Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29
  30#include <linux/kernel.h>
  31#include <linux/log2.h>
  32#include <linux/zalloc.h>
  33#include <sys/prctl.h>
  34#include <sys/resource.h>
  35#include <inttypes.h>
  36
  37#include <errno.h>
  38#include <semaphore.h>
  39#include <pthread.h>
  40#include <math.h>
  41#include <api/fs/fs.h>
  42#include <perf/cpumap.h>
  43#include <linux/time64.h>
  44#include <linux/err.h>
  45
  46#include <linux/ctype.h>
  47
  48#define PR_SET_NAME		15               /* Set process name */
  49#define MAX_CPUS		4096
  50#define COMM_LEN		20
  51#define SYM_LEN			129
  52#define MAX_PID			1024000
  53
 
 
 
  54struct sched_atom;
  55
  56struct task_desc {
  57	unsigned long		nr;
  58	unsigned long		pid;
  59	char			comm[COMM_LEN];
  60
  61	unsigned long		nr_events;
  62	unsigned long		curr_event;
  63	struct sched_atom	**atoms;
  64
  65	pthread_t		thread;
  66	sem_t			sleep_sem;
  67
  68	sem_t			ready_for_work;
  69	sem_t			work_done_sem;
  70
  71	u64			cpu_usage;
  72};
  73
  74enum sched_event_type {
  75	SCHED_EVENT_RUN,
  76	SCHED_EVENT_SLEEP,
  77	SCHED_EVENT_WAKEUP,
  78	SCHED_EVENT_MIGRATION,
  79};
  80
  81struct sched_atom {
  82	enum sched_event_type	type;
  83	int			specific_wait;
  84	u64			timestamp;
  85	u64			duration;
  86	unsigned long		nr;
  87	sem_t			*wait_sem;
  88	struct task_desc	*wakee;
  89};
  90
  91#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  92
  93/* task state bitmask, copied from include/linux/sched.h */
  94#define TASK_RUNNING		0
  95#define TASK_INTERRUPTIBLE	1
  96#define TASK_UNINTERRUPTIBLE	2
  97#define __TASK_STOPPED		4
  98#define __TASK_TRACED		8
  99/* in tsk->exit_state */
 100#define EXIT_DEAD		16
 101#define EXIT_ZOMBIE		32
 102#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 103/* in tsk->state again */
 104#define TASK_DEAD		64
 105#define TASK_WAKEKILL		128
 106#define TASK_WAKING		256
 107#define TASK_PARKED		512
 108
 109enum thread_state {
 110	THREAD_SLEEPING = 0,
 111	THREAD_WAIT_CPU,
 112	THREAD_SCHED_IN,
 113	THREAD_IGNORE
 114};
 115
 116struct work_atom {
 117	struct list_head	list;
 118	enum thread_state	state;
 119	u64			sched_out_time;
 120	u64			wake_up_time;
 121	u64			sched_in_time;
 122	u64			runtime;
 123};
 124
 125struct work_atoms {
 126	struct list_head	work_list;
 127	struct thread		*thread;
 128	struct rb_node		node;
 129	u64			max_lat;
 130	u64			max_lat_at;
 
 131	u64			total_lat;
 132	u64			nb_atoms;
 133	u64			total_runtime;
 134	int			num_merged;
 135};
 136
 137typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 138
 139struct perf_sched;
 140
 141struct trace_sched_handler {
 142	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 143			    struct perf_sample *sample, struct machine *machine);
 144
 145	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 146			     struct perf_sample *sample, struct machine *machine);
 147
 148	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 149			    struct perf_sample *sample, struct machine *machine);
 150
 151	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 152	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 153			  struct machine *machine);
 154
 155	int (*migrate_task_event)(struct perf_sched *sched,
 156				  struct evsel *evsel,
 157				  struct perf_sample *sample,
 158				  struct machine *machine);
 159};
 160
 161#define COLOR_PIDS PERF_COLOR_BLUE
 162#define COLOR_CPUS PERF_COLOR_BG_RED
 163
 164struct perf_sched_map {
 165	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 166	int			*comp_cpus;
 167	bool			 comp;
 168	struct perf_thread_map *color_pids;
 169	const char		*color_pids_str;
 170	struct perf_cpu_map	*color_cpus;
 171	const char		*color_cpus_str;
 172	struct perf_cpu_map	*cpus;
 173	const char		*cpus_str;
 174};
 175
 176struct perf_sched {
 177	struct perf_tool tool;
 178	const char	 *sort_order;
 179	unsigned long	 nr_tasks;
 180	struct task_desc **pid_to_task;
 181	struct task_desc **tasks;
 182	const struct trace_sched_handler *tp_handler;
 183	pthread_mutex_t	 start_work_mutex;
 184	pthread_mutex_t	 work_done_wait_mutex;
 185	int		 profile_cpu;
 186/*
 187 * Track the current task - that way we can know whether there's any
 188 * weird events, such as a task being switched away that is not current.
 189 */
 190	int		 max_cpu;
 191	u32		 curr_pid[MAX_CPUS];
 192	struct thread	 *curr_thread[MAX_CPUS];
 193	char		 next_shortname1;
 194	char		 next_shortname2;
 195	unsigned int	 replay_repeat;
 196	unsigned long	 nr_run_events;
 197	unsigned long	 nr_sleep_events;
 198	unsigned long	 nr_wakeup_events;
 199	unsigned long	 nr_sleep_corrections;
 200	unsigned long	 nr_run_events_optimized;
 201	unsigned long	 targetless_wakeups;
 202	unsigned long	 multitarget_wakeups;
 203	unsigned long	 nr_runs;
 204	unsigned long	 nr_timestamps;
 205	unsigned long	 nr_unordered_timestamps;
 206	unsigned long	 nr_context_switch_bugs;
 207	unsigned long	 nr_events;
 208	unsigned long	 nr_lost_chunks;
 209	unsigned long	 nr_lost_events;
 210	u64		 run_measurement_overhead;
 211	u64		 sleep_measurement_overhead;
 212	u64		 start_time;
 213	u64		 cpu_usage;
 214	u64		 runavg_cpu_usage;
 215	u64		 parent_cpu_usage;
 216	u64		 runavg_parent_cpu_usage;
 217	u64		 sum_runtime;
 218	u64		 sum_fluct;
 219	u64		 run_avg;
 220	u64		 all_runtime;
 221	u64		 all_count;
 222	u64		 cpu_last_switched[MAX_CPUS];
 223	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 224	struct list_head sort_list, cmp_pid;
 225	bool force;
 226	bool skip_merge;
 227	struct perf_sched_map map;
 228
 229	/* options for timehist command */
 230	bool		summary;
 231	bool		summary_only;
 232	bool		idle_hist;
 233	bool		show_callchain;
 234	unsigned int	max_stack;
 235	bool		show_cpu_visual;
 236	bool		show_wakeups;
 237	bool		show_next;
 238	bool		show_migrations;
 239	bool		show_state;
 240	u64		skipped_samples;
 241	const char	*time_str;
 242	struct perf_time_interval ptime;
 243	struct perf_time_interval hist_time;
 244};
 245
 246/* per thread run time data */
 247struct thread_runtime {
 248	u64 last_time;      /* time of previous sched in/out event */
 249	u64 dt_run;         /* run time */
 250	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 251	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 252	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 253	u64 dt_delay;       /* time between wakeup and sched-in */
 254	u64 ready_to_run;   /* time of wakeup */
 255
 256	struct stats run_stats;
 257	u64 total_run_time;
 258	u64 total_sleep_time;
 259	u64 total_iowait_time;
 260	u64 total_preempt_time;
 261	u64 total_delay_time;
 262
 263	int last_state;
 264
 265	char shortname[3];
 266	bool comm_changed;
 267
 268	u64 migrations;
 269};
 270
 271/* per event run time data */
 272struct evsel_runtime {
 273	u64 *last_time; /* time this event was last seen per cpu */
 274	u32 ncpu;       /* highest cpu slot allocated */
 275};
 276
 277/* per cpu idle time data */
 278struct idle_thread_runtime {
 279	struct thread_runtime	tr;
 280	struct thread		*last_thread;
 281	struct rb_root_cached	sorted_root;
 282	struct callchain_root	callchain;
 283	struct callchain_cursor	cursor;
 284};
 285
 286/* track idle times per cpu */
 287static struct thread **idle_threads;
 288static int idle_max_cpu;
 289static char idle_comm[] = "<idle>";
 290
 291static u64 get_nsecs(void)
 292{
 293	struct timespec ts;
 294
 295	clock_gettime(CLOCK_MONOTONIC, &ts);
 296
 297	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 298}
 299
 300static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 301{
 302	u64 T0 = get_nsecs(), T1;
 303
 304	do {
 305		T1 = get_nsecs();
 306	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 307}
 308
 309static void sleep_nsecs(u64 nsecs)
 310{
 311	struct timespec ts;
 312
 313	ts.tv_nsec = nsecs % 999999999;
 314	ts.tv_sec = nsecs / 999999999;
 315
 316	nanosleep(&ts, NULL);
 317}
 318
 319static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 320{
 321	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 322	int i;
 323
 324	for (i = 0; i < 10; i++) {
 325		T0 = get_nsecs();
 326		burn_nsecs(sched, 0);
 327		T1 = get_nsecs();
 328		delta = T1-T0;
 329		min_delta = min(min_delta, delta);
 330	}
 331	sched->run_measurement_overhead = min_delta;
 332
 333	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 334}
 335
 336static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 337{
 338	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 339	int i;
 340
 341	for (i = 0; i < 10; i++) {
 342		T0 = get_nsecs();
 343		sleep_nsecs(10000);
 344		T1 = get_nsecs();
 345		delta = T1-T0;
 346		min_delta = min(min_delta, delta);
 347	}
 348	min_delta -= 10000;
 349	sched->sleep_measurement_overhead = min_delta;
 350
 351	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 352}
 353
 354static struct sched_atom *
 355get_new_event(struct task_desc *task, u64 timestamp)
 356{
 357	struct sched_atom *event = zalloc(sizeof(*event));
 358	unsigned long idx = task->nr_events;
 359	size_t size;
 360
 361	event->timestamp = timestamp;
 362	event->nr = idx;
 363
 364	task->nr_events++;
 365	size = sizeof(struct sched_atom *) * task->nr_events;
 366	task->atoms = realloc(task->atoms, size);
 367	BUG_ON(!task->atoms);
 368
 369	task->atoms[idx] = event;
 370
 371	return event;
 372}
 373
 374static struct sched_atom *last_event(struct task_desc *task)
 375{
 376	if (!task->nr_events)
 377		return NULL;
 378
 379	return task->atoms[task->nr_events - 1];
 380}
 381
 382static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 383				u64 timestamp, u64 duration)
 384{
 385	struct sched_atom *event, *curr_event = last_event(task);
 386
 387	/*
 388	 * optimize an existing RUN event by merging this one
 389	 * to it:
 390	 */
 391	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 392		sched->nr_run_events_optimized++;
 393		curr_event->duration += duration;
 394		return;
 395	}
 396
 397	event = get_new_event(task, timestamp);
 398
 399	event->type = SCHED_EVENT_RUN;
 400	event->duration = duration;
 401
 402	sched->nr_run_events++;
 403}
 404
 405static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 406				   u64 timestamp, struct task_desc *wakee)
 407{
 408	struct sched_atom *event, *wakee_event;
 409
 410	event = get_new_event(task, timestamp);
 411	event->type = SCHED_EVENT_WAKEUP;
 412	event->wakee = wakee;
 413
 414	wakee_event = last_event(wakee);
 415	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 416		sched->targetless_wakeups++;
 417		return;
 418	}
 419	if (wakee_event->wait_sem) {
 420		sched->multitarget_wakeups++;
 421		return;
 422	}
 423
 424	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 425	sem_init(wakee_event->wait_sem, 0, 0);
 426	wakee_event->specific_wait = 1;
 427	event->wait_sem = wakee_event->wait_sem;
 428
 429	sched->nr_wakeup_events++;
 430}
 431
 432static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 433				  u64 timestamp, u64 task_state __maybe_unused)
 434{
 435	struct sched_atom *event = get_new_event(task, timestamp);
 436
 437	event->type = SCHED_EVENT_SLEEP;
 438
 439	sched->nr_sleep_events++;
 440}
 441
 442static struct task_desc *register_pid(struct perf_sched *sched,
 443				      unsigned long pid, const char *comm)
 444{
 445	struct task_desc *task;
 446	static int pid_max;
 447
 448	if (sched->pid_to_task == NULL) {
 449		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 450			pid_max = MAX_PID;
 451		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 452	}
 453	if (pid >= (unsigned long)pid_max) {
 454		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 455			sizeof(struct task_desc *))) == NULL);
 456		while (pid >= (unsigned long)pid_max)
 457			sched->pid_to_task[pid_max++] = NULL;
 458	}
 459
 460	task = sched->pid_to_task[pid];
 461
 462	if (task)
 463		return task;
 464
 465	task = zalloc(sizeof(*task));
 466	task->pid = pid;
 467	task->nr = sched->nr_tasks;
 468	strcpy(task->comm, comm);
 469	/*
 470	 * every task starts in sleeping state - this gets ignored
 471	 * if there's no wakeup pointing to this sleep state:
 472	 */
 473	add_sched_event_sleep(sched, task, 0, 0);
 474
 475	sched->pid_to_task[pid] = task;
 476	sched->nr_tasks++;
 477	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 478	BUG_ON(!sched->tasks);
 479	sched->tasks[task->nr] = task;
 480
 481	if (verbose > 0)
 482		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 483
 484	return task;
 485}
 486
 487
 488static void print_task_traces(struct perf_sched *sched)
 489{
 490	struct task_desc *task;
 491	unsigned long i;
 492
 493	for (i = 0; i < sched->nr_tasks; i++) {
 494		task = sched->tasks[i];
 495		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 496			task->nr, task->comm, task->pid, task->nr_events);
 497	}
 498}
 499
 500static void add_cross_task_wakeups(struct perf_sched *sched)
 501{
 502	struct task_desc *task1, *task2;
 503	unsigned long i, j;
 504
 505	for (i = 0; i < sched->nr_tasks; i++) {
 506		task1 = sched->tasks[i];
 507		j = i + 1;
 508		if (j == sched->nr_tasks)
 509			j = 0;
 510		task2 = sched->tasks[j];
 511		add_sched_event_wakeup(sched, task1, 0, task2);
 512	}
 513}
 514
 515static void perf_sched__process_event(struct perf_sched *sched,
 516				      struct sched_atom *atom)
 517{
 518	int ret = 0;
 519
 520	switch (atom->type) {
 521		case SCHED_EVENT_RUN:
 522			burn_nsecs(sched, atom->duration);
 523			break;
 524		case SCHED_EVENT_SLEEP:
 525			if (atom->wait_sem)
 526				ret = sem_wait(atom->wait_sem);
 527			BUG_ON(ret);
 528			break;
 529		case SCHED_EVENT_WAKEUP:
 530			if (atom->wait_sem)
 531				ret = sem_post(atom->wait_sem);
 532			BUG_ON(ret);
 533			break;
 534		case SCHED_EVENT_MIGRATION:
 535			break;
 536		default:
 537			BUG_ON(1);
 538	}
 539}
 540
 541static u64 get_cpu_usage_nsec_parent(void)
 542{
 543	struct rusage ru;
 544	u64 sum;
 545	int err;
 546
 547	err = getrusage(RUSAGE_SELF, &ru);
 548	BUG_ON(err);
 549
 550	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 551	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 552
 553	return sum;
 554}
 555
 556static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 557{
 558	struct perf_event_attr attr;
 559	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 560	int fd;
 561	struct rlimit limit;
 562	bool need_privilege = false;
 563
 564	memset(&attr, 0, sizeof(attr));
 565
 566	attr.type = PERF_TYPE_SOFTWARE;
 567	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 568
 569force_again:
 570	fd = sys_perf_event_open(&attr, 0, -1, -1,
 571				 perf_event_open_cloexec_flag());
 572
 573	if (fd < 0) {
 574		if (errno == EMFILE) {
 575			if (sched->force) {
 576				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 577				limit.rlim_cur += sched->nr_tasks - cur_task;
 578				if (limit.rlim_cur > limit.rlim_max) {
 579					limit.rlim_max = limit.rlim_cur;
 580					need_privilege = true;
 581				}
 582				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 583					if (need_privilege && errno == EPERM)
 584						strcpy(info, "Need privilege\n");
 585				} else
 586					goto force_again;
 587			} else
 588				strcpy(info, "Have a try with -f option\n");
 589		}
 590		pr_err("Error: sys_perf_event_open() syscall returned "
 591		       "with %d (%s)\n%s", fd,
 592		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 593		exit(EXIT_FAILURE);
 594	}
 595	return fd;
 596}
 597
 598static u64 get_cpu_usage_nsec_self(int fd)
 599{
 600	u64 runtime;
 601	int ret;
 602
 603	ret = read(fd, &runtime, sizeof(runtime));
 604	BUG_ON(ret != sizeof(runtime));
 605
 606	return runtime;
 607}
 608
 609struct sched_thread_parms {
 610	struct task_desc  *task;
 611	struct perf_sched *sched;
 612	int fd;
 613};
 614
 615static void *thread_func(void *ctx)
 616{
 617	struct sched_thread_parms *parms = ctx;
 618	struct task_desc *this_task = parms->task;
 619	struct perf_sched *sched = parms->sched;
 620	u64 cpu_usage_0, cpu_usage_1;
 621	unsigned long i, ret;
 622	char comm2[22];
 623	int fd = parms->fd;
 624
 625	zfree(&parms);
 626
 627	sprintf(comm2, ":%s", this_task->comm);
 628	prctl(PR_SET_NAME, comm2);
 629	if (fd < 0)
 630		return NULL;
 631again:
 632	ret = sem_post(&this_task->ready_for_work);
 633	BUG_ON(ret);
 634	ret = pthread_mutex_lock(&sched->start_work_mutex);
 635	BUG_ON(ret);
 636	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 637	BUG_ON(ret);
 638
 639	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 640
 641	for (i = 0; i < this_task->nr_events; i++) {
 642		this_task->curr_event = i;
 643		perf_sched__process_event(sched, this_task->atoms[i]);
 644	}
 645
 646	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 647	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 648	ret = sem_post(&this_task->work_done_sem);
 649	BUG_ON(ret);
 650
 651	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 652	BUG_ON(ret);
 653	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 654	BUG_ON(ret);
 655
 656	goto again;
 657}
 658
 659static void create_tasks(struct perf_sched *sched)
 660{
 661	struct task_desc *task;
 662	pthread_attr_t attr;
 663	unsigned long i;
 664	int err;
 665
 666	err = pthread_attr_init(&attr);
 667	BUG_ON(err);
 668	err = pthread_attr_setstacksize(&attr,
 669			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 670	BUG_ON(err);
 671	err = pthread_mutex_lock(&sched->start_work_mutex);
 672	BUG_ON(err);
 673	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 674	BUG_ON(err);
 675	for (i = 0; i < sched->nr_tasks; i++) {
 676		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 677		BUG_ON(parms == NULL);
 678		parms->task = task = sched->tasks[i];
 679		parms->sched = sched;
 680		parms->fd = self_open_counters(sched, i);
 681		sem_init(&task->sleep_sem, 0, 0);
 682		sem_init(&task->ready_for_work, 0, 0);
 683		sem_init(&task->work_done_sem, 0, 0);
 684		task->curr_event = 0;
 685		err = pthread_create(&task->thread, &attr, thread_func, parms);
 686		BUG_ON(err);
 687	}
 688}
 689
 690static void wait_for_tasks(struct perf_sched *sched)
 691{
 692	u64 cpu_usage_0, cpu_usage_1;
 693	struct task_desc *task;
 694	unsigned long i, ret;
 695
 696	sched->start_time = get_nsecs();
 697	sched->cpu_usage = 0;
 698	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 699
 700	for (i = 0; i < sched->nr_tasks; i++) {
 701		task = sched->tasks[i];
 702		ret = sem_wait(&task->ready_for_work);
 703		BUG_ON(ret);
 704		sem_init(&task->ready_for_work, 0, 0);
 705	}
 706	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 707	BUG_ON(ret);
 708
 709	cpu_usage_0 = get_cpu_usage_nsec_parent();
 710
 711	pthread_mutex_unlock(&sched->start_work_mutex);
 712
 713	for (i = 0; i < sched->nr_tasks; i++) {
 714		task = sched->tasks[i];
 715		ret = sem_wait(&task->work_done_sem);
 716		BUG_ON(ret);
 717		sem_init(&task->work_done_sem, 0, 0);
 718		sched->cpu_usage += task->cpu_usage;
 719		task->cpu_usage = 0;
 720	}
 721
 722	cpu_usage_1 = get_cpu_usage_nsec_parent();
 723	if (!sched->runavg_cpu_usage)
 724		sched->runavg_cpu_usage = sched->cpu_usage;
 725	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 726
 727	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 728	if (!sched->runavg_parent_cpu_usage)
 729		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 730	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 731					 sched->parent_cpu_usage)/sched->replay_repeat;
 732
 733	ret = pthread_mutex_lock(&sched->start_work_mutex);
 734	BUG_ON(ret);
 735
 736	for (i = 0; i < sched->nr_tasks; i++) {
 737		task = sched->tasks[i];
 738		sem_init(&task->sleep_sem, 0, 0);
 739		task->curr_event = 0;
 740	}
 741}
 742
 743static void run_one_test(struct perf_sched *sched)
 744{
 745	u64 T0, T1, delta, avg_delta, fluct;
 746
 747	T0 = get_nsecs();
 748	wait_for_tasks(sched);
 749	T1 = get_nsecs();
 750
 751	delta = T1 - T0;
 752	sched->sum_runtime += delta;
 753	sched->nr_runs++;
 754
 755	avg_delta = sched->sum_runtime / sched->nr_runs;
 756	if (delta < avg_delta)
 757		fluct = avg_delta - delta;
 758	else
 759		fluct = delta - avg_delta;
 760	sched->sum_fluct += fluct;
 761	if (!sched->run_avg)
 762		sched->run_avg = delta;
 763	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 764
 765	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 766
 767	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 768
 769	printf("cpu: %0.2f / %0.2f",
 770		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 771
 772#if 0
 773	/*
 774	 * rusage statistics done by the parent, these are less
 775	 * accurate than the sched->sum_exec_runtime based statistics:
 776	 */
 777	printf(" [%0.2f / %0.2f]",
 778		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 779		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 780#endif
 781
 782	printf("\n");
 783
 784	if (sched->nr_sleep_corrections)
 785		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 786	sched->nr_sleep_corrections = 0;
 787}
 788
 789static void test_calibrations(struct perf_sched *sched)
 790{
 791	u64 T0, T1;
 792
 793	T0 = get_nsecs();
 794	burn_nsecs(sched, NSEC_PER_MSEC);
 795	T1 = get_nsecs();
 796
 797	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 798
 799	T0 = get_nsecs();
 800	sleep_nsecs(NSEC_PER_MSEC);
 801	T1 = get_nsecs();
 802
 803	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 804}
 805
 806static int
 807replay_wakeup_event(struct perf_sched *sched,
 808		    struct evsel *evsel, struct perf_sample *sample,
 809		    struct machine *machine __maybe_unused)
 810{
 811	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 812	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 813	struct task_desc *waker, *wakee;
 814
 815	if (verbose > 0) {
 816		printf("sched_wakeup event %p\n", evsel);
 817
 818		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 819	}
 820
 821	waker = register_pid(sched, sample->tid, "<unknown>");
 822	wakee = register_pid(sched, pid, comm);
 823
 824	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 825	return 0;
 826}
 827
 828static int replay_switch_event(struct perf_sched *sched,
 829			       struct evsel *evsel,
 830			       struct perf_sample *sample,
 831			       struct machine *machine __maybe_unused)
 832{
 833	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 834		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 835	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 836		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 837	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 838	struct task_desc *prev, __maybe_unused *next;
 839	u64 timestamp0, timestamp = sample->time;
 840	int cpu = sample->cpu;
 841	s64 delta;
 842
 843	if (verbose > 0)
 844		printf("sched_switch event %p\n", evsel);
 845
 846	if (cpu >= MAX_CPUS || cpu < 0)
 847		return 0;
 848
 849	timestamp0 = sched->cpu_last_switched[cpu];
 850	if (timestamp0)
 851		delta = timestamp - timestamp0;
 852	else
 853		delta = 0;
 854
 855	if (delta < 0) {
 856		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 857		return -1;
 858	}
 859
 860	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 861		 prev_comm, prev_pid, next_comm, next_pid, delta);
 862
 863	prev = register_pid(sched, prev_pid, prev_comm);
 864	next = register_pid(sched, next_pid, next_comm);
 865
 866	sched->cpu_last_switched[cpu] = timestamp;
 867
 868	add_sched_event_run(sched, prev, timestamp, delta);
 869	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 870
 871	return 0;
 872}
 873
 874static int replay_fork_event(struct perf_sched *sched,
 875			     union perf_event *event,
 876			     struct machine *machine)
 877{
 878	struct thread *child, *parent;
 879
 880	child = machine__findnew_thread(machine, event->fork.pid,
 881					event->fork.tid);
 882	parent = machine__findnew_thread(machine, event->fork.ppid,
 883					 event->fork.ptid);
 884
 885	if (child == NULL || parent == NULL) {
 886		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 887				 child, parent);
 888		goto out_put;
 889	}
 890
 891	if (verbose > 0) {
 892		printf("fork event\n");
 893		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 894		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 895	}
 896
 897	register_pid(sched, parent->tid, thread__comm_str(parent));
 898	register_pid(sched, child->tid, thread__comm_str(child));
 899out_put:
 900	thread__put(child);
 901	thread__put(parent);
 902	return 0;
 903}
 904
 905struct sort_dimension {
 906	const char		*name;
 907	sort_fn_t		cmp;
 908	struct list_head	list;
 909};
 910
 911/*
 912 * handle runtime stats saved per thread
 913 */
 914static struct thread_runtime *thread__init_runtime(struct thread *thread)
 915{
 916	struct thread_runtime *r;
 917
 918	r = zalloc(sizeof(struct thread_runtime));
 919	if (!r)
 920		return NULL;
 921
 922	init_stats(&r->run_stats);
 923	thread__set_priv(thread, r);
 924
 925	return r;
 926}
 927
 928static struct thread_runtime *thread__get_runtime(struct thread *thread)
 929{
 930	struct thread_runtime *tr;
 931
 932	tr = thread__priv(thread);
 933	if (tr == NULL) {
 934		tr = thread__init_runtime(thread);
 935		if (tr == NULL)
 936			pr_debug("Failed to malloc memory for runtime data.\n");
 937	}
 938
 939	return tr;
 940}
 941
 942static int
 943thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 944{
 945	struct sort_dimension *sort;
 946	int ret = 0;
 947
 948	BUG_ON(list_empty(list));
 949
 950	list_for_each_entry(sort, list, list) {
 951		ret = sort->cmp(l, r);
 952		if (ret)
 953			return ret;
 954	}
 955
 956	return ret;
 957}
 958
 959static struct work_atoms *
 960thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 961			 struct list_head *sort_list)
 962{
 963	struct rb_node *node = root->rb_root.rb_node;
 964	struct work_atoms key = { .thread = thread };
 965
 966	while (node) {
 967		struct work_atoms *atoms;
 968		int cmp;
 969
 970		atoms = container_of(node, struct work_atoms, node);
 971
 972		cmp = thread_lat_cmp(sort_list, &key, atoms);
 973		if (cmp > 0)
 974			node = node->rb_left;
 975		else if (cmp < 0)
 976			node = node->rb_right;
 977		else {
 978			BUG_ON(thread != atoms->thread);
 979			return atoms;
 980		}
 981	}
 982	return NULL;
 983}
 984
 985static void
 986__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 987			 struct list_head *sort_list)
 988{
 989	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 990	bool leftmost = true;
 991
 992	while (*new) {
 993		struct work_atoms *this;
 994		int cmp;
 995
 996		this = container_of(*new, struct work_atoms, node);
 997		parent = *new;
 998
 999		cmp = thread_lat_cmp(sort_list, data, this);
1000
1001		if (cmp > 0)
1002			new = &((*new)->rb_left);
1003		else {
1004			new = &((*new)->rb_right);
1005			leftmost = false;
1006		}
1007	}
1008
1009	rb_link_node(&data->node, parent, new);
1010	rb_insert_color_cached(&data->node, root, leftmost);
1011}
1012
1013static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1014{
1015	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1016	if (!atoms) {
1017		pr_err("No memory at %s\n", __func__);
1018		return -1;
1019	}
1020
1021	atoms->thread = thread__get(thread);
1022	INIT_LIST_HEAD(&atoms->work_list);
1023	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1024	return 0;
1025}
1026
1027static char sched_out_state(u64 prev_state)
1028{
1029	const char *str = TASK_STATE_TO_CHAR_STR;
1030
1031	return str[prev_state];
1032}
1033
1034static int
1035add_sched_out_event(struct work_atoms *atoms,
1036		    char run_state,
1037		    u64 timestamp)
1038{
1039	struct work_atom *atom = zalloc(sizeof(*atom));
1040	if (!atom) {
1041		pr_err("Non memory at %s", __func__);
1042		return -1;
1043	}
1044
1045	atom->sched_out_time = timestamp;
1046
1047	if (run_state == 'R') {
1048		atom->state = THREAD_WAIT_CPU;
1049		atom->wake_up_time = atom->sched_out_time;
1050	}
1051
1052	list_add_tail(&atom->list, &atoms->work_list);
1053	return 0;
1054}
1055
1056static void
1057add_runtime_event(struct work_atoms *atoms, u64 delta,
1058		  u64 timestamp __maybe_unused)
1059{
1060	struct work_atom *atom;
1061
1062	BUG_ON(list_empty(&atoms->work_list));
1063
1064	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1065
1066	atom->runtime += delta;
1067	atoms->total_runtime += delta;
1068}
1069
1070static void
1071add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1072{
1073	struct work_atom *atom;
1074	u64 delta;
1075
1076	if (list_empty(&atoms->work_list))
1077		return;
1078
1079	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1080
1081	if (atom->state != THREAD_WAIT_CPU)
1082		return;
1083
1084	if (timestamp < atom->wake_up_time) {
1085		atom->state = THREAD_IGNORE;
1086		return;
1087	}
1088
1089	atom->state = THREAD_SCHED_IN;
1090	atom->sched_in_time = timestamp;
1091
1092	delta = atom->sched_in_time - atom->wake_up_time;
1093	atoms->total_lat += delta;
1094	if (delta > atoms->max_lat) {
1095		atoms->max_lat = delta;
1096		atoms->max_lat_at = timestamp;
 
1097	}
1098	atoms->nb_atoms++;
1099}
1100
1101static int latency_switch_event(struct perf_sched *sched,
1102				struct evsel *evsel,
1103				struct perf_sample *sample,
1104				struct machine *machine)
1105{
1106	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1107		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1108	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1109	struct work_atoms *out_events, *in_events;
1110	struct thread *sched_out, *sched_in;
1111	u64 timestamp0, timestamp = sample->time;
1112	int cpu = sample->cpu, err = -1;
1113	s64 delta;
1114
1115	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1116
1117	timestamp0 = sched->cpu_last_switched[cpu];
1118	sched->cpu_last_switched[cpu] = timestamp;
1119	if (timestamp0)
1120		delta = timestamp - timestamp0;
1121	else
1122		delta = 0;
1123
1124	if (delta < 0) {
1125		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1126		return -1;
1127	}
1128
1129	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1130	sched_in = machine__findnew_thread(machine, -1, next_pid);
1131	if (sched_out == NULL || sched_in == NULL)
1132		goto out_put;
1133
1134	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1135	if (!out_events) {
1136		if (thread_atoms_insert(sched, sched_out))
1137			goto out_put;
1138		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1139		if (!out_events) {
1140			pr_err("out-event: Internal tree error");
1141			goto out_put;
1142		}
1143	}
1144	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1145		return -1;
1146
1147	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1148	if (!in_events) {
1149		if (thread_atoms_insert(sched, sched_in))
1150			goto out_put;
1151		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1152		if (!in_events) {
1153			pr_err("in-event: Internal tree error");
1154			goto out_put;
1155		}
1156		/*
1157		 * Take came in we have not heard about yet,
1158		 * add in an initial atom in runnable state:
1159		 */
1160		if (add_sched_out_event(in_events, 'R', timestamp))
1161			goto out_put;
1162	}
1163	add_sched_in_event(in_events, timestamp);
1164	err = 0;
1165out_put:
1166	thread__put(sched_out);
1167	thread__put(sched_in);
1168	return err;
1169}
1170
1171static int latency_runtime_event(struct perf_sched *sched,
1172				 struct evsel *evsel,
1173				 struct perf_sample *sample,
1174				 struct machine *machine)
1175{
1176	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1177	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1178	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1179	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1180	u64 timestamp = sample->time;
1181	int cpu = sample->cpu, err = -1;
1182
1183	if (thread == NULL)
1184		return -1;
1185
1186	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1187	if (!atoms) {
1188		if (thread_atoms_insert(sched, thread))
1189			goto out_put;
1190		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1191		if (!atoms) {
1192			pr_err("in-event: Internal tree error");
1193			goto out_put;
1194		}
1195		if (add_sched_out_event(atoms, 'R', timestamp))
1196			goto out_put;
1197	}
1198
1199	add_runtime_event(atoms, runtime, timestamp);
1200	err = 0;
1201out_put:
1202	thread__put(thread);
1203	return err;
1204}
1205
1206static int latency_wakeup_event(struct perf_sched *sched,
1207				struct evsel *evsel,
1208				struct perf_sample *sample,
1209				struct machine *machine)
1210{
1211	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1212	struct work_atoms *atoms;
1213	struct work_atom *atom;
1214	struct thread *wakee;
1215	u64 timestamp = sample->time;
1216	int err = -1;
1217
1218	wakee = machine__findnew_thread(machine, -1, pid);
1219	if (wakee == NULL)
1220		return -1;
1221	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1222	if (!atoms) {
1223		if (thread_atoms_insert(sched, wakee))
1224			goto out_put;
1225		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1226		if (!atoms) {
1227			pr_err("wakeup-event: Internal tree error");
1228			goto out_put;
1229		}
1230		if (add_sched_out_event(atoms, 'S', timestamp))
1231			goto out_put;
1232	}
1233
1234	BUG_ON(list_empty(&atoms->work_list));
1235
1236	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1237
1238	/*
1239	 * As we do not guarantee the wakeup event happens when
1240	 * task is out of run queue, also may happen when task is
1241	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1242	 * then we should not set the ->wake_up_time when wake up a
1243	 * task which is on run queue.
1244	 *
1245	 * You WILL be missing events if you've recorded only
1246	 * one CPU, or are only looking at only one, so don't
1247	 * skip in this case.
1248	 */
1249	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1250		goto out_ok;
1251
1252	sched->nr_timestamps++;
1253	if (atom->sched_out_time > timestamp) {
1254		sched->nr_unordered_timestamps++;
1255		goto out_ok;
1256	}
1257
1258	atom->state = THREAD_WAIT_CPU;
1259	atom->wake_up_time = timestamp;
1260out_ok:
1261	err = 0;
1262out_put:
1263	thread__put(wakee);
1264	return err;
1265}
1266
1267static int latency_migrate_task_event(struct perf_sched *sched,
1268				      struct evsel *evsel,
1269				      struct perf_sample *sample,
1270				      struct machine *machine)
1271{
1272	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1273	u64 timestamp = sample->time;
1274	struct work_atoms *atoms;
1275	struct work_atom *atom;
1276	struct thread *migrant;
1277	int err = -1;
1278
1279	/*
1280	 * Only need to worry about migration when profiling one CPU.
1281	 */
1282	if (sched->profile_cpu == -1)
1283		return 0;
1284
1285	migrant = machine__findnew_thread(machine, -1, pid);
1286	if (migrant == NULL)
1287		return -1;
1288	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1289	if (!atoms) {
1290		if (thread_atoms_insert(sched, migrant))
1291			goto out_put;
1292		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1293		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294		if (!atoms) {
1295			pr_err("migration-event: Internal tree error");
1296			goto out_put;
1297		}
1298		if (add_sched_out_event(atoms, 'R', timestamp))
1299			goto out_put;
1300	}
1301
1302	BUG_ON(list_empty(&atoms->work_list));
1303
1304	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1305	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1306
1307	sched->nr_timestamps++;
1308
1309	if (atom->sched_out_time > timestamp)
1310		sched->nr_unordered_timestamps++;
1311	err = 0;
1312out_put:
1313	thread__put(migrant);
1314	return err;
1315}
1316
1317static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1318{
1319	int i;
1320	int ret;
1321	u64 avg;
1322	char max_lat_at[32];
1323
1324	if (!work_list->nb_atoms)
1325		return;
1326	/*
1327	 * Ignore idle threads:
1328	 */
1329	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1330		return;
1331
1332	sched->all_runtime += work_list->total_runtime;
1333	sched->all_count   += work_list->nb_atoms;
1334
1335	if (work_list->num_merged > 1)
1336		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1337	else
1338		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1339
1340	for (i = 0; i < 24 - ret; i++)
1341		printf(" ");
1342
1343	avg = work_list->total_lat / work_list->nb_atoms;
1344	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
 
1345
1346	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1347	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1348		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1349		 (double)work_list->max_lat / NSEC_PER_MSEC,
1350		 max_lat_at);
1351}
1352
1353static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1354{
1355	if (l->thread == r->thread)
1356		return 0;
1357	if (l->thread->tid < r->thread->tid)
1358		return -1;
1359	if (l->thread->tid > r->thread->tid)
1360		return 1;
1361	return (int)(l->thread - r->thread);
1362}
1363
1364static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1365{
1366	u64 avgl, avgr;
1367
1368	if (!l->nb_atoms)
1369		return -1;
1370
1371	if (!r->nb_atoms)
1372		return 1;
1373
1374	avgl = l->total_lat / l->nb_atoms;
1375	avgr = r->total_lat / r->nb_atoms;
1376
1377	if (avgl < avgr)
1378		return -1;
1379	if (avgl > avgr)
1380		return 1;
1381
1382	return 0;
1383}
1384
1385static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1386{
1387	if (l->max_lat < r->max_lat)
1388		return -1;
1389	if (l->max_lat > r->max_lat)
1390		return 1;
1391
1392	return 0;
1393}
1394
1395static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397	if (l->nb_atoms < r->nb_atoms)
1398		return -1;
1399	if (l->nb_atoms > r->nb_atoms)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->total_runtime < r->total_runtime)
1408		return -1;
1409	if (l->total_runtime > r->total_runtime)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int sort_dimension__add(const char *tok, struct list_head *list)
1416{
1417	size_t i;
1418	static struct sort_dimension avg_sort_dimension = {
1419		.name = "avg",
1420		.cmp  = avg_cmp,
1421	};
1422	static struct sort_dimension max_sort_dimension = {
1423		.name = "max",
1424		.cmp  = max_cmp,
1425	};
1426	static struct sort_dimension pid_sort_dimension = {
1427		.name = "pid",
1428		.cmp  = pid_cmp,
1429	};
1430	static struct sort_dimension runtime_sort_dimension = {
1431		.name = "runtime",
1432		.cmp  = runtime_cmp,
1433	};
1434	static struct sort_dimension switch_sort_dimension = {
1435		.name = "switch",
1436		.cmp  = switch_cmp,
1437	};
1438	struct sort_dimension *available_sorts[] = {
1439		&pid_sort_dimension,
1440		&avg_sort_dimension,
1441		&max_sort_dimension,
1442		&switch_sort_dimension,
1443		&runtime_sort_dimension,
1444	};
1445
1446	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1447		if (!strcmp(available_sorts[i]->name, tok)) {
1448			list_add_tail(&available_sorts[i]->list, list);
1449
1450			return 0;
1451		}
1452	}
1453
1454	return -1;
1455}
1456
1457static void perf_sched__sort_lat(struct perf_sched *sched)
1458{
1459	struct rb_node *node;
1460	struct rb_root_cached *root = &sched->atom_root;
1461again:
1462	for (;;) {
1463		struct work_atoms *data;
1464		node = rb_first_cached(root);
1465		if (!node)
1466			break;
1467
1468		rb_erase_cached(node, root);
1469		data = rb_entry(node, struct work_atoms, node);
1470		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1471	}
1472	if (root == &sched->atom_root) {
1473		root = &sched->merged_atom_root;
1474		goto again;
1475	}
1476}
1477
1478static int process_sched_wakeup_event(struct perf_tool *tool,
1479				      struct evsel *evsel,
1480				      struct perf_sample *sample,
1481				      struct machine *machine)
1482{
1483	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1484
1485	if (sched->tp_handler->wakeup_event)
1486		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1487
1488	return 0;
1489}
1490
1491union map_priv {
1492	void	*ptr;
1493	bool	 color;
1494};
1495
1496static bool thread__has_color(struct thread *thread)
1497{
1498	union map_priv priv = {
1499		.ptr = thread__priv(thread),
1500	};
1501
1502	return priv.color;
1503}
1504
1505static struct thread*
1506map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1507{
1508	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1509	union map_priv priv = {
1510		.color = false,
1511	};
1512
1513	if (!sched->map.color_pids || !thread || thread__priv(thread))
1514		return thread;
1515
1516	if (thread_map__has(sched->map.color_pids, tid))
1517		priv.color = true;
1518
1519	thread__set_priv(thread, priv.ptr);
1520	return thread;
1521}
1522
1523static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1524			    struct perf_sample *sample, struct machine *machine)
1525{
1526	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1527	struct thread *sched_in;
1528	struct thread_runtime *tr;
1529	int new_shortname;
1530	u64 timestamp0, timestamp = sample->time;
1531	s64 delta;
1532	int i, this_cpu = sample->cpu;
1533	int cpus_nr;
1534	bool new_cpu = false;
1535	const char *color = PERF_COLOR_NORMAL;
1536	char stimestamp[32];
1537
1538	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1539
1540	if (this_cpu > sched->max_cpu)
1541		sched->max_cpu = this_cpu;
1542
1543	if (sched->map.comp) {
1544		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1545		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1546			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1547			new_cpu = true;
1548		}
1549	} else
1550		cpus_nr = sched->max_cpu;
1551
1552	timestamp0 = sched->cpu_last_switched[this_cpu];
1553	sched->cpu_last_switched[this_cpu] = timestamp;
1554	if (timestamp0)
1555		delta = timestamp - timestamp0;
1556	else
1557		delta = 0;
1558
1559	if (delta < 0) {
1560		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1561		return -1;
1562	}
1563
1564	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1565	if (sched_in == NULL)
1566		return -1;
1567
1568	tr = thread__get_runtime(sched_in);
1569	if (tr == NULL) {
1570		thread__put(sched_in);
1571		return -1;
1572	}
1573
1574	sched->curr_thread[this_cpu] = thread__get(sched_in);
1575
1576	printf("  ");
1577
1578	new_shortname = 0;
1579	if (!tr->shortname[0]) {
1580		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1581			/*
1582			 * Don't allocate a letter-number for swapper:0
1583			 * as a shortname. Instead, we use '.' for it.
1584			 */
1585			tr->shortname[0] = '.';
1586			tr->shortname[1] = ' ';
1587		} else {
1588			tr->shortname[0] = sched->next_shortname1;
1589			tr->shortname[1] = sched->next_shortname2;
1590
1591			if (sched->next_shortname1 < 'Z') {
1592				sched->next_shortname1++;
1593			} else {
1594				sched->next_shortname1 = 'A';
1595				if (sched->next_shortname2 < '9')
1596					sched->next_shortname2++;
1597				else
1598					sched->next_shortname2 = '0';
1599			}
1600		}
1601		new_shortname = 1;
1602	}
1603
1604	for (i = 0; i < cpus_nr; i++) {
1605		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1606		struct thread *curr_thread = sched->curr_thread[cpu];
1607		struct thread_runtime *curr_tr;
1608		const char *pid_color = color;
1609		const char *cpu_color = color;
1610
1611		if (curr_thread && thread__has_color(curr_thread))
1612			pid_color = COLOR_PIDS;
1613
1614		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1615			continue;
1616
1617		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1618			cpu_color = COLOR_CPUS;
1619
1620		if (cpu != this_cpu)
1621			color_fprintf(stdout, color, " ");
1622		else
1623			color_fprintf(stdout, cpu_color, "*");
1624
1625		if (sched->curr_thread[cpu]) {
1626			curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1627			if (curr_tr == NULL) {
1628				thread__put(sched_in);
1629				return -1;
1630			}
1631			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1632		} else
1633			color_fprintf(stdout, color, "   ");
1634	}
1635
1636	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1637		goto out;
1638
1639	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1640	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1641	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1642		const char *pid_color = color;
1643
1644		if (thread__has_color(sched_in))
1645			pid_color = COLOR_PIDS;
1646
1647		color_fprintf(stdout, pid_color, "%s => %s:%d",
1648		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1649		tr->comm_changed = false;
1650	}
1651
1652	if (sched->map.comp && new_cpu)
1653		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1654
1655out:
1656	color_fprintf(stdout, color, "\n");
1657
1658	thread__put(sched_in);
1659
1660	return 0;
1661}
1662
1663static int process_sched_switch_event(struct perf_tool *tool,
1664				      struct evsel *evsel,
1665				      struct perf_sample *sample,
1666				      struct machine *machine)
1667{
1668	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1669	int this_cpu = sample->cpu, err = 0;
1670	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1671	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1672
1673	if (sched->curr_pid[this_cpu] != (u32)-1) {
1674		/*
1675		 * Are we trying to switch away a PID that is
1676		 * not current?
1677		 */
1678		if (sched->curr_pid[this_cpu] != prev_pid)
1679			sched->nr_context_switch_bugs++;
1680	}
1681
1682	if (sched->tp_handler->switch_event)
1683		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1684
1685	sched->curr_pid[this_cpu] = next_pid;
1686	return err;
1687}
1688
1689static int process_sched_runtime_event(struct perf_tool *tool,
1690				       struct evsel *evsel,
1691				       struct perf_sample *sample,
1692				       struct machine *machine)
1693{
1694	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1695
1696	if (sched->tp_handler->runtime_event)
1697		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1698
1699	return 0;
1700}
1701
1702static int perf_sched__process_fork_event(struct perf_tool *tool,
1703					  union perf_event *event,
1704					  struct perf_sample *sample,
1705					  struct machine *machine)
1706{
1707	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1708
1709	/* run the fork event through the perf machineruy */
1710	perf_event__process_fork(tool, event, sample, machine);
1711
1712	/* and then run additional processing needed for this command */
1713	if (sched->tp_handler->fork_event)
1714		return sched->tp_handler->fork_event(sched, event, machine);
1715
1716	return 0;
1717}
1718
1719static int process_sched_migrate_task_event(struct perf_tool *tool,
1720					    struct evsel *evsel,
1721					    struct perf_sample *sample,
1722					    struct machine *machine)
1723{
1724	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1725
1726	if (sched->tp_handler->migrate_task_event)
1727		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1728
1729	return 0;
1730}
1731
1732typedef int (*tracepoint_handler)(struct perf_tool *tool,
1733				  struct evsel *evsel,
1734				  struct perf_sample *sample,
1735				  struct machine *machine);
1736
1737static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1738						 union perf_event *event __maybe_unused,
1739						 struct perf_sample *sample,
1740						 struct evsel *evsel,
1741						 struct machine *machine)
1742{
1743	int err = 0;
1744
1745	if (evsel->handler != NULL) {
1746		tracepoint_handler f = evsel->handler;
1747		err = f(tool, evsel, sample, machine);
1748	}
1749
1750	return err;
1751}
1752
1753static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1754				    union perf_event *event,
1755				    struct perf_sample *sample,
1756				    struct machine *machine)
1757{
1758	struct thread *thread;
1759	struct thread_runtime *tr;
1760	int err;
1761
1762	err = perf_event__process_comm(tool, event, sample, machine);
1763	if (err)
1764		return err;
1765
1766	thread = machine__find_thread(machine, sample->pid, sample->tid);
1767	if (!thread) {
1768		pr_err("Internal error: can't find thread\n");
1769		return -1;
1770	}
1771
1772	tr = thread__get_runtime(thread);
1773	if (tr == NULL) {
1774		thread__put(thread);
1775		return -1;
1776	}
1777
1778	tr->comm_changed = true;
1779	thread__put(thread);
1780
1781	return 0;
1782}
1783
1784static int perf_sched__read_events(struct perf_sched *sched)
1785{
1786	const struct evsel_str_handler handlers[] = {
1787		{ "sched:sched_switch",	      process_sched_switch_event, },
1788		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1789		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1790		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1791		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1792	};
1793	struct perf_session *session;
1794	struct perf_data data = {
1795		.path  = input_name,
1796		.mode  = PERF_DATA_MODE_READ,
1797		.force = sched->force,
1798	};
1799	int rc = -1;
1800
1801	session = perf_session__new(&data, false, &sched->tool);
1802	if (IS_ERR(session)) {
1803		pr_debug("Error creating perf session");
1804		return PTR_ERR(session);
1805	}
1806
1807	symbol__init(&session->header.env);
1808
1809	if (perf_session__set_tracepoints_handlers(session, handlers))
1810		goto out_delete;
1811
1812	if (perf_session__has_traces(session, "record -R")) {
1813		int err = perf_session__process_events(session);
1814		if (err) {
1815			pr_err("Failed to process events, error %d", err);
1816			goto out_delete;
1817		}
1818
1819		sched->nr_events      = session->evlist->stats.nr_events[0];
1820		sched->nr_lost_events = session->evlist->stats.total_lost;
1821		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1822	}
1823
1824	rc = 0;
1825out_delete:
1826	perf_session__delete(session);
1827	return rc;
1828}
1829
1830/*
1831 * scheduling times are printed as msec.usec
1832 */
1833static inline void print_sched_time(unsigned long long nsecs, int width)
1834{
1835	unsigned long msecs;
1836	unsigned long usecs;
1837
1838	msecs  = nsecs / NSEC_PER_MSEC;
1839	nsecs -= msecs * NSEC_PER_MSEC;
1840	usecs  = nsecs / NSEC_PER_USEC;
1841	printf("%*lu.%03lu ", width, msecs, usecs);
1842}
1843
1844/*
1845 * returns runtime data for event, allocating memory for it the
1846 * first time it is used.
1847 */
1848static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel)
1849{
1850	struct evsel_runtime *r = evsel->priv;
1851
1852	if (r == NULL) {
1853		r = zalloc(sizeof(struct evsel_runtime));
1854		evsel->priv = r;
1855	}
1856
1857	return r;
1858}
1859
1860/*
1861 * save last time event was seen per cpu
1862 */
1863static void perf_evsel__save_time(struct evsel *evsel,
1864				  u64 timestamp, u32 cpu)
1865{
1866	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1867
1868	if (r == NULL)
1869		return;
1870
1871	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1872		int i, n = __roundup_pow_of_two(cpu+1);
1873		void *p = r->last_time;
1874
1875		p = realloc(r->last_time, n * sizeof(u64));
1876		if (!p)
1877			return;
1878
1879		r->last_time = p;
1880		for (i = r->ncpu; i < n; ++i)
1881			r->last_time[i] = (u64) 0;
1882
1883		r->ncpu = n;
1884	}
1885
1886	r->last_time[cpu] = timestamp;
1887}
1888
1889/* returns last time this event was seen on the given cpu */
1890static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu)
1891{
1892	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1893
1894	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1895		return 0;
1896
1897	return r->last_time[cpu];
1898}
1899
1900static int comm_width = 30;
1901
1902static char *timehist_get_commstr(struct thread *thread)
1903{
1904	static char str[32];
1905	const char *comm = thread__comm_str(thread);
1906	pid_t tid = thread->tid;
1907	pid_t pid = thread->pid_;
1908	int n;
1909
1910	if (pid == 0)
1911		n = scnprintf(str, sizeof(str), "%s", comm);
1912
1913	else if (tid != pid)
1914		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1915
1916	else
1917		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1918
1919	if (n > comm_width)
1920		comm_width = n;
1921
1922	return str;
1923}
1924
1925static void timehist_header(struct perf_sched *sched)
1926{
1927	u32 ncpus = sched->max_cpu + 1;
1928	u32 i, j;
1929
1930	printf("%15s %6s ", "time", "cpu");
1931
1932	if (sched->show_cpu_visual) {
1933		printf(" ");
1934		for (i = 0, j = 0; i < ncpus; ++i) {
1935			printf("%x", j++);
1936			if (j > 15)
1937				j = 0;
1938		}
1939		printf(" ");
1940	}
1941
1942	printf(" %-*s  %9s  %9s  %9s", comm_width,
1943		"task name", "wait time", "sch delay", "run time");
1944
1945	if (sched->show_state)
1946		printf("  %s", "state");
1947
1948	printf("\n");
1949
1950	/*
1951	 * units row
1952	 */
1953	printf("%15s %-6s ", "", "");
1954
1955	if (sched->show_cpu_visual)
1956		printf(" %*s ", ncpus, "");
1957
1958	printf(" %-*s  %9s  %9s  %9s", comm_width,
1959	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1960
1961	if (sched->show_state)
1962		printf("  %5s", "");
1963
1964	printf("\n");
1965
1966	/*
1967	 * separator
1968	 */
1969	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1970
1971	if (sched->show_cpu_visual)
1972		printf(" %.*s ", ncpus, graph_dotted_line);
1973
1974	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1975		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1976		graph_dotted_line);
1977
1978	if (sched->show_state)
1979		printf("  %.5s", graph_dotted_line);
1980
1981	printf("\n");
1982}
1983
1984static char task_state_char(struct thread *thread, int state)
1985{
1986	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1987	unsigned bit = state ? ffs(state) : 0;
1988
1989	/* 'I' for idle */
1990	if (thread->tid == 0)
1991		return 'I';
1992
1993	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1994}
1995
1996static void timehist_print_sample(struct perf_sched *sched,
1997				  struct evsel *evsel,
1998				  struct perf_sample *sample,
1999				  struct addr_location *al,
2000				  struct thread *thread,
2001				  u64 t, int state)
2002{
2003	struct thread_runtime *tr = thread__priv(thread);
2004	const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
2005	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2006	u32 max_cpus = sched->max_cpu + 1;
2007	char tstr[64];
2008	char nstr[30];
2009	u64 wait_time;
2010
 
 
 
2011	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2012	printf("%15s [%04d] ", tstr, sample->cpu);
2013
2014	if (sched->show_cpu_visual) {
2015		u32 i;
2016		char c;
2017
2018		printf(" ");
2019		for (i = 0; i < max_cpus; ++i) {
2020			/* flag idle times with 'i'; others are sched events */
2021			if (i == sample->cpu)
2022				c = (thread->tid == 0) ? 'i' : 's';
2023			else
2024				c = ' ';
2025			printf("%c", c);
2026		}
2027		printf(" ");
2028	}
2029
2030	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2031
2032	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2033	print_sched_time(wait_time, 6);
2034
2035	print_sched_time(tr->dt_delay, 6);
2036	print_sched_time(tr->dt_run, 6);
2037
2038	if (sched->show_state)
2039		printf(" %5c ", task_state_char(thread, state));
2040
2041	if (sched->show_next) {
2042		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2043		printf(" %-*s", comm_width, nstr);
2044	}
2045
2046	if (sched->show_wakeups && !sched->show_next)
2047		printf("  %-*s", comm_width, "");
2048
2049	if (thread->tid == 0)
2050		goto out;
2051
2052	if (sched->show_callchain)
2053		printf("  ");
2054
2055	sample__fprintf_sym(sample, al, 0,
2056			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2057			    EVSEL__PRINT_CALLCHAIN_ARROW |
2058			    EVSEL__PRINT_SKIP_IGNORED,
2059			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2060
2061out:
2062	printf("\n");
2063}
2064
2065/*
2066 * Explanation of delta-time stats:
2067 *
2068 *            t = time of current schedule out event
2069 *        tprev = time of previous sched out event
2070 *                also time of schedule-in event for current task
2071 *    last_time = time of last sched change event for current task
2072 *                (i.e, time process was last scheduled out)
2073 * ready_to_run = time of wakeup for current task
2074 *
2075 * -----|------------|------------|------------|------
2076 *    last         ready        tprev          t
2077 *    time         to run
2078 *
2079 *      |-------- dt_wait --------|
2080 *                   |- dt_delay -|-- dt_run --|
2081 *
2082 *   dt_run = run time of current task
2083 *  dt_wait = time between last schedule out event for task and tprev
2084 *            represents time spent off the cpu
2085 * dt_delay = time between wakeup and schedule-in of task
2086 */
2087
2088static void timehist_update_runtime_stats(struct thread_runtime *r,
2089					 u64 t, u64 tprev)
2090{
2091	r->dt_delay   = 0;
2092	r->dt_sleep   = 0;
2093	r->dt_iowait  = 0;
2094	r->dt_preempt = 0;
2095	r->dt_run     = 0;
2096
2097	if (tprev) {
2098		r->dt_run = t - tprev;
2099		if (r->ready_to_run) {
2100			if (r->ready_to_run > tprev)
2101				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2102			else
2103				r->dt_delay = tprev - r->ready_to_run;
2104		}
2105
2106		if (r->last_time > tprev)
2107			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2108		else if (r->last_time) {
2109			u64 dt_wait = tprev - r->last_time;
2110
2111			if (r->last_state == TASK_RUNNING)
2112				r->dt_preempt = dt_wait;
2113			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2114				r->dt_iowait = dt_wait;
2115			else
2116				r->dt_sleep = dt_wait;
2117		}
2118	}
2119
2120	update_stats(&r->run_stats, r->dt_run);
2121
2122	r->total_run_time     += r->dt_run;
2123	r->total_delay_time   += r->dt_delay;
2124	r->total_sleep_time   += r->dt_sleep;
2125	r->total_iowait_time  += r->dt_iowait;
2126	r->total_preempt_time += r->dt_preempt;
2127}
2128
2129static bool is_idle_sample(struct perf_sample *sample,
2130			   struct evsel *evsel)
2131{
2132	/* pid 0 == swapper == idle task */
2133	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2134		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2135
2136	return sample->pid == 0;
2137}
2138
2139static void save_task_callchain(struct perf_sched *sched,
2140				struct perf_sample *sample,
2141				struct evsel *evsel,
2142				struct machine *machine)
2143{
2144	struct callchain_cursor *cursor = &callchain_cursor;
2145	struct thread *thread;
2146
2147	/* want main thread for process - has maps */
2148	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2149	if (thread == NULL) {
2150		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2151		return;
2152	}
2153
2154	if (!sched->show_callchain || sample->callchain == NULL)
2155		return;
2156
2157	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2158				      NULL, NULL, sched->max_stack + 2) != 0) {
2159		if (verbose > 0)
2160			pr_err("Failed to resolve callchain. Skipping\n");
2161
2162		return;
2163	}
2164
2165	callchain_cursor_commit(cursor);
2166
2167	while (true) {
2168		struct callchain_cursor_node *node;
2169		struct symbol *sym;
2170
2171		node = callchain_cursor_current(cursor);
2172		if (node == NULL)
2173			break;
2174
2175		sym = node->sym;
2176		if (sym) {
2177			if (!strcmp(sym->name, "schedule") ||
2178			    !strcmp(sym->name, "__schedule") ||
2179			    !strcmp(sym->name, "preempt_schedule"))
2180				sym->ignore = 1;
2181		}
2182
2183		callchain_cursor_advance(cursor);
2184	}
2185}
2186
2187static int init_idle_thread(struct thread *thread)
2188{
2189	struct idle_thread_runtime *itr;
2190
2191	thread__set_comm(thread, idle_comm, 0);
2192
2193	itr = zalloc(sizeof(*itr));
2194	if (itr == NULL)
2195		return -ENOMEM;
2196
2197	init_stats(&itr->tr.run_stats);
2198	callchain_init(&itr->callchain);
2199	callchain_cursor_reset(&itr->cursor);
2200	thread__set_priv(thread, itr);
2201
2202	return 0;
2203}
2204
2205/*
2206 * Track idle stats per cpu by maintaining a local thread
2207 * struct for the idle task on each cpu.
2208 */
2209static int init_idle_threads(int ncpu)
2210{
2211	int i, ret;
2212
2213	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2214	if (!idle_threads)
2215		return -ENOMEM;
2216
2217	idle_max_cpu = ncpu;
2218
2219	/* allocate the actual thread struct if needed */
2220	for (i = 0; i < ncpu; ++i) {
2221		idle_threads[i] = thread__new(0, 0);
2222		if (idle_threads[i] == NULL)
2223			return -ENOMEM;
2224
2225		ret = init_idle_thread(idle_threads[i]);
2226		if (ret < 0)
2227			return ret;
2228	}
2229
2230	return 0;
2231}
2232
2233static void free_idle_threads(void)
2234{
2235	int i;
2236
2237	if (idle_threads == NULL)
2238		return;
2239
2240	for (i = 0; i < idle_max_cpu; ++i) {
2241		if ((idle_threads[i]))
2242			thread__delete(idle_threads[i]);
2243	}
2244
2245	free(idle_threads);
2246}
2247
2248static struct thread *get_idle_thread(int cpu)
2249{
2250	/*
2251	 * expand/allocate array of pointers to local thread
2252	 * structs if needed
2253	 */
2254	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2255		int i, j = __roundup_pow_of_two(cpu+1);
2256		void *p;
2257
2258		p = realloc(idle_threads, j * sizeof(struct thread *));
2259		if (!p)
2260			return NULL;
2261
2262		idle_threads = (struct thread **) p;
2263		for (i = idle_max_cpu; i < j; ++i)
2264			idle_threads[i] = NULL;
2265
2266		idle_max_cpu = j;
2267	}
2268
2269	/* allocate a new thread struct if needed */
2270	if (idle_threads[cpu] == NULL) {
2271		idle_threads[cpu] = thread__new(0, 0);
2272
2273		if (idle_threads[cpu]) {
2274			if (init_idle_thread(idle_threads[cpu]) < 0)
2275				return NULL;
2276		}
2277	}
2278
2279	return idle_threads[cpu];
2280}
2281
2282static void save_idle_callchain(struct perf_sched *sched,
2283				struct idle_thread_runtime *itr,
2284				struct perf_sample *sample)
2285{
2286	if (!sched->show_callchain || sample->callchain == NULL)
2287		return;
2288
2289	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2290}
2291
2292static struct thread *timehist_get_thread(struct perf_sched *sched,
2293					  struct perf_sample *sample,
2294					  struct machine *machine,
2295					  struct evsel *evsel)
2296{
2297	struct thread *thread;
2298
2299	if (is_idle_sample(sample, evsel)) {
2300		thread = get_idle_thread(sample->cpu);
2301		if (thread == NULL)
2302			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2303
2304	} else {
2305		/* there were samples with tid 0 but non-zero pid */
2306		thread = machine__findnew_thread(machine, sample->pid,
2307						 sample->tid ?: sample->pid);
2308		if (thread == NULL) {
2309			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2310				 sample->tid);
2311		}
2312
2313		save_task_callchain(sched, sample, evsel, machine);
2314		if (sched->idle_hist) {
2315			struct thread *idle;
2316			struct idle_thread_runtime *itr;
2317
2318			idle = get_idle_thread(sample->cpu);
2319			if (idle == NULL) {
2320				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2321				return NULL;
2322			}
2323
2324			itr = thread__priv(idle);
2325			if (itr == NULL)
2326				return NULL;
2327
2328			itr->last_thread = thread;
2329
2330			/* copy task callchain when entering to idle */
2331			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2332				save_idle_callchain(sched, itr, sample);
2333		}
2334	}
2335
2336	return thread;
2337}
2338
2339static bool timehist_skip_sample(struct perf_sched *sched,
2340				 struct thread *thread,
2341				 struct evsel *evsel,
2342				 struct perf_sample *sample)
2343{
2344	bool rc = false;
2345
2346	if (thread__is_filtered(thread)) {
2347		rc = true;
2348		sched->skipped_samples++;
2349	}
2350
2351	if (sched->idle_hist) {
2352		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2353			rc = true;
2354		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2355			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2356			rc = true;
2357	}
2358
2359	return rc;
2360}
2361
2362static void timehist_print_wakeup_event(struct perf_sched *sched,
2363					struct evsel *evsel,
2364					struct perf_sample *sample,
2365					struct machine *machine,
2366					struct thread *awakened)
2367{
2368	struct thread *thread;
2369	char tstr[64];
2370
2371	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2372	if (thread == NULL)
2373		return;
2374
2375	/* show wakeup unless both awakee and awaker are filtered */
2376	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2377	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2378		return;
2379	}
2380
2381	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2382	printf("%15s [%04d] ", tstr, sample->cpu);
2383	if (sched->show_cpu_visual)
2384		printf(" %*s ", sched->max_cpu + 1, "");
2385
2386	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2387
2388	/* dt spacer */
2389	printf("  %9s  %9s  %9s ", "", "", "");
2390
2391	printf("awakened: %s", timehist_get_commstr(awakened));
2392
2393	printf("\n");
2394}
2395
 
 
 
 
 
 
 
 
 
2396static int timehist_sched_wakeup_event(struct perf_tool *tool,
2397				       union perf_event *event __maybe_unused,
2398				       struct evsel *evsel,
2399				       struct perf_sample *sample,
2400				       struct machine *machine)
2401{
2402	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2403	struct thread *thread;
2404	struct thread_runtime *tr = NULL;
2405	/* want pid of awakened task not pid in sample */
2406	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2407
2408	thread = machine__findnew_thread(machine, 0, pid);
2409	if (thread == NULL)
2410		return -1;
2411
2412	tr = thread__get_runtime(thread);
2413	if (tr == NULL)
2414		return -1;
2415
2416	if (tr->ready_to_run == 0)
2417		tr->ready_to_run = sample->time;
2418
2419	/* show wakeups if requested */
2420	if (sched->show_wakeups &&
2421	    !perf_time__skip_sample(&sched->ptime, sample->time))
2422		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2423
2424	return 0;
2425}
2426
2427static void timehist_print_migration_event(struct perf_sched *sched,
2428					struct evsel *evsel,
2429					struct perf_sample *sample,
2430					struct machine *machine,
2431					struct thread *migrated)
2432{
2433	struct thread *thread;
2434	char tstr[64];
2435	u32 max_cpus = sched->max_cpu + 1;
2436	u32 ocpu, dcpu;
2437
2438	if (sched->summary_only)
2439		return;
2440
2441	max_cpus = sched->max_cpu + 1;
2442	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2443	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2444
2445	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2446	if (thread == NULL)
2447		return;
2448
2449	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2450	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2451		return;
2452	}
2453
2454	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2455	printf("%15s [%04d] ", tstr, sample->cpu);
2456
2457	if (sched->show_cpu_visual) {
2458		u32 i;
2459		char c;
2460
2461		printf("  ");
2462		for (i = 0; i < max_cpus; ++i) {
2463			c = (i == sample->cpu) ? 'm' : ' ';
2464			printf("%c", c);
2465		}
2466		printf("  ");
2467	}
2468
2469	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2470
2471	/* dt spacer */
2472	printf("  %9s  %9s  %9s ", "", "", "");
2473
2474	printf("migrated: %s", timehist_get_commstr(migrated));
2475	printf(" cpu %d => %d", ocpu, dcpu);
2476
2477	printf("\n");
2478}
2479
2480static int timehist_migrate_task_event(struct perf_tool *tool,
2481				       union perf_event *event __maybe_unused,
2482				       struct evsel *evsel,
2483				       struct perf_sample *sample,
2484				       struct machine *machine)
2485{
2486	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2487	struct thread *thread;
2488	struct thread_runtime *tr = NULL;
2489	/* want pid of migrated task not pid in sample */
2490	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2491
2492	thread = machine__findnew_thread(machine, 0, pid);
2493	if (thread == NULL)
2494		return -1;
2495
2496	tr = thread__get_runtime(thread);
2497	if (tr == NULL)
2498		return -1;
2499
2500	tr->migrations++;
2501
2502	/* show migrations if requested */
2503	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2504
2505	return 0;
2506}
2507
2508static int timehist_sched_change_event(struct perf_tool *tool,
2509				       union perf_event *event,
2510				       struct evsel *evsel,
2511				       struct perf_sample *sample,
2512				       struct machine *machine)
2513{
2514	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2515	struct perf_time_interval *ptime = &sched->ptime;
2516	struct addr_location al;
2517	struct thread *thread;
2518	struct thread_runtime *tr = NULL;
2519	u64 tprev, t = sample->time;
2520	int rc = 0;
2521	int state = perf_evsel__intval(evsel, sample, "prev_state");
2522
2523
2524	if (machine__resolve(machine, &al, sample) < 0) {
2525		pr_err("problem processing %d event. skipping it\n",
2526		       event->header.type);
2527		rc = -1;
2528		goto out;
2529	}
2530
2531	thread = timehist_get_thread(sched, sample, machine, evsel);
2532	if (thread == NULL) {
2533		rc = -1;
2534		goto out;
2535	}
2536
2537	if (timehist_skip_sample(sched, thread, evsel, sample))
2538		goto out;
2539
2540	tr = thread__get_runtime(thread);
2541	if (tr == NULL) {
2542		rc = -1;
2543		goto out;
2544	}
2545
2546	tprev = perf_evsel__get_time(evsel, sample->cpu);
2547
2548	/*
2549	 * If start time given:
2550	 * - sample time is under window user cares about - skip sample
2551	 * - tprev is under window user cares about  - reset to start of window
2552	 */
2553	if (ptime->start && ptime->start > t)
2554		goto out;
2555
2556	if (tprev && ptime->start > tprev)
2557		tprev = ptime->start;
2558
2559	/*
2560	 * If end time given:
2561	 * - previous sched event is out of window - we are done
2562	 * - sample time is beyond window user cares about - reset it
2563	 *   to close out stats for time window interest
2564	 */
2565	if (ptime->end) {
2566		if (tprev > ptime->end)
2567			goto out;
2568
2569		if (t > ptime->end)
2570			t = ptime->end;
2571	}
2572
2573	if (!sched->idle_hist || thread->tid == 0) {
2574		timehist_update_runtime_stats(tr, t, tprev);
 
2575
2576		if (sched->idle_hist) {
2577			struct idle_thread_runtime *itr = (void *)tr;
2578			struct thread_runtime *last_tr;
2579
2580			BUG_ON(thread->tid != 0);
2581
2582			if (itr->last_thread == NULL)
2583				goto out;
2584
2585			/* add current idle time as last thread's runtime */
2586			last_tr = thread__get_runtime(itr->last_thread);
2587			if (last_tr == NULL)
2588				goto out;
2589
2590			timehist_update_runtime_stats(last_tr, t, tprev);
2591			/*
2592			 * remove delta time of last thread as it's not updated
2593			 * and otherwise it will show an invalid value next
2594			 * time.  we only care total run time and run stat.
2595			 */
2596			last_tr->dt_run = 0;
2597			last_tr->dt_delay = 0;
2598			last_tr->dt_sleep = 0;
2599			last_tr->dt_iowait = 0;
2600			last_tr->dt_preempt = 0;
2601
2602			if (itr->cursor.nr)
2603				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2604
2605			itr->last_thread = NULL;
2606		}
2607	}
2608
2609	if (!sched->summary_only)
2610		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2611
2612out:
2613	if (sched->hist_time.start == 0 && t >= ptime->start)
2614		sched->hist_time.start = t;
2615	if (ptime->end == 0 || t <= ptime->end)
2616		sched->hist_time.end = t;
2617
2618	if (tr) {
2619		/* time of this sched_switch event becomes last time task seen */
2620		tr->last_time = sample->time;
2621
2622		/* last state is used to determine where to account wait time */
2623		tr->last_state = state;
2624
2625		/* sched out event for task so reset ready to run time */
2626		tr->ready_to_run = 0;
2627	}
2628
2629	perf_evsel__save_time(evsel, sample->time, sample->cpu);
2630
2631	return rc;
2632}
2633
2634static int timehist_sched_switch_event(struct perf_tool *tool,
2635			     union perf_event *event,
2636			     struct evsel *evsel,
2637			     struct perf_sample *sample,
2638			     struct machine *machine __maybe_unused)
2639{
2640	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2641}
2642
2643static int process_lost(struct perf_tool *tool __maybe_unused,
2644			union perf_event *event,
2645			struct perf_sample *sample,
2646			struct machine *machine __maybe_unused)
2647{
2648	char tstr[64];
2649
2650	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2651	printf("%15s ", tstr);
2652	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2653
2654	return 0;
2655}
2656
2657
2658static void print_thread_runtime(struct thread *t,
2659				 struct thread_runtime *r)
2660{
2661	double mean = avg_stats(&r->run_stats);
2662	float stddev;
2663
2664	printf("%*s   %5d  %9" PRIu64 " ",
2665	       comm_width, timehist_get_commstr(t), t->ppid,
2666	       (u64) r->run_stats.n);
2667
2668	print_sched_time(r->total_run_time, 8);
2669	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2670	print_sched_time(r->run_stats.min, 6);
2671	printf(" ");
2672	print_sched_time((u64) mean, 6);
2673	printf(" ");
2674	print_sched_time(r->run_stats.max, 6);
2675	printf("  ");
2676	printf("%5.2f", stddev);
2677	printf("   %5" PRIu64, r->migrations);
2678	printf("\n");
2679}
2680
2681static void print_thread_waittime(struct thread *t,
2682				  struct thread_runtime *r)
2683{
2684	printf("%*s   %5d  %9" PRIu64 " ",
2685	       comm_width, timehist_get_commstr(t), t->ppid,
2686	       (u64) r->run_stats.n);
2687
2688	print_sched_time(r->total_run_time, 8);
2689	print_sched_time(r->total_sleep_time, 6);
2690	printf(" ");
2691	print_sched_time(r->total_iowait_time, 6);
2692	printf(" ");
2693	print_sched_time(r->total_preempt_time, 6);
2694	printf(" ");
2695	print_sched_time(r->total_delay_time, 6);
2696	printf("\n");
2697}
2698
2699struct total_run_stats {
2700	struct perf_sched *sched;
2701	u64  sched_count;
2702	u64  task_count;
2703	u64  total_run_time;
2704};
2705
2706static int __show_thread_runtime(struct thread *t, void *priv)
2707{
2708	struct total_run_stats *stats = priv;
2709	struct thread_runtime *r;
2710
2711	if (thread__is_filtered(t))
2712		return 0;
2713
2714	r = thread__priv(t);
2715	if (r && r->run_stats.n) {
2716		stats->task_count++;
2717		stats->sched_count += r->run_stats.n;
2718		stats->total_run_time += r->total_run_time;
2719
2720		if (stats->sched->show_state)
2721			print_thread_waittime(t, r);
2722		else
2723			print_thread_runtime(t, r);
2724	}
2725
2726	return 0;
2727}
2728
2729static int show_thread_runtime(struct thread *t, void *priv)
2730{
2731	if (t->dead)
2732		return 0;
2733
2734	return __show_thread_runtime(t, priv);
2735}
2736
2737static int show_deadthread_runtime(struct thread *t, void *priv)
2738{
2739	if (!t->dead)
2740		return 0;
2741
2742	return __show_thread_runtime(t, priv);
2743}
2744
2745static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2746{
2747	const char *sep = " <- ";
2748	struct callchain_list *chain;
2749	size_t ret = 0;
2750	char bf[1024];
2751	bool first;
2752
2753	if (node == NULL)
2754		return 0;
2755
2756	ret = callchain__fprintf_folded(fp, node->parent);
2757	first = (ret == 0);
2758
2759	list_for_each_entry(chain, &node->val, list) {
2760		if (chain->ip >= PERF_CONTEXT_MAX)
2761			continue;
2762		if (chain->ms.sym && chain->ms.sym->ignore)
2763			continue;
2764		ret += fprintf(fp, "%s%s", first ? "" : sep,
2765			       callchain_list__sym_name(chain, bf, sizeof(bf),
2766							false));
2767		first = false;
2768	}
2769
2770	return ret;
2771}
2772
2773static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2774{
2775	size_t ret = 0;
2776	FILE *fp = stdout;
2777	struct callchain_node *chain;
2778	struct rb_node *rb_node = rb_first_cached(root);
2779
2780	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2781	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2782	       graph_dotted_line);
2783
2784	while (rb_node) {
2785		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2786		rb_node = rb_next(rb_node);
2787
2788		ret += fprintf(fp, "  ");
2789		print_sched_time(chain->hit, 12);
2790		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2791		ret += fprintf(fp, " %8d  ", chain->count);
2792		ret += callchain__fprintf_folded(fp, chain);
2793		ret += fprintf(fp, "\n");
2794	}
2795
2796	return ret;
2797}
2798
2799static void timehist_print_summary(struct perf_sched *sched,
2800				   struct perf_session *session)
2801{
2802	struct machine *m = &session->machines.host;
2803	struct total_run_stats totals;
2804	u64 task_count;
2805	struct thread *t;
2806	struct thread_runtime *r;
2807	int i;
2808	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2809
2810	memset(&totals, 0, sizeof(totals));
2811	totals.sched = sched;
2812
2813	if (sched->idle_hist) {
2814		printf("\nIdle-time summary\n");
2815		printf("%*s  parent  sched-out  ", comm_width, "comm");
2816		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2817	} else if (sched->show_state) {
2818		printf("\nWait-time summary\n");
2819		printf("%*s  parent   sched-in  ", comm_width, "comm");
2820		printf("   run-time      sleep      iowait     preempt       delay\n");
2821	} else {
2822		printf("\nRuntime summary\n");
2823		printf("%*s  parent   sched-in  ", comm_width, "comm");
2824		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2825	}
2826	printf("%*s            (count)  ", comm_width, "");
2827	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2828	       sched->show_state ? "(msec)" : "%");
2829	printf("%.117s\n", graph_dotted_line);
2830
2831	machine__for_each_thread(m, show_thread_runtime, &totals);
2832	task_count = totals.task_count;
2833	if (!task_count)
2834		printf("<no still running tasks>\n");
2835
2836	printf("\nTerminated tasks:\n");
2837	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2838	if (task_count == totals.task_count)
2839		printf("<no terminated tasks>\n");
2840
2841	/* CPU idle stats not tracked when samples were skipped */
2842	if (sched->skipped_samples && !sched->idle_hist)
2843		return;
2844
2845	printf("\nIdle stats:\n");
2846	for (i = 0; i < idle_max_cpu; ++i) {
 
 
 
2847		t = idle_threads[i];
2848		if (!t)
2849			continue;
2850
2851		r = thread__priv(t);
2852		if (r && r->run_stats.n) {
2853			totals.sched_count += r->run_stats.n;
2854			printf("    CPU %2d idle for ", i);
2855			print_sched_time(r->total_run_time, 6);
2856			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2857		} else
2858			printf("    CPU %2d idle entire time window\n", i);
2859	}
2860
2861	if (sched->idle_hist && sched->show_callchain) {
2862		callchain_param.mode  = CHAIN_FOLDED;
2863		callchain_param.value = CCVAL_PERIOD;
2864
2865		callchain_register_param(&callchain_param);
2866
2867		printf("\nIdle stats by callchain:\n");
2868		for (i = 0; i < idle_max_cpu; ++i) {
2869			struct idle_thread_runtime *itr;
2870
2871			t = idle_threads[i];
2872			if (!t)
2873				continue;
2874
2875			itr = thread__priv(t);
2876			if (itr == NULL)
2877				continue;
2878
2879			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2880					     0, &callchain_param);
2881
2882			printf("  CPU %2d:", i);
2883			print_sched_time(itr->tr.total_run_time, 6);
2884			printf(" msec\n");
2885			timehist_print_idlehist_callchain(&itr->sorted_root);
2886			printf("\n");
2887		}
2888	}
2889
2890	printf("\n"
2891	       "    Total number of unique tasks: %" PRIu64 "\n"
2892	       "Total number of context switches: %" PRIu64 "\n",
2893	       totals.task_count, totals.sched_count);
2894
2895	printf("           Total run time (msec): ");
2896	print_sched_time(totals.total_run_time, 2);
2897	printf("\n");
2898
2899	printf("    Total scheduling time (msec): ");
2900	print_sched_time(hist_time, 2);
2901	printf(" (x %d)\n", sched->max_cpu);
2902}
2903
2904typedef int (*sched_handler)(struct perf_tool *tool,
2905			  union perf_event *event,
2906			  struct evsel *evsel,
2907			  struct perf_sample *sample,
2908			  struct machine *machine);
2909
2910static int perf_timehist__process_sample(struct perf_tool *tool,
2911					 union perf_event *event,
2912					 struct perf_sample *sample,
2913					 struct evsel *evsel,
2914					 struct machine *machine)
2915{
2916	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2917	int err = 0;
2918	int this_cpu = sample->cpu;
2919
2920	if (this_cpu > sched->max_cpu)
2921		sched->max_cpu = this_cpu;
2922
2923	if (evsel->handler != NULL) {
2924		sched_handler f = evsel->handler;
2925
2926		err = f(tool, event, evsel, sample, machine);
2927	}
2928
2929	return err;
2930}
2931
2932static int timehist_check_attr(struct perf_sched *sched,
2933			       struct evlist *evlist)
2934{
2935	struct evsel *evsel;
2936	struct evsel_runtime *er;
2937
2938	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2939		er = perf_evsel__get_runtime(evsel);
2940		if (er == NULL) {
2941			pr_err("Failed to allocate memory for evsel runtime data\n");
2942			return -1;
2943		}
2944
2945		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2946			pr_info("Samples do not have callchains.\n");
2947			sched->show_callchain = 0;
2948			symbol_conf.use_callchain = 0;
2949		}
2950	}
2951
2952	return 0;
2953}
2954
2955static int perf_sched__timehist(struct perf_sched *sched)
2956{
2957	const struct evsel_str_handler handlers[] = {
2958		{ "sched:sched_switch",       timehist_sched_switch_event, },
2959		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
 
2960		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2961	};
2962	const struct evsel_str_handler migrate_handlers[] = {
2963		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2964	};
2965	struct perf_data data = {
2966		.path  = input_name,
2967		.mode  = PERF_DATA_MODE_READ,
2968		.force = sched->force,
2969	};
2970
2971	struct perf_session *session;
2972	struct evlist *evlist;
2973	int err = -1;
2974
2975	/*
2976	 * event handlers for timehist option
2977	 */
2978	sched->tool.sample	 = perf_timehist__process_sample;
2979	sched->tool.mmap	 = perf_event__process_mmap;
2980	sched->tool.comm	 = perf_event__process_comm;
2981	sched->tool.exit	 = perf_event__process_exit;
2982	sched->tool.fork	 = perf_event__process_fork;
2983	sched->tool.lost	 = process_lost;
2984	sched->tool.attr	 = perf_event__process_attr;
2985	sched->tool.tracing_data = perf_event__process_tracing_data;
2986	sched->tool.build_id	 = perf_event__process_build_id;
2987
2988	sched->tool.ordered_events = true;
2989	sched->tool.ordering_requires_timestamps = true;
2990
2991	symbol_conf.use_callchain = sched->show_callchain;
2992
2993	session = perf_session__new(&data, false, &sched->tool);
2994	if (IS_ERR(session))
2995		return PTR_ERR(session);
2996
 
 
 
 
 
 
2997	evlist = session->evlist;
2998
2999	symbol__init(&session->header.env);
3000
3001	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3002		pr_err("Invalid time string\n");
3003		return -EINVAL;
3004	}
3005
3006	if (timehist_check_attr(sched, evlist) != 0)
3007		goto out;
3008
3009	setup_pager();
3010
 
 
 
 
3011	/* setup per-evsel handlers */
3012	if (perf_session__set_tracepoints_handlers(session, handlers))
3013		goto out;
3014
3015	/* sched_switch event at a minimum needs to exist */
3016	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3017						  "sched:sched_switch")) {
3018		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3019		goto out;
3020	}
3021
3022	if (sched->show_migrations &&
3023	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3024		goto out;
3025
3026	/* pre-allocate struct for per-CPU idle stats */
3027	sched->max_cpu = session->header.env.nr_cpus_online;
3028	if (sched->max_cpu == 0)
3029		sched->max_cpu = 4;
3030	if (init_idle_threads(sched->max_cpu))
3031		goto out;
3032
3033	/* summary_only implies summary option, but don't overwrite summary if set */
3034	if (sched->summary_only)
3035		sched->summary = sched->summary_only;
3036
3037	if (!sched->summary_only)
3038		timehist_header(sched);
3039
3040	err = perf_session__process_events(session);
3041	if (err) {
3042		pr_err("Failed to process events, error %d", err);
3043		goto out;
3044	}
3045
3046	sched->nr_events      = evlist->stats.nr_events[0];
3047	sched->nr_lost_events = evlist->stats.total_lost;
3048	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3049
3050	if (sched->summary)
3051		timehist_print_summary(sched, session);
3052
3053out:
3054	free_idle_threads();
3055	perf_session__delete(session);
3056
3057	return err;
3058}
3059
3060
3061static void print_bad_events(struct perf_sched *sched)
3062{
3063	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3064		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3065			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3066			sched->nr_unordered_timestamps, sched->nr_timestamps);
3067	}
3068	if (sched->nr_lost_events && sched->nr_events) {
3069		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3070			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3071			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3072	}
3073	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3074		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3075			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3076			sched->nr_context_switch_bugs, sched->nr_timestamps);
3077		if (sched->nr_lost_events)
3078			printf(" (due to lost events?)");
3079		printf("\n");
3080	}
3081}
3082
3083static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3084{
3085	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3086	struct work_atoms *this;
3087	const char *comm = thread__comm_str(data->thread), *this_comm;
3088	bool leftmost = true;
3089
3090	while (*new) {
3091		int cmp;
3092
3093		this = container_of(*new, struct work_atoms, node);
3094		parent = *new;
3095
3096		this_comm = thread__comm_str(this->thread);
3097		cmp = strcmp(comm, this_comm);
3098		if (cmp > 0) {
3099			new = &((*new)->rb_left);
3100		} else if (cmp < 0) {
3101			new = &((*new)->rb_right);
3102			leftmost = false;
3103		} else {
3104			this->num_merged++;
3105			this->total_runtime += data->total_runtime;
3106			this->nb_atoms += data->nb_atoms;
3107			this->total_lat += data->total_lat;
3108			list_splice(&data->work_list, &this->work_list);
3109			if (this->max_lat < data->max_lat) {
3110				this->max_lat = data->max_lat;
3111				this->max_lat_at = data->max_lat_at;
 
3112			}
3113			zfree(&data);
3114			return;
3115		}
3116	}
3117
3118	data->num_merged++;
3119	rb_link_node(&data->node, parent, new);
3120	rb_insert_color_cached(&data->node, root, leftmost);
3121}
3122
3123static void perf_sched__merge_lat(struct perf_sched *sched)
3124{
3125	struct work_atoms *data;
3126	struct rb_node *node;
3127
3128	if (sched->skip_merge)
3129		return;
3130
3131	while ((node = rb_first_cached(&sched->atom_root))) {
3132		rb_erase_cached(node, &sched->atom_root);
3133		data = rb_entry(node, struct work_atoms, node);
3134		__merge_work_atoms(&sched->merged_atom_root, data);
3135	}
3136}
3137
3138static int perf_sched__lat(struct perf_sched *sched)
3139{
3140	struct rb_node *next;
3141
3142	setup_pager();
3143
3144	if (perf_sched__read_events(sched))
3145		return -1;
3146
3147	perf_sched__merge_lat(sched);
3148	perf_sched__sort_lat(sched);
3149
3150	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3151	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3152	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3153
3154	next = rb_first_cached(&sched->sorted_atom_root);
3155
3156	while (next) {
3157		struct work_atoms *work_list;
3158
3159		work_list = rb_entry(next, struct work_atoms, node);
3160		output_lat_thread(sched, work_list);
3161		next = rb_next(next);
3162		thread__zput(work_list->thread);
3163	}
3164
3165	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3166	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3167		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3168
3169	printf(" ---------------------------------------------------\n");
3170
3171	print_bad_events(sched);
3172	printf("\n");
3173
3174	return 0;
3175}
3176
3177static int setup_map_cpus(struct perf_sched *sched)
3178{
3179	struct perf_cpu_map *map;
3180
3181	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3182
3183	if (sched->map.comp) {
3184		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3185		if (!sched->map.comp_cpus)
3186			return -1;
3187	}
3188
3189	if (!sched->map.cpus_str)
3190		return 0;
3191
3192	map = perf_cpu_map__new(sched->map.cpus_str);
3193	if (!map) {
3194		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3195		return -1;
3196	}
3197
3198	sched->map.cpus = map;
3199	return 0;
3200}
3201
3202static int setup_color_pids(struct perf_sched *sched)
3203{
3204	struct perf_thread_map *map;
3205
3206	if (!sched->map.color_pids_str)
3207		return 0;
3208
3209	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3210	if (!map) {
3211		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3212		return -1;
3213	}
3214
3215	sched->map.color_pids = map;
3216	return 0;
3217}
3218
3219static int setup_color_cpus(struct perf_sched *sched)
3220{
3221	struct perf_cpu_map *map;
3222
3223	if (!sched->map.color_cpus_str)
3224		return 0;
3225
3226	map = perf_cpu_map__new(sched->map.color_cpus_str);
3227	if (!map) {
3228		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3229		return -1;
3230	}
3231
3232	sched->map.color_cpus = map;
3233	return 0;
3234}
3235
3236static int perf_sched__map(struct perf_sched *sched)
3237{
3238	if (setup_map_cpus(sched))
3239		return -1;
3240
3241	if (setup_color_pids(sched))
3242		return -1;
3243
3244	if (setup_color_cpus(sched))
3245		return -1;
3246
3247	setup_pager();
3248	if (perf_sched__read_events(sched))
3249		return -1;
3250	print_bad_events(sched);
3251	return 0;
3252}
3253
3254static int perf_sched__replay(struct perf_sched *sched)
3255{
3256	unsigned long i;
3257
3258	calibrate_run_measurement_overhead(sched);
3259	calibrate_sleep_measurement_overhead(sched);
3260
3261	test_calibrations(sched);
3262
3263	if (perf_sched__read_events(sched))
3264		return -1;
3265
3266	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3267	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3268	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3269
3270	if (sched->targetless_wakeups)
3271		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3272	if (sched->multitarget_wakeups)
3273		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3274	if (sched->nr_run_events_optimized)
3275		printf("run atoms optimized: %ld\n",
3276			sched->nr_run_events_optimized);
3277
3278	print_task_traces(sched);
3279	add_cross_task_wakeups(sched);
3280
3281	create_tasks(sched);
3282	printf("------------------------------------------------------------\n");
3283	for (i = 0; i < sched->replay_repeat; i++)
3284		run_one_test(sched);
3285
3286	return 0;
3287}
3288
3289static void setup_sorting(struct perf_sched *sched, const struct option *options,
3290			  const char * const usage_msg[])
3291{
3292	char *tmp, *tok, *str = strdup(sched->sort_order);
3293
3294	for (tok = strtok_r(str, ", ", &tmp);
3295			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3296		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3297			usage_with_options_msg(usage_msg, options,
3298					"Unknown --sort key: `%s'", tok);
3299		}
3300	}
3301
3302	free(str);
3303
3304	sort_dimension__add("pid", &sched->cmp_pid);
3305}
3306
 
 
 
 
 
 
 
 
 
 
3307static int __cmd_record(int argc, const char **argv)
3308{
3309	unsigned int rec_argc, i, j;
3310	const char **rec_argv;
3311	const char * const record_args[] = {
3312		"record",
3313		"-a",
3314		"-R",
3315		"-m", "1024",
3316		"-c", "1",
3317		"-e", "sched:sched_switch",
3318		"-e", "sched:sched_stat_wait",
3319		"-e", "sched:sched_stat_sleep",
3320		"-e", "sched:sched_stat_iowait",
3321		"-e", "sched:sched_stat_runtime",
3322		"-e", "sched:sched_process_fork",
3323		"-e", "sched:sched_wakeup",
3324		"-e", "sched:sched_wakeup_new",
3325		"-e", "sched:sched_migrate_task",
3326	};
3327
3328	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3329	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3330
3331	if (rec_argv == NULL)
3332		return -ENOMEM;
3333
3334	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3335		rec_argv[i] = strdup(record_args[i]);
3336
 
 
 
 
 
 
 
 
 
 
3337	for (j = 1; j < (unsigned int)argc; j++, i++)
3338		rec_argv[i] = argv[j];
3339
3340	BUG_ON(i != rec_argc);
3341
3342	return cmd_record(i, rec_argv);
3343}
3344
3345int cmd_sched(int argc, const char **argv)
3346{
3347	static const char default_sort_order[] = "avg, max, switch, runtime";
3348	struct perf_sched sched = {
3349		.tool = {
3350			.sample		 = perf_sched__process_tracepoint_sample,
3351			.comm		 = perf_sched__process_comm,
3352			.namespaces	 = perf_event__process_namespaces,
3353			.lost		 = perf_event__process_lost,
3354			.fork		 = perf_sched__process_fork_event,
3355			.ordered_events = true,
3356		},
3357		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3358		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3359		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3360		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3361		.sort_order	      = default_sort_order,
3362		.replay_repeat	      = 10,
3363		.profile_cpu	      = -1,
3364		.next_shortname1      = 'A',
3365		.next_shortname2      = '0',
3366		.skip_merge           = 0,
3367		.show_callchain	      = 1,
3368		.max_stack            = 5,
3369	};
3370	const struct option sched_options[] = {
3371	OPT_STRING('i', "input", &input_name, "file",
3372		    "input file name"),
3373	OPT_INCR('v', "verbose", &verbose,
3374		    "be more verbose (show symbol address, etc)"),
3375	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3376		    "dump raw trace in ASCII"),
3377	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3378	OPT_END()
3379	};
3380	const struct option latency_options[] = {
3381	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3382		   "sort by key(s): runtime, switch, avg, max"),
3383	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3384		    "CPU to profile on"),
3385	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3386		    "latency stats per pid instead of per comm"),
3387	OPT_PARENT(sched_options)
3388	};
3389	const struct option replay_options[] = {
3390	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3391		     "repeat the workload replay N times (-1: infinite)"),
3392	OPT_PARENT(sched_options)
3393	};
3394	const struct option map_options[] = {
3395	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3396		    "map output in compact mode"),
3397	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3398		   "highlight given pids in map"),
3399	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3400                    "highlight given CPUs in map"),
3401	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3402                    "display given CPUs in map"),
3403	OPT_PARENT(sched_options)
3404	};
3405	const struct option timehist_options[] = {
3406	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3407		   "file", "vmlinux pathname"),
3408	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3409		   "file", "kallsyms pathname"),
3410	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3411		    "Display call chains if present (default on)"),
3412	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3413		   "Maximum number of functions to display backtrace."),
3414	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3415		    "Look for files with symbols relative to this directory"),
3416	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3417		    "Show only syscall summary with statistics"),
3418	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3419		    "Show all syscalls and summary with statistics"),
3420	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3421	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3422	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3423	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3424	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3425	OPT_STRING(0, "time", &sched.time_str, "str",
3426		   "Time span for analysis (start,stop)"),
3427	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3428	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3429		   "analyze events only for given process id(s)"),
3430	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3431		   "analyze events only for given thread id(s)"),
 
3432	OPT_PARENT(sched_options)
3433	};
3434
3435	const char * const latency_usage[] = {
3436		"perf sched latency [<options>]",
3437		NULL
3438	};
3439	const char * const replay_usage[] = {
3440		"perf sched replay [<options>]",
3441		NULL
3442	};
3443	const char * const map_usage[] = {
3444		"perf sched map [<options>]",
3445		NULL
3446	};
3447	const char * const timehist_usage[] = {
3448		"perf sched timehist [<options>]",
3449		NULL
3450	};
3451	const char *const sched_subcommands[] = { "record", "latency", "map",
3452						  "replay", "script",
3453						  "timehist", NULL };
3454	const char *sched_usage[] = {
3455		NULL,
3456		NULL
3457	};
3458	struct trace_sched_handler lat_ops  = {
3459		.wakeup_event	    = latency_wakeup_event,
3460		.switch_event	    = latency_switch_event,
3461		.runtime_event	    = latency_runtime_event,
3462		.migrate_task_event = latency_migrate_task_event,
3463	};
3464	struct trace_sched_handler map_ops  = {
3465		.switch_event	    = map_switch_event,
3466	};
3467	struct trace_sched_handler replay_ops  = {
3468		.wakeup_event	    = replay_wakeup_event,
3469		.switch_event	    = replay_switch_event,
3470		.fork_event	    = replay_fork_event,
3471	};
3472	unsigned int i;
3473
3474	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3475		sched.curr_pid[i] = -1;
3476
3477	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3478					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3479	if (!argc)
3480		usage_with_options(sched_usage, sched_options);
3481
3482	/*
3483	 * Aliased to 'perf script' for now:
3484	 */
3485	if (!strcmp(argv[0], "script"))
3486		return cmd_script(argc, argv);
3487
3488	if (!strncmp(argv[0], "rec", 3)) {
3489		return __cmd_record(argc, argv);
3490	} else if (!strncmp(argv[0], "lat", 3)) {
3491		sched.tp_handler = &lat_ops;
3492		if (argc > 1) {
3493			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3494			if (argc)
3495				usage_with_options(latency_usage, latency_options);
3496		}
3497		setup_sorting(&sched, latency_options, latency_usage);
3498		return perf_sched__lat(&sched);
3499	} else if (!strcmp(argv[0], "map")) {
3500		if (argc) {
3501			argc = parse_options(argc, argv, map_options, map_usage, 0);
3502			if (argc)
3503				usage_with_options(map_usage, map_options);
3504		}
3505		sched.tp_handler = &map_ops;
3506		setup_sorting(&sched, latency_options, latency_usage);
3507		return perf_sched__map(&sched);
3508	} else if (!strncmp(argv[0], "rep", 3)) {
3509		sched.tp_handler = &replay_ops;
3510		if (argc) {
3511			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3512			if (argc)
3513				usage_with_options(replay_usage, replay_options);
3514		}
3515		return perf_sched__replay(&sched);
3516	} else if (!strcmp(argv[0], "timehist")) {
3517		if (argc) {
3518			argc = parse_options(argc, argv, timehist_options,
3519					     timehist_usage, 0);
3520			if (argc)
3521				usage_with_options(timehist_usage, timehist_options);
3522		}
3523		if ((sched.show_wakeups || sched.show_next) &&
3524		    sched.summary_only) {
3525			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3526			parse_options_usage(timehist_usage, timehist_options, "s", true);
3527			if (sched.show_wakeups)
3528				parse_options_usage(NULL, timehist_options, "w", true);
3529			if (sched.show_next)
3530				parse_options_usage(NULL, timehist_options, "n", true);
3531			return -EINVAL;
3532		}
3533
3534		return perf_sched__timehist(&sched);
3535	} else {
3536		usage_with_options(sched_usage, sched_options);
3537	}
3538
3539	return 0;
3540}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29
  30#include <linux/kernel.h>
  31#include <linux/log2.h>
  32#include <linux/zalloc.h>
  33#include <sys/prctl.h>
  34#include <sys/resource.h>
  35#include <inttypes.h>
  36
  37#include <errno.h>
  38#include <semaphore.h>
  39#include <pthread.h>
  40#include <math.h>
  41#include <api/fs/fs.h>
  42#include <perf/cpumap.h>
  43#include <linux/time64.h>
  44#include <linux/err.h>
  45
  46#include <linux/ctype.h>
  47
  48#define PR_SET_NAME		15               /* Set process name */
  49#define MAX_CPUS		4096
  50#define COMM_LEN		20
  51#define SYM_LEN			129
  52#define MAX_PID			1024000
  53
  54static const char *cpu_list;
  55static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  56
  57struct sched_atom;
  58
  59struct task_desc {
  60	unsigned long		nr;
  61	unsigned long		pid;
  62	char			comm[COMM_LEN];
  63
  64	unsigned long		nr_events;
  65	unsigned long		curr_event;
  66	struct sched_atom	**atoms;
  67
  68	pthread_t		thread;
  69	sem_t			sleep_sem;
  70
  71	sem_t			ready_for_work;
  72	sem_t			work_done_sem;
  73
  74	u64			cpu_usage;
  75};
  76
  77enum sched_event_type {
  78	SCHED_EVENT_RUN,
  79	SCHED_EVENT_SLEEP,
  80	SCHED_EVENT_WAKEUP,
  81	SCHED_EVENT_MIGRATION,
  82};
  83
  84struct sched_atom {
  85	enum sched_event_type	type;
  86	int			specific_wait;
  87	u64			timestamp;
  88	u64			duration;
  89	unsigned long		nr;
  90	sem_t			*wait_sem;
  91	struct task_desc	*wakee;
  92};
  93
  94#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  95
  96/* task state bitmask, copied from include/linux/sched.h */
  97#define TASK_RUNNING		0
  98#define TASK_INTERRUPTIBLE	1
  99#define TASK_UNINTERRUPTIBLE	2
 100#define __TASK_STOPPED		4
 101#define __TASK_TRACED		8
 102/* in tsk->exit_state */
 103#define EXIT_DEAD		16
 104#define EXIT_ZOMBIE		32
 105#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 106/* in tsk->state again */
 107#define TASK_DEAD		64
 108#define TASK_WAKEKILL		128
 109#define TASK_WAKING		256
 110#define TASK_PARKED		512
 111
 112enum thread_state {
 113	THREAD_SLEEPING = 0,
 114	THREAD_WAIT_CPU,
 115	THREAD_SCHED_IN,
 116	THREAD_IGNORE
 117};
 118
 119struct work_atom {
 120	struct list_head	list;
 121	enum thread_state	state;
 122	u64			sched_out_time;
 123	u64			wake_up_time;
 124	u64			sched_in_time;
 125	u64			runtime;
 126};
 127
 128struct work_atoms {
 129	struct list_head	work_list;
 130	struct thread		*thread;
 131	struct rb_node		node;
 132	u64			max_lat;
 133	u64			max_lat_start;
 134	u64			max_lat_end;
 135	u64			total_lat;
 136	u64			nb_atoms;
 137	u64			total_runtime;
 138	int			num_merged;
 139};
 140
 141typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 142
 143struct perf_sched;
 144
 145struct trace_sched_handler {
 146	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 147			    struct perf_sample *sample, struct machine *machine);
 148
 149	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 150			     struct perf_sample *sample, struct machine *machine);
 151
 152	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 153			    struct perf_sample *sample, struct machine *machine);
 154
 155	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 156	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 157			  struct machine *machine);
 158
 159	int (*migrate_task_event)(struct perf_sched *sched,
 160				  struct evsel *evsel,
 161				  struct perf_sample *sample,
 162				  struct machine *machine);
 163};
 164
 165#define COLOR_PIDS PERF_COLOR_BLUE
 166#define COLOR_CPUS PERF_COLOR_BG_RED
 167
 168struct perf_sched_map {
 169	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 170	int			*comp_cpus;
 171	bool			 comp;
 172	struct perf_thread_map *color_pids;
 173	const char		*color_pids_str;
 174	struct perf_cpu_map	*color_cpus;
 175	const char		*color_cpus_str;
 176	struct perf_cpu_map	*cpus;
 177	const char		*cpus_str;
 178};
 179
 180struct perf_sched {
 181	struct perf_tool tool;
 182	const char	 *sort_order;
 183	unsigned long	 nr_tasks;
 184	struct task_desc **pid_to_task;
 185	struct task_desc **tasks;
 186	const struct trace_sched_handler *tp_handler;
 187	pthread_mutex_t	 start_work_mutex;
 188	pthread_mutex_t	 work_done_wait_mutex;
 189	int		 profile_cpu;
 190/*
 191 * Track the current task - that way we can know whether there's any
 192 * weird events, such as a task being switched away that is not current.
 193 */
 194	int		 max_cpu;
 195	u32		 curr_pid[MAX_CPUS];
 196	struct thread	 *curr_thread[MAX_CPUS];
 197	char		 next_shortname1;
 198	char		 next_shortname2;
 199	unsigned int	 replay_repeat;
 200	unsigned long	 nr_run_events;
 201	unsigned long	 nr_sleep_events;
 202	unsigned long	 nr_wakeup_events;
 203	unsigned long	 nr_sleep_corrections;
 204	unsigned long	 nr_run_events_optimized;
 205	unsigned long	 targetless_wakeups;
 206	unsigned long	 multitarget_wakeups;
 207	unsigned long	 nr_runs;
 208	unsigned long	 nr_timestamps;
 209	unsigned long	 nr_unordered_timestamps;
 210	unsigned long	 nr_context_switch_bugs;
 211	unsigned long	 nr_events;
 212	unsigned long	 nr_lost_chunks;
 213	unsigned long	 nr_lost_events;
 214	u64		 run_measurement_overhead;
 215	u64		 sleep_measurement_overhead;
 216	u64		 start_time;
 217	u64		 cpu_usage;
 218	u64		 runavg_cpu_usage;
 219	u64		 parent_cpu_usage;
 220	u64		 runavg_parent_cpu_usage;
 221	u64		 sum_runtime;
 222	u64		 sum_fluct;
 223	u64		 run_avg;
 224	u64		 all_runtime;
 225	u64		 all_count;
 226	u64		 cpu_last_switched[MAX_CPUS];
 227	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 228	struct list_head sort_list, cmp_pid;
 229	bool force;
 230	bool skip_merge;
 231	struct perf_sched_map map;
 232
 233	/* options for timehist command */
 234	bool		summary;
 235	bool		summary_only;
 236	bool		idle_hist;
 237	bool		show_callchain;
 238	unsigned int	max_stack;
 239	bool		show_cpu_visual;
 240	bool		show_wakeups;
 241	bool		show_next;
 242	bool		show_migrations;
 243	bool		show_state;
 244	u64		skipped_samples;
 245	const char	*time_str;
 246	struct perf_time_interval ptime;
 247	struct perf_time_interval hist_time;
 248};
 249
 250/* per thread run time data */
 251struct thread_runtime {
 252	u64 last_time;      /* time of previous sched in/out event */
 253	u64 dt_run;         /* run time */
 254	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 255	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 256	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 257	u64 dt_delay;       /* time between wakeup and sched-in */
 258	u64 ready_to_run;   /* time of wakeup */
 259
 260	struct stats run_stats;
 261	u64 total_run_time;
 262	u64 total_sleep_time;
 263	u64 total_iowait_time;
 264	u64 total_preempt_time;
 265	u64 total_delay_time;
 266
 267	int last_state;
 268
 269	char shortname[3];
 270	bool comm_changed;
 271
 272	u64 migrations;
 273};
 274
 275/* per event run time data */
 276struct evsel_runtime {
 277	u64 *last_time; /* time this event was last seen per cpu */
 278	u32 ncpu;       /* highest cpu slot allocated */
 279};
 280
 281/* per cpu idle time data */
 282struct idle_thread_runtime {
 283	struct thread_runtime	tr;
 284	struct thread		*last_thread;
 285	struct rb_root_cached	sorted_root;
 286	struct callchain_root	callchain;
 287	struct callchain_cursor	cursor;
 288};
 289
 290/* track idle times per cpu */
 291static struct thread **idle_threads;
 292static int idle_max_cpu;
 293static char idle_comm[] = "<idle>";
 294
 295static u64 get_nsecs(void)
 296{
 297	struct timespec ts;
 298
 299	clock_gettime(CLOCK_MONOTONIC, &ts);
 300
 301	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 302}
 303
 304static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 305{
 306	u64 T0 = get_nsecs(), T1;
 307
 308	do {
 309		T1 = get_nsecs();
 310	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 311}
 312
 313static void sleep_nsecs(u64 nsecs)
 314{
 315	struct timespec ts;
 316
 317	ts.tv_nsec = nsecs % 999999999;
 318	ts.tv_sec = nsecs / 999999999;
 319
 320	nanosleep(&ts, NULL);
 321}
 322
 323static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 324{
 325	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 326	int i;
 327
 328	for (i = 0; i < 10; i++) {
 329		T0 = get_nsecs();
 330		burn_nsecs(sched, 0);
 331		T1 = get_nsecs();
 332		delta = T1-T0;
 333		min_delta = min(min_delta, delta);
 334	}
 335	sched->run_measurement_overhead = min_delta;
 336
 337	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 338}
 339
 340static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 341{
 342	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 343	int i;
 344
 345	for (i = 0; i < 10; i++) {
 346		T0 = get_nsecs();
 347		sleep_nsecs(10000);
 348		T1 = get_nsecs();
 349		delta = T1-T0;
 350		min_delta = min(min_delta, delta);
 351	}
 352	min_delta -= 10000;
 353	sched->sleep_measurement_overhead = min_delta;
 354
 355	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 356}
 357
 358static struct sched_atom *
 359get_new_event(struct task_desc *task, u64 timestamp)
 360{
 361	struct sched_atom *event = zalloc(sizeof(*event));
 362	unsigned long idx = task->nr_events;
 363	size_t size;
 364
 365	event->timestamp = timestamp;
 366	event->nr = idx;
 367
 368	task->nr_events++;
 369	size = sizeof(struct sched_atom *) * task->nr_events;
 370	task->atoms = realloc(task->atoms, size);
 371	BUG_ON(!task->atoms);
 372
 373	task->atoms[idx] = event;
 374
 375	return event;
 376}
 377
 378static struct sched_atom *last_event(struct task_desc *task)
 379{
 380	if (!task->nr_events)
 381		return NULL;
 382
 383	return task->atoms[task->nr_events - 1];
 384}
 385
 386static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 387				u64 timestamp, u64 duration)
 388{
 389	struct sched_atom *event, *curr_event = last_event(task);
 390
 391	/*
 392	 * optimize an existing RUN event by merging this one
 393	 * to it:
 394	 */
 395	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 396		sched->nr_run_events_optimized++;
 397		curr_event->duration += duration;
 398		return;
 399	}
 400
 401	event = get_new_event(task, timestamp);
 402
 403	event->type = SCHED_EVENT_RUN;
 404	event->duration = duration;
 405
 406	sched->nr_run_events++;
 407}
 408
 409static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 410				   u64 timestamp, struct task_desc *wakee)
 411{
 412	struct sched_atom *event, *wakee_event;
 413
 414	event = get_new_event(task, timestamp);
 415	event->type = SCHED_EVENT_WAKEUP;
 416	event->wakee = wakee;
 417
 418	wakee_event = last_event(wakee);
 419	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 420		sched->targetless_wakeups++;
 421		return;
 422	}
 423	if (wakee_event->wait_sem) {
 424		sched->multitarget_wakeups++;
 425		return;
 426	}
 427
 428	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 429	sem_init(wakee_event->wait_sem, 0, 0);
 430	wakee_event->specific_wait = 1;
 431	event->wait_sem = wakee_event->wait_sem;
 432
 433	sched->nr_wakeup_events++;
 434}
 435
 436static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 437				  u64 timestamp, u64 task_state __maybe_unused)
 438{
 439	struct sched_atom *event = get_new_event(task, timestamp);
 440
 441	event->type = SCHED_EVENT_SLEEP;
 442
 443	sched->nr_sleep_events++;
 444}
 445
 446static struct task_desc *register_pid(struct perf_sched *sched,
 447				      unsigned long pid, const char *comm)
 448{
 449	struct task_desc *task;
 450	static int pid_max;
 451
 452	if (sched->pid_to_task == NULL) {
 453		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 454			pid_max = MAX_PID;
 455		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 456	}
 457	if (pid >= (unsigned long)pid_max) {
 458		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 459			sizeof(struct task_desc *))) == NULL);
 460		while (pid >= (unsigned long)pid_max)
 461			sched->pid_to_task[pid_max++] = NULL;
 462	}
 463
 464	task = sched->pid_to_task[pid];
 465
 466	if (task)
 467		return task;
 468
 469	task = zalloc(sizeof(*task));
 470	task->pid = pid;
 471	task->nr = sched->nr_tasks;
 472	strcpy(task->comm, comm);
 473	/*
 474	 * every task starts in sleeping state - this gets ignored
 475	 * if there's no wakeup pointing to this sleep state:
 476	 */
 477	add_sched_event_sleep(sched, task, 0, 0);
 478
 479	sched->pid_to_task[pid] = task;
 480	sched->nr_tasks++;
 481	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 482	BUG_ON(!sched->tasks);
 483	sched->tasks[task->nr] = task;
 484
 485	if (verbose > 0)
 486		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 487
 488	return task;
 489}
 490
 491
 492static void print_task_traces(struct perf_sched *sched)
 493{
 494	struct task_desc *task;
 495	unsigned long i;
 496
 497	for (i = 0; i < sched->nr_tasks; i++) {
 498		task = sched->tasks[i];
 499		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 500			task->nr, task->comm, task->pid, task->nr_events);
 501	}
 502}
 503
 504static void add_cross_task_wakeups(struct perf_sched *sched)
 505{
 506	struct task_desc *task1, *task2;
 507	unsigned long i, j;
 508
 509	for (i = 0; i < sched->nr_tasks; i++) {
 510		task1 = sched->tasks[i];
 511		j = i + 1;
 512		if (j == sched->nr_tasks)
 513			j = 0;
 514		task2 = sched->tasks[j];
 515		add_sched_event_wakeup(sched, task1, 0, task2);
 516	}
 517}
 518
 519static void perf_sched__process_event(struct perf_sched *sched,
 520				      struct sched_atom *atom)
 521{
 522	int ret = 0;
 523
 524	switch (atom->type) {
 525		case SCHED_EVENT_RUN:
 526			burn_nsecs(sched, atom->duration);
 527			break;
 528		case SCHED_EVENT_SLEEP:
 529			if (atom->wait_sem)
 530				ret = sem_wait(atom->wait_sem);
 531			BUG_ON(ret);
 532			break;
 533		case SCHED_EVENT_WAKEUP:
 534			if (atom->wait_sem)
 535				ret = sem_post(atom->wait_sem);
 536			BUG_ON(ret);
 537			break;
 538		case SCHED_EVENT_MIGRATION:
 539			break;
 540		default:
 541			BUG_ON(1);
 542	}
 543}
 544
 545static u64 get_cpu_usage_nsec_parent(void)
 546{
 547	struct rusage ru;
 548	u64 sum;
 549	int err;
 550
 551	err = getrusage(RUSAGE_SELF, &ru);
 552	BUG_ON(err);
 553
 554	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 555	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 556
 557	return sum;
 558}
 559
 560static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 561{
 562	struct perf_event_attr attr;
 563	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 564	int fd;
 565	struct rlimit limit;
 566	bool need_privilege = false;
 567
 568	memset(&attr, 0, sizeof(attr));
 569
 570	attr.type = PERF_TYPE_SOFTWARE;
 571	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 572
 573force_again:
 574	fd = sys_perf_event_open(&attr, 0, -1, -1,
 575				 perf_event_open_cloexec_flag());
 576
 577	if (fd < 0) {
 578		if (errno == EMFILE) {
 579			if (sched->force) {
 580				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 581				limit.rlim_cur += sched->nr_tasks - cur_task;
 582				if (limit.rlim_cur > limit.rlim_max) {
 583					limit.rlim_max = limit.rlim_cur;
 584					need_privilege = true;
 585				}
 586				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 587					if (need_privilege && errno == EPERM)
 588						strcpy(info, "Need privilege\n");
 589				} else
 590					goto force_again;
 591			} else
 592				strcpy(info, "Have a try with -f option\n");
 593		}
 594		pr_err("Error: sys_perf_event_open() syscall returned "
 595		       "with %d (%s)\n%s", fd,
 596		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 597		exit(EXIT_FAILURE);
 598	}
 599	return fd;
 600}
 601
 602static u64 get_cpu_usage_nsec_self(int fd)
 603{
 604	u64 runtime;
 605	int ret;
 606
 607	ret = read(fd, &runtime, sizeof(runtime));
 608	BUG_ON(ret != sizeof(runtime));
 609
 610	return runtime;
 611}
 612
 613struct sched_thread_parms {
 614	struct task_desc  *task;
 615	struct perf_sched *sched;
 616	int fd;
 617};
 618
 619static void *thread_func(void *ctx)
 620{
 621	struct sched_thread_parms *parms = ctx;
 622	struct task_desc *this_task = parms->task;
 623	struct perf_sched *sched = parms->sched;
 624	u64 cpu_usage_0, cpu_usage_1;
 625	unsigned long i, ret;
 626	char comm2[22];
 627	int fd = parms->fd;
 628
 629	zfree(&parms);
 630
 631	sprintf(comm2, ":%s", this_task->comm);
 632	prctl(PR_SET_NAME, comm2);
 633	if (fd < 0)
 634		return NULL;
 635again:
 636	ret = sem_post(&this_task->ready_for_work);
 637	BUG_ON(ret);
 638	ret = pthread_mutex_lock(&sched->start_work_mutex);
 639	BUG_ON(ret);
 640	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 641	BUG_ON(ret);
 642
 643	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 644
 645	for (i = 0; i < this_task->nr_events; i++) {
 646		this_task->curr_event = i;
 647		perf_sched__process_event(sched, this_task->atoms[i]);
 648	}
 649
 650	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 651	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 652	ret = sem_post(&this_task->work_done_sem);
 653	BUG_ON(ret);
 654
 655	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 656	BUG_ON(ret);
 657	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 658	BUG_ON(ret);
 659
 660	goto again;
 661}
 662
 663static void create_tasks(struct perf_sched *sched)
 664{
 665	struct task_desc *task;
 666	pthread_attr_t attr;
 667	unsigned long i;
 668	int err;
 669
 670	err = pthread_attr_init(&attr);
 671	BUG_ON(err);
 672	err = pthread_attr_setstacksize(&attr,
 673			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 674	BUG_ON(err);
 675	err = pthread_mutex_lock(&sched->start_work_mutex);
 676	BUG_ON(err);
 677	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 678	BUG_ON(err);
 679	for (i = 0; i < sched->nr_tasks; i++) {
 680		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 681		BUG_ON(parms == NULL);
 682		parms->task = task = sched->tasks[i];
 683		parms->sched = sched;
 684		parms->fd = self_open_counters(sched, i);
 685		sem_init(&task->sleep_sem, 0, 0);
 686		sem_init(&task->ready_for_work, 0, 0);
 687		sem_init(&task->work_done_sem, 0, 0);
 688		task->curr_event = 0;
 689		err = pthread_create(&task->thread, &attr, thread_func, parms);
 690		BUG_ON(err);
 691	}
 692}
 693
 694static void wait_for_tasks(struct perf_sched *sched)
 695{
 696	u64 cpu_usage_0, cpu_usage_1;
 697	struct task_desc *task;
 698	unsigned long i, ret;
 699
 700	sched->start_time = get_nsecs();
 701	sched->cpu_usage = 0;
 702	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 703
 704	for (i = 0; i < sched->nr_tasks; i++) {
 705		task = sched->tasks[i];
 706		ret = sem_wait(&task->ready_for_work);
 707		BUG_ON(ret);
 708		sem_init(&task->ready_for_work, 0, 0);
 709	}
 710	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 711	BUG_ON(ret);
 712
 713	cpu_usage_0 = get_cpu_usage_nsec_parent();
 714
 715	pthread_mutex_unlock(&sched->start_work_mutex);
 716
 717	for (i = 0; i < sched->nr_tasks; i++) {
 718		task = sched->tasks[i];
 719		ret = sem_wait(&task->work_done_sem);
 720		BUG_ON(ret);
 721		sem_init(&task->work_done_sem, 0, 0);
 722		sched->cpu_usage += task->cpu_usage;
 723		task->cpu_usage = 0;
 724	}
 725
 726	cpu_usage_1 = get_cpu_usage_nsec_parent();
 727	if (!sched->runavg_cpu_usage)
 728		sched->runavg_cpu_usage = sched->cpu_usage;
 729	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 730
 731	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 732	if (!sched->runavg_parent_cpu_usage)
 733		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 734	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 735					 sched->parent_cpu_usage)/sched->replay_repeat;
 736
 737	ret = pthread_mutex_lock(&sched->start_work_mutex);
 738	BUG_ON(ret);
 739
 740	for (i = 0; i < sched->nr_tasks; i++) {
 741		task = sched->tasks[i];
 742		sem_init(&task->sleep_sem, 0, 0);
 743		task->curr_event = 0;
 744	}
 745}
 746
 747static void run_one_test(struct perf_sched *sched)
 748{
 749	u64 T0, T1, delta, avg_delta, fluct;
 750
 751	T0 = get_nsecs();
 752	wait_for_tasks(sched);
 753	T1 = get_nsecs();
 754
 755	delta = T1 - T0;
 756	sched->sum_runtime += delta;
 757	sched->nr_runs++;
 758
 759	avg_delta = sched->sum_runtime / sched->nr_runs;
 760	if (delta < avg_delta)
 761		fluct = avg_delta - delta;
 762	else
 763		fluct = delta - avg_delta;
 764	sched->sum_fluct += fluct;
 765	if (!sched->run_avg)
 766		sched->run_avg = delta;
 767	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 768
 769	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 770
 771	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 772
 773	printf("cpu: %0.2f / %0.2f",
 774		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 775
 776#if 0
 777	/*
 778	 * rusage statistics done by the parent, these are less
 779	 * accurate than the sched->sum_exec_runtime based statistics:
 780	 */
 781	printf(" [%0.2f / %0.2f]",
 782		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 783		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 784#endif
 785
 786	printf("\n");
 787
 788	if (sched->nr_sleep_corrections)
 789		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 790	sched->nr_sleep_corrections = 0;
 791}
 792
 793static void test_calibrations(struct perf_sched *sched)
 794{
 795	u64 T0, T1;
 796
 797	T0 = get_nsecs();
 798	burn_nsecs(sched, NSEC_PER_MSEC);
 799	T1 = get_nsecs();
 800
 801	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 802
 803	T0 = get_nsecs();
 804	sleep_nsecs(NSEC_PER_MSEC);
 805	T1 = get_nsecs();
 806
 807	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 808}
 809
 810static int
 811replay_wakeup_event(struct perf_sched *sched,
 812		    struct evsel *evsel, struct perf_sample *sample,
 813		    struct machine *machine __maybe_unused)
 814{
 815	const char *comm = evsel__strval(evsel, sample, "comm");
 816	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 817	struct task_desc *waker, *wakee;
 818
 819	if (verbose > 0) {
 820		printf("sched_wakeup event %p\n", evsel);
 821
 822		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 823	}
 824
 825	waker = register_pid(sched, sample->tid, "<unknown>");
 826	wakee = register_pid(sched, pid, comm);
 827
 828	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 829	return 0;
 830}
 831
 832static int replay_switch_event(struct perf_sched *sched,
 833			       struct evsel *evsel,
 834			       struct perf_sample *sample,
 835			       struct machine *machine __maybe_unused)
 836{
 837	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 838		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 839	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 840		  next_pid = evsel__intval(evsel, sample, "next_pid");
 841	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 842	struct task_desc *prev, __maybe_unused *next;
 843	u64 timestamp0, timestamp = sample->time;
 844	int cpu = sample->cpu;
 845	s64 delta;
 846
 847	if (verbose > 0)
 848		printf("sched_switch event %p\n", evsel);
 849
 850	if (cpu >= MAX_CPUS || cpu < 0)
 851		return 0;
 852
 853	timestamp0 = sched->cpu_last_switched[cpu];
 854	if (timestamp0)
 855		delta = timestamp - timestamp0;
 856	else
 857		delta = 0;
 858
 859	if (delta < 0) {
 860		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 861		return -1;
 862	}
 863
 864	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 865		 prev_comm, prev_pid, next_comm, next_pid, delta);
 866
 867	prev = register_pid(sched, prev_pid, prev_comm);
 868	next = register_pid(sched, next_pid, next_comm);
 869
 870	sched->cpu_last_switched[cpu] = timestamp;
 871
 872	add_sched_event_run(sched, prev, timestamp, delta);
 873	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 874
 875	return 0;
 876}
 877
 878static int replay_fork_event(struct perf_sched *sched,
 879			     union perf_event *event,
 880			     struct machine *machine)
 881{
 882	struct thread *child, *parent;
 883
 884	child = machine__findnew_thread(machine, event->fork.pid,
 885					event->fork.tid);
 886	parent = machine__findnew_thread(machine, event->fork.ppid,
 887					 event->fork.ptid);
 888
 889	if (child == NULL || parent == NULL) {
 890		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 891				 child, parent);
 892		goto out_put;
 893	}
 894
 895	if (verbose > 0) {
 896		printf("fork event\n");
 897		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 898		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 899	}
 900
 901	register_pid(sched, parent->tid, thread__comm_str(parent));
 902	register_pid(sched, child->tid, thread__comm_str(child));
 903out_put:
 904	thread__put(child);
 905	thread__put(parent);
 906	return 0;
 907}
 908
 909struct sort_dimension {
 910	const char		*name;
 911	sort_fn_t		cmp;
 912	struct list_head	list;
 913};
 914
 915/*
 916 * handle runtime stats saved per thread
 917 */
 918static struct thread_runtime *thread__init_runtime(struct thread *thread)
 919{
 920	struct thread_runtime *r;
 921
 922	r = zalloc(sizeof(struct thread_runtime));
 923	if (!r)
 924		return NULL;
 925
 926	init_stats(&r->run_stats);
 927	thread__set_priv(thread, r);
 928
 929	return r;
 930}
 931
 932static struct thread_runtime *thread__get_runtime(struct thread *thread)
 933{
 934	struct thread_runtime *tr;
 935
 936	tr = thread__priv(thread);
 937	if (tr == NULL) {
 938		tr = thread__init_runtime(thread);
 939		if (tr == NULL)
 940			pr_debug("Failed to malloc memory for runtime data.\n");
 941	}
 942
 943	return tr;
 944}
 945
 946static int
 947thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 948{
 949	struct sort_dimension *sort;
 950	int ret = 0;
 951
 952	BUG_ON(list_empty(list));
 953
 954	list_for_each_entry(sort, list, list) {
 955		ret = sort->cmp(l, r);
 956		if (ret)
 957			return ret;
 958	}
 959
 960	return ret;
 961}
 962
 963static struct work_atoms *
 964thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 965			 struct list_head *sort_list)
 966{
 967	struct rb_node *node = root->rb_root.rb_node;
 968	struct work_atoms key = { .thread = thread };
 969
 970	while (node) {
 971		struct work_atoms *atoms;
 972		int cmp;
 973
 974		atoms = container_of(node, struct work_atoms, node);
 975
 976		cmp = thread_lat_cmp(sort_list, &key, atoms);
 977		if (cmp > 0)
 978			node = node->rb_left;
 979		else if (cmp < 0)
 980			node = node->rb_right;
 981		else {
 982			BUG_ON(thread != atoms->thread);
 983			return atoms;
 984		}
 985	}
 986	return NULL;
 987}
 988
 989static void
 990__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 991			 struct list_head *sort_list)
 992{
 993	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 994	bool leftmost = true;
 995
 996	while (*new) {
 997		struct work_atoms *this;
 998		int cmp;
 999
1000		this = container_of(*new, struct work_atoms, node);
1001		parent = *new;
1002
1003		cmp = thread_lat_cmp(sort_list, data, this);
1004
1005		if (cmp > 0)
1006			new = &((*new)->rb_left);
1007		else {
1008			new = &((*new)->rb_right);
1009			leftmost = false;
1010		}
1011	}
1012
1013	rb_link_node(&data->node, parent, new);
1014	rb_insert_color_cached(&data->node, root, leftmost);
1015}
1016
1017static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1018{
1019	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1020	if (!atoms) {
1021		pr_err("No memory at %s\n", __func__);
1022		return -1;
1023	}
1024
1025	atoms->thread = thread__get(thread);
1026	INIT_LIST_HEAD(&atoms->work_list);
1027	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1028	return 0;
1029}
1030
1031static char sched_out_state(u64 prev_state)
1032{
1033	const char *str = TASK_STATE_TO_CHAR_STR;
1034
1035	return str[prev_state];
1036}
1037
1038static int
1039add_sched_out_event(struct work_atoms *atoms,
1040		    char run_state,
1041		    u64 timestamp)
1042{
1043	struct work_atom *atom = zalloc(sizeof(*atom));
1044	if (!atom) {
1045		pr_err("Non memory at %s", __func__);
1046		return -1;
1047	}
1048
1049	atom->sched_out_time = timestamp;
1050
1051	if (run_state == 'R') {
1052		atom->state = THREAD_WAIT_CPU;
1053		atom->wake_up_time = atom->sched_out_time;
1054	}
1055
1056	list_add_tail(&atom->list, &atoms->work_list);
1057	return 0;
1058}
1059
1060static void
1061add_runtime_event(struct work_atoms *atoms, u64 delta,
1062		  u64 timestamp __maybe_unused)
1063{
1064	struct work_atom *atom;
1065
1066	BUG_ON(list_empty(&atoms->work_list));
1067
1068	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1069
1070	atom->runtime += delta;
1071	atoms->total_runtime += delta;
1072}
1073
1074static void
1075add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1076{
1077	struct work_atom *atom;
1078	u64 delta;
1079
1080	if (list_empty(&atoms->work_list))
1081		return;
1082
1083	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1084
1085	if (atom->state != THREAD_WAIT_CPU)
1086		return;
1087
1088	if (timestamp < atom->wake_up_time) {
1089		atom->state = THREAD_IGNORE;
1090		return;
1091	}
1092
1093	atom->state = THREAD_SCHED_IN;
1094	atom->sched_in_time = timestamp;
1095
1096	delta = atom->sched_in_time - atom->wake_up_time;
1097	atoms->total_lat += delta;
1098	if (delta > atoms->max_lat) {
1099		atoms->max_lat = delta;
1100		atoms->max_lat_start = atom->wake_up_time;
1101		atoms->max_lat_end = timestamp;
1102	}
1103	atoms->nb_atoms++;
1104}
1105
1106static int latency_switch_event(struct perf_sched *sched,
1107				struct evsel *evsel,
1108				struct perf_sample *sample,
1109				struct machine *machine)
1110{
1111	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1112		  next_pid = evsel__intval(evsel, sample, "next_pid");
1113	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1114	struct work_atoms *out_events, *in_events;
1115	struct thread *sched_out, *sched_in;
1116	u64 timestamp0, timestamp = sample->time;
1117	int cpu = sample->cpu, err = -1;
1118	s64 delta;
1119
1120	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1121
1122	timestamp0 = sched->cpu_last_switched[cpu];
1123	sched->cpu_last_switched[cpu] = timestamp;
1124	if (timestamp0)
1125		delta = timestamp - timestamp0;
1126	else
1127		delta = 0;
1128
1129	if (delta < 0) {
1130		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1131		return -1;
1132	}
1133
1134	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1135	sched_in = machine__findnew_thread(machine, -1, next_pid);
1136	if (sched_out == NULL || sched_in == NULL)
1137		goto out_put;
1138
1139	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1140	if (!out_events) {
1141		if (thread_atoms_insert(sched, sched_out))
1142			goto out_put;
1143		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1144		if (!out_events) {
1145			pr_err("out-event: Internal tree error");
1146			goto out_put;
1147		}
1148	}
1149	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1150		return -1;
1151
1152	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1153	if (!in_events) {
1154		if (thread_atoms_insert(sched, sched_in))
1155			goto out_put;
1156		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1157		if (!in_events) {
1158			pr_err("in-event: Internal tree error");
1159			goto out_put;
1160		}
1161		/*
1162		 * Take came in we have not heard about yet,
1163		 * add in an initial atom in runnable state:
1164		 */
1165		if (add_sched_out_event(in_events, 'R', timestamp))
1166			goto out_put;
1167	}
1168	add_sched_in_event(in_events, timestamp);
1169	err = 0;
1170out_put:
1171	thread__put(sched_out);
1172	thread__put(sched_in);
1173	return err;
1174}
1175
1176static int latency_runtime_event(struct perf_sched *sched,
1177				 struct evsel *evsel,
1178				 struct perf_sample *sample,
1179				 struct machine *machine)
1180{
1181	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1182	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1183	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1184	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1185	u64 timestamp = sample->time;
1186	int cpu = sample->cpu, err = -1;
1187
1188	if (thread == NULL)
1189		return -1;
1190
1191	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1192	if (!atoms) {
1193		if (thread_atoms_insert(sched, thread))
1194			goto out_put;
1195		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1196		if (!atoms) {
1197			pr_err("in-event: Internal tree error");
1198			goto out_put;
1199		}
1200		if (add_sched_out_event(atoms, 'R', timestamp))
1201			goto out_put;
1202	}
1203
1204	add_runtime_event(atoms, runtime, timestamp);
1205	err = 0;
1206out_put:
1207	thread__put(thread);
1208	return err;
1209}
1210
1211static int latency_wakeup_event(struct perf_sched *sched,
1212				struct evsel *evsel,
1213				struct perf_sample *sample,
1214				struct machine *machine)
1215{
1216	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1217	struct work_atoms *atoms;
1218	struct work_atom *atom;
1219	struct thread *wakee;
1220	u64 timestamp = sample->time;
1221	int err = -1;
1222
1223	wakee = machine__findnew_thread(machine, -1, pid);
1224	if (wakee == NULL)
1225		return -1;
1226	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1227	if (!atoms) {
1228		if (thread_atoms_insert(sched, wakee))
1229			goto out_put;
1230		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1231		if (!atoms) {
1232			pr_err("wakeup-event: Internal tree error");
1233			goto out_put;
1234		}
1235		if (add_sched_out_event(atoms, 'S', timestamp))
1236			goto out_put;
1237	}
1238
1239	BUG_ON(list_empty(&atoms->work_list));
1240
1241	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1242
1243	/*
1244	 * As we do not guarantee the wakeup event happens when
1245	 * task is out of run queue, also may happen when task is
1246	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1247	 * then we should not set the ->wake_up_time when wake up a
1248	 * task which is on run queue.
1249	 *
1250	 * You WILL be missing events if you've recorded only
1251	 * one CPU, or are only looking at only one, so don't
1252	 * skip in this case.
1253	 */
1254	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1255		goto out_ok;
1256
1257	sched->nr_timestamps++;
1258	if (atom->sched_out_time > timestamp) {
1259		sched->nr_unordered_timestamps++;
1260		goto out_ok;
1261	}
1262
1263	atom->state = THREAD_WAIT_CPU;
1264	atom->wake_up_time = timestamp;
1265out_ok:
1266	err = 0;
1267out_put:
1268	thread__put(wakee);
1269	return err;
1270}
1271
1272static int latency_migrate_task_event(struct perf_sched *sched,
1273				      struct evsel *evsel,
1274				      struct perf_sample *sample,
1275				      struct machine *machine)
1276{
1277	const u32 pid = evsel__intval(evsel, sample, "pid");
1278	u64 timestamp = sample->time;
1279	struct work_atoms *atoms;
1280	struct work_atom *atom;
1281	struct thread *migrant;
1282	int err = -1;
1283
1284	/*
1285	 * Only need to worry about migration when profiling one CPU.
1286	 */
1287	if (sched->profile_cpu == -1)
1288		return 0;
1289
1290	migrant = machine__findnew_thread(machine, -1, pid);
1291	if (migrant == NULL)
1292		return -1;
1293	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294	if (!atoms) {
1295		if (thread_atoms_insert(sched, migrant))
1296			goto out_put;
1297		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1298		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1299		if (!atoms) {
1300			pr_err("migration-event: Internal tree error");
1301			goto out_put;
1302		}
1303		if (add_sched_out_event(atoms, 'R', timestamp))
1304			goto out_put;
1305	}
1306
1307	BUG_ON(list_empty(&atoms->work_list));
1308
1309	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1310	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1311
1312	sched->nr_timestamps++;
1313
1314	if (atom->sched_out_time > timestamp)
1315		sched->nr_unordered_timestamps++;
1316	err = 0;
1317out_put:
1318	thread__put(migrant);
1319	return err;
1320}
1321
1322static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1323{
1324	int i;
1325	int ret;
1326	u64 avg;
1327	char max_lat_start[32], max_lat_end[32];
1328
1329	if (!work_list->nb_atoms)
1330		return;
1331	/*
1332	 * Ignore idle threads:
1333	 */
1334	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1335		return;
1336
1337	sched->all_runtime += work_list->total_runtime;
1338	sched->all_count   += work_list->nb_atoms;
1339
1340	if (work_list->num_merged > 1)
1341		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1342	else
1343		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1344
1345	for (i = 0; i < 24 - ret; i++)
1346		printf(" ");
1347
1348	avg = work_list->total_lat / work_list->nb_atoms;
1349	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1350	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1351
1352	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1353	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1354		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1355		 (double)work_list->max_lat / NSEC_PER_MSEC,
1356		 max_lat_start, max_lat_end);
1357}
1358
1359static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1360{
1361	if (l->thread == r->thread)
1362		return 0;
1363	if (l->thread->tid < r->thread->tid)
1364		return -1;
1365	if (l->thread->tid > r->thread->tid)
1366		return 1;
1367	return (int)(l->thread - r->thread);
1368}
1369
1370static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1371{
1372	u64 avgl, avgr;
1373
1374	if (!l->nb_atoms)
1375		return -1;
1376
1377	if (!r->nb_atoms)
1378		return 1;
1379
1380	avgl = l->total_lat / l->nb_atoms;
1381	avgr = r->total_lat / r->nb_atoms;
1382
1383	if (avgl < avgr)
1384		return -1;
1385	if (avgl > avgr)
1386		return 1;
1387
1388	return 0;
1389}
1390
1391static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1392{
1393	if (l->max_lat < r->max_lat)
1394		return -1;
1395	if (l->max_lat > r->max_lat)
1396		return 1;
1397
1398	return 0;
1399}
1400
1401static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1402{
1403	if (l->nb_atoms < r->nb_atoms)
1404		return -1;
1405	if (l->nb_atoms > r->nb_atoms)
1406		return 1;
1407
1408	return 0;
1409}
1410
1411static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1412{
1413	if (l->total_runtime < r->total_runtime)
1414		return -1;
1415	if (l->total_runtime > r->total_runtime)
1416		return 1;
1417
1418	return 0;
1419}
1420
1421static int sort_dimension__add(const char *tok, struct list_head *list)
1422{
1423	size_t i;
1424	static struct sort_dimension avg_sort_dimension = {
1425		.name = "avg",
1426		.cmp  = avg_cmp,
1427	};
1428	static struct sort_dimension max_sort_dimension = {
1429		.name = "max",
1430		.cmp  = max_cmp,
1431	};
1432	static struct sort_dimension pid_sort_dimension = {
1433		.name = "pid",
1434		.cmp  = pid_cmp,
1435	};
1436	static struct sort_dimension runtime_sort_dimension = {
1437		.name = "runtime",
1438		.cmp  = runtime_cmp,
1439	};
1440	static struct sort_dimension switch_sort_dimension = {
1441		.name = "switch",
1442		.cmp  = switch_cmp,
1443	};
1444	struct sort_dimension *available_sorts[] = {
1445		&pid_sort_dimension,
1446		&avg_sort_dimension,
1447		&max_sort_dimension,
1448		&switch_sort_dimension,
1449		&runtime_sort_dimension,
1450	};
1451
1452	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1453		if (!strcmp(available_sorts[i]->name, tok)) {
1454			list_add_tail(&available_sorts[i]->list, list);
1455
1456			return 0;
1457		}
1458	}
1459
1460	return -1;
1461}
1462
1463static void perf_sched__sort_lat(struct perf_sched *sched)
1464{
1465	struct rb_node *node;
1466	struct rb_root_cached *root = &sched->atom_root;
1467again:
1468	for (;;) {
1469		struct work_atoms *data;
1470		node = rb_first_cached(root);
1471		if (!node)
1472			break;
1473
1474		rb_erase_cached(node, root);
1475		data = rb_entry(node, struct work_atoms, node);
1476		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1477	}
1478	if (root == &sched->atom_root) {
1479		root = &sched->merged_atom_root;
1480		goto again;
1481	}
1482}
1483
1484static int process_sched_wakeup_event(struct perf_tool *tool,
1485				      struct evsel *evsel,
1486				      struct perf_sample *sample,
1487				      struct machine *machine)
1488{
1489	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1490
1491	if (sched->tp_handler->wakeup_event)
1492		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1493
1494	return 0;
1495}
1496
1497union map_priv {
1498	void	*ptr;
1499	bool	 color;
1500};
1501
1502static bool thread__has_color(struct thread *thread)
1503{
1504	union map_priv priv = {
1505		.ptr = thread__priv(thread),
1506	};
1507
1508	return priv.color;
1509}
1510
1511static struct thread*
1512map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1513{
1514	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1515	union map_priv priv = {
1516		.color = false,
1517	};
1518
1519	if (!sched->map.color_pids || !thread || thread__priv(thread))
1520		return thread;
1521
1522	if (thread_map__has(sched->map.color_pids, tid))
1523		priv.color = true;
1524
1525	thread__set_priv(thread, priv.ptr);
1526	return thread;
1527}
1528
1529static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1530			    struct perf_sample *sample, struct machine *machine)
1531{
1532	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1533	struct thread *sched_in;
1534	struct thread_runtime *tr;
1535	int new_shortname;
1536	u64 timestamp0, timestamp = sample->time;
1537	s64 delta;
1538	int i, this_cpu = sample->cpu;
1539	int cpus_nr;
1540	bool new_cpu = false;
1541	const char *color = PERF_COLOR_NORMAL;
1542	char stimestamp[32];
1543
1544	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1545
1546	if (this_cpu > sched->max_cpu)
1547		sched->max_cpu = this_cpu;
1548
1549	if (sched->map.comp) {
1550		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1551		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1552			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1553			new_cpu = true;
1554		}
1555	} else
1556		cpus_nr = sched->max_cpu;
1557
1558	timestamp0 = sched->cpu_last_switched[this_cpu];
1559	sched->cpu_last_switched[this_cpu] = timestamp;
1560	if (timestamp0)
1561		delta = timestamp - timestamp0;
1562	else
1563		delta = 0;
1564
1565	if (delta < 0) {
1566		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1567		return -1;
1568	}
1569
1570	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1571	if (sched_in == NULL)
1572		return -1;
1573
1574	tr = thread__get_runtime(sched_in);
1575	if (tr == NULL) {
1576		thread__put(sched_in);
1577		return -1;
1578	}
1579
1580	sched->curr_thread[this_cpu] = thread__get(sched_in);
1581
1582	printf("  ");
1583
1584	new_shortname = 0;
1585	if (!tr->shortname[0]) {
1586		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1587			/*
1588			 * Don't allocate a letter-number for swapper:0
1589			 * as a shortname. Instead, we use '.' for it.
1590			 */
1591			tr->shortname[0] = '.';
1592			tr->shortname[1] = ' ';
1593		} else {
1594			tr->shortname[0] = sched->next_shortname1;
1595			tr->shortname[1] = sched->next_shortname2;
1596
1597			if (sched->next_shortname1 < 'Z') {
1598				sched->next_shortname1++;
1599			} else {
1600				sched->next_shortname1 = 'A';
1601				if (sched->next_shortname2 < '9')
1602					sched->next_shortname2++;
1603				else
1604					sched->next_shortname2 = '0';
1605			}
1606		}
1607		new_shortname = 1;
1608	}
1609
1610	for (i = 0; i < cpus_nr; i++) {
1611		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1612		struct thread *curr_thread = sched->curr_thread[cpu];
1613		struct thread_runtime *curr_tr;
1614		const char *pid_color = color;
1615		const char *cpu_color = color;
1616
1617		if (curr_thread && thread__has_color(curr_thread))
1618			pid_color = COLOR_PIDS;
1619
1620		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1621			continue;
1622
1623		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1624			cpu_color = COLOR_CPUS;
1625
1626		if (cpu != this_cpu)
1627			color_fprintf(stdout, color, " ");
1628		else
1629			color_fprintf(stdout, cpu_color, "*");
1630
1631		if (sched->curr_thread[cpu]) {
1632			curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1633			if (curr_tr == NULL) {
1634				thread__put(sched_in);
1635				return -1;
1636			}
1637			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1638		} else
1639			color_fprintf(stdout, color, "   ");
1640	}
1641
1642	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1643		goto out;
1644
1645	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1646	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1647	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1648		const char *pid_color = color;
1649
1650		if (thread__has_color(sched_in))
1651			pid_color = COLOR_PIDS;
1652
1653		color_fprintf(stdout, pid_color, "%s => %s:%d",
1654		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1655		tr->comm_changed = false;
1656	}
1657
1658	if (sched->map.comp && new_cpu)
1659		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1660
1661out:
1662	color_fprintf(stdout, color, "\n");
1663
1664	thread__put(sched_in);
1665
1666	return 0;
1667}
1668
1669static int process_sched_switch_event(struct perf_tool *tool,
1670				      struct evsel *evsel,
1671				      struct perf_sample *sample,
1672				      struct machine *machine)
1673{
1674	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1675	int this_cpu = sample->cpu, err = 0;
1676	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1677	    next_pid = evsel__intval(evsel, sample, "next_pid");
1678
1679	if (sched->curr_pid[this_cpu] != (u32)-1) {
1680		/*
1681		 * Are we trying to switch away a PID that is
1682		 * not current?
1683		 */
1684		if (sched->curr_pid[this_cpu] != prev_pid)
1685			sched->nr_context_switch_bugs++;
1686	}
1687
1688	if (sched->tp_handler->switch_event)
1689		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1690
1691	sched->curr_pid[this_cpu] = next_pid;
1692	return err;
1693}
1694
1695static int process_sched_runtime_event(struct perf_tool *tool,
1696				       struct evsel *evsel,
1697				       struct perf_sample *sample,
1698				       struct machine *machine)
1699{
1700	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1701
1702	if (sched->tp_handler->runtime_event)
1703		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1704
1705	return 0;
1706}
1707
1708static int perf_sched__process_fork_event(struct perf_tool *tool,
1709					  union perf_event *event,
1710					  struct perf_sample *sample,
1711					  struct machine *machine)
1712{
1713	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1714
1715	/* run the fork event through the perf machinery */
1716	perf_event__process_fork(tool, event, sample, machine);
1717
1718	/* and then run additional processing needed for this command */
1719	if (sched->tp_handler->fork_event)
1720		return sched->tp_handler->fork_event(sched, event, machine);
1721
1722	return 0;
1723}
1724
1725static int process_sched_migrate_task_event(struct perf_tool *tool,
1726					    struct evsel *evsel,
1727					    struct perf_sample *sample,
1728					    struct machine *machine)
1729{
1730	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1731
1732	if (sched->tp_handler->migrate_task_event)
1733		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1734
1735	return 0;
1736}
1737
1738typedef int (*tracepoint_handler)(struct perf_tool *tool,
1739				  struct evsel *evsel,
1740				  struct perf_sample *sample,
1741				  struct machine *machine);
1742
1743static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1744						 union perf_event *event __maybe_unused,
1745						 struct perf_sample *sample,
1746						 struct evsel *evsel,
1747						 struct machine *machine)
1748{
1749	int err = 0;
1750
1751	if (evsel->handler != NULL) {
1752		tracepoint_handler f = evsel->handler;
1753		err = f(tool, evsel, sample, machine);
1754	}
1755
1756	return err;
1757}
1758
1759static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1760				    union perf_event *event,
1761				    struct perf_sample *sample,
1762				    struct machine *machine)
1763{
1764	struct thread *thread;
1765	struct thread_runtime *tr;
1766	int err;
1767
1768	err = perf_event__process_comm(tool, event, sample, machine);
1769	if (err)
1770		return err;
1771
1772	thread = machine__find_thread(machine, sample->pid, sample->tid);
1773	if (!thread) {
1774		pr_err("Internal error: can't find thread\n");
1775		return -1;
1776	}
1777
1778	tr = thread__get_runtime(thread);
1779	if (tr == NULL) {
1780		thread__put(thread);
1781		return -1;
1782	}
1783
1784	tr->comm_changed = true;
1785	thread__put(thread);
1786
1787	return 0;
1788}
1789
1790static int perf_sched__read_events(struct perf_sched *sched)
1791{
1792	const struct evsel_str_handler handlers[] = {
1793		{ "sched:sched_switch",	      process_sched_switch_event, },
1794		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1795		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1796		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1797		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1798	};
1799	struct perf_session *session;
1800	struct perf_data data = {
1801		.path  = input_name,
1802		.mode  = PERF_DATA_MODE_READ,
1803		.force = sched->force,
1804	};
1805	int rc = -1;
1806
1807	session = perf_session__new(&data, false, &sched->tool);
1808	if (IS_ERR(session)) {
1809		pr_debug("Error creating perf session");
1810		return PTR_ERR(session);
1811	}
1812
1813	symbol__init(&session->header.env);
1814
1815	if (perf_session__set_tracepoints_handlers(session, handlers))
1816		goto out_delete;
1817
1818	if (perf_session__has_traces(session, "record -R")) {
1819		int err = perf_session__process_events(session);
1820		if (err) {
1821			pr_err("Failed to process events, error %d", err);
1822			goto out_delete;
1823		}
1824
1825		sched->nr_events      = session->evlist->stats.nr_events[0];
1826		sched->nr_lost_events = session->evlist->stats.total_lost;
1827		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1828	}
1829
1830	rc = 0;
1831out_delete:
1832	perf_session__delete(session);
1833	return rc;
1834}
1835
1836/*
1837 * scheduling times are printed as msec.usec
1838 */
1839static inline void print_sched_time(unsigned long long nsecs, int width)
1840{
1841	unsigned long msecs;
1842	unsigned long usecs;
1843
1844	msecs  = nsecs / NSEC_PER_MSEC;
1845	nsecs -= msecs * NSEC_PER_MSEC;
1846	usecs  = nsecs / NSEC_PER_USEC;
1847	printf("%*lu.%03lu ", width, msecs, usecs);
1848}
1849
1850/*
1851 * returns runtime data for event, allocating memory for it the
1852 * first time it is used.
1853 */
1854static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1855{
1856	struct evsel_runtime *r = evsel->priv;
1857
1858	if (r == NULL) {
1859		r = zalloc(sizeof(struct evsel_runtime));
1860		evsel->priv = r;
1861	}
1862
1863	return r;
1864}
1865
1866/*
1867 * save last time event was seen per cpu
1868 */
1869static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
 
1870{
1871	struct evsel_runtime *r = evsel__get_runtime(evsel);
1872
1873	if (r == NULL)
1874		return;
1875
1876	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1877		int i, n = __roundup_pow_of_two(cpu+1);
1878		void *p = r->last_time;
1879
1880		p = realloc(r->last_time, n * sizeof(u64));
1881		if (!p)
1882			return;
1883
1884		r->last_time = p;
1885		for (i = r->ncpu; i < n; ++i)
1886			r->last_time[i] = (u64) 0;
1887
1888		r->ncpu = n;
1889	}
1890
1891	r->last_time[cpu] = timestamp;
1892}
1893
1894/* returns last time this event was seen on the given cpu */
1895static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1896{
1897	struct evsel_runtime *r = evsel__get_runtime(evsel);
1898
1899	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1900		return 0;
1901
1902	return r->last_time[cpu];
1903}
1904
1905static int comm_width = 30;
1906
1907static char *timehist_get_commstr(struct thread *thread)
1908{
1909	static char str[32];
1910	const char *comm = thread__comm_str(thread);
1911	pid_t tid = thread->tid;
1912	pid_t pid = thread->pid_;
1913	int n;
1914
1915	if (pid == 0)
1916		n = scnprintf(str, sizeof(str), "%s", comm);
1917
1918	else if (tid != pid)
1919		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1920
1921	else
1922		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1923
1924	if (n > comm_width)
1925		comm_width = n;
1926
1927	return str;
1928}
1929
1930static void timehist_header(struct perf_sched *sched)
1931{
1932	u32 ncpus = sched->max_cpu + 1;
1933	u32 i, j;
1934
1935	printf("%15s %6s ", "time", "cpu");
1936
1937	if (sched->show_cpu_visual) {
1938		printf(" ");
1939		for (i = 0, j = 0; i < ncpus; ++i) {
1940			printf("%x", j++);
1941			if (j > 15)
1942				j = 0;
1943		}
1944		printf(" ");
1945	}
1946
1947	printf(" %-*s  %9s  %9s  %9s", comm_width,
1948		"task name", "wait time", "sch delay", "run time");
1949
1950	if (sched->show_state)
1951		printf("  %s", "state");
1952
1953	printf("\n");
1954
1955	/*
1956	 * units row
1957	 */
1958	printf("%15s %-6s ", "", "");
1959
1960	if (sched->show_cpu_visual)
1961		printf(" %*s ", ncpus, "");
1962
1963	printf(" %-*s  %9s  %9s  %9s", comm_width,
1964	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1965
1966	if (sched->show_state)
1967		printf("  %5s", "");
1968
1969	printf("\n");
1970
1971	/*
1972	 * separator
1973	 */
1974	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1975
1976	if (sched->show_cpu_visual)
1977		printf(" %.*s ", ncpus, graph_dotted_line);
1978
1979	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1980		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1981		graph_dotted_line);
1982
1983	if (sched->show_state)
1984		printf("  %.5s", graph_dotted_line);
1985
1986	printf("\n");
1987}
1988
1989static char task_state_char(struct thread *thread, int state)
1990{
1991	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1992	unsigned bit = state ? ffs(state) : 0;
1993
1994	/* 'I' for idle */
1995	if (thread->tid == 0)
1996		return 'I';
1997
1998	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1999}
2000
2001static void timehist_print_sample(struct perf_sched *sched,
2002				  struct evsel *evsel,
2003				  struct perf_sample *sample,
2004				  struct addr_location *al,
2005				  struct thread *thread,
2006				  u64 t, int state)
2007{
2008	struct thread_runtime *tr = thread__priv(thread);
2009	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2010	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2011	u32 max_cpus = sched->max_cpu + 1;
2012	char tstr[64];
2013	char nstr[30];
2014	u64 wait_time;
2015
2016	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2017		return;
2018
2019	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2020	printf("%15s [%04d] ", tstr, sample->cpu);
2021
2022	if (sched->show_cpu_visual) {
2023		u32 i;
2024		char c;
2025
2026		printf(" ");
2027		for (i = 0; i < max_cpus; ++i) {
2028			/* flag idle times with 'i'; others are sched events */
2029			if (i == sample->cpu)
2030				c = (thread->tid == 0) ? 'i' : 's';
2031			else
2032				c = ' ';
2033			printf("%c", c);
2034		}
2035		printf(" ");
2036	}
2037
2038	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2039
2040	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2041	print_sched_time(wait_time, 6);
2042
2043	print_sched_time(tr->dt_delay, 6);
2044	print_sched_time(tr->dt_run, 6);
2045
2046	if (sched->show_state)
2047		printf(" %5c ", task_state_char(thread, state));
2048
2049	if (sched->show_next) {
2050		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2051		printf(" %-*s", comm_width, nstr);
2052	}
2053
2054	if (sched->show_wakeups && !sched->show_next)
2055		printf("  %-*s", comm_width, "");
2056
2057	if (thread->tid == 0)
2058		goto out;
2059
2060	if (sched->show_callchain)
2061		printf("  ");
2062
2063	sample__fprintf_sym(sample, al, 0,
2064			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2065			    EVSEL__PRINT_CALLCHAIN_ARROW |
2066			    EVSEL__PRINT_SKIP_IGNORED,
2067			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2068
2069out:
2070	printf("\n");
2071}
2072
2073/*
2074 * Explanation of delta-time stats:
2075 *
2076 *            t = time of current schedule out event
2077 *        tprev = time of previous sched out event
2078 *                also time of schedule-in event for current task
2079 *    last_time = time of last sched change event for current task
2080 *                (i.e, time process was last scheduled out)
2081 * ready_to_run = time of wakeup for current task
2082 *
2083 * -----|------------|------------|------------|------
2084 *    last         ready        tprev          t
2085 *    time         to run
2086 *
2087 *      |-------- dt_wait --------|
2088 *                   |- dt_delay -|-- dt_run --|
2089 *
2090 *   dt_run = run time of current task
2091 *  dt_wait = time between last schedule out event for task and tprev
2092 *            represents time spent off the cpu
2093 * dt_delay = time between wakeup and schedule-in of task
2094 */
2095
2096static void timehist_update_runtime_stats(struct thread_runtime *r,
2097					 u64 t, u64 tprev)
2098{
2099	r->dt_delay   = 0;
2100	r->dt_sleep   = 0;
2101	r->dt_iowait  = 0;
2102	r->dt_preempt = 0;
2103	r->dt_run     = 0;
2104
2105	if (tprev) {
2106		r->dt_run = t - tprev;
2107		if (r->ready_to_run) {
2108			if (r->ready_to_run > tprev)
2109				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2110			else
2111				r->dt_delay = tprev - r->ready_to_run;
2112		}
2113
2114		if (r->last_time > tprev)
2115			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2116		else if (r->last_time) {
2117			u64 dt_wait = tprev - r->last_time;
2118
2119			if (r->last_state == TASK_RUNNING)
2120				r->dt_preempt = dt_wait;
2121			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2122				r->dt_iowait = dt_wait;
2123			else
2124				r->dt_sleep = dt_wait;
2125		}
2126	}
2127
2128	update_stats(&r->run_stats, r->dt_run);
2129
2130	r->total_run_time     += r->dt_run;
2131	r->total_delay_time   += r->dt_delay;
2132	r->total_sleep_time   += r->dt_sleep;
2133	r->total_iowait_time  += r->dt_iowait;
2134	r->total_preempt_time += r->dt_preempt;
2135}
2136
2137static bool is_idle_sample(struct perf_sample *sample,
2138			   struct evsel *evsel)
2139{
2140	/* pid 0 == swapper == idle task */
2141	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2142		return evsel__intval(evsel, sample, "prev_pid") == 0;
2143
2144	return sample->pid == 0;
2145}
2146
2147static void save_task_callchain(struct perf_sched *sched,
2148				struct perf_sample *sample,
2149				struct evsel *evsel,
2150				struct machine *machine)
2151{
2152	struct callchain_cursor *cursor = &callchain_cursor;
2153	struct thread *thread;
2154
2155	/* want main thread for process - has maps */
2156	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2157	if (thread == NULL) {
2158		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2159		return;
2160	}
2161
2162	if (!sched->show_callchain || sample->callchain == NULL)
2163		return;
2164
2165	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2166				      NULL, NULL, sched->max_stack + 2) != 0) {
2167		if (verbose > 0)
2168			pr_err("Failed to resolve callchain. Skipping\n");
2169
2170		return;
2171	}
2172
2173	callchain_cursor_commit(cursor);
2174
2175	while (true) {
2176		struct callchain_cursor_node *node;
2177		struct symbol *sym;
2178
2179		node = callchain_cursor_current(cursor);
2180		if (node == NULL)
2181			break;
2182
2183		sym = node->ms.sym;
2184		if (sym) {
2185			if (!strcmp(sym->name, "schedule") ||
2186			    !strcmp(sym->name, "__schedule") ||
2187			    !strcmp(sym->name, "preempt_schedule"))
2188				sym->ignore = 1;
2189		}
2190
2191		callchain_cursor_advance(cursor);
2192	}
2193}
2194
2195static int init_idle_thread(struct thread *thread)
2196{
2197	struct idle_thread_runtime *itr;
2198
2199	thread__set_comm(thread, idle_comm, 0);
2200
2201	itr = zalloc(sizeof(*itr));
2202	if (itr == NULL)
2203		return -ENOMEM;
2204
2205	init_stats(&itr->tr.run_stats);
2206	callchain_init(&itr->callchain);
2207	callchain_cursor_reset(&itr->cursor);
2208	thread__set_priv(thread, itr);
2209
2210	return 0;
2211}
2212
2213/*
2214 * Track idle stats per cpu by maintaining a local thread
2215 * struct for the idle task on each cpu.
2216 */
2217static int init_idle_threads(int ncpu)
2218{
2219	int i, ret;
2220
2221	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2222	if (!idle_threads)
2223		return -ENOMEM;
2224
2225	idle_max_cpu = ncpu;
2226
2227	/* allocate the actual thread struct if needed */
2228	for (i = 0; i < ncpu; ++i) {
2229		idle_threads[i] = thread__new(0, 0);
2230		if (idle_threads[i] == NULL)
2231			return -ENOMEM;
2232
2233		ret = init_idle_thread(idle_threads[i]);
2234		if (ret < 0)
2235			return ret;
2236	}
2237
2238	return 0;
2239}
2240
2241static void free_idle_threads(void)
2242{
2243	int i;
2244
2245	if (idle_threads == NULL)
2246		return;
2247
2248	for (i = 0; i < idle_max_cpu; ++i) {
2249		if ((idle_threads[i]))
2250			thread__delete(idle_threads[i]);
2251	}
2252
2253	free(idle_threads);
2254}
2255
2256static struct thread *get_idle_thread(int cpu)
2257{
2258	/*
2259	 * expand/allocate array of pointers to local thread
2260	 * structs if needed
2261	 */
2262	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2263		int i, j = __roundup_pow_of_two(cpu+1);
2264		void *p;
2265
2266		p = realloc(idle_threads, j * sizeof(struct thread *));
2267		if (!p)
2268			return NULL;
2269
2270		idle_threads = (struct thread **) p;
2271		for (i = idle_max_cpu; i < j; ++i)
2272			idle_threads[i] = NULL;
2273
2274		idle_max_cpu = j;
2275	}
2276
2277	/* allocate a new thread struct if needed */
2278	if (idle_threads[cpu] == NULL) {
2279		idle_threads[cpu] = thread__new(0, 0);
2280
2281		if (idle_threads[cpu]) {
2282			if (init_idle_thread(idle_threads[cpu]) < 0)
2283				return NULL;
2284		}
2285	}
2286
2287	return idle_threads[cpu];
2288}
2289
2290static void save_idle_callchain(struct perf_sched *sched,
2291				struct idle_thread_runtime *itr,
2292				struct perf_sample *sample)
2293{
2294	if (!sched->show_callchain || sample->callchain == NULL)
2295		return;
2296
2297	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2298}
2299
2300static struct thread *timehist_get_thread(struct perf_sched *sched,
2301					  struct perf_sample *sample,
2302					  struct machine *machine,
2303					  struct evsel *evsel)
2304{
2305	struct thread *thread;
2306
2307	if (is_idle_sample(sample, evsel)) {
2308		thread = get_idle_thread(sample->cpu);
2309		if (thread == NULL)
2310			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2311
2312	} else {
2313		/* there were samples with tid 0 but non-zero pid */
2314		thread = machine__findnew_thread(machine, sample->pid,
2315						 sample->tid ?: sample->pid);
2316		if (thread == NULL) {
2317			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2318				 sample->tid);
2319		}
2320
2321		save_task_callchain(sched, sample, evsel, machine);
2322		if (sched->idle_hist) {
2323			struct thread *idle;
2324			struct idle_thread_runtime *itr;
2325
2326			idle = get_idle_thread(sample->cpu);
2327			if (idle == NULL) {
2328				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2329				return NULL;
2330			}
2331
2332			itr = thread__priv(idle);
2333			if (itr == NULL)
2334				return NULL;
2335
2336			itr->last_thread = thread;
2337
2338			/* copy task callchain when entering to idle */
2339			if (evsel__intval(evsel, sample, "next_pid") == 0)
2340				save_idle_callchain(sched, itr, sample);
2341		}
2342	}
2343
2344	return thread;
2345}
2346
2347static bool timehist_skip_sample(struct perf_sched *sched,
2348				 struct thread *thread,
2349				 struct evsel *evsel,
2350				 struct perf_sample *sample)
2351{
2352	bool rc = false;
2353
2354	if (thread__is_filtered(thread)) {
2355		rc = true;
2356		sched->skipped_samples++;
2357	}
2358
2359	if (sched->idle_hist) {
2360		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2361			rc = true;
2362		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2363			 evsel__intval(evsel, sample, "next_pid") != 0)
2364			rc = true;
2365	}
2366
2367	return rc;
2368}
2369
2370static void timehist_print_wakeup_event(struct perf_sched *sched,
2371					struct evsel *evsel,
2372					struct perf_sample *sample,
2373					struct machine *machine,
2374					struct thread *awakened)
2375{
2376	struct thread *thread;
2377	char tstr[64];
2378
2379	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2380	if (thread == NULL)
2381		return;
2382
2383	/* show wakeup unless both awakee and awaker are filtered */
2384	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2385	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2386		return;
2387	}
2388
2389	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2390	printf("%15s [%04d] ", tstr, sample->cpu);
2391	if (sched->show_cpu_visual)
2392		printf(" %*s ", sched->max_cpu + 1, "");
2393
2394	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2395
2396	/* dt spacer */
2397	printf("  %9s  %9s  %9s ", "", "", "");
2398
2399	printf("awakened: %s", timehist_get_commstr(awakened));
2400
2401	printf("\n");
2402}
2403
2404static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2405					union perf_event *event __maybe_unused,
2406					struct evsel *evsel __maybe_unused,
2407					struct perf_sample *sample __maybe_unused,
2408					struct machine *machine __maybe_unused)
2409{
2410	return 0;
2411}
2412
2413static int timehist_sched_wakeup_event(struct perf_tool *tool,
2414				       union perf_event *event __maybe_unused,
2415				       struct evsel *evsel,
2416				       struct perf_sample *sample,
2417				       struct machine *machine)
2418{
2419	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2420	struct thread *thread;
2421	struct thread_runtime *tr = NULL;
2422	/* want pid of awakened task not pid in sample */
2423	const u32 pid = evsel__intval(evsel, sample, "pid");
2424
2425	thread = machine__findnew_thread(machine, 0, pid);
2426	if (thread == NULL)
2427		return -1;
2428
2429	tr = thread__get_runtime(thread);
2430	if (tr == NULL)
2431		return -1;
2432
2433	if (tr->ready_to_run == 0)
2434		tr->ready_to_run = sample->time;
2435
2436	/* show wakeups if requested */
2437	if (sched->show_wakeups &&
2438	    !perf_time__skip_sample(&sched->ptime, sample->time))
2439		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2440
2441	return 0;
2442}
2443
2444static void timehist_print_migration_event(struct perf_sched *sched,
2445					struct evsel *evsel,
2446					struct perf_sample *sample,
2447					struct machine *machine,
2448					struct thread *migrated)
2449{
2450	struct thread *thread;
2451	char tstr[64];
2452	u32 max_cpus = sched->max_cpu + 1;
2453	u32 ocpu, dcpu;
2454
2455	if (sched->summary_only)
2456		return;
2457
2458	max_cpus = sched->max_cpu + 1;
2459	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2460	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2461
2462	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2463	if (thread == NULL)
2464		return;
2465
2466	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2467	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2468		return;
2469	}
2470
2471	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2472	printf("%15s [%04d] ", tstr, sample->cpu);
2473
2474	if (sched->show_cpu_visual) {
2475		u32 i;
2476		char c;
2477
2478		printf("  ");
2479		for (i = 0; i < max_cpus; ++i) {
2480			c = (i == sample->cpu) ? 'm' : ' ';
2481			printf("%c", c);
2482		}
2483		printf("  ");
2484	}
2485
2486	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2487
2488	/* dt spacer */
2489	printf("  %9s  %9s  %9s ", "", "", "");
2490
2491	printf("migrated: %s", timehist_get_commstr(migrated));
2492	printf(" cpu %d => %d", ocpu, dcpu);
2493
2494	printf("\n");
2495}
2496
2497static int timehist_migrate_task_event(struct perf_tool *tool,
2498				       union perf_event *event __maybe_unused,
2499				       struct evsel *evsel,
2500				       struct perf_sample *sample,
2501				       struct machine *machine)
2502{
2503	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2504	struct thread *thread;
2505	struct thread_runtime *tr = NULL;
2506	/* want pid of migrated task not pid in sample */
2507	const u32 pid = evsel__intval(evsel, sample, "pid");
2508
2509	thread = machine__findnew_thread(machine, 0, pid);
2510	if (thread == NULL)
2511		return -1;
2512
2513	tr = thread__get_runtime(thread);
2514	if (tr == NULL)
2515		return -1;
2516
2517	tr->migrations++;
2518
2519	/* show migrations if requested */
2520	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2521
2522	return 0;
2523}
2524
2525static int timehist_sched_change_event(struct perf_tool *tool,
2526				       union perf_event *event,
2527				       struct evsel *evsel,
2528				       struct perf_sample *sample,
2529				       struct machine *machine)
2530{
2531	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2532	struct perf_time_interval *ptime = &sched->ptime;
2533	struct addr_location al;
2534	struct thread *thread;
2535	struct thread_runtime *tr = NULL;
2536	u64 tprev, t = sample->time;
2537	int rc = 0;
2538	int state = evsel__intval(evsel, sample, "prev_state");
 
2539
2540	if (machine__resolve(machine, &al, sample) < 0) {
2541		pr_err("problem processing %d event. skipping it\n",
2542		       event->header.type);
2543		rc = -1;
2544		goto out;
2545	}
2546
2547	thread = timehist_get_thread(sched, sample, machine, evsel);
2548	if (thread == NULL) {
2549		rc = -1;
2550		goto out;
2551	}
2552
2553	if (timehist_skip_sample(sched, thread, evsel, sample))
2554		goto out;
2555
2556	tr = thread__get_runtime(thread);
2557	if (tr == NULL) {
2558		rc = -1;
2559		goto out;
2560	}
2561
2562	tprev = evsel__get_time(evsel, sample->cpu);
2563
2564	/*
2565	 * If start time given:
2566	 * - sample time is under window user cares about - skip sample
2567	 * - tprev is under window user cares about  - reset to start of window
2568	 */
2569	if (ptime->start && ptime->start > t)
2570		goto out;
2571
2572	if (tprev && ptime->start > tprev)
2573		tprev = ptime->start;
2574
2575	/*
2576	 * If end time given:
2577	 * - previous sched event is out of window - we are done
2578	 * - sample time is beyond window user cares about - reset it
2579	 *   to close out stats for time window interest
2580	 */
2581	if (ptime->end) {
2582		if (tprev > ptime->end)
2583			goto out;
2584
2585		if (t > ptime->end)
2586			t = ptime->end;
2587	}
2588
2589	if (!sched->idle_hist || thread->tid == 0) {
2590		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2591			timehist_update_runtime_stats(tr, t, tprev);
2592
2593		if (sched->idle_hist) {
2594			struct idle_thread_runtime *itr = (void *)tr;
2595			struct thread_runtime *last_tr;
2596
2597			BUG_ON(thread->tid != 0);
2598
2599			if (itr->last_thread == NULL)
2600				goto out;
2601
2602			/* add current idle time as last thread's runtime */
2603			last_tr = thread__get_runtime(itr->last_thread);
2604			if (last_tr == NULL)
2605				goto out;
2606
2607			timehist_update_runtime_stats(last_tr, t, tprev);
2608			/*
2609			 * remove delta time of last thread as it's not updated
2610			 * and otherwise it will show an invalid value next
2611			 * time.  we only care total run time and run stat.
2612			 */
2613			last_tr->dt_run = 0;
2614			last_tr->dt_delay = 0;
2615			last_tr->dt_sleep = 0;
2616			last_tr->dt_iowait = 0;
2617			last_tr->dt_preempt = 0;
2618
2619			if (itr->cursor.nr)
2620				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2621
2622			itr->last_thread = NULL;
2623		}
2624	}
2625
2626	if (!sched->summary_only)
2627		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2628
2629out:
2630	if (sched->hist_time.start == 0 && t >= ptime->start)
2631		sched->hist_time.start = t;
2632	if (ptime->end == 0 || t <= ptime->end)
2633		sched->hist_time.end = t;
2634
2635	if (tr) {
2636		/* time of this sched_switch event becomes last time task seen */
2637		tr->last_time = sample->time;
2638
2639		/* last state is used to determine where to account wait time */
2640		tr->last_state = state;
2641
2642		/* sched out event for task so reset ready to run time */
2643		tr->ready_to_run = 0;
2644	}
2645
2646	evsel__save_time(evsel, sample->time, sample->cpu);
2647
2648	return rc;
2649}
2650
2651static int timehist_sched_switch_event(struct perf_tool *tool,
2652			     union perf_event *event,
2653			     struct evsel *evsel,
2654			     struct perf_sample *sample,
2655			     struct machine *machine __maybe_unused)
2656{
2657	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2658}
2659
2660static int process_lost(struct perf_tool *tool __maybe_unused,
2661			union perf_event *event,
2662			struct perf_sample *sample,
2663			struct machine *machine __maybe_unused)
2664{
2665	char tstr[64];
2666
2667	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2668	printf("%15s ", tstr);
2669	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2670
2671	return 0;
2672}
2673
2674
2675static void print_thread_runtime(struct thread *t,
2676				 struct thread_runtime *r)
2677{
2678	double mean = avg_stats(&r->run_stats);
2679	float stddev;
2680
2681	printf("%*s   %5d  %9" PRIu64 " ",
2682	       comm_width, timehist_get_commstr(t), t->ppid,
2683	       (u64) r->run_stats.n);
2684
2685	print_sched_time(r->total_run_time, 8);
2686	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2687	print_sched_time(r->run_stats.min, 6);
2688	printf(" ");
2689	print_sched_time((u64) mean, 6);
2690	printf(" ");
2691	print_sched_time(r->run_stats.max, 6);
2692	printf("  ");
2693	printf("%5.2f", stddev);
2694	printf("   %5" PRIu64, r->migrations);
2695	printf("\n");
2696}
2697
2698static void print_thread_waittime(struct thread *t,
2699				  struct thread_runtime *r)
2700{
2701	printf("%*s   %5d  %9" PRIu64 " ",
2702	       comm_width, timehist_get_commstr(t), t->ppid,
2703	       (u64) r->run_stats.n);
2704
2705	print_sched_time(r->total_run_time, 8);
2706	print_sched_time(r->total_sleep_time, 6);
2707	printf(" ");
2708	print_sched_time(r->total_iowait_time, 6);
2709	printf(" ");
2710	print_sched_time(r->total_preempt_time, 6);
2711	printf(" ");
2712	print_sched_time(r->total_delay_time, 6);
2713	printf("\n");
2714}
2715
2716struct total_run_stats {
2717	struct perf_sched *sched;
2718	u64  sched_count;
2719	u64  task_count;
2720	u64  total_run_time;
2721};
2722
2723static int __show_thread_runtime(struct thread *t, void *priv)
2724{
2725	struct total_run_stats *stats = priv;
2726	struct thread_runtime *r;
2727
2728	if (thread__is_filtered(t))
2729		return 0;
2730
2731	r = thread__priv(t);
2732	if (r && r->run_stats.n) {
2733		stats->task_count++;
2734		stats->sched_count += r->run_stats.n;
2735		stats->total_run_time += r->total_run_time;
2736
2737		if (stats->sched->show_state)
2738			print_thread_waittime(t, r);
2739		else
2740			print_thread_runtime(t, r);
2741	}
2742
2743	return 0;
2744}
2745
2746static int show_thread_runtime(struct thread *t, void *priv)
2747{
2748	if (t->dead)
2749		return 0;
2750
2751	return __show_thread_runtime(t, priv);
2752}
2753
2754static int show_deadthread_runtime(struct thread *t, void *priv)
2755{
2756	if (!t->dead)
2757		return 0;
2758
2759	return __show_thread_runtime(t, priv);
2760}
2761
2762static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2763{
2764	const char *sep = " <- ";
2765	struct callchain_list *chain;
2766	size_t ret = 0;
2767	char bf[1024];
2768	bool first;
2769
2770	if (node == NULL)
2771		return 0;
2772
2773	ret = callchain__fprintf_folded(fp, node->parent);
2774	first = (ret == 0);
2775
2776	list_for_each_entry(chain, &node->val, list) {
2777		if (chain->ip >= PERF_CONTEXT_MAX)
2778			continue;
2779		if (chain->ms.sym && chain->ms.sym->ignore)
2780			continue;
2781		ret += fprintf(fp, "%s%s", first ? "" : sep,
2782			       callchain_list__sym_name(chain, bf, sizeof(bf),
2783							false));
2784		first = false;
2785	}
2786
2787	return ret;
2788}
2789
2790static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2791{
2792	size_t ret = 0;
2793	FILE *fp = stdout;
2794	struct callchain_node *chain;
2795	struct rb_node *rb_node = rb_first_cached(root);
2796
2797	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2798	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2799	       graph_dotted_line);
2800
2801	while (rb_node) {
2802		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2803		rb_node = rb_next(rb_node);
2804
2805		ret += fprintf(fp, "  ");
2806		print_sched_time(chain->hit, 12);
2807		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2808		ret += fprintf(fp, " %8d  ", chain->count);
2809		ret += callchain__fprintf_folded(fp, chain);
2810		ret += fprintf(fp, "\n");
2811	}
2812
2813	return ret;
2814}
2815
2816static void timehist_print_summary(struct perf_sched *sched,
2817				   struct perf_session *session)
2818{
2819	struct machine *m = &session->machines.host;
2820	struct total_run_stats totals;
2821	u64 task_count;
2822	struct thread *t;
2823	struct thread_runtime *r;
2824	int i;
2825	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2826
2827	memset(&totals, 0, sizeof(totals));
2828	totals.sched = sched;
2829
2830	if (sched->idle_hist) {
2831		printf("\nIdle-time summary\n");
2832		printf("%*s  parent  sched-out  ", comm_width, "comm");
2833		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2834	} else if (sched->show_state) {
2835		printf("\nWait-time summary\n");
2836		printf("%*s  parent   sched-in  ", comm_width, "comm");
2837		printf("   run-time      sleep      iowait     preempt       delay\n");
2838	} else {
2839		printf("\nRuntime summary\n");
2840		printf("%*s  parent   sched-in  ", comm_width, "comm");
2841		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2842	}
2843	printf("%*s            (count)  ", comm_width, "");
2844	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2845	       sched->show_state ? "(msec)" : "%");
2846	printf("%.117s\n", graph_dotted_line);
2847
2848	machine__for_each_thread(m, show_thread_runtime, &totals);
2849	task_count = totals.task_count;
2850	if (!task_count)
2851		printf("<no still running tasks>\n");
2852
2853	printf("\nTerminated tasks:\n");
2854	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2855	if (task_count == totals.task_count)
2856		printf("<no terminated tasks>\n");
2857
2858	/* CPU idle stats not tracked when samples were skipped */
2859	if (sched->skipped_samples && !sched->idle_hist)
2860		return;
2861
2862	printf("\nIdle stats:\n");
2863	for (i = 0; i < idle_max_cpu; ++i) {
2864		if (cpu_list && !test_bit(i, cpu_bitmap))
2865			continue;
2866
2867		t = idle_threads[i];
2868		if (!t)
2869			continue;
2870
2871		r = thread__priv(t);
2872		if (r && r->run_stats.n) {
2873			totals.sched_count += r->run_stats.n;
2874			printf("    CPU %2d idle for ", i);
2875			print_sched_time(r->total_run_time, 6);
2876			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2877		} else
2878			printf("    CPU %2d idle entire time window\n", i);
2879	}
2880
2881	if (sched->idle_hist && sched->show_callchain) {
2882		callchain_param.mode  = CHAIN_FOLDED;
2883		callchain_param.value = CCVAL_PERIOD;
2884
2885		callchain_register_param(&callchain_param);
2886
2887		printf("\nIdle stats by callchain:\n");
2888		for (i = 0; i < idle_max_cpu; ++i) {
2889			struct idle_thread_runtime *itr;
2890
2891			t = idle_threads[i];
2892			if (!t)
2893				continue;
2894
2895			itr = thread__priv(t);
2896			if (itr == NULL)
2897				continue;
2898
2899			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2900					     0, &callchain_param);
2901
2902			printf("  CPU %2d:", i);
2903			print_sched_time(itr->tr.total_run_time, 6);
2904			printf(" msec\n");
2905			timehist_print_idlehist_callchain(&itr->sorted_root);
2906			printf("\n");
2907		}
2908	}
2909
2910	printf("\n"
2911	       "    Total number of unique tasks: %" PRIu64 "\n"
2912	       "Total number of context switches: %" PRIu64 "\n",
2913	       totals.task_count, totals.sched_count);
2914
2915	printf("           Total run time (msec): ");
2916	print_sched_time(totals.total_run_time, 2);
2917	printf("\n");
2918
2919	printf("    Total scheduling time (msec): ");
2920	print_sched_time(hist_time, 2);
2921	printf(" (x %d)\n", sched->max_cpu);
2922}
2923
2924typedef int (*sched_handler)(struct perf_tool *tool,
2925			  union perf_event *event,
2926			  struct evsel *evsel,
2927			  struct perf_sample *sample,
2928			  struct machine *machine);
2929
2930static int perf_timehist__process_sample(struct perf_tool *tool,
2931					 union perf_event *event,
2932					 struct perf_sample *sample,
2933					 struct evsel *evsel,
2934					 struct machine *machine)
2935{
2936	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2937	int err = 0;
2938	int this_cpu = sample->cpu;
2939
2940	if (this_cpu > sched->max_cpu)
2941		sched->max_cpu = this_cpu;
2942
2943	if (evsel->handler != NULL) {
2944		sched_handler f = evsel->handler;
2945
2946		err = f(tool, event, evsel, sample, machine);
2947	}
2948
2949	return err;
2950}
2951
2952static int timehist_check_attr(struct perf_sched *sched,
2953			       struct evlist *evlist)
2954{
2955	struct evsel *evsel;
2956	struct evsel_runtime *er;
2957
2958	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2959		er = evsel__get_runtime(evsel);
2960		if (er == NULL) {
2961			pr_err("Failed to allocate memory for evsel runtime data\n");
2962			return -1;
2963		}
2964
2965		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2966			pr_info("Samples do not have callchains.\n");
2967			sched->show_callchain = 0;
2968			symbol_conf.use_callchain = 0;
2969		}
2970	}
2971
2972	return 0;
2973}
2974
2975static int perf_sched__timehist(struct perf_sched *sched)
2976{
2977	struct evsel_str_handler handlers[] = {
2978		{ "sched:sched_switch",       timehist_sched_switch_event, },
2979		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2980		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
2981		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2982	};
2983	const struct evsel_str_handler migrate_handlers[] = {
2984		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2985	};
2986	struct perf_data data = {
2987		.path  = input_name,
2988		.mode  = PERF_DATA_MODE_READ,
2989		.force = sched->force,
2990	};
2991
2992	struct perf_session *session;
2993	struct evlist *evlist;
2994	int err = -1;
2995
2996	/*
2997	 * event handlers for timehist option
2998	 */
2999	sched->tool.sample	 = perf_timehist__process_sample;
3000	sched->tool.mmap	 = perf_event__process_mmap;
3001	sched->tool.comm	 = perf_event__process_comm;
3002	sched->tool.exit	 = perf_event__process_exit;
3003	sched->tool.fork	 = perf_event__process_fork;
3004	sched->tool.lost	 = process_lost;
3005	sched->tool.attr	 = perf_event__process_attr;
3006	sched->tool.tracing_data = perf_event__process_tracing_data;
3007	sched->tool.build_id	 = perf_event__process_build_id;
3008
3009	sched->tool.ordered_events = true;
3010	sched->tool.ordering_requires_timestamps = true;
3011
3012	symbol_conf.use_callchain = sched->show_callchain;
3013
3014	session = perf_session__new(&data, false, &sched->tool);
3015	if (IS_ERR(session))
3016		return PTR_ERR(session);
3017
3018	if (cpu_list) {
3019		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3020		if (err < 0)
3021			goto out;
3022	}
3023
3024	evlist = session->evlist;
3025
3026	symbol__init(&session->header.env);
3027
3028	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3029		pr_err("Invalid time string\n");
3030		return -EINVAL;
3031	}
3032
3033	if (timehist_check_attr(sched, evlist) != 0)
3034		goto out;
3035
3036	setup_pager();
3037
3038	/* prefer sched_waking if it is captured */
3039	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3040		handlers[1].handler = timehist_sched_wakeup_ignore;
3041
3042	/* setup per-evsel handlers */
3043	if (perf_session__set_tracepoints_handlers(session, handlers))
3044		goto out;
3045
3046	/* sched_switch event at a minimum needs to exist */
3047	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
 
3048		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3049		goto out;
3050	}
3051
3052	if (sched->show_migrations &&
3053	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3054		goto out;
3055
3056	/* pre-allocate struct for per-CPU idle stats */
3057	sched->max_cpu = session->header.env.nr_cpus_online;
3058	if (sched->max_cpu == 0)
3059		sched->max_cpu = 4;
3060	if (init_idle_threads(sched->max_cpu))
3061		goto out;
3062
3063	/* summary_only implies summary option, but don't overwrite summary if set */
3064	if (sched->summary_only)
3065		sched->summary = sched->summary_only;
3066
3067	if (!sched->summary_only)
3068		timehist_header(sched);
3069
3070	err = perf_session__process_events(session);
3071	if (err) {
3072		pr_err("Failed to process events, error %d", err);
3073		goto out;
3074	}
3075
3076	sched->nr_events      = evlist->stats.nr_events[0];
3077	sched->nr_lost_events = evlist->stats.total_lost;
3078	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3079
3080	if (sched->summary)
3081		timehist_print_summary(sched, session);
3082
3083out:
3084	free_idle_threads();
3085	perf_session__delete(session);
3086
3087	return err;
3088}
3089
3090
3091static void print_bad_events(struct perf_sched *sched)
3092{
3093	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3094		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3095			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3096			sched->nr_unordered_timestamps, sched->nr_timestamps);
3097	}
3098	if (sched->nr_lost_events && sched->nr_events) {
3099		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3100			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3101			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3102	}
3103	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3104		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3105			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3106			sched->nr_context_switch_bugs, sched->nr_timestamps);
3107		if (sched->nr_lost_events)
3108			printf(" (due to lost events?)");
3109		printf("\n");
3110	}
3111}
3112
3113static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3114{
3115	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3116	struct work_atoms *this;
3117	const char *comm = thread__comm_str(data->thread), *this_comm;
3118	bool leftmost = true;
3119
3120	while (*new) {
3121		int cmp;
3122
3123		this = container_of(*new, struct work_atoms, node);
3124		parent = *new;
3125
3126		this_comm = thread__comm_str(this->thread);
3127		cmp = strcmp(comm, this_comm);
3128		if (cmp > 0) {
3129			new = &((*new)->rb_left);
3130		} else if (cmp < 0) {
3131			new = &((*new)->rb_right);
3132			leftmost = false;
3133		} else {
3134			this->num_merged++;
3135			this->total_runtime += data->total_runtime;
3136			this->nb_atoms += data->nb_atoms;
3137			this->total_lat += data->total_lat;
3138			list_splice(&data->work_list, &this->work_list);
3139			if (this->max_lat < data->max_lat) {
3140				this->max_lat = data->max_lat;
3141				this->max_lat_start = data->max_lat_start;
3142				this->max_lat_end = data->max_lat_end;
3143			}
3144			zfree(&data);
3145			return;
3146		}
3147	}
3148
3149	data->num_merged++;
3150	rb_link_node(&data->node, parent, new);
3151	rb_insert_color_cached(&data->node, root, leftmost);
3152}
3153
3154static void perf_sched__merge_lat(struct perf_sched *sched)
3155{
3156	struct work_atoms *data;
3157	struct rb_node *node;
3158
3159	if (sched->skip_merge)
3160		return;
3161
3162	while ((node = rb_first_cached(&sched->atom_root))) {
3163		rb_erase_cached(node, &sched->atom_root);
3164		data = rb_entry(node, struct work_atoms, node);
3165		__merge_work_atoms(&sched->merged_atom_root, data);
3166	}
3167}
3168
3169static int perf_sched__lat(struct perf_sched *sched)
3170{
3171	struct rb_node *next;
3172
3173	setup_pager();
3174
3175	if (perf_sched__read_events(sched))
3176		return -1;
3177
3178	perf_sched__merge_lat(sched);
3179	perf_sched__sort_lat(sched);
3180
3181	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3182	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3183	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3184
3185	next = rb_first_cached(&sched->sorted_atom_root);
3186
3187	while (next) {
3188		struct work_atoms *work_list;
3189
3190		work_list = rb_entry(next, struct work_atoms, node);
3191		output_lat_thread(sched, work_list);
3192		next = rb_next(next);
3193		thread__zput(work_list->thread);
3194	}
3195
3196	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3197	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3198		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3199
3200	printf(" ---------------------------------------------------\n");
3201
3202	print_bad_events(sched);
3203	printf("\n");
3204
3205	return 0;
3206}
3207
3208static int setup_map_cpus(struct perf_sched *sched)
3209{
3210	struct perf_cpu_map *map;
3211
3212	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3213
3214	if (sched->map.comp) {
3215		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3216		if (!sched->map.comp_cpus)
3217			return -1;
3218	}
3219
3220	if (!sched->map.cpus_str)
3221		return 0;
3222
3223	map = perf_cpu_map__new(sched->map.cpus_str);
3224	if (!map) {
3225		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3226		return -1;
3227	}
3228
3229	sched->map.cpus = map;
3230	return 0;
3231}
3232
3233static int setup_color_pids(struct perf_sched *sched)
3234{
3235	struct perf_thread_map *map;
3236
3237	if (!sched->map.color_pids_str)
3238		return 0;
3239
3240	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3241	if (!map) {
3242		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3243		return -1;
3244	}
3245
3246	sched->map.color_pids = map;
3247	return 0;
3248}
3249
3250static int setup_color_cpus(struct perf_sched *sched)
3251{
3252	struct perf_cpu_map *map;
3253
3254	if (!sched->map.color_cpus_str)
3255		return 0;
3256
3257	map = perf_cpu_map__new(sched->map.color_cpus_str);
3258	if (!map) {
3259		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3260		return -1;
3261	}
3262
3263	sched->map.color_cpus = map;
3264	return 0;
3265}
3266
3267static int perf_sched__map(struct perf_sched *sched)
3268{
3269	if (setup_map_cpus(sched))
3270		return -1;
3271
3272	if (setup_color_pids(sched))
3273		return -1;
3274
3275	if (setup_color_cpus(sched))
3276		return -1;
3277
3278	setup_pager();
3279	if (perf_sched__read_events(sched))
3280		return -1;
3281	print_bad_events(sched);
3282	return 0;
3283}
3284
3285static int perf_sched__replay(struct perf_sched *sched)
3286{
3287	unsigned long i;
3288
3289	calibrate_run_measurement_overhead(sched);
3290	calibrate_sleep_measurement_overhead(sched);
3291
3292	test_calibrations(sched);
3293
3294	if (perf_sched__read_events(sched))
3295		return -1;
3296
3297	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3298	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3299	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3300
3301	if (sched->targetless_wakeups)
3302		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3303	if (sched->multitarget_wakeups)
3304		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3305	if (sched->nr_run_events_optimized)
3306		printf("run atoms optimized: %ld\n",
3307			sched->nr_run_events_optimized);
3308
3309	print_task_traces(sched);
3310	add_cross_task_wakeups(sched);
3311
3312	create_tasks(sched);
3313	printf("------------------------------------------------------------\n");
3314	for (i = 0; i < sched->replay_repeat; i++)
3315		run_one_test(sched);
3316
3317	return 0;
3318}
3319
3320static void setup_sorting(struct perf_sched *sched, const struct option *options,
3321			  const char * const usage_msg[])
3322{
3323	char *tmp, *tok, *str = strdup(sched->sort_order);
3324
3325	for (tok = strtok_r(str, ", ", &tmp);
3326			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3327		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3328			usage_with_options_msg(usage_msg, options,
3329					"Unknown --sort key: `%s'", tok);
3330		}
3331	}
3332
3333	free(str);
3334
3335	sort_dimension__add("pid", &sched->cmp_pid);
3336}
3337
3338static bool schedstat_events_exposed(void)
3339{
3340	/*
3341	 * Select "sched:sched_stat_wait" event to check
3342	 * whether schedstat tracepoints are exposed.
3343	 */
3344	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3345		false : true;
3346}
3347
3348static int __cmd_record(int argc, const char **argv)
3349{
3350	unsigned int rec_argc, i, j;
3351	const char **rec_argv;
3352	const char * const record_args[] = {
3353		"record",
3354		"-a",
3355		"-R",
3356		"-m", "1024",
3357		"-c", "1",
3358		"-e", "sched:sched_switch",
 
 
 
3359		"-e", "sched:sched_stat_runtime",
3360		"-e", "sched:sched_process_fork",
 
3361		"-e", "sched:sched_wakeup_new",
3362		"-e", "sched:sched_migrate_task",
3363	};
3364
3365	/*
3366	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3367	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3368	 * to prevent "perf sched record" execution failure, determine
3369	 * whether to record schedstat events according to actual situation.
3370	 */
3371	const char * const schedstat_args[] = {
3372		"-e", "sched:sched_stat_wait",
3373		"-e", "sched:sched_stat_sleep",
3374		"-e", "sched:sched_stat_iowait",
3375	};
3376	unsigned int schedstat_argc = schedstat_events_exposed() ?
3377		ARRAY_SIZE(schedstat_args) : 0;
3378
3379	struct tep_event *waking_event;
3380
3381	/*
3382	 * +2 for either "-e", "sched:sched_wakeup" or
3383	 * "-e", "sched:sched_waking"
3384	 */
3385	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3386	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3387
3388	if (rec_argv == NULL)
3389		return -ENOMEM;
3390
3391	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3392		rec_argv[i] = strdup(record_args[i]);
3393
3394	rec_argv[i++] = "-e";
3395	waking_event = trace_event__tp_format("sched", "sched_waking");
3396	if (!IS_ERR(waking_event))
3397		rec_argv[i++] = strdup("sched:sched_waking");
3398	else
3399		rec_argv[i++] = strdup("sched:sched_wakeup");
3400
3401	for (j = 0; j < schedstat_argc; j++)
3402		rec_argv[i++] = strdup(schedstat_args[j]);
3403
3404	for (j = 1; j < (unsigned int)argc; j++, i++)
3405		rec_argv[i] = argv[j];
3406
3407	BUG_ON(i != rec_argc);
3408
3409	return cmd_record(i, rec_argv);
3410}
3411
3412int cmd_sched(int argc, const char **argv)
3413{
3414	static const char default_sort_order[] = "avg, max, switch, runtime";
3415	struct perf_sched sched = {
3416		.tool = {
3417			.sample		 = perf_sched__process_tracepoint_sample,
3418			.comm		 = perf_sched__process_comm,
3419			.namespaces	 = perf_event__process_namespaces,
3420			.lost		 = perf_event__process_lost,
3421			.fork		 = perf_sched__process_fork_event,
3422			.ordered_events = true,
3423		},
3424		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3425		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3426		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3427		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3428		.sort_order	      = default_sort_order,
3429		.replay_repeat	      = 10,
3430		.profile_cpu	      = -1,
3431		.next_shortname1      = 'A',
3432		.next_shortname2      = '0',
3433		.skip_merge           = 0,
3434		.show_callchain	      = 1,
3435		.max_stack            = 5,
3436	};
3437	const struct option sched_options[] = {
3438	OPT_STRING('i', "input", &input_name, "file",
3439		    "input file name"),
3440	OPT_INCR('v', "verbose", &verbose,
3441		    "be more verbose (show symbol address, etc)"),
3442	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3443		    "dump raw trace in ASCII"),
3444	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3445	OPT_END()
3446	};
3447	const struct option latency_options[] = {
3448	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3449		   "sort by key(s): runtime, switch, avg, max"),
3450	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3451		    "CPU to profile on"),
3452	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3453		    "latency stats per pid instead of per comm"),
3454	OPT_PARENT(sched_options)
3455	};
3456	const struct option replay_options[] = {
3457	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3458		     "repeat the workload replay N times (-1: infinite)"),
3459	OPT_PARENT(sched_options)
3460	};
3461	const struct option map_options[] = {
3462	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3463		    "map output in compact mode"),
3464	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3465		   "highlight given pids in map"),
3466	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3467                    "highlight given CPUs in map"),
3468	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3469                    "display given CPUs in map"),
3470	OPT_PARENT(sched_options)
3471	};
3472	const struct option timehist_options[] = {
3473	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3474		   "file", "vmlinux pathname"),
3475	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3476		   "file", "kallsyms pathname"),
3477	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3478		    "Display call chains if present (default on)"),
3479	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3480		   "Maximum number of functions to display backtrace."),
3481	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3482		    "Look for files with symbols relative to this directory"),
3483	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3484		    "Show only syscall summary with statistics"),
3485	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3486		    "Show all syscalls and summary with statistics"),
3487	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3488	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3489	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3490	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3491	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3492	OPT_STRING(0, "time", &sched.time_str, "str",
3493		   "Time span for analysis (start,stop)"),
3494	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3495	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3496		   "analyze events only for given process id(s)"),
3497	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3498		   "analyze events only for given thread id(s)"),
3499	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3500	OPT_PARENT(sched_options)
3501	};
3502
3503	const char * const latency_usage[] = {
3504		"perf sched latency [<options>]",
3505		NULL
3506	};
3507	const char * const replay_usage[] = {
3508		"perf sched replay [<options>]",
3509		NULL
3510	};
3511	const char * const map_usage[] = {
3512		"perf sched map [<options>]",
3513		NULL
3514	};
3515	const char * const timehist_usage[] = {
3516		"perf sched timehist [<options>]",
3517		NULL
3518	};
3519	const char *const sched_subcommands[] = { "record", "latency", "map",
3520						  "replay", "script",
3521						  "timehist", NULL };
3522	const char *sched_usage[] = {
3523		NULL,
3524		NULL
3525	};
3526	struct trace_sched_handler lat_ops  = {
3527		.wakeup_event	    = latency_wakeup_event,
3528		.switch_event	    = latency_switch_event,
3529		.runtime_event	    = latency_runtime_event,
3530		.migrate_task_event = latency_migrate_task_event,
3531	};
3532	struct trace_sched_handler map_ops  = {
3533		.switch_event	    = map_switch_event,
3534	};
3535	struct trace_sched_handler replay_ops  = {
3536		.wakeup_event	    = replay_wakeup_event,
3537		.switch_event	    = replay_switch_event,
3538		.fork_event	    = replay_fork_event,
3539	};
3540	unsigned int i;
3541
3542	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3543		sched.curr_pid[i] = -1;
3544
3545	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3546					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3547	if (!argc)
3548		usage_with_options(sched_usage, sched_options);
3549
3550	/*
3551	 * Aliased to 'perf script' for now:
3552	 */
3553	if (!strcmp(argv[0], "script"))
3554		return cmd_script(argc, argv);
3555
3556	if (!strncmp(argv[0], "rec", 3)) {
3557		return __cmd_record(argc, argv);
3558	} else if (!strncmp(argv[0], "lat", 3)) {
3559		sched.tp_handler = &lat_ops;
3560		if (argc > 1) {
3561			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3562			if (argc)
3563				usage_with_options(latency_usage, latency_options);
3564		}
3565		setup_sorting(&sched, latency_options, latency_usage);
3566		return perf_sched__lat(&sched);
3567	} else if (!strcmp(argv[0], "map")) {
3568		if (argc) {
3569			argc = parse_options(argc, argv, map_options, map_usage, 0);
3570			if (argc)
3571				usage_with_options(map_usage, map_options);
3572		}
3573		sched.tp_handler = &map_ops;
3574		setup_sorting(&sched, latency_options, latency_usage);
3575		return perf_sched__map(&sched);
3576	} else if (!strncmp(argv[0], "rep", 3)) {
3577		sched.tp_handler = &replay_ops;
3578		if (argc) {
3579			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3580			if (argc)
3581				usage_with_options(replay_usage, replay_options);
3582		}
3583		return perf_sched__replay(&sched);
3584	} else if (!strcmp(argv[0], "timehist")) {
3585		if (argc) {
3586			argc = parse_options(argc, argv, timehist_options,
3587					     timehist_usage, 0);
3588			if (argc)
3589				usage_with_options(timehist_usage, timehist_options);
3590		}
3591		if ((sched.show_wakeups || sched.show_next) &&
3592		    sched.summary_only) {
3593			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3594			parse_options_usage(timehist_usage, timehist_options, "s", true);
3595			if (sched.show_wakeups)
3596				parse_options_usage(NULL, timehist_options, "w", true);
3597			if (sched.show_next)
3598				parse_options_usage(NULL, timehist_options, "n", true);
3599			return -EINVAL;
3600		}
3601
3602		return perf_sched__timehist(&sched);
3603	} else {
3604		usage_with_options(sched_usage, sched_options);
3605	}
3606
3607	return 0;
3608}