Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include "builtin.h"
3#include "perf.h"
4#include "perf-sys.h"
5
6#include "util/cpumap.h"
7#include "util/evlist.h"
8#include "util/evsel.h"
9#include "util/evsel_fprintf.h"
10#include "util/symbol.h"
11#include "util/thread.h"
12#include "util/header.h"
13#include "util/session.h"
14#include "util/tool.h"
15#include "util/cloexec.h"
16#include "util/thread_map.h"
17#include "util/color.h"
18#include "util/stat.h"
19#include "util/string2.h"
20#include "util/callchain.h"
21#include "util/time-utils.h"
22
23#include <subcmd/pager.h>
24#include <subcmd/parse-options.h>
25#include "util/trace-event.h"
26
27#include "util/debug.h"
28#include "util/event.h"
29
30#include <linux/kernel.h>
31#include <linux/log2.h>
32#include <linux/zalloc.h>
33#include <sys/prctl.h>
34#include <sys/resource.h>
35#include <inttypes.h>
36
37#include <errno.h>
38#include <semaphore.h>
39#include <pthread.h>
40#include <math.h>
41#include <api/fs/fs.h>
42#include <perf/cpumap.h>
43#include <linux/time64.h>
44#include <linux/err.h>
45
46#include <linux/ctype.h>
47
48#define PR_SET_NAME 15 /* Set process name */
49#define MAX_CPUS 4096
50#define COMM_LEN 20
51#define SYM_LEN 129
52#define MAX_PID 1024000
53
54struct sched_atom;
55
56struct task_desc {
57 unsigned long nr;
58 unsigned long pid;
59 char comm[COMM_LEN];
60
61 unsigned long nr_events;
62 unsigned long curr_event;
63 struct sched_atom **atoms;
64
65 pthread_t thread;
66 sem_t sleep_sem;
67
68 sem_t ready_for_work;
69 sem_t work_done_sem;
70
71 u64 cpu_usage;
72};
73
74enum sched_event_type {
75 SCHED_EVENT_RUN,
76 SCHED_EVENT_SLEEP,
77 SCHED_EVENT_WAKEUP,
78 SCHED_EVENT_MIGRATION,
79};
80
81struct sched_atom {
82 enum sched_event_type type;
83 int specific_wait;
84 u64 timestamp;
85 u64 duration;
86 unsigned long nr;
87 sem_t *wait_sem;
88 struct task_desc *wakee;
89};
90
91#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
92
93/* task state bitmask, copied from include/linux/sched.h */
94#define TASK_RUNNING 0
95#define TASK_INTERRUPTIBLE 1
96#define TASK_UNINTERRUPTIBLE 2
97#define __TASK_STOPPED 4
98#define __TASK_TRACED 8
99/* in tsk->exit_state */
100#define EXIT_DEAD 16
101#define EXIT_ZOMBIE 32
102#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
103/* in tsk->state again */
104#define TASK_DEAD 64
105#define TASK_WAKEKILL 128
106#define TASK_WAKING 256
107#define TASK_PARKED 512
108
109enum thread_state {
110 THREAD_SLEEPING = 0,
111 THREAD_WAIT_CPU,
112 THREAD_SCHED_IN,
113 THREAD_IGNORE
114};
115
116struct work_atom {
117 struct list_head list;
118 enum thread_state state;
119 u64 sched_out_time;
120 u64 wake_up_time;
121 u64 sched_in_time;
122 u64 runtime;
123};
124
125struct work_atoms {
126 struct list_head work_list;
127 struct thread *thread;
128 struct rb_node node;
129 u64 max_lat;
130 u64 max_lat_at;
131 u64 total_lat;
132 u64 nb_atoms;
133 u64 total_runtime;
134 int num_merged;
135};
136
137typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
138
139struct perf_sched;
140
141struct trace_sched_handler {
142 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
143 struct perf_sample *sample, struct machine *machine);
144
145 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
146 struct perf_sample *sample, struct machine *machine);
147
148 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
149 struct perf_sample *sample, struct machine *machine);
150
151 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
152 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
153 struct machine *machine);
154
155 int (*migrate_task_event)(struct perf_sched *sched,
156 struct evsel *evsel,
157 struct perf_sample *sample,
158 struct machine *machine);
159};
160
161#define COLOR_PIDS PERF_COLOR_BLUE
162#define COLOR_CPUS PERF_COLOR_BG_RED
163
164struct perf_sched_map {
165 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
166 int *comp_cpus;
167 bool comp;
168 struct perf_thread_map *color_pids;
169 const char *color_pids_str;
170 struct perf_cpu_map *color_cpus;
171 const char *color_cpus_str;
172 struct perf_cpu_map *cpus;
173 const char *cpus_str;
174};
175
176struct perf_sched {
177 struct perf_tool tool;
178 const char *sort_order;
179 unsigned long nr_tasks;
180 struct task_desc **pid_to_task;
181 struct task_desc **tasks;
182 const struct trace_sched_handler *tp_handler;
183 pthread_mutex_t start_work_mutex;
184 pthread_mutex_t work_done_wait_mutex;
185 int profile_cpu;
186/*
187 * Track the current task - that way we can know whether there's any
188 * weird events, such as a task being switched away that is not current.
189 */
190 int max_cpu;
191 u32 curr_pid[MAX_CPUS];
192 struct thread *curr_thread[MAX_CPUS];
193 char next_shortname1;
194 char next_shortname2;
195 unsigned int replay_repeat;
196 unsigned long nr_run_events;
197 unsigned long nr_sleep_events;
198 unsigned long nr_wakeup_events;
199 unsigned long nr_sleep_corrections;
200 unsigned long nr_run_events_optimized;
201 unsigned long targetless_wakeups;
202 unsigned long multitarget_wakeups;
203 unsigned long nr_runs;
204 unsigned long nr_timestamps;
205 unsigned long nr_unordered_timestamps;
206 unsigned long nr_context_switch_bugs;
207 unsigned long nr_events;
208 unsigned long nr_lost_chunks;
209 unsigned long nr_lost_events;
210 u64 run_measurement_overhead;
211 u64 sleep_measurement_overhead;
212 u64 start_time;
213 u64 cpu_usage;
214 u64 runavg_cpu_usage;
215 u64 parent_cpu_usage;
216 u64 runavg_parent_cpu_usage;
217 u64 sum_runtime;
218 u64 sum_fluct;
219 u64 run_avg;
220 u64 all_runtime;
221 u64 all_count;
222 u64 cpu_last_switched[MAX_CPUS];
223 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
224 struct list_head sort_list, cmp_pid;
225 bool force;
226 bool skip_merge;
227 struct perf_sched_map map;
228
229 /* options for timehist command */
230 bool summary;
231 bool summary_only;
232 bool idle_hist;
233 bool show_callchain;
234 unsigned int max_stack;
235 bool show_cpu_visual;
236 bool show_wakeups;
237 bool show_next;
238 bool show_migrations;
239 bool show_state;
240 u64 skipped_samples;
241 const char *time_str;
242 struct perf_time_interval ptime;
243 struct perf_time_interval hist_time;
244};
245
246/* per thread run time data */
247struct thread_runtime {
248 u64 last_time; /* time of previous sched in/out event */
249 u64 dt_run; /* run time */
250 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
251 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
252 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
253 u64 dt_delay; /* time between wakeup and sched-in */
254 u64 ready_to_run; /* time of wakeup */
255
256 struct stats run_stats;
257 u64 total_run_time;
258 u64 total_sleep_time;
259 u64 total_iowait_time;
260 u64 total_preempt_time;
261 u64 total_delay_time;
262
263 int last_state;
264
265 char shortname[3];
266 bool comm_changed;
267
268 u64 migrations;
269};
270
271/* per event run time data */
272struct evsel_runtime {
273 u64 *last_time; /* time this event was last seen per cpu */
274 u32 ncpu; /* highest cpu slot allocated */
275};
276
277/* per cpu idle time data */
278struct idle_thread_runtime {
279 struct thread_runtime tr;
280 struct thread *last_thread;
281 struct rb_root_cached sorted_root;
282 struct callchain_root callchain;
283 struct callchain_cursor cursor;
284};
285
286/* track idle times per cpu */
287static struct thread **idle_threads;
288static int idle_max_cpu;
289static char idle_comm[] = "<idle>";
290
291static u64 get_nsecs(void)
292{
293 struct timespec ts;
294
295 clock_gettime(CLOCK_MONOTONIC, &ts);
296
297 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
298}
299
300static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
301{
302 u64 T0 = get_nsecs(), T1;
303
304 do {
305 T1 = get_nsecs();
306 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
307}
308
309static void sleep_nsecs(u64 nsecs)
310{
311 struct timespec ts;
312
313 ts.tv_nsec = nsecs % 999999999;
314 ts.tv_sec = nsecs / 999999999;
315
316 nanosleep(&ts, NULL);
317}
318
319static void calibrate_run_measurement_overhead(struct perf_sched *sched)
320{
321 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
322 int i;
323
324 for (i = 0; i < 10; i++) {
325 T0 = get_nsecs();
326 burn_nsecs(sched, 0);
327 T1 = get_nsecs();
328 delta = T1-T0;
329 min_delta = min(min_delta, delta);
330 }
331 sched->run_measurement_overhead = min_delta;
332
333 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
334}
335
336static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
337{
338 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
339 int i;
340
341 for (i = 0; i < 10; i++) {
342 T0 = get_nsecs();
343 sleep_nsecs(10000);
344 T1 = get_nsecs();
345 delta = T1-T0;
346 min_delta = min(min_delta, delta);
347 }
348 min_delta -= 10000;
349 sched->sleep_measurement_overhead = min_delta;
350
351 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
352}
353
354static struct sched_atom *
355get_new_event(struct task_desc *task, u64 timestamp)
356{
357 struct sched_atom *event = zalloc(sizeof(*event));
358 unsigned long idx = task->nr_events;
359 size_t size;
360
361 event->timestamp = timestamp;
362 event->nr = idx;
363
364 task->nr_events++;
365 size = sizeof(struct sched_atom *) * task->nr_events;
366 task->atoms = realloc(task->atoms, size);
367 BUG_ON(!task->atoms);
368
369 task->atoms[idx] = event;
370
371 return event;
372}
373
374static struct sched_atom *last_event(struct task_desc *task)
375{
376 if (!task->nr_events)
377 return NULL;
378
379 return task->atoms[task->nr_events - 1];
380}
381
382static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
383 u64 timestamp, u64 duration)
384{
385 struct sched_atom *event, *curr_event = last_event(task);
386
387 /*
388 * optimize an existing RUN event by merging this one
389 * to it:
390 */
391 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
392 sched->nr_run_events_optimized++;
393 curr_event->duration += duration;
394 return;
395 }
396
397 event = get_new_event(task, timestamp);
398
399 event->type = SCHED_EVENT_RUN;
400 event->duration = duration;
401
402 sched->nr_run_events++;
403}
404
405static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
406 u64 timestamp, struct task_desc *wakee)
407{
408 struct sched_atom *event, *wakee_event;
409
410 event = get_new_event(task, timestamp);
411 event->type = SCHED_EVENT_WAKEUP;
412 event->wakee = wakee;
413
414 wakee_event = last_event(wakee);
415 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
416 sched->targetless_wakeups++;
417 return;
418 }
419 if (wakee_event->wait_sem) {
420 sched->multitarget_wakeups++;
421 return;
422 }
423
424 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
425 sem_init(wakee_event->wait_sem, 0, 0);
426 wakee_event->specific_wait = 1;
427 event->wait_sem = wakee_event->wait_sem;
428
429 sched->nr_wakeup_events++;
430}
431
432static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
433 u64 timestamp, u64 task_state __maybe_unused)
434{
435 struct sched_atom *event = get_new_event(task, timestamp);
436
437 event->type = SCHED_EVENT_SLEEP;
438
439 sched->nr_sleep_events++;
440}
441
442static struct task_desc *register_pid(struct perf_sched *sched,
443 unsigned long pid, const char *comm)
444{
445 struct task_desc *task;
446 static int pid_max;
447
448 if (sched->pid_to_task == NULL) {
449 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
450 pid_max = MAX_PID;
451 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
452 }
453 if (pid >= (unsigned long)pid_max) {
454 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
455 sizeof(struct task_desc *))) == NULL);
456 while (pid >= (unsigned long)pid_max)
457 sched->pid_to_task[pid_max++] = NULL;
458 }
459
460 task = sched->pid_to_task[pid];
461
462 if (task)
463 return task;
464
465 task = zalloc(sizeof(*task));
466 task->pid = pid;
467 task->nr = sched->nr_tasks;
468 strcpy(task->comm, comm);
469 /*
470 * every task starts in sleeping state - this gets ignored
471 * if there's no wakeup pointing to this sleep state:
472 */
473 add_sched_event_sleep(sched, task, 0, 0);
474
475 sched->pid_to_task[pid] = task;
476 sched->nr_tasks++;
477 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
478 BUG_ON(!sched->tasks);
479 sched->tasks[task->nr] = task;
480
481 if (verbose > 0)
482 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
483
484 return task;
485}
486
487
488static void print_task_traces(struct perf_sched *sched)
489{
490 struct task_desc *task;
491 unsigned long i;
492
493 for (i = 0; i < sched->nr_tasks; i++) {
494 task = sched->tasks[i];
495 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
496 task->nr, task->comm, task->pid, task->nr_events);
497 }
498}
499
500static void add_cross_task_wakeups(struct perf_sched *sched)
501{
502 struct task_desc *task1, *task2;
503 unsigned long i, j;
504
505 for (i = 0; i < sched->nr_tasks; i++) {
506 task1 = sched->tasks[i];
507 j = i + 1;
508 if (j == sched->nr_tasks)
509 j = 0;
510 task2 = sched->tasks[j];
511 add_sched_event_wakeup(sched, task1, 0, task2);
512 }
513}
514
515static void perf_sched__process_event(struct perf_sched *sched,
516 struct sched_atom *atom)
517{
518 int ret = 0;
519
520 switch (atom->type) {
521 case SCHED_EVENT_RUN:
522 burn_nsecs(sched, atom->duration);
523 break;
524 case SCHED_EVENT_SLEEP:
525 if (atom->wait_sem)
526 ret = sem_wait(atom->wait_sem);
527 BUG_ON(ret);
528 break;
529 case SCHED_EVENT_WAKEUP:
530 if (atom->wait_sem)
531 ret = sem_post(atom->wait_sem);
532 BUG_ON(ret);
533 break;
534 case SCHED_EVENT_MIGRATION:
535 break;
536 default:
537 BUG_ON(1);
538 }
539}
540
541static u64 get_cpu_usage_nsec_parent(void)
542{
543 struct rusage ru;
544 u64 sum;
545 int err;
546
547 err = getrusage(RUSAGE_SELF, &ru);
548 BUG_ON(err);
549
550 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
551 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
552
553 return sum;
554}
555
556static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
557{
558 struct perf_event_attr attr;
559 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
560 int fd;
561 struct rlimit limit;
562 bool need_privilege = false;
563
564 memset(&attr, 0, sizeof(attr));
565
566 attr.type = PERF_TYPE_SOFTWARE;
567 attr.config = PERF_COUNT_SW_TASK_CLOCK;
568
569force_again:
570 fd = sys_perf_event_open(&attr, 0, -1, -1,
571 perf_event_open_cloexec_flag());
572
573 if (fd < 0) {
574 if (errno == EMFILE) {
575 if (sched->force) {
576 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
577 limit.rlim_cur += sched->nr_tasks - cur_task;
578 if (limit.rlim_cur > limit.rlim_max) {
579 limit.rlim_max = limit.rlim_cur;
580 need_privilege = true;
581 }
582 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
583 if (need_privilege && errno == EPERM)
584 strcpy(info, "Need privilege\n");
585 } else
586 goto force_again;
587 } else
588 strcpy(info, "Have a try with -f option\n");
589 }
590 pr_err("Error: sys_perf_event_open() syscall returned "
591 "with %d (%s)\n%s", fd,
592 str_error_r(errno, sbuf, sizeof(sbuf)), info);
593 exit(EXIT_FAILURE);
594 }
595 return fd;
596}
597
598static u64 get_cpu_usage_nsec_self(int fd)
599{
600 u64 runtime;
601 int ret;
602
603 ret = read(fd, &runtime, sizeof(runtime));
604 BUG_ON(ret != sizeof(runtime));
605
606 return runtime;
607}
608
609struct sched_thread_parms {
610 struct task_desc *task;
611 struct perf_sched *sched;
612 int fd;
613};
614
615static void *thread_func(void *ctx)
616{
617 struct sched_thread_parms *parms = ctx;
618 struct task_desc *this_task = parms->task;
619 struct perf_sched *sched = parms->sched;
620 u64 cpu_usage_0, cpu_usage_1;
621 unsigned long i, ret;
622 char comm2[22];
623 int fd = parms->fd;
624
625 zfree(&parms);
626
627 sprintf(comm2, ":%s", this_task->comm);
628 prctl(PR_SET_NAME, comm2);
629 if (fd < 0)
630 return NULL;
631again:
632 ret = sem_post(&this_task->ready_for_work);
633 BUG_ON(ret);
634 ret = pthread_mutex_lock(&sched->start_work_mutex);
635 BUG_ON(ret);
636 ret = pthread_mutex_unlock(&sched->start_work_mutex);
637 BUG_ON(ret);
638
639 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
640
641 for (i = 0; i < this_task->nr_events; i++) {
642 this_task->curr_event = i;
643 perf_sched__process_event(sched, this_task->atoms[i]);
644 }
645
646 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
647 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
648 ret = sem_post(&this_task->work_done_sem);
649 BUG_ON(ret);
650
651 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
652 BUG_ON(ret);
653 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
654 BUG_ON(ret);
655
656 goto again;
657}
658
659static void create_tasks(struct perf_sched *sched)
660{
661 struct task_desc *task;
662 pthread_attr_t attr;
663 unsigned long i;
664 int err;
665
666 err = pthread_attr_init(&attr);
667 BUG_ON(err);
668 err = pthread_attr_setstacksize(&attr,
669 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
670 BUG_ON(err);
671 err = pthread_mutex_lock(&sched->start_work_mutex);
672 BUG_ON(err);
673 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
674 BUG_ON(err);
675 for (i = 0; i < sched->nr_tasks; i++) {
676 struct sched_thread_parms *parms = malloc(sizeof(*parms));
677 BUG_ON(parms == NULL);
678 parms->task = task = sched->tasks[i];
679 parms->sched = sched;
680 parms->fd = self_open_counters(sched, i);
681 sem_init(&task->sleep_sem, 0, 0);
682 sem_init(&task->ready_for_work, 0, 0);
683 sem_init(&task->work_done_sem, 0, 0);
684 task->curr_event = 0;
685 err = pthread_create(&task->thread, &attr, thread_func, parms);
686 BUG_ON(err);
687 }
688}
689
690static void wait_for_tasks(struct perf_sched *sched)
691{
692 u64 cpu_usage_0, cpu_usage_1;
693 struct task_desc *task;
694 unsigned long i, ret;
695
696 sched->start_time = get_nsecs();
697 sched->cpu_usage = 0;
698 pthread_mutex_unlock(&sched->work_done_wait_mutex);
699
700 for (i = 0; i < sched->nr_tasks; i++) {
701 task = sched->tasks[i];
702 ret = sem_wait(&task->ready_for_work);
703 BUG_ON(ret);
704 sem_init(&task->ready_for_work, 0, 0);
705 }
706 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
707 BUG_ON(ret);
708
709 cpu_usage_0 = get_cpu_usage_nsec_parent();
710
711 pthread_mutex_unlock(&sched->start_work_mutex);
712
713 for (i = 0; i < sched->nr_tasks; i++) {
714 task = sched->tasks[i];
715 ret = sem_wait(&task->work_done_sem);
716 BUG_ON(ret);
717 sem_init(&task->work_done_sem, 0, 0);
718 sched->cpu_usage += task->cpu_usage;
719 task->cpu_usage = 0;
720 }
721
722 cpu_usage_1 = get_cpu_usage_nsec_parent();
723 if (!sched->runavg_cpu_usage)
724 sched->runavg_cpu_usage = sched->cpu_usage;
725 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
726
727 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
728 if (!sched->runavg_parent_cpu_usage)
729 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
730 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
731 sched->parent_cpu_usage)/sched->replay_repeat;
732
733 ret = pthread_mutex_lock(&sched->start_work_mutex);
734 BUG_ON(ret);
735
736 for (i = 0; i < sched->nr_tasks; i++) {
737 task = sched->tasks[i];
738 sem_init(&task->sleep_sem, 0, 0);
739 task->curr_event = 0;
740 }
741}
742
743static void run_one_test(struct perf_sched *sched)
744{
745 u64 T0, T1, delta, avg_delta, fluct;
746
747 T0 = get_nsecs();
748 wait_for_tasks(sched);
749 T1 = get_nsecs();
750
751 delta = T1 - T0;
752 sched->sum_runtime += delta;
753 sched->nr_runs++;
754
755 avg_delta = sched->sum_runtime / sched->nr_runs;
756 if (delta < avg_delta)
757 fluct = avg_delta - delta;
758 else
759 fluct = delta - avg_delta;
760 sched->sum_fluct += fluct;
761 if (!sched->run_avg)
762 sched->run_avg = delta;
763 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
764
765 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
766
767 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
768
769 printf("cpu: %0.2f / %0.2f",
770 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
771
772#if 0
773 /*
774 * rusage statistics done by the parent, these are less
775 * accurate than the sched->sum_exec_runtime based statistics:
776 */
777 printf(" [%0.2f / %0.2f]",
778 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
779 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
780#endif
781
782 printf("\n");
783
784 if (sched->nr_sleep_corrections)
785 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
786 sched->nr_sleep_corrections = 0;
787}
788
789static void test_calibrations(struct perf_sched *sched)
790{
791 u64 T0, T1;
792
793 T0 = get_nsecs();
794 burn_nsecs(sched, NSEC_PER_MSEC);
795 T1 = get_nsecs();
796
797 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
798
799 T0 = get_nsecs();
800 sleep_nsecs(NSEC_PER_MSEC);
801 T1 = get_nsecs();
802
803 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
804}
805
806static int
807replay_wakeup_event(struct perf_sched *sched,
808 struct evsel *evsel, struct perf_sample *sample,
809 struct machine *machine __maybe_unused)
810{
811 const char *comm = perf_evsel__strval(evsel, sample, "comm");
812 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
813 struct task_desc *waker, *wakee;
814
815 if (verbose > 0) {
816 printf("sched_wakeup event %p\n", evsel);
817
818 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
819 }
820
821 waker = register_pid(sched, sample->tid, "<unknown>");
822 wakee = register_pid(sched, pid, comm);
823
824 add_sched_event_wakeup(sched, waker, sample->time, wakee);
825 return 0;
826}
827
828static int replay_switch_event(struct perf_sched *sched,
829 struct evsel *evsel,
830 struct perf_sample *sample,
831 struct machine *machine __maybe_unused)
832{
833 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
834 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
835 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
836 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
837 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
838 struct task_desc *prev, __maybe_unused *next;
839 u64 timestamp0, timestamp = sample->time;
840 int cpu = sample->cpu;
841 s64 delta;
842
843 if (verbose > 0)
844 printf("sched_switch event %p\n", evsel);
845
846 if (cpu >= MAX_CPUS || cpu < 0)
847 return 0;
848
849 timestamp0 = sched->cpu_last_switched[cpu];
850 if (timestamp0)
851 delta = timestamp - timestamp0;
852 else
853 delta = 0;
854
855 if (delta < 0) {
856 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
857 return -1;
858 }
859
860 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
861 prev_comm, prev_pid, next_comm, next_pid, delta);
862
863 prev = register_pid(sched, prev_pid, prev_comm);
864 next = register_pid(sched, next_pid, next_comm);
865
866 sched->cpu_last_switched[cpu] = timestamp;
867
868 add_sched_event_run(sched, prev, timestamp, delta);
869 add_sched_event_sleep(sched, prev, timestamp, prev_state);
870
871 return 0;
872}
873
874static int replay_fork_event(struct perf_sched *sched,
875 union perf_event *event,
876 struct machine *machine)
877{
878 struct thread *child, *parent;
879
880 child = machine__findnew_thread(machine, event->fork.pid,
881 event->fork.tid);
882 parent = machine__findnew_thread(machine, event->fork.ppid,
883 event->fork.ptid);
884
885 if (child == NULL || parent == NULL) {
886 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
887 child, parent);
888 goto out_put;
889 }
890
891 if (verbose > 0) {
892 printf("fork event\n");
893 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
894 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
895 }
896
897 register_pid(sched, parent->tid, thread__comm_str(parent));
898 register_pid(sched, child->tid, thread__comm_str(child));
899out_put:
900 thread__put(child);
901 thread__put(parent);
902 return 0;
903}
904
905struct sort_dimension {
906 const char *name;
907 sort_fn_t cmp;
908 struct list_head list;
909};
910
911/*
912 * handle runtime stats saved per thread
913 */
914static struct thread_runtime *thread__init_runtime(struct thread *thread)
915{
916 struct thread_runtime *r;
917
918 r = zalloc(sizeof(struct thread_runtime));
919 if (!r)
920 return NULL;
921
922 init_stats(&r->run_stats);
923 thread__set_priv(thread, r);
924
925 return r;
926}
927
928static struct thread_runtime *thread__get_runtime(struct thread *thread)
929{
930 struct thread_runtime *tr;
931
932 tr = thread__priv(thread);
933 if (tr == NULL) {
934 tr = thread__init_runtime(thread);
935 if (tr == NULL)
936 pr_debug("Failed to malloc memory for runtime data.\n");
937 }
938
939 return tr;
940}
941
942static int
943thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
944{
945 struct sort_dimension *sort;
946 int ret = 0;
947
948 BUG_ON(list_empty(list));
949
950 list_for_each_entry(sort, list, list) {
951 ret = sort->cmp(l, r);
952 if (ret)
953 return ret;
954 }
955
956 return ret;
957}
958
959static struct work_atoms *
960thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
961 struct list_head *sort_list)
962{
963 struct rb_node *node = root->rb_root.rb_node;
964 struct work_atoms key = { .thread = thread };
965
966 while (node) {
967 struct work_atoms *atoms;
968 int cmp;
969
970 atoms = container_of(node, struct work_atoms, node);
971
972 cmp = thread_lat_cmp(sort_list, &key, atoms);
973 if (cmp > 0)
974 node = node->rb_left;
975 else if (cmp < 0)
976 node = node->rb_right;
977 else {
978 BUG_ON(thread != atoms->thread);
979 return atoms;
980 }
981 }
982 return NULL;
983}
984
985static void
986__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
987 struct list_head *sort_list)
988{
989 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
990 bool leftmost = true;
991
992 while (*new) {
993 struct work_atoms *this;
994 int cmp;
995
996 this = container_of(*new, struct work_atoms, node);
997 parent = *new;
998
999 cmp = thread_lat_cmp(sort_list, data, this);
1000
1001 if (cmp > 0)
1002 new = &((*new)->rb_left);
1003 else {
1004 new = &((*new)->rb_right);
1005 leftmost = false;
1006 }
1007 }
1008
1009 rb_link_node(&data->node, parent, new);
1010 rb_insert_color_cached(&data->node, root, leftmost);
1011}
1012
1013static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1014{
1015 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1016 if (!atoms) {
1017 pr_err("No memory at %s\n", __func__);
1018 return -1;
1019 }
1020
1021 atoms->thread = thread__get(thread);
1022 INIT_LIST_HEAD(&atoms->work_list);
1023 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1024 return 0;
1025}
1026
1027static char sched_out_state(u64 prev_state)
1028{
1029 const char *str = TASK_STATE_TO_CHAR_STR;
1030
1031 return str[prev_state];
1032}
1033
1034static int
1035add_sched_out_event(struct work_atoms *atoms,
1036 char run_state,
1037 u64 timestamp)
1038{
1039 struct work_atom *atom = zalloc(sizeof(*atom));
1040 if (!atom) {
1041 pr_err("Non memory at %s", __func__);
1042 return -1;
1043 }
1044
1045 atom->sched_out_time = timestamp;
1046
1047 if (run_state == 'R') {
1048 atom->state = THREAD_WAIT_CPU;
1049 atom->wake_up_time = atom->sched_out_time;
1050 }
1051
1052 list_add_tail(&atom->list, &atoms->work_list);
1053 return 0;
1054}
1055
1056static void
1057add_runtime_event(struct work_atoms *atoms, u64 delta,
1058 u64 timestamp __maybe_unused)
1059{
1060 struct work_atom *atom;
1061
1062 BUG_ON(list_empty(&atoms->work_list));
1063
1064 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1065
1066 atom->runtime += delta;
1067 atoms->total_runtime += delta;
1068}
1069
1070static void
1071add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1072{
1073 struct work_atom *atom;
1074 u64 delta;
1075
1076 if (list_empty(&atoms->work_list))
1077 return;
1078
1079 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1080
1081 if (atom->state != THREAD_WAIT_CPU)
1082 return;
1083
1084 if (timestamp < atom->wake_up_time) {
1085 atom->state = THREAD_IGNORE;
1086 return;
1087 }
1088
1089 atom->state = THREAD_SCHED_IN;
1090 atom->sched_in_time = timestamp;
1091
1092 delta = atom->sched_in_time - atom->wake_up_time;
1093 atoms->total_lat += delta;
1094 if (delta > atoms->max_lat) {
1095 atoms->max_lat = delta;
1096 atoms->max_lat_at = timestamp;
1097 }
1098 atoms->nb_atoms++;
1099}
1100
1101static int latency_switch_event(struct perf_sched *sched,
1102 struct evsel *evsel,
1103 struct perf_sample *sample,
1104 struct machine *machine)
1105{
1106 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1107 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1108 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1109 struct work_atoms *out_events, *in_events;
1110 struct thread *sched_out, *sched_in;
1111 u64 timestamp0, timestamp = sample->time;
1112 int cpu = sample->cpu, err = -1;
1113 s64 delta;
1114
1115 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1116
1117 timestamp0 = sched->cpu_last_switched[cpu];
1118 sched->cpu_last_switched[cpu] = timestamp;
1119 if (timestamp0)
1120 delta = timestamp - timestamp0;
1121 else
1122 delta = 0;
1123
1124 if (delta < 0) {
1125 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1126 return -1;
1127 }
1128
1129 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1130 sched_in = machine__findnew_thread(machine, -1, next_pid);
1131 if (sched_out == NULL || sched_in == NULL)
1132 goto out_put;
1133
1134 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1135 if (!out_events) {
1136 if (thread_atoms_insert(sched, sched_out))
1137 goto out_put;
1138 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1139 if (!out_events) {
1140 pr_err("out-event: Internal tree error");
1141 goto out_put;
1142 }
1143 }
1144 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1145 return -1;
1146
1147 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1148 if (!in_events) {
1149 if (thread_atoms_insert(sched, sched_in))
1150 goto out_put;
1151 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1152 if (!in_events) {
1153 pr_err("in-event: Internal tree error");
1154 goto out_put;
1155 }
1156 /*
1157 * Take came in we have not heard about yet,
1158 * add in an initial atom in runnable state:
1159 */
1160 if (add_sched_out_event(in_events, 'R', timestamp))
1161 goto out_put;
1162 }
1163 add_sched_in_event(in_events, timestamp);
1164 err = 0;
1165out_put:
1166 thread__put(sched_out);
1167 thread__put(sched_in);
1168 return err;
1169}
1170
1171static int latency_runtime_event(struct perf_sched *sched,
1172 struct evsel *evsel,
1173 struct perf_sample *sample,
1174 struct machine *machine)
1175{
1176 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1177 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1178 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1179 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1180 u64 timestamp = sample->time;
1181 int cpu = sample->cpu, err = -1;
1182
1183 if (thread == NULL)
1184 return -1;
1185
1186 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1187 if (!atoms) {
1188 if (thread_atoms_insert(sched, thread))
1189 goto out_put;
1190 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1191 if (!atoms) {
1192 pr_err("in-event: Internal tree error");
1193 goto out_put;
1194 }
1195 if (add_sched_out_event(atoms, 'R', timestamp))
1196 goto out_put;
1197 }
1198
1199 add_runtime_event(atoms, runtime, timestamp);
1200 err = 0;
1201out_put:
1202 thread__put(thread);
1203 return err;
1204}
1205
1206static int latency_wakeup_event(struct perf_sched *sched,
1207 struct evsel *evsel,
1208 struct perf_sample *sample,
1209 struct machine *machine)
1210{
1211 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1212 struct work_atoms *atoms;
1213 struct work_atom *atom;
1214 struct thread *wakee;
1215 u64 timestamp = sample->time;
1216 int err = -1;
1217
1218 wakee = machine__findnew_thread(machine, -1, pid);
1219 if (wakee == NULL)
1220 return -1;
1221 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1222 if (!atoms) {
1223 if (thread_atoms_insert(sched, wakee))
1224 goto out_put;
1225 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1226 if (!atoms) {
1227 pr_err("wakeup-event: Internal tree error");
1228 goto out_put;
1229 }
1230 if (add_sched_out_event(atoms, 'S', timestamp))
1231 goto out_put;
1232 }
1233
1234 BUG_ON(list_empty(&atoms->work_list));
1235
1236 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1237
1238 /*
1239 * As we do not guarantee the wakeup event happens when
1240 * task is out of run queue, also may happen when task is
1241 * on run queue and wakeup only change ->state to TASK_RUNNING,
1242 * then we should not set the ->wake_up_time when wake up a
1243 * task which is on run queue.
1244 *
1245 * You WILL be missing events if you've recorded only
1246 * one CPU, or are only looking at only one, so don't
1247 * skip in this case.
1248 */
1249 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1250 goto out_ok;
1251
1252 sched->nr_timestamps++;
1253 if (atom->sched_out_time > timestamp) {
1254 sched->nr_unordered_timestamps++;
1255 goto out_ok;
1256 }
1257
1258 atom->state = THREAD_WAIT_CPU;
1259 atom->wake_up_time = timestamp;
1260out_ok:
1261 err = 0;
1262out_put:
1263 thread__put(wakee);
1264 return err;
1265}
1266
1267static int latency_migrate_task_event(struct perf_sched *sched,
1268 struct evsel *evsel,
1269 struct perf_sample *sample,
1270 struct machine *machine)
1271{
1272 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1273 u64 timestamp = sample->time;
1274 struct work_atoms *atoms;
1275 struct work_atom *atom;
1276 struct thread *migrant;
1277 int err = -1;
1278
1279 /*
1280 * Only need to worry about migration when profiling one CPU.
1281 */
1282 if (sched->profile_cpu == -1)
1283 return 0;
1284
1285 migrant = machine__findnew_thread(machine, -1, pid);
1286 if (migrant == NULL)
1287 return -1;
1288 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1289 if (!atoms) {
1290 if (thread_atoms_insert(sched, migrant))
1291 goto out_put;
1292 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1293 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294 if (!atoms) {
1295 pr_err("migration-event: Internal tree error");
1296 goto out_put;
1297 }
1298 if (add_sched_out_event(atoms, 'R', timestamp))
1299 goto out_put;
1300 }
1301
1302 BUG_ON(list_empty(&atoms->work_list));
1303
1304 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1305 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1306
1307 sched->nr_timestamps++;
1308
1309 if (atom->sched_out_time > timestamp)
1310 sched->nr_unordered_timestamps++;
1311 err = 0;
1312out_put:
1313 thread__put(migrant);
1314 return err;
1315}
1316
1317static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1318{
1319 int i;
1320 int ret;
1321 u64 avg;
1322 char max_lat_at[32];
1323
1324 if (!work_list->nb_atoms)
1325 return;
1326 /*
1327 * Ignore idle threads:
1328 */
1329 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1330 return;
1331
1332 sched->all_runtime += work_list->total_runtime;
1333 sched->all_count += work_list->nb_atoms;
1334
1335 if (work_list->num_merged > 1)
1336 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1337 else
1338 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1339
1340 for (i = 0; i < 24 - ret; i++)
1341 printf(" ");
1342
1343 avg = work_list->total_lat / work_list->nb_atoms;
1344 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1345
1346 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1347 (double)work_list->total_runtime / NSEC_PER_MSEC,
1348 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1349 (double)work_list->max_lat / NSEC_PER_MSEC,
1350 max_lat_at);
1351}
1352
1353static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1354{
1355 if (l->thread == r->thread)
1356 return 0;
1357 if (l->thread->tid < r->thread->tid)
1358 return -1;
1359 if (l->thread->tid > r->thread->tid)
1360 return 1;
1361 return (int)(l->thread - r->thread);
1362}
1363
1364static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1365{
1366 u64 avgl, avgr;
1367
1368 if (!l->nb_atoms)
1369 return -1;
1370
1371 if (!r->nb_atoms)
1372 return 1;
1373
1374 avgl = l->total_lat / l->nb_atoms;
1375 avgr = r->total_lat / r->nb_atoms;
1376
1377 if (avgl < avgr)
1378 return -1;
1379 if (avgl > avgr)
1380 return 1;
1381
1382 return 0;
1383}
1384
1385static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1386{
1387 if (l->max_lat < r->max_lat)
1388 return -1;
1389 if (l->max_lat > r->max_lat)
1390 return 1;
1391
1392 return 0;
1393}
1394
1395static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397 if (l->nb_atoms < r->nb_atoms)
1398 return -1;
1399 if (l->nb_atoms > r->nb_atoms)
1400 return 1;
1401
1402 return 0;
1403}
1404
1405static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407 if (l->total_runtime < r->total_runtime)
1408 return -1;
1409 if (l->total_runtime > r->total_runtime)
1410 return 1;
1411
1412 return 0;
1413}
1414
1415static int sort_dimension__add(const char *tok, struct list_head *list)
1416{
1417 size_t i;
1418 static struct sort_dimension avg_sort_dimension = {
1419 .name = "avg",
1420 .cmp = avg_cmp,
1421 };
1422 static struct sort_dimension max_sort_dimension = {
1423 .name = "max",
1424 .cmp = max_cmp,
1425 };
1426 static struct sort_dimension pid_sort_dimension = {
1427 .name = "pid",
1428 .cmp = pid_cmp,
1429 };
1430 static struct sort_dimension runtime_sort_dimension = {
1431 .name = "runtime",
1432 .cmp = runtime_cmp,
1433 };
1434 static struct sort_dimension switch_sort_dimension = {
1435 .name = "switch",
1436 .cmp = switch_cmp,
1437 };
1438 struct sort_dimension *available_sorts[] = {
1439 &pid_sort_dimension,
1440 &avg_sort_dimension,
1441 &max_sort_dimension,
1442 &switch_sort_dimension,
1443 &runtime_sort_dimension,
1444 };
1445
1446 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1447 if (!strcmp(available_sorts[i]->name, tok)) {
1448 list_add_tail(&available_sorts[i]->list, list);
1449
1450 return 0;
1451 }
1452 }
1453
1454 return -1;
1455}
1456
1457static void perf_sched__sort_lat(struct perf_sched *sched)
1458{
1459 struct rb_node *node;
1460 struct rb_root_cached *root = &sched->atom_root;
1461again:
1462 for (;;) {
1463 struct work_atoms *data;
1464 node = rb_first_cached(root);
1465 if (!node)
1466 break;
1467
1468 rb_erase_cached(node, root);
1469 data = rb_entry(node, struct work_atoms, node);
1470 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1471 }
1472 if (root == &sched->atom_root) {
1473 root = &sched->merged_atom_root;
1474 goto again;
1475 }
1476}
1477
1478static int process_sched_wakeup_event(struct perf_tool *tool,
1479 struct evsel *evsel,
1480 struct perf_sample *sample,
1481 struct machine *machine)
1482{
1483 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1484
1485 if (sched->tp_handler->wakeup_event)
1486 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1487
1488 return 0;
1489}
1490
1491union map_priv {
1492 void *ptr;
1493 bool color;
1494};
1495
1496static bool thread__has_color(struct thread *thread)
1497{
1498 union map_priv priv = {
1499 .ptr = thread__priv(thread),
1500 };
1501
1502 return priv.color;
1503}
1504
1505static struct thread*
1506map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1507{
1508 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1509 union map_priv priv = {
1510 .color = false,
1511 };
1512
1513 if (!sched->map.color_pids || !thread || thread__priv(thread))
1514 return thread;
1515
1516 if (thread_map__has(sched->map.color_pids, tid))
1517 priv.color = true;
1518
1519 thread__set_priv(thread, priv.ptr);
1520 return thread;
1521}
1522
1523static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1524 struct perf_sample *sample, struct machine *machine)
1525{
1526 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1527 struct thread *sched_in;
1528 struct thread_runtime *tr;
1529 int new_shortname;
1530 u64 timestamp0, timestamp = sample->time;
1531 s64 delta;
1532 int i, this_cpu = sample->cpu;
1533 int cpus_nr;
1534 bool new_cpu = false;
1535 const char *color = PERF_COLOR_NORMAL;
1536 char stimestamp[32];
1537
1538 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1539
1540 if (this_cpu > sched->max_cpu)
1541 sched->max_cpu = this_cpu;
1542
1543 if (sched->map.comp) {
1544 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1545 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1546 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1547 new_cpu = true;
1548 }
1549 } else
1550 cpus_nr = sched->max_cpu;
1551
1552 timestamp0 = sched->cpu_last_switched[this_cpu];
1553 sched->cpu_last_switched[this_cpu] = timestamp;
1554 if (timestamp0)
1555 delta = timestamp - timestamp0;
1556 else
1557 delta = 0;
1558
1559 if (delta < 0) {
1560 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1561 return -1;
1562 }
1563
1564 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1565 if (sched_in == NULL)
1566 return -1;
1567
1568 tr = thread__get_runtime(sched_in);
1569 if (tr == NULL) {
1570 thread__put(sched_in);
1571 return -1;
1572 }
1573
1574 sched->curr_thread[this_cpu] = thread__get(sched_in);
1575
1576 printf(" ");
1577
1578 new_shortname = 0;
1579 if (!tr->shortname[0]) {
1580 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1581 /*
1582 * Don't allocate a letter-number for swapper:0
1583 * as a shortname. Instead, we use '.' for it.
1584 */
1585 tr->shortname[0] = '.';
1586 tr->shortname[1] = ' ';
1587 } else {
1588 tr->shortname[0] = sched->next_shortname1;
1589 tr->shortname[1] = sched->next_shortname2;
1590
1591 if (sched->next_shortname1 < 'Z') {
1592 sched->next_shortname1++;
1593 } else {
1594 sched->next_shortname1 = 'A';
1595 if (sched->next_shortname2 < '9')
1596 sched->next_shortname2++;
1597 else
1598 sched->next_shortname2 = '0';
1599 }
1600 }
1601 new_shortname = 1;
1602 }
1603
1604 for (i = 0; i < cpus_nr; i++) {
1605 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1606 struct thread *curr_thread = sched->curr_thread[cpu];
1607 struct thread_runtime *curr_tr;
1608 const char *pid_color = color;
1609 const char *cpu_color = color;
1610
1611 if (curr_thread && thread__has_color(curr_thread))
1612 pid_color = COLOR_PIDS;
1613
1614 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1615 continue;
1616
1617 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1618 cpu_color = COLOR_CPUS;
1619
1620 if (cpu != this_cpu)
1621 color_fprintf(stdout, color, " ");
1622 else
1623 color_fprintf(stdout, cpu_color, "*");
1624
1625 if (sched->curr_thread[cpu]) {
1626 curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1627 if (curr_tr == NULL) {
1628 thread__put(sched_in);
1629 return -1;
1630 }
1631 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1632 } else
1633 color_fprintf(stdout, color, " ");
1634 }
1635
1636 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1637 goto out;
1638
1639 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1640 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1641 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1642 const char *pid_color = color;
1643
1644 if (thread__has_color(sched_in))
1645 pid_color = COLOR_PIDS;
1646
1647 color_fprintf(stdout, pid_color, "%s => %s:%d",
1648 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1649 tr->comm_changed = false;
1650 }
1651
1652 if (sched->map.comp && new_cpu)
1653 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1654
1655out:
1656 color_fprintf(stdout, color, "\n");
1657
1658 thread__put(sched_in);
1659
1660 return 0;
1661}
1662
1663static int process_sched_switch_event(struct perf_tool *tool,
1664 struct evsel *evsel,
1665 struct perf_sample *sample,
1666 struct machine *machine)
1667{
1668 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1669 int this_cpu = sample->cpu, err = 0;
1670 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1671 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1672
1673 if (sched->curr_pid[this_cpu] != (u32)-1) {
1674 /*
1675 * Are we trying to switch away a PID that is
1676 * not current?
1677 */
1678 if (sched->curr_pid[this_cpu] != prev_pid)
1679 sched->nr_context_switch_bugs++;
1680 }
1681
1682 if (sched->tp_handler->switch_event)
1683 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1684
1685 sched->curr_pid[this_cpu] = next_pid;
1686 return err;
1687}
1688
1689static int process_sched_runtime_event(struct perf_tool *tool,
1690 struct evsel *evsel,
1691 struct perf_sample *sample,
1692 struct machine *machine)
1693{
1694 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1695
1696 if (sched->tp_handler->runtime_event)
1697 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1698
1699 return 0;
1700}
1701
1702static int perf_sched__process_fork_event(struct perf_tool *tool,
1703 union perf_event *event,
1704 struct perf_sample *sample,
1705 struct machine *machine)
1706{
1707 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1708
1709 /* run the fork event through the perf machineruy */
1710 perf_event__process_fork(tool, event, sample, machine);
1711
1712 /* and then run additional processing needed for this command */
1713 if (sched->tp_handler->fork_event)
1714 return sched->tp_handler->fork_event(sched, event, machine);
1715
1716 return 0;
1717}
1718
1719static int process_sched_migrate_task_event(struct perf_tool *tool,
1720 struct evsel *evsel,
1721 struct perf_sample *sample,
1722 struct machine *machine)
1723{
1724 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1725
1726 if (sched->tp_handler->migrate_task_event)
1727 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1728
1729 return 0;
1730}
1731
1732typedef int (*tracepoint_handler)(struct perf_tool *tool,
1733 struct evsel *evsel,
1734 struct perf_sample *sample,
1735 struct machine *machine);
1736
1737static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1738 union perf_event *event __maybe_unused,
1739 struct perf_sample *sample,
1740 struct evsel *evsel,
1741 struct machine *machine)
1742{
1743 int err = 0;
1744
1745 if (evsel->handler != NULL) {
1746 tracepoint_handler f = evsel->handler;
1747 err = f(tool, evsel, sample, machine);
1748 }
1749
1750 return err;
1751}
1752
1753static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1754 union perf_event *event,
1755 struct perf_sample *sample,
1756 struct machine *machine)
1757{
1758 struct thread *thread;
1759 struct thread_runtime *tr;
1760 int err;
1761
1762 err = perf_event__process_comm(tool, event, sample, machine);
1763 if (err)
1764 return err;
1765
1766 thread = machine__find_thread(machine, sample->pid, sample->tid);
1767 if (!thread) {
1768 pr_err("Internal error: can't find thread\n");
1769 return -1;
1770 }
1771
1772 tr = thread__get_runtime(thread);
1773 if (tr == NULL) {
1774 thread__put(thread);
1775 return -1;
1776 }
1777
1778 tr->comm_changed = true;
1779 thread__put(thread);
1780
1781 return 0;
1782}
1783
1784static int perf_sched__read_events(struct perf_sched *sched)
1785{
1786 const struct evsel_str_handler handlers[] = {
1787 { "sched:sched_switch", process_sched_switch_event, },
1788 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1789 { "sched:sched_wakeup", process_sched_wakeup_event, },
1790 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1791 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1792 };
1793 struct perf_session *session;
1794 struct perf_data data = {
1795 .path = input_name,
1796 .mode = PERF_DATA_MODE_READ,
1797 .force = sched->force,
1798 };
1799 int rc = -1;
1800
1801 session = perf_session__new(&data, false, &sched->tool);
1802 if (IS_ERR(session)) {
1803 pr_debug("Error creating perf session");
1804 return PTR_ERR(session);
1805 }
1806
1807 symbol__init(&session->header.env);
1808
1809 if (perf_session__set_tracepoints_handlers(session, handlers))
1810 goto out_delete;
1811
1812 if (perf_session__has_traces(session, "record -R")) {
1813 int err = perf_session__process_events(session);
1814 if (err) {
1815 pr_err("Failed to process events, error %d", err);
1816 goto out_delete;
1817 }
1818
1819 sched->nr_events = session->evlist->stats.nr_events[0];
1820 sched->nr_lost_events = session->evlist->stats.total_lost;
1821 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1822 }
1823
1824 rc = 0;
1825out_delete:
1826 perf_session__delete(session);
1827 return rc;
1828}
1829
1830/*
1831 * scheduling times are printed as msec.usec
1832 */
1833static inline void print_sched_time(unsigned long long nsecs, int width)
1834{
1835 unsigned long msecs;
1836 unsigned long usecs;
1837
1838 msecs = nsecs / NSEC_PER_MSEC;
1839 nsecs -= msecs * NSEC_PER_MSEC;
1840 usecs = nsecs / NSEC_PER_USEC;
1841 printf("%*lu.%03lu ", width, msecs, usecs);
1842}
1843
1844/*
1845 * returns runtime data for event, allocating memory for it the
1846 * first time it is used.
1847 */
1848static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel)
1849{
1850 struct evsel_runtime *r = evsel->priv;
1851
1852 if (r == NULL) {
1853 r = zalloc(sizeof(struct evsel_runtime));
1854 evsel->priv = r;
1855 }
1856
1857 return r;
1858}
1859
1860/*
1861 * save last time event was seen per cpu
1862 */
1863static void perf_evsel__save_time(struct evsel *evsel,
1864 u64 timestamp, u32 cpu)
1865{
1866 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1867
1868 if (r == NULL)
1869 return;
1870
1871 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1872 int i, n = __roundup_pow_of_two(cpu+1);
1873 void *p = r->last_time;
1874
1875 p = realloc(r->last_time, n * sizeof(u64));
1876 if (!p)
1877 return;
1878
1879 r->last_time = p;
1880 for (i = r->ncpu; i < n; ++i)
1881 r->last_time[i] = (u64) 0;
1882
1883 r->ncpu = n;
1884 }
1885
1886 r->last_time[cpu] = timestamp;
1887}
1888
1889/* returns last time this event was seen on the given cpu */
1890static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu)
1891{
1892 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1893
1894 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1895 return 0;
1896
1897 return r->last_time[cpu];
1898}
1899
1900static int comm_width = 30;
1901
1902static char *timehist_get_commstr(struct thread *thread)
1903{
1904 static char str[32];
1905 const char *comm = thread__comm_str(thread);
1906 pid_t tid = thread->tid;
1907 pid_t pid = thread->pid_;
1908 int n;
1909
1910 if (pid == 0)
1911 n = scnprintf(str, sizeof(str), "%s", comm);
1912
1913 else if (tid != pid)
1914 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1915
1916 else
1917 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1918
1919 if (n > comm_width)
1920 comm_width = n;
1921
1922 return str;
1923}
1924
1925static void timehist_header(struct perf_sched *sched)
1926{
1927 u32 ncpus = sched->max_cpu + 1;
1928 u32 i, j;
1929
1930 printf("%15s %6s ", "time", "cpu");
1931
1932 if (sched->show_cpu_visual) {
1933 printf(" ");
1934 for (i = 0, j = 0; i < ncpus; ++i) {
1935 printf("%x", j++);
1936 if (j > 15)
1937 j = 0;
1938 }
1939 printf(" ");
1940 }
1941
1942 printf(" %-*s %9s %9s %9s", comm_width,
1943 "task name", "wait time", "sch delay", "run time");
1944
1945 if (sched->show_state)
1946 printf(" %s", "state");
1947
1948 printf("\n");
1949
1950 /*
1951 * units row
1952 */
1953 printf("%15s %-6s ", "", "");
1954
1955 if (sched->show_cpu_visual)
1956 printf(" %*s ", ncpus, "");
1957
1958 printf(" %-*s %9s %9s %9s", comm_width,
1959 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1960
1961 if (sched->show_state)
1962 printf(" %5s", "");
1963
1964 printf("\n");
1965
1966 /*
1967 * separator
1968 */
1969 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1970
1971 if (sched->show_cpu_visual)
1972 printf(" %.*s ", ncpus, graph_dotted_line);
1973
1974 printf(" %.*s %.9s %.9s %.9s", comm_width,
1975 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1976 graph_dotted_line);
1977
1978 if (sched->show_state)
1979 printf(" %.5s", graph_dotted_line);
1980
1981 printf("\n");
1982}
1983
1984static char task_state_char(struct thread *thread, int state)
1985{
1986 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1987 unsigned bit = state ? ffs(state) : 0;
1988
1989 /* 'I' for idle */
1990 if (thread->tid == 0)
1991 return 'I';
1992
1993 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1994}
1995
1996static void timehist_print_sample(struct perf_sched *sched,
1997 struct evsel *evsel,
1998 struct perf_sample *sample,
1999 struct addr_location *al,
2000 struct thread *thread,
2001 u64 t, int state)
2002{
2003 struct thread_runtime *tr = thread__priv(thread);
2004 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
2005 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2006 u32 max_cpus = sched->max_cpu + 1;
2007 char tstr[64];
2008 char nstr[30];
2009 u64 wait_time;
2010
2011 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2012 printf("%15s [%04d] ", tstr, sample->cpu);
2013
2014 if (sched->show_cpu_visual) {
2015 u32 i;
2016 char c;
2017
2018 printf(" ");
2019 for (i = 0; i < max_cpus; ++i) {
2020 /* flag idle times with 'i'; others are sched events */
2021 if (i == sample->cpu)
2022 c = (thread->tid == 0) ? 'i' : 's';
2023 else
2024 c = ' ';
2025 printf("%c", c);
2026 }
2027 printf(" ");
2028 }
2029
2030 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2031
2032 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2033 print_sched_time(wait_time, 6);
2034
2035 print_sched_time(tr->dt_delay, 6);
2036 print_sched_time(tr->dt_run, 6);
2037
2038 if (sched->show_state)
2039 printf(" %5c ", task_state_char(thread, state));
2040
2041 if (sched->show_next) {
2042 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2043 printf(" %-*s", comm_width, nstr);
2044 }
2045
2046 if (sched->show_wakeups && !sched->show_next)
2047 printf(" %-*s", comm_width, "");
2048
2049 if (thread->tid == 0)
2050 goto out;
2051
2052 if (sched->show_callchain)
2053 printf(" ");
2054
2055 sample__fprintf_sym(sample, al, 0,
2056 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2057 EVSEL__PRINT_CALLCHAIN_ARROW |
2058 EVSEL__PRINT_SKIP_IGNORED,
2059 &callchain_cursor, symbol_conf.bt_stop_list, stdout);
2060
2061out:
2062 printf("\n");
2063}
2064
2065/*
2066 * Explanation of delta-time stats:
2067 *
2068 * t = time of current schedule out event
2069 * tprev = time of previous sched out event
2070 * also time of schedule-in event for current task
2071 * last_time = time of last sched change event for current task
2072 * (i.e, time process was last scheduled out)
2073 * ready_to_run = time of wakeup for current task
2074 *
2075 * -----|------------|------------|------------|------
2076 * last ready tprev t
2077 * time to run
2078 *
2079 * |-------- dt_wait --------|
2080 * |- dt_delay -|-- dt_run --|
2081 *
2082 * dt_run = run time of current task
2083 * dt_wait = time between last schedule out event for task and tprev
2084 * represents time spent off the cpu
2085 * dt_delay = time between wakeup and schedule-in of task
2086 */
2087
2088static void timehist_update_runtime_stats(struct thread_runtime *r,
2089 u64 t, u64 tprev)
2090{
2091 r->dt_delay = 0;
2092 r->dt_sleep = 0;
2093 r->dt_iowait = 0;
2094 r->dt_preempt = 0;
2095 r->dt_run = 0;
2096
2097 if (tprev) {
2098 r->dt_run = t - tprev;
2099 if (r->ready_to_run) {
2100 if (r->ready_to_run > tprev)
2101 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2102 else
2103 r->dt_delay = tprev - r->ready_to_run;
2104 }
2105
2106 if (r->last_time > tprev)
2107 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2108 else if (r->last_time) {
2109 u64 dt_wait = tprev - r->last_time;
2110
2111 if (r->last_state == TASK_RUNNING)
2112 r->dt_preempt = dt_wait;
2113 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2114 r->dt_iowait = dt_wait;
2115 else
2116 r->dt_sleep = dt_wait;
2117 }
2118 }
2119
2120 update_stats(&r->run_stats, r->dt_run);
2121
2122 r->total_run_time += r->dt_run;
2123 r->total_delay_time += r->dt_delay;
2124 r->total_sleep_time += r->dt_sleep;
2125 r->total_iowait_time += r->dt_iowait;
2126 r->total_preempt_time += r->dt_preempt;
2127}
2128
2129static bool is_idle_sample(struct perf_sample *sample,
2130 struct evsel *evsel)
2131{
2132 /* pid 0 == swapper == idle task */
2133 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2134 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2135
2136 return sample->pid == 0;
2137}
2138
2139static void save_task_callchain(struct perf_sched *sched,
2140 struct perf_sample *sample,
2141 struct evsel *evsel,
2142 struct machine *machine)
2143{
2144 struct callchain_cursor *cursor = &callchain_cursor;
2145 struct thread *thread;
2146
2147 /* want main thread for process - has maps */
2148 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2149 if (thread == NULL) {
2150 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2151 return;
2152 }
2153
2154 if (!sched->show_callchain || sample->callchain == NULL)
2155 return;
2156
2157 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2158 NULL, NULL, sched->max_stack + 2) != 0) {
2159 if (verbose > 0)
2160 pr_err("Failed to resolve callchain. Skipping\n");
2161
2162 return;
2163 }
2164
2165 callchain_cursor_commit(cursor);
2166
2167 while (true) {
2168 struct callchain_cursor_node *node;
2169 struct symbol *sym;
2170
2171 node = callchain_cursor_current(cursor);
2172 if (node == NULL)
2173 break;
2174
2175 sym = node->sym;
2176 if (sym) {
2177 if (!strcmp(sym->name, "schedule") ||
2178 !strcmp(sym->name, "__schedule") ||
2179 !strcmp(sym->name, "preempt_schedule"))
2180 sym->ignore = 1;
2181 }
2182
2183 callchain_cursor_advance(cursor);
2184 }
2185}
2186
2187static int init_idle_thread(struct thread *thread)
2188{
2189 struct idle_thread_runtime *itr;
2190
2191 thread__set_comm(thread, idle_comm, 0);
2192
2193 itr = zalloc(sizeof(*itr));
2194 if (itr == NULL)
2195 return -ENOMEM;
2196
2197 init_stats(&itr->tr.run_stats);
2198 callchain_init(&itr->callchain);
2199 callchain_cursor_reset(&itr->cursor);
2200 thread__set_priv(thread, itr);
2201
2202 return 0;
2203}
2204
2205/*
2206 * Track idle stats per cpu by maintaining a local thread
2207 * struct for the idle task on each cpu.
2208 */
2209static int init_idle_threads(int ncpu)
2210{
2211 int i, ret;
2212
2213 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2214 if (!idle_threads)
2215 return -ENOMEM;
2216
2217 idle_max_cpu = ncpu;
2218
2219 /* allocate the actual thread struct if needed */
2220 for (i = 0; i < ncpu; ++i) {
2221 idle_threads[i] = thread__new(0, 0);
2222 if (idle_threads[i] == NULL)
2223 return -ENOMEM;
2224
2225 ret = init_idle_thread(idle_threads[i]);
2226 if (ret < 0)
2227 return ret;
2228 }
2229
2230 return 0;
2231}
2232
2233static void free_idle_threads(void)
2234{
2235 int i;
2236
2237 if (idle_threads == NULL)
2238 return;
2239
2240 for (i = 0; i < idle_max_cpu; ++i) {
2241 if ((idle_threads[i]))
2242 thread__delete(idle_threads[i]);
2243 }
2244
2245 free(idle_threads);
2246}
2247
2248static struct thread *get_idle_thread(int cpu)
2249{
2250 /*
2251 * expand/allocate array of pointers to local thread
2252 * structs if needed
2253 */
2254 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2255 int i, j = __roundup_pow_of_two(cpu+1);
2256 void *p;
2257
2258 p = realloc(idle_threads, j * sizeof(struct thread *));
2259 if (!p)
2260 return NULL;
2261
2262 idle_threads = (struct thread **) p;
2263 for (i = idle_max_cpu; i < j; ++i)
2264 idle_threads[i] = NULL;
2265
2266 idle_max_cpu = j;
2267 }
2268
2269 /* allocate a new thread struct if needed */
2270 if (idle_threads[cpu] == NULL) {
2271 idle_threads[cpu] = thread__new(0, 0);
2272
2273 if (idle_threads[cpu]) {
2274 if (init_idle_thread(idle_threads[cpu]) < 0)
2275 return NULL;
2276 }
2277 }
2278
2279 return idle_threads[cpu];
2280}
2281
2282static void save_idle_callchain(struct perf_sched *sched,
2283 struct idle_thread_runtime *itr,
2284 struct perf_sample *sample)
2285{
2286 if (!sched->show_callchain || sample->callchain == NULL)
2287 return;
2288
2289 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2290}
2291
2292static struct thread *timehist_get_thread(struct perf_sched *sched,
2293 struct perf_sample *sample,
2294 struct machine *machine,
2295 struct evsel *evsel)
2296{
2297 struct thread *thread;
2298
2299 if (is_idle_sample(sample, evsel)) {
2300 thread = get_idle_thread(sample->cpu);
2301 if (thread == NULL)
2302 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2303
2304 } else {
2305 /* there were samples with tid 0 but non-zero pid */
2306 thread = machine__findnew_thread(machine, sample->pid,
2307 sample->tid ?: sample->pid);
2308 if (thread == NULL) {
2309 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2310 sample->tid);
2311 }
2312
2313 save_task_callchain(sched, sample, evsel, machine);
2314 if (sched->idle_hist) {
2315 struct thread *idle;
2316 struct idle_thread_runtime *itr;
2317
2318 idle = get_idle_thread(sample->cpu);
2319 if (idle == NULL) {
2320 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2321 return NULL;
2322 }
2323
2324 itr = thread__priv(idle);
2325 if (itr == NULL)
2326 return NULL;
2327
2328 itr->last_thread = thread;
2329
2330 /* copy task callchain when entering to idle */
2331 if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2332 save_idle_callchain(sched, itr, sample);
2333 }
2334 }
2335
2336 return thread;
2337}
2338
2339static bool timehist_skip_sample(struct perf_sched *sched,
2340 struct thread *thread,
2341 struct evsel *evsel,
2342 struct perf_sample *sample)
2343{
2344 bool rc = false;
2345
2346 if (thread__is_filtered(thread)) {
2347 rc = true;
2348 sched->skipped_samples++;
2349 }
2350
2351 if (sched->idle_hist) {
2352 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2353 rc = true;
2354 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2355 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2356 rc = true;
2357 }
2358
2359 return rc;
2360}
2361
2362static void timehist_print_wakeup_event(struct perf_sched *sched,
2363 struct evsel *evsel,
2364 struct perf_sample *sample,
2365 struct machine *machine,
2366 struct thread *awakened)
2367{
2368 struct thread *thread;
2369 char tstr[64];
2370
2371 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2372 if (thread == NULL)
2373 return;
2374
2375 /* show wakeup unless both awakee and awaker are filtered */
2376 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2377 timehist_skip_sample(sched, awakened, evsel, sample)) {
2378 return;
2379 }
2380
2381 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2382 printf("%15s [%04d] ", tstr, sample->cpu);
2383 if (sched->show_cpu_visual)
2384 printf(" %*s ", sched->max_cpu + 1, "");
2385
2386 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2387
2388 /* dt spacer */
2389 printf(" %9s %9s %9s ", "", "", "");
2390
2391 printf("awakened: %s", timehist_get_commstr(awakened));
2392
2393 printf("\n");
2394}
2395
2396static int timehist_sched_wakeup_event(struct perf_tool *tool,
2397 union perf_event *event __maybe_unused,
2398 struct evsel *evsel,
2399 struct perf_sample *sample,
2400 struct machine *machine)
2401{
2402 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2403 struct thread *thread;
2404 struct thread_runtime *tr = NULL;
2405 /* want pid of awakened task not pid in sample */
2406 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2407
2408 thread = machine__findnew_thread(machine, 0, pid);
2409 if (thread == NULL)
2410 return -1;
2411
2412 tr = thread__get_runtime(thread);
2413 if (tr == NULL)
2414 return -1;
2415
2416 if (tr->ready_to_run == 0)
2417 tr->ready_to_run = sample->time;
2418
2419 /* show wakeups if requested */
2420 if (sched->show_wakeups &&
2421 !perf_time__skip_sample(&sched->ptime, sample->time))
2422 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2423
2424 return 0;
2425}
2426
2427static void timehist_print_migration_event(struct perf_sched *sched,
2428 struct evsel *evsel,
2429 struct perf_sample *sample,
2430 struct machine *machine,
2431 struct thread *migrated)
2432{
2433 struct thread *thread;
2434 char tstr[64];
2435 u32 max_cpus = sched->max_cpu + 1;
2436 u32 ocpu, dcpu;
2437
2438 if (sched->summary_only)
2439 return;
2440
2441 max_cpus = sched->max_cpu + 1;
2442 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2443 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2444
2445 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2446 if (thread == NULL)
2447 return;
2448
2449 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2450 timehist_skip_sample(sched, migrated, evsel, sample)) {
2451 return;
2452 }
2453
2454 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2455 printf("%15s [%04d] ", tstr, sample->cpu);
2456
2457 if (sched->show_cpu_visual) {
2458 u32 i;
2459 char c;
2460
2461 printf(" ");
2462 for (i = 0; i < max_cpus; ++i) {
2463 c = (i == sample->cpu) ? 'm' : ' ';
2464 printf("%c", c);
2465 }
2466 printf(" ");
2467 }
2468
2469 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2470
2471 /* dt spacer */
2472 printf(" %9s %9s %9s ", "", "", "");
2473
2474 printf("migrated: %s", timehist_get_commstr(migrated));
2475 printf(" cpu %d => %d", ocpu, dcpu);
2476
2477 printf("\n");
2478}
2479
2480static int timehist_migrate_task_event(struct perf_tool *tool,
2481 union perf_event *event __maybe_unused,
2482 struct evsel *evsel,
2483 struct perf_sample *sample,
2484 struct machine *machine)
2485{
2486 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2487 struct thread *thread;
2488 struct thread_runtime *tr = NULL;
2489 /* want pid of migrated task not pid in sample */
2490 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2491
2492 thread = machine__findnew_thread(machine, 0, pid);
2493 if (thread == NULL)
2494 return -1;
2495
2496 tr = thread__get_runtime(thread);
2497 if (tr == NULL)
2498 return -1;
2499
2500 tr->migrations++;
2501
2502 /* show migrations if requested */
2503 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2504
2505 return 0;
2506}
2507
2508static int timehist_sched_change_event(struct perf_tool *tool,
2509 union perf_event *event,
2510 struct evsel *evsel,
2511 struct perf_sample *sample,
2512 struct machine *machine)
2513{
2514 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2515 struct perf_time_interval *ptime = &sched->ptime;
2516 struct addr_location al;
2517 struct thread *thread;
2518 struct thread_runtime *tr = NULL;
2519 u64 tprev, t = sample->time;
2520 int rc = 0;
2521 int state = perf_evsel__intval(evsel, sample, "prev_state");
2522
2523
2524 if (machine__resolve(machine, &al, sample) < 0) {
2525 pr_err("problem processing %d event. skipping it\n",
2526 event->header.type);
2527 rc = -1;
2528 goto out;
2529 }
2530
2531 thread = timehist_get_thread(sched, sample, machine, evsel);
2532 if (thread == NULL) {
2533 rc = -1;
2534 goto out;
2535 }
2536
2537 if (timehist_skip_sample(sched, thread, evsel, sample))
2538 goto out;
2539
2540 tr = thread__get_runtime(thread);
2541 if (tr == NULL) {
2542 rc = -1;
2543 goto out;
2544 }
2545
2546 tprev = perf_evsel__get_time(evsel, sample->cpu);
2547
2548 /*
2549 * If start time given:
2550 * - sample time is under window user cares about - skip sample
2551 * - tprev is under window user cares about - reset to start of window
2552 */
2553 if (ptime->start && ptime->start > t)
2554 goto out;
2555
2556 if (tprev && ptime->start > tprev)
2557 tprev = ptime->start;
2558
2559 /*
2560 * If end time given:
2561 * - previous sched event is out of window - we are done
2562 * - sample time is beyond window user cares about - reset it
2563 * to close out stats for time window interest
2564 */
2565 if (ptime->end) {
2566 if (tprev > ptime->end)
2567 goto out;
2568
2569 if (t > ptime->end)
2570 t = ptime->end;
2571 }
2572
2573 if (!sched->idle_hist || thread->tid == 0) {
2574 timehist_update_runtime_stats(tr, t, tprev);
2575
2576 if (sched->idle_hist) {
2577 struct idle_thread_runtime *itr = (void *)tr;
2578 struct thread_runtime *last_tr;
2579
2580 BUG_ON(thread->tid != 0);
2581
2582 if (itr->last_thread == NULL)
2583 goto out;
2584
2585 /* add current idle time as last thread's runtime */
2586 last_tr = thread__get_runtime(itr->last_thread);
2587 if (last_tr == NULL)
2588 goto out;
2589
2590 timehist_update_runtime_stats(last_tr, t, tprev);
2591 /*
2592 * remove delta time of last thread as it's not updated
2593 * and otherwise it will show an invalid value next
2594 * time. we only care total run time and run stat.
2595 */
2596 last_tr->dt_run = 0;
2597 last_tr->dt_delay = 0;
2598 last_tr->dt_sleep = 0;
2599 last_tr->dt_iowait = 0;
2600 last_tr->dt_preempt = 0;
2601
2602 if (itr->cursor.nr)
2603 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2604
2605 itr->last_thread = NULL;
2606 }
2607 }
2608
2609 if (!sched->summary_only)
2610 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2611
2612out:
2613 if (sched->hist_time.start == 0 && t >= ptime->start)
2614 sched->hist_time.start = t;
2615 if (ptime->end == 0 || t <= ptime->end)
2616 sched->hist_time.end = t;
2617
2618 if (tr) {
2619 /* time of this sched_switch event becomes last time task seen */
2620 tr->last_time = sample->time;
2621
2622 /* last state is used to determine where to account wait time */
2623 tr->last_state = state;
2624
2625 /* sched out event for task so reset ready to run time */
2626 tr->ready_to_run = 0;
2627 }
2628
2629 perf_evsel__save_time(evsel, sample->time, sample->cpu);
2630
2631 return rc;
2632}
2633
2634static int timehist_sched_switch_event(struct perf_tool *tool,
2635 union perf_event *event,
2636 struct evsel *evsel,
2637 struct perf_sample *sample,
2638 struct machine *machine __maybe_unused)
2639{
2640 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2641}
2642
2643static int process_lost(struct perf_tool *tool __maybe_unused,
2644 union perf_event *event,
2645 struct perf_sample *sample,
2646 struct machine *machine __maybe_unused)
2647{
2648 char tstr[64];
2649
2650 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2651 printf("%15s ", tstr);
2652 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2653
2654 return 0;
2655}
2656
2657
2658static void print_thread_runtime(struct thread *t,
2659 struct thread_runtime *r)
2660{
2661 double mean = avg_stats(&r->run_stats);
2662 float stddev;
2663
2664 printf("%*s %5d %9" PRIu64 " ",
2665 comm_width, timehist_get_commstr(t), t->ppid,
2666 (u64) r->run_stats.n);
2667
2668 print_sched_time(r->total_run_time, 8);
2669 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2670 print_sched_time(r->run_stats.min, 6);
2671 printf(" ");
2672 print_sched_time((u64) mean, 6);
2673 printf(" ");
2674 print_sched_time(r->run_stats.max, 6);
2675 printf(" ");
2676 printf("%5.2f", stddev);
2677 printf(" %5" PRIu64, r->migrations);
2678 printf("\n");
2679}
2680
2681static void print_thread_waittime(struct thread *t,
2682 struct thread_runtime *r)
2683{
2684 printf("%*s %5d %9" PRIu64 " ",
2685 comm_width, timehist_get_commstr(t), t->ppid,
2686 (u64) r->run_stats.n);
2687
2688 print_sched_time(r->total_run_time, 8);
2689 print_sched_time(r->total_sleep_time, 6);
2690 printf(" ");
2691 print_sched_time(r->total_iowait_time, 6);
2692 printf(" ");
2693 print_sched_time(r->total_preempt_time, 6);
2694 printf(" ");
2695 print_sched_time(r->total_delay_time, 6);
2696 printf("\n");
2697}
2698
2699struct total_run_stats {
2700 struct perf_sched *sched;
2701 u64 sched_count;
2702 u64 task_count;
2703 u64 total_run_time;
2704};
2705
2706static int __show_thread_runtime(struct thread *t, void *priv)
2707{
2708 struct total_run_stats *stats = priv;
2709 struct thread_runtime *r;
2710
2711 if (thread__is_filtered(t))
2712 return 0;
2713
2714 r = thread__priv(t);
2715 if (r && r->run_stats.n) {
2716 stats->task_count++;
2717 stats->sched_count += r->run_stats.n;
2718 stats->total_run_time += r->total_run_time;
2719
2720 if (stats->sched->show_state)
2721 print_thread_waittime(t, r);
2722 else
2723 print_thread_runtime(t, r);
2724 }
2725
2726 return 0;
2727}
2728
2729static int show_thread_runtime(struct thread *t, void *priv)
2730{
2731 if (t->dead)
2732 return 0;
2733
2734 return __show_thread_runtime(t, priv);
2735}
2736
2737static int show_deadthread_runtime(struct thread *t, void *priv)
2738{
2739 if (!t->dead)
2740 return 0;
2741
2742 return __show_thread_runtime(t, priv);
2743}
2744
2745static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2746{
2747 const char *sep = " <- ";
2748 struct callchain_list *chain;
2749 size_t ret = 0;
2750 char bf[1024];
2751 bool first;
2752
2753 if (node == NULL)
2754 return 0;
2755
2756 ret = callchain__fprintf_folded(fp, node->parent);
2757 first = (ret == 0);
2758
2759 list_for_each_entry(chain, &node->val, list) {
2760 if (chain->ip >= PERF_CONTEXT_MAX)
2761 continue;
2762 if (chain->ms.sym && chain->ms.sym->ignore)
2763 continue;
2764 ret += fprintf(fp, "%s%s", first ? "" : sep,
2765 callchain_list__sym_name(chain, bf, sizeof(bf),
2766 false));
2767 first = false;
2768 }
2769
2770 return ret;
2771}
2772
2773static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2774{
2775 size_t ret = 0;
2776 FILE *fp = stdout;
2777 struct callchain_node *chain;
2778 struct rb_node *rb_node = rb_first_cached(root);
2779
2780 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2781 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2782 graph_dotted_line);
2783
2784 while (rb_node) {
2785 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2786 rb_node = rb_next(rb_node);
2787
2788 ret += fprintf(fp, " ");
2789 print_sched_time(chain->hit, 12);
2790 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2791 ret += fprintf(fp, " %8d ", chain->count);
2792 ret += callchain__fprintf_folded(fp, chain);
2793 ret += fprintf(fp, "\n");
2794 }
2795
2796 return ret;
2797}
2798
2799static void timehist_print_summary(struct perf_sched *sched,
2800 struct perf_session *session)
2801{
2802 struct machine *m = &session->machines.host;
2803 struct total_run_stats totals;
2804 u64 task_count;
2805 struct thread *t;
2806 struct thread_runtime *r;
2807 int i;
2808 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2809
2810 memset(&totals, 0, sizeof(totals));
2811 totals.sched = sched;
2812
2813 if (sched->idle_hist) {
2814 printf("\nIdle-time summary\n");
2815 printf("%*s parent sched-out ", comm_width, "comm");
2816 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2817 } else if (sched->show_state) {
2818 printf("\nWait-time summary\n");
2819 printf("%*s parent sched-in ", comm_width, "comm");
2820 printf(" run-time sleep iowait preempt delay\n");
2821 } else {
2822 printf("\nRuntime summary\n");
2823 printf("%*s parent sched-in ", comm_width, "comm");
2824 printf(" run-time min-run avg-run max-run stddev migrations\n");
2825 }
2826 printf("%*s (count) ", comm_width, "");
2827 printf(" (msec) (msec) (msec) (msec) %s\n",
2828 sched->show_state ? "(msec)" : "%");
2829 printf("%.117s\n", graph_dotted_line);
2830
2831 machine__for_each_thread(m, show_thread_runtime, &totals);
2832 task_count = totals.task_count;
2833 if (!task_count)
2834 printf("<no still running tasks>\n");
2835
2836 printf("\nTerminated tasks:\n");
2837 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2838 if (task_count == totals.task_count)
2839 printf("<no terminated tasks>\n");
2840
2841 /* CPU idle stats not tracked when samples were skipped */
2842 if (sched->skipped_samples && !sched->idle_hist)
2843 return;
2844
2845 printf("\nIdle stats:\n");
2846 for (i = 0; i < idle_max_cpu; ++i) {
2847 t = idle_threads[i];
2848 if (!t)
2849 continue;
2850
2851 r = thread__priv(t);
2852 if (r && r->run_stats.n) {
2853 totals.sched_count += r->run_stats.n;
2854 printf(" CPU %2d idle for ", i);
2855 print_sched_time(r->total_run_time, 6);
2856 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2857 } else
2858 printf(" CPU %2d idle entire time window\n", i);
2859 }
2860
2861 if (sched->idle_hist && sched->show_callchain) {
2862 callchain_param.mode = CHAIN_FOLDED;
2863 callchain_param.value = CCVAL_PERIOD;
2864
2865 callchain_register_param(&callchain_param);
2866
2867 printf("\nIdle stats by callchain:\n");
2868 for (i = 0; i < idle_max_cpu; ++i) {
2869 struct idle_thread_runtime *itr;
2870
2871 t = idle_threads[i];
2872 if (!t)
2873 continue;
2874
2875 itr = thread__priv(t);
2876 if (itr == NULL)
2877 continue;
2878
2879 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2880 0, &callchain_param);
2881
2882 printf(" CPU %2d:", i);
2883 print_sched_time(itr->tr.total_run_time, 6);
2884 printf(" msec\n");
2885 timehist_print_idlehist_callchain(&itr->sorted_root);
2886 printf("\n");
2887 }
2888 }
2889
2890 printf("\n"
2891 " Total number of unique tasks: %" PRIu64 "\n"
2892 "Total number of context switches: %" PRIu64 "\n",
2893 totals.task_count, totals.sched_count);
2894
2895 printf(" Total run time (msec): ");
2896 print_sched_time(totals.total_run_time, 2);
2897 printf("\n");
2898
2899 printf(" Total scheduling time (msec): ");
2900 print_sched_time(hist_time, 2);
2901 printf(" (x %d)\n", sched->max_cpu);
2902}
2903
2904typedef int (*sched_handler)(struct perf_tool *tool,
2905 union perf_event *event,
2906 struct evsel *evsel,
2907 struct perf_sample *sample,
2908 struct machine *machine);
2909
2910static int perf_timehist__process_sample(struct perf_tool *tool,
2911 union perf_event *event,
2912 struct perf_sample *sample,
2913 struct evsel *evsel,
2914 struct machine *machine)
2915{
2916 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2917 int err = 0;
2918 int this_cpu = sample->cpu;
2919
2920 if (this_cpu > sched->max_cpu)
2921 sched->max_cpu = this_cpu;
2922
2923 if (evsel->handler != NULL) {
2924 sched_handler f = evsel->handler;
2925
2926 err = f(tool, event, evsel, sample, machine);
2927 }
2928
2929 return err;
2930}
2931
2932static int timehist_check_attr(struct perf_sched *sched,
2933 struct evlist *evlist)
2934{
2935 struct evsel *evsel;
2936 struct evsel_runtime *er;
2937
2938 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2939 er = perf_evsel__get_runtime(evsel);
2940 if (er == NULL) {
2941 pr_err("Failed to allocate memory for evsel runtime data\n");
2942 return -1;
2943 }
2944
2945 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2946 pr_info("Samples do not have callchains.\n");
2947 sched->show_callchain = 0;
2948 symbol_conf.use_callchain = 0;
2949 }
2950 }
2951
2952 return 0;
2953}
2954
2955static int perf_sched__timehist(struct perf_sched *sched)
2956{
2957 const struct evsel_str_handler handlers[] = {
2958 { "sched:sched_switch", timehist_sched_switch_event, },
2959 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2960 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2961 };
2962 const struct evsel_str_handler migrate_handlers[] = {
2963 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2964 };
2965 struct perf_data data = {
2966 .path = input_name,
2967 .mode = PERF_DATA_MODE_READ,
2968 .force = sched->force,
2969 };
2970
2971 struct perf_session *session;
2972 struct evlist *evlist;
2973 int err = -1;
2974
2975 /*
2976 * event handlers for timehist option
2977 */
2978 sched->tool.sample = perf_timehist__process_sample;
2979 sched->tool.mmap = perf_event__process_mmap;
2980 sched->tool.comm = perf_event__process_comm;
2981 sched->tool.exit = perf_event__process_exit;
2982 sched->tool.fork = perf_event__process_fork;
2983 sched->tool.lost = process_lost;
2984 sched->tool.attr = perf_event__process_attr;
2985 sched->tool.tracing_data = perf_event__process_tracing_data;
2986 sched->tool.build_id = perf_event__process_build_id;
2987
2988 sched->tool.ordered_events = true;
2989 sched->tool.ordering_requires_timestamps = true;
2990
2991 symbol_conf.use_callchain = sched->show_callchain;
2992
2993 session = perf_session__new(&data, false, &sched->tool);
2994 if (IS_ERR(session))
2995 return PTR_ERR(session);
2996
2997 evlist = session->evlist;
2998
2999 symbol__init(&session->header.env);
3000
3001 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3002 pr_err("Invalid time string\n");
3003 return -EINVAL;
3004 }
3005
3006 if (timehist_check_attr(sched, evlist) != 0)
3007 goto out;
3008
3009 setup_pager();
3010
3011 /* setup per-evsel handlers */
3012 if (perf_session__set_tracepoints_handlers(session, handlers))
3013 goto out;
3014
3015 /* sched_switch event at a minimum needs to exist */
3016 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3017 "sched:sched_switch")) {
3018 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3019 goto out;
3020 }
3021
3022 if (sched->show_migrations &&
3023 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3024 goto out;
3025
3026 /* pre-allocate struct for per-CPU idle stats */
3027 sched->max_cpu = session->header.env.nr_cpus_online;
3028 if (sched->max_cpu == 0)
3029 sched->max_cpu = 4;
3030 if (init_idle_threads(sched->max_cpu))
3031 goto out;
3032
3033 /* summary_only implies summary option, but don't overwrite summary if set */
3034 if (sched->summary_only)
3035 sched->summary = sched->summary_only;
3036
3037 if (!sched->summary_only)
3038 timehist_header(sched);
3039
3040 err = perf_session__process_events(session);
3041 if (err) {
3042 pr_err("Failed to process events, error %d", err);
3043 goto out;
3044 }
3045
3046 sched->nr_events = evlist->stats.nr_events[0];
3047 sched->nr_lost_events = evlist->stats.total_lost;
3048 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3049
3050 if (sched->summary)
3051 timehist_print_summary(sched, session);
3052
3053out:
3054 free_idle_threads();
3055 perf_session__delete(session);
3056
3057 return err;
3058}
3059
3060
3061static void print_bad_events(struct perf_sched *sched)
3062{
3063 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3064 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3065 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3066 sched->nr_unordered_timestamps, sched->nr_timestamps);
3067 }
3068 if (sched->nr_lost_events && sched->nr_events) {
3069 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3070 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3071 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3072 }
3073 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3074 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3075 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3076 sched->nr_context_switch_bugs, sched->nr_timestamps);
3077 if (sched->nr_lost_events)
3078 printf(" (due to lost events?)");
3079 printf("\n");
3080 }
3081}
3082
3083static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3084{
3085 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3086 struct work_atoms *this;
3087 const char *comm = thread__comm_str(data->thread), *this_comm;
3088 bool leftmost = true;
3089
3090 while (*new) {
3091 int cmp;
3092
3093 this = container_of(*new, struct work_atoms, node);
3094 parent = *new;
3095
3096 this_comm = thread__comm_str(this->thread);
3097 cmp = strcmp(comm, this_comm);
3098 if (cmp > 0) {
3099 new = &((*new)->rb_left);
3100 } else if (cmp < 0) {
3101 new = &((*new)->rb_right);
3102 leftmost = false;
3103 } else {
3104 this->num_merged++;
3105 this->total_runtime += data->total_runtime;
3106 this->nb_atoms += data->nb_atoms;
3107 this->total_lat += data->total_lat;
3108 list_splice(&data->work_list, &this->work_list);
3109 if (this->max_lat < data->max_lat) {
3110 this->max_lat = data->max_lat;
3111 this->max_lat_at = data->max_lat_at;
3112 }
3113 zfree(&data);
3114 return;
3115 }
3116 }
3117
3118 data->num_merged++;
3119 rb_link_node(&data->node, parent, new);
3120 rb_insert_color_cached(&data->node, root, leftmost);
3121}
3122
3123static void perf_sched__merge_lat(struct perf_sched *sched)
3124{
3125 struct work_atoms *data;
3126 struct rb_node *node;
3127
3128 if (sched->skip_merge)
3129 return;
3130
3131 while ((node = rb_first_cached(&sched->atom_root))) {
3132 rb_erase_cached(node, &sched->atom_root);
3133 data = rb_entry(node, struct work_atoms, node);
3134 __merge_work_atoms(&sched->merged_atom_root, data);
3135 }
3136}
3137
3138static int perf_sched__lat(struct perf_sched *sched)
3139{
3140 struct rb_node *next;
3141
3142 setup_pager();
3143
3144 if (perf_sched__read_events(sched))
3145 return -1;
3146
3147 perf_sched__merge_lat(sched);
3148 perf_sched__sort_lat(sched);
3149
3150 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3151 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3152 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3153
3154 next = rb_first_cached(&sched->sorted_atom_root);
3155
3156 while (next) {
3157 struct work_atoms *work_list;
3158
3159 work_list = rb_entry(next, struct work_atoms, node);
3160 output_lat_thread(sched, work_list);
3161 next = rb_next(next);
3162 thread__zput(work_list->thread);
3163 }
3164
3165 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3166 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3167 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3168
3169 printf(" ---------------------------------------------------\n");
3170
3171 print_bad_events(sched);
3172 printf("\n");
3173
3174 return 0;
3175}
3176
3177static int setup_map_cpus(struct perf_sched *sched)
3178{
3179 struct perf_cpu_map *map;
3180
3181 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3182
3183 if (sched->map.comp) {
3184 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3185 if (!sched->map.comp_cpus)
3186 return -1;
3187 }
3188
3189 if (!sched->map.cpus_str)
3190 return 0;
3191
3192 map = perf_cpu_map__new(sched->map.cpus_str);
3193 if (!map) {
3194 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3195 return -1;
3196 }
3197
3198 sched->map.cpus = map;
3199 return 0;
3200}
3201
3202static int setup_color_pids(struct perf_sched *sched)
3203{
3204 struct perf_thread_map *map;
3205
3206 if (!sched->map.color_pids_str)
3207 return 0;
3208
3209 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3210 if (!map) {
3211 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3212 return -1;
3213 }
3214
3215 sched->map.color_pids = map;
3216 return 0;
3217}
3218
3219static int setup_color_cpus(struct perf_sched *sched)
3220{
3221 struct perf_cpu_map *map;
3222
3223 if (!sched->map.color_cpus_str)
3224 return 0;
3225
3226 map = perf_cpu_map__new(sched->map.color_cpus_str);
3227 if (!map) {
3228 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3229 return -1;
3230 }
3231
3232 sched->map.color_cpus = map;
3233 return 0;
3234}
3235
3236static int perf_sched__map(struct perf_sched *sched)
3237{
3238 if (setup_map_cpus(sched))
3239 return -1;
3240
3241 if (setup_color_pids(sched))
3242 return -1;
3243
3244 if (setup_color_cpus(sched))
3245 return -1;
3246
3247 setup_pager();
3248 if (perf_sched__read_events(sched))
3249 return -1;
3250 print_bad_events(sched);
3251 return 0;
3252}
3253
3254static int perf_sched__replay(struct perf_sched *sched)
3255{
3256 unsigned long i;
3257
3258 calibrate_run_measurement_overhead(sched);
3259 calibrate_sleep_measurement_overhead(sched);
3260
3261 test_calibrations(sched);
3262
3263 if (perf_sched__read_events(sched))
3264 return -1;
3265
3266 printf("nr_run_events: %ld\n", sched->nr_run_events);
3267 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3268 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3269
3270 if (sched->targetless_wakeups)
3271 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3272 if (sched->multitarget_wakeups)
3273 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3274 if (sched->nr_run_events_optimized)
3275 printf("run atoms optimized: %ld\n",
3276 sched->nr_run_events_optimized);
3277
3278 print_task_traces(sched);
3279 add_cross_task_wakeups(sched);
3280
3281 create_tasks(sched);
3282 printf("------------------------------------------------------------\n");
3283 for (i = 0; i < sched->replay_repeat; i++)
3284 run_one_test(sched);
3285
3286 return 0;
3287}
3288
3289static void setup_sorting(struct perf_sched *sched, const struct option *options,
3290 const char * const usage_msg[])
3291{
3292 char *tmp, *tok, *str = strdup(sched->sort_order);
3293
3294 for (tok = strtok_r(str, ", ", &tmp);
3295 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3296 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3297 usage_with_options_msg(usage_msg, options,
3298 "Unknown --sort key: `%s'", tok);
3299 }
3300 }
3301
3302 free(str);
3303
3304 sort_dimension__add("pid", &sched->cmp_pid);
3305}
3306
3307static int __cmd_record(int argc, const char **argv)
3308{
3309 unsigned int rec_argc, i, j;
3310 const char **rec_argv;
3311 const char * const record_args[] = {
3312 "record",
3313 "-a",
3314 "-R",
3315 "-m", "1024",
3316 "-c", "1",
3317 "-e", "sched:sched_switch",
3318 "-e", "sched:sched_stat_wait",
3319 "-e", "sched:sched_stat_sleep",
3320 "-e", "sched:sched_stat_iowait",
3321 "-e", "sched:sched_stat_runtime",
3322 "-e", "sched:sched_process_fork",
3323 "-e", "sched:sched_wakeup",
3324 "-e", "sched:sched_wakeup_new",
3325 "-e", "sched:sched_migrate_task",
3326 };
3327
3328 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3329 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3330
3331 if (rec_argv == NULL)
3332 return -ENOMEM;
3333
3334 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3335 rec_argv[i] = strdup(record_args[i]);
3336
3337 for (j = 1; j < (unsigned int)argc; j++, i++)
3338 rec_argv[i] = argv[j];
3339
3340 BUG_ON(i != rec_argc);
3341
3342 return cmd_record(i, rec_argv);
3343}
3344
3345int cmd_sched(int argc, const char **argv)
3346{
3347 static const char default_sort_order[] = "avg, max, switch, runtime";
3348 struct perf_sched sched = {
3349 .tool = {
3350 .sample = perf_sched__process_tracepoint_sample,
3351 .comm = perf_sched__process_comm,
3352 .namespaces = perf_event__process_namespaces,
3353 .lost = perf_event__process_lost,
3354 .fork = perf_sched__process_fork_event,
3355 .ordered_events = true,
3356 },
3357 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3358 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3359 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3360 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3361 .sort_order = default_sort_order,
3362 .replay_repeat = 10,
3363 .profile_cpu = -1,
3364 .next_shortname1 = 'A',
3365 .next_shortname2 = '0',
3366 .skip_merge = 0,
3367 .show_callchain = 1,
3368 .max_stack = 5,
3369 };
3370 const struct option sched_options[] = {
3371 OPT_STRING('i', "input", &input_name, "file",
3372 "input file name"),
3373 OPT_INCR('v', "verbose", &verbose,
3374 "be more verbose (show symbol address, etc)"),
3375 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3376 "dump raw trace in ASCII"),
3377 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3378 OPT_END()
3379 };
3380 const struct option latency_options[] = {
3381 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3382 "sort by key(s): runtime, switch, avg, max"),
3383 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3384 "CPU to profile on"),
3385 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3386 "latency stats per pid instead of per comm"),
3387 OPT_PARENT(sched_options)
3388 };
3389 const struct option replay_options[] = {
3390 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3391 "repeat the workload replay N times (-1: infinite)"),
3392 OPT_PARENT(sched_options)
3393 };
3394 const struct option map_options[] = {
3395 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3396 "map output in compact mode"),
3397 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3398 "highlight given pids in map"),
3399 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3400 "highlight given CPUs in map"),
3401 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3402 "display given CPUs in map"),
3403 OPT_PARENT(sched_options)
3404 };
3405 const struct option timehist_options[] = {
3406 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3407 "file", "vmlinux pathname"),
3408 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3409 "file", "kallsyms pathname"),
3410 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3411 "Display call chains if present (default on)"),
3412 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3413 "Maximum number of functions to display backtrace."),
3414 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3415 "Look for files with symbols relative to this directory"),
3416 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3417 "Show only syscall summary with statistics"),
3418 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3419 "Show all syscalls and summary with statistics"),
3420 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3421 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3422 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3423 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3424 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3425 OPT_STRING(0, "time", &sched.time_str, "str",
3426 "Time span for analysis (start,stop)"),
3427 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3428 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3429 "analyze events only for given process id(s)"),
3430 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3431 "analyze events only for given thread id(s)"),
3432 OPT_PARENT(sched_options)
3433 };
3434
3435 const char * const latency_usage[] = {
3436 "perf sched latency [<options>]",
3437 NULL
3438 };
3439 const char * const replay_usage[] = {
3440 "perf sched replay [<options>]",
3441 NULL
3442 };
3443 const char * const map_usage[] = {
3444 "perf sched map [<options>]",
3445 NULL
3446 };
3447 const char * const timehist_usage[] = {
3448 "perf sched timehist [<options>]",
3449 NULL
3450 };
3451 const char *const sched_subcommands[] = { "record", "latency", "map",
3452 "replay", "script",
3453 "timehist", NULL };
3454 const char *sched_usage[] = {
3455 NULL,
3456 NULL
3457 };
3458 struct trace_sched_handler lat_ops = {
3459 .wakeup_event = latency_wakeup_event,
3460 .switch_event = latency_switch_event,
3461 .runtime_event = latency_runtime_event,
3462 .migrate_task_event = latency_migrate_task_event,
3463 };
3464 struct trace_sched_handler map_ops = {
3465 .switch_event = map_switch_event,
3466 };
3467 struct trace_sched_handler replay_ops = {
3468 .wakeup_event = replay_wakeup_event,
3469 .switch_event = replay_switch_event,
3470 .fork_event = replay_fork_event,
3471 };
3472 unsigned int i;
3473
3474 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3475 sched.curr_pid[i] = -1;
3476
3477 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3478 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3479 if (!argc)
3480 usage_with_options(sched_usage, sched_options);
3481
3482 /*
3483 * Aliased to 'perf script' for now:
3484 */
3485 if (!strcmp(argv[0], "script"))
3486 return cmd_script(argc, argv);
3487
3488 if (!strncmp(argv[0], "rec", 3)) {
3489 return __cmd_record(argc, argv);
3490 } else if (!strncmp(argv[0], "lat", 3)) {
3491 sched.tp_handler = &lat_ops;
3492 if (argc > 1) {
3493 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3494 if (argc)
3495 usage_with_options(latency_usage, latency_options);
3496 }
3497 setup_sorting(&sched, latency_options, latency_usage);
3498 return perf_sched__lat(&sched);
3499 } else if (!strcmp(argv[0], "map")) {
3500 if (argc) {
3501 argc = parse_options(argc, argv, map_options, map_usage, 0);
3502 if (argc)
3503 usage_with_options(map_usage, map_options);
3504 }
3505 sched.tp_handler = &map_ops;
3506 setup_sorting(&sched, latency_options, latency_usage);
3507 return perf_sched__map(&sched);
3508 } else if (!strncmp(argv[0], "rep", 3)) {
3509 sched.tp_handler = &replay_ops;
3510 if (argc) {
3511 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3512 if (argc)
3513 usage_with_options(replay_usage, replay_options);
3514 }
3515 return perf_sched__replay(&sched);
3516 } else if (!strcmp(argv[0], "timehist")) {
3517 if (argc) {
3518 argc = parse_options(argc, argv, timehist_options,
3519 timehist_usage, 0);
3520 if (argc)
3521 usage_with_options(timehist_usage, timehist_options);
3522 }
3523 if ((sched.show_wakeups || sched.show_next) &&
3524 sched.summary_only) {
3525 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3526 parse_options_usage(timehist_usage, timehist_options, "s", true);
3527 if (sched.show_wakeups)
3528 parse_options_usage(NULL, timehist_options, "w", true);
3529 if (sched.show_next)
3530 parse_options_usage(NULL, timehist_options, "n", true);
3531 return -EINVAL;
3532 }
3533
3534 return perf_sched__timehist(&sched);
3535 } else {
3536 usage_with_options(sched_usage, sched_options);
3537 }
3538
3539 return 0;
3540}
1// SPDX-License-Identifier: GPL-2.0
2#include "builtin.h"
3#include "perf-sys.h"
4
5#include "util/cpumap.h"
6#include "util/evlist.h"
7#include "util/evsel.h"
8#include "util/evsel_fprintf.h"
9#include "util/mutex.h"
10#include "util/symbol.h"
11#include "util/thread.h"
12#include "util/header.h"
13#include "util/session.h"
14#include "util/tool.h"
15#include "util/cloexec.h"
16#include "util/thread_map.h"
17#include "util/color.h"
18#include "util/stat.h"
19#include "util/string2.h"
20#include "util/callchain.h"
21#include "util/time-utils.h"
22
23#include <subcmd/pager.h>
24#include <subcmd/parse-options.h>
25#include "util/trace-event.h"
26
27#include "util/debug.h"
28#include "util/event.h"
29#include "util/util.h"
30
31#include <linux/kernel.h>
32#include <linux/log2.h>
33#include <linux/zalloc.h>
34#include <sys/prctl.h>
35#include <sys/resource.h>
36#include <inttypes.h>
37
38#include <errno.h>
39#include <semaphore.h>
40#include <pthread.h>
41#include <math.h>
42#include <api/fs/fs.h>
43#include <perf/cpumap.h>
44#include <linux/time64.h>
45#include <linux/err.h>
46
47#include <linux/ctype.h>
48
49#define PR_SET_NAME 15 /* Set process name */
50#define MAX_CPUS 4096
51#define COMM_LEN 20
52#define SYM_LEN 129
53#define MAX_PID 1024000
54#define MAX_PRIO 140
55
56static const char *cpu_list;
57static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
58
59struct sched_atom;
60
61struct task_desc {
62 unsigned long nr;
63 unsigned long pid;
64 char comm[COMM_LEN];
65
66 unsigned long nr_events;
67 unsigned long curr_event;
68 struct sched_atom **atoms;
69
70 pthread_t thread;
71
72 sem_t ready_for_work;
73 sem_t work_done_sem;
74
75 u64 cpu_usage;
76};
77
78enum sched_event_type {
79 SCHED_EVENT_RUN,
80 SCHED_EVENT_SLEEP,
81 SCHED_EVENT_WAKEUP,
82};
83
84struct sched_atom {
85 enum sched_event_type type;
86 u64 timestamp;
87 u64 duration;
88 unsigned long nr;
89 sem_t *wait_sem;
90 struct task_desc *wakee;
91};
92
93enum thread_state {
94 THREAD_SLEEPING = 0,
95 THREAD_WAIT_CPU,
96 THREAD_SCHED_IN,
97 THREAD_IGNORE
98};
99
100struct work_atom {
101 struct list_head list;
102 enum thread_state state;
103 u64 sched_out_time;
104 u64 wake_up_time;
105 u64 sched_in_time;
106 u64 runtime;
107};
108
109struct work_atoms {
110 struct list_head work_list;
111 struct thread *thread;
112 struct rb_node node;
113 u64 max_lat;
114 u64 max_lat_start;
115 u64 max_lat_end;
116 u64 total_lat;
117 u64 nb_atoms;
118 u64 total_runtime;
119 int num_merged;
120};
121
122typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
123
124struct perf_sched;
125
126struct trace_sched_handler {
127 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
128 struct perf_sample *sample, struct machine *machine);
129
130 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
131 struct perf_sample *sample, struct machine *machine);
132
133 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
134 struct perf_sample *sample, struct machine *machine);
135
136 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
137 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
138 struct machine *machine);
139
140 int (*migrate_task_event)(struct perf_sched *sched,
141 struct evsel *evsel,
142 struct perf_sample *sample,
143 struct machine *machine);
144};
145
146#define COLOR_PIDS PERF_COLOR_BLUE
147#define COLOR_CPUS PERF_COLOR_BG_RED
148
149struct perf_sched_map {
150 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
151 struct perf_cpu *comp_cpus;
152 bool comp;
153 struct perf_thread_map *color_pids;
154 const char *color_pids_str;
155 struct perf_cpu_map *color_cpus;
156 const char *color_cpus_str;
157 const char *task_name;
158 struct strlist *task_names;
159 bool fuzzy;
160 struct perf_cpu_map *cpus;
161 const char *cpus_str;
162};
163
164struct perf_sched {
165 struct perf_tool tool;
166 const char *sort_order;
167 unsigned long nr_tasks;
168 struct task_desc **pid_to_task;
169 struct task_desc **tasks;
170 const struct trace_sched_handler *tp_handler;
171 struct mutex start_work_mutex;
172 struct mutex work_done_wait_mutex;
173 int profile_cpu;
174/*
175 * Track the current task - that way we can know whether there's any
176 * weird events, such as a task being switched away that is not current.
177 */
178 struct perf_cpu max_cpu;
179 u32 *curr_pid;
180 struct thread **curr_thread;
181 struct thread **curr_out_thread;
182 char next_shortname1;
183 char next_shortname2;
184 unsigned int replay_repeat;
185 unsigned long nr_run_events;
186 unsigned long nr_sleep_events;
187 unsigned long nr_wakeup_events;
188 unsigned long nr_sleep_corrections;
189 unsigned long nr_run_events_optimized;
190 unsigned long targetless_wakeups;
191 unsigned long multitarget_wakeups;
192 unsigned long nr_runs;
193 unsigned long nr_timestamps;
194 unsigned long nr_unordered_timestamps;
195 unsigned long nr_context_switch_bugs;
196 unsigned long nr_events;
197 unsigned long nr_lost_chunks;
198 unsigned long nr_lost_events;
199 u64 run_measurement_overhead;
200 u64 sleep_measurement_overhead;
201 u64 start_time;
202 u64 cpu_usage;
203 u64 runavg_cpu_usage;
204 u64 parent_cpu_usage;
205 u64 runavg_parent_cpu_usage;
206 u64 sum_runtime;
207 u64 sum_fluct;
208 u64 run_avg;
209 u64 all_runtime;
210 u64 all_count;
211 u64 *cpu_last_switched;
212 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
213 struct list_head sort_list, cmp_pid;
214 bool force;
215 bool skip_merge;
216 struct perf_sched_map map;
217
218 /* options for timehist command */
219 bool summary;
220 bool summary_only;
221 bool idle_hist;
222 bool show_callchain;
223 unsigned int max_stack;
224 bool show_cpu_visual;
225 bool show_wakeups;
226 bool show_next;
227 bool show_migrations;
228 bool pre_migrations;
229 bool show_state;
230 bool show_prio;
231 u64 skipped_samples;
232 const char *time_str;
233 struct perf_time_interval ptime;
234 struct perf_time_interval hist_time;
235 volatile bool thread_funcs_exit;
236 const char *prio_str;
237 DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
238};
239
240/* per thread run time data */
241struct thread_runtime {
242 u64 last_time; /* time of previous sched in/out event */
243 u64 dt_run; /* run time */
244 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
245 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
246 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
247 u64 dt_delay; /* time between wakeup and sched-in */
248 u64 dt_pre_mig; /* time between migration and wakeup */
249 u64 ready_to_run; /* time of wakeup */
250 u64 migrated; /* time when a thread is migrated */
251
252 struct stats run_stats;
253 u64 total_run_time;
254 u64 total_sleep_time;
255 u64 total_iowait_time;
256 u64 total_preempt_time;
257 u64 total_delay_time;
258 u64 total_pre_mig_time;
259
260 char last_state;
261
262 char shortname[3];
263 bool comm_changed;
264
265 u64 migrations;
266
267 int prio;
268};
269
270/* per event run time data */
271struct evsel_runtime {
272 u64 *last_time; /* time this event was last seen per cpu */
273 u32 ncpu; /* highest cpu slot allocated */
274};
275
276/* per cpu idle time data */
277struct idle_thread_runtime {
278 struct thread_runtime tr;
279 struct thread *last_thread;
280 struct rb_root_cached sorted_root;
281 struct callchain_root callchain;
282 struct callchain_cursor cursor;
283};
284
285/* track idle times per cpu */
286static struct thread **idle_threads;
287static int idle_max_cpu;
288static char idle_comm[] = "<idle>";
289
290static u64 get_nsecs(void)
291{
292 struct timespec ts;
293
294 clock_gettime(CLOCK_MONOTONIC, &ts);
295
296 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
297}
298
299static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
300{
301 u64 T0 = get_nsecs(), T1;
302
303 do {
304 T1 = get_nsecs();
305 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
306}
307
308static void sleep_nsecs(u64 nsecs)
309{
310 struct timespec ts;
311
312 ts.tv_nsec = nsecs % 999999999;
313 ts.tv_sec = nsecs / 999999999;
314
315 nanosleep(&ts, NULL);
316}
317
318static void calibrate_run_measurement_overhead(struct perf_sched *sched)
319{
320 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
321 int i;
322
323 for (i = 0; i < 10; i++) {
324 T0 = get_nsecs();
325 burn_nsecs(sched, 0);
326 T1 = get_nsecs();
327 delta = T1-T0;
328 min_delta = min(min_delta, delta);
329 }
330 sched->run_measurement_overhead = min_delta;
331
332 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
333}
334
335static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
336{
337 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
338 int i;
339
340 for (i = 0; i < 10; i++) {
341 T0 = get_nsecs();
342 sleep_nsecs(10000);
343 T1 = get_nsecs();
344 delta = T1-T0;
345 min_delta = min(min_delta, delta);
346 }
347 min_delta -= 10000;
348 sched->sleep_measurement_overhead = min_delta;
349
350 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
351}
352
353static struct sched_atom *
354get_new_event(struct task_desc *task, u64 timestamp)
355{
356 struct sched_atom *event = zalloc(sizeof(*event));
357 unsigned long idx = task->nr_events;
358 size_t size;
359
360 event->timestamp = timestamp;
361 event->nr = idx;
362
363 task->nr_events++;
364 size = sizeof(struct sched_atom *) * task->nr_events;
365 task->atoms = realloc(task->atoms, size);
366 BUG_ON(!task->atoms);
367
368 task->atoms[idx] = event;
369
370 return event;
371}
372
373static struct sched_atom *last_event(struct task_desc *task)
374{
375 if (!task->nr_events)
376 return NULL;
377
378 return task->atoms[task->nr_events - 1];
379}
380
381static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
382 u64 timestamp, u64 duration)
383{
384 struct sched_atom *event, *curr_event = last_event(task);
385
386 /*
387 * optimize an existing RUN event by merging this one
388 * to it:
389 */
390 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
391 sched->nr_run_events_optimized++;
392 curr_event->duration += duration;
393 return;
394 }
395
396 event = get_new_event(task, timestamp);
397
398 event->type = SCHED_EVENT_RUN;
399 event->duration = duration;
400
401 sched->nr_run_events++;
402}
403
404static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
405 u64 timestamp, struct task_desc *wakee)
406{
407 struct sched_atom *event, *wakee_event;
408
409 event = get_new_event(task, timestamp);
410 event->type = SCHED_EVENT_WAKEUP;
411 event->wakee = wakee;
412
413 wakee_event = last_event(wakee);
414 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
415 sched->targetless_wakeups++;
416 return;
417 }
418 if (wakee_event->wait_sem) {
419 sched->multitarget_wakeups++;
420 return;
421 }
422
423 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
424 sem_init(wakee_event->wait_sem, 0, 0);
425 event->wait_sem = wakee_event->wait_sem;
426
427 sched->nr_wakeup_events++;
428}
429
430static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
431 u64 timestamp)
432{
433 struct sched_atom *event = get_new_event(task, timestamp);
434
435 event->type = SCHED_EVENT_SLEEP;
436
437 sched->nr_sleep_events++;
438}
439
440static struct task_desc *register_pid(struct perf_sched *sched,
441 unsigned long pid, const char *comm)
442{
443 struct task_desc *task;
444 static int pid_max;
445
446 if (sched->pid_to_task == NULL) {
447 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
448 pid_max = MAX_PID;
449 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
450 }
451 if (pid >= (unsigned long)pid_max) {
452 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
453 sizeof(struct task_desc *))) == NULL);
454 while (pid >= (unsigned long)pid_max)
455 sched->pid_to_task[pid_max++] = NULL;
456 }
457
458 task = sched->pid_to_task[pid];
459
460 if (task)
461 return task;
462
463 task = zalloc(sizeof(*task));
464 task->pid = pid;
465 task->nr = sched->nr_tasks;
466 strcpy(task->comm, comm);
467 /*
468 * every task starts in sleeping state - this gets ignored
469 * if there's no wakeup pointing to this sleep state:
470 */
471 add_sched_event_sleep(sched, task, 0);
472
473 sched->pid_to_task[pid] = task;
474 sched->nr_tasks++;
475 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
476 BUG_ON(!sched->tasks);
477 sched->tasks[task->nr] = task;
478
479 if (verbose > 0)
480 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
481
482 return task;
483}
484
485
486static void print_task_traces(struct perf_sched *sched)
487{
488 struct task_desc *task;
489 unsigned long i;
490
491 for (i = 0; i < sched->nr_tasks; i++) {
492 task = sched->tasks[i];
493 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
494 task->nr, task->comm, task->pid, task->nr_events);
495 }
496}
497
498static void add_cross_task_wakeups(struct perf_sched *sched)
499{
500 struct task_desc *task1, *task2;
501 unsigned long i, j;
502
503 for (i = 0; i < sched->nr_tasks; i++) {
504 task1 = sched->tasks[i];
505 j = i + 1;
506 if (j == sched->nr_tasks)
507 j = 0;
508 task2 = sched->tasks[j];
509 add_sched_event_wakeup(sched, task1, 0, task2);
510 }
511}
512
513static void perf_sched__process_event(struct perf_sched *sched,
514 struct sched_atom *atom)
515{
516 int ret = 0;
517
518 switch (atom->type) {
519 case SCHED_EVENT_RUN:
520 burn_nsecs(sched, atom->duration);
521 break;
522 case SCHED_EVENT_SLEEP:
523 if (atom->wait_sem)
524 ret = sem_wait(atom->wait_sem);
525 BUG_ON(ret);
526 break;
527 case SCHED_EVENT_WAKEUP:
528 if (atom->wait_sem)
529 ret = sem_post(atom->wait_sem);
530 BUG_ON(ret);
531 break;
532 default:
533 BUG_ON(1);
534 }
535}
536
537static u64 get_cpu_usage_nsec_parent(void)
538{
539 struct rusage ru;
540 u64 sum;
541 int err;
542
543 err = getrusage(RUSAGE_SELF, &ru);
544 BUG_ON(err);
545
546 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
547 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
548
549 return sum;
550}
551
552static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
553{
554 struct perf_event_attr attr;
555 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
556 int fd;
557 struct rlimit limit;
558 bool need_privilege = false;
559
560 memset(&attr, 0, sizeof(attr));
561
562 attr.type = PERF_TYPE_SOFTWARE;
563 attr.config = PERF_COUNT_SW_TASK_CLOCK;
564
565force_again:
566 fd = sys_perf_event_open(&attr, 0, -1, -1,
567 perf_event_open_cloexec_flag());
568
569 if (fd < 0) {
570 if (errno == EMFILE) {
571 if (sched->force) {
572 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
573 limit.rlim_cur += sched->nr_tasks - cur_task;
574 if (limit.rlim_cur > limit.rlim_max) {
575 limit.rlim_max = limit.rlim_cur;
576 need_privilege = true;
577 }
578 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
579 if (need_privilege && errno == EPERM)
580 strcpy(info, "Need privilege\n");
581 } else
582 goto force_again;
583 } else
584 strcpy(info, "Have a try with -f option\n");
585 }
586 pr_err("Error: sys_perf_event_open() syscall returned "
587 "with %d (%s)\n%s", fd,
588 str_error_r(errno, sbuf, sizeof(sbuf)), info);
589 exit(EXIT_FAILURE);
590 }
591 return fd;
592}
593
594static u64 get_cpu_usage_nsec_self(int fd)
595{
596 u64 runtime;
597 int ret;
598
599 ret = read(fd, &runtime, sizeof(runtime));
600 BUG_ON(ret != sizeof(runtime));
601
602 return runtime;
603}
604
605struct sched_thread_parms {
606 struct task_desc *task;
607 struct perf_sched *sched;
608 int fd;
609};
610
611static void *thread_func(void *ctx)
612{
613 struct sched_thread_parms *parms = ctx;
614 struct task_desc *this_task = parms->task;
615 struct perf_sched *sched = parms->sched;
616 u64 cpu_usage_0, cpu_usage_1;
617 unsigned long i, ret;
618 char comm2[22];
619 int fd = parms->fd;
620
621 zfree(&parms);
622
623 sprintf(comm2, ":%s", this_task->comm);
624 prctl(PR_SET_NAME, comm2);
625 if (fd < 0)
626 return NULL;
627
628 while (!sched->thread_funcs_exit) {
629 ret = sem_post(&this_task->ready_for_work);
630 BUG_ON(ret);
631 mutex_lock(&sched->start_work_mutex);
632 mutex_unlock(&sched->start_work_mutex);
633
634 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
635
636 for (i = 0; i < this_task->nr_events; i++) {
637 this_task->curr_event = i;
638 perf_sched__process_event(sched, this_task->atoms[i]);
639 }
640
641 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
642 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
643 ret = sem_post(&this_task->work_done_sem);
644 BUG_ON(ret);
645
646 mutex_lock(&sched->work_done_wait_mutex);
647 mutex_unlock(&sched->work_done_wait_mutex);
648 }
649 return NULL;
650}
651
652static void create_tasks(struct perf_sched *sched)
653 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
654 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
655{
656 struct task_desc *task;
657 pthread_attr_t attr;
658 unsigned long i;
659 int err;
660
661 err = pthread_attr_init(&attr);
662 BUG_ON(err);
663 err = pthread_attr_setstacksize(&attr,
664 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
665 BUG_ON(err);
666 mutex_lock(&sched->start_work_mutex);
667 mutex_lock(&sched->work_done_wait_mutex);
668 for (i = 0; i < sched->nr_tasks; i++) {
669 struct sched_thread_parms *parms = malloc(sizeof(*parms));
670 BUG_ON(parms == NULL);
671 parms->task = task = sched->tasks[i];
672 parms->sched = sched;
673 parms->fd = self_open_counters(sched, i);
674 sem_init(&task->ready_for_work, 0, 0);
675 sem_init(&task->work_done_sem, 0, 0);
676 task->curr_event = 0;
677 err = pthread_create(&task->thread, &attr, thread_func, parms);
678 BUG_ON(err);
679 }
680}
681
682static void destroy_tasks(struct perf_sched *sched)
683 UNLOCK_FUNCTION(sched->start_work_mutex)
684 UNLOCK_FUNCTION(sched->work_done_wait_mutex)
685{
686 struct task_desc *task;
687 unsigned long i;
688 int err;
689
690 mutex_unlock(&sched->start_work_mutex);
691 mutex_unlock(&sched->work_done_wait_mutex);
692 /* Get rid of threads so they won't be upset by mutex destrunction */
693 for (i = 0; i < sched->nr_tasks; i++) {
694 task = sched->tasks[i];
695 err = pthread_join(task->thread, NULL);
696 BUG_ON(err);
697 sem_destroy(&task->ready_for_work);
698 sem_destroy(&task->work_done_sem);
699 }
700}
701
702static void wait_for_tasks(struct perf_sched *sched)
703 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
704 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
705{
706 u64 cpu_usage_0, cpu_usage_1;
707 struct task_desc *task;
708 unsigned long i, ret;
709
710 sched->start_time = get_nsecs();
711 sched->cpu_usage = 0;
712 mutex_unlock(&sched->work_done_wait_mutex);
713
714 for (i = 0; i < sched->nr_tasks; i++) {
715 task = sched->tasks[i];
716 ret = sem_wait(&task->ready_for_work);
717 BUG_ON(ret);
718 sem_init(&task->ready_for_work, 0, 0);
719 }
720 mutex_lock(&sched->work_done_wait_mutex);
721
722 cpu_usage_0 = get_cpu_usage_nsec_parent();
723
724 mutex_unlock(&sched->start_work_mutex);
725
726 for (i = 0; i < sched->nr_tasks; i++) {
727 task = sched->tasks[i];
728 ret = sem_wait(&task->work_done_sem);
729 BUG_ON(ret);
730 sem_init(&task->work_done_sem, 0, 0);
731 sched->cpu_usage += task->cpu_usage;
732 task->cpu_usage = 0;
733 }
734
735 cpu_usage_1 = get_cpu_usage_nsec_parent();
736 if (!sched->runavg_cpu_usage)
737 sched->runavg_cpu_usage = sched->cpu_usage;
738 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
739
740 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
741 if (!sched->runavg_parent_cpu_usage)
742 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
743 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
744 sched->parent_cpu_usage)/sched->replay_repeat;
745
746 mutex_lock(&sched->start_work_mutex);
747
748 for (i = 0; i < sched->nr_tasks; i++) {
749 task = sched->tasks[i];
750 task->curr_event = 0;
751 }
752}
753
754static void run_one_test(struct perf_sched *sched)
755 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
756 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
757{
758 u64 T0, T1, delta, avg_delta, fluct;
759
760 T0 = get_nsecs();
761 wait_for_tasks(sched);
762 T1 = get_nsecs();
763
764 delta = T1 - T0;
765 sched->sum_runtime += delta;
766 sched->nr_runs++;
767
768 avg_delta = sched->sum_runtime / sched->nr_runs;
769 if (delta < avg_delta)
770 fluct = avg_delta - delta;
771 else
772 fluct = delta - avg_delta;
773 sched->sum_fluct += fluct;
774 if (!sched->run_avg)
775 sched->run_avg = delta;
776 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
777
778 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
779
780 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
781
782 printf("cpu: %0.2f / %0.2f",
783 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
784
785#if 0
786 /*
787 * rusage statistics done by the parent, these are less
788 * accurate than the sched->sum_exec_runtime based statistics:
789 */
790 printf(" [%0.2f / %0.2f]",
791 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
792 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
793#endif
794
795 printf("\n");
796
797 if (sched->nr_sleep_corrections)
798 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
799 sched->nr_sleep_corrections = 0;
800}
801
802static void test_calibrations(struct perf_sched *sched)
803{
804 u64 T0, T1;
805
806 T0 = get_nsecs();
807 burn_nsecs(sched, NSEC_PER_MSEC);
808 T1 = get_nsecs();
809
810 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
811
812 T0 = get_nsecs();
813 sleep_nsecs(NSEC_PER_MSEC);
814 T1 = get_nsecs();
815
816 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
817}
818
819static int
820replay_wakeup_event(struct perf_sched *sched,
821 struct evsel *evsel, struct perf_sample *sample,
822 struct machine *machine __maybe_unused)
823{
824 const char *comm = evsel__strval(evsel, sample, "comm");
825 const u32 pid = evsel__intval(evsel, sample, "pid");
826 struct task_desc *waker, *wakee;
827
828 if (verbose > 0) {
829 printf("sched_wakeup event %p\n", evsel);
830
831 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
832 }
833
834 waker = register_pid(sched, sample->tid, "<unknown>");
835 wakee = register_pid(sched, pid, comm);
836
837 add_sched_event_wakeup(sched, waker, sample->time, wakee);
838 return 0;
839}
840
841static int replay_switch_event(struct perf_sched *sched,
842 struct evsel *evsel,
843 struct perf_sample *sample,
844 struct machine *machine __maybe_unused)
845{
846 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
847 *next_comm = evsel__strval(evsel, sample, "next_comm");
848 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
849 next_pid = evsel__intval(evsel, sample, "next_pid");
850 struct task_desc *prev, __maybe_unused *next;
851 u64 timestamp0, timestamp = sample->time;
852 int cpu = sample->cpu;
853 s64 delta;
854
855 if (verbose > 0)
856 printf("sched_switch event %p\n", evsel);
857
858 if (cpu >= MAX_CPUS || cpu < 0)
859 return 0;
860
861 timestamp0 = sched->cpu_last_switched[cpu];
862 if (timestamp0)
863 delta = timestamp - timestamp0;
864 else
865 delta = 0;
866
867 if (delta < 0) {
868 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
869 return -1;
870 }
871
872 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
873 prev_comm, prev_pid, next_comm, next_pid, delta);
874
875 prev = register_pid(sched, prev_pid, prev_comm);
876 next = register_pid(sched, next_pid, next_comm);
877
878 sched->cpu_last_switched[cpu] = timestamp;
879
880 add_sched_event_run(sched, prev, timestamp, delta);
881 add_sched_event_sleep(sched, prev, timestamp);
882
883 return 0;
884}
885
886static int replay_fork_event(struct perf_sched *sched,
887 union perf_event *event,
888 struct machine *machine)
889{
890 struct thread *child, *parent;
891
892 child = machine__findnew_thread(machine, event->fork.pid,
893 event->fork.tid);
894 parent = machine__findnew_thread(machine, event->fork.ppid,
895 event->fork.ptid);
896
897 if (child == NULL || parent == NULL) {
898 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
899 child, parent);
900 goto out_put;
901 }
902
903 if (verbose > 0) {
904 printf("fork event\n");
905 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
906 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child));
907 }
908
909 register_pid(sched, thread__tid(parent), thread__comm_str(parent));
910 register_pid(sched, thread__tid(child), thread__comm_str(child));
911out_put:
912 thread__put(child);
913 thread__put(parent);
914 return 0;
915}
916
917struct sort_dimension {
918 const char *name;
919 sort_fn_t cmp;
920 struct list_head list;
921};
922
923static inline void init_prio(struct thread_runtime *r)
924{
925 r->prio = -1;
926}
927
928/*
929 * handle runtime stats saved per thread
930 */
931static struct thread_runtime *thread__init_runtime(struct thread *thread)
932{
933 struct thread_runtime *r;
934
935 r = zalloc(sizeof(struct thread_runtime));
936 if (!r)
937 return NULL;
938
939 init_stats(&r->run_stats);
940 init_prio(r);
941 thread__set_priv(thread, r);
942
943 return r;
944}
945
946static struct thread_runtime *thread__get_runtime(struct thread *thread)
947{
948 struct thread_runtime *tr;
949
950 tr = thread__priv(thread);
951 if (tr == NULL) {
952 tr = thread__init_runtime(thread);
953 if (tr == NULL)
954 pr_debug("Failed to malloc memory for runtime data.\n");
955 }
956
957 return tr;
958}
959
960static int
961thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
962{
963 struct sort_dimension *sort;
964 int ret = 0;
965
966 BUG_ON(list_empty(list));
967
968 list_for_each_entry(sort, list, list) {
969 ret = sort->cmp(l, r);
970 if (ret)
971 return ret;
972 }
973
974 return ret;
975}
976
977static struct work_atoms *
978thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
979 struct list_head *sort_list)
980{
981 struct rb_node *node = root->rb_root.rb_node;
982 struct work_atoms key = { .thread = thread };
983
984 while (node) {
985 struct work_atoms *atoms;
986 int cmp;
987
988 atoms = container_of(node, struct work_atoms, node);
989
990 cmp = thread_lat_cmp(sort_list, &key, atoms);
991 if (cmp > 0)
992 node = node->rb_left;
993 else if (cmp < 0)
994 node = node->rb_right;
995 else {
996 BUG_ON(thread != atoms->thread);
997 return atoms;
998 }
999 }
1000 return NULL;
1001}
1002
1003static void
1004__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1005 struct list_head *sort_list)
1006{
1007 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1008 bool leftmost = true;
1009
1010 while (*new) {
1011 struct work_atoms *this;
1012 int cmp;
1013
1014 this = container_of(*new, struct work_atoms, node);
1015 parent = *new;
1016
1017 cmp = thread_lat_cmp(sort_list, data, this);
1018
1019 if (cmp > 0)
1020 new = &((*new)->rb_left);
1021 else {
1022 new = &((*new)->rb_right);
1023 leftmost = false;
1024 }
1025 }
1026
1027 rb_link_node(&data->node, parent, new);
1028 rb_insert_color_cached(&data->node, root, leftmost);
1029}
1030
1031static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1032{
1033 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1034 if (!atoms) {
1035 pr_err("No memory at %s\n", __func__);
1036 return -1;
1037 }
1038
1039 atoms->thread = thread__get(thread);
1040 INIT_LIST_HEAD(&atoms->work_list);
1041 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1042 return 0;
1043}
1044
1045static int
1046add_sched_out_event(struct work_atoms *atoms,
1047 char run_state,
1048 u64 timestamp)
1049{
1050 struct work_atom *atom = zalloc(sizeof(*atom));
1051 if (!atom) {
1052 pr_err("Non memory at %s", __func__);
1053 return -1;
1054 }
1055
1056 atom->sched_out_time = timestamp;
1057
1058 if (run_state == 'R') {
1059 atom->state = THREAD_WAIT_CPU;
1060 atom->wake_up_time = atom->sched_out_time;
1061 }
1062
1063 list_add_tail(&atom->list, &atoms->work_list);
1064 return 0;
1065}
1066
1067static void
1068add_runtime_event(struct work_atoms *atoms, u64 delta,
1069 u64 timestamp __maybe_unused)
1070{
1071 struct work_atom *atom;
1072
1073 BUG_ON(list_empty(&atoms->work_list));
1074
1075 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1076
1077 atom->runtime += delta;
1078 atoms->total_runtime += delta;
1079}
1080
1081static void
1082add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1083{
1084 struct work_atom *atom;
1085 u64 delta;
1086
1087 if (list_empty(&atoms->work_list))
1088 return;
1089
1090 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092 if (atom->state != THREAD_WAIT_CPU)
1093 return;
1094
1095 if (timestamp < atom->wake_up_time) {
1096 atom->state = THREAD_IGNORE;
1097 return;
1098 }
1099
1100 atom->state = THREAD_SCHED_IN;
1101 atom->sched_in_time = timestamp;
1102
1103 delta = atom->sched_in_time - atom->wake_up_time;
1104 atoms->total_lat += delta;
1105 if (delta > atoms->max_lat) {
1106 atoms->max_lat = delta;
1107 atoms->max_lat_start = atom->wake_up_time;
1108 atoms->max_lat_end = timestamp;
1109 }
1110 atoms->nb_atoms++;
1111}
1112
1113static int latency_switch_event(struct perf_sched *sched,
1114 struct evsel *evsel,
1115 struct perf_sample *sample,
1116 struct machine *machine)
1117{
1118 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1119 next_pid = evsel__intval(evsel, sample, "next_pid");
1120 const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1121 struct work_atoms *out_events, *in_events;
1122 struct thread *sched_out, *sched_in;
1123 u64 timestamp0, timestamp = sample->time;
1124 int cpu = sample->cpu, err = -1;
1125 s64 delta;
1126
1127 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1128
1129 timestamp0 = sched->cpu_last_switched[cpu];
1130 sched->cpu_last_switched[cpu] = timestamp;
1131 if (timestamp0)
1132 delta = timestamp - timestamp0;
1133 else
1134 delta = 0;
1135
1136 if (delta < 0) {
1137 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1138 return -1;
1139 }
1140
1141 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1142 sched_in = machine__findnew_thread(machine, -1, next_pid);
1143 if (sched_out == NULL || sched_in == NULL)
1144 goto out_put;
1145
1146 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1147 if (!out_events) {
1148 if (thread_atoms_insert(sched, sched_out))
1149 goto out_put;
1150 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1151 if (!out_events) {
1152 pr_err("out-event: Internal tree error");
1153 goto out_put;
1154 }
1155 }
1156 if (add_sched_out_event(out_events, prev_state, timestamp))
1157 return -1;
1158
1159 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1160 if (!in_events) {
1161 if (thread_atoms_insert(sched, sched_in))
1162 goto out_put;
1163 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1164 if (!in_events) {
1165 pr_err("in-event: Internal tree error");
1166 goto out_put;
1167 }
1168 /*
1169 * Take came in we have not heard about yet,
1170 * add in an initial atom in runnable state:
1171 */
1172 if (add_sched_out_event(in_events, 'R', timestamp))
1173 goto out_put;
1174 }
1175 add_sched_in_event(in_events, timestamp);
1176 err = 0;
1177out_put:
1178 thread__put(sched_out);
1179 thread__put(sched_in);
1180 return err;
1181}
1182
1183static int latency_runtime_event(struct perf_sched *sched,
1184 struct evsel *evsel,
1185 struct perf_sample *sample,
1186 struct machine *machine)
1187{
1188 const u32 pid = evsel__intval(evsel, sample, "pid");
1189 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1190 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1191 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1192 u64 timestamp = sample->time;
1193 int cpu = sample->cpu, err = -1;
1194
1195 if (thread == NULL)
1196 return -1;
1197
1198 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1199 if (!atoms) {
1200 if (thread_atoms_insert(sched, thread))
1201 goto out_put;
1202 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1203 if (!atoms) {
1204 pr_err("in-event: Internal tree error");
1205 goto out_put;
1206 }
1207 if (add_sched_out_event(atoms, 'R', timestamp))
1208 goto out_put;
1209 }
1210
1211 add_runtime_event(atoms, runtime, timestamp);
1212 err = 0;
1213out_put:
1214 thread__put(thread);
1215 return err;
1216}
1217
1218static int latency_wakeup_event(struct perf_sched *sched,
1219 struct evsel *evsel,
1220 struct perf_sample *sample,
1221 struct machine *machine)
1222{
1223 const u32 pid = evsel__intval(evsel, sample, "pid");
1224 struct work_atoms *atoms;
1225 struct work_atom *atom;
1226 struct thread *wakee;
1227 u64 timestamp = sample->time;
1228 int err = -1;
1229
1230 wakee = machine__findnew_thread(machine, -1, pid);
1231 if (wakee == NULL)
1232 return -1;
1233 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1234 if (!atoms) {
1235 if (thread_atoms_insert(sched, wakee))
1236 goto out_put;
1237 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1238 if (!atoms) {
1239 pr_err("wakeup-event: Internal tree error");
1240 goto out_put;
1241 }
1242 if (add_sched_out_event(atoms, 'S', timestamp))
1243 goto out_put;
1244 }
1245
1246 BUG_ON(list_empty(&atoms->work_list));
1247
1248 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1249
1250 /*
1251 * As we do not guarantee the wakeup event happens when
1252 * task is out of run queue, also may happen when task is
1253 * on run queue and wakeup only change ->state to TASK_RUNNING,
1254 * then we should not set the ->wake_up_time when wake up a
1255 * task which is on run queue.
1256 *
1257 * You WILL be missing events if you've recorded only
1258 * one CPU, or are only looking at only one, so don't
1259 * skip in this case.
1260 */
1261 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1262 goto out_ok;
1263
1264 sched->nr_timestamps++;
1265 if (atom->sched_out_time > timestamp) {
1266 sched->nr_unordered_timestamps++;
1267 goto out_ok;
1268 }
1269
1270 atom->state = THREAD_WAIT_CPU;
1271 atom->wake_up_time = timestamp;
1272out_ok:
1273 err = 0;
1274out_put:
1275 thread__put(wakee);
1276 return err;
1277}
1278
1279static int latency_migrate_task_event(struct perf_sched *sched,
1280 struct evsel *evsel,
1281 struct perf_sample *sample,
1282 struct machine *machine)
1283{
1284 const u32 pid = evsel__intval(evsel, sample, "pid");
1285 u64 timestamp = sample->time;
1286 struct work_atoms *atoms;
1287 struct work_atom *atom;
1288 struct thread *migrant;
1289 int err = -1;
1290
1291 /*
1292 * Only need to worry about migration when profiling one CPU.
1293 */
1294 if (sched->profile_cpu == -1)
1295 return 0;
1296
1297 migrant = machine__findnew_thread(machine, -1, pid);
1298 if (migrant == NULL)
1299 return -1;
1300 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1301 if (!atoms) {
1302 if (thread_atoms_insert(sched, migrant))
1303 goto out_put;
1304 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1305 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1306 if (!atoms) {
1307 pr_err("migration-event: Internal tree error");
1308 goto out_put;
1309 }
1310 if (add_sched_out_event(atoms, 'R', timestamp))
1311 goto out_put;
1312 }
1313
1314 BUG_ON(list_empty(&atoms->work_list));
1315
1316 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1317 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1318
1319 sched->nr_timestamps++;
1320
1321 if (atom->sched_out_time > timestamp)
1322 sched->nr_unordered_timestamps++;
1323 err = 0;
1324out_put:
1325 thread__put(migrant);
1326 return err;
1327}
1328
1329static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1330{
1331 int i;
1332 int ret;
1333 u64 avg;
1334 char max_lat_start[32], max_lat_end[32];
1335
1336 if (!work_list->nb_atoms)
1337 return;
1338 /*
1339 * Ignore idle threads:
1340 */
1341 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1342 return;
1343
1344 sched->all_runtime += work_list->total_runtime;
1345 sched->all_count += work_list->nb_atoms;
1346
1347 if (work_list->num_merged > 1) {
1348 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread),
1349 work_list->num_merged);
1350 } else {
1351 ret = printf(" %s:%d ", thread__comm_str(work_list->thread),
1352 thread__tid(work_list->thread));
1353 }
1354
1355 for (i = 0; i < 24 - ret; i++)
1356 printf(" ");
1357
1358 avg = work_list->total_lat / work_list->nb_atoms;
1359 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1360 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1361
1362 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1363 (double)work_list->total_runtime / NSEC_PER_MSEC,
1364 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1365 (double)work_list->max_lat / NSEC_PER_MSEC,
1366 max_lat_start, max_lat_end);
1367}
1368
1369static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1370{
1371 pid_t l_tid, r_tid;
1372
1373 if (RC_CHK_EQUAL(l->thread, r->thread))
1374 return 0;
1375 l_tid = thread__tid(l->thread);
1376 r_tid = thread__tid(r->thread);
1377 if (l_tid < r_tid)
1378 return -1;
1379 if (l_tid > r_tid)
1380 return 1;
1381 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1382}
1383
1384static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1385{
1386 u64 avgl, avgr;
1387
1388 if (!l->nb_atoms)
1389 return -1;
1390
1391 if (!r->nb_atoms)
1392 return 1;
1393
1394 avgl = l->total_lat / l->nb_atoms;
1395 avgr = r->total_lat / r->nb_atoms;
1396
1397 if (avgl < avgr)
1398 return -1;
1399 if (avgl > avgr)
1400 return 1;
1401
1402 return 0;
1403}
1404
1405static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407 if (l->max_lat < r->max_lat)
1408 return -1;
1409 if (l->max_lat > r->max_lat)
1410 return 1;
1411
1412 return 0;
1413}
1414
1415static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1416{
1417 if (l->nb_atoms < r->nb_atoms)
1418 return -1;
1419 if (l->nb_atoms > r->nb_atoms)
1420 return 1;
1421
1422 return 0;
1423}
1424
1425static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1426{
1427 if (l->total_runtime < r->total_runtime)
1428 return -1;
1429 if (l->total_runtime > r->total_runtime)
1430 return 1;
1431
1432 return 0;
1433}
1434
1435static int sort_dimension__add(const char *tok, struct list_head *list)
1436{
1437 size_t i;
1438 static struct sort_dimension avg_sort_dimension = {
1439 .name = "avg",
1440 .cmp = avg_cmp,
1441 };
1442 static struct sort_dimension max_sort_dimension = {
1443 .name = "max",
1444 .cmp = max_cmp,
1445 };
1446 static struct sort_dimension pid_sort_dimension = {
1447 .name = "pid",
1448 .cmp = pid_cmp,
1449 };
1450 static struct sort_dimension runtime_sort_dimension = {
1451 .name = "runtime",
1452 .cmp = runtime_cmp,
1453 };
1454 static struct sort_dimension switch_sort_dimension = {
1455 .name = "switch",
1456 .cmp = switch_cmp,
1457 };
1458 struct sort_dimension *available_sorts[] = {
1459 &pid_sort_dimension,
1460 &avg_sort_dimension,
1461 &max_sort_dimension,
1462 &switch_sort_dimension,
1463 &runtime_sort_dimension,
1464 };
1465
1466 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1467 if (!strcmp(available_sorts[i]->name, tok)) {
1468 list_add_tail(&available_sorts[i]->list, list);
1469
1470 return 0;
1471 }
1472 }
1473
1474 return -1;
1475}
1476
1477static void perf_sched__sort_lat(struct perf_sched *sched)
1478{
1479 struct rb_node *node;
1480 struct rb_root_cached *root = &sched->atom_root;
1481again:
1482 for (;;) {
1483 struct work_atoms *data;
1484 node = rb_first_cached(root);
1485 if (!node)
1486 break;
1487
1488 rb_erase_cached(node, root);
1489 data = rb_entry(node, struct work_atoms, node);
1490 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1491 }
1492 if (root == &sched->atom_root) {
1493 root = &sched->merged_atom_root;
1494 goto again;
1495 }
1496}
1497
1498static int process_sched_wakeup_event(const struct perf_tool *tool,
1499 struct evsel *evsel,
1500 struct perf_sample *sample,
1501 struct machine *machine)
1502{
1503 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1504
1505 if (sched->tp_handler->wakeup_event)
1506 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1507
1508 return 0;
1509}
1510
1511static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1512 struct evsel *evsel __maybe_unused,
1513 struct perf_sample *sample __maybe_unused,
1514 struct machine *machine __maybe_unused)
1515{
1516 return 0;
1517}
1518
1519union map_priv {
1520 void *ptr;
1521 bool color;
1522};
1523
1524static bool thread__has_color(struct thread *thread)
1525{
1526 union map_priv priv = {
1527 .ptr = thread__priv(thread),
1528 };
1529
1530 return priv.color;
1531}
1532
1533static struct thread*
1534map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1535{
1536 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1537 union map_priv priv = {
1538 .color = false,
1539 };
1540
1541 if (!sched->map.color_pids || !thread || thread__priv(thread))
1542 return thread;
1543
1544 if (thread_map__has(sched->map.color_pids, tid))
1545 priv.color = true;
1546
1547 thread__set_priv(thread, priv.ptr);
1548 return thread;
1549}
1550
1551static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1552{
1553 bool fuzzy_match = sched->map.fuzzy;
1554 struct strlist *task_names = sched->map.task_names;
1555 struct str_node *node;
1556
1557 strlist__for_each_entry(node, task_names) {
1558 bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1559 !strcmp(comm_str, node->s);
1560 if (match_found)
1561 return true;
1562 }
1563
1564 return false;
1565}
1566
1567static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1568 const char *color, bool sched_out)
1569{
1570 for (int i = 0; i < cpus_nr; i++) {
1571 struct perf_cpu cpu = {
1572 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1573 };
1574 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1575 struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1576 struct thread_runtime *curr_tr;
1577 const char *pid_color = color;
1578 const char *cpu_color = color;
1579 char symbol = ' ';
1580 struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1581
1582 if (thread_to_check && thread__has_color(thread_to_check))
1583 pid_color = COLOR_PIDS;
1584
1585 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1586 cpu_color = COLOR_CPUS;
1587
1588 if (cpu.cpu == this_cpu.cpu)
1589 symbol = '*';
1590
1591 color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1592
1593 thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1594 sched->curr_thread[cpu.cpu];
1595
1596 if (thread_to_check) {
1597 curr_tr = thread__get_runtime(thread_to_check);
1598 if (curr_tr == NULL)
1599 return;
1600
1601 if (sched_out) {
1602 if (cpu.cpu == this_cpu.cpu)
1603 color_fprintf(stdout, color, "- ");
1604 else {
1605 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1606 if (curr_tr != NULL)
1607 color_fprintf(stdout, pid_color, "%2s ",
1608 curr_tr->shortname);
1609 }
1610 } else
1611 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1612 } else
1613 color_fprintf(stdout, color, " ");
1614 }
1615}
1616
1617static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1618 struct perf_sample *sample, struct machine *machine)
1619{
1620 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1621 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1622 struct thread *sched_in, *sched_out;
1623 struct thread_runtime *tr;
1624 int new_shortname;
1625 u64 timestamp0, timestamp = sample->time;
1626 s64 delta;
1627 struct perf_cpu this_cpu = {
1628 .cpu = sample->cpu,
1629 };
1630 int cpus_nr;
1631 int proceed;
1632 bool new_cpu = false;
1633 const char *color = PERF_COLOR_NORMAL;
1634 char stimestamp[32];
1635 const char *str;
1636
1637 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1638
1639 if (this_cpu.cpu > sched->max_cpu.cpu)
1640 sched->max_cpu = this_cpu;
1641
1642 if (sched->map.comp) {
1643 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1644 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1645 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1646 new_cpu = true;
1647 }
1648 } else
1649 cpus_nr = sched->max_cpu.cpu;
1650
1651 timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1652 sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1653 if (timestamp0)
1654 delta = timestamp - timestamp0;
1655 else
1656 delta = 0;
1657
1658 if (delta < 0) {
1659 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1660 return -1;
1661 }
1662
1663 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1664 sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1665 if (sched_in == NULL || sched_out == NULL)
1666 return -1;
1667
1668 tr = thread__get_runtime(sched_in);
1669 if (tr == NULL) {
1670 thread__put(sched_in);
1671 return -1;
1672 }
1673
1674 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1675 sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1676
1677 str = thread__comm_str(sched_in);
1678 new_shortname = 0;
1679 if (!tr->shortname[0]) {
1680 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1681 /*
1682 * Don't allocate a letter-number for swapper:0
1683 * as a shortname. Instead, we use '.' for it.
1684 */
1685 tr->shortname[0] = '.';
1686 tr->shortname[1] = ' ';
1687 } else if (!sched->map.task_name || sched_match_task(sched, str)) {
1688 tr->shortname[0] = sched->next_shortname1;
1689 tr->shortname[1] = sched->next_shortname2;
1690
1691 if (sched->next_shortname1 < 'Z') {
1692 sched->next_shortname1++;
1693 } else {
1694 sched->next_shortname1 = 'A';
1695 if (sched->next_shortname2 < '9')
1696 sched->next_shortname2++;
1697 else
1698 sched->next_shortname2 = '0';
1699 }
1700 } else {
1701 tr->shortname[0] = '-';
1702 tr->shortname[1] = ' ';
1703 }
1704 new_shortname = 1;
1705 }
1706
1707 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1708 goto out;
1709
1710 proceed = 0;
1711 str = thread__comm_str(sched_in);
1712 /*
1713 * Check which of sched_in and sched_out matches the passed --task-name
1714 * arguments and call the corresponding print_sched_map.
1715 */
1716 if (sched->map.task_name && !sched_match_task(sched, str)) {
1717 if (!sched_match_task(sched, thread__comm_str(sched_out)))
1718 goto out;
1719 else
1720 goto sched_out;
1721
1722 } else {
1723 str = thread__comm_str(sched_out);
1724 if (!(sched->map.task_name && !sched_match_task(sched, str)))
1725 proceed = 1;
1726 }
1727
1728 printf(" ");
1729
1730 print_sched_map(sched, this_cpu, cpus_nr, color, false);
1731
1732 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1733 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1734 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1735 const char *pid_color = color;
1736
1737 if (thread__has_color(sched_in))
1738 pid_color = COLOR_PIDS;
1739
1740 color_fprintf(stdout, pid_color, "%s => %s:%d",
1741 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1742 tr->comm_changed = false;
1743 }
1744
1745 if (sched->map.comp && new_cpu)
1746 color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1747
1748 if (proceed != 1) {
1749 color_fprintf(stdout, color, "\n");
1750 goto out;
1751 }
1752
1753sched_out:
1754 if (sched->map.task_name) {
1755 tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1756 if (strcmp(tr->shortname, "") == 0)
1757 goto out;
1758
1759 if (proceed == 1)
1760 color_fprintf(stdout, color, "\n");
1761
1762 printf(" ");
1763 print_sched_map(sched, this_cpu, cpus_nr, color, true);
1764 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1765 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1766 }
1767
1768 color_fprintf(stdout, color, "\n");
1769
1770out:
1771 if (sched->map.task_name)
1772 thread__put(sched_out);
1773
1774 thread__put(sched_in);
1775
1776 return 0;
1777}
1778
1779static int process_sched_switch_event(const struct perf_tool *tool,
1780 struct evsel *evsel,
1781 struct perf_sample *sample,
1782 struct machine *machine)
1783{
1784 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1785 int this_cpu = sample->cpu, err = 0;
1786 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1787 next_pid = evsel__intval(evsel, sample, "next_pid");
1788
1789 if (sched->curr_pid[this_cpu] != (u32)-1) {
1790 /*
1791 * Are we trying to switch away a PID that is
1792 * not current?
1793 */
1794 if (sched->curr_pid[this_cpu] != prev_pid)
1795 sched->nr_context_switch_bugs++;
1796 }
1797
1798 if (sched->tp_handler->switch_event)
1799 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1800
1801 sched->curr_pid[this_cpu] = next_pid;
1802 return err;
1803}
1804
1805static int process_sched_runtime_event(const struct perf_tool *tool,
1806 struct evsel *evsel,
1807 struct perf_sample *sample,
1808 struct machine *machine)
1809{
1810 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1811
1812 if (sched->tp_handler->runtime_event)
1813 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1814
1815 return 0;
1816}
1817
1818static int perf_sched__process_fork_event(const struct perf_tool *tool,
1819 union perf_event *event,
1820 struct perf_sample *sample,
1821 struct machine *machine)
1822{
1823 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1824
1825 /* run the fork event through the perf machinery */
1826 perf_event__process_fork(tool, event, sample, machine);
1827
1828 /* and then run additional processing needed for this command */
1829 if (sched->tp_handler->fork_event)
1830 return sched->tp_handler->fork_event(sched, event, machine);
1831
1832 return 0;
1833}
1834
1835static int process_sched_migrate_task_event(const struct perf_tool *tool,
1836 struct evsel *evsel,
1837 struct perf_sample *sample,
1838 struct machine *machine)
1839{
1840 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1841
1842 if (sched->tp_handler->migrate_task_event)
1843 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1844
1845 return 0;
1846}
1847
1848typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1849 struct evsel *evsel,
1850 struct perf_sample *sample,
1851 struct machine *machine);
1852
1853static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1854 union perf_event *event __maybe_unused,
1855 struct perf_sample *sample,
1856 struct evsel *evsel,
1857 struct machine *machine)
1858{
1859 int err = 0;
1860
1861 if (evsel->handler != NULL) {
1862 tracepoint_handler f = evsel->handler;
1863 err = f(tool, evsel, sample, machine);
1864 }
1865
1866 return err;
1867}
1868
1869static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1870 union perf_event *event,
1871 struct perf_sample *sample,
1872 struct machine *machine)
1873{
1874 struct thread *thread;
1875 struct thread_runtime *tr;
1876 int err;
1877
1878 err = perf_event__process_comm(tool, event, sample, machine);
1879 if (err)
1880 return err;
1881
1882 thread = machine__find_thread(machine, sample->pid, sample->tid);
1883 if (!thread) {
1884 pr_err("Internal error: can't find thread\n");
1885 return -1;
1886 }
1887
1888 tr = thread__get_runtime(thread);
1889 if (tr == NULL) {
1890 thread__put(thread);
1891 return -1;
1892 }
1893
1894 tr->comm_changed = true;
1895 thread__put(thread);
1896
1897 return 0;
1898}
1899
1900static int perf_sched__read_events(struct perf_sched *sched)
1901{
1902 struct evsel_str_handler handlers[] = {
1903 { "sched:sched_switch", process_sched_switch_event, },
1904 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1905 { "sched:sched_wakeup", process_sched_wakeup_event, },
1906 { "sched:sched_waking", process_sched_wakeup_event, },
1907 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1908 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1909 };
1910 struct perf_session *session;
1911 struct perf_data data = {
1912 .path = input_name,
1913 .mode = PERF_DATA_MODE_READ,
1914 .force = sched->force,
1915 };
1916 int rc = -1;
1917
1918 session = perf_session__new(&data, &sched->tool);
1919 if (IS_ERR(session)) {
1920 pr_debug("Error creating perf session");
1921 return PTR_ERR(session);
1922 }
1923
1924 symbol__init(&session->header.env);
1925
1926 /* prefer sched_waking if it is captured */
1927 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1928 handlers[2].handler = process_sched_wakeup_ignore;
1929
1930 if (perf_session__set_tracepoints_handlers(session, handlers))
1931 goto out_delete;
1932
1933 if (perf_session__has_traces(session, "record -R")) {
1934 int err = perf_session__process_events(session);
1935 if (err) {
1936 pr_err("Failed to process events, error %d", err);
1937 goto out_delete;
1938 }
1939
1940 sched->nr_events = session->evlist->stats.nr_events[0];
1941 sched->nr_lost_events = session->evlist->stats.total_lost;
1942 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1943 }
1944
1945 rc = 0;
1946out_delete:
1947 perf_session__delete(session);
1948 return rc;
1949}
1950
1951/*
1952 * scheduling times are printed as msec.usec
1953 */
1954static inline void print_sched_time(unsigned long long nsecs, int width)
1955{
1956 unsigned long msecs;
1957 unsigned long usecs;
1958
1959 msecs = nsecs / NSEC_PER_MSEC;
1960 nsecs -= msecs * NSEC_PER_MSEC;
1961 usecs = nsecs / NSEC_PER_USEC;
1962 printf("%*lu.%03lu ", width, msecs, usecs);
1963}
1964
1965/*
1966 * returns runtime data for event, allocating memory for it the
1967 * first time it is used.
1968 */
1969static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1970{
1971 struct evsel_runtime *r = evsel->priv;
1972
1973 if (r == NULL) {
1974 r = zalloc(sizeof(struct evsel_runtime));
1975 evsel->priv = r;
1976 }
1977
1978 return r;
1979}
1980
1981/*
1982 * save last time event was seen per cpu
1983 */
1984static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1985{
1986 struct evsel_runtime *r = evsel__get_runtime(evsel);
1987
1988 if (r == NULL)
1989 return;
1990
1991 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1992 int i, n = __roundup_pow_of_two(cpu+1);
1993 void *p = r->last_time;
1994
1995 p = realloc(r->last_time, n * sizeof(u64));
1996 if (!p)
1997 return;
1998
1999 r->last_time = p;
2000 for (i = r->ncpu; i < n; ++i)
2001 r->last_time[i] = (u64) 0;
2002
2003 r->ncpu = n;
2004 }
2005
2006 r->last_time[cpu] = timestamp;
2007}
2008
2009/* returns last time this event was seen on the given cpu */
2010static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2011{
2012 struct evsel_runtime *r = evsel__get_runtime(evsel);
2013
2014 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2015 return 0;
2016
2017 return r->last_time[cpu];
2018}
2019
2020static int comm_width = 30;
2021
2022static char *timehist_get_commstr(struct thread *thread)
2023{
2024 static char str[32];
2025 const char *comm = thread__comm_str(thread);
2026 pid_t tid = thread__tid(thread);
2027 pid_t pid = thread__pid(thread);
2028 int n;
2029
2030 if (pid == 0)
2031 n = scnprintf(str, sizeof(str), "%s", comm);
2032
2033 else if (tid != pid)
2034 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2035
2036 else
2037 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2038
2039 if (n > comm_width)
2040 comm_width = n;
2041
2042 return str;
2043}
2044
2045/* prio field format: xxx or xxx->yyy */
2046#define MAX_PRIO_STR_LEN 8
2047static char *timehist_get_priostr(struct evsel *evsel,
2048 struct thread *thread,
2049 struct perf_sample *sample)
2050{
2051 static char prio_str[16];
2052 int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2053 struct thread_runtime *tr = thread__priv(thread);
2054
2055 if (tr->prio != prev_prio && tr->prio != -1)
2056 scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2057 else
2058 scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2059
2060 return prio_str;
2061}
2062
2063static void timehist_header(struct perf_sched *sched)
2064{
2065 u32 ncpus = sched->max_cpu.cpu + 1;
2066 u32 i, j;
2067
2068 printf("%15s %6s ", "time", "cpu");
2069
2070 if (sched->show_cpu_visual) {
2071 printf(" ");
2072 for (i = 0, j = 0; i < ncpus; ++i) {
2073 printf("%x", j++);
2074 if (j > 15)
2075 j = 0;
2076 }
2077 printf(" ");
2078 }
2079
2080 printf(" %-*s", comm_width, "task name");
2081
2082 if (sched->show_prio)
2083 printf(" %-*s", MAX_PRIO_STR_LEN, "prio");
2084
2085 printf(" %9s %9s %9s", "wait time", "sch delay", "run time");
2086
2087 if (sched->pre_migrations)
2088 printf(" %9s", "pre-mig time");
2089
2090 if (sched->show_state)
2091 printf(" %s", "state");
2092
2093 printf("\n");
2094
2095 /*
2096 * units row
2097 */
2098 printf("%15s %-6s ", "", "");
2099
2100 if (sched->show_cpu_visual)
2101 printf(" %*s ", ncpus, "");
2102
2103 printf(" %-*s", comm_width, "[tid/pid]");
2104
2105 if (sched->show_prio)
2106 printf(" %-*s", MAX_PRIO_STR_LEN, "");
2107
2108 printf(" %9s %9s %9s", "(msec)", "(msec)", "(msec)");
2109
2110 if (sched->pre_migrations)
2111 printf(" %9s", "(msec)");
2112
2113 printf("\n");
2114
2115 /*
2116 * separator
2117 */
2118 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2119
2120 if (sched->show_cpu_visual)
2121 printf(" %.*s ", ncpus, graph_dotted_line);
2122
2123 printf(" %.*s", comm_width, graph_dotted_line);
2124
2125 if (sched->show_prio)
2126 printf(" %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2127
2128 printf(" %.9s %.9s %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2129
2130 if (sched->pre_migrations)
2131 printf(" %.9s", graph_dotted_line);
2132
2133 if (sched->show_state)
2134 printf(" %.5s", graph_dotted_line);
2135
2136 printf("\n");
2137}
2138
2139static void timehist_print_sample(struct perf_sched *sched,
2140 struct evsel *evsel,
2141 struct perf_sample *sample,
2142 struct addr_location *al,
2143 struct thread *thread,
2144 u64 t, const char state)
2145{
2146 struct thread_runtime *tr = thread__priv(thread);
2147 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2148 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2149 u32 max_cpus = sched->max_cpu.cpu + 1;
2150 char tstr[64];
2151 char nstr[30];
2152 u64 wait_time;
2153
2154 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2155 return;
2156
2157 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2158 printf("%15s [%04d] ", tstr, sample->cpu);
2159
2160 if (sched->show_cpu_visual) {
2161 u32 i;
2162 char c;
2163
2164 printf(" ");
2165 for (i = 0; i < max_cpus; ++i) {
2166 /* flag idle times with 'i'; others are sched events */
2167 if (i == sample->cpu)
2168 c = (thread__tid(thread) == 0) ? 'i' : 's';
2169 else
2170 c = ' ';
2171 printf("%c", c);
2172 }
2173 printf(" ");
2174 }
2175
2176 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2177
2178 if (sched->show_prio)
2179 printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2180
2181 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2182 print_sched_time(wait_time, 6);
2183
2184 print_sched_time(tr->dt_delay, 6);
2185 print_sched_time(tr->dt_run, 6);
2186 if (sched->pre_migrations)
2187 print_sched_time(tr->dt_pre_mig, 6);
2188
2189 if (sched->show_state)
2190 printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2191
2192 if (sched->show_next) {
2193 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2194 printf(" %-*s", comm_width, nstr);
2195 }
2196
2197 if (sched->show_wakeups && !sched->show_next)
2198 printf(" %-*s", comm_width, "");
2199
2200 if (thread__tid(thread) == 0)
2201 goto out;
2202
2203 if (sched->show_callchain)
2204 printf(" ");
2205
2206 sample__fprintf_sym(sample, al, 0,
2207 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2208 EVSEL__PRINT_CALLCHAIN_ARROW |
2209 EVSEL__PRINT_SKIP_IGNORED,
2210 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout);
2211
2212out:
2213 printf("\n");
2214}
2215
2216/*
2217 * Explanation of delta-time stats:
2218 *
2219 * t = time of current schedule out event
2220 * tprev = time of previous sched out event
2221 * also time of schedule-in event for current task
2222 * last_time = time of last sched change event for current task
2223 * (i.e, time process was last scheduled out)
2224 * ready_to_run = time of wakeup for current task
2225 * migrated = time of task migration to another CPU
2226 *
2227 * -----|-------------|-------------|-------------|-------------|-----
2228 * last ready migrated tprev t
2229 * time to run
2230 *
2231 * |---------------- dt_wait ----------------|
2232 * |--------- dt_delay ---------|-- dt_run --|
2233 * |- dt_pre_mig -|
2234 *
2235 * dt_run = run time of current task
2236 * dt_wait = time between last schedule out event for task and tprev
2237 * represents time spent off the cpu
2238 * dt_delay = time between wakeup and schedule-in of task
2239 * dt_pre_mig = time between wakeup and migration to another CPU
2240 */
2241
2242static void timehist_update_runtime_stats(struct thread_runtime *r,
2243 u64 t, u64 tprev)
2244{
2245 r->dt_delay = 0;
2246 r->dt_sleep = 0;
2247 r->dt_iowait = 0;
2248 r->dt_preempt = 0;
2249 r->dt_run = 0;
2250 r->dt_pre_mig = 0;
2251
2252 if (tprev) {
2253 r->dt_run = t - tprev;
2254 if (r->ready_to_run) {
2255 if (r->ready_to_run > tprev)
2256 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2257 else
2258 r->dt_delay = tprev - r->ready_to_run;
2259
2260 if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2261 r->dt_pre_mig = r->migrated - r->ready_to_run;
2262 }
2263
2264 if (r->last_time > tprev)
2265 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2266 else if (r->last_time) {
2267 u64 dt_wait = tprev - r->last_time;
2268
2269 if (r->last_state == 'R')
2270 r->dt_preempt = dt_wait;
2271 else if (r->last_state == 'D')
2272 r->dt_iowait = dt_wait;
2273 else
2274 r->dt_sleep = dt_wait;
2275 }
2276 }
2277
2278 update_stats(&r->run_stats, r->dt_run);
2279
2280 r->total_run_time += r->dt_run;
2281 r->total_delay_time += r->dt_delay;
2282 r->total_sleep_time += r->dt_sleep;
2283 r->total_iowait_time += r->dt_iowait;
2284 r->total_preempt_time += r->dt_preempt;
2285 r->total_pre_mig_time += r->dt_pre_mig;
2286}
2287
2288static bool is_idle_sample(struct perf_sample *sample,
2289 struct evsel *evsel)
2290{
2291 /* pid 0 == swapper == idle task */
2292 if (evsel__name_is(evsel, "sched:sched_switch"))
2293 return evsel__intval(evsel, sample, "prev_pid") == 0;
2294
2295 return sample->pid == 0;
2296}
2297
2298static void save_task_callchain(struct perf_sched *sched,
2299 struct perf_sample *sample,
2300 struct evsel *evsel,
2301 struct machine *machine)
2302{
2303 struct callchain_cursor *cursor;
2304 struct thread *thread;
2305
2306 /* want main thread for process - has maps */
2307 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2308 if (thread == NULL) {
2309 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2310 return;
2311 }
2312
2313 if (!sched->show_callchain || sample->callchain == NULL)
2314 return;
2315
2316 cursor = get_tls_callchain_cursor();
2317
2318 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2319 NULL, NULL, sched->max_stack + 2) != 0) {
2320 if (verbose > 0)
2321 pr_err("Failed to resolve callchain. Skipping\n");
2322
2323 return;
2324 }
2325
2326 callchain_cursor_commit(cursor);
2327
2328 while (true) {
2329 struct callchain_cursor_node *node;
2330 struct symbol *sym;
2331
2332 node = callchain_cursor_current(cursor);
2333 if (node == NULL)
2334 break;
2335
2336 sym = node->ms.sym;
2337 if (sym) {
2338 if (!strcmp(sym->name, "schedule") ||
2339 !strcmp(sym->name, "__schedule") ||
2340 !strcmp(sym->name, "preempt_schedule"))
2341 sym->ignore = 1;
2342 }
2343
2344 callchain_cursor_advance(cursor);
2345 }
2346}
2347
2348static int init_idle_thread(struct thread *thread)
2349{
2350 struct idle_thread_runtime *itr;
2351
2352 thread__set_comm(thread, idle_comm, 0);
2353
2354 itr = zalloc(sizeof(*itr));
2355 if (itr == NULL)
2356 return -ENOMEM;
2357
2358 init_prio(&itr->tr);
2359 init_stats(&itr->tr.run_stats);
2360 callchain_init(&itr->callchain);
2361 callchain_cursor_reset(&itr->cursor);
2362 thread__set_priv(thread, itr);
2363
2364 return 0;
2365}
2366
2367/*
2368 * Track idle stats per cpu by maintaining a local thread
2369 * struct for the idle task on each cpu.
2370 */
2371static int init_idle_threads(int ncpu)
2372{
2373 int i, ret;
2374
2375 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2376 if (!idle_threads)
2377 return -ENOMEM;
2378
2379 idle_max_cpu = ncpu;
2380
2381 /* allocate the actual thread struct if needed */
2382 for (i = 0; i < ncpu; ++i) {
2383 idle_threads[i] = thread__new(0, 0);
2384 if (idle_threads[i] == NULL)
2385 return -ENOMEM;
2386
2387 ret = init_idle_thread(idle_threads[i]);
2388 if (ret < 0)
2389 return ret;
2390 }
2391
2392 return 0;
2393}
2394
2395static void free_idle_threads(void)
2396{
2397 int i;
2398
2399 if (idle_threads == NULL)
2400 return;
2401
2402 for (i = 0; i < idle_max_cpu; ++i) {
2403 if ((idle_threads[i]))
2404 thread__delete(idle_threads[i]);
2405 }
2406
2407 free(idle_threads);
2408}
2409
2410static struct thread *get_idle_thread(int cpu)
2411{
2412 /*
2413 * expand/allocate array of pointers to local thread
2414 * structs if needed
2415 */
2416 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2417 int i, j = __roundup_pow_of_two(cpu+1);
2418 void *p;
2419
2420 p = realloc(idle_threads, j * sizeof(struct thread *));
2421 if (!p)
2422 return NULL;
2423
2424 idle_threads = (struct thread **) p;
2425 for (i = idle_max_cpu; i < j; ++i)
2426 idle_threads[i] = NULL;
2427
2428 idle_max_cpu = j;
2429 }
2430
2431 /* allocate a new thread struct if needed */
2432 if (idle_threads[cpu] == NULL) {
2433 idle_threads[cpu] = thread__new(0, 0);
2434
2435 if (idle_threads[cpu]) {
2436 if (init_idle_thread(idle_threads[cpu]) < 0)
2437 return NULL;
2438 }
2439 }
2440
2441 return idle_threads[cpu];
2442}
2443
2444static void save_idle_callchain(struct perf_sched *sched,
2445 struct idle_thread_runtime *itr,
2446 struct perf_sample *sample)
2447{
2448 struct callchain_cursor *cursor;
2449
2450 if (!sched->show_callchain || sample->callchain == NULL)
2451 return;
2452
2453 cursor = get_tls_callchain_cursor();
2454 if (cursor == NULL)
2455 return;
2456
2457 callchain_cursor__copy(&itr->cursor, cursor);
2458}
2459
2460static struct thread *timehist_get_thread(struct perf_sched *sched,
2461 struct perf_sample *sample,
2462 struct machine *machine,
2463 struct evsel *evsel)
2464{
2465 struct thread *thread;
2466
2467 if (is_idle_sample(sample, evsel)) {
2468 thread = get_idle_thread(sample->cpu);
2469 if (thread == NULL)
2470 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2471
2472 } else {
2473 /* there were samples with tid 0 but non-zero pid */
2474 thread = machine__findnew_thread(machine, sample->pid,
2475 sample->tid ?: sample->pid);
2476 if (thread == NULL) {
2477 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2478 sample->tid);
2479 }
2480
2481 save_task_callchain(sched, sample, evsel, machine);
2482 if (sched->idle_hist) {
2483 struct thread *idle;
2484 struct idle_thread_runtime *itr;
2485
2486 idle = get_idle_thread(sample->cpu);
2487 if (idle == NULL) {
2488 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2489 return NULL;
2490 }
2491
2492 itr = thread__priv(idle);
2493 if (itr == NULL)
2494 return NULL;
2495
2496 itr->last_thread = thread;
2497
2498 /* copy task callchain when entering to idle */
2499 if (evsel__intval(evsel, sample, "next_pid") == 0)
2500 save_idle_callchain(sched, itr, sample);
2501 }
2502 }
2503
2504 return thread;
2505}
2506
2507static bool timehist_skip_sample(struct perf_sched *sched,
2508 struct thread *thread,
2509 struct evsel *evsel,
2510 struct perf_sample *sample)
2511{
2512 bool rc = false;
2513 int prio = -1;
2514 struct thread_runtime *tr = NULL;
2515
2516 if (thread__is_filtered(thread)) {
2517 rc = true;
2518 sched->skipped_samples++;
2519 }
2520
2521 if (sched->prio_str) {
2522 /*
2523 * Because priority may be changed during task execution,
2524 * first read priority from prev sched_in event for current task.
2525 * If prev sched_in event is not saved, then read priority from
2526 * current task sched_out event.
2527 */
2528 tr = thread__get_runtime(thread);
2529 if (tr && tr->prio != -1)
2530 prio = tr->prio;
2531 else if (evsel__name_is(evsel, "sched:sched_switch"))
2532 prio = evsel__intval(evsel, sample, "prev_prio");
2533
2534 if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2535 rc = true;
2536 sched->skipped_samples++;
2537 }
2538 }
2539
2540 if (sched->idle_hist) {
2541 if (!evsel__name_is(evsel, "sched:sched_switch"))
2542 rc = true;
2543 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2544 evsel__intval(evsel, sample, "next_pid") != 0)
2545 rc = true;
2546 }
2547
2548 return rc;
2549}
2550
2551static void timehist_print_wakeup_event(struct perf_sched *sched,
2552 struct evsel *evsel,
2553 struct perf_sample *sample,
2554 struct machine *machine,
2555 struct thread *awakened)
2556{
2557 struct thread *thread;
2558 char tstr[64];
2559
2560 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2561 if (thread == NULL)
2562 return;
2563
2564 /* show wakeup unless both awakee and awaker are filtered */
2565 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2566 timehist_skip_sample(sched, awakened, evsel, sample)) {
2567 return;
2568 }
2569
2570 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2571 printf("%15s [%04d] ", tstr, sample->cpu);
2572 if (sched->show_cpu_visual)
2573 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2574
2575 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2576
2577 /* dt spacer */
2578 printf(" %9s %9s %9s ", "", "", "");
2579
2580 printf("awakened: %s", timehist_get_commstr(awakened));
2581
2582 printf("\n");
2583}
2584
2585static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2586 union perf_event *event __maybe_unused,
2587 struct evsel *evsel __maybe_unused,
2588 struct perf_sample *sample __maybe_unused,
2589 struct machine *machine __maybe_unused)
2590{
2591 return 0;
2592}
2593
2594static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2595 union perf_event *event __maybe_unused,
2596 struct evsel *evsel,
2597 struct perf_sample *sample,
2598 struct machine *machine)
2599{
2600 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2601 struct thread *thread;
2602 struct thread_runtime *tr = NULL;
2603 /* want pid of awakened task not pid in sample */
2604 const u32 pid = evsel__intval(evsel, sample, "pid");
2605
2606 thread = machine__findnew_thread(machine, 0, pid);
2607 if (thread == NULL)
2608 return -1;
2609
2610 tr = thread__get_runtime(thread);
2611 if (tr == NULL)
2612 return -1;
2613
2614 if (tr->ready_to_run == 0)
2615 tr->ready_to_run = sample->time;
2616
2617 /* show wakeups if requested */
2618 if (sched->show_wakeups &&
2619 !perf_time__skip_sample(&sched->ptime, sample->time))
2620 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2621
2622 return 0;
2623}
2624
2625static void timehist_print_migration_event(struct perf_sched *sched,
2626 struct evsel *evsel,
2627 struct perf_sample *sample,
2628 struct machine *machine,
2629 struct thread *migrated)
2630{
2631 struct thread *thread;
2632 char tstr[64];
2633 u32 max_cpus;
2634 u32 ocpu, dcpu;
2635
2636 if (sched->summary_only)
2637 return;
2638
2639 max_cpus = sched->max_cpu.cpu + 1;
2640 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2641 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2642
2643 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2644 if (thread == NULL)
2645 return;
2646
2647 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2648 timehist_skip_sample(sched, migrated, evsel, sample)) {
2649 return;
2650 }
2651
2652 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2653 printf("%15s [%04d] ", tstr, sample->cpu);
2654
2655 if (sched->show_cpu_visual) {
2656 u32 i;
2657 char c;
2658
2659 printf(" ");
2660 for (i = 0; i < max_cpus; ++i) {
2661 c = (i == sample->cpu) ? 'm' : ' ';
2662 printf("%c", c);
2663 }
2664 printf(" ");
2665 }
2666
2667 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2668
2669 /* dt spacer */
2670 printf(" %9s %9s %9s ", "", "", "");
2671
2672 printf("migrated: %s", timehist_get_commstr(migrated));
2673 printf(" cpu %d => %d", ocpu, dcpu);
2674
2675 printf("\n");
2676}
2677
2678static int timehist_migrate_task_event(const struct perf_tool *tool,
2679 union perf_event *event __maybe_unused,
2680 struct evsel *evsel,
2681 struct perf_sample *sample,
2682 struct machine *machine)
2683{
2684 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2685 struct thread *thread;
2686 struct thread_runtime *tr = NULL;
2687 /* want pid of migrated task not pid in sample */
2688 const u32 pid = evsel__intval(evsel, sample, "pid");
2689
2690 thread = machine__findnew_thread(machine, 0, pid);
2691 if (thread == NULL)
2692 return -1;
2693
2694 tr = thread__get_runtime(thread);
2695 if (tr == NULL)
2696 return -1;
2697
2698 tr->migrations++;
2699 tr->migrated = sample->time;
2700
2701 /* show migrations if requested */
2702 if (sched->show_migrations) {
2703 timehist_print_migration_event(sched, evsel, sample,
2704 machine, thread);
2705 }
2706
2707 return 0;
2708}
2709
2710static void timehist_update_task_prio(struct evsel *evsel,
2711 struct perf_sample *sample,
2712 struct machine *machine)
2713{
2714 struct thread *thread;
2715 struct thread_runtime *tr = NULL;
2716 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2717 const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2718
2719 if (next_pid == 0)
2720 thread = get_idle_thread(sample->cpu);
2721 else
2722 thread = machine__findnew_thread(machine, -1, next_pid);
2723
2724 if (thread == NULL)
2725 return;
2726
2727 tr = thread__get_runtime(thread);
2728 if (tr == NULL)
2729 return;
2730
2731 tr->prio = next_prio;
2732}
2733
2734static int timehist_sched_change_event(const struct perf_tool *tool,
2735 union perf_event *event,
2736 struct evsel *evsel,
2737 struct perf_sample *sample,
2738 struct machine *machine)
2739{
2740 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2741 struct perf_time_interval *ptime = &sched->ptime;
2742 struct addr_location al;
2743 struct thread *thread;
2744 struct thread_runtime *tr = NULL;
2745 u64 tprev, t = sample->time;
2746 int rc = 0;
2747 const char state = evsel__taskstate(evsel, sample, "prev_state");
2748
2749 addr_location__init(&al);
2750 if (machine__resolve(machine, &al, sample) < 0) {
2751 pr_err("problem processing %d event. skipping it\n",
2752 event->header.type);
2753 rc = -1;
2754 goto out;
2755 }
2756
2757 if (sched->show_prio || sched->prio_str)
2758 timehist_update_task_prio(evsel, sample, machine);
2759
2760 thread = timehist_get_thread(sched, sample, machine, evsel);
2761 if (thread == NULL) {
2762 rc = -1;
2763 goto out;
2764 }
2765
2766 if (timehist_skip_sample(sched, thread, evsel, sample))
2767 goto out;
2768
2769 tr = thread__get_runtime(thread);
2770 if (tr == NULL) {
2771 rc = -1;
2772 goto out;
2773 }
2774
2775 tprev = evsel__get_time(evsel, sample->cpu);
2776
2777 /*
2778 * If start time given:
2779 * - sample time is under window user cares about - skip sample
2780 * - tprev is under window user cares about - reset to start of window
2781 */
2782 if (ptime->start && ptime->start > t)
2783 goto out;
2784
2785 if (tprev && ptime->start > tprev)
2786 tprev = ptime->start;
2787
2788 /*
2789 * If end time given:
2790 * - previous sched event is out of window - we are done
2791 * - sample time is beyond window user cares about - reset it
2792 * to close out stats for time window interest
2793 * - If tprev is 0, that is, sched_in event for current task is
2794 * not recorded, cannot determine whether sched_in event is
2795 * within time window interest - ignore it
2796 */
2797 if (ptime->end) {
2798 if (!tprev || tprev > ptime->end)
2799 goto out;
2800
2801 if (t > ptime->end)
2802 t = ptime->end;
2803 }
2804
2805 if (!sched->idle_hist || thread__tid(thread) == 0) {
2806 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2807 timehist_update_runtime_stats(tr, t, tprev);
2808
2809 if (sched->idle_hist) {
2810 struct idle_thread_runtime *itr = (void *)tr;
2811 struct thread_runtime *last_tr;
2812
2813 if (itr->last_thread == NULL)
2814 goto out;
2815
2816 /* add current idle time as last thread's runtime */
2817 last_tr = thread__get_runtime(itr->last_thread);
2818 if (last_tr == NULL)
2819 goto out;
2820
2821 timehist_update_runtime_stats(last_tr, t, tprev);
2822 /*
2823 * remove delta time of last thread as it's not updated
2824 * and otherwise it will show an invalid value next
2825 * time. we only care total run time and run stat.
2826 */
2827 last_tr->dt_run = 0;
2828 last_tr->dt_delay = 0;
2829 last_tr->dt_sleep = 0;
2830 last_tr->dt_iowait = 0;
2831 last_tr->dt_preempt = 0;
2832
2833 if (itr->cursor.nr)
2834 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2835
2836 itr->last_thread = NULL;
2837 }
2838
2839 if (!sched->summary_only)
2840 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2841 }
2842
2843out:
2844 if (sched->hist_time.start == 0 && t >= ptime->start)
2845 sched->hist_time.start = t;
2846 if (ptime->end == 0 || t <= ptime->end)
2847 sched->hist_time.end = t;
2848
2849 if (tr) {
2850 /* time of this sched_switch event becomes last time task seen */
2851 tr->last_time = sample->time;
2852
2853 /* last state is used to determine where to account wait time */
2854 tr->last_state = state;
2855
2856 /* sched out event for task so reset ready to run time and migrated time */
2857 if (state == 'R')
2858 tr->ready_to_run = t;
2859 else
2860 tr->ready_to_run = 0;
2861
2862 tr->migrated = 0;
2863 }
2864
2865 evsel__save_time(evsel, sample->time, sample->cpu);
2866
2867 addr_location__exit(&al);
2868 return rc;
2869}
2870
2871static int timehist_sched_switch_event(const struct perf_tool *tool,
2872 union perf_event *event,
2873 struct evsel *evsel,
2874 struct perf_sample *sample,
2875 struct machine *machine __maybe_unused)
2876{
2877 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2878}
2879
2880static int process_lost(const struct perf_tool *tool __maybe_unused,
2881 union perf_event *event,
2882 struct perf_sample *sample,
2883 struct machine *machine __maybe_unused)
2884{
2885 char tstr[64];
2886
2887 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2888 printf("%15s ", tstr);
2889 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2890
2891 return 0;
2892}
2893
2894
2895static void print_thread_runtime(struct thread *t,
2896 struct thread_runtime *r)
2897{
2898 double mean = avg_stats(&r->run_stats);
2899 float stddev;
2900
2901 printf("%*s %5d %9" PRIu64 " ",
2902 comm_width, timehist_get_commstr(t), thread__ppid(t),
2903 (u64) r->run_stats.n);
2904
2905 print_sched_time(r->total_run_time, 8);
2906 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2907 print_sched_time(r->run_stats.min, 6);
2908 printf(" ");
2909 print_sched_time((u64) mean, 6);
2910 printf(" ");
2911 print_sched_time(r->run_stats.max, 6);
2912 printf(" ");
2913 printf("%5.2f", stddev);
2914 printf(" %5" PRIu64, r->migrations);
2915 printf("\n");
2916}
2917
2918static void print_thread_waittime(struct thread *t,
2919 struct thread_runtime *r)
2920{
2921 printf("%*s %5d %9" PRIu64 " ",
2922 comm_width, timehist_get_commstr(t), thread__ppid(t),
2923 (u64) r->run_stats.n);
2924
2925 print_sched_time(r->total_run_time, 8);
2926 print_sched_time(r->total_sleep_time, 6);
2927 printf(" ");
2928 print_sched_time(r->total_iowait_time, 6);
2929 printf(" ");
2930 print_sched_time(r->total_preempt_time, 6);
2931 printf(" ");
2932 print_sched_time(r->total_delay_time, 6);
2933 printf("\n");
2934}
2935
2936struct total_run_stats {
2937 struct perf_sched *sched;
2938 u64 sched_count;
2939 u64 task_count;
2940 u64 total_run_time;
2941};
2942
2943static int show_thread_runtime(struct thread *t, void *priv)
2944{
2945 struct total_run_stats *stats = priv;
2946 struct thread_runtime *r;
2947
2948 if (thread__is_filtered(t))
2949 return 0;
2950
2951 r = thread__priv(t);
2952 if (r && r->run_stats.n) {
2953 stats->task_count++;
2954 stats->sched_count += r->run_stats.n;
2955 stats->total_run_time += r->total_run_time;
2956
2957 if (stats->sched->show_state)
2958 print_thread_waittime(t, r);
2959 else
2960 print_thread_runtime(t, r);
2961 }
2962
2963 return 0;
2964}
2965
2966static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2967{
2968 const char *sep = " <- ";
2969 struct callchain_list *chain;
2970 size_t ret = 0;
2971 char bf[1024];
2972 bool first;
2973
2974 if (node == NULL)
2975 return 0;
2976
2977 ret = callchain__fprintf_folded(fp, node->parent);
2978 first = (ret == 0);
2979
2980 list_for_each_entry(chain, &node->val, list) {
2981 if (chain->ip >= PERF_CONTEXT_MAX)
2982 continue;
2983 if (chain->ms.sym && chain->ms.sym->ignore)
2984 continue;
2985 ret += fprintf(fp, "%s%s", first ? "" : sep,
2986 callchain_list__sym_name(chain, bf, sizeof(bf),
2987 false));
2988 first = false;
2989 }
2990
2991 return ret;
2992}
2993
2994static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2995{
2996 size_t ret = 0;
2997 FILE *fp = stdout;
2998 struct callchain_node *chain;
2999 struct rb_node *rb_node = rb_first_cached(root);
3000
3001 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
3002 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
3003 graph_dotted_line);
3004
3005 while (rb_node) {
3006 chain = rb_entry(rb_node, struct callchain_node, rb_node);
3007 rb_node = rb_next(rb_node);
3008
3009 ret += fprintf(fp, " ");
3010 print_sched_time(chain->hit, 12);
3011 ret += 16; /* print_sched_time returns 2nd arg + 4 */
3012 ret += fprintf(fp, " %8d ", chain->count);
3013 ret += callchain__fprintf_folded(fp, chain);
3014 ret += fprintf(fp, "\n");
3015 }
3016
3017 return ret;
3018}
3019
3020static void timehist_print_summary(struct perf_sched *sched,
3021 struct perf_session *session)
3022{
3023 struct machine *m = &session->machines.host;
3024 struct total_run_stats totals;
3025 u64 task_count;
3026 struct thread *t;
3027 struct thread_runtime *r;
3028 int i;
3029 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3030
3031 memset(&totals, 0, sizeof(totals));
3032 totals.sched = sched;
3033
3034 if (sched->idle_hist) {
3035 printf("\nIdle-time summary\n");
3036 printf("%*s parent sched-out ", comm_width, "comm");
3037 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
3038 } else if (sched->show_state) {
3039 printf("\nWait-time summary\n");
3040 printf("%*s parent sched-in ", comm_width, "comm");
3041 printf(" run-time sleep iowait preempt delay\n");
3042 } else {
3043 printf("\nRuntime summary\n");
3044 printf("%*s parent sched-in ", comm_width, "comm");
3045 printf(" run-time min-run avg-run max-run stddev migrations\n");
3046 }
3047 printf("%*s (count) ", comm_width, "");
3048 printf(" (msec) (msec) (msec) (msec) %s\n",
3049 sched->show_state ? "(msec)" : "%");
3050 printf("%.117s\n", graph_dotted_line);
3051
3052 machine__for_each_thread(m, show_thread_runtime, &totals);
3053 task_count = totals.task_count;
3054 if (!task_count)
3055 printf("<no still running tasks>\n");
3056
3057 /* CPU idle stats not tracked when samples were skipped */
3058 if (sched->skipped_samples && !sched->idle_hist)
3059 return;
3060
3061 printf("\nIdle stats:\n");
3062 for (i = 0; i < idle_max_cpu; ++i) {
3063 if (cpu_list && !test_bit(i, cpu_bitmap))
3064 continue;
3065
3066 t = idle_threads[i];
3067 if (!t)
3068 continue;
3069
3070 r = thread__priv(t);
3071 if (r && r->run_stats.n) {
3072 totals.sched_count += r->run_stats.n;
3073 printf(" CPU %2d idle for ", i);
3074 print_sched_time(r->total_run_time, 6);
3075 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3076 } else
3077 printf(" CPU %2d idle entire time window\n", i);
3078 }
3079
3080 if (sched->idle_hist && sched->show_callchain) {
3081 callchain_param.mode = CHAIN_FOLDED;
3082 callchain_param.value = CCVAL_PERIOD;
3083
3084 callchain_register_param(&callchain_param);
3085
3086 printf("\nIdle stats by callchain:\n");
3087 for (i = 0; i < idle_max_cpu; ++i) {
3088 struct idle_thread_runtime *itr;
3089
3090 t = idle_threads[i];
3091 if (!t)
3092 continue;
3093
3094 itr = thread__priv(t);
3095 if (itr == NULL)
3096 continue;
3097
3098 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3099 0, &callchain_param);
3100
3101 printf(" CPU %2d:", i);
3102 print_sched_time(itr->tr.total_run_time, 6);
3103 printf(" msec\n");
3104 timehist_print_idlehist_callchain(&itr->sorted_root);
3105 printf("\n");
3106 }
3107 }
3108
3109 printf("\n"
3110 " Total number of unique tasks: %" PRIu64 "\n"
3111 "Total number of context switches: %" PRIu64 "\n",
3112 totals.task_count, totals.sched_count);
3113
3114 printf(" Total run time (msec): ");
3115 print_sched_time(totals.total_run_time, 2);
3116 printf("\n");
3117
3118 printf(" Total scheduling time (msec): ");
3119 print_sched_time(hist_time, 2);
3120 printf(" (x %d)\n", sched->max_cpu.cpu);
3121}
3122
3123typedef int (*sched_handler)(const struct perf_tool *tool,
3124 union perf_event *event,
3125 struct evsel *evsel,
3126 struct perf_sample *sample,
3127 struct machine *machine);
3128
3129static int perf_timehist__process_sample(const struct perf_tool *tool,
3130 union perf_event *event,
3131 struct perf_sample *sample,
3132 struct evsel *evsel,
3133 struct machine *machine)
3134{
3135 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3136 int err = 0;
3137 struct perf_cpu this_cpu = {
3138 .cpu = sample->cpu,
3139 };
3140
3141 if (this_cpu.cpu > sched->max_cpu.cpu)
3142 sched->max_cpu = this_cpu;
3143
3144 if (evsel->handler != NULL) {
3145 sched_handler f = evsel->handler;
3146
3147 err = f(tool, event, evsel, sample, machine);
3148 }
3149
3150 return err;
3151}
3152
3153static int timehist_check_attr(struct perf_sched *sched,
3154 struct evlist *evlist)
3155{
3156 struct evsel *evsel;
3157 struct evsel_runtime *er;
3158
3159 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3160 er = evsel__get_runtime(evsel);
3161 if (er == NULL) {
3162 pr_err("Failed to allocate memory for evsel runtime data\n");
3163 return -1;
3164 }
3165
3166 /* only need to save callchain related to sched_switch event */
3167 if (sched->show_callchain &&
3168 evsel__name_is(evsel, "sched:sched_switch") &&
3169 !evsel__has_callchain(evsel)) {
3170 pr_info("Samples of sched_switch event do not have callchains.\n");
3171 sched->show_callchain = 0;
3172 symbol_conf.use_callchain = 0;
3173 }
3174 }
3175
3176 return 0;
3177}
3178
3179static int timehist_parse_prio_str(struct perf_sched *sched)
3180{
3181 char *p;
3182 unsigned long start_prio, end_prio;
3183 const char *str = sched->prio_str;
3184
3185 if (!str)
3186 return 0;
3187
3188 while (isdigit(*str)) {
3189 p = NULL;
3190 start_prio = strtoul(str, &p, 0);
3191 if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3192 return -1;
3193
3194 if (*p == '-') {
3195 str = ++p;
3196 p = NULL;
3197 end_prio = strtoul(str, &p, 0);
3198
3199 if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3200 return -1;
3201
3202 if (end_prio < start_prio)
3203 return -1;
3204 } else {
3205 end_prio = start_prio;
3206 }
3207
3208 for (; start_prio <= end_prio; start_prio++)
3209 __set_bit(start_prio, sched->prio_bitmap);
3210
3211 if (*p)
3212 ++p;
3213
3214 str = p;
3215 }
3216
3217 return 0;
3218}
3219
3220static int perf_sched__timehist(struct perf_sched *sched)
3221{
3222 struct evsel_str_handler handlers[] = {
3223 { "sched:sched_switch", timehist_sched_switch_event, },
3224 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
3225 { "sched:sched_waking", timehist_sched_wakeup_event, },
3226 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3227 };
3228 const struct evsel_str_handler migrate_handlers[] = {
3229 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3230 };
3231 struct perf_data data = {
3232 .path = input_name,
3233 .mode = PERF_DATA_MODE_READ,
3234 .force = sched->force,
3235 };
3236
3237 struct perf_session *session;
3238 struct evlist *evlist;
3239 int err = -1;
3240
3241 /*
3242 * event handlers for timehist option
3243 */
3244 sched->tool.sample = perf_timehist__process_sample;
3245 sched->tool.mmap = perf_event__process_mmap;
3246 sched->tool.comm = perf_event__process_comm;
3247 sched->tool.exit = perf_event__process_exit;
3248 sched->tool.fork = perf_event__process_fork;
3249 sched->tool.lost = process_lost;
3250 sched->tool.attr = perf_event__process_attr;
3251 sched->tool.tracing_data = perf_event__process_tracing_data;
3252 sched->tool.build_id = perf_event__process_build_id;
3253
3254 sched->tool.ordering_requires_timestamps = true;
3255
3256 symbol_conf.use_callchain = sched->show_callchain;
3257
3258 session = perf_session__new(&data, &sched->tool);
3259 if (IS_ERR(session))
3260 return PTR_ERR(session);
3261
3262 if (cpu_list) {
3263 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3264 if (err < 0)
3265 goto out;
3266 }
3267
3268 evlist = session->evlist;
3269
3270 symbol__init(&session->header.env);
3271
3272 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3273 pr_err("Invalid time string\n");
3274 err = -EINVAL;
3275 goto out;
3276 }
3277
3278 if (timehist_check_attr(sched, evlist) != 0)
3279 goto out;
3280
3281 if (timehist_parse_prio_str(sched) != 0) {
3282 pr_err("Invalid prio string\n");
3283 goto out;
3284 }
3285
3286 setup_pager();
3287
3288 /* prefer sched_waking if it is captured */
3289 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3290 handlers[1].handler = timehist_sched_wakeup_ignore;
3291
3292 /* setup per-evsel handlers */
3293 if (perf_session__set_tracepoints_handlers(session, handlers))
3294 goto out;
3295
3296 /* sched_switch event at a minimum needs to exist */
3297 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3298 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3299 goto out;
3300 }
3301
3302 if ((sched->show_migrations || sched->pre_migrations) &&
3303 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3304 goto out;
3305
3306 /* pre-allocate struct for per-CPU idle stats */
3307 sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3308 if (sched->max_cpu.cpu == 0)
3309 sched->max_cpu.cpu = 4;
3310 if (init_idle_threads(sched->max_cpu.cpu))
3311 goto out;
3312
3313 /* summary_only implies summary option, but don't overwrite summary if set */
3314 if (sched->summary_only)
3315 sched->summary = sched->summary_only;
3316
3317 if (!sched->summary_only)
3318 timehist_header(sched);
3319
3320 err = perf_session__process_events(session);
3321 if (err) {
3322 pr_err("Failed to process events, error %d", err);
3323 goto out;
3324 }
3325
3326 sched->nr_events = evlist->stats.nr_events[0];
3327 sched->nr_lost_events = evlist->stats.total_lost;
3328 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3329
3330 if (sched->summary)
3331 timehist_print_summary(sched, session);
3332
3333out:
3334 free_idle_threads();
3335 perf_session__delete(session);
3336
3337 return err;
3338}
3339
3340
3341static void print_bad_events(struct perf_sched *sched)
3342{
3343 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3344 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3345 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3346 sched->nr_unordered_timestamps, sched->nr_timestamps);
3347 }
3348 if (sched->nr_lost_events && sched->nr_events) {
3349 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3350 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3351 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3352 }
3353 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3354 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3355 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3356 sched->nr_context_switch_bugs, sched->nr_timestamps);
3357 if (sched->nr_lost_events)
3358 printf(" (due to lost events?)");
3359 printf("\n");
3360 }
3361}
3362
3363static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3364{
3365 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3366 struct work_atoms *this;
3367 const char *comm = thread__comm_str(data->thread), *this_comm;
3368 bool leftmost = true;
3369
3370 while (*new) {
3371 int cmp;
3372
3373 this = container_of(*new, struct work_atoms, node);
3374 parent = *new;
3375
3376 this_comm = thread__comm_str(this->thread);
3377 cmp = strcmp(comm, this_comm);
3378 if (cmp > 0) {
3379 new = &((*new)->rb_left);
3380 } else if (cmp < 0) {
3381 new = &((*new)->rb_right);
3382 leftmost = false;
3383 } else {
3384 this->num_merged++;
3385 this->total_runtime += data->total_runtime;
3386 this->nb_atoms += data->nb_atoms;
3387 this->total_lat += data->total_lat;
3388 list_splice(&data->work_list, &this->work_list);
3389 if (this->max_lat < data->max_lat) {
3390 this->max_lat = data->max_lat;
3391 this->max_lat_start = data->max_lat_start;
3392 this->max_lat_end = data->max_lat_end;
3393 }
3394 zfree(&data);
3395 return;
3396 }
3397 }
3398
3399 data->num_merged++;
3400 rb_link_node(&data->node, parent, new);
3401 rb_insert_color_cached(&data->node, root, leftmost);
3402}
3403
3404static void perf_sched__merge_lat(struct perf_sched *sched)
3405{
3406 struct work_atoms *data;
3407 struct rb_node *node;
3408
3409 if (sched->skip_merge)
3410 return;
3411
3412 while ((node = rb_first_cached(&sched->atom_root))) {
3413 rb_erase_cached(node, &sched->atom_root);
3414 data = rb_entry(node, struct work_atoms, node);
3415 __merge_work_atoms(&sched->merged_atom_root, data);
3416 }
3417}
3418
3419static int setup_cpus_switch_event(struct perf_sched *sched)
3420{
3421 unsigned int i;
3422
3423 sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3424 if (!sched->cpu_last_switched)
3425 return -1;
3426
3427 sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3428 if (!sched->curr_pid) {
3429 zfree(&sched->cpu_last_switched);
3430 return -1;
3431 }
3432
3433 for (i = 0; i < MAX_CPUS; i++)
3434 sched->curr_pid[i] = -1;
3435
3436 return 0;
3437}
3438
3439static void free_cpus_switch_event(struct perf_sched *sched)
3440{
3441 zfree(&sched->curr_pid);
3442 zfree(&sched->cpu_last_switched);
3443}
3444
3445static int perf_sched__lat(struct perf_sched *sched)
3446{
3447 int rc = -1;
3448 struct rb_node *next;
3449
3450 setup_pager();
3451
3452 if (setup_cpus_switch_event(sched))
3453 return rc;
3454
3455 if (perf_sched__read_events(sched))
3456 goto out_free_cpus_switch_event;
3457
3458 perf_sched__merge_lat(sched);
3459 perf_sched__sort_lat(sched);
3460
3461 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3462 printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3463 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3464
3465 next = rb_first_cached(&sched->sorted_atom_root);
3466
3467 while (next) {
3468 struct work_atoms *work_list;
3469
3470 work_list = rb_entry(next, struct work_atoms, node);
3471 output_lat_thread(sched, work_list);
3472 next = rb_next(next);
3473 thread__zput(work_list->thread);
3474 }
3475
3476 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3477 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3478 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3479
3480 printf(" ---------------------------------------------------\n");
3481
3482 print_bad_events(sched);
3483 printf("\n");
3484
3485 rc = 0;
3486
3487out_free_cpus_switch_event:
3488 free_cpus_switch_event(sched);
3489 return rc;
3490}
3491
3492static int setup_map_cpus(struct perf_sched *sched)
3493{
3494 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3495
3496 if (sched->map.comp) {
3497 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3498 if (!sched->map.comp_cpus)
3499 return -1;
3500 }
3501
3502 if (sched->map.cpus_str) {
3503 sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3504 if (!sched->map.cpus) {
3505 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3506 zfree(&sched->map.comp_cpus);
3507 return -1;
3508 }
3509 }
3510
3511 return 0;
3512}
3513
3514static int setup_color_pids(struct perf_sched *sched)
3515{
3516 struct perf_thread_map *map;
3517
3518 if (!sched->map.color_pids_str)
3519 return 0;
3520
3521 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3522 if (!map) {
3523 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3524 return -1;
3525 }
3526
3527 sched->map.color_pids = map;
3528 return 0;
3529}
3530
3531static int setup_color_cpus(struct perf_sched *sched)
3532{
3533 struct perf_cpu_map *map;
3534
3535 if (!sched->map.color_cpus_str)
3536 return 0;
3537
3538 map = perf_cpu_map__new(sched->map.color_cpus_str);
3539 if (!map) {
3540 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3541 return -1;
3542 }
3543
3544 sched->map.color_cpus = map;
3545 return 0;
3546}
3547
3548static int perf_sched__map(struct perf_sched *sched)
3549{
3550 int rc = -1;
3551
3552 sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3553 if (!sched->curr_thread)
3554 return rc;
3555
3556 sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3557 if (!sched->curr_out_thread)
3558 return rc;
3559
3560 if (setup_cpus_switch_event(sched))
3561 goto out_free_curr_thread;
3562
3563 if (setup_map_cpus(sched))
3564 goto out_free_cpus_switch_event;
3565
3566 if (setup_color_pids(sched))
3567 goto out_put_map_cpus;
3568
3569 if (setup_color_cpus(sched))
3570 goto out_put_color_pids;
3571
3572 setup_pager();
3573 if (perf_sched__read_events(sched))
3574 goto out_put_color_cpus;
3575
3576 rc = 0;
3577 print_bad_events(sched);
3578
3579out_put_color_cpus:
3580 perf_cpu_map__put(sched->map.color_cpus);
3581
3582out_put_color_pids:
3583 perf_thread_map__put(sched->map.color_pids);
3584
3585out_put_map_cpus:
3586 zfree(&sched->map.comp_cpus);
3587 perf_cpu_map__put(sched->map.cpus);
3588
3589out_free_cpus_switch_event:
3590 free_cpus_switch_event(sched);
3591
3592out_free_curr_thread:
3593 zfree(&sched->curr_thread);
3594 return rc;
3595}
3596
3597static int perf_sched__replay(struct perf_sched *sched)
3598{
3599 int ret;
3600 unsigned long i;
3601
3602 mutex_init(&sched->start_work_mutex);
3603 mutex_init(&sched->work_done_wait_mutex);
3604
3605 ret = setup_cpus_switch_event(sched);
3606 if (ret)
3607 goto out_mutex_destroy;
3608
3609 calibrate_run_measurement_overhead(sched);
3610 calibrate_sleep_measurement_overhead(sched);
3611
3612 test_calibrations(sched);
3613
3614 ret = perf_sched__read_events(sched);
3615 if (ret)
3616 goto out_free_cpus_switch_event;
3617
3618 printf("nr_run_events: %ld\n", sched->nr_run_events);
3619 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3620 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3621
3622 if (sched->targetless_wakeups)
3623 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3624 if (sched->multitarget_wakeups)
3625 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3626 if (sched->nr_run_events_optimized)
3627 printf("run atoms optimized: %ld\n",
3628 sched->nr_run_events_optimized);
3629
3630 print_task_traces(sched);
3631 add_cross_task_wakeups(sched);
3632
3633 sched->thread_funcs_exit = false;
3634 create_tasks(sched);
3635 printf("------------------------------------------------------------\n");
3636 if (sched->replay_repeat == 0)
3637 sched->replay_repeat = UINT_MAX;
3638
3639 for (i = 0; i < sched->replay_repeat; i++)
3640 run_one_test(sched);
3641
3642 sched->thread_funcs_exit = true;
3643 destroy_tasks(sched);
3644
3645out_free_cpus_switch_event:
3646 free_cpus_switch_event(sched);
3647
3648out_mutex_destroy:
3649 mutex_destroy(&sched->start_work_mutex);
3650 mutex_destroy(&sched->work_done_wait_mutex);
3651 return ret;
3652}
3653
3654static void setup_sorting(struct perf_sched *sched, const struct option *options,
3655 const char * const usage_msg[])
3656{
3657 char *tmp, *tok, *str = strdup(sched->sort_order);
3658
3659 for (tok = strtok_r(str, ", ", &tmp);
3660 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3661 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3662 usage_with_options_msg(usage_msg, options,
3663 "Unknown --sort key: `%s'", tok);
3664 }
3665 }
3666
3667 free(str);
3668
3669 sort_dimension__add("pid", &sched->cmp_pid);
3670}
3671
3672static bool schedstat_events_exposed(void)
3673{
3674 /*
3675 * Select "sched:sched_stat_wait" event to check
3676 * whether schedstat tracepoints are exposed.
3677 */
3678 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3679 false : true;
3680}
3681
3682static int __cmd_record(int argc, const char **argv)
3683{
3684 unsigned int rec_argc, i, j;
3685 char **rec_argv;
3686 const char **rec_argv_copy;
3687 const char * const record_args[] = {
3688 "record",
3689 "-a",
3690 "-R",
3691 "-m", "1024",
3692 "-c", "1",
3693 "-e", "sched:sched_switch",
3694 "-e", "sched:sched_stat_runtime",
3695 "-e", "sched:sched_process_fork",
3696 "-e", "sched:sched_wakeup_new",
3697 "-e", "sched:sched_migrate_task",
3698 };
3699
3700 /*
3701 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3702 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3703 * to prevent "perf sched record" execution failure, determine
3704 * whether to record schedstat events according to actual situation.
3705 */
3706 const char * const schedstat_args[] = {
3707 "-e", "sched:sched_stat_wait",
3708 "-e", "sched:sched_stat_sleep",
3709 "-e", "sched:sched_stat_iowait",
3710 };
3711 unsigned int schedstat_argc = schedstat_events_exposed() ?
3712 ARRAY_SIZE(schedstat_args) : 0;
3713
3714 struct tep_event *waking_event;
3715 int ret;
3716
3717 /*
3718 * +2 for either "-e", "sched:sched_wakeup" or
3719 * "-e", "sched:sched_waking"
3720 */
3721 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3722 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3723 if (rec_argv == NULL)
3724 return -ENOMEM;
3725 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3726 if (rec_argv_copy == NULL) {
3727 free(rec_argv);
3728 return -ENOMEM;
3729 }
3730
3731 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3732 rec_argv[i] = strdup(record_args[i]);
3733
3734 rec_argv[i++] = strdup("-e");
3735 waking_event = trace_event__tp_format("sched", "sched_waking");
3736 if (!IS_ERR(waking_event))
3737 rec_argv[i++] = strdup("sched:sched_waking");
3738 else
3739 rec_argv[i++] = strdup("sched:sched_wakeup");
3740
3741 for (j = 0; j < schedstat_argc; j++)
3742 rec_argv[i++] = strdup(schedstat_args[j]);
3743
3744 for (j = 1; j < (unsigned int)argc; j++, i++)
3745 rec_argv[i] = strdup(argv[j]);
3746
3747 BUG_ON(i != rec_argc);
3748
3749 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3750 ret = cmd_record(rec_argc, rec_argv_copy);
3751
3752 for (i = 0; i < rec_argc; i++)
3753 free(rec_argv[i]);
3754 free(rec_argv);
3755 free(rec_argv_copy);
3756
3757 return ret;
3758}
3759
3760int cmd_sched(int argc, const char **argv)
3761{
3762 static const char default_sort_order[] = "avg, max, switch, runtime";
3763 struct perf_sched sched = {
3764 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3765 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3766 .sort_order = default_sort_order,
3767 .replay_repeat = 10,
3768 .profile_cpu = -1,
3769 .next_shortname1 = 'A',
3770 .next_shortname2 = '0',
3771 .skip_merge = 0,
3772 .show_callchain = 1,
3773 .max_stack = 5,
3774 };
3775 const struct option sched_options[] = {
3776 OPT_STRING('i', "input", &input_name, "file",
3777 "input file name"),
3778 OPT_INCR('v', "verbose", &verbose,
3779 "be more verbose (show symbol address, etc)"),
3780 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3781 "dump raw trace in ASCII"),
3782 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3783 OPT_END()
3784 };
3785 const struct option latency_options[] = {
3786 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3787 "sort by key(s): runtime, switch, avg, max"),
3788 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3789 "CPU to profile on"),
3790 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3791 "latency stats per pid instead of per comm"),
3792 OPT_PARENT(sched_options)
3793 };
3794 const struct option replay_options[] = {
3795 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3796 "repeat the workload replay N times (0: infinite)"),
3797 OPT_PARENT(sched_options)
3798 };
3799 const struct option map_options[] = {
3800 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3801 "map output in compact mode"),
3802 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3803 "highlight given pids in map"),
3804 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3805 "highlight given CPUs in map"),
3806 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3807 "display given CPUs in map"),
3808 OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3809 "map output only for the given task name(s)."),
3810 OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3811 "given command name can be partially matched (fuzzy matching)"),
3812 OPT_PARENT(sched_options)
3813 };
3814 const struct option timehist_options[] = {
3815 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3816 "file", "vmlinux pathname"),
3817 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3818 "file", "kallsyms pathname"),
3819 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3820 "Display call chains if present (default on)"),
3821 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3822 "Maximum number of functions to display backtrace."),
3823 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3824 "Look for files with symbols relative to this directory"),
3825 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3826 "Show only syscall summary with statistics"),
3827 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3828 "Show all syscalls and summary with statistics"),
3829 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3830 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3831 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3832 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3833 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3834 OPT_STRING(0, "time", &sched.time_str, "str",
3835 "Time span for analysis (start,stop)"),
3836 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3837 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3838 "analyze events only for given process id(s)"),
3839 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3840 "analyze events only for given thread id(s)"),
3841 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3842 OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3843 OPT_STRING(0, "prio", &sched.prio_str, "prio",
3844 "analyze events only for given task priority(ies)"),
3845 OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3846 OPT_PARENT(sched_options)
3847 };
3848
3849 const char * const latency_usage[] = {
3850 "perf sched latency [<options>]",
3851 NULL
3852 };
3853 const char * const replay_usage[] = {
3854 "perf sched replay [<options>]",
3855 NULL
3856 };
3857 const char * const map_usage[] = {
3858 "perf sched map [<options>]",
3859 NULL
3860 };
3861 const char * const timehist_usage[] = {
3862 "perf sched timehist [<options>]",
3863 NULL
3864 };
3865 const char *const sched_subcommands[] = { "record", "latency", "map",
3866 "replay", "script",
3867 "timehist", NULL };
3868 const char *sched_usage[] = {
3869 NULL,
3870 NULL
3871 };
3872 struct trace_sched_handler lat_ops = {
3873 .wakeup_event = latency_wakeup_event,
3874 .switch_event = latency_switch_event,
3875 .runtime_event = latency_runtime_event,
3876 .migrate_task_event = latency_migrate_task_event,
3877 };
3878 struct trace_sched_handler map_ops = {
3879 .switch_event = map_switch_event,
3880 };
3881 struct trace_sched_handler replay_ops = {
3882 .wakeup_event = replay_wakeup_event,
3883 .switch_event = replay_switch_event,
3884 .fork_event = replay_fork_event,
3885 };
3886 int ret;
3887
3888 perf_tool__init(&sched.tool, /*ordered_events=*/true);
3889 sched.tool.sample = perf_sched__process_tracepoint_sample;
3890 sched.tool.comm = perf_sched__process_comm;
3891 sched.tool.namespaces = perf_event__process_namespaces;
3892 sched.tool.lost = perf_event__process_lost;
3893 sched.tool.fork = perf_sched__process_fork_event;
3894
3895 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3896 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3897 if (!argc)
3898 usage_with_options(sched_usage, sched_options);
3899
3900 /*
3901 * Aliased to 'perf script' for now:
3902 */
3903 if (!strcmp(argv[0], "script")) {
3904 return cmd_script(argc, argv);
3905 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3906 return __cmd_record(argc, argv);
3907 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3908 sched.tp_handler = &lat_ops;
3909 if (argc > 1) {
3910 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3911 if (argc)
3912 usage_with_options(latency_usage, latency_options);
3913 }
3914 setup_sorting(&sched, latency_options, latency_usage);
3915 return perf_sched__lat(&sched);
3916 } else if (!strcmp(argv[0], "map")) {
3917 if (argc) {
3918 argc = parse_options(argc, argv, map_options, map_usage, 0);
3919 if (argc)
3920 usage_with_options(map_usage, map_options);
3921
3922 if (sched.map.task_name) {
3923 sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3924 if (sched.map.task_names == NULL) {
3925 fprintf(stderr, "Failed to parse task names\n");
3926 return -1;
3927 }
3928 }
3929 }
3930 sched.tp_handler = &map_ops;
3931 setup_sorting(&sched, latency_options, latency_usage);
3932 return perf_sched__map(&sched);
3933 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3934 sched.tp_handler = &replay_ops;
3935 if (argc) {
3936 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3937 if (argc)
3938 usage_with_options(replay_usage, replay_options);
3939 }
3940 return perf_sched__replay(&sched);
3941 } else if (!strcmp(argv[0], "timehist")) {
3942 if (argc) {
3943 argc = parse_options(argc, argv, timehist_options,
3944 timehist_usage, 0);
3945 if (argc)
3946 usage_with_options(timehist_usage, timehist_options);
3947 }
3948 if ((sched.show_wakeups || sched.show_next) &&
3949 sched.summary_only) {
3950 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3951 parse_options_usage(timehist_usage, timehist_options, "s", true);
3952 if (sched.show_wakeups)
3953 parse_options_usage(NULL, timehist_options, "w", true);
3954 if (sched.show_next)
3955 parse_options_usage(NULL, timehist_options, "n", true);
3956 return -EINVAL;
3957 }
3958 ret = symbol__validate_sym_arguments();
3959 if (ret)
3960 return ret;
3961
3962 return perf_sched__timehist(&sched);
3963 } else {
3964 usage_with_options(sched_usage, sched_options);
3965 }
3966
3967 /* free usage string allocated by parse_options_subcommand */
3968 free((void *)sched_usage[0]);
3969
3970 return 0;
3971}