for (i = 0; i < 10; i++) {
 342		T0 = get_nsecs();
 343		sleep_nsecs(10000);
 344		T1 = get_nsecs();
 345		delta = T1-T0;
 346		min_delta = min(min_delta, delta);
 347	}
 348	min_delta -= 10000;
 349	sched->sleep_measurement_overhead = min_delta;
 350
 351	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 352}
 353
 354static struct sched_atom *
 355get_new_event(struct task_desc *task, u64 timestamp)
 356{
 357	struct sched_atom *event = zalloc(sizeof(*event));
 358	unsigned long idx = task->nr_events;
 359	size_t size;
 360
 361	event->timestamp = timestamp;
 362	event->nr = idx;
 363
 364	task->nr_events++;
 365	size = sizeof(struct sched_atom *) * task->nr_events;
 366	task->atoms = realloc(task->atoms, size);
 367	BUG_ON(!task->atoms);
 368
 369	task->atoms[idx] = event;
 370
 371	return event;
 372}
 373
 374static struct sched_atom *last_event(struct task_desc *task)
 375{
 376	if (!task->nr_events)
 377		return NULL;
 378
 379	return task->atoms[task->nr_events - 1];
 380}
 381
 382static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 383				u64 timestamp, u64 duration)
 384{
 385	struct sched_atom *event, *curr_event = last_event(task);
 386
 387	/*
 388	 * optimize an existing RUN event by merging this one
 389	 * to it:
 390	 */
 391	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 392		sched->nr_run_events_optimized++;
 393		curr_event->duration += duration;
 394		return;
 395	}
 396
 397	event = get_new_event(task, timestamp);
 398
 399	event->type = SCHED_EVENT_RUN;
 400	event->duration = duration;
 401
 402	sched->nr_run_events++;
 403}
 404
 405static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 406				   u64 timestamp, struct task_desc *wakee)
 407{
 408	struct sched_atom *event, *wakee_event;
 409
 410	event = get_new_event(task, timestamp);
 411	event->type = SCHED_EVENT_WAKEUP;
 412	event->wakee = wakee;
 413
 414	wakee_event = last_event(wakee);
 415	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 416		sched->targetless_wakeups++;
 417		return;
 418	}
 419	if (wakee_event->wait_sem) {
 420		sched->multitarget_wakeups++;
 421		return;
 422	}
 423
 424	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 425	sem_init(wakee_event->wait_sem, 0, 0);
 426	wakee_event->specific_wait = 1;
 427	event->wait_sem = wakee_event->wait_sem;
 428
 429	sched->nr_wakeup_events++;
 430}
 431
 432static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 433				  u64 timestamp, u64 task_state __maybe_unused)
 434{
 435	struct sched_atom *event = get_new_event(task, timestamp);
 436
 437	event->type = SCHED_EVENT_SLEEP;
 438
 439	sched->nr_sleep_events++;
 440}
 441
 442static struct task_desc *register_pid(struct perf_sched *sched,
 443				      unsigned long pid, const char *comm)
 444{
 445	struct task_desc *task;
 446	static int pid_max;
 447
 448	if (sched->pid_to_task == NULL) {
 449		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 450			pid_max = MAX_PID;
 451		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 452	}
 453	if (pid >= (unsigned long)pid_max) {
 454		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 455			sizeof(struct task_desc *))) == NULL);
 456		while (pid >= (unsigned long)pid_max)
 457			sched->pid_to_task[pid_max++] = NULL;
 458	}
 459
 460	task = sched->pid_to_task[pid];
 461
 462	if (task)
 463		return task;
 464
 465	task = zalloc(sizeof(*task));
 466	task->pid = pid;
 467	task->nr = sched->nr_tasks;
 468	strcpy(task->comm, comm);
 469	/*
 470	 * every task starts in sleeping state - this gets ignored
 471	 * if there's no wakeup pointing to this sleep state:
 472	 */
 473	add_sched_event_sleep(sched, task, 0, 0);
 474
 475	sched->pid_to_task[pid] = task;
 476	sched->nr_tasks++;
 477	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 478	BUG_ON(!sched->tasks);
 479	sched->tasks[task->nr] = task;
 480
 481	if (verbose > 0)
 482		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 483
 484	return task;
 485}
 486
 487
 488static void print_task_traces(struct perf_sched *sched)
 489{
 490	struct task_desc *task;
 491	unsigned long i;
 492
 493	for (i = 0; i < sched->nr_tasks; i++) {
 494		task = sched->tasks[i];
 495		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 496			task->nr, task->comm, task->pid, task->nr_events);
 497	}
 498}
 499
 500static void add_cross_task_wakeups(struct perf_sched *sched)
 501{
 502	struct task_desc *task1, *task2;
 503	unsigned long i, j;
 504
 505	for (i = 0; i < sched->nr_tasks; i++) {
 506		task1 = sched->tasks[i];
 507		j = i + 1;
 508		if (j == sched->nr_tasks)
 509			j = 0;
 510		task2 = sched->tasks[j];
 511		add_sched_event_wakeup(sched, task1, 0, task2);
 512	}
 513}
 514
 515static void perf_sched__process_event(struct perf_sched *sched,
 516				      struct sched_atom *atom)
 517{
 518	int ret = 0;
 519
 520	switch (atom->type) {
 521		case SCHED_EVENT_RUN:
 522			burn_nsecs(sched, atom->duration);
 523			break;
 524		case SCHED_EVENT_SLEEP:
 525			if (atom->wait_sem)
 526				ret = sem_wait(atom->wait_sem);
 527			BUG_ON(ret);
 528			break;
 529		case SCHED_EVENT_WAKEUP:
 530			if (atom->wait_sem)
 531				ret = sem_post(atom->wait_sem);
 532			BUG_ON(ret);
 533			break;
 534		case SCHED_EVENT_MIGRATION:
 535			break;
 536		default:
 537			BUG_ON(1);
 538	}
 539}
 540
 541static u64 get_cpu_usage_nsec_parent(void)
 542{
 543	struct rusage ru;
 544	u64 sum;
 545	int err;
 546
 547	err = getrusage(RUSAGE_SELF, &ru);
 548	BUG_ON(err);
 549
 550	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 551	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 552
 553	return sum;
 554}
 555
 556static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 557{
 558	struct perf_event_attr attr;
 559	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 560	int fd;
 561	struct rlimit limit;
 562	bool need_privilege = false;
 563
 564	memset(&attr, 0, sizeof(attr));
 565
 566	attr.type = PERF_TYPE_SOFTWARE;
 567	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 568
 569force_again:
 570	fd = sys_perf_event_open(&attr, 0, -1, -1,
 571				 perf_event_open_cloexec_flag());
 572
 573	if (fd < 0) {
 574		if (errno == EMFILE) {
 575			if (sched->force) {
 576				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 577				limit.rlim_cur += sched->nr_tasks - cur_task;
 578				if (limit.rlim_cur > limit.rlim_max) {
 579					limit.rlim_max = limit.rlim_cur;
 580					need_privilege = true;
 581				}
 582				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 583					if (need_privilege && errno == EPERM)
 584						strcpy(info, "Need privilege\n");
 585				} else
 586					goto force_again;
 587			} else
 588				strcpy(info, "Have a try with -f option\n");
 589		}
 590		pr_err("Error: sys_perf_event_open() syscall returned "
 591		       "with %d (%s)\n%s", fd,
 592		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 593		exit(EXIT_FAILURE);
 594	}
 595	return fd;
 596}
 597
 598static u64 get_cpu_usage_nsec_self(int fd)
 599{
 600	u64 runtime;
 601	int ret;
 602
 603	ret = read(fd, &runtime, sizeof(runtime));
 604	BUG_ON(ret != sizeof(runtime));
 605
 606	return runtime;
 607}
 608
 609struct sched_thread_parms {
 610	struct task_desc  *task;
 611	struct perf_sched *sched;
 612	int fd;
 613};
 614
 615static void *thread_func(void *ctx)
 616{
 617	struct sched_thread_parms *parms = ctx;
 618	struct task_desc *this_task = parms->task;
 619	struct perf_sched *sched = parms->sched;
 620	u64 cpu_usage_0, cpu_usage_1;
 621	unsigned long i, ret;
 622	char comm2[22];
 623	int fd = parms->fd;
 624
 625	zfree(&parms);
 626
 627	sprintf(comm2, ":%s", this_task->comm);
 628	prctl(PR_SET_NAME, comm2);
 629	if (fd < 0)
 630		return NULL;
 631again:
 632	ret = sem_post(&this_task->ready_for_work);
 633	BUG_ON(ret);
 634	ret = pthread_mutex_lock(&sched->start_work_mutex);
 635	BUG_ON(ret);
 636	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 637	BUG_ON(ret);
 638
 639	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 640
 641	for (i = 0; i < this_task->nr_events; i++) {
 642		this_task->curr_event = i;
 643		perf_sched__process_event(sched, this_task->atoms[i]);
 644	}
 645
 646	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 647	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 648	ret = sem_post(&this_task->work_done_sem);
 649	BUG_ON(ret);
 650
 651	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 652	BUG_ON(ret);
 653	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 654	BUG_ON(ret);
 655
 656	goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657}
 658
 659static void create_tasks(struct perf_sched *sched)
 
 
 660{
 661	struct task_desc *task;
 662	pthread_attr_t attr;
 663	unsigned long i;
 664	int err;
 665
 666	err = pthread_attr_init(&attr);
 667	BUG_ON(err);
 668	err = pthread_attr_setstacksize(&attr,
 669			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 670	BUG_ON(err);
 671	err = pthread_mutex_lock(&sched->start_work_mutex);
 672	BUG_ON(err);
 673	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 674	BUG_ON(err);
 
 
 675	for (i = 0; i < sched->nr_tasks; i++) {
 676		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 677		BUG_ON(parms == NULL);
 678		parms->task = task = sched->tasks[i];
 679		parms->sched = sched;
 680		parms->fd = self_open_counters(sched, i);
 681		sem_init(&task->sleep_sem, 0, 0);
 682		sem_init(&task->ready_for_work, 0, 0);
 683		sem_init(&task->work_done_sem, 0, 0);
 684		task->curr_event = 0;
 685		err = pthread_create(&task->thread, &attr, thread_func, parms);
 686		BUG_ON(err);
 687	}
 688}
 689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690static void wait_for_tasks(struct perf_sched *sched)
 
 
 691{
 692	u64 cpu_usage_0, cpu_usage_1;
 693	struct task_desc *task;
 694	unsigned long i, ret;
 695
 696	sched->start_time = get_nsecs();
 697	sched->cpu_usage = 0;
 698	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 699
 700	for (i = 0; i < sched->nr_tasks; i++) {
 701		task = sched->tasks[i];
 702		ret = sem_wait(&task->ready_for_work);
 703		BUG_ON(ret);
 704		sem_init(&task->ready_for_work, 0, 0);
 705	}
 706	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 707	BUG_ON(ret);
 708
 709	cpu_usage_0 = get_cpu_usage_nsec_parent();
 710
 711	pthread_mutex_unlock(&sched->start_work_mutex);
 712
 713	for (i = 0; i < sched->nr_tasks; i++) {
 714		task = sched->tasks[i];
 715		ret = sem_wait(&task->work_done_sem);
 716		BUG_ON(ret);
 717		sem_init(&task->work_done_sem, 0, 0);
 718		sched->cpu_usage += task->cpu_usage;
 719		task->cpu_usage = 0;
 720	}
 721
 722	cpu_usage_1 = get_cpu_usage_nsec_parent();
 723	if (!sched->runavg_cpu_usage)
 724		sched->runavg_cpu_usage = sched->cpu_usage;
 725	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 726
 727	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 728	if (!sched->runavg_parent_cpu_usage)
 729		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 730	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 731					 sched->parent_cpu_usage)/sched->replay_repeat;
 732
 733	ret = pthread_mutex_lock(&sched->start_work_mutex);
 734	BUG_ON(ret);
 735
 736	for (i = 0; i < sched->nr_tasks; i++) {
 737		task = sched->tasks[i];
 738		sem_init(&task->sleep_sem, 0, 0);
 739		task->curr_event = 0;
 740	}
 741}
 742
 743static void run_one_test(struct perf_sched *sched)
 
 
 744{
 745	u64 T0, T1, delta, avg_delta, fluct;
 746
 747	T0 = get_nsecs();
 748	wait_for_tasks(sched);
 749	T1 = get_nsecs();
 750
 751	delta = T1 - T0;
 752	sched->sum_runtime += delta;
 753	sched->nr_runs++;
 754
 755	avg_delta = sched->sum_runtime / sched->nr_runs;
 756	if (delta < avg_delta)
 757		fluct = avg_delta - delta;
 758	else
 759		fluct = delta - avg_delta;
 760	sched->sum_fluct += fluct;
 761	if (!sched->run_avg)
 762		sched->run_avg = delta;
 763	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 764
 765	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 766
 767	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 768
 769	printf("cpu: %0.2f / %0.2f",
 770		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 771
 772#if 0
 773	/*
 774	 * rusage statistics done by the parent, these are less
 775	 * accurate than the sched->sum_exec_runtime based statistics:
 776	 */
 777	printf(" [%0.2f / %0.2f]",
 778		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 779		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 780#endif
 781
 782	printf("\n");
 783
 784	if (sched->nr_sleep_corrections)
 785		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 786	sched->nr_sleep_corrections = 0;
 787}
 788
 789static void test_calibrations(struct perf_sched *sched)
 790{
 791	u64 T0, T1;
 792
 793	T0 = get_nsecs();
 794	burn_nsecs(sched, NSEC_PER_MSEC);
 795	T1 = get_nsecs();
 796
 797	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 798
 799	T0 = get_nsecs();
 800	sleep_nsecs(NSEC_PER_MSEC);
 801	T1 = get_nsecs();
 802
 803	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 804}
 805
 806static int
 807replay_wakeup_event(struct perf_sched *sched,
 808		    struct evsel *evsel, struct perf_sample *sample,
 809		    struct machine *machine __maybe_unused)
 810{
 811	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 812	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 813	struct task_desc *waker, *wakee;
 814
 815	if (verbose > 0) {
 816		printf("sched_wakeup event %p\n", evsel);
 817
 818		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 819	}
 820
 821	waker = register_pid(sched, sample->tid, "<unknown>");
 822	wakee = register_pid(sched, pid, comm);
 823
 824	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 825	return 0;
 826}
 827
 828static int replay_switch_event(struct perf_sched *sched,
 829			       struct evsel *evsel,
 830			       struct perf_sample *sample,
 831			       struct machine *machine __maybe_unused)
 832{
 833	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 834		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 835	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 836		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 837	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 838	struct task_desc *prev, __maybe_unused *next;
 839	u64 timestamp0, timestamp = sample->time;
 840	int cpu = sample->cpu;
 841	s64 delta;
 842
 843	if (verbose > 0)
 844		printf("sched_switch event %p\n", evsel);
 845
 846	if (cpu >= MAX_CPUS || cpu < 0)
 847		return 0;
 848
 849	timestamp0 = sched->cpu_last_switched[cpu];
 850	if (timestamp0)
 851		delta = timestamp - timestamp0;
 852	else
 853		delta = 0;
 854
 855	if (delta < 0) {
 856		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 857		return -1;
 858	}
 859
 860	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 861		 prev_comm, prev_pid, next_comm, next_pid, delta);
 862
 863	prev = register_pid(sched, prev_pid, prev_comm);
 864	next = register_pid(sched, next_pid, next_comm);
 865
 866	sched->cpu_last_switched[cpu] = timestamp;
 867
 868	add_sched_event_run(sched, prev, timestamp, delta);
 869	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 870
 871	return 0;
 872}
 873
 874static int replay_fork_event(struct perf_sched *sched,
 875			     union perf_event *event,
 876			     struct machine *machine)
 877{
 878	struct thread *child, *parent;
 879
 880	child = machine__findnew_thread(machine, event->fork.pid,
 881					event->fork.tid);
 882	parent = machine__findnew_thread(machine, event->fork.ppid,
 883					 event->fork.ptid);
 884
 885	if (child == NULL || parent == NULL) {
 886		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 887				 child, parent);
 888		goto out_put;
 889	}
 890
 891	if (verbose > 0) {
 892		printf("fork event\n");
 893		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 894		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 895	}
 896
 897	register_pid(sched, parent->tid, thread__comm_str(parent));
 898	register_pid(sched, child->tid, thread__comm_str(child));
 899out_put:
 900	thread__put(child);
 901	thread__put(parent);
 902	return 0;
 903}
 904
 905struct sort_dimension {
 906	const char		*name;
 907	sort_fn_t		cmp;
 908	struct list_head	list;
 909};
 910
 
 
 
 
 
 911/*
 912 * handle runtime stats saved per thread
 913 */
 914static struct thread_runtime *thread__init_runtime(struct thread *thread)
 915{
 916	struct thread_runtime *r;
 917
 918	r = zalloc(sizeof(struct thread_runtime));
 919	if (!r)
 920		return NULL;
 921
 922	init_stats(&r->run_stats);
 
 923	thread__set_priv(thread, r);
 924
 925	return r;
 926}
 927
 928static struct thread_runtime *thread__get_runtime(struct thread *thread)
 929{
 930	struct thread_runtime *tr;
 931
 932	tr = thread__priv(thread);
 933	if (tr == NULL) {
 934		tr = thread__init_runtime(thread);
 935		if (tr == NULL)
 936			pr_debug("Failed to malloc memory for runtime data.\n");
 937	}
 938
 939	return tr;
 940}
 941
 942static int
 943thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 944{
 945	struct sort_dimension *sort;
 946	int ret = 0;
 947
 948	BUG_ON(list_empty(list));
 949
 950	list_for_each_entry(sort, list, list) {
 951		ret = sort->cmp(l, r);
 952		if (ret)
 953			return ret;
 954	}
 955
 956	return ret;
 957}
 958
 959static struct work_atoms *
 960thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 961			 struct list_head *sort_list)
 962{
 963	struct rb_node *node = root->rb_root.rb_node;
 964	struct work_atoms key = { .thread = thread };
 965
 966	while (node) {
 967		struct work_atoms *atoms;
 968		int cmp;
 969
 970		atoms = container_of(node, struct work_atoms, node);
 971
 972		cmp = thread_lat_cmp(sort_list, &key, atoms);
 973		if (cmp > 0)
 974			node = node->rb_left;
 975		else if (cmp < 0)
 976			node = node->rb_right;
 977		else {
 978			BUG_ON(thread != atoms->thread);
 979			return atoms;
 980		}
 981	}
 982	return NULL;
 983}
 984
 985static void
 986__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 987			 struct list_head *sort_list)
 988{
 989	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 990	bool leftmost = true;
 991
 992	while (*new) {
 993		struct work_atoms *this;
 994		int cmp;
 995
 996		this = container_of(*new, struct work_atoms, node);
 997		parent = *new;
 998
 999		cmp = thread_lat_cmp(sort_list, data, this);
1000
1001		if (cmp > 0)
1002			new = &((*new)->rb_left);
1003		else {
1004			new = &((*new)->rb_right);
1005			leftmost = false;
1006		}
1007	}
1008
1009	rb_link_node(&data->node, parent, new);
1010	rb_insert_color_cached(&data->node, root, leftmost);
1011}
1012
1013static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1014{
1015	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1016	if (!atoms) {
1017		pr_err("No memory at %s\n", __func__);
1018		return -1;
1019	}
1020
1021	atoms->thread = thread__get(thread);
1022	INIT_LIST_HEAD(&atoms->work_list);
1023	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1024	return 0;
1025}
1026
1027static char sched_out_state(u64 prev_state)
1028{
1029	const char *str = TASK_STATE_TO_CHAR_STR;
1030
1031	return str[prev_state];
1032}
1033
1034static int
1035add_sched_out_event(struct work_atoms *atoms,
1036		    char run_state,
1037		    u64 timestamp)
1038{
1039	struct work_atom *atom = zalloc(sizeof(*atom));
1040	if (!atom) {
1041		pr_err("Non memory at %s", __func__);
1042		return -1;
1043	}
1044
1045	atom->sched_out_time = timestamp;
1046
1047	if (run_state == 'R') {
1048		atom->state = THREAD_WAIT_CPU;
1049		atom->wake_up_time = atom->sched_out_time;
1050	}
1051
1052	list_add_tail(&atom->list, &atoms->work_list);
1053	return 0;
1054}
1055
1056static void
1057add_runtime_event(struct work_atoms *atoms, u64 delta,
1058		  u64 timestamp __maybe_unused)
1059{
1060	struct work_atom *atom;
1061
1062	BUG_ON(list_empty(&atoms->work_list));
1063
1064	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1065
1066	atom->runtime += delta;
1067	atoms->total_runtime += delta;
1068}
1069
1070static void
1071add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1072{
1073	struct work_atom *atom;
1074	u64 delta;
1075
1076	if (list_empty(&atoms->work_list))
1077		return;
1078
1079	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1080
1081	if (atom->state != THREAD_WAIT_CPU)
1082		return;
1083
1084	if (timestamp < atom->wake_up_time) {
1085		atom->state = THREAD_IGNORE;
1086		return;
1087	}
1088
1089	atom->state = THREAD_SCHED_IN;
1090	atom->sched_in_time = timestamp;
1091
1092	delta = atom->sched_in_time - atom->wake_up_time;
1093	atoms->total_lat += delta;
1094	if (delta > atoms->max_lat) {
1095		atoms->max_lat = delta;
1096		atoms->max_lat_at = timestamp;
 
1097	}
1098	atoms->nb_atoms++;
1099}
1100
1101static int latency_switch_event(struct perf_sched *sched,
1102				struct evsel *evsel,
1103				struct perf_sample *sample,
1104				struct machine *machine)
1105{
1106	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1107		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1108	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1109	struct work_atoms *out_events, *in_events;
1110	struct thread *sched_out, *sched_in;
1111	u64 timestamp0, timestamp = sample->time;
1112	int cpu = sample->cpu, err = -1;
1113	s64 delta;
1114
1115	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1116
1117	timestamp0 = sched->cpu_last_switched[cpu];
1118	sched->cpu_last_switched[cpu] = timestamp;
1119	if (timestamp0)
1120		delta = timestamp - timestamp0;
1121	else
1122		delta = 0;
1123
1124	if (delta < 0) {
1125		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1126		return -1;
1127	}
1128
1129	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1130	sched_in = machine__findnew_thread(machine, -1, next_pid);
1131	if (sched_out == NULL || sched_in == NULL)
1132		goto out_put;
1133
1134	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1135	if (!out_events) {
1136		if (thread_atoms_insert(sched, sched_out))
1137			goto out_put;
1138		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1139		if (!out_events) {
1140			pr_err("out-event: Internal tree error");
1141			goto out_put;
1142		}
1143	}
1144	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1145		return -1;
1146
1147	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1148	if (!in_events) {
1149		if (thread_atoms_insert(sched, sched_in))
1150			goto out_put;
1151		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1152		if (!in_events) {
1153			pr_err("in-event: Internal tree error");
1154			goto out_put;
1155		}
1156		/*
1157		 * Take came in we have not heard about yet,
1158		 * add in an initial atom in runnable state:
1159		 */
1160		if (add_sched_out_event(in_events, 'R', timestamp))
1161			goto out_put;
1162	}
1163	add_sched_in_event(in_events, timestamp);
1164	err = 0;
1165out_put:
1166	thread__put(sched_out);
1167	thread__put(sched_in);
1168	return err;
1169}
1170
1171static int latency_runtime_event(struct perf_sched *sched,
1172				 struct evsel *evsel,
1173				 struct perf_sample *sample,
1174				 struct machine *machine)
1175{
1176	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1177	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1178	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1179	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1180	u64 timestamp = sample->time;
1181	int cpu = sample->cpu, err = -1;
1182
1183	if (thread == NULL)
1184		return -1;
1185
1186	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1187	if (!atoms) {
1188		if (thread_atoms_insert(sched, thread))
1189			goto out_put;
1190		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1191		if (!atoms) {
1192			pr_err("in-event: Internal tree error");
1193			goto out_put;
1194		}
1195		if (add_sched_out_event(atoms, 'R', timestamp))
1196			goto out_put;
1197	}
1198
1199	add_runtime_event(atoms, runtime, timestamp);
1200	err = 0;
1201out_put:
1202	thread__put(thread);
1203	return err;
1204}
1205
1206static int latency_wakeup_event(struct perf_sched *sched,
1207				struct evsel *evsel,
1208				struct perf_sample *sample,
1209				struct machine *machine)
1210{
1211	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1212	struct work_atoms *atoms;
1213	struct work_atom *atom;
1214	struct thread *wakee;
1215	u64 timestamp = sample->time;
1216	int err = -1;
1217
1218	wakee = machine__findnew_thread(machine, -1, pid);
1219	if (wakee == NULL)
1220		return -1;
1221	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1222	if (!atoms) {
1223		if (thread_atoms_insert(sched, wakee))
1224			goto out_put;
1225		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1226		if (!atoms) {
1227			pr_err("wakeup-event: Internal tree error");
1228			goto out_put;
1229		}
1230		if (add_sched_out_event(atoms, 'S', timestamp))
1231			goto out_put;
1232	}
1233
1234	BUG_ON(list_empty(&atoms->work_list));
1235
1236	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1237
1238	/*
1239	 * As we do not guarantee the wakeup event happens when
1240	 * task is out of run queue, also may happen when task is
1241	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1242	 * then we should not set the ->wake_up_time when wake up a
1243	 * task which is on run queue.
1244	 *
1245	 * You WILL be missing events if you've recorded only
1246	 * one CPU, or are only looking at only one, so don't
1247	 * skip in this case.
1248	 */
1249	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1250		goto out_ok;
1251
1252	sched->nr_timestamps++;
1253	if (atom->sched_out_time > timestamp) {
1254		sched->nr_unordered_timestamps++;
1255		goto out_ok;
1256	}
1257
1258	atom->state = THREAD_WAIT_CPU;
1259	atom->wake_up_time = timestamp;
1260out_ok:
1261	err = 0;
1262out_put:
1263	thread__put(wakee);
1264	return err;
1265}
1266
1267static int latency_migrate_task_event(struct perf_sched *sched,
1268				      struct evsel *evsel,
1269				      struct perf_sample *sample,
1270				      struct machine *machine)
1271{
1272	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1273	u64 timestamp = sample->time;
1274	struct work_atoms *atoms;
1275	struct work_atom *atom;
1276	struct thread *migrant;
1277	int err = -1;
1278
1279	/*
1280	 * Only need to worry about migration when profiling one CPU.
1281	 */
1282	if (sched->profile_cpu == -1)
1283		return 0;
1284
1285	migrant = machine__findnew_thread(machine, -1, pid);
1286	if (migrant == NULL)
1287		return -1;
1288	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1289	if (!atoms) {
1290		if (thread_atoms_insert(sched, migrant))
1291			goto out_put;
1292		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1293		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294		if (!atoms) {
1295			pr_err("migration-event: Internal tree error");
1296			goto out_put;
1297		}
1298		if (add_sched_out_event(atoms, 'R', timestamp))
1299			goto out_put;
1300	}
1301
1302	BUG_ON(list_empty(&atoms->work_list));
1303
1304	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1305	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1306
1307	sched->nr_timestamps++;
1308
1309	if (atom->sched_out_time > timestamp)
1310		sched->nr_unordered_timestamps++;
1311	err = 0;
1312out_put:
1313	thread__put(migrant);
1314	return err;
1315}
1316
1317static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1318{
1319	int i;
1320	int ret;
1321	u64 avg;
1322	char max_lat_at[32];
1323
1324	if (!work_list->nb_atoms)
1325		return;
1326	/*
1327	 * Ignore idle threads:
1328	 */
1329	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1330		return;
1331
1332	sched->all_runtime += work_list->total_runtime;
1333	sched->all_count   += work_list->nb_atoms;
1334
1335	if (work_list->num_merged > 1)
1336		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1337	else
1338		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
 
 
 
1339
1340	for (i = 0; i < 24 - ret; i++)
1341		printf(" ");
1342
1343	avg = work_list->total_lat / work_list->nb_atoms;
1344	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
 
1345
1346	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1347	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1348		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1349		 (double)work_list->max_lat / NSEC_PER_MSEC,
1350		 max_lat_at);
1351}
1352
1353static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1354{
1355	if (l->thread == r->thread)
 
 
1356		return 0;
1357	if (l->thread->tid < r->thread->tid)
 
 
1358		return -1;
1359	if (l->thread->tid > r->thread->tid)
1360		return 1;
1361	return (int)(l->thread - r->thread);
1362}
1363
1364static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1365{
1366	u64 avgl, avgr;
1367
1368	if (!l->nb_atoms)
1369		return -1;
1370
1371	if (!r->nb_atoms)
1372		return 1;
1373
1374	avgl = l->total_lat / l->nb_atoms;
1375	avgr = r->total_lat / r->nb_atoms;
1376
1377	if (avgl < avgr)
1378		return -1;
1379	if (avgl > avgr)
1380		return 1;
1381
1382	return 0;
1383}
1384
1385static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1386{
1387	if (l->max_lat < r->max_lat)
1388		return -1;
1389	if (l->max_lat > r->max_lat)
1390		return 1;
1391
1392	return 0;
1393}
1394
1395static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397	if (l->nb_atoms < r->nb_atoms)
1398		return -1;
1399	if (l->nb_atoms > r->nb_atoms)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->total_runtime < r->total_runtime)
1408		return -1;
1409	if (l->total_runtime > r->total_runtime)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int sort_dimension__add(const char *tok, struct list_head *list)
1416{
1417	size_t i;
1418	static struct sort_dimension avg_sort_dimension = {
1419		.name = "avg",
1420		.cmp  = avg_cmp,
1421	};
1422	static struct sort_dimension max_sort_dimension = {
1423		.name = "max",
1424		.cmp  = max_cmp,
1425	};
1426	static struct sort_dimension pid_sort_dimension = {
1427		.name = "pid",
1428		.cmp  = pid_cmp,
1429	};
1430	static struct sort_dimension runtime_sort_dimension = {
1431		.name = "runtime",
1432		.cmp  = runtime_cmp,
1433	};
1434	static struct sort_dimension switch_sort_dimension = {
1435		.name = "switch",
1436		.cmp  = switch_cmp,
1437	};
1438	struct sort_dimension *available_sorts[] = {
1439		&pid_sort_dimension,
1440		&avg_sort_dimension,
1441		&max_sort_dimension,
1442		&switch_sort_dimension,
1443		&runtime_sort_dimension,
1444	};
1445
1446	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1447		if (!strcmp(available_sorts[i]->name, tok)) {
1448			list_add_tail(&available_sorts[i]->list, list);
1449
1450			return 0;
1451		}
1452	}
1453
1454	return -1;
1455}
1456
1457static void perf_sched__sort_lat(struct perf_sched *sched)
1458{
1459	struct rb_node *node;
1460	struct rb_root_cached *root = &sched->atom_root;
1461again:
1462	for (;;) {
1463		struct work_atoms *data;
1464		node = rb_first_cached(root);
1465		if (!node)
1466			break;
1467
1468		rb_erase_cached(node, root);
1469		data = rb_entry(node, struct work_atoms, node);
1470		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1471	}
1472	if (root == &sched->atom_root) {
1473		root = &sched->merged_atom_root;
1474		goto again;
1475	}
1476}
1477
1478static int process_sched_wakeup_event(struct perf_tool *tool,
1479				      struct evsel *evsel,
1480				      struct perf_sample *sample,
1481				      struct machine *machine)
1482{
1483	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1484
1485	if (sched->tp_handler->wakeup_event)
1486		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1487
1488	return 0;
1489}
1490
 
 
 
 
 
 
 
 
1491union map_priv {
1492	void	*ptr;
1493	bool	 color;
1494};
1495
1496static bool thread__has_color(struct thread *thread)
1497{
1498	union map_priv priv = {
1499		.ptr = thread__priv(thread),
1500	};
1501
1502	return priv.color;
1503}
1504
1505static struct thread*
1506map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1507{
1508	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1509	union map_priv priv = {
1510		.color = false,
1511	};
1512
1513	if (!sched->map.color_pids || !thread || thread__priv(thread))
1514		return thread;
1515
1516	if (thread_map__has(sched->map.color_pids, tid))
1517		priv.color = true;
1518
1519	thread__set_priv(thread, priv.ptr);
1520	return thread;
1521}
1522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1524			    struct perf_sample *sample, struct machine *machine)
1525{
1526	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1527	struct thread *sched_in;
 
1528	struct thread_runtime *tr;
1529	int new_shortname;
1530	u64 timestamp0, timestamp = sample->time;
1531	s64 delta;
1532	int i, this_cpu = sample->cpu;
 
 
1533	int cpus_nr;
 
1534	bool new_cpu = false;
1535	const char *color = PERF_COLOR_NORMAL;
1536	char stimestamp[32];
 
1537
1538	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1539
1540	if (this_cpu > sched->max_cpu)
1541		sched->max_cpu = this_cpu;
1542
1543	if (sched->map.comp) {
1544		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1545		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1546			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1547			new_cpu = true;
1548		}
1549	} else
1550		cpus_nr = sched->max_cpu;
1551
1552	timestamp0 = sched->cpu_last_switched[this_cpu];
1553	sched->cpu_last_switched[this_cpu] = timestamp;
1554	if (timestamp0)
1555		delta = timestamp - timestamp0;
1556	else
1557		delta = 0;
1558
1559	if (delta < 0) {
1560		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1561		return -1;
1562	}
1563
1564	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1565	if (sched_in == NULL)
 
1566		return -1;
1567
1568	tr = thread__get_runtime(sched_in);
1569	if (tr == NULL) {
1570		thread__put(sched_in);
1571		return -1;
1572	}
1573
1574	sched->curr_thread[this_cpu] = thread__get(sched_in);
1575
1576	printf("  ");
1577
 
1578	new_shortname = 0;
1579	if (!tr->shortname[0]) {
1580		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1581			/*
1582			 * Don't allocate a letter-number for swapper:0
1583			 * as a shortname. Instead, we use '.' for it.
1584			 */
1585			tr->shortname[0] = '.';
1586			tr->shortname[1] = ' ';
1587		} else {
1588			tr->shortname[0] = sched->next_shortname1;
1589			tr->shortname[1] = sched->next_shortname2;
1590
1591			if (sched->next_shortname1 < 'Z') {
1592				sched->next_shortname1++;
1593			} else {
1594				sched->next_shortname1 = 'A';
1595				if (sched->next_shortname2 < '9')
1596					sched->next_shortname2++;
1597				else
1598					sched->next_shortname2 = '0';
1599			}
 
 
 
1600		}
1601		new_shortname = 1;
1602	}
1603
1604	for (i = 0; i < cpus_nr; i++) {
1605		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1606		struct thread *curr_thread = sched->curr_thread[cpu];
1607		struct thread_runtime *curr_tr;
1608		const char *pid_color = color;
1609		const char *cpu_color = color;
1610
1611		if (curr_thread && thread__has_color(curr_thread))
1612			pid_color = COLOR_PIDS;
1613
1614		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1615			continue;
1616
1617		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1618			cpu_color = COLOR_CPUS;
1619
1620		if (cpu != this_cpu)
1621			color_fprintf(stdout, color, " ");
 
 
 
 
 
 
 
1622		else
1623			color_fprintf(stdout, cpu_color, "*");
1624
1625		if (sched->curr_thread[cpu]) {
1626			curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1627			if (curr_tr == NULL) {
1628				thread__put(sched_in);
1629				return -1;
1630			}
1631			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1632		} else
1633			color_fprintf(stdout, color, "   ");
1634	}
1635
1636	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1637		goto out;
 
1638
1639	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1640	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1641	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1642		const char *pid_color = color;
1643
1644		if (thread__has_color(sched_in))
1645			pid_color = COLOR_PIDS;
1646
1647		color_fprintf(stdout, pid_color, "%s => %s:%d",
1648		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1649		tr->comm_changed = false;
1650	}
1651
1652	if (sched->map.comp && new_cpu)
1653		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655out:
1656	color_fprintf(stdout, color, "\n");
1657
 
 
 
 
1658	thread__put(sched_in);
1659
1660	return 0;
1661}
1662
1663static int process_sched_switch_event(struct perf_tool *tool,
1664				      struct evsel *evsel,
1665				      struct perf_sample *sample,
1666				      struct machine *machine)
1667{
1668	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1669	int this_cpu = sample->cpu, err = 0;
1670	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1671	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1672
1673	if (sched->curr_pid[this_cpu] != (u32)-1) {
1674		/*
1675		 * Are we trying to switch away a PID that is
1676		 * not current?
1677		 */
1678		if (sched->curr_pid[this_cpu] != prev_pid)
1679			sched->nr_context_switch_bugs++;
1680	}
1681
1682	if (sched->tp_handler->switch_event)
1683		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1684
1685	sched->curr_pid[this_cpu] = next_pid;
1686	return err;
1687}
1688
1689static int process_sched_runtime_event(struct perf_tool *tool,
1690				       struct evsel *evsel,
1691				       struct perf_sample *sample,
1692				       struct machine *machine)
1693{
1694	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1695
1696	if (sched->tp_handler->runtime_event)
1697		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1698
1699	return 0;
1700}
1701
1702static int perf_sched__process_fork_event(struct perf_tool *tool,
1703					  union perf_event *event,
1704					  struct perf_sample *sample,
1705					  struct machine *machine)
1706{
1707	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1708
1709	/* run the fork event through the perf machineruy */
1710	perf_event__process_fork(tool, event, sample, machine);
1711
1712	/* and then run additional processing needed for this command */
1713	if (sched->tp_handler->fork_event)
1714		return sched->tp_handler->fork_event(sched, event, machine);
1715
1716	return 0;
1717}
1718
1719static int process_sched_migrate_task_event(struct perf_tool *tool,
1720					    struct evsel *evsel,
1721					    struct perf_sample *sample,
1722					    struct machine *machine)
1723{
1724	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1725
1726	if (sched->tp_handler->migrate_task_event)
1727		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1728
1729	return 0;
1730}
1731
1732typedef int (*tracepoint_handler)(struct perf_tool *tool,
1733				  struct evsel *evsel,
1734				  struct perf_sample *sample,
1735				  struct machine *machine);
1736
1737static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1738						 union perf_event *event __maybe_unused,
1739						 struct perf_sample *sample,
1740						 struct evsel *evsel,
1741						 struct machine *machine)
1742{
1743	int err = 0;
1744
1745	if (evsel->handler != NULL) {
1746		tracepoint_handler f = evsel->handler;
1747		err = f(tool, evsel, sample, machine);
1748	}
1749
1750	return err;
1751}
1752
1753static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1754				    union perf_event *event,
1755				    struct perf_sample *sample,
1756				    struct machine *machine)
1757{
1758	struct thread *thread;
1759	struct thread_runtime *tr;
1760	int err;
1761
1762	err = perf_event__process_comm(tool, event, sample, machine);
1763	if (err)
1764		return err;
1765
1766	thread = machine__find_thread(machine, sample->pid, sample->tid);
1767	if (!thread) {
1768		pr_err("Internal error: can't find thread\n");
1769		return -1;
1770	}
1771
1772	tr = thread__get_runtime(thread);
1773	if (tr == NULL) {
1774		thread__put(thread);
1775		return -1;
1776	}
1777
1778	tr->comm_changed = true;
1779	thread__put(thread);
1780
1781	return 0;
1782}
1783
1784static int perf_sched__read_events(struct perf_sched *sched)
1785{
1786	const struct evsel_str_handler handlers[] = {
1787		{ "sched:sched_switch",	      process_sched_switch_event, },
1788		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1789		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
 
1790		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1791		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1792	};
1793	struct perf_session *session;
1794	struct perf_data data = {
1795		.path  = input_name,
1796		.mode  = PERF_DATA_MODE_READ,
1797		.force = sched->force,
1798	};
1799	int rc = -1;
1800
1801	session = perf_session__new(&data, false, &sched->tool);
1802	if (IS_ERR(session)) {
1803		pr_debug("Error creating perf session");
1804		return PTR_ERR(session);
1805	}
1806
1807	symbol__init(&session->header.env);
1808
 
 
 
 
1809	if (perf_session__set_tracepoints_handlers(session, handlers))
1810		goto out_delete;
1811
1812	if (perf_session__has_traces(session, "record -R")) {
1813		int err = perf_session__process_events(session);
1814		if (err) {
1815			pr_err("Failed to process events, error %d", err);
1816			goto out_delete;
1817		}
1818
1819		sched->nr_events      = session->evlist->stats.nr_events[0];
1820		sched->nr_lost_events = session->evlist->stats.total_lost;
1821		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1822	}
1823
1824	rc = 0;
1825out_delete:
1826	perf_session__delete(session);
1827	return rc;
1828}
1829
1830/*
1831 * scheduling times are printed as msec.usec
1832 */
1833static inline void print_sched_time(unsigned long long nsecs, int width)
1834{
1835	unsigned long msecs;
1836	unsigned long usecs;
1837
1838	msecs  = nsecs / NSEC_PER_MSEC;
1839	nsecs -= msecs * NSEC_PER_MSEC;
1840	usecs  = nsecs / NSEC_PER_USEC;
1841	printf("%*lu.%03lu ", width, msecs, usecs);
1842}
1843
1844/*
1845 * returns runtime data for event, allocating memory for it the
1846 * first time it is used.
1847 */
1848static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel)
1849{
1850	struct evsel_runtime *r = evsel->priv;
1851
1852	if (r == NULL) {
1853		r = zalloc(sizeof(struct evsel_runtime));
1854		evsel->priv = r;
1855	}
1856
1857	return r;
1858}
1859
1860/*
1861 * save last time event was seen per cpu
1862 */
1863static void perf_evsel__save_time(struct evsel *evsel,
1864				  u64 timestamp, u32 cpu)
1865{
1866	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1867
1868	if (r == NULL)
1869		return;
1870
1871	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1872		int i, n = __roundup_pow_of_two(cpu+1);
1873		void *p = r->last_time;
1874
1875		p = realloc(r->last_time, n * sizeof(u64));
1876		if (!p)
1877			return;
1878
1879		r->last_time = p;
1880		for (i = r->ncpu; i < n; ++i)
1881			r->last_time[i] = (u64) 0;
1882
1883		r->ncpu = n;
1884	}
1885
1886	r->last_time[cpu] = timestamp;
1887}
1888
1889/* returns last time this event was seen on the given cpu */
1890static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu)
1891{
1892	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1893
1894	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1895		return 0;
1896
1897	return r->last_time[cpu];
1898}
1899
1900static int comm_width = 30;
1901
1902static char *timehist_get_commstr(struct thread *thread)
1903{
1904	static char str[32];
1905	const char *comm = thread__comm_str(thread);
1906	pid_t tid = thread->tid;
1907	pid_t pid = thread->pid_;
1908	int n;
1909
1910	if (pid == 0)
1911		n = scnprintf(str, sizeof(str), "%s", comm);
1912
1913	else if (tid != pid)
1914		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1915
1916	else
1917		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1918
1919	if (n > comm_width)
1920		comm_width = n;
1921
1922	return str;
1923}
1924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925static void timehist_header(struct perf_sched *sched)
1926{
1927	u32 ncpus = sched->max_cpu + 1;
1928	u32 i, j;
1929
1930	printf("%15s %6s ", "time", "cpu");
1931
1932	if (sched->show_cpu_visual) {
1933		printf(" ");
1934		for (i = 0, j = 0; i < ncpus; ++i) {
1935			printf("%x", j++);
1936			if (j > 15)
1937				j = 0;
1938		}
1939		printf(" ");
1940	}
1941
1942	printf(" %-*s  %9s  %9s  %9s", comm_width,
1943		"task name", "wait time", "sch delay", "run time");
 
 
 
 
 
 
 
1944
1945	if (sched->show_state)
1946		printf("  %s", "state");
1947
1948	printf("\n");
1949
1950	/*
1951	 * units row
1952	 */
1953	printf("%15s %-6s ", "", "");
1954
1955	if (sched->show_cpu_visual)
1956		printf(" %*s ", ncpus, "");
1957
1958	printf(" %-*s  %9s  %9s  %9s", comm_width,
1959	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1960
1961	if (sched->show_state)
1962		printf("  %5s", "");
 
 
 
 
 
1963
1964	printf("\n");
1965
1966	/*
1967	 * separator
1968	 */
1969	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1970
1971	if (sched->show_cpu_visual)
1972		printf(" %.*s ", ncpus, graph_dotted_line);
1973
1974	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1975		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1976		graph_dotted_line);
1977
1978	if (sched->show_state)
1979		printf("  %.5s", graph_dotted_line);
1980
1981	printf("\n");
1982}
1983
1984static char task_state_char(struct thread *thread, int state)
1985{
1986	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1987	unsigned bit = state ? ffs(state) : 0;
1988
1989	/* 'I' for idle */
1990	if (thread->tid == 0)
1991		return 'I';
1992
1993	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1994}
1995
1996static void timehist_print_sample(struct perf_sched *sched,
1997				  struct evsel *evsel,
1998				  struct perf_sample *sample,
1999				  struct addr_location *al,
2000				  struct thread *thread,
2001				  u64 t, int state)
2002{
2003	struct thread_runtime *tr = thread__priv(thread);
2004	const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
2005	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2006	u32 max_cpus = sched->max_cpu + 1;
2007	char tstr[64];
2008	char nstr[30];
2009	u64 wait_time;
2010
 
 
 
2011	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2012	printf("%15s [%04d] ", tstr, sample->cpu);
2013
2014	if (sched->show_cpu_visual) {
2015		u32 i;
2016		char c;
2017
2018		printf(" ");
2019		for (i = 0; i < max_cpus; ++i) {
2020			/* flag idle times with 'i'; others are sched events */
2021			if (i == sample->cpu)
2022				c = (thread->tid == 0) ? 'i' : 's';
2023			else
2024				c = ' ';
2025			printf("%c", c);
2026		}
2027		printf(" ");
2028	}
2029
2030	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2031
 
 
 
2032	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2033	print_sched_time(wait_time, 6);
2034
2035	print_sched_time(tr->dt_delay, 6);
2036	print_sched_time(tr->dt_run, 6);
 
 
2037
2038	if (sched->show_state)
2039		printf(" %5c ", task_state_char(thread, state));
2040
2041	if (sched->show_next) {
2042		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2043		printf(" %-*s", comm_width, nstr);
2044	}
2045
2046	if (sched->show_wakeups && !sched->show_next)
2047		printf("  %-*s", comm_width, "");
2048
2049	if (thread->tid == 0)
2050		goto out;
2051
2052	if (sched->show_callchain)
2053		printf("  ");
2054
2055	sample__fprintf_sym(sample, al, 0,
2056			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2057			    EVSEL__PRINT_CALLCHAIN_ARROW |
2058			    EVSEL__PRINT_SKIP_IGNORED,
2059			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2060
2061out:
2062	printf("\n");
2063}
2064
2065/*
2066 * Explanation of delta-time stats:
2067 *
2068 *            t = time of current schedule out event
2069 *        tprev = time of previous sched out event
2070 *                also time of schedule-in event for current task
2071 *    last_time = time of last sched change event for current task
2072 *                (i.e, time process was last scheduled out)
2073 * ready_to_run = time of wakeup for current task
 
2074 *
2075 * -----|------------|------------|------------|------
2076 *    last         ready        tprev          t
2077 *    time         to run
2078 *
2079 *      |-------- dt_wait --------|
2080 *                   |- dt_delay -|-- dt_run --|
 
2081 *
2082 *   dt_run = run time of current task
2083 *  dt_wait = time between last schedule out event for task and tprev
2084 *            represents time spent off the cpu
2085 * dt_delay = time between wakeup and schedule-in of task
 
2086 */
2087
2088static void timehist_update_runtime_stats(struct thread_runtime *r,
2089					 u64 t, u64 tprev)
2090{
2091	r->dt_delay   = 0;
2092	r->dt_sleep   = 0;
2093	r->dt_iowait  = 0;
2094	r->dt_preempt = 0;
2095	r->dt_run     = 0;
 
2096
2097	if (tprev) {
2098		r->dt_run = t - tprev;
2099		if (r->ready_to_run) {
2100			if (r->ready_to_run > tprev)
2101				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2102			else
2103				r->dt_delay = tprev - r->ready_to_run;
 
 
 
2104		}
2105
2106		if (r->last_time > tprev)
2107			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2108		else if (r->last_time) {
2109			u64 dt_wait = tprev - r->last_time;
2110
2111			if (r->last_state == TASK_RUNNING)
2112				r->dt_preempt = dt_wait;
2113			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2114				r->dt_iowait = dt_wait;
2115			else
2116				r->dt_sleep = dt_wait;
2117		}
2118	}
2119
2120	update_stats(&r->run_stats, r->dt_run);
2121
2122	r->total_run_time     += r->dt_run;
2123	r->total_delay_time   += r->dt_delay;
2124	r->total_sleep_time   += r->dt_sleep;
2125	r->total_iowait_time  += r->dt_iowait;
2126	r->total_preempt_time += r->dt_preempt;
 
2127}
2128
2129static bool is_idle_sample(struct perf_sample *sample,
2130			   struct evsel *evsel)
2131{
2132	/* pid 0 == swapper == idle task */
2133	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2134		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2135
2136	return sample->pid == 0;
2137}
2138
2139static void save_task_callchain(struct perf_sched *sched,
2140				struct perf_sample *sample,
2141				struct evsel *evsel,
2142				struct machine *machine)
2143{
2144	struct callchain_cursor *cursor = &callchain_cursor;
2145	struct thread *thread;
2146
2147	/* want main thread for process - has maps */
2148	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2149	if (thread == NULL) {
2150		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2151		return;
2152	}
2153
2154	if (!sched->show_callchain || sample->callchain == NULL)
2155		return;
2156
 
 
2157	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2158				      NULL, NULL, sched->max_stack + 2) != 0) {
2159		if (verbose > 0)
2160			pr_err("Failed to resolve callchain. Skipping\n");
2161
2162		return;
2163	}
2164
2165	callchain_cursor_commit(cursor);
2166
2167	while (true) {
2168		struct callchain_cursor_node *node;
2169		struct symbol *sym;
2170
2171		node = callchain_cursor_current(cursor);
2172		if (node == NULL)
2173			break;
2174
2175		sym = node->sym;
2176		if (sym) {
2177			if (!strcmp(sym->name, "schedule") ||
2178			    !strcmp(sym->name, "__schedule") ||
2179			    !strcmp(sym->name, "preempt_schedule"))
2180				sym->ignore = 1;
2181		}
2182
2183		callchain_cursor_advance(cursor);
2184	}
2185}
2186
2187static int init_idle_thread(struct thread *thread)
2188{
2189	struct idle_thread_runtime *itr;
2190
2191	thread__set_comm(thread, idle_comm, 0);
2192
2193	itr = zalloc(sizeof(*itr));
2194	if (itr == NULL)
2195		return -ENOMEM;
2196
 
2197	init_stats(&itr->tr.run_stats);
2198	callchain_init(&itr->callchain);
2199	callchain_cursor_reset(&itr->cursor);
2200	thread__set_priv(thread, itr);
2201
2202	return 0;
2203}
2204
2205/*
2206 * Track idle stats per cpu by maintaining a local thread
2207 * struct for the idle task on each cpu.
2208 */
2209static int init_idle_threads(int ncpu)
2210{
2211	int i, ret;
2212
2213	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2214	if (!idle_threads)
2215		return -ENOMEM;
2216
2217	idle_max_cpu = ncpu;
2218
2219	/* allocate the actual thread struct if needed */
2220	for (i = 0; i < ncpu; ++i) {
2221		idle_threads[i] = thread__new(0, 0);
2222		if (idle_threads[i] == NULL)
2223			return -ENOMEM;
2224
2225		ret = init_idle_thread(idle_threads[i]);
2226		if (ret < 0)
2227			return ret;
2228	}
2229
2230	return 0;
2231}
2232
2233static void free_idle_threads(void)
2234{
2235	int i;
2236
2237	if (idle_threads == NULL)
2238		return;
2239
2240	for (i = 0; i < idle_max_cpu; ++i) {
2241		if ((idle_threads[i]))
2242			thread__delete(idle_threads[i]);
2243	}
2244
2245	free(idle_threads);
2246}
2247
2248static struct thread *get_idle_thread(int cpu)
2249{
2250	/*
2251	 * expand/allocate array of pointers to local thread
2252	 * structs if needed
2253	 */
2254	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2255		int i, j = __roundup_pow_of_two(cpu+1);
2256		void *p;
2257
2258		p = realloc(idle_threads, j * sizeof(struct thread *));
2259		if (!p)
2260			return NULL;
2261
2262		idle_threads = (struct thread **) p;
2263		for (i = idle_max_cpu; i < j; ++i)
2264			idle_threads[i] = NULL;
2265
2266		idle_max_cpu = j;
2267	}
2268
2269	/* allocate a new thread struct if needed */
2270	if (idle_threads[cpu] == NULL) {
2271		idle_threads[cpu] = thread__new(0, 0);
2272
2273		if (idle_threads[cpu]) {
2274			if (init_idle_thread(idle_threads[cpu]) < 0)
2275				return NULL;
2276		}
2277	}
2278
2279	return idle_threads[cpu];
2280}
2281
2282static void save_idle_callchain(struct perf_sched *sched,
2283				struct idle_thread_runtime *itr,
2284				struct perf_sample *sample)
2285{
 
 
2286	if (!sched->show_callchain || sample->callchain == NULL)
2287		return;
2288
2289	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
 
 
 
 
2290}
2291
2292static struct thread *timehist_get_thread(struct perf_sched *sched,
2293					  struct perf_sample *sample,
2294					  struct machine *machine,
2295					  struct evsel *evsel)
2296{
2297	struct thread *thread;
2298
2299	if (is_idle_sample(sample, evsel)) {
2300		thread = get_idle_thread(sample->cpu);
2301		if (thread == NULL)
2302			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2303
2304	} else {
2305		/* there were samples with tid 0 but non-zero pid */
2306		thread = machine__findnew_thread(machine, sample->pid,
2307						 sample->tid ?: sample->pid);
2308		if (thread == NULL) {
2309			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2310				 sample->tid);
2311		}
2312
2313		save_task_callchain(sched, sample, evsel, machine);
2314		if (sched->idle_hist) {
2315			struct thread *idle;
2316			struct idle_thread_runtime *itr;
2317
2318			idle = get_idle_thread(sample->cpu);
2319			if (idle == NULL) {
2320				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2321				return NULL;
2322			}
2323
2324			itr = thread__priv(idle);
2325			if (itr == NULL)
2326				return NULL;
2327
2328			itr->last_thread = thread;
2329
2330			/* copy task callchain when entering to idle */
2331			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2332				save_idle_callchain(sched, itr, sample);
2333		}
2334	}
2335
2336	return thread;
2337}
2338
2339static bool timehist_skip_sample(struct perf_sched *sched,
2340				 struct thread *thread,
2341				 struct evsel *evsel,
2342				 struct perf_sample *sample)
2343{
2344	bool rc = false;
 
 
2345
2346	if (thread__is_filtered(thread)) {
2347		rc = true;
2348		sched->skipped_samples++;
2349	}
2350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351	if (sched->idle_hist) {
2352		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2353			rc = true;
2354		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2355			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2356			rc = true;
2357	}
2358
2359	return rc;
2360}
2361
2362static void timehist_print_wakeup_event(struct perf_sched *sched,
2363					struct evsel *evsel,
2364					struct perf_sample *sample,
2365					struct machine *machine,
2366					struct thread *awakened)
2367{
2368	struct thread *thread;
2369	char tstr[64];
2370
2371	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2372	if (thread == NULL)
2373		return;
2374
2375	/* show wakeup unless both awakee and awaker are filtered */
2376	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2377	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2378		return;
2379	}
2380
2381	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2382	printf("%15s [%04d] ", tstr, sample->cpu);
2383	if (sched->show_cpu_visual)
2384		printf(" %*s ", sched->max_cpu + 1, "");
2385
2386	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2387
2388	/* dt spacer */
2389	printf("  %9s  %9s  %9s ", "", "", "");
2390
2391	printf("awakened: %s", timehist_get_commstr(awakened));
2392
2393	printf("\n");
2394}
2395
2396static int timehist_sched_wakeup_event(struct perf_tool *tool,
 
 
 
 
 
 
 
 
 
2397				       union perf_event *event __maybe_unused,
2398				       struct evsel *evsel,
2399				       struct perf_sample *sample,
2400				       struct machine *machine)
2401{
2402	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2403	struct thread *thread;
2404	struct thread_runtime *tr = NULL;
2405	/* want pid of awakened task not pid in sample */
2406	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2407
2408	thread = machine__findnew_thread(machine, 0, pid);
2409	if (thread == NULL)
2410		return -1;
2411
2412	tr = thread__get_runtime(thread);
2413	if (tr == NULL)
2414		return -1;
2415
2416	if (tr->ready_to_run == 0)
2417		tr->ready_to_run = sample->time;
2418
2419	/* show wakeups if requested */
2420	if (sched->show_wakeups &&
2421	    !perf_time__skip_sample(&sched->ptime, sample->time))
2422		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2423
2424	return 0;
2425}
2426
2427static void timehist_print_migration_event(struct perf_sched *sched,
2428					struct evsel *evsel,
2429					struct perf_sample *sample,
2430					struct machine *machine,
2431					struct thread *migrated)
2432{
2433	struct thread *thread;
2434	char tstr[64];
2435	u32 max_cpus = sched->max_cpu + 1;
2436	u32 ocpu, dcpu;
2437
2438	if (sched->summary_only)
2439		return;
2440
2441	max_cpus = sched->max_cpu + 1;
2442	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2443	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2444
2445	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2446	if (thread == NULL)
2447		return;
2448
2449	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2450	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2451		return;
2452	}
2453
2454	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2455	printf("%15s [%04d] ", tstr, sample->cpu);
2456
2457	if (sched->show_cpu_visual) {
2458		u32 i;
2459		char c;
2460
2461		printf("  ");
2462		for (i = 0; i < max_cpus; ++i) {
2463			c = (i == sample->cpu) ? 'm' : ' ';
2464			printf("%c", c);
2465		}
2466		printf("  ");
2467	}
2468
2469	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2470
2471	/* dt spacer */
2472	printf("  %9s  %9s  %9s ", "", "", "");
2473
2474	printf("migrated: %s", timehist_get_commstr(migrated));
2475	printf(" cpu %d => %d", ocpu, dcpu);
2476
2477	printf("\n");
2478}
2479
2480static int timehist_migrate_task_event(struct perf_tool *tool,
2481				       union perf_event *event __maybe_unused,
2482				       struct evsel *evsel,
2483				       struct perf_sample *sample,
2484				       struct machine *machine)
2485{
2486	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2487	struct thread *thread;
2488	struct thread_runtime *tr = NULL;
2489	/* want pid of migrated task not pid in sample */
2490	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2491
2492	thread = machine__findnew_thread(machine, 0, pid);
2493	if (thread == NULL)
2494		return -1;
2495
2496	tr = thread__get_runtime(thread);
2497	if (tr == NULL)
2498		return -1;
2499
2500	tr->migrations++;
 
2501
2502	/* show migrations if requested */
2503	timehist_print_migration_event(sched, evsel, sample, machine, thread);
 
 
 
2504
2505	return 0;
2506}
2507
2508static int timehist_sched_change_event(struct perf_tool *tool,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2509				       union perf_event *event,
2510				       struct evsel *evsel,
2511				       struct perf_sample *sample,
2512				       struct machine *machine)
2513{
2514	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2515	struct perf_time_interval *ptime = &sched->ptime;
2516	struct addr_location al;
2517	struct thread *thread;
2518	struct thread_runtime *tr = NULL;
2519	u64 tprev, t = sample->time;
2520	int rc = 0;
2521	int state = perf_evsel__intval(evsel, sample, "prev_state");
2522
2523
 
2524	if (machine__resolve(machine, &al, sample) < 0) {
2525		pr_err("problem processing %d event. skipping it\n",
2526		       event->header.type);
2527		rc = -1;
2528		goto out;
2529	}
2530
 
 
 
2531	thread = timehist_get_thread(sched, sample, machine, evsel);
2532	if (thread == NULL) {
2533		rc = -1;
2534		goto out;
2535	}
2536
2537	if (timehist_skip_sample(sched, thread, evsel, sample))
2538		goto out;
2539
2540	tr = thread__get_runtime(thread);
2541	if (tr == NULL) {
2542		rc = -1;
2543		goto out;
2544	}
2545
2546	tprev = perf_evsel__get_time(evsel, sample->cpu);
2547
2548	/*
2549	 * If start time given:
2550	 * - sample time is under window user cares about - skip sample
2551	 * - tprev is under window user cares about  - reset to start of window
2552	 */
2553	if (ptime->start && ptime->start > t)
2554		goto out;
2555
2556	if (tprev && ptime->start > tprev)
2557		tprev = ptime->start;
2558
2559	/*
2560	 * If end time given:
2561	 * - previous sched event is out of window - we are done
2562	 * - sample time is beyond window user cares about - reset it
2563	 *   to close out stats for time window interest
 
 
 
2564	 */
2565	if (ptime->end) {
2566		if (tprev > ptime->end)
2567			goto out;
2568
2569		if (t > ptime->end)
2570			t = ptime->end;
2571	}
2572
2573	if (!sched->idle_hist || thread->tid == 0) {
2574		timehist_update_runtime_stats(tr, t, tprev);
 
2575
2576		if (sched->idle_hist) {
2577			struct idle_thread_runtime *itr = (void *)tr;
2578			struct thread_runtime *last_tr;
2579
2580			BUG_ON(thread->tid != 0);
2581
2582			if (itr->last_thread == NULL)
2583				goto out;
2584
2585			/* add current idle time as last thread's runtime */
2586			last_tr = thread__get_runtime(itr->last_thread);
2587			if (last_tr == NULL)
2588				goto out;
2589
2590			timehist_update_runtime_stats(last_tr, t, tprev);
2591			/*
2592			 * remove delta time of last thread as it's not updated
2593			 * and otherwise it will show an invalid value next
2594			 * time.  we only care total run time and run stat.
2595			 */
2596			last_tr->dt_run = 0;
2597			last_tr->dt_delay = 0;
2598			last_tr->dt_sleep = 0;
2599			last_tr->dt_iowait = 0;
2600			last_tr->dt_preempt = 0;
2601
2602			if (itr->cursor.nr)
2603				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2604
2605			itr->last_thread = NULL;
2606		}
2607	}
2608
2609	if (!sched->summary_only)
2610		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
 
2611
2612out:
2613	if (sched->hist_time.start == 0 && t >= ptime->start)
2614		sched->hist_time.start = t;
2615	if (ptime->end == 0 || t <= ptime->end)
2616		sched->hist_time.end = t;
2617
2618	if (tr) {
2619		/* time of this sched_switch event becomes last time task seen */
2620		tr->last_time = sample->time;
2621
2622		/* last state is used to determine where to account wait time */
2623		tr->last_state = state;
2624
2625		/* sched out event for task so reset ready to run time */
2626		tr->ready_to_run = 0;
 
 
 
 
 
2627	}
2628
2629	perf_evsel__save_time(evsel, sample->time, sample->cpu);
2630
 
2631	return rc;
2632}
2633
2634static int timehist_sched_switch_event(struct perf_tool *tool,
2635			     union perf_event *event,
2636			     struct evsel *evsel,
2637			     struct perf_sample *sample,
2638			     struct machine *machine __maybe_unused)
2639{
2640	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2641}
2642
2643static int process_lost(struct perf_tool *tool __maybe_unused,
2644			union perf_event *event,
2645			struct perf_sample *sample,
2646			struct machine *machine __maybe_unused)
2647{
2648	char tstr[64];
2649
2650	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2651	printf("%15s ", tstr);
2652	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2653
2654	return 0;
2655}
2656
2657
2658static void print_thread_runtime(struct thread *t,
2659				 struct thread_runtime *r)
2660{
2661	double mean = avg_stats(&r->run_stats);
2662	float stddev;
2663
2664	printf("%*s   %5d  %9" PRIu64 " ",
2665	       comm_width, timehist_get_commstr(t), t->ppid,
2666	       (u64) r->run_stats.n);
2667
2668	print_sched_time(r->total_run_time, 8);
2669	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2670	print_sched_time(r->run_stats.min, 6);
2671	printf(" ");
2672	print_sched_time((u64) mean, 6);
2673	printf(" ");
2674	print_sched_time(r->run_stats.max, 6);
2675	printf("  ");
2676	printf("%5.2f", stddev);
2677	printf("   %5" PRIu64, r->migrations);
2678	printf("\n");
2679}
2680
2681static void print_thread_waittime(struct thread *t,
2682				  struct thread_runtime *r)
2683{
2684	printf("%*s   %5d  %9" PRIu64 " ",
2685	       comm_width, timehist_get_commstr(t), t->ppid,
2686	       (u64) r->run_stats.n);
2687
2688	print_sched_time(r->total_run_time, 8);
2689	print_sched_time(r->total_sleep_time, 6);
2690	printf(" ");
2691	print_sched_time(r->total_iowait_time, 6);
2692	printf(" ");
2693	print_sched_time(r->total_preempt_time, 6);
2694	printf(" ");
2695	print_sched_time(r->total_delay_time, 6);
2696	printf("\n");
2697}
2698
2699struct total_run_stats {
2700	struct perf_sched *sched;
2701	u64  sched_count;
2702	u64  task_count;
2703	u64  total_run_time;
2704};
2705
2706static int __show_thread_runtime(struct thread *t, void *priv)
2707{
2708	struct total_run_stats *stats = priv;
2709	struct thread_runtime *r;
2710
2711	if (thread__is_filtered(t))
2712		return 0;
2713
2714	r = thread__priv(t);
2715	if (r && r->run_stats.n) {
2716		stats->task_count++;
2717		stats->sched_count += r->run_stats.n;
2718		stats->total_run_time += r->total_run_time;
2719
2720		if (stats->sched->show_state)
2721			print_thread_waittime(t, r);
2722		else
2723			print_thread_runtime(t, r);
2724	}
2725
2726	return 0;
2727}
2728
2729static int show_thread_runtime(struct thread *t, void *priv)
2730{
2731	if (t->dead)
2732		return 0;
2733
2734	return __show_thread_runtime(t, priv);
2735}
2736
2737static int show_deadthread_runtime(struct thread *t, void *priv)
2738{
2739	if (!t->dead)
2740		return 0;
2741
2742	return __show_thread_runtime(t, priv);
2743}
2744
2745static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2746{
2747	const char *sep = " <- ";
2748	struct callchain_list *chain;
2749	size_t ret = 0;
2750	char bf[1024];
2751	bool first;
2752
2753	if (node == NULL)
2754		return 0;
2755
2756	ret = callchain__fprintf_folded(fp, node->parent);
2757	first = (ret == 0);
2758
2759	list_for_each_entry(chain, &node->val, list) {
2760		if (chain->ip >= PERF_CONTEXT_MAX)
2761			continue;
2762		if (chain->ms.sym && chain->ms.sym->ignore)
2763			continue;
2764		ret += fprintf(fp, "%s%s", first ? "" : sep,
2765			       callchain_list__sym_name(chain, bf, sizeof(bf),
2766							false));
2767		first = false;
2768	}
2769
2770	return ret;
2771}
2772
2773static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2774{
2775	size_t ret = 0;
2776	FILE *fp = stdout;
2777	struct callchain_node *chain;
2778	struct rb_node *rb_node = rb_first_cached(root);
2779
2780	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2781	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2782	       graph_dotted_line);
2783
2784	while (rb_node) {
2785		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2786		rb_node = rb_next(rb_node);
2787
2788		ret += fprintf(fp, "  ");
2789		print_sched_time(chain->hit, 12);
2790		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2791		ret += fprintf(fp, " %8d  ", chain->count);
2792		ret += callchain__fprintf_folded(fp, chain);
2793		ret += fprintf(fp, "\n");
2794	}
2795
2796	return ret;
2797}
2798
2799static void timehist_print_summary(struct perf_sched *sched,
2800				   struct perf_session *session)
2801{
2802	struct machine *m = &session->machines.host;
2803	struct total_run_stats totals;
2804	u64 task_count;
2805	struct thread *t;
2806	struct thread_runtime *r;
2807	int i;
2808	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2809
2810	memset(&totals, 0, sizeof(totals));
2811	totals.sched = sched;
2812
2813	if (sched->idle_hist) {
2814		printf("\nIdle-time summary\n");
2815		printf("%*s  parent  sched-out  ", comm_width, "comm");
2816		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2817	} else if (sched->show_state) {
2818		printf("\nWait-time summary\n");
2819		printf("%*s  parent   sched-in  ", comm_width, "comm");
2820		printf("   run-time      sleep      iowait     preempt       delay\n");
2821	} else {
2822		printf("\nRuntime summary\n");
2823		printf("%*s  parent   sched-in  ", comm_width, "comm");
2824		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2825	}
2826	printf("%*s            (count)  ", comm_width, "");
2827	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2828	       sched->show_state ? "(msec)" : "%");
2829	printf("%.117s\n", graph_dotted_line);
2830
2831	machine__for_each_thread(m, show_thread_runtime, &totals);
2832	task_count = totals.task_count;
2833	if (!task_count)
2834		printf("<no still running tasks>\n");
2835
2836	printf("\nTerminated tasks:\n");
2837	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2838	if (task_count == totals.task_count)
2839		printf("<no terminated tasks>\n");
2840
2841	/* CPU idle stats not tracked when samples were skipped */
2842	if (sched->skipped_samples && !sched->idle_hist)
2843		return;
2844
2845	printf("\nIdle stats:\n");
2846	for (i = 0; i < idle_max_cpu; ++i) {
 
 
 
2847		t = idle_threads[i];
2848		if (!t)
2849			continue;
2850
2851		r = thread__priv(t);
2852		if (r && r->run_stats.n) {
2853			totals.sched_count += r->run_stats.n;
2854			printf("    CPU %2d idle for ", i);
2855			print_sched_time(r->total_run_time, 6);
2856			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2857		} else
2858			printf("    CPU %2d idle entire time window\n", i);
2859	}
2860
2861	if (sched->idle_hist && sched->show_callchain) {
2862		callchain_param.mode  = CHAIN_FOLDED;
2863		callchain_param.value = CCVAL_PERIOD;
2864
2865		callchain_register_param(&callchain_param);
2866
2867		printf("\nIdle stats by callchain:\n");
2868		for (i = 0; i < idle_max_cpu; ++i) {
2869			struct idle_thread_runtime *itr;
2870
2871			t = idle_threads[i];
2872			if (!t)
2873				continue;
2874
2875			itr = thread__priv(t);
2876			if (itr == NULL)
2877				continue;
2878
2879			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2880					     0, &callchain_param);
2881
2882			printf("  CPU %2d:", i);
2883			print_sched_time(itr->tr.total_run_time, 6);
2884			printf(" msec\n");
2885			timehist_print_idlehist_callchain(&itr->sorted_root);
2886			printf("\n");
2887		}
2888	}
2889
2890	printf("\n"
2891	       "    Total number of unique tasks: %" PRIu64 "\n"
2892	       "Total number of context switches: %" PRIu64 "\n",
2893	       totals.task_count, totals.sched_count);
2894
2895	printf("           Total run time (msec): ");
2896	print_sched_time(totals.total_run_time, 2);
2897	printf("\n");
2898
2899	printf("    Total scheduling time (msec): ");
2900	print_sched_time(hist_time, 2);
2901	printf(" (x %d)\n", sched->max_cpu);
2902}
2903
2904typedef int (*sched_handler)(struct perf_tool *tool,
2905			  union perf_event *event,
2906			  struct evsel *evsel,
2907			  struct perf_sample *sample,
2908			  struct machine *machine);
2909
2910static int perf_timehist__process_sample(struct perf_tool *tool,
2911					 union perf_event *event,
2912					 struct perf_sample *sample,
2913					 struct evsel *evsel,
2914					 struct machine *machine)
2915{
2916	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2917	int err = 0;
2918	int this_cpu = sample->cpu;
 
 
2919
2920	if (this_cpu > sched->max_cpu)
2921		sched->max_cpu = this_cpu;
2922
2923	if (evsel->handler != NULL) {
2924		sched_handler f = evsel->handler;
2925
2926		err = f(tool, event, evsel, sample, machine);
2927	}
2928
2929	return err;
2930}
2931
2932static int timehist_check_attr(struct perf_sched *sched,
2933			       struct evlist *evlist)
2934{
2935	struct evsel *evsel;
2936	struct evsel_runtime *er;
2937
2938	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2939		er = perf_evsel__get_runtime(evsel);
2940		if (er == NULL) {
2941			pr_err("Failed to allocate memory for evsel runtime data\n");
2942			return -1;
2943		}
2944
2945		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2946			pr_info("Samples do not have callchains.\n");
 
 
 
2947			sched->show_callchain = 0;
2948			symbol_conf.use_callchain = 0;
2949		}
2950	}
2951
2952	return 0;
2953}
2954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2955static int perf_sched__timehist(struct perf_sched *sched)
2956{
2957	const struct evsel_str_handler handlers[] = {
2958		{ "sched:sched_switch",       timehist_sched_switch_event, },
2959		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
 
2960		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2961	};
2962	const struct evsel_str_handler migrate_handlers[] = {
2963		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2964	};
2965	struct perf_data data = {
2966		.path  = input_name,
2967		.mode  = PERF_DATA_MODE_READ,
2968		.force = sched->force,
2969	};
2970
2971	struct perf_session *session;
2972	struct evlist *evlist;
2973	int err = -1;
2974
2975	/*
2976	 * event handlers for timehist option
2977	 */
2978	sched->tool.sample	 = perf_timehist__process_sample;
2979	sched->tool.mmap	 = perf_event__process_mmap;
2980	sched->tool.comm	 = perf_event__process_comm;
2981	sched->tool.exit	 = perf_event__process_exit;
2982	sched->tool.fork	 = perf_event__process_fork;
2983	sched->tool.lost	 = process_lost;
2984	sched->tool.attr	 = perf_event__process_attr;
2985	sched->tool.tracing_data = perf_event__process_tracing_data;
2986	sched->tool.build_id	 = perf_event__process_build_id;
2987
2988	sched->tool.ordered_events = true;
2989	sched->tool.ordering_requires_timestamps = true;
2990
2991	symbol_conf.use_callchain = sched->show_callchain;
2992
2993	session = perf_session__new(&data, false, &sched->tool);
2994	if (IS_ERR(session))
2995		return PTR_ERR(session);
2996
 
 
 
 
 
 
2997	evlist = session->evlist;
2998
2999	symbol__init(&session->header.env);
3000
3001	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3002		pr_err("Invalid time string\n");
3003		return -EINVAL;
 
3004	}
3005
3006	if (timehist_check_attr(sched, evlist) != 0)
3007		goto out;
3008
 
 
 
 
 
3009	setup_pager();
3010
 
 
 
 
3011	/* setup per-evsel handlers */
3012	if (perf_session__set_tracepoints_handlers(session, handlers))
3013		goto out;
3014
3015	/* sched_switch event at a minimum needs to exist */
3016	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3017						  "sched:sched_switch")) {
3018		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3019		goto out;
3020	}
3021
3022	if (sched->show_migrations &&
3023	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3024		goto out;
3025
3026	/* pre-allocate struct for per-CPU idle stats */
3027	sched->max_cpu = session->header.env.nr_cpus_online;
3028	if (sched->max_cpu == 0)
3029		sched->max_cpu = 4;
3030	if (init_idle_threads(sched->max_cpu))
3031		goto out;
3032
3033	/* summary_only implies summary option, but don't overwrite summary if set */
3034	if (sched->summary_only)
3035		sched->summary = sched->summary_only;
3036
3037	if (!sched->summary_only)
3038		timehist_header(sched);
3039
3040	err = perf_session__process_events(session);
3041	if (err) {
3042		pr_err("Failed to process events, error %d", err);
3043		goto out;
3044	}
3045
3046	sched->nr_events      = evlist->stats.nr_events[0];
3047	sched->nr_lost_events = evlist->stats.total_lost;
3048	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3049
3050	if (sched->summary)
3051		timehist_print_summary(sched, session);
3052
3053out:
3054	free_idle_threads();
3055	perf_session__delete(session);
3056
3057	return err;
3058}
3059
3060
3061static void print_bad_events(struct perf_sched *sched)
3062{
3063	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3064		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3065			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3066			sched->nr_unordered_timestamps, sched->nr_timestamps);
3067	}
3068	if (sched->nr_lost_events && sched->nr_events) {
3069		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3070			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3071			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3072	}
3073	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3074		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3075			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3076			sched->nr_context_switch_bugs, sched->nr_timestamps);
3077		if (sched->nr_lost_events)
3078			printf(" (due to lost events?)");
3079		printf("\n");
3080	}
3081}
3082
3083static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3084{
3085	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3086	struct work_atoms *this;
3087	const char *comm = thread__comm_str(data->thread), *this_comm;
3088	bool leftmost = true;
3089
3090	while (*new) {
3091		int cmp;
3092
3093		this = container_of(*new, struct work_atoms, node);
3094		parent = *new;
3095
3096		this_comm = thread__comm_str(this->thread);
3097		cmp = strcmp(comm, this_comm);
3098		if (cmp > 0) {
3099			new = &((*new)->rb_left);
3100		} else if (cmp < 0) {
3101			new = &((*new)->rb_right);
3102			leftmost = false;
3103		} else {
3104			this->num_merged++;
3105			this->total_runtime += data->total_runtime;
3106			this->nb_atoms += data->nb_atoms;
3107			this->total_lat += data->total_lat;
3108			list_splice(&data->work_list, &this->work_list);
3109			if (this->max_lat < data->max_lat) {
3110				this->max_lat = data->max_lat;
3111				this->max_lat_at = data->max_lat_at;
 
3112			}
3113			zfree(&data);
3114			return;
3115		}
3116	}
3117
3118	data->num_merged++;
3119	rb_link_node(&data->node, parent, new);
3120	rb_insert_color_cached(&data->node, root, leftmost);
3121}
3122
3123static void perf_sched__merge_lat(struct perf_sched *sched)
3124{
3125	struct work_atoms *data;
3126	struct rb_node *node;
3127
3128	if (sched->skip_merge)
3129		return;
3130
3131	while ((node = rb_first_cached(&sched->atom_root))) {
3132		rb_erase_cached(node, &sched->atom_root);
3133		data = rb_entry(node, struct work_atoms, node);
3134		__merge_work_atoms(&sched->merged_atom_root, data);
3135	}
3136}
3137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138static int perf_sched__lat(struct perf_sched *sched)
3139{
 
3140	struct rb_node *next;
3141
3142	setup_pager();
3143
 
 
 
3144	if (perf_sched__read_events(sched))
3145		return -1;
3146
3147	perf_sched__merge_lat(sched);
3148	perf_sched__sort_lat(sched);
3149
3150	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3151	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3152	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3153
3154	next = rb_first_cached(&sched->sorted_atom_root);
3155
3156	while (next) {
3157		struct work_atoms *work_list;
3158
3159		work_list = rb_entry(next, struct work_atoms, node);
3160		output_lat_thread(sched, work_list);
3161		next = rb_next(next);
3162		thread__zput(work_list->thread);
3163	}
3164
3165	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3166	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3167		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3168
3169	printf(" ---------------------------------------------------\n");
3170
3171	print_bad_events(sched);
3172	printf("\n");
3173
3174	return 0;
 
 
 
 
3175}
3176
3177static int setup_map_cpus(struct perf_sched *sched)
3178{
3179	struct perf_cpu_map *map;
3180
3181	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3182
3183	if (sched->map.comp) {
3184		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3185		if (!sched->map.comp_cpus)
3186			return -1;
3187	}
3188
3189	if (!sched->map.cpus_str)
3190		return 0;
3191
3192	map = perf_cpu_map__new(sched->map.cpus_str);
3193	if (!map) {
3194		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3195		return -1;
3196	}
3197
3198	sched->map.cpus = map;
3199	return 0;
3200}
3201
3202static int setup_color_pids(struct perf_sched *sched)
3203{
3204	struct perf_thread_map *map;
3205
3206	if (!sched->map.color_pids_str)
3207		return 0;
3208
3209	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3210	if (!map) {
3211		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3212		return -1;
3213	}
3214
3215	sched->map.color_pids = map;
3216	return 0;
3217}
3218
3219static int setup_color_cpus(struct perf_sched *sched)
3220{
3221	struct perf_cpu_map *map;
3222
3223	if (!sched->map.color_cpus_str)
3224		return 0;
3225
3226	map = perf_cpu_map__new(sched->map.color_cpus_str);
3227	if (!map) {
3228		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3229		return -1;
3230	}
3231
3232	sched->map.color_cpus = map;
3233	return 0;
3234}
3235
3236static int perf_sched__map(struct perf_sched *sched)
3237{
 
 
 
 
 
 
 
 
 
 
 
 
 
3238	if (setup_map_cpus(sched))
3239		return -1;
3240
3241	if (setup_color_pids(sched))
3242		return -1;
3243
3244	if (setup_color_cpus(sched))
3245		return -1;
3246
3247	setup_pager();
3248	if (perf_sched__read_events(sched))
3249		return -1;
 
 
3250	print_bad_events(sched);
3251	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3252}
3253
3254static int perf_sched__replay(struct perf_sched *sched)
3255{
 
3256	unsigned long i;
3257
 
 
 
 
 
 
 
3258	calibrate_run_measurement_overhead(sched);
3259	calibrate_sleep_measurement_overhead(sched);
3260
3261	test_calibrations(sched);
3262
3263	if (perf_sched__read_events(sched))
3264		return -1;
 
3265
3266	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3267	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3268	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3269
3270	if (sched->targetless_wakeups)
3271		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3272	if (sched->multitarget_wakeups)
3273		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3274	if (sched->nr_run_events_optimized)
3275		printf("run atoms optimized: %ld\n",
3276			sched->nr_run_events_optimized);
3277
3278	print_task_traces(sched);
3279	add_cross_task_wakeups(sched);
3280
 
3281	create_tasks(sched);
3282	printf("------------------------------------------------------------\n");
 
 
 
3283	for (i = 0; i < sched->replay_repeat; i++)
3284		run_one_test(sched);
3285
3286	return 0;
 
 
 
 
 
 
 
 
 
3287}
3288
3289static void setup_sorting(struct perf_sched *sched, const struct option *options,
3290			  const char * const usage_msg[])
3291{
3292	char *tmp, *tok, *str = strdup(sched->sort_order);
3293
3294	for (tok = strtok_r(str, ", ", &tmp);
3295			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3296		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3297			usage_with_options_msg(usage_msg, options,
3298					"Unknown --sort key: `%s'", tok);
3299		}
3300	}
3301
3302	free(str);
3303
3304	sort_dimension__add("pid", &sched->cmp_pid);
3305}
3306
 
 
 
 
 
 
 
 
 
 
3307static int __cmd_record(int argc, const char **argv)
3308{
3309	unsigned int rec_argc, i, j;
3310	const char **rec_argv;
 
3311	const char * const record_args[] = {
3312		"record",
3313		"-a",
3314		"-R",
3315		"-m", "1024",
3316		"-c", "1",
3317		"-e", "sched:sched_switch",
3318		"-e", "sched:sched_stat_wait",
3319		"-e", "sched:sched_stat_sleep",
3320		"-e", "sched:sched_stat_iowait",
3321		"-e", "sched:sched_stat_runtime",
3322		"-e", "sched:sched_process_fork",
3323		"-e", "sched:sched_wakeup",
3324		"-e", "sched:sched_wakeup_new",
3325		"-e", "sched:sched_migrate_task",
3326	};
3327
3328	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3329	rec_argv = calloc(rec_argc + 1, sizeof(char *));
 
 
 
 
 
 
 
 
 
 
 
3330
 
 
 
 
 
 
 
 
 
3331	if (rec_argv == NULL)
3332		return -ENOMEM;
 
 
 
 
 
3333
3334	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3335		rec_argv[i] = strdup(record_args[i]);
3336
 
 
 
 
 
 
 
 
 
 
3337	for (j = 1; j < (unsigned int)argc; j++, i++)
3338		rec_argv[i] = argv[j];
3339
3340	BUG_ON(i != rec_argc);
3341
3342	return cmd_record(i, rec_argv);
 
 
 
 
 
 
 
 
3343}
3344
3345int cmd_sched(int argc, const char **argv)
3346{
3347	static const char default_sort_order[] = "avg, max, switch, runtime";
3348	struct perf_sched sched = {
3349		.tool = {
3350			.sample		 = perf_sched__process_tracepoint_sample,
3351			.comm		 = perf_sched__process_comm,
3352			.namespaces	 = perf_event__process_namespaces,
3353			.lost		 = perf_event__process_lost,
3354			.fork		 = perf_sched__process_fork_event,
3355			.ordered_events = true,
3356		},
3357		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3358		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3359		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3360		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3361		.sort_order	      = default_sort_order,
3362		.replay_repeat	      = 10,
3363		.profile_cpu	      = -1,
3364		.next_shortname1      = 'A',
3365		.next_shortname2      = '0',
3366		.skip_merge           = 0,
3367		.show_callchain	      = 1,
3368		.max_stack            = 5,
3369	};
3370	const struct option sched_options[] = {
3371	OPT_STRING('i', "input", &input_name, "file",
3372		    "input file name"),
3373	OPT_INCR('v', "verbose", &verbose,
3374		    "be more verbose (show symbol address, etc)"),
3375	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3376		    "dump raw trace in ASCII"),
3377	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3378	OPT_END()
3379	};
3380	const struct option latency_options[] = {
3381	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3382		   "sort by key(s): runtime, switch, avg, max"),
3383	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3384		    "CPU to profile on"),
3385	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3386		    "latency stats per pid instead of per comm"),
3387	OPT_PARENT(sched_options)
3388	};
3389	const struct option replay_options[] = {
3390	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3391		     "repeat the workload replay N times (-1: infinite)"),
3392	OPT_PARENT(sched_options)
3393	};
3394	const struct option map_options[] = {
3395	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3396		    "map output in compact mode"),
3397	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3398		   "highlight given pids in map"),
3399	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3400                    "highlight given CPUs in map"),
3401	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3402                    "display given CPUs in map"),
 
 
 
 
3403	OPT_PARENT(sched_options)
3404	};
3405	const struct option timehist_options[] = {
3406	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3407		   "file", "vmlinux pathname"),
3408	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3409		   "file", "kallsyms pathname"),
3410	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3411		    "Display call chains if present (default on)"),
3412	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3413		   "Maximum number of functions to display backtrace."),
3414	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3415		    "Look for files with symbols relative to this directory"),
3416	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3417		    "Show only syscall summary with statistics"),
3418	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3419		    "Show all syscalls and summary with statistics"),
3420	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3421	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3422	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3423	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3424	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3425	OPT_STRING(0, "time", &sched.time_str, "str",
3426		   "Time span for analysis (start,stop)"),
3427	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3428	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3429		   "analyze events only for given process id(s)"),
3430	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3431		   "analyze events only for given thread id(s)"),
 
 
 
 
 
3432	OPT_PARENT(sched_options)
3433	};
3434
3435	const char * const latency_usage[] = {
3436		"perf sched latency [<options>]",
3437		NULL
3438	};
3439	const char * const replay_usage[] = {
3440		"perf sched replay [<options>]",
3441		NULL
3442	};
3443	const char * const map_usage[] = {
3444		"perf sched map [<options>]",
3445		NULL
3446	};
3447	const char * const timehist_usage[] = {
3448		"perf sched timehist [<options>]",
3449		NULL
3450	};
3451	const char *const sched_subcommands[] = { "record", "latency", "map",
3452						  "replay", "script",
3453						  "timehist", NULL };
3454	const char *sched_usage[] = {
3455		NULL,
3456		NULL
3457	};
3458	struct trace_sched_handler lat_ops  = {
3459		.wakeup_event	    = latency_wakeup_event,
3460		.switch_event	    = latency_switch_event,
3461		.runtime_event	    = latency_runtime_event,
3462		.migrate_task_event = latency_migrate_task_event,
3463	};
3464	struct trace_sched_handler map_ops  = {
3465		.switch_event	    = map_switch_event,
3466	};
3467	struct trace_sched_handler replay_ops  = {
3468		.wakeup_event	    = replay_wakeup_event,
3469		.switch_event	    = replay_switch_event,
3470		.fork_event	    = replay_fork_event,
3471	};
3472	unsigned int i;
3473
3474	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3475		sched.curr_pid[i] = -1;
 
 
 
 
3476
3477	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3478					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3479	if (!argc)
3480		usage_with_options(sched_usage, sched_options);
3481
3482	/*
3483	 * Aliased to 'perf script' for now:
3484	 */
3485	if (!strcmp(argv[0], "script"))
3486		return cmd_script(argc, argv);
3487
3488	if (!strncmp(argv[0], "rec", 3)) {
3489		return __cmd_record(argc, argv);
3490	} else if (!strncmp(argv[0], "lat", 3)) {
3491		sched.tp_handler = &lat_ops;
3492		if (argc > 1) {
3493			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3494			if (argc)
3495				usage_with_options(latency_usage, latency_options);
3496		}
3497		setup_sorting(&sched, latency_options, latency_usage);
3498		return perf_sched__lat(&sched);
3499	} else if (!strcmp(argv[0], "map")) {
3500		if (argc) {
3501			argc = parse_options(argc, argv, map_options, map_usage, 0);
3502			if (argc)
3503				usage_with_options(map_usage, map_options);
 
 
 
 
 
 
 
 
3504		}
3505		sched.tp_handler = &map_ops;
3506		setup_sorting(&sched, latency_options, latency_usage);
3507		return perf_sched__map(&sched);
3508	} else if (!strncmp(argv[0], "rep", 3)) {
3509		sched.tp_handler = &replay_ops;
3510		if (argc) {
3511			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3512			if (argc)
3513				usage_with_options(replay_usage, replay_options);
3514		}
3515		return perf_sched__replay(&sched);
3516	} else if (!strcmp(argv[0], "timehist")) {
3517		if (argc) {
3518			argc = parse_options(argc, argv, timehist_options,
3519					     timehist_usage, 0);
3520			if (argc)
3521				usage_with_options(timehist_usage, timehist_options);
3522		}
3523		if ((sched.show_wakeups || sched.show_next) &&
3524		    sched.summary_only) {
3525			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3526			parse_options_usage(timehist_usage, timehist_options, "s", true);
3527			if (sched.show_wakeups)
3528				parse_options_usage(NULL, timehist_options, "w", true);
3529			if (sched.show_next)
3530				parse_options_usage(NULL, timehist_options, "n", true);
3531			return -EINVAL;
3532		}
 
 
 
3533
3534		return perf_sched__timehist(&sched);
3535	} else {
3536		usage_with_options(sched_usage, sched_options);
3537	}
 
 
 
3538
3539	return 0;
3540}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
 
   3#include "perf-sys.h"
   4
   5#include "util/cpumap.h"
   6#include "util/evlist.h"
   7#include "util/evsel.h"
   8#include "util/evsel_fprintf.h"
   9#include "util/mutex.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29#include "util/util.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
  54#define MAX_PRIO		140
  55
  56static const char *cpu_list;
  57static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  58
  59struct sched_atom;
  60
  61struct task_desc {
  62	unsigned long		nr;
  63	unsigned long		pid;
  64	char			comm[COMM_LEN];
  65
  66	unsigned long		nr_events;
  67	unsigned long		curr_event;
  68	struct sched_atom	**atoms;
  69
  70	pthread_t		thread;
 
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
 
  82};
  83
  84struct sched_atom {
  85	enum sched_event_type	type;
 
  86	u64			timestamp;
  87	u64			duration;
  88	unsigned long		nr;
  89	sem_t			*wait_sem;
  90	struct task_desc	*wakee;
  91};
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93enum thread_state {
  94	THREAD_SLEEPING = 0,
  95	THREAD_WAIT_CPU,
  96	THREAD_SCHED_IN,
  97	THREAD_IGNORE
  98};
  99
 100struct work_atom {
 101	struct list_head	list;
 102	enum thread_state	state;
 103	u64			sched_out_time;
 104	u64			wake_up_time;
 105	u64			sched_in_time;
 106	u64			runtime;
 107};
 108
 109struct work_atoms {
 110	struct list_head	work_list;
 111	struct thread		*thread;
 112	struct rb_node		node;
 113	u64			max_lat;
 114	u64			max_lat_start;
 115	u64			max_lat_end;
 116	u64			total_lat;
 117	u64			nb_atoms;
 118	u64			total_runtime;
 119	int			num_merged;
 120};
 121
 122typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 123
 124struct perf_sched;
 125
 126struct trace_sched_handler {
 127	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 128			    struct perf_sample *sample, struct machine *machine);
 129
 130	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 131			     struct perf_sample *sample, struct machine *machine);
 132
 133	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 134			    struct perf_sample *sample, struct machine *machine);
 135
 136	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 137	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 138			  struct machine *machine);
 139
 140	int (*migrate_task_event)(struct perf_sched *sched,
 141				  struct evsel *evsel,
 142				  struct perf_sample *sample,
 143				  struct machine *machine);
 144};
 145
 146#define COLOR_PIDS PERF_COLOR_BLUE
 147#define COLOR_CPUS PERF_COLOR_BG_RED
 148
 149struct perf_sched_map {
 150	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 151	struct perf_cpu		*comp_cpus;
 152	bool			 comp;
 153	struct perf_thread_map *color_pids;
 154	const char		*color_pids_str;
 155	struct perf_cpu_map	*color_cpus;
 156	const char		*color_cpus_str;
 157	const char		*task_name;
 158	struct strlist		*task_names;
 159	bool			fuzzy;
 160	struct perf_cpu_map	*cpus;
 161	const char		*cpus_str;
 162};
 163
 164struct perf_sched {
 165	struct perf_tool tool;
 166	const char	 *sort_order;
 167	unsigned long	 nr_tasks;
 168	struct task_desc **pid_to_task;
 169	struct task_desc **tasks;
 170	const struct trace_sched_handler *tp_handler;
 171	struct mutex	 start_work_mutex;
 172	struct mutex	 work_done_wait_mutex;
 173	int		 profile_cpu;
 174/*
 175 * Track the current task - that way we can know whether there's any
 176 * weird events, such as a task being switched away that is not current.
 177 */
 178	struct perf_cpu	 max_cpu;
 179	u32		 *curr_pid;
 180	struct thread	 **curr_thread;
 181	struct thread	 **curr_out_thread;
 182	char		 next_shortname1;
 183	char		 next_shortname2;
 184	unsigned int	 replay_repeat;
 185	unsigned long	 nr_run_events;
 186	unsigned long	 nr_sleep_events;
 187	unsigned long	 nr_wakeup_events;
 188	unsigned long	 nr_sleep_corrections;
 189	unsigned long	 nr_run_events_optimized;
 190	unsigned long	 targetless_wakeups;
 191	unsigned long	 multitarget_wakeups;
 192	unsigned long	 nr_runs;
 193	unsigned long	 nr_timestamps;
 194	unsigned long	 nr_unordered_timestamps;
 195	unsigned long	 nr_context_switch_bugs;
 196	unsigned long	 nr_events;
 197	unsigned long	 nr_lost_chunks;
 198	unsigned long	 nr_lost_events;
 199	u64		 run_measurement_overhead;
 200	u64		 sleep_measurement_overhead;
 201	u64		 start_time;
 202	u64		 cpu_usage;
 203	u64		 runavg_cpu_usage;
 204	u64		 parent_cpu_usage;
 205	u64		 runavg_parent_cpu_usage;
 206	u64		 sum_runtime;
 207	u64		 sum_fluct;
 208	u64		 run_avg;
 209	u64		 all_runtime;
 210	u64		 all_count;
 211	u64		 *cpu_last_switched;
 212	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 213	struct list_head sort_list, cmp_pid;
 214	bool force;
 215	bool skip_merge;
 216	struct perf_sched_map map;
 217
 218	/* options for timehist command */
 219	bool		summary;
 220	bool		summary_only;
 221	bool		idle_hist;
 222	bool		show_callchain;
 223	unsigned int	max_stack;
 224	bool		show_cpu_visual;
 225	bool		show_wakeups;
 226	bool		show_next;
 227	bool		show_migrations;
 228	bool		pre_migrations;
 229	bool		show_state;
 230	bool		show_prio;
 231	u64		skipped_samples;
 232	const char	*time_str;
 233	struct perf_time_interval ptime;
 234	struct perf_time_interval hist_time;
 235	volatile bool   thread_funcs_exit;
 236	const char	*prio_str;
 237	DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
 238};
 239
 240/* per thread run time data */
 241struct thread_runtime {
 242	u64 last_time;      /* time of previous sched in/out event */
 243	u64 dt_run;         /* run time */
 244	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 245	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 246	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 247	u64 dt_delay;       /* time between wakeup and sched-in */
 248	u64 dt_pre_mig;     /* time between migration and wakeup */
 249	u64 ready_to_run;   /* time of wakeup */
 250	u64 migrated;	    /* time when a thread is migrated */
 251
 252	struct stats run_stats;
 253	u64 total_run_time;
 254	u64 total_sleep_time;
 255	u64 total_iowait_time;
 256	u64 total_preempt_time;
 257	u64 total_delay_time;
 258	u64 total_pre_mig_time;
 259
 260	char last_state;
 261
 262	char shortname[3];
 263	bool comm_changed;
 264
 265	u64 migrations;
 266
 267	int prio;
 268};
 269
 270/* per event run time data */
 271struct evsel_runtime {
 272	u64 *last_time; /* time this event was last seen per cpu */
 273	u32 ncpu;       /* highest cpu slot allocated */
 274};
 275
 276/* per cpu idle time data */
 277struct idle_thread_runtime {
 278	struct thread_runtime	tr;
 279	struct thread		*last_thread;
 280	struct rb_root_cached	sorted_root;
 281	struct callchain_root	callchain;
 282	struct callchain_cursor	cursor;
 283};
 284
 285/* track idle times per cpu */
 286static struct thread **idle_threads;
 287static int idle_max_cpu;
 288static char idle_comm[] = "<idle>";
 289
 290static u64 get_nsecs(void)
 291{
 292	struct timespec ts;
 293
 294	clock_gettime(CLOCK_MONOTONIC, &ts);
 295
 296	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 297}
 298
 299static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 300{
 301	u64 T0 = get_nsecs(), T1;
 302
 303	do {
 304		T1 = get_nsecs();
 305	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 306}
 307
 308static void sleep_nsecs(u64 nsecs)
 309{
 310	struct timespec ts;
 311
 312	ts.tv_nsec = nsecs % 999999999;
 313	ts.tv_sec = nsecs / 999999999;
 314
 315	nanosleep(&ts, NULL);
 316}
 317
 318static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 319{
 320	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 321	int i;
 322
 323	for (i = 0; i < 10; i++) {
 324		T0 = get_nsecs();
 325		burn_nsecs(sched, 0);
 326		T1 = get_nsecs();
 327		delta = T1-T0;
 328		min_delta = min(min_delta, delta);
 329	}
 330	sched->run_measurement_overhead = min_delta;
 331
 332	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 333}
 334
 335static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 336{
 337	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 338	int i;
 339
 340	for (i = 0; i < 10; i++) {
 341		T0 = get_nsecs();
 342		sleep_nsecs(10000);
 343		T1 = get_nsecs();
 344		delta = T1-T0;
 345		min_delta = min(min_delta, delta);
 346	}
 347	min_delta -= 10000;
 348	sched->sleep_measurement_overhead = min_delta;
 349
 350	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 351}
 352
 353static struct sched_atom *
 354get_new_event(struct task_desc *task, u64 timestamp)
 355{
 356	struct sched_atom *event = zalloc(sizeof(*event));
 357	unsigned long idx = task->nr_events;
 358	size_t size;
 359
 360	event->timestamp = timestamp;
 361	event->nr = idx;
 362
 363	task->nr_events++;
 364	size = sizeof(struct sched_atom *) * task->nr_events;
 365	task->atoms = realloc(task->atoms, size);
 366	BUG_ON(!task->atoms);
 367
 368	task->atoms[idx] = event;
 369
 370	return event;
 371}
 372
 373static struct sched_atom *last_event(struct task_desc *task)
 374{
 375	if (!task->nr_events)
 376		return NULL;
 377
 378	return task->atoms[task->nr_events - 1];
 379}
 380
 381static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 382				u64 timestamp, u64 duration)
 383{
 384	struct sched_atom *event, *curr_event = last_event(task);
 385
 386	/*
 387	 * optimize an existing RUN event by merging this one
 388	 * to it:
 389	 */
 390	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 391		sched->nr_run_events_optimized++;
 392		curr_event->duration += duration;
 393		return;
 394	}
 395
 396	event = get_new_event(task, timestamp);
 397
 398	event->type = SCHED_EVENT_RUN;
 399	event->duration = duration;
 400
 401	sched->nr_run_events++;
 402}
 403
 404static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 405				   u64 timestamp, struct task_desc *wakee)
 406{
 407	struct sched_atom *event, *wakee_event;
 408
 409	event = get_new_event(task, timestamp);
 410	event->type = SCHED_EVENT_WAKEUP;
 411	event->wakee = wakee;
 412
 413	wakee_event = last_event(wakee);
 414	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 415		sched->targetless_wakeups++;
 416		return;
 417	}
 418	if (wakee_event->wait_sem) {
 419		sched->multitarget_wakeups++;
 420		return;
 421	}
 422
 423	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 424	sem_init(wakee_event->wait_sem, 0, 0);
 
 425	event->wait_sem = wakee_event->wait_sem;
 426
 427	sched->nr_wakeup_events++;
 428}
 429
 430static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 431				  u64 timestamp)
 432{
 433	struct sched_atom *event = get_new_event(task, timestamp);
 434
 435	event->type = SCHED_EVENT_SLEEP;
 436
 437	sched->nr_sleep_events++;
 438}
 439
 440static struct task_desc *register_pid(struct perf_sched *sched,
 441				      unsigned long pid, const char *comm)
 442{
 443	struct task_desc *task;
 444	static int pid_max;
 445
 446	if (sched->pid_to_task == NULL) {
 447		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 448			pid_max = MAX_PID;
 449		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 450	}
 451	if (pid >= (unsigned long)pid_max) {
 452		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 453			sizeof(struct task_desc *))) == NULL);
 454		while (pid >= (unsigned long)pid_max)
 455			sched->pid_to_task[pid_max++] = NULL;
 456	}
 457
 458	task = sched->pid_to_task[pid];
 459
 460	if (task)
 461		return task;
 462
 463	task = zalloc(sizeof(*task));
 464	task->pid = pid;
 465	task->nr = sched->nr_tasks;
 466	strcpy(task->comm, comm);
 467	/*
 468	 * every task starts in sleeping state - this gets ignored
 469	 * if there's no wakeup pointing to this sleep state:
 470	 */
 471	add_sched_event_sleep(sched, task, 0);
 472
 473	sched->pid_to_task[pid] = task;
 474	sched->nr_tasks++;
 475	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 476	BUG_ON(!sched->tasks);
 477	sched->tasks[task->nr] = task;
 478
 479	if (verbose > 0)
 480		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 481
 482	return task;
 483}
 484
 485
 486static void print_task_traces(struct perf_sched *sched)
 487{
 488	struct task_desc *task;
 489	unsigned long i;
 490
 491	for (i = 0; i < sched->nr_tasks; i++) {
 492		task = sched->tasks[i];
 493		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 494			task->nr, task->comm, task->pid, task->nr_events);
 495	}
 496}
 497
 498static void add_cross_task_wakeups(struct perf_sched *sched)
 499{
 500	struct task_desc *task1, *task2;
 501	unsigned long i, j;
 502
 503	for (i = 0; i < sched->nr_tasks; i++) {
 504		task1 = sched->tasks[i];
 505		j = i + 1;
 506		if (j == sched->nr_tasks)
 507			j = 0;
 508		task2 = sched->tasks[j];
 509		add_sched_event_wakeup(sched, task1, 0, task2);
 510	}
 511}
 512
 513static void perf_sched__process_event(struct perf_sched *sched,
 514				      struct sched_atom *atom)
 515{
 516	int ret = 0;
 517
 518	switch (atom->type) {
 519		case SCHED_EVENT_RUN:
 520			burn_nsecs(sched, atom->duration);
 521			break;
 522		case SCHED_EVENT_SLEEP:
 523			if (atom->wait_sem)
 524				ret = sem_wait(atom->wait_sem);
 525			BUG_ON(ret);
 526			break;
 527		case SCHED_EVENT_WAKEUP:
 528			if (atom->wait_sem)
 529				ret = sem_post(atom->wait_sem);
 530			BUG_ON(ret);
 531			break;
 
 
 532		default:
 533			BUG_ON(1);
 534	}
 535}
 536
 537static u64 get_cpu_usage_nsec_parent(void)
 538{
 539	struct rusage ru;
 540	u64 sum;
 541	int err;
 542
 543	err = getrusage(RUSAGE_SELF, &ru);
 544	BUG_ON(err);
 545
 546	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 547	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 548
 549	return sum;
 550}
 551
 552static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 553{
 554	struct perf_event_attr attr;
 555	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 556	int fd;
 557	struct rlimit limit;
 558	bool need_privilege = false;
 559
 560	memset(&attr, 0, sizeof(attr));
 561
 562	attr.type = PERF_TYPE_SOFTWARE;
 563	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 564
 565force_again:
 566	fd = sys_perf_event_open(&attr, 0, -1, -1,
 567				 perf_event_open_cloexec_flag());
 568
 569	if (fd < 0) {
 570		if (errno == EMFILE) {
 571			if (sched->force) {
 572				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 573				limit.rlim_cur += sched->nr_tasks - cur_task;
 574				if (limit.rlim_cur > limit.rlim_max) {
 575					limit.rlim_max = limit.rlim_cur;
 576					need_privilege = true;
 577				}
 578				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 579					if (need_privilege && errno == EPERM)
 580						strcpy(info, "Need privilege\n");
 581				} else
 582					goto force_again;
 583			} else
 584				strcpy(info, "Have a try with -f option\n");
 585		}
 586		pr_err("Error: sys_perf_event_open() syscall returned "
 587		       "with %d (%s)\n%s", fd,
 588		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 589		exit(EXIT_FAILURE);
 590	}
 591	return fd;
 592}
 593
 594static u64 get_cpu_usage_nsec_self(int fd)
 595{
 596	u64 runtime;
 597	int ret;
 598
 599	ret = read(fd, &runtime, sizeof(runtime));
 600	BUG_ON(ret != sizeof(runtime));
 601
 602	return runtime;
 603}
 604
 605struct sched_thread_parms {
 606	struct task_desc  *task;
 607	struct perf_sched *sched;
 608	int fd;
 609};
 610
 611static void *thread_func(void *ctx)
 612{
 613	struct sched_thread_parms *parms = ctx;
 614	struct task_desc *this_task = parms->task;
 615	struct perf_sched *sched = parms->sched;
 616	u64 cpu_usage_0, cpu_usage_1;
 617	unsigned long i, ret;
 618	char comm2[22];
 619	int fd = parms->fd;
 620
 621	zfree(&parms);
 622
 623	sprintf(comm2, ":%s", this_task->comm);
 624	prctl(PR_SET_NAME, comm2);
 625	if (fd < 0)
 626		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627
 628	while (!sched->thread_funcs_exit) {
 629		ret = sem_post(&this_task->ready_for_work);
 630		BUG_ON(ret);
 631		mutex_lock(&sched->start_work_mutex);
 632		mutex_unlock(&sched->start_work_mutex);
 633
 634		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 635
 636		for (i = 0; i < this_task->nr_events; i++) {
 637			this_task->curr_event = i;
 638			perf_sched__process_event(sched, this_task->atoms[i]);
 639		}
 640
 641		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 642		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 643		ret = sem_post(&this_task->work_done_sem);
 644		BUG_ON(ret);
 645
 646		mutex_lock(&sched->work_done_wait_mutex);
 647		mutex_unlock(&sched->work_done_wait_mutex);
 648	}
 649	return NULL;
 650}
 651
 652static void create_tasks(struct perf_sched *sched)
 653	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 654	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 655{
 656	struct task_desc *task;
 657	pthread_attr_t attr;
 658	unsigned long i;
 659	int err;
 660
 661	err = pthread_attr_init(&attr);
 662	BUG_ON(err);
 663	err = pthread_attr_setstacksize(&attr,
 664			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 
 
 
 
 665	BUG_ON(err);
 666	mutex_lock(&sched->start_work_mutex);
 667	mutex_lock(&sched->work_done_wait_mutex);
 668	for (i = 0; i < sched->nr_tasks; i++) {
 669		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 670		BUG_ON(parms == NULL);
 671		parms->task = task = sched->tasks[i];
 672		parms->sched = sched;
 673		parms->fd = self_open_counters(sched, i);
 
 674		sem_init(&task->ready_for_work, 0, 0);
 675		sem_init(&task->work_done_sem, 0, 0);
 676		task->curr_event = 0;
 677		err = pthread_create(&task->thread, &attr, thread_func, parms);
 678		BUG_ON(err);
 679	}
 680}
 681
 682static void destroy_tasks(struct perf_sched *sched)
 683	UNLOCK_FUNCTION(sched->start_work_mutex)
 684	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 685{
 686	struct task_desc *task;
 687	unsigned long i;
 688	int err;
 689
 690	mutex_unlock(&sched->start_work_mutex);
 691	mutex_unlock(&sched->work_done_wait_mutex);
 692	/* Get rid of threads so they won't be upset by mutex destrunction */
 693	for (i = 0; i < sched->nr_tasks; i++) {
 694		task = sched->tasks[i];
 695		err = pthread_join(task->thread, NULL);
 696		BUG_ON(err);
 697		sem_destroy(&task->ready_for_work);
 698		sem_destroy(&task->work_done_sem);
 699	}
 700}
 701
 702static void wait_for_tasks(struct perf_sched *sched)
 703	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 704	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 705{
 706	u64 cpu_usage_0, cpu_usage_1;
 707	struct task_desc *task;
 708	unsigned long i, ret;
 709
 710	sched->start_time = get_nsecs();
 711	sched->cpu_usage = 0;
 712	mutex_unlock(&sched->work_done_wait_mutex);
 713
 714	for (i = 0; i < sched->nr_tasks; i++) {
 715		task = sched->tasks[i];
 716		ret = sem_wait(&task->ready_for_work);
 717		BUG_ON(ret);
 718		sem_init(&task->ready_for_work, 0, 0);
 719	}
 720	mutex_lock(&sched->work_done_wait_mutex);
 
 721
 722	cpu_usage_0 = get_cpu_usage_nsec_parent();
 723
 724	mutex_unlock(&sched->start_work_mutex);
 725
 726	for (i = 0; i < sched->nr_tasks; i++) {
 727		task = sched->tasks[i];
 728		ret = sem_wait(&task->work_done_sem);
 729		BUG_ON(ret);
 730		sem_init(&task->work_done_sem, 0, 0);
 731		sched->cpu_usage += task->cpu_usage;
 732		task->cpu_usage = 0;
 733	}
 734
 735	cpu_usage_1 = get_cpu_usage_nsec_parent();
 736	if (!sched->runavg_cpu_usage)
 737		sched->runavg_cpu_usage = sched->cpu_usage;
 738	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 739
 740	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 741	if (!sched->runavg_parent_cpu_usage)
 742		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 743	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 744					 sched->parent_cpu_usage)/sched->replay_repeat;
 745
 746	mutex_lock(&sched->start_work_mutex);
 
 747
 748	for (i = 0; i < sched->nr_tasks; i++) {
 749		task = sched->tasks[i];
 
 750		task->curr_event = 0;
 751	}
 752}
 753
 754static void run_one_test(struct perf_sched *sched)
 755	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 756	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 757{
 758	u64 T0, T1, delta, avg_delta, fluct;
 759
 760	T0 = get_nsecs();
 761	wait_for_tasks(sched);
 762	T1 = get_nsecs();
 763
 764	delta = T1 - T0;
 765	sched->sum_runtime += delta;
 766	sched->nr_runs++;
 767
 768	avg_delta = sched->sum_runtime / sched->nr_runs;
 769	if (delta < avg_delta)
 770		fluct = avg_delta - delta;
 771	else
 772		fluct = delta - avg_delta;
 773	sched->sum_fluct += fluct;
 774	if (!sched->run_avg)
 775		sched->run_avg = delta;
 776	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 777
 778	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 779
 780	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 781
 782	printf("cpu: %0.2f / %0.2f",
 783		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 784
 785#if 0
 786	/*
 787	 * rusage statistics done by the parent, these are less
 788	 * accurate than the sched->sum_exec_runtime based statistics:
 789	 */
 790	printf(" [%0.2f / %0.2f]",
 791		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 792		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 793#endif
 794
 795	printf("\n");
 796
 797	if (sched->nr_sleep_corrections)
 798		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 799	sched->nr_sleep_corrections = 0;
 800}
 801
 802static void test_calibrations(struct perf_sched *sched)
 803{
 804	u64 T0, T1;
 805
 806	T0 = get_nsecs();
 807	burn_nsecs(sched, NSEC_PER_MSEC);
 808	T1 = get_nsecs();
 809
 810	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 811
 812	T0 = get_nsecs();
 813	sleep_nsecs(NSEC_PER_MSEC);
 814	T1 = get_nsecs();
 815
 816	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 817}
 818
 819static int
 820replay_wakeup_event(struct perf_sched *sched,
 821		    struct evsel *evsel, struct perf_sample *sample,
 822		    struct machine *machine __maybe_unused)
 823{
 824	const char *comm = evsel__strval(evsel, sample, "comm");
 825	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 826	struct task_desc *waker, *wakee;
 827
 828	if (verbose > 0) {
 829		printf("sched_wakeup event %p\n", evsel);
 830
 831		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 832	}
 833
 834	waker = register_pid(sched, sample->tid, "<unknown>");
 835	wakee = register_pid(sched, pid, comm);
 836
 837	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 838	return 0;
 839}
 840
 841static int replay_switch_event(struct perf_sched *sched,
 842			       struct evsel *evsel,
 843			       struct perf_sample *sample,
 844			       struct machine *machine __maybe_unused)
 845{
 846	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 847		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 848	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 849		  next_pid = evsel__intval(evsel, sample, "next_pid");
 
 850	struct task_desc *prev, __maybe_unused *next;
 851	u64 timestamp0, timestamp = sample->time;
 852	int cpu = sample->cpu;
 853	s64 delta;
 854
 855	if (verbose > 0)
 856		printf("sched_switch event %p\n", evsel);
 857
 858	if (cpu >= MAX_CPUS || cpu < 0)
 859		return 0;
 860
 861	timestamp0 = sched->cpu_last_switched[cpu];
 862	if (timestamp0)
 863		delta = timestamp - timestamp0;
 864	else
 865		delta = 0;
 866
 867	if (delta < 0) {
 868		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 869		return -1;
 870	}
 871
 872	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 873		 prev_comm, prev_pid, next_comm, next_pid, delta);
 874
 875	prev = register_pid(sched, prev_pid, prev_comm);
 876	next = register_pid(sched, next_pid, next_comm);
 877
 878	sched->cpu_last_switched[cpu] = timestamp;
 879
 880	add_sched_event_run(sched, prev, timestamp, delta);
 881	add_sched_event_sleep(sched, prev, timestamp);
 882
 883	return 0;
 884}
 885
 886static int replay_fork_event(struct perf_sched *sched,
 887			     union perf_event *event,
 888			     struct machine *machine)
 889{
 890	struct thread *child, *parent;
 891
 892	child = machine__findnew_thread(machine, event->fork.pid,
 893					event->fork.tid);
 894	parent = machine__findnew_thread(machine, event->fork.ppid,
 895					 event->fork.ptid);
 896
 897	if (child == NULL || parent == NULL) {
 898		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 899				 child, parent);
 900		goto out_put;
 901	}
 902
 903	if (verbose > 0) {
 904		printf("fork event\n");
 905		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
 906		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
 907	}
 908
 909	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
 910	register_pid(sched, thread__tid(child), thread__comm_str(child));
 911out_put:
 912	thread__put(child);
 913	thread__put(parent);
 914	return 0;
 915}
 916
 917struct sort_dimension {
 918	const char		*name;
 919	sort_fn_t		cmp;
 920	struct list_head	list;
 921};
 922
 923static inline void init_prio(struct thread_runtime *r)
 924{
 925	r->prio = -1;
 926}
 927
 928/*
 929 * handle runtime stats saved per thread
 930 */
 931static struct thread_runtime *thread__init_runtime(struct thread *thread)
 932{
 933	struct thread_runtime *r;
 934
 935	r = zalloc(sizeof(struct thread_runtime));
 936	if (!r)
 937		return NULL;
 938
 939	init_stats(&r->run_stats);
 940	init_prio(r);
 941	thread__set_priv(thread, r);
 942
 943	return r;
 944}
 945
 946static struct thread_runtime *thread__get_runtime(struct thread *thread)
 947{
 948	struct thread_runtime *tr;
 949
 950	tr = thread__priv(thread);
 951	if (tr == NULL) {
 952		tr = thread__init_runtime(thread);
 953		if (tr == NULL)
 954			pr_debug("Failed to malloc memory for runtime data.\n");
 955	}
 956
 957	return tr;
 958}
 959
 960static int
 961thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 962{
 963	struct sort_dimension *sort;
 964	int ret = 0;
 965
 966	BUG_ON(list_empty(list));
 967
 968	list_for_each_entry(sort, list, list) {
 969		ret = sort->cmp(l, r);
 970		if (ret)
 971			return ret;
 972	}
 973
 974	return ret;
 975}
 976
 977static struct work_atoms *
 978thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 979			 struct list_head *sort_list)
 980{
 981	struct rb_node *node = root->rb_root.rb_node;
 982	struct work_atoms key = { .thread = thread };
 983
 984	while (node) {
 985		struct work_atoms *atoms;
 986		int cmp;
 987
 988		atoms = container_of(node, struct work_atoms, node);
 989
 990		cmp = thread_lat_cmp(sort_list, &key, atoms);
 991		if (cmp > 0)
 992			node = node->rb_left;
 993		else if (cmp < 0)
 994			node = node->rb_right;
 995		else {
 996			BUG_ON(thread != atoms->thread);
 997			return atoms;
 998		}
 999	}
1000	return NULL;
1001}
1002
1003static void
1004__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1005			 struct list_head *sort_list)
1006{
1007	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1008	bool leftmost = true;
1009
1010	while (*new) {
1011		struct work_atoms *this;
1012		int cmp;
1013
1014		this = container_of(*new, struct work_atoms, node);
1015		parent = *new;
1016
1017		cmp = thread_lat_cmp(sort_list, data, this);
1018
1019		if (cmp > 0)
1020			new = &((*new)->rb_left);
1021		else {
1022			new = &((*new)->rb_right);
1023			leftmost = false;
1024		}
1025	}
1026
1027	rb_link_node(&data->node, parent, new);
1028	rb_insert_color_cached(&data->node, root, leftmost);
1029}
1030
1031static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1032{
1033	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1034	if (!atoms) {
1035		pr_err("No memory at %s\n", __func__);
1036		return -1;
1037	}
1038
1039	atoms->thread = thread__get(thread);
1040	INIT_LIST_HEAD(&atoms->work_list);
1041	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1042	return 0;
1043}
1044
 
 
 
 
 
 
 
1045static int
1046add_sched_out_event(struct work_atoms *atoms,
1047		    char run_state,
1048		    u64 timestamp)
1049{
1050	struct work_atom *atom = zalloc(sizeof(*atom));
1051	if (!atom) {
1052		pr_err("Non memory at %s", __func__);
1053		return -1;
1054	}
1055
1056	atom->sched_out_time = timestamp;
1057
1058	if (run_state == 'R') {
1059		atom->state = THREAD_WAIT_CPU;
1060		atom->wake_up_time = atom->sched_out_time;
1061	}
1062
1063	list_add_tail(&atom->list, &atoms->work_list);
1064	return 0;
1065}
1066
1067static void
1068add_runtime_event(struct work_atoms *atoms, u64 delta,
1069		  u64 timestamp __maybe_unused)
1070{
1071	struct work_atom *atom;
1072
1073	BUG_ON(list_empty(&atoms->work_list));
1074
1075	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1076
1077	atom->runtime += delta;
1078	atoms->total_runtime += delta;
1079}
1080
1081static void
1082add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1083{
1084	struct work_atom *atom;
1085	u64 delta;
1086
1087	if (list_empty(&atoms->work_list))
1088		return;
1089
1090	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092	if (atom->state != THREAD_WAIT_CPU)
1093		return;
1094
1095	if (timestamp < atom->wake_up_time) {
1096		atom->state = THREAD_IGNORE;
1097		return;
1098	}
1099
1100	atom->state = THREAD_SCHED_IN;
1101	atom->sched_in_time = timestamp;
1102
1103	delta = atom->sched_in_time - atom->wake_up_time;
1104	atoms->total_lat += delta;
1105	if (delta > atoms->max_lat) {
1106		atoms->max_lat = delta;
1107		atoms->max_lat_start = atom->wake_up_time;
1108		atoms->max_lat_end = timestamp;
1109	}
1110	atoms->nb_atoms++;
1111}
1112
1113static int latency_switch_event(struct perf_sched *sched,
1114				struct evsel *evsel,
1115				struct perf_sample *sample,
1116				struct machine *machine)
1117{
1118	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1119		  next_pid = evsel__intval(evsel, sample, "next_pid");
1120	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1121	struct work_atoms *out_events, *in_events;
1122	struct thread *sched_out, *sched_in;
1123	u64 timestamp0, timestamp = sample->time;
1124	int cpu = sample->cpu, err = -1;
1125	s64 delta;
1126
1127	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1128
1129	timestamp0 = sched->cpu_last_switched[cpu];
1130	sched->cpu_last_switched[cpu] = timestamp;
1131	if (timestamp0)
1132		delta = timestamp - timestamp0;
1133	else
1134		delta = 0;
1135
1136	if (delta < 0) {
1137		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1138		return -1;
1139	}
1140
1141	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1142	sched_in = machine__findnew_thread(machine, -1, next_pid);
1143	if (sched_out == NULL || sched_in == NULL)
1144		goto out_put;
1145
1146	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1147	if (!out_events) {
1148		if (thread_atoms_insert(sched, sched_out))
1149			goto out_put;
1150		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1151		if (!out_events) {
1152			pr_err("out-event: Internal tree error");
1153			goto out_put;
1154		}
1155	}
1156	if (add_sched_out_event(out_events, prev_state, timestamp))
1157		return -1;
1158
1159	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1160	if (!in_events) {
1161		if (thread_atoms_insert(sched, sched_in))
1162			goto out_put;
1163		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1164		if (!in_events) {
1165			pr_err("in-event: Internal tree error");
1166			goto out_put;
1167		}
1168		/*
1169		 * Take came in we have not heard about yet,
1170		 * add in an initial atom in runnable state:
1171		 */
1172		if (add_sched_out_event(in_events, 'R', timestamp))
1173			goto out_put;
1174	}
1175	add_sched_in_event(in_events, timestamp);
1176	err = 0;
1177out_put:
1178	thread__put(sched_out);
1179	thread__put(sched_in);
1180	return err;
1181}
1182
1183static int latency_runtime_event(struct perf_sched *sched,
1184				 struct evsel *evsel,
1185				 struct perf_sample *sample,
1186				 struct machine *machine)
1187{
1188	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1189	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1190	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1191	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1192	u64 timestamp = sample->time;
1193	int cpu = sample->cpu, err = -1;
1194
1195	if (thread == NULL)
1196		return -1;
1197
1198	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1199	if (!atoms) {
1200		if (thread_atoms_insert(sched, thread))
1201			goto out_put;
1202		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1203		if (!atoms) {
1204			pr_err("in-event: Internal tree error");
1205			goto out_put;
1206		}
1207		if (add_sched_out_event(atoms, 'R', timestamp))
1208			goto out_put;
1209	}
1210
1211	add_runtime_event(atoms, runtime, timestamp);
1212	err = 0;
1213out_put:
1214	thread__put(thread);
1215	return err;
1216}
1217
1218static int latency_wakeup_event(struct perf_sched *sched,
1219				struct evsel *evsel,
1220				struct perf_sample *sample,
1221				struct machine *machine)
1222{
1223	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1224	struct work_atoms *atoms;
1225	struct work_atom *atom;
1226	struct thread *wakee;
1227	u64 timestamp = sample->time;
1228	int err = -1;
1229
1230	wakee = machine__findnew_thread(machine, -1, pid);
1231	if (wakee == NULL)
1232		return -1;
1233	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1234	if (!atoms) {
1235		if (thread_atoms_insert(sched, wakee))
1236			goto out_put;
1237		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1238		if (!atoms) {
1239			pr_err("wakeup-event: Internal tree error");
1240			goto out_put;
1241		}
1242		if (add_sched_out_event(atoms, 'S', timestamp))
1243			goto out_put;
1244	}
1245
1246	BUG_ON(list_empty(&atoms->work_list));
1247
1248	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1249
1250	/*
1251	 * As we do not guarantee the wakeup event happens when
1252	 * task is out of run queue, also may happen when task is
1253	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1254	 * then we should not set the ->wake_up_time when wake up a
1255	 * task which is on run queue.
1256	 *
1257	 * You WILL be missing events if you've recorded only
1258	 * one CPU, or are only looking at only one, so don't
1259	 * skip in this case.
1260	 */
1261	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1262		goto out_ok;
1263
1264	sched->nr_timestamps++;
1265	if (atom->sched_out_time > timestamp) {
1266		sched->nr_unordered_timestamps++;
1267		goto out_ok;
1268	}
1269
1270	atom->state = THREAD_WAIT_CPU;
1271	atom->wake_up_time = timestamp;
1272out_ok:
1273	err = 0;
1274out_put:
1275	thread__put(wakee);
1276	return err;
1277}
1278
1279static int latency_migrate_task_event(struct perf_sched *sched,
1280				      struct evsel *evsel,
1281				      struct perf_sample *sample,
1282				      struct machine *machine)
1283{
1284	const u32 pid = evsel__intval(evsel, sample, "pid");
1285	u64 timestamp = sample->time;
1286	struct work_atoms *atoms;
1287	struct work_atom *atom;
1288	struct thread *migrant;
1289	int err = -1;
1290
1291	/*
1292	 * Only need to worry about migration when profiling one CPU.
1293	 */
1294	if (sched->profile_cpu == -1)
1295		return 0;
1296
1297	migrant = machine__findnew_thread(machine, -1, pid);
1298	if (migrant == NULL)
1299		return -1;
1300	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1301	if (!atoms) {
1302		if (thread_atoms_insert(sched, migrant))
1303			goto out_put;
1304		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1305		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1306		if (!atoms) {
1307			pr_err("migration-event: Internal tree error");
1308			goto out_put;
1309		}
1310		if (add_sched_out_event(atoms, 'R', timestamp))
1311			goto out_put;
1312	}
1313
1314	BUG_ON(list_empty(&atoms->work_list));
1315
1316	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1317	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1318
1319	sched->nr_timestamps++;
1320
1321	if (atom->sched_out_time > timestamp)
1322		sched->nr_unordered_timestamps++;
1323	err = 0;
1324out_put:
1325	thread__put(migrant);
1326	return err;
1327}
1328
1329static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1330{
1331	int i;
1332	int ret;
1333	u64 avg;
1334	char max_lat_start[32], max_lat_end[32];
1335
1336	if (!work_list->nb_atoms)
1337		return;
1338	/*
1339	 * Ignore idle threads:
1340	 */
1341	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1342		return;
1343
1344	sched->all_runtime += work_list->total_runtime;
1345	sched->all_count   += work_list->nb_atoms;
1346
1347	if (work_list->num_merged > 1) {
1348		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1349			     work_list->num_merged);
1350	} else {
1351		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1352			     thread__tid(work_list->thread));
1353	}
1354
1355	for (i = 0; i < 24 - ret; i++)
1356		printf(" ");
1357
1358	avg = work_list->total_lat / work_list->nb_atoms;
1359	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1360	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1361
1362	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1363	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1364		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1365		 (double)work_list->max_lat / NSEC_PER_MSEC,
1366		 max_lat_start, max_lat_end);
1367}
1368
1369static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1370{
1371	pid_t l_tid, r_tid;
1372
1373	if (RC_CHK_EQUAL(l->thread, r->thread))
1374		return 0;
1375	l_tid = thread__tid(l->thread);
1376	r_tid = thread__tid(r->thread);
1377	if (l_tid < r_tid)
1378		return -1;
1379	if (l_tid > r_tid)
1380		return 1;
1381	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1382}
1383
1384static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1385{
1386	u64 avgl, avgr;
1387
1388	if (!l->nb_atoms)
1389		return -1;
1390
1391	if (!r->nb_atoms)
1392		return 1;
1393
1394	avgl = l->total_lat / l->nb_atoms;
1395	avgr = r->total_lat / r->nb_atoms;
1396
1397	if (avgl < avgr)
1398		return -1;
1399	if (avgl > avgr)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->max_lat < r->max_lat)
1408		return -1;
1409	if (l->max_lat > r->max_lat)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1416{
1417	if (l->nb_atoms < r->nb_atoms)
1418		return -1;
1419	if (l->nb_atoms > r->nb_atoms)
1420		return 1;
1421
1422	return 0;
1423}
1424
1425static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1426{
1427	if (l->total_runtime < r->total_runtime)
1428		return -1;
1429	if (l->total_runtime > r->total_runtime)
1430		return 1;
1431
1432	return 0;
1433}
1434
1435static int sort_dimension__add(const char *tok, struct list_head *list)
1436{
1437	size_t i;
1438	static struct sort_dimension avg_sort_dimension = {
1439		.name = "avg",
1440		.cmp  = avg_cmp,
1441	};
1442	static struct sort_dimension max_sort_dimension = {
1443		.name = "max",
1444		.cmp  = max_cmp,
1445	};
1446	static struct sort_dimension pid_sort_dimension = {
1447		.name = "pid",
1448		.cmp  = pid_cmp,
1449	};
1450	static struct sort_dimension runtime_sort_dimension = {
1451		.name = "runtime",
1452		.cmp  = runtime_cmp,
1453	};
1454	static struct sort_dimension switch_sort_dimension = {
1455		.name = "switch",
1456		.cmp  = switch_cmp,
1457	};
1458	struct sort_dimension *available_sorts[] = {
1459		&pid_sort_dimension,
1460		&avg_sort_dimension,
1461		&max_sort_dimension,
1462		&switch_sort_dimension,
1463		&runtime_sort_dimension,
1464	};
1465
1466	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1467		if (!strcmp(available_sorts[i]->name, tok)) {
1468			list_add_tail(&available_sorts[i]->list, list);
1469
1470			return 0;
1471		}
1472	}
1473
1474	return -1;
1475}
1476
1477static void perf_sched__sort_lat(struct perf_sched *sched)
1478{
1479	struct rb_node *node;
1480	struct rb_root_cached *root = &sched->atom_root;
1481again:
1482	for (;;) {
1483		struct work_atoms *data;
1484		node = rb_first_cached(root);
1485		if (!node)
1486			break;
1487
1488		rb_erase_cached(node, root);
1489		data = rb_entry(node, struct work_atoms, node);
1490		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1491	}
1492	if (root == &sched->atom_root) {
1493		root = &sched->merged_atom_root;
1494		goto again;
1495	}
1496}
1497
1498static int process_sched_wakeup_event(const struct perf_tool *tool,
1499				      struct evsel *evsel,
1500				      struct perf_sample *sample,
1501				      struct machine *machine)
1502{
1503	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1504
1505	if (sched->tp_handler->wakeup_event)
1506		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1507
1508	return 0;
1509}
1510
1511static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1512				      struct evsel *evsel __maybe_unused,
1513				      struct perf_sample *sample __maybe_unused,
1514				      struct machine *machine __maybe_unused)
1515{
1516	return 0;
1517}
1518
1519union map_priv {
1520	void	*ptr;
1521	bool	 color;
1522};
1523
1524static bool thread__has_color(struct thread *thread)
1525{
1526	union map_priv priv = {
1527		.ptr = thread__priv(thread),
1528	};
1529
1530	return priv.color;
1531}
1532
1533static struct thread*
1534map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1535{
1536	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1537	union map_priv priv = {
1538		.color = false,
1539	};
1540
1541	if (!sched->map.color_pids || !thread || thread__priv(thread))
1542		return thread;
1543
1544	if (thread_map__has(sched->map.color_pids, tid))
1545		priv.color = true;
1546
1547	thread__set_priv(thread, priv.ptr);
1548	return thread;
1549}
1550
1551static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1552{
1553	bool fuzzy_match = sched->map.fuzzy;
1554	struct strlist *task_names = sched->map.task_names;
1555	struct str_node *node;
1556
1557	strlist__for_each_entry(node, task_names) {
1558		bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1559							!strcmp(comm_str, node->s);
1560		if (match_found)
1561			return true;
1562	}
1563
1564	return false;
1565}
1566
1567static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1568								const char *color, bool sched_out)
1569{
1570	for (int i = 0; i < cpus_nr; i++) {
1571		struct perf_cpu cpu = {
1572			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1573		};
1574		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1575		struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1576		struct thread_runtime *curr_tr;
1577		const char *pid_color = color;
1578		const char *cpu_color = color;
1579		char symbol = ' ';
1580		struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1581
1582		if (thread_to_check && thread__has_color(thread_to_check))
1583			pid_color = COLOR_PIDS;
1584
1585		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1586			cpu_color = COLOR_CPUS;
1587
1588		if (cpu.cpu == this_cpu.cpu)
1589			symbol = '*';
1590
1591		color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1592
1593		thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1594								sched->curr_thread[cpu.cpu];
1595
1596		if (thread_to_check) {
1597			curr_tr = thread__get_runtime(thread_to_check);
1598			if (curr_tr == NULL)
1599				return;
1600
1601			if (sched_out) {
1602				if (cpu.cpu == this_cpu.cpu)
1603					color_fprintf(stdout, color, "-  ");
1604				else {
1605					curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1606					if (curr_tr != NULL)
1607						color_fprintf(stdout, pid_color, "%2s ",
1608										curr_tr->shortname);
1609				}
1610			} else
1611				color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1612		} else
1613			color_fprintf(stdout, color, "   ");
1614	}
1615}
1616
1617static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1618			    struct perf_sample *sample, struct machine *machine)
1619{
1620	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1621	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1622	struct thread *sched_in, *sched_out;
1623	struct thread_runtime *tr;
1624	int new_shortname;
1625	u64 timestamp0, timestamp = sample->time;
1626	s64 delta;
1627	struct perf_cpu this_cpu = {
1628		.cpu = sample->cpu,
1629	};
1630	int cpus_nr;
1631	int proceed;
1632	bool new_cpu = false;
1633	const char *color = PERF_COLOR_NORMAL;
1634	char stimestamp[32];
1635	const char *str;
1636
1637	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1638
1639	if (this_cpu.cpu > sched->max_cpu.cpu)
1640		sched->max_cpu = this_cpu;
1641
1642	if (sched->map.comp) {
1643		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1644		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1645			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1646			new_cpu = true;
1647		}
1648	} else
1649		cpus_nr = sched->max_cpu.cpu;
1650
1651	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1652	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1653	if (timestamp0)
1654		delta = timestamp - timestamp0;
1655	else
1656		delta = 0;
1657
1658	if (delta < 0) {
1659		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1660		return -1;
1661	}
1662
1663	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1664	sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1665	if (sched_in == NULL || sched_out == NULL)
1666		return -1;
1667
1668	tr = thread__get_runtime(sched_in);
1669	if (tr == NULL) {
1670		thread__put(sched_in);
1671		return -1;
1672	}
1673
1674	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1675	sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
 
1676
1677	str = thread__comm_str(sched_in);
1678	new_shortname = 0;
1679	if (!tr->shortname[0]) {
1680		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1681			/*
1682			 * Don't allocate a letter-number for swapper:0
1683			 * as a shortname. Instead, we use '.' for it.
1684			 */
1685			tr->shortname[0] = '.';
1686			tr->shortname[1] = ' ';
1687		} else if (!sched->map.task_name || sched_match_task(sched, str)) {
1688			tr->shortname[0] = sched->next_shortname1;
1689			tr->shortname[1] = sched->next_shortname2;
1690
1691			if (sched->next_shortname1 < 'Z') {
1692				sched->next_shortname1++;
1693			} else {
1694				sched->next_shortname1 = 'A';
1695				if (sched->next_shortname2 < '9')
1696					sched->next_shortname2++;
1697				else
1698					sched->next_shortname2 = '0';
1699			}
1700		} else {
1701			tr->shortname[0] = '-';
1702			tr->shortname[1] = ' ';
1703		}
1704		new_shortname = 1;
1705	}
1706
1707	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1708		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1709
1710	proceed = 0;
1711	str = thread__comm_str(sched_in);
1712	/*
1713	 * Check which of sched_in and sched_out matches the passed --task-name
1714	 * arguments and call the corresponding print_sched_map.
1715	 */
1716	if (sched->map.task_name && !sched_match_task(sched, str)) {
1717		if (!sched_match_task(sched, thread__comm_str(sched_out)))
1718			goto out;
1719		else
1720			goto sched_out;
1721
1722	} else {
1723		str = thread__comm_str(sched_out);
1724		if (!(sched->map.task_name && !sched_match_task(sched, str)))
1725			proceed = 1;
 
 
 
 
 
1726	}
1727
1728	printf("  ");
1729
1730	print_sched_map(sched, this_cpu, cpus_nr, color, false);
1731
1732	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1733	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1734	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1735		const char *pid_color = color;
1736
1737		if (thread__has_color(sched_in))
1738			pid_color = COLOR_PIDS;
1739
1740		color_fprintf(stdout, pid_color, "%s => %s:%d",
1741			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1742		tr->comm_changed = false;
1743	}
1744
1745	if (sched->map.comp && new_cpu)
1746		color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1747
1748	if (proceed != 1) {
1749		color_fprintf(stdout, color, "\n");
1750		goto out;
1751	}
1752
1753sched_out:
1754	if (sched->map.task_name) {
1755		tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1756		if (strcmp(tr->shortname, "") == 0)
1757			goto out;
1758
1759		if (proceed == 1)
1760			color_fprintf(stdout, color, "\n");
1761
1762		printf("  ");
1763		print_sched_map(sched, this_cpu, cpus_nr, color, true);
1764		timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1765		color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1766	}
1767
 
1768	color_fprintf(stdout, color, "\n");
1769
1770out:
1771	if (sched->map.task_name)
1772		thread__put(sched_out);
1773
1774	thread__put(sched_in);
1775
1776	return 0;
1777}
1778
1779static int process_sched_switch_event(const struct perf_tool *tool,
1780				      struct evsel *evsel,
1781				      struct perf_sample *sample,
1782				      struct machine *machine)
1783{
1784	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1785	int this_cpu = sample->cpu, err = 0;
1786	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1787	    next_pid = evsel__intval(evsel, sample, "next_pid");
1788
1789	if (sched->curr_pid[this_cpu] != (u32)-1) {
1790		/*
1791		 * Are we trying to switch away a PID that is
1792		 * not current?
1793		 */
1794		if (sched->curr_pid[this_cpu] != prev_pid)
1795			sched->nr_context_switch_bugs++;
1796	}
1797
1798	if (sched->tp_handler->switch_event)
1799		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1800
1801	sched->curr_pid[this_cpu] = next_pid;
1802	return err;
1803}
1804
1805static int process_sched_runtime_event(const struct perf_tool *tool,
1806				       struct evsel *evsel,
1807				       struct perf_sample *sample,
1808				       struct machine *machine)
1809{
1810	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1811
1812	if (sched->tp_handler->runtime_event)
1813		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1814
1815	return 0;
1816}
1817
1818static int perf_sched__process_fork_event(const struct perf_tool *tool,
1819					  union perf_event *event,
1820					  struct perf_sample *sample,
1821					  struct machine *machine)
1822{
1823	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1824
1825	/* run the fork event through the perf machinery */
1826	perf_event__process_fork(tool, event, sample, machine);
1827
1828	/* and then run additional processing needed for this command */
1829	if (sched->tp_handler->fork_event)
1830		return sched->tp_handler->fork_event(sched, event, machine);
1831
1832	return 0;
1833}
1834
1835static int process_sched_migrate_task_event(const struct perf_tool *tool,
1836					    struct evsel *evsel,
1837					    struct perf_sample *sample,
1838					    struct machine *machine)
1839{
1840	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1841
1842	if (sched->tp_handler->migrate_task_event)
1843		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1844
1845	return 0;
1846}
1847
1848typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1849				  struct evsel *evsel,
1850				  struct perf_sample *sample,
1851				  struct machine *machine);
1852
1853static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1854						 union perf_event *event __maybe_unused,
1855						 struct perf_sample *sample,
1856						 struct evsel *evsel,
1857						 struct machine *machine)
1858{
1859	int err = 0;
1860
1861	if (evsel->handler != NULL) {
1862		tracepoint_handler f = evsel->handler;
1863		err = f(tool, evsel, sample, machine);
1864	}
1865
1866	return err;
1867}
1868
1869static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1870				    union perf_event *event,
1871				    struct perf_sample *sample,
1872				    struct machine *machine)
1873{
1874	struct thread *thread;
1875	struct thread_runtime *tr;
1876	int err;
1877
1878	err = perf_event__process_comm(tool, event, sample, machine);
1879	if (err)
1880		return err;
1881
1882	thread = machine__find_thread(machine, sample->pid, sample->tid);
1883	if (!thread) {
1884		pr_err("Internal error: can't find thread\n");
1885		return -1;
1886	}
1887
1888	tr = thread__get_runtime(thread);
1889	if (tr == NULL) {
1890		thread__put(thread);
1891		return -1;
1892	}
1893
1894	tr->comm_changed = true;
1895	thread__put(thread);
1896
1897	return 0;
1898}
1899
1900static int perf_sched__read_events(struct perf_sched *sched)
1901{
1902	struct evsel_str_handler handlers[] = {
1903		{ "sched:sched_switch",	      process_sched_switch_event, },
1904		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1905		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1906		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1907		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1908		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1909	};
1910	struct perf_session *session;
1911	struct perf_data data = {
1912		.path  = input_name,
1913		.mode  = PERF_DATA_MODE_READ,
1914		.force = sched->force,
1915	};
1916	int rc = -1;
1917
1918	session = perf_session__new(&data, &sched->tool);
1919	if (IS_ERR(session)) {
1920		pr_debug("Error creating perf session");
1921		return PTR_ERR(session);
1922	}
1923
1924	symbol__init(&session->header.env);
1925
1926	/* prefer sched_waking if it is captured */
1927	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1928		handlers[2].handler = process_sched_wakeup_ignore;
1929
1930	if (perf_session__set_tracepoints_handlers(session, handlers))
1931		goto out_delete;
1932
1933	if (perf_session__has_traces(session, "record -R")) {
1934		int err = perf_session__process_events(session);
1935		if (err) {
1936			pr_err("Failed to process events, error %d", err);
1937			goto out_delete;
1938		}
1939
1940		sched->nr_events      = session->evlist->stats.nr_events[0];
1941		sched->nr_lost_events = session->evlist->stats.total_lost;
1942		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1943	}
1944
1945	rc = 0;
1946out_delete:
1947	perf_session__delete(session);
1948	return rc;
1949}
1950
1951/*
1952 * scheduling times are printed as msec.usec
1953 */
1954static inline void print_sched_time(unsigned long long nsecs, int width)
1955{
1956	unsigned long msecs;
1957	unsigned long usecs;
1958
1959	msecs  = nsecs / NSEC_PER_MSEC;
1960	nsecs -= msecs * NSEC_PER_MSEC;
1961	usecs  = nsecs / NSEC_PER_USEC;
1962	printf("%*lu.%03lu ", width, msecs, usecs);
1963}
1964
1965/*
1966 * returns runtime data for event, allocating memory for it the
1967 * first time it is used.
1968 */
1969static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1970{
1971	struct evsel_runtime *r = evsel->priv;
1972
1973	if (r == NULL) {
1974		r = zalloc(sizeof(struct evsel_runtime));
1975		evsel->priv = r;
1976	}
1977
1978	return r;
1979}
1980
1981/*
1982 * save last time event was seen per cpu
1983 */
1984static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
 
1985{
1986	struct evsel_runtime *r = evsel__get_runtime(evsel);
1987
1988	if (r == NULL)
1989		return;
1990
1991	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1992		int i, n = __roundup_pow_of_two(cpu+1);
1993		void *p = r->last_time;
1994
1995		p = realloc(r->last_time, n * sizeof(u64));
1996		if (!p)
1997			return;
1998
1999		r->last_time = p;
2000		for (i = r->ncpu; i < n; ++i)
2001			r->last_time[i] = (u64) 0;
2002
2003		r->ncpu = n;
2004	}
2005
2006	r->last_time[cpu] = timestamp;
2007}
2008
2009/* returns last time this event was seen on the given cpu */
2010static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2011{
2012	struct evsel_runtime *r = evsel__get_runtime(evsel);
2013
2014	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2015		return 0;
2016
2017	return r->last_time[cpu];
2018}
2019
2020static int comm_width = 30;
2021
2022static char *timehist_get_commstr(struct thread *thread)
2023{
2024	static char str[32];
2025	const char *comm = thread__comm_str(thread);
2026	pid_t tid = thread__tid(thread);
2027	pid_t pid = thread__pid(thread);
2028	int n;
2029
2030	if (pid == 0)
2031		n = scnprintf(str, sizeof(str), "%s", comm);
2032
2033	else if (tid != pid)
2034		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2035
2036	else
2037		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2038
2039	if (n > comm_width)
2040		comm_width = n;
2041
2042	return str;
2043}
2044
2045/* prio field format: xxx or xxx->yyy */
2046#define MAX_PRIO_STR_LEN 8
2047static char *timehist_get_priostr(struct evsel *evsel,
2048				  struct thread *thread,
2049				  struct perf_sample *sample)
2050{
2051	static char prio_str[16];
2052	int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2053	struct thread_runtime *tr = thread__priv(thread);
2054
2055	if (tr->prio != prev_prio && tr->prio != -1)
2056		scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2057	else
2058		scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2059
2060	return prio_str;
2061}
2062
2063static void timehist_header(struct perf_sched *sched)
2064{
2065	u32 ncpus = sched->max_cpu.cpu + 1;
2066	u32 i, j;
2067
2068	printf("%15s %6s ", "time", "cpu");
2069
2070	if (sched->show_cpu_visual) {
2071		printf(" ");
2072		for (i = 0, j = 0; i < ncpus; ++i) {
2073			printf("%x", j++);
2074			if (j > 15)
2075				j = 0;
2076		}
2077		printf(" ");
2078	}
2079
2080	printf(" %-*s", comm_width, "task name");
2081
2082	if (sched->show_prio)
2083		printf("  %-*s", MAX_PRIO_STR_LEN, "prio");
2084
2085	printf("  %9s  %9s  %9s", "wait time", "sch delay", "run time");
2086
2087	if (sched->pre_migrations)
2088		printf("  %9s", "pre-mig time");
2089
2090	if (sched->show_state)
2091		printf("  %s", "state");
2092
2093	printf("\n");
2094
2095	/*
2096	 * units row
2097	 */
2098	printf("%15s %-6s ", "", "");
2099
2100	if (sched->show_cpu_visual)
2101		printf(" %*s ", ncpus, "");
2102
2103	printf(" %-*s", comm_width, "[tid/pid]");
 
2104
2105	if (sched->show_prio)
2106		printf("  %-*s", MAX_PRIO_STR_LEN, "");
2107
2108	printf("  %9s  %9s  %9s", "(msec)", "(msec)", "(msec)");
2109
2110	if (sched->pre_migrations)
2111		printf("  %9s", "(msec)");
2112
2113	printf("\n");
2114
2115	/*
2116	 * separator
2117	 */
2118	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2119
2120	if (sched->show_cpu_visual)
2121		printf(" %.*s ", ncpus, graph_dotted_line);
2122
2123	printf(" %.*s", comm_width, graph_dotted_line);
 
 
2124
2125	if (sched->show_prio)
2126		printf("  %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2127
2128	printf("  %.9s  %.9s  %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
 
2129
2130	if (sched->pre_migrations)
2131		printf("  %.9s", graph_dotted_line);
 
 
2132
2133	if (sched->show_state)
2134		printf("  %.5s", graph_dotted_line);
 
2135
2136	printf("\n");
2137}
2138
2139static void timehist_print_sample(struct perf_sched *sched,
2140				  struct evsel *evsel,
2141				  struct perf_sample *sample,
2142				  struct addr_location *al,
2143				  struct thread *thread,
2144				  u64 t, const char state)
2145{
2146	struct thread_runtime *tr = thread__priv(thread);
2147	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2148	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2149	u32 max_cpus = sched->max_cpu.cpu + 1;
2150	char tstr[64];
2151	char nstr[30];
2152	u64 wait_time;
2153
2154	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2155		return;
2156
2157	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2158	printf("%15s [%04d] ", tstr, sample->cpu);
2159
2160	if (sched->show_cpu_visual) {
2161		u32 i;
2162		char c;
2163
2164		printf(" ");
2165		for (i = 0; i < max_cpus; ++i) {
2166			/* flag idle times with 'i'; others are sched events */
2167			if (i == sample->cpu)
2168				c = (thread__tid(thread) == 0) ? 'i' : 's';
2169			else
2170				c = ' ';
2171			printf("%c", c);
2172		}
2173		printf(" ");
2174	}
2175
2176	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2177
2178	if (sched->show_prio)
2179		printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2180
2181	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2182	print_sched_time(wait_time, 6);
2183
2184	print_sched_time(tr->dt_delay, 6);
2185	print_sched_time(tr->dt_run, 6);
2186	if (sched->pre_migrations)
2187		print_sched_time(tr->dt_pre_mig, 6);
2188
2189	if (sched->show_state)
2190		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2191
2192	if (sched->show_next) {
2193		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2194		printf(" %-*s", comm_width, nstr);
2195	}
2196
2197	if (sched->show_wakeups && !sched->show_next)
2198		printf("  %-*s", comm_width, "");
2199
2200	if (thread__tid(thread) == 0)
2201		goto out;
2202
2203	if (sched->show_callchain)
2204		printf("  ");
2205
2206	sample__fprintf_sym(sample, al, 0,
2207			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2208			    EVSEL__PRINT_CALLCHAIN_ARROW |
2209			    EVSEL__PRINT_SKIP_IGNORED,
2210			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2211
2212out:
2213	printf("\n");
2214}
2215
2216/*
2217 * Explanation of delta-time stats:
2218 *
2219 *            t = time of current schedule out event
2220 *        tprev = time of previous sched out event
2221 *                also time of schedule-in event for current task
2222 *    last_time = time of last sched change event for current task
2223 *                (i.e, time process was last scheduled out)
2224 * ready_to_run = time of wakeup for current task
2225 *     migrated = time of task migration to another CPU
2226 *
2227 * -----|-------------|-------------|-------------|-------------|-----
2228 *    last         ready         migrated       tprev           t
2229 *    time         to run
2230 *
2231 *      |---------------- dt_wait ----------------|
2232 *                   |--------- dt_delay ---------|-- dt_run --|
2233 *                   |- dt_pre_mig -|
2234 *
2235 *     dt_run = run time of current task
2236 *    dt_wait = time between last schedule out event for task and tprev
2237 *              represents time spent off the cpu
2238 *   dt_delay = time between wakeup and schedule-in of task
2239 * dt_pre_mig = time between wakeup and migration to another CPU
2240 */
2241
2242static void timehist_update_runtime_stats(struct thread_runtime *r,
2243					 u64 t, u64 tprev)
2244{
2245	r->dt_delay   = 0;
2246	r->dt_sleep   = 0;
2247	r->dt_iowait  = 0;
2248	r->dt_preempt = 0;
2249	r->dt_run     = 0;
2250	r->dt_pre_mig = 0;
2251
2252	if (tprev) {
2253		r->dt_run = t - tprev;
2254		if (r->ready_to_run) {
2255			if (r->ready_to_run > tprev)
2256				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2257			else
2258				r->dt_delay = tprev - r->ready_to_run;
2259
2260			if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2261				r->dt_pre_mig = r->migrated - r->ready_to_run;
2262		}
2263
2264		if (r->last_time > tprev)
2265			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2266		else if (r->last_time) {
2267			u64 dt_wait = tprev - r->last_time;
2268
2269			if (r->last_state == 'R')
2270				r->dt_preempt = dt_wait;
2271			else if (r->last_state == 'D')
2272				r->dt_iowait = dt_wait;
2273			else
2274				r->dt_sleep = dt_wait;
2275		}
2276	}
2277
2278	update_stats(&r->run_stats, r->dt_run);
2279
2280	r->total_run_time     += r->dt_run;
2281	r->total_delay_time   += r->dt_delay;
2282	r->total_sleep_time   += r->dt_sleep;
2283	r->total_iowait_time  += r->dt_iowait;
2284	r->total_preempt_time += r->dt_preempt;
2285	r->total_pre_mig_time += r->dt_pre_mig;
2286}
2287
2288static bool is_idle_sample(struct perf_sample *sample,
2289			   struct evsel *evsel)
2290{
2291	/* pid 0 == swapper == idle task */
2292	if (evsel__name_is(evsel, "sched:sched_switch"))
2293		return evsel__intval(evsel, sample, "prev_pid") == 0;
2294
2295	return sample->pid == 0;
2296}
2297
2298static void save_task_callchain(struct perf_sched *sched,
2299				struct perf_sample *sample,
2300				struct evsel *evsel,
2301				struct machine *machine)
2302{
2303	struct callchain_cursor *cursor;
2304	struct thread *thread;
2305
2306	/* want main thread for process - has maps */
2307	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2308	if (thread == NULL) {
2309		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2310		return;
2311	}
2312
2313	if (!sched->show_callchain || sample->callchain == NULL)
2314		return;
2315
2316	cursor = get_tls_callchain_cursor();
2317
2318	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2319				      NULL, NULL, sched->max_stack + 2) != 0) {
2320		if (verbose > 0)
2321			pr_err("Failed to resolve callchain. Skipping\n");
2322
2323		return;
2324	}
2325
2326	callchain_cursor_commit(cursor);
2327
2328	while (true) {
2329		struct callchain_cursor_node *node;
2330		struct symbol *sym;
2331
2332		node = callchain_cursor_current(cursor);
2333		if (node == NULL)
2334			break;
2335
2336		sym = node->ms.sym;
2337		if (sym) {
2338			if (!strcmp(sym->name, "schedule") ||
2339			    !strcmp(sym->name, "__schedule") ||
2340			    !strcmp(sym->name, "preempt_schedule"))
2341				sym->ignore = 1;
2342		}
2343
2344		callchain_cursor_advance(cursor);
2345	}
2346}
2347
2348static int init_idle_thread(struct thread *thread)
2349{
2350	struct idle_thread_runtime *itr;
2351
2352	thread__set_comm(thread, idle_comm, 0);
2353
2354	itr = zalloc(sizeof(*itr));
2355	if (itr == NULL)
2356		return -ENOMEM;
2357
2358	init_prio(&itr->tr);
2359	init_stats(&itr->tr.run_stats);
2360	callchain_init(&itr->callchain);
2361	callchain_cursor_reset(&itr->cursor);
2362	thread__set_priv(thread, itr);
2363
2364	return 0;
2365}
2366
2367/*
2368 * Track idle stats per cpu by maintaining a local thread
2369 * struct for the idle task on each cpu.
2370 */
2371static int init_idle_threads(int ncpu)
2372{
2373	int i, ret;
2374
2375	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2376	if (!idle_threads)
2377		return -ENOMEM;
2378
2379	idle_max_cpu = ncpu;
2380
2381	/* allocate the actual thread struct if needed */
2382	for (i = 0; i < ncpu; ++i) {
2383		idle_threads[i] = thread__new(0, 0);
2384		if (idle_threads[i] == NULL)
2385			return -ENOMEM;
2386
2387		ret = init_idle_thread(idle_threads[i]);
2388		if (ret < 0)
2389			return ret;
2390	}
2391
2392	return 0;
2393}
2394
2395static void free_idle_threads(void)
2396{
2397	int i;
2398
2399	if (idle_threads == NULL)
2400		return;
2401
2402	for (i = 0; i < idle_max_cpu; ++i) {
2403		if ((idle_threads[i]))
2404			thread__delete(idle_threads[i]);
2405	}
2406
2407	free(idle_threads);
2408}
2409
2410static struct thread *get_idle_thread(int cpu)
2411{
2412	/*
2413	 * expand/allocate array of pointers to local thread
2414	 * structs if needed
2415	 */
2416	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2417		int i, j = __roundup_pow_of_two(cpu+1);
2418		void *p;
2419
2420		p = realloc(idle_threads, j * sizeof(struct thread *));
2421		if (!p)
2422			return NULL;
2423
2424		idle_threads = (struct thread **) p;
2425		for (i = idle_max_cpu; i < j; ++i)
2426			idle_threads[i] = NULL;
2427
2428		idle_max_cpu = j;
2429	}
2430
2431	/* allocate a new thread struct if needed */
2432	if (idle_threads[cpu] == NULL) {
2433		idle_threads[cpu] = thread__new(0, 0);
2434
2435		if (idle_threads[cpu]) {
2436			if (init_idle_thread(idle_threads[cpu]) < 0)
2437				return NULL;
2438		}
2439	}
2440
2441	return idle_threads[cpu];
2442}
2443
2444static void save_idle_callchain(struct perf_sched *sched,
2445				struct idle_thread_runtime *itr,
2446				struct perf_sample *sample)
2447{
2448	struct callchain_cursor *cursor;
2449
2450	if (!sched->show_callchain || sample->callchain == NULL)
2451		return;
2452
2453	cursor = get_tls_callchain_cursor();
2454	if (cursor == NULL)
2455		return;
2456
2457	callchain_cursor__copy(&itr->cursor, cursor);
2458}
2459
2460static struct thread *timehist_get_thread(struct perf_sched *sched,
2461					  struct perf_sample *sample,
2462					  struct machine *machine,
2463					  struct evsel *evsel)
2464{
2465	struct thread *thread;
2466
2467	if (is_idle_sample(sample, evsel)) {
2468		thread = get_idle_thread(sample->cpu);
2469		if (thread == NULL)
2470			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2471
2472	} else {
2473		/* there were samples with tid 0 but non-zero pid */
2474		thread = machine__findnew_thread(machine, sample->pid,
2475						 sample->tid ?: sample->pid);
2476		if (thread == NULL) {
2477			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2478				 sample->tid);
2479		}
2480
2481		save_task_callchain(sched, sample, evsel, machine);
2482		if (sched->idle_hist) {
2483			struct thread *idle;
2484			struct idle_thread_runtime *itr;
2485
2486			idle = get_idle_thread(sample->cpu);
2487			if (idle == NULL) {
2488				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2489				return NULL;
2490			}
2491
2492			itr = thread__priv(idle);
2493			if (itr == NULL)
2494				return NULL;
2495
2496			itr->last_thread = thread;
2497
2498			/* copy task callchain when entering to idle */
2499			if (evsel__intval(evsel, sample, "next_pid") == 0)
2500				save_idle_callchain(sched, itr, sample);
2501		}
2502	}
2503
2504	return thread;
2505}
2506
2507static bool timehist_skip_sample(struct perf_sched *sched,
2508				 struct thread *thread,
2509				 struct evsel *evsel,
2510				 struct perf_sample *sample)
2511{
2512	bool rc = false;
2513	int prio = -1;
2514	struct thread_runtime *tr = NULL;
2515
2516	if (thread__is_filtered(thread)) {
2517		rc = true;
2518		sched->skipped_samples++;
2519	}
2520
2521	if (sched->prio_str) {
2522		/*
2523		 * Because priority may be changed during task execution,
2524		 * first read priority from prev sched_in event for current task.
2525		 * If prev sched_in event is not saved, then read priority from
2526		 * current task sched_out event.
2527		 */
2528		tr = thread__get_runtime(thread);
2529		if (tr && tr->prio != -1)
2530			prio = tr->prio;
2531		else if (evsel__name_is(evsel, "sched:sched_switch"))
2532			prio = evsel__intval(evsel, sample, "prev_prio");
2533
2534		if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2535			rc = true;
2536			sched->skipped_samples++;
2537		}
2538	}
2539
2540	if (sched->idle_hist) {
2541		if (!evsel__name_is(evsel, "sched:sched_switch"))
2542			rc = true;
2543		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2544			 evsel__intval(evsel, sample, "next_pid") != 0)
2545			rc = true;
2546	}
2547
2548	return rc;
2549}
2550
2551static void timehist_print_wakeup_event(struct perf_sched *sched,
2552					struct evsel *evsel,
2553					struct perf_sample *sample,
2554					struct machine *machine,
2555					struct thread *awakened)
2556{
2557	struct thread *thread;
2558	char tstr[64];
2559
2560	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2561	if (thread == NULL)
2562		return;
2563
2564	/* show wakeup unless both awakee and awaker are filtered */
2565	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2566	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2567		return;
2568	}
2569
2570	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2571	printf("%15s [%04d] ", tstr, sample->cpu);
2572	if (sched->show_cpu_visual)
2573		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2574
2575	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2576
2577	/* dt spacer */
2578	printf("  %9s  %9s  %9s ", "", "", "");
2579
2580	printf("awakened: %s", timehist_get_commstr(awakened));
2581
2582	printf("\n");
2583}
2584
2585static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2586					union perf_event *event __maybe_unused,
2587					struct evsel *evsel __maybe_unused,
2588					struct perf_sample *sample __maybe_unused,
2589					struct machine *machine __maybe_unused)
2590{
2591	return 0;
2592}
2593
2594static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2595				       union perf_event *event __maybe_unused,
2596				       struct evsel *evsel,
2597				       struct perf_sample *sample,
2598				       struct machine *machine)
2599{
2600	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2601	struct thread *thread;
2602	struct thread_runtime *tr = NULL;
2603	/* want pid of awakened task not pid in sample */
2604	const u32 pid = evsel__intval(evsel, sample, "pid");
2605
2606	thread = machine__findnew_thread(machine, 0, pid);
2607	if (thread == NULL)
2608		return -1;
2609
2610	tr = thread__get_runtime(thread);
2611	if (tr == NULL)
2612		return -1;
2613
2614	if (tr->ready_to_run == 0)
2615		tr->ready_to_run = sample->time;
2616
2617	/* show wakeups if requested */
2618	if (sched->show_wakeups &&
2619	    !perf_time__skip_sample(&sched->ptime, sample->time))
2620		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2621
2622	return 0;
2623}
2624
2625static void timehist_print_migration_event(struct perf_sched *sched,
2626					struct evsel *evsel,
2627					struct perf_sample *sample,
2628					struct machine *machine,
2629					struct thread *migrated)
2630{
2631	struct thread *thread;
2632	char tstr[64];
2633	u32 max_cpus;
2634	u32 ocpu, dcpu;
2635
2636	if (sched->summary_only)
2637		return;
2638
2639	max_cpus = sched->max_cpu.cpu + 1;
2640	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2641	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2642
2643	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2644	if (thread == NULL)
2645		return;
2646
2647	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2648	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2649		return;
2650	}
2651
2652	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2653	printf("%15s [%04d] ", tstr, sample->cpu);
2654
2655	if (sched->show_cpu_visual) {
2656		u32 i;
2657		char c;
2658
2659		printf("  ");
2660		for (i = 0; i < max_cpus; ++i) {
2661			c = (i == sample->cpu) ? 'm' : ' ';
2662			printf("%c", c);
2663		}
2664		printf("  ");
2665	}
2666
2667	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2668
2669	/* dt spacer */
2670	printf("  %9s  %9s  %9s ", "", "", "");
2671
2672	printf("migrated: %s", timehist_get_commstr(migrated));
2673	printf(" cpu %d => %d", ocpu, dcpu);
2674
2675	printf("\n");
2676}
2677
2678static int timehist_migrate_task_event(const struct perf_tool *tool,
2679				       union perf_event *event __maybe_unused,
2680				       struct evsel *evsel,
2681				       struct perf_sample *sample,
2682				       struct machine *machine)
2683{
2684	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2685	struct thread *thread;
2686	struct thread_runtime *tr = NULL;
2687	/* want pid of migrated task not pid in sample */
2688	const u32 pid = evsel__intval(evsel, sample, "pid");
2689
2690	thread = machine__findnew_thread(machine, 0, pid);
2691	if (thread == NULL)
2692		return -1;
2693
2694	tr = thread__get_runtime(thread);
2695	if (tr == NULL)
2696		return -1;
2697
2698	tr->migrations++;
2699	tr->migrated = sample->time;
2700
2701	/* show migrations if requested */
2702	if (sched->show_migrations) {
2703		timehist_print_migration_event(sched, evsel, sample,
2704							machine, thread);
2705	}
2706
2707	return 0;
2708}
2709
2710static void timehist_update_task_prio(struct evsel *evsel,
2711				      struct perf_sample *sample,
2712				      struct machine *machine)
2713{
2714	struct thread *thread;
2715	struct thread_runtime *tr = NULL;
2716	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2717	const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2718
2719	if (next_pid == 0)
2720		thread = get_idle_thread(sample->cpu);
2721	else
2722		thread = machine__findnew_thread(machine, -1, next_pid);
2723
2724	if (thread == NULL)
2725		return;
2726
2727	tr = thread__get_runtime(thread);
2728	if (tr == NULL)
2729		return;
2730
2731	tr->prio = next_prio;
2732}
2733
2734static int timehist_sched_change_event(const struct perf_tool *tool,
2735				       union perf_event *event,
2736				       struct evsel *evsel,
2737				       struct perf_sample *sample,
2738				       struct machine *machine)
2739{
2740	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2741	struct perf_time_interval *ptime = &sched->ptime;
2742	struct addr_location al;
2743	struct thread *thread;
2744	struct thread_runtime *tr = NULL;
2745	u64 tprev, t = sample->time;
2746	int rc = 0;
2747	const char state = evsel__taskstate(evsel, sample, "prev_state");
 
2748
2749	addr_location__init(&al);
2750	if (machine__resolve(machine, &al, sample) < 0) {
2751		pr_err("problem processing %d event. skipping it\n",
2752		       event->header.type);
2753		rc = -1;
2754		goto out;
2755	}
2756
2757	if (sched->show_prio || sched->prio_str)
2758		timehist_update_task_prio(evsel, sample, machine);
2759
2760	thread = timehist_get_thread(sched, sample, machine, evsel);
2761	if (thread == NULL) {
2762		rc = -1;
2763		goto out;
2764	}
2765
2766	if (timehist_skip_sample(sched, thread, evsel, sample))
2767		goto out;
2768
2769	tr = thread__get_runtime(thread);
2770	if (tr == NULL) {
2771		rc = -1;
2772		goto out;
2773	}
2774
2775	tprev = evsel__get_time(evsel, sample->cpu);
2776
2777	/*
2778	 * If start time given:
2779	 * - sample time is under window user cares about - skip sample
2780	 * - tprev is under window user cares about  - reset to start of window
2781	 */
2782	if (ptime->start && ptime->start > t)
2783		goto out;
2784
2785	if (tprev && ptime->start > tprev)
2786		tprev = ptime->start;
2787
2788	/*
2789	 * If end time given:
2790	 * - previous sched event is out of window - we are done
2791	 * - sample time is beyond window user cares about - reset it
2792	 *   to close out stats for time window interest
2793	 * - If tprev is 0, that is, sched_in event for current task is
2794	 *   not recorded, cannot determine whether sched_in event is
2795	 *   within time window interest - ignore it
2796	 */
2797	if (ptime->end) {
2798		if (!tprev || tprev > ptime->end)
2799			goto out;
2800
2801		if (t > ptime->end)
2802			t = ptime->end;
2803	}
2804
2805	if (!sched->idle_hist || thread__tid(thread) == 0) {
2806		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2807			timehist_update_runtime_stats(tr, t, tprev);
2808
2809		if (sched->idle_hist) {
2810			struct idle_thread_runtime *itr = (void *)tr;
2811			struct thread_runtime *last_tr;
2812
 
 
2813			if (itr->last_thread == NULL)
2814				goto out;
2815
2816			/* add current idle time as last thread's runtime */
2817			last_tr = thread__get_runtime(itr->last_thread);
2818			if (last_tr == NULL)
2819				goto out;
2820
2821			timehist_update_runtime_stats(last_tr, t, tprev);
2822			/*
2823			 * remove delta time of last thread as it's not updated
2824			 * and otherwise it will show an invalid value next
2825			 * time.  we only care total run time and run stat.
2826			 */
2827			last_tr->dt_run = 0;
2828			last_tr->dt_delay = 0;
2829			last_tr->dt_sleep = 0;
2830			last_tr->dt_iowait = 0;
2831			last_tr->dt_preempt = 0;
2832
2833			if (itr->cursor.nr)
2834				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2835
2836			itr->last_thread = NULL;
2837		}
 
2838
2839		if (!sched->summary_only)
2840			timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2841	}
2842
2843out:
2844	if (sched->hist_time.start == 0 && t >= ptime->start)
2845		sched->hist_time.start = t;
2846	if (ptime->end == 0 || t <= ptime->end)
2847		sched->hist_time.end = t;
2848
2849	if (tr) {
2850		/* time of this sched_switch event becomes last time task seen */
2851		tr->last_time = sample->time;
2852
2853		/* last state is used to determine where to account wait time */
2854		tr->last_state = state;
2855
2856		/* sched out event for task so reset ready to run time and migrated time */
2857		if (state == 'R')
2858			tr->ready_to_run = t;
2859		else
2860			tr->ready_to_run = 0;
2861
2862		tr->migrated = 0;
2863	}
2864
2865	evsel__save_time(evsel, sample->time, sample->cpu);
2866
2867	addr_location__exit(&al);
2868	return rc;
2869}
2870
2871static int timehist_sched_switch_event(const struct perf_tool *tool,
2872			     union perf_event *event,
2873			     struct evsel *evsel,
2874			     struct perf_sample *sample,
2875			     struct machine *machine __maybe_unused)
2876{
2877	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2878}
2879
2880static int process_lost(const struct perf_tool *tool __maybe_unused,
2881			union perf_event *event,
2882			struct perf_sample *sample,
2883			struct machine *machine __maybe_unused)
2884{
2885	char tstr[64];
2886
2887	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2888	printf("%15s ", tstr);
2889	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2890
2891	return 0;
2892}
2893
2894
2895static void print_thread_runtime(struct thread *t,
2896				 struct thread_runtime *r)
2897{
2898	double mean = avg_stats(&r->run_stats);
2899	float stddev;
2900
2901	printf("%*s   %5d  %9" PRIu64 " ",
2902	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2903	       (u64) r->run_stats.n);
2904
2905	print_sched_time(r->total_run_time, 8);
2906	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2907	print_sched_time(r->run_stats.min, 6);
2908	printf(" ");
2909	print_sched_time((u64) mean, 6);
2910	printf(" ");
2911	print_sched_time(r->run_stats.max, 6);
2912	printf("  ");
2913	printf("%5.2f", stddev);
2914	printf("   %5" PRIu64, r->migrations);
2915	printf("\n");
2916}
2917
2918static void print_thread_waittime(struct thread *t,
2919				  struct thread_runtime *r)
2920{
2921	printf("%*s   %5d  %9" PRIu64 " ",
2922	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2923	       (u64) r->run_stats.n);
2924
2925	print_sched_time(r->total_run_time, 8);
2926	print_sched_time(r->total_sleep_time, 6);
2927	printf(" ");
2928	print_sched_time(r->total_iowait_time, 6);
2929	printf(" ");
2930	print_sched_time(r->total_preempt_time, 6);
2931	printf(" ");
2932	print_sched_time(r->total_delay_time, 6);
2933	printf("\n");
2934}
2935
2936struct total_run_stats {
2937	struct perf_sched *sched;
2938	u64  sched_count;
2939	u64  task_count;
2940	u64  total_run_time;
2941};
2942
2943static int show_thread_runtime(struct thread *t, void *priv)
2944{
2945	struct total_run_stats *stats = priv;
2946	struct thread_runtime *r;
2947
2948	if (thread__is_filtered(t))
2949		return 0;
2950
2951	r = thread__priv(t);
2952	if (r && r->run_stats.n) {
2953		stats->task_count++;
2954		stats->sched_count += r->run_stats.n;
2955		stats->total_run_time += r->total_run_time;
2956
2957		if (stats->sched->show_state)
2958			print_thread_waittime(t, r);
2959		else
2960			print_thread_runtime(t, r);
2961	}
2962
2963	return 0;
2964}
2965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2966static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2967{
2968	const char *sep = " <- ";
2969	struct callchain_list *chain;
2970	size_t ret = 0;
2971	char bf[1024];
2972	bool first;
2973
2974	if (node == NULL)
2975		return 0;
2976
2977	ret = callchain__fprintf_folded(fp, node->parent);
2978	first = (ret == 0);
2979
2980	list_for_each_entry(chain, &node->val, list) {
2981		if (chain->ip >= PERF_CONTEXT_MAX)
2982			continue;
2983		if (chain->ms.sym && chain->ms.sym->ignore)
2984			continue;
2985		ret += fprintf(fp, "%s%s", first ? "" : sep,
2986			       callchain_list__sym_name(chain, bf, sizeof(bf),
2987							false));
2988		first = false;
2989	}
2990
2991	return ret;
2992}
2993
2994static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2995{
2996	size_t ret = 0;
2997	FILE *fp = stdout;
2998	struct callchain_node *chain;
2999	struct rb_node *rb_node = rb_first_cached(root);
3000
3001	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
3002	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
3003	       graph_dotted_line);
3004
3005	while (rb_node) {
3006		chain = rb_entry(rb_node, struct callchain_node, rb_node);
3007		rb_node = rb_next(rb_node);
3008
3009		ret += fprintf(fp, "  ");
3010		print_sched_time(chain->hit, 12);
3011		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
3012		ret += fprintf(fp, " %8d  ", chain->count);
3013		ret += callchain__fprintf_folded(fp, chain);
3014		ret += fprintf(fp, "\n");
3015	}
3016
3017	return ret;
3018}
3019
3020static void timehist_print_summary(struct perf_sched *sched,
3021				   struct perf_session *session)
3022{
3023	struct machine *m = &session->machines.host;
3024	struct total_run_stats totals;
3025	u64 task_count;
3026	struct thread *t;
3027	struct thread_runtime *r;
3028	int i;
3029	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3030
3031	memset(&totals, 0, sizeof(totals));
3032	totals.sched = sched;
3033
3034	if (sched->idle_hist) {
3035		printf("\nIdle-time summary\n");
3036		printf("%*s  parent  sched-out  ", comm_width, "comm");
3037		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
3038	} else if (sched->show_state) {
3039		printf("\nWait-time summary\n");
3040		printf("%*s  parent   sched-in  ", comm_width, "comm");
3041		printf("   run-time      sleep      iowait     preempt       delay\n");
3042	} else {
3043		printf("\nRuntime summary\n");
3044		printf("%*s  parent   sched-in  ", comm_width, "comm");
3045		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
3046	}
3047	printf("%*s            (count)  ", comm_width, "");
3048	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
3049	       sched->show_state ? "(msec)" : "%");
3050	printf("%.117s\n", graph_dotted_line);
3051
3052	machine__for_each_thread(m, show_thread_runtime, &totals);
3053	task_count = totals.task_count;
3054	if (!task_count)
3055		printf("<no still running tasks>\n");
3056
 
 
 
 
 
3057	/* CPU idle stats not tracked when samples were skipped */
3058	if (sched->skipped_samples && !sched->idle_hist)
3059		return;
3060
3061	printf("\nIdle stats:\n");
3062	for (i = 0; i < idle_max_cpu; ++i) {
3063		if (cpu_list && !test_bit(i, cpu_bitmap))
3064			continue;
3065
3066		t = idle_threads[i];
3067		if (!t)
3068			continue;
3069
3070		r = thread__priv(t);
3071		if (r && r->run_stats.n) {
3072			totals.sched_count += r->run_stats.n;
3073			printf("    CPU %2d idle for ", i);
3074			print_sched_time(r->total_run_time, 6);
3075			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3076		} else
3077			printf("    CPU %2d idle entire time window\n", i);
3078	}
3079
3080	if (sched->idle_hist && sched->show_callchain) {
3081		callchain_param.mode  = CHAIN_FOLDED;
3082		callchain_param.value = CCVAL_PERIOD;
3083
3084		callchain_register_param(&callchain_param);
3085
3086		printf("\nIdle stats by callchain:\n");
3087		for (i = 0; i < idle_max_cpu; ++i) {
3088			struct idle_thread_runtime *itr;
3089
3090			t = idle_threads[i];
3091			if (!t)
3092				continue;
3093
3094			itr = thread__priv(t);
3095			if (itr == NULL)
3096				continue;
3097
3098			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3099					     0, &callchain_param);
3100
3101			printf("  CPU %2d:", i);
3102			print_sched_time(itr->tr.total_run_time, 6);
3103			printf(" msec\n");
3104			timehist_print_idlehist_callchain(&itr->sorted_root);
3105			printf("\n");
3106		}
3107	}
3108
3109	printf("\n"
3110	       "    Total number of unique tasks: %" PRIu64 "\n"
3111	       "Total number of context switches: %" PRIu64 "\n",
3112	       totals.task_count, totals.sched_count);
3113
3114	printf("           Total run time (msec): ");
3115	print_sched_time(totals.total_run_time, 2);
3116	printf("\n");
3117
3118	printf("    Total scheduling time (msec): ");
3119	print_sched_time(hist_time, 2);
3120	printf(" (x %d)\n", sched->max_cpu.cpu);
3121}
3122
3123typedef int (*sched_handler)(const struct perf_tool *tool,
3124			  union perf_event *event,
3125			  struct evsel *evsel,
3126			  struct perf_sample *sample,
3127			  struct machine *machine);
3128
3129static int perf_timehist__process_sample(const struct perf_tool *tool,
3130					 union perf_event *event,
3131					 struct perf_sample *sample,
3132					 struct evsel *evsel,
3133					 struct machine *machine)
3134{
3135	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3136	int err = 0;
3137	struct perf_cpu this_cpu = {
3138		.cpu = sample->cpu,
3139	};
3140
3141	if (this_cpu.cpu > sched->max_cpu.cpu)
3142		sched->max_cpu = this_cpu;
3143
3144	if (evsel->handler != NULL) {
3145		sched_handler f = evsel->handler;
3146
3147		err = f(tool, event, evsel, sample, machine);
3148	}
3149
3150	return err;
3151}
3152
3153static int timehist_check_attr(struct perf_sched *sched,
3154			       struct evlist *evlist)
3155{
3156	struct evsel *evsel;
3157	struct evsel_runtime *er;
3158
3159	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3160		er = evsel__get_runtime(evsel);
3161		if (er == NULL) {
3162			pr_err("Failed to allocate memory for evsel runtime data\n");
3163			return -1;
3164		}
3165
3166		/* only need to save callchain related to sched_switch event */
3167		if (sched->show_callchain &&
3168		    evsel__name_is(evsel, "sched:sched_switch") &&
3169		    !evsel__has_callchain(evsel)) {
3170			pr_info("Samples of sched_switch event do not have callchains.\n");
3171			sched->show_callchain = 0;
3172			symbol_conf.use_callchain = 0;
3173		}
3174	}
3175
3176	return 0;
3177}
3178
3179static int timehist_parse_prio_str(struct perf_sched *sched)
3180{
3181	char *p;
3182	unsigned long start_prio, end_prio;
3183	const char *str = sched->prio_str;
3184
3185	if (!str)
3186		return 0;
3187
3188	while (isdigit(*str)) {
3189		p = NULL;
3190		start_prio = strtoul(str, &p, 0);
3191		if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3192			return -1;
3193
3194		if (*p == '-') {
3195			str = ++p;
3196			p = NULL;
3197			end_prio = strtoul(str, &p, 0);
3198
3199			if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3200				return -1;
3201
3202			if (end_prio < start_prio)
3203				return -1;
3204		} else {
3205			end_prio = start_prio;
3206		}
3207
3208		for (; start_prio <= end_prio; start_prio++)
3209			__set_bit(start_prio, sched->prio_bitmap);
3210
3211		if (*p)
3212			++p;
3213
3214		str = p;
3215	}
3216
3217	return 0;
3218}
3219
3220static int perf_sched__timehist(struct perf_sched *sched)
3221{
3222	struct evsel_str_handler handlers[] = {
3223		{ "sched:sched_switch",       timehist_sched_switch_event, },
3224		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3225		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3226		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3227	};
3228	const struct evsel_str_handler migrate_handlers[] = {
3229		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3230	};
3231	struct perf_data data = {
3232		.path  = input_name,
3233		.mode  = PERF_DATA_MODE_READ,
3234		.force = sched->force,
3235	};
3236
3237	struct perf_session *session;
3238	struct evlist *evlist;
3239	int err = -1;
3240
3241	/*
3242	 * event handlers for timehist option
3243	 */
3244	sched->tool.sample	 = perf_timehist__process_sample;
3245	sched->tool.mmap	 = perf_event__process_mmap;
3246	sched->tool.comm	 = perf_event__process_comm;
3247	sched->tool.exit	 = perf_event__process_exit;
3248	sched->tool.fork	 = perf_event__process_fork;
3249	sched->tool.lost	 = process_lost;
3250	sched->tool.attr	 = perf_event__process_attr;
3251	sched->tool.tracing_data = perf_event__process_tracing_data;
3252	sched->tool.build_id	 = perf_event__process_build_id;
3253
 
3254	sched->tool.ordering_requires_timestamps = true;
3255
3256	symbol_conf.use_callchain = sched->show_callchain;
3257
3258	session = perf_session__new(&data, &sched->tool);
3259	if (IS_ERR(session))
3260		return PTR_ERR(session);
3261
3262	if (cpu_list) {
3263		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3264		if (err < 0)
3265			goto out;
3266	}
3267
3268	evlist = session->evlist;
3269
3270	symbol__init(&session->header.env);
3271
3272	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3273		pr_err("Invalid time string\n");
3274		err = -EINVAL;
3275		goto out;
3276	}
3277
3278	if (timehist_check_attr(sched, evlist) != 0)
3279		goto out;
3280
3281	if (timehist_parse_prio_str(sched) != 0) {
3282		pr_err("Invalid prio string\n");
3283		goto out;
3284	}
3285
3286	setup_pager();
3287
3288	/* prefer sched_waking if it is captured */
3289	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3290		handlers[1].handler = timehist_sched_wakeup_ignore;
3291
3292	/* setup per-evsel handlers */
3293	if (perf_session__set_tracepoints_handlers(session, handlers))
3294		goto out;
3295
3296	/* sched_switch event at a minimum needs to exist */
3297	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
 
3298		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3299		goto out;
3300	}
3301
3302	if ((sched->show_migrations || sched->pre_migrations) &&
3303		perf_session__set_tracepoints_handlers(session, migrate_handlers))
3304		goto out;
3305
3306	/* pre-allocate struct for per-CPU idle stats */
3307	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3308	if (sched->max_cpu.cpu == 0)
3309		sched->max_cpu.cpu = 4;
3310	if (init_idle_threads(sched->max_cpu.cpu))
3311		goto out;
3312
3313	/* summary_only implies summary option, but don't overwrite summary if set */
3314	if (sched->summary_only)
3315		sched->summary = sched->summary_only;
3316
3317	if (!sched->summary_only)
3318		timehist_header(sched);
3319
3320	err = perf_session__process_events(session);
3321	if (err) {
3322		pr_err("Failed to process events, error %d", err);
3323		goto out;
3324	}
3325
3326	sched->nr_events      = evlist->stats.nr_events[0];
3327	sched->nr_lost_events = evlist->stats.total_lost;
3328	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3329
3330	if (sched->summary)
3331		timehist_print_summary(sched, session);
3332
3333out:
3334	free_idle_threads();
3335	perf_session__delete(session);
3336
3337	return err;
3338}
3339
3340
3341static void print_bad_events(struct perf_sched *sched)
3342{
3343	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3344		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3345			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3346			sched->nr_unordered_timestamps, sched->nr_timestamps);
3347	}
3348	if (sched->nr_lost_events && sched->nr_events) {
3349		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3350			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3351			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3352	}
3353	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3354		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3355			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3356			sched->nr_context_switch_bugs, sched->nr_timestamps);
3357		if (sched->nr_lost_events)
3358			printf(" (due to lost events?)");
3359		printf("\n");
3360	}
3361}
3362
3363static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3364{
3365	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3366	struct work_atoms *this;
3367	const char *comm = thread__comm_str(data->thread), *this_comm;
3368	bool leftmost = true;
3369
3370	while (*new) {
3371		int cmp;
3372
3373		this = container_of(*new, struct work_atoms, node);
3374		parent = *new;
3375
3376		this_comm = thread__comm_str(this->thread);
3377		cmp = strcmp(comm, this_comm);
3378		if (cmp > 0) {
3379			new = &((*new)->rb_left);
3380		} else if (cmp < 0) {
3381			new = &((*new)->rb_right);
3382			leftmost = false;
3383		} else {
3384			this->num_merged++;
3385			this->total_runtime += data->total_runtime;
3386			this->nb_atoms += data->nb_atoms;
3387			this->total_lat += data->total_lat;
3388			list_splice(&data->work_list, &this->work_list);
3389			if (this->max_lat < data->max_lat) {
3390				this->max_lat = data->max_lat;
3391				this->max_lat_start = data->max_lat_start;
3392				this->max_lat_end = data->max_lat_end;
3393			}
3394			zfree(&data);
3395			return;
3396		}
3397	}
3398
3399	data->num_merged++;
3400	rb_link_node(&data->node, parent, new);
3401	rb_insert_color_cached(&data->node, root, leftmost);
3402}
3403
3404static void perf_sched__merge_lat(struct perf_sched *sched)
3405{
3406	struct work_atoms *data;
3407	struct rb_node *node;
3408
3409	if (sched->skip_merge)
3410		return;
3411
3412	while ((node = rb_first_cached(&sched->atom_root))) {
3413		rb_erase_cached(node, &sched->atom_root);
3414		data = rb_entry(node, struct work_atoms, node);
3415		__merge_work_atoms(&sched->merged_atom_root, data);
3416	}
3417}
3418
3419static int setup_cpus_switch_event(struct perf_sched *sched)
3420{
3421	unsigned int i;
3422
3423	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3424	if (!sched->cpu_last_switched)
3425		return -1;
3426
3427	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3428	if (!sched->curr_pid) {
3429		zfree(&sched->cpu_last_switched);
3430		return -1;
3431	}
3432
3433	for (i = 0; i < MAX_CPUS; i++)
3434		sched->curr_pid[i] = -1;
3435
3436	return 0;
3437}
3438
3439static void free_cpus_switch_event(struct perf_sched *sched)
3440{
3441	zfree(&sched->curr_pid);
3442	zfree(&sched->cpu_last_switched);
3443}
3444
3445static int perf_sched__lat(struct perf_sched *sched)
3446{
3447	int rc = -1;
3448	struct rb_node *next;
3449
3450	setup_pager();
3451
3452	if (setup_cpus_switch_event(sched))
3453		return rc;
3454
3455	if (perf_sched__read_events(sched))
3456		goto out_free_cpus_switch_event;
3457
3458	perf_sched__merge_lat(sched);
3459	perf_sched__sort_lat(sched);
3460
3461	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3462	printf("  Task                  |   Runtime ms  |  Count   | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3463	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3464
3465	next = rb_first_cached(&sched->sorted_atom_root);
3466
3467	while (next) {
3468		struct work_atoms *work_list;
3469
3470		work_list = rb_entry(next, struct work_atoms, node);
3471		output_lat_thread(sched, work_list);
3472		next = rb_next(next);
3473		thread__zput(work_list->thread);
3474	}
3475
3476	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3477	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3478		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3479
3480	printf(" ---------------------------------------------------\n");
3481
3482	print_bad_events(sched);
3483	printf("\n");
3484
3485	rc = 0;
3486
3487out_free_cpus_switch_event:
3488	free_cpus_switch_event(sched);
3489	return rc;
3490}
3491
3492static int setup_map_cpus(struct perf_sched *sched)
3493{
3494	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
 
 
3495
3496	if (sched->map.comp) {
3497		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3498		if (!sched->map.comp_cpus)
3499			return -1;
3500	}
3501
3502	if (sched->map.cpus_str) {
3503		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3504		if (!sched->map.cpus) {
3505			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3506			zfree(&sched->map.comp_cpus);
3507			return -1;
3508		}
3509	}
3510
 
3511	return 0;
3512}
3513
3514static int setup_color_pids(struct perf_sched *sched)
3515{
3516	struct perf_thread_map *map;
3517
3518	if (!sched->map.color_pids_str)
3519		return 0;
3520
3521	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3522	if (!map) {
3523		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3524		return -1;
3525	}
3526
3527	sched->map.color_pids = map;
3528	return 0;
3529}
3530
3531static int setup_color_cpus(struct perf_sched *sched)
3532{
3533	struct perf_cpu_map *map;
3534
3535	if (!sched->map.color_cpus_str)
3536		return 0;
3537
3538	map = perf_cpu_map__new(sched->map.color_cpus_str);
3539	if (!map) {
3540		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3541		return -1;
3542	}
3543
3544	sched->map.color_cpus = map;
3545	return 0;
3546}
3547
3548static int perf_sched__map(struct perf_sched *sched)
3549{
3550	int rc = -1;
3551
3552	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3553	if (!sched->curr_thread)
3554		return rc;
3555
3556	sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3557	if (!sched->curr_out_thread)
3558		return rc;
3559
3560	if (setup_cpus_switch_event(sched))
3561		goto out_free_curr_thread;
3562
3563	if (setup_map_cpus(sched))
3564		goto out_free_cpus_switch_event;
3565
3566	if (setup_color_pids(sched))
3567		goto out_put_map_cpus;
3568
3569	if (setup_color_cpus(sched))
3570		goto out_put_color_pids;
3571
3572	setup_pager();
3573	if (perf_sched__read_events(sched))
3574		goto out_put_color_cpus;
3575
3576	rc = 0;
3577	print_bad_events(sched);
3578
3579out_put_color_cpus:
3580	perf_cpu_map__put(sched->map.color_cpus);
3581
3582out_put_color_pids:
3583	perf_thread_map__put(sched->map.color_pids);
3584
3585out_put_map_cpus:
3586	zfree(&sched->map.comp_cpus);
3587	perf_cpu_map__put(sched->map.cpus);
3588
3589out_free_cpus_switch_event:
3590	free_cpus_switch_event(sched);
3591
3592out_free_curr_thread:
3593	zfree(&sched->curr_thread);
3594	return rc;
3595}
3596
3597static int perf_sched__replay(struct perf_sched *sched)
3598{
3599	int ret;
3600	unsigned long i;
3601
3602	mutex_init(&sched->start_work_mutex);
3603	mutex_init(&sched->work_done_wait_mutex);
3604
3605	ret = setup_cpus_switch_event(sched);
3606	if (ret)
3607		goto out_mutex_destroy;
3608
3609	calibrate_run_measurement_overhead(sched);
3610	calibrate_sleep_measurement_overhead(sched);
3611
3612	test_calibrations(sched);
3613
3614	ret = perf_sched__read_events(sched);
3615	if (ret)
3616		goto out_free_cpus_switch_event;
3617
3618	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3619	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3620	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3621
3622	if (sched->targetless_wakeups)
3623		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3624	if (sched->multitarget_wakeups)
3625		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3626	if (sched->nr_run_events_optimized)
3627		printf("run atoms optimized: %ld\n",
3628			sched->nr_run_events_optimized);
3629
3630	print_task_traces(sched);
3631	add_cross_task_wakeups(sched);
3632
3633	sched->thread_funcs_exit = false;
3634	create_tasks(sched);
3635	printf("------------------------------------------------------------\n");
3636	if (sched->replay_repeat == 0)
3637		sched->replay_repeat = UINT_MAX;
3638
3639	for (i = 0; i < sched->replay_repeat; i++)
3640		run_one_test(sched);
3641
3642	sched->thread_funcs_exit = true;
3643	destroy_tasks(sched);
3644
3645out_free_cpus_switch_event:
3646	free_cpus_switch_event(sched);
3647
3648out_mutex_destroy:
3649	mutex_destroy(&sched->start_work_mutex);
3650	mutex_destroy(&sched->work_done_wait_mutex);
3651	return ret;
3652}
3653
3654static void setup_sorting(struct perf_sched *sched, const struct option *options,
3655			  const char * const usage_msg[])
3656{
3657	char *tmp, *tok, *str = strdup(sched->sort_order);
3658
3659	for (tok = strtok_r(str, ", ", &tmp);
3660			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3661		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3662			usage_with_options_msg(usage_msg, options,
3663					"Unknown --sort key: `%s'", tok);
3664		}
3665	}
3666
3667	free(str);
3668
3669	sort_dimension__add("pid", &sched->cmp_pid);
3670}
3671
3672static bool schedstat_events_exposed(void)
3673{
3674	/*
3675	 * Select "sched:sched_stat_wait" event to check
3676	 * whether schedstat tracepoints are exposed.
3677	 */
3678	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3679		false : true;
3680}
3681
3682static int __cmd_record(int argc, const char **argv)
3683{
3684	unsigned int rec_argc, i, j;
3685	char **rec_argv;
3686	const char **rec_argv_copy;
3687	const char * const record_args[] = {
3688		"record",
3689		"-a",
3690		"-R",
3691		"-m", "1024",
3692		"-c", "1",
3693		"-e", "sched:sched_switch",
 
 
 
3694		"-e", "sched:sched_stat_runtime",
3695		"-e", "sched:sched_process_fork",
 
3696		"-e", "sched:sched_wakeup_new",
3697		"-e", "sched:sched_migrate_task",
3698	};
3699
3700	/*
3701	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3702	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3703	 * to prevent "perf sched record" execution failure, determine
3704	 * whether to record schedstat events according to actual situation.
3705	 */
3706	const char * const schedstat_args[] = {
3707		"-e", "sched:sched_stat_wait",
3708		"-e", "sched:sched_stat_sleep",
3709		"-e", "sched:sched_stat_iowait",
3710	};
3711	unsigned int schedstat_argc = schedstat_events_exposed() ?
3712		ARRAY_SIZE(schedstat_args) : 0;
3713
3714	struct tep_event *waking_event;
3715	int ret;
3716
3717	/*
3718	 * +2 for either "-e", "sched:sched_wakeup" or
3719	 * "-e", "sched:sched_waking"
3720	 */
3721	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3722	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3723	if (rec_argv == NULL)
3724		return -ENOMEM;
3725	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3726	if (rec_argv_copy == NULL) {
3727		free(rec_argv);
3728		return -ENOMEM;
3729	}
3730
3731	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3732		rec_argv[i] = strdup(record_args[i]);
3733
3734	rec_argv[i++] = strdup("-e");
3735	waking_event = trace_event__tp_format("sched", "sched_waking");
3736	if (!IS_ERR(waking_event))
3737		rec_argv[i++] = strdup("sched:sched_waking");
3738	else
3739		rec_argv[i++] = strdup("sched:sched_wakeup");
3740
3741	for (j = 0; j < schedstat_argc; j++)
3742		rec_argv[i++] = strdup(schedstat_args[j]);
3743
3744	for (j = 1; j < (unsigned int)argc; j++, i++)
3745		rec_argv[i] = strdup(argv[j]);
3746
3747	BUG_ON(i != rec_argc);
3748
3749	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3750	ret = cmd_record(rec_argc, rec_argv_copy);
3751
3752	for (i = 0; i < rec_argc; i++)
3753		free(rec_argv[i]);
3754	free(rec_argv);
3755	free(rec_argv_copy);
3756
3757	return ret;
3758}
3759
3760int cmd_sched(int argc, const char **argv)
3761{
3762	static const char default_sort_order[] = "avg, max, switch, runtime";
3763	struct perf_sched sched = {
 
 
 
 
 
 
 
 
3764		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3765		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
 
 
3766		.sort_order	      = default_sort_order,
3767		.replay_repeat	      = 10,
3768		.profile_cpu	      = -1,
3769		.next_shortname1      = 'A',
3770		.next_shortname2      = '0',
3771		.skip_merge           = 0,
3772		.show_callchain	      = 1,
3773		.max_stack            = 5,
3774	};
3775	const struct option sched_options[] = {
3776	OPT_STRING('i', "input", &input_name, "file",
3777		    "input file name"),
3778	OPT_INCR('v', "verbose", &verbose,
3779		    "be more verbose (show symbol address, etc)"),
3780	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3781		    "dump raw trace in ASCII"),
3782	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3783	OPT_END()
3784	};
3785	const struct option latency_options[] = {
3786	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3787		   "sort by key(s): runtime, switch, avg, max"),
3788	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3789		    "CPU to profile on"),
3790	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3791		    "latency stats per pid instead of per comm"),
3792	OPT_PARENT(sched_options)
3793	};
3794	const struct option replay_options[] = {
3795	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3796		     "repeat the workload replay N times (0: infinite)"),
3797	OPT_PARENT(sched_options)
3798	};
3799	const struct option map_options[] = {
3800	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3801		    "map output in compact mode"),
3802	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3803		   "highlight given pids in map"),
3804	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3805                    "highlight given CPUs in map"),
3806	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3807                    "display given CPUs in map"),
3808	OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3809		"map output only for the given task name(s)."),
3810	OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3811		"given command name can be partially matched (fuzzy matching)"),
3812	OPT_PARENT(sched_options)
3813	};
3814	const struct option timehist_options[] = {
3815	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3816		   "file", "vmlinux pathname"),
3817	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3818		   "file", "kallsyms pathname"),
3819	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3820		    "Display call chains if present (default on)"),
3821	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3822		   "Maximum number of functions to display backtrace."),
3823	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3824		    "Look for files with symbols relative to this directory"),
3825	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3826		    "Show only syscall summary with statistics"),
3827	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3828		    "Show all syscalls and summary with statistics"),
3829	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3830	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3831	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3832	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3833	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3834	OPT_STRING(0, "time", &sched.time_str, "str",
3835		   "Time span for analysis (start,stop)"),
3836	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3837	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3838		   "analyze events only for given process id(s)"),
3839	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3840		   "analyze events only for given thread id(s)"),
3841	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3842	OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3843	OPT_STRING(0, "prio", &sched.prio_str, "prio",
3844		   "analyze events only for given task priority(ies)"),
3845	OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3846	OPT_PARENT(sched_options)
3847	};
3848
3849	const char * const latency_usage[] = {
3850		"perf sched latency [<options>]",
3851		NULL
3852	};
3853	const char * const replay_usage[] = {
3854		"perf sched replay [<options>]",
3855		NULL
3856	};
3857	const char * const map_usage[] = {
3858		"perf sched map [<options>]",
3859		NULL
3860	};
3861	const char * const timehist_usage[] = {
3862		"perf sched timehist [<options>]",
3863		NULL
3864	};
3865	const char *const sched_subcommands[] = { "record", "latency", "map",
3866						  "replay", "script",
3867						  "timehist", NULL };
3868	const char *sched_usage[] = {
3869		NULL,
3870		NULL
3871	};
3872	struct trace_sched_handler lat_ops  = {
3873		.wakeup_event	    = latency_wakeup_event,
3874		.switch_event	    = latency_switch_event,
3875		.runtime_event	    = latency_runtime_event,
3876		.migrate_task_event = latency_migrate_task_event,
3877	};
3878	struct trace_sched_handler map_ops  = {
3879		.switch_event	    = map_switch_event,
3880	};
3881	struct trace_sched_handler replay_ops  = {
3882		.wakeup_event	    = replay_wakeup_event,
3883		.switch_event	    = replay_switch_event,
3884		.fork_event	    = replay_fork_event,
3885	};
3886	int ret;
3887
3888	perf_tool__init(&sched.tool, /*ordered_events=*/true);
3889	sched.tool.sample	 = perf_sched__process_tracepoint_sample;
3890	sched.tool.comm		 = perf_sched__process_comm;
3891	sched.tool.namespaces	 = perf_event__process_namespaces;
3892	sched.tool.lost		 = perf_event__process_lost;
3893	sched.tool.fork		 = perf_sched__process_fork_event;
3894
3895	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3896					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3897	if (!argc)
3898		usage_with_options(sched_usage, sched_options);
3899
3900	/*
3901	 * Aliased to 'perf script' for now:
3902	 */
3903	if (!strcmp(argv[0], "script")) {
3904		return cmd_script(argc, argv);
3905	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
 
3906		return __cmd_record(argc, argv);
3907	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3908		sched.tp_handler = &lat_ops;
3909		if (argc > 1) {
3910			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3911			if (argc)
3912				usage_with_options(latency_usage, latency_options);
3913		}
3914		setup_sorting(&sched, latency_options, latency_usage);
3915		return perf_sched__lat(&sched);
3916	} else if (!strcmp(argv[0], "map")) {
3917		if (argc) {
3918			argc = parse_options(argc, argv, map_options, map_usage, 0);
3919			if (argc)
3920				usage_with_options(map_usage, map_options);
3921
3922			if (sched.map.task_name) {
3923				sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3924				if (sched.map.task_names == NULL) {
3925					fprintf(stderr, "Failed to parse task names\n");
3926					return -1;
3927				}
3928			}
3929		}
3930		sched.tp_handler = &map_ops;
3931		setup_sorting(&sched, latency_options, latency_usage);
3932		return perf_sched__map(&sched);
3933	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3934		sched.tp_handler = &replay_ops;
3935		if (argc) {
3936			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3937			if (argc)
3938				usage_with_options(replay_usage, replay_options);
3939		}
3940		return perf_sched__replay(&sched);
3941	} else if (!strcmp(argv[0], "timehist")) {
3942		if (argc) {
3943			argc = parse_options(argc, argv, timehist_options,
3944					     timehist_usage, 0);
3945			if (argc)
3946				usage_with_options(timehist_usage, timehist_options);
3947		}
3948		if ((sched.show_wakeups || sched.show_next) &&
3949		    sched.summary_only) {
3950			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3951			parse_options_usage(timehist_usage, timehist_options, "s", true);
3952			if (sched.show_wakeups)
3953				parse_options_usage(NULL, timehist_options, "w", true);
3954			if (sched.show_next)
3955				parse_options_usage(NULL, timehist_options, "n", true);
3956			return -EINVAL;
3957		}
3958		ret = symbol__validate_sym_arguments();
3959		if (ret)
3960			return ret;
3961
3962		return perf_sched__timehist(&sched);
3963	} else {
3964		usage_with_options(sched_usage, sched_options);
3965	}
3966
3967	/* free usage string allocated by parse_options_subcommand */
3968	free((void *)sched_usage[0]);
3969
3970	return 0;
3971}